
 Page 1 of 102 21.04.2008

MASTERARBEIT

XVSM Tutorial and Application Scenarios

Ausgeführt am
Institut für Computersprachen

Abteilung für Programmiersprachen und Übersetzerbau
der Technischen Universität Wien

unter Anleitung von
Ao. Univ. Prof. Dipl.-Ing. Dr. eva Kühn

durch

Michael Wittmann
 Spitzweg 43

A-1210 Wien
Matr.Nr.: 0026159

Wien, im März 2008 _______________________

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

 Page 2 of 102 21.04.2008

Table of contents

Abstract (English) ...3

Abstract (German)..4

Coding standard ...5

How to maintain the tutorial ..6

Application scenarios ...9

Tutorial ...40

Used Literature and References ..99

Erklärung ..102

Note that the printed document has another pagination and a slightly different Table
of contents than this document. The reason is that in the printed version, the
Application scenarios and the Tutorial are handled as extra documents, separated by
a green page, which is not possible here. Thus also the text format may differ slightly.

 Page 3 of 102 21.04.2008

Abstract (English)
XVSM (eXtensible Virtual Shared Memory) is middleware to let applications write

data to a shared memory that can be read by other applications. The data is

distributed over a set of peers, which can read, write, take and delete it, independent

on which peer the data is really stored. If one peer fails, the data is not lost, as it is

available also on other peers.

This master thesis should provide the necessary information to learn and understand

the features and possibility of space-based computing by means of XVSM and its

Java implementation, called MozartSpaces. It was shown to be usable for this task by

handing it to about 80 students and incorporate their feedback to the work.

The application scenario document should give application designers an insight into

the possibilities they have when using XVSM. The purpose of this master thesis is

not to give a complete documentation of the current state of XVSM, but to arouse

interesting in the reader to use XVSM and also to give him/her a base knowledge of

its features, possibilities and its usage.

 Page 4 of 102 21.04.2008

Abstract (German)

XVSM (eXtensible Virtual Shared Memory) ist Middleware, um es Applikationen zu

ermöglichen, Daten aus einem gemeinsamen Datenspeicher zu lesen. Die Daten

sind über mehrere Peers verteilt, welche die Daten lesen, schreiben, entnehmen

oder löschen können, unabhängig davon, auf welchem Peer die Daten tatsächlich

gespeichert sind. Wenn ein einzelner Peer ausfällt, sind die Daten nicht verloren, da

sie auf mehreren Peers verteilt sind.

Diese Masterarbeit soll die notwendigen Informationen bieten, um die Features und

Möglichkeiten von Space-Based Computing anhand von XVSM und seiner Java-

Implementierung, genannt MozartSpaces, kennen zu lernen. Es wurde gezeigt, dass

diese Aufgabe erfüllt werden konnte, indem es an etwa 80 Studenten bereits

praktisch erprobt wurde und deren Feedback laufend in die Arbeit einfloss.

Das Application scenarios (Anwendungsszenarien-) Dokument soll

Anwendungsdesignern einen Einblick in die Möglichkeiten bieten, wenn sie XVSM

verwenden. Das Ziel dieser Masterarbeit ist nicht, eine vollständige Dokumentation

des derzeitigen Status von XVSM zu erarbeiten, sondern beim Leser das Interesse

zu wecken, XVSM zu verwenden und darüber hinaus auch ein Basiswissen über

seine Features, Möglichkeiten und seine Anwendung zu vermitteln.

 Page 5 of 102 21.04.2008

Coding standard

In order to have code parts with uniform layout, I have decided to use coding

standards which gives guidelines how code must look like to be used in the Tutorial.

These relate to common coding guidelines used by the Java programming

community:

• Class names are nouns or a sequence of nouns, whereas each noun is

starting with an upper case character: SalesPerson, CapiFactory,…

• Interface classes need to start with an I (upper case i), followed by the

"normal" class name: ICapi, ISalesPerson,

• methods adhere to the same rules as Class names, although the very first

character is lower case: payTicket(), waitForTicket()

• after the method header of a method, there must be a new line before the “{“

• a trailing “}” at the end of the method or at the end of the class must be in an

extra line, where no other character is standing.

• in each way, where the “{“ and “}” are enclosing another code part, this code

part starts with a new line (thus it is not in the same line as the “{“) and it is

indented by 1 tab.

• the width of the tabstop is 2 characters (as we're using a font with fixed size)

• the parameters in methods are separated by a colon, followed by a single

blank. It is up to the developer, if the parameters are standing in one line or in

multiple lines.

• Comments have to be written above "tricky" or very interesting parts of the

code as well as above methods and class names. It is up to the developer if

she/he uses block comments or inline comments.

• For simplicity reasons, it is allowed to handle all Exceptions through one “try ..

catch(Exception e)” block. Note that we discourage such error-handling in

reality

 Page 6 of 102 21.04.2008

How to maintain the tutorial

This chapter helps to update the Tutorial when the XVSM or MozartSpaces

implementation changes.

Below, you find a list of keywords that is used in the Tutorial. I just listed those

keywords that are really used in the text. I left away those that are just mentioned

(like Exceptions etc), examples (they are using nearly everything) and the

Summaries, as they are mentioning nearly all keywords of this chapter:

AbstractAspect: 4
Aspects: 2.1, 4
 authentification: 4
 automatically making persistent: 2.1
 logging: 4
 notification: 4, 5
 pre-/postMethods: 4
AtomicEntry: 2.1, 2.2, 2.3, 2.4
 getValue(): 2.2
Capi: 2.1, 3
 used to access data: 2.5
 addAspects: 4
 commitTransaction: 3
 createContainer(…): 2.1
 createNotification(…): 5
 createTransaction(): 3
 destroy: 2.5.2
 block if no Entry in Container: 2.5.2
 lookupContainer: 2.1c
 read(...): 2.1, 2.4, 2.5.1, 5
 block if no Entry in Container: 2.5.1
 rollbackTransaction(): 3
 shift(…): 2.1a, 2.5.5
 shutdown(boolean clearSpace): 2.1
 take(…): 2.3, 2.5.3, 5
 block if no Entry in Container: 2.5.3
 write(…): 2.1, 2.3, 2.5.4
 block if Container full: 2.1a, 2.5.4
Container: 2.1
ContainerNameOccupiedException: 2.1c
ContainerRef: 2.1, 2.5, 4
 parameter in data access: 2.1, 2.5
Coordination parameters: 2.1b

Entry: 2.2, 4, 5
 EntryTypes: 2.1, 2.2
 getEntryType(): 2.2
FifoCoordinator: 2.1b, 2.3
FifoSelector: 2.5.1
ICapi: 3
IContainer.INFINITE_SIZE: 2.1a
ICoordinator: 2.1b, 2.3
IExplicitCoordinator: 2.1b, 2.3, 2.5.1
IImplicitCoordinator: 2.1b, 2.3
INotificationListener: 5
 notify(…): 5
IPoints: 4
Implicit coordination: 2.1, 2.5.1
KeyCoordinator: 2.1b, 2.3
KeySelector: 2.4
LifoCoordinator: 2.3
Notification: 4, 5
NotificationTarget: 5
RandomCoordinator: 2.1b, 2.3
Selector: 2.2, 2.3, 2.4, 5
 CNT_ALL: 2.4
 contructors: 2.4
 count parameter: 2.4
Timeout: 2.5.1, 2.5.2
Transaction: 2.5, 3, 4
 passed as parameter when accessing data:
2.x, 3
 pessimistic, behaviour etc: 3
Tuple: 2.1, 2.2
 iterator: 2.2
VectorCoordinator: 2.3
VectorSelector: 2.2, 2.4

I refer to other chapters in:
Chapter referring to

2.2 example at the end of chapter

2.4 KeySelector example at the end of chapter

2.5.1 chapter about Selectors

2.5.2 adheres to same rules as read

 Page 7 of 102 21.04.2008

Application scenarios
Version 1.2

Written by Michael Wittmann

 Page 8 of 102 21.04.2008

Table of Contents

Chapter 1: The Change in the paradigm 9
1.1 From Client-Server … 9
1.2 … to p2p networks … 12
1.3 … to Space-based data storage 13
1.4 „Being more honest“ 16

Chapter 2: Usage Possibilities for XVSM 18
2.1 Adding more computation power 18
2.2 High-priority requests 20
2.3 Execution path 21
2.4 Execution path with load balancing 25
2.5 Execution path with automatic load balancing 28
2.6 Execution path with recovery after failure 34

Conclusion 37

 Page 9 of 102 21.04.2008

Chapter 1:
The Change in the paradigm

1.1 From Client-Server …

When designing software, the designer must decide what architecture to use,

especially if the requirement exists to distribute the data over multiple computers.

There are abundant possibilities to design the software in a way that fulfils this

requirement. One of the most common techniques is the Client–Server
architecture. In this architecture, there is one server which holds the information. On

the other hand, there is a (possibly big) number of clients that need information that

the server has, so they contact the server to retrieve that information (see fig. 1.1).

Figure 1.1: Client-Server architecture

This leads to some problems, which are already well-known by most developers, who

are using the Client–Server architecture: when the server crashes, the information

offered by the server is not available any longer. It is even worse as the server

typically doesn’t just offer data services but it offers more sophisticated services to

the clients. So if the server crashes, the complete service is unavailable. Imagine a

factory where the server is the central point that sends commands to the production

machinery. If the server crashes, all machines would possibly stand still which could

lead to heavy losses for the company.

Another situation is that the centralized server does not crash, but is unavailable. For

example, it might happen that a server is heavily overloaded with requests. The

server needs some time to receive a request, parse it, retrieve the information and

send the answer back. In many cases, the answer is given back within (milli-)

seconds. With a big number of requests, the server might need many seconds or

 Page 10 of 102 21.04.2008

even minutes until it has processed all requests until being able to answer to the

most recently sent request (see fig 1.2).

Figure 1.2: An overloaded server

In some networks, especially in the Internet, unreliable communication is used, which

means that it is not sure that information is really delivered to the server or back to

the client – it could be lost on its way. Thus, there are timeouts used, which give an

interval in which the other communication partner must give an answer, else it is

assumed that the information is lost. Talking about overloaded servers, which take

seconds or minutes to give an answer to a request, this could mean that the server is

up and running, still processes an answer, and meanwhile the client times out.
Normally, the request is sent repeatedly, until the client gives up and decides that the

server is down. But resending a request multiple times, that is also processed

multiple times, could lead to problems if the request is not idempotent; this means it

changes the state of the server on every call. For example, imagine you'd like to

order some goods. If the request is sent multiple times to the server, which

processes this order, but does not respond within the timeout, the goods may be

ordered multiple times. Special treatment for such situations must be implemented.

As a consequence, many companies invest in a set of servers to service the clients.

There are different approaches how to use a set of servers, like having one server

and if it fails, to let the backup server fulfil the requests. Or to equally distribute (“load

balance”) the requests to all servers to have a good utilization per server and thus a

low response time for each request (see fig 1.3)

 Page 11 of 102 21.04.2008

Figure 1.3: Multiple servers answering to requests

In most cases, the servers must react the same way when talking with the clients.

The clients are not interested in getting different responses when communicating with

different servers. Imagine two servers where one server has one part of the database

and the other server has the other one, whereas the requests are handed to a server

randomly. In this scenario - depending on to which server the request is routed to -

one time the request can be fulfilled and the next time, the information might not be

available, as it is standing in the other part of the database. So for this scenario, it is

required that the servers must have access to the same information. In many cases,

a shared database is used. In this case, the bottleneck is the database itself, as it is

now the central point of failure and heavy load. This leads to the same problem

concerning bottleneck and failover as described above. In other cases, the servers

may synchronize their memory directly. Whenever a server has new information, it

must communicate this new information to the others. When the server is required to

delete data, this server needs to order the other servers to delete this data too (see

fig 1.4)

 Page 12 of 102 21.04.2008

Figure 1.4: Synchronization of a set of servers

However, still the problem remains that servers may fail or become overloaded.

1.2 … to p2p networks …

Recent technologies [1] in offering information for programs are not using dedicated

central servers, but instead, each participant in the network is a ”peer”. Therefore

such networks are called peer-to-peer (p2p) networks. In such a network, each

participant may act as a server and as a client at the same time, in decentralised p2p

overlay structures these peers are also called „SERVENTS“ (SERver + cliENT). To

be able to answer to requests, the peer must have at least a part of the complete

information that might be needed by other peers. A peer can ask a set of peers and

try to get the desired information. It depends on the replication and caching strategy

of the p2p network [1], how to obtain the data and when to give up, when it seems

that the information cannot be obtained within reasonable time. For example,

Gnutella [2] asks a group of so-called Ultrapeers that don't necessarily contain the

searched data themselves, but store information about successful search requests to

peers. Therefore, not all peers need to be asked for information, but it is sufficient to

only request Ultrapeers, which in turn ask the so-called leaves, which don't cache the

request's responses. The Ultrapeers are iteratively asking other Ultrapeers for the

requested information until a certain threshold.

 Page 13 of 102 21.04.2008

1.3 … to Space-based data storage

Obviously, it would be nice if all peers had the same information, so either

information is held by a peer itself (don’t forget that the peer acts as a server as well!)

or the information is not available at all – i.e. no other peer needs to be contacted to

ask for that information. In most cases, it is impossible to use such an approach, as

with the just-mentioned file sharing network, as there would be too much data to be

distributed between and stored at the peers.

But this scenario has some interesting advantages as it solves the problem with

failing and overloaded servers: if one peer fails, availability is still given. If one or

several peers are overloaded, only the user requesting the overloaded peer is

affected.

Such functionality can be offered when using space-based data storage. All data is

stored within a so-called data space, which the other peers can access. The data

space may be spread among a set of peers, which need to keep the data in sync

(which is called "replication"). The space only stores the data objects and manages

the requests for such data. It also may store the data to a persistent storage device

to recover from failure or to enable restart of the system without loss of data.

There are several implementations of such a data space existing, for example Corso

[12] JavaSpaces [3], GigaSpaces XAP [4], TSpaces [5], XMLSpaces [7] and XVSM

(eXtensible Virtual Shared Memory), although not all of these spaces provide

replication or persistency of data:

Name Replication Persistency Transactions

Corso X X X

JavaSpaces X X

GigaSpaces XAP X X X

TSpaces X X

XMLSpaces X X X

XVSM P P X
Table 1.1: Comparing several data space implementations. X means that this feature is offered, P means this feature is planned

One major advantage of XVSM is what the X in the name is standing for: it is

standing for eXtensible, which means that XVSM can be extended by several

 Page 14 of 102 21.04.2008

functions, like automatic data persistency and recovery, accessing the data by other

selectors than the default ones, and so on.

In XVSM, the place where data entities are stored in is called “Container”. One peer

can host a set of Containers, this set is called local Space in XVSM:

Figure 1.6: p2p Network, each with its own Space and its own Containers and Entries.

Data entities that are stored in a Container are called “Entries”. An Entry can be

either an AtomicEntry that is generic and can be instantiated using any Java class or

a Tuple, which can contain a (set of) Tuple/s or AtomicEntry/ies. The Entries are

written to, or taken, read or destroyed from the Container:

Figure 1.7: Overview Container, Tuple, AtomicEntry

As you can see in fig. 1.7, the Container is used as storage for data entities, which

can be considered messages: one peer writes to the Container and wants to tell the

other peers something by doing so. Thus, XVSM handles the communication and

you no longer need to handle it "manually". The distribution of data is done by XVSM.

Note that the data that is stored in the Container can be payload data as well as

 Page 15 of 102 21.04.2008

command data, even mixed in one Container. Further note that using this approach,

you can achieve decoupling in the sense of time and space.

As other peers might need to know about data stored by a peer, they are listening to

new information. Such a listener on new information is called in [11] "Producer",

which is listening to requests from a peer called "Consumer" [13]. The Consumer

writes an Entry to a container, and the Producer takes it. As an answer, the Producer

writes an Entry to the container that is taken by the Consumer:

Figure 1.8a: Consumer writes data

Figure 1.8b: Producer takes data

Figure 1.8c: Producer writes data back

 Page 16 of 102 21.04.2008

Figure 1.8d: Consumer takes data

XVSM offers the possibility to notify the peer that is working on the Container if a

certain Entry is written to the container. Using this functionality, one can implement to

push data by using notifications or to regularly pull data from the Container. It is no

problem to also mix these approaches within one Container.

1.4 „Being more honest“

Ralf Westphal explains in [11], that techniques like RMI or CORBA hide the important

fact that the producer and the consumer are physically distributed – a call to a remote

process just looks the same as a call on a local object, i.e. in the same context:
String returnCode = producer.foo();

Internally, for the treatment of a remote execution, the consumer’s method call is

given to a communication proxy (e.g. RMI stub), which creates a communication

package, and sends it to the producer’s communication proxy. This proxy then hands

the method call to the producer:

Figure 1.9: Simplified function of RMI

 Page 17 of 102 21.04.2008

But hiding the details of the communication might lead to wrong expectations at the

caller’s side and thus according to [11] to “wrong promises”. The reasons are:

If you want to perform a local method call, you can be sure of the following

assumptions [11]:

• Execution of the request and delivery of the result without any delay

• Handing over complete control of the thread to the producer

• 100% availability of the producer

• 100% secure communication between consumer and producer

• 100% fail-safe communication between consumer and producer

• The execution is performed immediately

Obviously, these assumptions are not necessarily correct for working with remote

processes. But as remotely running processes should act autonomously (according

to [11]), there should be another paradigm used, and that’s where XVSM comes into

play: XVSM can be used as a message exchange platform, which holds the requests

from the consumers and the answers of the producers. The consumer cannot

“command” the producer directly, as the consumer only writes a request to the space

and the producer takes the request to fulfil it. The producer autonomously decides to

handle a request and it also decides the order of handling requests; this style of

interaction is not imperative anymore, but cooperative:

Figure 1.10: Multiple consumers, multiple producers

 Page 18 of 102 21.04.2008

As XVSM, like other space-based approaches, offers the possibility to let multiple

peers communicate using the space, there might be multiple producers handling the

requests, and they can cooperate to handle them. On the other hand, the detail that a

request might be lost, as no producer is available, is not hidden from the Consumer –

it has to provide some possibility to be notified as soon as the request is handled.

This might take forever if no producer is available for this request, but it is on behalf

of the consumer to take special treatment in such a case, which is more appropriate

for operating remotely and is not hidden from the programmer.

Chapter 2:
Usage Possibilities for XVSM

2.1 Adding more computation power

In chapter 1.4, the possibility to use XVSM to implement an improved version of the

Client-Server architecture towards a “more transparent” way of request processing

was shown: the Client is aware of the possibility that no server is available and thus it

may take action that its request will be fulfilled within a given time. In fig. 1.10, of

course there is still the possibility that Producers fail or that they are overloaded. But

as Customers are aware of this behaviour, they can either try again or contact an

authority to ask it to add more Producers:

Figure 2.1.1: Request times out, Consumer contacts Authority

 Page 19 of 102 21.04.2008

The contact to the Authority can be established according to certain policies like e.g.

after a certain number of retries. The Authority decides if it is really necessary to add

new Producers; e.g. if all Producers are really overloaded. In the case that the

Producers are not fully utilized, but the Consumers complain that the Producers are

not answering, it might be that the Consumer(s) are not requesting in a way that the

Producers are able to react upon. For comparison: Imagine a room with two sales

persons and several clients. The sales persons answer questions about product

prices. However, assume that there is one client that asks when the bus will arrive.

The sales persons won't answer to this question and after a few retries, this client will

give up. An Authority now may decide that it's not a problem of the salespersons (as

they are not overloaded), but that the client is not requesting correctly only by

comparing the utilization of the Producers (which indicates that they are not

overloaded) and the fact that requests from Consumers are arriving that there are not

enough Producers. In this case, the Authority must provide some means to contact a

human administrator to inform about the fact that a Consumer's request cannot be

fulfilled. This is in contrast to an imperative approach: Using an imperative approach

(e.g. Client-Server architecture), you receive an answer either way, which can be an

error message if the request was formatted in a bad way. In some cases, also the

cooperative approach (as just described) can handle cases where erroneous

requests are detected, but only with limitations. If a request is too incorrect, it may not

be processed at all.

In case that the Authority decides that a request is invalid, it can remove this request

from the "normal" container and move it to an extra "error container", as proposed in

[15]. The human administrator may be notified about such a new Entry or he/she may

check this containers content regularly to decide what to do with such Entries.

It depends on the implementation of this Authority, when it decides to add new

Producers, and how it is done – but let's say there is a pool of available peers

("Resource pool") and one peer is added to this space just by telling it that it needs to

handle (a subset) of requests and giving it the reference to the space container

where the requests are stored. The Resource pool may be the internal memory of the

Authority or another container with contact information to available peers. When

 Page 20 of 102 21.04.2008

writing this information to the memory or to the container, the peer is considered

being available for a new execution task.

Figure 2.1.2: Adding a new producer

A very interesting property of this scenario is shown in fig 2.1.2: A Producer actually

can be a thread in a process that is running as a Producer, a single workstation, a

mainframe or a cluster that is running processes that are acting as Producer – it just

doesn't matter. It is always only a “worker” that is checking if a certain request is

standing in the Container. Of course, if there is no Authority or if there are no more

producers available, also XVSM can't help. But keeping in mind that XVSM allows to

detect whether a request is not handled, the customer can – in contrast to other

paradigms – handle such a situation. For example, when an Entry is currently

handled, it is taken from the Container and written to another. If after a certain time,

the Entry still is in the Container (it is still not processed), the Client that stored the

Entry can take action, like error handling, user notification etc.

2.2 High-priority requests

An Entry may hold data beyond or instead of a request itself (called payload data): so

you can use this data to define a priority. It is also possible that the Entry itself is of a

type (class) that represents a request with high priority, for example a type that

 Page 21 of 102 21.04.2008

extends the functionality of the Entry by giving it a "high-priority label". With such a

request that is declared as being high-priority, you may implement a system where a

dedicated peer listens only on requests with high priority:

Figure 2.2: One Producer only handles urgent requests

There is also the possibility to implement the high-priority request handling not with a

dedicated producer, but in a way that each peer (before taking an Entry from the

container) checks if there is a request with high priority. If there is one, the request is

executed, if not, a "normal" request is taken.

2.3 Execution path

Building on the examples from Chapter 2.1, we can implement an execution path. An

execution path is a sequence of operations, where the output of one operation is the

input of the subsequent operation. It has one or many defined Start state(s) and one

or many defined End state(s).

We could define an execution path as the following state machine:

• There are Pools that contain intermediate results of an overall operation. The

Pools are represented by a state in the diagram.

 Page 22 of 102 21.04.2008

• The edges are operations that are performed by one or more executing

entities on an Entry in the Pool. Such an executing entity is a peer in the

space that offers its processing power to perform the operation.

• An operation moves an Entry, which contains the intermediate result of the

operation, from one state to the next.

• There are Pools at the start and at the end of the path that contain the initial

values resp. the final results.

• The sum of all passed edges between a start and an end Pool are considered

as being a complete computation (e.g. the computation of PI, or fulfilling a

Sales request etc.).

An example for an execution path could be:

Figure 2.3.1: Execution path

In fig. 2.3.1, the Pools are drawn as circles (states). In the Pools, the above

mentioned Entries with the intermediate result are stored. The linking arrows

between the Pools are standing for the operation that is needed to bring an Entry

from one Pool to the next.

On each operation, some entities are included that perform calculations (processors,

clusters, …). After an operation is finished, the result is passed to the next Operation

Pool. There also may be – depending on the result of an operation – a branch in the

Execution path. Furthermore, there may be multiple start and/or end states:

 Page 23 of 102 21.04.2008

Figure 2.3.2: Execution path with multiple Start states and branches in the calculation from Start to the End

The possibilities to combine the states (operations) are vast.

If you have a calculation to perform, you put your initial value to (one of) the Start

states. A calculation entity takes this value and performs an operation on it. The

result is passed to the next Operation Pool. You can imagine this taking and passing

of the value like a token that moves from one state to the other in the above state

diagram, which is also known as the SEDA approach [6]. One of the advantages of

the SEDA is that multiple peers can work on one or different states in parallel and

independent from each other. Thus, in heavy load conditions, it can perform better

compared to a thread-based approach, where each thread executes the complete

execution path without any intermediary states [6].

Let's say that the token that represents an intermediary result is an Entry in XVSM

and each of these pools which hold the intermediary results is a container. Peers are

listening to new Entries in a specific container. A peer takes an Entry and performs

an operation on it. When it has finished, the peer writes the result to the next

container (state). There, it is taken by a (possibly other) peer and so on, until all

operations are done and the result value is written to the End state.

Each container holds a number of Entries, which are the intermediary results. One

can now check these numbers per container to see the current progress of the

calculation and also see the number of peers that are working on this container. A

tool that visualizes the number of working peers and number of Entries per state is

implemented in [14].

Obviously, each operation needs at least one peer to perform this task, else, there

would be an increasing number of Entries in the container without a calculating peer

 Page 24 of 102 21.04.2008

and there won't be any result. But of course there could be multiple peers operating

on one container:

Figure 2.3.3: Execution path with multiple peers working on one container

The Entry already contains the algorithm as additional payload, for example as a

script. Thus, the peer takes the Entry and performs the operation that is common for

this one container. The information which operation is specific for which container

may stand in the contained algorithm. In this simplified example, it is only assumed

that there is some possibility to store the algorithm within the Entry.

Keep in mind that an Entry could be an AtomicEntry, which is generic. In this

AtomicEntry, you have some object stored, that holds the current value and

describes the operations as well as what to do if an operation is finished, i.e. which

operation should be done next. Beside the complete algorithm it furthermore has an

internal state that tells which operation should be currently performed. Peers

participating in this Execution path only need to retrieve the algorithm that is specific

for this container and check what to do with the Entry when the operation is finished,

which must also be included in the Entry's algorithm.

 Page 25 of 102 21.04.2008

Please take a look at Figure 2.3.2. A peer takes such an Entry from the Start 1

container and executes the algorithm contained in the Entry. The algorithm must

describe which operation to execute first. This algorithm is executed by the peer.

When the algorithm that is specific to the current state is finished, the internal state of

the Entry is set to let the second method perform next. But this method is not

performed by the peer immediately. Instead, the peer checks by usage of the return

parameter of the current algorithm that the Entry must be written to the subsequent

container. Thus the peer does what the Entry tells it and writes the updated Entry to

the Op 1a container. There, the Entry is taken by a peer (either the same or another

one), the algorithm which is specific to container Op 1a is called and so on.

Each container now holds a number of semi-products (Entries where the calculation

is not finished yet). As the peer doesn't know the algorithm in advance and doesn't

know what kind of Entries are standing in the containers, the peer doesn't need to be

prepared specially. It just needs to execute the algorithm passed with the Entry. All

the operation instructions are stored in the Entry itself, the peer just performs the

operation. Using this approach, you can use a peer for any operation state, as the

peer doesn't care what container or Entry it is currently working on, it only performs

the actions told by the Entry. Security issues are not taken into consideration in this

simplified example, but of course may be an issue in a real-life project.

2.4 Execution path with load balancing

Let's assume we assign exactly one peer to each container. Then, as already

explained, the Entry is passed from one peer to the next. Furthermore, we assume

that each operation takes equally long and that there is the same number of initial

Entries written to Start 1a and Start 1b. But in Op 2, there is only 1 peer listening for

new Entries. Thus, if the Entries are coming in quite fast, this peer will be overloaded

and it cannot perform the operations in time. The preceding peers are writing their

results to the Op 2 container and thus, this container gets more and more Entries.

Please keep this scenario in mind as it will be referred to again in Chapter 2.5.

We already know from Chapter 2.1 that with the usage of a Resource pool and an

Authority, a new peer can be added to "support" other peers with their calculations.

The Authority regularly checks the number of Entries in each container. If there is a

high number of Entries in a container that exceeds a configurable threshold and if

there are resources available in the Resource pool, resources are added in the form

 Page 26 of 102 21.04.2008

of peers to the container. Note that such a processing resource could be of different

types (thread, processor, mainframe etc.). The processing resource (a.k.a. peer) is

told that it now is listening to Entries in a specific container. As soon as an Entry is

written to the container, the Entry must be taken and its algorithm executed. In the

scenario just described, where in Op 2 an increasing number of Entries will occur, it

is appropriate to add a peer to this container to perform the operation. It is up to the

Authority to decide, (a) which peer should be added to the container, and (b) at what

load per container the peer should be added. Of course, if there is a low number of

Entries in a container, the Authority could decide to take peers away from the

container and give them back to the Resource pool (“shrink” vs. “expand”):

Figure 2.4.1: Execution path with an Authority to perform load balancing

The symbols used in fig. 2.4.1 and subsequent figures represent the following:

 Page 27 of 102 21.04.2008

Figure 2.5.1b Symbols used in the previous diagram

Again, please note that the resources, the container and the Authority are

independent of the operations that are done and of the Calculation itself, as all the

information about the operations and calculation is contained in each Entry. This

scenario can of course also be accomplished by many other programming

frameworks. But XVSM has an advantage in comparison to the some other ones: an

Aspect can be implemented that performs the necessary calls to listen to a container,

executes the Entries' algorithm and writes the Entry to the container of which the

Entry knows that it needs to be written to next. You register this Aspect at an XVSM

peer that wants to join the Execution path and that's all. Other middleware systems

that offer similar functionality to implicitly react on performed actions is for example

Lime [19], which offers the possibility to register reactions on actions that are

performed on the space.

The Authority can be implemented in a way that it is called by a peer, if the peer

notices in some way that the upper/lower threshold of container entries is exceeded

that shall trigger addition/removal of Entries in a container; or the Authority can check

the various containers time by time by itself and decide if peers should be added or

removed from a container.

We assumed that each operation takes equally long and that into Start 1 and 2 the

same number of initial Entries is written. But it is quite obvious that this may not be

realistic. operations can have different duration and the initial values are not written

with same frequency. But this doesn't matter: Let's say that there are twice as much

Entries written to Start 1 than to Start 2. On both containers, only one peer is

 Page 28 of 102 21.04.2008

listening. After some time, there might be so many Entries in Start 1, that the

Authority adds one more peer to Start 1. Then, there will soon be too many Entries in

Op 1a, so the Authority adds here one more peer too, and so on. After some time,

let's assume that no more Entries are written to Start 1. There are currently two peers

working on this container, so eventually there will be no Entries in this container any

more. These two peers notify the Authority that the container is empty, so the

Authority withdraws one (or even both) from the container and returns them in the

Resource pool as described in Chapter 2.1. When the peers are in the Resource

pool, they in turn can be added as a worker to another container again.

If you want to implement the execution path, it is not necessary to have a single

container for each intermediate result, but you may have only one container for all

Entries, no matter what internal state they have. Peers accessing this container are

filtering the Entries by their state and taking those Entries that they are listening on.

For simplicity reasons, the style with one container per intermediate state, as already

described above, is used.

2.5 Execution path with automatic load balancing

One thing that is still needed in the previous scenario is the Authority that adds or

removes the peers from the containers. But it is possible that the peers are managing

this by themselves.

Take the same scenario as from Chapter 2.4, but without the Authority, and

assuming that the containers are limited in size. There is only one well-known peer

running that holds a container that represents the Resource pool. If a peer decides to

request more computing power for the container it is currently working on, it writes a

request to the Resource pool (which is a container, too). If a peer decides that there

are enough working peers on its container, it could decide to "leave" this container. In

this case, it gets one Entry from the Resource pool, which is a Request for Help.

From now on, the peer listens to Entries in the container where help was requested:

 Page 29 of 102 21.04.2008

Figure 2.5.1: Execution path with different fill levels of the containers

1. The maximum threshold is reached, so the peer that is working on Op 2 writes

to the Resource Pool an Entry that holds a request for help. The request for

help must be unique for a container (usage of keys), else many peers per

container could write the same request many times to the Resource Pool.

2. A peer decides that the minimum threshold is reached and thus, it doesn't

need to work on this container any more. So it reads the requests in the

Resource Pool. If there isn't any request, the peer either blocks (as it is done if

there is no Entry in a container) until a request is written or it returns to its old

container, waits for Entries and regularly checks if there are new requests in

the Resource Pool. But as in our example scenario there is a request in the

Resource Pool, the request that Op 2 needs help, is taken.

3. Thus, the peer joins Op 2, and starts taking Entries from there and executing

them.

The approach described so far has two – yet – unsolved problems:

 Page 30 of 102 21.04.2008

• The peer that possesses the Resource Pool crashes

• "Elopement from an empty container": All peers on a container notice

more or less at the same time that the minimum threshold is reached and so,

each of them retrieves a request from the Resource Pool, so no peer is any

longer working on this container.

The first problem can be circumvented by detecting the crash of the Resource Pool

peer. This is not hard when using a separate container for the Resource Pool, as a

peer that wants to contact the Resource Pool will notice that it is unavailable by the

standard network exceptions. In this case, the peer that detects the failure of the

Resource Pool will take over its role by creating the Resource Pool container, which

must be well-known by all participating peers. If you decide not to use separate

containers for each Operation Pool but instead to write all Entries to one container,

you also may decide to write the Request for Help Entries to this container, too. In

this case, there is no network exception because the container representing the

Resource Pool is part of another container:

Figure 2.5.2 Peer that handles Requests for Help has crashed,

the container itself is up and running

In this case, there is no dedicated peer that only works to handle the Requests for

Help messages which could crash. The peers themselves are writing and taking the

Requests for Help, thus the peer holding the Resource Pool only needs to offer a

container where the Request for Help messages can be stored in. To conclude, if the

 Page 31 of 102 21.04.2008

container containing the Request for Help messages crashes, then there is a

problem, but this can be circumvented as it is easy to detect, as just described.

The second problem, where peers may elope from a container that has reached a

minimum threshold can be fixed in the following way: Instead of deciding that the

peer itself leaves the container, it stores in this container a message to tell the others

that they should leave. Every peer that is noticing the minimum threshold is reached

needs to check if such a message exists, except the one that just wrote this message

to avoid to let the peer that wrote the message also read its own message. There

must only be exactly one or none of such an Entry (by using keys for example), else

it might be that all peers at once write such Entries and then none will leave. So,

before writing an Entry to leave the container, a peer needs to check if such an Entry

already exists and if so, it needs to take this Entry and leave the container.

Figure 2.5.3 A peer notices that the minimum threshold is reached and writes the "Leave container" message
The black circle is the unique message (Entry) to "Leave container". The white circles

are the Entries to perform the "normal" operation.

1. Peer A notices that the minimum threshold is reached. It checks if the "Leave

container" message exists, but as it doesn't yet exist, it writes this message. It

no longer listens on a message to leave; else it might be that it receives its

own message.

2. Peer B also notices that the minimum threshold is reached. It checks if the

"Leave container" message exists. As it arrives (created by Peer A), Peer B

 Page 32 of 102 21.04.2008

destroys the message and leaves the container (it is returned to the Resource

Pool or retrieves a Request for Help, dependent on the approach you chose)

3. The other peers are not included in this scenario, but they might perform

similar actions as described in point 1 and 2.

Still, the following scenario could occur:

1. Peer A and B notice that the minimum threshold is reached.

2. Peer A obtains a lock on the container and writes the "Leave container"

message.

3. Peer B also wants to obtain this lock, but it is blocked until Peer A commits

and unlocks

4. Peer A is no longer listening on "Leave container" messages, else it may be

that it receives its own message, which may lead to Elopement again.

5. Peer B notices that there already is a "Leave container" message, takes it and

leaves the container

6. Peer C notices that the minimum threshold is reached, sees that there is no

"Leave container" message and thus writes one, and furthermore is no longer

listening to these "Leave container" messages.

In this scenario, Peer A and Peer C are still working on the container but no longer

listening on the "Leave container" messages. To prevent this behaviour, the Peer that

no longer listens to a container checks in random intervals if there is such a

message. If so, it destroys the Entry and listens again on it. If no such Entry is

available, it just listens on its occurrence again to give another peer the possibility to

tell to leave this container. By regularly checking the minimum threshold and

performing the described tasks, the number of peers working on this container will

not immediately decrease to 1, because of race conditions on the regular checks and

on taking the entry, but in this case this is an advantage, as then a set of peer

remains working on this container until an optimal balance is reached.

 Page 33 of 102 21.04.2008

Figure 2.5.4 Peer A first writes the "Leave container" message but later listens to it again

1. Peer A writes the "Leave container" message, doesn't listen on its appearance

any longer.

2. Peer B notices the minimum threshold, checks for the "Leave container"

message, destroys it and leaves the container.

3. Peer C also notices the minimum threshold, checks for the "Leave container"

message (which already was destroyed by Peer B) and thus it writes a new

"Leave container" message. It also is no longer listening for this kind of

message.

4. Peer A and C now check after a random interval if a "Leave container"

message exists. Peer A checks first, it notices that there already exists such a

message, so it destroys it and listens on these messages again.

5. Peer D notices that the minimum threshold is reached. It checks for a "Leave

container" message which currently doesn't exist, so it writes it to the

container.

6. Peer A checks for the "Leave container" message again, which now exists and

thus it destroys this message and leaves the container.

As seen in the scenarios just described, a peer regularly checks in random intervals if

the minimum threshold is reached. If so, the peer checks if there already exists a

"Leave container" message. If there is already such a message, the peer destroys it

and leaves the container. If there is no such message existing yet, the peer creates

it. The peer sets an internal state that it already has written this message. After a

random time, again, this peer checks if the minimum threshold has been reached. As

 Page 34 of 102 21.04.2008

still, this is true, but the peer already has written the "Leave container" message

(internal state!), the peer only checks if the "Leave container" message exists. If it

does exist, the peer just destroys it. No matter if the message exists or not, the peer

has no longer the internal "I've written a 'Leave container' message" state and thus is

agreeing again to leave the container if such a message appears.

You also can implement the load balancing in a way, where the Requests for Help

have a priority, depending at which level the maximum threshold was reached. Doing

so, the container (state) that needs help most urgently is served first when assigning

peers to containers.

2.6 Execution path with recovery after failure

Until now, we always assumed that each peer that is working on a container always

works “perfectly” in means by its reliability and availability. But as we all know,

programs and computers are not always working “perfectly”. It could be that a peer is

shut down during its operation or that someone writes malicious code in the Entry's

contained algorithm that lets a peer crash. Also, network errors can occur that let a

peer temporarily be unavailable.

Some problems can be solved using the scenarios that are described previously,

others can't. In the following you get detailed information about what problems can be

solved and how they can be solved.

The containers that represent the Operation Pools are limited in size. Thus, if a peer

has finished its operation and wants to write the result to the target container, which

is already full, the operation blocks. This means that also this preceding container

becomes filled-up after some time, as the preceding peers are still writing to this

container, but the writing peer is blocked. Eventually, from the container that was full,

an Entry is taken. Thus, the blocked peer unblocks and writes its result to the

container. It takes an Entry from its container, and the peers that were blocked

because this container was full, are also unblocked and so on. So, if there is a

blockage in a container, the blockage is accumulated to the preceding containers

(see also "backpressure" in [6]). As an alternative, instead of letting the peer block,

 Page 35 of 102 21.04.2008

we could let it detect the blocking via an exception (instead of using an infinite

timeout) and let it write a Request for Help for the target container:

Figure 2.6.1 Accumulated blockage with Requests for help for the target container

As you can see, instead of the automatic load-balancing strategy explained in

chapter 2.5, the Authority is used again, as it needs to decide what to do if the

Resource Pool is empty. In this case, it needs to tell a specific peer to leave its

container and work on the container that is full to resolve the blockage (“re-

scheduling”). Remember that the peer that wants to write to the container which is

full must contact the Authority, in contrast to the previous scenarios, where the peers

that are noticing that the container they are currently working on, are contacting the

Authority themselves.

This approach can be used in combination with the previously described automatic

load balancing strategy: If the maximum threshold is reached on the own container,

the peer writes a Request for Help to the Resource Pool. If a peer notes that the

subsequent container is full, it writes a Request for Help for the subsequent container

– remember that for the case the subsequent container's peer already has requested

help, the request must remain unique in the Resource Pool, as already explained

above.

 Page 36 of 102 21.04.2008

If a single peer fails whereas there are others that are working on a container, it

doesn't matter at all: The load of this container will most probably reach after some

time the maximum threshold, a Request for Help is written and they will receive help,

if available.

There are two problems unsolved:

If a peer fails while it already has taken an Entry from the container, the Entry is most

probably lost. But the client that uses the execution path may be aware that probably

none is working on its request and may take special actions to react on such

situations. This is one of the advantages when working cooperatively instead of

imperatively, that the Client is aware that the request wasn't successfully performed

because the state is visible in the container. See also Chapter 1.4, about "Being

more honest".

The Entry of the failed peer is not necessarily lost forever. Remind that the peer that

is working on the current container might have a persistent container itself. Or it

implements persistency by any other means, for example by writing the taken Entry

to the file system. So whenever a peer takes an Entry from the container it is working

on, it persists this Entry by some means. When the peer is restarted, before taking an

Entry from the container, it checks whether there are Entries in its persistent storage

and if so, these Entries are processed first.

If a peer that holds a container is stopped, all Entries of that container are lost. But if

the peer that holds the container recovers, and if the container was a persistent one,

all the Entries can be recovered.

Although these issues require some programming effort, compare this to the solution

you have to design in the client-server architecture: you send the request to the

server, if it fails, also here, your request and all its semi-results are lost. But using

XVSM, you can at least recover the complete execution path after a failure of a single

peer. In addition, patterns can be developed that support these recurring scenarios.

 Page 37 of 102 21.04.2008

Conclusion

There are a lot of possibilities that XVSM can be used for. Of course message

queues and topic queues are alternatives to XVSM, which you can use to implement

any desired functionality, but XVSM has the advantage that it offers a high

abstraction through arbitrary access to shared data containers that goes beyond

directed first-in-first-out access, and that it is extensible, so simply through adding a

new Aspect, you can let your peer use load balancing or you can let it work with high-

priority requests. By using the cooperative way of telling another peer to perform an

action, the peer could either be a single processor core, a mainframe, a cluster, it

doesn't make any difference, as there is no distinction made, they are just referred as

“peers” that do some action.

So XVSM provides (some parts are not implemented in the current release) to persist

the data, spread it over multiple peers using replication techniques, perform requests

with different priorities etc. This can help to easily implement scenarios that perform

load-balancing in a path of executions, and/or support recovery by re-starting the

peer and retrieving the data from the persistent storage. You can also be notified if

certain data has arrived or was taken, or about execution of any other action in your

execution path. With these properties, you can easily create a grid alike computing

framework where the calculating entities can dynamically join or leave the network.

One main property of XVSM is that it is extensible: you can dynamically improve the

functionality of your peers during runtime.

 Page 38 of 102 21.04.2008

XVSM Tutorial
Version 1.8

Written by Michael Wittmann (xvsm_tutorial@gmx.at)

Examples and Exercises implemented by Laszlo Keszthelyi and Rene Formanek

 Page 39 of 102 21.04.2008

Table of Contents

Chapter 1: Introduction ..40
1.1 "Hello World!" – “Hello Space!” ..42

Chapter 2: The Data structures ...43
2.1 The Container, an introduction...43
2.2 Entry...47
2.3 Coordinating the contained things..48
2.4 Selectors ..55

2.4.1 VectorSelector ...56
2.4.2 KeySelector ...57

2.5 Methods to access data ...58
2.5.1 read ...58
2.5.2 destroy...59
2.5.3 take..60
2.5.4 write...60
2.5.5 shift..61

2.6 Examples for Implicit Coordinators ..61
2.6.1 Example: The Lottery (RandomCoordinator)...61
2.6.2 Exercise: The Ticket Queue (FIFOCoordinator) ..62

2.7 Examples for Explicit Coordinators ..63
2.7.1 Example: The Student management (KeyCoordinator)63
2.7.2 Exercise: Formula 1 Race (VectorCoordinator) ...64

Summary:...64

Chapter 3: Transactions ..66
Exercise 3.1 (Transactions):...68

Summary:...69

Chapter 4: A completely new aspect: Aspects in XVSM..70
4.1 Local Aspects...70
4.2 Global Aspects...74
Summary:...75

Chapter 5: Don't miss a thing: Notifications ...76
5.1 Exercise (TicketQueue with Notifications)..77
Summary:...78

APPENDIX: Solutions for the exercises ..79
The TicketQueue (see Exercise 2.6.2): ..79
Formula 1 Race (see Exercise 2.7.2): ..80
Formula1Race extended by Transactions (see Exercise 3.1)83
TicketQueue extended by Notifications (see Exercise 5.1)90

 Page 40 of 102 21.04.2008

Chapter 1:
Introduction

XVSM is standing for eXtensible Virtual Shared Memory, which is middleware

technology to store data objects in a space that can be shared with other peers. Data

objects are written and read to that common data storage.

The space-based approach has some nice advantages. Many implementations of

such an approach offer the possibility to distribute data over multiple computers,

which can help to be more fault-tolerant, when one participating computer fails or

leaves the space. In this case, the data is not necessarily lost as it may be stored on

another computer. Moreover, when multiple computers can access the same data

storage, they can cooperatively work on this data. For example, you can implement a

system where a space participant that takes one entry of the space and perform

some action on it, while another participant waits for the result of this calculation. The

two participants can be separated from each other in physical space as well as in

time. This means, that each participant can run on its own computer and not on the

same one, and they don't need to run at the same time, because the calculation

result remains in the data space after writing it. Thus, the space participant that waits

for the calculation result can access this entry even after the participant that

calculated it is no longer present. It is also possible to let multiple computers work on

the same space to cooperatively and concurrently work on the set of data to improve

the performance to handle the stored data objects.

XVSM in the current version offers the possibility to manage the data entries and the

order and number of entries that are retrieved. For example, you can define a

Coordinator to retrieve the entries in the opposite order they were written and another

Coordinator to retrieve them in random order.

It also offers the possibility to perform actions within one transaction, this is to

perform it as one atomic action that either executes successfully and thus the results

are written to the space or when an error occurs, the whole transaction is rolled back

and all changes are discarded. This reduces the danger that the data objects in the

space are inconsistent after an error.

You also can register listeners on actions that are performed either on the data or on

the space itself. If an action is performed that you are listening on, the corresponding

 Page 41 of 102 21.04.2008

method to react on this event is called. This can be used to react for example when a

data entry is added or removed. Such a technique can be used to enhance the

functionality of the system, even while runtime, as these handlers can be registered

and unregistered even while the system is running.

As a precondition to understand how to use XVSM and the terminology it is

recommended that you first read the Application scenarios document, which gives an

overview about various programming techniques in Space-Based computing and in

XVSM in particular. The tutorial helps you to start programming using MozartSpaces,

which is an open source implementation of XVSM in Java. It is not intended that this

tutorial is a complete documentation of the API, it only gives you advice how to

program with XVSM. You can find the complete API reference at [16].

In the next sections, an introduction to the Container and the ready-to-use data

structures that can be used within the container is given. Then, this document tries to

show you how to select specific data in the space. After that, it shows you how to

extend the functionality of XVSM by using Aspects. As a usage of Aspects, the usage

of notifications is explained, which are used to tell the listening program if new data is

available, data has changed or data has been deleted.

Please note that XVSM is prepared for various additional functions, including the

distribution of the data over multiple peers, automatic data persistency, and many

more. This tutorial uses the most recent Java implementation of XVSM, which is

MozartSpaces version 1.0, provided by the Space Based Computing Group [17] at

the Technical University of Vienna. In this version, these functions are not yet

implemented. Thus the tutorial focuses on the functions that are working in this

version, so you can try out all examples and exercises that are given in this tutorial.

Further please note that MozartSpaces only works with Java 5.0 or newer.

 Page 42 of 102 21.04.2008

1.1 "Hello World!" – “Hello Space!”

The "Hello World!" example is nearly mandatory for each new programming language

or paradigm. Thus also here, an adaptation of this example is described. The details

of it are explained in the subsequent chapters.

The purpose of this example is to show the basics of the new paradigm and to have

a fast overview of its usage. In the original example, the text "Hello World!" shall be

printed on the screen. In the XVSM example, the text “Hello Space!" is used and as a

further variation this text shall be written to a shared container from which it is read

and printed on the screen:
public static void main(String[] args)
{
 try
 {
 ICapi capi = new Capi();
 // Create new Container using no transaction, no remote server,

 // infinite container-size and no Coordinator
 ContainerRef cref = capi.createContainer(null, null, null,
 ICapi.INFINITE, null);

 /* Create a new AtomicEntry */
 Entry entry = new AtomicEntry<String>("Hello Space!");
 /* Write the entry to the container */
 capi.write(cref, 0, null, entry);

 // read and print the written value
 Entry[] readEntries = capi.read(cref, 0, null, null);
 System.out.println(((AtomicEntry) readEntries[0]).getValue());

 /* Shutdown and clear space */
 capi.shutdown(null, true);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
}

The ICapi interface is the connection interface which offers you all methods to

operate with MozartSpaces. For example, you use it to create or write to a container,

or to access the Entries that are stored in an container. The details about containers

and Entries are explained in Chapter 2.

When you have instantiated the Capi (Core Application Programming Interface)

class, which is the implementation of the ICapi interface, you can create a container.

Then you write an Entry containing the String "Hello Space!" to that container.

Afterwards, this Entry is read again from the container and written to System.out.

 Page 43 of 102 21.04.2008

Chapter 2:
The Data structures

There are several possibilities to read and write data from and to the XVSM space.

As a precondition to understand what kind of data you'll be able to write to the space,

it is necessary to show some basics about what the space actually is and how you

can work with it.

2.1 The Container, an introduction

The Container is the place where the data is stored in. You can visualize the

container in such a way:

Figure 2.1: Overview of a container with objects

 Page 44 of 102 21.04.2008

To give you additional information about the Entries, a table representation of the

container is sometimes used. The arrows at the sides give the information of the

order in which the Entries are written or read, which is especially useful when you

use Implicit coordination (to be explained later). Such a table could look like this:

“foo”

“bar”

<1,”maier”>

€ 43000

The data items that are stored in a container are called “Entries". An Entry can be

either of type Entry.EntryTypes.TUPLE or Entry.EntryTypes.ATOMICENTRY. A Tuple

contains other Entries, which can be either AtomicEntries or other Tuples. An

AtomicEntry is a Generic Java class; when instantiating it, you can define the class

that is contained within the AtomicEntry:
org.xvsm.core.Entry entry =

 new org.xvsm.core.AtomicEntry<String>("Hello World!");

A Container can either be located on your local machine or on a remote machine:

Figure 2.2: Communication of a set of peers, each with its own Space, Containers and Entries

The Capi class is an implementation of the ICapi interface, which is the main

management class of the containers and XVSM itself. Using it, you can shutdown

and restart the space, create and destroy containers, or read, write and destroy

Entries in a container. First of all, you start your local space by calling

read

write

 Page 45 of 102 21.04.2008

org.xvsm.core.ICapi capi = new Capi();

Every time new Capi() is called on a computer, a local Space is created which is

accessible by other peers by default on port 1234. Another possibility to create a

Space on a computer is to start the standalone Server, which you can find in the

org.xvsm.server package and which has its own main method. It only starts a Space

to handle the requests by other peers but doesn't offer an interface to handle the

Space on its own, thus only other peers can manage the content of the Space.

Keeping this in mind, there are two possibilities to start a new Space: by instantiating

Capi or by starting a standalone Server.

To create a new container, use this method:
public ContainerRef createContainer(
 Transaction tx,
 URI site,
 int size,
 ICoordinator... coordinators)
 throws XCoreException

To create a container, you need to pass the following parameters:

• Transaction: transactions are explained in chapter 3. Use null to perform the

action with an implicit transaction (this means that the action is automatically

committed)

• URI of the Container's site: this is the URI to access spaces on a remote peer.

By default, the port to connect to the remote peer is 1234, but of course the

peer could use another port. The URI of a remote Server is constructed the

following way: new URI("tcpjava://mycomputer.mydomain.com:1234"). The

default port can be changed in the space.prop configuration file. Use null to

connect to your local machine.

• Container's name. It can be used if you want to obtain a container after restart

(only if persistency is already implemented by the XVSM version you use) or

from another peer. You can use null to create an unnamed container. But

doing this way is only preferable if you don't want to use that container after a

restart of the space or if it is not necessary to share the space with other peers

in a convenient way, as otherwise it would be complicated to access that

unnamed container, as you need to use the automatically generated id as

container name, which may not be an easy name to remember.

 Page 46 of 102 21.04.2008

• Container's maximum size: The maximum number of entries that the container

can hold. If you try to write an Entry to a container which already holds the

maximum number of Entries, the write operation blocks. There also exists a

shift method, which – instead of blocking – deletes “disturbing” Entries before

writing the new ones. If you don’t want to have such a maximum size, use

IContainer.INFINITE_SIZE as size parameter.

• List of Coordinators: You can define the internal coordination of the container.

The ICoordinator interface is extended by the IImplicitCoordinator and

IExplicitCoordinator interfaces. They are implemented by various classes, like

the KeyCoordinator or FifoCoordinator. They are defining the sequence of the

retrieved Entries when you call a method to read from the container. The

different types of Coordinators will be described in Chapter 2.3. If you set the

Coordination to null, the RandomCoordinator will be used, which retrieves the

entries randomly.

The createContainer method returns a ContainerRef, which is in turn used to refer to

this container. In the later examples, you will see that it makes sense to use multiple

ContainerRefs. The ContainerRef is passed as parameter in most of the methods

that are used to access data.

If you know that the container already exists or a ContainerNameOccupiedException

(which extends XCoreException) is thrown on the creation, you can use the following

method to get access to an existing (even remote) Container:
public ContainerRef lookupContainer(Transaction tx, URI site,

 String containerName) throws XCoreException

The parameters of this method are similar to the ones used in createContainer. This

way, you can access a container which already exists on another peer.

Both createContainer and lookupContainer, as well as most other methods in

MozartSpaces, can throw an XCoreException, which is the generalization of most

XVSM-specific Exceptions and also stands for an Exception that is thrown because

of an internal error.

 Page 47 of 102 21.04.2008

When you’d like to shut down the Capi peer, you can pass the URI where the peer is

running. Thus, you can smoothly turn off a remote peer, which makes sense

especially for the standalone Server. The clearSpace flag is used to clean the space

before you shut down the peer. This functionality is useless until persistency is

supported, but for future implementation it already exists:
void shutdown(URI site, boolean clearSpace) throws XCoreException

Keep in mind that in the current implementation, no security mechanisms exist that

keep a client away from restarting or clearing the space. Security mechanisms to

prevent unauthorized users from performing these actions will be implemented in

future releases of MozartSpaces.

Further note that currently, no persistency is implemented, so if you stop your peer,

all information is lost, no matter if you set the clearSpace flag when shutting down the

peer or not.

2.2 Entry

As already described, an Entry can be either a Tuple or an AtomicEntry. The

AtomicEntry is a generic class, this means you can define what kind of data is stored

in the entry:
Entry entry = new AtomicEntry<String>("Hello World!");

In the current version of MozartSpace, the class that can be used as type parameter

in the AtomicEntry must implement the Serializable interface.

If you use the methods to access data, you’ll see that in most cases you’ll get an

Entry returned, which is the superclass of Tuple and AtomicEntry, so you can't

immediately get the value of the Entry. But Entry has a method getEntryType(), which

returns one value of the EntryTypes enum that indicates what kind of Entry is

received. Thus, using
if(readEntry.getEntryType().equals(Entry.EntryTypes.ATOMICENTRY))

you’re able to cast the readEntry object to an AtomicEntry and then, you can access

the contained data by calling its getValue method.

A Tuple entry implements the Iterator interface (Iterator<Entry>), thus it is ready-to-

use to iterate over the entries that are contained within the tuple.

 Page 48 of 102 21.04.2008

One major property of the Entry object is that when you instantiate it, you can pass a

set of Selectors (which will be described in the next chapter):
protected Entry(Selector... sels)

So, for example
Entry entry = new AtomicEntry<String>(
 "writeCar",
 String.class,
 new VectorSelector(i, 0));

creates a new AtomicEntry of type String with the value "writeCar" and uses the

VectorSelector to write it to a Vector at the position i.

Please take a look at the complete example at the end of this chapter to better

understand how the Entries are created and used in the container.

2.3 Coordinating the contained things

Coordinators are responsible for the order of the entries in the container that a

programmer observes. You can access the Container either by using a Selector or

without a Selector. A Selector is needed to refer to a specific Entry in the Container,

like the Entry which holds the id=3. Generally speaking, Coordinators that implement

the IImplicitCoordination interface have a view over all Entries in the Space, whereas

those that implement the IExplicitCoordination interface have a view over all or a

subset of the Entries, about which the Coordinator has stored additional info (like a

key, an index,..). If you want to use the functionality of a specific Coordinator that

you've specified when creating the container, you must pass the corresponding

Selector when accessing Entries in this container (see also Chapter 2.4). If you leave

the Selector away when accessing an existing Entry, the RandomCoordinator will be

used. When writing to a container and you'd like to use the functionality of the implicit

Coordinator, you don't need to pass it a Selector. In the current version, the following

possibilities exist to coordinate the order of the retrieved Entries:

Implicit (complete view over all Entries):

• FifoCoordinator: If you use the FifoCoordinator (FIFO stands for first-in-first-

out), the entries are retrieved in the same order as you wrote them to the

 Page 49 of 102 21.04.2008

container. This means, if you write 5 entries to the container, then you call the

read(cref, timeout, transaction, fifoSel) method, the entry that you

wrote FIRST is returned, thus the name “first-in-first-out”. You can visualize

this like a queue of people standing in front of the vendor’s desk.

Person 1

Person 2

Person 3

Person 4

Person 5

FifoSelector sel = new FifoSelector();

// Create new Container using no transaction, no remote server/peer,
// container-size of 5 and a FifoCoordinator
ContainerRef cref = capi.createContainer(null,
 null,
 null,
 5,
 new FifoCoordinator());

/* Fill the queue with the numbers 1 to 5*/
for (int i = 1; i <= 5; i++)
{
 Entry entry = new AtomicEntry<Integer>(i);
 capi.write(cref, 0, null, entry);
}
// read and print the first entry (1)
Entry[] readEntries = capi.read(cref, 0, null, sel);
System.out.println(((AtomicEntry) readEntries[0]).getValue());
Listing 2.3.1: FifoCoordinator

write

 Page 50 of 102 21.04.2008

• LifoCoordinator: If the container uses the LifoCoordinator (LIFO stands for

last-in-first-out), the entries are retrieved in the reverse order you wrote them.

Thus, if you write 5 entries and then call the read(cref, timeout,

transaction, lifoSel) method, the entry that was written LAST will be

returned. You can compare this to a stack of plates – The last one you put on

the stack will be the first one that you take from that stack.

Plate 5

Plate 4

Plate 3

Plate 2

Plate 1

LifoSelector sel = new LifoSelector();

// Create new Container using no transaction, no remote server, container-
// size of 5 and a LifoCoordinator
ContainerRef cref = capi.createContainer(null,
 null,
 null,
 5,
 new LifoCoordinator());

/* Fill the queue with the numbers 1 to 5*/
for (int i = 1; i <= 5; i++)
{
 Entry entry = new AtomicEntry<Integer>(i);
 capi.write(cref, 0, null, entry);
}
// read and print the last value (5)
Entry[] readEntries = capi.read(cref, 0, null, sel);
System.out.println(((AtomicEntry) readEntries[0]).getValue());
Listing 2.3.2: LifoCoordinator

write take

 Page 51 of 102 21.04.2008

• LindaCoordinator: This is a Coordinator that retrieves data using Linda

template matching [18]. You write the Entries (which must be tuples for this

kind of coordination) to the Container; when you want to retrieve specific data,

you define a template Entry. This template is a standard Entry, as already

used when writing the data. For example, you write the following tuples to the

Container:
<<"hello", "world">, 1>

<<"hello", "world">, 2>

<<"hello", "world">, 3>

<<"hello", "world">, 4>

<<"hello", "world">, 5>

Now you define a template Entry, which looks like:
<<"hello", "world">, null>

Now, all entries are retrieved.

If you define as template this Entry:
<<"hello", "world">, 1>

then only one Entry will be retrieved, as there is only one Entry in the container

that matches this template. Thus, the template Entry needs to have the same

structure (in terms of the Tuple and AtomicEntry structure). You define the

fields of the Entry where you require exact matching and null where you don't

require exact matching of the Entry.
//Create new Container using no transaction, no remote server,
//container-size of 5 and a LindaCoordinator
ContainerRef cref = capi.createContainer(null, null, null, 5,
 new LindaCoordinator());

//Fill the container with <<"hello","world">,i> tuples where
//i = 1 to 5
for (int i = 1; i <= 5; i++)
{
 Entry intEntry = new AtomicEntry<Integer>(i);
 Entry entry = new Tuple(new Tuple(
 new AtomicEntry<String>("hello"),
 new AtomicEntry<String>("world")
),new AtomicEntry<Integer>(i));
 capi.write(cref, 0, null, entry);
}

//this template retrieves all entries as the last field in the tuple
//is null, but it is the only difference between the written tuples
Entry template1 = new Tuple(new Tuple(
 new AtomicEntry<String>("hello"),
 new AtomicEntry<String>("world")
), null);
LindaSelector sel1 = new LindaSelector(Selector.CNT_ALL, template1);

 Page 52 of 102 21.04.2008

Entry[] readEntries1 = capi.read(cref, 0, null, sel1);
printAllEntries(readEntries1);

//this template retrieves only the Entry with the 1 as last field in
//the tuple
Entry template2 = new Tuple(new Tuple(
 new AtomicEntry<String>("hello"),
 null
),new AtomicEntry<Integer>(1));

LindaSelector sel2 = new LindaSelector(Selector.CNT_ALL, template2);

Entry[] readEntries2 = capi.read(cref, 0, null, sel2);
printAllEntries(readEntries2);
Listing 2.3.3 LindaCoordinator. The printAllEntries method is not listed here – it only prints the Entries' content one

after the other.

• RandomCoordinator: This is the standard Coordinator (if you don’t use a

Coordinator at all). The entries are returned in a random way. It is used by

default when you don't pass a Selector for reading, deleting etc. of entries (see

Chapter 2.4). You can compare this to a bag with lottery numbers:

5

4

3

2

1

ContainerRef cref = capi.createContainer(null, null, null, 5, null);

/* Fill the queue with the numbers 1 to 5*/
for (int i = 1; i <= 5; i++)
{
 Entry entry = new AtomicEntry<Integer>(i);
 capi.write(cref, 0, null, entry);
}
// read and print a random value (something from 1 to 5)
Entry[] readEntries = capi.read(cref, 0, null, null);
System.out.println(((AtomicEntry) readEntries[0]).getValue());
Listing 2.3.4: RandomCoordinator (default)

Explicit (you need to give extra information when writing or reading the Entry):

• KeyCoordinator: When you use the KeyCoordinator, you can define a key

when you write an entry. When you want to find this very entry again, you use

the same key to get exactly this entry. So, for example, you have an

AtomicEntry which holds an object of type Student, which has several

properties. When you write the entry to the container, you use the Student’s

write

take

take

 Page 53 of 102 21.04.2008

matriculation number as key. When you later want to find this Student in the

container, you need to use the KeySelector together with the Student’s

matriculation number, which is the key.

Key = "0026159" <Student-Object>

Key = "0026158" <Student-Object>

Key = "0026157" <Student-Object>

Key = "0026156" <Student-Object>

The name of the key must be a String, the key itself is generic, enabling to use

any Java object, which is in turn passed as the type parameter.
/* Create new Container using no transaction, no name, an infinite */
/* container-size and KeyCoordinator */
ContainerRef cref = capi.createContainer(null, null, null,
 IContainer.INFINITE_SIZE,
 new KeyCoordinator());

/* Create a Student instance and write it into the container */
Student writeStudent = new Student(1000, "Max", "Muster", 20);

/* Create new AtomicEntry using KeySelector */
Entry entry = new AtomicEntry<Student>(writeStudent, Student.class,
 new KeySelector<String>("Surname", writeStudent.get_Surname()));
capi.write(cref, 0, null, entry);

/* Get entry using KeySelector from the container */
Entry[] readEntries = capi.read(cref, 0, null,
 new KeySelector<String>("Surname", "Muster"));

if (readEntries[0].getEntryType().equals(Entry.EntryTypes.ATOMICENTRY))
{
 Student readStudent = ((AtomicEntry<Student>) readEntries[0]).getValue();
 System.out.println("MatNr.: " + readStudent.get_MatNr());
 System.out.println("Forename: " + readStudent.get_Forename());
 System.out.println("Surname: " + readStudent.get_Surname());
 System.out.println("Age: " + readStudent.get_Age());
}
Listing 2.3.5: KeyCoordinator

write
Key="0026158"

 Page 54 of 102 21.04.2008

• VectorCoordinator: The VectorCoordinator is used when you want to

address the Entries by index. You can compare this with the position of

Racing cars.

index = 4 <RacingCar-Object>

index = 3 <RacingCar-Object>

index = 2 <RacingCar-Object>

index = 1 <RacingCar-Object>

index = 0 <RacingCar-Object>

ContainerRef cref = capi.createContainer(null, null, null,
 IContainer.INFINITE_SIZE,
 new VectorCoordinator());

/* Create 5 Strings and write them to the container */
for (int i = 1; i <= 5 ; i++)
{
 Entry entry = new AtomicEntry<String>(i+". Person", String.class,
 new VectorSelector(VectorSelector.APPEND, 0));
 capi.write(cref, 0, null, entry);
}
/* Get entry using VectorSelector from the container */
Entry[] readEntries = capi.read(cref, 0, null, new VectorSelector(2, 1));

if (readEntries[0].getEntryType().equals(Entry.EntryTypes.ATOMICENTRY))
{
 System.out.println(((AtomicEntry<String>) readEntries[0]).getValue());
}
Listing 2.3.5: VectorCoordinator

One property of the VectorCoordinator which might be a bit tricky for beginners is

that when you write an Entry to an index where another Entry already resides, this

existing Entry is moved by one (its index is automatically incremented). All Entries'

subsequent indexes are also incremented by 1. You can imagine this like pushing all

Entries with higher indexes one position further:
 index = 4 A

index = 3 A index = 3 B

index = 2 B index = 2 E

index = 1 C index = 1 C

index = 0 D index = 0 D

Note that B was stored with index 2, but now it is stored with index 3. On the other

hand, when you destroy an Entry from a container that is coordinated by a

VectorCoordinator, the indexes of the Entries that have a higher index than the

destroyed one are decremented by one:

write
index=3

take
index=2

write E
index=2

 Page 55 of 102 21.04.2008

index = 4 A

index = 3 B index = 3 A

index = 2 E index = 2 E

index = 1 C index = 1 C

index = 0 D index = 0 D

The Entry A was stored with index 4, after the destroy command, it was moved to

index 3.

Thus you need to keep in mind that the indexes of Entries may be changed when

adding/removing Entries.

2.4 Selectors

The Selector is the counterpart to the Coordinator. It tells additional information to the

Coordinator when you want to read or delete data, like the key value that you’re

searching for or the number of values that you’d like to retrieve. For each

Coordination type, there exists the appropriate Selector.

The Selector class is abstract and offers two constructors:
public Selector()

public Selector(int count)

The count parameter is the number of entries that you’d like to retrieve using this

Selector. If you leave away the count parameter, only one Entry is returned; when

using the KeySelector, the Entry that has this key is returned. If you would like to

have all entries of the container that fulfil the selection, use Selector.CNT_ALL as

count parameter. Note that in the Linda example in chapter 2.3, I assumed the usage

of the Selector.CNT_ALL parameter. When you use the LindaSelector without a

count parameter, only one Entry is returned, if a matching one exists.

If you create an Entry and write it to the container, you may pass a Selector as

parameter (see Chapter 2.2). As Implicit Coordinators have the view over all Entries

in the container, you don't need to pass it explicitly when writing the Entry to the

container – the Implicit Coordinator manages the Entry anyway. When you pass an

Explicit Selector together with its required additional info, the Explicit Coordinator

destroy
index=2

 Page 56 of 102 21.04.2008

(which has a view over all or a subset of Entries in the complete container) will

manage this Entry, together with the Implicit Coordinator (as it has the view over ALL

Entries, even those that are managed by an Explicit Coordinator). Thus, for example,

if you created the container and passed it a FifoCoordinator and a KeyCoordinator,

then you can write an Entry with a KeySelector, but still will be able to retrieve it using

the FifoSelector.

The currently implemented implicit selectors only offer the constructors mentioned

above, as the sequence of the retrieved entries is given implicitly (remember, the

implicit selectors currently are: FIFO, LIFO, Linda, Random).

The explicit selectors on the other hand offer a bit more information to the

Coordinator, therefore, they are explained separately.

2.4.1 VectorSelector

public VectorSelector(int index, int count)

public VectorSelector(int count)

The VectorSelector has the additional parameter index, which indicates the number

of Entries in the container that you’d like to access. Note that if you write an Entry to

the container, the numbers of the other entries with higher and equal numbers are

shifted by one, which means that each index of an Entry that has a higher index is

incremented by 1.

For example:
Entry entry = new AtomicEntry<String>(
 "The first one",
 String.class,
 new VectorSelector(1, 0));

 Page 57 of 102 21.04.2008

2.4.2 KeySelector

public class KeySelector<T> extends Selector {

 public KeySelector(String keyName, T keyValue) ...

The KeySelector is a generic class, you need to define which object type the key will

be. The keyValue parameter will be the same type that you defined when you

created the KeySelector instance:
KeySelector<String> keySel = new KeySelector<String>("Name", "Maier");

Using this KeySelector, you could pass it as parameter to the Entry when you write it:
Entry entry = new AtomicEntry<Account>(
 new Account(10000),
 Account.class,
 keySel);

or you can use it when you want to retrieve this entry:
Entry[] readEntries = capi.read(cref, 0, null, keySel);

Note that the KeySelector doesn’t have a parameter for the count, as the key is

unique and thus, either only one or no entry can be retrieved with this key. If you

want to write an Entry to the container with a key that already exists, an exception is

thrown. Please further note that the shift method doesn't throw this exception, as it

first would remove the clashing Entry.

Please take a look at the complete example at the end of this chapter to better

understand how to use the KeySelector.

 Page 58 of 102 21.04.2008

2.5 Methods to access data

In this chapter, the used ContainerRef objects are the same instances that you got

when you created the container. For now, ignore the Transaction parameter, when

programming, you can use null instead of the tx. Transactions will be explained in

chapter 3.

2.5.1 read

public Entry[] read(ContainerRef cref,
 long timeout,
 Transaction tx,
 Selector... sel)
 throws XCoreException

The read method returns a number of Entries from the container, without destroying

them. You need to use a Selector that is corresponding to the Coordination. If you

leave away the Selector parameter, RandomSelector is used. The implicit as well as

the explicit Coordinators can have a count parameter in the constructor, which tells

the container the number of entries that you’d like to retrieve (see chapter 2.4 about

Selectors). Thus, the return value of the read is an array of Entries, because you can

define a Selector to read and return multiple Entries at once. If you don’t use the

parameter to tell the number of entries that should be read, you get one entry (if there

is at least one in the container) or none.

One important feature that can be used for synchronization is the fact, that if there is

currently no entry in the container that can be retrieved, the read method blocks and

waits for an Entry. And that’s the reason why there is a timeout parameter: It tells the

read method to wait at least the timeout in seconds. So giving a timeout of

Timeout.NO_TIMEOUT, you have a non-blocking read method call – it either reads

an entry or if there is none, it immediately returns an Exception. The opposite would

be to use the Timeout.INFINITE_TIMEOUT, which waits forever, if no one ever writes

a suitable entry to the container.

 Page 59 of 102 21.04.2008

//Create new Container using no transaction, container-size of 5 and a
//FifoCoordinator
ContainerRef cref = capi.createContainer(null, null, null,
 5, new FifoCoordinator());

/* Fill the queue with the numbers 1 to 5 */
for (int i = 1; i <= 5; i++)
{
 Entry entry = new AtomicEntry<Integer>(i);
 capi.write(cref, 0, null, entry);
}
Entry[] readEntries = capi.read(cref, 0, null, new FifoSelector());
/* ... prints 1 */
System.out.println(((AtomicEntry<Integer>) readEntries[0]).getValue());

/* Read from the container with FifoSelector of size 2 */
readEntries = capi.read(cref, 0, null, new FifoSelector(2));
/* ... prints 1 */
System.out.println(((AtomicEntry<Integer>) readEntries[0]).getValue());
/* ... prints 2 */
System.out.println(((AtomicEntry<Integer>) readEntries[1]).getValue());

/* Read from the container with timeout */
readEntries = capi.read(cref, 5, null, new FifoSelector());
/* ... prints 1 */
System.out.println(((AtomicEntry<Integer>) readEntries[0]).getValue());
Listing 2.5.1: Reading entries using a FifoSelector. One time with size = 2 and the second time without size given. Also

one read with a Timeout given and one without. As transaction, null is used.

2.5.2 destroy

public void destroy(ContainerRef cref,
 long timeout,
 Transaction tx,
 Selector... sel)
 throws XCoreException

The destroy method adheres to the same rules as the read method. Depending on

the container’s Coordination type, an entry is destroyed, but without returning the

destroyed entry. Note that also, when destroying entries, the method blocks until a

suitable entry is found in the container. One might think that it is not very meaningful

to wait for an entry just to immediately destroy it, but even though there are better

techniques to perform this task, one might use this technique to notify a single

listener. The listener calls destroy(cref, Timeout.INFINITE_TIMEOUT) and thus is

blocked. The notifier writes an entry to the container and doing so, the entry is

destroyed and the listener is unblocked. As already said, there are better possibilities

in XVSM to perform such tasks – in most cases, you’ll have entries when you call

destroy, so this method won’t block.

 Page 60 of 102 21.04.2008

2.5.3 take

public Entry[] take(ContainerRef cref,
 long timeout,
 Transaction tx,
 Selector... sel)
 throws XCoreException

This method is the same as first calling read and then destroy: The read Entry is

immediately destroyed after reading in one atomic step. This functionality is also

commonly referred to as “consuming read”. Also the take method could block and

thus has a timeout parameter.

2.5.4 write

public void write(ContainerRef cref,
 long timeout,
 Transaction tx,
 Entry... entries)
 throws XCoreException

By using this method, you can write one or more entries to the space. Also here, you

use the ContainerRef object to refer to the corresponding container. When the

container’s size is limited, and there are already as much entries in the container as

allowed (the number of entries in the container is equal to the maximum capacity),

and you want to write further entries to the container, this operation blocks. The write

operation waits until an entry is taken or destroyed or – if given – until the timeout is

reached. If you'd like to use a Selector together with a specific Entry (e.g. a

KeySelector), this Selector already is passed when you created the Entry (see

Chapter 2.4)

 Page 61 of 102 21.04.2008

2.5.5 shift

public void shift(ContainerRef cref,
 Transaction tx,
 Entry... entries)
 throws XCoreException

The shift method has the same behaviour as the write method, but instead of

blocking if the container is already full, the shift method destroys an entry

automatically. Thus, no timeout parameter is needed – it just never blocks. The

entries that are shifted out of the container depend on the Coordinators of the

Container and the Selectors used in the passed Entries. The shift method decides

what Entry to destroy, in order to be able to write the new Entry.

2.6 Examples for Implicit Coordinators

2.6.1 Example: The Lottery (RandomCoordinator)

In this example, we would like to show how an Austrian Lottery1 (in German it is

called: “Lotto 6 aus 45”) can be programmed. As we assume that the lottery really

picks the balls randomly, we take the RandomCoordinator with a size of 45.

First, we write the 45 numbered balls to the container. Then we take the 6 + 1 balls

out of the container. At the end, we list the taken balls.

public class Lottery
{
 public static void main(String[] args)
 {
 try
 {
 ICapi capi = new Capi();
 Selector sel = new RandomSelector();

 /*
 * Create new Container using RandomCoordinator, RandomSelector and a
 * container-size limit of 45
 */
 ContainerRef cref = capi.createContainer(null,
 null,
 null,
 45,
 new RandomCoordinator());

 /* Write the 45 numbers to the container */

1 for non-Austrians: you have 45 numbered balls, the moderator picks 6 out of them + 1 additional. If
you have guessed the 6 correctly, you’ve won the major amount; also you get quite a lot of money if
you have 5 correct + the 1 additional.

 Page 62 of 102 21.04.2008

 for (int i = 1; i < 46; i++)
 {
 Entry entry = new AtomicEntry<Integer>(i);
 capi.write(cref, 0, null, entry);
 }

 /* Take 6 + 1 numbers from the container */
 System.out.print("Regular Numbers: ");
 for (int j = 0; j < 7; j++)
 {
 /* Take an entry from the container using the RandomSelector */
 Entry[] readEntries = capi.take(cref, 0, null, sel);

 if (readEntries[0].getEntryType().equals(Entry.EntryTypes.ATOMICENTRY))
 {
 System.out.print(((AtomicEntry<Integer>) readEntries[0]).getValue());
 if (j == 5)
 {
 System.out.print("\nBonus: ");
 }
 else if (j < 6)
 {
 System.out.print(", ");
 }
 }
 }
 System.out.println("\n\nHope you have better luck next time! ^_~\nbye!");
 /* Shutdown and clear space */
 capi.shutdown(null,true);

 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}
Listing 2.6.1: The Austrian Lottery

2.6.2 Exercise: The Ticket Queue (FIFOCoordinator)

A bunch of people is standing in a queue to buy cinema tickets. One person after the

other is served by the shop assistant. A person who wants to buy a ticket must pay

and wait for the ticket to be printed. This takes some time (we assume that this is a

quite fast action and takes 2 seconds in total).

Please program a Capi peer that handles the persons in the queue one after the

other. As person objects, use an extra class “Person” that has a payTicket() and a

waitForTicket() method. Both methods only wait for 1 second. In later examples, this

exercise will be enhanced. The shop assistant only gets the first person in the queue,

receives the payment and prints the ticket. Afterwards, the person object in the

queue leaves the queue. You don’t need to have a shop assistant class, just write it

in the main method of the main class.

 Page 63 of 102 21.04.2008

2.7 Examples for Explicit Coordinators

2.7.1 Example: The Student management (KeyCoordinator)

The Technical University of Vienna would like to have a new student management

system developed using XVSM. Each Student has a matriculation number (MatrNr),

so we’ll use a KeyCoordination, where the key is the MatrNr. As a quick test, we’ll

write 5 Student objects and read them by retrieving them by their MatrNr.

public class StudentManagement
{
 public static void main(String[] args)
 {
 try
 {
 ICapi capi = new Capi();
 /* Create new Container using KeyCoordinator and KeySelector */
 ContainerRef cref = capi.createContainer(null,
 null,
 null,
 IContainer.INFINITE_SIZE,
 new KeyCoordinator());

 Student students[] =
 {new Student(1000, "Max", "Muster", 20),
 new Student(1001, "Ernst", "Müller", 28),
 new Student(1002, "Nora", "Maier", 19),
 new Student(1003, "Indiana", "Jones", 26),
 new Student(1004, "John", "Constantine", 24)};

 /* Create 5 Student instances and write them into the container */
 for (Student writeStudent : students)
 {
 /* Create new AtomicEntry using KeySelector */
 Entry entry = new AtomicEntry<Student>(writeStudent,
 Student.class,
 new KeySelector<Integer>("MatrNr", writeStudent.getMatNr()));
 capi.write(cref, 0, null, entry);
 }

 /* Read entries */
 for (int i = 1000; i < 1005; i++)
 {
 /* Get entry using KeySelector from the container */
 Entry[] readEntries = capi.read(cref,
 0, null,
 new KeySelector<Integer>("MatrNr", i));

 if (readEntries[0].getEntryType().equals(Entry.EntryTypes.ATOMICENTRY))
 {
 Student readStudent = ((AtomicEntry<Student>)
readEntries[0]).getValue();
 System.out.println("*** Beginning of entry ***");
 System.out.println("MatNr.: " + readStudent.getMatNr());
 System.out.println("Forename: " + readStudent.getForename());
 System.out.println("Surname: " + readStudent.getSurname());
 System.out.println("Age: " + readStudent.getAge());
 System.out.println("*** End of entry ***\n");
 }
 }

 Page 64 of 102 21.04.2008

 /* Shutdown and clear space */
 capi.shutdown(null,true);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}
Listing 2.7.1: Student management

2.7.2 Exercise: Formula 1 Race (VectorCoordinator)

You’re the IT professional in managing the Race results of a Formula 1 Race. You

have the task to implement a piece of software (using XVSM of course!) to show the

current race position. The values of the entries are RacingCar objects, whereas they

have the property “driverName”. When someone accesses the container to retrieve

the current status of the race, of course, all cars should be listed together with their

current position. For simplicity, just write 10 cars to the container. In the first round,

car number 6 crashes and thus is removed from the race. In the second round, car 4

overtakes car 3. As this is a short race, let’s say the race is over after this lap. List the

current racing positions at the end of each lap. Also this example will be improved

later. Each Racing car is running on a separate Peer (thus, one peer creates and

holds the container, whereas all the other peers are connecting and using this

container then).

Summary:

In this chapter, you’ve learnt the most important basics to handle a container and a

container’s content. The basic access to the container is done using the Capi class,

which offers methods to create, lookup and destroy a container and to read, write,

destroy and shift entries from/to the container.

An entry can be either a tuple or an atomic entry. A tuple can hold either other tuples

or atomic entries. An atomic entry is a Generic that holds the data of interest.

You also learnt how to set the internal coordination of the container and how to select

specific data in the container.

A typical use case scenario is that you’d like to create a new container and pass it

the internal coordination type. Then, you’d like to create some entries and set the

information in the entries. Afterwards, you’ll write the entries to the container and

 Page 65 of 102 21.04.2008

then read or take them from the container. At the end, most probably you’ll shutdown

the Capi to unlink from the container.

 Page 66 of 102 21.04.2008

Chapter 3:
Transactions

We assume that most programmers are familiar with the concept of transactions: A

transaction is helping to collect various actions to perform them as one single, atomic

step to avoid consistency problems of the data storage. In the XVSM implementation,

the transaction is performed as a pessimistic transaction; this means a transaction

builds up locks on the data.

The lifecycle of a transaction from the user’s perspective is as follows:

• Create a new transaction

• Perform various actions

• If everything went fine, commit the transaction to write the changes to the data

storage

• If there was an error, rollback the changes to discard all actions you made.

In XVSM, if you start a transaction and then only perform read operations, a read

lock is obtained. But as soon as you perform a write operation (or another operation

that changes the container’s content), the container or the accessed Entries

(depending on the isolation level implemented by the MozartSpaces version you use)

in the container are locked exclusively for this one transaction. There are multiple

read locks allowed, but only one write lock at a time. All other applications or

application parts that would like to access the container but don’t use this transaction

are blocked, no matter if they want to read or write to that container, until the

transaction is committed or rolled back. It depends on the used Coordinator, if the

complete container must be locked or if it is sufficient to only lock the accessed

Entries. For example, the FifoCoordinator will lock the complete container, because

the sequence the Entries will be returned, must remain the same while the

transaction, whereas using a RandomCoordinator, the locks will be obtained only on

the accessed Entries.

You create a transaction by calling
ICapi capi = new Capi();

 Page 67 of 102 21.04.2008

Transaction tx = capi.createTransaction((URI)site, (long)timeout);

As you remember from the previous chapter, this Transaction object is passed as

parameter in various operations (read, destroy, write, …). So, if you call the write

operation with the Transaction tx, the container resp. the corresponding part of the

container is locked only for this transaction. Concurrent access to the container that

is in conflict with the write operation will be blocked. Only the methods that use this tx

transaction are executed without blocking. One thing that you need to keep in mind: if

you don't set a transaction (you use null as parameter), internally, an implicit

transaction is created. This means, internally, a transaction object is created – thus,

also here, concurrent actions run isolated to each other, although the action is

committed automatically.

The site parameter is the URI, where the container is located at (see Chapter 2.1)

and the timeout parameter can give a maximum validity time of the Transaction. If the

given time has elapsed, all changes within this Transaction are rolled back and all

further actions with this Transaction are rejected.

You commit the transaction by calling:
capi.commitTransaction(tx);

This means all your changes are written to the container and the container is

unlocked then. The transaction object no longer is valid then.

You roll the changes in this transaction back by calling:
capi.rollbackTransaction(tx);

This means that the actions that you've done so far are discarded. A rollback might

be intended if some error occurred, so most probably, the rollback statement will be

standing in an error handling part.

ICapi capi = new Capi();
tx = capi.createTransaction(null, Capi.INFINITE_TIMEOUT);
tx2 = capi.createTransaction(null, Capi.INFINITE_TIMEOUT);
try {

 /* Create new Container using a container-size of 3 */
 ContainerRef cref = capi.createContainer(null, null, null, 3,
 new FifoCoordinator());

 /* Write 3 entries to the container */
 /* After the first write action the container is locked */
 for (int i = 1; i <= 3; i++) {
 Entry entry = new AtomicEntry<Integer>(i);

 Page 68 of 102 21.04.2008

 capi.write(cref, 0, tx, entry);
 }
 capi.commitTransaction(tx);
 /* The container is not locked anymore */

 capi.read(cref, 0, tx2, new RandomSelector(3));
 /* The container is still not locked */
 capi.destroy(cref, 0, tx2, new RandomSelector());
 /* The container is locked now */

 throw new Exception();

} catch (Exception e) {
 try {
 if (tx != null){
 capi.rollbackTransaction(tx2);
 }
 /* The container is not locked */
Listing 3.1: Transaction handling

Exercise 3.1 (Transactions):

Extend the exercise 2.7.2 (Formula 1):

We’d like to let some cars run for a random amount of time. So we’d start a Capi peer

for each car, let it wait for some time and then re-register in the container within a

transaction to have a consistent container content. As this is a bit tricky, we’ll give

you a guide how to solve this exercise:

1. Add the properties “runtime” and “lapNumber” to each car.

2. For each car, start a new Capi peer. When having started it, let the peer wait

for a random time between 3 and 5 seconds:
Random rnd = new Random();

int time = rnd.nextInt(2) + 3; //(random between 0 and 2) plus 3

3. If the Time is up, start a transaction.

4. Add the time that you’ve waited to your runtime.

5. Remove the car that actually has the transaction from the container.

6. Read all actual positions of the cars, and get the runtime for each car. If

you’ve found a runtime that is higher, whereas the next runtime is lower than

your runtime, then this is your position.

7. Write the car object to the new position (remember that the entries in the

vector with higher index than the one that you use will be shifted down

automatically). Don’t forget that the car only needs to take 2 rounds, but of

course you can use more rounds – you just need to keep the number of

rounds for each car the same ☺ …

 Page 69 of 102 21.04.2008

8. Every time a car reaches the finish line, write the actual list of race positions

together with the runtimes. Don't forget that cars that already have passed the

finish line don't change their racing time any more.

Summary:

Transactions are fundamental if there are many peers (or threads) that use

containers to avoid that through concurrent write access, the content may become

inconsistent. A transaction helps you to keep the container consistent, as it serializes

the transactions as if one were executed after the other. So normally, you’d like to

start a transaction, read or write from/to the container and commit. All other

application parts that want to access that part of the container but don’t use this

transaction are blocked.

 Page 70 of 102 21.04.2008

Chapter 4:
A completely new aspect: Aspects in XVSM

An Aspect in XVSM lets you implement an extension to the existing XVSM

functionality. Features like automatic persistency or notification can be implemented

using Aspects. You also can use Aspects to add logging, authentication and many

more features to the existing XVSM implementation. The idea behind Aspects is to

have various pre- and post-methods on each action that the Capi class is able to

perform, like a preWrite and a postWrite method. You implement these pre- and post-

methods to perform some special action that is done automatically before or after you

call one of the following methods of the ICapi interface. You need to divide Aspects

into two groups: Local Aspects and Global Aspects. Local Aspects are aspects that

are connected to actions on a specific container, while Global Aspects refer to the

space itself or to all containers.

Each possibility to listen on a certain performed action is called IPoint (standing for

Interceptor Points). Adhering to the just mentioned Local and Global Aspects, the

corresponding IPoints are called LocalIPoint and GlobalIPoint.

You not only have the possibility to create one Aspect to perform an action, but you

can also add multiple Aspects to perform various actions in sequence. This possibility

will be explained at the end of Chapter 4.1.

4.1 Local Aspects

Local Aspects offer the possibility to overwrite the pre- and post-Methods for the

following actions:

• addAspect()

• removeAspect()

• read()

• destroy()

• take()

• write()

• shift()

 Page 71 of 102 21.04.2008

If you want to create a new local aspect, you have to extend the abstract LocalAspect

class, if you want to create a new global aspect, you have to extend the abstract

GlobalAspect class. They already contain the needed pre- and post-methods that

per-se don’t do anything. If you implement a new Aspect, you override these

methods to add new functionality to the method.

An example for a new Local Aspect is:
public class LoggingAspect extends LocalAspect
{
 static final long serialVersionUID = 0;
 public void postWrite(ContainerRef cref,
 Transaction tx,
 List<Entry> entries, Properties p)
 throws AspectNotOkException, AspectRescheduleException,
 AspectSkipException
 {
 try
 {
 FileOutputStream fs = new FileOutputStream("Logfile.log",
true);
 ObjectOutputStream os = new ObjectOutputStream(fs);
 Iterator it = entries.iterator();
 while (it.hasNext())
 {
 /* Write the value of the AtomicEntry to the
logfile */
 os.writeObject(((AtomicEntry)
it.next()).getValue());
 }
 os.close();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }

 public void postRead(ContainerRef cref,
 Transaction tx,
 List<Entry> entries,
 List<Selector> selectors,
Properties p)
 throws AspectNotOkException, AspectRescheduleException,
 AspectSkipException
 {
 try
 {
 FileOutputStream fs = new FileOutputStream("Logfile.log",
true);
 ObjectOutputStream os = new ObjectOutputStream(fs);
 Iterator it = entries.iterator();
 while (it.hasNext())
 {
 /* Write the value of the AtomicEntry to the
logfile */
 os.writeObject(((AtomicEntry)
it.next()).getValue());

 Page 72 of 102 21.04.2008

 }
 os.close();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

Listing 4.1: Logging Aspect

In the listing above, you extend the LocalAspect class and override the various

methods and therefore add new functionality. The methods could look like this:
public void postWrite(

ContainerRef cref,
Transaction tx,
List<Entry> entries,
Properties contextProperties)

throws AspectNotOkException,
AspectRescheduleException,
AspectSkipException

The cref and tx parameters should already be clear. You also can give a list of

Entries that are used in this action, to perform some special task with these entries,

as you can see in the listing. The contextProperties are free to your disposal, if you

want to pass additional information to the aspect; it is passed when calling the

ICapi.setAspectContext(Properties props) method. Some exceptions could be

thrown, it depends on the implementer of the aspect if they are used or not.

After you created the new aspect, you add it to the Capi by calling
LocalAspect aspect = new LoggingAspect();
List<IPoint> p = new ArrayList<IPoint>();
p.add(LocalIPoint.PostWrite);
p.add(LocalIPoint.PostRead);
capi.addAspect(cref, p, aspect);

You pass a list of IPoints to indicate the actions where the aspect offers some special

functionality and the aspect itself. The reason that you need to pass a number of

IPoints is that you can choose if you want to perform only a part of the actions that an

Aspect would offer. Imagine for example a Logging Aspect which offers Logging

possibility for each Pre-/Post method, but you only would like to use it for the write

action. Instead of writing a new Aspect, you use the IPoints PreWrite and PostWrite

and that's it.

 Page 73 of 102 21.04.2008

As explained in the introduction of Chapter 4, you have the possibility to add multiple

Aspects to let them work one after the other. You only need to call the add method

with the Aspect in the same order as you'd like them to be executed.

 Page 74 of 102 21.04.2008

4.2 Global Aspects

Using Global Aspects, you can listen to the following actions, additionally to those

already mentioned in Local Aspects:

• createContainer()

• destroyContainer()

• transactionCreate()

• transactionCommit()

• transactionRollback()

• coreShutdown()

The usage of a Global Aspect is similar to the usage of a Local Aspect. The only

differences are the methods that are offered and that a Global Aspect is associated

with a space, not with a specific container. So, for example you overwrite the

following method:
public void preContainerCreate(

String containerName,
int size,
Properties contextProperties,
ICoordinator... coordinators)

 throws AspectNotOkException,
 AspectRescheduleException,
 AspectSkipException

and then, you add an Aspect as follows:
URI uri = new URI(...); //URI to a space (may be null for local)
GlobalAspect aspect = new SecurityAspect();
List<IPoint> p = new ArrayList<IPoint>();
p.add(GlobalIPoint.PreCoreShutdown);
capi.addAspect(uri, p, aspect);

public static void main(String[] args)
{

 try
 {
 ICapi capi = new Capi();
 /* Create new Container using a container-size of 3 */
 ContainerRef cref = capi.createContainer(null, null, null, 3,
 new FifoCoordinator());

 LocalAspect aspect = new LoggingAspect();
 /* Create the IPoints for the aspect */
 List<LocalIPoint> p = new ArrayList<LocalIPoint>();
 p.add(LocalIPoint.PostWrite);
 p.add(LocalIPoint.PostRead);

 Page 75 of 102 21.04.2008

 capi.addAspect(cref, p, aspect);

 /* Write 3 entries to the container */
 for (int i = 1; i <= 3; i++)
 {
 Entry entry = new AtomicEntry<Integer>(i);
 capi.write(cref, 0, null, entry);
 }
 capi.read(cref, 0, null);

 capi.shutdown(null, true);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
}

Listing 4.2: Adding the LoggingAspect to Capi

You also have the possibility to use the LocalAspects together with GlobalAspects-.

In this case, the actions that are specific for LocalAspects are performed on ALL

containers and not only a specific one. Using this functionality, you can for example

implement a method that writes a log entry whenever an entry is read from ANY

container in your space.

Summary:

Using Aspects, you can easily add new functionality to your XVSM system. You can

define some actions that are done either before or after an operation is done with the

container or space. So for example you can add the functionality that before a write,

the permissions of the writer is checked. This way, security checks can be

introduced. For a new Aspect, you overwrite the pre- and post-methods to add new

functionality and then, you register the Aspect in the Capi.

 Page 76 of 102 21.04.2008

Chapter 5:
Don't miss a thing: Notifications

Using Aspects, a very important feature was added to the XVSM implementation:

Notifications. With notifications, you can listen on various actions and be called back

if such an action is performed. For example:

You have a listening class that would like to be notified if a write is called (and thus, a

new entry is added). This class must implement the NotificationListener interface

and so it must implement the method
void handleNotification(final NotificationContext n)

Then you need to register this class as listener for the call of the write method:
capi.createNotification(
 cref,
 Capi.INFINITE, //how often the notification should fire
 NotificationTarget.WRITE,
 true, //give entries to notified class
 this, //the class to be notified
 (Selector[]) null);

If you would like to listen to the usage of specific entries, you can use a Selector – it

is internally used just as if you would select the entries with the read() or take()

methods. In the current version, this behaviour is not yet supported.

The maximum number of times the Notification should fire can be used in such a way

to let the class that implements NotificationListener only notify a number of times,

until the notification is removed. This could be intended if you're only interested in a

small set of entries that you're listening to. Each time the notification is fired, an

internal number is increased. If the number is higher than or equal the maximum

number, the NotificationListener is removed from the Capi. If you don't want to have

the NotificationListener removed, use Capi.INFINITE as parameter.

There exist the following notification targets, which should be self-explanatory:
NotificationTarget.WRITE

NotificationTarget.READ

NotificationTarget.TAKE

NotificationTarget.SHIFT

NotificationTarget.DESTROY

 Page 77 of 102 21.04.2008

Putting all together, you can find that with the usage of notifications, you can much

more efficiently program some of the examples/exercises of the recent chapters. Just

to take one example:

In the TicketQueue example, you've created one main peer which handles the

Persons in the queue one after the other. Now imagine that you start one peer for

each person and one peer for the shop assistant (which now is a new class). Both

the Person and the Shop assistant implement the NotificationListener interface.

When the Shop assistant is instantiated, it is registered as listener on a request to

pay a ticket. The Person is registered as listener of the ticket when it has paid the

ticket to receive the printed ticket.

And as you might expect, there is a final exercise:

5.1 Exercise (TicketQueue with Notifications)

Try to program the just-described TicketQueue Example. You will need to have

• A Ticket and a Payment object that are used to notify the other party to do

something.

• A second container to store these Ticket and Payment entries independently

from the FIFO queue of the persons. You may name this container

"SalesDesk".

• A couple of Persons which have a payTicket() method – the waitForTicket()

method is not needed anymore, as you now have a handleNotification()

method which tells the Person that the Ticket is printed. In the payTicket()

method, write the Payment object to the SalesDesk container and register the

Person as listener for a call of the write method. In the handleNotification

method, you need to take care if really a Ticket was returned (imagine multiple

ShopAssistants and Persons at a time writing to the container – if you don't

check if the Ticket is "yours", the person could either "steal" Payment or

Tickets from others). If it really is a ticket, take it from the container, give a

System.out.println that you've got the ticket and leave the queue ("destroy" the

Person object from the container and shutdown this peer).

• A single ShopAssistant class which implements NotificationListener. In its

handleNotification method, take the Payment from the SalesDesk container,

 Page 78 of 102 21.04.2008

give a System.out.println() that you're printing the ticket and wait for 1

second. Then store the Ticket object in the container. Again, in the

handleNotification method, take care that you only take Payment objects, not

Ticket objects.

Summary:

A Notification is used if your class is interested in a special event in the Container, for

example if an Entry was written or read. This Entry can be passed to the notify

method in order to enable the listening class to perform some action using this Entry.

Using Notifications and looking at the last example, the character of Space-based

computing is shown best: Instead of imperatively telling the ShopAssistant or the

Person to do something, you write a request to the space instead. The other party

takes the request, performs the requested action and writes the result back. If the

requested party is overloaded or too slow – no problem: you add one more of such

participants; they collaboratively work on the requests in the container. With the

possibility to spread the container over multiple peers and with help of transactions,

you can implement load balancing scenarios in the easiest way. Moreover, you can

add or remove working peers on-the-fly.

 Page 79 of 102 21.04.2008

APPENDIX: Solutions for the exercises
(only available for those who really tried hard to solve the problem)

The TicketQueue (see Exercise 2.6.2):

public class TicketQueue
{
 public static void main(String[] args)
 {
 try
 {
 ICapi capi = new Capi();
 FifoSelector sel = new FifoSelector();

 /*
 * Create new Container using FifoCoordinator, FifoSelector and an
 * infinite container-size
 */
 ContainerRef cref = capi.createContainer(null, null,
 null,
 IContainer.INFINITE_SIZE,
 new FifoCoordinator());

 /* Fill the queue with a couple of persons */
 for (int i = 1; i <= 5; i++)
 {
 Entry entry = new AtomicEntry<Person>(new Person(i));
 capi.write(cref, 0, null, entry);
 }

 try
 {
 /* Handle the persons of the queue */
 while (true)
 {
 /* Take an entry from the container using the FifoSelector */
 Entry[] readEntries = capi.take(cref, 0, null, sel);
 if (readEntries[0].getEntryType().equals(Entry.EntryTypes.ATOMICENTRY))
 {
 Person actualPerson = ((AtomicEntry<Person>) readEntries[0]).getValue();
 /* start paying the Ticket */
 actualPerson.payTicket();
 /* start printing the Ticket */
 actualPerson.waitForTicket();
 System.out.println(
 "The " + actualPerson.waitingPosition + ". person received his ticket");
 }
 }
 }
 catch(Exception e)
 { //do nothing – this happens when the container is empty
 }

 capi.shutdown(null,true);

 System.exit(0);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

TicketQueue.java

 Page 80 of 102 21.04.2008

public class Person
{
 int waitingPosition;

 public Person(int waitingPosition)
 {
 this.waitingPosition = waitingPosition;
 }

 /**
 * Simulate payment
 */
 public void payTicket()
 {
 try
 {
 System.out.println("The " + waitingPosition + ". person pays the ticket.");
 Thread.sleep(1000);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }

 /**
 * Simulate waiting for he ticket
 */
 public void waitForTicket()
 {
 try
 {
 System.out.println("The " + waitingPosition + ". person waits for the ticket.");
 Thread.sleep(1000);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

Person.java

Formula 1 Race (see Exercise 2.7.2):

public class Formula1Race
{
 final protected static int MAX_LAPS = 2;

 public static void main(String[] args)
 {
 String driver[] = {"Lewis Hamilton", "Fernando Alonso", "Kimi Räikkönen",
 "Felipe Massa", "Nick Heidfeld", "Robert Kubica", "Heikki Kovalainen",
 "Giancarlo Fisichella", "Nico Rosberg", "Alexander Wurz"};

 try
 {
 ICapi capi = new Capi();

 /* Create new Container using VectorCoordinator and VectoSelector */
 ContainerRef racingPositions = capi.createContainer(null,
 null,
 null,
 IContainer.INFINITE_SIZE,
 new VectorCoordinator());
 ContainerRef retiredCars = capi.createContainer(null,
 null,
 null,
 IContainer.INFINITE_SIZE,
 new VectorCoordinator());

 Page 81 of 102 21.04.2008

 /* Create 10 RacingCar instances and write them to the container */
 for (int i = 0; i < driver.length; i++)
 {
 RacingCar writeCar = new RacingCar(driver[i]);
 Entry entry = new AtomicEntry<RacingCar>(writeCar,
 RacingCar.class,
 new VectorSelector(VectorSelector.APPEND, 0));
 capi.write(racingPositions, 0, null, entry);
 }

 printCurrentPositioning(capi, racingPositions, retiredCars, 0);

 /*
 * LAP 1 Car number 6 has an accident and is removed from the list
 */

 /* Read and destroy entry 6 in the container */
 Entry[] readEntries = capi.take(racingPositions, 0, null, new VectorSelector(6, 1));

 /* Write the read entry to the retiredCars container */
 if (readEntries[0].getEntryType().equals(Entry.EntryTypes.ATOMICENTRY))
 {
 RacingCar readCar = ((AtomicEntry<RacingCar>) readEntries[0]).getValue();
 Entry entry = new AtomicEntry<RacingCar>(readCar,
 RacingCar.class,
 new VectorSelector(0));
 capi.write(retiredCars, 0, null, entry);
 }

 printCurrentPositioning(capi, racingPositions, retiredCars, 1);

 /*
 * LAP 2 Car number 4 overtakes number 3
 */

 /* Read and destroy entry 4 in the container */
 readEntries = capi.take(racingPositions, 0, null, new VectorSelector(4, 1));

 if (readEntries[0].getEntryType().equals(Entry.EntryTypes.ATOMICENTRY))
 {
 /* Write back previously read entry at index 3 */
 RacingCar readCar = ((AtomicEntry<RacingCar>) readEntries[0]).getValue();
 Entry entry = new AtomicEntry<RacingCar>(readCar,
 RacingCar.class,
 new VectorSelector(3, 0));
 capi.write(racingPositions, 0, null, entry);
 }

 printCurrentPositioning(capi, racingPositions, retiredCars, 2);

 /* Shutdown and clear space */
 capi.shutdown(null,true);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }

 System.exit(0);
 }

 /*
 * Print current positioning
 */
 public static void printCurrentPositioning(ICapi capi, ContainerRef racingPostions,
 ContainerRef retiredCars, int lap) throws Exception
 {
 if (lap == 0)
 System.out.println("*** Starting Grid ***");
 else if (lap == MAX_LAPS)
 System.out.println("*** Lap " + lap + " - Final Lap ***");
 else
 System.out.println("*** Lap " + lap + " ***");

 Page 82 of 102 21.04.2008

 /* Read the current positioning */
 Entry[] readEntries = capi.read(racingPostions, 0, null, new
VectorSelector(VectorSelector.CNT_ALL));

 int i = 1;
 for (Entry readEntry : readEntries)
 {
 if (readEntry.getEntryType().equals(Entry.EntryTypes.ATOMICENTRY))
 {
 RacingCar car = ((AtomicEntry<RacingCar>) readEntry).getValue();
 System.out.println("Pos " + i++ + " - " + car.getDriver());
 }
 }

 /* Read all retired cars */
 readEntries = capi.read(retiredCars, 0, null, new VectorSelector(Selector.CNT_ALL));

 for (Entry readEntry : readEntries)
 {
 if (readEntry.getEntryType().equals(Entry.EntryTypes.ATOMICENTRY))
 {
 RacingCar retiredCar = ((AtomicEntry<RacingCar>) readEntry).getValue();
 System.out.println("Retired " + retiredCar.getDriver());
 }
 }

 System.out.println("*** ****** ****** ***\n");
 }
}

Formula1Race.java

public class RacingCar
{
 private String driver = null;

 public RacingCar(String driver) throws Exception
 {
 if ((driver == null) || (driver.length() == 0))
 throw new Exception("Driver must have a length greater 0!");

 this.driver = driver;
 }

 public String getDriver()
 {
 return driver;
 }
}

RacingCar.java

 Page 83 of 102 21.04.2008

Formula1Race extended by Transactions (see Exercise 3.1)

public class Formula1RaceTransaction extends Thread
{
 public static final String RACING_POSITIONS_CONTAINER = "RacingPositions";
 public static final String COORDINATION_CONTAINER = "Coordination";
 public static final int MAX_LAPS = 2;

 private ICapi capi = null;
 private ContainerRef racingPositions = null;
 private ContainerRef coordination = null;

 private boolean wait = true;

 public Formula1RaceTransaction()
 {}

 /**
 * Open and manage a race
 *
 */
 public void openRace()
 {
 try
 {
 capi = new Capi();

 racingPositions = capi.createContainer(null,
 null,
 RACING_POSITIONS_CONTAINER,
 10,
 new VectorCoordinator());
 coordination = capi.createContainer(null,
 null,
 COORDINATION_CONTAINER,
 IContainer.INFINITE_SIZE,
 new VectorCoordinator());

 /* Start waiting thread
 *
 * Note:
 * This is necessary because there is a bug in the XVSM-CORE-API, if
 * you set the TimeOut to 10000 (= 10sec.) the next read/write on the
 * same container blocks.
 *
 * Correct code would be:
 * capi.read(racingPositions, 10000, null, new VectorSelector(10));
 *
 * Which means: Either wait until 10 objects are in the container or
 * the 10seconds are over. In the case of a timeout an exception will
 * be thrown. This is no problem because we read the positions again
 * counting all objects in the container.
 */
 start();

 int registeredCars = 0;

 while(wait)
 {
 try
 {
 /* Read positions, are already 10 objects available? */
 capi.read(racingPositions, 0, null, new VectorSelector(10));
 wait = false;
 System.out.println("Okay! 10 cars!");
 }
 catch (Exception e)
 {
 /* A "CountNotMetException is thrown, but we are not interested in */
 }
 }

 Page 84 of 102 21.04.2008

 /* read and count how many objects are in the container */
 registeredCars = capi.read(racingPositions,
 0,
 null,
 new VectorSelector(Selector.CNT_ALL)).length;

 System.out.println("Starting Race! " + registeredCars);

 /* Write "start-race"-message to the container */
 Entry startMessage = new AtomicEntry<Message>(
 new Message(Message.START_RACE, null),
 Message.class,
 new VectorSelector(VectorSelector.APPEND, 0));
 capi.write(coordination, Capi.INFINITE_TIMEOUT, null, startMessage);

 /* Wait until all cars have finished */
 capi.read(coordination,
 Capi.INFINITE_TIMEOUT,
 null,
 new VectorSelector(1 + registeredCars));

 System.out.println("Race finished!\n Shuting down now!");

 capi.shutdown(null, true);
 System.exit(0);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 System.out.println("An error has occured, shutting-down!");
 try
 {
 /* Try to shutdown Capi */
 capi.shutdown(null, true);
 }
 catch (XCoreException e1)
 {
 e1.printStackTrace();
 }
 System.exit(0);
 }
 }

 /**
 * A thread waiting 15 seconds
 *
 */
 public void run()
 {
 for (int i = 15; i > 0; i--)
 {
 System.out.println("Waiting " + i + " seconds for Clients");
 try
 {
 Thread.sleep(1000);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }

 wait = false;
 }

 public static void main(String[] args)
 {
 Formula1RaceTransaction f1Race = new Formula1RaceTransaction();
 f1Race.openRace();
 }
}

Formula1RaceTransaction.java

 Page 85 of 102 21.04.2008

public class RacingCar
{
 /**
 * RacingCar requires one parameter at start, the name of
 * it's "driver". It is up to you to provide unique names
 * when running several clients on one server.
 */
 public static void main(String[] args)
 {
 if ((args.length != 1))
 {
 System.out.println("Usage: RacingCar name\n" +
 "name ... Driver-Name");
 System.exit(-1);
 }

 String driver = args[0];

 try
 {
 ICapi capi = new Capi();

 ContainerRef racingPositions = capi.lookupContainer(
 null,
 new URI("tcpjava://localhost:1234"),
 Formula1RaceTransaction.RACING_POSITIONS_CONTAINER);
 ContainerRef coordination = capi.lookupContainer(
 null,
 new URI("tcpjava://localhost:1234"),
 Formula1RaceTransaction.COORDINATION_CONTAINER);
 System.out.println("* Found containers");

 /* Write our CarInfo into the positions container */
 CarInfo currentCar = new CarInfo(driver);
 Entry carInfo = new AtomicEntry<CarInfo>(currentCar,
 CarInfo.class,
 new VectorSelector(VectorSelector.APPEND, 0));
 capi.write(racingPositions, 0, null, carInfo);
 System.out.println("* Wrote CarInfo");

 System.out.println("* Waiting");

 /* Wait until we receive the "race-start"-message
 *
 * NOTE:
 * Normaly it would be enough to wait until the first
 * element is written to the container, but we discovered
 * that there is still a bug in the XVSM-CORE-API when several
 * concurrent reads are performed (this happens when more than
 * one client is trying to read).
 * The correct code would be:
 * capi.read(coordination, Capi.INFINITE_TIMEOUT, null, new VectorSelector(1));
 * instead of "for-loop"
 */
 for(;;)
 {
 try
 {
 capi.read(coordination, 0, null, new VectorSelector(1));
 break;
 }
 catch (Exception e)
 {
 }
 }

 System.out.println("* Race Started");

 /* Simulate Formula1RaceTransaction.MAX_LAPS laps */
 for (int lap = 0; lap < Formula1RaceTransaction.MAX_LAPS; lap++)
 {
 /* wait for a random-time */
 Random rand = new Random();
 int time = rand.nextInt(6) + 3;

 Page 86 of 102 21.04.2008

 try
 {
 System.out.println("Simulating lap, length: " + time + "sec.");
 Thread.sleep(time * 1000);
 }
 catch (InterruptedException e)
 {
 e.printStackTrace();
 }

 boolean commited = false;
 /* We need to retry our Transaction until we are able to commit it */
 while (!commited)
 {
 try
 {
 /* Create a transaction */
 Transaction tx = capi.createTransaction(
 new URI("tcpjava://localhost:1234"),
 Capi.INFINITE_TIMEOUT);
 System.out.println("* Transaction created");

 /* Read the actual positions using transaction */
 Entry[] positions = capi.read(
 racingPositions,
 0,
 tx,
 new VectorSelector(Selector.CNT_ALL));

 int pos = 0;
 CarInfo car = null;

 /* Search for the own CarInfo */
 for (Entry position : positions)
 {
 if (position.getEntryType().equals(Entry.EntryTypes.ATOMICENTRY))
 {
 car = ((AtomicEntry<CarInfo>) position).getValue();
 if (car.getDriver().compareTo(driver) == 0)
 {
 /* Remove the CarInfo from the list using transaction */
 capi.take(racingPositions, 0, tx, new VectorSelector(pos, 1));
 break;
 }
 }

 pos++;
 }
 currentCar = car;
 currentCar.addTime(time);
 currentCar.incrementLap();

 System.out.println("* Updated my CarInfo");

 /* Read the actual positions again using transaction */
 positions = capi.read(
 racingPositions,
 0,
 tx,
 new VectorSelector(Selector.CNT_ALL));

 /* Find the right place where to position the own CarInfo */
 if (positions.length > 0)
 {
 for (pos = 0; pos < (positions.length); pos++)
 {
 if (positions[pos].getEntryType().equals(Entry.EntryTypes.ATOMICENTRY))
 {
 car = ((AtomicEntry<CarInfo>) positions[pos]).getValue();
 if (car.getTotalTime() > currentCar.getTotalTime())
 {
 /* Create a new entry */
 Entry entry = new AtomicEntry<CarInfo>(
 currentCar,
 CarInfo.class,
 new VectorSelector(pos, 1));

 Page 87 of 102 21.04.2008

 /* Write entry to the container using transaction */
 capi.write(racingPositions, 0, tx, entry);
 break;
 }
 /* we reached the end of the positions */
 else if (pos == (positions.length - 1))
 {
 /* Create a new entry */
 Entry entry = new AtomicEntry<CarInfo>(
 currentCar,
 CarInfo.class,
 new VectorSelector(VectorSelector.APPEND, 0));
 /* Write entry to the container using transaction */
 capi.write(racingPositions, 0, tx, entry);
 break;
 }
 }
 pos++;
 }
 }
 else /* position-list is empty, we have to append the CarInfo */
 {
 /* Create a new entry */
 Entry entry = new AtomicEntry<CarInfo>(
 currentCar,
 CarInfo.class,
 new VectorSelector(VectorSelector.APPEND, 0));
 /* Write entry to the container using transaction */
 capi.write(racingPositions, 0, tx, entry);
 }

 /* Try to commit the transaction */
 capi.commitTransaction(tx);
 commited = true;
 System.out.println("* Updated positions");
 System.out.println("* Transaction commited");
 }
 catch (Exception e)
 {
 /* If concurrent transactions exist on the same container, all
 * except the first will throw an Exception. We don't have to
 * worry about it, just have to try our transaction again.
 *
 * Uncomment the next line if you want to see it.
 */
 //e.printStackTrace();
 System.out.println("Error in Transaction, retrying...");
 Thread.sleep(250); // wait before retrying
 }
 }
 }

 /* Read the actual positions using transaction */
 Entry[] positions = capi.read(
 racingPositions,
 Capi.INFINITE_TIMEOUT,
 null,
 new VectorSelector(Selector.CNT_ALL));

 int pos = 1;
 CarInfo car = null;

 /* Print actual position-list*/
 System.out.println("\n*** Positionings after "+Formula1RaceTransaction.MAX_LAPS +
 " laps ***");
 for (Entry position : positions)
 {
 if (position.getEntryType().equals(Entry.EntryTypes.ATOMICENTRY))
 {
 car = ((AtomicEntry<CarInfo>) position).getValue();
 System.out.println(pos+". " + car.getDriver() + ", Time: " +
car.getTotalTime());
 }

 pos++;
 }

 Page 88 of 102 21.04.2008

 System.out.println("*** *** *** *** *** *** *** ***\n");

 /* Write message that this RacingCar has finished */
 Entry finishedMsg = new AtomicEntry<Message>(
 new Message(Message.CAR_FINISHED, currentCar),
 Message.class,
 new VectorSelector(VectorSelector.APPEND, 0));
 capi.write(coordination, 0, null, finishedMsg);

 System.out.println("* Finished");

 /* Shutdown Capi */
 capi.shutdown(null, true);
 System.exit(0);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

RacingCar.java

public class Message implements Serializable
{
 public static final int START_RACE = 0;
 public static final int CAR_FINISHED = 1;

 private int messageType = -1;
 private CarInfo car = null;

 /**
 * "car" can be null, which means that the
 * server has sent a message to the clients
 */
 public Message(int messageType, CarInfo car)
 {
 this.messageType = messageType;
 this.car = car;
 }

 /**
 * Get the message's type
 */
 public int getMessageType()
 {
 return messageType;
 }

 /**
 * Get the stored CarInfo
 */
 public CarInfo getCarInfo()
 {
 return car;
 }
}

Message.java

public class CarInfo implements Serializable
{
 private String driver = null;
 private int totalTime = 0;
 private int currentLap = 0;

 /**
 * We need the driver's name to be able
 * to identify it.
 */
 public CarInfo(String driver)
 {
 this.driver = driver;
 }

 Page 89 of 102 21.04.2008

 /**
 * Get the driver's name
 */
 public String getDriver()
 {
 return driver;
 }

 /**
 * Get the TotalTime
 */
 public int getTotalTime()
 {
 return totalTime;
 }

 /**
 * Get the lap-count
 */
 public int getCurrentLap()
 {
 return currentLap;
 }

 /**
 * Add time to the totaltime
 */
 public void addTime(int time)
 {
 totalTime += time;
 }

 /**
 * Increase lap-count by 1
 */
 public void incrementLap()
 {
 currentLap++;
 }
}

CarInfo.java

 Page 90 of 102 21.04.2008

TicketQueue extended by Notifications (see Exercise 5.1)

public class TicketQueueNotification
{
 public static void main(String[] args)
 {
 boolean wait = true;

 try
 {
 ICapi capi = new Capi();
 ContainerRef salesDesk = capi.createContainer(null, null,
 ISalesDeskObject.SALES_DESK_CONTAINER,
 IContainer.INFINITE_SIZE,
 new FifoCoordinator());

 System.out.println("+ Server started");
 System.out.println("+ To stop server type \"q\" and enter");

 BufferedReader stdin = new BufferedReader(new InputStreamReader(System.in));
 /* wait until someone wants to shutdown the server */
 while(wait)
 {
 if (stdin.readLine().compareTo("q") == 0)
 {
 wait = false;
 }
 }

 System.out.println("+ Sending stop to all clients");
 /* Write a "ShopClosed"-object to the container */
 Entry entry = new AtomicEntry<ISalesDeskObject>(
 new ShopClosed(ISalesDeskObject.SHOP_OWNER_ID));
 capi.write(salesDesk, capi.INFINITE_TIMEOUT, null, entry);

 /* Give the clients 5 seconds to shutdown */
 for (int i = 5; i > 0; i--)
 {
 System.out.println("+ Shutdown in " + i + " seconds");
 Thread.sleep(1000);
 }

 capi.shutdown(null, true);
 System.exit(0);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

TicketQueueNotification.java

public class ShopAssistant implements NotificationListener
{
 ICapi capi = null;
 boolean shopOpen = true;

 public ShopAssistant()
 { }

 /**
 * This is where the shop-assistant instantiates the capi,
 * looks-up the salesdesk-container and after registering
 * as a listener it waits until the "Shop", the
 * TicketQueueNotification, sends a "ShopClosed"-object.
 */
 public void run()
 {
 try
 {
 capi = new Capi();

 Page 91 of 102 21.04.2008

 /* Look-up SalesDesk-container*/
 ContainerRef salesDesk = capi.lookupContainer(null,
 new URI("tcpjava://localhost:1234"),
 ISalesDeskObject.SALES_DESK_CONTAINER);

 /* Register as a listener to the container*/
 capi.createNotification(salesDesk,
 Capi.INFINITE,
 NotificationTarget.WRITE,
 true, this);
 System.out.println("Found and registered listener to container!");

 /* wait until the shop is closing*/
 while(shopOpen)
 {}

 capi.shutdown(null, true);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }

 /**
 * Handle a received notification. We are only interested in "Payments" and
 * "ShopClosed" entries. If a payment is received a ticket is placed instead
 * to the container.
 */
 public void handleNotification(NotificationContext notificationContext)
 {
 /* Get the container for which we received the notification */
 ContainerRef salesDesk = notificationContext.getCref();

 try
 {
 /* Read the oldest entry */
 Entry[] entries = capi.read(salesDesk,
 Capi.INFINITE_TIMEOUT,
 null,
 new FifoSelector());

 if (entries[0].getEntryType().equals(Entry.EntryTypes.ATOMICENTRY))
 {
 ISalesDeskObject sdo = ((AtomicEntry<ISalesDeskObject>) entries[0]).getValue();

 /* Check if the object is a payment */
 if (sdo instanceof Payment)
 {
 /* Take the payment */
 Entry[] payments = capi.take(salesDesk,
 Capi.INFINITE_TIMEOUT,
 null,
 new FifoSelector());
 Payment payment = (Payment) ((AtomicEntry<ISalesDeskObject>)
 payments[0]).getValue();
 System.out.println(
 "ShopAssistant: Received Payment from Customer " + payment.getOwner());

 System.out.println(
 "ShopAssistant: Printing Ticket for Customer " + payment.getOwner());
 Thread.sleep(1000); /* wait 1 second */

 /*Create a ticket for the customer and write it into the container */
 Ticket ticket = new Ticket(payment.getOwner());
 Entry entry = new AtomicEntry<ISalesDeskObject>(ticket);
 capi.write(salesDesk, Capi.INFINITE_TIMEOUT, null, entry);
 System.out.println(
 "ShopAssistant: Placed Ticket for Customer " + ticket.getOwner());
 }
 /* Check if the object is a "ShopClosed" */
 else if (sdo instanceof ShopClosed)
 {
 System.out.println("ShopAssistant: Received closing shop, exiting now!");
 shopOpen = false;
 }

 Page 92 of 102 21.04.2008

 }
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }

 public static void main(String[] args)
 {
 ShopAssistant assistant = new ShopAssistant();
 assistant.run();

 System.out.println("Exiting!");
 System.exit(0);
 }
}}

ShopAssistent.java

public class Customer implements NotificationListener
{
 private int ID = -1;
 private ICapi capi = null;
 private boolean stop = false;

 /**
 * To be able to identify our payment and ticket an unique
 * ID is needed.
 */
 public Customer(int ID)
 {
 this.ID = ID;
 }

 /**
 * This is where the customer instantiates the capi, looks-up
 * the salesdesk-container, places the payment and after
 * registering as a listener it waits until the ticket has been
 * received
 */
 public void buyTicket()
 {
 try
 {
 capi = new Capi();

 /* Look-up SalesDesk-container*/
 ContainerRef salesDesk = capi.lookupContainer(null,
 new URI("tcpjava://localhost:1234"),
 ISalesDeskObject.SALES_DESK_CONTAINER);
 System.out.println("Customer: Found Container");

 /* Write payment into the container*/
 Entry entry = new AtomicEntry<ISalesDeskObject>(new Payment(ID));
 capi.write(salesDesk, Capi.INFINITE_TIMEOUT, null, entry);
 System.out.println("Customer: Placed Payment");

 /* Register as a listener to the container*/
 capi.createNotification(salesDesk,
 Capi.INFINITE,
 NotificationTarget.WRITE,
 true,
 this);
 System.out.println("Customer: Registered listener to container!");

 /* Wait till either we have received our ticket our the shop has closed */
 while(!stop)
 {}

 capi.shutdown(null, true);
 }

 Page 93 of 102 21.04.2008

 catch (Exception e)
 {
 e.printStackTrace();
 }
 }

 /**
 * Handle a received notification. We are only interested in "Ticket" and
 * "ShopClosed" entries. If it is a ticket than check if it is our ticket
 * before taking it from the container.
 *
 */
 public void handleNotification(NotificationContext notificationContext)
 {
 /* Get the container for which we received the notification */
 ContainerRef salesDesk = notificationContext.getCref();

 try
 {
 /* Read the oldest entry */
 Entry[] entries = capi.read(salesDesk,
 Capi.INFINITE_TIMEOUT,
 null,
 new FifoSelector());

 if (entries[0].getEntryType().equals(Entry.EntryTypes.ATOMICENTRY))
 {
 ISalesDeskObject sdo = ((AtomicEntry<ISalesDeskObject>) entries[0]).getValue();

 /*Check if the object is a ticket and if it is the one we were so long waiting for*/
 if ((sdo instanceof Ticket) && (((Ticket) sdo).getOwner() == ID))
 {
 /* take our ticket from the Container */
 Entry[] tickets = capi.take(salesDesk,
 Capi.INFINITE_TIMEOUT,
 null,
 new FifoSelector());
 Ticket ticket = (Ticket) ((AtomicEntry<ISalesDeskObject>) tickets[0]).getValue();
 System.out.println("Customer: Received my Ticket!");
 stop = true;
 }
 /* Check if the object is a "ShopClosed" */
 else if (sdo instanceof ShopClosed)
 {
 System.out.println("Customer: Received closing shop, exiting now!");
 stop = true;
 }
 }
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }

 /**
 * main-method, needs 1 integer parameter representing the customer-ID
 * @param args[0] ... customer-ID
 */
 public static void main(String[] args)
 {
 try
 {
 if ((args.length != 1) || (Integer.parseInt(args[0]) <= 0))
 {
 System.out.println("Usage: customer ID\n" +
 "ID ... unique customer-ID > 0");
 System.exit(-1);
 }
 }
 catch (NumberFormatException e)
 {
 System.out.println("Usage: customer ID\n" +
 "ID ... unique customer-ID > 0");
 System.exit(-1);
 }

 Page 94 of 102 21.04.2008

 Customer customer = new Customer(Integer.parseInt(args[0]));
 customer.buyTicket();

 System.out.println("Exiting!");
 System.exit(0);
 }
}

Customer.java

public interface ISalesDeskObject extends Serializable
{
 /* Container-Name needed by the TicketQueueNotification, ShopAssistant and Customer */
 public static final String SALES_DESK_CONTAINER = "SalesDesk";
 public static final int SHOP_OWNER_ID = -1; //

 public int getOwner();
}

ISalesObject.java

public class Payment implements ISalesDeskObject
{
 private int owner = 0; // Customer who placed this payment

 /**
 * Create a payment
 */
 public Payment(int owner)
 {
 super();
 this.owner = owner;
 }

 /**
 * return this payment's owner
 */
 public int getOwner()
 {
 return owner;
 }
}

Payment.java

public class ShopClosed implements ISalesDeskObject
{
 private int owner; // in this case the shop (server)

 /**
 * Create a ShopClosed
 */
 public ShopClosed(int owner)
 {
 this.owner = owner;
 }

 /**
 * return the owner
 */
 public int getOwner()
 {
 return owner;
 }
}

ShopClosed.java

 Page 95 of 102 21.04.2008

public class Ticket implements ISalesDeskObject
{
 int owner = 0; // Customer who payed for this ticket

 /**
 * Create a payment
 * @param person ... The person who has payed for the Ticket
 */
 public Ticket(int owner)
 {
 this.owner = owner;
 }

 /**
 * return this payment's owner
 */
 public int getOwner()
 {
 return owner;
 }
}

Ticket.java

 Page 96 of 102 21.04.2008

Summary

XVSM (eXtensible Virtual Shared Memory), developed at the Institute of Computer

Languages at the Technical University of Vienna, is middleware that offers the

possibility to store data in a common data space. This data space can be used as

shared memory of the participants that are connected to this space. They have the

possibility to write, read, take and delete these space entries. Also, it is possible to

register on actions that are performed on the space to react on such situations. For

example, it then is possible to call a certain function when a data item is added to the

space. This feature can help to enhance the functionality of the system even while

runtime, as such listeners can be registered while the system is running. It is planned

for future versions of XVSM to support the distribution of data over multiple peers and

to persist the data.

The framework is still in development, some tasks could already be accomplished,

others can’t be done in the current version. In this master thesis, I would like to give

newbies an introduction to the XVSM programming interface, whereas I would like to

focus on tasks that could already be done using the MozartSpaces version 1.0, which

is an implementation of the XVSM programming interface in Java 5.0. This means

that some tasks that are prepared in XVSM, like the distribution of data, that I just

mentioned, are not functioning at the moment, whereas others are implemented

already. I will focus on the functions that are already implemented and can be used

by the reader of my tutorial right away.

My master thesis consists of three parts:

- the Master Thesis Main document, which contains meta-information of the

tutorial and the application scenarios; it is the document you are currently

reading. It is mainly focused on the XVSM and MozartSpaces developers to

keep the Tutorial up-to-date.

- the Application Scenarios which is a document aimed to designers and/or

developers who want to know how to make various architectural decisions

using XVSM. The document describes the change in the paradigm from client-

server architecture to space-based computing. It moreover shows some

 Page 97 of 102 21.04.2008

application possibilities of XVSM, namely the possibility to cooperatively work

on the data items to improve performance, to handle high-priority data items

and to construct chains of calculations, also known as SEDA approach [6].

These chains can be used to construct automatic load balancing of incoming

requests and automatic recovery after failure.

- the Tutorial, which is the document that can be given to software developers

who are interested in learning XVSM, not in reading my complete diploma

thesis. This is the technical part, where the reader learns how to program

using XVSM. It consists of explanations of the objects, methods and their

functionality and behaviour by describing them and by giving examples.

Moreover, to achieve better learning results and to challenge the reader to try

the explained section, exercises are given that partially are based on

preceding exercises or examples. When having finished to work with this

document, the reader should be able to use the core functionality to manage

the space and the contained objects, to register listeners that are notified if a

special action occurs and to listen on new data items in the space. At the end

of this document, sample solutions of the exercises as well as the complete

example source code are listed.

By the combination of these three documents, I can achieve the needs of three

groups of people:

• The developers of the MozartSpaces/XVSM need to find a way to easily keep the

Tutorial up-to-date. Therefore, I need to have this Main document, where I give

possibilities to quickly find references to the implementation. When the

implementation changes, they just need to consult the Main document.

• The program designer, who would like to understand the possibilities of Space

Based Computing and XVSM in particular.

• And finally the programmer who is not included in the design process, but who

wants to know how to program with XVSM.

One additional assignment of task was to comprehensively explain the Space Based

Computing paradigm and to create an introduction to the new XVSM system that can

be used for teaching purposes. This results to the tutorial document as mentioned

above. This tutorial was practically proved by handing it out to approximately 80

 Page 98 of 102 21.04.2008

students and the feedback was continuously incorporated into the tutorial to check

and improve its usability.

This feedback phase showed that the use of the tutorial is sufficient to understand

how program using XVSM. Thus, this task was accomplished.

 Page 99 of 102 21.04.2008

Used Literature and References

[1] A Survey of Peer-to-Peer Content Distribution Technologies

S. Androutsellis-Theotokis, D. Spinellis

Athens University of Economics and Business

ACM Computing Surveys, Vol. 36, No. 4, December 2004, pp. 335–371.

[2] Gnutella, in:

Wikipedia

http://en.wikipedia.org/wiki/Gnutella

last visited: 18.02.2008

[3] Getting Started With JavaSpaces Technology:

Beyond Conventional Distributed Programming Paradigms

Qusay H. Mamoud, Sun Microsystems Inc.

http://java.sun.com/developer/technicalArticles/tools/JavaSpaces/

12.06.2005

[4] GigaSpaces XAP – Key Capabilities and Components

http://www.gigaspaces.com/pr_key.html

last visited: 25.02.2008

[5] T Spaces

P. Wyckoff

http://www.research.ibm.com/journal/sj/373/wyckoff.html

06.04.1998

[6] SEDA: An Architecture for Highly Concurrent Server Applications

Matt Welsh, Harvard University

http://www.eecs.harvard.edu/~mdw/papers/quals-seda.pdf

09.05.2006

 Page 100 of 102 21.04.2008

[7] XMLSpaces for Coordination in Web-based Systems

Tolksdorf, Glaubitz

http://www.ag-nbi.de/research/xmlspaces/XMLspacesWETICE2001.pdf

22.02.2001

[9] JavaSpaces, Ähnliche Konzepte (Similar Concepts)

http://de.wikipedia.or/wiki/JavaSpaces#.C3.84hnliche_Konzepte

last visited: 28.07.2007

[10] Sun Microsystems Inc., Java 6.0

http://java.sun.com/javase/6/

last visited: 12.10.2007

[11] Chapter 27 from Ralf Westphal in

Gernot Starke, Stefan Tilkov

SOA-Expertenwissen

dpunkt.verlag

http://www.soa-expertenwissen.de/files/SOA-Expertenwissen_Kapitel_27.pdf

[12] Post-Client/Server Coordination Tools From eva Kühn, Georg Nozicka, In:

Coordination Technology for Collaborative Applications,

Wolfram Cohen, Gustaf Neumann (eds.),

Springer Series Lecture Notes in Computer Science, 1998.

[13] Virtual Shared Memory for Distributed Architecture,

eva Kühn,

Nova Science Publishers, 2001.

[14] Design und Implementierung einer grafischen Komponente für Monitoring von

SEDA-Applikationen,

Michael Lafite

Institute of Computer Languages, Techn. University Vienna,

January 2008.

 Page 101 of 102 21.04.2008

[15] Invalid Message Channel, In:

Enterprise Integration Patterns

Gregor Hohpe, Bobby Woolf,

Addison-Wesley, 2003, pg 117

[16] Integration of XVSM Spaces with the Web to Meet the Challenging Interaction

Demands in Pervasive Scenarios,

eva Kühn, Johannes Riemer, Richard Mordinyi, Lukas Lechner

Ubiquitous Computing And Communication Journal (UbiCC), special issue on

"Coordination in Pervasive Environments", Vol. 3, ISSN 1992-8424, March, 2008

[17] http://www.complang.tuwien.ac.at/eva/SBC-Group/sbcGroupIndex.html#SBC-Group-XVSM,

last visited: February 2008

[18] Linda (coordination language)

Wikipedia

http://en.wikipedia.org/wiki/Linda_%28coordination_language%29

last visited: 11.03.2008

[19] LIME in a Nutshell

Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Roman

http://lime.sourceforge.net/Lime/nutshell.html

last visited: 30.03.2008

All pictures were drawn by myself, partially with the help of Microsoft Visio 2003,

including its contained images / cliparts.

 Page 102 of 102 21.04.2008

Erklärung

Name: Michael Wittmann

Matr.-Nr.: 0026159

Ich versichere wahrheitsgemäß, dass ich die vorliegende Masterarbeit selbständig

verfasst und keine anderen als die von mir angegebenen Quellen, Hilfsmittel und

Programmteile von Studierenden benutzt habe. Alle Stellen, die wörtlich oder

sinngemäß aus veröffentlichten und nicht veröffentlichten Schriften entnommen sind,

sind als solche kenntlich gemacht.

Die Arbeit ist in gleicher oder ähnlicher Form noch nicht als Prüfungsarbeit

eingereicht worden.

Wien, am Unterschrift:............................

Ich erkläre mich mit einer späteren Veröffentlichung meiner Masterarbeit sowohl

auszugsweise, als auch als Gesamtwerk in der Institutsreihe oder zu

Darstellungszwecken im Rahmen der Öffentlichkeitsarbeit des Institutes

einverstanden.

Unterschrift:............................

