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Kurzfassung 

Bodenfeuchte als wichtige Größe in den globalen Kreisläufen von Wasser, Energie und 

Kohlenstoff, ist räumlich und zeitlich hoch variabel. Mit Hilfe von in-situ-Messungen kann die 

Bodenfeuchte sehr genau bestimmt werden. Allerdings kann sie auf diese Weise aufgrund 

organisatorischer und finanzieller Gründe nicht auf kontinentalen bis hin zur globalen Ebene 

gemessen werden. Hierfür können alternativ Radarfernerkundungsmethoden genutzt werden, 

die Daten auf unterschiedlichen zeitlichen und räumlichen Skalen zur Verfügung stellen. 

Prinzipiell kann die Radarrückstreuung mit Hilfe der Maxwell-Gleichungen beschrieben 

werden um so Bodenfeuchte aus den Radarsignalen zu extrahieren. Aufgrund der Komplexität 

natürlicher Oberflächen ist dies aber kaum durchführbar. Daher stehen nur Näherungslösungen 

zur Verfügung, die eng mit den ihnen zugrundeliegenden Gültigkeitsbedingungen verknüpft 

sind. Die Anwendbarkeit theoretischer Modelle zur Modellierung der Rückstreuung von 

unbedeckten Bodenoberflächen und Vegetationsbeständen wurde in zahlreichen Studien 

kritisch hinterfragt, die keine zufriedenstellenden Übereinstimmungen zwischen modellierten 

und gemessenen Bodenfeuchtewerten finden konnten. Mit Hilfe sogenannter Change-

Detection-Methoden wird versucht, diese Probleme zu umgehen, indem lediglich die 

Änderungen in der Radarrückstreuung über die Zeit ohne Beschreiung der absoluten 

Rückstreuung beobachtet wird. 

Wagner et al. (1999a-c) entwickelten ein Change-Detection-Modell für C-Band-

Scatterometerdaten. Dabei wird die Radarrückstreuung mit Hilfe empirischer 

Rückstreuparameter zur Ableitung relativer Bodenfeuchtewerte modelliert. Die empirischen 

Rückstreuparameter beschreiben die Variation der Rückstreuwerte über die Zeit zwischen 

einem Niedrigstwert typisch für trockene Bodenfeuchtebedingungen und einem Höchstwert 

typisch für gesättigte Bodenfeuchtebedingungen. Drei unabhängige Radarrückstreumessungen 

pro Aufnahmezeitpunkt unter verschiedenen Einfallswinkeln stehen im Fall es ERS 

Scatterometers zur Verfügung und werden zur Modellierung saisonaler Rückstreueffekte 

benutzt, welche auf dem radartypischen Einfallswinkelverhalten basieren. Das invertiere 
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Rückstreumodell kann dann benutzt werden, um einzelne Radarmessungen zwischen 

Trockenbedingungen (0%) und Feuchtbedingungen (100%) zu skalieren. 

Im Fall des Envisat ASAR steht lediglich nur eine Radarrückstreumessungen bei einem 

Einfallswinkel zur Verfügung. Daher kann der Bodenfeuchtealgorithmus, der saisonale 

Änderungen in den Radardaten berücksichtigt, nicht direkt vom ERS-Scatterometer auf die 

ASAR GM Daten übertragen werden. Die Datenanalyse hat gezeigt, dass Änderungen in der 

Radarrückstreuung im Zusammenhang mit der zeitlichen Änderung der Vegetation im 

Allgemeinen schwächer ausgeprägt sind als die durch Bodenfeuchteänderungen 

hervorgerufenen Signaländerungen. Da außerdem die ASAR GM Daten in HH-Polarisation 

vorliegen, wird Vegetation von den Radarsignalen besser durchdrungen als im Fall des in VV-

Polarisation arbeitenden ERS Scatterometers. Daher wird zur Vereinfachung angenommen, 

angenommen, dass die Parameter des Rückstreumodells zeitlich konstant sind und saisonale 

Effekte durch Änderungen der Vegetation vernachlässigt werden können. Mit Hilfe des 

angepassten Rückstreumodells werden ebenfalls Radareinzelmessungen zwischen den 

Referenzwerten für trockene und gesättigte Bodenfeuchtebedingungen skaliert. 

Die Ergebnisse wurden mit Hilfe von in-situ Bodenfeuchtemessungen des Oklahoma 

Mesonets und Bodenfeuchtewerten aus ERS Scatterometerdaten validiert. Gute 

Übereinstimmungen zwischen der relativen oberflächennahen Bodenfeuchte aus ASAR GM- 

Daten und den Validierungsdaten wurden beobachtet. Beim direkten Vergleich der Ergebnisse 

zeigt sich, das die Bodenfeuchte aus ERS-Scatterometerdaten etwas bessere Ergebnisse liefert 

als der ASAR GM Sensor. Als Hauptfehlerquelle wurde die radiometrische Genauigkeit von 

1.2 dB identifiziert. Das ist ein im Vergleich zum ERS Scatterometer mit einer radiometrischen 

Genauigkeit von 0.3 dB relativ hoher Wert. Trotzdem können aus ASAR GM Daten 

Bodenfeuchtewerte mit wesentlich mehr räumlichen Details als für den ERS Scatterometer 

abgeleitet werden, die ebenso die zeitliche Dynamik der Bodenfeuchte abbilden wie im Fall des 

Scatterometers. Die Validierung hat gezeigt, dass die Vernachlässigung saisonaler 

Vegetationseffekte auf die Radarrückstreuung eine haltbare Vereinfachung darstellt und das 

ASAR GM Daten für ein operationelles Bodenfeuchtemonitoring mit Hilfe von Change-

Detection-Modellen genutzt werden können. 
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Abstract 

Soil moisture, highly variable in space and time, is a key element in the global hydrologic, 

energy and carbon cycle. Soil moisture can be measured accurately in the field using in-situ 

measurement techniques. Measuring soil moisture at continental to global scales using in-situ 

techniques is not feasible. Alternatively, soil moisture can be measured using radar remote 

sensing at different temporal and spatial scales. ScanSAR modes as the Envisat ASAR GM 

offer medium spatial and temporal resolution. Theoretically, modeling the radar backscattering 

process for inverting soil moisture information could be obtained by an exact solution of 

Maxwell’s equations. Due to the complexity of natural surfaces, this not feasible. Only 

approximate solutions that are critically dependent on the validity of the underlying 

assumptions can be derived analytically. The applicability of theoretical models for describing 

scattering by natural soil surfaces and vegetation has increasingly been questioned and many 

experimental studies did not find a satisfactory match between modeled and measured bare soil 

backscatter. Change detection methods try to circumvent these difficulties by solely 

interpreting backscatter changes at fixed locations over time, without attempting to explain the 

absolute backscatter level.  

A change detection model has been developed for C-band scatterometer data by Wagner et 

al. (1999a-c). It describes radar backscatter in terms of empirical backscatter parameters and the 

relative surface soil moisture content. The empirical backscatter parameters define the variation 

of radar backscatter between dry surface soil moisture conditions at wilting level and saturated 

conditions at field capacity. Three individual backscatter measurements at different incidence 

angles are available from the ERS scatterometer per acquisition and can be used to model 

seasonal vegetation cover effects by exploiting the local incidence angle behavior. The inverted 

model can be used to scale individual radar backscatter measurements between dry (0%) and 

wet (100%) surface soil moisture conditions. 

In the case of ASAR GM only one backscatter measurement at some incidence angle is 

being made during each overpass. Therefore the algorithm developed for the ERS scatterometer 
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to account for seasonal vegetation effects can not be applied directly. Data analysis showed that 

changes in backscatter due to vegetation growth are in general much smaller than changes due 

to soil moisture. Additionally, ASAR GM is commonly operated in HH polarization which 

penetrates vegetation better than VV polarization as used by the ERS scatterometer. Therefore, 

a simplified change detection model is adapted for ASAR GM. It is assumed that, in a first 

approximation, the backscatter model parameters are constant in time because seasonal 

vegetation effects are expected to be weak for ASAR GM. This assumption may lead to a 

seasonally varying error of the retrieval. The adapted change detection backscatter model also 

scales individual backscatter measurements between a lower backscatter threshold related to 

dry surface soil moisture conditions and an upper backscatter threshold related to saturated 

conditions.  

The results were validated using in-situ soil moisture data from the Oklahoma Mesonet 

and ERS-1/2 scatterometer derived relative surface soil moisture. Good agreement between 

ASAR GM relative surface soil moisture and both in-situ soil moisture measurements and 

ERS-1/2 scatterometer derived soil moisture was observed. The direct comparison of the 

results shows that the surface soil moisture extracted from ERS-1/2 scatterometer data 

performs slightly better than the data derived from ASAR GM. As the main source of error, 

the noise of the ASAR GM data with a value of 1.2 dB has been identified which is relatively 

high when compared to radiometric resolution of at least 0.3 dB of the ERS scatterometer. 

Nevertheless, the ASAR GM data offer surface soil moisture data with much more details than 

the ERS-1/2 scatterometer data and still keeping the capability of the scatterometer data to 

map temporal surface soil moisture trends. The validation of the remotely sensed soil moisture 

extracted from ASAR GM data has proven that neglecting seasonal vegetation cover effects 

can be regarded as a valid assumption and operational use of ASAR GM data for soil moisture 

retrieval using change detection is possible. 
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CHAPTER 1 

Introduction 

Soil moisture retrieval from active remote sensing data is one of the main 

applications of radar remote sensing. Since the 1970’s, the search for operational soil 

moisture retrievals was one of the driving forces within the radar remote sensing 

community. This introduction highlights of the relevance of soil moisture as an 

important variable and process in different geo-physical disciplines and fields of 

application. Based on this, the scope of work and a brief overview of the organization of 

the thesis will be given. 

1.1. The need for soil moisture data 

Knowledge about the spatial and temporal distribution of soil moisture is an 

essential prerequisite for many applications in the Earth sciences. The water contained 

in the soils, the thin layer forming the boundary between the Earths crust and the 

atmosphere, makes up only a very small proportion of the global water resources. Only 

0.05% of global fresh water is contained in the soils (Gleick 1996). Therefore soil 

moisture seems to be a negligible quantity when compared to global water and fresh 

water resources. Nevertheless, soil moisture is a key variable in the Earths hydrologic, 

energy and carbon cycle. Soil moisture controls the partitioning of precipitation into 

runoff and infiltration as well as the separation of incoming solar radiation into sensible 

and latent heat fluxes (Entekhabi et al. 1996; Berger et al. 2003). Anomalies of soil 

moisture can be used as an indicator for upcoming drought or flood events (Douville & 

Chauvin 2000). The heatwave of 2003 in Europe was preceded by a dry spring with low 

soil moisture, which led to decreasing evaporation and cooling from soils. This resulted 

in increased summer temperatures (Titz 2005). There are other feedback loops 

connected to the state of soil moisture including soil erosion, surface runoff or cloud 

formation. Future climate models at finer spatial scales will use spatially extended, 

regular soil moisture observations, which can be provided by remote sensing techniques 
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(Schiermeier 2008). Soils also play an important role in the global carbon cycle. 

Decomposition of organic matter and microbiological activity are controlled by 

moisture and temperature conditions in the soil layer (Melillo et al. 2002; Porporato et 

al. 2003). And of course, soil moisture is the limiting factor for plant growth and 

directly influences crop yields and food production (Wild 1993; Entekhabi et al. 1995; 

Walker 1999; Berger et al. 2003; Huete 2004). 

Information on the actual state of soil moisture also is of socio-economic interest. 

At the moment more than one billion people do not have access to safe drinking water 

and two billion people have no proper sanitation. It is expected, that two-third of the 

world’s population will be affected by fresh water shortages by the year 2025. Water 

demand of agriculture is expected to double in the next decades. The global energy 

demand is projected to rise by 57% and consequently more water, e.g. for cooling, is 

required. These intensifying demands of fresh water can be addressed to global 

population growth, further rapid economic development and climate change (Arnell 

1999; IPCC 2001; Shannon et al. 2008). To handle the projected shortages of fresh 

water as a finite and vulnerable resource, an integrated water resource management is 

mandatory to secure fresh water supply for people, food production, economy, the 

protection of ecosystems, to deal with the spatial and temporal variability of water 

availability and to predict and manage extreme events like droughts and floods. Every 

water resource management system involves hydrologic modelling, which is based on a 

variety of geophysical parameters. Remote sensing methods can provide information of 

fundamental importance in catchment hydrology (Bastiaanssen 1999; Grayson & 

Blöschl 2001). Hydrologically relevant data, which can be derived from remote sensing 

data, comprise land cover, digital elevation models, vegetation indices, precipitation, 

evapotranspiration, snow cover and soil moisture (Pietroniro & Prowse 2002). 

Furthermore, remote sensing methods can help in closing an information gap caused by 

the globally decreasing number of reporting runoff measurement stations. During the 

1990’s the number of reporting stations in Africa decreased tremendously (Vörösmarty 

2002). 

Given the importance of soil moisture in various fields it is amazing to realize, that 

soil moisture is not being measured regularly like other important geo-physical and 

climate relevant variables like precipitation, air temperature, air pressure, humidity, 

incoming solar radiation or sea surface temperature. The reasons for this may arise from 
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the fact, that soil moisture is temporal and spatially highly variable and the set up and 

maintenance of soil moisture measuring networks as well as the measurement process 

itself is time-consuming and costly. 

Remote sensing methods working in the microwave region of the electromagnetic 

spectrum are commonly regarded to be the optimum remote sensing tool for soil 

moisture monitoring, as microwaves show a unique sensitivity to water contained in the 

soil layer. Since more than 30 years the extraction of soil moisture information is a 

research topic in the field of active remote sensing. The fact that there exist no 

operational soil moisture retrieval algorithms at medium spatial and temporal scales 

does not mean that operational soil moisture extraction from radar imagery is 

impossible at all. Numerous experimental studies proved the relation between radar 

backscatter and soil moisture content. One reason for the non-existence of operational 

methods can be found in the limited temporal resolution of spatial high resolution SAR 

data. Most studies on soil moisture retrieval are based only on a few images usually 

with a temporal distance of one month. This only provides isolated snapshots of the soil 

moisture conditions for one region. Given the spatial and temporal variability of soil 

moisture, temporal resolution is at least as important as spatial resolution. The main 

advantage of remote sensing is the fact, that it provides spatial extended data on routine 

basis. Nevertheless, extracting soil moisture information from remote sensing data is not 

straightforward. No near real-time soil moisture product from remote sensing data at 

medium temporal and spatial scales is available so far (Chauhan et al. 2003). 

1.2. Scope of Work and Objectives 

This dissertation is intended to answer the question whether or not Envisat ASAR 

Global Monitoring Mode data can be used for an operational soil moisture monitoring. 

What are the advantages of these kinds of data, what are the challenges to deal with 

when employing ASAR Global Monitoring Mode data? 

This dissertation is embedded in the research activities at the Institute of 

Photogrammetry and Remote Sensing (I.P.F.) at the Vienna University of Technology. 

The institute’s remote sensing group is mainly concerned with the retrieval of geo-

physical variables from different active Earth observation (EO) sensors such as the 

ERS-1/2 scatterometer, the MetOp ASCAT, QikSCAT or the Envisat ASAR. Former 
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studies at I.P.F. explored the potential of scatterometer data for land applications such 

as soil moisture retrieval or detection of freeze-thaw-cycles. Algorithms for soil 

moisture retrieval on global scales have been developed, implemented and successfully 

validated (Wagner et al. 2003). With the launch of Envisat, a new sensor, the Advanced 

Synthetic Aperture Radar (ASAR), capable of acquiring data in different imaging 

modes became available. ASAR’s Global Monitoring Mode (GM), which is one of its 

ScanSAR (Scanning Synthetic Aperture Radar) modes, offers time series data at 

medium spatial and temporal resolutions. Hence the idea emerged to use and transfer 

I.P.F.’s experience and knowledge gained with soil moisture retrieval from 

scatterometer data to GM time series data acquired with the ASAR sensor.  

Using ASAR GM time series data for soil moisture retrieval may add another 

aspect in the search for operational soil moisture algorithms from active remote sensing 

data. This has been one of the central issues in the active remote sensing community for 

the last 30 years.  

Different modelling approaches have been developed to retrieve soil moisture 

information from active remote sensing data. The simple empirical models showed, that 

there exists a fundamental relation between radar backscatter and soil moisture, even 

though these models are site dependent and not applicable for operational soil moisture 

monitoring. Sophisticated theoretical models with a physical basis allowed some insight 

into the processes governing the radar backscattering process. Also these models can 

not be used within an operational environment, because they require comprehensive 

data sets comprising SAR data at different frequencies and polarizations together with 

parameters describing surface roughness. Moreover, models describe vegetation layers 

in a very general way, which did not yield successful results. Given the number of 

publications, research projects together with the attention paid to this issue at scientific 

conferences, it can be stated, that soil moisture retrieval from SAR still stands high on 

the research agenda.  

A completely different approach is represented by change detection models. Here, 

radar backscatter is assumed to be controlled by some static and some dynamic 

parameters. Based on time series data, the variation of radar backscatter between an 

upper and a lower limited is related to variations in surface soil moisture. This idea has 

been used successfully for scatterometer data, providing backscatter at low spatial but 
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high temporal resolutions. With the launch of Envisat, the ASAR ScanSAR data at 

medium temporal and spatial resolutions became available.  

With this dissertation, a concept originally developed for ERS scatterometer data is 

transferred and adapted to ASAR GM data. The main objective of this work is to 

answer the question, whether or not ASAR GM time series data can be used for 

operational soil moisture retrieval using a change detection approach. What are the 

advantages of this method? What are the limits of this method and which constraints 

need to be considered? 

For answering these questions, a fully automatic processing chain including 

geocoding, radiometric correction, data base management, local incidence angle 

correction and the actual soil moisture retrieval is set up and implemented. Results are 

validated using in-situ soil moisture data from a state-wide measurement network in 

Oklahoma (USA) as well as other remotely sensed soil moisture data. 

 

The thesis is organized as follows: 

 

Chapter 1 introduces the subject of the thesis and gives an overview of the 

thesis structure. 

 

Chapter 2 describes soil moisture as a geo-physical variable including 

definitions, methods for measuring in-situ soil moisture and its spatial and 

temporal scale properties. 

 

Chapter 3 first gives an overview of different remote sensing techniques for soil 

moisture retrieval. Then background information on active remote sensing 

necessary for soil moisture mapping are presented. An overview of methods for 

retrieving soil moisture from active remote sensing data will be given including 

theoretical models, empirical models and change detection methods. 

 

Chapter 4 describes the test site and the data used for this study. A physio-

geographical overview will introduce the test site. Then the Envisat ASAR 

sensor and the ScanSAR technique are described. Validation data sets including 
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the in-situ soil moisture measurements, the ERS Scatterometer soil moisture and 

other auxiliary data sets are presented.  

 

Chapter 5 contains a detailed description of the methods used to derive the 

remotely sensed soil moisture products. This comprises the processing chain 

including geometric correction, radiometric calibration, resampling to time-

series format, local incidence correction and the actual change detection soil 

moisture retrieval algorithm. 

 

Chapter 6 presents the results and the validation of the soil moisture retrieved 

from the ASAR GM time series data for the test site. Results are discussed with 

respect to the initial research question and the relevant literature. 

 

Chapter 7 gives the conclusions and an outlook to possible further research 

activities in this field. 
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CHAPTER 2 

Soil Moisture 

In this chapter the soil moisture as a geo-physical variable is introduced. 

Definitions of soil moisture will be given. Different methods for in-situ soil moisture 

measurements are described. Finally, the spatial and temporal scale properties of soil 

moisture are discussed. 

2.1. Definition of Soil Moisture 

A definition of soil moisture is given by Hillel (1982). He defines soil moisture as 

the volume fraction of water held in the soil against gravity. Another pragmatic 

definition describes soil moisture as the amount of water which evaporates within 24 

hours when drying soil samples at 105°C (Koorevaar et al. 1999). 

To understand, how soil moisture influences radar backscatter, it is necessary to 

take a closer look at the water containing medium – the soil. The term soil refers to the 

complex medium at the interface between the atmosphere and the lithosphere. It is also 

called the pedosphere and covers large parts of the Earth’s land surfaces. Soils are the 

result of physical and chemical weathering. They are a mixture of solid, liquid and 

gaseous constituents, namely minerals and organic matter, water and air (see Figure 1). 

Under natural conditions, nearly every soil contains water. This water is mainly derived 

from precipitation via the process of infiltration or from the water table via capillary rise 

(Ellis & Mellor 1995). The ability of a soil to contain water is caused by attractive 

forces between the liquid and the solid phase of a soil. Due to these matric forces soils 

can hold water against forces caused by gravity, evaporation and suction by plant roots. 

The binding of water in capillaries formed by the soil particles is the result of adhesive 

forces between water molecules and the surfaces of the solid soil particles and cohesive 

forces between individual water molecules. Adhesion caused by van-der-Waals forces 

(intra-molecular forces between atoms or molecules) decreases with the sixth power of 

the distance to the solid soil particle. The thickness of the water layer bound by 
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adhesive forces is about 1 nm (Scheffer & Schachtschabel 1998; Koorevaar et al. 1999). 

Water bound by adhesion can not move freely within the soil. All water, which is not 

under the effect of this force is able to move within the soil and therefore is called free 

water (Hillel 1982; Hallikainen et al. 1985; Ulaby et al. 1996).  

The water content of a soil can vary between a minimum value at oven dryness and 

a maximum value at pore space saturation. For agronomic and hydrological 

applications, two intermediate states are more important: field capacity and permanent 

wilting point. The field capacity (FC) describes the maximum amount of water, which a 

soil can hold against gravity. It is reached usually after an already wetted soil has been 

drained with water for at least two days. The permanent wilting point (PWP) refers to a 

water content from which plant roots are unable to retrieve water from the soil, because 

the forces attracting water to the soil particles exceeds the plant roots suction (Hillel 

1982). 

 

 

Figure 1: Cross-section of a soil sample with solid soil particles (a), a liquid phase (b) and a 
gaseous phase (c) (after Koorevaar et al. 1983) 

 

The water content of a soil is directly related to its dielectric properties, which have 

a strong influence on the backscattering process of microwaves. The relation between 

the dielectric properties of soils and radar backscatter will be described in Chapter 3.2.2. 
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2.2. In-situ Soil Moisture Measurement Techniques 

Reliable and exact measurements of the soil moisture content are of great 

importance for different disciplines of the Earth sciences as well as for agronomy. Soil 

moisture can be measured either in-situ, which means measuring soil moisture in the 

field, or using remote sensing techniques. In-situ measurements can be direct or 

indirect. The standard method for measuring the soil moisture content is the 

gravitational measurement technique. With this direct method the soil moisture content 

is calculated from the mass difference of a soil sample taken in the field before and after 

oven drying. This method is inexpensive, soil moisture is easy to calculate and it is 

independent of soil type and salinity. On the other hand it is a destructive test; it is time 

consuming and does not allow automatic control. Furthermore, the dry bulk density 

must be known to transfer the mass water content to the volumetric water content 

(Brady & Weil 1996; Barsch et al. 2000). Indirect measurement techniques estimate the 

soil moisture content from parameters, which allow conclusions on the actual soil 

moisture content. An easy and widespread method is the Time Domain Reflectrometry 

(TDR). A TDR sensor consists of two or three parallel waveguides, a linear structure 

made of conducting materials, which are placed in the soil material. The moisture 

content of the soil is estimated from the travel time of an electromagnetic impulse 

which is passed along the waveguides. The speed of the electromagnetic wave estimated 

from the travel time allows conclusions about the dielectric constant of the soil. With 

increasing soil moisture content and increasing dielectric constant of the soil, the speed 

of the electromagnetic wave is decreasing. For most soils, this method does not require 

calibration, it can be easily automated and allows long term monitoring of soil moisture 

(Jones et al. 2002; Walker et al. 2004b).  

Another indirect measurement technique is utilizing the force which binds water in 

the soil for the estimation of the soil moisture content. Tensiometers are placed in the 

soil and consist of a cup filled with a porous material and water, connected to a 

manometer. Water from the tensiometer is drawn into the surrounding soil. This causes 

a negative pressure in the cup which is measured using a manometer. Soil moisture 

retention curves describe the relation between the measured negative pressure and the 

water content of the soil. The comparably inexpensive sensors are easy to install and 
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most irrigation recommendations rely on tensiometer measurements. On the other hand, 

tensiometers require regular maintenance and there limited measurement range does not 

allow the measurement of very low moisture contents (Zazueta & Xin 1994; Koorevaar 

et al. 1999). Other indirect in-situ measurement techniques are neutron scattering, 

gamma ray attenuation and soil electrical conductivity. Further information on these 

techniques can be found in Schmugge et al. (1980), Topp (2003) and Zegelin (1996). 

The main disadvantage of all in-situ measurement techniques is the fact, that they 

only provide point measurements. This makes the regular, automated long term 

monitoring of soil moisture over larger areas very expensive if not impossible. Here, 

remote sensing techniques, which give areal estimates of soil moisture, can be used for 

monitoring from local to global spatial scales. Before describing active soil moisture 

remote sensing, an introductory overview of passive remote sensing technique is given 

in Chapter 3. 

2.3. Spatio-Temporal Properties of Soil Moisture 

Characterizing the temporal and spatial distribution of soil moisture, either using 

in-situ techniques or by means of remote sensing is always connected to scale issues. 

Soil moisture measurements using in-situ techniques are usually carried out to describe 

the soil moisture conditions of an area, e.g. a field, a slope or even an entire catchment. 

Therefore it is important to know, what kind of relations between point measurements 

and areal estimates of soil moisture does exist. In case of remotely sensed soil moisture, 

the opposite case is of interest: How does an areal estimate - remote sensing sensors 

always acquire information over a certain area of the Earths surface - of soil moisture 

relate to smaller spatial entities? For validating modelled or remotely sensed soil 

moisture products, it is important to know at which time remote sensing data and at 

which time in-situ soil moisture measurements were acquired. The larger the time 

difference between generated and measured soil moisture, the less confidence can be 

given to validation results. Therefore the spatio-temporal scale properties are described 

in the following. 

Soil moisture as a property and a process occurring at the interface between the 

atmosphere and the land surface of the Earth is highly variable in space and time. 

Within a few meters soil moisture can vary as much as within a distance of kilometres 
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(Dubayah et al. 1997; Buttafuoco et al. 2005). Spatial soil moisture patterns usually 

follow topography, vegetation cover, land use or geological substrates, which are 

closely connected to the soil texture and water holding capacity (Western & Blöschl 

1999). In the temporal domain the moisture content in the uppermost centimetres of a 

soil profile, which is directly exposed to the influences of the atmosphere, can vary in 

the order of a few hours (Raju et al. 1995). The moisture content at a specific point in 

space and time is the result of the preceding precipitation events, soil properties 

(texture, content of organic matter and porosity affecting water holding capacity, soil 

colour affects evaporative drying), topography (slope and aspect affects runoff, 

infiltration and evapotranspiration), vegetation cover (interception of precipitation, 

evaporation from plant surfaces, transpiration of plants, causing turbulence and 

enhancing evapotranspiration) and climatic conditions (solar radiation, humidity, air 

temperature affecting evaporation from soil) (Dubayah et al. 1997; Famiglietti et al. 

1998; Mohanty & Skaggs 2001). 

Precipitation as the main driving force for spatio-temporal soil moisture patterns 

occurs at different space and time scales. Figure 2 shows typical spatial and temporal 

scales of hydrological processes. Convective precipitation is a small scale phenomenon 

in the range of minutes to one hour, whereas precipitation caused by frontal systems 

affects much wider areas, comprising scale lengths up to 1000 km and range from hours 

to one day. According to Grayson & Blöschl (2000), there is a link between processes 

and spatio-temporal patterns. Processes with small space and time scales will lead to 

temporal more variable small-scale patterns, whereas processes with large spatial and 

temporal scale lengths will cause spatially more coherent, slowly varying patterns.  

Several studies showed that soil moisture variations in time and space can be 

addressed to two different scale components – a small scale and a large scale 

component. The small scale component leads to local variations in soil moisture due to 

soil properties, land cover attributes and local topography. This small scale component 

acts in the range of tens of meters spatially and in the range of a few days temporally 

(Entin et al. 1999; Robock et al. 2000). A connection between soil moisture and 

topography has been found by Grayson et al. (1997). During dry summer conditions no 

distinct spatial patterns were recognizable due to a maximum of vertical fluxes 

(evapotranspiration). In winter, during wet conditions, lateral surface and subsurface 

flow dominated. The large scale component is addressed to atmospheric forcing due to 
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precipitation and evaporation processes (Robock et al. 2000). Based on extensive in-situ 

data sets in Russia, Vinnikov et al. (1996) observed spatial correlation lengths of soil 

moisture in the order of 400 – 800 km caused by atmospheric forcing. These findings 

are supported by Entin et al. (2000). They report spatial correlation lengths in the order 

of several hundred kilometres for test sites in Russia, Mongolia, China and Illinois 

(USA).  

 

Figure 2: Temporal and spatial process scales in hydrology (Blöschl & Sivapalan 1995) 

 

These findings are important for comparisons of in-situ data and remotely sensed 

soil moisture products. Because of their different spatial scales, a correlation between 

in-situ data and remotely sensed soil moisture products seems to be unlikely. 

Nevertheless, comparisons of coarse resolution soil moisture time series (i.e. ERS 

Scatterometer) representing areas ≥ 1000 km2 with in-situ measurements of soil 

moisture, typically representing areas ≤ 0.01 km2, showed good agreements between 

data of such significantly different spatial scales. Bindlish et al. (2003) derived soil 
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moisture estimates from the SSM/I space-borne microwave radiometer over the 

Southern United States. With a standard error of 2.5%, in-situ measurements of soil 

moisture agreed well with the daily averaged soil moisture products. Comparisons of 

relative soil moisture values extracted from SSM/I radiometer data to in-situ soil 

moisture measurements showed, that these coarse resolution products are capable of 

explaining the temporal behaviour of the soil moisture with a RMSE of 7.18 %. Wen & 

Su (2003) found a high correlations of r = 0.63 between ERS scatterometer derived 

relative surface soil moisture time series and in-situ top horizon soil moisture in Tibet. 

Wagner et al. (2003) compared ERS scatterometer retrieved soil moisture with model 

and precipitation data. High correlations between precipitation data and soil moisture 

data were found especially for regions with a dense station network. Modelled and 

remotely sensed soil moisture agreed well over tropical and temperate climates. Based 

on ERS scatterometer time series data, Ceballos et al. (2005) validated modelled profile 

soil moisture using in-situ soil moisture from a measurement network in the Duero 

Basin in Spain. Mean profile soil moisture from 20 measurement stations within the test 

site were compared to the soil moisture retrieved from the ERS Scatterometer with a 

footprint size corresponding to the test site area. Comparisons of the averaged soil 

moisture profiles showed a good agreement with R² = 0.75 and RMSE = 2.2 vol.%. 

Agreements between point data and area averaged data in the temporal domain were 

subject of a study by Wagner et al. (2008). Here the temporal stability concept 

introduced by Vauchaud et al. (1985) for identifying area representative in-situ soil 

moisture measurement stations was transferred to Envisat ASAR Wide Swath data over 

a test site in Spain. It was found that temporal stable soil moisture patterns lead to 

temporal stable radar backscatter patterns. A simple time-invariant linear model to 

predict soil moisture and radar backscatter at point scale from regional observation was 

developed. Modelled scaling coefficients and scaling coefficients derived from 

observations showed good agreement with R² = 0.86. 

Knowledge of the scaling properties of soil moisture is important because within 

the next few years only coarse resolution (25-50 km) soil moisture data derived from 

spaceborne radiometer and scatterometer systems can be expected to be operationally 

available (Wagner et al. 2007a). On the other hand, scientific and technological 

breakthroughs are still needed for operational soil moisture retrieval at finer scales using 

Synthetic Aperture Radar (SAR) (Wagner et al. 2007b). Global soil moisture products 
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are already available from the Advanced Microwave Scanning Radiometer (AMSR-E) 

(Njoku et al. 2003) and from the Advanced Scatterometer (ASCAT) onboard of the 

Meteorological Operational (METOP) satellite series (Bartalis et al. 2007). The Soil 

Moisture and Ocean Salinity (SMOS) satellite is planned to be launched in 2008 (Kerr 

2007). The spatial resolution is 25 km for ASCAT, 43 km for SMOS, and 56 km for 

AMSR-E (C-band). 
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CHAPTER 3 

Remote Sensing of Soil Moisture 

Remote sensing is the term for all techniques which give information on distant 

objects or geo-physical phenomena without direct physical contact. Remote Sensing of 

the Earth is also referred to as Earth Observation (EO). This includes observation, 

mapping/monitoring of objects or phenomena and manual or automated interpretation 

of the acquired data under the aspect of different geo-physical applications. Common to 

all remote sensing techniques is the fact that electromagnetic radiation is used as the 

information carrier. Air-borne or space-borne sensors are used as measuring devices. 

Different remote sensing techniques utilize different regions of the electromagnetic 

spectrum. Remote sensing can be either passive or active. Passive remote sensing 

instruments measure natural radiation, e.g. the solar radiation reflected by objects at the 

Earth’s surface. Active remote sensing sensors carry their own source of 

electromagnetic radiation. Examples of active remote sensing sensors are space-borne 

SAR systems or air-borne laser scanners (Löffler 1994; Lillesand & Kiefer 2000).  

This thesis only concentrates on space-borne active remote sensing sensors 

operating in the microwave region of the electromagnetic spectrum. Nevertheless, a 

very brief overview is given of other remote sensing techniques for soil moisture 

retrieval is given in the following section. 

3.1. Overview of Remote Sensing Techniques for Soil 

Moisture Retrieval  

In Chapter 2, the spatial and temporal variability of soil moisture together with the 

time and effort necessary for precise in-situ soil moisture measurements has been 

pointed out. Under the aspect of financial costs, manpower and time, it is not feasible to 

set up an in-situ soil moisture monitoring at continental or global scales. One alternative 

is the use of remote sensing. The big advantage of remote sensing methods is their 

capability to repeatedly deliver extended spatial data at different temporal and spatial 
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scales  (Engman & Chauhan 1995). In the following section, different passive remote 

sensing methods utilizing different regions of the electromagnetic spectrum for soil 

moisture retrieval are introduced very briefly. All methods deliver indirect estimates of 

soil moisture. They measure a parameter accessible to remote sensing, which allows 

indirect conclusions on the soil moisture content (Curran 2001).  

Techniques operating in the region of visible light (λ = 0.3 - 0.7 µm) and the near-

infrared (λ = 0.7 - 1.4 µm) observe the soil surface albedo, the ratio of reflected to 

incoming solar radiation. An increase in soil moisture leads to a decrease of the albedo. 

This technique does not give precise values, as there is only a weak relation to soil 

moisture. The albedo also depends on soil texture, surface roughness, organic matter 

content, soil color, angle of incidence and vegetation cover. Different dry soil types may 

be characterized by a variety of different albedos. Reflectance measurements only 

represent signals from the top millimetres of the soil. Furthermore atmospheric 

influences cause attenuation of the reflected signals (Walker 1999; Engman 2000).  

Thermal infra-red remote sensing methods operate at wavelengths between 8 and 

15 µm (Curran 1985). Soil moisture is estimated indirectly via the measurement of the 

soil surface temperature. This technique is based on the assumption that areas with high 

soil moisture emit less thermal radiation than areas with low soil moisture contents. 

However, soil surface temperature also depends on solar radiation, humidity, air 

temperature and wind causing a diurnal variation of soil surface temperatures. The 

presence of a vegetation cover can reduce the sensitivity to soil moisture substantially. 

The soil moisture information is only representative for the top millimetres of a soil 

profile and atmospheric effects need to be taken into account (Walker 1999). 

Measurements of water mass changes affecting the gravitational field of the Earth 

can give soil moisture information at large catchment scales. With the GRACE double-

satellite mission it was possible to map changes in surface hydrology at continental 

scales and large scale river basins. A summary is given in Crowley et al. (2007). The 

ability of GRACE to estimate the soil moisture distribution is limited by its temporal 

resolution of one month and the fact that mass changes less then 2.8 billion tonnes can 

not be detected (Adam 2002). 

Microwaves show a unique sensitivity to the moisture content of natural media due 

to the pronounced increase of their dielectric constant with increasing moisture content 

(Ulaby et al. 1982). In the microwave region of the electromagnetic spectrum (see 
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Chapter 3.2.2.), soil moisture retrieval is also possible using passive remote sensing 

techniques. This is based on the fact, that every object with a temperature above 0 K 

emits microwaves due to the motion of the charged particles of its atoms or molecules. 

Therefore the emissivity changes with the physical temperature of the imaged objects. 

The quantity measured by the sensor is the brightness temperature TB. With models it is 

possible to relate changes in the brightness temperature to changes in the soil moisture 

content. Vegetation layers reduce the sensitivity of the sensor to soil moisture. 

Therefore longer wavelengths like L-band are preferred. Unfortunately, the energy 

content of radiation is inversely proportional to its wavelength (Jackson et al. 1996). To 

obtain detectable signals, passive microwave sensors have to view large areas which 

results in a poor spatial resolution in the order of around 50 km (Lillesand & Kiefer 

2000). Although passive microwave systems offer high temporal resolutions, the poor 

spatial resolution is seen as the big disadvantage of this technique. 

Active microwave remote sensing methods can provide data with much higher 

spatial resolutions. They are generally capable of delivering soil moisture information at 

various spatial and temporal scales. Together with their all-weather and all-day sensing 

capabilities, active microwave remote sensing is superior to optical methods (Engman 

& Chauhan 1995). Active remote sensing techniques are regarded to hold the largest 

potential for the retrieval of soil moisture at spatial and temporal scales required by the 

potential user community (Moran et al. 2004).  

 

The following sections of Chapter 3 only concentrate on active microwave remote 

sensing techniques. First, the basic principles of active microwave remote sensing will 

be presented. Then an overview of different techniques for retrieving soil moisture 

information from the remotely sensed data based on the relevant literature is given. 

Finally, a brief summary of the different existing retrieval methods is given as a 

conclusion that lead to the soil moisture retrieval method presented with this study. 
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3.2. Basic principles of active remote sensing 

As pointed out in the introduction to Chapter 3, active remote sensing is using 
electromagnetic radiation as information carrier between the object or phenomenon of 
interest and the air- or space-borne EO sensor. Electromagnetic radiation is emitted by 
accelerated electric charges or by electrons in transition from a level of high energy to a 
level of lower energy. This radiation can be either a natural phenomenon or generated 
by technical devices (Tipler & Mosca 2004). Electromagnetic radiation can be 
understood as a form of energy propagation, moving through space as a harmonic 
sinusoidal wave (Figure 3) at the speed of light (c), where the electric and magnetic 
field vectors are perpendicular to each other and to the direction of wave propagation 
(Kraus & Schneider 1988). Electromagnetic waves are characterized by the two 
parameters wavelength (λ) and frequency (f), interrelated via the speed of light (c) 
(Lillesand & Kiefer 2000): 

λ
λλ cf

f
cfc ==⋅= ;;  (Eq. 3.1, 3.2, 3.3) 

 

 

Figure 3: Electromagnetic wave, E – sinusoidal electric wave,  M – sinusoidal magnetic wave (Lillesand 
& Kiefer 2000) 

Electromagnetic radiation exists at different wavelengths or frequencies, integrated in 

the electromagnetic spectrum. Active remote sensing techniques using the microwave 

region of the electromagnetic spectrum cover a wide range of wavelengths λ or 

frequencies f. The microwave region of the electromagnetic spectrum is ranging from 

wavelengths of 1 mm (300 GHz) to 1 m (0.3 GHz). The microwave range is divided 
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into a number of so called radar bands (Table 1). Microwaves can also be called radar 

waves, but both terms can be used synonymously as they refer to the same range of 

wavelengths/frequencies (Lewis et al. 1998). 

Band Wavelength λ [cm] Frequency f [MHz] 

X 2.4 – 3.75 12,500 – 8,000 

C 3.75 – 7.5 8,000 – 4,000 

L 15 – 30 2,000 – 1,000 

P 30 – 100 1,000 – 300 

Table 1: Radar bands used in remote sensing (modified after Lewis et al. 1998) 

In contrast to natural visible light, microwaves generated by radar sensors are 

monochromatic coherent waves. They are characterized by a known and temporal 

constant phase difference between the wave fronts. Monochromatic coherent waves are 

able to cause interference effects. Active microwave sensors are sending out short 

pulses of radar waves towards the Earth’s surface and receive the signals scattered back 

towards the sensor. The backscattering process is governed by a number of sensor 

(wavelength/frequency, polarization, incidence angle) and target (dielectric constant, 

surface roughness) parameters, illustrated in Figure 4 (Dobson et al. 1995).  

 

Figure 4: Main parameters controlling radar backscatter 

3.2.1. Sensor Parameters 

The sensor parameters wavelength λ/frequency f, incidence angle θ, polarization, 

antenna characteristics and transmitted signal power are defined by the sensor’s 

technical configuration. The wavelength/frequency together with the polarization of an 

active radar sensor controls the ability of the signals to penetrate into the soil layer 

and/or vegetation canopies. For a given soil moisture content, the penetration depth is 
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directly proportional to the wavelength (or indirectly proportional to the frequency) of 

the radar waves used for sensing. According to Ulaby et al. (1982), the penetration 

depth δP is the depth below the air/soil boundary at which the signal power of an 

incident radar wave is reduced to an amount of 1/e or ∼ 37%. For C-band, the 

penetration depth for dry mineral soils is approx. 5 cm. The penetration depth decreases 

with increasing soil moisture content for a given wavelength (Ulaby et al. 1996). 

Polarization of the radar wave refers to the direction of the electric field vector of the 

radar waves transmitted by the SAR antenna. It can be either horizontal or vertical. 

Active SAR sensors can be configured as single-, multi- or full-polarimetric systems. 

The possible sent-receive (first letter indicates sent-polarization, second letter indicates 

receive-polarization) combinations of a full-polarimetric system are: HH, VV, HV/VH 

(HV and VH responses are theoretically identical). Phase differences calculated from 

the scattering matrix allow conclusions about the dominating scattering processes 

(Ulaby et al. 1996). The geometrical properties of objects at the Earths surface are able 

to cause depolarization. Depolarization can be caused by quasi-specular reflection from 

corner reflectors, multiple scattering from rough surfaces or multiple volume scattering 

(Lewis et al. 1998). The incidence angle of the radar waves is controlled by the antenna 

elevation beam pattern and is defined as the angle between the vertical and the 

impinging radar waves are (Figure 5). The local topography determines the local 

incidence angle θloc which is defined with respect to the surface normal. Radar 

backscatter is influenced by the local incidence angle. For a surface with a given 

roughness, radar backscatter decreases with increasing incidence angle. For smooth 

 

Figure 5: Illustration of the Incidence angle and the local incidence angle for SAR systems (after 
Lewis et al. 1998) 
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surfaces, radar backscatter drops of much faster than for rough surfaces. The concept of 

surface roughness is discussed in the next section. Radar acquisitions covering a large 

range of incidence angles show a decrease in radar backscatter from near range to far 

range. This is typical for airborne SAR or space borne ScanSAR systems, as they cover 

large incidence angle ranges (Dobson et al. 1995; Raney 1998). These influences on the 

backscattered signals need to be corrected before further analysis of the radar data (see 

Chapter 5.1.4.). 

3.2.2. Target Parameters 

Radar backscatter from the bare soil surfaces is controlled by two important target 

parameters - the dielectric constant ε  and the surface roughness R (Ulaby et al. 1996). 

Microwave remote sensing of soil moisture is based on the large differences of the 

dielectric properties of soil particles and water (Lewis et al. 1998). The dielectric 

properties are characterized by the complex permittivity or dielectric constantε . It is a 

complex number consisting of a real ε ′  and an imaginary ε ′′ part: 

εεε ′′+′=  (Eq. 3.4) 

The dielectric constant ε  determines the reflection and attenuation characteristics 

of an electromagnetic wave incident upon a soil surface. For a soil, regarded as a 

mixture of soil particles, free and bound water and air, the dielectric constant ε  is an 

average value of the dielectric constants of its constituents and depends on the applied 

electromagnetic frequency, the physical temperature, the salinity, the volumetric water 

content and the fractions of bound and free water (Hallikainen et al. 1985; Jackson et al. 

1996). At a given wavelength, dry soil has a dielectric constant ε  of 2 – 4. Water at the 

other hand has a much higher dielectric constant. At a frequency of 5 GHz, which 

corresponds to C-band, the dielectric constant of fresh water at 20°C is ≈ 73. Adding 

water to a dry soil will increase the overall dielectric constant of the soil as a mixture 

the solid soil particles, air and liquid water tremendously (Curlander & McDonough 

1991; Ulaby et al. 1996). This remarkable change of the dielectric constantε of the soil 

material is caused by the special properties of water. The H2O molecule forms a 

permanent dipole, which aligns to an applied electric field (Schanda 1986; Engman & 

Chauhan 1995). Only the molecules of free water react on an applied electric field, 

whereas the molecules of the bound water are adsorbed to the surfaces of the soil 
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particles and thus their dipoles are immobilized (Njoku & Entekhabi 1996). With 

increasing dielectric constant, the penetration depth decreases and radar backscatter 

increases. A high dielectric constant of a soil causes a high radar backscatter and 

indicates a high soil moisture content (Curlander & McDonough 1991; Lewis et al. 

1998). If the soil is frozen, than the water molecules and with it the dipoles can not align 

to an applied electric field any longer and show a very low radar backscatter 

(Woodhouse 2006). 

The quantification of surface roughness always depends on the used wave-length. 

A surface may appear smooth in L-band but rough in X-band (Engman & Chauhan 

1995). Radar backscatter increases with surface roughness. A radar wave impinging on 

a perfectly smooth surface will experience specular reflection, where the angle of 

reflection is the same as the angle of incidence. With increasing roughness backscatter 

becomes more diffuse approaching Lambertian reflectance (Lewis et al. 1998). Surface 

roughness is usually described using the RMS height s (see Figure 6) together with its 

correlation function ( )ξρ  to describe the vertical roughness component and correlation 

length l for the horizontal roughness component. The RMS height s is defined as the 

standard deviation of random surface components from a mean reference surface: 
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Figure 6: RMS height s as standard deviation from a mean reference height 

 

The correlation functions describe the degree of correlation between a single 

roughness components z at a distances ξ. Two commonly used autocorrelation functions 

are: 
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The correlation length l describes the distance, at which the random surface 

components are statistically independent. This is the case where 1−< el . For perfectly 

smooth surfaces l becomes ∞ (Verhoest et al. 2008). 

To characterize the surface roughness in relation to the wavelength λ, two criteria 

can be used, which both are based on the phase difference Δϕ. Single rays of a wave 

front impinging on a rough surface are scattered back with a certain phase difference 

Δϕ (Raney 1998): 

θ
λ

πϕ cos4 hΔ
=Δ  (Eq. 3.9) 

with Δh being the mean height variations of the surface. To define, if a surface is 

smooth or rough, the Rayleigh criterion can be used, which is true if the phase 

difference is less than π/2 (Raney 1998): 

θ
λ

cos8
>h  (Eq. 3.10) 

According to Ulaby et al. (1982) the Rayleigh criterion is inappropriate in the 

microwave domain. Therefore the Fraunhofer criterion is proposed, where the phase 

difference must be less than π/8 for smooth surface conditions (Ulaby et al. 1982): 

θ
λ
cos32

>h  (Eq. 3.11) 

Surface roughness is often measured in the field using one dimensional surface 

profiles. Different devices for surface roughness estimation have been developed. 

Needle profilers consist of a large number of thin metal sticks with a fixed horizontal 

distance placed at the soil surface. Another method uses special plates with a 

measurement grid. They are placed on the surface and the profile is photographed and 

then digitized. A non-contacting device has been developed by Davidson et al. (2000) 

using a laser profiler, which can perform measurements over a length of 25 m. 

It has turned out that the commonly used statistical descriptors of surface 

roughness, the RMS height and the correlation length, are not well suited for describing 

natural surfaces. They describe a single-scale process assuming that this adequately 
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describes the roughness within one SAR resolution cell. Research has shown that a 

multi-scale process would be a better representation of the surface roughness. 

Furthermore, theoretical backscatter models rely on the roughness descriptors RMS 

height and correlation length (Satalino et al. 2002; Manninen 2003). The one 

dimensional surface representation neglects the three-dimensional character of natural 

soil surfaces and also the fact that within the resolution cell of a SAR the small scale 

surface roughness is embedded in a larger scale related to the topography. Furthermore, 

the surface roughness of agricultural fields also depends on the direction. A ploughed 

field will have different surface roughness characteristics in the row and the direction 

perpendicular to it and so the row direction relative to the satellite track needs to be 

considered when doing surface roughness measurements (Verhoest et al. 2008). 

3.3. Scattering from Bare and Vegetated Soil Surfaces 

Scattering can be described as random redirection of electromagnetic radiation 

impinging on an object or a surface (Woodhouse 2006). Radar waves impinging at the 

boundary of two semi-infinite media, which are two bordering media with a defined 

finite boundary but extending to infinity away from that boundary, are partially 

scattered back towards the sensor and partially penetrate into the medium. Backscatter 

from bare natural surfaces can be separated into surface scattering and volume 

scattering. Admittedly, both scattering mechanisms are present, but for reasons of 

simplifying the description and modeling of bare surface scattering, one of the two may 

be neglected (Ulaby et al. 1982). Surface scattering occurs if the lower medium is 

dielectrically homogeneous or if the radar waves penetrate only little into the medium. 

The scattering pattern is controlled by the incidence angle of the radar waves and the 

surface roughness. An illustration of this relation is given in Figure 7. In the case of 

surface scattering, the incident radar waves are partially reflected in the specular 

direction (reflected/coherent component) and partially scatter back towards the sensor 

(scattered/incoherent component). For a fixed incidence angle, the signal strength of the 

reflected component decreases and the strength of the scattered component increases 

with increasing surface roughness. The scattered component shows a diffuse scattering 

pattern which comprises backscatter in all directions. With increasing surface roughness 

the strength of the scattered component becomes much larger than that of the reflected 
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component, which becomes negligible. Natural surfaces showing surface scattering are 

very wet soil, water and wet snow (Ulaby et al. 1982; Rees 2001; Woodhouse 2006).  

Volume scattering occurs, if the lower medium is an inhomogeneous medium with 

a high penetration depth. Here, incoming radar waves cross the boundary between the 

two media, are scattered back by randomly distributed elements, so called dielectric 

inhomogenities, and cross the boundary into the upper medium again. Thus, the 

backscattering process takes place within the lower medium itself. The intensity of the 

backscattered signals depends on the roughness of the boundary between the two media 

as well as on the dielectric and geometric (size, distribution) properties of the 

discontinuities within the lower medium. Volume scattering can be observed for 

vegetation canopies, dry soil/sand and dry snow. Even though the scattering from bare 

soil surfaces occurs at dielectric inhomogenities within the upper parts of a soil profile, 

the penetration depth at short wavelengths is very small and volume scattering occurs 

only in a small soil surface layer. Therefore the volume scattering part becomes 

negligible and backscatter is treated as surface scattering. Only if the soil becomes very 

dry, also short wavelengths like C-band are able to penetrate into the soil medium 

(Ulaby et al. 1982; Woodhouse 2006).   

 

 

Figure 7: Schematic illustration of scattering from surfaces with different roughness conditions at 
increasing (from a to c) incidence angles (after Woodhouse 2006) 
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Backscattering from vegetated surfaces is a much more complex process than 

backscattering from bare soil surfaces. Backscatter from vegetated surfaces consists of 

surface scattering from the underlying soil surface and volume scattering caused by 

dielectric discontinuities within the vegetation canopy and their vegetation elements 

such as stems, branches and leaves (Figure 8).  

 

 

Figure 8: Backscatter from vegetation: 1) direct backscattering from plants, 2)direct backscattering from 
underlying soil, 3)multiple scattering between plants and soil, 4) multiple scattering between plants, 

leaves, stalks ect. (after Ulaby et al. 1986; Chiu & Sarabandi 2000) 

 

Depending on the incidence angle, frequency and polarization, microwaves are 

able to penetrate vegetation layers to some degree (Dobson & Ulaby 1998). For a short 

dry canopy layer, the backscatter contribution from the underlying soil at a given 

wavelength depends on the incidence angle. For shallow incidence angles, the path 

length is much longer than for steeper incidence angles. Therefore much more 

vegetation elements may potentially interact with the impinging incidence angles and 

surface backscattering will decrease in favour of volume scattering. Thus, soil moisture 

from areas covered by grass or crops might be possible when using steeper incidence 

angles (Daughtry et al. 1991; Brisco & Brown 1998). Besides the incidence angle, also 

the wavelength of the incident radar waves is of importance. Longer wavelengths 

penetrate deeper into a vegetation layer than short wavelengths. The dependency of 

radar backscatter from the incidence angle over vegetated surfaces is closely connected 

to the above ground biomass. For high biomass, the ability to penetrate the canopy layer 

decreases and the volume scattering contribution becomes larger. Volume scattering 

from dense randomly distributed vegetation is almost uniformly distributed over a wide 

range of incidence angles. The influence of the incidence angle on radar backscatter 

diminishes; radar backscatter decreases very slowly with increasing incidence angle 
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(Figure 9). This is the case for forests and here especially for tropical rain forest. Soil 

moisture retrieval from soils under forest is hardly feasible (Ulaby et al. 1982).  

 

Figure 9: Schematic illustration of the dependency of radar backscatter from local incidence angle at a 
given for vegetation canopies 

Additionally, the dielectric properties of the vegetation which are directly linked 

with their water content, also controls the penetration depth. Depending on phenological 

stage and time of day, vegetation can hold large amounts of water. The higher the water 

content, the lower the signal penetration. Depending on the polarization of the 

microwaves, the vegetation elements will have different effects on impinging 

microwaves. Horizontally polarized microwaves are scattered more by horizontally 

oriented vegetation elements and vertically polarized microwaves are scattered more by 

vertically oriented vegetation elements. Generally, HH polarization is preferred for soil 

moisture studies under vegetation (Leckie & Ranson 1998). As a general conclusion it 

can be stated that the presence of a vegetation layer attenuates the sensitivity of radar 

waves to the moisture content of the underlying soil (Ulaby et al. 1986; Lewis et al. 

1998).  

3.4. Radar Equation 

The radar equation (Eq. 3.12) relates the received signal power RP to the 

transmitted signal power TP  and the sensor parameters wavelength λ,  range distance R, 

antenna gain G, illuminated area A and the target parameters subsumed in the radar 

backscattering coefficient σ0 (Ulaby et al. 1982): 
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where:  

TR PP ,  - Received and transmitted signal power 

λ - Wave length 

σ0 - Radar backscattering coefficient 

ΔA - Illuminated area 

R - Range distance 

G - Antenna gain 

The radar backscattering σ0 coefficient contains information on the physical 

characteristics of the observed target and relates the emitted power to the received 

power of the backscattered signals (Woodhouse 2006). For distributed targets, the radar 

backscattering coefficient σ0 integrates the response of all scattering elements within the 

resolution cell illuminated by the sensors radar pulse with respect to a unit area on the 

horizontal ground plane (Eq. 3.13) (Curlander & McDonough 1991): 
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Because σ0 can cover a large range of values, this dimensionless parameter is 

usually transferred to the logarithmic domain using (Ulaby et al. 1996): 
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3.5. Soil moisture retrieval from active radar data 

All attempts to retrieve soil moisture from active radar data rely on the basic 

assumption, that radar backscatter is a function of a soil’s moisture content. A simple 

formulation of the relation between radar backscatter and soil moisture for bare soil 

conditions can be written as (Moran et al. 2004): 

( )Rmf s ,
0 =σ  (Eq 3.15) 

This formula reveals the “dilemma” of soil moisture retrieval from radar 

backscatter: the radar signals contain ambiguous information. The backscattered radar 

signals contain both soil moisture ( sm ) and surface roughness (R) information (Ulaby et 

al. 1996). Research has shown that the influence of surface roughness on the 
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backscattered signal is in the same order or larger than the influence of soil moisture 

(Satalino et al. 2002). If a vegetation layer is present, the soil moisture retrieval 

becomes very complex if not impossible. Vegetation, which may contain large amounts 

of water, has also dielectrical and geometrical properties, which influence the radar 

waves twice. First, vegetation interacts with the radar waves before they reach the soil 

surface and second, they also interact with the backscattered signal portions, before they 

are received by the sensor. In this context, radar backscatter is still a function of soil 

moisture and surface roughness expressed as 0
sσ  plus the two-way-attenuation of the 

vegetation layer τ², the direct backscatter contribution of the vegetation layer 0
vegσ  and 

multiple backscattering effects within the vegetation layer and between the vegetation 

and the underlying soil surface 0
multiσ  (Ulaby et al. 1996): 

00020
multivegs σσστσ ++⋅=  (Eq. 3.16) 

Therefore it is necessary to remove all non-soil moisture related signal components 

to isolate the soil moisture information in the backscattered signals. The decomposition 

of the soil moisture signal from other signal components is done using backscatter 

models. A large number of backscatter models can be found in the literature. They 

range from simple empirical regression models to sophisticated theoretical models 

describing the interaction of radar waves with bare soil surfaces and vegetation layers. 

The next sections try to give a short overview of the basic modeling concepts. 

3.5.1. Theoretical Models 

Theoretical models have been developed to provide a mathematical-physical 

description of radar backscatter. A radar wave impinging on the boundary of two 

dielectrical homogeneous media will be partly transmitted into the medium and partly 

scattered back. The boundary is assumed to be a planar surface with height variations 

smaller than the wavelength of the impinging wave (Jackson et al. 1996). The 

Maxwell’s equations provide an explanation on how electromagnetic waves interact 

with matter. The amount of energy which is scattered back from the boundary is 

described by the Fresnel reflectivity, which is derived from the wave equation – a 

derivate from the Maxwell’s equations (Curlander & McDonough 1991; Tipler & 

Mosca 2004). 



3. Remote Sensing of Soil Moisture 

- 30 - 

Unfortunately, initial assumptions on the geometric properties of the boundary 

(planar surface with height variations smaller than the wavelength of the impinging 

radiation) together with the dielectrical properties of the two media do not correspond to 

natural media. Soil surfaces are randomly rough surfaces which can have roughnesses 

much larger than the wavelength. Due to dielectrical discontinuities soils are 

inhomogeneous media behaving like volume scatterers. Given the complexity of natural 

media, an exact description of scattering of electromagnetic radiation by soil surfaces is 

not feasible. Therefore theoretical models are based on simplifying assumptions and are 

only valid within a certain validity ranges expressed in terms of surface roughness. 

Theoretical models only use amplitude information at one or more wavelengths and of 

one or more polarizations; phase information remains unconsidered (Dubois et al. 

1995).  

The standard theoretical models are the Kirchhoff models which are the 

Geometrical Optics Model (GOM) for rough and the Physical Optics Model (POM) for 

surfaces with medium roughnesses. The Small Perturbation Model (SPM) has been 

developed for smooth surfaces (Ulaby et al. 1982; Jackson et al. 1996). But the ranges 

of validity of these theoretical models expressed in terms of surface roughness do not 

reflect the roughness conditions usually found in the field. Therefore another theoretical 

backscatter model, the Integral Equation Model (IEM), has been developed by Fung 

(1994). The IEM combines the Kirchhoff models with the Small Perturbation Model 

and covers a much wider range of surface roughnesses and therefore has become the 

most widely used theoretical backscattering model (Moran et al. 2004). The potential of 

the IEM to retrieve soil moisture from SAR data has been demonstrated in a large 

number of studies. Compared to the Kirchhoff models or the SPM, the wider range of 

possible surface roughnesses of the IEM lead to results that show a better agreement 

between model simulations using adapted versions of the IEM and observational data 

(Altese et al. 1996; Su et al. 1997; Macelloni et al. 2000). Improvements of the model 

results have been achieved by using so called a priori information in the retrieval 

algorithm (Mattia et al. 2006). Bindlish & Barros (2000) applied the IEM over a 

watershed in Oklahoma and found an overall retrieval error of 3.4%, a value which was 

expected due to the inherent noise in the SAR data. An extension of the IEM with a 

semi-empirical vegetation parameterization was tested by Bindlish & Barros (2001). 

With this method, it was possible to improve the correlation coefficient for an 



3. Remote Sensing of Soil Moisture 

- 31 - 

experimental data set from 0.84 to 0.95. Additionally, several simplifying adaptations of 

the IEM have been introduced in the literature.  

Due to their restrictive validity conditions and simplifying representation of the real 

world, radar backscatter simulated using theoretical models often show only medium to 

poor agreements with observations (Dubois et al. 1995; Walker et al. 2004a). Although 

theoretical models like the IEM can yield soil moisture data, their applicability is mostly 

restricted to field experiments. Radar backscatter data at different frequencies and 

polarizations are required together with additional parameters describing the surface 

roughness. Such data are only available in experimental settings over relatively small 

areas. Furthermore, the surface roughness description has often been criticized for being 

too simplistic and not representing the three-dimensional character of natural surfaces 

(Oh et al. 1992; Macelloni et al. 2000). For practical use with operational space-borne 

SAR sensors, theoretical models are too data demanding (Thoma et al. 2006). 

Theoretical backscatter models are not suited for soil moisture retrieval from single-

frequency and single-polarization mono-temporal SAR data without auxiliary field data 

(Moran et al. 2004). 

The presence of a vegetation layer adds even more complexity to the modeling of 

radar backscattering. Due to absorption and scattering within the vegetation layer, the 

sensitivity of a SAR to the soil moisture of the underlying soil is reduced. A number of 

theoretical models have been introduced for predicting the backscattering from 

vegetated soil surfaces. A simple vegetation backscatter model has been introduced by 

Ulaby & Attema (1978). Here, the vegetation layer is modeled as a randomly distributed 

cloud of small dipoles. In more sophisticated vegetation backscatter models, leaves are 

described as dielectrical thin discs, stems and branches are modeled as cylinders (Chiu 

& Sarabandi 2000; Bindlish & Barros 2001). One example for such a theoretical 

vegetation model is the Michigan Microwave Canopy Scattering Model (MIMICS). 

Here a tree canopy is represented as three layers: crown layer, trunk layer and rough 

surface layer. The interaction of the impinging microwaves with the vegetation uses 

radiative transfer theory (Ulaby et al. 1990). This is also a major criticism of the model. 

It neglects the coherent nature of microwaves and applies a method originally 

developed for non-coherent light. Although vegetation models with their necessary 

abstractions may help in getting a better understanding of backscatter from vegetated 

surfaces, experimental results often do not agree with field data. Using a 3D indoor 



3. Remote Sensing of Soil Moisture 

- 32 - 

SAR measurement device, the backscatter within a vegetation layer was analyzed by 

Brown et al. (2003). They showed, that within a wheat canopy of nearly 60 cm height, 

the backscatter contribution at X- and C-band from the underlying soil layer was higher 

than simulated using common radiative transfer vegetation models. This was attributed 

to an inadequate description of the attenuation by radiative transfer approach in the 

theoretical vegetation models. 

3.5.2. Empirical and Semi-Empirical Models 

Empirical models try to provide a description of the influences of surface 

roughness and soil moisture on the backscattering coefficient by means of regression 

analysis. Simple empirical linear regression models are given in the form 

bma s +⋅=0σ                    (Eq. 3.17) 

where a and b are regression coefficients and sm represents surface soil moisture. This 

requires a large number of in-situ observations to establish robust statistical 

relationships. Regression models proved their ability to describe radar backscatter as a 

function of soil moisture in a large number of studies (Weimann et al. 1998; Shoshany 

et al. 2000; Oldak et al. 2003; Sahebi et al. 2003; Zribi et al. 2005). Using empirical 

models it was demonstrated, that there exists a fundamental relation between the 

backscattered radar signals and the soil moisture (Rombach et al. 1993; Moeremans & 

Dautrebande 1998; Weimann et al. 1998). But they do not provide any kind of 

explanation of the processes involved in the backscattering process and thus can be 

regarded as black-box-model. Empirical models are site dependent. Linear regression 

models developed for a specific data set can not be applied to other test sites. With 

empirical models it is not possible to develop a widely applicable method for 

operational soil moisture retrieval for large and diverse regions. 

Besides purely empirical models, also semi-empirical models have been developed, 

which are intermediate between theoretical and empirical models. They are based on 

theoretical models, but have been simplified by taking into account observational data. 

Two widely known semi-empirical models are the Oh-model and the Dubois-model.  

The Oh-model was developed by Oh et al. (1992) for multi-polarized and multi-

frequency radar data acquired using a truck-mounted scatterometer for an incidence 
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angle range of 10° to 70°. To retrieve soil moisture or surface roughness estimates, a co- 

and a cross-polarized polarization ratio p and q is calculated: 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

°
−== −Γ rmsk

VV

HH ep 03
1

0

0

90
1 θ

σ
σ  (Eq. 3.18) 

)1(23.0 00

0
rmsk

VV

HV eq −−Γ==
σ
σ   (Eq. 3.19) 

 

Also based on scatterometer data, Dubois et al. (1995) proposed a semi-empirical 

model for estimating 0
HHσ  and 0

VVσ for bare soil surfaces. Backscatter is expressed as a 

function of system parameters (incidence angle, wavelength) and soil properties (RMS 

height, dielectric constant): 
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Baghdadi & Zribi (2006) evaluated the IEM, Oh- and Dubois-model using ERS-2, 

Radarsat-1 and ASAR C-band data and observational data. They found, that the Oh-

model overestimated the cross-polarized ratio q. For the Dubois-model overestimations 

as well as underestimations of the backscattering coefficient have been observed, 

depending on the surface roughness conditions. D'Urso & Minacapilli (2006) also found 

differences of ±20% between measured soil moisture data and simulated data using the 

Oh-model. 

3.5.3. Change Detection 

A general definition of change detection is given by Singh (1989), who describes it 

as a process or method for identifying changes in the state of an object or a phenomenon 

by observing it at different times. Change detection techniques have been used for 

various applications in the field of remote sensing. In an review of change detection 

techniques, Li et al. (2004) are listing important application fields of remote sensing 

change detection methods. They comprise studies on land-use and land-cover changes, 



3. Remote Sensing of Soil Moisture 

- 34 - 

forest or vegetation changes, wetland changes, landscape changes, urban change, crop 

monitoring or environmental change studies. For these kinds of studies, mostly optical 

air- or space-borne remote sensing data were used.  

Given the methodological and practical limitations of the theoretical, empirical and 

semi-empirical backscatter models described in the previous sections, change detection 

methods also for soil moisture retrieval emerged in recent years. The main advantage of 

change detection methods lies in the possibility to use single frequency and single 

polarization data like they are typically offered by past and current space-borne SAR 

sensors (Moran et al. 2006). Change detection methods for soil moisture retrieval are 

based on the assumption that changes in surface roughness and vegetation acts on much 

longer time scales than changes in soil moisture. Therefore changes in radar backscatter 

between consecutive radar acquisitions of a the Earths surface are primarily addressed 

to soil moisture changes (Engman 1994; Entekhabi et al. 2004). Change detection 

methods do not interpret pixels in relation to other pixels of the same data set, but 

perform a comparison of pixel values for a specific location over time. The 

interpretation of radar backscatter on a purely physical basis is replaced with the 

interpretation of temporal changes of radar backscatter. In these cases, surface 

roughness and vegetation cover are treated as stable parameters described by some kind 

of reference values, extracted from on long-term backscatter measurements (Engman 

1995; Verstraeten et al. 2006).  

A number of successful demonstrations of the potential of change detection 

methods have been published so far. Quesney et al. (2000) used 32 ERS C-band SAR 

images over the Orgeval catchment in France and proposed a change detection soil 

moisture retrieval algorithm based on so called sensitive targets. For these targets it was 

possible to estimate and remove vegetation and surface roughness effects. They showed 

that with this method soil moisture could be retrieved with an accuracy of 0.05 cm³/cm³. 

Furthermore it was demonstrated, that the surface roughness induced effects can be 

regarded constant over the year. Six tandem pairs of ERS-1/2 data were analysed by 

Moeremans & Dautrebande (2000). Using field-averaged backscatter values, a very 

high correlation with R²=0.99 between backscatter data and observational data was 

found. Wickel et al. (2001) applied a change detection approach to a set of 10  

Radarsat-1 images. Day-to-day backscatter differences are related to in-situ soil 

moisture measurements for stubble fields. A strong correlation with R²=0.89 was found 
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indicating a linear relation. Wagner et al. (2003) applied a change detection approach to 

global long-term backscatter data of the ERS scatterometer with a spatial resolution of 

50 km. A detailed description of the methods used for this study is given in Chapter 

5.2., as this forms the basis at which a change detection approach for ASAR GM data is 

derived. The soil moisture products derived from the ERS scatterometer were subject of 

a number of validation studies and proved their applicability at continental to regional 

spatial scales. In an assessment of different operational soil moisture data sets obtained 

for the Great Plains, the ERS scatterometer soil moisture performed well when 

compared to in-situ soil moisture and to soil moisture products extracted from the 

polarimetric scanning radiometer (PSR) and ERA40 atmospheric reanalysis data sets, 

which comprises assimilated satellite and ground-based measurements of various geo-

physical variables. It was shown, that the ERS scatterometer soil moisture is able to 

capture the temporal evolution of soil moisture as accurate as the ERA40 data set with 

RMS errors of 5.6% and 5.7% respectively when compared to field observations 

(Drusch et al. 2004). Pellarin et al. (2006) compared ERS scatterometer surface soil 

moisture over a test site of 1600 km² in southwestern France to area-averaged modeled 

root zone soil moisture values. A RMS error of 0.061 m³·m-³ was found. A global 

comparison of ERS scatterometer profile soil moisture with modeled soil moisture and 

rainfall data by Wagner et al. (2003) showed good agreements especially for tropical 

and temperate climates with values of R ranging between 0.6 and 0.9. Ceballos et al. 

(2005) evaluated plant available water derived from ERS scatterometer profile soil 

moisture using in-situ soil moisture values from a test site, equipped with a dense TDR 

station network, in the Duero Basin in Spain. The study revealed a good agreement 

between field measurements and remotely sensed data with R²=0.75 and an RMS error 

of 2.2 vol. %. 
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3.6. Hypothesis of the study 

From the previous discussion of the various possibilities to derive soil moisture 

from SAR data it is learned that different retrieval approaches data have been developed 

and published in the last three decades. So far, no operational method for soil moisture 

retrieval from spatial high resolution SAR data is available. On the other hand, the 

experiences gathered with extensive multi-temporal scatterometer data sets at low 

spatial resolutions show the potential of change detection methods for soil moisture 

retrieval. With the Envisat ASAR ScanSAR data such as obtained in Global Mode, 

microwave data at medium temporal and spatial resolutions have become available. 

This study is based on the hypothesis, that multi-temporal Envisat ASAR Global Mode 

data can be used for soil moisture retrieval using a change detection approach. It is 

assumed that, based on a change detection approach originally developed for ERS-1/2 

scatterometer data developed by Wagner et al. (1999a-c), a change detection model can 

be adapted for use with ASAR GM data to infer relative surface soil moisture.  

 

The specific goals of the study are: 

1) to develop an automatic processing chain for ASAR GM data 

2) to adapt an existing change detection approach developed for ERS-1/2 

scatterometer data for use with multi-temporal ASAR GM data  

3) to show, that necessary adaptations of the model, e.g. neglecting seasonal 

vegetation cover effects, does not substantially affect the quality of the 

retrieved relative surface soil moisture 

4) to show that surface soil moisture derived from ASAR GM using the change 

detection model is capable of representing spatial and temporal soil moisture 

patterns with more detail than it is possible for ERS-1/2 scatterometer data 

with a distinctively lower spatial resolution 
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Chapter 4 

Test Site and Data 

In this dissertation, a surface soil moisture retrieval algorithm based on a change 

detection approach is proposed. The algorithm is developed using a comprehensive 

archive of Envisat ASAR GM data. The validation of the derived soil moisture product 

uses in-situ soil moisture data from a measurement network in Oklahoma/USA. This 

chapter provides an overview of the test site, the remote sensing data, in-situ soil 

moisture data and other auxiliary data. 

4.1. Test Site 

Oklahoma has been selected as test site for this work, because a comprehensive 

archive of in-situ soil moisture data has been made available by the Oklahoma 

Climatological Survey (OCS). 

           

 

Figure 10: Oklahoma/USA 
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Oklahoma is a federal state in the south-western part of the United States of 

America (USA) (Figure 10). It covers an area of 181.182 km² has a population of 3.5 

million people (U.S. Census Bureau Population Division 2007).  

The state is situated mainly in the Great Plains, the broad band of prairie and steppe 

covering the inner continental parts of the United States (Figure 11). Oklahoma’s 

topography is characterized by vast plains, karst plateaus, hills and folded low 

mountains. The area is generally sloping towards the east. The mean regional slope in 

the Great Plains is about 1.9 m per kilometer. The highest point of Oklahoma with an 

altitude of 1,516 m is to be found in the Black Mesa mountain range in the northwestern 

corner of the Panhandle (McKnight 1992). Surface geology is formed mainly by eolian, 

fluvial and glacial sediments. Due to the topography of Oklahoma, the basic stream-

flow pattern is oriented from west to east and belongs to the Mississippi River basin. 

The main rivers are the Arkansas River, the Canadian River and the Red River, which 

forms the border to Texas (Commission for Environmental Cooperation 1997; Woods et 

al. 2005). 

 

Figure 11: Level I Ecoregions of Oklahoma (Commission for Environmental Cooperation 1997) 

 

Figure 12: Perspective view of Oklahoma’s Topography (SRTM improved GTOPO30 DEM, 
ftp://e0srp01u.ecs.nasa.gov/srtm/version2/SRTM30/) 
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Figure 13: Normal annual precipitation, normal annual temperature and average length of frost free 
period for Oklahoma (Oklahoma Climatological Survey, 

http://climate.mesonet.org/normals_extremes.html) 
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The climate of Oklahoma is of continental type with a humid subtropical belt in the 

south. The Rocky Mountains west of the Great Plains block longitudinal movement of 

air masses. Therefore precipitation in the Great Plains depends mainly on the northward 

intrusion of moist air from the Gulf of Mexico. These air masses move usually in a 

northeastern direction. As a result, the western parts of the Great Plains receive less 

precipitation than the eastern parts (Birdsall & Florin 1992). Consequently, precipitation 

patterns of Oklahoma are characterized by a decrease from southeast to northwest 

(Figure 13). In the Ouachita Mountains mean annual precipitation is about 1,440 mm. 

The driest part of the state is the western part of the Panhandle with an annual mean 

precipitation of around 400 mm. Precipitation in Oklahoma is characterized by a great 

variability in rainfall from year to year with a mean annual variation of about 25% of 

the annual precipitation. Droughts are a recurring pattern of Oklahoma’s climate caused 

by subnormal rainfall, which can last for several years. Since recordkeeping began in 

Oklahoma, five multi-year periods with subnormal rainfall have been reported for the 

late 1890s, from 1909-18, 1930-40, 1952-58 and, 1962-72 (Paterson 1994).  

The length of the frost free period as well as the mean annual temperature increases 

from northwest to southeast (Figure 13). The mean annual temperature for Oklahoma is 

15.5°C. Together with sudden rises and falls of temperature, Oklahoma experiences 

severe winds, thunderstorms, blizzards and tornadoes. The persistent winds typical for 

the Great Plains combined with high summer temperatures cause high 

evapotranspiration rates of 9 – 11 cm/month for the summer months (Birdsall & Florin 

1992; Ropelewski & Yarosh 1998). 

Soils are commonly deep and fertile and belong to the order of Mollisols (USDA 

Soil Taxonomy) or Kastanozems (FAO Soil Units). These soils are typical for semi-arid 

to semi-humid areas under grasslands. Like temperature and precipitation, also the 

distribution of suborders of Mollisols shows a general east-west trend. They range from 

Udolls in the wetter east to Ustolls in the drier west. The leaching of minerals in the 

soils decreases with decreasing mean annual precipitation towards the west. Under 

prairie, the soils of the Mollisol order are characterized by a layer of calcium carbonate, 

which hasn’t been leached due to low rainfall rates. These soils show a high amount of 

organic matter and are well supplied with chemical bases. Consequently, they are very 

fertile, which makes them to the most productive soils within the United States 

(McKnight 1992; USDA United States Department of Agriculture 1999).  
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Reflecting the climatic and topographic conditions, Oklahoma is a transitional zone 

for vegetation. The eastern part of the state, namely the Ozarks Plateau and the Ouachita 

Mountains, is covered by deciduous forests, which become more open towards the west. 

Continuing to the west, this region is followed by vast grasslands – the prairie. The 

natural vegetation of the wetter eastern part of the prairie is long-grass prairie, followed 

by mixed-grass prairie in the central part of Oklahoma and short-grass prairie in the dry 

west. Following the non-Indian settlement of the Great Plains after the 1850´s, much of 

Oklahoma’s natural vegetation was lost due to overgrazing, burning, logging, erosion 

and cultivation. Due to drought conditions and extensive farming a series of dust storms 

known as the “Dust Bowl” lead to severe soil erosion in the 1930´s and forced 

thousands of people to leave the Great Plains. Besides urban areas, Oklahoma’s present 

land cover is characterized mainly by grazing land, non-irrigated and irrigated cropland 

(Figure 14). Main crops are wheat and alfalfa. Fruits and cotton are grown in the south. 

Due to soil depletion and droughts the importance of corn has declined (Woods et al. 

2005). 

 

 

Figure 14: Oklahoma Land Cover according to generalized National Land Cover Data (NLCD) classes 
(North American Land Cover Characteristics – 1 Kilometer Resolution, 

http://nationalatlas.gov/mld/landcvi.html)  
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4.2. Remote Sensing Data 

4.2.1. Envisat ASAR Global Mode 

This study employs so called Global Monitoring (GM) Mode data acquired by the 

ASAR sensor onboard of the Envisat satellite. Envisat is the acronym for the European 

Environment Satellite, the largest earth observation satellite ever built by the European 

Space Agency (ESA). The Envisat satellite was launched with the Ariane 5 rocket on 

March 1st 2002 from the European spaceport in Kourou, French Guyana. It circles the 

Earth in a sun-synchronous, near-polar orbit with an inclination angle of 98.55° at an 

altitude of 795 km. Envisat performs 14 orbits per day and, like its predecessors ERS-

1/2, has a nominal repeat rate of 35 days.  

The ENVISAT satellite carries a number of different sensors: three spectrometers, 

two radiometers, two ranging instruments, a high-resolution interferometer and two 

radar sensors. An overview of ENVISAT with the major instruments is given in Figure 

15. 

 

 

Figure 15: Envisat with an overview of the major instruments (Attema et al. 2000) 

For developing the surface soil moisture retrieval algorithm, proposed in this 

dissertation, active remote sensing data acquired with the ASAR sensor have been used. 

The Advanced Synthetic Aperture Radar (ASAR) is a further development of the ERS-

1/2 Active Microwave Instrument - Synthetic Aperture Radar (AMI-SAR). The ASAR 

sensor is an active radar instrument operated in C-band at a frequency of 5.331 GHz. 

Compared to the SAR sensor of the ERS-1/2 satellites, the ASAR instrument on 
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ENVISAT is characterized by a number of technological improvements. The ASAR 

sensor now offers five exclusive operation modes: Image Mode, Wave Mode, Wide 

Swath Mode, Global Monitoring Mode and Alternating Polarization. The different 

imaging modes of the ASAR sensor are characterized by different duty cycles. Due to 

limited power supply and on-board data storage capacity, the high resolution Imaging 

Mode can be operated only up to 30 minutes per orbit. Furthermore, exclusive modes 

can not be operated at the same time. Except from Global Monitoring Mode, the other 

ASAR sensor modes are operated only on user request. The Global Monitoring Mode 

has been designed as background mission. This is possible due to a reduced power 

consumption and data rate at the cost of spatial resolution. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: ASAR sensor characteristics (Desnos et al. 2000) 

 

The ASAR sensor is capable of acquiring radar data in two different SAR sensing 

techniques. The radar instrument can be used as a conventional continuous strip-map 

SAR like the AMI-SAR of the preceding ERS missions or it can acquire radar data 

Mode Global Monitoring (GM) 

Polarization VV or HH 

Spatial Resolution 1000 x 1000 m 

Temporal Resolution ≤ 3 days (desc. & asc. orbits) 

Radiometric Resolution 1.6 dB 

Swath Width ≤ 400 km (5 sub-swaths) 

Incidence Angle Range 15 – 45° 

Center Frequency 5.331 GHz (λ = 5.67 cm) 

Antenna Size 10 m x 1.3 m 

Pulse repetition frequency 1650 – 2100 Hz 

Chirp bandwidth ≤ 16 MHz 

Power con-sumption 713 W 

Duty cycle 100% 

Data rate ≤ 0.9 Mbit/s 
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utilizing the ScanSAR technique, which allows the imaging of much wider ground 

swaths. Therefore the passive antenna concept of the ERS SAR was replaced by an 

active phased array antenna with a dimension of 1.3 m × 10 m and 320 transmit/receive 

modules. Each module features two transmit chains (V and H polarization) and a 

common receive chain. The ASAR antenna allows active beam steering and the 

operation of the ASAR sensor using the ScanSAR technique. The technical 

specifications of the ASAR instrument operated in Global Mode can be found in Table 

4 (ESA 1998b; Zink et al. 2001). 

The ScanSAR technique is a SAR imaging technique, which allows acquiring data 

over swaths, which are much wider than swaths covered by conventional strip-map 

SAR sensors. Conventional strip-map SAR sensors like the ERS SAR or the ASAR 

sensor operated in Image Mode are imaging strips on the earth’s surface with a 

potentially unlimited extent in azimuth direction. In the range direction, the achievable 

swath width is limited. The antenna of a strip-map mode SAR is characterized by a two-

dimensional beam pattern defined by the antenna length and antenna width. The 

achievable swath width corresponds with the ground range extent covered by the 

elevation beam width of the SAR antenna. Besides the restrictions in swath width due to 

the antenna pattern, also restrictions due to sampling requirements to avoid ambiguities 

in the received signals, beam-forming requirements as well as data rate limitations are 

controlling the achievable swath width of a conventional SAR (Moore et al. 1981; 

Tomiyasu 1981; Currie & Brown 1991). 

SAR sensors using the ScanSAR technique are based on rapid steering of the 

antenna beam and rely on the principle of sharing the radar operational time between 

two or more sub-swaths. The actual imaging process is divided into several blocks of 

pulses. Operating in continuous respectively conventional mode the SAR is imaging 

only one swath with a predefined width on the ground, while operating in ScanSAR 

mode, the sensor scans through adjacent subswaths. The SAR is illuminating one 

subswath for certain period of time, and then jumps to the next subswath until all 

subswaths are scanned (Figure 16). The cost of having a much wider swath is the 

degradation of the spatial resolution and radiometric accuracy. This is due to the fact, 

that the raw data for the subswaths per imaging period are covering only a fraction of 

that from conventional imaging. Furthermore, the wide range of incidence angles causes 

a wide variation in ground range resolution. Therefore the raw ScanSAR processor is 
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using a greater number of looks to produce images with a nearly constant ground range 

resolution (Luscombe 1988; Currie & Brown 1991; Raney 1998).  

The main advantage of the two ScanSAR modes offered by the Envisat ASAR 

sensor is the improvement of the temporal resolution of the acquired SAR data (Figure 

17). Earth observation satellites like the Landsat satellites, ERS-1/2 or Envisat are 

circling the earth in low earth polar orbits. One orbit is completed every 90 to 110 

minutes. This results in approximately 14 orbits per day. Earth Observation satellites 

with swath widths in the order of 100 km cover a region at the Earths surface only every 

35 days. This is the case for Envisat Image Mode data. If one is interested in temporal 

highly variable geo-physical processes like soil moisture, this repeat rate is not 

satisfactory. Here, temporal resolution becomes more important than spatial resolution. 

The Envisat ScanSAR modes provide SAR data at medium temporal and spatial scales. 

The lower daily coverage of the Wide Swath mode compared to the Global Monitoring 

Mode is caused by electrical power and data storage limitations. When operated in 

Global Mode and combining ascending and descending orbits, acquisitions of a region 

at the Earth’s surface are possible every 2 to 3 days. These SAR data have been 

acquired under varying incidence angles. This needs to be corrected before any further 

quantitative or qualitative analysis and comparisons between data sets. 

 

Figure 16: Illustration of the ScanSAR imaging principle. © ESA. 
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Figure 17: Potential daily global coverage offered by different ASAR acquisition modes 

The development of the ASAR ScanSAR capabilities and the implementation of a 

ScanSAR processor are using experiences gathered with the first operational space-

borne ScanSAR system, which was part of the Radarsat-1 mission. Although the 

application potential could be demonstrated with this sensor, the ScanSAR data did not 

find a wide field of application. This was due to problems with the radiometric quality 

of the data. Due to the ScanSAR principle and inappropriate processing, some artifacts 

were present in the data. Martyn et al. (1999) and Srivastava (2001) are reporting so 

called “scalloping” effects, which refers to artifacts found in RADARSAT-1 imagery. 

These errors occur due to periodic amplitude variations along track, where they can 

appear and disappear. The extent in range may span the whole swath or just parts of it, 

while the periodicity of scalloping coincides with the period of bursts along track during 

operation in ScanSAR mode. According to Martyn et al. (1999) the cause for this 

problem is found in incorrect radiometric compensation for the antenna elevation 

pattern in azimuth direction. While processing ScanSAR data “natural” coordinates, 

slant range and Doppler, are used. The generated image amplitude will have the range 

and azimuth antenna patterns overlayed on it using these coordinates. Good 

compensation requires exact determination of the Doppler frequency of the centre of the 

antenna beam. To achieve a radiometric accuracy of 1 dB the Doppler frequency must 
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be known accurate to a 100 Hz. Because of the large spatial extend in swath width, the 

scalloping artifacts are visible, even when there are amplitude variations of only 0.1 dB. 

To overcome this problem completely, the Doppler frequency must be known with an 

accuracy of up to 25 Hz. Srivasata et al. (2001) are reporting a radiometric accuracy of 

ScanSAR images showing these scalloping effects of 1.5 dB from amplitude peak to 

amplitude peak in best case. Depending on the observed terrain features also worse 

radiometric accuracies can be expected. Furthermore, Martyn et al. (1999) are 

describing still visible boundaries between adjacent beams in the image data. The 

reason for this is similar to scalloping and is addressed in badly aligned antenna pattern 

compensation in range direction, caused by roll movements of the satellite. Roll angle 

errors of 0.1 degree can produce radiometric errors of 1 dB or even more.  

ScanSAR processors for converting raw data to image data were developed mainly 

for radiometric imaging purposes. Officially, there are no complex Radarsat-1 ScanSAR 

image data available. But to use ScanSAR data for interferometry, amplitude as well as 

phase information are needed (Holzner & Bamler 2002). For this reason, a number of 

complex ScanSAR processing algorithms were proposed in the scientific literature. A 

good overview of different phase-preserving algorithms for processing ScanSAR data is 

given in Cumming et al. (1997). In the paper of  Bamler & Eineder (1996) a possibility 

to apply the Range/Doppler (RD) algorithm, developed for traditional continuous mode 

data, to burst mode data is described, while Wong et al. (1997) are presenting an 

adapted processing algorithm based on that RD algorithm, to consider the special 

properties of complex ScanSAR data. 

4.2.2. DORIS Orbit Information 

For geocoding, additional information on the sensor’s orbit is required. They are 

provided in separate ASCII text files, downloadable free of charge from ESA FTP 

servers. DORIS is an acronym and stands for Doppler Orbitography and 

Radiopositioning Integrated by Satellite. The DORIS instrument is a microwave 

tracking system for precise orbit determination with an accuracy in the order of 

centimeters. Based on the Doppler frequency shift, the instrument measures the relative 

velocity between the Envisat satellite, circling the Earth in its orbit, and a dense network 

of beacons for precise orbit determination (Guijarro et al. 2000). 
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The orbit information, necessary for precise automated geocoding, is provided with 

the DORIS Precise Orbit State Vector files (DOR_VOR_AX). This is a level-2 product, 

updated once per day covering 26 hours of operational time of the Envisat ASAR 

sensor. Using this kind additional orbit information, the satellite orbit can be 

reconstructed with an radial accuracy of 0.1 m, an along-track accuracy of 0.3 m and an 

cross-track accuracy 0.3 m (ESA 1998; Minier 2005). 

4.3. Validation Data 

4.3.1. In-situ soil moisture 

For validating the generated soil moisture products, in-situ soil moisture collected 

within the Oklahoma Mesonet (Figure 18) is used. The Oklahoma Mesonet is a state-

wide meteorological measurement network operated by the Oklahoma Climatological 

Survey (OCS). It consists of 115 measurement stations, at least one in each county. 

Standard meteorological data (e.g. air temperature, precipitation, wind speed) are 

measured automatically every 5 minutes. During 1996 and 1997, 100 soil moisture 

measurement devices, which estimate the soil water potential, were installed. Soil 

moisture is estimated using heat dissipation matric water potential sensors for indirect 

estimation of in-situ soil moisture (Illston et al. 2004a). The sensor itself consists of a 

temperature sensor and a heating element, which are placed in the soil profile. To get an 

indirect estimate of the in-situ soil moisture content, the temperature of the heating 

element is measured before electric current is sent to the heating element, and after 

heating. The temperature difference allows conclusions on the moisture content of the 

surrounding soil via the soil water potential. For wet soils, the temperature difference is 

lower than for dry soils, because the heat is conducted more effectively away from the 

sensor. Sensors are installed at four depths (5, 25, 60, 75 cm) and are connected via 

different communication networks to a central base station, were data are stored, quality 

checked, processed  and distributed (Brock et al. 1995; Basara & Crawford 2000).  

To estimate the volumetric water content from the temperature differences, the soil 

texture at each measurement station must be known. Thus, for each measurement site 

soil samples were taken for laboratory analysis. Using a empirical relationship 
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introduced by Arya and Paris  (1981), the volumetric water content is derived from the 

matric potential. For statewide comparisons, an alternative measure of soil moisture was 

introduced by Schneider et al. (2003), which is independent of soil texture. This 

measure is called fractional water index (FWI). It is a unitless measure and ranges from 

0 to unity (Illston et al. 2004b). 

For validating the remotely sensed soil moisture, daily averaged data files were 

compiled from 5-minute measurements. They contain in-situ soil measurements at the 

four depths and were provided by the OCS. 

 

 
Figure 18: The Oklahoma Mesonet: Location of Measurement Stations in the Counties 

(http://www.mesonet.org/sites/) 

 

4.3.2. ERS Scatterometer Soil Moisture 

A multi-year global soil moisture data set derived from ERS-1/2 scatterometer 

measurements is available. Like the ASAR sensor on Envisat, the scatterometer 

installed on the ERS-1 and 2 satellites is an active remote sensing device operating in C-

band at VV polarization. ERS-1 was operational from 1999 to 2000; ERS-2 is in 

operation since 1995. Different from the ASAR sensor, the ERS scatterometer is a non-

imaging radar device which gives backscatter measurements for a footprint of 25 km 

with high radiometric accuracy. The scatterometer consist of three antennas oriented 

45° forward, perpendicular and 45° backwards relative to the satellite orbit. They obtain 

backscatter measurements simultaneously over a ground swath of 500 km. The 

scatterometer can achieve a global coverage every three to four days. Three independent 
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backscatter measurements at two different incidence and azimuth angles are acquired 

for each pixel with a spatial resolution of 50 km (KNMI EARS Team 2007). A detailed 

description of the soil moisture retrieval algorithm is given in Chapter 5.2. 

For validating the surface soil moisture derived from the ASAR GM data, surface 

soil moisture values are used. These surface soil moisture values are relative soil 

moisture values ranging from 0% at permanent wilting level to 100% at field capacity. 

They are available globally from 1st August 1991 until 31st May 2007 with a data gap 

for the period from 1st January 2001 to 12th August 2003. This was caused by the loss of 

the last one of six gyroscopes, which stabilize the satellite in its orbit. Precise orbit 

estimation was not possible until adapted algorithms for raw data processing were 

implemented. Furthermore two on-board tape recorders failed. This limits the spatial 

coverage substantially as data can not be stored on-board when outside the proximity of 

a ground receiving station (Crapolicchio & Lecomte 2005). The irregular temporal 

resolution depends on the operation of the scatterometer, but usually acquisitions are 

available every 2 days. Over land areas surface soil moisture data are to a discrete 

global grid with a spatial resolution of 50 km and a spacing of 12.5 km (Figure 19). 

Along with the surface soil moisture values, different data quality flags are provided. A 

visualization of surface soil moisture over North America is shown in Figure 20. 

The scatterometer derived surface soil moisture data are available free of charge for 

scientific purposes from the website http://www.ipf.tuwien.ac.at/radar. 

 

 

Figure 19: Example of DGG distribution over Austria 
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Figure 20: Three-day surface soil degree of saturation for North America (white – no data, light green – 
snow cover) 

4.3.3. Meteorological Data 

For the interpretation of the remote sensing observations and for validation of 

remotely sensed soil moisture, daily synoptic meteorological data from the DS512 data 

set have been used. The data were purchased from the Data Support Section of the 

Computational and Information Systems Laboratory at the National Center for 

Atmospheric Research. NCAR is supported by grants from the National Science 

Foundation (USA).  

 

 

Figure 21: Meteorological Measurement Stations from the DS512 data set 
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The data set is based on a global network of meteorological stations with currently 

approx. 8900 active stations. Data of all reporting stations are collected, and after basic 

validation procedures they are summarized on a daily basis. The data sets are provided 

as ASCII data and comprise basic climate data measurements such as minimum and 

maximum air temperature, precipitation, solar radiation, humidity, wind speed and sea 

level pressure (Shea et al. 1994). 

4.3.4. Land Cover 

For characterization of the land cover over Oklahoma, the United States Geological 

Survey Global Land Cover Characterization data (USGS GLCC) are used. These data 

are available for free as a geocoded raster data set from 

http://edcsns17.cr.usgs.gov/glcc/. 

The USGS GLCC was derived from optical data acquired with the 1 km resolution 

NOAA Advanced Very High Resolution Radiometer (AVHRR) in 1992 and 1993 on a 

global scale. The land cover has been classified into 24 global land cover classes. Based 

on Anderson et al. (1976), the detailed classification scheme of the USGS GLCC data 

were reclassified to a smaller number of basic classes (Table 3). 

 

USGS GLCC 
Code 

Description Re-
classified  

Description 

100 Urban and Built-Up Land 1 Settlement 
211 Dryland Cropland and Pasture 2 
212 Irrigated Cropland and Pasture 2 
213 Mixed Dryland/Irrigated Cropland and Pasture 2 
280 Cropland/Grassland Mosaic 2 
290 Cropland/Woodland Mosaic 2 

Agriculture 

311 Grassland 3 
321 Shrubland 3 
330 Mixed Shrubland/Grassland 3 
332 Savanna 3 

Gassland 

411 Deciduous Broadleaf Forest 4 
412 Deciduous Needleleaf Forest 4 
421 Evergreen Broadleaf Forest 4 
422 Evergreen Needleleaf Forest 4 
430 Mixed Forest 4 

Forest 

500 Water Bodies 5 Water bodies 
770 Barren or Sparsely Vegetated 6 Barren 

Table 3: Reclassification of USGS GLCC data 
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Figure 22: Reclassified USGS GLCC land cover of Oklahoma  

 

Figure 23: Percentages of main land cover classes 
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Chapter 5 

Method 

With this dissertation an algorithm for surface soil moisture retrieval from multi-

temporal ASAR GM data is proposed (section 5.2). This approach is based on an 

adaptation of a change detection model proposed by Wagner et al. (1999a; 1999b; 

1999c) for a global multi-year ERS-1/2 scatterometer data set. The application of the 

proposed surface soil moisture retrieval algorithm requires a number of pre-processing 

steps comprising geocoding, radiometric correction, resampling, local incidence angle 

normalization, and derivation of dry and wet references. An overview of the pre-

processing steps is given in Figure 24.  

 

Figure 24: Processing chain for data pre-processing and surface soil moisture retrieval 

Geocoding runs fully automatic without any user interaction. Two files are 

generated: the geocoded ASAR GM image and a map showing the local incidence 

angles for each pixel of the geocoded ASAR GM image. After geocoding, a radiometric 
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correction is performed to account for the effective scattering area, antenna gain and the 

range spreading loss. For geocoding and radiometric correction the commercial 

software package SARscape® developed by the Swiss company SARmap® is used. In 

the next step, data are transferred from an image format into a time-series-format, stored 

in a data base with equally spaced grid cells. Each grid cell contains a discrete number 

of points for which information on acquisition date and time, radar backscattering 

coefficient and local incidence angle are stored in binary files. ASAR GM backscatter 

not only depends on dielectrical and geometric properties of the image terrain but also 

on the influence of the local incidence angle. Therefore a correction of the local 

incidence angle effect on radar backscatter is mandatory before any further analysis of 

the data. In the last data pre-processing step, the dry and wet references for each grid 

point in the data base are estimated. Due to the limited temporal coverage of the ASAR 

GM data, the reference values for the change detection approach are derived from ERS-

1/2 scatterometer time series data. Finally, the surface soil moisture is derived by 

scaling individual backscatter values between the dry and wet reference for each data 

base grid point. These steps will be described in detail in the following sections. 

5.1. Data Pre-Processing  

The proposed surface soil moisture retrieval algorithm exploits a comprehensive 

archive of ASAR GM data. Before further analysis, the remote sensing data require 

geocoding, geometric correction and transfer of the data from an image format into a 

time-series-format.   

5.1.1. Geocoding 

The geometry of radar images is completely different from that of satellite images 

acquired by sensors operating in the optical domain of the electromagnetic spectrum. 

Basically, a SAR measures distances calculated from the signal travel time between the 

Earth’s surface and the sensor. Due to the side looking geometry of SAR sensors, 

specific geometric distortions like foreshortening, layover or radar shadow areas can be 

found in SAR images, especially when acquired over mountainous terrain. The radar 

antenna of space-borne SAR systems is oriented parallel to the flight direction and 
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sends out radar waves perpendicular to the flight path. In the case of ENVISAT, it is 

right-looking when flying from the South Pole to the North Pole (ascending pass) and is 

left-looking when flying from the North Pole to the South Pole (descending pass). The 

displacement of imaged objects is a function of the height difference between 

neighboring objects. In case of the ENVISAT and ERS SAR systems, these distortions 

can be significant, causing shifts of several pixels (Lichtenegger 1996; Lewis et al. 

1998).  

The proposed surface soil moisture retrieval approach is based on a large number 

of SAR images. One point at the Earth’s surface may be imaged between 50 and 150 

times. Therefore an automatic geocoding procedure is required, which is able to work 

without manually selected tie points and to produce highly accurate images ideally at 

sub-pixel level. 

The Range Doppler approach is a common method for geocoding of SAR imagery. 

For each ASAR GM image pixel, the range distance estimated from the signal travel 

time and the Doppler frequency are known. Based on these two parameters, the absolute 

position of the image pixel in a certain cartographic system can be estimated. The 

azimuth can be determined by the Doppler shift history in frequency caused by the 

sensor’s forward motion in its orbit and the Earth’s rotation. If precise sensor position 

parameters are available (DORIS orbit files) the location of each image pixel on the 

ground can be estimated even without knowledge of tie points. The accuracy of this 

location procedure depends on the accuracy of the sensor position and velocity vectors, 

the measurement accuracy of the pulse delay time, and knowledge of the target height 

relative to the assumed Earth model. In case of ERS the accuracy was in the range of 

about 5 pixels if an accurate DEM was available (Roth et al. 1993). It could be 

improved to sub pixel accuracy with the availability of only one additional tie point. 

The approach is also called backward geocoding, as it proceeds backwards from image 

coordinates to radar or more precisely slant-range geometry, even though the aim of this 

process is the transformation from SAR geometry to a defined map geometry (Olmstedt 

1993). 

Given are the platforms position vector S
r

 with S={Sx,Sy,Sz}, also called the state 

vector, and its velocity vector svr , together with a point on the ground P
r

 with 

P={Px,Py,Pz} (Figure 25). Due to the Earth’s rotation, also this point on the ground has 
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an velocity vector pvr . If no DEM is used, Pz will refer to the surface of a predefined 

ellipsoid and the resulting images are ellipsoid corrected. If a DEM is used, Pz refers to 

the DEM’s height information and the geocoding result will be a terrain corrected 

image, in which also the geometrical distortions caused by the relief are corrected. For 

exact restoration of the Doppler frequency shift of each image pixel, the coordinates of 

the vectors S
r

 and P
r

 are given in a geocentric Cartesian coordinate system with its 

origin at the gravitational centre of the Earth (Figure 25). Precise orbit information 

provided in the DORIS orbit files (see Chapter 4.2.2.) are used for exact reconstruction 

of the sensors flight path. Furthermore, the Doppler centroid fDC, a parameter 

describing the Doppler shift when the center of the radar beam crosses the target, is 

required to determine the azimuth position. This parameter has been calculated for each 

image pixel during ASAR GM raw data processing at the ESA Processing and 

Archiving Facilities (PAC’s) and is attached to each ASAR GM image scene in the line 

headers (Meier et al. 1993).  

 

Figure 25: Earth centred reference coordinate system (Liu et al. 2006) 

The geocoding of an ASAR GM scene based on the Range-Doppler approach is an 

iterative process. For each image pixel, the slant range RS using Eq. 5.1 and the 

Doppler frequency shift fD using Eq. 5.2 are calculated: 

( ) ( )PSPSRS

rrrr
−⋅−=  (Eq. 5.1) 
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where: 

P
r

 = backscatter element position with P={Px,Py,Pz} 

pvr  = point velocity 

S
r

 = antenna position with S={Sz,Sy,Sz} 

svr  = platform velocity 

RS = slant range position 

λ = wavelength 

fD = Doppler frequency 

f0 =  Carrier frequency 

 

The estimated frequency shift fD for the current image pixel is compared to the 

Doppler centroid fDC. If fD > fDC, the estimated sensor position related to the flight 

direction of the sensor is situated behind the correct position. In this case, the value of 

Px is increased by one and the calculation procedure is performed in a loop until the 

condition fd = fDC is fulfilled. The initial value for the Px component is given by the 

estimated orbit range position of the previous pixel. As an anchor point, the corner 

coordinates of the ASAR GM image scenes, specified in the ASAR GM image file 

header, are used (Meier et al. 1993; Holecz et al. 1995). 

If the azimuth and range positions for each input image pixel are known, the 

geometrically corrected image matrix can be generated by applying an appropriate 

transfer function to transform from Cartesian coordinates in the desired output map 

projection. Finally, the assignment of the new pixel values is done by a common two-

dimensional resampling method like nearest neighbor, bilinear or cubic convolution. 

The Range Doppler approach was implemented using the libraries of the 

commercial GAMNMA© software package. To run a fully automatic geocoding, a 

script using the programming language IDL was written. Other software tools 

developed at I.P.F., TU Wien, collect all necessary input data, submit them to the 

libraries of the commercial geocoding software packages and generate ENVI header 

files for the geocoded ScanSAR image scenes. To achieve the required sub-pixel 
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accuracy initial testing showed that DORIS Precise Orbit State Vectors are needed in 

the geocoding process. 

The quality of the geocoding was assessed by manually recording the geographical 

locations of features, which could be easily identified due to their distinct backscatter 

patterns in a large number of images. As an example, two features are presented. The 

first feature is an industrial facility site in Saudi Arabia, surrounded by desert. It is 

located at 24°42'2''N 44°58'26''E and has an extent of approximately 1 km times 0.5 km. 

This feature shows persistently higher backscatter than its surroundings in many 

images, as exemplified in the left part of Figure 26. The second feature is the branching 

of the river Kwa in the Democratic Republic of the Congo, located at 3°3'0''S 

16°51'29''E (see right part of Figure 26). The river shows persistently lower backscatter 

than its surroundings. The geographical coordinates for feature 1 and 2 were manually 

recorded in, respectively, 28 and 21 images. 

 

 

Figure 26: Example of image features used for assessing the geolocation accuracy. Left: detail of radar 
image with feature 1 (an industrial facility site in Saudi Arabia) encircled. Right: feature 2; branching of 

the river Kwa in Democratic Republic of the Congo. 

Mean relative error (°) Mean absolute error (°) 
 

Latitude Longitude Latitude Longitude 

Feature 1 39 m 239 m 258 m 269 m 

Feature 2 120 m 342 m 127 m 486 m 

Table 4: Geolocation accuracy for exemplary features.  

Table 4 shows the result of the analysis for the two exemplary features. The mean 

relative error was calculated as the average deviation from the mean of the recorded 

coordinates in different images showing the example features. The mean absolute error 

correspond to the average deviation of the recorded coordinates in the geocoded images 
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from the geographical location of the features read from a map. The spatial resolution of 

the GM data is 1 km, the spatial sampling 500 m. Both the relative error among the 

images as well as the deviation from the true geographical coordinates of the features 

was calculated. Considering that the precision in the manual recording of the 

coordinates of the features were in the order of the pixel size, it was concluded that the 

accuracy of the geocoding is sub-pixel and that processing therefore can be performed 

on a pixel basis. 

5.1.2. Radiometric Calibration 

Change detection for surface soil moisture monitoring requires a good relative 

radiometric calibration of SAR images from both ascending and descending passes. 

Change detection requires that radiometric distortions in SAR images due to the 

topography are corrected to the best possible extent for achieving a good relative 

calibration. An exact absolute calibration would be of course desirable, but is not a pre-

requisite for the proposed ASAR products. 

A proper radiometric calibration of SAR images has to involve corrections for: 

• scattering area: each output pixel is normalized for the actual illuminated area of 

each resolution cell, which may be different due to varying topography.  

• antenna gain pattern: the effects of the variation of the antenna gain in range are 

corrected, taking into account the topography or a reference height.  

• range spread loss: the received power must be corrected for the range distance 

changes from near to far range. 

After the radiometric calibration there are still radiometric variations in σ0 caused 

by the local topography. Similar to geometric distortions, terrain induces radiometric 

distortion (Ulander 1996). Accurate SAR data calibration in areas with terrain variations 

can only be accomplished considering precise digital elevation models, precise position 

and altitude data of the sensor and the appropriate SAR geometry. It must however be 

noted that there are natural limitations in correcting SAR images radiometrically, 

depending on the orientation of the local terrain and the sensor look angle. If the slope 

angle is equal or higher than the incidence angle then layover is observed and the data is 

ambiguous and irrecoverable. Only if the slope angle of the terrain is well below the 
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incidence angle the real geometry and radiometry can be reconstructed (Holecz et al. 

1993; Small et al. 1998).  

Before images can be corrected radiometrically the backscatter signal has to be 

derived from the image digital number (DN), which is stored as 8 bit digital number, 

representing scaled amplitude of the backscattered signal. If the processor is correctly 

adjusted the radiometric calibration factor k, which is attached to each individual ASAR 

GM scene in the file header, gives a functional dependence between each pixel's DN 

value and the real backscatter according to (Rosich & Meadows 2004):  
2DNk ⋅=σ   (Eq. 5.3) 

The basis formula for the radiometric calibration is the radar equation (Eq. 3.12). 

Important for a proper calibration is to determine the antenna elevation angle, the 

antenna azimuth angle, the local incidence angle in range and local incidence angle in 

azimuth. The first two allow correcting for the antenna gain, using the corresponding 

antenna diagrams, while the following two allow calculating the scattering area A. To 

determine above parameters one has to know the real antenna position, the real antenna 

pointing direction and the pixel position on the ground. In the space borne case, due to 

the stability of the satellite, ideal (processed) and real (actual) antenna position are the 

same, while actual antenna pointing is defined by the radar look angle (the antenna 

azimuth angle usually set to zero) and antenna depression angle. Concerning the 

derivation of the scattering area A, different methods can be used when an external 

DEM is available. Conventional SAR calibration methods have typically compensated 

for this local variation in “illumination area” by estimating the local area using the local 

incidence angle. Since such an estimate neglects the influence of azimuth variations, 

more complete models also include an azimuth term (Holecz et al. 1998). The most 

sophisticated models make use of the facets technique to account for heteromorphism in 

the illuminated terrain (Small et al. 1998).  

The Envisat ASAR data acquired in Global Monitoring Mode were given least 

priority by ESA during calibration and validation activities. Therefore the in-flight 

performance of these data was unclear. Especially the radiometric properties as 

published before the launch of the sensor have not been update for a long time. 

Therefore a procedure was developed estimate the noise level in the data. This 

information is important for validating the retrieved surface soil moisture products and 
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accessing the possible errors sources of the change detection soil moisture retrieval 

algorithm. 

Due to the high variability of C-band backscatter measurements over land there is 

no straight forward way for assessing the quality of the applied radiometric correction 

method on a spatially complete basis. However, the radiometric calibration of the sensor 

may be checked point wise for selected target classes characterized by very stable 

backscatter conditions and known backscatter characteristics. At C-band tropical rain 

forests with closed crown cover are known to be relatively stable targets. They represent 

volume scatterers characterized by high backscatter and low temporal variation. 

Therefore, tropical forests have been used as natural calibration sites for scatterometer 

and SAR measurements (Lecomte & Wagner 1998). The natural variations of the 

backscatter measurements is about 1 – 2 dB and may be the results of free water 

droplets in the vegetation canopy and other environmental effects. For volume scatterer 

the backscattering coefficient σ0 is expected to exhibit the following incidence angle 

dependency: 

θγσ cos0 =linear  (Eq. 5.4) 

where γ is an alternative backscattering coefficient and θ is the incidence angle. A 

comparison of Eq. 5.4 with actual GM measurements over two tropical forest sites is 

shown in Figure 27. As expected, one can observe that there is only little variation in 

radar backscatter over the incidence angle range of the ASAR GM data for the selected 

rain forest sites. 

 
Figure 27: ASAR Global Monitoring mode backscatter observed over two tropical forest sites: 20.925°E, -2.525°S 

(left), 20.69°E, -3.79°S (right). 
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According to specifications the radiometric resolution of GM mode is equal or less 

than 1.6 dB (see Chapter 4.2.1.). To check if this specification is met in terms of the 

radiometric stability of the signal, the statistical properties of tropical forest backscatter 

were investigated using a simple noise model which considers actual backscatter 

measurement to be the result of natural variations and noise, including speckle and 

instrument noise. For retrieving geophysical parameters from the GM backscatter data, 

only the natural variation is of interest. The statistical noise model describes the 

measurements taken at one particular location as the result of the convolution of the 

natural backscatter variations (i.e. the "signal") and the noise: 

NoiseSignaltMeasuremen PDFPDFPDF ⊗=  (Eq. 5.5) 

where ⊗ is the convolution operator, PDFMeasurement is the probability distribution 

function of the backscatter measurements made by ASAR GM mode, and PDFSignal and 

PDFNoise the probability distribution functions of the natural backscatter variation and 

the noise respectively. Assuming that the signal and the noise can be described by 

Gaussian distribution functions, also the resulting PDF of the measurements is a 

Gaussian with a standard deviation sMeasurement of 
222
NoiseSignaltMeasuremen sss +=  (Eq. 5.6) 

where sSignal and sNoise are the standard deviations of the signal and noise 

respectively. Using equation (8) the noise of GM measurements can be estimated when 

sSignal is known. 

To characterize the natural backscatter variation of tropical forest, spatial averages 

of radar backscatter time series measurements are calculated. The dependency of the 

radar backscatter on the local incidence angle has been removed during the local 

incidence angle normalization. The spatial averages for each backscatter acquisition 

date t for a test region covering an area of 0.5° x 0.5° are estimated using the formula: 

∑=
N

ireg t
N

t ))(30(1))(30( 00 σσ  (Eq. 5.7) 

where ))(30(0 tiσ is the local backscatter for a reference angle of 30°. The test region 

was chosen over the African tropical rain forest Figure 28. About 14.400 single 

measurements were used for each regional mean. By applying the spatial filtering, the 

noise inherent in the backscatter measurements is assumed to be averaged out. 

Therefore, only the natural variation of the backscatter remains in the regional 
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backscatter means. Thus, the natural variation was quantified using the standard 

deviation sSignal of the regional mean time series. Then the noise was estimated from: 

22
SignaltMeasuremenNoise sss −=  (Eq. 5.8) 

where sMeasurement is the standard deviation for a single local backscatter time series. 

sSignal was calculated for each local backscatter time series for all 14.400 location in the 

test region. The characteristic standard deviation of the noise, <sSignal>, was finally 

estimated from the mean of the 14.400 local standard deviations.  

 
Figure 28: Tropical forest areas used for determining the noise and natural signal fluctuations of ASAR GM 

backscatter measurements. 

 

5.1.3. Resampling of ASAR GM Data 

Envisat ASAR GM data are acquired orbit-wise. Users are provided with single 

files, each containing one image acquisition. An image forms a two dimensional array 

of data. The smallest entity of an image acquisition is one individual picture element, 

also called pixel. Each pixel can be identified via its row and column number. During 

geocoding, a geographic coordinate (latitude/ longitude) was assigned to each pixel. 

Even though the sensor will pass over one location at fixed temporal intervals defined 

by the satellite repeat cycle, the geographic coordinates of image pixels of subsequent 

acquisitions over the same region will not perfectly coincide. Repeated observations of 

the Earth results in a large number of individual scenes each saved in a single image 

file. The analysis and product generation within the proposed change detection 
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approach is not performed on an image-by-image basis but on a time-series-basis for 

fixed geographic locations. Therefore it is necessary to define a fixed global grid and to 

resample the geocoded image data. After the resampling of the image data, a set of 

backscatter measurements is stored in a single file in a database for each grid point 

location. This also reduces read access to the hard disks, as only one file needs to be 

opened when querying backscatter measurements for one geographic location instead of 

opening a large number of images, calculating the nearest image pixel for a given grid 

location and retrieving the backscatter information. 

For resampling the ASAR GM data a simple discrete global grid (DGG) based on 

the geographic coordinate system is used. The edges of the cells are defined by arcs of 

equal-angle increments of longitude and latitude (Sahr et al. 2003). Following the 

inherent resolution of the ASAR GM data, a sampling interval of 15 arcseconds, 

corresponding to a distance of about 500 m at the equator, was selected for the 

individual grid cell points. The chosen datum is WGS-84 and the origin was set to -

180W/-90S. The grid was divided into blocks of 0.5° by 0.5° grid cells, resulting in 

259.200 grid cells in 720 columns and 360 rows globally. Together with the backscatter 

measurements also the local incidence angle maps, which were generated as a by 

product during geocoding, are resampled to the regular grid too.  

Each backscatter and local incidence angle image is resampled according to the 

defined regular grid. For each grid point, the closest image pixel is determined using the 

nearest neighbour resampling method. Due to the irregular sampling of the ASAR GM 

scenes, it is very unlikely that exactly one image pixel corresponds to one regular grid 

point location. Therefore the backscatter and local incidence angle values of the regular 

grid are retrieved from the irregular image grids using bilinear interpolation. After 

resampling, each individual grid cell point is represented as a binary data file in the data 

base. For each measurement a data triplet consisting of acquisition date/time, radar 

backscatter and local incidence angle is stored in the binary file. As new image scenes 

are processed, these binary data base files can be extended easily. 
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Figure 29: Illustration of the resampling procedure 

5.1.4. Local incidence normalization 

Radar backscatter generally shows a strong dependency on the local incidence 

angle. This effect is more pronounced in SAR imagery covering large incidence angle 

ranges like airborne SAR or space-borne ScanSAR like ASAR GM data (Beaudoin et 

al. 1995; Lillesand & Kiefer 2000). For ASAR GM data obtained under different 

incidence angles, local incidence angle normalization is mandatory to allow qualitative 

and quantitative analysis as well as comparisons of backscatter characteristics between 

different acquisitions covering the same area or different range positions within one 

acquisition. Radar data acquired using the ScanSAR modes of the ENVISAT ASAR 

sensor are covering a much wider swath than conventional strip map mode SAR images 

like ERS-1/2 or ENVISAT ASAR Image Mode. ASAR GM data are acquired over an 

incidence angle range from 20° to 40°. This causes a typical, consistent decrease in 

image brightness from low local incidence angles in near range to high local incidence 

angles in far range (Figure 30). This decrease also depends on land cover. Different land 

cover classes show different degrees of angular dependency. Figure 31 shows the 

angular dependency of radar backscatter from local incidence angle for grassland area in 

Oklahoma. In Figure 32 the connection between radar backscatter and local incidence 

angle for coniferous forest is shown. For the grassland example, the dependency of 

radar backscatter on local incidence angle causes a decrease of up to 10 dB. For the 
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coniferous forest example, the influence of the local incidence angle causes a variation 

of 5 dB over the whole incidence angle range. 

 

 

Figure 30: Change in image brightness due to angular dependency of Envisat ASAR GM data before 
normalization 

 
Figure 31: Angular dependency of radar backscatter before normalization Envisat ASAR GM for a 

grassland site in Oklahoma 
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Figure 33: Multi-
temporal pixel-by-pixel 

normalization 
procedure 

 

Figure 32: Angular dependency of radar backscatter before normalization of Envisat ASAR GM for a 
coniferous forest site in Oklahoma 

Gauthier et al. (1998) are reporting variations in radar 

backscatter in ERS-1 SAR imagery acquired from ascending 

and descending orbits within 36 hours for a target under stable 

environmental conditions. The backscatter variation is mainly 

attributed to the sensitivity of radar backscattering coefficient 

to local incidence angle variations. A linear relationship 

between the radar backscattering coefficient and the local 

incidence angle is observed. A linear dependence of the radar 

backscattering coefficient is also documented for Radarsat 

data by Mäkynen et al. (2002) and for ERS scatterometer data 

by Frison & Mougin (1996). To remove the influence of local 

incidence angle on radar backscatter from ERS SAR, ERS 

scatterometer and RADARSAT data, linear models were fitted 

to the radar data to calculate backscatter values which are 

adjusted to predefined reference angles. 

The angular dependency of radar backscatter is changing 

with surface roughness and scattering regime. Thus, it is closely 

related to land cover. The dielectrical and geometrical 

properties of the land cover changes with seasonal patterns 
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throughout the year for most parts of the world. Therefore a normalization procedure is 

required, which takes different land cover types and their temporal changes into 

account. To account for different land cover types and their temporal changes, the 

normalization procedure is based on multi-temporal data sets and is performed on a 

pixel-by-pixel basis defined by the single grid points of the regular grid. Each ASAR 

GM data set has been resampled to a regular grid (see Chapter 5.1.3.). During the 

geocoding process, a local incidence angle has been assigned to each radar backscatter 

measurement. For each grid point, a certain number of radar backscatter measurements 

acquired under different incidence angles are available (Figure 33).  

Given the limited incidence angle range of ASAR GM, a linear model (Eg. 5.9) is 

sufficient to describe the incidence angle variation. All ASAR GM radar backscatter 

measurements are adjusted to a medium incidence angle of 30° using the formula: 

( ) ( ) ( )°−−=° 30,,,30 00 ttt θβθσσ                                 (Eq. 5.9) 

where σ0(30, t) is the normalized backscatter expressed in decibels, σ0(θ, t) is the 

uncorrected radar backscatter, β is the slope (unit decibels per degree) of the regression 

line of the linear model fitted to σ0(θ, t) time series data and θ is the local incidence 

angle. Such a linear model has previously been used by (Champion 1996; Ezraty & 

Cavanie 1999; Sahebi et al. 2003; Kaleschke & Heygster 2004; Moran et al. 2004; 

Loew et al. 2006) for modeling the incidence angle dependency of σ0 observed in 

ASAR Wide Swath data.  

 

Figure 34: Removed change in image brightness due to angular dependency after normalization 
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Figure 34 illustrates the result of the local incidence angle normalization procedure. 

After normalization, the radar backscattering coefficient σ0 does not show any apparent 

influence of the local incidence angle. Radar image brightness shows a well balanced 

distribution. It is assumed, that the radar backscatter is now only influenced by terrain 

attributes. When looking at plots of radar backscatter vs. local incidence angle for the 

land cover classes used for Figure 31 and Figure 32, it can be seen that the angular 

dependency has been removed for grassland (Figure 35) as well as for coniferous forest 

(Figure 36). 

 
Figure 35: Angular dependency of radar backscatter after normalization of Envisat ASAR GM for a 

grassland site in Oklahoma 
 

 
Figure 36: Angular dependency of radar backscatter after normalization of Envisat ASAR GM for a 

coniferous forest site in Oklahoma 
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5.2. Change Detection Surface Soil Moisture 

Retrieval Algortihm 

The limitations of empirical and physically based backscatter models connected 

with the geometrical description of natural surfaces and the comprehensive input data 

amount (see Chapter 3.3.) prevent their applicability in regular operational soil moisture 

monitoring from current SAR data. Another reason is the low temporal resolution of 

past and current space-borne SAR sensors operating in strip-map mode, which is 

inadequate for observing a temporal highly variable parameter like soil moisture. On the 

other hand, scatterometers offer high temporal resolutions with up to 2 acquisitions per 

day at low spatial resolutions. Regardless of this fact, scatterometer data have been used 

for soil moisture extraction at continental and global scales.  

 

 

5.2.1. Original ERS-1/2 Change Detection Soil Moisture 

Retrieval Algorithm 

Recognizing the need for soil moisture information on continental to global scales, 

a change detection algorithm for retrieving soil moisture information from ERS-1/2 C-

band scatterometer time-series data has been developed by Wagner et al. (1999a; 1999b; 

1999c). The approach is based on the assumption that C-band microwave data are 

sensitive to soil moisture changes, which vary between wet and dry soil moisture 

conditions. These reference values represent radar backscatter at dry soil moisture 

conditions at wilting level (σ0
dry) and backscatter at wet soil moisture conditions at field 

capacity (σ0
wet). 
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=  (Eg. 5.10) 

The estimation of the two reference values is complicated by the fact, that radar 

backscatter also is influenced by the incidence angle and by vegetation biomass. Like it 
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is the case for soil moisture, an increase in biomass due to vegetation growth throughout 

the year leads to an increase in radar backscatter σ0 whereas an increasing incidence 

angle θ leads to a decreasing radar backscatter σ0. To account for these two unwanted 

influences, a number of processing steps are required before soil moisture retrieval. 

Here, the technical design of the ERS-1/2 scatterometer is exploited. The sensor is 

equipped with three antennas and therefore three independent measurements under 

different incidence angles are obtained during each acquisition. Therefore it is possible 

to describe the incidence angle dependency per acquisition and the following second 

order polynomial function was identified as a good approximation for describing radar 

backscatter: 

200 )40)(,40(
2
1)40)(,40(),40(),( −′′+−′+= θσθσσθσ tttt   (5.11) 

with σ´ being the first derivative of σ0(θ) also called slope, and σ´´  the second 

derivative of σ0(θ) also called curvature. If these parameters are estimated, the three 

individual measurements σ0(θ) can be averaged and extrapolated to a mean reference 

angle of 40° with:   
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In a second step, the influence of vegetation on radar backscatter needs to be 

described, before soil moisture information can be derived. A characterization of the 

effects of growing vegetation on radar backscatter is based on the fact that backscatter 

may decrease or increase when vegetation grows, depending on whether the attenuation 

of the soil contribution is more important than the enhanced contribution from the 

vegetation canopy, or vice versa Since the attenuation of the soil contribution is 

dominant at low incidence angles while canopy scattering dominates at higher incidence 

angles, an incidence angle called the “cross-over angle” at which both effects balance 

each other has been identified (Wagner et al. 1999a). This is illustrated in Figure 37, 

which shows the scatterometer model for a mixed grassland-agricultural area in 

Oklahoma (36.86°N, 102.7°W). One can see that backscatter increases from winter to 

summer at higher incidence angles; while at lower incidence angles backscatter 

decreases. This is in agreement with vegetation models such as the Cloud Model 

introduced by (Ulaby & Attema 1978). Based on empirical studies for various climates 

and vegetation zones, the cross-over angles have been defined with θdry = 25° and θwet = 
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40. Just recently, setting θdry to a value of 25° has been supported by findings of a study 

over a Sahelian test site in Mali by Baup et al. (2007). 

 

 

Figure 37: Dry (red) and wet (blue) backscatter reference curves for winter (solid line) and summer 
(dashed line) conditions. The model parameters were estimated from ERS scatterometer measurements 
(1991-2007) of a grassland region in Oklahoma (36.86°N, 102.7°W). The two vertical lines indicate the 

incidence angle range of the ASAR GM (20-40°) 

 When vegetation grows, the slope σ´ and the curvature σ´´ introduced in Eq. 5.6 

will change. This annual variation of the slope σ´ is described by the periodic function 

Ψ´(t) and the two parameters C´ and D´, whereas the annual variation of the curvature 

σ´´ is described by the periodic function Ψ´´(t) and the two parameters C´´ and D´´. 

Once, these location specific variables have been defined, the reference backscatter σ0
dry 

and σ0
wet at dry and wet surface soil moisture conditions can be calculated (Wagner 

1998; Scipal 2002): 

( )( ) ( )( )200 40
2
140 −Ψ ′′′′−−Ψ′′−= drydrydrydry tDtDC θθσ  (5.13) 

with: 

( ) ( ) ( )200 40
2
140 −′′−−′−= drydrydrydrydry CCC θθθσ  (5.14) 

and: 

( )( ) ( )( )200 40
2
140 −Ψ ′′′′−−Ψ′′−= wetwetwetwet tDtDC θθσ  (5.15) 

with: 

( ) ( ) ( )200 40
2
140 −′′−−′−= wetwetwetwetwet CCC θθθσ  (5.16) 
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With the location specific, incidence angle and vegetation corrected reference 

backscatter values σ0
dry and σ0

wet it is then possible to scale each individual backscatter 

measurement between the dry and the wet reference and to derive a relative surface soil 

moisture value given in %. 

The contribution of surface roughness to the backscattered signal is considered to 

be a constant parameter, which does not require separated treatment. As it has turned 

out, this is not completely true. This issue is connected with the design of the ERS 

scatterometer which is equipped with three antennas, one is oriented 45° forward, one 

perpendicular and one 45° backward relative to the satellite ground track. Whereas the 

incidence angle of the for- and backward oriented antenna are identical and thus the 

radar backscatter should be similar, the azimuth angle differs. It has turned out, that the 

backscatter difference between the measurements of the forward and backward oriented 

antennas is a function of the azimuth angle. Especially over desert areas with surface 

features with a pronounced directional alignment (e.g. sand dunes), the difference may 

become quite large and cause periodic noise-like signal variability. The initial version of 

the change detection surface soil moisture algorithm for ERS data was based on the 

assumption, that radar backscatter can be treated only as a function of soil moisture, 

vegetation cover and incidence angle only. Azimuthal effects were considered to have 

only a weak impact on radar backscatter (Scipal 2002). To account for the observed 

azimuthal effects, affected areas are masked out in the processed soil moisture product. 

A mathematical-physical description and a possible compensation of these azimuthal 

effects has been developed and is incorporated in the latest version of the retrieval 

algorithm, which also has been adapted for use with MetOp ASCAT data (Bartalis et al. 

2006). 

Another issue is connected to the estimation of the dry and wet references. Soil 

moisture is estimated by scaling individual backscatter measurements between a dry and 

a wet reference. This approach works well for most regions in the world. But it becomes 

problematic in regions characterized by a high variability of precipitation, e.g. barren 

land/sparsely vegetated land, shrublands, deserts. In such regions it is possible that 

saturated soil moisture conditions never have been observed within the period for which 

backscatter time series data are available. For such cases, a so called wet correction has 

been introduced in later versions of the ERS scatterometer soil moisture retrieval 
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approach. Within the wet correction, the wet reference values are increased, if saturated 

soil moisture conditions have not been observed for a distinct period of time.  

The correction of the seasonal vegetation cover effects on radar backscatter as 

described above is based on the assumption that the vegetation phenology is the 

identical every year. This ignores natural variability of climate variables like 

precipitation or air temperature. Years with distinct anomalies in precipitation alter the 

development of the vegetation and therefore the correction of the vegetation cover 

effects as it is done within the ERS scatterometer change detection soil moisture 

retrieval approach cause an over- or undercompensation and thus to errors in the 

estimated soil moisture products.  

5.2.2. Adapted Change Detection Soil Moisture Retrieval 

Algorithm for Envisat ASAR GM Data 

 

The change detection for ASAR GM data is based on the ERS-1/2 scatterometer 

approach described above. Due to the technical configuration of the ASAR sensor, 

which only allows its operation in exclusive modes together with multi-purpose 

character of the Envisat mission, some drawbacks need to be accepted and accounted 

for in the design of the change detection radar backscatter model. In the case of the 

ERS-1/2 scatterometer, modelling of phenological vegetation effects is possible due to 

the instrument’s capability to acquire backscatter measurements at different incidence 

angles at the same time. Unfortunately, this is not the case for ASAR GM which 

acquires only one backscatter measurement at some incidence angle for a target during 

each overpass. Consequently, it is impossible to derive a slope value for each single 

acquisition and use the annual variation of the slope for biomass correction as it is done 

for the ERS scatterometer data. Nevertheless, from a temporal perspective the seasonal 

vegetation signal in C-band time series is much weaker than the soil moisture signal 

(Wagner et al. 1999a). Therefore the seasonal vegetation effects are neglected in a first 

approximation, i.e. σ0
dry and σ0

wet are assumed to be constant over the year. This 

assumption is supported by the exemplary plots in Figure 37. Within the incidence 

angle range covered by ASAR GM (20°-40°), changes in backscatter due to vegetation 

growth are in general much smaller than changes due to soil moisture. Additionally, 
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ASAR GM is commonly operated in HH polarization which penetrates vegetation better 

than VV polarization as used by the ERS scatterometer (Brown et al. 2003). The 

parameters σ0
dry and S are now assumed to be constant in time because seasonal 

vegetation effects are expected to be weak for ASAR GM. Therefore, the following 

simplified change detection model is adapted for multi-temporal ASAR GM data: 

( ) ( ) ( ) ( )tSmt sdry +−+= 3030, 00 θβσθσ  (Eq. 5.17) 

00
drywetS σσ −=   (Eq. 5.18) 

Given the limited incidence angle range of ASAR GM, a linear model is sufficient 

to describe the incidence angle variation using the slope β of the regression line given in 

dB per degree for the relationship of σ0 and θ. Such a linear model has previously been 

used by different researchers (Sahebi et al. 2003; Moran et al. 2004; Baup et al. 2007) 

for modeling the incidence angle dependency of σ0 observed in ASAR Wide Swath 

data. 

Azimuthal effects like they were observed for the ERS scatterometer may also 

occur with ASAR GM data when combining ascending and descending orbits. Land 

cover patterns in Oklahoma are not expected to cause azimuthal effects. Consequently 

no correction of azimuthal effects is required. 

A wrong estimation of wet references for regions with high precipitation variability 

like in the ERS scatterometer soil moisture retrieval algorithm is theoretically possible 

but this does not apply for the selected Oklahoma test site in the south-western part of 

the USA. 

 

5.2.2.1. Estimation of Dry and Wet Reference 

The estimation of the time-invariant dry and wet reference values, σ0
dry and σ0

wet, 

necessary for the inversion of the backscatter model (Eq. 5.12) to retrieve surface soil 

moisture from multi-temporal ASAR GM time series data is hampered by the high noise 

level in the ASAR GM data, which causes an artificial spreading of the backscatter 

measurements, and the variability of precipitation. The limited temporal and spatial 

coverage of the ASAR GM data does not necessarily guarantee that the wettest and 

driest surface soil moisture conditions for a particular location or test site area have 

been captured by on ASAR GM acquisition date. Following from this, relying only on 



5. Method 

- 77 - 

the minimum and maximum backscatter values observed at a location will not give 

good and robust estimates of the dry and wet references. To account for these problems, 

the estimation of the dry and wet references is based on the assumption that the 

probabilities of acquiring backscatter measurements during dry and wet surface soil 

moisture conditions is known. ERS-1/2 scatterometer data are available for the years 

1992 to 2001 and the chance of missing the driest and wettest surface soil moisture 

conditions is minimized. The probabilities for the occurrence of dry and wet reference 

backscatter are called pdry and pwet. If N ASAR GM measurements were acquired over 

an area, then it is possible to calculate the number of measurements Ndry and Nwet taken 

under dry and wet surface soil moisture conditions. 

drydry pNN ⋅=   (Eq. 5.19) 

with 

ERS

s
dry N

mNp %)5( <
=  (Eq. 5.20) 

where N(ms<5%) represent the number of ERS scatterometer derived surface soil 

moisture values from an ascending ordered data set with a relative surface soil moisture 

lower than 5% . Similarly, Nwet is estimated using: 

wetwet pNN ⋅=   (Eq. 5.21) 

with  

ERS

s
dry N

mNp %)95( >
=  (Eq. 5.22) 

where N(ms<5%) represent the number of ERS scatterometer derived surface soil 

moisture values from an ascending ordered data set with a relative surface soil moisture 

larger than 95%. 

Because of the inherent noise of the ASAR GM backscatter measurements acquired 

during intermediate soil wetness conditions are to some extent mixed with 

measurements representing extreme dry or wet soil conditions. By averaging the Ndry 

lowest ASAR GM measurements and the Nwet highest ASAR GM measurements, 

reasonable estimates of σ0
dry and σ0

wet should be obtained: 

 ∑
=

≈
dryN

i
i

dry
dry N 1

00 1 σσ  (Eq. 5.23) 
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 ∑
=

≈
wetN

i
i

wet
wet N 1

00 1 σσ   (Eq. 5.24) 

The probabilities pdry and pwet depend on the climatic conditions and on 

characteristics of the land surface (soil type, vegetation, etc.). For an arid environment 

one expects e.g. that pdry is high and pwet very low. For a more humid environment the 

changes of acquiring measurements during wet reference conditions increases and 

decrease for dry conditions. Based on the long-term soil moisture archive from the ERS 

scatterometer these two probabilities can be estimated. Because the scatterometer 

derived probabilities are only available at 50 km scale, the values need to be 

interpolated to the ASAR GM 1 km grid. The estimation of these probabilities and the 

interpolation to 1 km is obviously not meaningful in areas where it is not possible to 

observe a soil moisture signal, i.e. in tropical rain forest, ever-dry desert areas, and 

rocky areas. Therefore land cover data are used to mask out these areas. 

 

5.2.2.2. Surface Soil Moisture Retrieval 

Once, the model parameters σ0
dry,σ0

wet and S respectively have been estimated, 

surface soil moisture is retrieved from normalized ASAR GM backscatter 

measurements for each grid point and for each individual acquisition date. To do so, the 

multi-temporal backscatter model is inverted to retrieve surface soil moisture 

information: 

 ( ) ( ) ( )
S

t
tm dry

s

30,30 00 σσ −
=  (5.25) 

For characterizing the temporal agreement, the ASAR GM retrieved soil moisture 

time series are compared to the in-situ and ERS scatterometer soil moisture data over 

the MESONET stations. The following statistical measures are calculated for each of 

the three time series pairs for each MESONET station: correlation coefficient (R), the 

BIAS, and the standard deviation (SD).  
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  (Eq. 5.26) 

The BIAS between two soil moisture datasets x and y is given by: 
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 ( ) ( )( )∑
=

−=
M

j
jj txty

M
BIAS

1

1  (Eq. 5.27) 

where M is the number of concurrent measurements at times tj. The standard SD 

deviation is calculated using the formula: 

 ( ) ( )( )∑
=

−−
−

=
M

j
jj BIAStxty

M
SD

1

2

1
1  (Eq. 5.28) 

 

5.2.3. Calculation of the Retrieval Error 

The relative surface soil moisture ms is extracted from ASAR GM time series data 

using the proposed inverted change detection backscatter model (Eq. 5.20). Thus, the 

soil moisture ms is a function of the model parameters and can be written as: 

 
( ) ( )000

00

00

,,,,
30

drywet
drywet

dry
s fm σσθβσ

σσ
θβσσ

=
−

°−−−
=   (5.29) 

The estimated surface soil moisture ms will contain errors caused by noise in the 

ASAR GM backscatter data σ0 as well as by estimation errors during the determination 

of the dry and wet references 00 , wetdry σσ ΔΔ  and the normalization of the influences of 

the local incidence angle θ using the slope β for characterizing the relation between 

radar backscatter and local incidence angle. 

An isolated treatment of each parameter may ignore the mutual influences of the 

errors in the individual parameters on the overall retrieval error in the soil moisture ms. 

Assuming that the errors of the model parameters follow a Gaussian distribution, then 

the principles of Gaussian error propagation can be applied to determine the retrieval 

error of the soil moisture model Δms and to assess the impact of the errors in the 

individual model parameters on the retrieval error Δms (Gottwald 1995; Taylor 1997). 

According to the principles of the Gaussian error propagation law, the error Δy in y as a 

function of: 

 ( )nxxxfy ,..., 21=   (5.30) 

can be estimated using the formula:  
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When applying this general formulation to the change detection soil moisture 

retrieval approach, the retrieval error Δms is derived as the sum of the individual errors 

using the expression: 
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with 0σ∂
∂f ,

β∂
∂f , 0

dry

f
σ∂
∂ , 0

wet

f
σ∂
∂  being the partial derivates for each parameter of the 

inverted change detection radar backscatter model.  

The partial derivates of the model parameters are: 

 
S

f 1
0 =

∂
∂
σ

 with 00
drywetS σσ −=   (5.33, 5.34) 
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With the partial derivates of the model parameters, the retrieval error Δms can be 

calculated using the formula: 
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with: 

 00
drywetS σσ −=   (5.47) 

 

While the noise of the ASAR GM backscatter measurements Δσ0
dry is known 

beforehand (see Chapter 6.1.), the errors of the model parameters are unknown. They 

are defined based on theoretical considerations on potential error sources for each 

model parameter. Here, four error sources need to be named:  

• Error source 1: The temporal coverage and the irregular temporal sampling 

interval of the ASAR GM data over the four seasons with their distinct 

phenological and climatologic characteristics.  

• Error source 2: Raw data by the data provider and data pre-processing may 

have introduced errors in the geometrically and radiometrically corrected, 

incidence angle normalized radar backscatter data 

• Error source 3: The method for deriving the model parameters β, σ0
dry and 

σ0
wet gives estimates of the parameters, which may contain errors. 

• Error source 4: Neglecting seasonal vegetation cover effects due to the 

limited number of data in the radar backscatter time series can lead to 

seasonally varying errors. As the model parameters are derived from time 

series data irrespective of their acquisition date, errors due to neglecting 
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seasonal vegetation cover effects are, if present, contained in all model 

parameters. 

Based on these considerations, it is assumed that due to vegetation phenology the 

slope parameter β in particular introduces a high relative error in the range of 10%. 

Also, the errors Δσ0
dry and Δσ0

wet are assumed to be 10 % relative to the observed 

dynamic range of the backscatter measurements, i.e. Δσ0
dry = Δσ0

wet = 0.1S. 
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Chapter 6 

Results and Discussion 

In this chapter, the results of the doctoral thesis are presented. First the estimated of 

the noise level of the ASAR GM data are exposed as important prerequisite for the later 

discussion of the results of the surface soil moisture retrieval using the proposed change 

detection algorithm. Model parameters and their spatial patterns are shown using maps 

and plots. References to the physiographic features of Oklahoma (see Chapter 4.1.) are 

intended to provide an understanding of the observed spatial patterns. The extracted 

relative surface soil moisture with their spatial and temporal patterns is presented using 

summarizing figures and tables. More detailed tables and figures can be found in the 

appendix. The results are discussed in the context of the objectives of this doctoral 

thesis and recent research. To validate the observed temporal patterns of relative GM 

surface soil moisture, in-situ soil moisture measurements of the Oklahoma Mesonet and 

ERS-1/2 scatterometer derived relative surface soil moisture data are used as a basis for 

comparison. Different statistical measures are calculated to quantify the quality of the 

retrieved relative surface soil moisture data. 

6.1. Estimated Noise Level of ASAR GM Data 

As reliable information on the radiometric properties of the ASAR GM data have 

not been published so far, a method for accessing the results of the radiometric 

calibration as implemented in the processing chain, has been developed and set up.  

Four test sites over the African rain forest with a dimension of 0.5° x 0.5° each were 

analyzed. Time series of ASAR GM data for every single point of the 14.400 points 

within each test site were used to derive the test statistics. Table 5 shows that the 

estimated noise level of the ASAR GM measurements is about 1.2 dB. 
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Test 
region 

UL/LR of test region 
(lon, lat [decimal degrees]) Snatural <Snoise> 

1 20.5°E, 2.5°S / 21°E, 3°S 0.30 dB 1.18 dB 

2 21.5°E, 1.5°S / 22°E, 2°S 0.36 dB 1.19 dB 

3 21°E, 2.5S / 21.5° E, 3°S 0.31 dB 1.19 dB 

4 21.5°E, 2.5°S / 22°E, 3°S 0.28 dB 1.18 dB 

Estimated noise level: 1.185 dB 

Table 5: Standard deviations of natural backscatter variation sSignal and noise sNoise. For an overview of 
the location of the test regions see also Figure 24; numbering top down and left to right. 

 

Considering that the expected sensitivity of σ0 to soil moisture changes is in the 

order of 4 – 8 dB for grass- and agricultural areas, depending on the phenological state, 

the noise of GM backscatter measurement is relatively high. This is important 

information for the development of the experimental soil moisture product, as one can 

expect only a few soil moisture classes. Additionally, regions with a low signal-to-

noise-ratio are masked out, as the backscatter signal variations caused by soil moisture 

are effectively masked by the high noise level. 

The relatively high noise is caused by the low bandwidth of the ASAR when 

operated in GM mode. The selection of the low bandwidth during sensor design is a 

trade-off between geometric/radiometric resolution and temporal resolution. A duty 

cycle of nearly 100% for ASAR GM at a medium spatial resolution of 1 km is achieved 

at the cost of radiometric resolution. Compared to this, the ERS scatterometer has a very 

high radiometric resolution of 0.15 dB – but for 50 km footprints only. 

6.2. Spatial Patterns 

6.2.1.   Model parameters 

Maps of the backscatter model parameters dry reference σ0
dry, slope β and 

sensitivity S have been generated for the Oklahoma test site and are presented and 

discussed in the following. 
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Figure 38: Backscatter model parameter dry reference σ0

dry extracted from ASAR GM time series 

 

 

Figure 39: Backscatter model parameter slope β (in dB/deg) extracted from ASAR GM time series 

 

 
Figure 40: Backscatter model parameter sensitivity S (in dB) extracted from ASAR GM time series 
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The dry reference σ0
dry (Figure 38) represents the backscatter conditions for dry 

surface soil moisture conditions. Dry reference values of -8 to -12 dB in the southeast 

decrease towards the northwest, where values of -14 to -18 dB are present. The lowest 

dry reference values in the order of -16 to -20 dB are found in the panhandle.  

The spatial distribution of the slope values β (Figure 39) also shows a clear trend 

from east to west. The highest values can be found in the east where they vary around -

0.05 dB/deg. Towards the northwest they are gradually decreasing to values of 0.3 to 

0.35 dB/deg; minimum slope values can be found in the westernmost part of the 

panhandle.  

The spatial plot of the sensitivity values (Figure 40) show spatial patterns similar to 

the other two model parameters. Low sensitivities around 5 dB can be found for the 

eastern part of Oklahoma. Similar to the other two parameters, the sensitivity changes 

towards the west. High sensitivities around 10 dB are mapped for the central and the 

western part with highest values of ≥11 in the western part of the panhandle. 

The spatial patterns of the model parameters reflect the physiographic conditions of 

Oklahoma. When looking at the three model parameter maps, linear structures mainly 

oriented in east-west direction can be observed. These structures usually follow 

topographic features. These phenomena are most pronounced in the central and western 

part of Oklahoma. They can be identified as valleys, where model parameters differ 

significantly from their neighbourhood. Valley bottoms usually show wetter soil 

moisture conditions than the neighbouring area outside the valleys. Due to these soil 

moisture conditions, valleys are also often characterized by specific land cover features, 

e.g. trees and/or bushes compared to grassland or agricultural areas outside the river 

valleys. All together, this leads to radar backscatter conditions which result in the 

clearly distinguishable linear structures. The overall spatial patterns in the model 

parameter maps reflect the spatial distribution of land cover features (Figure 19, chapter 

4.3.4.) to a large amount. A summarizing overview of typical model parameter values 

for the main land cover classes is given in the Figures 36-38. For this comparative 

presentation of the land cover specific model parameter values, boxplots have been 

prepared. Boxplots, or box-and-whisker diagrams, show a summary of the smallest 

value of the statistic, lower quartile Q1, the median Q2, the upper quartile Q3 and the 

largest value of the statistic. The distinct difference between the classes 

grassland/cultivated and forest is clearly recognizable in all three boxplots. Bearing the 
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area percentages of the main land cover classes in mind (see Chapter 4.3.4, Figure 19), 

the discussion of the spatial distribution of the model parameters will focus on the 

classes’ grasslands/cultivated areas and forests. 

 

 
Figure 41: Box plot showing the dry reference σ0

dry  for main land cover classes 

 

 
Figure 42: Box plot showing the slope β  for main land cover classes 
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Figure 43: Box plot showing sensitivity S for main land cover classes 

 

The eastern part of Oklahoma is mainly covered by forests, whereas the western 

part is dominated by grasslands. Here, low dry reference values are typically found, 

whereas higher dry reference values are mainly found in forested areas in the south-

eastern part of Oklahoma. Also slope values are low, which means steep, for grassland 

areas and tend to increase for forest areas, approaching 0 dB/deg. This points to a 

negligible incidence angle dependency for forests in the eastern part of Oklahoma. 

Radar theory describing the fundamental relation between radar backscattering from 

vegetated surfaces and the incidence angle gives an explanation for this finding (see 

Chapter 3.3.). With increasing vegetation density, the transmissivity of the vegetation 

layer covering the soil surface is decreasing. Backscatter from the underlying soil 

surface decreases in favour of volume scattering from the vegetation canopy. Volume 

scattering from dense vegetation is almost uniformly distributed over a wide range of 

incidence angles. Therefore for densely vegetated areas the slope is less steep than for 

sparsely vegetated surfaces (Wagner et al. 1999b). Sensitivity is high, where the dry 

reference and the slope values are low. This is the case for the western part of 

Oklahoma with grassland as dominating land cover class. This is in agreement with 

radar theory, after which also signal components from the underlying soil surface 

contributes to radar backscatter from grasslands and cultivated areas. Seasonal 

precipitation patterns manifest in the range of soil moisture controlled backscatter and 

typical backscatter levels for dry and wet surface soil moisture conditions can be 
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derived for each grid point over these regions. Towards the east, sensitivity decreases, 

while dry reference and slope are increasing. Following the explanations from above, 

surface soil moisture related signal contribution become less pronounced for forest 

covered areas, as volume scattering signal contribution dominates backscatter from 

these regions. Consequently, only a low sensitivity is observed. 

In the map of the slope parameter, diagonal stripes can be observed. Stripes are 

running from northeast to southwest or northwest to southeast. These are artefacts 

introduced by the individual ASAR GM acquisitions taken during either descending or 

ascending orbits. With values~0.01 dB/deg, they are comparably small and have a much 

weaker effect on the retrieved surface soil moisture than other error sources (see 

Chapter 6.4.). It was observed that these striping effects tend to get less pronounced 

with increasing number of ASAR GM data for the observed region. Therefore it is 

assumed that these effects will almost disappear for Oklahoma with regular updates of 

ASAR GM the time series data base. 

 

 
 

Figure 44: Slope β vs. Dry Reference σ0
wet 

 
 

Figure 45: Sensitivity S vs. Dry Reference σ0
wet 

 

The observations made for the spatial variation of the three model parameters are 

supported by scatterplots of the model parameters. The relation of dry reference values 

and slope values is characterized by a positive linear correlation – increasing dry 

reference values are followed by increasing slope values (Figure 44). A negative linear 

correlation was detected for the comparison of the sensitivity S and the dry reference 
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σ0
wet (Figure 45), where high sensitivities correspond to low dry reference values and 

vice versa. The relation between the sensitivity S and the slope β is also described by a 

negative linear correlation coefficient (Figure 46), where high sensitivity values are 

found for low slope values. 

 
Figure 46: Sensitivity S vs. Slope β 

 

6.2.2.  Relative Surface Soil Moisture 

Relative surface soil moisture time series extracted from ASAR GM data as well as 

from ERS scatterometer data have been mapped for the Oklahoma test site. As an 

example a sequence of relative surface soil moisture is shown in Figure 47 for five 

consecutive acquisitions in June 2006. The visual comparison of the soil moisture 

products from the two sensors reveals similar spatial distribution of areas of high and 

low surface soil moisture. The surface soil moisture patterns mostly are a reflection of 

the precipitation history. The strip-like areas of high relative surface soil moisture which 

covering Oklahoma from the North to the South are mainly caused by advective 

precipitation and moving frontal systems. The sequence of surface soil moisture maps in 

Figure 47 shows the transition from very dry surface soil moisture conditions to nearly 

saturated soil moisture conditions. 
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Figure 47: Relative surface soil moisture maps of Oklahoma extracted from ERS-1/2 scatterometer 
(right) and ASAR GM data (left) for a sequence of consecutive acquisitions in June 2005 

 

Envisat ASAR GM ERS 
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The most striking difference in the comparative presentation of the remotely sensed 

soil moisture from ERS-1/2 scatterometer and ASAR GM data is their spatial 

resolution. The maps of the ERS-1/2 scatterometer derived surface soil moisture appear 

much smoother than the maps based on ASAR GM backscatter data and suggest clearly 

discernable areas of uniform surface soil moisture conditions. The ASAR GM surface 

soil moisture maps show, that this is not the case. Large areas of a specific surface soil 

moisture class can be interspersed with other moisture classes indeed. The grainy 

appearance of the ASAR GM surface soil moisture maps is also a result of the much 

higher noise level of the ASAR GM backscatter measurements. Even though, the ASAR 

GM based surface soil moisture maps have been resampled from the original spatial 

resolution of 1 km to now 3 km, the grainy effect could be further reduced by applying 

filters at the cost of detail. 

A comparison of the spatial patterns of the remotely sensed relative surface soil 

moisture to in-situ soil moisture point measurements would only be possible when the 

in-situ soil moisture measurements gathered at the stations of the Oklahoma Mesonet 

are spatially interpolated. This is not regarded to be a meaningful analysis, as such a 

spatial interpolation completely ignores physiographic conditions, which govern soil 

moisture and precipitation patterns in nature (see Chapter 2.3.). 

6.3. Temporal Patterns of Surface Soil Moisture 

The validation of the temporal patterns of the remotely sensed ASAR GM soil 

moisture data was carried out using in-situ soil moisture measurements from 75 stations 

of the Oklahoma Mesonet. ASAR GM acquisition dates with snow covered or frozen 

surface conditions were excluded from the validation. For this purpose, meteorological 

data were used, and all acquisition dates with a minimum temperature <1°C were 

removed from the data sets before performing the validation. Compared to ERS-1/2 

scatterometer data, the ASAR GM data are characterized by a relatively high noise 

level. According to the technical specifications the radiometric accuracy of the ASAR 

GM data is 1.2 dB. To account for this noise, the ASAR GM soil moisture at the 

Oklahoma Mesonet measurement stations were averaged over a 3 x 3 pixel window 

corresponding to a 3 x 3 km region centred on the geographic location of individual 

measurement stations. Therefore, the spatial resolution of the ASAR GM soil moisture 
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used during validation is 3 km. For comparisons of ASAR GM soil moisture to ERS 

scatterometer derived soil moisture, the ASAR GM soil moisture was reduced to 50 km 

spatial resolution. 

For validating the temporal agreement of the ASAR GM soil moisture time series 

data, the statistical measures correlation, bias and standard deviation (see Chapter 

5.2.4.) have been calculated for the following combinations of the validation data sets: 

(1) ERS scatterometer derived surface soil moisture at 50 km spatial resolution and 

in-situ soil moisture 

(2) ASAR GM derived surface soil moisture resampled to 3 km spatial resolution 

and in-situ soil moisture 

(3) ASAR GM derived surface soil moisture resampled to 50 km spatial resolution 

and in-situ soil moisture 

(4) ERS scatterometer derived surface soil moisture at 50 km spatial resolution and 

ASAR GM derived surface soil moisture resampled to 3 km spatial resolution 

(5) ERS scatterometer derived surface soil moisture at 50 km spatial resolution and 

ASAR GM derived surface soil moisture resampled to 50 km spatial resolution 

 

An introductive remark on the apparent differences in the spatial scale between the 

in-situ point measurements from the Oklahoma Mesonet typically representing an areas 

of up to 100 m², ASAR GM derived surface soil moisture integrated over a  

3 km x 3 km region and ERS scatterometer derived surface soil moisture for an area of 

50 km x 50 km is required. It seems to be not very meaningful to compare data acquired 

at these different spatial scales, but it is nevertheless possible. Temporal patterns of soil 

moisture and the relation between large scale and small scale components of spatial soil 

moisture patterns (see chapter 2.3.) allows to relate in-situ point measurements to areal 

estimates of soil moisture and vice versa. Observations of in-situ soil moisture 

measurements showed, that spatial soil moisture patterns are similar over different 

spatial scales and tend to persist in time. Consequently, point time-series in-situ soil 

moisture measurements are often highly correlated with the mean soil moisture content 

over an area, e.g. a catchment. This observation has been picked up by the temporal 

stability concept, introduced by Vauchaud et al. (1985), which allows the identification 

of an area representative in-situ measurement station, that shows a similar absolute 

value and a comparable temporal evolution of in-situ soil moisture as the area averaged 
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values. This one station allows conclusions on the overall soil moisture conditions in a 

specific area and helps to simplify planning of in-situ soil moisture measurement 

networks. This concept has been inverted and adapted for ASAR Wide Swath Mode 

data by Wagner et al. (2008) to estimate local scale soil moisture from areal remotely 

sensed soil moisture estimates. 

Time-series plots showing the temporal evolution of the ASAR GM and ERS 

scatterometer derived soil moisture in comparison to in-situ soil moisture, which were 

generated for the 75 Oklahoma Mesonet measurement stations (see Fig. A.1 - A.75 in 

the Appendix), give a first visual impression of the performance of the ASAR GM 

change detection backscatter model and its ability to map temporal soil moisture 

patterns. As soil moisture is highly variable in the temporal domain, only ERS and 

ASAR sensor measurements have been taken into account, which were acquired within 

a +/- 2 hours time frame. An exemplary plot is given in Figure 48 for the station 

“LAHO”. The lower part of the figure (Fig. 42b) shows the concurrent FWI values 

representing the in-situ soil moisture measurements of the Oklahoma Mesonet. From 

the plot, it can be seen that the temporal evolution of the two remotely sensed soil 

moisture datasets agree reasonably well with the in-situ soil moisture measurements, 

even though the transitions from dry to wet are in general more pronounced in the FWI 

data. A similar behaviour can be observed for other stations too. 

 

Figure 48: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed line) 
(top) and in‐situ measurements (bottom) at the MESONET station LAHO for the period January 2005 

to July 2006. 
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To characterize the temporal agreement of the remotely sensed ASAR GM surface 

soil moisture data with the validation data sets, the statistical measures correlation, bias 

and standard deviation have been calculated for all five data combinations and for each 

of the 75 Oklahoma Mesonet stations. Tables with all results of the comparisons can be 

found in the appendix B in Table B.2 to B.16. For a comparative presentation of the 

validation results, again boxplots are used. For each pair of validation data, they show a 

summary of the smallest value of the statistic, lower quartile Q1, the median Q2, the 

upper quartile Q3 and the largest value of the statistic. 

The boxplot in Figure 49 gives an overview of the results of the correlation 

analysis for the five data combinations. The correlation found for the comparison of the 

remotely sensed soil moisture data of the ERS and the ASAR sensor and the  

in-situ measurements show results which were expected from other previous studies, 

which compared in-situ soil moisture and coarse resolution remotely sensed soil 

moisture products (Crow & Zhan 2007; Wagner et al. 2007b; Owe et al. 2008). Apart 

from the absolute correlation results, the correlation results calculated for the ERS - in-

situ data combination and the two ASAR – in-situ data combinations shows the 

performance of the ASAR sensor operated in GM mode compared to the ERS 

scatterometer. The results of the correlation between the ms-ERS at 50 km and the in-situ 

soil moisture are very similar to the results of the correlation between the ms-ASAR at 50 

km and the in-situ soil moisture. A slightly lower correlation was calculated for the 

comparison of the ms-ASAR at 3 km and the in-situ soil moisture data, although the scale 

difference between the 3 km spatial resolution of the ASAR data and the in-situ 

measurement data is much smaller than for the ERS data at a spatial resolution of 50 

km. From the error analysis it is concluded (see Chapter 6.3.) that the main reason for 

this can be found in the higher noise level of the ASAR GM data. In the case of the 

ASAR data, the noise level was reduced with the reduction of the spatial resolution 

from the original 1 km to the 50 km spatial resolution and therefore the results of the 

correlation analysis of the ms-ERS at 50 km and ms-ASAR at 50 km are very similar. 

Additionally the neglect of seasonal vegetation cover effects in the change detection 

backscatter model also contributes to the weaker performance of ms-ASAR at 3 km when 

compared to the two soil moisture products at coarser spatial resolutions. On the other 

hand, the performance of the ms-ASAR at 3 km is in an acceptable range and the 

differences to the two remotely sensed soil moisture products at 50 km spatial resolution 
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are within suitable limits. As the suitability of ERS scatterometer for surface soil 

moisture data retrieval has been proven in a number of studies, the comparison of the 

remotely sensed ERS and ASAR soil moisture products reveals information of the 

usability of the ASAR GM data for surface soil moisture retrieval. The comparison of 

ms-ASAR at 50 km and ms-ERS gives high correlations. The considerably lower correlation 

between ms-ASAR at 3 km and ms-ERS can also be addressed to the aforementioned higher 

noise level of the ASAR data. However, the good correlations between the surface soil 

moisture products from the two sensors and especially the high correlation between ms-

ASAR and ms-ERS at 50 km shows, that the ASAR GM data contain relevant information 

for surface soil moisture retrieval. 

 

 

Figure 49: Correlation R between remotely sensed soil moisture derived from ERS scatterometer and 
ASAR GM backscatter measurements for 75 Oklahoma Mesonet stations: ms-ERS vs. in-situ, ms-ASAR at 3 km 
vs. in-situ, ms-ASAR at 50 km vs. in-situ, ms-ERS at 50 km vs. ms-ASAR at 3 km and ms-ERS at 50 km vs. ms-ASAR at 

50 km 

 
In Figure 50 the results for the calculation of the BIAS is shown. The most 

apparent feature in the boxplot is the small BIAS calculated for the cross-comparison of 

the two remotely sensed relative surface soil moisture data sets. In both cases, the 

combination of ms-ERS at 50 km and ms-ASAR at 3 km and ms-ERS at 50 km and ms-ASAR at 50 

km, the median of BIAS is positive and close to zero. That means that ms derived from 

the ASAR GM data is slightly higher than the ms values derived from the ERS 

scatterometer data. Compared to this, there is a considerable BIAS for the comparisons 

of ms derived from ERS scatterometer and ASAR GM data. In the three cases, the ms 
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values consistently underestimated the in-situ measurements. These results are similar 

to the results of other studies where also large differences between the absolute levels of 

soil moisture data sets derived either from remote sensing or models. 

 

 

Figure 50: BIAS between remotely sensed soil moisture derived from ERS scatterometer and ASAR GM 
backscatter measurements for 75 Oklahoma Mesonet stations: ms-ERS vs. in-situ, ms-ASAR at 3 km vs. in-situ, 

ms-ASAR at 50 km vs. in-situ, ms-ERS at 50 km vs. ms-ASAR at 3 km and ms-ERS at 50 km vs. ms-ASAR at 50 km 

 

 

Figure 51: Standard deviation between remotely sensed soil moisture derived from ERS scatterometer 
and ASAR GM backscatter measurements for 75 Oklahoma Mesonet stations: ms-ERS vs. in-situ, ms-ASAR at 
3 km vs. in-situ, ms-ASAR at 50 km vs. in-situ, ms-ERS at 50 km vs. ms-ASAR at 3 km and ms-ERS at 50 km vs. ms-

ASAR at 50 km 

 



6. Results and Discussion 

-98- 

The standard deviations derived from the comparison of the five different 

validation data combinations are given in Figure 51. The standard deviations obtained 

for the five validation data combinations reflect the results of the correlation analysis 

but mirrored. The smallest standard deviations were found for the ms-ERS at 50 km vs. 

ms-ASAR at 50 km combination which showed the best correlations and the highest 

standard deviation for the comparison of ms-ASAR at 3 km with the in-situ soil moisture 

measurements for which the lowest correlation have been calculated. 

A comparison of the correlation R between ms-ASAR at 3 km and the in-situ soil 

moisture measurements with land cover patterns shows that there exists no distinct 

relation in the spatial distribution of stations with certain correlation values and specific 

land cover classes (Figure 52). There is no spatial clustering of either high or low R 

values observable. From the grassland dominated western part of Oklahoma to the 

forest covered south-eastern part of the state, either high or medium or low correlations 

can be observed. Thus, the correlation R at neighbouring stations can vary substantially. 

The same applies to the spatial distribution of the BIAS (Figure 53) and standard 

deviation values (Figure 54) derived from the comparison of ms-ASAR at 3 km with in-situ 

soil moisture measurements at the Mesonet stations. Also in this case, the spatial 

distribution of the statistics does not follow a systematic scheme. 

Based on this observation it can be said, that the change detection approach used 

for soil moisture retrieval works well for different land cover classes. The model 

parameters dry reference, slope and sensitivity can account for the spatial distribution of 

different land cover features and vegetation patterns. This is a remarkable fact, as 

natural grasslands and cultivated farm lands differ in their vegetation phenology. This 

can be seen as a proof that neglecting seasonal vegetation effects in the soil moisture 

retrieval procedure does not cause significant retrieval errors and are a valid 

simplification.  

 



6. Results and Discussion 

-99- 

 
Figure 52: Spatial distribution of correlation R between ms-ASAR at 3 km and in-situ soil moisture for 75 

Oklahoma Mesonet stations 
 

 
Figure 53: Spatial distribution of BIAS between ms-ASAR at 3 km and in-situ soil moisture for 75 

Oklahoma Mesonet stations 
 

 
Figure 54: Spatial distribution of Standard Deviation between ms-ASAR at 3 km and in-situ soil moisture 

for 75 Oklahoma Mesonet stations 
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6.4. Retrieval Error  

According to the principles of Gaussian error propagation, the overall retrieval 

error Δms is estimated as the sum of the partial derivates of the parameters of the 

inverted change detection backscatter model Eq. 5.46 for two scenarios (see Table 6). 

The retrieval error for the surface soil moisture estimates based on the theoretical 

considerations made on the error sources has been calculated for two scenarios: for 

completely dry and for completely wet surface soil moisture conditions. The values for 

the model parameters used within this calculation are listed in Table 6. 

 

Parameter Scenario 1 Scenario 2

Δσ 0 1.2 dB 1.2 dB
0σΔ 10% 10%
0σΔ 10% 10%

Δβ 10% 10%

ms 0% 100%

 Table 6: Settings for calculating model uncertainty 

The retrieval error has been calculated for every grid point of the ASAR GM radar 

backscatter time series data base. A map showing the spatial distribution of the retrieval 

error over Oklahoma is shown in Figure 55. 

 

Figure 55: Soil moisture retrieval error Δms [%] 
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The map of the retrieval error Δms, mirrors the spatial patterns found for the slope 

parameter β and the sensitivity S. In general, a high retrieval error can be observed over 

Oklahoma. The eastern part of Oklahoma covered by denser vegetation is characterized 

by higher retrieval errors of >20% than the western part of the state with values around 

15%, where grasslands and agricultural lands prevail. 

When analyzing Eq. 5.46, it can be said, that changes in the model parameters 

slope β, dry and wet references σ 0
dry and σ 0

wet , even when the setting to rather high 

values, cause only little change in the retrieval error for a given sensitivity S at small (θ 

= 20°) or large (θ = 40°) incidence angles and at completely dry (ms = 0) or saturated 

(ms = 1) surface soil moisture conditions. In any case, the noise Δσ 0 in the radar 

backscatter data has the largest influence on the retrieval error. Therefore the estimation 

of the retrieval error can also be reduced to a simpler formulation: 

%100
0

⋅
Δ

=Δ
S

ms
σ  (6.1) 

Now, the retrieval error Δms can be regarded as function of the sensitivity S for a 

given backscatter noise level Δσ 0. 

 

Figure 56: Retrieval error Δms as a function of the sensitivity S for given noise Δσ 0 in radar backscatter 
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Even though the slope parameter β is not contained in Eq. 6.1, it is still accounted 

for, as areas covered by denser vegetation typically are characterized by high negative 

slope values and low sensitivities (see also Figure 39 & Figure 40). Therefore a low 

sensitivity as observed for densely vegetated areas will lead to a high retrieval error. 

From Figure 56 it can be seen, that a sensitivity S ≥ 6 dB is required to reach a relative 

error Δms ≤ 20%. For comparison, Δσ 0 of the ERS scatterometer is mostly in the range 

from about 0.15 − 0.3 dB depending on land cover and azimuthal effects, which means 

that a much lower sensitivity is required in order to reach a comparable accuracy of the 

soil moisture estimates. This dependency on the noise level in the backscatter data is 

illustrated in Figure 57, shows the relation between sensitivity and retrieval error for 

noise levels form 0 dB to 2 dB. 

 

Figure 57: Model uncertainty Δms in relation to the sensitivity S for different values of Δσ0  
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When comparing the results of the retrieval error estimation with the standard 

deviations calculated for the ms-ASAR at 3 km-in-situ soil moisture combination, it must 

be recognized that the estimated retrieval error slightly underestimates the real 

conditions. This can be addressed to the scaling problem, which needs to be taken into 

account, when comparing areal estimates of surface soil moisture at 3 km and 50 km 

with the in-situ soil moisture point measurements. Furthermore, errors of the in-situ 

measurements caused by errors of related to the measurement principle and the soil 

moisture sensors used as well as errors connected to the conversion of absolute soil 

moisture to unitless relative FWI soil moisture values also contribute to the real error. If 

soil hydraulic properties would be known, the real error based on the comparison of the 

remotely sensed ms-ASAR at 3 km and the in-situ soil moisture measurements could be 

calculated for every grid point of the remotely sensed time series data base and mapped 

for the Oklahoma test site.  

The absolute error of the soil moisture estimates could theoretically be calculated, 

if the true value of the surface soil moisture is known. Unfortunately this is not the case 

as the soil moisture measurements also contain systematic and random errors which can 

not be quantified. Therefore a calculation of the absolute error can be performed when 

assuming that the two datasets, the estimated relative surface soil moisture and the in-

situ soil moisture measurements are characterized by comparable absolute errors. Based 

on this assumption, the standard error (SE) can be estimated from the standard deviation 

(SD) between the two data sets according to Eq. 5.28 with SE=SD/√n with n=2. The 

observed standard deviation for the comparison of ms-ASAR at 3 km and the in-situ soil 

moisture varies between approx. 15% and 35%, which corresponds to a standard error 

of ≈10.6% to ≈24.7%. Depending on soil texture and porosity, a soil can contain 

different amounts of water. A loamy soil for example may contain a maximum of 

approx. 0.4 m³⋅m-3 of water. Using the standard errors found for the comparison of ms-

ASAR at 3 km and the in-situ soil moisture, the real error of the remotely sensed soil 

moisture in units of volumetric soil moisture can be derived. The real error of the 

remotely sensed soil moisture in case for the loamy soil is in the range of 10.6% of 0.04 

m³⋅m-3 with ≈0.04 m³⋅m-3 to 24.7% of 0.4 m³⋅m-3 with ≈0.09 m³⋅m-3. This is in good 

agreement with previous studies, where similar values absolute errors were found 

(Pellarin et al. 2006; Crow & Zhan 2007; de Jeu et al. 2008).  
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Chapter 7 

Conclusions and Outlook 

7.1. Conclusions 

Soil moisture has been identified as an important variable in the Earth’s hydrologic, 

energy and carbon cycle. Routine measurements of soil moisture at continental to global 

scales are not feasible. Remote sensing offers the possibility of regular acquisition of 

areal data. Active space-borne sensors operating in the microwave region of the 

electromagnetic spectrum are regarded as optimum tools for soil moisture monitoring. 

Recognizing the non-availability of operational soil moisture retrieval algorithms for 

spatial high resolution SAR data and motivated by the achievements made with a soil 

moisture change detection algorithm for ERS-1/2 scatterometer data, a change detection 

algorithm was developed, implemented and validated within this thesis. The work was 

based on a comprehensive archive of ASAR GM data. An automatic processing chain 

has been set up for geometric correction, radiometric calibration, incidence angle 

normalization and resampling from irregular image format to regular gridded time series 

format. The soil moisture change detection algorithm originally developed for ERS-1/2 

scatterometer data was adapted for use with ASAR GM data. The model parameters dry 

reference, slope and sensitivity have been estimated and relative surface soil moisture 

data were generated for the Oklahoma test site. The results were validated using in-situ 

soil moisture data from the Oklahoma Mesonet and ERS-1/2 scatterometer derived 

relative surface soil moisture. Good agreement between ASAR GM relative surface soil 

moisture and both in-situ soil moisture measurements and ERS-1/2 scatterometer 

derived soil moisture was observed. The direct comparison of the results shows that the 

surface soil moisture extracted from ERS-1/2 scatterometer data performs slightly better 

than the data derived from ASAR GM. As the main source of error, the noise of the 

ASAR GM data with a value of 1.2 dB has been identified. Due to the ScanSAR 

imaging principle, the radiometric accuracy of the ASAR GM data with 1.2 dB is low 
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when compared to scatterometers like the ERS-1/2 or the MetOp ASCAT, which 

deliver data with a radiometric resolution of at least 0.3 dB. Therefore spatial averaging 

is recommended to account for the noise level in the ASAR GM data to some degree. 

Even so, the ASAR GM data offer surface soil moisture data with much more details 

than the ERS-1/2 scatterometer data and still keeping the capability of the scatterometer 

data to map temporal surface soil moisture trends. 

The validation of the remotely sensed soil moisture extracted from ASAR GM data 

has proven that neglecting seasonal vegetation cover effects can be regarded as a valid 

assumption. The three model parameters are able to describe the spatial land cover and 

vegetation patterns. Nevertheless, the observed and quantified retrieval errors can be 

addressed - besides the noise level of the ASAR GM data as main error source - to the 

simplifying assumption on the influence of vegetation. With an increasing spatial 

coverage it can be possible to further reduce the retrieval error by incorporating a 

description of seasonal vegetation cover effects in the backscatter model by introducing 

a seasonally varying slope parameter β, which better accounts for the influences of the 

vegetation phenology on radar backscatter. 

This leads directly to a disadvantage of the ASAR sensor. Due to the multi-purpose 

character of the Envisat mission, the ASAR modes were designed as exclusive modes. 

The sensor can be operated in conventional strip-map mode or in one of the two 

ScanSAR modes at one time. Even though the ASAR GM was laid out as so called 

background mission with a potential daily coverage of 35%, only an irregular temporal 

coverage was achieved for ASAR GM data, as the imaging modes of the ASAR sensor 

have been designed as exclusive modes. For some regions like the central and western 

part of Europe, only a very small number of ASAR GM data have been acquired, 

because a large number of data orders for acquisitions in image mode or WS needed to 

be satisfied. Therefore it would be beneficial for soil moisture retrieval using change 

detection approaches that future missions, which are intended to yield data from 

regional to global scales, solely focus on ScanSAR data. Such time series data sets 

would perfectly fill in the gap between temporal high resolution scatterometers and 

spatial high resolution SAR’s.  

The results as presented in this doctoral thesis show that ASAR GM data can be 

used for an operational soil moisture monitoring system. For operational applications of 

ASAR GM data, improvements of the data dissemination procedures are recommended. 
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Operational data processing and product generation requires easy and fast access to the 

data, especially if a near-real-time service is aspired. Therefore the EO data should be 

made accessible via rolling archives without tedious data ordering tools which require 

manual user input.  

In the present study, the influence of the vegetation has been neglected. As it has 

turned out, this assumption worked well for the selected test site. It must be admitted 

that this does not guarantee from itself the easy transferability to other test sites in other 

vegetation zones with different climatologic conditions. To test the validity and the 

applicability of the proposed soil moisture retrieval approach, further studies are 

necessary. First results obtained for the southern African continent suggest that this is 

possible (Bartsch et al. 2006; Wagner et al. 2007c). Developing and validating soil 

moisture retrieval algorithms essentially require reference data. The main problem here 

is the non-availability of long-term in-situ soil moisture measurement networks for 

different climate and vegetation zones. Existing networks are too much dependent on 

the commitment of single persons/institutions and/or funding through national or 

international sources. From a researchers point of view it would be highly appreciated, 

if space agencies would actively support the setting up and operation of validation in 

different Earth regions. 

According to the initial research questions raised in Chapter 1.2. it can be 

concluded that the ASAR GM data are potentially suited for use in pre-operational soil 

moisture monitoring applications. The big advantage of the ASAR GM derived relative 

surface soil moisture data is their much higher level of detail when compared to the 

ERS-1/2 scatterometer derived surface soil moisture maps. This allows mapping surface 

soil moisture patterns, which are not visible in scatterometer derived soil moisture maps 

– simply because of the substantial difference in spatial resolution of the two sensor 

concepts. The disadvantage of the ASAR GM data is their relatively high noise level, 

which has been identified as the main source of error. The reason for this can be found 

in the design of the ASAR GM mode measurement principle which is a compromise 

between temporal resolution and radiometric accuracy. Degrading the ASAR GM data 

from its original spatial resolution of 1 km to 3 km can compensate this deficiency to 

some degree. Due to technological limitations connected to the ScanSAR technique, the 

temporal resolution of ScanSAR data as offered by the ASAR sensor will never be 

comparable to the temporal resolution of scatterometers.  
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7.2. Outlook 

The importance of soil moisture as a land surface parameter that links the global 

energy, water and carbon cycle has been emphasised by the rising awareness of climate 

change. The fourth assessment report of the IPCC stressed the value of soil moisture as 

an land surface parameter required for climate and carbon flux models and their 

evaluation (IPCC 2007). The Global Climate Observing System (GCOS), an institution 

founded in 1992 to support the World Climate Programme, the Intergovernmental Panel 

on Climate Change (IPCC) and the United Nations Framework Convention on Climate 

Change (UNFCCC), lists soil moisture as an emerging climate variable. In recent a 

report of the Terrestrial Observation Panel for Climate to the steering committee of 

GCOS, it was endorsed that soil moisture should be added to the list of the essential 

climate variables (ECV’s), as it is important for the initialization of climate models and 

the assessment of climate feedbacks (GCOS 2008b). The steering committee supports 

the development of soil moisture as an ECV and encourages space agencies to consider 

the implementation of soil moisture observations from space in their activities (GCOS 

2008a). The necessity of incorporating soil moisture in future Earth observation 

missions is underlined by a recent technical paper edited by the IPCC, where it has been 

stated that ‘many hydrometeorological variables e.g., streamflow, soil moisture and 

actual evapotranspiration, are inadequately measured’ (IPCC 2008).  

It is generally agreed upon that in-situ soil moisture measurements at continental to 

global scales is not feasible due to organisational and financial reasons. The exploitation 

of the unique sensitivity of radiation from the microwave region of the electromagnetic 

spectrum to surface soil moisture content makes microwave remote sensing methods to 

the tool of choice. Within the microwave remote sensing community, soil moisture 

retrieval has been a research issue for the last 30 years. But still, this topic is and will be 

an objective of Earth observation missions. An overview of current and planned 

missions related to soil moisture is given in Figure 58. Even this list of 22 missions in 

this overview is not complete, e.g. the MetOp satellite series with the current MetOp-1 

satellite and its ASCAT sensor is missing.  
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Figure 58: Selected current and planned  Earth observation missions related to soil moisture (ESA 2008) 

 

The European Space Agency started activities in active radar remote sensing with 

the launch of the ERS-1 satellite carrying the active microwave instrument (AMI) in 

1991. Since then data are acquired on a global level at various spatial and temporal 

scales. In 2009, the Envisat satellite as the follow-up mission of ERS-2 will enter its 

seventh year in orbit. The Envisat mission will be replaced by the Sentinel program with 

the launch of the first satellite Sentinel-1 in 2011. Like its predecessors ERS-1/2 and 

Envisat, it will carry a C-band SAR sensor, which will offer four acquisition modes: 1) 

an conventional strip-map mode with a swath width of 80 km and a spatial resolution of 

5 m x 5 m, 2) an interferometric wide swath mode with a swath width of 250 km and a 

spatial resolution of 5 m x 20 m, 3) an extra wide swath mode covering a swath of 400 

km at a spatial resolution of 25 m x 100 m and 4) a low data rate wave mode. With the 

Sentinel program ESA will guarantee the continuity of their time series data bases of 

global radar backscatter measurements.  
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Only very recently, soil moisture retrieval reached a level of maturity which allows 

operational applications. On 18th December 2008, the European Organisation for the 

Exploitation of Meteorological Satellites (EUMETSAT) announced that the ASCAT 

soil moisture service was declared operational (http://www.eumetsat.int/Home/Main/ 

Media/Features/708786). The ASCAT sensor is a C-band scatterometer operated by 

EUMETSAT, which supplements ERS-1/2 C-band scatterometer data. The sensor is 

carried by the first out of three satellite of the MetOp program, which is intended to 

deliver data for the next fifteen years. The ASCAT sensor offers C-band backscatter 

time series data at an improved spatial temporal resolution. The coexistence of 

scatterometers with high temporal resolutions and ScanSAR systems with much higher 

spatial resolutions gives the opportunity to combine the advantages of both sensor 

designs. Great potential lays in the combined exploitation of temporal high resolution 

and spatial high resolution microwave remote sensing data using downscaling 

approaches. 
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Table A.1: Correlation R between ms-ERS at 50 km and in-situ soil moisture at 75 Oklahoma 
Mesonet stations 

 
Station ID R Station ID R 

ACME 0.722446 MEDI 0.746926 
ALV2 0.492322 MIAM 0.728911 
APAC 0.617444 MINC 0.693085 
ARD2 0.706427 MRSH 0.610917 
ARNE 0.604920 NEWK 0.618569 
BEAV 0.546185 NOWA 0.737833 
BESS 0.833470 NRMN 0.731497 
BIXB 0.378326 PAWN 0.690299 
BLAC 0.657727 PERK 0.664596 
BOIS 0.377550 PORT 0.611180 
BREC 0.775692 PRYO 0.792180 
BRIS 0.489175 PUTN 0.373217 
BUTL 0.701183 REDR 0.508897 
CALV 0.389141 RING 0.680754 
CAMA 0.658264 SALL 0.704810 
CENT 0.632626 SKIA 0.632789 
CHER 0.290125 SLAP 0.678223 
CHEY 0.705617 SPEN 0.745101 
CLOU 0.719552 STIG 0.679939 
COOK 0.673216 STIL 0.632647 
COPA 0.711884 STUA 0.632589 
ELRE 0.683804 TAHL 0.577904 
ERIC 0.482835 TISH 0.778702 
FAIR 0.563422 VINI 0.790492 
FORA 0.607530 WALT 0.741745 
GOOD 0.647549 WASH 0.764690 
GRA2 0.641382 WATO 0.617019 
GUTH 0.611241 WEAT 0.664398 
HASK 0.780562 WEST 0.702498 
HECT 0.839217 WILB 0.762922 
HINT 0.414862   
HOBA 0.584433   
HOLL 0.561004   
HOOK 0.618751   
HUGO 0.720217   
IDAB 0.757592   
INOL 0.731496   
JAYX 0.643163   
KENT 0.536877   
KING 0.528923   
LAHO 0.336416   
LANE 0.695025   
MARE 0.671215   
MAYR 0.558661   
MCAL 0.747673   
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Table A.2: Correlation R between ms-ASAR at 3 km and in-situ soil moisture at 75 Oklahoma 
Mesonet stations 

 
Station ID R Station ID R 

ACME 0.465989 MEDI 0.663593 
ALV2 0.455964 MIAM 0.521112 
APAC 0.549907 MINC 0.571518 
ARD2 0.338129 MRSH 0.568627 
ARNE 0.547684 NEWK 0.725744 
BEAV 0.480435 NOWA 0.580448 
BESS 0.787061 NRMN 0.175002 
BIXB 0.381542 PAWN 0.582102 
BLAC 0.640823 PERK 0.634383 
BOIS 0.261607 PORT 0.488814 
BREC 0.702773 PRYO 0.717112 
BRIS 0.516269 PUTN 0.332796 
BUTL 0.684022 REDR 0.627366 
CALV 0.495414 RING 0.717508 
CAMA 0.620700 SALL 0.389296 
CENT 0.531486 SKIA 0.476361 
CHER 0.291306 SLAP 0.380390 
CHEY 0.727637 SPEN 0.512871 
CLOU 0.529641 STIG 0.592588 
COOK 0.299140 STIL 0.433123 
COPA 0.506344 STUA 0.555212 
ELRE 0.677912 TAHL 0.519754 
ERIC 0.180478 TISH 0.724741 
FAIR 0.366034 VINI 0.675783 
FORA 0.385442 WALT 0.528687 
GOOD 0.520445 WASH 0.600955 
GRA2 0.557464 WATO 0.725148 
GUTH 0.649951 WEAT 0.575575 
HASK 0.707884 WEST 0.418864 
HECT 0.728318 WILB 0.754322 
HINT 0.404601   
HOBA 0.426915   
HOLL 0.336700   
HOOK 0.511393   
HUGO 0.653531   
IDAB 0.681736   
INOL 0.599403   
JAYX 0.393457   
KENT 0.508175   
KING 0.492070   
LAHO 0.345417   
LANE 0.539333   
MARE 0.651098   
MAYR 0.576084   
MCAL 0.491643   
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Table A.3: Correlation R between ms-ASAR at 50 km and in-situ soil moisture at 75 Oklahoma 
Mesonet stations 

 
Station ID R Station ID R 

ACME 0.662378 MEDI 0.787411 
ALV2 0.519851 MIAM 0.659002 
APAC 0.628533 MINC 0.696855 
ARD2 0.653924 MRSH 0.610280 
ARNE 0.567511 NEWK 0.640781 
BEAV 0.503983 NOWA 0.719859 
BESS 0.828895 NRMN 0.751500 
BIXB 0.412659 PAWN 0.688046 
BLAC 0.687127 PERK 0.735300 
BOIS 0.258683 PORT 0.585874 
BREC 0.777450 PRYO 0.777820 
BRIS 0.574824 PUTN 0.412871 
BUTL 0.781491 REDR 0.555476 
CALV 0.449220 RING 0.735134 
CAMA 0.689431 SALL 0.703757 
CENT 0.609550 SKIA 0.625744 
CHER 0.360249 SLAP 0.657039 
CHEY 0.686863 SPEN 0.628768 
CLOU 0.632036 STIG 0.672229 
COOK 0.618073 STIL 0.704601 
COPA 0.637505 STUA 0.628271 
ELRE 0.693953 TAHL 0.590993 
ERIC 0.456736 TISH 0.730783 
FAIR 0.582838 VINI 0.769178 
FORA 0.587091 WALT 0.752744 
GOOD 0.617005 WASH 0.742295 
GRA2 0.655877 WATO 0.677803 
GUTH 0.687970 WEAT 0.671728 
HASK 0.731148 WEST 0.662831 
HECT 0.790457 WILB 0.719498 
HINT 0.469529   
HOBA 0.624515   
HOLL 0.526197   
HOOK 0.572138   
HUGO 0.697540   
IDAB 0.756954   
INOL 0.704253   
JAYX 0.642942   
KENT 0.484528   
KING 0.551239   
LAHO 0.456431   
LANE 0.606622   
MARE 0.699707   
MAYR 0.551991   
MCAL 0.728723   
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Table A.4: Correlation R between ms-ERS at 50 km and ms-ASAR at 3 km at 75 Oklahoma 
Mesonet stations 

 
Station ID R Station ID R 

ACME 0.659692 MEDI 0.610279 
ALV2 0.787634 MIAM 0.388572 
APAC 0.806887 MINC 0.667961 
ARD2 0.427192 MRSH 0.761959 
ARNE 0.772390 NEWK 0.786485 
BEAV 0.707856 NOWA 0.747962 
BESS 0.818925 NRMN 0.222314 
BIXB 0.570898 PAWN 0.737111 
BLAC 0.736309 PERK 0.696089 
BOIS 0.852400 PORT 0.685423 
BREC 0.821918 PRYO 0.706714 
BRIS 0.570808 PUTN 0.796732 
BUTL 0.818200 REDR 0.785314 
CALV 0.396534 RING 0.753024 
CAMA 0.770332 SALL 0.389614 
CENT 0.508909 SKIA 0.526051 
CHER 0.543497 SLAP 0.748187 
CHEY 0.812345 SPEN 0.486235 
CLOU 0.623986 STIG 0.714256 
COOK 0.468918 STIL 0.468108 
COPA 0.701967 STUA 0.653993 
ELRE 0.732343 TAHL 0.597636 
ERIC 0.687876 TISH 0.773956 
FAIR 0.675233 VINI 0.757822 
FORA 0.590269 WALT 0.691808 
GOOD 0.858922 WASH 0.651138 
GRA2 0.791572 WATO 0.841658 
GUTH 0.776161 WEAT 0.847532 
HASK 0.792737 WEST 0.552384 
HECT 0.735143 WILB 0.742187 
HINT 0.816461   
HOBA 0.796682   
HOLL 0.633895   
HOOK 0.723235   
HUGO 0.676475   
IDAB 0.742087   
INOL 0.701478   
JAYX 0.528147   
KENT 0.771426   
KING 0.829618   
LAHO 0.765138   
LANE 0.609752   
MARE 0.707830   
MAYR 0.792953   
MCAL 0.600856   
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Table A.5: Correlation R between ms-ERS at 50 km and ms-ASAR at 50 km at 75 Oklahoma 
Mesonet stations 

 
Station ID R Station ID R 

ACME 0.7224 MEDI 0.7469 
ALV2 0.4923 MIAM 0.7289 
APAC 0.6174 MINC 0.6931 
ARD2 0.7064 MRSH 0.6109 
ARNE 0.6049 NEWK 0.6186 
BEAV 0.5462 NOWA 0.7378 
BESS 0.8335 NRMN 0.7315 
BIXB 0.3783 PAWN 0.6903 
BLAC 0.6577 PERK 0.6646 
BOIS 0.3776 PORT 0.6112 
BREC 0.7757 PRYO 0.7922 
BRIS 0.4892 PUTN 0.3732 
BUTL 0.7012 REDR 0.5089 
CALV 0.3891 RING 0.6808 
CAMA 0.6583 SALL 0.7048 
CENT 0.6326 SKIA 0.6328 
CHER 0.2901 SLAP 0.6782 
CHEY 0.7056 SPEN 0.7451 
CLOU 0.7196 STIG 0.6799 
COOK 0.6732 STIL 0.6326 
COPA 0.7119 STUA 0.6326 
ELRE 0.6838 TAHL 0.5779 
ERIC 0.4828 TISH 0.7787 
FAIR 0.5634 VINI 0.7905 
FORA 0.6075 WALT 0.7417 
GOOD 0.6475 WASH 0.7647 
GRA2 0.6414 WATO 0.6170 
GUTH 0.6112 WEAT 0.6644 
HASK 0.7806 WEST 0.7025 
HECT 0.8392 WILB 0.7629 
HINT 0.4149   
HOBA 0.5844   
HOLL 0.5610   
HOOK 0.6188   
HUGO 0.7202   
IDAB 0.7576   
INOL 0.7315   
JAYX 0.6432   
KENT 0.5369   
KING 0.5289   
LAHO 0.3364   
LANE 0.6950   
MARE 0.6712   
MAYR 0.5587   
MCAL 0.7477   
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Table A.6: BIAS between ms-ERS at 50 km and in-situ soil moisture at 75 Oklahoma Mesonet 
stations 

 
Station ID BIAS [%] Station ID BIAS [%] 

ACME -27.5610 MEDI -25.2930 
ALV2 -17.6616 MIAM -18.0893 
APAC -17.5996 MINC -6.63459 
ARD2 -14.7912 MRSH -16.6048 
ARNE -19.4773 NEWK -35.0480 
BEAV -22.8719 NOWA -9.24058 
BESS -5.20618 NRMN -4.11376 
BIXB -38.1005 PAWN -11.6471 
BLAC -9.90941 PERK -16.9723 
BOIS -12.7763 PORT -17.4288 
BREC -6.76872 PRYO -22.9728 
BRIS -19.1713 PUTN -23.9856 
BUTL -20.1922 REDR -25.1095 
CALV -39.7766 RING -5.94425 
CAMA -3.57918 SALL -22.9391 
CENT -34.8931 SKIA -23.8189 
CHER -22.0497 SLAP -19.3525 
CHEY -16.1979 SPEN -21.5013 
CLOU -29.3168 STIG -16.7644 
COOK -8.65068 STIL -13.1556 
COPA -23.6853 STUA -29.6607 
ELRE -26.3745 TAHL -20.7311 
ERIC -31.7617 TISH -11.1425 
FAIR -20.5492 VINI -23.3746 
FORA -34.3745 WALT -10.2902 
GOOD -12.7556 WASH -18.2083 
GRA2 -15.1186 WATO -8.92402 
GUTH -20.6886 WEAT -1.95685 
HASK -34.0198 WEST -25.7695 
HECT -11.1342 WILB -19.7236 
HINT -29.3813   
HOBA -7.49548   
HOLL -5.42922   
HOOK -21.1197   
HUGO -14.7724   
IDAB -11.9096   
INOL -18.9607   
JAYX -23.4258   
KENT -22.7638   
KING -25.9785   
LAHO -21.8415   
LANE -31.7813   
MARE -23.4555   
MAYR -18.9679   
MCAL -22.7303   
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Table A.7: BIAS between ms-ASAR at 3 km and in-situ soil moisture at 75 Oklahoma Mesonet 
stations 

 
Station ID BIAS [%] Station ID BIAS [%] 

ACME -22.5053 MEDI -21.1818 
ALV2 -12.3061 MIAM -17.8750 
APAC -13.1875 MINC -8.24299 
ARD2 -12.3647 MRSH -18.0575 
ARNE -17.0645 NEWK -28.4737 
BEAV -17.3025 NOWA -13.6517 
BESS -0.166667 NRMN 1.83529 
BIXB -36.6203 PAWN -8.56250 
BLAC -5.55000 PERK -12.7033 
BOIS -5.18103 PORT -17.1047 
BREC -0.887755 PRYO -21.2683 
BRIS -16.3913 PUTN -19.2000 
BUTL -11.3238 REDR -20.8478 
CALV -36.4524 RING -3.86239 
CAMA 3.46218 SALL -28.0145 
CENT -31.1429 SKIA -27.5000 
CHER -15.0787 SLAP -12.1944 
CHEY -9.77451 SPEN -17.1650 
CLOU -26.3187 STIG -17.9767 
COOK -6.63889 STIL -11.7816 
COPA -27.8590 STUA -30.3492 
ELRE -20.9216 TAHL -21.4699 
ERIC -27.4000 TISH -10.5301 
FAIR -16.8387 VINI -23.0488 
FORA -27.4507 WALT -1.45192 
GOOD -6.62832 WASH -17.1786 
GRA2 -4.61856 WATO -6.71591 
GUTH -19.0899 WEAT -0.0808082 
HASK -31.5730 WEST -23.9722 
HECT -18.4225 WILB -15.2706 
HINT -23.0000   
HOBA -2.69318   
HOLL 3.84783   
HOOK -11.8295   
HUGO -6.78652   
IDAB -6.61176   
INOL -19.1728   
JAYX -27.1000   
KENT -14.7658   
KING -23.1919   
LAHO -18.9186   
LANE -28.5652   
MARE -17.4000   
MAYR -14.1848   
MCAL -20.5632   
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Table A.8: BIAS between ms-ASAR at 50 km and in-situ soil moisture at 75 Oklahoma 
Mesonet stations 

 
Station ID BIAS [%] Station ID BIAS [%] 

ACME -22.3571 MEDI -17.3023 
ALV2 -11.0408 MIAM -18.4444 
APAC -9.71250 MINC -5.38947 
ARD2 -12.3176 MRSH -13.5402 
ARNE -12.4405 NEWK -30.1915 
BEAV -16.7521 NOWA -8.64474 
BESS -1.97222 NRMN -1.09756 
BIXB -34.6835 PAWN -7.21519 
BLAC -5.17500 PERK -13.8427 
BOIS -3.02586 PORT -18.7531 
BREC -4.08163 PRYO -21.9024 
BRIS -18.2805 PUTN -20.9625 
BUTL -14.8161 REDR -20.5185 
CALV -34.5000 RING -4.25287 
CAMA -0.485437 SALL -25.2899 
CENT -32.7262 SKIA -26.7848 
CHER -15.9205 SLAP -12.0297 
CHEY -9.14706 SPEN -17.6591 
CLOU -27.6333 STIG -19.8718 
COOK -9.80282 STIL -10.8506 
COPA -25.7949 STUA -30.6935 
ELRE -22.6477 TAHL -17.6988 
ERIC -26.9778 TISH -8.66216 
FAIR -16.0215 VINI -26.3699 
FORA -35.3000 WALT -4.63736 
GOOD -5.62832 WASH -16.0119 
GRA2 -5.01031 WATO -5.47674 
GUTH -16.6977 WEAT -2.11236 
HASK -33.1235 WEST -23.6620 
HECT -11.9143 WILB -14.3614 
HINT -27.8750   
HOBA -1.15909   
HOLL 2.61446   
HOOK -14.1774   
HUGO -9.17241   
IDAB -8.85882   
INOL -18.1625   
JAYX -25.6282   
KENT -11.8829   
KING -22.2588   
LAHO -19.5349   
LANE -30.2326   
MARE -21.5349   
MAYR -13.3370   
MCAL -19.8333   
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Table A.9: BIAS between ms-ERS at 50 km and ms-ASAR at 3 km at 75 Oklahoma Mesonet 
stations 

 
Station ID BIAS [%] Station ID BIAS [%] 

ACME 5.00784 MEDI 4.11122 
ALV2 5.37147 MIAM 1.55517 
APAC 4.22567 MINC -1.51635 
ARD2 2.17046 MRSH -1.45263 
ARNE 1.31649 NEWK 6.57434 
BEAV 5.06013 NOWA -4.41110 
BESS 2.03024 NRMN 5.94906 
BIXB 1.47654 PAWN 3.14322 
BLAC 4.35941 PERK 4.26905 
BOIS 7.21107 PORT 0.324148 
BREC 5.88097 PRYO 1.70453 
BRIS 2.78000 PUTN 5.01381 
BUTL 8.86843 REDR 4.26166 
CALV 3.02668 RING 2.08186 
CAMA 7.13003 SALL -5.00263 
CENT 3.40861 SKIA -4.20580 
CHER 6.21773 SLAP 6.61614 
CHEY 6.42334 SPEN 4.33624 
CLOU 3.25017 STIG -0.876048 
COOK 2.01179 STIL 1.18521 
COPA -4.17370 STUA 0.391415 
ELRE 5.12693 TAHL -0.738813 
ERIC 8.90336 TISH 0.592194 
FAIR 3.71049 VINI 0.325806 
FORA 6.54658 WALT 7.64494 
GOOD 6.12727 WASH 1.13545 
GRA2 9.94153 WATO 2.20811 
GUTH 1.59871 WEAT 1.87605 
HASK 2.44681 WEST 1.79723 
HECT -6.28846 WILB 4.45296 
HINT 6.61146   
HOBA 4.80229   
HOLL 9.27705   
HOOK 9.18712   
HUGO 7.98586   
IDAB 5.36198   
INOL -0.156057   
JAYX -3.67424   
KENT 7.99801   
KING 2.92184   
LAHO 2.92290   
LANE 4.00792   
MARE 6.05547   
MAYR 3.18851   
MCAL 2.13724   
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Table A.10: BIAS between ms-ERS at 50 km and ms-ASAR at 50 km at 75 Oklahoma Mesonet 
stations 

 
Station ID BIAS [%] Station ID BIAS [%] 

ACME 5.99051 MEDI 7.29949 
ALV2 6.54319 MIAM 0.782258 
APAC 7.80592 MINC 2.39152 
ARD2 2.50767 MRSH 3.06461 
ARNE 4.98533 NEWK 5.24305 
BEAV 5.82355 NOWA -0.378403 
BESS 2.03024 NRMN 2.38283 
BIXB 3.43904 PAWN 4.43477 
BLAC 4.73441 PERK 3.27902 
BOIS 9.55021 PORT -1.41763 
BREC 2.68709 PRYO 1.07039 
BRIS 0.673516 PUTN 2.56554 
BUTL 3.41139 REDR 4.64742 
CALV 4.07924 RING 2.16120 
CAMA 2.90923 SALL -2.34549 
CENT 1.46543 SKIA -3.01381 
CHER 5.50237 SLAP 6.37660 
CHEY 7.05080 SPEN 2.32096 
CLOU 1.76454 STIG -3.13592 
COOK -0.621847 STIL 2.26475 
COPA -2.10959 STUA -0.883799 
ELRE 3.21235 TAHL 3.03227 
ERIC 8.93494 TISH 1.81050 
FAIR 4.52770 VINI -2.49994 
FORA -0.429746 WALT 5.75796 
GOOD 7.12727 WASH 2.35898 
GRA2 9.86072 WATO 3.97104 
GUTH 3.74325 WEAT 0.142549 
HASK 0.298917 WEST 1.90954 
HECT -0.450329 WILB 5.00328 
HINT 1.08047   
HOBA 6.33638   
HOLL 7.72227   
HOOK 7.02582   
HUGO 5.47115   
IDAB 2.90960   
INOL 0.684236   
JAYX -2.52989   
KENT 10.8809   
KING 2.82132   
LAHO 2.30662   
LANE 0.796465   
MARE 1.72888   
MAYR 4.51330   
MCAL 2.68134   
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Table A.11: Standard deviation SD between ms-ERS at 50 km and in-situ soil moisture at 75 
Oklahoma Mesonet stations 

 
Station ID SD [%] Station ID SD [%] 

ACME 22.7256 MEDI 21.7846 
ALV2 30.1948 MIAM 19.0760 
APAC 22.6804 MINC 22.7418 
ARD2 21.3213 MRSH 22.3308 
ARNE 24.5497 NEWK 18.7752 
BEAV 27.0786 NOWA 19.0668 
BESS 16.7184 NRMN 17.9993 
BIXB 24.3710 PAWN 20.6212 
BLAC 23.8899 PERK 21.7861 
BOIS 31.0242 PORT 22.7009 
BREC 19.9603 PRYO 16.7111 
BRIS 25.2655 PUTN 27.4670 
BUTL 22.5861 REDR 25.5069 
CALV 25.0416 RING 26.0854 
CAMA 24.4532 SALL 18.9375 
CENT 20.0353 SKIA 16.3573 
CHER 32.0891 SLAP 23.3178 
CHEY 24.3066 SPEN 19.4209 
CLOU 17.7464 STIG 19.6462 
COOK 19.2230 STIL 25.1666 
COPA 18.5201 STUA 19.5852 
ELRE 19.0898 TAHL 21.3950 
ERIC 23.2644 TISH 16.6794 
FAIR 24.4917 VINI 14.7934 
FORA 19.8911 WALT 23.2245 
GOOD 21.4483 WASH 19.0785 
GRA2 23.4257 WATO 23.9458 
GUTH 22.4949 WEAT 21.0370 
HASK 15.5271 WEST 19.4239 
HECT 16.8413 WILB 19.3593 
HINT 29.4981   
HOBA 27.5641   
HOLL 27.1714   
HOOK 24.6285   
HUGO 23.4555   
IDAB 16.7446   
INOL 22.0614   
JAYX 20.0503   
KENT 30.6744   
KING 23.5174   
LAHO 30.3363   
LANE 18.8997   
MARE 20.8651   
MAYR 24.0960   
MCAL 20.6069   
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Table A.12: Standard deviation SD between ms-ASAR at 3 km and in-situ soil moisture at 75 
Oklahoma Mesonet stations 

 
Station ID SD [%] Station ID SD [%] 

ACME 29.2382 MEDI 24.8890 
ALV2 30.7422 MIAM 23.8244 
APAC 24.1824 MINC 25.6213 
ARD2 29.0733 MRSH 23.2946 
ARNE 25.4630 NEWK 14.0734 
BEAV 27.3287 NOWA 22.9273 
BESS 18.4154 NRMN 29.0578 
BIXB 21.4370 PAWN 23.2089 
BLAC 24.3258 PERK 22.4403 
BOIS 33.5840 PORT 24.3967 
BREC 22.9216 PRYO 19.0140 
BRIS 24.4787 PUTN 27.8124 
BUTL 23.0641 REDR 21.8757 
CALV 21.3510 RING 25.0246 
CAMA 25.3841 SALL 25.1177 
CENT 21.5133 SKIA 19.5570 
CHER 30.2937 SLAP 30.2743 
CHEY 23.9256 SPEN 24.8892 
CLOU 21.6666 STIG 20.9902 
COOK 25.0100 STIL 29.3164 
COPA 23.2137 STUA 18.8749 
ELRE 18.4893 TAHL 21.1004 
ERIC 27.2842 TISH 18.4089 
FAIR 27.6532 VINI 17.6551 
FORA 22.8516 WALT 29.4318 
GOOD 23.4860 WASH 23.6241 
GRA2 25.5854 WATO 19.9931 
GUTH 21.0247 WEAT 23.1118 
HASK 15.1814 WEST 25.4337 
HECT 20.5730 WILB 19.6501 
HINT 28.4631   
HOBA 30.8621   
HOLL 31.8161   
HOOK 26.0703   
HUGO 25.6508   
IDAB 19.0013   
INOL 25.9180   
JAYX 24.8889   
KENT 31.4136   
KING 22.3920   
LAHO 27.8746   
LANE 22.2431   
MARE 20.8811   
MAYR 23.4492   
MCAL 26.8496   
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Table A.13: Standard deviation SD between ms-ASAR at 50 km and in-situ soil moisture at 75 
Oklahoma Mesonet stations 

 
Station ID SD [%] Station ID SD [%] 

ACME 25.0477 MEDI 23.0090 
ALV2 28.9086 MIAM 21.0512 
APAC 21.6592 MINC 22.6346 
ARD2 23.9877 MRSH 21.7372 
ARNE 25.0457 NEWK 15.1411 
BEAV 26.9949 NOWA 20.4879 
BESS 17.2887 NRMN 18.9428 
BIXB 18.6682 PAWN 21.5178 
BLAC 23.5994 PERK 20.7243 
BOIS 32.2944 PORT 22.5818 
BREC 20.4242 PRYO 19.3592 
BRIS 22.2463 PUTN 23.5041 
BUTL 21.9097 REDR 22.4839 
CALV 21.4436 RING 26.9518 
CAMA 24.7310 SALL 19.6380 
CENT 19.6336 SKIA 15.4045 
CHER 28.3744 SLAP 24.2122 
CHEY 25.7760 SPEN 23.4133 
CLOU 20.4980 STIG 19.3822 
COOK 18.0465 STIL 24.1572 
COPA 20.5106 STUA 17.7548 
ELRE 17.5021 TAHL 19.7470 
ERIC 21.9933 TISH 19.5849 
FAIR 22.9205 VINI 14.9680 
FORA 16.3586 WALT 24.6173 
GOOD 20.6662 WASH 21.1338 
GRA2 22.3726 WATO 21.3573 
GUTH 20.3181 WEAT 19.4553 
HASK 14.6111 WEST 21.5764 
HECT 22.3372 WILB 22.8017 
HINT 25.9997   
HOBA 25.5972   
HOLL 27.8895   
HOOK 24.3708   
HUGO 26.7317   
IDAB 18.2738   
INOL 25.0516   
JAYX 21.0590   
KENT 31.9399   
KING 19.7750   
LAHO 24.2534   
LANE 20.4771   
MARE 19.5987   
MAYR 23.7132   
MCAL 24.1081   
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Table A.14: Standard deviation SD between ms-ERS at 50 km and ms-ASAR at 3 km at 75 
Oklahoma Mesonet stations 

 
Station ID SD [%] Station ID SD [%] 

ACME 18.7356 MEDI 19.4695 
ALV2 14.8421 MIAM 21.9262 
APAC 14.1127 MINC 18.1876 
ARD2 22.0278 MRSH 14.9809 
ARNE 14.4830 NEWK 14.0747 
BEAV 17.8522 NOWA 17.3704 
BESS 15.7919 NRMN 24.1809 
BIXB 19.5537 PAWN 14.9108 
BLAC 15.3807 PERK 16.1285 
BOIS 10.8407 PORT 17.4000 
BREC 15.6021 PRYO 16.5778 
BRIS 20.4056 PUTN 14.9307 
BUTL 14.3105 REDR 14.7130 
CALV 22.0493 RING 16.0448 
CAMA 14.9224 SALL 22.5157 
CENT 20.6233 SKIA 18.0489 
CHER 21.1182 SLAP 17.7684 
CHEY 13.1261 SPEN 18.3444 
CLOU 16.0722 STIG 16.7104 
COOK 23.2659 STIL 21.8139 
COPA 15.5978 STUA 18.0536 
ELRE 17.1166 TAHL 18.5561 
ERIC 17.1826 TISH 13.4453 
FAIR 17.5786 VINI 15.0208 
FORA 20.6074 WALT 17.7344 
GOOD 15.4032 WASH 18.3960 
GRA2 15.6989 WATO 13.5434 
GUTH 14.4153 WEAT 13.7958 
HASK 15.1073 WEST 19.2174 
HECT 15.3128 WILB 14.9878 
HINT 14.6981   
HOBA 16.1414   
HOLL 17.8636   
HOOK 17.9598   
HUGO 15.8942   
IDAB 14.7939   
INOL 17.5872   
JAYX 18.4148   
KENT 13.7113   
KING 14.5688   
LAHO 17.1451   
LANE 18.0475   
MARE 16.6421   
MAYR 13.9890   
MCAL 17.9157   
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Table A.15: Standard deviation SD between ms-ERS at 50 km and ms-ASAR at 50 km at 75 
Oklahoma Mesonet stations 

 
Station ID SD [%] Station ID SD [%] 

ACME 11.4034 MEDI 12.0986 
ALV2 10.3576 MIAM 14.2372 
APAC 9.44824 MINC 9.13107 
ARD2 14.3240 MRSH 8.01796 
ARNE 8.44693 NEWK 10.4748 
BEAV 8.75852 NOWA 11.9420 
BESS 11.0398 NRMN 13.2688 
BIXB 15.7856 PAWN 10.7813 
BLAC 8.43795 PERK 11.2837 
BOIS 6.86166 PORT 13.1601 
BREC 9.23397 PRYO 14.1605 
BRIS 12.0811 PUTN 9.98306 
BUTL 9.68424 REDR 11.1048 
CALV 13.8375 RING 12.9439 
CAMA 10.3253 SALL 14.4955 
CENT 12.7750 SKIA 10.8815 
CHER 10.7288 SLAP 9.03774 
CHEY 9.62337 SPEN 12.9781 
CLOU 13.6399 STIG 14.6411 
COOK 16.4901 STIL 12.1816 
COPA 10.7273 STUA 14.5404 
ELRE 8.92413 TAHL 15.9540 
ERIC 9.68342 TISH 11.5816 
FAIR 10.1053 VINI 12.2383 
FORA 12.7506 WALT 9.72522 
GOOD 8.50356 WASH 12.7651 
GRA2 9.23705 WATO 10.8211 
GUTH 11.8315 WEAT 9.67412 
HASK 13.7137 WEST 14.8041 
HECT 13.3706 WILB 13.0557 
HINT 9.80872   
HOBA 10.8858   
HOLL 10.5021   
HOOK 9.32436   
HUGO 12.6995   
IDAB 12.8824   
INOL 14.7322   
JAYX 14.5802   
KENT 7.66045   
KING 10.7493   
LAHO 10.7650   
LANE 12.4163   
MARE 12.1038   
MAYR 9.42522   
MCAL 13.1882   
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Figure B 1: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station ACME for the period 

January 2005 to July 2006. 

 
 

 
Figure B 2: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 

line) (top) and in‐situ measurements (bottom) at the MESONET station ALV2 for the period January 
2005 to July 2006. 
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Figure B 3: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station APAC for the period 

January 2005 to July 2006. 

 
 

 
Figure B 4: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station ARD2 for the period 

January 2005 to July 2006. 
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Figure B 5: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station ARNE for the period 

January 2005 to July 2006. 

 
 

 
Figure B 6: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station BEAV for the period 

January 2005 to July 2006. 
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Figure B 7: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 

line) (top) and in‐situ measurements (bottom) at the MESONET station BESS for the period January 
2005 to July 2006. 

 
 

 
Figure B 8: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station BIXB for the period January 

2005 to July 2006. 
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Figure B 9: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station BLAC for the period 

January 2005 to July 2006. 

 
 

 
Figure B 10: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station BOIS for the period January 

2005 to July 2006. 
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Figure B 11: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station BREC for the period 

January 2005 to July 2006. 

 
 

 
Figure B 12: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station BRIS for the period January 

2005 to July 2006. 
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Figure B 13: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station BUTL for the period 

January 2005 to July 2006. 

 
 

 
Figure B 14: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station CALV for the period 

January 2005 to July 2006. 
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Figure B 15: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station CAMA for the period 

January 2005 to July 2006. 

 
 

 
Figure B 16: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station CENT for the period 

January 2005 to July 2006. 
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Figure B 17: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station CHER for the period 

January 2005 to July 2006. 

 
 

 
Figure B 18: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station CHEY for the period 

January 2005 to July 2006. 
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Figure B 19: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station CLOU for the period 

January 2005 to July 2006. 

 
 

 
Figure B 20: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station COOK for the period 

January 2005 to July 2006. 
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Figure B 21: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station COPA for the period 

January 2005 to July 2006. 

 
 

 
Figure B 22: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station ELRE for the period January 

2005 to July 2006. 
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Figure B 23: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station ERIC for the period January 

2005 to July 2006. 

 
 

 
Figure B 24: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station FAIR for the period January 

2005 to July 2006. 
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Figure B 25: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station FORA for the period 

January 2005 to July 2006. 

 
 

 
Figure B 26: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station GOOD for the period 

January 2005 to July 2006. 
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Figure B 27: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station GRA2 for the period 

January 2005 to July 2006. 

 
 

 
Figure B 28: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station GUTH for the period 

January 2005 to July 2006. 
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Figure B 29: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station HASK for the period 

January 2005 to July 2006. 

 
 

 
Figure B 30: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station HECT for the period 

January 2005 to July 2006. 
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Figure B 31: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station HINT for the period January 

2005 to July 2006. 

 
 

 
Figure B 32: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station HOBA for the period 

January 2005 to July 2006. 
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Figure B 33: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station HOLL for the period 

January 2005 to July 2006. 

 
 

 
Figure B 34: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station HOOK for the period 

January 2005 to July 2006. 
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Figure B 35: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station HUGO for the period 

January 2005 to July 2006. 

 
 

 
Figure B 36: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station IDAB for the period January 

2005 to July 2006. 
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Figure B 37: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station INOL for the period January 

2005 to July 2006. 

 
 

 
Figure B 38: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station JAYX for the period January 

2005 to July 2006. 
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Figure B 39: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station KENT for the period 

January 2005 to July 2006. 

 
 

 
Figure B 40: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station KING for the period January 

2005 to July 2006. 
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Figure B 41: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station LAHO for the period 

January 2005 to July 2006. 

 
 

 
Figure B 42: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station LANE for the period 

January 2005 to July 2006. 
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Figure B 43: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station MARE for the period 

January 2005 to July 2006. 

 
 

 
Figure B 44: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station MAYR for the period 

January 2005 to July 2006. 
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Figure B 45: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station MCAL for the period 

January 2005 to July 2006. 

 
 

 
Figure B 46: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station MEDI for the period 

January 2005 to July 2006. 
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Figure B 47: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station MIAM for the period 

January 2005 to July 2006. 

 
 

 
Figure B 48: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station MINC for the period 

January 2005 to July 2006. 
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Figure B 49: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station MRSH for the period 

January 2005 to July 2006. 

 
 

 
Figure B 50: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station NEWK for the period 

January 2005 to July 2006. 
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Figure B 51: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station NOWA for the period 

January 2005 to July 2006. 

 
 

 
Figure B 52: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station NRM for the period January 

2005 to July 2006. 
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Figure B 53: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station PAWN for the period 

January 2005 to July 2006. 

 
 

 
Figure B 54: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station PERK for the period 

January 2005 to July 2006. 



APPENDIX 

-169 - 

 
 

 
Figure B 55: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station PORT for the period 

January 2005 to July 2006. 

 
 

 
Figure B 56: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station PYRO for the period 

January 2005 to July 2006. 
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Figure B 57: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station PUTN for the period 

January 2005 to July 2006. 

 
 

 
Figure B 58: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station REDR for the period 

January 2005 to July 2006. 
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Figure B 59: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station RING for the period January 

2005 to July 2006. 

 
 

 
Figure B 60: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station SALL for the period January 

2005 to July 2006. 
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Figure B 61: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station SKIA for the period January 

2005 to July 2006. 

 
 

 
Figure B 62: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station SLAP for the period January 

2005 to July 2006. 
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Figure B 63: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station SPEN for the period 

January 2005 to July 2006. 

 
 

 
Figure B 64: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station STIG for the period January 

2005 to July 2006. 
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Figure B 65: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station STIL for the period January 

2005 to July 2006. 

 
 

 
Figure B 66: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station STUA for the period 

January 2005 to July 2006. 
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Figure B 67: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station TAHL for the period 

January 2005 to July 2006. 

 
 

 
Figure B 68: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station TISH for the period January 

2005 to July 2006. 
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Figure B 69: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station VINI for the period January 

2005 to July 2006. 

 
 

 
Figure B 70: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station WALT for the period 

January 2005 to July 2006. 
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Figure B 71: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station WASH for the period 

January 2005 to July 2006. 

 
 

 
Figure B 72: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station WATO for the period 

January 2005 to July 2006. 
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Figure B 73: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station WEAT for the period 

January 2005 to July 2006. 

 
 

 
Figure B 74: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station WEST for the period 

January 2005 to July 2006. 
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Figure B 75: Soil moisture time series from ASAR GM (solid line) and ERS scatterometer (dashed 
line) (top) and in‐situ measurements (bottom) at the MESONET station WILB for the period January 

2005 to July 2006. 
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