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Abstract

The subject of the present thesis is the simulation of the mechanical behavior of
idealized, dry foam structures, namely the Kelvin structure and the Weaire-Phelan
structure. These structures are models for solidified, dry, closed-cell foams, such
as metal foams and polymer foams. The results of such simulations help in gain-
ing insight into the principal deformation mechanisms that govern the mechanical
behavior of real solid foams.

The geometry of both the Kelvin and the Weaire-Phelan foams is predicted with
the program Surface Evolver that can calculate the shape of liquid surfaces which
is governed by surface tension. As a result the cell walls are slightly curved, which
affects the mechanical behavior of microstructures representing low-density foams.
The respective geometries from Surface Evolver are transformed to Finite Element
unit cell models for subsequent stress and deformation analyses.

For the determination of the tensors of elasticity, an isotropic linear-elastic bulk
material is assumed. The presented results of linear analyses comprise the full
tensor of elasticity and its dependence on the relative density. The dependence of
the apparent Young’s modulus on the loading direction is discussed and correlated
with the cubic symmetry of the structures. The slight curvature of the cell walls
influences the linear-elastic behavior for relative densities below 4%.

With metal foams in mind, the bulk material behavior for the non-linear simulation
is chosen to be elastic-plastic. Therefore, yielding of the bulk material will also affect
the effective behavior on the macro-mechanical level, which is demonstrated well
by the simulations. Different approaches for the definition of initial yield surfaces
are discussed, and such initial yield surfaces are calculated for both foam structures
based on a non-linear approach.

One section of the present thesis is also devoted to wet foam structures dominated
by Plateau borders. A unit cell of a wet Weaire-Phelan foam is predicted with
the help of Surface Evolver. This unit cell is a promising candidate for further
studies.



Kurzfassung

Das Thema dieser Diplomarbeit ist die Simulation des mechanischen Verhaltens von
idealisierten, trockenen Schaumstrukturen: der Kelvin- und der Weaire-Phelan-
Struktur. Diese Strukturen sind Modelle fiir feste, trockene, geschlossenzellige
Schaume wie Metall- oder Polymerschaume. Die Ergebnisse solcher Simulationen
helfen, die Verformungsmechanismen zu verstehen, die das mechanische Verhalten
von realen, festen Schdumen bestimmen.

Die Geometrien der Kelvin- und der Weaire-Phelan-Strukturen werden mit dem
Programm Surface Fvolver berechnet. Surface Evolver erméglicht die Berechnung
der Form von Fliissigkeitsfilmen, die durch das Phéanomen der Oberflichenspannung
bestimmt wird. Der Umstand, dass die so vorhergesagten Zellwénde leicht gekriimmt
sind, beeinflusst das mechanische Verhalten der Modelle von Schdumen mit geringer
Dichte. Die mit Surface Evolver vorhergesagten Geometrien werden in Finite Ele-
mente Einheitszellenmodelle umgewandelt und so einer Spannungs- und Deforma-
tionsanalyse zuganglich gemacht.

Fiir die Ermittlung des effektiven Elastizitdtstensors wurde von einem linear-elasti-
schen Grundmaterial ausgegangen. Die Resultate umfassen den vollsténdigen Elas-
tizitdtstensor und seine Abhéngigkeit von der relativen Dichte. Die Abhéngigkeit
des effektiven E-Moduls von der Belastungsrichtung wird erértert und mit der ku-
bischen Symmetrie der Strukturen in Beziehung gesetzt. Die leichte Kriimmung
der Zellwénde beeinflusst das linear-elastische Verhalten fiir relative Dichten unter

4%.

Im Hinblick auf Metallschdume wurde fiir die nichtlinearen Analysen ein elasto-
plastisches Materialverhalten des Grundmaterials angenommen. Die Nichtlinearitat
des effektiven Materialverhaltens wird von der Nichtlinearitdt des Grundmaterials
dominiert. Geometrische Nichtlinearitdten spielen eine untergeordnete Rolle. Ver-
schiedene Ansétze fiir die Definition von AnfangsflieBflachen werden besprochen,
und Anfangsfliefflichen werden mit Hilfe einer nichtlinearen Methode fiir beide
Schaumstrukturen berechnet.

In einem Abschnitt der vorliegenden Arbeit werden auch nasse Schaumstrukturen
behandelt, die von Plateau Borders dominiert werden. Mit Surface Evolver wird
eine Einheitszelle fiir einen nassen Weaire-Phelan-Schaum berechnet. Diese Einheit-
szelle ist ein Erfolg versprechender Kandidat fiir weiterfiihrende Untersuchungen.
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1 Introduction

Metal foams are a promising new class of materials, still unfamiliar to most engi-
neers. As metal foams are entering the stage of practical application it is important
to close remaining gaps in the knowledge about these materials.

In this introduction we first discuss the production, properties and applications of
metal foams. Lastly, we present a short literature overview over existing microme-
chanical simulation studies.

1.1 Production of Metal Foams

Today most commercially available metal foams are based on aluminum or nickel
and their respective alloys. However, it is also possible to produce foams from steel,
titanium, magnesium or other metals. Figure 1.1 shows a microscopic cross-section

through a closed-cell aluminum foam.
G

<l

Figure 1.1: Cross-section through a closed-cell aluminum
foam. Image courtesy of Neuman Aluminium.

Metal foams are made by several different processing techniques. Many of these
techniques are still under rapid development. Three basic concepts are shortly
described in the following paragraphs.

Bubbling gas through a liquid metal

A simple way of producing a metal foam is bubbling gas (most commonly air)
through a liquid metal (most commonly aluminum). The bubbles float to the



1 Introduction

surface and form a foam. At this point of the process drainage of liquid down the
walls of the bubbles occurs. For pure metals the rate of drainage is very high and
the foam does not remain stable long enough to solidify. Thus, small, insoluble
particles are added to the liquid metal. These particles raise the viscosity and
slow down drainage. The closed cell foams produced this way have cell diameters
between 5 mm and 20 mm. The relative densities lie in the range between 0.03 and
0.1. Figure 1.2 shows a schematic illustration of the process.

Melt
drainage

Crucible

o+
H
hd

Stirring paddle E
& gas injector

Heating R

Figure 1.2: Production of aluminum foam by gas-injection.
Picture from [Ashby et al., 2000, p. 8].

Gas-releasing particle decomposition in the melt

Another way of producing a metal foam is based on foaming agents such as titanium
hydride (TiHg). If titanium hybride in the form of small particles is added to an
aluminum melt, the foaming agent decomposes into Ti and Hy. Thus, large volumes
of hydrogen gas are produced and foam forms above the melt. The cell diameters
lie between 0.5 mm and 5mm. The relative densities lie in the range between 0.07
and 0.2.

Gas-releasing particle decomposition in semi-solids

The particles of a foaming agent (TiHy) are mixed with an aluminum alloy powder.
The powder is then consolidated and heated up. As hydrogen gas is produced, voids
with a high internal pressure are created. These voids expand and finally form a
foam.

Several methods not described here are also used for producing metal foams. A
discussion of the different processes can be found in [Ashby et al., 2000].
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1.2 Properties of Metal Foams

The mechanical properties of metal foams depend on those of the material from
which they are made and on their relative density (or apparent density) pye1, which
is the average density p* of the foam divided by the density ps of the solid metal

from which it is made. .

P
e = - (1.1)
S

S

Fortunately, the relative density can be measured easily by weighing a sample of
known volume.

Moreover, it is important whether the foam has open or closed cells. In this report
we will only address closed cell foams.

At first sight one might think that the cell size should also be an important param-
eter. However, most mechanical properties depend only weakly on cell size.

1.3 Applications for Metal Foams

Lightweight structures

Let us consider a plate with variable thickness loaded in bending. When we require
a certain bending stiffness the mass of the plate scales with p/E/3:

p

M~ T

(1.2)

When we require bending strength instead of bending stiffness the mass of the plate

scales with p/ ayl/ 2 where oy is the yield strength of the material:
p
m 172 (1.3)
Metal foams have very attractive values of both p/E'/3 and p/ o*yl/ 2. Therefore,

they are very well suited for lightweight structures.

Metal foams are also used as cores for sandwich structures.

Energy absorbers

Metal foams have a long, flat stress-strain curve. When their compressive strength
is exceeded the stress stays almost constant (plateau stress) until the densification
strain is reached. This feature makes metal foams ideal energy absorbers. The

10
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energy absorbers are designed so that the plateau stress is just below the stress
that would cause damage.

Sound absorption and vibration suppression

Metal foams have higher mechanical damping than the solids of which they are
made. So by using metal foams it is possible to design parts that are stiff and
strong at low weight and have the ability of damping vibrations. This is a very
interesting combination for example for the transportation and the machine tool
industry.

Other possible applications are heat exchangers, thermal insulation, buoyancy ap-
plications, biocompatible inserts, and many others. Moreover, metal foams are
recyclable, non-toxic and at least some of them are relatively cheap.

1.4 Simulation of Metal Foams

Numerous micromechanical models have been developed to predict the macroscopic
behavior of solid foams. Here we present a short overview over some studies related
to the present text.

Grenestedt [Grenestedt, 1999] calculated the effective elastic behavior of various
models for solid foams using analytical and numerical techniques. The paper in-
cludes an FEM model of the flat-faced Kelvin foam. (As a simplification, the slightly
curved faces of the Kelvin foam were regarded as flat.) The effective Young’s mod-
ulus and shear modulus of Kelvin foams were found to scale almost linearly with
the relative density.

Grenestedt [Grenestedt, 1998] also derived upper bounds on the stiffness of closed
cell cellular solids with cell walls featuring wavy imperfections. The calculations
were based on a square plate with uniform thickness and a sinusoidal imperfection
with arbitrary amplitude. The small, wavy imperfections were shown to signifi-
cantly reduce the stiffness of the models.

Grenestedt and Bassinet [Grenestedt & Bassinet, 2000] used an FEM model of the
flat-faced Kelvin foam to study the influence of cell wall thickness variations on the
stiffness of closed cell foams. They found that the decrease of foam stiffnesses is
minor even for large thickness variations.

Grenestedt and Tanaka [Grenestedt & Tanaka, 1999] modelled the effect of cell
shape variations on the stiffness of closed cell cellular solids. They used the Voronoi
tessellation of the body-centered cubic lattice (which is exactly the flat-faced Kelvin
foam) as a reference model, and then randomly perturbed the “seed-points” of the
Voronoi tessellation. The effective elastic moduli were shown not to be sensitive to
cell shape variations.

11
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Roberts and Garboczi [Roberts & Garboczi, 2001] studied the effective elastic prop-
erties of random closed cell cellular solids. They employed non-periodic, large FEM
models (122 cells) based on Voronoi tessellations and Gaussian random fields.

In this report we will use the Finite Element method to study the effective mechan-
ical behavior of two different dry foam structures. The first one is the Kelvin foam,
also studied in several papers mentioned above. However, in contrast to these works
we do not neglect the slight curvature of the faces of the Kelvin foam dictated by
the laws of Plateau [Plateau, 1873].

The second foam structure studied is the Weaire-Phelan foam introduced by Denis
Weaire and Robert Phelan in 1994 [Weaire & Phelan, 1994]. The Weaire-Phelan
foam has lower surface energy than the Kelvin foam, and is thus the new candidate
for the optimal monodisperse! foam structure. The Weaire-Phelan foam can be
considered a more realistic representation of real foams than the Kelvin foam. Like
the Kelvin foam, the Weaire-Phelan foam has slightly curved faces.

!That is, foam structures built up by cells of equal volume.

12



2 Introduction to Liquid Foams

2.1 Elements of a Liquid Foam

In this section we will qualitatively describe the elements of a liquid foam struc-
ture.

~

Figure 2.1: Photograph of a dry, liquid foam; Picture from
[Weaire & Hutzler, 1999, p. 161].

A liquid foam is a two-phase system in which gas cells are enclosed by a liquid.
A foam may contain more or less liquid. If it has little liquid we speak of a dry
foam.

A dry foam consists of thin films, which can be idealized as single surfaces. The
bubbles are polyhedral cells with these surfaces as their faces. (As we will see later,
even in a “perfect foam” these faces are not perfectly flat.) The films meet in lines,
which are the edges of the polyhedra. The lines meet in vertices. Figure 2.1 is a
photograph of a dry, liquid foam structure. In the middle of the picture we can see
a polyhedron with five-sided and six-sided faces.

The description presented in the last paragraph is only true for foams containing
very little liquid. If the amount of liquid is increased, the edges of the dry foam
are replaced by Plateau borders. Most of the liquid of the foam is found there. The
cross-section of a Plateau border is a concave triangle (Figure 2.2).

As all the edges of the dry foam structure are replaced by Plateau borders, the
Plateau borders form a continuous network. Figure 2.3 shows a small section of

13
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Figure 2.2: Cross-section of a Plateau border with adjacent
films.

such a network. For the sake of clarity the faces of the polyhedral cells have been
removed from the picture. Figure 2.3 is the result of a computer simulation, based
on the polyhedral cell in Figure 2.4 (left) - see Section 4.3.

Figure 2.3: Continuous network of Plateau borders; The
faces of the polyhedral cells have been removed!

If we look at a single polyhedral cell, we can see that the formation of the Plateau
borders rounds off the sharp edges of the cells. Figure 2.4 shows two polyhedral
cells. The left one has sharp edges - so this cell is part of a very dry foam. The
right one shows the same cell with the amount of liquid having been increased.
(The volume liquid fraction is about 2%.) Here the sharp edges are rounded off.

14
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=

Figure 2.4: With the formation of the Plateau borders the
sharp edges of the polyhedral cells are rounded off. The
volume liquid fraction is about 2%.

2.2 Elastic Properties of a Liquid Foam

Under low applied stress a liquid foam has some of the properties of a solid material.
So it is possible to specify elastic moduli for a liquid foam. The shear modulus of
such a foam is mainly a result of the surface tension of the liquid phase. This is
why the shear modulus is typically very small. The bulk modulus is mainly a result
of the gas pressure in the cells. So the bulk modulus is usually much bigger than
the shear modulus. [Weaire & Hutzler, 1999]

It is obvious that these elastic properties of a liquid foam have nothing to do with
the elastic properties of a solid metal foam, which will be examined in this report.

2.3 Local Equilibrium Rules

2.3.1 Mean Local Curvature

Let us have a look at the point X on the general surface shown in Figure 2.5. A
plane which includes the surface normal at X intersects the surface in a curve. This
curve has a local radius of curvature R. It can be shown that it is always possible
to specify two directions at right angles to each other, such that the radii R; and
Ry take maximal and minimal values. Their inverses k1 = R% and ko = R% are the
principal curvatures of the surface at X. The mean of these principal curvatures is
called the mean local curvature H:

1 1 /1 1
gt _ 1 L 2.1
g (F1+h2) =5 <R1 + Rz) (2.1)

Remark: The mean curvature is not to be confused with the Gaussian curvature.

15
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Figure 2.5: Curved surface illustrating principal curvatures.

2.3.2 The Law of Laplace

For a homogeneous liquid the work dU required to create a new surface is propor-
tional to the increase of surface J A:

SU =54 (2.2)

The proportionality constant -y is called surface tension. It has the dimension force
per unit length or, as one can see from Equation (2.2), surface energy per unit
area.

At a gas-liquid interface there must be a balance of the pressure difference across
the interface (Ap) and the force of surface tension. This is known as the law of

Laplace:
2 1
Ap =2vH Ap = — = — 2.3
p=27H or Ap=- (r=4) (2.3)

In (2.3) H is the mean local curvature, and r = 4 is the local radius of curvature
of the surface. So the law of Laplace relates the pressure difference to the mean
curvature for a liquid surface in equilibrium.

If we insert (2.1) into (2.3) we see that the law of Laplace can also be written as:

1 1
Ap = — 4+ = 24
v= (7 + ) (2.4

An example: If you dip a metal wire frame into a soap solution, a soap film forms.
Obviously here Ap = 0. Thus, for every point of the surface (2.3) yields:

(e )- o5

16



2 Introduction to Liquid Foams

Such a surface is called surface of zero mean curvature. Of course (2.5) is true for
a flat surface where R; = oo and Ry = oco. But it is also true for Ry = —Rs ! In
Figure 2.6 you can see such a surface. The picture shows a numerically generated
image of the surface obtained by dipping a wire frame (thick black line) into a soap
solution. The resulting surface has zero mean curvature everywhere.

It can be shown that a surface like the one in Figure 2.6 has minimal surface area for
the given boundary (the wire frame). So the mean curvature of a minimal surface
is zero everywhere.

Y
\/
55

X!

AVAVZ

N7

\VAV/

\N AKX
Vé’évév”

Figure 2.6: Least-area surface spanning a wire frame. The
mean curvature of such a minimal surface is zero everywhere.

When dealing with foam structures we will also have surfaces between cells with
different pressure (Ap # 0). Then from (2.3) we get:

1

H= > Ap = const or (2.6)
1 /1 1

H=>(—=+— = const 2.
2 <R1 + R2> cons (2.7)

Such a surface is called surface of constant mean curvature or CMC.

2.3.3 The Laws of Plateau

Joseph Plateau (1801 - 1883) added to the law of Laplace some further rules which
are necessary for equilibrium. Here, a very condensed version of these rules is
presented. For more details see for example [Weaire & Hutzler, 1999].

e For a dry foam, the films can intersect only three at a time, and must do so
at an angle of 120°.

e For a dry foam, at the wvertices mo more than four intersection lines may
meet. This tetrahedral vertex is perfectly symmetric, i.e. the angle between
two intersection lines is arccos(—1/3) ~ 109.47°.

17
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e Where a Plateau border joins an adjacent film, the surface is joined smoothly,
that is, the surface normal is the same on both sides of the boundary.

An intersection of four or more films is not stable. (For example an intersection
of four films, immediately splits up to form two intersections of three films.) The
angle of 120° is dictated by the equilibrium of the three equal surface tension force
vectors. See Figure 2.2 on page 14 for the last rule.

2.4 Voronoi Tessellation

We have seen in Section 2.3.3 that three films intersect in one line in an equilibrium
foam structure, and four lines intersect at one vertex. This combinatorics is the
same as is observed generically in Voronoi tessellations. Therefore, it is possible to
describe foam structures as Voronoi tessellations [Kusner & Sullivan, 1996].

To produce a Voronoi tessellation one starts with a list of points in space called
sites. Then the Voronoi cell of each site is defined to be the region containing all
points closer to that site than to any other. The Voronoi tessellation of a symmetric
collection of sites will share its symmetry.

Figure 2.7 shows a two-dimensional example. On the left one can see the Voronoi
tessellation of a hexagonal lattice. The Voronoi cells are regular hexagonal hon-
eycombs. On the right one can see what happens when the sites are slightly per-
turbed.

For an example in three-dimensional space see Figure 3.3 on page 21.
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Figure 2.7: Two-dimensional Voronoi tessellations.
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3 ldeal Dry Foam Structures

3.1 The Kelvin Problem

Sir William Thomson (later Lord Kelvin) (1824 - 1907) was a British physicist.
Kelvin was concerned with a model of the ether! and in 1887 asked the following
question: What space-filling arrangement of cells of equal volume has minimal sur-
face area? This question is today called the Kelvin problem. The problem arises
naturally in the theory of dry foams, as a dry foam structure has an energy pro-
portional to the surface area of the films. So trying to minimize the total energy is
the same as trying to minimize the total surface area.

The Problem has fascinated mathematicians and physicists since then. The book
“The Kelvin Problem” [Weaire, 1996] gives a very good overview on the topic.
Many key papers have been reprinted in this book.

The two-dimensional analogon of the Kelvin Problem is: What area-filling arrange-
ment of cells of equal area has minimal line length? The solution is known: it is
the regular hexagonal honeycomb. This was proven by Thomas C. Hales in 1999.
[Hales, 2001]

In three dimensions the solution for the Kelvin problem is not known. In his paper
“On the Division of Space with Minimum Partitional Area” [Lord Kelvin, 1887]
Kelvin proposed a solution.

3.2 Kelvin’s Solution: The Kelvin Foam

Kelvin considered only those structures in which the cells are identical. (This is
not required by the general problem.) Three possibilities are shown in Figure 3.1.
The pentagonal dodecahedron (left) looks like a very good choice. However, it
simply cannot fill space. The rhombic dodecahedron (middle) can fill space. How-
ever, it contradicts Plateau’s rules (see Section 2.3.3). So it is not stable. The
tetrakaidecahedron (right) was Kelvin’s choice. It can fill space (see Figure 3.4)
and it approximately obeys Plateau’s rules. (The various angles between lines and
surfaces do not have exactly the values required.)

!The ether was a hypothetical medium the vibrations of which were identified with light waves.
This idea is obsolete today.

19
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¢ KRV

Figure 3.1: Kelvin’s candidates: left: Pentagonal dodecahe-
dron; middle: rhombic dodecahedron; right: Tetrakaideca-
hedron.

Figure 3.2: Regular octahedron consisting of eight equilat-
eral triangles.

You can look at the tetrakaidecahedron from two different perspectives. One pos-
sibility is to start with a regular octahedron consisting of eight equilateral triangles
(see Figure 3.2) and truncate the six corners. You do this in such a way that the
triangles of the octahedron become equilateral hexagons. The second possibility is
to view the tetrakaidecahedron as the Voronoi tessellation (see Section 2.4) for the
body-centered cubic (bce) lattice. Figure 3.3 shows the body-centered cubic lattice
(left), and the body-centered cubic lattice with one tetrakaidecahedron sitting in
the middle (right).

As already mentioned the tetrakaidecahedron does not exactly obey Plateau’s rules.
For equilibrium the angles between surfaces should be 120°. The angles between
lines meeting at vertices should be arccos(—1/3) &~ 109.47°. Kelvin showed how a
slight distortion of the hexagonal faces was sufficient to solve this problem. This
distortion reduces the surface area of the cell by about 0.2%! The quadrilateral
faces stay flat. We are going to call this distorted tetrakaidecahedron “The Kelvin
Cell”.

It is not possible to describe the geometry of the Kelvin Cell by an explicit for-
mula. Kelvin used an approximation - a low order harmonic function. However,
using the program Surface Evolver (see Chapter 4) we can calculate a very good
approximation to the Kelvin Cell. We start with the tetrakaidecahedron and let
Surface Evolver “relax” the structure. The relaxed structure then fulfills Plateau’s
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r//v

Figure 3.3: Left: body-centered cubic lattice; right: body-
centered cubic lattice with one tetrakaidecahedron sitting in
the middle.

laws.

Figure 3.4 (left) shows a group of Kelvin cells. Figure 3.4 (right) shows a cubic
unit cell. This unit cell fills space, when repeated in a simple cubic lattice. A single
Kelvin Cell has to be repeated in a body-centered cubic lattice to fill space.

As mentioned before, in the Kelvin foam all cells are identical. This also means that
the pressure in all cells is the same. As we have seen in Section 2.3.2 this means
that the surface between two cells must be a surface of zero mean curvature like
the one shown in Figure 2.6 on page 17. So R; = — Ry everywhere on the surface.
But what do these surfaces look like?

To be able to show the distortion of the hexagonal faces we wrote a program that can
take the results from Surface Evolver and magnify the distortions of the hexagonal
faces. The program uses the plane of the vertices of one of the hexagons as its
reference plane and scales the deviations from this plane with a given factor (e.g.
10). This way we obtained the pictures shown in Figures 3.5 and 3.7. Both are
scaled with a factor of 10. The maximum deviation from the plane is about 1.3%
of the length of a diagonal of a hexagonal face.

When the Kelvin foam relaxes (from the tetrakaidecahedron to the Kelvin Cell) all
the symmetries are preserved. These symmetries are the symmetries of the body-
centered cubic lattice that can be seen in Figure 3.3. As the quadrilateral faces
correspond to mirror planes of the lattice, they stay flat. The hexagonal faces do not
correspond to mirror planes, so they do not stay flat. However, the diagonals of the
hexagonal faces are two-fold axes of symmetry. Thus, these diagonals stay straight
when the foam relaxes. In Figure 3.6 one of these two-fold axes of symmetry, which
spans across the hexagons, is shown. In Figure 3.7 one can clearly see that the
diagonals of the hexagonal faces stay straight.

21



3 Ideal Dry Foam Structures

Figure 3.4: Left: 16 Kelvin Cells; right: Cubic unit cell.
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Figure 3.5: Kelvin Cell with the distortion of one hexagonal
face being magnified by a factor of 10.
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Figure 3.6: Two-fold axis of symmetry.

Figure 3.7: Hexagonal face of a Kelvin Cell with the dis-
tortions being magnified by a factor of 10. The dotted line
represents a flat hexagonal face of the tetrakaidecahedron.
Right: The diagonals of the hexagonal face stay straight.
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3.3 The Weaire-Phelan Foam

Kelvin never claimed that his cell was the optimal solution. However, for over
a century, nobody could improve on Kelvin’s partition. But then in 1994, Denis
Weaire and Robert Phelan (of Trinity College, Dublin) came up with a partition
of space that beats Kelvin’s partition by about 0.3% in surface area [Weaire &
Phelan, 1994]. 0.3% is a big amount in this context. This structure is called the
Weaire-Phelan foam.

Figure 3.8: Denis Weaire and Robert Phelan.

As shown in Section 2.3.3 (the laws of Plateau) it would be desirable to find a
polyhedral cell with flat faces and symmetrical tetrahedral vertices for solving the
Kelvin problem. (Such a cell would definitely be the solution.) However, such a
cell does not exist. Nevertheless, it is interesting to calculate the characteristics of
this hypothetical cell. It turns out to have 13.397 faces and 5.1043 sides per face
[Sullivan, 1999]. In [Weaire & Hutzler, 1999] Weaire explains that “this suggests
that a structure should be sought in which the polyhedra have numbers of faces
and sides which deviate from these ideal values as little as possible”. The Weaire-
Phelan foam uses five and six-sided faces exclusively to get as close as possible to
this ideal.

Weaire and Phelan started with the Voronoi tessellation of the lattice shown in
Figure 3.9. Eight cells form a basic unit that can fill space when replicated in a
cubic lattice. The coordinates of the 8 sites (centers) are given in Table 3.1 for a
unit cell of dimension 2x2x2.

Then they used Surface Evolver (see Chapter 4) for minimizing the energy (surface
area) of the structure. The cells generated by the Voronoi tessellation do not have
exactly equal volumes. Fortunately, Surface Evolver can relax the structure (mini-
mize the energy) and equalize the volumes of the cells at the same time. After the
relaxation the Weaire-Phelan foam has a surface area which is approximately 0.3%
less than that of Kelvin’s solution. Kusner and Sullivan outlined a mathematical
proof that the Weaire-Phelan partition does in fact beat Kelvin using a weighted
Voronoi tessellation [Kusner & Sullivan, 1996].
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Figure 3.9: Lattice for the voronoi tessellation of the Weaire-
Phelan Foam; right: One pentagonal dodecahedron sitting
in the middle.

X y Z b y z

0.0 0.0 00|00 1.0 0.5
1.0 1.0 1.0|0.0 1.0 1.5
05 00 10|10 05 0.0
1.5 0.0 10|10 1.5 0.0

Table 3.1: Sites (cell centers) for the Voronoi tessellation of

the Weaire-Phelan Foam in a cubic unit cell of dimension
2x2x2.

Eight cells that form a unit cell for the Weaire-Phelan foam are shown in Figure 3.10.
This unit cell fills space when replicated in a cubic lattice. The eight cells are of two
types: two (irregular) pentagonal dodecahedra and six 14-hedra. The two types of
cells are shown in Figure 3.11 (middle and right).

The pentagonal dodecahedra have 12 pentagonal faces. The 14-hedra have 12
pentagonal and two hexagonal faces. The three different faces of the Weaire-Phelan
foam are shown in Figure 3.12. The pentagonal dodecahedra consist of 12 pentagons
like the one on the left. The 14-hedra consist of all three types of faces shown in
Figure 3.12.

The eight cells shown in Figure 3.10 are a valid unit cell. However, it is often
desirable to have a cubic unit cell. So Figure 3.13 shows the cubic unit cell corre-
sponding to the lattice in Figure 3.9. This cubic unit cell, too, can be replicated in
a cubic lattice to fill space.

If we compare Figure 3.13 to Figure 3.9 we find that the site in the middle and the
eight sites in the corners of Figure 3.9 correspond to a pentagonal dodecahedron.
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Figure 3.10: The Weaire-Phelan Foam; These eight cells fill
space when replicated in a cubic lattice.

<A

Figure 3.11: Middle: (irregular) pentagonal dodecahedra;
right: 14-hedra; Two dodecahedra (middle) plus six 14-
hedra (right) form a basic unit for the Weaire-Phelan Foam.
The Kelvin Cell on the left is only shown for comparison.
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Figure 3.12: The three different faces of the Weaire-Phelan
foam.

Figure 3.13: Cubic unit cell of the Weaire-Phelan foam cor-
responding to the lattice in Figure 3.9.

All the other sites in Figure 3.9 correspond to a 14-hedron.

If we look closely at Figure 3.13 we can see that the 14-hedra are arranged as mutu-
ally perpendicular, interlocking columns. The pentagonal dodecahedra lie between
them on a body-centered cubic lattice. The mutually perpendicular, interlocking
columns of the 14-hedra can also be seen in Figure 3.14.

Remark:

The Weaire-Phelan foam belongs to a class of crystal structures known as tetrahe-
drally close packed (TCP). The TCP structures contain up to four different polyhe-
dra with f = 12, 14, 15 or 16 faces (not 13). All these f-hedra have 12 pentagonal
faces and f — 12 hexagonal faces. Moreover, two hexagons never share an edge
[Kraynik et al., 2003].

If you look closely at Figure 3.10 you can see that the vertices of the cells are curved.
Certainly some of the faces are non-flat. However, it is again not possible to see the
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column 2

column 1

Figure 3.14: The 14-hedra are arranged as mutually perpen-
dicular, interlocking columns.
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exact form of the distortions of the faces. So we are going to take a closer look.

When we let the Weaire-Phelan foam relax (from the Voronoi tessellation in Fig-
ure 3.9 to the Weaire-Phelan foam) all the symmetries are preserved. These sym-
metries are the symmetries of the lattice that can be seen in Figure 3.9. All the
hexagonal faces of the foam correspond to mirror planes of the lattice. So the
hexagonal faces stay flat! All of the other faces do not stay flat.

When we were talking about the Kelvin Cell we argued that as all the cells of the
Kelvin foam are identical, the pressure in the cells is also the same. In the Weaire-
Phelan foam we have two types of cells (dodecahedra and 14-hedra). The pressure
in this two types of cells is not the same. So we have a small pressure difference
across faces that are shared by a dodecahedron and a 14-hedron. These are all faces
except for the hexagonal faces.

As we have seen in Section 2.3.2 faces between cells with different pressure (Ap # 0)
are surfaces of constant mean curvature. For this surfaces the law of Laplace
yields:
1/ 1 1 1
H=-(—+—=—)=— Ap=const 3.1
2 <R1 +R2> 9y TP T O (3:1)
What do these surfaces look like? As in Section 3.2 we took the results from Surface

Evolver and magnified the distortions of the non-flat faces. The non-flat faces are
pentagons of two types (see Figure 3.12 left and right).

The distortions of the pentagons of “Type 1” are shown in Figure 3.15. Here
four vertices of the (relaxed) pentagon lie in a plane and are used for defining the
reference plane. The distortions of the face have been magnified by a factor of
20. The maximum deviation is about 1.74% of the length of a diagonal of the
pentagonal face.

The distortions of the pentagons of “Type 2” are shown in Figure 3.16. Here, three
vertices of the (relaxed) pentagon are used for defining the reference plane. The
distortions of this face have been magnified by a factor of 15.
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Figure 3.15: Weaire-Phelan unit cell with the distortion of a
“Type 1”7 pentagonal face being magnified by a factor of 20.
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Figure 3.16: Weaire-Phelan unit cell with the distortion of a
“Type 2”7 pentagonal face being magnified by a factor of 15.
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3.4 Experimental Observations

Not only physicists and mathematicians but also biologists were fascinated by
Kelvin’s conjecture and the idea of an “ideal cell”. In the 1940s the biologist
Edwin Matzke conducted an extremely labor intensive experiment [Matzke, 1946].
He produced soap bubbles of equal size with the help of a syringe and placed them
in a glass container one by one. This way Matzke produced about 25000 bubbles
and studied each bubble individually.

In the bulk Matzke found an average of f = 13.7 faces per bubble. However, the
most important result was: not a single Kelvin Cell could be found.

Matzke’s experiments are often criticized for various reasons. In [Weaire & Hutzler,
1999] some much more effective methods of experimental foam production are de-
scribed. However, concerning Kelvin Cells Weaire and Hutzler arrive at the same
result: No Kelvin Cells can be found in the bulk.

Fragments of the Weaire-Phelan structure in contrast have been experimentally
observed [Weaire & Hutzler, 1999].
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4 The Surface Evolver

4.1 Introduction

The Surface Evolver is a software package for the modelling of liquid surfaces shaped
by surface tension and other energies. The program was developed by Kenneth
Brakke in the 1990s and is under continuing development. Surface Evolver is freely
available! for various systems (Unix/Linux, Windows, Macintosh).

For an introduction to Surface Evolver we refer to [Brakke, 1992]. A comprehensive
manual is included in the download.

A surface is described as a union of triangles (called facets) in Surface Evolver. The
user defines an initial surface in a datafile. The program then evolves the surface
toward minimal energy by a gradient descent method. In our case this energy will
simply be surface tension. (The surfaces are assumed to have an energy proportional
to their area.) But Evolver can also handle other energies like gravitational energy
or user-defined surface integrals.

As an example Figure 4.1 shows how Surface Evolver calculates the surface of zero
mean curvature we have already seen on page 17.

In the input datafile we define eight vertices followed by eight edges joining pairs
of vertices. Then we define a single face as a loop over all edges. The vertices and
edges can be seen in Figure 4.1 (left).

see http://www.susqu.edu/brakke

Figure 4.1: Left: definition of the “wire frame”; middle: Af-
ter automatic triangulation; right: After refinement and en-
ergy minimization.
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The faces defined in the input file need not be triangles. The face we have defined
is not even flat. When Surface Evolver reads the input file it will automatically
triangulate the face by putting a vertex at its center and adding edges to each
of the original vertices. Figure 4.1 (middle) shows the face after this automatic
triangulation.

Now, we can alternately refine the triangulation and do a couple of iteration steps
to minimize the energy. After three refinement steps we have the surface shown in
Figure 4.1 (right).

Figure 4.2 shows how Surface Evolver refines the triangulation. Each facet (triangle)
is replaced by four smaller ones. So with each refinement step the number of facets
in the model is quadrupled.

Figure 4.2: Refinement of the triangulation in Surface
Evolver.

4.2 Computation of Dry Foam Structures

As already said, Surface Evolver can also calculate approximations to periodic sur-
faces like the Kelvin foam and the Weaire-Phelan foam. In this section we will
explain briefly how this is done.

4.2.1 Computation of the Kelvin and Weaire-Phelan Foams

The input datafiles for the Kelvin and the Weaire-Phelan foams are included in the
sample files that come with Surface Evolver. The files are called twointor.fe (Kelvin
foam) and phelanc.fe (Weaire-Phelan foam).

Table 4.1 shows the input file for the Kelvin foam. The input file starts with
the keyword TORUS_FILLED?. This indicates that we want to calculate a periodic
surface. After the keyword periods the basis vectors of the unit cell are defined.
The unit cell can be an arbitrary parallelepiped. In our case it is simply a cube of
dimension 1x1x1.

Next the vertices are defined. The vertices all lie in the unit cell. However, this
is not necessary. In Figure 4.3 one of the tetrakaidecahedra we want do define and
the cubic unit cell are shown. Moreover, the positions of the 12 vertices defined in

2The term torus refers to the fact that the topology of the periodic surface can be represented
by a flat 3-torus.
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TORUS_FILLED

periods

1.000000 0.000000 0.000000
0.000000 1.000000 0.000000
0.000000 0.000000 1.000000

vertices

1 0.50 0.00 0.75
2 0.25 0.00 0.50
3 0.00 0.25 0.50
4 0.75 0.00 0.50
5 0.00 0.50 0.75
6 0.50 0.00 0.25
7 0.00 0.75 0.50
8 0.50 0.25 0.00
9 0.25 0.50 0.00
10 0.00 0.50 0.25
11 0.50 0.75 0.00
12 0.75 0.50 0.00

edges /* with torus wrap symbols */

1 1 2 % % %

2 2 3 x x *k

3 1 4 % % %

4 3 B x x %

5 2 6 * x *

6 2 7 % *

7 1 8 % *x +

8 4 6 * * *x

[...]

24 9 10 * * *

faces

1 1 2 4 9 16 -7
2 -2 5 12 -16 24 -10
3 -4 10 18 -21

4 7 15 20 -4 11 -3
5 -1 3 8 -5

6 6 14 -11 -2

[...]

14 -19 22 20 21 14 -3
bodies

1 -1 -2-3-4 -5 9 7 11 -9 10 12 5 14 3 volume 0.500
2 2 -6 -7 8 -10 -12 -11 -13 1 13 -14 6 4 -8 volume 0.500

Table 4.1: twointor.fe - Surface Evolver input datafile for the
Kelvin foam; A few lines have been removed.
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the input file are marked with small spheres. At first sight one might think that 12
more vertices are missing in Figure 4.3. However, if we shift the unit cell by one
periodicity vector in each direction we can see that no more than these 12 vertices
are required.

Figure 4.3: Tetrakaidecahedron in the unit cell; The posi-
tions of the 12 vertices defined in the input file are marked
with small spheres.

Next, 24 edges are defined. As we want to define a periodic surface we need a
possibility to say how the surface wraps around the unit cell. This is why Surface
Evolver uses “torus wrap symbols” to define how edges cross the faces of the unit
cell:

* does not cross face of the unit cell,
+ crosses in same direction as periodicity vector,
- crosses in opposite direction as periodicity vector.

For example edge number 6 runs from vertex 2 to vertex 7. It does not cross a face
in z-direction, it does cross a face in negative y-direction and it does not cross a
face in z-direction.

Next 14 faces are defined as a loop over the corresponding edges. Finally two
bodies (two tetrakaidecahedra) are defined by listing the boundary faces.

Why two bodies?

It is not sufficient to define one tetrakaidecahedron as one tetrakaidecahedron can-
not fill the cubic unit cell. If we look at Figure 4.3 we can see that one tetrakaidec-
ahedron is sitting in the middle, and one eighth of a tetrakaidecahedron is needed
for filling up the eight corners of the cubic unit cell.

The lines defining the two bodies in the input file end with volume 0.500. This
means that the volumes of both bodies are constrained to be 0.5. When Surface
Evolver tries to minimize the energy it must keep the volumes at 0.5. (The volume
of the cubic unit cell is 1. As two tetrakaidecahedra fill one unit cell, the volume
of each tetrakaidecahedron must be 0.5.)
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Computation of the Weaire-Phelan foam:

The structure of the input file for the Weaire-Phelan foam (phelanc.fe) is the same
as described above. Naturally, it is much longer. 46 vertices, 92 edges, 54 faces
and 8 bodies are used. The bodies defined in the input file have been generated
by a Voronoi tessellation and do not have exactly equal volumes. However, Surface
Evolver will relax the structure and equalize the volumes of the cells at the same
time. Various pictures of the resulting Kelvin and Weaire-Phelan foams have been
shown in the previous chapter.

4.2.2 Automatic Generation of Surface Evolver Input Files

It is obvious that generating an input file like the one listed in Table 4.1 will be
very difficult to do by hand. Therefore, J. M. Sullivan has written a program called
ves which computes three-dimensional Voronoi tessellations and can format the
output as a Surface Evolver input file. All that vcs needs for generating the input
file for the Weaire-Phelan foam are the coordinates of the eight Voronoi sites (see
Table 3.1).

ves is freely available?. However, the program’s C code is from 1988. We tried to
compile the code, but were not successful. The code would require some updates,
so that it can be compiled with a current C compiler.

4.2.3 Reported Areas and the Isoperimetric Quotient

The surface area that Surface Evolver reports after each iteration is the area of the
surface within one unit cell. (We will use this number later to calculate the volume
of the bulk material by multiplying the surface area within one unit cell with the
thickness of the shell elements.) After evolving one of the foams it is a good idea
to compare the surface area reported by Surface Evolver with values given in the
literature e.g. [Weaire & Phelan, 1994].

In the literature normally no areas are reported, but a figure of merit, the so-called
isoperimetric quotient is used. The isoperimetric quotient is defined as:

2
I =36m % (4.1)

A3
In (4.1) A is the average cell surface area and V is the cell volume. The isoperimetric
quotient is defined in such a way that it is 1 for a sphere. (Naturally, spheres are

non-space-filling.) The higher the isoperimetric quotient the lower is the surface
area (or energy) of the structure.

3http://torus.math.uiuc.edu/jms/software/
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Every facet in Surface Evolver is shared by two bodies, but Surface Evolver counts
the area of the facet only once. So if we want to calculate the average cell surface
area we have to multiply the area Agg reported by Surface Evolver by 2 and divide
by the number of cells ngqys in the unit cell:

2 Asp

Neells

A=

(4.2)

The cell volume is defined as a volume constraint in the input file, and it is of course
the volume of the unit cell divided by the number of cells in the unit cell.

Using the areas reported by Surface Evolver and the formulas above we get:

IKelvin ~ 0.757 (43)
IWeaire-Phelan ~ 0.764 (44)

These values are also found in the literature e.g. [Weaire & Phelan, 1994].

4.3 Computation of Wet Foam Structures

4.3.1 Modelling Wet Foam Structures in Surface Evolver

Though Surface Evolver was initially developed for studying surfaces, additional
features have enabled its application to foams of arbitrary liquid fraction [Phelan
et al., 1995; Weaire & Hutzler, 1999].

We already explained that the lines (edges) of a dry foam structure are replaced
by Plateau borders if the amount of liquid is increased. The Plateau borders form
a continuous network. A small section of such a network can be seen in Figure 2.3
on page 14.

In Surface Evolver a body is defined by giving its bounding faces. Modeling dry
foam structures we used one body for each cell of the foam. To model wet foams
we will use one body for each cell and one additional body for the entire network
of plateau borders. This additional body is exactly what can be seen in Figure 2.3
on page 14.

In our model there are two different kinds of surfaces now. Surfaces between two
cells (as we had with dry foams) and surfaces that are shared by a cell and the
network of Plateau borders. In Figure 4.4 one can see that where a Plateau border
joins an adjacent film two surfaces are attached to one. This is why the surfaces
between cells must be given twice the surface tension of the surfaces shared by a
cell and the network of Plateau borders.
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Figure 4.4: Plateau border joins adjacent films.

The pressure in the network of Plateau borders is lower than the pressure in the
cells. As we have seen in Section 2.3.2 this means that the surface shared by a cell
and the network of Plateau borders is a surface of constant mean curvature.

Of course the input file for such a wet foam structure is even more complicated than
the input files for dry foam structures. Fortunately, a program comes with Surface
Evolver that can convert an existing input file for a dry foam into an input file for
a wet foam. This program is called wetfoam2.cmd and is written in the Surface
Evolver command language.

The program replaces the edges of the dry foam structure with triangular tubes.
These triangular tubes are initial approximations for the Plateau borders. At each
vertex of the dry foam structure (where four lines join) an octahedron is used as a
junction for the triangular tubes. Figure 4.5 (left) shows such an initial configura-
tion. Moreover, the program adjusts the surface tension of surfaces between cells
as explained above.

After refining the triangulation and minimizing the energy with Surface Evolver
the Plateau border junction looks like the one shown in Figure 4.5 (right).

Figure 4.5: Left: initial approximation for a Plateau border
junction; right: Plateau border junction after energy mini-
mization.
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4.3.2 Computation of a Wet Weaire-Phelan Foam Structure

As Surface Evolver’s features for calculating wet foams are not documented at great
length we will present an example here. We will model a wet foam based on the
input file for the dry Weaire-Phelan foam. The wet foam will have a volume liquid
fraction of 10%. The final result of this example can be seen in Figures 4.6 and
4.7.

We start Surface Evolver with the input file for the dry Weaire-Phelan foam:
evolver224 phelanc.fe

Then we read in the program defined in wetfoam?2.cmd:
read "wetfoam2.cmd"

Next we run the program and redirect the output to a new file:
wetfoam >>> "phelanc_wet.fe"

Now we have a new input file called phelanc_wet.fe, so we quit Surface Evolver
and restart with the new input file. All the edges of the dry foam structure were
replaced by triangular tubes as described above.

[{))

If we enter “v” Surface Evolver displays the actual volumes and the target volumes
for the nine bodies. (Body number nine is the network of Plateau borders.) Surface
Evolver has set the target volumes of the nine bodies to agree with the new actual
volumes. However, these are not the volumes we want. As we want a volume liquid
fraction of 10% the volume of the Plateau borders should be 10% of the volume
of the unit cell. The volume of the unit cell is 8.0, so the Plateau borders should
have a volume of 0.8. The eight cells are given a volume of 0.9 each so that the
volumes sum up to 8.0. The following commands set the body target volume of
body number nine to 0.8, and the body target volume of the other bodies to 0.9.

set body target 0.8 where id==9
set body target 0.9 where id!=9

Before refining the triangulation we do a couple of iterations to adjust the volumes.
Now the actual volumes match our desired target volumes and we can refine the
triangulation and minimize the energy. The resulting wet foam structure can be
seen in Figures 4.6 and 4.7. The structure is approximated by about 16200 triangles.
Certainly, further refinement is possible.

Figure 4.6 only shows the individual cells. The network of Plateau borders between
them is not shown. Black lines were added to the picture to indicate where Plateau
borders join adjacent films.

The eight bubbles in Figure 4.6 fill space when replicated in a cubic lattice. How-
ever, it might be easier to again work with a cubic unit cell. So Figure 4.7 shows the
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cubic unit cell of the wet Weaire-Phelan structure. As explained above for Surface
Evolver the Plateau borders are hollow, but in reality they are filled with liquid.
To account for that flat faces corresponding to cross-sections through the plateau
borders have been added to the picture.

In the example presented above the triangulation of the surfaces is quite nice.
However, in many cases one ends up with a bad triangulation. For example very
pointed triangles may appear. Several commands are available that can help to
repair such a bad triangulation. Commands that we have found to be very useful
are listed in Table 4.2.

K Skinny triangle long edge divide
1 Subdivide long edges

t  Remove tiny edges

w  Weed out small triangles

u  Equiangulate

Table 4.2: Surface Evolver commands used to repair bad
triangulations.
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Figure 4.6: Wet Weaire-Phelan foam for a liquid fraction of
10%.
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Figure 4.7: Cubic unit cell for the wet Weaire-Phelan foam
for a liquid fraction of 10%.

Figure 4.8: Cubic unit cell for the wet Weaire-Phelan foam
for a liquid fraction of 10%. The surfaces between cells have
been removed so that only the Plateau borders remain.
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4.3.3 Stability of Wet Foam Structures

For any given wet foam structure there is a maximum value of the volume liquid
fraction ¢yiq called the wet foam limit. If the liquid fraction of the foam is increased
beyond this limit, the bubbles become separated. The foam loses its rigidity and is
replaced by a bubbly liquid. For the Kelvin foam and the Weaire-Phelan foam the
critical liquid fractions are 32% and 47% [Phelan et al., 1995].

However, before the bubbles become separated completely, instabilities develop
that cause structural change. For the Kelvin foam the first instability occurs at
@liq ~ 11%. At this point the contact areas of what were originally quadrilateral
faces are lost. Figure 4.9 shows the Kelvin foam for a liquid fraction of 10%. It
can be seen that the contact areas of what were originally quadrilateral faces have
become very small. If the liquid fraction is further increased contact will be lost.
For the Weaire-Phelan foam the first instability occurs at ¢yq = 15+£2% as reported
in [Phelan et al., 1995].

Figure 4.9: Wet Kelvin Cell for a liquid fraction of 10%. If
the liquid fraction is increased beyond 11% contact will be
lost.

4.3.4 Wet Foam Structures as Mechanical Models for Solid Foams

The initial aim of this thesis was to use dry foam structures generated by Surface
Evolver as models for solid foams. Surface Evolver’s capabilities to model wet
foam structures like the one shown in Figure 4.7 were “discovered” in the course of
work. Though this would be very interesting, we will not examine the mechanical
properties of such a model. This remains as an interesting challenge for the future.

Creating such a model two problems will have to be addressed. It is quite clear
that solid elements must be used for the Plateau borders and shell elements are
best used for the surfaces between cells. The surfaces between cells predicted by
Surface Evolver have a thickness of zero. However, the shell elements in the finite
element model must have a finite thickness. How can this shell thickness be chosen
and how does it affect the overall behavior of the structure?
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The second problem occurs when we attach the shell elements to the solid elements
representing the Plateau borders. As the solid elements don’t have rotational de-
grees of freedom, no bending moments can be transfered to the shell elements.
Probably we can argue that the influence of this problem is rather small as long as
the shell elements are very thin compared to the thickness of the Plateau borders.

Alternatively the surfaces between cells could be removed completely and the re-
maining network of Plateau borders could be regarded as a model for an open cell
foam.
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5.1 Introduction

To examine the mechanical behavior of the dry foam structures described in the pre-
vious chapters we will make use of the periodic microfield approach also referred to
as the unit cell method. A detailed introduction to finite element unit cell methods
can be found in [Daxner, 2003].

The basic idea is to study a model material that has periodic microstructure, so
that the microstructure can be partitioned into periodically repeating unit cells.
The analysis is then limited to one of these unit cells. Special boundary conditions
are applied to the unit cell to ensure periodicity of the structure in the deformed
state.

The boundary conditions of the unit cell must be specified in such a way that all de-
formation modes appropriate for the considered load cases can be attained. Three
principal types of boundary conditions are possible: periodicity, symmetry and an-
tisymmetry boundary conditions. The most general of these boundary conditions is
periodicity. The other two types of boundary conditions allow only for deformation
states that do not break the symmetry [Rammerstorfer & Bohm, 2004].

Because of the symmetries of the Kelvin and the Weaire-Phelan foams it would be
possible to use symmetry boundary conditions for load cases that do not break those
symmetries. This would reduce the size of the unit cells and thus the computational
resources needed. Figures 5.1 and 5.2 show the cubic unit cell for the Kelvin and
the Weaire-Phelan foam together with the corresponding unit cells that make use
of mirror symmetries. Because we wanted to be able to handle shear-deformations
that break the mirror symmetry of the unit cells we used periodicity boundary
conditions exclusively.

Figure 5.3 shows the application of periodicity boundary conditions to a 2D unit
cell. The unit cell has four edges N (north), E (east), S (south), W (west) and
four corners NE, SE, SW, NW. The displacements of the corners SW and SE are
constrained to restrict rigid body movement.

To ensure periodicity of the unit cell in the deformed state the following coupling
equations are used:

w(y) + usg (5.1)
s(:r) + unw

ug(y)
unN (x)

u
u
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o8

Figure 5.1: Left: Cubic unit cell of the Kelvin foam; right:
Smaller unit cell making use of mirror symmetries.

9% o

Figure 5.2: Left: Cubic unit cell of the Weaire-Phelan foam;
right: Smaller unit cell making use of mirror symmetries.
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Ix

Figure 5.3: 2D unit cell in the undeformed and the deformed
configurations. From [Daxner, 2003, p. 13].

As one can see the displacements of points on the edge E (the slave) are constrained
to be identical to those on the edge W (the master) except for a constant additional
offset vector ugg. In analogy, the degrees of freedom of points on the edge N (the
slave) are constrained to be identical to those on the edge S (the master) except
for a constant additional offset vector unxw. The displacements ugg and unw are
related to the global deformation modes of the unit cell. Therefore, the nodes SE
and NW are called master nodes.

For small strains and displacements the components of the vectors uxw = {unw, vnw }
and ugg = {ugg, 0} are related to the macroscopic strain state of the unit cell by:
USE UNW UNW

Exx — 7, Eyy = ) Yoy = . (53)
Iy I

The master nodes SE and NW are also used as points for load application. It can
be shown that unit cell models react to concentrated loads on master nodes like the
infinite periodic structure would react to homogenized applied stresses [Smit et al.,
1998; Daxner, 2003]. With H and V as horizontal and vertical forces, resprectively,
we get for the engineering stresses:

H H
Opg = % , Oyy = VIZ\IJ , Opy = % ) (5.4)
y X b

The same framework can be used for defining a three-dimensional unit cell. Fig-
ure 5.4 shows a three-dimensional unit cell in a general deformation state. For the
sake of clarity the local deformation field is not shown. The three master nodes are
SEB (South-East-Bottom), NWB (North-West-Bottom) and SWT (South-West-
Top). Together these three master nodes have six unconstrained degrees of freedom
corresponding to the six global deformation modes (three normal strain modes and
three shear strain modes).
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SwB

Figure 5.4: 3D unit cell in a general deformation state; From
[Daxner, 2003, p. 16].

5.2 Building Unit Cell Models for the Kelvin and
Weaire-Phelan Foams

5.2.1 Converting Results from Surface Evolver to Finite Element
Models

In this section we will describe a method for converting the results from Surface
Evolver to a finite element model that can be used in ABAQUS. We will also address
some unexpected problems that occurred in this process.

Surface Evolver uses triangular facets to represent a surface. It is convenient to
translate these triangular facets to triangular shell elements. There are several
triangular shell elements available in ABAQUS. However, only element type S3 is
suitable for large-strain analysis. So this element type was chosen. The S3 Element
has three nodes, uses linear interpolation and has one integration point. Thus, a fine
mesh is generally required. For calculations including nonlinear material behavior
11 integration points were used through the shell section.

In Surface Evolver the command “d” dumps the current data to a file in the same
format as the initial data file. (See Table 4.1 on page 36.) It is certainly possible
to build a finite element model for a cubic unit cell based on this data. However,
the wrapping of the edges around the unit cell would have to be accounted for, and
additional vertices would have to be created where the structure crosses a clipping
plane of the cubic unit cell.

Fortunately, there is a way around this. One can first display a cubic unit cell
in Surface Evolver (command s) and then write the data to a file in OFF-format!

'The OFF-format is 3D graphics format for the interactive viewing program Geomview. Ge-
omview is freely available: http://www.geomview.org
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(command P). Now Surface Evolver does the wrapping and the creation of additional
vertices for us. The OFF file contains a list of vertices followed by a list of triangles.
As this is almost identical to the way a mesh is defined in ABAQUS, it was simple
to write a program that converts the OFF file to an ABAQUS mesh definition
file. However, problems occurred in conjunction with the conversion that will be
addressed in the following paragraphs.

The first problem has to do with surfaces that lie exactly in a clipping plane.
Sometimes one part of such a surfaces is positioned on one side of the unit cell
while the other part is positioned on the other side. Though such a unit cell is
valid it is certainly undesirable. This problem could be solved using the script
rewrap.cmd that comes with Surface Evolver. Simply enter read "rewrap.cmd"
and then rewrap.

The second problem was that the OFF file contained some degenerate triangles
where two or three vertices of the triangle were identical. I reported this problem
to Prof. Brakke who maintains Surface Evolver. Prof. Brakke solved the problem
and provided a revised version of the program (2.24b) within short time.

The third problem occurs because the vertices defined in the file phelanc.fe (the
input file for the Weaire-Phelan foam) are not exactly where one would expect. As
explained in Section 3.3 the Weaire-Phelan foam starts as the Voronoi tessellation of
a certain lattice. The sites are given in Table 3.1 on page 26. According to this the
first vertex in phelanc.fe should exactly have the coordinates 1.375, 0.0, 0.3125.
However, the first vertex in phelanc.fe reads 1.374833, 0.000542, 0.313036. Ob-
viously there is a small offset. Prof. Brakke advised me that the coordinates in phe-
lanc.fe are inherited from what Weaire and Phelan originally sent him. I assume
that Weaire and Phelan used the program vcs (see Section 4.2.2) to produce the
file phelanc.fe, and that the algorithm vcs uses to compute the Voronoi tessellation
causes the offset.

As the Weaire-Phelan structure converges toward an equilibrium the small initial
offsets are not a problem. However, when Surface Evolver clips the structure to pro-
duce a cubic unit cell vertices lying very close to (but not on) a clipping plane lead
to the formation of very pointed triangles. In the example above the y-coordinate
of the vertex should be 0.0. So the vertex should be exactly on the clipping plane
of the cubic cell. But as there is a small offset a very pointed triangle will be pro-
duced. Figure 5.5 schematically shows this. For numerical reasons these pointed
triangles are not acceptable in a finite element model. Two possible solutions have
been found to overcome this problem.

Prof. Brakke proposed a quick solution making use of the Surface Evolver command
language. After evolving the Weaire-Phelan structure the following commands put
the vertices that are very close to the clipping planes on the clipping planes:

set vertex x O where abs(x) < 0.001
set vertex y O where abs(y) < 0.001
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S

Figure 5.5: When Surface Evolver clips the structure vertices
lying very close to a clipping plane lead to the formation of
very pointed triangles.

set vertex z 0 where abs(z) < 0.001

set vertex x 2 where abs(x-2) < 0.001
set vertex y 2 where abs(y-2) < 0.001
set vertex z 2 where abs(z-2) < 0.001

As this means altering the geometry of the structure after evolution we decided for
another approach.

The problem can also be solved by modifying the input file. At a closer glance
we find that only 17 different coordinate values are admissible in the cubic unit
cell for the Weaire-Phelan foam. These values are the same in all three directions.
We constructed the Voronoi Tessellation shown in Figure 3.9 on page 26 with a
3D CAD-Software and obtained the true coordinate values. The values are listed
in Table 5.1. Finally we wrote a script that runs through the file phelanc.fe and
replaces each coordinate value by the value from Table 5.1 it is closest to. The
vertices that are now exactly on the clipping planes in the input file remain there
throughout the evolution and no pointed triangles are produced anymore.

0.00000 0.50000 1.00000 1.50000 2.00000
0.31250 0.58333 1.31250 1.58333
0.37500 0.62500 1.37500 1.62500
0.41666 0.68750 1.41666 1.68750

Table 5.1: True coordinate values for the vertices in phe-
lanc.fe.

As already explained Surface Evolver refines its triangulation by replacing each tri-
angle by four smaller ones (see Figure 4.2 on page 35). For both the Kelvin and the
Weaire-Phelan structure the first five refinements were converted to finite element
models. “Refinement 1”7 is Surface Evolver’s automatic triangulation. Figures 5.6
to 5.9 show the different meshes.
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Nodes: 47
Elements: 72

Refinement 3
Nodes: 623
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Figure 5.6: Kelvin unit cell: refinements 1 to 4.
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Figure 5.7: Kelvin unit cell: refinement 5.
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Figure 5.8: Weaire-Phelan unit cell: refinements 1 to 4.
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5.2.2 “Flat” Kelvin and Weaire-Phelan Models

It is interesting to compare the results obtained from the meshes described above to
results obtained from “flat” Kelvin and Weaire-Phelan unit cells. The correspond-
ing meshes were obtained by successively refining the initial triangulation in Surface
Evolver without doing any energy minimization. Without energy minimization the
faces stay flat. So these models correspond to the initial Voronoi tessellation of the
structures described in Chapter 3.

5.2.3 Generation of Periodicity Boundary Conditions

Now that we have the meshes we need to specify the periodicity boundary conditions
which are the three-dimensional analogon of Equations 5.1 and 5.2.

To achieve this in ABAQUS the displacements of corresponding finite element nodes
are coupled using linear constraint equations. It would be cumbersome to define
these equations by hand. Fortunately, a preprocessing tool was developed at the
ILSB which can generate the constraint equations automatically.

5.2.4 Choosing the Shell Thickness

To complete our model we have to choose an appropriate shell thickness. As already
mentioned the relative density of a foam is defined as:

*

p
Prel = E ) (55)
where p* is the average density of the foam and pg is the density of the solid metal.
For our unit cells this can also be written:

Prel = (56)

Vae
where V. is the total volume of the unit cell and V; is the volume of the solid
material in the unit cell. The volume of the solid material is simply:

Vs = Aspt, (5.7)

where Agg is the area of the surface in a unit cell as reported by Surface Evolver
and t is the shell thickness. This is only an approximation since it implies an
overlapping of the faces along the edges. However, for thin faces the resulting error
is negligible.

From(5.6) and (5.7) we get:

Vie

1 = prel TSE (58)
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The appropriate values for the Kelvin and the Weaire-Phelan unit cells (as defined
in twointor.fe and phelanc.fe) are:

Vie=10  Agp = 3.3427 (Kelvin) (5.9)
Ve = 8.0 Agp = 21.1539 (Weaire-Phelan) (5.10)

The shell thicknesses computed for the non-flat Kelvin and Weaire-Phelan models
were also used for the flat models. Strictly speaking this is not correct, as the flat
models have a slightly larger surface area. However, the difference is negligible.

Figures 5.10 and 5.11 show rendered images of the Kelvin and the Weaire-Phelan
unit cells, respectively, with the appropriate shell thicknesses for six different rela-
tive densities.
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Relative Density: 0.01 Relative Density: 0.05

Relative Density: 0.10 Relative Density: 0.15

Relative Density: 0.20 Relative Density: 0.25

Figure 5.10: Kelvin unit cell with appropriate shell thick-
nesses for six different relativze)) densities. 29
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N

Relative Density: 0.01 Relative Density: 0.05
Relative Density: 0.10 Relative Density: 0.15
Relative Density: 0.20 Relative Density: 0.25

Figure 5.11: Weaire-Phelan unit cell with appropriate shell 60

thicknesses for six different relative densities.



6 Prediction of the Linear Elastic Behavior

6.1 Introduction

In this chapter we assume that the bulk material is isotropic and linear elastic
with:

E, = 70000 MPa (6.1)

vg = 0.3

Gs = _ B = 26923 MPa (6.3)
T 2(1+ )

The linear elastic behavior of the homogenized material is described by Hooke’s
Law. Using the stress tensor o;;, the strain tensor £;; and the tensor of elasticity
Eijr; Hooke’s Law can be written in indical notation as:

0ij = Eiji n (6.4)
Eij1; is a fourth-rank tensor and has 81 components.

Often an alternative notation is used. With the vector of stress components!' ¢ and

the vector of strain components ¢:
T
o = (011,092,033,023,031,012)" , (6.5)
T
€ = (e11,€22, 633,723,731, 12) " (6.6)

Hooke’s Law can be written:
c=Ee, (6.7)

with the 6x6 elasticity matrix E. The inverse of E is called the compliance matrix
C=E1

~

E =

20

o (6.8)

As E and C are symmetric they have 21 independent components. So in the

most general case 21 components are needed to describe the elastic behavior of a
material.

! Different conventions for the ordering of the subscripts are used. The one used here is that of
Nye [Nye, 1985].
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As the symmetry of the material increases, fewer moduli are required. In the case of
orthotropic symmetry (meaning that the structure has three perpendicular mirror
planes) nine moduli are required — for example: Ej, Fs, E3, Gas, Gs1, Gi2, V12,
V13, 3. If the coordinate axes are aligned with the material axes the compliance
matrix C for such an orthotropic material is:

L S
E1q E> Fo
C = _% _% E% 0 0 0 (6.9)
~ |0 0 0 & 0 0 '
0 0 0 0 & O
|0 0 0 0 0 &5

As the Kelvin and the Weaire-Phelan foam both have cubic symmetry, the elastic
moduli are the same in all three directions:

Ei=Ey=E=FE (6.10)
Gos =G31 =G2 =G (6.11)
Vig = V13 = V23 =V (6.12)

So for the Kelvin and the Weaire-Phelan foam the compliance matrix can be writ-
ten:

- -
EECF 0
-z -2 L 0 0 0

—|T"E TE E

¢ 0 0 0 & 00 (6.13)
0 0 0 0 & 0
L0 0 0 0 0 &

This looks exactly like the compliance matrix of an isotropic material. However,
we have three independent moduli (E, G and v) and not two, like in the case of
an isotropic material. For an isotropic material the condition G = ﬁ must be

fulfilled. Here, this is not the case.

6.2 Determination of the Elastic Moduli

In the general case it is necessary to calculate six load cases (three normal stress
and three shear stress load cases) to determine the elasticity matrix of a unit cell
model.

The first load case is the application of a normal stress in the 1-direction. So the
homogenized stress vector is chosen to be: ¢ = (1MPa,0,0,0,0,0)7. Next, the
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appropriate concentrated load is calculated and applied to the respective master
node. After the linear finite element analysis the macroscopic strain vector e is

calculated from the displacements of the master nodes. Inserting ¢ and ¢ into

Equation (6.7) yields six equations for the unknown components of the elasticity
matrix.

The procedure is repeated for the remaining load cases. Thus, 36 equations for the
36 components of the elasticity matrix are obtained.

Due to the cubic symmetry of the Kelvin and the Weaire-Phelan foam the appli-
cation of effective normal stresses in 2- and 3-directions yields the same result as
normal stress in 1-direction. The same applies to shear stresses. So it was sufficient
to calculate two load cases: one normal stress and one shear stress case.

6.3 Results

The analysis described above was carried out for 17 different relative densities in
the range from 0.001 to 0.25 for both the Kelvin and the Weaire-Phelan structures.
Five different mesh refinements were used as shown in Figures 5.6 to 5.9. Moreover,
“flat” models (see Section 5.2.2) were analyzed for comparison. The effective elastic
moduli reported in this sections characterize the elastic response of the material
along the principal material axes.

6.3.1 Kelvin Foam

Figure 6.1 shows the ratios E*/Es and G*/E; plotted over the relative density for
the five different mesh refinements. Figure 6.2 shows Poisson’s ratio v*. (Symbols
with a superscript “x” refer to effective properties of the foam, whereas symbols
with a subscript “s” refer to properties of the solid material.) With increasing mesh
refinement the model becomes softer and Poisson’s ratio increases. Obviously, a fine
mesh is required for obtaining reliable results. The moduli predicted with mesh
refinements 4 and 5 differ by less than 1%.

Figures 6.3 and 6.4 give a comparison of the moduli of the non-flat and the flat
Kelvin models, respectively. The sudden increase of Poisson’s ratio for relative
densities below 4% only occurs with the non-flat model. The two figures also show
results for a flat Kelvin model published by Grenestedt [Grenestedt, 1999]. The
results from our flat model are in good agreement with the results obtained by
Grenestedst.

Figure 6.5 shows Young’s modulus and shear modulus, E* and G*, of the non-flat
model divided by the corresponding moduli of the flat model. Both ratios rapidly
decrease for relative densities below 4%.
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| |-—- Refinement 3 E/E 7
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Figure 6.1: Relative Young’s modulus E*/Eg and relative
shear modulus G*/E; of the Kelvin foam for different mesh

refinements.
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Figure 6.2: Poisson’s ratio of the Kelvin foam for different
mesh refinements.
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Figure 6.3: Comparison of the relative Young’s modulus
E*/Es and the relative shear modulus G*/Es of the non-
flat and flat Kelvin foams (mesh refinement 5).
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Figure 6.4: Comparison of Poisson’s ratio of the non-flat and
flat Kelvin foams (mesh refinement 5).
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Figure 6.5: Young’s modulus and shear modulus of the non-
flat Kelvin foam divided by the corresponding moduli of the

flat foam (mesh refinement 5).
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In order to understand what is happening for relative densities below 4% Figures 6.6
to 6.9 compare the deformed configurations of the Kelvin Cells for high (p*/ps = 0.1)
and for low (p*/ps = 0.02) relative densities.

Figure 6.6 shows a Kelvin Cell deformed by compressive loading for high relative
density. Figures 6.7 shows the deformation under compressive loading for low rela-
tive density. The deformations of the hexagonal faces perpendicular to the plane of
these faces are now large compared to the overall deformation of the cell. Of course
the deformations have been scaled up for visualization. Linear analysis assumes
that equilibrium can be established on the undeformed structure. Deformations as
large as the ones shown in Figure 6.7 would violate this assumption.

It is interesting to compare the deformations of the hexagonal faces with the initial
distortions of these faces that can be seen in Figures 3.5 and 3.7 on page 23 and 24.
The diagonals of the hexagonal faces that can be seen in Figure 6.7(b) are straight
in the unloaded configuration.

The flat Kelvin model always deforms like the “high density” Kelvin Cell in Fig-
ure 6.6 even if the relative density is very low.

Figures 6.8 and 6.9 show the deformations of the Kelvin cell under shear loading
for high and low relative densities. The different behavior with respect to high and
low relative densities is similar to the behavior under compressive loading. Again
the flat Kelvin model deforms like the “high density” Kelvin Cell in Figure 6.8 even
if the relative density is low.
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L

Figure 6.6: Deformed configuration of a Kelvin model for
high relative density (¢*/ps = 0.1) under compressive loading
(Deformation scale factor: 120).

(a) Whole Kelvin Cell (b) In order to show the deformation of the
hexagonal faces the cell was sectioned perpen-
dicularly to the 3-axis.

Figure 6.7: Deformed configuration of a Kelvin model for

low relative density (¢"/ps = 0.02) under compressive loading
(Deformation scale factor: 35).
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Figure 6.8: Deformed configuration of a Kelvin model for
high relative density (¢"/ps = 0.1) under shear loading (De-
formation scale factor: 75).

Figure 6.9: Deformed configuration of a Kelvin model for low
relative density (¢*/ps = 0.02) under shear loading; In order
to show the deformations of the hexagonal faces the cell was
sectioned perpendicularly to the 2-axis (Deformation scale
factor: 15).
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6.3.2 Weaire-Phelan Foam

Figures 6.10 to 6.14 show the results obtained for the Weaire-Phelan foams. From
Figures 6.10 and 6.11 we can see that again a fine mesh is required for obtaining
reliable results. The moduli predicted with mesh refinement four and five differ by
less than 1%.

Figures 6.12 and 6.13 give a comparison of the moduli of the non-flat and the flat
Weaire-Phelan models, respectively. Figure 6.14 shows Young’s modulus and shear
modulus, £* and G*, of the non-flat model divided by the corresponding moduli of
the flat model. Both ratios rapidly decrease for relative densities below 4%.

Figures 6.15 to 6.20 show the deformations of the Weaire-Phelan foam models with
high and low relative densities. Again it is interesting to compare the deformations
with the initial distortions of the faces that can be seen in Figures 3.15 and 3.16
on page 31 and 32, respectively.

6.3.3 Comparison Kelvin - Weaire-Phelan

Finally, we will compare the results obtained for the Kelvin and Weaire-Phelan
foam models. Figure 6.21 shows Young’s moduli and shear moduli of both foams.
Figure 6.22 shows the Young’s modulus and shear modulus of the Weaire-Phelan
foam divided by the corresponding moduli of the Kelvin foam.

For high relative densities the Weaire-Phelan foam is stiffer than the Kelvin foam
regarding Young’s modulus and softer than the Kelvin foam regarding shear modu-
lus. For low relative densities it is the other way round — the Weaire Phelan foam is
softer than the Kelvin foam regarding Young’s modulus and stiffer than the Kelvin
foam regarding shear modulus.

Poisson’s ratio is lower for the Weaire-Phelan foam than for the Kelvin foam —
compare Figures 6.4 and 6.13.
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Figure 6.10: Relative Young’s modulus E*/FEg and relative
shear modulus G*/Ey of the Weaire-Phelan foam for differ-
ent mesh refinements.
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Figure 6.11: Poisson’s ratio of the Weaire-Phelan foam for
different mesh refinements.
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Figure 6.12: Comparison of the relative Young’s modulus
E*/Eq and the relative shear modulus G*/ E; of the non-flat
and flat Weaire-Phelan foams (mesh refinement 5).
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Figure 6.13: Comparison of Poisson’s ratio of the non-flat
and flat Weaire-Phelan foams (mesh refinement 5).
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Figure 6.14: Young’s modulus and shear modulus of the non-
flat Weaire-Phelan foam divided by the corresponding mod-
uli of the flat model (mesh refinement 5).

Figure 6.15: Deformed configuration of a Weaire-Phelan
model for high relative density (¢"/ps = 0.1) under compres-
sive loading (Deformation scale factor: 120).
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Figure 6.16: Deformed configuration of a Weaire-Phelan
model for low relative density (¢"/ps = 0.02) under com-
pressive loading (Deformation scale factor: 25).
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6 Prediction of the Linear Elastic Behavior

Figure 6.17: Deformed configuration of a Weaire-Phelan
model for low relative density (¢*/ps = 0.02) under compres-
sive loading. The structure was sectioned perpendicularly
to the 3-axis (Deformation scale factor: 25).

Figure 6.18: Deformed configuration of a Weaire-Phelan
model for low relative density (¢*/ps = 0.02) under compres-
sive loading. The structure was sectioned perpendicularly
to the 1-axis (Deformation scale factor: 25).
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6 Prediction of the Linear Elastic Behavior

Figure 6.19: Deformed configuration of a Weaire-Phelan
model for low relative density (¢"/p, = 0.02) under shear
loading (Deformation scale factor: 20).

2
J\1 -
3

Figure 6.20: Deformed configuration of a Weaire-Phelan
model for low relative density (¢"/p, = 0.02) under shear
loading. The structure was sectioned perpendicularly to the
3-axis (Deformation scale factor: 20).
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Figure 6.22: Young’s modulus and shear modulus of the
Weaire-Phelan foam divided by the corresponding moduli
of the Kelvin foam (mesh refinement 5).
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Figure 6.21: Comparison of the relative Young’s moduli
E*/Eg and the relative shear moduli G*/Eg of the Kelvin
and Weaire-Phelan models (mesh refinement 5).
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6 Prediction of the Linear Elastic Behavior

6.4 Comparison with a Curved Beam

In this section we will try to explain the results presented in the previous sections
by investigating the elastic behavior of a slightly curved beam under compressive
loading. The beam has a length of [ = 1 m and a rectangular cross-section of height
h = 0.01m, width b = 0.01 m, area A = bh and moment of inertia I = bh3/12. A
compressive force F' = 100 N is applied to the beam. The material is linear elastic
with a Young’s modulus £ = 70 GPa.

The initial, undeformed shape of the beam is described by the parabola:

wo () = Womax [1 - (a: - ;)2 ;‘;] (6.14)

where womax 18 maximum deviation in the middle of the beam. We chose womax =
0.01m (1% of the length) as this is the same magnitude as the one that we have
found for the non-planar faces of the Kelvin and the Weaire-Phelan foam (see
Section 3.2 and 3.3). Figure 6.23 shows the initial shape of the beam.

Wo
0.01
.008
.006
.004
.002

o o oo

Figure 6.23: Initial shape of the beam.

The bending moment is:
M(z) = F wo(x) (6.15)

So the governing differential equation for the deflection w(x) becomes:

w”(x) EI + Fwy(x) =0 (6.16)

With boundary conditions w(0) = 0 and w(l) = 0 the following solution is found:

o= Lol [ @ (@] e

Figure 6.24 shows the solution w(x), the initial shape wo(z) and the deformed
configuration wo(x) + w(x).

The axial strain of a straight beam under compressive loading is:

-F  —-F
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Figure 6.24: Initial shape wo(z) and solution w(x).

For the length change of a straight beam follows:

—Fl
Alstraight =le= m (619)

The length change of the curved beam considering the initial curvature and the

axial stiffness is:
1 (dwy dw 2
oot 3 (82

t 1 /dwy 2 l
Alcurve :/ 11—z <) dx _/ S
d 0 [ 2 dx 0
(6.20)

In Figure 6.25 the ratio Alcyrved/Alstraight 15 plotted as a function of the height h
of the rectangular cross-section.

A:l-curveci
Alstraight
10

8

6

Figure 6.25: Ratio Alcyrved/Alstraight Plotted over the height
h of the cross-section.

For large values of h the ratio is close to 1, indicating that the initial curvature
of the beam does not affect the stiffness of relatively thick beams. However, for
small values of h the ratio becomes large and the stiffness of the beam is, therefore,
reduced. When the height of the beam equals the maximum deviation (h = womax =
0.01 m) the stiffness of the straight beam is 7.95 times higher than the stiffness of the
curved beam. When the height of the beam equals twice the maximum deviation
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6 Prediction of the Linear Elastic Behavior

(h = 2womax = 0.02m) the stiffness of the straight beam is 2.62 times higher than
the stiffness of the curved beam.

Noting the mechanical analogy between the curved beam and the curved cell walls
we conclude that the curvature of the cell walls reduces the stiffness noticeably for
cell walls the thickness of which is below twice the maximum deviations reported
in Sections 3.2 and 3.3. This condition is satisfied for Kelvin foams with a relative
density smaller than 6.4% and Weaire-Phelan foams with a relative density smaller
than 7.6%.

6.5 Orientation Dependence of Young’'s Modulus

The effective elastic moduli £*, G* and v* reported in the previous sections charac-
terize the elastic response of the material along the principal material axes. In this
section we are going to examine how the Young’s modulus depends on direction for
both the Kelvin and the Weaire-Phelan foams.

Using the compliance matrix C Hooke’s law can be written as:

E =

20

a (6.21)

In the most general case C has 21 independent components. However, the cubic

symmetry of the Kelvin and Weaire-Phelan foam simplifies the matrix to:

[C11 Ci1p Cia O 0 0
Ci2 Cn1 Ci2 O 0 0
_|Ci2 Ci2 Ci1 O 0 0
g B 0 0 0 Cu O 0 (6'22)
0 0 0 0 Cu O
(0 0 0 0 0 Cul
1 v 1
—_ . _ _ . —_ . 2
Cn ok Ci2 ok Cayg ek (6.23)

When we want to know Young’s modulus E,, along any direction 7 = (ng, ny, n,)T
we can transform the compliance matrices obtained in Section 6.3 to a new coor-
dinate system so that the new z-axis equals 7. From the transformed compliance

Matrix (;3 we can then calculate E,, = 1/Cy1. For the compliance matrix (6.22) this

procedure yields:

1
En = Oy + (2C12—2C11+Ca4)(ny?nz24n.%ns2+n%ny2) (6'24)

(nz2+ny2+nz2)2
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1.5 T T T T T
1.4 — D

1.3 —

Kelvin flat

12 Kelvin | O

E[lll] / E[IOO]

a=

0 0.05 0.1 . 0.15 0.2 0.25

Figure 6.26: Anisotropy ratio a = Ejj11]/E[100) plotted over
the relative density for the four different models.

(We do not require that |7i| = 1.)

The extreme values of E,, in (6.24) are found for @ = (1,0,0)7 and 7@ = (1,1,1)7.
We can conclude that the Young’s moduli presented in the previous sections are
extreme values (either maxima or minima), and that the other extreme value is
found along the space diagonal 7 = (1,1,1)7.

We will denote the Young’s modulus along 7 = (1,0,0)” as El100) and the Young’s
modulus along @ = (1,1,1)7 as Ep1yy- The ratio a = Ejj11)/E[00) Tepresents
the anisotropy in a structure with cubic symmetry [Hosford, 1993]. From (6.24)
follows:

 Epng 3Cn

a = = 6.25
Enop Cu1+2C12+Cuy (6.25)

Figure 6.26 shows the ratio a plotted over the relative density for the Kelvin and
Weaire-Phelan foam and the corresponding flat models. The values show a sudden
change for relative densities lower than about 0.04.

Relative Densities Above 0.04

For the Kelvin foam a lies in the range of 1.14 — 1.19. So the Young’s modulus in
the direction of the body diagonal (E[;1y)) is up to 19% higher than the Young’s
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modulus in the direction of the principal material axes (E[jqo)). Figure 6.28 shows
how Young’s modulus depends on direction for a Kelvin foam with r*/p, = 0.25.
These plots were made using Equation (6.24). z, y and z denote the principal
material axes. The three-dimensional plots display the Young’s modulus according
to the following grayscale: bright shades refer to large values, dark shades refer to
small values of F,. In addition to the three-dimensional plots cross-sections for
@ = 0° and ¢ = 45° are shown. The corresponding coordinate system can be seen
in Figure 6.27.

For the Weaire-Phelan foam a lies in the range of 0.965 — 1.0. So for relative
densities above 0.04 the Weaire-Phelan foam is virtually isotropic. Figure 6.29
shows how the Young’s modulus depends on direction for a Weaire-Phelan foam
with »*/ps = 0.25.

Figure 6.32 shows a two-dimensional plot of the Young’s modulus plotted over the
latitude 6 for ¢ = 0° and ¢ = 45°. The relative density is 0.1. At this density
a = 1.164 for the Kelvin foam and a = 0.975 for the Weaire-Phelan foam.

Relative Densities Below 0.04

For the Kelvin foam a rapidly decreases for relative densities lower than about 0.04.
Figure 6.30 shows how Young’s modulus depends on direction for a (hypothetical)
Kelvin foam with #*/p; = 0.001. For this foam a ~ 0.81.

For the Weaire-Phelan foam a rapidly increases for relative densities lower than
about 0.04. Figure 6.31 shows how Young’s modulus depends on direction for a
(hypothetical) Weaire-Phelan foam with »*/p; = 0.001. For this foam a ~ 1.44.

The Flat Models

For the flat models a changes only slightly for all relative densities evaluated. For
the flat Kelvin model «a lies in the range of 1.07 — 1.15, for the flat Weaire-Phelan
model a lies in the range of 0.955 — 0.99.

z

Figure 6.27: Spherical coordinate system; x, y and z denote
the principal material axes.
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Figure 6.28: Orientation dependence of the Young’s modulus
for a Kelvin foam with r"/ps = 0.25. Bright shades refer to
large values of E,.
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Figure 6.29: Orientation dependence of the Young’s modulus
for a Weaire-Phelan foam with ¢*/p, = 0.25. Bright shades
refer to large values of F,,.
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Figure 6.30: Orientation dependence of the Young’s modulus
for a Kelvin foam with »*/p, = 0.001. Bright shades refer to
large values of E,.

1111

T
T

solid: p=0°
X SE27 Yy dashed: p = 45°

Figure 6.31: Orientation dependence of the Young’s modulus
for a Weaire-Phelan foam with »"/p; = 0.001. Bright shades
refer to large values of F,.
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Figure 6.32: Young’s modulus plotted over the latitude 6 for
both foams (¢"/ps = 0.1).
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7 Prediction of the Initial Yield Surface

In this chapter we will determine the initial yield surface of the Kelvin and Weaire-
Phelan foam using nonlinear (elasto-plastic) Finite Element analysis. So first we
will define an elasto-plastic material law for the bulk material.

7.1 Elasto-Plastic Material Law

We assume an elasto-plastic material with isotropic hardening. The uniaxial stress-
strain diagram is described by:

- {E Exa 1f 0zz <oy (7.1)

no
Keb, if oge > oy

In (7.1) 04, is the true tensile stress, e, is the total logarithmic strain, oy is the
initial yield stress and E is Young’s modulus. We chose the following values for the
material parameters of the bulk material:

E = 70000 MPa (7.2)
v=20.3 (7.3)
n=0.1 (7.4)
K = 486.96 MPa (7.5)

K was chosen so that the ultimate engineering stress is oy = 350 MPa. The initial
yield stress results as oy = 280.39 MPa. In Figure 7.1 one curve shows the true
stress plotted over logarithmic strain (Equation (7.1)), the other curve shows the
engineering stress plotted over engineering strain. The extreme value of the latter
curve is oy = 350 MPa.

In ABAQUS the elasto-plastic material is described by pairs of yield stress/plastic
strain values. The corresponding section of the ABAQUS input file is shown in
Figure 7.2.

In order to adequately capture the nonlinear material behavior 11 integration points
were used through the shell section.
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Figure 7.1: Stress-strain diagram as described by Equa-

tion (7.1)
** Elastic Modulus E = 70000 MPa 331.
** Strain Exponent n = 0.1 337.
*x Ultimate Strength = 350 MPa 344.
*% 351.
**x Stress Factor K = 486.965 MPa 358.
** Yield Strain = 0.400559Y% 366.
** Yield Stress = 280.391 MPa 373.
*k 382.
*MATERIAL, NAME=Matrix 390.
*ELASTIC, TYPE=ISOTROPIC 398.
70000, 0.3 407.
*PLASTIC, HARDENING=ISOTROPIC 416.
280.391, 0 425.
281.083, 9.01106e-05 435.
281.928, 0.000203049 445,
282.952, 0.000344666 455.
284.187, 0.000522332 465.
285.666, 0.000745344 475.
287.423, 0.00102542 486.
289.491, 0.00137734 497.
291.903, 0.00181973 508.
294.685, 0.00237603 520.
297.861, 0.00307572 531.
301.444, 0.00395585 543.
305.444, 0.00506286 556
309.861, 0.00645496 568.
314.688, 0.008205 581.
319.913, 0.0104041 594.
325.521, 0.0131661 607.

Figure 7.2: ABAQUS input data for the elasto-plastic ma-

terial.

Stress [MPa]

500

400

300

7 Prediction

of the Initial Yield Surface

0.2

0.4 0.6
Strain [1]

1
1
1
2
3
.002, 3.75724
4
5
7
9

494, 0.0166335
813, 0.0209841
458, 0.0264403
413, 0.0332799
66, 0.04185
186, 0.0525845
98, 0.0660257
03, 0.0828513
331, 0.103909
875, 0.130256
659, 0.163218
68, 0.204448

936, 0.256015
427, 0.320503
154, 0.401143
119, 0.501975
322, 0.628047
768, 0.78567
46, 0.982732
401, 1.2291

.563708
.92211
.40342
.0051

595,
047,
762,
745,

537,
357,
469,
877,

.69746
87277
.34195
.17847

87



7 Prediction of the Initial Yield Surface

7.2 Prediction of the Initial Yield Surface Using Linear
Finite Element Analysis

In [Daxner, 2003] a method for the determination of the initial yield surface of
cellular metals is described. It is assumed that fulfilling the von Mises yield cri-
terion anywhere in the unit cell can be interpreted as the onset of both local and
macroscopic yielding. First a loading path that is radial in macroscopic stress space
is chosen and the corresponding macroscopic stresses are applied to a Finite Ele-
ment unit cell model. Then for each integration point (where stresses are usually
evaluated) a load multiplier is calculated that would cause yielding at the respec-
tive integration point. The smallest of the load multipliers is the critical global
load multiplier associated with the first local fulfillment of the von Mises yield
criterion.

It is not necessary to calculate hundreds of radial loading paths to obtain the whole
yield surface. Since the method exclusively uses linear analysis the stress state for
a given loading path can be calculated by superimposing stress states obtained by
the analysis of unit load cases. Only one analysis per dimension of the macroscopic
stress space is required. So the method is very efficient.

We intended to use the method described above to calculate the initial yield surface
for the Kelvin and Weaire-Phelan unit cell models described in the previous chap-
ters. However, an examination of the local stress fields for uniaxial compression
showed that the maximum von Mises stress in the unit cell (found at the vertices)
steadily increases with increasing mesh refinement! (For the different mesh refine-
ments see Figures 5.6 to 5.9 on pages 53 to 56.) So for our models the yield surfaces
calculated with the method described above would strongly depend on the mesh
refinement, which is of course undesirable.

To overcome this problem we considered an alternative criterion for the onset of
macroscopic yielding.

7.3 Prediction of the Initial Yield Surface Using Nonlinear
Finite Element Analysis

7.3.1 Basic Approach

Our basic approach is not to consider the fulfillment of the von Mises Yield criterion
at a single integration point as the onset of macroscopic yielding. Instead we define
the onset of macroscopic yielding as the point where the equivalent plastic strain
equals a prescribed value.
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7 Prediction of the Initial Yield Surface

Figure 7.3: Direction in macroscopic stress space.

To simplify things we only consider combinations of macroscopic normal stresses
aligned with the material axes.

First, we choose a direction in macroscopic stress space (G, Gyy, 6..)7 (see Fig-
ure 7.3). The macroscopic stresses applied to the unit cell are then:

Oz Oz
Tyy | = A | Oyy (7.6)
022 02z

In (7.6) X is the radius in stress space. (We require that |(Gua, 6y, 622)7| = 1.)

Using the elasto-plastic bulk material law from Section 7.1 we perform a nonlinear,
force-controlled Finite Element analysis. The analysis stops when the ultimate
load is reached. As results we get the displacements of the three master nodes as
functions of the radius in stress space A. From these displacements the engineering
strains can be computed:

) = BBy = By 2w g

An exemplary result is shown in Figure 7.4.

Next, we unload the structure from each increment of the loading path to calculate
the residual plastic strains. It turned out that it is not necessary to compute
nonlinear unloading curves. The unloading is very well described by Hooke’s law
with the moduli found in Chapter 6.

e =Co (7.8)
eP) = ¢ — gle) (7.9)
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Figure 7.4: Engineering strains as functions of the radius in
stress space.

As no macroscopic shear strains or shear stresses occur this yields:

o 1 v
S(mml) = E Ogx — E (O'yy + Uzz) (710)
e 1 v
géyl) T~ EwT | (Ozz + 022) (7.11)
e 1 v
8,(zz1) = E Ozz — E (Ua:x + Uyy) (712)
el = g4 — ) (7.13)
el = ey — el (7.14)
Egpzl) = €2z — 5,2/21) (7.15)

Now we define the equivalent plastic strain as:

2 2 2
) = /e )+

(7.16)

The equivalent plastic strain is again a function of the radius in stress space A. An
exemplary curve is shown in Figure 7.5 which corresponds to the strains shown in
Figure 7.4.

We now define the onset of macroscopic yielding as the point where the equivalent
plastic strain equals a prescribed value. As a plastic strain of 0.2% is commonly

used to define the offset yield strength in tensile tests, we used gD = 0.2% | for
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Figure 7.5: Equivalent plastic strain plotted over the radius
in stress space.

the following calculations. From the curve in Figure 7.5 the critical radius in stress
space A* can be calculated using linear interpolation (A* = 17.5 MPa).

With A* we have found one point of the initial yield surface. By repeating the
procedure an arbitrary number of points can be calculated.

So next, we define a mesh on a unit sphere which is shown in Figure 7.6(a). Every
vertex of this mesh corresponds to a direction in macroscopic stress space. The
north and south poles of our mesh lie on the hydrostatic axis (04, = 0yy = 022).
Moreover, the mesh becomes finer towards the poles.

The mesh shown in Figure 7.6(a) has 812 vertices. So 812 nonlinear analyses
would be required to compute the whole yield surface. However, due to the cubic
symmetry of the Kelvin and Weaire-Phelan foams the initial yield surface will also
have symmetries. For example it is obvious that the critical radius A* will be the
same for tension along the z-axis (direction (1,0,0)”) and tension along the y- or
z-axis (direction (0,1,0)T and (0,0,1)T).

It turns out that the three planes spanned by the hydrostatic axis and one of the
axes Ogz, Oyy OF 0, are planes of mirror symmetry. Thus, it is sufficient to perform
the analysis for the sixth part of the unit sphere shown in Figure 7.6(b). The rest
of the initial yield surface results from the mirror symmetries. So instead of 812
only 164 nonlinear analyses are required.
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Figure 7.6: Mesh on the unit sphere

7.3.2 Basic Results

We performed the calculations described in the previous section for the Kelvin and
the Weaire-Phelan foams. Since the calculations are computationally expensive we
limited ourselves to mesh refinement 4 (see Figures 5.6 and 5.8 on pages 53 and 55)
and to two different relative densities: #"/ps = 0.05 and ¢"/p, = 0.1.

The calculations were performed on a Hewlett Packard RX2600, 900 MHz [tanium 2
with 9 GB RAM. The calculation of the yield surfaces for the Kelvin and Weaire-
Phelan foam took about 22 and 90 hours respectively.

Figures 7.7 to 7.10 show visualizations of yield surfaces in the three-dimensional
space spanned by the normal stress components (04z, 0yy, 022), which are identical
to the principal stress components in the considered three-axial loading scenario.
The yield surfaces are based on Kelvin foam models of 5% (Figure 7.7) and 10%
(Figure 7.8) relative density as well as Weaire-Phelan models of the same densities
(Figures 7.9 and 7.10, respectively).

The shape of the yield surfaces is that of an ellipsoid which is aligned with the
axis of purely hydrostatic stress states. The length of the ellipsoid is approximately
two times as large as it’s equatorial diameter. This indicates that the effective
hydrostatic strength is well above the effective uniaxial strength of the respective
materials.

For a more detailed discussion on the shape of the predicted yield surfaces several
cross-sections and projections will be presented in the following. Before, simulation
issues with regard to microstructural instabilities have to be discussed.
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Figure 7.7: Yield surface of the Kelvin foam; »*/p,
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Figure 7.8: Yield surface of the Kelvin foam; #*/p,
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Ozz

Figure 7.9: Yield surface of the Weaire-Phelan foam;

P*/ps = 0.05.
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Figure 7.10: Yield surface of the

p*/ps

0.1.
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7 Prediction of the Initial Yield Surface

At some points of the analyses ABAQUS issued negative eigenvalue warnings.
These warnings indicate that a bifurcation load (buckling load) may have been
exceeded, or that the load may have reached a local maximum.

For each loading path we determined the first increment with a negative eigenvalue
warning!. If the load corresponding to the onset of macroscopic yielding as defined
in Section 7.3.1 is greater than the load corresponding to the first negative eigen-
value warning we consider the result as open to doubt. In Figures 7.7 to 7.10 the
respective vertices have been assigned a dark color.

Those vertices for which the first negative eigenvalue warning occurs before the
onset of macroscopic yielding are found in a region around the axis corresponding
to hydrostatic compression. In this region one of two things may have happened:

First, elasto-plastic buckling may have occurred before the equivalent plastic strain
reached 0.2%. ABAQUS eigenvalue buckling prediction indicates that elastic buck-
ling of the flat faces might have occurred. However one has to be cautious here
because ABAQUS eigenvalue buckling prediction does not take into account elasto-
plastic material behavior.

Second, the macroscopic limit load may have been reached before the equivalent
plastic strain reached 0.2%. It turns out that the latter case only appears with
the low relative density (¢*/ps = 0.05) for loads that closely approach hydrostatic
compression. In these cases we regard the macroscopic limit load as the load cor-
responding to the onset of macroscopic yielding.

The region containing vertices for which the first negative eigenvalue warning occurs
before the onset of macroscopic yielding is larger for the foams of low relative density
(P*/ps = 0.05). This is reasonable since thinner cell walls are more likely to buckle.
Moreover, for both relative densities the region with potentially problematic results
is larger for the Weaire-Phelan than for the Kelvin foam. The reason for this could
be that the Weaire-Phelan foam has flat cell walls with a characteristic diameter
that is approximately equal to the characteristic diameter of the non-flat cell walls,
whereas the Kelvin foam has flat cell walls with a characteristic diameter that is
clearly smaller than that of the non-flat cell walls. (See Figures 3.5, 3.15 and 3.16
on pages 23, 31 and 32.)

Figures 7.11 and 7.12 show cross-sections of the yield surfaces obtained by intersec-
tion of the respective surface with the “plane of zero mean stress” o, +oyy+0.. = 0.
This plane is the “equatorial plane” of the mesh shown in Figure 7.6(a). For compar-
ison the figures also show a circle corresponding to the von Mises yield criterion.

In Figures 7.13 to 7.16 the vertices of the yield surfaces are projected to the von
Mises equivalent stress versus mean stress plane. Vertices lying on the same merid-
ian (see Figure 7.6(a)) are connected with a line. “Normal” vertices are marked

In ABAQUS every increment can have several “attempts”. Negative eigenvalue warnings issued
for any but the last attempt are of course irrelevant and were ignored.
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7 Prediction of the Initial Yield Surface

(a) p*/ps =0.05

Figure 7.11: Cross-sections of the yield surfaces at the plane
of zero mean stress; Kelvin foam; A circle corresponding to

-15
-15

(b) #"/p. = 0.1

the von Mises yield criterion is shown for comparison.

(a) p*/ps =0.05

Figure 7.12: Cross-sections of the yield surfaces at the plane
of zero mean stress; Weaire-Phelan foam; A circle corre-
sponding to the von Mises yield criterion is shown for com-

parison.

-15
-15

(b) #"/p. = 0.1
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7 Prediction of the Initial Yield Surface

with a circle and vertices where the first negative eigenvalue warning occurs before

({3

the onset of macroscopic yielding are marked with an “x”.

The von Mises equivalent stress is given by:

1
OVM = \/ [(Umz —ayy)’ + (0yy — 022)" + (022 — 022)* 46 (03y + 03 + ng)]

2
(7.17)
and, since we do not consider any shear stresses:
/1 2 2 2
OVM =\ 5 (022 — 0yy)” + (Oyy = 022)" + (022 — Oua) (7.18)
The mean stress is:
o = Zzet Ty ¥ Tz (7.19)

3
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Von Mises Equivalent Stress [MPa]

7 Prediction of the Initial Yield Surface

[ep]

(&3]

o

w

14

0 5 10

Mean Stress [MPa]

Figure 7.13: Yield surface projected to the von Mises
equivalent stress versus mean stress plane; Kelvin foam;

P*/ps = 005

0 10 20

Mean Stress [MPa]

Figure 7.14: Yield surface projected to the von Mises equiva-
lent stress versus mean stress plane; Kelvin foam; »*/p, = 0.1.
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Von Mises Equivalent Stress [MPa]

7 Prediction of the Initial Yield Surface

[ep]

o1
|

I
[

w
|

14

12

10

-10 -5 0

Mean Stress [MPa]

Figure 7.15: Yield surface projected to the von Mises equiv-
alent stress versus mean stress plane; Weaire-Phelan foam;

P*/ps = 005
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Mean Stress [MPa]

Figure 7.16: Yield surface projected to the von Mises equiv-
alent stress versus mean stress plane; Weaire-Phelan foam;

P*/ps =0.1.
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7 Prediction of the Initial Yield Surface
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Figure 7.17: Convergence of the yield surface for mesh re-
finement 3, 4 and 5; Kelvin foam; #*/p; = 0.1; (Cross-section
at the plane of zero mean stress).

7.3.3 Convergence for Different Mesh Refinements

The yield surfaces obtained by the non-linear method described above should not
strongly depend on mesh refinement. (See explanations in Section 7.2). To verify
this we performed the non-linear calculations for refinement 3, 4 and 5 of the Kelvin
foam (see Figures 5.6 and 5.7 on pages 53 and 54). The results are shown in
Figures 7.17 and 7.18 and show good convergence.

7.3.4 Comparison Kelvin - Weaire-Phelan

Figure 7.19 shows a comparison of the cross-sections of the yield surfaces of the
Kelvin and Weaire-Phelan foams with both having a relative density of either 0.05
or 0.1. Moreover, the yield surfaces of the two foams can be compared using Fig-
ures 7.13 to 7.16.

Values for the critical von Mises stress are generally higher for the Weaire-Phelan
foam. Moreover, the individual “meridians” in Figures 7.13 to 7.16 are less scattered
for the Weaire-Phelan foam. Surprisingly, the critical mean stress in the case of
hydrostatic tension is almost exactly the same for both foams.
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Figure 7.18: Convergence of the yield surface for mesh re-
finement 3, 4 and 5; Kelvin foam; r*/p; = 0.1; For clarity
only one meridian per mesh refinement is shown.
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(a) #"/p. = 0.05

(b) #"/ps = 0.1

Figure 7.19: Cross-sections of the yield surfaces of the Kelvin
and Weaire-Phelan foams for two different relative densities
at the plane of zero mean stress.
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Figure 7.20: Cross-section of the yield surfaces obtained for
different values of the critical equivalent plastic strain at the
plane of zero mean stress; Weaire-Phelan foam; #*/p, = 0.1.

7.3.5 Influence of Chosen Critical Equivalent Plastic Strain

Looking at Figure 7.5 on page 91 we notice that the critical radius in stress space
depends on the choice of the critical equivalent plastic strain. All figures above
show results for é®)" = 0.2%. In Figures 7.20 and 7.21 results for the critical
equivalent plastic strain ranging from 0.02% to 0.5% are shown.

Obviously, the yield surface becomes smaller and smaller for decreasing values of the
critical equivalent plastic strain. For gD = 0.0% the critical radius in stress space
would be found where the first integration point fulfills the von Mises yield criterion.
So the results would be the same as with the method described in Section 7.2. In
Figure 7.5 (page 91) the first non-zero value of the equivalent plastic strain is found
for the radius in stress space A &~ 8 MPa. This is less then half of the value found
for D" = 0.2%!
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Figure 7.21: Projection of the yield surfaces obtained for
different values of the critical equivalent plastic strain to
the von Mises equivalent stress versus mean stress plane;
Weaire-Phelan foam; ¢*/p, = 0.1.

7.3.6 Using Plastic Dissipation for Evaluating Macroscopic Yield
Surfaces

We have used a given value of the equivalent plastic strain (Equation (7.16)) for
defining the onset of macroscopic yielding. As an alternative a critical value of the
plastic dissipation could be used. This is quite straightforward because ABAQUS
outputs the plastic dissipation by default. However, the choice of a realistic value
for the critical plastic dissipation is not so apparent.

We simply took the value of the plastic dissipation the different foam structures
had in the case of uniaxial tension at a plastic strain of £(PY = 0.2% as this critical
value.

The resulting yield surfaces differ surprisingly little from the results obtained using
the equivalent plastic strain. Looking at the cross-section at the plane of zero mean
stress the differences are hardly noticeable.

Figures 7.22 and 7.23 show a comparison in the von Mises equivalent stress versus
mean stress plane. For clarity only one meridian is shown in each case. The
maximum and minimum values of the mean stress are slightly lower using the
plastic dissipation yield criterion.
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Figure 7.22: Comparison of the yield surfaces found us-
ing equivalent plastic strain and plastic dissipation energy;
Weaire-Phelan foam; »*/ps = 0.05; For clarity only one
meridian is shown in each case.
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Figure 7.23: Comparison of the yield surfaces found us-
ing equivalent plastic strain and plastic dissipation energy;
Weaire-Phelan foam; »*/p; = 0.1; For clarity only one merid-
ian is shown in each case.
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8 Conclusions and QOutlook

We have discussed the physical laws, which govern liquid foam structures, and we
used the program Surface Evolver for predicting two ideal, dry foam structures
that obey these laws: the Kelvin and the Weaire-Phelan foam. Both structures
were shown to have curved as well as flat faces. The occurrence of the flat faces is
a direct result of the symmetries of these structures.

Even though the curvature of the curved faces is barely noticeable it was shown to
influence the linear elastic behavior of both structures for relative densities below
about 4%. It can hence be expected that the behavior of real metal foams is also
strongly affected by the curvature of the faces.

Though the geometries of the Kelvin and Weaire-Phelan foams are obviously very
different, the predicted Young’s moduli and shear moduli differ only little from each
other. Concerning orientation dependence of Young’s modulus the Weaire-Phelan
foam turned out to be virtually isotropic for relative densities above 4%. For the
Kelvin foam on the other hand, the biggest value for Young’s modulus differs from
the smallest value by more than 14% for relative densities above 4%. For extremely
low relative densities both foams behave quite anisotropically.

The prediction of the initial yield surface using linear Finite Element analysis
turned out to be inapplicable. Using non-linear Finite Element analysis and an
elasto-plastic bulk material law, yield surfaces for both foam structures could be
predicted. However, these yield surfaces contain a region where elastic or elasto-
plastic buckling of the flat faces occurs. To investigate the post-buckling behavior
with ABAQUS imperfections would have to be included. However, these imperfec-
tions would be unphysical, as they would contradict the law of Laplace.

To solve the problem described above Surface Evolver could be used to predict a
random foam. Such a random foam could be attained by using a Voronoi tessellation
with randomly distributed sites, by using randomly distributed cell volumes or a
combination of both strategies. All faces in such a foam would be surfaces of
constant mean curvature and non-flat. So buckling would probably not occur in
such a stochastic foam.

The linear elastic behavior of the two foam structures has been investigated for
relative densities up to 25%. This was done because it required no additional
effort. Of course using a structure corresponding to the dry foam limit for relative
densities as high as 25% makes only limited sense from the physical point of view. In
Section 4.3 we used Surface Evolver to predict a wet Weaire-Phelan foam structure.
We believe that this is a very promising model for foams with a relative density
higher than a few percent and, thus, a candidate model for future study.
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