
DIPLOMARBEIT

LLFS

A Copy-On-Write File System For Linux

ausgeführt am Institut für Computersprachen
Abteilung für Programmiersprachen und Übersetzerbau

der Technischen Universität Wien

unter Anleitung von
Ao.Univ.Prof. Anton Ertl

durch

Rastislav Levrinc
Kaltenbäckgasse 3/4
1140 Wien, Austria

Wien am May 6, 2008

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Zusammenfassung

Diese Diplomarbeit beschreibt das Design und Implementation von LLFS,
einem Linux-Dateisystem. LLFS kombiniert Clustering mit Copy-On-Write.
Copy-On-Write überschreibt belegte Blöcke nicht zwischen Commits; Durch
das Clustering bleibt die LLFS-Geschwindigkeit vergleichbar mit Clustered-
Dateisystemen wie Ext2. Copy-On-Write ermöglicht neue Features wie zum
Beispiel Snapshots, beschreibbare Snapshots (Clones) und schnelle Crash-
Recovery zu einem konsistenten Dateisystem-Zustand. Gleichzeitig hilft das
Clustering, die Fragmentierung niedrig und Geschwindigkeit hoch zu halten.

Clustering wird mit Ext2-ähnlichen Gruppen und Free-Blocks-Bitmaps
für das Belegen und Freigeben von Blöcken erreicht. Journaling Dateisysteme
wie Ext3 brauchen ein Journal und schreiben Blöcke doppelt. Mit Hilfe von
Copy-on-Write vermeidet LLFS diese Kosten. Aufgrund der Free-Blocks-
Bitmaps braucht LLFS keinen Cleaner wie Log-Strukturierte Dateisysteme.
Trotzdem bietet LLFS die kombinierte Funktionalität von Journaling und
Log-Strukturierten Dateisystemen.

Ich habe LLFS aufbauend auf Ext2 implementiert, und ich habe die Per-
formance getestet. Die Benchmarks zeigen, dass LLFS ähnliche und in eini-
gen Fällen bessere Resultate als Linux-Journaling-Dateisysteme erreicht.

Abstract

This thesis discusses the design and implementation of LLFS, a Linux �le
system. LLFS combines clustering with copy-on-write. With copy-on-write
no allocated blocks are overwritten between commits, and thanks to the clus-
tering the speed of LLFS remains comparable with clustered �le systems such
as Ext2. Copy-on-write opens new possibilities for features like snapshots,
writable snapshots (clones) and fast crash recovery to the consistent state
of the �le system, while the clustering helps to keep fragmentation low and
speed high.

Clustered reads and writes are achieved with Ext2-like groups and free-
blocks bitmaps for allocating and freeing of blocks. Journaling �le systems
like Ext3 need to keep a journal and write blocks twice; By using copy-on-
write, LLFS avoids these overheads. By using free-blocks bitmaps, it does not
need a cleaner like log-structured �le systems. Yet LLFS o�ers the combined
functionality of journaling and log-structured �le systems.

I have implemented LLFS starting from the Ext2 �le system and tested
the performance. The benchmarks have shown that LLFS achieves similar
performance and in some cases better than Linux journaling �le systems.

Contents

I Design 4

1 File Systems 5
1.1 File System Design Issues . 5

1.1.1 Fast Crash Recovery 6
1.1.2 Data Consistency . 6
1.1.3 Undo . 7
1.1.4 Consistent Backups . 7
1.1.5 Fragmentation . 8
1.1.6 Scalability . 8

1.2 Clustering . 9
1.3 Journaling File Systems . 9
1.4 Log-Structured File Systems 10
1.5 Linux Virtual File System . 11

1.5.1 VFS Data Structures 11

2 LLFS Basic Idea 14
2.1 Introduction . 14
2.2 LLFS Requirements / Goals 15

2.2.1 Fast Crash Recovery / File System Check 15
2.2.2 Data consistency . 15
2.2.3 Snapshots . 15
2.2.4 Clones . 16
2.2.5 Performance . 16
2.2.6 Fragmentation . 16
2.2.7 Scalability . 17
2.2.8 Portability . 17

2.3 Implementation of these Goals 17
2.3.1 Fast Crash Recovery 17
2.3.2 Data Consistency . 17
2.3.3 Snapshots / Clones . 17
2.3.4 Performance . 18

1

2.3.5 Scalability . 18
2.3.6 Portability . 19

3 LLFS Design 20
3.1 Inodes and Free Blocks Bitmaps 20
3.2 Allocating Blocks . 21
3.3 Freeing of Blocks . 22
3.4 Disk Layout . 22

4 Using LLFS 24
4.1 Operation . 24
4.2 Creating an LLFS File System 24
4.3 Mounting a Clone . 24

4.3.1 Creating a Clone . 25
4.3.2 Disposing of a Clone 25

II Implementation 26

5 Implementation Details 27
5.1 From Ext2 to LLFS . 27

5.1.1 Implementing Meta-Data 27
5.1.2 Implementing Group Descriptors 28
5.1.3 Implementing mkllfs 29
5.1.4 Implementing Copy-On-Write 29
5.1.5 Implementing Indirection 31
5.1.6 Implementing Clones 32
5.1.7 Implementing Inode, Dentry and Page Cache 33
5.1.8 Implementing Block Allocation and Deallocation 34

5.2 In-Memory and On-Disk Data Structures 35
5.2.1 Super Block . 35
5.2.2 Inode . 36
5.2.3 Group Descriptor . 37

5.3 Functions . 37
5.3.1 dir.c . 39
5.3.2 namei.c . 40

III Testing, Debugging and Benchmarking 42

6 Testing and Debugging 43

2

7 LLFS Performance 45
7.1 Creating and Reading Small Files 45
7.2 Creating and Removing of Small Files 46
7.3 Creating and Reading of Large Files 48
7.4 Writing and Reading of Log-File 49
7.5 Unpacking, Compiling, Removing Kernel 49
7.6 Snapshot / Clone Performance 51
7.7 Multiple Clones Performance 53
7.8 Performance Test with Bonnie 54
7.9 Performance Conclusions . 55

8 Related Work 57
8.1 Beating the I/O Bottleneck 57

8.1.1 Technology Shift . 57
8.1.2 Solutions to the I/O Bottleneck Problem 57
8.1.3 A Log-Structured File System 58

8.2 Log-Structured File System Projects 59
8.2.1 Sprite-LFS . 59
8.2.2 BSD-LFS . 61
8.2.3 Linlog FS . 63

8.3 Linux File Systems . 63
8.3.1 Ext2 . 64
8.3.2 Ext3 . 64
8.3.3 ReiserFS . 64
8.3.4 XFS . 65

9 Further Work 66

10 Conclusions 67

Bibliography 68

3

Part I

Design

4

Chapter 1

File Systems

A �le system is a part of an operating system that takes care of storing and
reading data on the storage device such as a hard drive or CD-ROM. From
a user perspective, data are organized as a collection of �les. Files are not
only text �les, but also images, executable programs and so on. Another
important abstraction in a �le system is a directory. A directory can hold
not only �les but yet another directory called a sub directory that allows to
organize �les in a tree structure. Thanks to this it is possible to create a
hierarchy of directories containing related �les. A �le system also provides
means to create, move and delete �les and directories, change permission who
can read or modify these �les and provides information about a �le such as
its length and creation time.

Another task for a �le system is to optimize reading and writing of �les.
Data are stored on a disk in units of blocks, and it is desirable that blocks
belonging to one �le and some other related blocks are not scattered around
the disk, because reading of adjacent blocks is much faster than reading
blocks on di�erent parts of the disk divided by holes. Skipping the holes
involves seek times, and the seek times are bad for performance with the
current hard drive technology. A typical seek time on a normal hard disk is
several milliseconds and is to be avoided as much as possible.

1.1 File System Design Issues

There are many issues that a �le system designer has to take into a con-
sideration. I list the most important of them in this section. Although �le
systems improved much over the years and many issues are solved, there are
still open questions about data consistency and trade-o�s that a �le system
designer must make.

5

1.1.1 Fast Crash Recovery

A computer can crash because of faulty hardware, or a mistake in an operat-
ing system code. The computer can also come down by sudden loss of power
or can be switched o� by mistake. This sudden interruption of the operation
of a running computer is a particular problem for �le systems because they
can end up loosing some data or become �at out unusable.

This inconsistency issue is caused by the fact that �le systems heavily
use caches to immensely speed up a performance of writing. The blocks are
gathered in the main memory of a computer, where they can be reordered
and can be written out sequentially or at least more sequentially than they
would have been if they would be written out one by one. On the other
hand, if some �le system operations consist of multiple steps, the steps can
be written out out of order, some of the blocks can be already written to the
disk and some were only in the memory, waiting to be written and are lost.

After a sudden interruption when some of the blocks were not written,
a disk partition can contain data that do not belong to any �le, and even
worse, �les can contain wrong data.

Other inconsistencies include changed directory entries that point to �les
that do not exist and vice versa.

Before journaling was introduced, such mishap was resolved by running
fsck (�le system check) utility. This utility checked and repaired the whole
disk partition if possible1. This was time consuming task and with the ever
increasing sizes of disks it becomes unacceptable for availability of servers
for example. Traditional �le systems, among them Ext2, need to execute
whole structural veri�cation after a system failure. Current �le systems try
to avoid this task.

1.1.2 Data Consistency

Fast crash recovery is nowadays standard in the Linux �le systems. What
is not clear is �le system data consistency after a crash or a power failure.
Usually only a meta-data consistency is guaranteed. That means that direc-
tory structure is recovered, but the data may be lost. This can be disastrous
for applications especially if they require data consistency between �les.

Ideally all the data that are written end up on the disk. The best way
to achieve this would be to write all the data synchronously without using a
write cache. This would also be a very slow way.

Some Linux �le systems o�er data consistency. They achieve it with
journaling of the data. This beats the synchronous writes but it is still way

1Sometimes repairing of �le system is impossible.

6

too slow, because the data have to be written twice, once to the journal and
once to their proper place.

Data consistency that will be dealt with in this work, uses in-order se-
mantics and refers to a state of a �le system after a recovery where not only
directory structure, but also �les contain all the data that were written be-
fore a speci�c point in time, and no writes and other changes that occurred
afterwards [Cze00].

Currently only copy-on-write �le systems with in-order semantics can
potentially o�er data consistency with acceptable performance.

1.1.3 Undo

To undo changes in �le systems would be nifty feature that most Linux �le
systems do not o�er. In today's Linux �le systems, retrieving a removed �le
is sometimes possible, so long it is not overwritten by some other data. If
data in a �le are changed the old data are lost. Multiple undo could help to
recover speci�c version of the data as they were changed over and over.

Some other solutions exist, but they exist in the user space and are not
a part of a �le system.

1.1.4 Consistent Backups

Backup is an activity to copy important data to another place, the more
remote the better, where in case of need all of the data or some of them
can be copied back. The place where the backup is stored can be any kind
of a storage device, for example a magnetic tape or hard drive in another
computer.

Making of a backup can take a long time and during this time data on the
disk can change, so the data re�ect the state as they were in di�erent points
in time. This can cause some of the backups to be unusable. For example
databases cannot be backed up just by copying the �les, while the database
is used. Although databases use their own methods to ensure consistent
backup, it would be nicer if the underlying �le system could do this and it
would not matter which application is using the data.

Creating a snapshot of the �le system at one exact point in time and
backup the data from the snapshot, while the �le system is used without
a�ecting the snapshot, would e�ectively solve this problem.

7

1.1.5 Fragmentation

Although a hard drive is a block device with random access, it can access
blocks in any part of disk in any order, in reality the hard drives perform best
if data are read and written sequentially. The task of the �le system is to
store data that are likely to be accessed at the same time next to each other
as much as possible. This speeds up writing as well as reading. Data are
likely to be accessed at the same time, either if they belong together logically,
for example if they are in the same directory, or when they are modi�ed at
approximately the same time, it is more likely they will be accessed at the
same time in future.

To avoid fragmentation is easy if the �le system is almost empty, but over
time as �les are created and removed, it is increasingly di�cult to �nd large
free regions that can hold the whole �le and seek time and rotational delay of
the read/write head will deteriorate the over-all performance of the system.

Some �le systems solve the fragmentation problem with defragmentation
utilities that have to be run for time to time for example once a day, but a
modern �le system should try to minimize the fragmentation during writing
of the data.

This is not the only kind of fragmentation that is relevant to the �le sys-
tem design. This kind of fragmentation is called an external fragmentation.
Another kind of fragmentation is internal fragmentation and it is about an
empty space between an end of a �le and a block boundary. This is called in-
ternal fragmentation. This fragmentation is getting bigger with bigger block
sizes. This is more a wasted disk space than a performance problem. A
performance impact can be possibly noticed only on a system consisting of
many small �les. Solutions to the internal fragmentation reduce wasting of
the disk space, but add yet more computational overhead.

1.1.6 Scalability

The �le system is one among many systems in a computer that should be
scalable. In the case of �le system the scalability is understood as ability
of the �le system to handle ever increasing sizes of disks, bigger �les and
number of directory entries.

Some �le systems have hard limits that cannot be overcome, some will
hit a performance bottleneck sooner or later and are no more usable. A �le
system should be designed, so that even today unimaginable capacities and
sizes of �les are possible.

8

1.2 Clustering

Clustering of reads and writes is a solution for decreasing the disks seeks
between adjacent blocks in a �le, thus decreasing the overall fragmentation
of the system. Once the blocks that are likely to be accessed at the same
time are stored in one cluster or neighboring clusters, the read and write
performance can increase signi�cantly. File systems using clustering are FFS
and in the Linux world the Ext2 �le system.

The clustering in the Ext2 �le system is achieved with dividing the disk
into block groups, where related data and meta-data are allocated in one
block group or some block group nearby. During allocation procedure the
�le system detects sequential writes and �les and meta-data are written se-
quentially on a disk if possible. That way the data that are likely to be read
at the same time are stored next to each other.

Although the external fragmentation degrades somewhat the performance
of such �le system, the research showed that active FFS �le systems function
at approximately 85�86% of their maximum performance after two to three
years[Sel95].

The clustering does not solve all the problems though. The consistency
after a system failure is normally not guaranteed in a �le system without a
journaling and �le system check is required. Although this need could be re-
moved by synchronous meta-data writes, there is a huge performance penalty.
Journaling is described in the next section. There is one more solution called
soft-updates that marks order of meta-data updates and syncs them to a disk
in that order. Performance of soft-updates enabled �le system in some cases
when deletes are delayed is better than that of the journaling �le systems,
but in other cases the performance su�ers up to 50% degradation[Sel00].

1.3 Journaling File Systems

The most popular �le systems on Linux are the journaling �le systems. Jour-
naling �le systems use database transaction and recover technologies to solve
the inconsistency problem after a system crash or power failure.

Journaling �le systems keep a journal of �le system changes in order to
avoid the time-consuming task of the full �le system check. Journaling �le
systems need to replay changes from the journal when recovery is needed.
The journaling �le systems keep a journal of disk changes in a reserved space
on disk. The journal is written before the actual changes are made on the
disk. After a system failure the journal is analyzed and the disk is brought to
a consistent state. Scanning of the whole disk is not required anymore and

9

not surprisingly the journaling �le systems took over on production servers
and elsewhere.

Oddly enough, �le system research did not stop here, because there is
a problem. Journaling �le systems need to write data blocks twice, once
in the log and once to their place on the disk. This full journaling is a big
performance hit. That is the reason why the journaling �le systems normally
log only meta-data changes and disable data-logging or do not implement it
at all.

Log-structured �le systems, as well as LLFS, on the other hand, with
di�erent approach, ensure a full data consistency without writing the data
blocks twice.

1.4 Log-Structured File Systems

The central principle behind log-structured �le systems is to perform all
writes sequentially, thus increasing the write performance. The no in-place
updates allow for the fast crash recovery and data consistency. Log-structured
�le systems can get to the point of the last check point and get to the con-
sistent point. From that point a roll forward can be performed to save some
of the data that were written after the checkpoint.

The Log-Structured File System (LFS) was introduced in 1991 and was
available for comparison.

Early research on the log-structured �le systems promised order-of-magnitude
improvement of performance and for small �les allowed LFS to write at an
e�ective bandwidth of 62 to 83% of the maximum[Ros91]. Later research
showed that high hopes for the log-structured �le system were not realized.

For full utilization of the disk's bandwidth, a log-structured �le system
needs to maintain large free areas on the disk. For that a garbage collector
is needed called cleaner that collects small free areas into the large ones.
Paper comparing FFS with LFS by Seltzer et al.[Sel93] showed that cleaning
overhead degraded transaction processing performance by as much as 40%.

Further research by Seltzer et al. [Sel00] comparing LFS and FFS showed
that even ignoring the cleaner overhead, the order-of-magnitude improvement
in performance claimed for LFS applies only to meta-data intensive activi-
ties, speci�cally the creation and deletion of small �les. For large �les the
performance was comparable with clustering �le systems. Cleaner overhead
reduced LFS performance by more than 33% when the disk is 50% full. LLFS
is in a way a log-structured �le system that does not need the cleaner, but
uses clustering to group related data and meta-data together.

10

Figure 1.1: Virtual File System

1.5 Linux Virtual File System

Linux �le systems are all implemented or ported on top of the VFS (Virtual
File System). VFS is a layer that takes care of interoperability between
di�erent �le systems themselves and user applications. Consequently the
user applications talk to the virtual �le system that hides the speci�c �le
system implementation. VFS provides a directory entry and an inode cache
of last used �les and directories.

VFS is also an interface between �le system and the lower block level of
the kernel. Thanks to this, �le system reads and writes data to the bu�er
cache or page cache and does not have to care how the underlying media
looks like. Figure 1.1 shows how a user space application writes and reads
data to di�erent �le systems.

1.5.1 VFS Data Structures

VFS contains data structures that describe a common �le system. They
range from data structures that describe the �le system as a whole to the
data structures that describe every �le. These data structures contain data
and function pointers that can be rede�ned by any �le system or the �le
system can use function implementations from VFS. This is in a way a kind
of object programing in C. Furthermore these data structures can be extended
by every �le system with their own member variables. In Linux as well as
in Unix the �le system is organized into two distinct subsystems. Names of
directories, their hierarchy and �le names are stored independently of inodes
that represent �les, their sizes, permissions and data.

11

Super Block

The super block holds information about one speci�c instance of a �le system.
Normally a �le system stores its super block on a special place on a disk
partition where it can be read during mounting. It also includes pointers to
functions that read, write, remove, allocate inodes and so on.

Inodes

One of the most important structures in VFS is an inode. One inode corre-
sponds to one �le in the �le system2.

Linux �le systems normally have their own representation of an inode
that corresponds to the VFS inode. File systems that do not represent �les
and directories through the inodes, have to assemble inodes in memory, so
that they can work with VFS. Inodes contain pointers to the data blocks,
access permissions, owner, type of the �le and so on. Every inode is identi�ed
by a unique inode number.

Directory Entries

Directories are �les that contain a list of �le names and names of sub directo-
ries with a corresponding inode number. When a user opens a �le, its inode
has to be determined. It can be found either in a cache or in the parent
directory �le with directory entries with inode numbers have to be read. The
parent directory is again obtained from its parent directory or the cache if it
is there. So it goes recursively to the root directory if necessary. The root
directory is always in the cache. If some entry is not in the cache, it stored
there in order to speed up the next look ups of the same �le or �les in same
or nearby directories.

VFS assumes that there is only one root directory per �le system, which
is not true for LLFS.

Other Data Structures

There are several other data structures associated with VFS. The File struc-
ture represents an open �le, its attributes like permissions and position in a
�le and pointers to functions that perform operations like open, seek, read
and write. This data structure is the most familiar for users of the �le system.
It also contains a link to a directory entry with resolved name.

2File is meant here in the broad de�nition of the word �le. In this context �le can
be directory, symbolic link, named pipe or an ordinary �le with data. Remember that
everything in Unix is a �le.

12

The �le_system_type data structure describes a �le system, its name
and type. There is only on such structure per �le system.

When a �le system is mounted vfs_mount data structure is populated.
It describes a mount point. This structure stores for example options with
which the �le system was mounted and the directory entry of the mount
point.

The �les_struct and namespace data structures map every process with
its open �les, current working directory, and so on.

13

Chapter 2

LLFS Basic Idea

2.1 Introduction

There are two types of recently popular approaches to the �le system design
� journaling and log-structured �le systems. Log-structured �le systems o�er
a data consistency but require a garbage collector called cleaner that gathers
allocated blocks together if there are holes between them. Log-structured �le
system do not perform very well because of the cleaner overhead.

Journaling �le systems do not o�er data consistency in any e�cient way
unless the data blocks are written twice.

Traditional �le systems like Ext2 are still kept around with their good
performance with clustered reads and writes.

LLFS's idea is to combine clustering and the part from log-structured �le
systems where blocks are not overwritten right away, but doing away with
the idea of one never-ending sequential log. That way LLFS is a �le system
that makes use of clustering to achieve good performance, but still o�ers
features of log-structured �le systems like the fast crash recovery and data
consistency.

The key feature of LLFS is no in-place writes or copy-on-write. If data in
a �le are modi�ed, the blocks that were a�ected are not written to the same
place where they had been before, but a new place on a disk is allocated
for them. The previous location of this blocks is not freed until the block is
committed.

A consequence of this is that blocks do not get overwritten, not until they
are committed or optionally not even after that. This is used for snapshots
and clones.

When a clone or snapshot is made, its blocks should not be overwritten,
even if they were freed in the clone from which the clone or snapshot was

14

made. When the clone or snapshot is destroyed, the blocks should be made
available again.

The last committed state can be seen as an automatic snapshot that can
be (and is) recovered after a system failure. This has an advantage that
directories, data, and meta-data are always consistent between commits.

For allocation of blocks LLFS uses Ext2-like allocation, where blocks are
clustered to the groups with whatever algorithm Ext2 is using.

2.2 LLFS Requirements / Goals

Several requirements and goals were identi�ed for the new �le system. Some
of them like fast crash recovery are common by today's �le systems, some of
them like clones and snapshot functionality are just emerging and are either
not e�cient or not completely implemented.

2.2.1 Fast Crash Recovery / File System Check

LLFS should implement an instantaneous crash recovery to the state that
the �le system was after the last commit, any committed snapshot or clone.
This is similar to the log-structured �le system crash recovery. It should be
possible to make a complete �le system check in a background, on one clone,
while some other clone is mounted.

2.2.2 Data consistency

LLFS should implement the in-order semantics that guarantees that after a
recovery the �le system represents the state of all �les and directories as they
were in one speci�c point in time.

Most journaling �le systems today do not give in-order semantics, they
give only meta-data consistency or there is a performance penalty, as all data
has to be written twice. If only changes to a directory structure are logged,
directories are preserved, but the data may be replaced by garbage.

2.2.3 Snapshots

A snapshot of a �le system is a state of the �le system as it was in one speci�c
point in time.

One of the uses of the snapshot is for enabling of consistent backups. A
backup can get inconsistent if during the backup the �le system is used. In

15

LLFS a snapshot can be taken instantaneously and the �le system can be
used after taking the snapshot without a�ecting it.

Another use of the snapshot is that the snapshot is kind of easy backup
that allows for retrieving of removed or changed data. Taking of snapshots
can be set up in this way that �le system could do multiple level undoes.
Especially if taking of snapshots does not a�ect performance of the system.

Although LVM (Logical Volume Manager) o�ers snapshot functionality,
there is a performance and space penalty. When a block is written, LVM
copies the blocks in a for this reason allocated area. Because of this a block
must be written twice, which is time consuming and there must be the allo-
cated area on the disk that can not be used by the �le system.

2.2.4 Clones

A clone is a snapshot that can be written to or another way to view a snapshot
is as read-only clone. A clone should be created instantaneously just like a
snapshot. It can be mounted at the same time as its parent and it can be
used and then discarded or kept. This can be useful in many ways. Software
can be installed and tested on a clone during the production and then this
clone can be switched to the production or it can be discarded if it went
wrong.

A goal of LLFS is to provide e�cient creation of snapshots and clones
without copying of blocks. A new clone starts with the same blocks as the
cloned �le system and only with time as the data change the copies of blocks
will be created. Destroying the clones in LLFS should be also cheap.

2.2.5 Performance

The requirement for LLFS in terms of performance is to stay competitive
with �le systems like Ext2 and Ext3 in a typical operation.

LLFS uses Ext2-like allocation policies that are tuned to perform very
well in comparison with log-structured �le systems.

2.2.6 Fragmentation

The goal for fragmentation is to keep it low. LLFS can create an additional
fragmentation, because when parts of a �le are modi�ed, they do not remain
adjacent to the other blocks of the same �le, but are copied some place else1,
unlike the �le systems that modify the blocks in place. File systems like

1But still there is e�ort to put these blocks nearby if possible

16

Ext2 do not experience much of a fragmentation, so hope is that additional
fragmentation in LLFS will be not so tragic. On the positive side of things,
LLFS does not have predetermined positions of block bitmaps, inodes and
group descriptors and they generally they could be allocated nearer to the
data blocks than it is in case in the Ext2 �le system and that could reduce
fragmentation somewhat.

2.2.7 Scalability

LLFS should be scalable. Hard disk sizes will continue to increase in the
foreseeable future as they have been doing till now. LLFS should scale with
bigger sizes of disks and should be able to store any number of �les and
directories with any sizes that are reasonable in the considerable future.

2.2.8 Portability

LLFS should be portable. LLFS should work on wide range of computer
architectures like other Linux �le systems and the on-disk structure should
be portable between di�erent architectures.

2.3 Implementation of these Goals

2.3.1 Fast Crash Recovery

Fast crash recovery in LLFS is part of the design. The last consistent state of
every clone is kept on the disk as a snapshot. After a crash these snapshots
will be mounted and possibly inconsistent partly written clones discarded.
This is really fast, faster than replaying of logs.

2.3.2 Data Consistency

LLFS implements in-order semantics. No blocks with exception of super
block are written to the same place. When the �le system is committed,
the committed blocks are not overwritten. This last committed state can
be recovered after a system crash or power failure and this recovered state
represents a point-in-time data consistency.

2.3.3 Snapshots / Clones

In LLFS there is no di�erence between snapshots and clones, only that clones
can be called snapshots if they are mounted read-only.

17

There is only one pointer that is needed for �le system to know that
there is a clone or snapshot in use. This pointer points to all the meta-data,
starting with inodes to group descriptors and free block bitmaps. When a
clone or snapshot is discarded, it is enough to overwrite this pointer.

From point of view of other clones, while they are being written to, they,
use the pointer from this clone to read this clone block bitmap to not over-
write its blocks. The more clones there are, the more bitmaps have to be
read by allocating a block in a group. Discarding of the clone is to remove
the pointer to this clone's meta-data. From this point on, other clones can
allocate their blocks where the discarded clone used to be.

It is also possible to clone a previously created clone or make more clones
from one clone. This creates a kind of tree as seen in �gure 2.1, where every
clone except the clone 0 has exactly one parent clone a can have more child
clones. At the same time any clone can be discarded, so the tree structure is
broken.

The �gure 2.1 shows making a clone from the master clone 0 where two
clones clone 1 and 2 were created. The same way clone 3 and 4 were created
from clone 2. After that although clone 2 was destroyed, clone 3 and 4 can
be normally used. Clone 0 is not special in anyway, only that when �le
system is �rst created, it is created as clone 0. When clone 0 is cloned, clone
0 can be removed, and can be overwritten with another clone and so on.

It is possible to create a clone over already existing clone, which equals
destroying the clone and creating a new one on its place. The way it is
implemented, it is also possible in this way to exchange a clone while it is
used. Although this seems interesting and may have some uses, I cannot
think of any and no Linux application expects this behavior from �le system
and would hopelessly break.

2.3.4 Performance

LLFS is designed not to perform much worse than the Ext2 �le system. With
increasing number of clones the write performance is decreasing because every
clone has its own bitmap blocks and they have to be read for every clone.
Read and write performance is also in�uenced by a bit more fragmentation
than it is in the Ext2 �le system.

2.3.5 Scalability

While working on LLFS, I did not focus on scalability much. The LLFS
scales with bigger block sizes and indirection, but further work should be
done in this area.

18

Clone 0

Clone 1 Clone 2

Clone 3 Clone 4

Figure 2.1: Clones

2.3.6 Portability

LLFS inherited its portability from the Ext2 �le system. Portability issues
come down to di�erent sizes of integer types and di�erent byte order on some
architectures. Using explicitly-sized data with �xed byte order for on-disk
structures solve this problem. LLFS is portable, but since it was tested only
on 386 architecture, some easy to �x errors can be still in there.

19

Chapter 3

LLFS Design

3.1 Inodes and Free Blocks Bitmaps

The Ext2 �le system keeps its inodes, free inodes bitmap and block bitmap
in the same locations on the disk. This is not so with LLFS, because no
blocks except of super block are written on the same place.

To �nd an inode in the Ext2 �le system is enough to know the inode
number and the location of the inode is computed and the block is found
that contains the inode. There are several inodes stored in one block. For
example in 4096 byte block there are 16 inodes stored next to each other.
In LLFS the inodes are stored in blocks in the same way but the blocks
containing inodes are not stored continuously in a prede�ned place but are
stored all around the disk. In order to �nd them, a structure is needed that
contains pointers to the blocks with inodes, in other words it maps an inode
number to the block on a disk. Such structure is again an inode. For that
reason an inode with pointers to the blocks with inodes is used. This is in a
way a �le and it is called i�le. The inode that maps the blocks of this i�le
is called an i�le inode, instead of awkward an inode of inode of inodes. Free
inodes bitmaps and group descriptors are also stored in the i�le. More about
this later.

The same problem faces the free-blocks-bitmap. In the Ext2 �le system,
the free-blocks-bitmap is stored in the same place for every group, but LLFS
must move these free-blocks-bitmap blocks around. For 4096 byte blocks,
one free-blocks-bitmap block contains 32768 bits with information which of
32768 blocks are free. These 32768 blocks compose one group.

I have chosen again an inode to represent a mapping from a group number
to a location of the free-blocks-bitmap block on the disk. Another bene�t of
this bitmap inode is that the code that manages the no-in-place writes for

20

ordinary inodes can be reused.
The only block that is stored in LLFS on the same place as in Ext2 �le

system is the super block. The super block contains a pointer to the block
where the i�le inode is stored and from this point all inodes including the
bitmap inode and from there everything that is needed can be found. The
fact that .i�le and .bitmap �les are not �xed allow for having more clones in
one �le system.

For 4096 byte blocks, there are 512 group descriptors in one block. All
descriptors occupy part of the .i�le from the sixth block. This is to avoid
indirection for inodes that are accessed all the time and group descriptors.

For the clone support the super block keeps not only one pointer to the
.i�le, but an array of pointers to many .i�les. The challenge is that the
di�erent clones do not overwrite each other's blocks.

Let's consider for a moment that we have created more clones. They all
have their free-blocks-bitmap and to �nd a free block, free-blocks-bitmaps of
all clones must be checked. When a free block is found it is marked only in
the free-blocks-bitmap of the current clone as taken. When a block is freed,
the block it is marked as freed only in the current clone. And that is all
in order this to work. Destroying the clone means that its bitmap is not
available anymore and its blocks are free to be taken by any clones.

3.2 Allocating Blocks

An LLFS partition is divided into groups. One group consists of 8∗blocksize
blocks, which is the number of bits in one block. That way a bitmap that
�ts in one block, can map exactly one group. The �rst block in a group is
the super block. In the second block pointers to the clones could be stored.
This is would allow for yet more clones, but it is not currently implemented.

The super block is overwritten in place. All other blocks in the group are
like data blocks. Unlike the Ext2 �le system, in LLFS the inode bitmap, inode
table and data block bitmap, group descriptors are not �xed, but belong to
the data area.

Other structures that are used for allocating blocks are group descriptors.
Group descriptors hold information that helps to decide in which group of
blocks there is enough space for �le and meta data to be written. LLFS tries
to put a �le in a single group if it is possible.

The data block bitmap is a �le with information one bit per block, which
blocks are free in the group. Every time a new block is allocated, bitmap
blocks are searched until a zero bit is found.

LLFS complicates the matter in that data block bitmaps are not �xed

21

Clone 0

Clone 2

Clone 1

Figure 3.1: Free blocks bitmaps

on one location. When a new block is allocated, a new data block bitmap
block can be also allocated if it was not already for some other block from
this group. It is possible that the bitmap block for some group is in another
group. The location of the bitmap block for every group is stored yet in
another block, as part of an inode structure, that can be allocated too if it
has not been after the last commit. See �gure 3.1.

3.3 Freeing of Blocks

When a block is freed its corresponding bit in the bitmap block is set to zero.
Here again the bitmap block is not updated in place after it was committed.
Note that every such no in-place update causes the allocation of a block, and
frees the block where it was just before commit.

3.4 Disk Layout

The whole �le system is divided into equally large groups of blocks. One
group consists of so many blocks that are addressable by one bitmap block
(one bit per block). For example with block size of 4096 bytes, there are
4096 ∗ 8 bits. That means that in one block group there are 32768 blocks.
One block being 4 kilobytes it is then 128 megabytes in one block. The �rst
block in such a block group is the super block, although when sparse super
blocks are activated it does not have to be, since in a large hard drive, this
would result in thousands of super blocks. The super block is the only block
that has a �xed location in LLFS. All other blocks that had �xed locations
in Ext2 like block and inode bitmaps, inodes and group descriptors belong
to the data area. See �gure 3.2.

22

data
block

data
block

data
block

Block Group

super
block

Figure 3.2: Blocks in LLFS block group

23

Chapter 4

Using LLFS

This chapter describes possible use of LLFS. How to get it to compile and
start, how to create, remove and use clones.

4.1 Operation

LLFS is a kernel module that can be loaded on demand and used. Normally
it is loaded automatically when the �le system was created with mkllfs com-
mand and is mounted. I had to make some minor changes to the VFS, the
Linux kernel has to be patched, compiled and installed. The patch does not
in�uence other �le systems.

4.2 Creating an LLFS File System

For creating a new LLFS �le system the mkllfs command is used, with a
block device �le as an argument. For example

mkllfs /dev/hda1

creates super blocks, group descriptors, root, lost+found, .i�le, .bitmap and
.con�g directory entries and several associated inodes on the hda1 block
device.

4.3 Mounting a Clone

After the �le system is created with mkllfs command, it can be mounted as
usual with mount command. This mounts the master clone (clone 0) and
the �le system can be used like any other �le system on Linux.

24

To mount a di�erent clone than master clone a special option in mount
command can be used1.

mount /dev/hda1 /mnt/llfs -o clone=2

mounts clone number 2 to the /mnt/llfs mount point.

4.3.1 Creating a Clone

To create a clone for example from clone number 2 to clone number 4 is
accomplished with command

llfs-clone /dev/hda1 2 4

The last consistent state of clone 2 is cloned. After clone 4 is mounted it
contains the same data as clone 2. After clone 2 is written to or is even
destroyed clone 4 can still be used.

4.3.2 Disposing of a Clone

Command

llfs-remove /dev/hda1 2

removes the clone number 2 and frees its blocks for further use.

1At this stage LLFS supports maximum 10 clones and mount option does not work.
Instead di�erent clones can be mounted on �xed directories. /llfs1, /llfs2, . . . , /llfs9. If
the �le system is mounted on any other directory it is mounted as a clone 0. This way
LLFS can be used like any other �le system, but it is also easy to access di�erent clones.

25

Part II

Implementation

26

Chapter 5

Implementation Details

5.1 From Ext2 to LLFS

The implementation of LLFS began with the Ext2 �le system. First I made
a copy of Ext2, renamed it and made a con�gure option for my new �le
system. After succeeding to load it, I started to modify chunks of code,
still keeping Ext2 functions in operational state so that all the time I could
test the changes. Over time overwriting more and more Ext2 functions I
have changed Ext2 to the LLFS �le system. The reason for starting from
Ext2 is that I could use its allocation methods and thus inherit the clus-
tering already working and optimized. The data structures and layout of
functions/callbacks required only minimal changes.

5.1.1 Implementing Meta-Data

In the beginning the implementation consisted of changing the inode and
data block bitmap code. I have created an .i�le inode that contains inodes
including itself. These inodes are stored sequentially in the .i�le, but not
necessarily sequentially on the disk. To know which inode numbers are free,
a free inode bitmap is used and it is stored in the same .i�le. See �gure 5.1.

The very �rst block of the .i�le �le is the free inode bitmap that covers
block_size ∗ 8 inodes. It means 32768 inodes, if block size is 4096 bytes.
One on-disk inode needs 256 bytes, so there are 16 inodes stored in one block

inodes
inode

bi tmap
inode

bi tmap
inodes

inode
bi tmap

inodes

Figure 5.1: I�le inode

27

Figure 5.2: Locating data blocks from a �le

and 32768 inodes are stored in 2048 blocks. The next free inode bitmap is
stored in the 2049th block and covers the next 2048 blocks of inodes.

Later group descriptors structures were added to the same �le. I have
stored a pointer to the block where the .i�le inode is located in the super
block, made it an array and di�erent clones on one disk partition were pos-
sible.

In order to �nd data blocks of a �le, the super block is read. The super
block contains a pointer to an .i�le inode for a speci�ed clone. The .i�le
contains an inode of the �le, which in turn contains pointers to all data
blocks of the �le (see Fig. 5.2).

Similarly I have created a .bitmap inode that contains free blocks bitmap.
That solved my problem of more clones having their own bitmaps that can be
removed and created instantly, with one trade-o� though, that more bitmap
blocks have to be scanned for free blocks, if more clones are used. I was
thinking of one more in-memory bitmap that would serve as cache to repre-
sent all the clones and speed up the search for free blocks, but this I did not
implement and left it for the further work.

All other meta-data that are stored in inodes and other structures did
not require any change from the way it is implemented in Ext2.

5.1.2 Implementing Group Descriptors

The next task was the desc structure. In the Ext2 �le system it is stored
redundantly in every block group right after super blocks. I have removed
pointers to the inodes and bitmaps that I did not need anymore. This made
the structure smaller, but still to store it redundantly as it is in the Ext2 �le
system multiplied with number of clones would take too much space. I de-
cided to part with this redundancy, which would not buy much anyway. The

28

inodes group descriptors
inode

bi tmap
inodes

inode
bi tmap

inodes

Figure 5.3: I�le inode with group descriptors

free blocks can always be regenerated in fsck by walking through all the allo-
cated inodes, recording which blocks they have allocated so this information
is already redundant.

Group descriptors are used for �nding out how many blocks are free in
the described group, so that it is easier to �nd cluster of free blocks. It is
also easier to count the free blocks of the whole �le system.

Counting of free blocks is more di�cult, because the group descriptor for
one clone does not give information how many blocks are really free. This is
because the allocated blocks can overlap between two clones and free blocks
count contains only free blocks for this clone. This causes problems not only
for counting of free blocks, but also for determining which block groups are
available for allocation.

The group descriptors are stored in the .i�le. They could be stored for
example in the .desc or .bitmap �le, but I have decided to reuse the .i�le �le,
because it was less e�ort to code. See �gure 5.3.

5.1.3 Implementing mkllfs

Sometime during this implementation I needed a tool, to create an empty
�le system with meta-data, root inode and root directory entry, so it was
possible to mount it. For that I modi�ed mke2fs tool that creates an Ext2
�le system and named it mkllfs. It was much easier to do than to program
mkllfs from scratch. I could reuse the Ext2 �le system way of making root,
lost+found and bad-blocks directories, respectively their inodes and added
.i�le, .bitmap and .con�g �les. I initialized the .i�le inode with this just
mentioned inodes and marked bits that were taken by this procedure, in the
.bitmap �le. This part of implementation was outside of the kernel.

5.1.4 Implementing Copy-On-Write

At this point I could use LLFS with the new inode and bitmap code, but
still it did not do anything more than the Ext2 �le system could do, but now
I could set up to work on the copy-on-write feature. Copy-on-write is to not
to overwrite blocks, but allocate new position on the disk that was free and
move the block over there. But we do not want to do copy-on-write all the

29

time. When a bu�er or page is in memory and it is subsequently changed
as is often the case, it would make little sense to copy the bu�er around
by every change. A bu�er or page should copied-on-write only just after it
was committed and before the next commit it can be overwritten in main
memory over and over. What does it mean that the bu�er is committed and
when the bu�er is committed? Well, as for now LLFS does not solve this
correctly and further work on this is required. When a bu�er is synced to
the disk it is considered committed. This works pretty well, when bu�ers are
synced periodically and the super block is synced last. Unfortunately this
is not always the case. For example when main memory is nearly full and
bu�ers are freed from memory and synced to the disk in any order. But still
with this approach I could test the �le system, only I had to make sure not
to have nearly full memory. It also gave me some incentive to �x the memory
leaks.

Leaving the question of committed blocks for later, I could start to work
on copy-on-write. The bitmaps, group descriptors and inodes are accessed
as it is in the Ext2 �le system through bu�ers, so every time a bu�er with
bitmap, group descriptors or inodes is overwritten, it is checked if it is com-
mitted and if it is, new block is allocated and it is copied to a new location.
Changing the location of a block in .i�le or .bitmap �le also changes the in-
odes of these �les. A block that contains these inodes1, if it is not committed
must be reallocated again. This basically happens the �rst time any block
is written to and then this block is overwritten only in memory, till the next
commit. Meta-data are accessed at many places in the code. The free block
bitmap is accessed during allocation of the new block, inodes during writing
of �les, or changing the directory entries, renaming of �les and so on. Group
description is written to during allocation of blocks as well.

Having implemented the copy-on-write for meta-data I turned to the
copy-on-write for �les. Before �le blocks are overwritten the prepare_write
function is called, there I can see if bu�ers are committed or not, and if yes, a
new location is allocated for them and the bu�ers are copied. Prepare_write
works with pages that contain the bu�ers and every time a copy-on-write hap-
pens, a new page is allocated in memory. I had to change prepare_write

to return the new page, so that a subsequent call to commit_write gets the
new page and not the old one. Using my rede�ned prepare_write function
I could implement copy-on-write for all the directory entry functions like
readlink, create, unlink, rmdir, mkdir, mknod, symlink, rename and so on
de�ned in namei.c and dir.c.

1Both inodes do not have to be stored in one block, but I laid out the inodes in such a
way that they are in one block, if usual block sizes are used.

30

Figure 5.4: Copy-on-write

When one data block is modi�ed for the �rst time after it was committed,
it is copied. At the same time several other blocks are updated and depending
on if they were modi�ed for the �rst time after they were committed, they
must be copied. In the simplest case when the data block is modi�ed, a
block that contains its inode, .i�le inode and super block are also modi�ed
(See Fig. 5.4).

After implementing the copy-on-write in all these cases I could �nally use
more clones on one block device.

5.1.5 Implementing Indirection

Up until now I neither implemented nor mentioned indirection. Every inode
can store pointers to 12 blocks that store its �le. Depending on block size
this can be 12 or 48 kilobytes. If the �le is bigger the remaining part is
stored in indirect blocks. The inode contains a pointer to the block that
stores pointers to the real data blocks. So for example, with an 4096 byte
block size, one block contains 1024 pointers2 with 4K blocks. Together with
direct blocks and indirect blocks an inode can address 4 megabytes plus this
meager 48 kilobytes. This is of course still not enough, so there are double
and triple indirect blocks. With double indirect blocks already 4 Gigabytes
are addressable and with triple indirect blocks 4 Terabytes. See �gure 5.5.

Because my inodes and free block bitmaps are also addressed with inodes,
indirection was needed for these meta-data as well. One inode takes 256
bytes, so there are 16 inodes in one block, so only 192 inodes are addressable
directly. Anything over that must be stored in indirect blocks.

Let's have a look at the free block bitmap. Assuming 4K blocks, One
2one pointer takes 4 bytes

31

inode

double
indirect blocks

indirect blocks

direct blocks

tr iple
Indirect blocks

data blocks

Figure 5.5: Indirect blocks

bitmap block contains free blocks of one group. One group is 128 megabytes
of data. Directly a bitmap inode can address 1536 megabytes. In the second
level of indirection, already over 128 Terabyte is addressable. It is reasonable
scalable for me, but further work can be done here. For example not to use
inode for meta-data but some other structure.

Implementing indirection in �les was the relatively easy part. I added
copy-on-write code for blocks with pointers to the indirect blocks and the
indirect blocks. The same I could do with inodes.

5.1.6 Implementing Clones

Implementing the copy-on-write for data and meta-data, I could now start to
work on the fun part, the clones. After the changes above, all the meta-data
of one clone can be accessed using the .i�le inode of this clone. The inode is
stored along several other inodes in one block with a unique block number.
The next step was to store these block numbers with .i�le inodes somewhere.
Since an Ext2 super block does not take the whole block on the disk, I was
able without much e�ort to add an array of these block numbers for about
100 clones there.

The next issue was for the module to know which clone is used. Because
the �le system function are called from VFS that does not support having
more clones, it is not very easy. For some functions that work with inodes
and get inodes as parameters, it is possible to �nd out the clone number from
the inode number. Some function have directory entries as parameter. From

32

directory entry it is possible to obtain a mount point directory entry; now I
need to know which mount point directory entry belongs to which clone. For
that a map would be needed to map this mount point to the clone number.
This is certainly doable, so I decided as proof of concept to code the clone
number in the mount point directory entry. So for example /llfs1 mount
point is used for clone 1, /llfs2 for clone 2 etc. This allowed for 10 clones.
I initialized all of them to be clone of an empty �le system during mkllfs.
In the beginning all the clones point to the same .i�le inode with the same
inodes and same free blocks. When one clone is mounted and it is written
to, immediately its .i�le inode starts to be di�erent from other clones along
with other modi�ed blocks. At any time one clone can be cloned again. That
requires to just overwrite the pointer in the super block to point to the block
with the .i�le inode.

A nice thing about newer kernels is that it is possible to mount one block
device on many di�erent mount points. With that I could mount two or
more di�erent clones at the same time.

Destroying a clone is done by setting its pointer to the block with the .i�le
inode to a zero and invalidate all cache entries for this clone. Block group
free counts would have to be recalculated, but this is still not implemented.

5.1.7 Implementing Inode, Dentry and Page Cache

The inode cache is part of Virtual File System that stores inodes, once read
from underlying �le system in the memory, so that subsequent reads of inodes
are served from the cache.

The directory entry cache (dcache) is also part of Virtual File System
that speeds up path lookup in the �le system. When the path is not in the
cache VFS asks underlying �le system to look it up, stores it in the cache
and avoids subsequent queries to the �le system. This works excellently with
traditional �le systems, LLFS uses it as well, except that it causes all sorts
of problems when more clones are used at the same time.

The virtual �le system does not support mounting of more clones on one
�le system. Especially the inode and dentry caches get in the way. When
one clone is read and after a short while another clone with the same path
names or inode numbers, �rst the caches are checked in the VFS and cache
hits from other clones are returned. I have solved this temporarily: inodes
in di�erent clones have unique inode numbers in memory, di�erent than on
the disk. Another problem is that VFS assumes that there is only one root
dentry. This does not work for LLFS, so I had to do some changes in the
virtual �le system.

Because the same inodes have di�erent inode numbers between clones,

33

the inode cache is not a problem. On the other hand dentry cache is, be-
cause dentry cache checks part of a path till the mount point and can return
inode numbers from di�erent clone. I solved it, so that if something like this
happens, the cache is invalidated and this information must be obtained from
the disk again. Note that this happens only if they are the same �les in the
same directories in di�erent clones and they are read about the same time.

Having explained this in detail, a more elegant solution should be pos-
sible: when a way to map di�erent clones to di�erent device �les will be
implemented in the future, the whole inode-and-dentry-cache problem would
go away because the VFS caches would treat di�erent clones as di�erent �le
systems.

Similar problem can arise, because of the page cache. Although in the
current implementation I have made an easy way out, in that the page bu�ers
are copied in the memory before they are modi�ed. This should not be
necessary all the time though and this memory copy could be optimized
away, because if only one clone uses the bu�er in the memory, it would be
enough to reallocate it on the disk, but leave it on the same place in the
memory.

5.1.8 Implementing Block Allocation and Deallocation

Having more clones I had to implement block allocation that looks for free
blocks in all the clones. Searching for free blocks proceeds as it is in the
Ext2 �le system with addition that all clones must be searched. Once the
block group with free blocks is identi�ed, the bitmap bu�ers for this block
group for all clones are read. The free block is found if in all bitmaps this
particular bit is set to zero. When a free block is found its bit is set to one
only in the clone for which it is used. For every other clone it is zero. Other
clones will not allocate this block, because they check again against all the
clones. When the clone is destroyed, other clones no longer check its bitmap
and the block is again available.

With indirect blocks this got more complicated. When allocating/reallocating
an indirect block in the .bitmap �le, the block with pointers to the indirect
blocks that points to this indirect block needs to be allocated. It can be
allocated in another indirect bitmap block, where the same events have to
take place. Although this should not happen often with clustering, when
�le system is almost full, this allocating of indirect blocks can go on forever.
This can be later improved, so that the indirect block is allocated in the same
block as its parent or not at all, thus avoiding the recursion.

An additional di�culty is if a bitmap block is allocated in its own block
group. Even more so, if the indirect bitmap block is allocated in its own

34

block group and its parent.
To make it clear, with direct blocks there are two possibilities:

• the bitmap block is allocated in a di�erent block group

• the bitmap block is allocated in the block group it manages itself.

With indirect blocks there are 4 possibilities:

• the bitmap block and its parent are allocated in di�erent block group

• the bitmap block is allocated in its block group, but the parent is
allocated in a di�erent block group

• the bitmap block is allocated in a di�erent block group, but its parent
is allocated in its block group

• the bitmap block and its parent are allocated in the same bitmap block

Especially in the last case, if the bitmap block and its parent are newly
allocated, a chicken and egg problem arises. The bitmap block cannot be
allocated before the parent is and parent cannot be allocated because the
bitmap block still does not exist.

With double indirect blocks the problem is similar but more complex.
Finally I made it work for simple indirect blocks, but this part of code

can be and should be improved.

5.2 In-Memory and On-Disk Data Structures

5.2.1 Super Block

The super block is a central data structure for a �le system. The VFS super
block in-memory structure closely relates to the LLFS super block. The
VFS super block data structure de�ned in include/linux/fs.h contains
information about �le system as a whole, on which block device it is mounted,
the block size that is used, if it is dirty and needs to be written, the maximum
�le size, �le-system type structure, callbacks for super-block operations, a
magic number, the root directory entry, the pointer to all inodes, locks and
other data, pointers and �ags. Every �le system can extend this structure
with its own super block in-memory data. LLFS uses it to add information
about the number of group descriptors, their sizes and pointers to the .i�les
of all the clones and their root dentries.

35

When a super block is written to the disk, the in-memory super block
is converted to the structure that contains data from the VFS super block
and extended LLFS super block in-memory data. The integer numbers are
converted to the little-endian byte order, so that di�erent architectures can
read the same disk, whatever their representation of these numbers is in
memory.

The super block is the only data block that is written to the same place
in LLFS. The super block must be stored on prede�ned place, so that it can
be found after a �le system is mounted. I could reuse most of the Ext2 super
block code and attributes. LLFS super block contains additionally an array
of i�le block numbers, so that di�erent clones can be found. The in-memory
LLFS super block also contains pointers to the root dentries of all the clones.
These pointers are not written to the on-disk super block.

5.2.2 Inode

Similarly to the super block, there is an in-memory VFS inode, extended with
LLFS data and a converted inode structure that is written to the disk. The
in-memory VFS inode contains the inode number, link count, permissions,
sizes and other data associated with �les, directories or special �les. The
LLFS in-memory inode contains pointers to the data blocks and indirect
blocks. It also contains group number in which �le or directory is stored.

I did not have to change the Ext2 inode structure or inode info structure.
In reality I needed to make inodes with same number from di�erent clones
distinguishable for the inode and dentry cache. I could store clone number
in the inode info structure and make VFS aware of clones, this would be the
right approach.

For now when the inode is read from the disk its in-memory inode number
is changed. This way I can �nd out to which clone this inode belongs and
also the inode and dentry cache are happy. The formula for the in-memory
inode number is ino = real_ino + clonenr ∗ big_number where big number
denotes available inodes divided by available clones. To get a clone number to
which this inode belongs is simple: clonenr = int(ino/big_number) When
the inode is written, the real inode number is needed and this is computed
like this: real_ino = ino − big_number ∗ clonenr. As you can see, this
reduces the number of available inode numbers, the more clones are allowed
to be created. This is but a temporary solution.

Additionally every inode stores i_block_group, i_next_alloc_block

and i_next_alloc_goal numbers.

36

i_next_alloc_block is the most recently allocated block in this �le rel-
ative to this �le. It is used to detect the continuous allocation of blocks.

i_block_group is the number of the block group where this inode is
allocated. This is used to allocate directories near its parent directory. In
the Ext2 �le system this number is constant. In LLFS the inode location
changes on the disk, so does the i_block_group number.

i_next_alloc_goal contains the physical block where the most recent
block of this �le was stored.

5.2.3 Group Descriptor

An LLFS group descriptor structure contains free-block and inode counts
and a used directories count. All these counts apply to one group.

An Ext2 group descriptor structure contains additionally pointers to the
blocks and inodes bitmap blocks and inodes table block. This pointers are
not needed in LLFS, because they are stored in .i�le and .bitmap �les.

Thanks to this, one LLFS group descriptor takes 8 bytes of the disk space
and is more lightweight than Ext2 group descriptor which takes 24 bytes.

Free blocks counts in the descriptors are also used for determining of free
space on the whole disk. Free blocks of every group are read and summed up.
When a new clone is created it does not immediately consume disk space,
because it shares all the blocks with the parent. In time, as new blocks are
assigned to the new clone, it starts to take disk space. Let's suppose that a
clone is created, after that its parent is destroyed, now the new clone should
account for all the blocks that it shared with parent. This is not a problem,
since the new clone contains its own copy of the free-block count from the
parent. The problem is that during existence of parent and its clone, while
new blocks are created and removed, it is no longer known which blocks are
shared and which are not. The solution for this is to keep yet another desc
structure that contains a free-block count of blocks that do not belong to any
clone. This will come at a price when a clone is discarded. The free-block
count would have to be calculated again.

5.3 Functions

This section describes some Ext2 and VFS functions and changes that were
required in order to implement LLFS. This section can be safely skipped, if
you are not a kernel programmer.

37

• grab_block

grab_block function gets a bitmap block and goal as arguments. Goal
is a preferred location in the bitmap block. If the goal bit is zero in
the bitmap, it means it is free and the search is over. If that fails,
the zero bit will be searched sequentially to the next 64 bit boundary.
When no free bit was found, the rest of the group is searched for one
zero byte. Notice it is byte not bit. If byte was found the search is
continued backwards to �nd the �rst zero bit in this group of adjacent
free bits. If this fails the free bit is searched bit by bit from the goal
to the end of the bitmap block. If it all fails it means that all bits in
the bitmap block are taken and -1 is returned. LLFS's grab_block

has to check bit/bytes for all the clones. Although not �nding any free
block should not happen with the Ext2 �le system, it can happen more
often in LLFS, because in the current implementation if more clones
are using one block group, the descriptors hold only information about
free blocks for this clone. But how many blocks are really free by all
clones is not known. This is because several clones can own the same
blocks, but other blocks are owned only by one clone.

• reserve_blocks

blocks are reserved in a group descriptor for a block group, before they
are allocated on the disk. During this time the block group is locked. If
allocator is waiting for this lock and block group gets full, the reserved
blocks are released and next block group is used.

• prepare_write

The Ext2 �le system uses the prepare_write function from VFS. I
had to de�ne my own, in order to implement the no-in-place updates.
Prepare_write goes through all the bu�ers on a page that is sup-
plied as an argument and checks the state of the bu�ers and prepares
them to be written. It is repeated for every page on which the �le is
stored. After prepare_write the data from user space are copied and
commit_write is called. Only prepare_write and commit_write can
be overwritten in the �le system, copying from user space happens in
the VFS.

If the page is up-to-date, every bu�er on the page is marked up-to-date
if it was not already. Preparation is over right here if the page is up-
to-date. If it is not bu�ers are inspected further. If the bu�er is new,
the new state �ag is cleared. If the bu�er is not mapped, meaning it is
not associated with a block in memory and/or on the disk, the block

38

is fetched or newly allocated respectively. If a new block was allocated
at this point, it is either up-to-date or the bu�er data that are outside
of the range that �le systems wishes to write, are zeroed. Again if the
whole page is up-to-date, the bu�er is set up-to-date, if it is not. If
the bu�er is not up-to-date and does not have its delay bit set and it
is part of the bu�er that will be written to, it is read from the disk.
Then the new bu�er bits are cleared for all the bu�ers on the page,
since they are either read if they existed or zeroed.

• commit_write

Commit_write goes through the bu�ers on the supplied page and marks
them dirty and up-to-date, if they were overwritten after prepare_write.
Additionally if all bu�ers on the page are up-to-date the page is marked
up-to-date. The Ext2 �le system uses commit_write from VFS. LLFS
overwrites it only in order to parse the .con�g �le for cloning requests.

• generic_�le_bu�ered_write (�lemap.c)

is a VFS function that writes a �le to the disk calling prepare_write

and commit_write. It loops through all pages that are stored in mem-
ory for the �le (or will be) and calls prepare_write, which can be
rede�ned in a �le system. After that page is up-to-date and in memory
and data are copied from user space with filemap_copy_from_user

and filemap_copy_from_user_iovec. After that commit_write is
called. In LLFS there is a need to modify this function, unfortu-
nately it is not possible without changing the VFS code. In VFS the
prepare_write prepares bu�ers on the same page that is later commit-
ted with commit_write. During prepare_write in LLFS the bu�ers
from the page are copied to a new page then the data from user are
copied and commit_write is called on a new page.

• block_to_path

returns depth of the indirection and o�sets in the intermediate nodes
of indirect blocks for inode block. For direct blocks it returns 1 and
o�set[0] is set to i_block. They are also indirect, double and triple
indirect blocks. Boundary �ag is set if the block is last before a possible
next indirect block.

5.3.1 dir.c

In dir.c I had to make modi�cations to following functions:

39

• readdir

While reading a directory entry a cache can return an inode from a
di�erent clone. This can be detected and the inode is reread for the
current clone.

• inode_by_name

This function returns the inode number by name from parent directory.
Here LLFS incorporates clone number in the inode.

• add_link

This function adds a directory entry to a directory. When a directory
entry is added copy-on-write is implemented.

• delete_entry

Copy-on-write has to be added in this function as well.

5.3.2 namei.c

In namei.c I had to make modi�cations to following functions:

• d_compare

I have rewritten d_compare callback in dentry_operations structure.
The llfs_compare had to be made aware of di�erent clones and return
false if dentry cache contains a directory entry from di�erent clone.

• lookup

This is the inode_operations callback. When an inode is looked up for
the �rst time the inode number in the memory is changed to encode
the clone number.

• create, mknod, symlink

These callbacks create an inode for a created directory entry. At the
same time the clone number is encoded in the inode by LLFS.

• mkdir

This function creates a new inode and a directory entry. The clone
number is known from the parent directory, so the new directory can
be created for the right clone.

40

• unlink

Unlink removes speci�ed directory entry and decrements the inode us-
age count. All this must happen with copy-on-write.

• rename

Renaming modi�es two inodes and directory entries if the renaming is
possible. The modi�cation is copy-on-write too.

41

Part III

Testing, Debugging and

Benchmarking

42

Chapter 6

Testing and Debugging

Running and debugging a kernel module is di�erent from running and de-
bugging a user space application. First of all any fault in kernel code leads to
a crash or unde�ned behavior of the system and the whole machine should
be rebooted.

To overcome this inconvenience I used User Mode Linux (UML) with gdb1

for testing and debugging. UML is a virtual machine that runs Linux on top
of Linux. That way, if a crash occurs, only the virtual machine is a�ected and
only a restart of the virtual machine is required. It is also possible to attach
gdb to the virtual Linux and get stack traces, with function names and line
numbers, which I used extensively. It is also possible to set breakpoints and
use commands to step through the code line by line, although this feature
is decreasingly useful with increasing complexity of the code and parallel
execution.

The Linux kernel also allows to turn on some checks for detecting dead-
locks, memory allocations, soft lockups, mutex semantics violations among
other things and print out stack traces.

Another debugging tool is simple printk() that prints text and just any
type of variable like its user land counterpart printf()to the log. Amazingly
printk() does work if it is called from any part of the code without any con-
currency issues. Putting the printk() on right places can help with detecting
code-�ow problems and inspecting values of variables. Very often debugging
of all sorts of problems was done by putting and removing temporary printks
in the badly behaved code. Another kernel function WARN_ON can be
used to dump out stack traces and the more radical BUG_ON() function
that stops the execution of the kernel.

It is also important do debug under conditions that do not occur so often,
1GNU Project debugger

43

for example, when main memory or the �le system is almost full.
During the implementation of LLFS I wrote myself small test programs

that were testing various usage patterns of the �le system. I could run them
in endless loops to catch rarely occurring bugs or I could run all the tests one
after another in order to see if the latest �x did not break something else.

Some tests looked like this:

• copying one small �le, removing the �le

• copying one big �le, removing the �le

• copying many �les, removing the �les

• creating many small �les, removing the �les

• creating a directory, removing the directory

• creating a symlink, removing the symlink

• moving a directory, moving a �le

• making a clone of empty �le system, writing to the both clones at the
same time

• the same as above, but with ten clones

• writing to a �le, syncing, appending to the �le

• copying a �le, making a clone, reading the �le, reading the �le from
clone, removing the �le, removing the �le from clone

• and of course copying the Linux kernel, untaring the kernel, compiling
the kernel, removing the kernel

Additionally these tests were executed with various combinations of sync-
ing, cloning and wiping out of LLFS memory bu�ers.

44

Chapter 7

LLFS Performance

To test performance of LLFS I dedicated one 50GB partition of my hard disk.
I compared LLFS with the Ext2 �le system and two journaling �le systems:
Ext3 and ReiserFS. Ext3 was tested in default ordered mode and in journal
mode as well. The journal mode makes the Ext3 �le system much slower but
guarantees a level of consistency similar to LLFS. Nevertheless the aim of
LLFS was to match at least Ext3 even in ordered mode and journaled mode
benchmarks were added but will not be commented during comparisons.

All �le systems were tested on the same disk partition. Tests where
copying of �les were performed, the �les were copied from another disk.

For time measurements I used Linux time command. Before every test
the computer was restarted and was made sure that no unusual services are
running. The �le system was created with mkfs command of the respective
�le system and the created �le system was mounted. All �le systems used
4K blocks.

The test equipment was a PC with AMD Athlon XP 2800+ processor
with 1GB RAM. The kernel version was Linux 2.6.16. The hard drive used
was Seagate ST3500630A 500 GB ATA internal hard drive.

7.1 Creating and Reading Small Files

This benchmark consisted of creating and reading of small �les. First a di-
rectory was created with 10 subdirectories, all these subdirectories contained
10 other subdirectories with yet another level of 10 subdirectories. The last
level of subdirectories contained 10 1K �les each. If you got confused by now,
together there were 10,000 �les.

The whole hierarchy was recursively copied to the benchmarked �le sys-
tem and synced twice. A time second of cp command was measured plus the

45

time that sync command took to write all the data to the disk. This way
only write performance of the tested �le system was measured and not read
performance from the �le system where the data came from. The results can
be seen in the �gure 7.1.

sync

cp

 0.00

 0.50

 1.00

 1.50

 2.00

 2.50

 3.00

 3.50

 4.00

 4.50

Ext2 Ext3 ReiserFS LLFS Ext3 data j.

se
co

n
d
s

Figure 7.1: small �les write performance

In this test ReiserFS was the fastest, although it took longer in the cp

command, but then it had less to write during the sync. It means that user
has to wait little bit longer, while the cp command is issued, but the writing
of data in the background is much faster.

LLFS was in this test slower than Ext2, but faster than Ext3. Although
LLFS needed to allocate meta-data blocks, this extra overhead was almost
canceled with better spatial locality of data and meta-data.

After that the computer was rebooted to ensure that no cache interferes
with results and all 10,000 �les were read. See �gure 7.2 for results.

In this test again ReiserFS was the fastest, since it is optimized for this
sort of tests, LLFS did also good and came second followed by Ext2 and
Ext3. Ext3 does not need the journal for reading, so it does not in�uence its
read performance, but it is still slower than Ext2. LLFS fully pro�ts in this
test from less fragmentation of meta-data and data than it is in Ext2 and
Ext3.

7.2 Creating and Removing of Small Files

For this benchmark the same directory hierarchy as in previous section was
used. This time the directories and �les were copied recursively to the bench-

46

 0.00

 1.00

 2.00

 3.00

 4.00

 5.00

 6.00

 7.00

Ext2 Ext3 ReiserFS LLFS Ext3 data j.

se
co

n
d
s

Figure 7.2: small �les read performance

marked �le system and immediately removed. This copying and removing of
the same thing was repeated 100 times. See �gure 7.3 for results.

sync

cp&rm

 0.00

 50.00

 100.00

 150.00

 200.00

 250.00

Ext2 Ext3 ReiserFS LLFS Ext3 data j.

se
co

n
d
s

Figure 7.3: small �les write and remove performance

This test is played mostly in the cache and measures most of all a �le
system overhead while not much is written to the disk. Here Ext2 and LLFS
were the fastest, second was Ext3 that took about 37% longer and ReiserFS
about 60% longer than LLFS.

47

7.3 Creating and Reading of Large Files

This benchmark copied 19 �les each of which contained 167 Megabytes of
data to the tested �le system. See �gure 7.4. In this benchmark all �le

sync

cp

 0.00

 20.00

 40.00

 60.00

 80.00

 100.00

 120.00

 140.00

 160.00

 180.00

 200.00

Ext2 Ext3 ReiserFS LLFS Ext3 data j.

se
co

n
d
s

Figure 7.4: large �les write performance

systems performed about the same (disregarding Ext3 in journaled mode).
After the reboot of the system all �les were read. Again performance of

all �le systems was about the same, LLFS being the fastest. See �gure 7.5.

 0.00

 10.00

 20.00

 30.00

 40.00

 50.00

 60.00

 70.00

 80.00

Ext2 Ext3 ReiserFS LLFS Ext3 data j.

se
co

n
d
s

Figure 7.5: large �les read performance

48

7.4 Writing and Reading of Log-File

This test was designed to see what additional fragmentation of copy-on-write
system does to the reading performance. In this test a line with 80 characters
was written to a �le. The �le was synced and another 80 characters were
written and so on. This writing and syncing was repeated 20,000 times. In
the end the �le had 1.6 megabytes of data. As expected the LLFS was the
slowest in this test. Ext2 performed the best. See �gure 7.6. After reboot
of the system, the whole �le was read at once. LLFS was again the slowest,
although even more so than expected and some further work is required to
pin down the source of this performance problem. See �gure 7.7.

 0.00

 10.00

 20.00

 30.00

 40.00

 50.00

 60.00

 70.00

 80.00

 90.00

 100.00

Ext2 Ext3 ReiserFS LLFS Ext3 data j.

se
co

n
d
s

Figure 7.6: writing log-�le

7.5 Unpacking, Compiling, Removing Kernel

This test was designed to compare the �le systems in some real world scenario.
First a 51 megabytes tarball of Linux kernel was copied to the bench-

marked �le system. The tarball was unpacked to 271 megabytes, the make

command was executed and �nally the compiled kernel with 343 megabytes
of data was removed. Figures 7.8, 7.9 and 7.10 show the results of this com-
mon task (for some people anyway). Figure 7.8 compares copy and �gure 7.9
unpacking of the tarball. Here again the proximity of data and its meta-data
helps LLFS to be the best in this benchmark. Ext3 and ReiserFS have to
write their journals and are slower.

49

 0.00

 0.50

 1.00

 1.50

 2.00

 2.50

 3.00

 3.50

Ext2 Ext3 ReiserFS LLFS Ext3 data j.

se
co

n
d
s

Figure 7.7: reading log-�le

 0.00

 0.50

 1.00

 1.50

 2.00

 2.50

 3.00

 3.50

 4.00

 4.50

Ext2 Ext3 ReiserFS LLFS Ext3 data j.

se
co

n
d
s

Figure 7.8: Linux kernel source copying

Figure 7.10 compares times of the make command. Compiling is CPU
intensive and is performed mostly in the cache and not surprisingly the results
of all tested �le systems are almost identical.

Finally the whole kernel tree with compiled object �les was removed. See
Figure 7.11. In this test ReiserFS was the fastest, followed by LLFS and
Ext2.

The next test was to open one by one all Linux kernel �les and read all
of the 7.6 million lines of code and compiled �les. Again, to ensure that no
caches are used, the computer was rebooted. Figure 7.12 shows the read
performance results. In this test LLFS shines one more time thanks to the

50

 0.00

 5.00

 10.00

 15.00

 20.00

 25.00

Ext2 Ext3 ReiserFS LLFS Ext3 data j.

se
co

n
d
s

Figure 7.9: Linux kernel source unpacking

 0.00

 100.00

 200.00

 300.00

 400.00

 500.00

 600.00

Ext2 Ext3 ReiserFS LLFS Ext3 data j.

se
co

n
d
s

Figure 7.10: Linux kernel compiling

spatial locality of data and its meta-data.

7.6 Snapshot / Clone Performance

I made also some benchmarks with clones and without. For this test I used
the �les from the previous large-�les test. I wanted to compare LLFS without
clones, LLFS with one clone, Ext3 and Ext3 with LVM snapshot.

First LLFS with clone and without clone was tested. The 3.1 Gigabytes
of large �les were copied. In one test a clone was created in other was not.

51

 0.00

 2.00

 4.00

 6.00

 8.00

 10.00

 12.00

 14.00

Ext2 Ext3 ReiserFS LLFS Ext3 data j.

se
co

n
d
s

Figure 7.11: Linux kernel source tree removing

 0.00

 10.00

 20.00

 30.00

 40.00

 50.00

 60.00

Ext2 Ext3 ReiserFS LLFS Ext3 data j.

se
co

n
d
s

Figure 7.12: Linux kernel �les reading

Then the computer was rebooted. The same 3.1 Gigabytes were copied to
another directory. Only the copy command after the reboot was measured.
Subsequently the umount command was measured as well. We will see later
why.

The same tests were made with Ext3. For the snapshot test an LVM
Volume was created. The same �les were copied, an LVM snapshot was
created and the computer was rebooted. Again the same �les were copied in
another directory and time was measured.

The results in �gure 7.13 show that in LLFS there is negligible perfor-
mance impact of a clone. Even with one clone, the LLFS is quicker than

52

Ext3 without LVM. On the other hand LVM snapshot makes the Ext3 �le
system much slower. Also the umount command took very long to �nish and
that is the reason why it was included in this comparison.

umount

cp

 0.00

 50.00

 100.00

 150.00

 200.00

 250.00

 300.00

 350.00

 400.00

 450.00

 500.00

LLFS LLFS/clone Ext3 Ext3/LVM

se
co

n
d
s

Figure 7.13: writing with snapshot

7.7 Multiple Clones Performance

To test the performance of LLFS a little bit more, I made some performance
comparisons with more clones. This time I compared LLFS only with itself.

In the �rst test the �les from the large-�les test were copied 9 times to
the di�erent directories to the same clone. After that the �le system with
all the data was cloned 9 times. At this point the �le system had 10 clones
with the same 27.9 Gigabytes of data. After making sure that the caches are
�ushed, the directory was copied one last time to one of the clones1. The
time of the last copy was measured.

In the second test 10 clones of an empty �le system were made. Then the
�les from large-�les test were copied to every clone but the last. Together
27.9 Gigabytes of data were copied up until now. After �ushing the caches,
the copy to the last clone was made and measured. This should be pretty
much the worst-case scenario, because the clones share very little data and
free-blocks bitmaps of all of them must be scanned.

To compare LLFS with the same amount of data on the disk but without
clones, I made a test where the 3.1 Gigabytes where copied 9 times to the

1The copy was made to the clone 10, but it does not really matter in this case.

53

�le system and the 10th copy was measured.

sync

cp

 0.00

 10.00

 20.00

 30.00

 40.00

 50.00

 60.00

 70.00

 80.00

 90.00

10 clones(a) 10 clones(b) no clones

se
co

n
d
s

Figure 7.14: Writing with 10 clones

In �gure 7.14 are the results. As expected the test without clones was
the fastest, followed by the �rst test (a) and second test (b) was the slowest.
The di�erences in all three tests were small, which means that even 10 clones
do not pose much overhead if the system has enough resources.

7.8 Performance Test with Bonnie

In order to make some independent performance comparisons, I am including
results from Bonnie2 program that is part of the Debian distribution I am
using. This program may not be the best hard disk benchmarking tool
available or the most complete, but it is easy to use and results are easy to
understand, reproduce and compare.

The �rst part of the test was creating, reading and removing of 1G �le
in various ways. See table 7.1 and table 7.2. The second test was creating,
reading and removing of 102,400 1K �les 3. See table 7.3 and table 7.4. All
the tests for all the �le systems were run 10 times and the arithmetic average
was computed.

The tables show the results. For throughput higher numbers and for
CPU lower numbers are better. Like in my tests, LLFS performed about the

2Bonnie++, version 1.03c.
3All the details of the tests performed by Bonnie++ are contained in the �le

/usr/share/doc/bonnie++/readme.html in the Debian distribution.

54

same as other �le systems. Only writing performance of a great number of
small �les4 in one directory was very low. The same happened to the Ext2
�le system because Ext2 does not use hashes or trees for directory entries
like the other �le systems do. LLFS has inherited the same performance
problem for the same reason. However it should be easy to port the Ext3
implementation for directory entries to LLFS and �x this.

Sequential Output
Size Per Char Block Rewrite

K/sec % CPU K/sec % CPU K/sec % CPU

LLFS 1G 38628.5 98.8 70189.4 25.5 18384.9 12.8
Ext2 1G 40669.1 96.6 68450.4 13.8 21127.6 5.0
Ext3 1G 36949.8 95.2 56069.1 23.2 20109.1 5.9
Ext3 data j. 1G 14286.8 39.3 21159.5 12.7 14006.3 7.4
ReiserFS 1G 41315.7 97.5 71711.6 25.7 22781.0 6.7

Table 7.1: Sequential output

Sequential Input Random Seeks
Size Per Char Block

K/sec % CPU K/sec % CPU K/sec % CPU

LLFS 1G 30336.4 66.0 46730.5 6.8 529.9 0.9
Ext2 1G 28448.7 61.1 45676.0 6.6 745.4 0.7
Ext3 1G 26462.8 57.2 48100.4 7.2 668.4 0.5
Ext3 data j. 1G 33133.2 72.0 45415.6 6.8 697.1 0.9
ReiserFS 1G 28710.7 62.2 48816.7 8.7 765.9 0.7

Table 7.2: Sequential input and random seeks

7.9 Performance Conclusions

LLFS ful�lls its promise to perform on par with other Linux �le systems.
Writing and reading of small or large �les took about as long as in Ext2 or
Ext3. ReiserFS performed in some cases much better and some cases much
worse.

The reading performance especially of many small �les in multiple level
of subdirectories was surprisingly good. LLFS could make use of additional

4102,400 �les with 1 kilobyte

55

Sequential Create
Num Files Create Read Delete

K/sec % CPU K/sec % CPU K/sec % CPU

LLFS 102400 344.8 96.7 120374.6 99.4 34036.9 91.3
Ext2 102400 355.2 97.4 123108.4 92.1 115857.5 99.0
Ext3 102400 10359.8 81.4 69315.3 92.4 8369.5 28.5
Ext3 data j. 102400 2807.7 23.7 75161.1 96.1 17608.0 59.2
ReiserFS 102400 2459.1 26.1 486.0 1.0 410.3 3.0

Table 7.3: Sequential create

Random Create
Num Files Create Read Delete

K/sec % CPU K/sec % CPU K/sec % CPU

LLFS 102400 347.3 97.9 113400.8 99.5 829.1 96.0
Ext2 102400 360.2 99.0 126379.3 99.2 904.0 99.0
Ext3 102400 7783.2 74.1 80792.9 97.9 7900.1 28.0
Ext3 data j. 102400 2239.9 19.7 28695.2 33.9 18064.2 62.8
ReiserFS 102400 2308.1 25.9 409.7 1.0 235.8 2.0

Table 7.4: Random create

spatial locality of the data and its meta-data and could outperform all other
tested �le systems.

Unsurprisingly writing �les in log-�le fashion did not perform very well.
The resulting �le was further fragmented in such an unfortunate way that
reading of the whole �le at once proved to be much slower than it is in any
other tested �le system. I believe, there it is still possible to improve the
LLFS performance in this scenario a lot, but it will be never as fast as it is
in traditional �le systems. On the other hand this performance problem is
mitigated by the fact, that the log �les are usually compressed once a day
which also defragments them.

Finally the performance of the �le system when one clone is created is
still very similar to the performance without any clones.

56

Chapter 8

Related Work

8.1 Beating the I/O Bottleneck

In 1988 an idea for a log-structured �le system emerged. It was proposed by
John Ousterhout and Fred Douglis in the paper �Beating the I/O Bottleneck:
A Case for Log-Structured File Systems�[Ous88]. The concern of the authors
was that exponential improvements in CPU speeds and memory sizes were
not matched by similar improvement of disk speeds. They believed that
making all writes to the disk in the form of an append-only log would provide
order-of-magnitude improvements in write performance. Writing to the log
on a disk would eliminate almost all seeks.

8.1.1 Technology Shift

In their paper the authors predict an 100 to 1000 fold increase in CPU speeds
over 10 years and about 100 fold increase in memory sizes. At the same time
the disks would increase their sizes, they would be smaller and cheaper but
seek speeds would increase by much lower rate. These trends would force a
rede�nition of trade-o�s needed in �le systems. In fact the I/O would become
a major bottleneck.

8.1.2 Solutions to the I/O Bottleneck Problem

One of the solutions to the bottleneck problem is extensive use of caches. The
�les as they are read are retained in a memory. Thanks to the locality in
�le access patterns, this cache could achieve 80-90% hit rates on then typical
systems.

Although writes also make use of the cache, they must be written to the
disk as quickly as possible, so the written data can be retrieved after a system

57

crash or a power failure.
The cache improves the I/O performance of the system, but while it

improves the read performance signi�cantly, the write performance pro�ts
much less. Using the cache shifts the nature of I/O from mostly reads to
mostly writes. To improve the write performance caches with battery backup
are proposed. This would postpone the disk writes. The problem with this
solution is that after a crash a cache recovery would have to be performed.

Finally the authors describe their then most exotic solution: a log-structured
�le system.

8.1.3 A Log-Structured File System

The main di�erence between a traditional �le system and the log-structured
�le system is in that log-structured �le system's representation on disk con-
sists of nothing but one continuous log. The log is divided in the same-sized
chunks, called segments. As �les are created or modi�ed, data and meta-data
are written to an end of the log in a sequential stream.

Along with a performance improvement, the authors saw some other in-
teresting possibilities:

Fast recovery: Fast recovery of the �le system without checking the whole
structural integrity of the �le system.

Spatial locality: Spatial locality for �les and meta-data that are written
at the same time.

Versioning: Keeping old versions of modi�ed data.

Although writes in a log-structured �le system are sequential the �le
system needs to retrieve data randomly. If for example a �le is read the
�le name of this �le must be translated �rst to an inode data structure
where pointers to blocks are stored that contain the whole content of the �le.
Sequential scanning of the whole �le system would be unacceptably slow.
For that a log-structured �le system needs to retain data structures from
traditional �le systems. In log-structured �le system these structures are no
longer on �xed positions and one more structure �super-map� is needed to
have access to them.

The log will eventually need to wrap-around. At this point there would
be no more free segments, although there would be free space on the disk,
created by modi�cation and removal of data in random segments. A log-
structured �le system would need something like a garbage collector that

58

reads a segment to the memory, picks up live data and moves just them to a
new segment where they would take up less space, thus freeing the segment.

There are two possibilities how such garbage collector could work. When
the �le system is full, the �le system suspends any new write requests and
cleans segments in the beginning of the log by copying the live data to the end
of the log. Although this approach would not create any cleaning overhead
while the disk is not full, the periodical downtime, when the disk is full would
be unacceptable.

An alternative is to clean the segments continuously in the background,
making the �le system slower, but without unacceptable downtimes.

Some performance issues are also discussed in the paper. The �le map
data can be written next to the �le data and when they are read only one
seek is required not two as it is in traditional �le systems. Writing to a log
�le also has a negative performance impact: new entries are appended to the
end of the log. Traditional �le systems can keep the �le's data contiguously
on disk, but a log-structured �le system would fragment the �le. This not a
problem for writing, but for reading the whole �le at once.

8.2 Log-Structured File System Projects

8.2.1 Sprite-LFS

Sprite-LFS was the �rst prototype implementation of a log-structured �le
system. In Sprite-LFS the solution for ensuring that there are large extents of
free space available is based on large extents called segments, where a segment
cleaner process continually regenerates empty segments by compressing the
live data from heavily fragmented segments[Ros91].

The authors claimed that Sprite-LFS could use 70% of the disk bandwidth
for writing, whereas Unix �le systems could use typically only 5-10%. All of
the benchmarks in the paper are performed without the cleaning overhead
and represent the best-case scenario.

Sprite-LFS was designed to use the technological shift to higher capacities
of memory and disks, while the performance of hard drives would not improve
that much.

The Sprite-LFS authors focused on the e�ciency of small-�le accesses,
later they found out, that Sprite-LFS techniques work as well for large �les.

The basic structures like inodes and the super block in Sprite-LFS re-
mained identical to those used in Unix FFS, but inodes were not stored in
�xed locations, unlike in Unix FFS. Sprite-LFS uses a data structure called
an inode map that keeps track of the inode locations.

59

Cleaning

Sprite LFS read segments into memory, identi�ed data that were not removed
a wrote them to a smaller number of segments.

Sprite-LFS got away with free block bitmaps, but needed to maintain a
mapping from blocks to inode numbers in the so-called segment summary
block.

Following questions about cleaning policies were de�ned:

• When should the cleaner execute? It could either run continuously in
the background at low priority, or only at night, or when the disk is
almost full.

• How many segments should be cleaned at once?

• Which segments should be cleaned? The obvious choice to pick up the
most fragmented ones proved not to be the best choice.

• How should the blocks be written out? Sprite-LFS tries to enhance
locality with sorting the blocks by their age when they were modi�ed.

Sprite-LFS started the cleaning when the number of clean segments dropped
below a prede�ned threshold value. It cleaned a few tens of segments at once.

Sprite-LFS used an algorithm based on cost and bene�t. It di�erentiates
older, slowly changing data from younger rapidly-changing data, and made
cleaning decisions accordingly.

Crash recovery

Sprite-LFS uses checkpoints for crash recovery and roll-forward algorithms.
A checkpoint de�nes a �le system as it was at one point in time and roll-
forward tries to recover as much data as possible since the last checkpoint.

Disk layout

In Sprite-LFS the disk is divided in same length segments. After all data
are written to a segment the segment gets a checkpoint that is written to
checkpoint areas that are on �xed positions. The checkpoint contains pointers
to all meta-data that allow to identify directories, �les and their content and
to determine free and allocated blocks.

There are two checkpoint areas per segment and the �le system writes to
them alternatively noting the time of the write. In case of a crash the last
written checkpoint can be identi�ed by comparing the timestamps.

60

The checkpoint is written at periodical intervals or just before the �le
system is unmounted. The length of the checkpoint writing interval must
be considered carefully, because if it is written to often, it has a negative
performance impact or if it is written not so often, the roll-forward during
recovery would take longer.

8.2.2 BSD-LFS

The second try on log-structured �le system was BSD-LFS. It was a redesign
of the Sprite-LFS[Sel93]. Although BSD-LFS had superior performance over
FFS, in the meantime an enhanced version of FFS with read and write clus-
tering had appeared. This FFS o�ered better performance than BSD-LFS,
however, the LFS could be extended to provide some additional functionality
like versioning that traditional �le system could not.

Disk Layout

BSD-LFS borrowed much of its disk layout from FFS. It used an inode data
structure to map a �le to its block addresses in order to allow e�cient random
retrieval of �les. It used also direct, indirect, doubly indirect, and triply in-
direct blocks. The writing was di�erent in that BSD-LFS was log-structured
�le system and made all writes in the end of the single continuous log. The
log was divided into �xed-sized segments. When data in the �le system were
updated, they were gathered, reordered and written to the next available
segment1. Modi�cation of data in the �le system, inevitably also modi�ed
associated meta-data that had to be reallocated to the next segment. The
previous segments end up with all kinds of holes with free disk space that
can be reclaimed later by a cleaner. The fact that data and its associated
meta-data are written to a new segment and their older representation still
exists on the disk is called no-overwrite policy.

Ideally a whole segment is written at once, once there are enough dirty
blocks in the memory. Usually a write must be performed, even if there are
not enough data, so partial segments are written. One segment can hold one
or more partial segments.

Additionally BSD-LFS used a super block similar to the one used in FFS,
to describe the �le system as a whole.

1In the meantime this is also available in Sprite-LFS

61

Di�erences from Sprite-LFS

BSD-LFS was based on the logical framework of Sprite-LFS, but addressed
some of the Sprite-LFS shortcomings. Among them:

• BSD-LFS used less memory than Sprite-LFS.

• Write requests were successful in BSD-LFS even if there is insu�cient
disk space at the moment

• Additional veri�cation of the �le system directory structure during re-
covery.

• Segment validation in Sprite-LFS assumes that there is no write re-
ordering of blocks by hardware.

• Sprite-LFS had cleaner in the kernel space, which was moved to the
user space in BSD-LFS

• In Sprite-LFS paper was no performance comparison with cleaner.

BSD-LFS kept the segment log structure, the inode map, segment usage
table and cleaner. The cleaner was moved to user space, so that di�erent
cleaning policies could be tested and used. Sprite-LFS maintained a count
of free blocks for writing. This number was decremented when blocks were
actually synced to the disk. BSD-LFS used two forms of accounting. The one
similar to the Sprite-LFS, but also was decremented and incremented when
the change happened only in the cache. The second form of accounting kept
track of how much space is available for writing. It was also decremented
when a dirty block enters the cache, but it was not reclaim until it was
cleaned by cleaner. This was to ensure that when a block is accepted for
writing it will be eventually written to the disk.

Sprite-LFS assumed that the order in which the writing requests are
placed on the disk is the actual order in which the blocks are written to
the disk. Placing the segment summary block at the end of the segment was
supposed to ensure that it was the last block written in the segment and
thus the whole segment is in the consistent state. Since disk controllers can
reorder the write requests this assumption does not hold and BSD-LFS �xes
it, in that it uses checksums of partial segments to enable to identify the
valid and invalid partial segments.

62

File System Recovery

BSD-LFS provided two phases for �le system recovery. The �rst phase ex-
amines all the data written between last checkpoint and the failure. The
second phase is a complete consistency check much like the FFS �le system.
To recover the BSD-LFS after a crash only the �rst phase is required which
is very fast. The second phase can be run in the background while the �le
system is used. In an unlikely event of a failure in the second phase of the
�le system check, the �le system had to be remounted read-only, the problem
was �xed and the �le system was remounted again read and write.

The Cleaner

The BSD-LFS cleaner was implemented in the user space, using system calls
to communicate with the �le system and using an i�le to get information
required for cleaning. It was possible to use more than one cleaner with
di�erent cleaning policies. One cleaner that was implemented was based on
the cost-bene�t computation. Still some scenarios caused high performance
degradation. BSD-LFS could utilize a large fraction of the disk bandwidth for
writing, but the cleaner had a severe impact in certain workloads, particularly
transaction processing.

8.2.3 Linlog FS

Linlog FS from Christian Czezatke was a log-structured �le system designed
for clones/snapshot functionality and personalities[Cze98]. The stopper was
freeing of blocks, the cleaner, that did not work e�ciently. Linlog FS was
created for Linux 2.0, later ported to Linux 2.2, but work on it has been
stopped.

LLFS is similar to Linlog FS in its goals but does not need the cleaner, be-
cause it has free-blocks-bitmap which makes allocating and freeing of blocks
easy.

8.3 Linux File Systems

There are many �le systems available in Linux. They were implemented
specially for Linux or were ported from other operating systems. The �rst
�le system used in Linux was MinixFS, followed by Ext and Ext2. ReiserFS
was the �rst �le system on Linux to o�er journaling. The most popular �le
systems in Linux are Ext3, XFS, and ReiserFS. They are all the journaling
�le systems.

63

8.3.1 Ext2

The Ext2 �le system does not o�er journaling and fast crash recovery, but
is the oldest useful �le system coming with the Linux kernel. It is the most
portable, best tested and understood �le system. It is often used to test new
enhancements. It also helps that it corresponds almost one to one to the
Linux Virtual File System. LLFS also started from the Ext2 �le system and
uses its allocation methods.

8.3.2 Ext3

Ext3 has a journaling implemented on top of the Ext2 �le system. This
allows for fast crash recovery. Ext3 has an advantage that it can be mounted
as Ext2.

Ext3, unlike the other Linux journaling �le systems, can log data blocks
along with meta-data at a performance penalty because data blocks have to
be written twice. This is turned o� by default.

8.3.3 ReiserFS

ReiserFS uses fast balanced trees2 to store �le system meta-data. ReiserFS
until version 4 provides only meta-data journaling. ReiserFS saves disk space
with Tail packing. Small �les and tails of the larger �les that are smaller
than a disk block, are stored together in one block unlike other �le systems
that leave that space unused. Generally, this allows a ReiserFS to hold
around 5% more than an equivalent ext2 �le system, but with performance
penalty[Gal01]. This way internal fragmentation is kept low, but external
fragmentation is higher, because the �le tails can be further away from other
�le data.

Reiser4 uses LFS techniques (called Wandering Logs in Reiser4) to achieve
very good consistency guarantees (it allows full transactions via �le system
plug-ins), although it is not completely clear if it gives the in-order semantics
consistency guarantee. However, Reiser4 does not o�er snapshots or clones.
It is also a much more complex �le system, and thus probably less amenable
to studying variations in the design decisions.

LLFS does not provide the Tail packing feature, because I do not consider
the performance penalty justi�ed.

2B+Tree

64

8.3.4 XFS

XFS is a journaling �le system from SGI that was ported to the Linux plat-
form. The purpose of XFS is to optimize accessing of very large �les. This is
achieved with large extents and small number of descriptors required. XFS
provides the fast crash recovery. It logs meta-data changes but does not log
user data changes. With that XFS does not ensure full data consistency.

65

Chapter 9

Further Work

LLFS is proof of concept implementation and although it is possible to use
it, it is still far from being a production level �le system. Along with some
stability issues and possible performance optimizations some further work
has to be done.

LLFS supports up to 100 clones. It is possible to increase number of
available clones, if one entire block or two is used for clone pointers. This
could increase the number of clones by 1024 or multiple of that using 4K
blocks.

The mounting of clones should be improved as well. Right now it is pos-
sible to mount di�erent clones on prede�ned mount points. It is imaginable
that mount command could have an option that would specify the clone that
should be mounted. Another possibility is to map di�erent clones on di�er-
ent device �les and no new mount option would be required. It would also
solve nicely the inode and dentry cache workarounds.

Searching for free blocks could be sped up, if there was a cache in memory
with free block bitmap that holds information from all the clones. This would
also improve the check if a block group does not have any free blocks available
and the counting of free blocks. The current free block count gives only an
approximation of the reality.

After a crash or power failure the �le system is recovered to the state
as it was after the last commit. With that a point-in-time data-consistency
is ensured. Log-structured �le systems implement additional roll forward to
save as much data as possible. Maybe LLFS could also have something like
that.

Quotas is a feature that I did not implement yet and that should be
implemented as well.

66

Chapter 10

Conclusions

A copy-on-write �le system has many advantages. It makes point-in-time
recovery possible, where all the data and meta-data can be consistent after
a system crash or power failure. It is also possible to create clones and
snapshots in more e�cient way than is currently available.

My �rst implementation named LLFS created for this thesis showed that
it is indeed possible to implement a copy-on-write �le system that supports
clones, snapshots and data consistency and its performance is on par and in
some cases better than journaling �le systems that o�er lesser consistency
guarantees.

However, there is still much to do in LLFS to become accepted stable
Linux �le system. The code should be reviewed, improved and optimized.
All the temporary solutions should be ironed out. The LLFS performance
could be further improved to get closer to the Ext2 �le system from which
LLFS was derived.

The user tools should be programmed beyond the rudimentary level they
are now.

Although there are other �le systems with similar functionality appearing
all over the place and are in the time of writing under hectic development,
the LLFS o�ers some unique solutions that may prove to be the right ones
in the future.

67

Bibliography

[Cze98] Christian Czezatke: dtfs, A Log-Structured Filesytem For Linux,
Diplomarbeit, TU Wien, 1998

[Cze00] C. Czezatke, A. Ertl: LinLogFS � A Log-Structured Filesystem For
Linux, Freenix Track of Usenix Annual Technical Conference, 2000,
p. 77-88.

[Gal01] Ricardo Galli: Journal File Systems in Linux, Upgrade, The Euro-
pean Online Magazine for the IT Professional, Vol.II, Issue no. 6,
December 2001, p. 50.

[Lov04] Robert Love: Linux Kernel Development, A practical guide to the
design and implementation of the Linux kernel, Sams Publishing,
2004

[Ous88] J. Ousterhout, F. Douglis: Beating the I/O Bottleneck: A Case for
Log-Structured File Systems 1988 Technical Report # UCB/CSD
88/467, Univ. of California, Berkeley.

[Ros91] M. Rosenblum, J. K. Ousterhout: The Design and Implementation
of a Log-Structured File System, ACM Transactions on Computer
Systems, volume 10, issue 1, 1992, p. 26 - 52

[Sel93] M. I. Seltzer, K. Bostic, M. K. McKusick, C. Staelin: An Imple-
mentation of a Log-Structured File System for UNIX, 1993 Winter
USENIX Technical Conference, San Diego, CA, January 25-29, 1995.

[Sel95] M. I. Seltzer, K. A. Smith: File System Logging Versus Clustering:
A Performance Comparison, 1995 Winter USENIX Technical Con-
ference, New Orleans, LA, January 1995, p. 249-264.

[Sel00] M. I. Seltzer, G. R. Ganger, M. K. McKusick, K. A. Smith,
C. A. N.Soules, C. A. Stein: Journaling versus Soft Updates: Asyn-
chronous Meta-data Protection in File Systems, Proceedings of the

68

2000 USENIX Technical Conference, San Diego, CA, June 2000, p.
71-84.

69

