
User Interface Concepts for Semantic
Information Systems

diplomarbeit

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Diman Todorov

Matrikelnummer 0225178

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung:
Betreuer: Univ. Prov. Dr. Wolfgang Klas
Mitwirkung: Mag. Bernhard Schandl

Wien, am December 10, 2008
Unterschrift des Verfassers Unterschrift des Betreuers

 
 
Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der 
Hauptbibliothek der Technischen Universität Wien aufgestellt  
(http://www.ub.tuwien.ac.at). 
 
The approved original version of this diploma or master thesis is available at the 
main library of the Vienna University of Technology   
(http://www.ub.tuwien.ac.at/englweb/). 

 





I would like to thank all who supported me while I was writing this thesis.
Most of all I would like to thank my parents, Bistra and Valentin Todorovi,
for making my choice of education possible and helping me to accomplish my
degree. Special thanks go to my advisor, Bernhard Schandl, for providing
me with a productive enviroment for a thesis and giving me advice towards
successful scientific work. Scince an exhaustive list of all the people who con-
tributed to the completion of my degree is not possible without accidently
omitting important names, I kindly ask everybody who helped and supported
me through my academic career to accept my gratitude.





Contents

1 Introduction and Motivation 7

2 Background 9
2.1 Semantic Technologies . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Overview of the SemDAV Project . . . . . . . . . . . . . . . . . . 15

2.3 Interaction Design . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Evaluation Methods . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Related Work 27
3.1 Boolean Query Visualization . . . . . . . . . . . . . . . . . . . . . 27

3.2 Ontology Visualization . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Chronological Visualizations . . . . . . . . . . . . . . . . . . . . . 34

3.4 Semantic Desktop . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Other Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Usability Challenges in Semantic Applications 51
4.1 Navigating Large Data Sets . . . . . . . . . . . . . . . . . . . . . 51

4.2 Designing for Diversity . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Visualization and Navigation of Ontologies . . . . . . . . . . . . . 52

4.4 Visualizing Queries . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Semantics of Resource Names . . . . . . . . . . . . . . . . . . . . 53

4.6 Introduction of New Vocabulary . . . . . . . . . . . . . . . . . . . 55

4.7 Addressing of Challenges in Related Projects . . . . . . . . . . . . 56

5 Application of Interaction Design Guidelines in the Develop-
ment Process 61

6 User Interface Design 66
6.1 The Example of Bob . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2 Overall Appearance . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3 Navigating Large Data Sets . . . . . . . . . . . . . . . . . . . . . 70

6.4 Visualization and Navigation of Ontologies . . . . . . . . . . . . . 72

6.5 Visualizing Queries . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.6 Introduction of New Vocabulary . . . . . . . . . . . . . . . . . . . 81

5



6 CONTENTS

7 Software Engineering Aspects 82
7.1 Semplorer Architecture . . . . . . . . . . . . . . . . . . . . . . . . 82
7.2 Concurrent Communication Module Architecture . . . . . . . . . . 89

8 Experimental Results 95

9 Conclusion and Future Work 97



Chapter 1
Introduction and Motivation

A large problem in today’s information society is the sheer abundance of in-
formation. While being in posession of larger amounts of information than the
competition is an advantage, it is often quite difficult to retrieve useful infor-
mation from the large repositories. This difficulty does not only manifest itself
in inefficient processes but can also lead to stress, dissatisfaction, and even
health problems [19]. Various solutions have been proposed in literature: re-
ducing duplicate data, employing specialists to filter and organize information,
or automatizing the information archiving and retrieval process. Reducing du-
plicates and annotation of data relies on some domain experts who organize
the data. Human intervention however is not only slow and error prone, it also
does not scale to the amount of data that need processing. Software support
on the other hand can process large amounts of data quickly but it cannot
process the semantics of the data efficiently.

One idea to help software process semantics is to store meaning of infor-
mation in a machine processable format. This idea is the foundation of the
Semantic Web [10]. In the past few years the organization responsible for stan-
dards on the web, the W3C, has invested much effort in developing standards
and methods for storing and representing semantically enriched information.
Standards like RDF1, OWL2, and SPARQL3 provide a sound foundation for
building backends of semantic applications.

A semantic revolution, resulting in the omni-presence of semantic enrich-
ment of information we access with computers, will not catch on unless it is
accessible not only for domain experts but also for casual users. While there
are several projects investigating and implementing semantic systems, few of
them invest signifficant effort in the development of generic user interfaces for
interaction with and manipulation of semantic meta data.

The thesis at hand proposes a prototypical implementation of a generic
semantic user interface. The prototype introduces interaction models, known
from other application domains, for working with semantics. The thesis fur-
ther identifies a number of challenges the semantic user interface designer is
facing. The challenges are: how to navigate large data sets, how to design
for a diverse user population, how to navigate ontologies, how to visualize

1http://www.w3c.org/RDF/
2http://www.w3.org/2007/OWL/
3http://www.w3.org/TR/rdf-sparql-query/

7



8 1 Introduction and Motivation

queries, how to model the semantic conection between resources and their hu-
man readable names, how to introduce terminology required for working with
semantic systems. While some of these challenges are unique for semantic sys-
tems, most are valid for all information systems. However, to the knowledge of
the author, there is no effort in the domain of semantic user interfaces which
recognizes and addresses all challenges in a consistent manner. The prototype
proposed in this thesis addresses the visualization and navigation of ontologies,
the visualization of queries and the navigation of large data sets.

The goal of the thesis is to provide a rapid prototyping platform for se-
mantic user interfaces and to propose user interface patterns which have not
yet been considered for the use in semantic user interfaces.

The thesis is organized as follows: Chapter 2 reviews the background of the
methods and technology applied in the thesis, Chapter 3 reviews the literature,
Chapter 4 treats user interface design challenges, Chapter 5 covers the design
process as applied to the prototype, Chapter 6 proposes solutions to some of
the challenges identified in Chapter 4, Chapter 7 contains architectural and
implementational details, Chapter 8 presents the results of a preliminary UI
evaluation of the prototype, and finally, Chapter 9 concludes the thesis and
outlines future directions.



Chapter 2
Background

The thesis at hand is based on the assumption that current search technologies
have several shortcomings. Before we delve into the arguments supporting
this hypothesis it is instructional to define a measure for the assessment of the
goodness of a search engine.

The purpose of this chapter is to introduce the technologies and techniques
utilized in this thesis. The chapter covers four topics: The first topic are
semantic technologies. This section motivates the introduction of semantics
in information retrieval and introduces technological and formal background.
The second part covers the SemDAV project which is the context in which
this thesis was conceived. The third section introduces the design process
which served as an organizational frame for the development of the prototype
implementation. The last section covers several usability evaluation techniques
which were either considered or applied as a part of the design process.

2.1 Semantic Technologies

Semantic technologies, as treated here, are a tool for information retrieval.
Information retrieval is defined in introductory texts [14] as follows:

Information retrieval (IR) is finding material (usually documents)
of an unstructured nature (usually text) that satisfies an informa-
tion need from within large collections (usually stored on comput-
ers).

The most difficult part of doing this is deciding which documents satisfy the
user’s information need. Or in other words, which are the relevant documents?
In fact, this question is so crucial, that is a central concept in the measure of
the quality of retrieved documents.

There are two estabilished measures of the quality of a search result: its
precision (P ) and its recall (R). The precision is the ratio of relevant docu-
ments (DR) in a result to the number of all retrieved documents (D). This
proportion answers the question of how many of the retrieved documents are
relevant. The recall is the ratio of the relevant documents contained in the
result to all the relevant documents in the information corpus. The question
being answered here is: how many of all relevant documents were retrieved?

9



10 2 Background

A good search engine has results with high precision and recall. Precision and
recall are defined as ratios of the number of retrieved and relevant documents.
The recall is defined as:

R =
‖{DR} ∩ {D}‖

‖{DR}‖
(2.1)

Precision is defined as:

P =
‖{DR} ∩ {D}‖

‖{D}‖
(2.2)

A third measure of search engine accuracy is the fallout. It is less frequently
used because being the inverse of the recall it conveys no new information. It
is defined as the ratio of the irrelevant documents (DI) in the result (D) to
the irrelevant documents in the whole corpus. It describes how much of the
documents in a search result are not relevant to the current information need.
A formal definition could be written as:

F =
‖{DI} ∩ {D}‖

‖{DI}‖
(2.3)

Assuming these definitions a search engine with high recall and low pre-
cision returns many documents (high recall), few of which are relevant (low
precision). Important documents however are often not retrieved at all.

The difficulty of deciding which documents are relevant is one of com-
munication between humans and computers. If humans could express their
needs in a formal way, computers would be able to serve as perfect informa-
tion retrieval tools. On the other hand, if computers could understand natural
language, they also would be able to produce perfect search results.

Let us demonstrate this difficulty on an example. In the popular web search
engine Google, changing the order of two keywords in a query which consists of
only two keywords may yield signifficantly different results. An example of this
volatility is shown in Figure 2.1: two searches were performed: one with the
query “semantic desktop” and one with the query “desktop semantic”. The
latter query retrieved about 7 times as many documents – this variation is a
result of merely changing the order of the search terms. The exact mechanics
of query interpretation in popular search engines are often unpublished. This
is why the author cannot explain how the two queries are different from the
point of view of the search engine.

Current search engines are at their limit if they need to combine data
from different sources to return a result. Suppose you are looking for all GSM
operators which carry a particular model of a cell phone. Eliciting a meaningful



2.1 Semantic Technologies 11

Figure 2.1: Ordering of words in Google.

result to this query from a state of the art web search engine is very unlikely.
The needed information is often scattered over several documents. In cases
like this there is no other option than retrieving all pieces separately and
putting the information together manually. One reason for this deficiency is
that the information indexed by web search engines is intended for human
consumption, search engines are limited to a purely syntactical analysis of
links between documents.

The missing link here is that search engines cannot process the meaning
of the information they are indexing and searching. Suppose that the search
engine knew of a concept called “GSM provider”. A concept in this sense could
be simply a set of instances which fit the description of a “GSM provider”.
Suppose further that the search engine knows of another similarly structured
concept called “cell phone”. If the search engine also has a notion of a “sells”
relation which brings instances of the “GSM provider” concept in relation to
the “cell phone” concept, the query asking which GSM providers sell a certain
cell phone brand could be answered trivially by analyzing instances of the
“sells” relation.

While this supposition sounds nice in theory it has one serious imperfection:
the described concepts and relations need to be identified. The lessons learned
from artificial intelligence research in the 50’s and 60’s have taught us that
computers are not going to be able to process natural language in the near
future ( [51], p. 22).

What can be achieved however is to represent information in so that com-
puters can easily manipulate, interpret and combine it without actually un-



12 2 Background

derstanding it. The problem of lack of understanding can be aleviated to a
certain degree by enriching information with semantic annotations. If we de-
fine an abstract concept called “GSM provider” and tell the computer that all
GSM providers are instances of this concept by enumerating them, it does not
matter what this concept is called. The computer does not have to “under-
stand” what a concept means to know what is an instance of it. Following this
principle we can model a “cell phone” concept. All we need now is to translate
“sells” into something a computer can use as we intend it to. This is solved
by defining binary relations between GSM providers and cell phones. A GSM
provider x is in relation with a cell phone y only if the provider sells the phone.
With these constructs we are able to answer questions about providers selling
phones without “understanding” what it means to sell something.

It is instructive to consider what exactly “understanding” means in this
context and whether machines can “understand”. In the literature there is no
common understanding on whether semantic enrichment enables a machine to
understand concepts or to merely manipulate and combine them in useful ways.
The question about this distinction was asked and treated both, early and
frequently in computer science. For the purposes of this thesis this question is
considered irrelevant. Alan Turing, who was one of the first scientists to think
about computers understanding natural language, recognized this difficulty. In
his seminal paper “Computing machinery and intelligence” [65], in which he
introduces the immitation game, later known as the Turing Test, he deliberatly
avoids addressing the question whether machines can think. He argues that
before anybody can claim that computers can or cannot think there needs to be
a clear definition of thought and in consequence a definition of understanding.
To this day there is no consensus upon such a definition. In an unpublished1

note Edsger Dijkstra brings the irrelevance of this question to the point with
a commonly quoted analogy [16]. About this question he says that it is “a
question of which we now know that it is about as relevant as the question of
whether Submarines Can Swim.”

Now that we have estabilished, that the best solution is to represent in-
formation in a way that can be easily processed by computers, let us describe
the involved technologies more concretely. It is important to understand that
semantic annotations do not replace the content, they merely describe it.

A lot of the credit for the idea of semantic annotations is attributed to
Tim Berners-Lee. In his book “Weaving the Web” [9], he envisioned a web of
information in which semantics play a far greater role than in todays world
wide web. The W3C organization, which oversees the development of the
web and which Berners-Lee is a director of, has invested significant effort in

1http://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD898.html



2.1 Semantic Technologies 13

XML

RDF

OWL

Description Logic

Figure 2.2: A simplified cake diagram of the Semantic Web.

standardizing technologies relevant to the semantic enrichment of the web.

Other deviations from Tim Berners-Lee’s original vision of the web which
are worth noting are that the web was originally intended to be interactive.
The idea was to have a large shared space in which everybody could store
and retrieve information. In recent years this idea has proved to be very
successful in the form of Wiki’s. Another comparably recent development
which interprets the original ideas in different ways is the phenomenon of social
tagging. This trend towards an interactive and collaborative web without
actually changing the underlying technologies is subsumed under the name
“Web 2.0” [43].

The semantic part of the Semantic Web is built in layers (cf. Figure 2.2),
from syntax to semantics. Essentially, semantic data is stored in the form of
so called triples. Triples are statements which consist of a subject, a predi-
cate, and an object. Sometimes statements are described as object, attribute,
and value. Technically, both descriptions are accurate. In the above example
of GSM providers and cell phones, a triple could be “best provider”, “sells”,
“cheap-phone 321”. This method of storing semantic information is quite pow-
erful and flexible. With a few work-arounds even statements about statements
can be made. The triple representation of semantics is roughly equivalent to
a predicate logic in which only binary predicates are allowed. The down side
of the expressive power and flexibility is that predicate logic is known to be
undecidable, this means that there are no algorithms for answering questions
over predicate logic which are guaranteed to be efficient.

This situation can be improved by trading expressivity for efficiency. When
compared with natural language, being able to form triples is roughly equiv-
alent to having a vocabulary. Both, in natural language and in the Semantic
Web a vocabulary without rules about forming valid expressions is not very
helpful. In natural language these rules are imposed by a grammar, in the
Semantic Web the rules are called an ontology. Ontology is a term with roots
in philosophy. In computer science however it has a quite different meaning.



14 2 Background

A definition of an ontology in the computer science sense is:

An ontology is an explicit and formal specification of a conceptu-
alization [6].

In other words, an ontology contains information about concepts. More
specifically, it defines relations between concepts. Such relations can give in-
formation about how concepts relate to each other but they can also give
explicit information about concepts. For example, suppose that a semantic
system has information about a scientific community. Its ontology could then
contain the information that the concept “paper” is a subclass of the concept
“publication”, which means that every paper is also a publication. It could
also contain the information that every “paper” is “authored by” at least one
“person”, this is a relation between two concepts. An attribute relation could
for example be the “title” of a “paper” – the ontology could express that every
paper has exactly one title which is of a textual data type. Other relations an
ontology could contain are disjointness and equivalence of classes.

To manage the expressive power versus efficiency trade-off, different restric-
tions can be imposed on ontologies. If no restrictions are imposed, the case is
the same as without an ontology, from a computational point of view – queries
cannot be answered with a guaranteed efficiency. We have gained however
an explicit and formal specification of the domain of the information. If the
restriction is applied, that there cannot be statements about other statements,
the expressivity of the framework becomes equivalent to description logic.

Description logic is well researched and there are algorithms which are
guaranteed to find an answer to a question in reasonable time. It is a variant
of first order predicate calculus. In fact, description logic is a first order logic
in which only binary and unary predicates are used. Description logic is the
formalization of the OWL language. New knowledge can be inferred from
the knowledge base by applying the rules specified in OWL. There are three
characteristics which make description logic distinctive. First it is possible to
build up a subsumption hierarchy, this can be thought of as a class inheritance
hierarchy. Second, it is possible to classify individuals. Questions about the
class membership of an individual can be answered within the logic. And third,
description logic allows representing relationships beyond simple inheritance.
As long as its domain and range can be defined, any relationship between two
classes can be defined. Relationship domains, and ranges are inherited from
concepts to subconcepts.

The lite version of the ruleset is one which restricts cardinalities of relations
to 0 or 1. The main gain of this last version of ontologies is that it is easy to
use and implement supporting tools for it.



2.2 Overview of the SemDAV Project 15

The standards for representing semantic information are structured in lay-
ers. The bottom layer is the Resource Description Framework2 (RDF). This
layer stores the triples discussed above. A vocabulary which defines semantics
ontop of RDF is RDF Schema3. This layer provides constructs for specifying
which properties apply to which objects, what values they take, what cardi-
nalities they have and so forth. The next layer is again defined in terms of
the ones below it, this layer is the ontology layer. Ontologies are stored in the
Web Ontology Language4 (OWL). The three kinds of ontology specification
languages are OWL Full, OWL DL and OWL Lite. They differ in their ex-
pressive power while at they same time they are subsets of each other. This
means that every valid OWL Lite document is also a valid OWL DL document,
and every valid OWL DL document is a valid OWL Full document.

2.2 Overview of the SemDAV Project

The SemDAV5 [55] project is the context in which the thesis at hand was writ-
ten and in which the Semplorer prototype was developed. It was developed
at the University of Vienna at the department for Multimedia Information
Systems. The running time was from late october 2006 to october 2008. The
central goal of the project is to propose a communication protocol and ref-
erence implementation for a collaborative semantic desktop. The Semplorer
prototype is a user interface for the SemDAV backend. While its main goal
is to implement the SemDAV protocol on the client side and serve as a proof
of concept of its feasibility, it is also a convenient platform for the experimen-
tation with concepts for a semantic user interface. To motivate the SemDAV
project, let us first outline the meaning of a semantic desktop.

Both of the described aproaches, adding semantic meta data and the Web
2.0 have their merits. They share one deficiency though: they rely on the
World Wide Web as a foundation. Because of their WWW roots, these tech-
nologies are confined in web browsers. Applications running in web browsers
however hardly integrate with other applications running on the host machine.
Although in recent years web applications have gone a long way, thanks to
techniques such as Ajax6, they are still a far cry from the responsiveness and
flexibility that can be achived with user interfaces which run on the hosting
operating system. Desktop applications, on the other hand, are usually single

2http://www.w3c.org/RDF/
3http://www.w3.org/TR/rdf-schema/
4http://www.w3.org/2007/OWL/
5http://www.semdav.org
6http://developer.mozilla.org/en/AJAX



16 2 Background

user centric, and they rarely encourage collaboration as it is seen, for instance,
in social tagging. This disparity between the desktop and the web can only
be bridged by integrating both, the web browser and the file manager, which
is the primary navigation tool on the desktop. Both of these tools can be
replaced with a single interface which is both, more generic and more specific.
It is more generic, because it does not only navigate either on a file system or
on the internet but it brings toghether both. It is more specific on the other
hand, because its main task is navigation and retrieval of data.

It is difficult to make such an interface without making assumptions about
user behavior. User behavior however cannot be formally evaluated because
a comparable system does not exist yet. Throughout this thesis the behavior
of users on the web is used as a guide for design decisions. This benchmark
most probably is not accurate. On the other hand, the web was designed with
a similar task in mind: to make a large corpus of information accessible, both
for reading and modifying, to many users. This, and the fact that web usage
patterns are very well researched, motivate the usage of the World Wide Web
as a guide for what users will do with a new, more integrated system and how
this new system will be utilised.

The available aproaches on the World Wide Web were already covered: Web
2.0 is the more pragmatic solution which however only solves the problem to
a certain extent. The Semantic Web is the more expressive and potentially
more powerful solution, which has however not yet been widely adopted. Let
us now take a closer look at the situation on the other side of the bridge, on
the desktop side. The desktop on a computer is a metaphor which is widely
accepted and used to allow lay users to interact with computers. Like on a
real desktop there are files which are contained in folders, there is a trash
bin and so on. The desktop metaphor however was invented at a time in
which computers were few and far apart. In today’s tightly meshed computer
landscape the desktop metaphor is strained to its limits and perhaps even
beyond. Nowadays information is accessed not only from desktop computers
but also from PDAs, smartphones or other small screen devices. How does a
whole desk fit onto the tiny smartphone screen? Information is not uniform, it
can be stored in the form of single, self-contained files, emails, URLs or maybe
newsfeeds. These forms of information do not integrate with each other on a
desktop – the desktop is only aware of files. A desktop in the real world is a
single, limited, physical surface, but daily work on a computer is performed in a
collaborative process. The boundary between the virtual desktops of different
users is blurry and the metaphor does not account for it.

Consider an example: let us say you want to organize the pictures of your
last vacation. The pictures were taken in the summer of 2007 in France. In a



2.2 Overview of the SemDAV Project 17

tree structure there are two possibilities to store the pictures. The first one is
to have all pictures taken in 2007 which has a child node containing all pictures
taken in Paris in 2007. The second option is to have a node with pictures taken
in France which has a child node containing pictures taken in 2007. In the first
scenario it is difficult to list all pictures taken in France. In the second this
difficulty is remedied at the cost of introducing another: a list of all pictures
taken in 2007 is difficult to obtain.

Web 2.0 applications like Flickr7 allow one to organize pictures using tags.
The Semantic Web on the other hand is itself a meta data structure which can
describe the pictures in high detail while still allowing flexible retrieval. The
logical consequence seems to be that the desktop needs this semantic frame-
work. Bringing toghether the desktop metaphor and semantic technologies is
referred to as the Semantic Desktop in literature.

The SemDAV project [55–57] aims to provide such a semantic desktop
framework. The representation of machine processable semantics is hardly
suitable for a user interface. The triples of the Semantic Web need to be
wrapped in a layer of abstraction that makes them more accessible. On the
web it is widely accepted that every website has its own interface. Interfaces
of different websites often have very little in common beyond the underlying
technology. On a desktop machine however it is not acceptable to replace the
user interface entirely when the user changes their domain. It is traditionally
expected that all data on the desktop are navigated in similar manners regard-
less of their context. To achieve this, an interface is required which is generic
enough to be adequate for any domain while at the same time it is simple
enough to be used by people with minimal training.

In SemDAV this is achieved by wrapping the triple statement model into a
more accessible conceptual scaffold. Desktop concepts and semantic concepts
are combined into new concepts which still resemble the originals to a certain
degree. Files, for example, can have arbitrary attributes in SemDAV, not only
a creation date and owner, but also a language, a MIME type, and so on.
These attributable files are called siles in SemDAV. Directories are abandoned
all toghether and replaced with tags and categories as the primary organization
tools. Tags behave exactly like tags in Web 2.0 : users can freely create new
tags and attach them to any sile. Categories are organized in so-called spects.
Spects and their nodes, which are the categories, correspond to ontologies and
classes. Siles can also be related to one another with semantic links – slinks.
The rationale behind the unorthodox naming scheme is elaborated further in
Section 4. More information on how users can work with these new concepts
can be found in Chapter 6.

7http://www.flickr.com/



18 2 Background

2.3 Interaction Design

Special attention was payed to develop the Semplorer interface in a user cen-
tered manner. In the literature there is a common understanding that usability
is not a step in the software design process but a topic which is present during
the whole design cycle. The cornerstones in the design processes described
by different authors agree to a large extent – most commonly an iterative
prototyping development cycle is recommended. The extention made to the
traditional iterative design method is that in the decision making steps user
interface aspects are considered explictly. A coherent and complete method
is proposed in Jacob Nielsen’s book “Usability Engineering” [39] – this book
served as a guide during the design of the Semplorer user interface. Unlike
many other human factors experts, Jacob Nielsen is aware of the fact that
most projects are developed in resource constrained enviroments and that for-
mal usability studies after every prototype iteration are a luxory that is usually
not within these constraints. He proposes a cost-effective method for designing
usable software while pointing out at which steps it is best to invest superfluous
resources. His method covers eleven steps (cf. [39], p. 71 ff.):

• Know the user.

• Competitive analysis.

• Setting usability goals.

• Parallel design.

• Participatory design.

• Coordinated design.

• Heuristic analysis.

• Prototyping.

• Empirical testing.

• Iterative design.

• Collect feedback from field use.

These steps are not understood as a strict rule set for the development of
software, they serve rather as a rough guide. Some of the points do not apply
at all to the development of the Semplorer – for example, the Semplorer was



2.3 Interaction Design 19

never intended for deployment in the field so collecting feedback from users in
the field has obviously been omitted. For further details on the design process
the interested reader is referred to Nielsen’s book [39].

The first step commands to get to know the potential users. It is rec-
ommended to visit their site to observe how they do routine work. Special
attention needs to be payed on how they currently do the work, how they deal
with exceptional cases etc.

Once the designers have gathered a general idea of what the user group
will use the software for, Nielsen suggests an analysis of competitive products.
He argues that competitve products are in practice equivalent to working pro-
totypes – they can be subjects of a usability evaluation and the flaws can be
taken into account in the new product.

Setting clear usability goals is important because different goals may con-
tradict each other. Make the achievement of one task intuitive may make the
intuitiveness of another task impossible. To set the goals one needs to know
what users intend to do with the application. Potential tradeoffs also have to
be identified.

When the requirements of the application have been made explicit in the
form of tasks and usability goals, the design phase can begin. The three points
referring to the design of the application are not actually steps in a process
but recommendations on how to go through these phases more efficiently with
respect to usability.

The first proposal is to design several different prototypes in parallel. These
prototypes do not have to be fully functional – the main purpose of this step
is to experiment with as many different versions of the interface as possible.

Another suggestion Nielsen makes is to involve users in the decision pro-
cess. Ideally, the involved users would be periodically replaced because when
they become too accustomed to the design process, they start thinking in a
designer’s mindset which obliviates the whole point of their presence.

The third suggestion made in the book “Usability Engineering” concerning
application design is to keep the design process coordinated. The main goal
of a coordinated process is to keep different parts of the application consistent
with each other. This is even more important when several people are working
on the same components. The coordination should encourage sharing code
between components but also provide a clearcut frame for new ideas. It should
further support tight collaboration between developers.

Evaluating the application for usability is not considered a one time task
performed at the end of the development cycle. Evaluations should be per-
formed frequently so that the fixes of identified flaws also get evaluated. To
make frequent evaluations possible a cheap evaluation method is needed. The



20 2 Background

evaluation methods considered for the Semplorer prototype are described in
more detail in the following section.

To produce a mature application, several prototype iterations need to be
done. This should always be considered at the onset of a new project. A some-
what martial yet accurate comparison of an iterative development process and
a traditional waterfall model is given by Hunt and Thomas in “The Pragmatic
Programmer” [26]. They say that the waterfall modell, in which one spends a
lot of time devising a specification and then develops against this specification,
is like heavy artillery. When shooting a large gun a lot of calculations have
to be performed prior to the actual shooting and a small miscalculation can
mean missing the target by a great distance. The matter becomes even more
hopeless if the specification changes during development – hence the target
moves. Iterative development on the other hand, where you develop simple
prototypes and evaluate them in rapid succession, is compared to firing a ma-
chine gun with tracer bullets. The tracer bullets give immediate feedback on
the distance between the target and the actual bullets and inaccuracies can be
quickly compensated, even when the target is moving.

After a prototype iteration, the prototype is formally evaluated. Nielsen
does not give strict recommendations on how this could be done, he stresses
however that it is important not to bypass this step. He recommends rating the
problems identified with an evaluation method by their severity and addressing
them in descending order.

After identifying problems, a new prototype iteration begins. This process
is repeated until either an acceptable product is achieved or until the resources
run out. An unfinished product which has undergone several improvement
iterations is arguably closer to the client’s expectations than one which does
not address identified deficiencies of the initial design at all.

The final step is to realize that a project is not completed upon deployment.
After deployment feedback needs to be collected from users in the field. It is
possible to react to feedback in a maintenance process.

2.4 Evaluation Methods

In his book, “Usability Engineering” [39], Jakob Nielsen presents several in-
expensive usability evaluation methods. He recommends however to use more
than one of these methods when evaluating an application. The idea is that
the cummulative effect of several methods is a reasonable tradeoff between
price and performance of usability evaluation. In the following section the
evaluation methods considered in this thesis are briefly described.



2.4 Evaluation Methods 21

2.4.1 Heuristic Evaluation

Historically, heuristic evaluation has evolved from guideline reviews [36]. Re-
viewing a user interface with respect to a potentially very large set of guidelines
is one of the earliest methods of usability assessment. The main problem of a
guideline review is that the number of guidelines easily goes into the thousands.
Reviewing a user interface for its conformance to a large set of very specific
guidelines is not only a tedious task but, in consequence, also a very expensive
process. Molich and Nielsen [36] have distilled 10 heuristics by consolidating
guidelines from various sources.

In a heuristic evaluation a user interface is examined and its components
are deemed good or bad. The decision which parts of a user interface work and
which do not can be made in two ways: either intuitively or based on some
set of guidelines. The intuitive approach requires the designer to have wide
experience in order to make valid decisions. The guideline method is easier to
administer. During the design process a developer will consult a set of guide-
lines, if the designer follows the guidelines the finished product stands a much
better chance to have a good usability. The drawback of the latter aproach is
that it is very time intensive. Guideline documents are usually several hun-
dred pages long. For example the Microsoft guidelines are published in a book
with 594 pages [45], the Apple human interface guidelines are published in a
document of 402 pages [7]. Molich and Nielsen [36] have attempted to solve
this problem by providing developers with a shorter list of guidelines. They
have reviewed several usability guidelines and analysed them for overlapping
concepts. The final product are 9 heuristics from which most of the more
concrete guidelines can be derived.

The ten guidelines as they appear in “Improving a Human-Computer Dia-
logue” [36] are:

• Simple and Natural Dialog Dialogs should not contain information
that is irrelevant or rarely needed. Every extra unit of information in
a dialog competes with the relevant units of information and diminishes
their relative visibility.

• Speak the User’s Language The dialog should be expressed clearly in
words, phrases and concepts familiar to the user, rather than in system
oriented terms.

• Minimize the User’s Memory Load The user should not have to
remember information from one part of the dialogue to another. In-
structions for use of the system should be visible or easily retrievable
whenever appropriate.



22 2 Background

• Consistency Users should not have to wonder whether different situa-
tions or actions mean the same thing.

• Provide Feedback The system should always keep users informed about
what is going on through appropriate feedback within reasonable time.

• Provide Clearly Marked Exits Users often choose system functions
by mistake and will need a clearly marked emergency exit to leave the
unwanted state without having to go through an extended dialog.

• Provide Shortcuts Clever shortcuts – unseen by the novice user – may
often speed up interaction for the expert user such that the system caters
to both, inexperienced and experienced users.

• Good Error Messages They should be expressed in plain language
(no codes), precisely indicate the problem and constructively suggest a
solution.

• Prevent Errors Even better than good error messages is a careful design
that prevents a problem from occuring in the first place.

In Nielsen’s Book “Usability Engineering” [39] a 10th guideline is presented:

• Help and Documentation Even though it is preferable if a system
is so easy to use that no further help or documentation is needed to
supplement the user interface itself, this goal cannot always be met.

To perform a heuristic evaluation a small group of evaluators examine the
user interface and judge its adherence to the guidelines. Nielsen suggests two
possible methods to record the results of an evaluation [39]. The first option
is to ask every evaluator to produce a protocol of the problems found with a
short but detailed outline of every problem. In cases in which a solution is
not obvious, the evaluator can suggest one. The second alternative is to have
an observer to take notes while the examination is being performed. While
this aproach appears to be more time intensive because the observer has to
be present at every session, it has advantages. One advantage is that the
observer will have the results in a homogenous format, and there will be no
need to merge notes from different evaluators. Another advantage is that the
workload on the evaluators is lighter. If the evaluators are developers it may
be desirable to occupy as few of their time as possible to improve usability.

Heuristic evaluation is difficult, studies [40] have shown that even evaluators
with experience in the domain of usability research overlook many serious
usability issues. It has also been shown however, that different evaluators find



2.4 Evaluation Methods 23

Figure 2.3: Average proportion of usability problems found as a function of
number of evaluators in a group performing the heuristic evaluation [37].

different problems. Because of this property of the method superimposing
results of different evaluators yields a larger net sum of problems found. It
has been shown [37] that depending on their expertise evaluators find between
29% and 61% of all problems. The gain from superimposing results of different
evaluators grows logarithmically, Nielsen suggests having a team of 5 specialists
for optimal performance (see also figure 2.3).

There are some caveats with the cumulative effect however. In order to
keep the overlap of results from different evaluators minimal, the inspections
have to be performed indepent from each other. If the evaluators were priorly
unfamiliar with the method, the tutorial introducing them to heuristic evalu-
ation should be kept in a scope which influences the mindset of the evaluators
the least possible.

2.4.2 Thinking Aloud

Originally, the think aloud method was a method for psychological research [12].
In such an evaluation users are asked to continuously verbalize their thoughts
while they are using the application being evaluated. The result of a think



24 2 Background

aloud evaluation is information on what users are doing and why they are
doing it. The particular value of this information stems from the fact that
it is collected while the user performs the tasks she is verbalizing. Because
of its qualitative nature and its relatively informal structure the think aloud
method has several pitfalls, one of which is that an evaluator may find it hard to
distinguish between information on what the user is doing and rationalization
theories of the user. An example described by Nielsen [39] is a user spending
more time than expected looking for an input field in a form. When she finally
finds the field she might suggest to place the field elsewhere. While users are
good at demonstrating usability issues, they are not experts in solving them.
For this reason their suggestion for the new location of the field should be
taken with a grain of salt.

Another caveat is that an evaluator may have to frequently prompt a user to
continue thinking aloud. Thinking aloud is unnatural and may seem strange to
users, consequently it may happen that the verbalization stream stops. In such
a situation the evaluator has to prompt the user to continue talking. However it
requires a certain level of experience to prompt for further information without
influencing the evaluation result. If, for example, a user is hesitating while
looking at some message, the evaluator might ask her to explain why. If
the user has not yet noticed the message, the prompt would influence her
attention focus. Other misconceptions and difficulties with this method have
been described by Boren and Ramey [12].

Boren and Ramey have identified a wide variation in the way different
practitioners administer a thinking aloud evaluation. One of the greatest vari-
ations between different experts is what is regarded as “hard data” and what
as opinions or explanation attempts of the user. Separating both however is
a crucial step in this method. Oder differences exist in the interaction with
users. Some practitioners ask “neutral” questions, some do not interact at all
and others assume a partneship with the user. Often reminders to continue
thinking aloud are in the form of questions. For example “John could you tell
us why you pressed this button?”. Questions like this interrupt the task the
user was working on, they also require introspection. Introspection however
is what this method tries to eliminate in the first place. In summary it can
be said that the method is treated as a loose guide. Its results are not repro-
ducible and more weight is put on the experience of the practitioner than on
a rigorous methodology.

A conduction of this method usually involves two participants, the experi-
menter and a user. At the beginning of the session the experimenter introduces
the user to the experiment. It is helpful to make it clear that the program is
being tested, not the user. Often users feel stupid when a task goes wrong, un-



2.4 Evaluation Methods 25

aware that the whole purpose of the evaluation is to identify these situations
and imrpove the application. The experimenter asks the user to perform a
given set of tasks using the application. He asks the user to speak his thoughts
while she is performing the tasks. It is helpful to conduct a practice round, be-
cause talking your thoughts while working may seem unnatural at first. When
the user starts completing the tasks, the experimenter will only take notes
and observe the progress. The only situation in which the experimenter is
allowed to take control is when the user stops talking, in this situation the
experimenter would prompt the user to continue talking. Often an audio or
a video recording of the experiment is made for later evaluation. Usability
experts have reported, that video recordings of struggling users are a great
help in convincing developers of usability problems.

2.4.3 Paper Prototyping

A more traditional evaluation method for investigation of user interface design
questions is paper prototyping. This method is well described in literature
(most notably by Snyder [62]), so we will only briefly outline it and compare
it to the two other techniques we have discussed. In the most general form
of paper prototyping, all possible user interface states are sketched on sheets
of paper. The evaluator asks a test subject to manipulate the paper interface
and imitates a computer by presenting sequences of user interface states to the
test subject. The whole process is logged by a second evaluator and may also
be videotaped.

A paper prototype evaluation involves at least three people. Because there
is no working prototype of the application, only a paper mockup, one of the
experimenters needs to play the role of the computer. Her task is to show
different pictures of the user interface depending on what the user did in the
last step. A second evaluator asks the user to acomplish different tasks on the
pretend application. If the user hesitates at some point or seems confused,
the experimenter might inquire why the user is having a problem with the
situation. Ideally a third interviewer is protocolling the process. In lieu of
a third experimenter, the interviewer can assume the role of the recorder.
Like in the thinking aloud method, the evaluation is usually recorded for later
reference.

One of the strenghts of this technique is its scalability. It can bring benefits
even when performed with few or no prior experience. Experienced HCI spe-
cialists on the other hand can perform large studies together with a statistical
evaluation using paper prototypes. Another strength of this method is that
it does not require a running prototype, hence it can support the design pro-
cess before the user interface is actually implemented. A downside is that it



26 2 Background

requires more experience than heuristic evaluation or the think aloud method:
since the evaluator is in continuous interaction with the test subject, much
more problems can occur than in the other two methods.

One of the advantages of paper prototyping is that it can be applied with-
out extensive theoretical background; of course the quality increases with the
evaluator’s experience since more elaborate and more detailed scenarios and
questions can be used.



Chapter 3
Related Work

The following chapter gives a brief review of literature related to the de-
sign of the Semplorer user interface. The covered topics are: visualization of
boolean queries, visualisation of ontologies for information retrieval, chronolog-
ical visualizations, and applications implementing a semantic desktop. Some
of the reviewed projects fit into several of these categories. For example, the
LifeStreams project is both, a desktop replacement towards a semantic desktop
and a chronological visualization method. These border cases were classified
by the primary goal of the corresponding project. This is the reason why the
LifeStreams project is covered in the semantic desktop section rather than the
chronological visualization section.

3.1 Boolean Query Visualization

It is widely recognized in literature [8] that the formulation of textual boolean
queries is a difficult task for the average user of an information retrieval sys-
tem. One of the approaches to aleviate this problem is to construct direct
manipulation interfaces for the formulation of boolean queries. In the thesis
at hand several approaches found in literature were considered [4,29,58]. The
two that had the greatest impact on the design of the semplorer are reviewed
in greater detail.

The first one is the VQuery language designed by Jones et al. [29]. The
V in VQuery stands for Venn diagrams. The authors of this query language
argue that while the majority of users are unfamiliar with boolean algebra,
most of them are familiar with the Venn diagram notation of sets. Even
users previously unfamiliar with Venn diagrams can be introduced to this
notation with little training. The authors have implemented a query interface
for a library catalog and have conducted a formal usability evaluation. In this
evaluation they have made several findings. First, this type of query interface
is only practical for queries consisting of up to three keywords. While this
may seem like a limiting constraint at first, it should be inspected from the
point of view of user behavior. Two of the most famous studies of search
usage patterns [28, 61] have shown that the majority of queries consist of two
to three keywords. A second finding is that this type of interface is most
effective when users are provided with template diagrams instead of asking
them to arrange their own diagrams. In terms of formulation speed Venn

27



28 3 Related Work

Figure 3.1: Screenshot of the VQuery prototype [29].

diagrams were found to be slower than textual queries with most time spent
on arranging the diagram. The third interesting finding is that the qualitative
feedback of expert users, familiar with both, textual and visual queries, was
that while the Venn diagram interface was slower it was more fun than the
textual query interface. A screenshot of the VQuery interface is shown in
Figure 3.1.

The second graphical interface which had an influence on the design of the
Semplorer was the direct manipulation interface for the AI-STARS informa-
tion system [4]. This information system was used at the Digital Equipment
Corporation for archiving and retrieving user support questions. Previously
the information system only had a textual query interface. Queries were for-
mulated in natural language. The system processed the queries, constructed
boolean queries and returned some results. The problem with this interface
was that the conversion from natural language to boolean queries was largely
untransparent to users and yielded seemingly unexpected results. The graphi-
cal interface was inserted right after the conversion of the query into a boolean
query. Its goal was to provide users with information on how the query was
interpreted and give them a chance to modify it.

Figure 3.2 depicts a screenshot of the AI-STARS query interface. The
upper window shows the textual query entered by the user. The lower window
shows the visualization of the boolean query that was interpreted. In this
visualization, the horizontal axis corresponds to a ∧ connective and the vertical



3.2 Ontology Visualization 29

Figure 3.2: Screenshot of AI-STARS visual query interface [4].

axis to a ∨ connective. Dark keywords are active and light keywords are
inactive. The query is interpreted as if the inactive keywords were not there.
The formal interpretation of this visualization is thus:

(copy ∧ BACKUP saveset ∧ tape ∧ (v 5.0 ∨ version 5.0)) (3.1)

3.2 Ontology Visualization

While ontology visualization is a broad research field, there are few visualiza-
tions suit for interactive navigation and interaction with ontologys for solving
information retrieval tasks. In this section we review a survey of such visual-
ization conducted by Katifori et al. [2]. Four implementations are reviewed:
SHriMP, TGVizTab, OntoViz and the class viewer in Protégé.

3.2.1 SHriMP

The SHriMP visualization method has its roots in nested tree graphs. The
nested graph concept (depicted in Figure 3.3) is extended with various mech-



30 3 Related Work

Figure 3.3: A tree and a nested representation of the same graph.

anisms to provide a pleasant usability experience. All manipulations of the
graph are animated, this prevents users from getting lost on their navigation
paths. Since ontology graphs can become quite dense, great attention has been
paid to zooming. The SHriMP interface implements three zooming methods:
geometric, fisheye and semantic zooming. The simplest of the three is geo-
metric zooming. This kind of zooming just scales an area on the screen. The
second method, a fisheye zoom, also does a scale, however, not a linear one.
The closer an object is to the focus of the zoom, the more it will be enlarged,
the further away it is, the less it will grow in size. The motivation behind this
kind of zoom is that the area of interest grows but the context of the area
does not fall out of the viewing area – it is still explicit. The behavior of the
last zooming method, the semantic zoom, depends on the kind of object that
is being zoomed into. If for example a node represents some text, beyond a
certain zoom level this text will be “zoomed” into a text editor so that the
user can edit it.

The Jambalaya integration [5] extends SHriMP with various features to
accomodate specifically the navigation of ontologies (cf. Figure 3.4.).

3.2.2 TGVizTab

The second interface covered in the survey is TGVizTab [3] (cf. Figure 3.5.).
Like Jambalaya it too integrates a foreign technology with Protégé to allow



3.2 Ontology Visualization 31

Figure 3.4: Screenshot of Jambalaya in Protégé.

visualizing ontologies. Here the foundation is provided by the TouchGraph1

library. The goal of TGVizTab is to be a light-weight ontology visualisation.
Like the authors of Jambalaya, the TGVizTab creators observe that ontologies
are difficult to display as a graph in a usable manner [3]. They address this
issue by applying incremental graph browsing and spring layouting. Incre-
mental graph browsing means, that at all times only a subsection of a graph
is displayed. For every node on the displayed graph the number of neighbors
which are not displayed is shown on the screen. Users can choose to expand
the hidden neighbors of a node. Doing this recursively expands only the part
of the graph a user is interested in.

As mentioned above, the graph is layed out using a spring model. In this
model nodes repell each other and edges attract their endpoints, like springs.
The more edges there are between to edges, the closer toghether they are. On
the other hand, the more nodes there are in a subgraph, the further away are
its nodes. The authors recognize two problems with this mechanism: First, the
layout is unpredictable. Just like with real world springs, the graph will seldom
find the same equilibrium twice. The second issue is that only connected graphs
can be drawn.

1http://www.touchgraph.com/index.html



32 3 Related Work

Figure 3.5: Screenshot of TGVizTab in Protégé.

3.2.3 OntoViz

The next approach relies on an external application to perform the non-trivial
task of layouting the ontology graph. The OntoViz plugin for Protégé (cf.
Figure 3.6.) uses the GraphViz software2 to layout graphs. The advantage
of using an external application is that the developers can concentrate on
implenting interaction concept and outsource the complex task of layouting
graphs. The drawback is that the resulting graph is static. It is not possible
to drag nodes around, pan or zoom. It is plausible to assume that because
of this lack of interactivity this visualization method scored the worst in the
comparative usability evaluation of Katifori et al. [2]. There is however a
conceptual descendant of OntoViz called OWLViz. While OWLViz also relies
on GraphViz for layouting graphs, the level of interactivity is a lot higher. It
does not make it possible to drag, pan and zoom, but it does allow to navigate
an ontology tree incrementally. Since OWLViz is not covered in either the
comparative evaluation or in other literature, it will not be considered any
further.

2http://www.graphviz.org/



3.2 Ontology Visualization 33

Figure 3.6: Screenshot of OntoViz in Protégé

3.2.4 Tree-Graph Visualization

The last visualization method for ontologies that will be discussed is often
not regarded as a visualization method in its own right. This approach is
visualizing an ontology as a simple tree widget (cf. Figure 3.7.), like the one
found in the Windows file explorer or the Apple Finder. With respect to
ontology visualization, this widget has several shortcomings. For one, the tree
viewer is limited to visualizing trees, ontologies however are directed acyclic
graphs. If one node has more than one parent, the tree widget cannot display
it adequately. The second problem is that only inheritance relationships can
be visualized, other kinds of relations between ontologies cannot be displayed
at all. The first problem is solved by displaying a node with multiple parents
as a child of all its parents. The second is simply neglected. Although this
method may seem quite naive, it scored best in the comparative evaluation.
Inspite of its high score, users pointed out several deficiencies. For example:
only visible classes can be searched, to expand or retract a node users have to
click on the arrow beside the label, there is no button to expand and retract
all nodes.



34 3 Related Work

Figure 3.7: Screenshot of the ontology class browser in Protégé.

3.3 Chronological Visualizations

In this section Lifestreams is the central project. It is not only the earliest
formal treatment of chronological visualizations in user interfaces known to
the author but it is also widely cited in literature. The remaining two projects
described in this section pick up the ideas proposed in the Lifestreams project
and develop them further.

3.3.1 Lifestreams

Lifestreams [20] is a project originally initated in the mid 90s. It is one of
the more successfull approaches to breaking with the desktop as the main
metaphor for interaction with a graphical operating system. Adhering to the
desktop metaphor may be easier for the many users who are comfortable with
it. On the other hand it prevents the development of any genuinly new ideas.
The authors argue that files and folders are concepts which were developed
before computers became pervasive and massively connected. For this reason
they are inherently inadequate tools for organizing the amounts of information
users have to cope with on a daily basis. The reason is that a hierarchical
folder structure in which files can only reside in only one folder forcers users to
categorize all their data into distinct categories. Categorization of documents
into distinct folders is the hardest information management task users are
facing. Some researchers go even further and say that categorization is a flawed
psychological process [18]. In Lifestreams they are replaced with a time ordered



3.3 Chronological Visualizations 35

stream of documents. The authors claim that while the Lifestreams effort may
not have influenced developments in human computer interaction directly, it
has been a good predictor of the general direction of HCI developments.

The Lifestreams interaction model revolves around three key ideas. These
are: transparent archiving, reminding and summarizing. Old information
is less valuable than new information but still often essential. The desktop
metaphor provides practically no support for archiving infrequently used in-
formation. Users of desktop oriented interfaces have been observed to place
documents at strategic locations as a reminder for the following day. This
reminding mechanism is unreliable at best. The idea of a summary is that a
document or a group of documents are displayed in a window in a summarized
form so that users only need to look at the summary to get an idea of the
content of the documents. Summarizing minimizes the amount of informa-
tion that has to be processed to find a particular document. The Lifestreams
model attempts to address these issues by avoiding the usage of metaphors.
Interaction concepts are based on virtuality instead.

One issue with files is that on a metaphorical desktop all files and all folders
need to have a name. On a real desktop however informal documents do not
have names. When we take a random note we seldom give it a title. Informal
electronic documents however need names. Many users end up giving them
names like “Untitled” or “draft” which make later retrieval very hard if not im-
possible. Other problems of the desktop metaphor are rooted in the metaphor
following the original too closely. For example, every file needs to reside in a
single folder. Although there are mechanisms to circumvent this limitation,
they are barely supported in mainstream applications. The save dialog of a
text editor will only ask for one storage location of a document. Another re-
striction is that electronic desktops, like their real counterparts, have a static
organization. Since this organization is just one possible representation of the
data, rendered for the benefit of a user, it does not need to be static.

The ubiquitousness of the desktop metaphor has more subtle implications
also. In recent years there has been a great leap towards mobile computing.
Even the simplest of todays cell phones have a manifold of the processing
power of the computers for which the desktop metaphor was designed. There
is however no adequate translation of the desktop metaphor to mobile displays.
What is the unmetaphorical counterpart of a portable desktop?

The remainder of this section will elaborate the Lifestream concepts and
interaction models. Figure 3.8 depicts a screenshot of the Lifestreams user
interface. A Lifestream is a time ordered stream of documents. The real world
analogy best describing a Lifestream is a diary. Each document in a Lifestream
is stored at the time it is first created or received. It is however also possible



36 3 Related Work

Figure 3.8: The Lifestreams user interface.



3.3 Chronological Visualizations 37

to move to the future of a Lifestream and create a document there.

Lifestreams are manipulated using a few well defined operations. The op-
erations for creating new documents are new and copy. The new operation
appends new documents at the head of a Lifestream. The latter operation,
copy, takes an existing document and adds a duplicate to the head of the
stream. It is worth noting, that new documents do not have to be named.

Documents in a stream are retrieved using the find operation. This opera-
tion is operated by entering boolean queries in a text entry box. Every query
entered in this box can be persisted to a virtual group. The group is updated
when new documents matching its query are added to the stream. After re-
trieving, documents are modified and viewed with external applications. This
process is orthogonal to creating and retrieving documents.

Summary previews of documents is another key feature of Lifestreams.
Summaries can be generated at two levels in the Lifestreams enviroment. The
first kind of a summary is a document summary. When a user hovers with the
mouse cursor over a document a thumbnail of the document is displayed. It
is notable that the manipulation functioned in real time which is remarkable
considering when the first prototype of Lifestreams was written. The second
level at which documents are summarized are groups. In group summaries one
preview representing all document in the group is generated. To sum it up,
the authors say that while they have experimented with several summarization
methods, many questions remain open.

The original Lifestreams prototype was implemented in a client server ar-
chitecture. It allowed users to send each other documents over email. The
incoming document would be added to the head of the receivers stream. The
authors implemented a graphical client, a text console, a pda and web client
for the Lifestreams server.

Lifestreams were conceived to assist users in communication, reminding,
tracking contacts and many other every day scenarios. In the Lifestreams
enviroment one user can send a document to the future of another user’s stream
– this would amount to a reminder. Aging documents move out of the users
view and beyound a certain thereshold they are stored in an archive.

Although some prototypes allowed sorting by criteria other than time, time
is the main ordering of Lifestreams. The rationale behind this design decision
is to allow using the historical context of a document as the main index in the
retrieving process. The authors believe that historical context carries more
information than the location of a document in a specific folder and carrying
a given name.

The authors collected feedback about the Lifestreams application from
three user populations: the staff in their department, readers of popular press,



38 3 Related Work

and potential clients who were shown a demonstration. They also admin-
istered a formal evaluation using a structured questionnaire. The response
was found to be largely positive. The authors acknowledge however that the
largest problem of the Lifestreams application is the lack of integration with
other systems.

On a closing note, the authors state, that in the battle against information
overload a good browsing engine is at least as important as a good search
engine.

3.3.2 TimeScape

The most noteworthy spin-off of the Lifestreams project from a design point
of view is the TimeScape [50] application. TimeScape’s greatest conceptual
innovation in comparison to Lifestreams is that the author introduced context
distances in addition to temporal distances. In TimeScape users can place
documents which are treating a similar topic close to each other. The idea
of spatial vicinity as a measure for context vicinity is derived from Malone’s
famous study on how people organize their desks [33].

The TimeScape application is intended to replace the native desktop en-
viroment. It is used in place of the Finder on a Mac or the Explorer on a
Windows machine. Similarly to the LifeStreams project described in the pre-
vious section, TimeScape archives all user data making the assumption that
disk space is cheap and retrieval overhead is small in most practical cases. The
main navigation paradigm in TimeScape is chronological. The users browse
their data on the visualization of a timeline. TimeScape provides several vi-
sualization techniques for time: for example a timeline or a calendar view.
Convenient operations like panning, zooming, double clicking for opening files
and others are implemented. Unlike the LifeStreams user interface, TimeScape
benefits from today’s more powerful graphical programming hardware and li-
braries. One innovation they made is to visually fade files which are further
in the past. Searching is not a central topic in the TimeScape project, the
authors provide only a full text keyword search. They do however implement
the notion of dynamic filtering: files that do not match the text query are not
displayed.

The authors see the timeline interface as a useful paradigm for information
management on handheld devices. Small display sizes are limiting in terms of
navigation paradigms and a timeline visualization can be implemented to use
screen space sparingly while still being intuitive. However, formal usability
evaluations have not been conducted so there is no evidence in support of this
claim. Figure 3.9 shows a screenshot of the TimeScape user interface.



3.3 Chronological Visualizations 39

Figure 3.9: TimeScape screenshot [50].

3.3.3 Dynamic Timelines

Another project from a slightly different domain are Kullberg’s dynamic time-
lines [31]. The dynamic timelines are used to visualize a database of historical
photography. Kullberg has approached the problems of timelines by visualiz-
ing in a three dimensional space. Figure 3.10 depicts a screenshot of the three
dimensional interface.

Kullberg’s dynamic timelines are not directly related to the the other appli-
cations in this section. The timelines have a very specific application domain
and a static database. In spite of this difference, Kullberg documents many
challenges also present in the Lifestreams, Timescape and Semplorer appli-
cations. The probably greatest challenge for timelines is the visualization of
dense clusters. On a timeline there tend to be periods in which many data
are stored and periods in which there are no data at all. A linear spacing of
markings on the timeline thus means that if the interface is zoomed to display
a dense cluster, the user would have to pan for a long time to reach another
cluster. On a zoom level at which distinct clusters can be made out, the in-
stances in the clusters are usually too cluttered to interpret. This situation
makes for frequent zooming operations, which is the second challenge similar
in all timelines. When zooming unevenly spaced data it is easy to get lost in
the data, so to say. Or in other words, when zooming into a dense cluster it is
easy to lose the context of the area which has been zoomed into.

There are however also conceptual differences between the visualization of



40 3 Related Work

Figure 3.10: Dynamic Timelines fourth prototype screenshot [31].

historical information and the information on a desktop. In history, objectivity
plays a large role. It is important that historical events are not emphasized
beyond proportion in the visualization. On the desktop on the other hand, a
certain degree of subjectiveness is very welcome. For example, data that are
not related to the current project do not need to take up the same amount of
screen space as data which the user is currently manipulating. On the desktop,
a common heuristic for the relevance of data is the date of the last modification.
In a historical context it would be unthinkable to lower the relevance of events
depending on how long ago they happened.

3.4 Semantic Desktop

There are several projects attempting to achieve goals comparable to the ones
of SemDAV. These goals can be subsummed under the common vision of a
Semantic Desktop (cf. Chapter 2). To remain inside the scope of discussion
only projects beyond a certain maturity level will be treated in detail.

3.4.1 Haystack

Haystack is a project at the MIT [27]. It was started in 1997 to research
methods of coping with information overload. The goal was to develop a
flexible framework which integrates information from different sources in a
consistent manner. Originally Haystack was developed on top of a custom
data model but later it was migrated to an RDF store. The main innovation
of Haystack from a user perspective is its flexible user interface which can
be customized to every user’s needs. The configuration of the user interface



3.4 Semantic Desktop 41

Figure 3.11: Haystack user interface [24].

is stored as an RDF graph using the same facilities which store and retrieve
the meta data managed by the Haystack application. Haystack is designed to
work with and within the Semantic Web, its main focus lies on aggregating
data from different information sources and integrating them in a personal
semantic repository.

In order to keep the manipulation of Haystack’s user interface simple sev-
eral concepts are applied [47]. The probably most important one is the notion
of collections. Collections in Haystack play a similar role as folders in a file
system. Collections however are more generic than folders. They are aggre-
gations of objects, but this is as far as the similarity goes. Collections are
not strictly hierarchical and objects can be in several collections at the same
time. With symbolic links on Unix and shortcuts on Windows, folders expose
a feature which provides a similar functionality. The user interface support
for links and shortcuts however is very rudimentary. The authors of Haystack
expect that the greatest bulk of objects classified into several collections will
be automatically performed by agents. An agent can represent a result of a
query as a collection for example.



42 3 Related Work

The Haystack user interface is recursively constructed from parts. A part
can consist of more parts and can render RDF meta data. The structure
of user interface parts is itself defined in RDF. Different part types persist
their settings using their own, custom ontologies. Using generic view parts to
visualize RDF data makes for a very consistent user interface. For example,
all user interface elements are designed as sequential lists. Another example is
that all elements of such lists can be dragged and dropped onto other elements,
which may be lists. The main advantage of this design is that once a user has
learned to work with one component, she can reuse her skills when interacting
with another, possibly unknown component.

On a higher level of abstraction the user interface is not described in RDF
but in a scripting language which is translated to RDF. Using a scripting
language makes the development of the user interface more comfortable as it
automates the usage of repetitive patterns. The scripting language has been
develped specifically for the Haystack project, it is called Adenine [46]. The
Haystack authors describe Adenine as a Lisp dialect which does not operate on
lists of pairs but on RDF triples. Because the language is implemented in Java
it allows tight integration with modules written in Java. Another similarity be-
tween Lisp and Adenine are continuations. Continuations are non preemptive
operations which can be persisted before they have completed. Continuations
provide the foundation of user interface continuations as described by Quan
et al. [49]. These are used similarly to macros. If for example a shopping
basket needs a user to enter their identification before they proceed shopping,
a continuation can be created after the user enters their identification. In
subsequent shopping sessions the user can start from the persisted continua-
tion eliminating the need to reenter their identification. Using an interpreted
language for the construction of the interface allows to make changes to the
user interface at runtime. This in turn enables user interface designers to
concentrate on the design process itself neglecting technicalities. To illustrate
the relationship between user interface design and programming the Haystack
authors paraphrase designers as interior designers and programmers as carpen-
ters [27]. The user interface construction process however still bears enough
marks of semantic technology to encourage designers to think in a semantical
mindset when developing the user interface.

Haystack intends to be the single point at which all personally relevant
information streams are merged and integrated. It brings together email and
RSS but also calendars and potentially many other sources. Agents, which are
small pieces of software performing information manipulation and retrieval
tasks, can extract logical structures by reasoning over the aggregated informa-
tion space. Since Haystack does not really delete meta data but instead marks



3.4 Semantic Desktop 43

it as deleted, agents can also reason over information that has been deleted.
They can even reason over information that failed to be written. Haystack
agents are written in Adenine.

The authors also acknowledge some problems in the Haystack project. One
of them is finding a suitable RDF database. Currently the authors are using a
database written specifically for Haystack. It is written in C++ and optimized
for Haystack’s needs [27]. The authors however acknowledge that the database
is only a temporary solution and are looking for better alternatives. Another
unsolved issue is the problem of access control and privacy. While there is
ongoing work at W3C attempting to devise standards for trust in the Semantic
Web, there are no implementations which can be used in a project. Haystack
classifies this issue as out of scope and circumvents it [27]. The last problem
Haystack is facing is that while the user interface has great potential it has
not been designed by a usability expert [30].

3.4.2 mSpace

The mSpace project [59] is being developed at the School of Electronics and
Computer Science of the University of Southampton, U.K. Its goal is to make
browsing information easier. The authors provide a catchy description on their
website3 which sums up idea behind mSpace: “Imagine Google on iTunes”.
The project is tackling the information retrieval problem with facilities for
explorative navigation [59]. Currently the mSpace framework is only suitable
for browsing preprocessed domain specific data. Its long term goal however is
to become a generic Semantic Web browser.

When searching information users hardly ever get their query right at their
first attempt. The search for information is usually one of iterative refining.
Finding a query which to refine is easier when the user has background knowl-
edge on the information they are looking for. Using search engines like Google
without prior knowledge may be a frustrating experience. The mSpace team
sums up this scenario with fictive user’s statement: “I don’t know anything
about classical music, but I know what I like when I hear it”. This fictive
user will want to explore the information space. The user will initially not
be able to forumlate a query which will return music they like. Along their
navigation path they will listen to music in order to decide wether they are
currently in a musical category which they like. By listening to representative
music from different musical categories the user will start to create associa-
tions. The crucial point here is the assumption that the human brain models
an information space by association. Allowing associative navigation is thus

3http://mspace.fm/whatis/



44 3 Related Work

Figure 3.12: mSpace user interface [41].

much closer to the users mental model of the information than a plain index.
mSpace supports this process by supporting access to material at any point
on an exploration path, by emphasizing relations in the information, and by
providing multiple starting points for a possible navigation path.

The central part of the mSpace interface is a multi column view (Figure
3.12). Each column displays one dimension of the data. Multicolumn views
as a representation method for high-dimensional data are not a novelty. The
innovation here is that the columns can be freely manipulated. Users can add
new columns, remove columns, and swap the location of columns which are
currently displayed. Highlighting an entry in the leftmost column expands
all data which lie at the highlighted point of the dimension represented by
the leftmost column. Referring to the classical music scenario, if the leftmost
column is displaying musical periods then selecting one musical period will
fill all columns to the right with data taken from this period. If the second
column displays composers then selecting “baroque” in the first column will
fill the second column with composers who have composed pieces classified as
baroque. The mSpace team has experimented with various refinments of this
basic concept.



3.4 Semantic Desktop 45

One crucial refinement is the introducton of preview cues. These cues are
the mechanism supporting the formation of associations. The purpose of a
preview is to give the user a general idea of a category without having them
browse the category. This is achieved by selecting an instance of the category
which has been found to be representative. Naturally this aproach works best
with multimedia content. In the classical music scenario a preview cue for
baroque might be a Vivaldi concert. Preview cues have their foundation in
the concept of information triage [34]. To make the mechanism work it has
to be accessible. The authors have chosen to trigger it with simple mouse
gestures. Brushing with the cursor over a label initiates the playback of the
preview. The largest obstacle in implementing preview cues is making the
choice of representative instances. The authors experimented with cues chosen
by experts and with cues which were randomly chosen from the category. They
have investigated algorithmic solutions but found no satisfying option [66].

Bringing the idea of preview cues further, mSpace implements the notion of
info views. An info view is a pane which displays visual and textual details on
the currently selected category. The authors believe that providing peripheral
information further assists the building of associations.

Another thing that was also implemented is the use of numerical volume
cues. A numerical cue would display the number of composers falling into every
period by appending the number to the textual representation of the period
in the column displaying periods. If for example there are 328 composers in
the database who have written baroque pieces then the text in the period
column would be “baroque (328)”. Of course this interpretation is not as
straightforward as it seems. If there is a third column which lists all pieces
then the number 328 might mean composers but it also might mean pieces.
A rigorous treatment of numerical volume cues has been published by the
authors [66].

3.4.3 Nepomuk

The Nepomuk project [25] is a large project with the aim to create a standard
and a reference implementation for a social semantic desktop. In the current
desktop enviroment every user is on their own island. In the Nepomuk vision
on the other hand, there is a standardized communication layer which blurs the
boundaries between applications and physical locations. Instead of e-mailing a
document to a colleague it is made available through the Nepomuk framework.

The larger Nepomuk project is a follow-up project to the Gnowsis [52].
Gnowsis is a prototype implementation of a semantic desktop framework. The
Gnowsis can be described in short as an operating system wide classification
system. It can be seen as an alternative or an enhancement of the file and folder



46 3 Related Work

organization. The classification is realized by defining a Uniform Resource
Identifier (URI) for every resource on the desktop. Links between these URIs
can then be created and stored in a central server. By prolonged application of
this process a personal Semantic Web is weaved. Because the resources for the
Gnowsis project were very limited it was implemented as a single user system.

The Gnowsis is a thin layer ontop of a traditional file system. It provides
a uniform resource identification (URI) for any resources a user might want to
retrieve and allows annotating these resources. The Gnowsis does not replace
traditional applications, it rather extends them. The meta data in this frame-
work is stored in a central repository. The main reasoning behind this design
decision is that it allows treating links between resources as bidirectional. In
a decentralized repository system, where meta data is stored along with the
resource itself, it would be easy to make a link from a resource A to a resource
B. Finding all resources B which have an A linking to them however would
mean that one would need to look at every single resource and check wether it
links to B. This mechanism essentially makes it possible to link resources from
different applications with each other.

The meta data in the Gnowsis is stored as RDF triples. It is extracted
from existing documents, transformed to RDF and buffered in the central
Gnowsis repository. The extraction is done on the fly every time when a
retrieval operation is requested. This method results in slower response times
but yields consistent data. If a user queries the Gnowsis for all music files of
a certain genre, the Gnowsis will look at each file it knows about, extract its
genre and compare it with the requested genre.

Introducing the Gnowsis into the daily work opens several challenges. First,
there are no estabilished user interface concepts to interact with a semantic
layer. In the Gnowsis the user interface is spread over several applications.
There is the browser, which is used to navigate meta data and open resources.
There is also a birdeye view on the system which is implemented as a web ap-
plication. Resources are annotated with extentions of the applications hosting
the annotated resources. To annotate a Microsoft Word document for exam-
ple, a button has to be clicked which is added as a plugin to the application.
The second problem is that everything is a URI. While this is straightforward
for files or folders, it becomes more difficult with finer granulated resources.
Emails or contacts for example are stored inside one large file — the email
application needs to export URIs which identify specific emails inside a large
file containing many emails. Another problem rooted in the usage of URIs is
that while a URI identifies a recoure, it does not locate it. If a file annotated
with the Gnowsis is moved it cannot be opened with the browser anymore.

While it is easy to integrate various applications in a Gnowsis enviroment,



3.4 Semantic Desktop 47

the integrability of the Gnowsis has its limits. It is not possible for example
to extend the Adobe Reader to mesh with the Gnowsis. How well the whole
framework works was evaluated in a self experiment by the author while writing
his thesis. This evaluation showed that the intended goals of the Gnowsis
prototype, namely to provide a state of the art proof of concept for a semantic
desktop framework, have been met.

The Gnowsis project is superceded by the Nepomuk project [25]. Nepomuk
picks up the semantic desktop concepts developed in the Gnowsis and follows
them on a far larger scale. It is an attempt to provide a reference implemen-
tation for a social semantic desktop standard. This implies that the largest
conceptual leap from the Gnowsis to Nepomuk is the introduction of multi
user features. The Nepomuk authors identify flaws in related work projects
and attempt to improve upon these flaws [25]. The problems they see are:

• lack of evaluation;

• lack of collaboration; and

• lack of integration.

The Nepomuk authors claim that there have been no formal usability eval-
uations of Semantic Desktop projects. They also say that until Nepomuk no
projects provided multi user functionalities. And last, they point out that
integration with traditional applications is a problem that has been largely
neglected in other projects. It is one goal of the Nepomuk project to address
these issues in more detail.

The Nepomuk user interface which is furthest in development is the seman-
tic extention of the Dolphin KDE file browser (cf. Figure 3.13.). Aside from
Dolphin there are a few subprojects of the larger Nepomuk which deal with
user interfaces. There is a Firefox4 plugin for Nepomuk integration of web site
bookmarks called Foxtrot5. There is also an eclipse plugin for semantically
supported software development called PSEW6. The last project is the seman-
tic Mandriva online helpdesk7. Since these subprojects were at early stages of
development at the time of writing of this thesis and there were no scientific
publications related to them, they are not considered in this survey of related
work. The interested reader is referred to the websites in the footnotes on this
page.

4www.mozilla.com/firefox/
5http://code.google.com/p/nepomuk-mozilla/
6http://nepomuk-eclipse.semanticdesktop.org/
7http://www.mandriva.com/archives/en/enterprise/projects/nepomuk.html



48 3 Related Work

Figure 3.13: Dolphin file manager with Nepomuk extentions.



3.5 Other Approaches 49

3.5 Other Approaches

Two of the smaller scale projects are discussed in this chapter. Although the
published literature regarding this projects is scarce, and although they did
not have direct influences on the Semplorer user interface, they are treated for
the sake of completeness.

3.5.1 GLS3

The GNU/Linux Semantic Storage System (GLS3) is one such project8. It
provides a framework for semantical annotation and retrieval based on these
annotations. GLS3 allows its users to tag, relate and annotate files. The
main benefit expected from this meta data enrichment are higher precision
retrievals. The greatest difference between the GLS3 and SemDAV is that
GLS3 does not give up the concept of files. The whole system revolves around
enriching a legacy file system. Their application relies on extracting meta data
from files. When a file is added to the GLS3 repository the application first
tries to recognize the format of the file and to extract any meta data with one
of several parsers.

There has been no recent development activity in the GLS3. The developers
have published a retrospective analysis of the design mistakes they may have
made. They identify two most severe problems the first of which is usability
related. The problem they see is that it is not clear where to store files which
were imported from legacy media, such as CDs. Data from a CD appears in
GLS3 as expected but locating it on the hard drive may be counter intuitive.
Since the GLS3 was designed as an extension and not as a replacement for
traditional file systems this is a serious issue. The second problem is common
to any software development project - the problem of source code decay. The
GLS3 was initially developed as a prototype which was extended as the project
progressed. Eventually it turned out that unless the prototype was rewritten
from scratch no further progress could be made. While this difficulty should
be obvious to any experienced software developer it should be kept in mind
especially for immature and experimental systems as most semantic applica-
tions currently are. The most straight forward solution to this problem is to
plan to throw one prototype away [13].

8http://www.glscube.org/



50 3 Related Work

3.5.2 SemFS

The TagFS [11] project is another attempt to escape the restrictions imposed
by a tree hierarchical directory structure. The project has been renamed to
SemFS [44] without a visible rationale. The crucial idea behind TagFS is to
replace directories with tags. The result would be a directory structure without
a hierarchy, the order of directories in a path would be irrelevant. Similar to
GLS3 TagFS extends an existing file system with meta data. What TagFS does
differently is the interface to the user. SemFS tries to be exactly what it name
suggests, a file system. A query over the meta data in SemFS is constructed
by following a path in a directory structure which appears to eb traditional
although it lifts several of the restrictions of traditional file systems. Accessing
a file which was tagged as “paper” and “WWW2006” is equivalent to accessing
either the path /paper/WWW2006 or /WWW2006/paper. This interface is
provided to legacy file managers with FUSE 9, which is a user space file system
driver, and WebDAV.

Using a traditional path to navigate an information system poses a great
challenge. It is essential to clearly visualize the number of entities which carry
a certain tag. This is the only best method to encourage users to use common
tags. The number of tags is bound to grow very large; without a filtering based
on the number of uses of a tag the navigation through the system becomes
tedious and the benefits of tag based retrieval vanish.

Tagging is not sufficient to yield the full benefit of semantic technologies. A
tag only ontology does not benefit from the fact that semantic query languages
allow predicates which evaluate meta data - it is not possible to query SemFS
for all tags which are a number greater than 10 for example. Another neglected
benefit is the fact that ontologies allow the construction of taxonomies for
concepts. SemFS does not consider the application of hierarchical tags. All
these difficulties would be a subject of discussion however if the project had
not stalled development. The latest releases of the SemFS/TagFS project are
from fall 2006.

9FUSE: http://fuse.sourceforge.net/



Chapter 4

Usability Challenges in Semantic
Applications

In the following we outline difficulties we have met while designing the Sem-
plorer user interface, most of which were also reflected by the evaluation results.
The scope of the problems varies – some apply specifically to the sile model and
its user interface, while others have a more general validity. All of the identified
difficulties can be derived from the attempt to provide a method for communi-
cation between users and semantic applications: as with any novel technology,
the interface has to be based to the greatest possible extent on concepts with
which users are already familiar, while at the same time it must introduce new
data manipulation possibilities in order to harness the new technology to its
full extent.

4.1 Navigating Large Data Sets

Siles are a semantically enriched version of the file concept, but the sile model
does not include a counterpart of hierarchical directories. If we imagine a
file system and subtract from it its directory structure, we end up with a
number of information entities that easily goes into the tens of thousands [1].
These pieces of information are more often than not inexorably entangled.
Hierarchical directories are an efficient method for bringing a certain amount
of order into this information cloud, they are however often too restrictive to
depict all facets of relations between data. When the large number of objects in
a semantic repository are annotated with an even larger number of attributes,
organizational means have to be provided that are comparable to traditional
approaches in terms of responsiveness, but excel them in expressive power.
This challenge applies to any attempt to organize information, although its
severity depends on the domain of the application.

Devising a high-performance information storage and retrieval model is
much easier for applications with a narrow domain. Such applications benefit
from the fact that their users already own a mental model of the informa-
tion they are working with, which designers can attempt to translate into the
application’s data model.

51



52 4 Usability Challenges in Semantic Applications

4.2 Designing for Diversity

The SemDAV user interface tries to be as generic as possible. It is designed
to be a suitable tool for tasks that cope with information organization. Sauer-
mann et al. claim that users are unwilling to adopt a generic interface [54],
but the success of projects such as Haystack [48] make this claim disputable.
When only one generic application is developed, it is possible to experiment
with many different extentions at a relatively low implementation overhead.
Enabling the development of low cost functional prototypes is important and
beneficial at the current, mostly experimental stage of semantic applications
research.

The genericity of an application is not limited to technological aspects:
it should also encompass the intended user group. An information retrieval
application should make as few assumptions about its users as possible. It
should address not only scientists from differnt domains, but also users with
varying computer expertise, handicapped users, children and older people.
Even users from the same category may exhibit different search behaviors that
must be accommodated. An existing information system which fulfills these
requirements (next to playing a role in forming a cultural identity and being a
social center) are libraries. Stephanidis et al. [63] further elaborate the analogy
between libraries and information systems. They argue that the foundational
paradigm of user interface design, knowing the users, is not directly applicable
in applications with a large audience.

4.3 Visualization and Navigation of Ontologies

An obvious way to visualize ontologies is by representing them as trees along
the inheritance relationship. This method however is an incomplete depiction
of an ontology. A graph G is a tree if it is connected and it is not connected if
any edge is removed from G. If a class U is a subclass of both classes, X and
Y , which in turn are a subclass of owl:Thing then the resulting class hierarchy
graph is not a tree. The graph will remain connected regardless which edge is
removed. Tools utilizing the tree view circumvent this problem by rendering
two nodes for the class U , one which appears as a subclass of X and one which
appears as a subclass of Y . This node ambiguity may not be an obstacle for a
user who is familiar with the structure of an ontology, but it may be confusing
for less experienced users [17].

In Protégé this problem is circumvented by having nodes which appear as
children of all their parents. Even this solution however does not visualize
relations other than inheritance. While there are methods which attempt to



4.4 Visualizing Queries 53

visualize all relationships (cf. Section 3.2.) these visualizations tend to become
cluttered very quickly.

4.4 Visualizing Queries

The query language in the Semantic Web is the SPARQL Protocol and RDF
Query Language (SPARQL). Similar in spirit to SQL in relational databases,
it is designed for developers, not for end users. Ever since command line user
interfaces were replaced by graphical user interfaces there have been efforts to
design intuitive query interfaces. Query languages such as SQL and SPARQL
rely on boolean algebra for their semantics. Queries written in these languages
are also called boolean queries because they can be translated into a boolean
formula which carries the same semantics. This generalization plays an impor-
tant role in visualizations. The reason for this is that methods developed for
one query language can be applied to any other boolean query language.

There have been several efforts to visualize boolean queries [8,29,68]. How-
ever most are domain specific and make stringent assumptions about their
application. What the literature agrees upon is that a user interface provid-
ing the full expressivity of boolean algebra is difficult to handle by lay users.
This is why the visualization of boolean queries is always a tradeoff between
intuitivity and expressivity. On a closing note, it is interesting to observe
that even today’s leading search engines on the web avoid tackling this dif-
ficulty. They provide user interfaces akin to the command line interfaces of
past decades. Studies have shown that their boolean algebra features are very
rarely used [28,61].

4.5 Semantics of Resource Names

The relation of a name to the thing it names is both, problematic and well
researched [32]. Although this difficulty has been recognized in several leading
semantic information projects [30,35,53], it has not been explicitely addressed.
In the Semantic Web this problem stems from the usage of URIs. A URI does
not have to be human readable and it usually refers to some object. This
means that there is a human readable representation of the URI, the URI
itself and an external resource which are all in some semantic relationship.

There are several theories that attempt to model these relationships be-
tween symbols, concepts and concrete things, all of which agree upon the idea
that a symbol and its referent are two different things. Ogden and Richards
have introduced the semiotic triangle as a model of meaning (Figure 4.1). Their



54 4 Usability Challenges in Semantic Applications

Symbol Referent

Reference

Figure 4.1: Semiotic triangle [42].

triangle expresses the idea that a symbol refers to a referent by the means of
a reference, or, more concretely, an expression in a natural language uses a
thought or an idea to refer to an object. When someone uses the word “horse”
she is communicating a thought which entails a possibly real horse. The exact
way of how the angles of the triangle refer to each other has been subject of a
very large scoped linguistic and philosophical research.

The semantics of the sile model, and the meta models of the Semantic
Web as a whole, fit well into this construct. The symbol is represented by the
human readable name of a URI and the referent is the URI which refers to the
resource itself. The only flaw in this translation is that the resource pointed to
by the URI does not necessarily exist – it is possible that the meaning of the
URI is entirely stored in the meta data describing the URI. Thus an optimal
reference model for the Semantic Web has yet to be devised.

Even this incomplete model shows that the relation between resources and
their names is of interest to a user interface designer. This edge of the triangle is
the bridge between the mental model of a user and the machine representation
of the semantically enriched data. A reference without a human readable name
would be of little value.

If we consider resources as concepts in the linguistic sense, it is natural
to assume that URIs and their names should not have implications on each
other. In a natural language the word “horse” can refer not only to a specific
horse but to every animal of that species. Following the analogy of natural
languages, several URIs can thus have the same name, and one name can
symbolize several URIs.

One question which arises is whether two things denoted by the same name
have anything in common. There are two competing reference theories which
answer this question differently; the theory of realism and the theory of nom-
inalism. The former assumes that two things bearing the same name share
more than just their name. In its most simple, traditional form the theory of
nominalism assumes that the only thing referrents have in common are their



4.6 Introduction of New Vocabulary 55

names.
The ambiguity of meaning has been treated only very recently for Semantic

Web issues by Garcia et al. [23]. Their research however only deals with
synonyms in ontology mappings. The author of the thesis at hand is not aware
of any works treating problems of ambiguous labels for semantic resources.

Putting this problem into a context of user interface design complicates
the matter even further. User interfaces often rely on metaphors to bridge the
communication between humans and machines. The meaning of metaphors
however is often not congruent with the intention of the designer, a metaphor
may have unintended implications. It has not been researched what implica-
tions metaphors may have on the semantic relation between human readable
names and URIs.

Another issue is that information stored in a computer is usually intended
for manipulation. Manipulation gestures which come into play need to be con-
sistent with the metaphor visualizing the information on the one hand and
with the meaning of the gesture in other applications on the other hand. For
example dragging and dropping an element onto another element is an ap-
propriate gesture for putting the two elements in a semantic (as in Semantic
Web) relationship. However relationships in the Semantic Web are directed,
this means that dropping one element onto another can have one of two seman-
tics: either element A is in relation to element B or vice versa. Which of these
meanings is the more natural one is an open question. Another open question
is what other interaction concepts have ambiguous or unprecise meaning in the
context of semantic information and what sort of impact these imperfections
may have.

4.6 Introduction of New Vocabulary

Semantic technology is described in a domain specific terminology. The vo-
cabulary used by semantic systems researchers is only understood by semantic
researchers. One of the reasons is that many of the terms have been adopted
from other fields of research but their meaning was changed. The word “on-
tology”, for example, originally meant “the study of being”. In the field of
Semantic Web research however an ontology is best described as a special
form of a taxonomy, or as a formalized conceptualization.

It can be assumed that the majority of the users of semantic applications
are not familiar with the language used by the scientists who created the
application. An average user will be hopelessly overwhelmed by a message
saying that the ontology currently in use does not allow the class Person to
have a 1 : n cardinality for the property name. The user’s situation would be



56 4 Usability Challenges in Semantic Applications

even worse if she had background knowledge in philosophy.

In cases where a system has a well-defined application domain an obvious
way to circumvent this wording problem is to reformulate messages: For ex-
ample, the application might translate the message to “A person may only
have one name”. Downey has recognized this problem in the evalution of the
SEEK user interface [17]: during the evaluation one of the test subjects noted
that the term “annotation” was too overloaded and thus not appropriate. If
the application however targets more than one domain the approach of explicit
wording becomes infeasible.

4.7 Addressing of Challenges in Related Projects

After reviewing the largest semantic desktop projects and outlining the chal-
lenges faced in the design of these applications, it is instructive to look into
how these challenges are addressed. Figure 4.2 gives a rough overview of the
situation. This table however is a projection which hides information required
to interpret it objectively. It does not show for example that Gnowsis, KDE4,
PSEW and the Mandriva helpdesk are all closely related – they are subprojects
in the larger Nepomuk project. In the following a more detailed analysis of
the relations between projects and challenges is given.

4.7.1 Navigating Large Data Sets

The challenge of navigation is addressed in the Lifestreams project following
the chronological paradigm. The user can navigate back and forth in time and
dial to a point of time in the past or in the future. A mechanism supposed to
support the navigation process are so called substreams which are basically the
same as the main stream except that they only display data which matches
some user supplied criteria.

In Haystack the interface support for navigation is minimal. Users are lim-
ited to scrolling lists. The idea in this project is that the appearance of the
lists is highly customizable. The authors of the project also heavily rely on
automatic and semi-automatic classification of new information. They pro-
vide simple facilities for information classification – information can also be
classified in more than one class.

Treating the Nepomuk project is a little more complicated because there
are several user interface efforts in Nepomuk. The Gnowsis project is also
mentioned here because although it is a project in its own right it is the
project from which the larger Nepomuk spun off.



4.7 Addressing of Challenges in Related Projects 57

♥ ♣ ♥

♠ ♣ ♠

♠ ♣ ♠

♠ ♠ ♥

♥ ♣ ♠

♥ ♣ ♠

♠ ♣ ♠

♠ ♠ ♠

♠ ♣ ♣

♠ ♠ ♠

♠ ♠ ♠

♠ ♠ ♠

Navigating large Data Sets

Designing for Diversity

Visualization and Navigation of Ontologies

Visualizing Queries

Semantics of Resoure Names

Introduction of New Vocabulary

Lifestreams
Haystack

mSpace KDE4 PSEW Foxtrot

♥

♥

♥

♠

♥

Mandriva Helpdesk

♠ ♣ ♥

♣

Not 
Recognized

Recognized
and not

Addressed

Recognized
and

Addressed

♣

♠

♠

♠

♣

♠

Gnowsis

Figure 4.2: Challenges and Projects.

In Gnowsis the navigation is realized with a modified Wiki. The Wiki is
used to render the relations between and classifications of data. This rather
minimalistic approach was chosen because the resources in this project were
very limited. There are four other Nepomuk subprojects which provide a
user interface to semantic data: the PSEW eclipse interface, the KDE4 file
manager, a Mozilla Firefox named plugin named Foxtrot and the Mandriva
semantic helpdesk. Data in PSEW is navigated using simple scrolling lists and
tree views. Dolphin, the KDE4 file manager, does not provide any interface
for navigating the semantic annotations of files. This is also true for Foxtrot,
the Firefox plugin.

The matter is a little more complicated for the Mandriva helpdesk. To this
time there is no publically accessible user interface or a description thereof
for this project. However, the project will officially continue for a few more
months so the roadmaps in the project deliverables will be used to infer the
characteristics of the finished user interface. For navigating questions and
answers they propose a zoomable map based on iMapping [citation]. For the
navigation of the RDF graph they suggest using faceted browsing.

Most interesting with respect to this challenge is the mSpace project as its
main concern is navigation. They suggest a quite flexible version of faceted



58 4 Usability Challenges in Semantic Applications

browsing in which one can swap, add or remove facets. Further details on the
exact workings are covered in Section 3.4.2.

4.7.2 Designing for Diversity

Most of the projects covered in this chapter are not limited to a specific user
domain. They have the implicit ambition to be a generic user interface for
information management, in Haystack’s case, or for navigation, like mSpace
for example. However none of them have addressed the fact that an application
with a generic purpose will be utilised by users with different levels of skill or
maybe even physical impairments.

Some projects document this challenge in their publications without propos-
ing a solution. In the Haystack project for example, the authors say that it
cannot be expected that every user will work with the same schema. They
propose providing flexible user interfaces which can be tailored by users as
needed. There are two problems with this proposition: first, the authors see
that users will differ but they see the difference in the requirements, not in the
capabilities of users. They do not document expectations that their software
might be used by children, elderly people, people in non scientific enviroments
and how they cater to these user groups. The second problem is that they
suggest having solved the problem by providing a user interface which can be
customized. They explain this with a metaphor [27]: software development
and user interfaces are like carpentry and interior design – people may not
want to build their own furniture but they want to have a say in how the
furniture will be arranged in their dwelling. They miss however that very few
people are competent interior designers. A user may be able to tell when an
arrangement suits their needs but it cannot be expected that average users can
make good user interfaces.

The projects under the Nepomuk banner largely neglect this issue with one
exception: the Mandriva helpdesk1. In their project documentation they have
meticulously researched their user population and discovered that their plat-
form will be used by users with very different backgrounds. They make several
conclusions derived from this fact, it is however unclear how this recognition
will impact the appearance of the user interface.

In the mSpace project this issue is not addressed explictely. It is an interest-
ing paradoxon because the authors are well aware of the large user population
they are targeting. They make large scale evaluations to ensure the usability
of their product, however the users in their experiments are mostly students
who are a very specific group of users.

1http://www.mandriva.com/archives/en/enterprise/projects/nepomuk.html



4.7 Addressing of Challenges in Related Projects 59

4.7.3 Visualizing Queries

The problem of intuitive query visualization and manipulation was tackled
only by one project – mSpace. The Lifestreams project provides an input field
for entering textual boolean queries. The remaining projects provide full text
searching and sometimes the possibility to enter SPARQL queries. In mSpace
queries are visualized very unobtrusively and intuitively: the contents of a
column are the resources which satisfy the conjunction of the column headers
to the left. This intuitivity however comes at the price of reduced expressivity.

4.7.4 Semantics of Resource Names

The issue of putting human and machine readable resource identifications into
a semantic relation is interesting in that it is recognized and covered in liter-
ature [30,52] but authors mostly leave at that and withdraw from an indepth
discussion. Impacts of this challenge cannot be found in the user interfaces of
related project. One exception is the Lifestreams project, there they recognize
that forcing users to give unique human readable names to every file is a diffi-
cult and mostly unnecessary for users. They resolve this issue by shifting the
unique identification to a time axis rather than names. The reasoning is that
chronological order elicits correct contextual associations in users on the one
hand and it is a unique identifier for machines on the other hand. One issue
they have not addressed is that in a colaborative enviroment the time axis can
become rather crowded and using time stamps as the main identification may
become insufficient.

In Haystack the issue of naming resources appears very peripherally. In
section 4.2 of the paper “Haystack: a User Interface for Creating, Browsing and
Organizing Arbitrary Semistructured Information” [47] the authors recognize
that users prefer human readable names over URIs:

Perhaps the most basic view of an object is a simple reference to
it on the screen by a human-readable name. The ultimate fallback
name for any object is its URI, but URIs tend not to be mean-
ingful or memorable for humans. Instead, if dc:title or rdfs:label
properties are provided, Haystack will use one of the values of these
properties, giving higher priority to dc:title.

They propose deriving a human readable name from commonly seen RDF
properties. However they neglect synonyms, ambiguities and other difficul-
ties arising from building the bridge between human and machine readable
representations.



60 4 Usability Challenges in Semantic Applications

In the Gnowsis project this difficulty is treated very curiously ( [52] Sec-
tion 3.5.2). The author names the section dealing with this topic “The URI
Crisis” and briefly covers the problem of semantics in philosophy. It is not
clear however what impact this discussion has on the workings of the Gnowsis
application. In the context of the Nepomuk project the philosophical debate
is continued [35] however the direction is changed. In Nepomuk the topic of
discussion is no longer semantics as such but the old question of wether com-
puters can think and how this relates to mental models of users. In the opinion
of the author of the thesis at hand the question of wether machines can think
is irrelevant (cf. Section 2.1.). The irrelevance of this question makes its treat-
ment unsuitable as a foundation for a mental model of semantically enriched
information.

4.7.5 Introduction of New Vocabulary

The introduction of unfamiliar vocabulary is treated differently in the reviewed
projects. While the Lifestreams project is not a semantic desktop application,
they too introduce new vocabulary. They have opted to introduce words like
streams and substreams to trigger helpful associations in the minds of their
users. A stream refers to the stream of time, containing all the user’s docu-
ments. A substream is a part of this larger stream. In the mSpace project
the usage of unfamiliar concepts is omitted entirely. That way there is no
need to introduce new vocabulary. The Haystack project takes an intriguing
approach: the authors recognize that users may not be familiar with terms
like RDF or OWL and they propose the RDF manipulation language Adenine
to aleviate this problem [46]. In the opinion of the author of the thesis at
hand, introducing a textual notation which is even more expressive than the
previous one does not address the challenge of new vocabulary appropriately,
it merely shifts it. However there is no evidence either in support or against
the proposition of the Haystack team. The Gnowsis and the Nepomuk projects
do not address this issue at all.



Chapter 5
Application of Interaction Design
Guidelines in the Development Process

This chapter outlines the design process of the Semplorer application. The
process followed largely resembles the one proposed by Jakob Nielsen and
outlined in Chapter 2. Let us briefly review the steps of the process:

• Know the user.

• Competitive analysis.

• Setting usability goals.

• Parallel design.

• Participatory design.

• Coordinated design.

• Heuristic analysis.

• Prototyping.

• Empirical testing.

• Iterative design.

• Collect feedback from field use.

Knowing the users was taken into account but it is difficult to apply this
concept directly to the potential users of the Semplorer. The difficulty is that
the user group is not from a well defined domain – anybody who uses a com-
puter to store personal information should be able to use it. This includes
administrative staff as well as experts but also children, old or handicapped
people. This problem is elaborated in more detail in Section 4.2. The knowl-
edge about users was derived from research of the World Wide Web. While this
may be an inaccurate approximation, there are several parallels between tasks
on the web and on a Semantic Desktop which justify this juxtaposition. Both,
the web and the semantic desktop are, or at least were intended, as large scale
information systems. Some of the most common tasks done on both systems

61



625 Application of Interaction Design Guidelines in the Development Process

are search, retrieval, storage and manipulation of information. More details
on the parallels between the semantic and the traditional web can be found in
Section 2.1.

A competitive analysis was performed meticulously for the Semplorer, how-
ever the results were very limited. At the time of the writing of this the-
sis, Semantic Desktop user interfaces are mostly developed in academic set-
tings, there are no comparable commercial products. Even the few academic
projects are at an experimental level. Three projects were identified as po-
tential competitive products: Lifestreams, Haystack and Nepomuk [20,25,27].
The Lifestreams project was abandoned many years ago and neither the ap-
plication nor a suitable platform is available for trial. Scarce documentation,
cryptic error messages and later the unavailability of a download prevented
a thorough evaluation of the Haystack project. When the Semplorer devel-
opment commenced, the large Nepomuk project was in the final stages of its
publically funded period. At the current stage their user interfaces are rudi-
mentary at best. Further details are covered in Chapter 3.

The next step is about identifying the usability goals in order to achieve
a compromise between contradictions and consistency in the user interface.
The ultimate goal of the SemDAV effort is to eventually replace traditional
file systems. The less ambitious goal of the Semplorer however is to serve
as a flexible prototyping platform for experimenting with as many different
interaction paradigms as possible. Because file managers are not intended for
accomplishing complexly interwoven processes, it is possible to keep the user
interfaces for different tasks in the Semplorer independent from each other.
The interface for retrieving siles for example does not interact directly, not
even on a source code level, with the component for visualizing siles. As long
as all components agree on the imposed drag and drop interaction “language”
there are practically no contradictions between interaction concepts.

The next three points of the process are not isolated steps but rather guide-
lines for the design phases of the project. The first suggestion is to parallely
design several versions of an application. Since the Semplorer is an experi-
menting platform this proposal was taken particularly seriously, not so much
by experimenting with many different verions of the Semplorer but by sup-
porting parallel prototyping within the Semplorer. With its loosely coupled
components and unified interaction paradigm the Semplorer caters well to dif-
ferent developers working on different versions of the same component without
replicating any work. Since the resources to formally evaluate the Semplorer
were not present the finished application does not abandon the parallel proto-
types – there are different versions of retrieval and visualization components
which users can choose from.



63

The second suggestion is to involve users in the design process. Because
of the lack of a clear user domain this suggestion could not be applied in the
design process of the Semplorer. The considerations of the user domain are
further elaborated in Section 4.2.

The last proposition concerning design is to coordinate the design process
between designers in order to achieve a consistent user interface. This recom-
mendation was strictly adherred to in the development of the Semplorer. A
single person coordinated the general architecture of the Semplorer providing
a framework for other developers to work in. This framework includes a com-
munication mechanism to allow components to communicate with each other
as well as an application wide drag and drop mechanism. Further details are
covered in Chapter 7.

The next phase in the process is the evaluation phase. Nielsen specifically
suggests a heuristic evaluation because of its low cost and easy of application.
The heuristic analysis of the Semplorer is covered in Chapter 8.

Further it is suggested that the development is prototype driven. The
development of the Semplorer was heavily prototype driven – starting with a
first prototype made of paper (depicted in Figure 5.1), through a prototype
written in SmallTalk (cf. Figure 5.2.) up to the last Semplorer version, which
itself is a prototyping platform.

Although the Semplorer was evaluated using a heuristical method, a full
scale usability survey remains out of the scope of this thesis. The empirical
testing point remains largely neglected.

It is not sufficient to built prototypes, the development of prototypes has to
be iterated. Iterations in the Semplorer project were mostly due to improve-
ments from a technical prespective. The Semplorer was conceived as a part of
the SemDAV project which aims to provide a communication framework for a
semantic desktop. As such larger attention was payed to improvements behind
the scenes than at the surface of the application.

Since the Semplorer was never intended for actual deployment, the per-
ceiving of its unfinished state is not endangered by a delivery date. In other
words: feedback from the field was not collected since the Semplorer never was
in the field.



645 Application of Interaction Design Guidelines in the Development Process

Figure 5.1: Paper mockup of the Semplorer.



65

Figure 5.2: Early Smalltalk prototype of the Semplorer.



Chapter 6
User Interface Design

The goal of this chapter is to introduce the rationale behind aspects of the
design of the Semplorer. To understand the design decisions leading to the
Semplorer it is necessary to keep in mind, that the Semplorer is a byproduct
of the SemDAV project. The central goal of this project was to develop a
protocol for the integration of a collaborative semantic desktop enviroment.
The role of the Semplorer was that of a prototypical client used to identify
requirements and feasability of protocol features. As such several of the best
practices of user interface design were not applicable. The Semplorer was used
as a platform for exploring interaction concepts towards a semantic desktop.
This is also reflected in the highly modular software design, all user interface
components were designed to be easily replaceable so that the overhead of
rapid prototyping is kept at a minimum.

Because of the limited amount of resources available to the authors of
a thesis like the one at hand, not all of the identified challenges could be
addressed in depth. Particular attention was payed to methods for navigating
large data, visual boolean query interfaces and ontology visualization for end
users. The treatment of these challenges is treated in the following sections.
Further, the challenge of introducing unfamiliar vocabulary was touched upon
although not beyond the providing of a potential approach. The question
of the semantics of resource names was considered [64] but the analysis of
its relevance and impact on semantic applications needs further investigation.
While the Semplorer was designed with a diverse user population in mind, no
formal evaluation in this direction was undertaken. The topic of a diverse user
population is part of the future directions of the SemDAV project.

6.1 The Example of Bob

In order to demonstrate the interaction mechanisms of the Semplorer the fictive
person Bob is introduced. Bob is a provisional persona as described by Cooper
et al. [15]. The persona is not the synthesis of empirical data, rather he is a
stereotype created to serve as an example for Semplorer interaction. It is
important to note that the persona and its assumed behavior was not used
to justify design decisions. Because of the lack of the foundation on empirical
data, Bob is entirely unsuit to serve as a design tool.

66



6.2 Overall Appearance 67

Figure 6.1: Bob.

The literature [15] suggests that fictive personas should have pictures. This
enforces the empathy towards the persona. Bob is an entirely ficitional persona
constructed without even reliance on stereotypes. His depiction (Figure 6.1)
reflects this sketchiness.

Bob is a student. He attends Neverland university where professors pace
courses in sync. This semester Bob is taking the theoretical computer science
class and the introduction to compiler development class. The synchronous
pacing means that for example when the professor teaching the theoretical
computer science class introduces regular expressions, the compiler develop-
ment professor is teaching about lexers.

In the following sections descriptions of Bob doing everyday tasks with the
Semplorer are used to support the understanding of the interaction concepts
in the Semplorer.

6.2 Overall Appearance

The user interface of the Semplorer is modelled after traditional file browsers.
From today’s perspective it is difficult to say how the widely known layout
of file browsers developed. It is however easy to observe that practically all
common directory navigation tools follow the same paradigm: on the left there
are starting points into the directory structure; the middle pane displays the
current context – the files and folders in the current directory; when present,
the pane on the right side displays details about the currently selected file; and
finally, at the top there is some sort of visualization of the current working
directory. The three most common file managers are depicted in Figure 6.2.

The parallels in the Semplorer interface are made apparent in Figure 6.3.
The Semplorer interface is divided into 5 panes. The first pane, the middle
one, selects the siles residing in the current context. The second part, is usually



68 6 User Interface Design

Figure 6.2: Apple Finder on the left, Windows Explorer in the center, KDE
Dolphin at the right.

not found in file browsers. It plays the role of an explicit clipboard. Entities
which are used often can be placed there for later reference. The pane on the
right (numbered 3), displays, like in traditional interfaces, details about the
selected sile. Number 4, at the top, is the equivalent of the current directory –
it is a filter describing the working context. And finally, the fifth part on the
left, is where usually some starting points into the directory structure can be
found. Because the Semplorer does not operate on directories, the equivalent
categorization tools have been placed there, namely spects and tags. In the
following sections the navigational components of the Semplorer are discussed
in more detail.

The main interaction gesture in the Semplorer is dragging and dropping.
This gesture is maybe the most important one in the direct manipulation user
interface paradigm. Ben Shneiderman, a recognized pioneer of direct manipu-
lation interfaces, has collected inspiring quotes of user interface researches who
value the concept [60]. All of them agree, that having an explicit and tangible
visual representation of an interface makes not only for a flat learning curve
but also for a user interface that is fun to use.

In the following a few common interactions with the Semplorer are de-
scribed on the example of Bob the student.

When Bob wants to add a new document to his SemDAV space, he simply
drops it onto the sile pane. This uploads the document to the central repository
and adds some common attributes like a creation date, a document name and
a few others. To annotate the sile, Bob can drag tags from the tag pane or
categories from the spect pane and drop them onto the sile. He can either drop
them on the sile rendering in the sile pane or in the detail pane, both targets
have the same effect. When dragging over a valid target, the target lights up
with a highlight to notify Bob that he can drop whatever he is dragging there.

When Bob is frequently using the same tag, he can drop it into the sile
pocket for quick reference. The sile pocket is a visual clipboard – a temporary



6.2 Overall Appearance 69

Figure 6.3: User interface components of the semplorer.



70 6 User Interface Design

Figure 6.4: Screenshot of the timeline view in the Semplorer.

storage for quick access of documents or annotations which are used frequently.
To open a sile Bob, only needs to double click it – just like in any other file
manager.

The most complex semantic annotation is the slink. To add a slink from
one sile to another sile, Bob drags the first sile and drops it onto the second.
He is then presented with a pop-up menu displaying all slinks which can be
placed between the two siles. Slinks can be followed similarly to links on the
web. When Bob navigates to a sile, he can see the incoming and outgoing
slinks in the detail pane. If he clicks on one of the target siles of an outgoing
slink, the Semplorer will change its focus to this target sile.

6.3 Navigating Large Data Sets

In this section a chronological information navigation mechanism is proposed,
which is inspired by the visualization in the Lifestreams [20], and TimeScape
[50] (see also Chapter 3.) projects. The contribution of the proposed method
is an alternative application of the vertical axis of the user interface. Instead
of neglecting it, as in Lifestreams, or using it to display contextual vicinity, as
in TimeScape, it is used for the implementation of a zooming method which
does not actually shrink the size of the displayed siles. Let us first elaborate
the mechanics of the Semplorer timeline visualization on an example.

This week Bob’s homework for the compiler related course is to build a
parser. After reading the assignment, he realizes that parsers are just a practi-



6.3 Navigating Large Data Sets 71

cal application of context free grammars. Unfortunately, Bob cannot remember
when context free grammars were covered in the theoretical course. However,
he roughly remembers when parsers were covered in the compiler lecture. He
opens the Semplorer and quickly crafts a filter1 which shows him only siles
related to either of the two lectures. Bob opens the timeline view and pans it
roughly to the correct part of the month in which he remembers hearing the
parser lecture. Then he zooms in until he can make out what he has stored in
the repository around the time. Finally, he discovers a sile labelled as “context
free grammars”. He clicks on it to inspect it more closely and sure enough, it
contains the notes he was looking for.

Bob is a forgetful student. He often forgets to start doing his homeworks
on time. To aleviate this problems he places reminders in his SemDAV space.
To do this, he simply adds a “reminding date” attribute to the sile containing
the homework assignment. The reminding date is the time at which he would
like to start doing his homework. After attaching the attribute, the homework
sile will be placed at the reminding date in the timeline.

Most of the ideas in the timeline view are not new. The idea of computer
aided time centered organizing paradigms goes back to Freeman’s and Gelern-
ter’s Lifestreams [20] (see also Section 3.3.1). The idea of making reminders
appear in the future for example is directly inspired by their work. The main
difference between the Lifestreams and the SemDAV timeline is that SemDAV
not only introduces an ordering but actually places siles on a timeline. Short
time intervals between siles are mapped to short distances on the screen and
long intervals are mapped to long distances on the screen.

The main problem this method introduces is, that intervals in which many
siles were created and intervals in which few siles were created are not displayed
equally efficiently. In a period where new siles were rare a lot of the screen
space is used to display time in which nothing interesting has happened. On
the other hand, in periods of high activity the screen space may not be enough
to display all siles while maintaining true relative distances. At the core of
this difficulty is the fact that sile dates are not spaced with uniform density.
To solve the problem an efficient method for visualizing dense clusters has to
be devised.

One of the most common methods for visualizing dense clusters are zoomable
interfaces. Zoomable interfaces however challenge the designer with two dif-
ficulties. First, the design has to entail keeping the user in context. When
changing zoom levels it is easy to get lost. For this reason transitions between
different zoom levels have to inform users about how the new zoom level is
a mapping of the old one. The second challenge is that of detail abstraction.

1see Section 6.5 for a further explanation of filters



72 6 User Interface Design

The higher the zoom level, the more information is shown on the screen. With
rising information the importance of details sinks. The whole point of zooming
out after all is to provide a larger picture. When zooming out a picture for
example, the resolution shown on the display becomes smaller.

Two mechanisms ensure that the information context is not lost when pan-
ning and zooming the timeline. The first mechanism restricts magnifying only
to the center of the display. If you want to visualize a very dense cluster, you
first pan it to the center of the screen and then change the zoom level. This
works a lot like one would go about zooming in and out on a microscope – you
first put your object of interest under the lense and then change the distance
between the lense and the object to achieve the desired zoom level. The sec-
ond method keeping the user in context are smooth transitions. Like in the
microscope analogy, any zoom level is allowed so that keeping a mental map
of the observed objects is intuitive.

The problem of abstracting information is tackled in a slightly unconven-
tional way. If two siles on the timeline are so close to each other, that they
cannot both be displayed without overlapping each other, the later sile is
stacked on top of the earlier sile. When zooming out, one sile is stacked on top
of others so that a tower of siles is built which grows towards the top of the
display. When zooming in on the other hand, the tower is taken apart until
all siles sit next to each other in chronological order.

There are several possible future directions the SemDAV timeline visualiza-
tion could follow. Additional functionality can be introduced to allow sorting
not only by date but by arbitrary attributes. Although this idea already ap-
peared in the context of the Lifestreams project, little has been published on its
usefulness. Other mechanisms worth exploring are visual effects such as blur
or variable focus to support the stability of a working context. Another idea
would be to introduce a time scale which is not equidistant but logarithmic,
so that longer time intervalls appear shorter if they are further away from the
center of the display. And finally, it is worth investigating wether the stacking
of siles on top of each other is a sufficient abstraction method or wether it
needs further refinement.

6.4 Visualization and Navigation of Ontologies

Findings of the comparative study performed by Katifori et al. [2] (also re-
viewed in Chapter 3) played an important role in the design of the spect view
in the Semplorer. Two concrete implementations were implemented both of
which follow the mechanics of a tree view.

The first version of the spect viewer (see also Figure 6.5) displays all children



6.4 Visualization and Navigation of Ontologies 73

Figure 6.5: Browsing spects.

nodes of the current node slightly indented. Beyond the current node a trail
of already visited nodes is displayed. Every time the user clicks on a child
node, the viewer navigates to the node and expands its children. If the user
clicks on a node in the trail, the viewer steps back to the selected node. Figure
6.5 shows three spect viewers showing different hierarchy levels of the same
ontology. The viewer on the left shows the spect as it initially appears to
the user. The second pane shows the state after the user has clicked on the
Document category—the category is now in the trail, and the viewer displays
the sub-categories of Document. The third viewer shows the next level; here
a trail of two categories has been walked and the sub-categories of Technical
Document are displayed. Clicking on the “i” symbol resets the viewer back to
the root node. If the interface is in the state depicted on the right and a user
clicks on the Document node, the interface traverses up the hierarchy to the
node representing the Document class, as shown in the middle screenshot.

The results of the usability evaluation however have been divergent with
regard to this aproach. The two problems pointed out by evaluators were
firstly that the parent/child relationship is not made sufficiently explicit, as
e.g. the relation between the categories Document and Technical Document is
not clear from the visualization. Secondly there exists no “bird eye view” of
the ontology: searching for a particular category is difficult because the user
has to remember the trail she had to walk to reach it.

These problems were addressed in the second iteration of the spect view
implementation. This version is described on the example of Bob. In order to
retrieve lectures with the filter interface, Bob needs to annotate them. To do
this, he is using an extensive ontology designed specifically to describe Bob’s
curriculum. After a lecture Bob drags his lecture notes into the Semplorer
and then he classifies them by dropping categories on the newly created sile.
He categorizes lecture notes in theoretical computer science by dropping the
appropriate category ontop of the sile. However, since the spect contains all



74 6 User Interface Design

Figure 6.6: Second iteration of spect view.

lectures in Bob’s curriculum, it is a little unwieldy. Browsing the spect every
time Bob wants to categorize a document may soon become tedious. When
Bob knows the name of the lecture he can type the first few characters in the
text field above the spect view. After every character the view is updated
to expand and highlight only the matching categories. After typing three to
four characters, the theoretical computer science category is the only one that
remains highlighted, now Bob can swiftly drop it ontop of his notes.

The design of this visualization method has its roots in the results of the
comparative study performed by Katifori et al. [2]. The authors of the study
conducted preliminary usability evaluations of different ontology visualization
methods and found that a simple tree view is the most effective tool in prac-
tice. They evaluated the ontology tree view in the ontology editing application
Protégé2. This particular implementation was found to have some flaws: ex-
panding and collapsing of nodes works only when users click on the arrows
beside the node, clicking on the node itself has no effect; there is no effective
method to search for a class when a user recalls its name but not its location
in the hierarchy; there are no expand all nodes and retract all nodes buttons.
The second version of the spect view is a custom tree view which addresses
all of these issues explicitely. In the Semplorer implementation, clicking on

2http://protege.stanford.edu/



6.5 Visualizing Queries 75

any part of a node will expand or collapse the subtree. A search field with
immediate feedback was implemented – every time a user enters a character
all nodes matching the new string are expanded and highlighted. A collapse
and expand all nodes button was introduced.

Another problem with traditional tree views is that only an inheritance
relation is visualized. In the Semplorer version of the tree view this problem is
addressed by adding all valid slinks for a category as child nodes of a category.
A possible further development of this idea would be to make these nodes
interactive by providing information about the other side of the relation when
a user hovers over a slink. The view could also be made to navigate to the
category on the opposite when the node receives a mouse click.

Whether these changes are an improvement over a traditional tree view
is an open question as a second usability evaluation was beyond the resource
frame for this thesis.

6.5 Visualizing Queries

Searching is an essential functionality in an information storage and retrieval
system. In his famous intranet study3 Jakob Nielsen says that inadequate
search capabilities were the single largest cause of reduced usability. Making
accessible search interfaces is challenging because in most cases users are pre-
occupied with finding the information they need. Learning how to translate
their need into a language understood by the computer has a lower priority.
Trying to elicit information from an unfamiliar system can quickly become a
frustrating affair. It is like trying to get directions in a foreign country, the
language of which you don’t speak.

The users of search interfaces however do not behave like tourists in a
foreign country. In the following the assumption is made that searching users
behave like users of internet web search engines. It may be the case that usage
of the SemDAV search interface evokes usage patterns different from the ones
found on the internet. However, conducting a reliable study of SemDAV usage
patterns is beyond the scope of this thesis. Existing studies will be used as an
approximation.

Two of the most prominent web search engine studies have been considered
as a baseline for user behavior [28, 61]. Search logs of the two search engines
AltaVista and Excite were analyzed. Both studies have come to similar con-
clusions. For our purposes we will use only a few of their insights. First, the
average number of search terms lies between two and three. Most users only

3http://www.useit.com/alertbox/intranet-usability-1st-study.html



76 6 User Interface Design

use two terms in their queries. Second, users only look at the first page of
results to their query. And third, boolean connectives were rarely used. Even
when they were used, almost half of the time they were used incorrectly.

Although the design of the SemDAV search interfaces relies on all three
of these assumptions, the most improtant obeservation is the one regarding
boolean queries. On the abstraction level of the SemDAV protocol, the repos-
itory is queried with propositional boolean algebra. It has been shown time
and again that boolean queries are very unintuitive to use for untrained users
(cf. [8] section 10.5.1). This is probably the main reason for users shying away
from using boolean operators in their internet queries.

The difficulties of boolean queries are manifold. First, the words AND and
OR have subtly different meanings in natural languages and in logic. The
phrase “dogs and cats” in natural languages refers to the union set of both
at the same time, dogs and cats. The logical statement dogs ∧ cats however
refers to things that are both, dogs and cats. Similarly, the word or in natural
languages has an exclusive meaning. Saying “I will rent a movie or go to the
cinema” means that you will do either but not both. In logic the ∧ connective
includes the possibilities that both conjectives are true. A simple workaround
to this ambiguity is to say “any” instead of “or” and “all” instead of “and” –
referring to the fact that in the first case any of the propositions has to be true
to satisfy the whole formula and in the second case all of the propositions have
to be true for a formula to be satisfied. For example: “Any of: rain, wind, low
temperature means that the weather is bad”. Or: “When something has all
of: four legs, tail, canines, and barks then it is a dog”.

The second major difficulty imposed by boolean queries is the usage of
parenthesis to nest fromulas. Laws of associativity, commutativity and opera-
tor precedence are not understood by people without a formal background in
logic. The search engine studies, which were used to formulate the searching
behavior of users, have shown that the most commonly used connective was
the logical “and” connective. This suggests that this connective is the most
intuitive. The authors of the VQuery visual query language have come to
similar conclusions [29].

In the literature several aproaches have been proposed to facilitate creating
boolean queries. The most fundamental concept with which this issue is tack-
led is direct manipulation as proposed by Schneiderman [58]. First, queries
are constructed not by writing text but by pointing, clicking, dragging and
dropping. Second, modifications of the query give immediate feedback – after
every change of the query the results are updated. And third, flexible and
forgiving facilities for manipulating the query are provided.

By putting the query language into a direct manipulation scaffold, a large



6.5 Visualizing Queries 77

Figure 6.7: Simple filter.

class of errors is eliminated. By asking users to drop widgets into their queries,
instead of typing formulas into a text box, syntax errors become impossible.
Schneiderman further argues, that complex queries are created in an iterative
refining process. Supporting this process with the user interface makes the
learning curve of the query language flatter. Different versions of a query can
be tried out in quick succession and the results of the queries can be browsed
immediately.

Bending the tourism analogy from above even further – we are giving the
tourist a magic box. With the help of the box she can immediately form
complex sentences in the foreign language without making any grammatical
mistakes. The box also tells her where the directions she received are leading
– she will not have to walk them herself to find out.

6.5.1 Simple AND Filtering

It was mentioned above that the logical “and” is the most frequently used and
easiest to understand connective. This insight paves the way for the simplest
possible filter – a filter which allows combining terms only with a logical “and”.
Adding terms to this filter reduces the number of results – each result has to
satisfy a stricter and stricter constraint. The simplicity of this concept is its
greatest strength but also its greatest weakness. Searching for an item in two
sets becomes impossible. If you suspect that the item is in one of two sets, you
have to search each subset separately.

Bob uses this interface when he is looking for a specific document and wants
to iteratively narrow down his search criteria. Let’s say for example that his
friend, Alice, has lent him her notes. Bob has categorized them in his SemDAV
space and marked them as authored by Alice. Unfortunately, Alice lost her
laptop and with it all lecture notes she has taken this semester. She asks Bob
to give her copies of the notes she has given him for the theoretical computer
science lecture. Bob first drags the category corresponding to the lecture into



78 6 User Interface Design

Figure 6.8: Venn diagram filter.

the filter shown in Figure 6.7. This gives returns all the siles stored in this
category. To narrow down the results to only the ones authored by Alice he
drags an author attribute into the filter and enters “Alice” in the value field
of the attribute. The siles now listed in the sile view are exactly what Alice
asked him for.

6.5.2 Venn Diagrams

The second interface for searching in a SemDAV repository allows using any
combinations of connectives but is constrained insofar as it only allows com-
bining only three terms. This constraint is motivated by the small average
number of terms used in internet queries. The interface does not provide de-
grees of freedom which would allow forming invalid queries. The basic idea is
treating terms as sets of entities which satisfy the term. Shown on the inter-
face is a Venn diagram of all three sets so that all of them overlap (see also
Figure 6.8). Users can then choose to include or exclude all possible subsets
and intersections between the three sets. The decision was made to provide
users with a premade template for three sets was made because the designers
of the VQuery language [29] discovered that letting users arrange their own
diagrams actually takes longer than formulating the equivalent boolean query
in a textual form.



6.5 Visualizing Queries 79

Bob usually uses this interface when he wants to narrow down his results
using the inclusion/exclusion principle. For example, a part of Bob’s notes
in compiler development were scribbled in such a hurry that they are illegible
even to him. He hopes that he can find this section in the notes of one of his
friends. To do this, he drops the compiler development category into one of
the set ovals of the Venn diagram. He drops the author attribute, with his
name in it, into a second. Then he clicks on the subset of the attribute and the
intersection of the attribute and the category to exclude all notes authored by
him from the search results. Now he can browse all notes which were written
by any of his friends in the sile view.

The most obvious weakness of this method is that it only allows searches for
a maximum of three terms. While Venn diagrams of more sets can be drawn,
they become too unwieldy to have an advantage over formulating boolean
queries [29]. Other possible weaknesses of this query method were revealed
in an anecdotical interview with users without logical or set theoretical back-
ground. Having a template with three circles for three sets was perceived as
an affordance to use exactly three query terms. Another issue was the inclu-
sion or exclusion of set intersections. While it was easy to explain a scenario in
which someone is searching for the intersection of two sets, the question of why
one would want to exclude the intersection of two sets from the results could
not be answered to the interviewees satisfaction. To make this query method
a viable alternative to formulating boolean queries it is necessary to conduct
controlled experiments and refine the method accordingly. Such research is
however beyond the scope of this thesis.

6.5.3 Faceted Queries

The logical foundation of the third method lies in the formulation of faceted
queries. The user interface is derived from the query reformulation interface
in the AI-STARS information retrieval system [4]. An example of a faceted
query is shown Figure 6.9.

Faceted queries divide a query into topics. Each topic is the union of the
results of several keywords. The result of the faceted query is the intersection
of all topics. An example for a faceted query is: (osteoporosis ∨ ‘boneloss′) ∧
(drugs ∨ pharmaceuticals) ∧ (prevention ∨ cure). A topic in this query is
(osteoporosis∨ ‘boneloss). This topic describes all information which is about
bone loss, osteoporosis or possibly both. The whole query yields results which
are in all three topics.

Logically this corresponds to a boolean formula in conjunctive normal form
(DNF). This is no restriction on the expressive power of queries, because any
boolean formula has an equivalent formula in DNF. However, the conversion



80 6 User Interface Design

Figure 6.9: Faceted Filter.

to DNF may result in a formula which is exponentially larger than the formula
the user entered. Consider for example the formula

(X1 ∧ Y1) ∨ (X2 ∧ Y2) ∨ . . . ∨ (Xn ∧ Yn) (6.1)

the equivalent formula in CNF has 2n clauses where n is the number of
clauses in the original formula:

(X1∨ . . .∨Xn−1∨Xn)∧(X1∨ . . .∨Xn−1∨Yn)∧ . . .∧(Y1∨ . . .∨Yn−1∨Yn) (6.2)

Faceted queries are simple enough to be explained to someone without
prior knowledge of boolean algebra. This kind of queries does not make use
of properties which have been found to be confusing to novices. The most
promiment example of a confusing property is the usage of parenthesis to nest
logical formulas. An overall upside of this method is that it does not restrict
the expressive power of boolean algebra. The simplicity of the method should
however not be given too much weight. Anecdotal interviews have shown that
of the three implemented methods faceted queries are the most difficult to
understand by lay people. The other downside of faceted queries is that they
are equivalent in expressiveness to other formulas only in theory. Some queries
which have terse representations may become unwieldy when reformulated into
DNF.

This method was developed mainly to get a feeling for the tradeoff between
expressive power and usability. As such there are no convincing scenarios in
which Bob would use this interface. The interface is geared towards profes-
sional information workers but is not deployable without further investigations.

The least attention was paid to the logical negation in queries. All through
the cited literature the negation operator was found to be seldomly used. The
authors of the AI-STARS interface [4] even omitted negation altogether from
their otherwise sophisticated user interface. In the Semplorer interface entities
are negated by rightclicking on them and chosing “exclude” from the context



6.6 Introduction of New Vocabulary 81

menu. Negated terms are made positive, again by use of the same context
menu.

6.6 Introduction of New Vocabulary

A pragmatic solution for applications with a universal purpose is to translate
as much terminology as possible into a language understood by the majority
of the intended audience. In cases where this is not possible, there are two
options. The first option is to introduce new terms which are consistent with
the rest of the application, in which case users will have to learn only the new
terms: having to learn n− k new words (where n is the total number of words
and k is the number of known words) is still an improvement over having to
learn n new words. The second option is to omit functionality which requires
the understanding of foreign terms. As often is the case, any solution for this
problem will be a tradeoff between the expressive power of the application on
the one hand, and the steepness of the learning curve for new users on the
other hand.

The choice of terminology in the SemDAV user interface follows this ra-
tionale. The application uses terms that are used in common language, such
as “category” or “filter”. In some cases it was safe to assume that users were
familiar with very similar concepts to the ones we employed, hence we tried to
choose words that are phonetically similar to the concepts already known to
users but still accentuate the difference. The word “sile”, for example, is very
similar to “file”, and “slink” is very similar to a “link” on the web, but nev-
ertheless, slightly different. Unfortunately there are still more concepts which
are unknown to the majority of the intended user population, like for example
the word “ontology”. In such cases we have deliberately used neologisms in or-
der to avoid ambiguities. This naming scheme has however not been formally
evaluated so there is no evidence that it makes the slope of the learning curve
flatter.



Chapter 7
Software Engineering Aspects

The ultimate goal for the Semplorer is to provide a rapid prototyping platform
for experimenting with semantic user interface concepts. This goal imposes
several constraints on the software architecture of the application. The frame-
work needs to implement frequently needed functionality so that it actually
saves effort. Optimally the framework provides a functional application which
can be easily modified. Components of the application need to be easily repla-
cable and removable without impact on the remaining application. To satisfy
these constraints the framework has to provide well defined and orthogonal
interfaces between modules. The modules themselves need to be as loosely
coupled as possible. The following chapter describes the different components
of the Semplorer application emphasizing on how they satisfy the constraints
of having clean interfaces and being loosely coupled.

7.1 Semplorer Architecture

The architectural layout of the Semplorer is a reflection of its visual appear-
ance. For example, the sile pane is a single module which is responsible for
managing all the sile viewers which can be selected in the dropdown menu.
Special attention has been paid that more general components are less cou-
pled. The panes themselves do not communicate directly with any other GUI
components. Only two types of necessary communication were identified: com-
munication required for drag and drop gestures and the necessity of broadcast-
ing the currently selected siles. These two types of interaction are implemented
in two separate modules. A third module which communicates with GUI com-
ponent is a custom event framework which notifies GUI components about
interaction with the SemDAV repository. Figure 7.1 shows a birdeye view of
the Semplorer architecture. Note that the figure only gives a summary of the
general structure of the application, many details were omitted.

Taking advantage of the modularity of the Semplorer works best when
new components stay consistent with the remaining application. For example,
a central concept for interacting with SemDAV entities are drag and drop
gestures. New components which adhere to this interaction “language” by
reusing the SemDAV entity widgets provided by the framework do not need
to implement any additional functionality to integrate with the Semplorer.
This constraint is in practice a very soft one because the imposed interaction

82



7.1 Semplorer Architecture 83

Selection 
ManagerDrag and Drop

GUI component

Organizing Pane Sile Pane Filter Pane

Spect Pane

Tag Pane

List View

Time Line View

Table View

Simple Filter

Venn Diagram 
Filter

Faceted Filter

Detail Pane

Figure 7.1: Birdeye View of the Semplorer Architecture.



84 7 Software Engineering Aspects

language is composed of very few gestures and visualization concepts. The
average user can be expected to be already familiar with these concepts and
gestures from other applications.

7.1.1 Panes

As mentioned above, the visual appearance of the Semplorer is a reflection of
the source code organization. Each of the visible panes is located in its own
package. There are four types of panes: organizational, visualizational, infor-
mational and filter panes. In the following each panel type will be described
in more detail.

Organizational Panes

The organization package contains the panes which are used for organizing
siles. Currently these are the spect pane and the tag pane. The spect pane
provides a user interface for navigating spects. Because the navigational nodes
are simply SemDAV entities, they can be dragged and dropped onto a sile to
categorize the sile. The category widgets are displayed in a tree like structure.
Because the default Swing1 tree component does not make it possible to use
custom widgets for nodes and leafs, a custom tree component was developed.
This component, called the SpectBrowser, resides in its own package. It is
kept generic so that it does not rely on other Semplorer specific widgets. If
the navigational behavior of the spect pane needs to be modified it suffices to
change the SpectBrowser component.

Visualization Panes

The central package of the semplorer – at least in a spatial sense – is the vi-
sualization package. It implements visualization methods for siles. Similarly
to the filtering package, there are three different visualization methods with
varying complexity. The list view is a simple sorted list of all siles. While the
usefulness of this view may be limited, it is a good starting point for developing
new visualizations. The other two visualizations, the timeline view and the ta-
ble view, are quite complex. The table view is a Swing centric visualization, it
utilizes components which are implemented as a part of the Swing framework.
The timeline view on the other hand is an approach which implements inter-
action and visualization concepts from scratch. Both were implemented for
usability experimentation and analysis. While modifying them is certainly not
discouraged, their use as boiler plate code for new interaction methods may be

1java.sun.com/docs/books/tutorial/uiswing/



7.1 Semplorer Architecture 85

limited because of their relative complexity. While not a sile visualization in
the strict sense, the sile pocket is also contained in this package. The reason
is that this pane is structurally very similar to the simple list view.

Informational Panes

The only pane in the informational package at this time is the detail pane.
It may be the only component located in this package but it is sufficiently
complex and orthogonal to the other components to warrant having its own
package. The main reason for the complexity of the detail pane are its col-
lapsable regions. Since Swing provides no such functionality, they had to be
developed from scratch. These regions are implemented with the help of the
so called WidgetAdder. This class provides a pane to which widgets can be
added. It further provides a header region which is basically a simple Swing
JLabel extended with a triangle which gives feedback about extending and
collapsing the region. It is interesting to note that the widgets added to this
component are layed out with the help of the custom built wrap layout man-
ager. We will however cover custom layout managers in the Semplorer in more
detail later.

Filter Panes

Another important package is the filter package. This package contains the
filtering user interfaces. In particular these are the simple filter, the faceted
filter and the Venn diagram filter. When writing new filter user interfaces it
is instructive to study the source of the simple filter. It is not only the most
simple and limited user interface but also has the most simple source code. It
consists of only one class. It is a good example of how to write new filters.
The faceted filter is a little more complex, it can be thought of as simple filters
nested in a simple filter. The Venn diagram filter is not so much an instructive
demonstration as it is an example of how far the SemDAV filtering interface
can be pushed.

7.1.2 Widgets

There is a group of components which are not designed for easy replacing but
for easy reusing. These are the SemDAV widgets, they are a group of widgets,
conceptually comparable to a complex version of Swing’s JLabels, which repre-
sent the central SemDAV concepts. There is a widget representing a category,
one for tags, one for attributes, one for slinks and one for siles. All direct
manipulation techniques are implemented inside the SemDAV widgets. The



86 7 Software Engineering Aspects

direct manipulation functionality is implemented in layers. This corresponds
to a factory pattern putting together decorators. For example, if you want
to place a widget somewhere which can be removed by pressing its “x” but-
ton, you invoce the factory method which generates a removable version of the
desired widget. The factory in turn takes care that the removable decorator
is placed onto the widget. All decorators inherit from a common class, the
SemdavDecorator. The main purpose of this class is to implement drag and
drop feedback functionality. For example when you drag a widget over another
widget which is a valid drop target, the SemdavDecorator is responsible for
highlighting the target. Several different decorators have been implemented:

border decorator is reponsible for the graphical representation of the wid-
gets.

removable decorator as mentioned above, this decorator adds a button with
which a widget can be removed. The actual removing procedure needs
to be reimplemented depending on the context of the widget.

editable decorator displays an edit field over the widget allowing users to
change its value.

selectable decorator is responsible for visualizing selections of multiple wid-
gets.

tooltip decorator displays tooltips when a user hesitates over a widget.

negator decorator this last layer is needed only for the filter panes, it ren-
ders the widget as logically negated.

browsable decorator is a decorator which makes a component compatible
with the SpectBrowser component.

Note that although the common definition of the decorator pattern implies
that the order in which decorators are put on top of each other should not
matter, this is not true for the semplorer decorators. Developers should use
the factory to build new widgets. If a widget is required which is not yet
implemented in the factory, a deviation from the order of decorators seen in
other factory methods may cause subtle problems.

7.1.3 Infrastructure

Let us now take a closer look at the packages which are not implementing parts
of the graphical user interface. There are two of these, an event dispatching
framework and the selection manager.



7.1 Semplorer Architecture 87

Communication

SemDAV is a synchronous protocol, this means that a client can perform only
one action at a time. However, because SemDAV is based on XML-RPC
over HTTP, it is technically cheap to send multiple requests to the SemDAV
repository in parallel. On both sides of the communcation some scheduling and
serialization has to take place to keep track of the order of requests and possible
conflicts. On the client side this is accomplished within a separate module,
which is described in more detail in the following section. This module wraps
around the synchronous XML-RPC stub and provides non blocking SemDAV
operations. Because the methods are non blocking, any results returned by the
calls are not returned in the context of the caller. Instead, upon return of a
SemDAV operation the communcation framework triggers an event, attaching
any results to it, which is then propagated to all subscribers. If a caller is
interested in the results of a call it needs to subscribe for the event which will
deliver the resulting objects.

An event framework is required for this mechanism to work. One option
would be to use the AWT event framework2. This framework however is very
inflexible. Inspite of the introduction of a generic type system in recent Java
versions, it is necessary to write a firing method for every event. This is not
only cumbersome but also error prone because the event dispatching code is
changed for every newly introduced event type. To overcome this limitation
a new event dispatching framework was implemented. The main difference
between the Semplorer event framework and the AWT framework is that the
Semplorer framework does not rely on Java types for dispatching events. In-
stead, all events are of the same Java type. They are told apart with a string
identification member of the event. This amounts to replacing the dispatching
mechanism. Instead of using the virtual machine to go through all methods
in a dispatching object and decide which to call, the Semplorer makes the dis-
patching code explicit. The Semplorer keeps a list of all subscribers and every
time an event is fired, the dispatcher iterates through this list, dispatching
the event to subscribers for the event. An additional upside of using a custom
event dispatching framework is that it is implemented in a thread safe manner.

Selection Management

The second central component which is used by all user interface parts is the
selection manager. The selection manager is responsible for keeping track of
which siles are selected in the sile view pane and providing this information
to other components. It is interesting to note, that the selection mechanisms

2http://java.sun.com/products/jdk/awt/



88 7 Software Engineering Aspects

are handled largely by the sile widgets. This means that only minimal effort
is required to allow selecting multiple siles in a new visualization component.

Layout Management

The Swing layout managers were unfit for several of the mechanisms required
in the semplorer. In these cases new managers had to be developed. The main
reason for designing new layout managers was that the Semplorer largely relies
on automating wrapping of lines which do not contain text instead of widgets.
Wrapping widgets goes against the Swing layouting principles so it can only be
implemented with some workarounds. To wrap correctly the layout manager
needs to know how much space it has available. It can then fill up a line and
put a widget that does not fit on the same line on the next line. In Swing
however the layout process is a bottom up process: a component which lays
itself out first asks all its children to layout themselves and tell how much space
they require. A child which wants to do wrap layouting however expects the
parent to tell it how much space is available.

In the Semplorer this chicken-egg problem is solved as follows: the child
component tells its parent that it requires zero space. When the parent has
finished laying out it fires a Swing event. The wrap layout manager listens
for this event and as soon as it arrives, it initiates the real layout process for
the child because now the parent has an assigned width. Similarly an event
triggers layouting anew when the parent is resized by user interaction.

Miscelaneous Packages

The remaining two packages are not essential parts of the semplorer, they
merely support its look and feel. The appearance package controls things like
colors, fonts and icons for different widgets. The general principle is that
a component asks classes in this package for appearance information, passing
itself as an argument. The appearance classes return the requested information
as configured for the type of the caller.

Finally, the utils package contains classes which are shared between more
than one component and classes which do not fit anywhere else. A widely
shared class is the rotating triangle which is used to give feedback on the
collapsed and expanded status of widgets. A class that is in the utils package
because it does not fit anywhere else is the SileOpener. When a user double
clicks a sile it is opened in the application responsible for its mime type. The
SileOpener controls the downloading of the sile content and opening the right
application.



7.2 Concurrent Communication Module Architecture 89

Figure 7.2 provides a summary of the Semplorer packages and their con-
tainment.

7.2 Concurrent Communication Module Architecture

The concurrent communcation module is strictly speaking not a part of the
semplorer. Because of the relatively tight coupling between the two modules it
still justified to review it in some detail. The main purpose of the concurrent
module is to expose non blocking SemDAV operations on top of the sequential
SemDAV protocol. This task is less complex than it sounds. The SemDAV
protocol is sequential but it is based on XML-RPC which is transferred over
HTTP. This implies that the server side can be based on servlets. The advan-
tage of using servlets is that a new context is spawned for every call to the
repository for free. Although behind the servlets the calls are still queued, the
performance gain is still signifcant since often the greatest bottleneck is the
transmission and not the processing of the calls.

For example, when populating the sile pane, a few default attributes are
requested for every sile which is about to be displayed. One of the more obvious
attributes which are needed is the sile name. Another is the MIME type of
the sile which is used to attach a meaningful icon to the sile. One of the goals
in the design of the SemDAV protocol was to keep it simple so that it can
be reimplemented with minimal effort. Because of this simplicity there is no
API support for fetching several groups of attributes belonging to different
siles. Instead, this is done by issuing one method call for every sile. Because
these calls are cheap and large in number, parallelizing them brings a large
performance benefit.

Of course, for applications in which responsiveness is not an issue, the
concurrent module does not need to be utilized, it can be entirely omitted and
the client can use the XML-RPC stub directly.

7.2.1 Scheduling

The client side counterpart is slightly more complex mainly because the XML-
RPC framework is not thread safe. Executing XML-RPC calls concurrently
on the same point results in unpredictable behavior. The core of the concur-
rent module is a scheduling thread which runs decoupled from the rest of the
application. SemDAV operations are wrapped in command objects which are
put in a queue. The scheduling thread takes operations from this queue and
executes the corresponding XML-RPC calls. The scheduler is responsible for
serializing calls in such a way that undesired side effects are kept at a mini-



90 7 Software Engineering Aspects

semplorer

SelectionManager

SemdavEvents

SemdavWidgets

Decorators

Browsable

DragAndDrop

Appearance

Utils

Buttons LayoutManager

PopupMenus ProgressBar

Panes

filtering

FacetedFilter

SimpleFilter

VennFilter

organization

SpectPane TagPane

visualization

SilePane

TimeLine

TablePane

information

DetailPane

Figure 7.2: Package containment diagram for the Semplorer.



7.2 Concurrent Communication Module Architecture 91

mum. Executing two write operations on the same resource at the same time
for example should not be possible. The consistency mechanism in the current
scheduler is fairly simple, it was deemed that implementing sophisticated con-
sistency enforcing is out of the scope of a user interface prototype. Currently
the scheduler executes read operations in parallel, but only one write operation
at a time. In preliminary tests the case that a resource is written and read at
the same time did not occur. However, an eventual next iteration prototype
will have to focus on concurrency issues.

The scheduler has a few more responsibilities next to coordinating SemDAV
operations. One of these responsibilities is keeping track of the undo and redo
subsystem. Every action which is executed is placed on the undo stack. When
an undo operation is triggered, a single action is popped from the undo stack,
its undo method is executed and the action is placed on the redo stack. When
doing a redo, the command is executed normally, using the execute method.
A possible improvement in future versions would be to only put actions on
the stacks if they completed successfully, after all the semantics of undoing a
failed action are not well defined.

Another task of the scheduler is keeping the semplorer up to date on the
progress of the actions currently in the queue. This is kept rather simple: a
counter is increased for every new action and decreased for every completed
action, every time the counter changes, the progress handler is notified. The
client decides how to visualize how many actions are remaining. Currently the
client visualization only differentiates between busy and not busy states. This
is visualized by a progress bar above the sile pane. In future prototypes it
would be easy to display progress percentages with the bar rather than just
busy and ready states.

7.2.2 Caching

Profiling measurements showed that the semplorer frequently requests the
same information several times. The conclusion drawn was that performance
and thus responsiveness of the user interface can be achieved by implement-
ing a caching mechanism. The caching was implemented in the concurrent
module as the main purpose of this module is performance optimization. The
mechanism does not rely on a framework, it is highly domain specific. It was
found that a custom implementation provides the best control over caching
strategy and granularity at a minimal implementation effort. Further, some
quirks of the SemDAV implementation make it necessary to have tight control
on the order in which operations a carried out. For example, when populat-
ing the cache, three attributes are fetched: the label, the creation date of the
resource and the content type. The three attributes are passed as an array



92 7 Software Engineering Aspects

to the method toghether with an array of siles and the API returns these at-
tributes for the requested siles. However, some siles do not have a creation
date. A typical example of such siles are siles which are hosted on a remote
machine – in such cases there is no way to infer a creation date. If the creation
date is first in the attribute array, then remote siles will be omitted from the
result. The reason is that the query engine tries to find a creation date, sees
that there is none, and decides that it is not worth it to consider the sile any
further. Further implementation details on this peculiar behavior are outside
of the scope of this thesis.

The mechanism itself is fairly conservative. It is necesary to keep in mind,
that the central entity type in SemDAV is the sile, while every other entity
type is used to describe siles. In this paradigm it makes best sense to cache
entities related to specific siles. If information is requested about a sile, the
cache can answer.

When requesting the siles matching the current filter, the cache is populated
with all the entities necessary to render a sile widget, it is assumed that the
application will need these soon. The specification of the SemDAV protocol
makes it possible to request several types of annotations for several siles in one
go. Requesting the annotations for all siles which are soon going to be drawn
at once and caching them is a lot faster than requesting the same annotations
separately for each sile. More than these few entities are rarely needed. More
specifically, more annotations are requested only when the detail pane is filled.
The detail pane however is filled not only with more but with all annotations
for a specific sile. So it is safe to assume that if a cache request misses, all
annotations for the specific siles can be fetched into the cache. Subsequent
cache requests, presumably performed by the detail pane, will all hit cached
entities.

Clearing the cache is similarly defensive. When a new sile search is initi-
ated the cache is cleared entirely and populated from scratch. A scenario in
which the cache is only partially cleared is when a write operation on a sile is
performed. Again, it has to be pointed out that the main purpose of imple-
menting the caching mechanism was to make the user interface responsive. To
use a SemDAV client in a multi user enviroment further work is necessary to
produce a consistent and performant cache.

7.2.3 Lifecycle of a Method-Call

Figure 7.3 shows a slightly abstracted overview of the exection of a SemDAV
operation. It demonstrates the internal processing of the concurrent module.
In the first step, the Semplorer requests the execution of some SemDAV op-
eration. The request is sent to the SemdavManager. The SemdavManager



7.2 Concurrent Communication Module Architecture 93

Semplorer SemdavManager ActionFactory ActionScheduler

operation createAction

SemdavAction

addAction

FutureFuture

Result NotificationResult Notification

Action

execute

result

Figure 7.3: Sequence diagram of a concurrent SemDAV operation.

is a facade class to the concurrent module, the Semplorer does not need to
interact with any other class in this module. The Manager then asks the class
SemdavActionFactory to construct a command object corresponding to the
requested operation. As pointed out by Gamma et al. [22], storing opera-
tions using the command pattern has several advantages. Two of the most
prolific are: first, it is easy to add undo/redo functionality when a command
interpreter is present, and second, we can define for each operation separately
how it influences the cache in a maintainable manner. After the command
object has been constructed it is returned to the Manager who in turn adds
the command to the execution queue of the ActionScheduler. The queue in the
scheduler is thread safe, it is continiously processed by the scheduling thread
which is defined entirely in the ActionSchedular class. In response to the queu-
ing the scheduler returns a Future object. The Future class is defined in the
Java concurrency framework3. The Future object provides information about
the state of a command which is currently in the execution queue. It is pos-
sible to poll the Future object for results when synchronous communication
is desired, otherwise this object can be safely ignored. When the command
has completed execution, the scheduler triggers a callback in the Manager, the
Manager then notifies the Semplorer that an action has finished execution.
The semplorer then decides which events to trigger for the finished operation
in order to let user interface component know that they may need to update

3http://java.sun.com/j2se/1.5.0/docs/guide/concurrency/



94 7 Software Engineering Aspects

themselves.
This depicting is, as mentioned above, slightly abstracted. The simplifica-

tion lies in how the manager relies responses back to the Semplorer. To receive
responses the Semplorer needs to register a so called condition listener with
a condition handler which is located in the manager. Every time an opera-
tion completes execution, the scheduler notifies the condition handler, which
in turn notifies all condition listeners. Information about the action’s status is
relayed by simply passing around the command object. The command object
contains additional information, like a completion status, a textual description
of the action and others. Using this information it is easily possible to decide
how to react in the user interface. For example, if the completion status in-
dicates a failure, the user interface can display an error message saying which
command failed.



Chapter 8
Experimental Results

In the SemDAV project the resources for usability evaluation are limited.
Aquiring an external usability expert was not an option, so cheap evaluation
methods that could be performed by inexperienced evaluators were needed.
There are not many methods that fulfill these constraints; we considered
heuristic evaluation [37–39], think aloud evaluation [39] and paper prototyp-
ing [62]. Nielsen [39] advises to apply at least two methods for acceptable
accuracy. We have chosen to combine a heuristic evaluation and a think aloud
evaluation because of their simplified administration in comparison to that of a
paper prototyping evaluation. In the following we outline the rationale behind
our selection.

Because the team involved with the development of the SemDAV applica-
tion had no prior experience with a heuristical evaluation, the obvious first
step was to introduce the method. The evaluators were acquainted to the
guidelines and their interpretation in a tutorial session, and the interpreta-
tions encompassed by every guideline were elaborated. The understanding of
each guideline was ensured by the demonstration of a violation in commonly
available software. Finally, a heuristic evaluation exercise [36] was discussed.
The questions that were asked during this discussion anticipated the biggest
difficulties the evaluators had during the evaluation. One question was how
much time to spend on the evaluation, another question was how many prob-
lems the evaluators were expected to find. The third big problem was the
format of the evaluation protocol. Care was taken to leave the answers to
these questions as open as possible in order to ensure that the evaluators were
not influenced by constraints.

In retrospect this may not have been an optimal decision. We recom-
mend to not only present and describe an example of an evaluation, but to
actually perform a simple evaluation in the course of the introductory tuto-
rial. While this makes the preparation and administration of the tutorial more
time consuming, the extra effort has manifold returns in terms of a common
understanding of the method that is shared by all participators.

The most critical part of a heuristic evaluation is the neccessary familiar-
ization of the assessment team with the evaluation method. The guidelines by
themselves are worded in a very general manner which is prone to misunder-
standing. For example, consider Nielsen’s first guidline:

Simple and natural dialogs: Dialogs should not contain information

95



96 8 Experimental Results

that is irrelevant or rarely needed. Every extra unit of information
in a dialog competes with the relevant units of information and
diminishes their relative visibility. [39]

We discovered that several of our evaluators misunderstood what was meant
by the word “dialog”. Nielsen’s intended meaning of this term is the way the
user interface communicates with the user to help her achieve a goal. Some
evaluators however assumed that this guideline only applies to dialog boxes.
A good way to aleviate problems like this is a short discussion of possible
interpretations in the tutorial session.

Even with a good instruction, detecting conflicts with the heuristics is
a difficult task. Studies performed by Nielsen and Molich [37] have shown
that, depending on their experience and knowledge of user interfaces, single
evaluators discover about 20% of all usability problems. Thus the method
only yields acceptable results if several persons independently perform the
evaluation. The overlap of discovered problems between individual evaluations
is very low: the cumulative results of 3 to 5 evaluators account for about 50 to
80 percent of all evaluation problems [37]. Still, the quality of the results highly
depends on previous experience with usability inspection methods. It is unclear
however whether this estimation also holds for more complex applications that
require a longer time to familiarize.

In our evaluation, we found 50 issues with 5 overlaps. This amounts to
45 issues among 4 evaluators. Comparing it to heuristic evaluations of other
applications, there is a reason to believe that the real number of issues is larger.
A rough interpolation on benchmark results of the method [37] make it safe to
assume that we have found between 50 and 75 percent of all usability problems.
Nevertheless, the evaluation yielded considerable results considering the low
volume of invested effort.



Chapter 9

Conclusion and Future Work

The thesis at hand identifies six challenges which need to be addressed by devel-
opers of semantic information systems. These challenges are: how to navigate
large data sets, how to design for diverse users, how to visualize ontologies for
information retrieval rather than ontology engineering, how to make the for-
mulation of boolean queries intuitive, how to model the semantics of resrouce
names and how to introduce unfamiliar terminology. Related projects were
reviewed with respect to these challenges. The outcome was that none of the
related projects address all of these issues.

Three of these challenges were addressed in the Semplorer prototype. The
visualization of large data sets is tackled with a timeline centric navigation
paradigm. Several approaches were considered for the visualization of ontolo-
gies. The final prototype implements a specialized tree view as proposed by
Katifori et al. [2]. For the formulation of boolean queries the thesis proposes
three visual methods: a filter based on the usage of only a logical and connec-
tive, a filter using interactive Venn diagrams to visualize boolean formulas, and
a filter using faceted queries inspired by the user interface in the AI-STARS
project [4].

A byproduct of the prototypical implementation is a framework for rapid
development of semantic user interfaces. The software architecture of the
Semplorer was designed to optimize genericity. Widgets can be easily reused in
new visualizations so that developers can concentrate on interaction concepts
rather than appearance details.

A preliminary usability evaluation of the Semplorer was conducted. The
evaluation has shown that the Semplorer is ready for deployment in the field.
While the findings of the evaluation were considered in subsequent prototype
iterations, not all shortcomings could be ironed out. Prior to a deployment of
the Semplorer further usability evaluations need to be administered.

In followup work the highest priority would be placed on addressing the
reamining three challenges: designing for diverse users, semantics of resource
names, and introduction of new vocabulary.

A topic which could not be addressed in this thesis because of limited
resources was the application of generalized fisheye views as described by Fur-
nas [21]. While he designed them for ASCII terminals, they can be applied to
graphical user interfaces as well. For example, it can be investigated whether
fisheye-like time intervals in the timeline view bring any improvement. In such

97



98 9 Conclusion and Future Work

a timeline the intervals which are nearest to the center of zoom would be widest
and the intervals furthest away would be longest. Another topic which was
out of the scope of the thesis was the implementation of a sile visualization
method using animated dynamic graphs with radial layout as described by Yee
et al. [67] combined with fisheye information abstraction.

One of the promising future directions of the Semplorer user interface is
the investigation of its applicability in mobile devices. Open questions are:
how the drag and drop paradigm translates to mobile devices, which sile views
can be adapted to the limited screen space of a mobile device, how to cache
information for use without a network connection.

To treat the questions of mobile semantic applications a multi user col-
laboration model has to be devised. While this is not so much a scientific as
it is a technical challenge, it’s convincing solution is essential to the further
development of the SemDAV project.



Bibliography

[1] Nitin Agrawal, William J. Bolosky, John R. Douceur, and Jacob R. Lorch.
A Five-Year Study of File-System Metadata. In Proceedings of the 5th
Conference on File and Storage Technologies (FAST ’07), San Jose, CA,
2007.

[2] Katifori Akrivi, Torou Elena, Halatsis Constantin, Lepouras Georgios,
and Vassilakis Costas. A comparative study of four ontology visualization
techniques in protege: Experiment setup and preliminary results. In IV
’06: Proceedings of the conference on Information Visualization, pages
417–423, Washington, DC, USA, 2006. IEEE Computer Society.

[3] Harith Alani. Tgviztab: An ontology visualisation extension for protege.
In Knowledge Capture 03 — Workshop on Visualizing Information in
Knowledge Engineering, 2003.

[4] P. G. Anick, J. D. Brennan, R. A. Flynn, D. R. Hanssen, B. Alvey, and
J. M. Robbins. A direct manipulation interface for boolean information
retrieval via natural language query. In SIGIR ’90: Proceedings of the
13th annual international ACM SIGIR conference on Research and de-
velopment in information retrieval, pages 135–150, New York, NY, USA,
1990. ACM.

[5] Margaret anne Storey, Mark Musen John Silva, Neil Ernst, Ray Ferger-
son, and Natasha Noy. Jambalaya: Interactive visualization to enhance
ontology authoring and knowledge acquisition. In Protégé. Workshop on
Interactive Tools for Knowledge Capture (K-CAP-2001, 2001.

[6] Grigoris Antoniou and Frank van Harmelen. A Semantic Web Primer
(Cooperative Information Systems). The MIT Press, April 2004.

[7] Apple. Apple human interface guidelines, 2005.

[8] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Re-
trieval. Addison Wesley, May 1999.

[9] Tim Berners-Lee. Weaving the Web. Texere Publishing Ltd., November
1999.

[10] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web.
Scientific American, pages 34–43, 2001.

99



100 BIBLIOGRAPHY

[11] Stephan Bloehdorn, Olaf Görlitz, Simon Schenk, and Max Völkel. Tagfs
- tag semantics for hierarchical file systems. In Proceedings of the 6th
International Conference on Knowledge Management, 2006.

[12] M. Ted Boren and Judith Ramey. Thinking Aloud: Reconciling The-
ory and Practice. IEEE Transactions on Professional Communication,
43:261–278, 2000.

[13] Frederick P. Brooks. The Mythical Man-Month: Essays on Software Engi-
neering, 20th Anniversary Edition. Addison-Wesley Professional, August
1995.

[14] Hinrich Schütze Christopher D. Manning, Prabhakar Raghavan. Intro-
duction to Information Retrieval. Cambridge, 2008.

[15] Alan Cooper, Robert Reimann, and Dave Cronin. About face 3: the
essentials of interaction design. John Wiley & Sons, Inc., New York, NY,
USA, 2007.

[16] Edsger W. Dijkstra. The threats to computing science. circulated pri-
vately, November 1984.

[17] Laura Downey. Designing Annotation Mechanisms with Users in Mind:
A Paper Prototyping Case Study from the Scientific Environment for
Ecological Knowledge (SEEK) Project. In Proceedings of the Semantic
Web Personalization Workshop at the ESWC 2006, 2006.

[18] Susan T. Dumais and Thomas K. Landauer. Using examples to describe
categories. In CHI ’83: Proceedings of the SIGCHI conference on Human
Factors in Computing Systems, pages 112–115, New York, NY, USA, 1983.
ACM.

[19] A. Edmunds and A. Morris. The problem of information overload in
business organisations: a review of the literature. International Journal
of Information Management, 20(1):17–28, 2000.

[20] Eric Freeman and David Gelernter. Beyond the Desktop Metaphor
— Designing Integrated Digital Work Environments, chapter Beyond
Lifestreams: The Inevitable Demise of the Desktop Metaphor, pages 19–
48. MIT Press, 2007.

[21] G. W. Furnas. Generalized fisheye views. In CHI ’86: Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 16–23,
New York, NY, USA, 1986. ACM Press.



BIBLIOGRAPHY 101

[22] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns. Addison-Wesley Professional, January 1995.

[23] Jorge Gracia, Vanessa Lopez, Mathieu d’Aquin, Marta Sabou, Enrico
Motta, and Eduardo Mena. Solving Semantic Ambiguity to Improve
Semantic Web based Ontology Matching. In Proc. of the 2nd Ontol-
ogy Matching Workshop (OM’07) at the 6th International Semantic Web
Conference (ISWC 2007), November 2007.

[24] Haystack Group. Haystack website. http://haystack.lcs.mit.edu/, Febru-
ary 2008. outdated reference.

[25] Tudor Groza, Siegfried Handschuh, Knud Möller, Gunnar Grimnes, Leo
Sauermann, Enrico Minack, Mehdi Jazayeri, Cèdric Mesnage, Gerald Reif,
and Rósa Gudjónsdóttir. The nepomuk project - on the way to the social
semantic desktop. In Proceedings of I-Semantics’ 07, pages 201–211, 2007.

[26] Andrew Hunt and David Thomas. The Pragmatic Programmer: From
Journeyman to Master. Addison-Wesley Professional, October 1999.

[27] David Huynh, David R. Karger, and Dennis Quan. Haystack: A platform
for creating, organizing and visualizing information using rdf. In Semantic
Web Workshop, 2002.

[28] Bernard J. Jansen, Amanda Spink, Judy Bateman, and Tefko Saracevic.
Real life information retrieval: a study of user queries on the web. SIGIR
Forum, 32(1):5–17, 1998.

[29] Steve Jones, Shona McInnes, and Mark S. Staveley. A graphical user
interface for boolean query specification. International Journal on Digital
Libraries, 2:207–223, 1999.

[30] David R. Karger and Dennis Quan. Haystack: a user interface for creating,
browsing, and organizing arbitrary semistructured information. In CHI
’04 extended abstracts on Human factors in computing systems, pages
777–778, 2004.

[31] R. Kullberg. Dynamic timelines: Visualizing historical information in
three dimensions, 1995.

[32] John Lyons. Semantics, volume 5 of Handbücher zur Sprach- und Kommu-
nikationswissenschaft, chapter General Foundations, pages 1–24. Walter
de Gruyter Berlin New York, 1991.



102 BIBLIOGRAPHY

[33] Thomas W. Malone. How do people organize their desks?: Implications for
the design of office information systems. ACM Trans. Inf. Syst., 1(1):99–
112, 1983.

[34] Catherine C. Marshall and III Frank M. Shipman. Spatial hypertext and
the practice of information triage. In HYPERTEXT ’97: Proceedings of
the eighth ACM conference on Hypertext, pages 124–133, New York, NY,
USA, 1997. ACM.

[35] Danish Nadeem and Leo Sauermann. From philosophy and mental-models
to semantic desktop research: Theoretical overview. In Tassilo Pellegrini
and Sebastian Schaffert, editors, Proceedings of I-Semantics’ 07, pages
pp. 211–220. JUCS, 2007.

[36] Jakob Nielsen. Improving a human-computer dialogue. Communications
of the ACM, 33:338–348, 1990.

[37] Jakob Nielsen. Finding Usability Problems Through Heuristic Evaluation.
In CHI ’92: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 373–380, New York, NY, USA, 1992. ACM
Press.

[38] Jakob Nielsen. The usability engineering life cycle. Computer, 25:12–22,
1992.

[39] Jakob Nielsen. Usability Engineering. Academic Press, 1993.

[40] Jakob Nielsen and Rolf Molich. Heuristic evaluation of user interfaces.
In Proceedings of the SIGCHI conference on Human factors in computing
systems: Empowering people, pages 249–256. ACM, ACM New York, NY,
USA, 1990.

[41] School of Electronics and South Hampton Computer Science. mspace.
http://mspace.fm/, 10 2008.

[42] C. K. Ogden and I. A. Richards. The Meaning of Meaning. Harcourt,
1989.

[43] T. I. M. Oreilly. What is web 2.0: Design patterns and business models for
the next generation of software. Social Science Research Network Working
Paper Series, page 17, 2007.

[44] Venkateswaran S Prashanth Mohan, Raghuraman and Arul Siromoney.
Semantic file retrieval in file systems using virtual directories. Poster at
HiPC 2006, December 2006.



BIBLIOGRAPHY 103

[45] Microsoft Press. Microsoft Windows User Experience: Official Guidelines
For User Interface Developers And Designers. Microsoft, 1999.

[46] D. Quan, D. Huynh, and D. Karger. Haystack: A platform for authoring
end user semantic web applications, 2003.

[47] D. Quan and D. Karger. How to make a semantic web browser, 2004.

[48] Dennis Quan, David Huynh, and David R. Karger. Haystack: A Platform
for Authoring End User Semantic Web Applications. In Proceedings of
the 2nd International Semantic Web Conference (ISWC 2003). Springer,
2003.

[49] Dennis Quan, David Huynh, David R. Karger, and Robert Miller. User
interface continuations. In Proceedings of UIST 2003, pages 145–148,
2003.

[50] Jun Rekimoto. Time-machine computing: a time-centric approach for the
information environment. In UIST ’99: Proceedings of the 12th annual
ACM symposium on User interface software and technology, pages 45–54,
New York, NY, USA, 1999. ACM.

[51] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Pearson Education, 2003.

[52] Leo Sauermann. The gnowsis-using semantic web technologies to build a
semantic desktop. Diploma thesis, Technical University of Vienna, 2003.

[53] Leo Sauermann. The gnowsis — using semantic web technologies to build
a semantic desktop. Master’s thesis, Vienna University of Technology,
2006.

[54] Leo Sauermann, Andreas Dengel, Ludger van Elst, Andreas Lauer, Heiko
Maus, and Sven Schwarz. Personalization in the EPOS Project. In Pro-
ceedings of the Semantic Web Personalization Workshop at the ESWC
2006, 2006.

[55] Bernhard Schandl. SemDAV: A File Exchange Protocol for the Semantic
Desktop. In Proceedings of the Semantic Desktop and Social Semantic
Collaboration Workshop, volume 202, Athens, GA, USA, November 2006.
CEUR Workshop Proceedings.

[56] Bernhard Schandl and Ross King. The semdav project: metadata man-
agement for unstructured content. In Proceedings of the 1st international



104 BIBLIOGRAPHY

workshop on Contextualized attention metadata: collecting, managing and
exploiting of rich usage information. ACM Press New York, NY, USA,
2006.

[57] Bernhard Schandl and Ross King. The SemDAV Project: Metadata Man-
agement for Unstructured Content. In CAMA ’06: Proceedings of the
1st International Workshop on Contextualized attention metadata: col-
lecting, managing and exploiting of rich usage information, pages 27–32,
New York, NY, USA, 2006. ACM Press.

[58] Ben Schneiderman. Dynamic queries for visual information seeking. IEEE
Softw., 11(6):70–77, 1994.

[59] Schraefel, Daniel A. Smith, Alisdair Owens, Alistair Russell, Craig Harris,
and Max Wilson. The evolving mspace platform: leveraging the semantic
web on the trail of the memex. In HYPERTEXT ’05: Proceedings of the
sixteenth ACM conference on Hypertext and hypermedia, pages 174–183,
New York, NY, USA, 2005. ACM Press.

[60] Ben Shneiderman and Catherine Plaisant. Designing the User Interface :
Strategies for Effective Human-Computer Interaction (4th Edition). Ad-
dison Wesley, March 2004.

[61] Craig Silverstein, Hannes Marais, Monika Henzinger, and Michael Moricz.
Analysis of a very large web search engine query log. SIGIR Forum,
33(1):6–12, 1999.

[62] Carolyn Snyder. Paper Prototyping: The Fast and Easy Way to Design
and Refine User Interfaces. Morgan Kaufmann, 2003.

[63] Constantine Stephanidis, Demosthenes Akoumianakis, and Alex
Paramythis. User Interaction in Digital Libraries: Coping with Diver-
sity through Adaptation. Lecture Notes In Computer Science, 1513:717 –
735, 1998.

[64] Diman Todorov and Bernhard Schandl. Small-scale evaluation of semantic
web-based applications. Technical report, University of Vienna, 7 2008.

[65] Alan M. Turing. Computing machinery and intelligence. Mind, 59:433–
460, 1950.

[66] Max L. Wilson and m.c. schraefel. mSpace: What do Numbers and Totals
Mean in a Flexible Semantic Browser. In Proceedings of the Semantic Web
Personalization Workshop at the ESWC 2006, 2006.



BIBLIOGRAPHY 105

[67] Ka P. Yee, Danyel Fisher, Rachna Dhamija, and Marti A. Hearst. An-
imated exploration of dynamic graphs with radial layout. In INFOVIS,
pages 43–50, 2001.

[68] Degi Young and Ben Shneiderman. A Graphical Filter/Flow Represen-
tation of Boolean Queries: A Prototype Implementation and Evaluation.
Journal of the American Society of Information Science, 44(6):327–339,
1993.


	Introduction and Motivation
	Background
	Semantic Technologies
	Overview of the SemDAV Project
	Interaction Design
	Evaluation Methods

	Related Work
	Boolean Query Visualization
	Ontology Visualization
	Chronological Visualizations
	Semantic Desktop
	Other Approaches

	Usability Challenges in Semantic Applications
	Navigating Large Data Sets
	Designing for Diversity
	Visualization and Navigation of Ontologies
	Visualizing Queries
	Semantics of Resource Names
	Introduction of New Vocabulary
	Addressing of Challenges in Related Projects

	Application of Interaction Design Guidelines in the Development Process
	User Interface Design
	The Example of Bob
	Overall Appearance
	Navigating Large Data Sets
	Visualization and Navigation of Ontologies
	Visualizing Queries
	Introduction of New Vocabulary

	Software Engineering Aspects
	Semplorer Architecture
	Concurrent Communication Module Architecture

	Experimental Results
	Conclusion and Future Work

