
Master’s Thesis

J3DVN - A Generic Framework
for 3D Software Visualization

carried out at the

Information Systems Institute
Distributed Systems Group

Vienna University of Technology

under the guidance of
Univ.Prof. Dipl.-Ing. Dr. techn. Harald Gall

and
Dipl.-Ing. Dr. techn. Jacek Ratzinger
as the contributing advisor responsible

by

Florian Breier
Barichgasse 6/8, 1030 Vienna

Matr.Nr. 9526715

Vienna, 26. March 2008

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Acknowledgements

I wish to thank Prof. Harald Gall for giving me the opportunity to carry out this
thesis under his guidance.

It gives me immense pleasure to place on record my sense of deep indebtedness to
my supervisor Dr. Jacek Ratzinger. He acted as a lighthouse to steer my project
in the right direction.

I thank Michael Fischer for giving me initial input for this project.

Last but not least I want to thank my family for their enduring support.

Zusammenfassung

Die Analyse von Software Architekturen und Software Evolution erzeugt Daten.
Visualisierung macht solche Daten verstndlicher. Die Verwendung von drei Dimen-
sionen in solchen Visualisierungen erhöht die mögliche Anzahl gleichzeitig darstell-
barer Metriken. Existierende Tools für eine solche Aufgabe sind für gewöhnlich
auf einzelne Probleme spezialisiert, lassen sich dann aber nicht verwenden, wenn
eine andere Aufgabe damit gelöst werden soll. Wir stellen ein Modell vor, das
die Erzeugung dreidimensionaler Datenvisualisierung erleichtert. Das Modell ist
erweiterbar und stellt somit eine generische Lösung für viele verschiedene Prob-
leme dar. Es ist insofern flexibel, als dass Repräsentationen der Daten in Echtzeit
geändert werden können, womit es auf der Stelle möglich wird, verschiedene
Repräsentationen/Aspekte derselben Datenbasis zu erkennen. Wir haben ein
Visualisierungs-Framework implementiert, welches unsere Bedürfnisse erfüllt, und
wir haben es verwendet, um unser Modell zu validieren, indem wir sinnvolle Kom-
binationen von Metriken visualisiert haben.

Abstract

The analysis of software architecture and evolution generates data. Visualization
has the task of making such data more comprehensible. The use of three dimensions
in such visualizations increases the possible number of concurrently shown metrics.
Common tools to do so are usually specialized for single problems but lack the
ability to conform when a different task has to be fulfilled. We propose a model,
which facilitates the creation of three dimensional data visualization. The model is
extendable to make it a generic solution for many different problems. It is flexible
in a way that data representation can be changed on-the-fly, making it possible
to immediately see different representations/aspects of the same database. We
implement a visualization framework that fulfills our needs and we use it to validate
our model by visualizing useful combinations of metrics.

Contents

1 Introduction 1
1.1 Problem Domain . 1
1.2 Contributions . 2
1.3 Organization of this thesis . 2

2 Software Visualization in a Nutshell 4
2.1 Steps in visualizing software . 4
2.2 Perception . 5
2.3 Graph Drawing . 6
2.4 Visualization of Software Architectures 7

2.4.1 UML . 8
2.4.2 Software Metrics . 8

2.5 Visualization of Dynamic Program Execution 8
2.5.1 Algorithm Animation . 8
2.5.2 Visual Debugging . 9

3 Related work 10
3.1 Rigi . 10
3.2 SHriMP . 11
3.3 SeeSoft . 11
3.4 SeeSys . 12
3.5 GSEE . 12
3.6 The Visual Code Navigator . 13
3.7 sv3D . 13
3.8 White Coats . 14
3.9 EvoLens . 14
3.10 Mondrian . 15

4 Approach 17
4.1 MVC Architecture . 17
4.2 Addons . 17
4.3 Eclipse . 18
4.4 Java 3D . 20

v

CONTENTS vi

5 Model and Framework 22
5.1 Addons . 22

5.1.1 Data Addons . 22
5.1.2 Visual Addons . 22
5.1.3 Conversion Addons . 23
5.1.4 Input Addons . 23
5.1.5 Layout Addons . 23

5.2 Connectors . 23
5.3 The Data Model . 24
5.4 Architecture . 25
5.5 Implementation . 27

5.5.1 General Structure . 27
5.5.2 Project j3dvn . 27
5.5.3 Project j3dvneclipse . 36
5.5.4 Project addoncollection . 37

6 Case Studies 39
6.1 Foundation . 39

6.1.1 Versioning System . 39
6.1.2 Evolution Metrics . 41

6.2 Methodology . 42
6.2.1 Data Extraction into Database 43
6.2.2 Computation of Logical Coupling 43
6.2.3 Identifying Refactorings and Bugs 44
6.2.4 Time periods for Analysis 45
6.2.5 Filtering of Data . 46
6.2.6 Visualization Approach . 47
6.2.7 Implementation . 47

6.3 ArgoUML . 48
6.4 Azureus . 50
6.5 Results . 57

6.5.1 Comparison of related work 59

7 Conclusion 64

A Schema of input file 66

B How to contribute to the framework 74

Bibliography 82

List of Figures

4.1 Overview of the Eclipse architecture 19
4.2 Example of extensions and extension points of Eclipse plug-ins . . . 19
4.3 Example of a scene graph in Java 3D 20

5.1 Example model of a file system . 24
5.2 Framework architecture . 26
5.3 Structure and dependency of implemented projects 28
5.4 Relationship between addon manager, connectors, and addons . . . 31
5.5 Activity diagram of the createPartControl() method of

Graph3DEditor . 35

6.1 Time periods for analysis . 43
6.2 ArgoUML, min bugs=4, min coupling=6, period = 07.2003 - 12.2003 48
6.3 ArgoUML, min bugs=4, min coupling=6, period = 01.2004 - 06.2004 49
6.4 ArgoUML, min bugs=4, min coupling=6, period = 07.2004 - 12.2004 50
6.5 ArgoUML, min bugs=3, min coupling=4, period = 07.2004 - 09.2004 51
6.6 ArgoUML, min bugs=3, min coupling=4, period = 10.2004 - 12.2004 52
6.7 ArgoUML, min bugs=4, min coupling=6, period = 01.2005 - 06.2005 53
6.8 ArgoUML, min bugs=4, min coupling=6, period = 07.2005 - 12.2005 54
6.9 Azureus, min bugs=5, min coupling=5, period = 07.2003 - 12.2003 55
6.10 Azureus, min bugs=5, min coupling=5, period = 01.2004 - 06.2004 56
6.11 Azureus, min bugs=5, min coupling=5, period = 07.2004 - 12.2004 57
6.12 Azureus, min bugs=5, min coupling=5, period = 01.2005 - 06.2005 58
6.13 Azureus, min bugs=5, min coupling=5, period = 07.2005 - 12.2005 59
6.14 Azureus, min bugs=5, min coupling=5, period = 01.2006 - 06.2006 60
6.15 Azureus, min bugs=5, min coupling=5, period = 07.2006 - 12.2006 61

vii

List of Tables

5.1 Pre-implemented properties of the internal VisualConnector im-
plementation . 30

5.2 Parameter types and return types of the createConnector()
method of the AddonManager class 31

5.3 Parameters of the propertyChanged() method of the
PropertyChangeListener interface 33

5.4 Properties of the LinLog addon 36
5.5 Properties of the visual addons from the addoncollection project . . 37

6.1 Mapping from metrics to visual attributes 44
6.2 Properties of the Evolizer addon 45
6.3 Properties of the EvoClass addon 46
6.4 Property of the Coupling addon 47
6.5 Comparison with related work . 63

B.1 Properties of the visual addons from the addoncollection project . . 74

viii

Chapter 1

Introduction

The big part of a software project does not end with the release of the first ver-
sion of the software, but it only starts with it. Bug fixes are applied and new
features are added afterwards. To improve maintainability, code will be refactored.
In this process, the internal behavior of a software system is changed while its ex-
ternal behavior remains the same. The bigger a software system becomes the more
difficult it is to be understood - obviously. Many attempts to visualize the archi-
tecture of software systems have been successfully. Very common are UML class
diagrams [Obj08], for example.
Software evolution is a continuous change from a lesser, simpler, or worse state to
a higher or better state of a software system [Art88]. It happens from day one of a
software project until the end of the software’s lifetime. Analyzing this evolution is
necessary to identify problematic spots in the design of a software system. When
speaking of ”analysis” you only have to go a small step further to reach the term
”visualization” - it’s common knowledge that ”a picture is worth a thousand words.”

1.1 Problem Domain

As computers constantly become more powerful, approaches of 3D visualizations
become more practical. Adding a third dimension to visualization makes it possible
to visualize one additional aspect of the underlying data. If coordinates are not
used to exhibit specific aspects of data, 3D can still be a benefit. A 3D picture
might just be better understood than a 2D one.
Empirical studies that compare the effectiveness of two- and three-dimensional vi-
sualizations are mixed.
Wiss and Carr [WC99] gave a negative evaluation. They state that the main prob-
lems are lack of overview and lack of custom navigation.
Balzer et al. [BNDL04] made the experience with 3D layouts of large graphs that
orientation is sometimes intricate and individual objects are often occluded and
therefore barely recognizable.

1

CHAPTER 1. INTRODUCTION 2

Ware and Frank [WF94] evaluated that the information in 3D is more easily under-
stood by the users than in 2D. Additionally, the error rate in identifying routes in
3D graphs is much smaller than in 2D graphs [WHF93].
Tavanti and Lind [TL01] recognized that 3D displays support spatial memory better
than 2D. Though in their experiments, the 3D display was a 2.5D display, to be
precise.
There is no optimal visualization design for every task [WCJ98]. There are al-
ways advantages and disadvantages, making a trade-off necessary. That’s why a
visualization framework makes sense, where different visualizations can easily be
realized.
We try to facilitate the building process of a mental model for the understanding
of the evolution of software systems. Our focus lies on 3D visualization of software
architecture and software evolution. Nevertheless, it is in no way restricted to these
two domains.

1.2 Contributions

The following contributions are made by this thesis:

• A data model, which is not dependent on the type of data, thus making it
usable for many different problem domains.

• The J3DVN framework, realized as an Eclipse plug-in, which implements this
model.

• Additional addons for J3DVN, which extend the framework and virtually
build a new tool on their own.

• Evaluation of the model by using the framework plus the supplemented addons
to analyze two popular open source software projects.

1.3 Organization of this thesis

The structure of this thesis is as follows:
Chapter 2 gives a brief introduction into the area of software visualization. It
explains aspects and basics to take care of when visualizing software. Moreover, it
describes some popular approaches to software visualization.
Chapter 3 goes a bit more into detail by giving an overview of the state of the
art. Assorted projects are presented, which are either similar in purpose and/or
influence our work up to a certain amount.
Chapter 4 initially gives quick descriptions of the Eclipse platform and of Java 3D,
two essential technologies for our framework. Later on we explain the addon archi-
tecture of our framework.

CHAPTER 1. INTRODUCTION 3

Chapter 5 goes into detail with the framework. We list the different basic addon
types and explain why they are there and what they are doing. Every addon has
to be connected to a connector. Why and how this has to be done is explained
in more detail in this chapter as well. Afterwards, we show our generic, graph
based data model. The chapter concludes with a description of the architecture of
our framework. After a short overview of the general structure of the parts of our
framework the projects, packages, and classes are characterized and explained.
Chapter 6 validates the model and the framework. Case studies with two open
source software projects are made, in which we analyze evolution of the two pieces
of software. First of all, though, we announce what kind of data we retrieve for
examining software evolution. And second of all we explain what we do with the
input data, which we retrieve, and how we use it. We also explain the implemen-
tation of the addons, which we created to realize the retrieval and calculation of
the necessary evolution information. We finish this chapter with the presentation
of the results we could achieve through our case studies.
The thesis ends with Chapter 7, where we summarize our research results and denote
points for future work.

Chapter 2

Software Visualization in a
Nutshell

Software visualization can be defined as ”the visualization of artifacts related to
software and its development process” [Die07]. Artifacts need not necessarily be
only program code but also requirements and design documents, bug reports, data
in memory at a certain time in program execution, etc. We can distinguish between
three different aspects of software visualization:

Behavior: Execution of a program, possibly in real time, dynamic state of memory
during execution.

Evolution: The process of developing a software program.

Structure: Architecture of a software program, its data structures, a static call
graph.

In our work, we will focus on the area of evolution visualization. Nevertheless,
other areas are not excluded from our framework. In fact, it all depends on the
data gathered. The creation of visualization itself is only one step in the process of
visualizing software.
In this chapter, we will explain the general process of visualizing software. We will
discuss factors of human perception of visualizations in addition to graph drawing.
We look at the aspects Behavior and Structure visualization. Visualization of Evo-
lution is left out in this chapter, since Chapter 3 is totally dedicated to examples
of that domain.

2.1 Steps in visualizing software

First of all, data is retrieved. Data can come from various sources, like, for example,
a version control system, where all the assets of a software program are stored in
every existing version, or it can come from a debugging tool, which observes the
state of a program during its execution.

4

CHAPTER 2. SOFTWARE VISUALIZATION IN A NUTSHELL 5

The next step is the analysis of collected data. Usually, there will be too much
information to visualize. Therefore, information has to be filtered, classified, or
reduced in any other way. Possibly but not necessarily, this step also includes the
conversion of existing data into an intermediate data format, which can be used by
the visualization tool in the next step.
This next step is basically the ”creation of the picture.” The previously prepared
data is mapped onto a visual model and then rendered to screen. Of course the
visualization may not to be a picture only. Our framework, for example, creates a
3D visualization, where users can navigate and interact.
Finally, there is the human perception of the visualization. While we can’t really
make adjustments on the human eye, we could give aids like, for example, shutter
glasses. Over time users will improve in perceiving visualizations, which are new to
them. That’s why new visualization techniques often might not look promising in
the first place but become valuable over time.

2.2 Perception

Any visualization is only as good as the perception is. Perception, in general,
involves the use of all our senses. However, information from the real world is
mostly perceived visually.
Color is the human perception of light. The hue of a color is related to its dominant
wavelength, whereas brightness is related to the intensity or amplitude of the wave.
There are two kinds of receptors in the human eye: rods and cones. While rods
are much more sensitive at low light levels, during daytime vision only cones are in
use, because they are sensitive under normal working light levels. A rod can only
measure the intensity of light of the full spectrum, thus with rods alone, we could
only see black-and-white. Cones, on the other hand, are sensitive towards light of
different wavelengths. There are three types of cones: one for magenta, one for
green, and one for yellow-to-red.
Rods and cones are not distributed evenly on the back of the eye (called retina). In
the center of the retina there is a small area called fovea, which is densely packed
only with cones. That’s why we can see sharpest in the center of our field of vision.
To be precise, only the central two degrees1 are seen by the fovea.
Pattern perception is the process of recognizing objects. This happens by deciding,
which visual elements belong to each other. Pattern perception happens mostly
as 2D processes. Gestalt theory [Kof35] knows a set of Gestalt laws of pattern
perception. According to them, humans use the following criteria (among others)
to perceive patterns:

• Connectedness

• Proximity

1As a rule of thumb we can say that one degree is equivalent to the width of one’s thumbnail
at arm’s length.

CHAPTER 2. SOFTWARE VISUALIZATION IN A NUTSHELL 6

• Similarity of color, shape, size, or brightness

• Continuity of curves

• Symmetry of objects

• Closure of areas (p.e. we see a round dotted line as a closed circle)

Motion perception is the process of recognizing, which visual elements perform the
same movement in consecutive images. A well-known case of wrong motion percep-
tion can be seen in Western movies, where wheels of a coach are supposedly turned
in the wrong direction.
Visualization of software can be done as one-, two-, or three-dimensional represen-
tations2. One-dimensional visualizations can be markers on a scale or a gauge, for
example. Very often software is visualized as (2D or 3D) graph based representation,
since it tries to visualize elements of a software system and their relation between
each other. Visualizations are built from visual elements like points, lines, areas,
and volumes. These primitive elements differ in length, width, height, position,
orientation, color, transparency, texture, and shape. Besides those properties they
can have dynamic properties, which change over time, starting from simple blinking
or changing color or position to morphing from one shape into another one.
Metaphors are widely used in the domain of information visualization. A very well-
known metaphor is the desktop, which can be found in most modern operating
systems.
When drawing graphs the solar system metaphor can be found sometimes. There,
nodes of a graph are displayed as planets of a solar system. Most important ”plan-
ets” can be found in the center, while less important information is drawn further
away. (This idea is also used in the fisheye view, see 3.2). The solar system metaphor
(for example [GYB04]) can be extended to the galaxy metaphor to visualize infor-
mation clusters in graphs (see next section), where each cluster is a solar system in
the galaxy.
Information visualized as a landscape [BNDL04] is similar to our physical envi-
ronment. The surface is more or less two-dimensional only, but contains three-
dimensional trees, mountains, buildings etc. The city metaphor [WL07] can be
used for software visualization. Wettel and Lanza argue, that the advantage of this
metaphor is increased comprehensibility and higher ability to navigate through data
because of ”habitability.”

2.3 Graph Drawing

Graphs play an important role in software visualization. Syntax trees, finite state
diagrams, and control flow diagrams are all graphs. Purchase et al. [PCJ96] defined
various criteria to aesthetically draw graphs:

2For simplicity reasons, in this thesis we are not considering text-only representations (e.g.
pretty printing or literate programming) as software visualizations.

CHAPTER 2. SOFTWARE VISUALIZATION IN A NUTSHELL 7

Crossing minimization: A graph should be drawn with as few crossings as pos-
sible. If the graph is planar, it shouldn’t contain any crossing edges.

Bend minimization: Edges should have as few bends as possible.

Area minimization: The total area of the graph should be small and its nodes
should be distributed evenly.

Length minimization: The total length of all the edges should be as short as
possible.

Angle maximization: Angles between edges of a node and angles of bends of an
edge should be maximized.

Symmetries: Symmetries in the underlying data should be drawn in the graph.

Clustering: Parts of graphs, which are strongly interconnected, should be sepa-
rated from other such parts. In such a case, previous criteria like area min-
imization or length minimization cannot be applied thoroughly. Clustering
can happen in larger graphs.

There are many different graph drawing algorithms, which serve different purposes.
In an orthogonal graph layout the edges run horizontally and vertically and the
edges bends have angles of 90 degrees only. Usually, the goal of orthogonal graphs
is to minimize edge crossings and bends. In a force-directed layout the graph is seen
as a physical system, for example a planetary system. The nodes are seen as planets
with certain gravity, while at the same time they have a repulsion that keeps them
away from each other. The idea is basically to minimize the total energy (repulsion
and attraction) of the system.

2.4 Visualization of Software Architectures

A software system can be described in many ways and many points of views, and
many aspects can be considered, like: gross organization and global control struc-
ture, protocols for communication, synchronization, data access, assignment of func-
tionality to design elements, physical distribution, composition of design elements,
scaling and performance, and selection among design alternatives [GS94]. Descrip-
tions can be in textual ways. Sometimes this is just not enough for a descent
understanding of the architecture. Then, diagrams might help. Dividing a software
system into smaller parts helps making it easier to understand the whole, and thus
to design and develop such a system.

CHAPTER 2. SOFTWARE VISUALIZATION IN A NUTSHELL 8

2.4.1 UML

The Unified Modeling Language [Obj08] is an object-oriented approach to describe
software architecture graphically. There are different diagrams for different areas,
for example class diagrams, use case diagrams, sequence diagrams, collaboration
diagrams, state chart diagrams, activity diagrams, and many more. UML has be-
come a standard for a notation of software architecture. Every UML diagram is a
graph built from simple visual primitives, so it is easy for a designer to construct
a diagram even by hand. It is two-dimensional only. It can be extended to three
dimensions [GRR99]. The advantages of 3D-UML - together with animation even -
should be improved comprehension of complex diagrams.

2.4.2 Software Metrics

A software quality metric is defined as a function whose inputs are software data
and whose output is a single numerical value that can be interpreted as the degree
to which software possesses a given attribute that affects its quality [IEE98].
Many metrics can be found for assessing the quality of software and its development
process, like lines of code, cyclomatic complexity, number of bugs, number of classes
and interfaces, cohesion, coupling, number of authors, and number of refactorings.
Although, the use of metrics alone will certainly not eliminate the need for human
decisions in software assessments, it can be of great help to do so.
Visualizing metrics will usually increase understandability of metrics3. Showing
metrics (e.g. lines of code) on scales will already help to get a better idea of software
assets, compared to only writing the plain numbers in a table. Nevertheless, it
only starts to get interesting when combining two or more metrics in one single
visualization. In this way, relations between different metrics (for example lines of
code and number of bugs) can become obvious.

2.5 Visualization of Dynamic Program Execution

When visualizing execution of a program a continuous data flow or a sequence of
snapshots of the system has to be visualized. This can happen in real time or after
program execution has been recorded. In either case at least data acquisition has
to happen during actual runtime.

2.5.1 Algorithm Animation

Algorithm animation visualizes the behavior of an algorithm. The execution of an
algorithm leads to a sequence of states, where each step in the algorithm results in a
change from one state to another state4. Algorithm animation maps every state to a

3Bad visualizations can of course also help in misleading the viewer of the visualization.
4Or from one state to the same state again, if we have an infinity loop.

CHAPTER 2. SOFTWARE VISUALIZATION IN A NUTSHELL 9

separate image and shows the transitions of the images (i.e. states) as an animation.
Algorithm animation is often used as educational aid to help understanding the way
an algorithm works. A famous example is the video Sorting out Sorting [Bae81],
which used animation of program data coupled with an explanatory narrative to
teach nine different sorting algorithms.

2.5.2 Visual Debugging

Finding bugs in a program can be a painful task. By using debuggers it can become
much easier to understand what happens during program execution at a certain
point. Usual debuggers allow - frankly spoken - to execute a program step by step,
one line at a time and inspect the value of existing variables. Visual debuggers
not only allow to see textual information of the data value of a variable, but also
represent information in a graphical way. Data Display Debugger (DDD) [Fre08] is
a popular visual debugger that allows interactive graphical data display, where data
structures are displayed as graphs. Thus, we can see, how memory consumption of
a data structure becomes bigger over time.

Chapter 3

Related work

A great deal of research has been done on Software Evolution Visualization, and
particularly, on visualizing single versions of software architectures. Some tools,
which are explained here, have their origin in visualizing single versions of software
architecture, but can also be used for evolution of software. A wide range of tools
is limited to 2D. We have also mentioned such work in this chapter as they often
serve as a basis for 3D approaches.

3.1 Rigi

Rigi [MK88] is a rather old, but popular approach. It uses a graph model and
abstraction mechanisms to structure and represent the information accumulated
during the development process. It creates simple box-and-line diagrams. However,
it provides extensive navigation facilities that allow the user to create different views
of the systems. In the graph model, a node is a component of the system (e.g.
subsystem, interface, variant, revision, specification, data set, or picture), while the
arcs represent relations between nodes (e.g. change, compilation, binding, revision,
or aggregation)
It also supports a programming language, RCL, to define different problem domains
(e.g. different programming languages), which both allows it to be tailored to differ-
ent scenarios. In the current version, it even provides Shrimp views (see Section 3.2)
of nodes.
One goal of Rigi was to give aid in version and release control. This is possible by
visualizing revisions of subsystems, classes, and so forth.
One disadvantage of the traditional approach is the multitude of windows. To look
further into one node, that node is opened in a new window, where the sub-nodes
are displayed in a new graph model. To navigate to a specific class in a package,
possibly nested, it will be necessary to open several windows from one package to
its sub package and so on. This technique not only clutters the screen, but also lets
the user lose context.

10

CHAPTER 3. RELATED WORK 11

3.2 SHriMP

The SHriMP (Simple Hierarchical Multi-Perspective views) project by Storey and
Müller [SM95] is built up on Rigi, but tries to compensate its drawbacks by im-
plementing new concepts. Its key goal is to present large amounts of information
on a computer screen. According to [Tuf90] it depends on how the information is
visualized rather than how much of the information is visualized. Storey and Müller
take that into account and use fisheye views of nested graphs to visualize Software
Architectures.
In section 3.1, we can see in detail the problem Rigi faced. As mentioned earlier, the
display of only a part of the graph in one window is recognized. Though the whole
plain graph is displayed in a window, it is very difficult to see the minute details.
To overcome these obstacles, SHriMP uses fisheye views [SB92]. In a fisheye view
of a graph, only the area of interest is displayed in a relatively large and detailed
manner, while the remainder of the graph is successively smaller and less detailed.
In addition to the fisheye views, SHriMP uses nested graphs [Har88], which display
sub graphs of a node inside that node. The fisheye view makes it possible to prevent
the details (i.e. the sub graphs inside of a node) from getting too small. By default,
in SHriMP sub graphs are closed, i.e., they are not visible. By double-clicking on a
(non-leaf) node, its sub graph is opened and displayed in the node.
As Rigi’s work has been instrumental for SHriMP, both can be used in the
same domain. SHriMP is developed extensively. There even exists a plug-in for
Eclipse [Com08], which integrates SHriMP into Eclipse. This allowes you to use all
SHriMP views for any Java project in Eclipse.

3.3 SeeSoft

Another popular approach for visualizing Software Evolution is SeeSoft [ESS92]
where the visualization is line-oriented. Whole files are displayed as columns, while
the separate lines of each file are rows of one such column. The width of one row and
its indentation conform to the width and indentation of the actual source code line
in the file. The color of each line is mapped to a certain statistic. The statistic might
be age, programmer, feature, type of line, number of times the line was executed
in a recent test, modification request to a version control system, etc. A color bar
containing the whole color spectrum is always visible on screen. This permits the
activation of only one single statistic value. In this way, it is possible to have a
display of only the changes in one single modification request over all the files.
However, it is not possible to display more than 50.000 lines of code1 at once. It
only visualizes the code lines and not any of the other information, such as design
or architectural information.

1On a 1284x1024 resolution display

CHAPTER 3. RELATED WORK 12

3.4 SeeSys

SeeSys [BE95] tries to eliminate the problems of SeeSoft. It uses as much space of the
screen as possible. Visualization does not occur by using single rows, but rather,
one big area which is then partitioned into separate rectangles. Each rectangle
represents one subsystem. The size of such a rectangle is based on some metric, for
example, lines of code.
Its functionality addresses project managers, feature engineers, and software devel-
opers. According to the authors, SeeSys applied to a system can be used to

• show the sizes of the subsystems and directories, and where the recent devel-
opment activity has been,

• zoom in on particularly active subsystems,

• discover how much of the development activity involves bug fixes and new
functionality,

• identify directories and subsystems with high fix-on-fix rates, and

• locate the historically active subsystems and find subsystems that have shrunk
and even disappeared.

Since the total area is always as big as possible (and only limited by the size of the
screen), and the size of the rectangles is a relative value (to always fill up the whole
area), SeeSys, unlike SeeSoft, is not limited to a certain total size of a system.

3.5 GSEE

Favre developed GSEE [Fav01], a framework to build tools from generic components.
He argues that most of the work in software exploration can be qualified as specific
approach, where a specific tool is provided for each specific perspective. Especially
in the context of large software companies, this approach is weak because only a
few software models are covered by specific tools and the cost of building a new
specific tool is expensive.
GSEE consists of an object-oriented framework, a set of customizable tools, and a
tool builder. The framework approach brings maximum flexibility and extensibil-
ity, while making almost no assumption about the way it will be used. A set of
customizable tools is delivered with the framework, which illustrates the use of the
framework and helps to solve common problems without the need to start pro-
gramming. The tool builder can generate specific exploration tools by interactively
assembling components.
The framework contains source components and visualization components, which
one could qualify as Model components and View components, when speaking of
an MVC concept. Many visualization components are available, e.g. for drawing

CHAPTER 3. RELATED WORK 13

organization charts, tree maps like SeeSys (Section 3.4) uses, or line sequences as
in SeeSoft (Section 3.3).

3.6 The Visual Code Navigator

The Visual Code Navigator [LNVT05] is a set of tools that enables the exploration
of large software projects from different perspectives, or views:

• The syntactic view shows the constructs in the source code. For every con-
struct, a cushion is displayed, which outlines the construct’s text in the source
code. In this way, a source file is displayed as a bunch of different colored areas,
where each one is a single construct block.

• The symbol view shows all the symbols that are created by a compiler, i.e.
the symbols which a linker would see after compilation. Since the Visual
Code Navigator is C/C++-centric, displayed symbols are global scope objects,
like function signatures, class and namespace method and data members,
templates, enumerations, typedefs, and global variables. These symbols are
displayed as cushions in a tree map.

• The evolution view displays the change in source code files in a project’s
lifetime. Like the syntactic view, it uses a file’s layout, i.e., only one single file
is displayed. It uses the concept of bi-level code display, which gives a view
of both the contents of a code fragment and its evolution in time. In this 2D
pixel-filling display, the x axis maps the version number and the y axis maps
the line number. Thus, a file is displayed over the whole area, where the very
left column is the first version of the file and the very right column is the
latest version.

3.7 sv3D

sv3D [MFM03] extends the Seesoft metaphor (Section 3.3) to 3D space. Since it
extends this metaphor, it can be used for any problem, for which Seesoft can be
used.
Seesoft displays files as columns, lines of code in the files as lines in the columns,
positions of these lines of code as the position of the line, and a selectable attribute
as color of the lines. Instead of painting one column per file, sv3D uses a container,
i.e. a bordered plane (simply a rectangle) in 3D space, which is not even visible.
Instead of lines of a column, poly cylinders in a container are used. The position
(on x- and y-axis of the container) of the line in the file is mapped to the position
of the poly cylinder in the container. Like the 2D model that uses color of a line
to display a certain attribute, color can also be used here. There are, however, still
three more attributes that can be mapped to other visualization elements, namely

CHAPTER 3. RELATED WORK 14

to height, depth and shape of a poly cylinder. So, by extending the visualization to
3D space, additional information can be displayed simultaneously.

3.8 White Coats

White Coats [ML05] visualizes CVS [BF03] repositories in 3D using VRML [Int97].
It provides access to versioning information by using a web interface. As a result it
is easily accessible on very many platforms. Besides 3D (VRML) data, additional
textual information is displayed. The visualization happens through polymetric
views [LD03] in 3D.
Visual entities are blocks of specified height, width, length, and position (x-, y-,
and z-coordinate) in 3D space. Additionally, texture and transparency of the visual
entities can be used. Up to eight metrics could be mapped to one single entity.
Some interesting ideas are realized, which help in understanding and navigating the
visualization:

• Reference Cube: A wireframe cube that surrounds all the entities is always
displayed. This gives the user an idea of the orientation.

• Horizon: As another navigation aid, a ”sky” and a ”background” are always
shown to let the viewer know about the direction they are looking at.

• Normalizing metrics : Metrics could have arbitrary high values, which would
make visualizations unreadable. Due to that and the fact that the entities are
displayed within the reference cube, all the metrics are normalized to values
between 0 and 100.

• Interactivity : Rotating, zooming, and panning are possible. This kind of
interaction is not novel in any kind, but rather expected. In addition to that,
a set of pre-defined viewpoints is given, which helps users navigate to a certain
point with only a single click.

3.9 EvoLens

Ratzinger, Fischer, and Gall generated EvoLens [RFG05], a system for visualization
and navigation of software information extracted from versioning systems. It is
especially tailored for Java programs stored in CVS [BF03]. Only CVS information
is extracted, but not the source code itself. That’s why a class is the smallest unit
EvoLens handles. Nested classes are not supported.
EvoLens visualizes coupling between software modules (i.e. packages and classes,
when ”speaking in Java language”). The following information is extracted:

• author of each change to a file

• date and time of each change

CHAPTER 3. RELATED WORK 15

• files included in a change event

• package structure of the source code

Nested graphs are used to visualize the structure of the source code. Packages
and their sub-packages are displayed as rectangles, Classes, the smallest units in
the model, are represented as ellipses. Not more than two levels are shown at any
time. In other words, from a package, the user can see its sub-packages, but not its
sub-sub-packages. In this way, the hierarchical structure of the software is nested.
The edges of the graph itself represent the change coupling between two classes.
The stronger the coupling, the thicker are the edges. Color indicates the evolution
metric of a class. If a class has a low growth value for the selected time window, it
will be drawn in a light color. If its growth value is high, it is drawn in dark color.
By using nesting and regular graph elements (nodes and edges) at the same time,
a multi-dimensional visualization (namely, structure and evolution) is realized.
The larger a software system is, the more important it is to hide irrelevant infor-
mation. That’s why the concept of a focal point is used. A user selects the focal
point (a certain package). This is now the center of consideration, the starting
point of the analysis. Only those relationships following from this focal point to
other packages and classes are represented. This drastically reduces the amount of
information that has to be visualized. The user can navigate through the structure
by changing the focal point.
Another technique that is used to reduce the visualized information is structure
folding. Instead of the coupling between classes, the coupling between packages
may be of interest. The edges are painted between the packages. External packages
(i.e. packages which are outside the focal point) are also displayed in that case. If
the user is interested in a certain package, it can be unfolded, i.e., the classes in
that package can be displayed separately again.
A way to avoid ”edge clutter” is to set a coupling threshold. Loose (but still existing)
coupling between classes happens soon. To paint a ”correct” graph, many narrow
edges would have to be painted between classes. However, this information is not
very interesting, and so it is better to filter out those narrow edges completely.
How much of this sort of information should be filtered out depends on the user
and the particular software structure. That’s why a threshold can be adjusted to
individually set the lower bound of visualized coupling.
Navigation in time lets the user see the graph within a specific period of time. Start
date and end date can be set and only the changes between those two dates will be
displayed.

3.10 Mondrian

Mondrian [MGL06] is a visualization framework for two-dimensional visualization
of data. The idea behind it is to move the visualization tool to the data and not
the other way around.

CHAPTER 3. RELATED WORK 16

The authors try to solve two main problems in adopting software visualization tools.
Firstly, tools that are designed for a specific purpose cannot support the user when
they need a slightly (or sometimes even drastically) different visualization on the
data related to the task at hand. Secondly, preparing and converting data to the
format, which the visualization tool is able to process, can be difficult. They solve
the first problem by creating a flexible framework instead of a single visualization
tool, and the second problem by bringing the visualization to the data and not the
other way round.
This is achieved by using Figure classes for each entity. Each Figure class is con-
nected to exactly one Object (which can be any sort of data). Moreover, each Figure
is connected to one Shape, which acts as a translator between the data (Object)
and the visualization (Figure). The Shape contains no state but only the rules that
dictate how the Figure should be displayed.

Chapter 4

Approach

In this chapter, we want to give an overview of our approach to our model and
the according framework J3DVN. We describe how it integrates into the Eclipse
platform. Moreover, we give a quick introduction into Java 3D, for we rely on this
API when creating our 3D visualization.

4.1 MVC Architecture

The model was designed with an MVC architecture [Ree73] in mind. That’s why
it consists of three packages: model, view, and control. One advantage of using
an MVC architecture is that the framework could be implemented for different
visualization platforms easily. Another major important factor of this architecture
is, that the data model is separated from the other parts. This makes it possible
to create a generic framework that can be used with many different data types
of different problem domains. Nevertheless, the idea of separating functionality is
extended even further by the plug-in concept, which we describe in the next section.

4.2 Addons

Our framework uses a plug-in concept. To contribute to J3DVN, we have to write
new addons. Well-defined properties make it possible to assign or read certain
values of an addon.
There are basically five different types of addons:

• Data Addons

• Visual Addons

• Conversion Addons

• Input Addons

• Layout Addons

17

CHAPTER 4. APPROACH 18

We will explain those basic addon types later.
The different basic addon types1 are defined as different interfaces. There, functions
are defined, which are commonly needed for every addon of a certain type. On the
other hand, custom features, which are unique for implemented addons, cannot be
known in advance by the framework. This problem is solved by the realization of
so called Properties, which are an important aspect of an addon. A property is a
public function of an addon, which has an annotation that marks it as a property
function and has a return value of a property interface type.
Examples of how to create own addons and their properties are shown in Ap-
pendix B.

4.3 Eclipse

The architecture of Eclipse is based completely on plug-ins. A tiny core exists, which
is responsible to load all the plug-ins, which make up the functionality. Figure 4.1
(taken from [GB03]) shows the basic architecture of Eclipse. The parts in this figure
are:

• Runtime: This defines the plug-in infrastructure. It is responsible for discov-
ering and loading other plug-ins.

• Workspace: A Workspace manages projects. A project consists of files and
folders that map onto the underlying file system. Under a Model-View-
Controller paradigm the Workspace is the Model.

• Standard Widget Toolkit (SWT): The SWT is a widget toolkit that provides
a standard set of graphical widgets.

• JFace: A UI toolkit built on top of SWT providing an abstraction layer. While
SWT contains basic UI controls, JFace provides helper classes that simplify
the implementation of common UI tasks.

• Workbench: The workbench defines the Eclipse UI paradigm. Its typical
elements are Editors, Views, and Perspectives. The workbench naturally uses
JFace and SWT.

Adding new plug-ins to Eclipse is usually done by extending existing plug-ins. Plug-
ins have extension points, onto which new plug-ins can be hooked to extend those
plug-ins again.
Figure 4.2 shows how different plug-ins are connected to each other. You can see
three plug-ins, which have extensions (left hand sided) and extension points(right
hand sided). The at.ac.tuwien.j3dvn.j3dvneclipse plug-in extends the plug-in

1As a convention we use the term basic addon type for the different addon interfaces listed
above plus the ”abstract” Addon interface, while an addon type can also be an implemented class
of one of the basic addon types.

CHAPTER 4. APPROACH 19

Figure 4.1: Overview of the Eclipse architecture

org.eclipse.ui.views on the extension point view with the Mapping extension, so
that a new view is added to the Eclipse Workbench. The same plug-in also pro-
vides extension points on its own, namely one extension point for each basic addon
type of our framework (see next section). The plug-in at.ac.tuwien.evolizerinput
extends to the inputs extension point with the extension input1. Moreover, the
extensions class and coupling of the evolizerinput plug-in are both extended to
the extension point data. Additionally, evolizerinput extends org.eclipse.ui with
Evolizer 3D Graph to editors, and with Layout to editorActions.

Figure 4.2: Example of extensions and extension points of Eclipse plug-ins

CHAPTER 4. APPROACH 20

4.4 Java 3D

Java 3D [Sun08] is a scene graph based API for rendering 3D graphics using Java.
It relies on OpenGL (or on the Windows platform optionally DirectX) to perform
native rendering. All the other programming logic, such as scene description or
interaction, happens in Java only.

Figure 4.3: Example of a scene graph in Java 3D

Figure 4.3 shows an example of such a scene graph. All of Java 3D takes place in
a VirtualUniverse class, which defines the highest level of object aggregation.
One universe can contain none, one, or more Locale objects. A Locale is posi-
tioned in the universe with high precision, while other objects are positioned in the
Locale with lower computer-friendlier precision. When continuing the universe
metaphor, we can speak of a Locale as a galaxy. Other objects - primarily of
type Node and its descendants - build the scene graph by creating parent-child
relations between those objects forming a tree-structure. BranchGroup nodes can
be attached to and detached from other nodes in the scene graph. All the visual 3D
objects are attached to one ”root” BranchGroup node, which in turn is attached
to a Locale. A TransformGroup is used to make transformations to underlying
children. A scene graph usually needs many TransformGroup nodes to get all

CHAPTER 4. APPROACH 21

the objects into their right position, angle, and size. The ViewPlatform node
controls the position, orientation and scale of the viewer. The View contains all
parameters needed in rendering a 3D scene from one viewpoint. A view can be
used by many Canvas3D objects. It exists outside of the scene graph, but attaches
to a ViewPlatform node in the scene graph. It also contains a reference to a
PhysicalBody and a PhysicalEnvironment. These are both classes, which
address physical world model parameters. Canvas3D, an extension of the AWT
Canvas class, serves as the display window image. All the 3D objects are painted
on it. It uses a Screen3D object to find out about the physical screen charac-
teristics. A Shape3D is a leaf node in the scene graph and specifies all (visible)
geometric objects. Such an object has an Appearance and a Geometry object,
which define the object’s rendering state and shape, respectively. Each visual addon
is a sub graph of the whole scene graph. The root element of a visual addon is a
Group. When looking at the scene graph example in Figure 4.3, every visual addon
would be attached to the left BranchGroup node of the graph. Or more precisely:
The root of every visual addon, which is a Group or a descendant of it, is a direct
child of the left BranchGroup in the scene graph example.

Chapter 5

Model and Framework

This chapter explains the design of our model and the framework J3DVN, which
implements this model.

5.1 Addons

Just like Eclipse itself does, our framework also uses plug-ins. We don’t use the
term plug-in for our needs, though, because now we are not speaking of Eclipse
plug-ins anymore. Instead we use the term Addon. We explain the different basic
addon types in the following sections.

5.1.1 Data Addons

A data addon describes a piece of data of a data model. We have to distinguish
between two different types of data addons: Entities and Relations. The first ones
describe entities of the data model, while the latter characterize the relation between
two entities of a data model. A (useful) data addon needs to have properties, which
contain the data. Contributing new data addons is different from contributing
other addons as the DataAddon interface is never implemented directly. Instead,
its direct descendants Entity or Relation are implemented.

5.1.2 Visual Addons

A visual addon is a visual representation of a data addon. A visual addon must
be aware of Java 3D, which means it must provide a Group, which may contain
additional 3D objects. Furthermore, it is supposed to have well-defined properties,
which allow changing the representation - for example the color - of the visual
objects.
A visual addon represents a data addon. It also has a reference to it. However,
data addons don’t know anything about visual addons.
A visual addon can be as simple or as complicated as the creator of the addon wants
it to be. It could be only a primitive object like a cube, a sphere, or a cylinder.

22

CHAPTER 5. MODEL AND FRAMEWORK 23

Or it could be a 3D model created in a 3D graphics application, like 3DSmax, and
imported into Java3D.

5.1.3 Conversion Addons

A conversion addon is used to convert from one data type to another one. It
basically has a convert() method, which does the job. Conversion addons are
used for the mapping of input data to its visual representation. A mapping of a
data value to a visual property can only be done, if there exists an appropriate
conversion addon with the correct input and output data types. For example, in a
file system, every single file is visualized through a cube in 3D space, and the size of
a file is mapped to the color of a cube. The size is an Integer property, while the
color is a Color property. To realize the mapping, we need an IntegerToColor
conversion addon.
Unlike data and visual addons, conversion addons are rather ”static” - usually it
only needs one single instance of each conversion addon.

5.1.4 Input Addons

An input addon can open a resource of a specific type, read its data, and construct a
model from that data. The resource can, for example, be a file of a specific format,
or a database connection.
Input addons are different from the previous addons as for one model there ex-
ists only one single input addon. It is responsible for creating data addons and
populating them into the data model.

5.1.5 Layout Addons

To layout the visualized graph, a layout addon is needed. This type of addon takes
nodes of a graph (i.e. visual addons) as input data and calculates their new position,
based on the internal layout algorithm. This calculation runs in a separate thread.
Only after the calculation has finished completely all the nodes in the graph are set
to their newly calculated positions.
A layout addon is a very important part of the system, because by using different
layout algorithms different visualizations can be realized.

5.2 Connectors

The reason of using connectors for the addons is to keep as much logic as possible out
of addons, to make development of addons simpler. Connectors provide methods,
which make access to addons easier. For example, access to properties of addons is
simplified by using a connector method, which invokes the correct method of the
addon.

CHAPTER 5. MODEL AND FRAMEWORK 24

Another approach, instead of using connectors, would have been to make abstract
addon classes, from which new addons have to inherit. But this would also have
been the major drawback of the approach as every addon had to inherit from an-
other super-addon. This constraint would have complicated development of addons,
because they couldn’t have been descendants of completely other classes (which may
be necessary for some reason). Since a new addon must only implement a certain
interface, flexibility is higher.
A connector always contains exactly one addon. This addon is then connected to the
connector. Speaking in design pattern terms [GHJV95], a connector is an Adapter,
where the addon and the AddonManager (see Section 5.4) are subsystem classes of
the connector. For each of the different basic types of addons exists one connector
type.
Different connectors have different functions: An EntityConnector has func-
tions to access the entity’s relations, an InputConnector has a method to access
the data source, and so on. That’s why we couldn’t simply design connectors with
generics based on their addons in the form

public interface Connector<T extends Addon>

And that’s why, unfortunately, our architectural model looks a bit more compli-
cated, because for every basic addon type there exists a separate connector type.

5.3 The Data Model

Our data model is completely graph based. It contains entities and relations (see
Section 5.1.1), where entities are the nodes and relations the edges of the graph.

Figure 5.1: Example model of a file system

CHAPTER 5. MODEL AND FRAMEWORK 25

For example, we could want to get a model of a file system. We could write an
entity Directory, which has the property name of type String, and another entity
File with the properties name of type String, size of type Integer, and date of type
Date. Additionally, we could write a relation IsIn, which describes, if a file is inside
of a directory.
Now, a data model of a file system could look like the one in Figure 5.1. A textual
representation of the same can be seen in Listing 5.1. The data model contains d1,
d2, f1, f2, f3, i1, i2, i3, and i4.
Of course a model does not necessarily have to be a tree (like in this example),
but can be any kind of graph. Moreover, unlike in the example, the model can not
only contain nodes but also relations of different types. This way we can get graphs
with different kinds of edges, or even two graphs, which have the same set of nodes
but different edges. This allows the framework to be used for different applications.
Another example can realize a class hierarchy and, additionally, describe coupling
between classes as another metric. The visualization of inheritance and coupling
can happen at the same time by using two different visualization addons.

d1: Directory(name="/")
f1: File(name="README", size=1538, date=#2006-08-13#)
f2: File(name="MyHamster.jpg", size=32544,

date=#2006-08-13#)
d2: Directory(name=".SecretSubdirectory")
f3: File(name="MyDiary", size=74335, date=#2006-09-04#)
i1: IsIn(d1, f1)
i2: IsIn(d1, f2)
i3: IsIn(d1, d2)
i4: IsIn(d2, f3)

Listing 5.1: Textual representation of an example model of a file system

5.4 Architecture

An overall (simplified) view of the architecture can be seen in Figure 5.2. Please
note that we left out connectors from this diagram. The Addon Manager is the
central instance, which keeps track of all the different addon types by managing a
list of Descriptor objects, which are basically 〈Class, Name〉 tuples of addons. The
Descriptor is also capable of instantiating a new addon.
As already explained in Section 5.1, there are five different basic addon types, which
are used in different areas of the system: DataAddon, VisualAddon, ConversionAd-
don, InputAddon, and LayoutAddon.
A Model is basically a container for DataAddons. The InputAddon is responsible to
add the data addons to the model.
The duty of the DataVisualMapping is to translate data addons to visual addons, as
it contains all the rules for visualizing the elements of the model. Each data addon

CHAPTER 5. MODEL AND FRAMEWORK 26

Figure 5.2: Framework architecture

type can be mapped to zero or one visual addon type; arbitrary many different data
addon types can be mapped to the same visual addon types. Each property of a
data addon type can be mapped to zero or more properties of the visual addon type
to which the data addon type is mapped. A property of a visual addon type can
be mapped to zero or one property of its data addon type. The mapping between
properties needs, as an additional information, to know about the conversion addon
to use. Only then a conversion from the data addon property’s data type to the
visual addon property’s data type can be done. Each mapping from one data addon
to a visual addon (including their property mappings) is stored in one Entry. The
DataVisualMapping contains a list of Entries and the logic to access them easily.
Speaking about our file system example from the previous section, we can think
of visualizing files as Boxes, and directories as Spheres. Next, the size of a file is
mapped to the width, height, and length of its box. We assume that our fictional
visual addon Box has those three properties, and we know that the data addon File
has a property size. Moreover we could map the directory’s name to the sphere’s
color. Here we assume the existence of a property color in the visual addon Sphere
and a conversion addon that converts a string to a color by discretely selecting
different colors from a color table for every distinct string.

CHAPTER 5. MODEL AND FRAMEWORK 27

The GraphCanvas is the part of the framework, where the visualization takes place.
It contains a Canvas3D object (see Section 4.4) and a virtual universe, including
the root of the scene graph, a default view, default background, and default light
sources. All those settings can be accessed and changed to suit custom needs. It is
aware of the mappings and the data model. Using this information it creates the
visual objects on the canvas. It can also call the layout addon’s calculate()
method, which lays out the graph.
The concepts of a graph canvas and visual addons are taken from Kerren et
al. [KBK04]. In their work they focused on visualizing data from a pattern recogni-
tion algorithm. The differences in the problem domains and the similarities in the
technical realization demonstrate the genericness of our framework.

5.5 Implementation

This section explains the implementation of the framework. We try to explain the
significant parts to ease the understanding of the whole program constructs. A com-
plete documentation of the implementation is given in the Javadoc documentation.

5.5.1 General Structure

The whole work is developed in Java with Eclipse [Ecl08]. That’s why it is divided
into several Eclipse projects. The main functionality lies in j3dvn. The integration
into Eclipse is done with an Eclipse plug-in. This plug-in was developed in the
j3dvneclipse project. The complete framework is implemented in those two projects,
j3dnv and j3dvneclipse. Preexisting addons are provided to the framework, but are
not part of it. A bunch of addons exist in the addoncollection project. Figure 5.3
shows how the different technologies are interconnected.

5.5.2 Project j3dvn

The framework consists of three packages: model, view, and control.

The control package

The package at.ac.tuwien.j3dvn.control contains abstract addons and
connectors, plus the super-classes (or -interfaces) for input addons. Together with
additional utility classes, this makes up the infrastructure to work with addons.

Addon This is the super-interface of all addons. Only one of the direct sub-
interfaces (ConversionAddon, DataAddon, InputAddon, LayoutAddon, or
VisualAddon) are meant to be implemented, but not Addon itself.

CHAPTER 5. MODEL AND FRAMEWORK 28

Figure 5.3: Structure and dependency of implemented projects

Connector This interface is the parent for all other connectors. Addons are ac-
cessed through connectors. The task of a connector is to keep as much programming
logic as possible away from an addon, so the development of addons becomes as easy
as possible.
Connectors themselves are again interfaces and not classes. This is to avoid possible
cyclic dependencies of classes.
Connector interfaces are not meant to be implemented. Instead, there are internal
classes, which implement this interface, and sub-interfaces of Connector, respec-
tively. These classes are created and returned by the AddonManager class.
This interface has, among others, a method getAddon() that returns the ad-
don, which is connected to this connector. Every connector interface, which ex-
tends Connector overrides this method as the return types differ. The method
of the extended interface will return a type, which extends Addon. For ex-
ample the getAddon() method of the InputConnector interface returns an
InputAddon, while the LayoutConnector interface’s getAddon() method
returns a LayoutAddon.

ConversionAddon This interface provides a way to make a conversion of values
from one type to another type. This can be used, for example, to map a numerical
value to a color value. One other example is show in Listing 5.2.

ConversionAddon<Integer, String> numberEvaluator =
new ConversionAddon<Integer, String>() {
public String convert(Integer value) {

CHAPTER 5. MODEL AND FRAMEWORK 29

if (value < 0) return "That’s negative";
else if (value < 10) return "Quite a small number";
else if (value < 100) return "A pretty ok number";
else if (value < 1000) return "A rather big number";
else if (value < 10000) return "It’s huge";
else return "Way too big!";

}
public String getName() {

return "Simple Number Evaluator";
}

}

Listing 5.2: Example of a conversion addon

When looking at the declaration of this interface, you can see that there is a generic
input type I, which must be a Comparable, and a generic output type O. Its
convert() method does the mapping (i.e. conversion) from input data to output
data.

InputAddon To create a new input addon, you have to implement this interface.
Basically there exists the open() method, which opens a file and reads in (the first
couple of or all) data.

ConversionConnector This interface is a connector for a conversion addon.
There is no other characteristic of this interface.

DataConnector This is the parent interface for EntityConnector and
RelationConnector.

EntityConnector This sort of connector is used to connect to entities.

RelationConnector This is a connector for relations. It contains methods to
access the two entities of its relation.

InputConnector A connector for input addons. Just like InputAddon it has
the method open(). Additionally it contains a method getModel(), which re-
turns the Model that is associated to the connector’s input addon.

LayoutConnector A connector for layout addons. The layout addon is re-
sponsible for calculating the layout of the visualization. The connector calls the
calculate() method of the addon in a separate thread, so the layout calculation
(which can take quite some time) can run in the background. When creating a
layout addon, you don’t need to be bothered with thread programming.

CHAPTER 5. MODEL AND FRAMEWORK 30

VisualConnector A connector for a visual addon. The internal implementation
is marked as private and is thus hidden from outside. Instances of this pri-
vate implemented class are created by the AddonManager whenever a new visual
connector is created either as a visual entity or as a visual relation. This implemen-
tation provides ”pseudo” properties, which can be applied to any visual addon. So
they don’t have to be implemented when creating an addon. These properties are
listed in Table 5.1.

Name Type Description

height Double Height of the visual element.
length Double Length of the visual element.
title String A text, which will appear next to the visual ele-

ment. The text will always face the viewer’s posi-
tion, regardless of any rotation.

width Double Width of the visual element.

Table 5.1: Pre-implemented properties of the internal VisualConnector imple-
mentation

IProperty This interface is a wrapper interface for accessing data. This is done
through its setValue() and getValue() methods. An example of how to use
and implement this interface can be seen in Listing 5.3 on page 32.

AddonManager The AddonManager is a class, which has all the necessary
information to work with the available addons. Addon classes get registered in this
class (via the registerAddonClass() method). The relationship between the
addon manager, connectors, and addons is described in Figure 5.4.
Implementations of the connector interfaces keep a reference to the addon manager
to access information about addons. The addon manager is implemented as a
singleton. To access this central instance, the static method getInstance() has
to be called.
The overloaded method createConnector() creates a connector for an addon as
a wrapper and returns that connector. It takes one parameter. Depending on that
parameter it has different return types. Table 5.2 shows the return types depending
on the parameter types of this method. Please note that the table has no entry for
a VisualAddon parameter type. The reason for this is that a visual addon can
either be a visual entity or a visual relation. So, to create a visual entity connector,
you cannot call the method createConnector(). Instead, you have to call the
separate method createVisualEntityConnector(). In the same way you
have to call createVisualRelationConnector() to create a visual relation
connector.

CHAPTER 5. MODEL AND FRAMEWORK 31

Figure 5.4: Relationship between addon manager, connectors, and addons

Parameter Type Return Type

ConversionAddon ConversionConnector
Entity EntityConnector
InputAddon InputConnector
LayoutAddon LayoutConnector
Relation RelationConnector

Table 5.2: Parameter types and return types of the createConnector() method
of the AddonManager class

AddonManager.Descriptor This nested class is used to store information of
addons and their names. It is also used to instantiate addons. There are
three important methods: getName() returns the name of the addon as a
string, getAddonClass() returns the class of the addon (so the return type
is Class<T>), and newInstance(), which instantiates a new addon (the return
type of the method is T).

DataVisualMapping This class provides a conversion between data addon types
and visual addon types and between their properties.
The conversion between visual addon type and data addon type is a 1:n-relation,
i.e. 1 visual addon type can be mapped to n data addon types. The conversion
between properties is a 1:n-relation in the other direction: 1 property of a data
addon type can be mapped to n properties of a visual addon type. For example,
when trying to visualize a class hierarchy of an application, there could be two data
addon types, Package and Class, and two visual addon types, Cube and Pyramid.

CHAPTER 5. MODEL AND FRAMEWORK 32

The mapping could look like this: Packages are visualized by Cubes, while Classes
are visualized by Pyramids. It is also possible to visualize both, Package and Class,
by Cubes. However, it is not possible to visualize some Packages by Cubes and
other Packages by Pyramids. Suppose the size and method count of a Class are
properties of that data addon, and width and transparency are properties of the
visual addon Cube. There can be a mapping from size of Class to width of Cube.
Additionally, there can be a mapping from size of Class to transparency of Cube.
However, there cannot be a mapping from size of Class to width of Cube, while at
the same time there is a mapping from method count of Class to width of Cube.

DataVisualMapping.Entry This class stores one mapping between a data ad-
don and a visual addon. It is aware of its outer class (DataVisualMapping),
and it notifies other objects, whenever entries are changing. Its constructor takes
two AddonManager.Descriptor instances, which describe the data and visual
addon. It contains access methods to change the addons of the mapping and also
to add and remove property conversions to the mapping.

Property This annotation is used to mark a property of an addon. A property
is defined by adding the annotation Property to a public method, which returns
an instance of type IProperty.

@Property("Color") public IProperty<Color> getColour()
{return pColor;}

private Color fColor;
private IProperty<Color> pColor = new IProperty<Color>() {

public Color getValue() {return fColor;}
public void setValue(Color color) {pColor = color;}

}

Listing 5.3: Example of an implementation of an addon’s property

For example there could be a property for changing and retrieving the color of a
visual object. The implementation of the IProperty interface usually happens
through an anonymous inner class. A full implementation of our example could
look like it is shown in Listing 5.3. pColor is an implemented IProperty, while
fColor stores the actual value of the property. pColor is a wrapper for accessing
fColor. As a result, the concept of properties - known in other programming
languages - is added to Java.

MappingListener A mapping listener registers with a DataVisualMapping
object. This interface defines methods, which are called after a new mapping entry
or a property mapping has been added, removed, or changed.

CHAPTER 5. MODEL AND FRAMEWORK 33

PropertyChangeListener This interface defines the propertyChanged()
method, which is called whenever the value of any property from an addon
is changed. The caller is a Connector object. The parameters of the
propertyChanged() method are displayed in Table 5.3.

Parameter Name Parameter Type

sender Connector
propertyName String
oldValue T
newValue T

Table 5.3: Parameters of the propertyChanged() method of the
PropertyChangeListener interface

The model package

The package at.ac.tuwien.j3dvn.model contains data addon interfaces and
the Model class, which keeps the data addons together.

DataAddon This is a direct descendant of Addon. It is the super-interface for all
data addons. A data addon is a class, which describes an element of a data model.
A data addon object has a name, a list of properties, and belongs to maximal one
model. This interface itself has no own methods, but it exists because of inheritance
purposes because the interfaces Entity and Relation extend this interface. So,
a class should not implement the DataAddon interface, but rather one of its two
descendants, Entity or Relation.
Data addons differ from other addon types in the way that properties of data addons
needs not only be of type Object, but they must implement the Comparable
interface. This restriction exists, since properties of data addons are used as input
values for conversion addons.

Entity The Entity data addon represents a data entity. Since we are working
with a graph based model paradigm, we can say that entities are the nodes of a
graph.

Relation The Relation data addon is the second type of data addon. It repre-
sents a relation between two entities. In a graph the relations are the edges between
the nodes. Two entities get connected by a relation by calling the setEntity1()
and setEntity2() methods of the Relation interface.

Model A model is a data structure, which holds all information of a data model.
It consists of two different units: entities and relations. Both can contain all kinds

CHAPTER 5. MODEL AND FRAMEWORK 34

of data. The difference is that entities are connected to other entities through
relations. An entity can have any number (or zero) of relations. A relation is
always bidirectional.

The view package

The package at.ac.tuwien.j3dvn.view contains visual addon interfaces and
classes to visualize and navigate the data model.

LayoutAddon A layout addon is responsible for creating the graph layout. The
main functionality lies in its calculate() method, where the layout algorithm is
executed.
The graph model may contain different types of edges. The layout algorithm
may consider one type of edges (the ”main relation”) for its calculation. The
setEdgeType() method sets that relation type.

VisualAddon A visual addon is a class, which implements the VisualAddon
interface and holds any kind and number of 3D elements, which are connected
through one scene graph. The root element of this scene graph must be a Group
(this is a Java 3D class), to which there is direct access via the getGroup()
method.

VisualEntityConnector The interfaces VisualEntityConnector and
VisualRelationConnector are the only connectors not stored in the con-
trol package (Section 5.5.2). Just like the Entity addon this connector also
doesn’t have any special methods.

VisualRelationConnector This connector is a wrapper for a visualization of a
relation. Via the methods getEntity1(), getEntity2(), setEntity1(),
and setEntity2() the connectors of the two entities, which are connected
through this relation, can be accessed.

GraphCanvas This is the class, where visualization actually takes place. It con-
tains a Canvas3D object, on which all 3D objects are painted. Furthermore, this
class contains the method setModel() to set the model to assign a reference to the
existing data elements. The method setDataVisualMapping() sets the map-
ping rules between data addons and visual addons. Another important method is
calculate(), which calls the calculate() method of the assigned layout con-
nector. Besides these, there are additional methods to customize the visualization,
for example to add lights or a background image.

CHAPTER 5. MODEL AND FRAMEWORK 35

Position This class is needed by the layout addon. Its constructor method expects
a VisualEntityConnector variable, from which the position is retrieved and
stored in the public variables x, y, and z. It stores a reference of the connector in the
public variable entity. Layout addons will adjust the x, y, and z variables. This
class has a synchronized method adjustEntity(), which will set the position
of entity to its own values. This happens after the layout addon completed its
calculation.

Figure 5.5: Activity diagram of the createPartControl() method of
Graph3DEditor

LayoutEventListener This interface has one method: layoutCompleted(),
which has one parameter of type Collection<Position> and a void return
type. A layout event listener registers with a LayoutConnector. After a layout
calculation the layout connector calls the layoutCompleted() method.

CHAPTER 5. MODEL AND FRAMEWORK 36

5.5.3 Project j3dvneclipse

This project is responsible to work with the Eclipse platform. Its main package is
at.ac.tuwien.j3dvneclipse, which has additional sub packages. It contains
dialogs to set mappings between data elements and visual elements. Particularly,
it contains an editor window, Graph3DEditor, with which the 3D graphs are
visualized. In its createPartControl() method the configuration file is loaded,
and the visualization is created.

Name Default Description

attraction
exponent

1.5 Exponent of the distance in the attraction energy.
Is 1.0 in the LinLog model (which is used for com-
puting clusters, i.e. dense subgraphs), and 3.0 in
standard energy model of Fruchterman and Rein-
gold [FR91]. Must be greater than 0.

repulsion
exponent

0.1 Exponent of the distance in the repulsion energy.
Exception: The value 0 corresponds to logarith-
mic repulsion. Is 0 in both the LinLog and the
Fruchterman-Reingold energy model. Negative val-
ues are permitted.

gravity factor 2 Factor for the gravitation energy. Gravitation at-
tracts each node to the barycenter of all nodes, to
prevent distances between unconnected graph com-
ponents from approaching infinity. A value of 0 can
be used only if the graph is guaranteed to be con-
nected.

Table 5.4: Properties of the LinLog addon

Figure 5.5 shows the activity diagram of this method. The first activity is to read the
content of the input file, which is an XML document1. Its content is validated and
parsed. After that, the type of input addon is retrieved. The input type information
is provided as the name attribute of the input tag in the input file. By using
the AddonManager a new input addon of desired type is created. To be precise,
additionally an input connector is created, of which the input addon is a part. Then,
the input addon is opened by calling the connector’s open() method. This method
reads and sets the input addon’s properties and finally calls the input addon’s
open() method. After that a GraphCanvas object and DataVisualMapping
object are created. The model, which was populated in the input addon’s open()
method is retrieved and the mapping object is initialized with this model. During
that initialization process all data types which exist in the model are mapped to
null. After that, the actual mapping information is retrieved. This can be set
initially in an input file, so it doesn’t have to be manually done each time the

1For the correct syntax of the input file please refer to the its schema in Appendix A.

CHAPTER 5. MODEL AND FRAMEWORK 37

visualization is created. Nevertheless, it can be changed at any time while the
visualization is open. The next step is to create the layout addon as specified in the
input file. Then, additional visualization parameters, such as custom light sources
or background images, are read from the input file and set to the graph canvas.
After this, everything can be connected to the graph canvas: the mapping object,
the model, and the layout addon. As the next step, the layout() method of the
GraphCanvas can be called, which in turn executes the calculation of the layout
addon. As a last step the graph canvas can be put onto the editor window. This
is done by creating an SWT_AWT bridge that allows creating AWT objects within a
SWT Frame.

5.5.4 Project addoncollection

This project is not part of the framework but a contribution to it. Its main package
is at.ac.tuwien.j3dvnaddoncollection. It contains a couple of general
addons, which make it easy to start working with the framework.

Name Type Exists In Description

color Color3f Cube,
Cylinder,
Sphere

Color of the element. Note that
the type of the property is not
a Color from the AWT package,
but Color3f, a Java 3D class.

transparency Double Cube,
Cylinder,
Sphere

Transparency level of the visual el-
ement. A value of 0 makes the ele-
ment solid, while 1 makes it invisi-
ble.

thickness Double Cylinder The thickness of the cylinder.
Cylinders are commonly used to
visualize relations between two
nodes. In such cases the length
of the element will be calcu-
lated automatically, so that the
edge touches both of the rela-
tion’s nodes. The thickness can be
used to display larger (thicker) or
smaller (thinner) edges.

Table 5.5: Properties of the visual addons from the addoncollection project

Layout Addons

The addoncollection project provides two layout addons.

CHAPTER 5. MODEL AND FRAMEWORK 38

LinLog This addon uses the LinLog energy model [Noa06] to calculate the layout
of the graph. The energy model specifies good graphs as graphs with little energy,
i.e. basically with short edges. After minimum energy calculations in the LinLog
model, clusters of a graph will be separated. Nodes with high degree2 will be placed
into the center of the graph while nodes with lower degree will be placed on the
outer side.
Several properties can be changed to adjust the layout calculation and thus the
appearance of the graph. These properties are explained in Table 5.4 on page 36.

Random The random layout algorithm is a very basic algorithm, which simply
sets each node to a random position. This addon was added as a very basic proof
of concept. It gives satisfactory results when there are very few (2-3) nodes.

Visual Addons

There are some very basic visual addons, which can be used for visualization. Please
remember that the implementation of VisualConnector provides the ”pseudo”
properties height, length, width, and text, as explained in Table 5.1 on page 30.
The visual addons are Cube, Cylinder, and Sphere. Their implementations are
quite similar. That’s why we won’t explicitly explain them separately. Table 5.5 on
page 37 explains their properties.

2The degree of a node is the number of connected edges of this node.

Chapter 6

Case Studies

To further illustrate the workings of our model, we are providing a case study done
on two open source software projects, ArgoUML and Azureus. By reading the case
example, you should have a clearer understanding of how our model helps to analyze
evolution information. ArgoUML is a leading open source UML modeling tool and
Azureus is a powerful, full-featured, cross-platform bittorrent client. To gather the
required evolution information, we accessed data through the evolizerinput project,
which has been detailed below in Section 6.2.7. Further, due to the nature of the
projects being cited, a time frame of six months was set as a functional parameter
for the analysis of evolution information.

6.1 Foundation

Our research process will introduce you to our framework in the domain of software
evolution and provide you with an overview of how it can be used to gather input
data and visualize it. The steps followed, both evaluate and reveal the basic pro-
cedures. We implemented several addons as a tool which exposed the kind of data
that is retrieved.

6.1.1 Versioning System

All data was gathered from the versioning system CVS. Versioning systems are
used in software projects, where several team members can work on several files
and several versions of a software system. A team member can check out the
files of a software system, make modifications on some of them on his or her local
computer, and commit the modifications in the end to the central store of the
versioning system. The versioning system doesn’t replace the existing files but only
stores the changes made to them together with some additional information such as
author, date and time, lines added, and lines deleted. CVS keeps a log of all that
user (commit) activity. Only by analyzing this log file, it is possible to retrieve the
necessary evolution data.

39

CHAPTER 6. CASE STUDIES 40

RCS file: /cvsroot/azureus/azureus2/com/aelitis/azureus/\
core/AzureusCoreException.java,v
Working file: com/aelitis/azureus/core/\
AzureusCoreException.java
head: 1.3
branch:
locks: strict
access list:
keyword substitution: kv
total revisions: 3; selected revisions: 3
description:

revision 1.3
date: 2006/02/10 03:43:09; author: tuxpaper; \
state: Exp; lines: +2 -2
Copyright and Licensing mass update

revision 1.2
date: 2004/07/17 20:28:50; author: parg; state: Exp; \
lines: +1 -1
bit of refactoring

revision 1.1
date: 2004/07/13 08:19:19; author: parg; state: Exp;
started work on core abstraction
==

Listing 6.1: Snippet of log file of Azureus source tree

Listing 6.1 shows the log file information of one single file (in that case namely
AzureusCoreException.java) of the Azureus project1. This is a typical section of a
CVS log file. Each section ends with a line of equal characters (’=’). Not all the
information of a section is taken into consideration, but only the following fields are
retrieved:

• RCS file: The value of this field identifies the file in the CVS repository. From
this information the file name and path can be obtained.

• branch: The branch information is stored here.

• description: Lists the modifications of the file. Every commit creates a new
revision. Each revision entry starts with a line of minus characters (’-’). After
that the following information is recorded:

1For layout reasons we word wrapped the file content. We marked a soft return with the
backslash character (’\’). These characters are not actually part of the file contents.

CHAPTER 6. CASE STUDIES 41

– revision: The revision number identifies the revision of the file. After
every commit the (minor) revision number is incremented by one.

– date: Date and time of the commit are stored in this field.

– author : This field contains the name of the author who made the mod-
ification. An example of this can be found in Listing 6.1, where two
authors (parg and tuxpaper) had worked on the file.

– state: This field contains the state of a file. Its value is usually Exp (for
experimental). If the file is deleted, the state changes to dead.

– lines : The numbers of added and deleted lines are stored in this field.
The first revision doesn’t contain this field, and also the number of lines
that were modified cannot be seen.

– comments : The previous revision fields are stored in the first two lines
of a revision entry. The remaining lines make up the comment of the
revision. A comment of a revision is in no way unique as single revisions
don’t have comments. During one commit transaction several files are
committed. Each of those files gets a new revision. And each of those
new revisions gets the same commit message, which is a textual comment
by the author.

6.1.2 Evolution Metrics

To analyze evolution of a software project the following evolution metrics were
extracted:

• Lines added : The number of added lines gives an estimate of the extent of
changes.

• Lines deleted : The number of deleted lines reflect a certain aspect of clean-up
mentality. Code, which isn’t in use any longer, may be deleted from the source
code, thus reducing the number of lines in a file.

• Lines changed : As we pointed out before, the number of changed lines can-
not be determined exactly. Instead, it is only estimated by computing the
minimum of lines added and lines deleted.

• Authors : The number of different authors, who work on a single file, will
possibly influence the bug count in this file.

• Bugs : The number of bugs tells us how many bugs were found in a file.

• Refactorings : Just like lines changed, the number of refactorings is a fuzzy
metric, which is computed by analyzing the commit messages.

CHAPTER 6. CASE STUDIES 42

• Revisions : The number of revisions is a metric, which can change heavily over
time, since development usually concentrates only on some modules. During
the period, where a file is committed very often, the bugs in that file might
increase.

• Different commit messages : The number of different commit messages might
be a valuable metric to get a better idea of the number of issues of a file.
For example, there might be several consecutive commit messages, which say
”Updated search algorithm.” This updated search algorithm might be so
complicated that an author worked on it for several days. Each day the
author commits the changes made to the source code and each day writes this
same commit message. In the end, after several revisions, there was actually
only one big change.

• Change coupling : Change coupling is defined as follows [RSVG07]:

Two entities (e.g. files) are coupled, if a modification to the
implementation affected both entities. The intensity of coupling be-
tween two entities a and b can be determined easily by counting all
log groups where a and b are members of the same transaction, i.e.
C = {〈a, b〉 |a, b ∈ Tn} is the set of change coupling and |C| is the
intensity of coupling.

There is great variability in using CVS as a versioning system. But basically, even
with the diversity that there is, there are some limitations. One disadvantage of
CVS is the inability to record the process of renaming or moving of a file. For
example, a Java class may be moved to another package or the name gets altered
during refactoring. Unfortunately, this kind of refactoring cannot be recognized
automatically. Instead, we would have to rely on the comments of the authors
who made the refactorings. Another point that is worthy to note is that when
modifying one line of a file in CVS means deleting one line and adding another one.
An example of this can be found in Listing 6.1 on page 40, where we can assume
that in revision 2 one single line and in revision 3 two lines were modified. Though
these are some of the problems associated with using CVS, it has proved to be a
very useful tool in gathering evolution information.

6.2 Methodology

In this section, the emphasis will be mainly on how input data is handled.

CHAPTER 6. CASE STUDIES 43

6.2.1 Data Extraction into Database

From the CVS server a full log file, including all the entries of the main branch only,
is retrieved. The log file contains all the information we need (see Section 6.1.1.
Then, the log file is parsed and the following information is extracted:

• file name

• path

• revision number

• date and time

• author name

• lines added and deleted

• comments (i.e. commit message)

As we pointed out in Section 6.1.1, the log entry of the first revision of a file in CVS
doesn’t contain the number of added lines. For this reason, we are not able to get
the size of a file. What we get though, is the number of added and deleted lines.
Since we want to find out about changes in a file, the absolute number of lines is
not necessarily important for our purposes.
The data from the log file is written into an SQL database.

Figure 6.1: Time periods for analysis

6.2.2 Computation of Logical Coupling

The definition of change coupling (see Section 6.1.2) says that two files are coupled
if a modification to the implementation affected both files. That means a coupling
exists between two files if the two files were modified by one author and written back
in one single commit transaction. To compute change coupling, the existing data
information on the file revisions that were created within the same commit trans-
action is essential. Unfortunately, as stated earlier, we don’t have this information
and CVS does not support us in that aspect.

CHAPTER 6. CASE STUDIES 44

Metric Visual Attribute

Number of authors Length of cube (x axis)
Number of bugs Color of cube
Number of different commit messages Width of cube (y axis)
Name of class Title of cube
Number of refactorings Height of class (z axis)
Change coupling between two classes Thickness of connecting edge

Table 6.1: Mapping from metrics to visual attributes

In spite of this disadvantage, we want to make a point that it is possible to recreate
the information about commit transactions. One commit transaction takes a rea-
sonable amount of time, usually several seconds or minutes. Each committed file
of such a transaction gets a new file revision along with a revision date and time.
So, different revisions of the same transaction will have different revision times. In
addition to this, each revision of the same transaction will have the same author
and the same comments (i.e. commit message). At the most, there can be one
revision of each file per transaction.
Supposing that each transaction lasts 60 seconds, all the revisions within that time
period that have the same author and commit message are considered to have
happened within the same transaction. If another 60 seconds are provided, we can
search for revisions within that new time frame with the same author and commit
message. Those revisions can then be added to the transaction again. This can be
done until there isn’t a single revision to add. Though this procedure takes time,
in the end it enables us to reconstruct the transaction entirely. This paves the way
for us to advance towards the next step of determining change coupling.
To compute change coupling between two files within a specified time period, we
first need to collect all the revisions of the first file, which have a revision time
within the specified period. For each of these revisions, we find out if a revision
exists of the second file in the respective transaction. If yes, we can proceed to
increase change coupling by one2.

6.2.3 Identifying Refactorings and Bugs

Determined only by using heuristics, refactorings can be identified within the com-
mit messages. For example, a modification to a file is probably a refactoring if
its commit message contains the word ”refactor.” However, it is probably not a
refactoring if it contains the term ”ready for refactoring.” Generally, around 20
different SQL queries are used to identify refactoring out of the commit messages.
The method of identifying refactoring is taken from Ratzinger et al. [RSVG07], who
also proved that this method works sufficiently well.

2We start to count at 0: Change coupling of two files is 0, if no single transaction exists, which
contains revisions of both of the two files.

CHAPTER 6. CASE STUDIES 45

Name Type Description

bugfix delay Integer Specifies the bug fix delay, which is used to shift
the bug fix time period away from the time period
of interest. See Section 6.2.4.

dialect String The SQL dialect of the database. This
is Hibernate [RHM08] specific. For example
org.hibernate.dialect.PostgreSQLDialect.

driver class String Specifies, which driver class to use to access the
database. For example org.postgresql.Driver.

end date Date End date of the time period of interest.
file extension String This filter criteria is used to only look up files with

the specified file extension, for example java.
minimal
coupling

Integer Another filter criteria, which is used to only re-
trieve classes, which have a change coupling of
minimal coupling or higher with other classes.

minimal number
of bugs

Integer This filter criteria is used to reduce the retrieved
classes to only show classes, which have at least
minimal number of bugs bugs.

password String The password to access the database.
start date Date Start date of the time period of interest.
url String The URL to the location of the database.
username String The username to access the database.

Table 6.2: Properties of the Evolizer addon

In the same way, bug fixes are identified, as we look at words like ”fix,” ”correct,”
”problem,” ”workaround” and so on. We can assume that, per bug there is approx-
imately one bug fix. So, it is possible to estimate the number of bugs by looking at
the number of bug fixes.
A more precise way to identify bugs would be to gather additional data from a bug
tracking system. However, this complicates the process of retrieving input data as
it would be essential to have the log file of the versioning system and have access
to a bug tracking system. Besides, this would be achievable only if the software
project of interest uses a bug tracking system.

6.2.4 Time periods for Analysis

There is value in maintaining time periods for developing accurate results on data
analysis. A wider period gives more data, but reduces dynamic relations between
data. A shorter period reduces the overall amount of analyzed data but shows
better relation between data.
For example, keeping a time period for the coding of bug fixes will lend quality
to the analysis when deducing the number of bugs by counting the number of bug

CHAPTER 6. CASE STUDIES 46

Name Type Description

authors Integer The number of different authors who have worked
on this class during the time period of interest.

bugs Integer The number of bugs, which crept into this class
during the time period of interest. As we stated
before, this is estimation. To be more precise, the
value of this property specifies the number of (de-
tected) bug fixes, which happened during the bug
fix time period.

commit mes-
sages

Integer The number of different commit messages of trans-
actions, which include revisions of this class file
during the time period of interest.

lines changed Integer The number of lines that have been changed
within the time period of interest. This is the
minimum of lines added and lines deleted.

name String The name of this class. This is the file name of
the class file without path and extension.

package String The name of the package of this class. This infor-
mation is taken from the path of the file.

refactorings Integer The number of refactorings on this class during
the time period of interest.

revisions Integer This property informs us about the number of
times this class has been revised during the time
period of interest.

Table 6.3: Properties of the EvoClass addon

fixes. In Figure 6.1 on page 43, we list the scheme of the time periods we are dealing
with. The top line shows the time period of interest. For a period of six months, we
collected all metrics except number of bug fixes. The bug fix time period is delayed
by the bug fix delay3. By setting the bug fix delay to 60 days, the most significant
results could be achieved.

6.2.5 Filtering of Data

It is highly important to filter out irrelevant data for data analysis. In the version
control system, there can be all kinds of files (text files, images, spreadsheets, etc.)
that might reflect the evolution of a software system, but our primary concern is
with the source code files that we consider as the relevant data. For classes to be
included in the analysis they must have a minimal number of bugs and a minimal

3The bug fix delay period (the dashed line in the figure) itself is actually no period that is
investigated. Only the bug fix delay itself, which is the length of the bug fix delay period, is of
importance.

CHAPTER 6. CASE STUDIES 47

Name Type Description

coupling Integer This property represents the change coupling be-
tween the two entities of this relation within the
time period of interest.

Table 6.4: Property of the Coupling addon

number of change couplings between each other. In our case studies, we use filter
values for the minimal number of bugs between 3 and 5, and we chose minimal
numbers of change couplings between 4 and 6.

6.2.6 Visualization Approach

After filtering out irrelevant data, we represented the remaining interesting classes
as cubes and coupling between two classes as edges, where each edge connects two
cubes. The visual addons (cube, edge) are taken from our addoncollection (Cube,
Cylinder, see Section 5.5.4). For every visualization we use the same metrics.
The mapping from metrics to visual attributes can be seen in Table 6.14.

6.2.7 Implementation

For the realization of our approach some addons were contributed to our framework.
This happened in the evolizerinput project. There, we needed two data addons,
EvoClass (for the class entities) and Coupling (for the relation between them),
and an input addon, Evolizer.
The evolizerinput project is built on top of the Evolizerplatform [RPG07].

Evolizer

This input addon uses the Evolizer platform to access a database, where the source
data is stored. This database must have been prepared in an earlier stage (see the
previous Sections 6.2.1, 6.2.2, and 6.2.3). It creates the data addons EvoClass and
Coupling and fills the assigned model with those data elements. See Section 5.3
for general information on the data model.
Table 6.2 on page 45 explains the properties of this addon.

EvoClass

This Entity represents one class file containing metrics of the software evolution
domain. The Evolizer input plug-in creates instances of EvoClass. Table 6.3
shows the properties of this addon.

4The higher the number of bugs the brighter the color.

CHAPTER 6. CASE STUDIES 48

Figure 6.2: ArgoUML, min bugs=4, min coupling=6, period = 07.2003 - 12.2003

Coupling

This Relation represents the change coupling between two EvoClass addons.
It has only one single property, which is described in Table 6.4. The two entities of
this relation are the two EvoClass entities.

6.3 ArgoUML

ArgoUML [Arg08] is a UML modeling tool written in Java. Being under develop-
ment since 1998, around 40 different authors have worked on approximately 4.400
java source files. This makes ArgoUML an interesting software project for anal-
ysis. To begin with, we analyzed its evolution data between 2003 and 2005. For
filtering input data, we used three different criteria, namely data, number of bugs,
and number of coupling. To achieve accurate results, we maintained a time period
that covered classes with at least four bugs and that had a coupling of at least six.
Figures 6.2 to 6.8 show the graphs for the whole analyzed period.

CHAPTER 6. CASE STUDIES 49

Figure 6.3: ArgoUML, min bugs=4, min coupling=6, period = 01.2004 - 06.2004

Figure 6.2 discloses that there is one problematic class, i.e., ModelFacade. The work
of many authors on it resulted in lots of changes (refactorings and different commit
messages), and many bugs.
The next period (01.2004 - 06.2004, Figure 6.3) shows very little activity. It could
mean that there are only a few couplings and bugs, or more likely, no activity at
all.
To get a better visualization of those two classes, we decided to implement a different
layout algorithm. We quickly discovered that the LinLog algorithm didn’t work well
in those two classes. To overcome this, a random layout algorithm was chosen to set
every node onto a random position in space. Usually this random layout algorithm
would not be considered a very practical tool, but in this instance it proved to be
successful by becoming the first (prototype) implementation of a LayoutAddon.
Figure 6.4 (07.2004 - 12.2004) shows a period of excessive work. Apart from dis-
playing a lot of activity, the particulars of the graph are ambiguous. Presented
with the dilemma of either changing our filter parameters or taking smaller snap-
shots, we decided to take the smaller snapshots approach. The time period was
divided into two separate time intervals - the first one from 07.2004 to 09.2004 and
the second one from 10.2004 to 12.2004. This served to reduce a lot of coupling
between classes. This reduction is so significant that the number of details can be
increased substantially. Our response was to decrease the filter to show classes with
a minimum bug count of 3 and a minimal coupling of 4.
Figures 6.5 and 6.6 on pages 51 and 52 throw some light on the results. There,
we have clustered graphs. In fact, such groupings are very appropriate as it sepa-
rates possible sub-projects. Especially Figure 6.6 is a good example for that: The
PropPanel... as well as the Action... classes are clustered altogether.
In Figure 6.7 and 6.8 on pages 53 and 54 the evolution information for the year 2005
is presented. It reveals FigClass as being problematic when it comes to the number
of bugs. Additionally, the number of refactorings in both the periods is high. The

CHAPTER 6. CASE STUDIES 50

Figure 6.4: ArgoUML, min bugs=4, min coupling=6, period = 07.2004 - 12.2004

other dimensions (number of authors, number of different commit messages) are
also broad with a lot of activity present in this class.
As the name denotes, the class with the highest possibilities of coupling with many
other classes is FigNodeModelElement. Not only having an exceptionally high num-
ber of different commit messages in both time periods, this class also records a high
number of authors and refactorings. In this part of the graph, in the interval from
07.2005 to 12.2005, the bug rate is by far the highest among all the classes.

6.4 Azureus

Azureus [Azu08] is a popular BitTorrent client written in Java. The project started
in 2003. Since then 25 authors have worked on it. The project contains approxi-
mately 2800 java files. The time period in which we analyzed its evolution data was
from 2003 to 2006. We set the minimal bug count for each class to five, and the

CHAPTER 6. CASE STUDIES 51

Figure 6.5: ArgoUML, min bugs=3, min coupling=4, period = 07.2004 - 09.2004

minimal coupling of two classes to five as well. Figures 6.9 to 6.15 show snapshots
of the project in the analyzed time period.
Figure 6.9 on page 55 shows the first six months of the project. One class that
catches your eye is MainWindow. A huge coupling exists between MainWindow and
ConfigView, and also between MainWindow and MyTorrentsView. The number of
different commit messages is notably high in the MainWindow class, compared to
the other classes in the graph. The bug count for that class is also very high.
DiskManagerImpl has quite a high number of bugs as well, and a huge number of
refactorings.
In the next time period (01.2004 to 06.2004, Figure 6.10, page 56) some more
refactorings took place in the DiskManagerImpl class. This time, though, more
interesting is the high number of bugs and the high number of different commit
messages.
There are a couple of other classes/cubes with similar evolutionary data/shape and
color. A handy feature of the LinLog layout algorithm is that the nodes with a
high degree, like MyTorrentsView will be placed in the center of the graph. The
connected edges of the cube denote that coupling exists with many other classes.
Figure 6.11 on page 57 gives the same impression: DiskManagerImpl is tightly
coupled with many other classes.
The highest coupling can be seen between the two classes CacheFileImpl and
CacheFileManagerImpl. Since those two nodes themselves are very small in ev-
ery dimension, the coupling is emphasized. Interestingly, the number of different
commit messages is low. However, the actual number of revisions, in which the
classes were changed, cannot be seen in the graph. Any node in the graph can be
clicked to see all its properties in a textual way. The following facts are visible:

CHAPTER 6. CASE STUDIES 52

Figure 6.6: ArgoUML, min bugs=3, min coupling=4, period = 10.2004 - 12.2004

CHAPTER 6. CASE STUDIES 53

Figure 6.7: ArgoUML, min bugs=4, min coupling=6, period = 01.2005 - 06.2005

CHAPTER 6. CASE STUDIES 54

Figure 6.8: ArgoUML, min bugs=4, min coupling=6, period = 07.2005 - 12.2005

• CacheFileImpl has been changed in 41 revisions.

• CacheFileManagerImpl has been changed in 35 revisions.

• There are 25 revisions where both classes were changed at the same time.

These facts tell us that in 71% (or for CacheFileManagerImpl 61%, respectively) of
the changes on one class the other class was changed as well. The visualized graph
gives us an easy understanding of these high relative numbers.
The same effect can be seen in Figure 6.12 (01.2005 - 06.2005, page 58) for the classes
DHTControlImpl and DHTTransportUDPImpl. Furthermore, only one author is
working on every of the two classes. We assume that it is the same author for both
classes.
In PEPeerTransportProtocol we see many bugs, refactorings, and commits that have
taken place. We can also see heavy coupling with PEPeerControlImpl, another class
with many different commit messages. If we look back at Figure 6.11, we can see
that those two classes had a high number of bugs, refactorings, and commit messages
from earlier on. In Figures 6.12 and 6.13 we come across those two classes having a
lot of activity and a high number of bugs. We have not applied the actual size of a
class in our visualization. Instead, we have dynamic numbers of changes in a certain

CHAPTER 6. CASE STUDIES 55

Figure 6.9: Azureus, min bugs=5, min coupling=5, period = 07.2003 - 12.2003

time interval. In Lanza’s categorization of classes [Lan03], there are patterns, which
may comply with the classes PEPeerControlImpl and PEPeerTransportProtocol :

• A Pulsar class grows and shrinks during its lifetime.

• A White Dwarf is a class which used to be of a certain size, but due to varying
reasons lost the functionality it defined to other classes.

The two classes, PEPeerControlImpl and PEPeerTransportProtocol, change dras-
tically during a long time interval. The nature of the change, i.e., their steady
decrease or increase during the development process is not discernable. They could
be either Pulsarsor White Dwarfs. On exploring the possibility of the classes be-
ing White Dwarfs, where the bug rate mostly decreases over time, we encounter
no decrease in the bug rate. This eliminates the possibility of them being White
Dwarfs. They could also be the opposite of White Dwarfs - normal classes, which
increase steadily. If we then examine the revisions of those classes, we find out
that PEPeerControlImpl grew significantly during that time (which corroborates
the latter assumption), while PEPeerTransportProtocol didn’t have much growth,
which makes it a Pulsar candidate.
The graph of Figure 6.13 on page 59 has the shape of a single ribbon5 (forming
a half-torus). In an ideal ribbon-shaped graph, every node (except the two outer
nodes) is only connected to two other nodes. The presence of a ribbon-shaped graph
signifies that there are not many couplings between classes. Additionally, there is
no sign of a ”god class” as defined by Riel [Rie96] as a class that performs most of
the work, leaving minor details to a collection of trivial classes.

5For the sake of demonstrating the ribbon shape we ignore that there is a lump of nodes
(including DiskManagerImpl) at the one end of the ribbon.

CHAPTER 6. CASE STUDIES 56

Figure 6.10: Azureus, min bugs=5, min coupling=5, period = 01.2004 - 06.2004

Figure 6.14 (01.2006 - 06.2006, page 60) shows a graph with a lot of coupling, i.e.,
the average degree of the nodes is high. In other words, every node is connected
to many other nodes. Due to the nature of the LinLog algorithm such a graph will
have the shape of a Globe.
There is an important point to note about the Test class in this figure. It couples
with many other classes. This should not be taken into consideration, because for
test classes it is a normal behavior to have a high coupling with other classes -
this time speaking of the common definition of coupling in computer science as
defined by Stevens [SMC74]: Coupling is the measure of the strength of association
established by a connection from one module to another.
Figure 6.15 on page 61 shows only little activity. The DownloadManagerImpl class
has experienced many refactorings, commit messages, and bugs. This class is con-
stantly under development. When we look back at the figures of earlier time periods,
we can find this class in almost every graph. Though it is present most of the time,
it is very inconspicuous. It is constantly growing up to some point where it will
possibly be split into several different classes.

CHAPTER 6. CASE STUDIES 57

Figure 6.11: Azureus, min bugs=5, min coupling=5, period = 07.2004 - 12.2004

6.5 Results

Testing several functions of our framework on two software projects, ArgoUML and
Azureus, has proven to be extremely useful. We were able to filter out problem-
atic classes. We could recognize advantages and disadvantages of different layout
algorithms.
Filtering the details out of the graph makes it more comprehensible. Another idea
would be to modify an input addon in a way that it would only insert the top
x nodes into a model. Instead of displaying all classes with a minimum of, say,
four bugs, it would for example display the 15 buggiest classes. This way we could
avoid both too small graphs (like in Figure 6.3) and too big graphs (see Figure 6.4).
But, however, the drawback of such a filter is that two graphs become completely
incomparable.
Problems of color and size of the graph elements exist. Since data of every graph is
normalized, we cannot compare data values of different graph elements. Let’s have
a look at Figures 6.12 and 6.15, for example. In both graphs, there is one single
class with a high number of bugs. In Figure 6.12 it is PEPeerTransportProtocol,

CHAPTER 6. CASE STUDIES 58

Figure 6.12: Azureus, min bugs=5, min coupling=5, period = 01.2005 - 06.2005

in Figure 6.15 DownloadManagerImpl. When comparing those two classes in the
graphs, the reader might get the impression that they have approximately the same
number of bugs. In fact, despite having the same color, PEPeerTransportProtocol
had 19 bugs between 01.2005 and 06.2005, while DownloadManagerImpl had only
9 bugs between 07.2006 and 12.2006. This is a normal occurrence as every graph’s
properties are normalized. The minimum and maximum values of each property of
the elements in a model are applied to the conversion addons for each visualization
property. Due to the fact that every graph has its own model, the extreme values
of the properties of two different graphs differ. We could change this behavior by
manually setting extreme values for properties. This allows for changing the way
the visualizations are normalized. We didn’t do this in our case studies because
we were more interested in temporary evolution. When comparing two graphs, the
important thing to keep in mind is that the visualization uses relative values.
We could find certain patterns in graphs, which help us in understanding the evo-
lution information:

• Clusters : A graph, which is split into several Clusters (we have seen this in
Figure 6.6, is a sign that the project is split into several sub projects, where
classes couple with classes of the same sub project but not with other classes.

CHAPTER 6. CASE STUDIES 59

Figure 6.13: Azureus, min bugs=5, min coupling=5, period = 07.2005 - 12.2005

• Globe: A Globe (see Figure 6.14) is quite the opposite6 of a clustered graph.
Every class couples with every other class of the graph. Speaking of coupling,
this is the exact anti-pattern of how not to develop.

• Ribbon: A graph, where every node (except the two outer nodes) is connected
to exactly two other nodes, forming a ribbon. A ribbon-shaped graph tells us
that there is little coupling between classes.

6.5.1 Comparison of related work

In this section we will compare the abilities of J3DVN with the projects we presented
in Chapter 3. Table 6.5 summarizes the differences between those tools.

2D/3D

2D visualization is possible with almost all the tools. J3DVN and sv3D can achieve
that by simply setting one dimension (either height, length, or width) to 0. Only
with White Coats, 2D visualizations are not possible. Nevertheless, in addition to
its 3D cubic view, it displays textual data.
Only White Coats, sv3d, and J3DVN can create 3D visualizations.

6The exact opposite of a Globe would be a graph without edges. Because only problematic
classes are of interest, usually a filter is applied to only show classes where the coupling is greater
than 0. That’s why in the graphs of our case studies there are no nodes without any edges.

CHAPTER 6. CASE STUDIES 60

Figure 6.14: Azureus, min bugs=5, min coupling=5, period = 01.2006 - 06.2006

Visualization types

Graph-based visualizations are possible with Rigi, SHriMP, GSEE, EvoLens, Mon-
drian, and J3DVN.
Other non-graph based visualizations like lines, rectangles or blocks can be done
with SeeSoft, SeeSys, GSEE, VCN, White Coats, sv3D, Mondrian, and J3DVN.
Comparing J3DVN with Mondrian regarding 2D visualizations, Mondrian has more
possibilities like spectrographs and scatter plots. However, such visualizations could
be realized with J3DVN by creating respective layout algorithms.

Navigation

Simple navigation (zoom and pan; rotate in 3D) is possible with most of the tools.
SeeSoft and SeeSys developed the concept of showing all the information on one
screen. Thus, there is no zooming and panning within those two approaches.
Rigi supports multiple views for navigation. This feature is sometimes considered
as one of its drawbacks, because navigation has to happen by opening one view
after the other. Although it is not the basic way of usage, J3DVN can use multiple
views, since Java 3D allows multiple views in a universe, and since there can be
more than one reference to a model in J3DVN.
SHriMP and EvoLens support a fisheye view - an advantage over J3DVN. They
also know the concept of nested graphs, which does not exist with J3DVN. However,
this can be achieved by creating and using more sophisticated layout addons.

CHAPTER 6. CASE STUDIES 61

Figure 6.15: Azureus, min bugs=5, min coupling=5, period = 07.2006 - 12.2006

White Coats has some techniques that make navigation easier. One is the use of
the reference cube. All information blocks are rendered within that cube. This is
one way of helping the user realize the orientation of the current visualization. This
reference cube is one unique feature of White Coats, which doesn’t exist in J3DVN.
However, it could easily be added to it, because the framework allows access to the
underlying Java 3D universe. There, a wireframe cube could simply be added to
the existing scene graph.
Another technique of White Coats is the horizon, which also helps the user to
orientate within the visualization. Although in J3DVN an image of a virtual horizon
could simply be added as a background image, this would not be the same, because
rotation happens only for the visualized graph, and not for the viewer. The viewer
doesn’t ”fly” around the graph, but he or she turns and pushes it around7. The
orientation aid J3DVN uses a 3D Cartesian coordinate system in the center of the
visualization.
Predefined viewpoints are another navigation aid of White Coats, which can’t be
found in any other tool. J3DVN could easily be extended to have such a feature.
All it needs is to access the underlying Java 3D objects.

7In J3DVN, the user interface metaphor to the real world is not that of a spaceship flying
through the universe. Instead, it is a human sitting on his or her desk, having an object at hand
that consists of many connected nodes, and turning and moving the object around and bringing
it closer to the eyes or further away from them.

CHAPTER 6. CASE STUDIES 62

Genericness

The ability to be used for many different problems (which we call ”genericness”) is
high for Rigi and SHriMP, because both allow the use of a programming language
to adapt to different problem domains.
The genericness of GSEE and J3DVN is also high, because of their framework ar-
chitecture. Functionality can be added easily.
We classify sv3D ’s genericness as medium. It is built as a front-end independent of
its data source. However, the representation abilities are limited.
Mondrian’s abilities to adapt to different problem domains are very high because of
two reasons. One is its framework architecture. The other one is the way it works
directly on the objects, which it visualizes.
The other tools (SeeSoft, SeeSys, VCN, White Coats and EvoLens) are really only
tools and thus tailored to specific problem domains. Their genericness, however, is
low.

Filtering

Filtering possibilities exist in Rigi through the use of its programming language.
The same is possible in SHriMP. Moreover, it has abilities to map input data
differently to visualized objects. There even exist many filter types for live filtering.
SeeSoft allows different mappings, as well as a color slider to filter out entities below
a certain level of the mapped metric8.
GSEE is programmable in such a way that only interesting data might be visualized,
while other data may be filtered out.
Besides the possibility to have different mappings, White Coats includes a query
engine that allows comfortable live filtering.
The focus of sv3D doesn’t lie on filtering but rather on representing. Since it is only
a front-end, filtering capabilities have to be implemented in the underlying content
provider.
EvoLens provides live filters for a coupling threshold (to only show edges between
classes/packages with a certain amount of change coupling), as well as navigation
in time. The latter allows visualizing data within a user-defined time frame only.
Mondrian has scripting support, where visualization happens immediately. Live
filters are not a separate issue to look at, but it is a part of the whole concept.
J3DVN allows filtering by setting values of (filter) properties of input addons. More-
over, different mappings for live filtering are built-in.
The only way to filter out data in SeeSys and VCN is to use different mappings of
input data to visualization objects.

8For example, to show only those lines of source code files, which have been modified at least
a certain number of times.

CHAPTER 6. CASE STUDIES 63

N
a
m

e
2
D

3
D

V
is

u
a
li
za

ti
o
n
s

N
a
v
ig

a
ti

o
n

G
e
n
e
ri

cn
e
ss

F
il

te
ri

n
g

R
ig

i
Y

es
N

o
G

ra
p
h

w
it

h
b

ox
es

M
u
lt

ip
le

v
ie

w
s,

zo
om

,
p
an

H
ig

h
th

ro
u
gh

p
ro

-
gr

am
m

in
g

la
n
gu

ag
e

V
ia

p
ro

gr
am

m
in

g
la

n
-

gu
ag

e
S

H
ri

M
P

Y
es

N
o

G
ra

p
h

w
it

h
b

ox
es

F
is

h
ey

e
v
ie

w
s,

n
es

te
d

gr
ap

h
s,

zo
om

,
p
an

H
ig

h
th

ro
u
gh

p
ro

-
gr

am
m

in
g

la
n
gu

ag
e

D
iff

er
en

t
m

a
p

p
in

g
s

p
o
ss

ib
le

,
m

a
n
y

d
iff

er
en

t
fi

lt
er

ty
p

es
fo

r
li
v
e

fi
lt

er
-

in
g

S
ee

S
of

t
Y

es
N

o
L

in
es

C
om

p
le

te
in

fo
on

sc
re

en
,

n
o

zo
om

L
ow

D
iff

er
en

t
m

a
p

p
in

g
s

p
o
ss

ib
le

,
sl

id
er

fo
r

1
m

et
ri

c
fo

r
li

v
e

fi
lt

er
in

g

S
ee

S
ys

Y
es

N
o

C
u
sh

io
n
s

C
om

p
le

te
in

fo
on

sc
re

en
,

4
li
n
ke

d
v
ie

w
s,

zo
om

L
ow

D
iff

er
en

t
m

ap
p
in

gs
p

os
-

si
b
le

G
S

E
E

Y
es

N
o

M
an

y
D

iff
er

en
t

v
ie

w
s

H
ig

h
th

ro
u
gh

fr
am

e-
w

or
k

ar
ch

it
ec

tu
re

p
ro

gr
am

m
ab

le

V
C

N
Y

es
N

o
C

u
sh

io
n
s

3
d
iff

er
en

t
v
ie

w
s

L
ow

D
iff

er
en

t
m

a
p

p
in

g
s

p
o
ss

ib
le

W
hi

te
C

oa
ts

N
o

Y
es

B
lo

ck
s

Z
o
om

,
ro

ta
te

,
p
an

,
p
re

-
d
efi

n
ed

v
ie

w
p

oi
n
ts

,
re

fe
r-

en
ce

cu
b

e,
h
or

iz
on

L
ow

D
iff

er
en

t
m

ap
p
in

gs
p

os
-

si
b
le

,
q
u
er

y
en

gi
n
e

fo
r

li
ve

fi
lt

er
in

g
sv

3D
Y

es
Y

es
C

on
ta

in
er

s
w

it
h

p
ol

y
cy

li
n
d
er

s
Z

o
om

,
ro

ta
te

,
p
an

M
ed

iu
m

(b
u

il
t

a
s

a
fr

o
n
t-

en
d

in
d

ep
en

d
en

t
o
f

d
a
ta

so
u

rc
e)

D
ep

en
d
en

t
of

d
at

a
so

u
rc

e
E

vo
L

en
s

Y
es

N
o

G
ra

p
h

w
it

h
b

ox
es

an
d

el
li
p
se

s
F

is
h
ey

e
v
ie

w
s,

n
es

te
d

gr
ap

h
s,

zo
om

,
p
an

L
ow

C
o
u

p
li
n

g
th

re
sh

o
ld

a
n

d
n

a
v
ig

a
ti

o
n

in
ti

m
e

fo
r

li
v
e

fi
lt

er
s

M
on

dr
ia

n
Y

es
N

o
G

ra
p
h
,

sp
ec

tr
o-

gr
ap

h
,

sc
at

te
r

p
lo

t,
et

c.

Z
o
om

,
p
an

V
er

y
h

ig
h

th
ro

u
g
h

fr
a
m

ew
o
rk

a
rc

h
it

ec
tu

re
,

w
o
rk

s
d

ir
ec

tl
y

w
it

h
re

p
re

se
n
te

d
o
b

je
ct

s

sc
ri

p
t

fo
r

(l
iv

e)
fi
lt

er
in

g

J
3D

V
N

Y
es

Y
es

G
ra

p
h
,

d
iff

er
-

en
t

la
yo

u
ts

an
d

el
em

en
ts

p
os

si
b
le

Z
o
om

,
ro

ta
te

,
p
an

H
ig

h
th

ro
u
gh

fr
am

e-
w

or
k

ar
ch

it
ec

tu
re

V
ia

in
p
u
t

ad
d
on

p
ro

p
er

-
ti

es
,

d
iff

er
en

t
m

ap
p
in

gs
fo

r
li
ve

fi
lt

er
in

g

T
ab

le
6.

5:
C

om
p
ar

is
on

w
it

h
re

la
te

d
w

or
k

Chapter 7

Conclusion and Future Work

Displaying data in a graphical way can facilitate comprehension of large volumes of
data and detection of patterns [LRB03].
Many tools exist, which do a great job in visualizing certain types of data in a
certain kind of way. The trouble with them is that they are restricted to their
problem and cannot be used for anything else.
In this thesis, we proposed a generic data model that can be applied to various
domains by extending it. Visualization of data is dynamic - it can be changed at
any time, thus making the model flexible to use.
We created an implementation of the model. This implementation is a general
tool, designed as a framework that can be integrated into the Eclipse platform.
In a nutshell, it can be used for, but is not restricted to visualization of software
evolution. When developing the framework one requirement was to make it as easy
as possible to use it for custom visualization needs. That meant to design it in a
way that additional coding would be minimal.
We added basic contributions to the framework, so it can be used rapidly for simple
problems. Nevertheless, the framework is useful for complicated problems as well.
We showed this by developing the evolizerinput project, which contributes addons
for analyzing evolution of software systems.
We evaluated our model by running two case studies, in which it proved to be a
useful tool in that area. The case studies showed the power of the framework, as
well as its limitations.
Future work will concentrate on the following issues:

• More addons to demonstrate the genericness even better.

• Nesting of data. Right now we always only deal with exactly one data model.
Nesting of data entities within other data entities is yet possible by using
distinguished relation types. Still, the comprehensibility would most definitely
be higher if we could use the concept of a ”model within a model.” Another
thing that would become possible - and can’t be done right now - is the ability
to use different layout addons for different ”clusters” of the whole model.

64

CHAPTER 7. CONCLUSION 65

• Better filtering capabilities, which can be applied in real time. Right now,
filters are defined in input addons only and the filter rules have to be set
in input files. Using real time filters would even improve navigation of a
visualized data model. The user could ”jump” from one place in the model
to the other and always only see the part of interest.

• Animation would add another dimension. Changes in time could easily be
demonstrated to the viewer. Right now we have to take several snapshots of
a software system, analyze each one separately, and compare them with each
other.

• We didn’t compare our 3D visualization to a 2D tool, which would make
similar visualizations. The discussion whether 3D visualization is superior to
2D visualization is left open.

Appendix A

Schema of input file

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.tuwien.ac.at/j3dvn"
xmlns:tns="http://www.tuwien.ac.at/j3dvn"
elementFormDefault="qualified">

<element name="j3dvn" type="tns:j3dvnType"></element>

<complexType name="j3dvnType">
<annotation>
<documentation>

The root element of every configuration file.
</documentation>

</annotation>
<sequence>
<element name="input" type="tns:inputType" maxOccurs="1"
minOccurs="1" />
<element name="mapping" type="tns:mappingType"

maxOccurs="1" minOccurs="1" />
<element name="layout" type="tns:layoutType" maxOccurs="1"

minOccurs="1" />
<element name="visualization"
type="tns:visualizationType" maxOccurs="1"
minOccurs="0">
<annotation>

<documentation>
For beautification purposes there is an optional
visualization element.

</documentation>
</annotation>

</element>
</sequence>

66

APPENDIX A. SCHEMA OF INPUT FILE 67

</complexType>

<element name="input" type="tns:inputType" />

<element name="mapping" type="tns:mappingType" />

<element name="layout" type="tns:layoutType" />

<element name="visualization" type="tns:visualizationType" />

<complexType name="inputType">
<annotation>
<documentation>

The input element may contain properties, which are
needed for the input addon to read input data.

</documentation>
</annotation>
<sequence>
<element ref="tns:property" minOccurs="0"

maxOccurs="unbounded" />
</sequence>
<attribute name="name" type="string" use="optional">
<annotation>

<documentation>
Specifies the input addon to use. If this attribute is
omitted, then the input addon is chosen by the file
extension of this file.

</documentation>
</annotation>

</attribute>
</complexType>

<complexType name="layoutType">
<annotation>

<documentation>
The layout element selects the layout addon to use. It
can contain additional properties for the layout addon.

</documentation>
</annotation>
<sequence>
<element ref="tns:property" minOccurs="0"

maxOccurs="unbounded" />
</sequence>
<attribute name="name" type="string" use="required">
<annotation>

<documentation>Name of the layout addon.</documentation>

APPENDIX A. SCHEMA OF INPUT FILE 68

</annotation>
</attribute>

</complexType>

<complexType name="mappingType">
<annotation>

<documentation>
All the mappings between data addons and visual addons
and their properties are defined here.

</documentation>
</annotation>
<sequence>
<element name="map" type="tns:mapType" minOccurs="0"

maxOccurs="unbounded" />
</sequence>

</complexType>

<complexType name="visualizationType">
<annotation>

<documentation>
The visualization element can contain information on how
the whole visual environment should look like.

</documentation>
</annotation>
<sequence>
<element name="background" type="tns:backgroundType"
minOccurs="0" maxOccurs="1" />

<element name="light" type="tns:lightType" minOccurs="0"
maxOccurs="unbounded" />

<element name="antialias" type="tns:antialiasType"
minOccurs="0" maxOccurs="1" />

</sequence>
</complexType>

<complexType name="propertyType">
<annotation>

<documentation>
Any addon property. It is possible to parse strings,
numbers, dates, and colors. If the property is of type
color, then a color element is needed. If the property
is a date, then the date has to be in the format
yyyy-mm-dd.

</documentation>
</annotation>
<sequence>
<element ref="tns:color" minOccurs="0" maxOccurs="1" />

APPENDIX A. SCHEMA OF INPUT FILE 69

</sequence>
<attribute name="name" type="string" use="required">
<annotation>

<documentation>Name of the property</documentation>
</annotation>

</attribute>
</complexType>

<complexType name="mapType">
<annotation>

<documentation>
Represents a mapping between a data addon and a visual
addon.

</documentation>
</annotation>
<sequence>
<annotation>

<documentation>
Usually, a mapping between a data addon and a visual
addon will not be sufficient. One wants to add
mappings between properties of those addons.

</documentation>
</annotation>
<element name="propMap" type="tns:propMapType"
minOccurs="0" maxOccurs="unbounded" />

</sequence>
<attribute name="data" type="string" use="required">
<annotation>

<documentation>Name of the data addon.</documentation>
</annotation>

</attribute>
<attribute name="visual" type="string" use="required">

<annotation>
<documentation>Name of the visual addon.</documentation>

</annotation>
</attribute>

</complexType>

<complexType name="propMapType">
<annotation>

<documentation>
A propMap represents a mapping between a property of a
data addon and a property of a visual addon. The mapping
from data to visual property happens by using the
specified conversion addon. The data addon and the
visual addon are specified in the parent map element.

APPENDIX A. SCHEMA OF INPUT FILE 70

</documentation>
</annotation>
<sequence>
<annotation>

<documentation>
The properties in this sequence are properties of the
conversion addon.

</documentation>
</annotation>
<element ref="tns:property" minOccurs="0"
maxOccurs="unbounded" />

</sequence>
<attribute name="data" type="string" use="required">

<annotation>
<documentation>

Name of the data property.
</documentation>

</annotation>
</attribute>
<attribute name="visual" type="string" use="required">
<annotation>

<documentation>
Name of the visual property, to which the value of
the data property will be mapped.

</documentation>
</annotation>

</attribute>
<attribute name="conversion" type="string" use="required">
<annotation>

<documentation>
Name of the conversion addon, which will do the
conversion from data property to visual property.

</documentation>
</annotation>

</attribute>
</complexType>

<element name="property" type="tns:propertyType" />

<element name="color" type="tns:colorType" />

<complexType name="colorType">
<annotation>
<documentation>Defines a color value.</documentation>

</annotation>
<attribute name="r" type="float" use="required">

APPENDIX A. SCHEMA OF INPUT FILE 71

<annotation>
<documentation>Red value</documentation>

</annotation>
</attribute>
<attribute name="g" type="float" use="required">
<annotation>

<documentation>Green value</documentation>
</annotation>

</attribute>
<attribute name="b" type="float" use="required">
<annotation>

<documentation>Blue value</documentation>
</annotation>

</attribute>
</complexType>

<complexType name="backgroundType">
<annotation>

<documentation>Describes the background.</documentation>
</annotation>
<sequence>
<element ref="tns:color" minOccurs="0" maxOccurs="1">

<annotation>
<documentation>

Background color. Use either this or the image
attribute.

</documentation>
</annotation>

</element>
</sequence>
<attribute name="image" type="string" use="optional">

<annotation>
<documentation>

File name and path of an image file, which will be
used as background.

</documentation>
</annotation>

</attribute>
<attribute name="scaling" type="tns:scalingType"
use="optional">
<annotation>

<documentation>
Specifies how the background image should be scaled.
If no image attribute exists, then this attribute is
ignored.

</documentation>

APPENDIX A. SCHEMA OF INPUT FILE 72

</annotation>
</attribute>

</complexType>

<simpleType name="scalingType">
<list itemType="string">

<enumeration value="all"></enumeration>
<enumeration value="max"></enumeration>
<enumeration value="min"></enumeration>
<enumeration value="none"></enumeration>
<enumeration value="center"></enumeration>
<enumeration value="repeat"></enumeration>

</list>
</simpleType>

<complexType name="lightType">
<annotation>
<documentation>

There can be arbitrary many lights in one visualization.
</documentation>

</annotation>
<sequence>
<element ref="tns:color" minOccurs="0" maxOccurs="1">

<annotation>
<documentation>

Color of the light. If this element is omitted,
then white is used as color.

</documentation>
</annotation>

</element>
<element name="direction" type="tns:directionType"

minOccurs="0" maxOccurs="1">
<annotation>

<documentation>
This element is only used if type is directional. If
it is omitted, then a default vector (1, -1, 0) is
used as the light’’s direction.

</documentation>
</annotation>

</element>
</sequence>
<attribute name="type" type="tns:lightTypeType"
use="required">
<annotation>
<documentation>

The type of the light. This is either ambient or

APPENDIX A. SCHEMA OF INPUT FILE 73

directional. If directional is used, then the
direction element can be used.

</documentation>
</annotation>

</attribute>
</complexType>

<simpleType name="lightTypeType">
<list itemType="string">

<enumeration value="ambient"></enumeration>
<enumeration value="directional"></enumeration>

</list>
</simpleType>

<complexType name="directionType">
<attribute name="x" type="float" use="required" />
<attribute name="y" type="float" use="required" />
<attribute name="z" type="float" use="required" />

</complexType>

<complexType name="antialiasType">
<annotation>

<documentation>
Specifies whether antialiasing should be used for the
visualization or not. If this element is omitted, then
no antialiasing will be used.

</documentation>
</annotation>
<attribute name="value" type="boolean" use="required" />

</complexType>
</schema>

Appendix B

How to contribute to the
framework

Create Eclipse Plug-in

First of all, create a new, empty Plug-in project in Eclipse. It must contain an acti-
vator class. Add at.ac.tuwien.j3dvneclipse and at.ac.tuwien.j3dvn
to the list of required plug-ins. In this project you can start to create your addons
now. Every addon must be an extension element to an existing extension point.
Table B.1 shows the straightforward way of what to add where.

Addon type Extension Extension Element

Conversion at.ac.tuwien.j3dvneclipse.conversions conversion
Data at.ac.tuwien.j3dvneclipse.data data
Input at.ac.tuwien.j3dvneclipse.inputs input
Layout at.ac.tuwien.j3dvneclipse.layouts layout
Visual at.ac.tuwien.j3dvneclipse.visuals visual

Table B.1: Properties of the visual addons from the addoncollection project

Addon commonality

Every addon type must implement the getName() method, which must return
the name of the addon type as a string. The following is an example of such a
getName() method:

public String getName() {
return "my conversion addon";

}

74

APPENDIX B. HOW TO CONTRIBUTE TO THE FRAMEWORK 75

Conversion Addon and Property

A conversion addon must have two generic types, which are the input and the
output type of the addon. For example, the head declaration of a conversion
addon, which converts from a Long value to a Double value looks like this:

public class LongToDouble implements
ConversionAddon<Long, Double>

Note that you must not convert from or to primitive types like long or int. Instead
you have to use the class types Long or Integer.
Next, it needs the setMinMax() method. It is up to the developer whether this
method is genuinely implemented or only left as an empty method, which ignores
the feature of setting an input value range. An example implementation could look
like this:

private Long min = null;
private Long max = null;

public void setMinMax(Long min, Long max) {
// Check for legal input values:
if ((min != null) && (max != null) && (max - min >
Double.MIN_VALUE)) {
this.min = min;
this.max = max;

}
}

Now it’s time to get acquainted with the process of adding a property. Every addon
type can have properties. A useful property for a conversion addon with a numerical
output type could be a multiplication factor that is applied to every output value
to amplify output (if the multiplication factor is greater than 1). So, let’s create a
property of type Double:

private Double fMultiFactor = 1.;

private IProperty<Double> pMultiFactor =
new IProperty<Double>() {
public Double getValue() {

return fMultiFactor;
}

public void setValue(Double value) {
fMultiFactor = value;

}
};

APPENDIX B. HOW TO CONTRIBUTE TO THE FRAMEWORK 76

@Property("multiplication factor") public
IProperty<Double> multiFactor() {
return pMultiFactor;

}

First of all, we need a variable where we will store the property value. We call
this variable fMultiFactor and give it a default value of 1. Next, we define
a variable called pMultiFactor. Its type is a new IProperty interface of
the generic type Double. The getValue() method simply returns the value
of fMultiFactor and the setValue() method simply sets the value of the
fMultiFactor variable. Finally we have to create a public method, which gives
access to the property. We call this method multiFactor(). The return type has
to be IProperty<Double>, since it gives access to a property of type Double.
The name of this method is not very important, actually, since it will never be called
manually, but only through the addon manager. Important, however, is the anno-
tation @Property and its value, which is the name of the property. We call this
property multiplication factor. Our method multiFactor() does nothing but
return the IProperty variable pMultiFactor. Now our addon has a property.
This is the general way of adding a property to an addon. Creation of properties
becomes even easier, if you define a code template in Eclipse that looks like this:

private ${property_type} f${field_name};

private final IProperty<${property_type}> p${field_name} =
new IProperty<${property_type}>() {
public ${property_type} getValue() {

return f${field_name};
}

public void setValue(${property_type} value) {
f${field_name} = value;

}
};

@Property(${property_name})
public IProperty<${property_type}> ${field_name}() {

return p${field_name};
}

But now back to conversion addon specifics. You need to implement the
convert() method. Here, the actual work of the addon will happen. This is
an example of such a method:

public Double convert(Long inputValue) {
Double normValue;

APPENDIX B. HOW TO CONTRIBUTE TO THE FRAMEWORK 77

// Check for illegal input value:
if (inputValue == null)
normValue = 0.;

// Check if input range has been set. If yes, then
// perform normalization, so that inputValue will be
// in the range [0, 1]:
else if ((min != null) && (max != null)) {
normValue = (inputValue - min) / (max - min);

}

// No input range has been set:
else

normValue = inputValue.doubleValue();

// Multiply output value with multiplication factor:
return normValue * fMultiFactor;

}

The comments in the listing explain this method. Please note that in the last line we
use the value of our property multiplication factor. Now we have all the necessary
methods for a conversion addon - that’s all it needs.

Data Addon

Creating a data addon is even easier than creating a conversion addon. Data addons
only need to implement the getName() method - just like every addon needs to.
Besides that they only need to have defined properties. You create a property for a
data addon just like for any other addon. So, the example property of our conversion
addon from the previous section can be used to create a data addon as well.

Input Addon

An input addon needs a method getFileTypes(), which returns a value of type
String[]. We encourage you not to use this method but only return null. This
method could be used to set file extensions for which the input addon can be used.
Because this is quite a complicated process it is highly discouraged. Instead, we
recommend to stick to the concept that input files always have to have the extension
.j3dvn. Nevertheless the method getFileTypes() has to be implemented in some
way.
The next easy method to implement is setModel(). This method is called by the
connector, which will contain the input addon. It is only needed to set a reference

APPENDIX B. HOW TO CONTRIBUTE TO THE FRAMEWORK 78

to the model variable, which the input connector created. The input addon will
populate this model in its open() method. So, the setModel() method will
usually only look like this:

private Model model;

public void setModel(Model model) {
this.model = model;

}

First we need to define a private variable of type Model. We don’t need to initialize
it and we also don’t need to do error checking in the setModel() method, because
anyway any method will only be called by the input connector. And we can be
assured that the connector will definitely call the setModel() method right after
the addon has been created.
Finally we need an open() method, which will do all the work of reading and
parsing input data. This method takes an InputStream as parameter, which will
be an open input stream on the input file. Input data can come from the input
file. In that case it must be somewhere within the input tag of the xml file. If
input data cannot be stored in the input file (for example because it is binary data
or data is retrieved from a database), then the input plug-in would ideally have
properties, which will retrieve needed information to access the actual input data.
We will not give a full example implementation of an open() method but sketch
the most important parts:

public void open(InputStream source) {
while (String value = getInput(source) != null) {

MyEntity = new MyEntity();
EntityConnector entityConnector = AddonManager.
getInstance().createConnector(newEntity);

entityConnector.setProperty("my property", value);
model.addEntity(entityConnector);

}
}

We assume that there is an imaginary method getInput(), which will return a
string value for every entity. After the last entity it would return null. To create a
new entity, we use the addon manager. First, we simply create a new instance of a
data addon, in our case it is an imaginary entity type called MyEntity. Next, we
call the static method getInstance() of AddonManager to access the singleton
instance of the addon manager. Then we call its createConnector() method
with the newly created MyEntity variable. This method can only return a proper
result (in this case: a result of type EntityConnector), if we pass an entity,
which is not null. That’s why we had to create the addon manually before.
The addon manager now creates a new entity connector, assigns the entity to the
entity connector, and returns it. Now we have an EntityConnector variable,

APPENDIX B. HOW TO CONTRIBUTE TO THE FRAMEWORK 79

which can be used to access the properties of the entity. We call the connector’s
setProperty() method and we set an imaginary property called my property to
value. This property needs to be of type String, otherwise an exception will
be thrown when trying to set its value to a string. So, at this point it is up to
the developer of the input addon to only pass correct values to the property of a
data addon. Finally we need to add the new entity to the model. This happens
by calling the model’s addEntity() method. For simplicity reasons we left out
creation and adding of relations.

Layout Addon

Next, we will create a layout addon. First of all we need a getNodes() method,
which will return all the nodes, of which the position is calculated:

private final Collection<Position> nodes =
new ArrayList<Position>();

public Collection<Position> getNodes() {
return nodes;

}

We need a variable to store all the nodes first. It needs to be a collection of
Position objects. We create it immediately and for security reasons we declare
it as final, because we return the variable directly in the getNodes() method.
What is the nodes variable good for? Well, it becomes useful after implementing
the addNode method, which is responsible for adding nodes to the list of nodes.
We also need a removeNode() method to remove a node again:

public void addNode(Position node) {
nodes.add(node);

}

public boolean removeNode(Position node) {
return nodes.remove(node);

}

Next, we need to give the ability to change the edge (i.e. relation) type, which will
be used for layout calculation. Whether the edge type will be ignored or not is up
to the layout addon developer. The getter and setter method must at least exist:

private Class<Relation> edgeType = null;

public void setEdgeType(Class<Relation> edgeType) {
this.edgeType = edgeType;

}

public Class<Relation> getEdgeType() {

APPENDIX B. HOW TO CONTRIBUTE TO THE FRAMEWORK 80

return edgeType;
}

In this example we use the edge type. We declare a variable, in which the edge type
will be stored, and we create getter and setter methods for it.
Finally we need to implement the calculate() method, which contains the layout
algorithm. In our example we use a very simple random layout ”algorithm,” which
only sets every node to a random position:

public void calculate() {
Random random = new Random();
for (Position node : nodes) {

node.x = 10 * (random.nextDouble() - .5);
node.y = 10 * (random.nextDouble() - .5);
node.z = 10 * (random.nextDouble() - .5);

}
}

Visual Addon

The last addon type we need is the visual addon type. First of all we implement
the methods to access the assigned data connector:

private DataConnector data;

public DataConnector getModelData() {
return data;

}

public void setModelData(DataConnector data) {
this.data = data;

}

So far, so good. Next we also need a getGroup() method, which returns the
transform group to our visual object:

private final TransformGroup transformGroup;

public Group getGroup() {
return transformGroup;

}

Because the transform group is returned directly, we declare the private variable as
final.
Since VisualAddon extends PropertyChangeListener, we also need to im-
plement propertyChanged(). We are not going to react to any change event,
so we only add an empty method:

APPENDIX B. HOW TO CONTRIBUTE TO THE FRAMEWORK 81

public <T> void propertyChanged(Connector sender,
String propertyName, T oldValue, T newValue) { }

We certainly could need some properties to set the appearance of the visual object.
However, for simplicity reasons we’ll leave that out. What we still need, though,
is a constructor. Here lies one difference of visual addons compared to the other
addon types: A constructor is needed, where the visual object is created. We show
a minimal example of a visual addon constructor:

public MyBox() {
Box box = new Box();
transformGroup = new TransformGroup();
transformGroup.addChild(box);

}

Our visual addon type’s name is MyBox. It creates a simple box1. The group object
is created and the box is added as a child to the group.

1Box is a class, which comes with Java 3D but is not part of the API.

Bibliography

[Arg08] ArgoUML Project. Argouml. http://argouml.tigris.org/, 2008.

[Art88] Lowell Jay Arthur. Software evolution: the software maintenance chal-
lenge. Wiley-Interscience, New York, NY, USA, 1988.

[Azu08] Azureus Project. Azureus. http://azureus.sourceforge.net/,
2008.

[Bae81] Ronald Baecker. Sorting out sorting. 30 minute color film (developed with
assistance of Dave Sherman, distributed by Morgan Kaufmann, University
of Toronto), 1981.

[BE95] Marla J. Baker and Stephen G. Eick. Space-filling software visualization.
Journal of Visual Languages and Computing, 6(2):119–133, 1995.

[BF03] Moshe Bar and Karl Fogel. Open Source Development with CVS.
Paraglyph Press, 2003.

[BNDL04] M. Balzer, A. Noack, O. Deussen, and C. Lewerentz. Software land-
scapes: Visualizing the structure of large software systems. In VisSym
2004, Symposium on Visualization, pages 261–266. Eurographics Associ-
ation, May 2004.

[Com08] Computer Human Interaction & Software Engineering Lab (CHISEL).
Creole - eclipse plug-in. http://www.thechiselgroup.org/
creole, 2008.

[Die07] Stephan Diehl. Software Visualization. Springer, 2007.

[Ecl08] The Eclipse Foundation. Eclipse. http://www.eclipse.org/, 2008.

[ESS92] S. G. Eick, J. L. Steffen, and E. E. Sumner. Seesoft- a tool for visu-
alizing line-oriented software statistics. IEEE Transactions on Software
Engineering, 18(11):957–968, Nov 1992.

[Fav01] Jean-Marie Favre. GSEE: a generic software exploration environment. In
Proceedings of the 9th International Workshop on Program Comprehen-
sion, pages 233–244. IEEE, 2001.

82

http://argouml.tigris.org/
http://azureus.sourceforge.net/
http://www.thechiselgroup.org/creole
http://www.thechiselgroup.org/creole
http://www.eclipse.org/

BIBLIOGRAPHY 83

[FR91] Thomas M. J. Fruchterman and Edward M. Reingold. Graph draw-
ing by force-directed placement. Software - Practice and Experience,
21(11):1129–1164, 1991.

[Fre08] Free Software Foundation, Inc. Data display debugger. http://www.
gnu.org/software/ddd/, 2008.

[GB03] Erich Gamma and Kent Beck. Contributing to Eclipse: Principles, Pat-
terns, and Plugins. Addison-Wesley, 2003.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns. Elements of Reusable Object-Oriented Software. Addison-
Wesley Professional Computing Series. Addison-Wesley, 1995.

[GRR99] Martin Gogolla, Oliver Radfelder, and Mark Richters. Towards three-
dimensional animation of UML diagrams. In Robert France and Bern-
hard Rumpe, editors, UML’99 - The Unified Modeling Language. Beyond
the Standard. Second International Conference, Fort Collins, CO, USA,
October 28-30. 1999, Proceedings, volume 1723, pages 489–502. Springer,
1999.

[GS94] David Garlan and Mary Shaw. An introduction to software architecture.
Technical Report CMU-CS-94-166, Carnegie Mellon University, January
1994.

[GYB04] Hamish Graham, Hong Yul Yang, and Rebecca Berrigan. A solar sys-
tem metaphor for 3d visualisation of object oriented software metrics. In
APVis ’04: Proceedings of the 2004 Australasian symposium on Informa-
tion Visualisation, pages 53–59, Darlinghurst, Australia, Australia, 2004.
Australian Computer Society, Inc.

[Har88] David Harel. On visual formalisms. Commun. ACM, 31(5):514–530, 1988.

[IEE98] IEEE standard for a software quality metrics methodology. IEEE Std
1061-1998, 1998.

[Int97] International Organization for Standardization. ISO/IEC 14772-1:1997:
Information technology – Computer graphics and image processing – The
Virtual Reality Modeling Language – Part 1: Functional specification and
UTF-8 encoding. International Organization for Standardization, Geneva,
Switzerland, 1997.

[KBK04] A. Kerren, F. Breier, and P. Kugler. Dgcvis: an exploratory 3d visu-
alization of graph pyramids. In Proceedings of the Second International
Conference on Coordinated and Multiple Views in Exploratory Visualiza-
tion, 2004., pages 73–83, 2004.

http://www.gnu.org/software/ddd/
http://www.gnu.org/software/ddd/

BIBLIOGRAPHY 84

[Kof35] Kurt Koffka. Principles of Gestalt Theory. Harcourt, Brace, 1935.

[Lan03] Michele Lanza. Object-Oriented Reverse Engineering - Coarse-grained,
Fine-grained, and Evolutionary Software Visualization. PhD thesis, Uni-
versity of Bern, 2003.

[LD03] Michele Lanza and Stéphane Ducasse. Polymetric views-a lightweight vi-
sual approach to reverse engineering. IEEE Trans. Softw. Eng., 29(9):782–
795, 2003.

[LNVT05] Gerard Lommerse, Freek Nossin, Lucian Voinea, and Alexandru Telea.
The visual code navigator: An interactive toolset for source code inves-
tigation. In INFOVIS ’05: Proceedings of the 2005 IEEE Symposium on
Information Visualization, page 4, Washington, DC, USA, 2005. IEEE
Computer Society.

[LRB03] Michael D. Lee, Rachel E. Reilly, and Marcus E. Butavicius. An empiri-
cal evaluation of chernoff faces, star glyphs, and spatial visualizations for
binary data. In APVis ’03: Proceedings of the Asia-Pacific symposium on
Information visualisation, pages 1–10, Darlinghurst, Australia, Australia,
2003. Australian Computer Society, Inc.

[MFM03] Andrian Marcus, Louis Feng, and Jonathan I. Maletic. 3d representations
for software visualization. In SoftVis ’03: Proceedings of the 2003 ACM
symposium on Software visualization, pages 27–ff, New York, NY, USA,
2003. ACM Press.

[MGL06] Michael Meyer, Tudor Girba, and Mircea Lungu. Mondrian: an agile in-
formation visualization framework. In SoftVis ’06: Proceedings of the 2006
ACM symposium on Software visualization, pages 135–144, New York, NY,
USA, 2006. ACM Press.

[MK88] H. A. Müller and K. Klashinsky. Rigi-a system for programming-in-the-
large. In ICSE ’88: Proceedings of the 10th international conference on
Software engineering, pages 80–86, Los Alamitos, CA, USA, 1988. IEEE
Computer Society Press.

[ML05] Cédric Mesnage and Michele Lanza. White coats: Web-visualization of
evolving software in 3d. In VISSOFT ’05: Proceedings of the 2005 IEEE
International Workshop on Visualizing Software for Understanding and
Analysis, pages 40–45, 2005.

[Noa06] Andreas Noack. Energy-based clustering of graphs with nonuniform de-
grees. In Patrick Healy and Nikola S. Nikolov, editors, Graph Drawing,
Limerick, Ireland, September 12-14, 2005, pages pp. 309–320. Springer,
2006.

BIBLIOGRAPHY 85

[Obj08] The Object Management Group. Unified modelling language. http:
//uml.org/, 2008.

[PCJ96] Helen C. Purchase, Robert F. Cohen, and Murray James. Validating graph
drawing aesthetics. In GD ’95: Proceedings of the Symposium on Graph
Drawing, pages 435–446, London, UK, 1996. Springer-Verlag.

[Ree73] Trygve Reenskaug. Administrative control in the shipyard. In ICCAS
conference, Tokyo, 1973, 1973.

[RFG05] J. Ratzinger, M. Fischer, and H. Gall. Evolens: Lens-view visualizations
of evolution data. In Eighth International Workshop on Principles of
Software Evolution, pages 103–112, Dec 2005.

[RHM08] LLC. Red Hat Middleware. Hibernate. http://www.hibernate.
org/, 2008.

[Rie96] Arthur J. Riel. Object-Oriented Design Heuristics. Addison-Wesley, 1st
edition, 1996.

[RPG07] Jacek Ratzinger, Marting Pinzger, and Harald Gall. Eq-mine: Predict-
ing short-term defects for software evolution. Proceedings of the European
Joint Conferences on Theory and Practice of Software (ETAPS’07): Fun-
damental Approaches to Software Engineering (FASE 2007), pages 12–26,
2007.

[RSVG07] Jacek Ratzinger, Thomas Sigmund, Peter Vorburger, and Harald Gall.
Mining software evolution to predict refactoring. Proceedings of the Inter-
national Symposium on Empirical Software Engineering and Measurement
(ESEM 2007), 2007.

[SB92] Manojit Sarkar and Marc H. Brown. Graphical fisheye views of graphs.
In CHI ’92: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 83–91, New York, NY, USA, 1992. ACM Press.

[SM95] M.-A. D. Storey and H. A. Müller. Manipulating and documenting soft-
ware structures using SHriMP views. In Proceedings of the 1995 Interna-
tional Conference on Software Maintenance, pages 275–284, Oct 1995.

[SMC74] Wayne P. Stevens, Glenford J. Myers, and Larry L. Constantine. Struc-
tured design. IBM Systems Journal, 13(2):115–139, 1974.

[Sun08] Sun Microsystems, Inc. Java3d. https://java3d.dev.java.net/,
2008.

[TL01] M. Tavanti and M. Lind. 2d vs 3d, implications on spatial memory. In
INFOVIS ’01: Proceedings of the IEEE Symposium on Information Vi-
sualization 2001 (INFOVIS’01), page 139, Washington, DC, USA, 2001.
IEEE Computer Society.

http://uml.org/
http://uml.org/
http://www.hibernate.org/
http://www.hibernate.org/
https://java3d.dev.java.net/

BIBLIOGRAPHY 86

[Tuf90] Edward Tufte. Envisioning Information. Graphics Press, 1990.

[WC99] U. Wiss and D. A. Carr. An empirical study of task support in 3d infor-
mation visualizations. In Information Visualization, pages 392–399, 1999.

[WCJ98] U. Wiss, D. A. Carr, and H. Jonsson. Evaluating three-dimensional infor-
mation visualization designs: A case study of three designs. In Proceedings
of 1998 IEEE Conference on Information Visualization, IV’98, pages 137–
144, Jul 1998.

[WF94] C. Ware and G. Frank. Viewing a graph in a virtual reality display is three
times as goodas a 2d diagram. In Proceedings of the IEEE Symposium on
Visual Languages, 1994, pages 182–183, Oct 1994.

[WHF93] C. Ware, D. Hui, and G. Franck. Visualizing object oriented software in
three dimensions. In CASCON ’93: Proceedings of the 1993 conference of
the Centre for Advanced Studies on Collaborative research, pages 612–620.
IBM Press, 1993.

[WL07] Richard Wettel and Michele Lanza. Program comprehension through soft-
ware habitability. In ICPC ’07: Proceedings of the 15th IEEE Interna-
tional Conference on Program Comprehension, pages 231–240, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

	Abstract
	Contents
	Introduction
	Problem Domain
	Contributions
	Organization of this thesis

	Software Visualization in a Nutshell
	Steps in visualizing software
	Perception
	Graph Drawing
	Visualization of Software Architectures
	UML
	Software Metrics

	Visualization of Dynamic Program Execution
	Algorithm Animation
	Visual Debugging

	Related work
	Rigi
	SHriMP
	SeeSoft
	SeeSys
	GSEE
	The Visual Code Navigator
	sv3D
	White Coats
	EvoLens
	Mondrian

	Approach
	MVC Architecture
	Addons
	Eclipse
	Java 3D

	Model and Framework
	Addons
	Data Addons
	Visual Addons
	Conversion Addons
	Input Addons
	Layout Addons

	Connectors
	The Data Model
	Architecture
	Implementation
	General Structure
	Project j3dvn
	Project j3dvneclipse
	Project addoncollection

	Case Studies
	Foundation
	Versioning System
	Evolution Metrics

	Methodology
	Data Extraction into Database
	Computation of Logical Coupling
	Identifying Refactorings and Bugs
	Time periods for Analysis
	Filtering of Data
	Visualization Approach
	Implementation

	ArgoUML
	Azureus
	Results
	Comparison of related work

	Conclusion
	Schema of input file
	How to contribute to the framework
	Bibliography

