
Ph.D. Thesis

From Mining to Mapping and Roundtrip Transformations –
A Systematic Approach to Model-based Tool Integration

Conducted for the purpose of receiving the academic title
’Doktor der Sozial- und Wirtschaftswissenschaften’

Advisors
o.Univ.-Prof. Dipl.-Ing. Mag. Dr. Gerti Kappel

Institute of Software Technology and Interactive Systems
Vienna University of Technology

a.Univ.-Prof. Mag. Dr. Werner Retschitzegger
Institute of Bioinformatics

Johannes Kepler University Linz

Submitted at the
Vienna University of Technology

Faculty of Informatics

by

Manuel Wimmer
0025221

Schanzstrasse 49/4
A-1140 Vienna

Vienna, March 2008

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Danksagung

Mein besonderer Dank gilt meiner Betreuerin und meinem Betreuer, Prof. Gerti Kappel und
Prof. Werner Retschitzegger. Bei Gerti Kappel möchte ich mich für ihr Vertrauen und für
die Chance bedanken, dass ich als wissenschaftlicher Mitarbeiter in Forschung, Lehre und
Projekten gleichermaßen agieren durfte. Des Weiteren bedanke ich mich bei Gerti Kappel
für die Möglichkeit beim Aufbau einer Lehrveranstaltung mit komplett neuem Forschungs-
hintergrund und Lehrinhalten mitwirken zu können; eine Tätigkeit, die mir sehr viel Freude
bereitete. Bei Werner Retschitzegger möchte ich mich besonders dafür bedanken, dass er
nicht nur stets die richtigen Antworten bereit hatte, sondern auch immer die richtigen Fra-
gen stellte. Außerdem war er mir eine große Stütze in der Finalisierungsphase.

Diese Arbeit wäre sicher nicht in dieser Breite und Tiefe entstanden ohne Mithilfe meiner
InstitutskollegInnen. Besonders möchte ich bei den ModelCVS1 Mitstreitern Thomas Reiter
(jede Fahrt nach Linz war die Zeit und das Geld wert!), Horst Kargl, Gerhard Kramler,
Michael Strommer und Wieland Schwinger bedanken. Vielen Dank für eure Mithilfe! Für
eine sehr produktive Zusammenarbeit in Forschung und Lehre bedanke ich mich bei An-
drea Schauerhuber, die mir stets mit Rat und Tat zur Seite stand.

Ein großer Dank gilt auch meiner Mutter Ingrid, ohne sie hätte ich diesen Weg nie bis
hierher gehen können. Sie war für mich Vater und Mutter in einer Person und lehrte mich
schon früh, dass Konsequenz und gewissenhafte Arbeit der Grundstein für jeden Erfolg
darstellt. Besonderer Dank gilt auch meiner Freundin Shila Nourzad, die mir eine treue
Begleiterin über die gesamte Dissertationsphase war. Im Besonderen möchte ich mich bei
ihr für ihre motivierenden und Kräfte spendenden Worte und für ihr Verständnis für die
zeitlichen Einschränkungen in den letzten Jahren bedanken.

1ModelCVS Projekt (FIT-IT Nr. 810806), www.modelcvs.org

i

ii

Abstract

Model-Driven Engineering (MDE) gains momentum in academia as well as in practice.
A wide variety of modeling tools is already available supporting different development
tasks and advocating different modeling languages. In order to fully exploit the potential
of MDE, modeling tools must work in combination, i.e., a seamless exchange of models
between different modeling tools is crucial for MDE. Current best practices to achieve in-
teroperability use model transformation languages to realize necessary mappings between
the metamodels defining the modeling languages supported by different tools. However,
the development of such mappings is still done in an ad-hoc and implementation-oriented
manner which simply does not scale for large integration scenarios. The reason for this
is twofold. First, various modeling languages are not based on metamodeling standards
but instead define proprietary languages rather focused on notational aspects. And sec-
ond, existing model transformation languages both do not support expressing mappings
on a high-level of abstraction and lack appropriate reuse mechanisms for already existing
integration knowledge.

This thesis contributes to the above mentioned problems. It proposes a comprehensive
approach for realizing model-based tool integration, which is inspired from techniques orig-
inating from the field of database integration, but employed in the context of MDE. For
tackling the problem of missing metamodel descriptions, a semi-automatic approach for
mining metamodels and models from textual language definitions is presented, being a
prerequisite for the subsequent steps which are based on metamodels and models, only.
For raising the level of abstraction and for ensuring the reuse of mappings between meta-
models, a framework is proposed for building, applying, and executing reusable mapping
operators. To demonstrate the applicability of the framework, it is applied to the definition
of mapping operators which are intended to resolve typical structural heterogeneities occur-
ring between the core concepts of metamodels. Finally, for ensuring roundtrip capabilities
of transformations, two approaches are proposed evolving non-roundtripping transforma-
tions with roundtrip capabilities.

iii

iv

Kurzfassung

Die modellgetriebene Softwareentwicklung ist nicht nur ein aktueller Trend in der Informatik-
forschung, sondern spielt auch bereits in der Praxis eine wichtige Rolle. Für den prak-
tischen Einsatz steht eine Palette an Modellierungswerkzeugen zur Verfügung, wobei jedes
Werkzeug einen bestimmten Bereich im Entwicklungsprozess unterstützt und daher un-
terschiedliche Modellierungssprachen eingesetzt werden. Aufgrund der mangelnden In-
teroperabilität ist es allerdings nicht möglich, unterschiedliche Werkzeuge in Kombination
einzusetzen und so bleibt das Potential der modellgetriebenen Softwareentwicklung zum
Teil ungenützt. Um Interoperabilität zwischen Werkzeugen herzustellen, werden Modell-
transformationssprachen für die Erstellung von so genannten Mappings (Abbildungen) zwi-
schen Konzepten der Modellierungssprachen – definiert in Metamodellen – eingesetzt. Die
Entwicklung von Mappings wird jedoch durch eine ad-hoc und implementierungsorientier-
te Vorgehensweise erschwert. Die Hauptgründe dafür sind: (1) für viele Modellierungs-
sprachen existieren keine Metamodelle, und (2) Modelltransformationssprachen bieten we-
der Sprachelemente, um Mappings auf einer angemessenen Abstraktionsstufe zu definieren,
noch stellen sie Mechanismen für die Wiederverwendung bereits vorhandener Mappings
zur Verfügung.

Die vorliegende Dissertation entwickelt Lösungen für die oben genannten Probleme. Im
Rahmen der Dissertation wird eine umfassende Infrastruktur für die modellbasierte Inte-
gration von Modellierungswerkzeugen aufgebaut. Der erste Teil präsentiert einen teilauto-
matischen Ansatz für die Erstellung von Metamodellen und Modellen aus textuellen Defi-
nitionen. Werden Modellierungssprachen nicht durch Metamodelle repräsentiert, ist dieser
Schritt Voraussetzung, um die nachfolgenden Integrationstechniken anwenden zu können.
Der zweite Teil beschäftigt sich mit der Erhöhung des Abstraktionsniveaus und der Wieder-
verwendung von vorhandenen Mappings. Dazu bietet das vorgestellte Framework Möglich-
keiten, um wiederverwendbare Mapping Operatoren zu definieren, anzuwenden und auszu-
führen. Der Einsatz des Frameworks wird durch die Entwicklung einer Mapping Sprache
demonstriert, die Mapping Operatoren für das Auflösen von wiederkehrenden Hetero-
genitäten zwischen Metamodellen umfasst. Der dritte und letzte Teil dieser Arbeit beschäf-
tigt sich mit Roundtrip Transformationen. Dazu werden zwei Ansätze entwickelt, um existie-
rende, nicht roundtrip-fähige Transformationen mit Roundtrip Funktionalität zu ergänzen.

v

vi

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Tool Integration . 2
1.1.2 Model-Driven Engineering . 3
1.1.3 Information Integration . 3
1.1.4 Model-based Tool Integration in the Context of the ModelCVS Project 6

1.2 Contribution of This Thesis . 10
1.3 Thesis Outline . 13

I Mining 15

2 From DTDs to Ecore-based Metamodels 17
2.1 Motivation . 18
2.2 DTDs and Ecore at a Glance . 19

2.2.1 Document Type Definition (DTD) Concepts 21
2.2.2 MOF Concepts in Terms of Ecore . 22
2.2.3 DTD Deficiencies . 23

2.3 A DTD to Ecore Transformation Framework 25
2.3.1 Transformation Rules . 26
2.3.2 Heuristics . 29
2.3.3 Manual Validation and Refactoring of the Generated Metamodel . . . 35
2.3.4 Implementation Architecture of the MetaModelGenerator 35

3 Evaluation of the DTD to Ecore Framework 37
3.1 Case Study on WebML . 37

3.1.1 Root Package "WebML" . 38
3.1.2 Package "Structure" . 40
3.1.3 Package "HypertextOrganization" . 40
3.1.4 Package "Hypertext" . 42

vii

3.1.5 Package "ContentManagement" . 45
3.1.6 Package "AccessControl" . 47
3.1.7 Package "Basic" . 47

3.2 Discussion of the Generated WebML Metamodel 47
3.2.1 Completeness Criteria . 48
3.2.2 Quality Metrics . 49

4 Summary and Related Work 51
4.1 Summary . 51
4.2 Related Work . 52

4.2.1 Defining Metamodels for Web Modeling Languages 52
4.2.2 Transforming between DTDs and Metamodels 53
4.2.3 Bridging Technical Spaces . 54
4.2.4 Model Management: ModelGen Operator 56

II Mapping 59

5 A Framework for Building Mapping Operators 61
5.1 Motivation . 62
5.2 Metamodel Bridging Framework . 63

5.2.1 Overview of the Metamodel Bridging Framework 63
5.2.2 Mapping View . 63
5.2.3 Transformation View . 66
5.2.4 Implementation Architecture of the Metamodel Bridging Framework . 68

6 CAR – A Mapping Language for Resolving Structural Heterogeneities 71
6.1 Motivating Example . 72
6.2 Mapping Operators . 72

6.2.1 Overview of the CAR Mapping Language 72
6.2.2 Conditional C2C Mapping Operator . 73
6.2.3 R2R Mapping Operator with Annotations 75
6.2.4 A2C Mapping Operator . 76
6.2.5 R2C Mapping Operator . 77
6.2.6 A2R Mapping Operator . 78

6.3 An Inheritance Mechanism for Mapping Operators 81
6.3.1 Inheritance for C2C Mappings . 82
6.3.2 Symmetric Mapping Situations . 83
6.3.3 Representing Inheritance within Transformation Nets 88
6.3.4 Asymmetric Mapping Situation – Hierarchy vs. Collapsed Hierarchy . 93

viii

6.3.5 Multiple Inheritance for C2C Mappings 95

7 Summary and Related Work 105
7.1 Summary . 105
7.2 Related Work . 105

7.2.1 Reusable Model Transformations . 106
7.2.2 Ontology Mapping for Bridging Structural Heterogeneities 107

III Roundtrip Transformations 109

8 Why Roundtrip Transformations? 111
8.1 Motivation . 112
8.2 Integration Scenarios . 114

8.2.1 Scenario 1: Loss of Meta-Information 114
8.2.2 Scenario 2: Loss of Information . 115

9 AspectCAR – An Aspect-oriented Extension for the CAR Mapping Language 117
9.1 Motivation . 117
9.2 AspectCAR by Example . 120

9.2.1 Running Example . 120
9.2.2 Problem of the Bridging Solution . 121
9.2.3 Defining the Aspect . 122
9.2.4 Generated Transformation Net . 122

9.3 Critical Discussion . 125

10 ProfileGen – A Generator-based Approach for Bridging DSLs with UML 127
10.1 Motivation . 127
10.2 Overview of the DSL2UML Bridging Approach 129
10.3 DSL2UML Bridging Language . 131
10.4 Automatic Generation Process . 134

10.4.1 UML Profile Generation . 134
10.4.2 Model Transformation Generation . 147
10.4.3 Validating Mapping Models . 147

10.5 Implementation Architecture of the ProfileGen Framework 148
10.5.1 Mapping Editor . 149
10.5.2 Executing DSL2UML Bridges . 150

10.6 Case Study . 151
10.6.1 AllFusion Gen’s Data Model . 151
10.6.2 UML Class Diagram . 152

ix

10.6.3 Overview of the Mapping Model . 152
10.6.4 EntityType_2_Class Mapping in Detail 153
10.6.5 Profile Generation . 153
10.6.6 Transformation Generation . 154
10.6.7 Discussion . 154

11 Summary and Related Work 159
11.1 Summary . 159
11.2 Related Work . 160

11.2.1 Adapting Model Transformations . 160
11.2.2 Integrating DSLs with UML . 161

12 Conclusion and Outlook 165
12.1 Major Contributions of the Thesis . 165
12.2 Outlook . 166

12.2.1 Bridging Technical Spaces . 167
12.2.2 Mapping Metamodels . 167
12.2.3 Integrating DSLs with UML . 171

Bibliography 173

Curriculum Vitae 183

x

List of Figures

1.1 Meta-layers of Data Engineering and Model Engineering in Comparison . . 4
1.2 ModelCVS Technological Tree . 7
1.3 Meta-Languages Used for Language Engineering 8
1.4 Contribution and Supported Integration Scenarios of this Thesis 12
1.5 Combination of Proposed Frameworks – MDWEnet Example 13

2.1 Integration Scenarios Revisited – Focus of Part I 18
2.2 Process of Designing the WebML Metamodel 20
2.3 Interrelationships Between the Language Layers of DTD and MOF 20
2.4 Overview of Relevant DTD Language Concepts 21
2.5 Overview of Relevant Ecore Language Concepts 22
2.6 Two Phase Semi-Automatic Transformation Approach 25
2.7 Example of Applying the Transformation Rules (Step 1) 28
2.8 Rule 3 - XOR Containment References . 29
2.9 Example of Applying the Heuristics (Step 2) 31
2.10 Heuristic 3 - Grouping Mechanism . 32
2.11 Heuristic 4 - Cardinalities Identification . 32
2.12 Heuristic 5 - XOR Constraints Identification 33
2.13 Heuristic 6 - Inheritance Identification . 34
2.14 Example of Applying Manual Refactoring (Step 3) 34
2.15 Architecture and Mode of Operation of the MMG 35

3.1 Overview of WebML Metamodel Packages 39
3.2 Structure . 40
3.3 HypertextOrganization . 41
3.4 Hypertext . 43
3.5 ContentManagement . 46
3.6 AccessControl . 47
3.7 Basic Elements . 48

xi

4.1 Overview on the EBNF 2 MOF Framework 55

5.1 Integration Scenarios Revisited – Focus of Part II 61
5.2 Metamodel Bridging Framework by Example 64
5.3 CARMEN and TROPIC – Activities, Artifacts, and Tooling 70

6.1 Structural Heterogeneities Between Metamodels - Example 72
6.2 CAR Mapping Operators . 73
6.3 Conditional C2C Mapping Operator . 74
6.4 R2R Mapping Operator with Inverse Annotation 76
6.5 A2C Mapping Operator . 77
6.6 R2C Mapping Operator . 78
6.7 Example Resolved with CAR (Mapping View) 79
6.8 Example Resolved with CAR (Transformation View) 80
6.9 A2R Mapping Operator . 81
6.10 Abstract Syntax of C2C Operator Extended with Generalization Relationships 83
6.11 Mapping Model Cases for Symmetric Inheritance 84
6.12 Representing Inheritance Structures with Nested Transformation Compo-

nents . 89
6.13 Representing C2C Configurations in Transformation Components 90
6.14 Inheritance between C2C Mappings – Symmetric Example 92
6.15 Inheritance between C2C Mappings – Asymmetric Example 94
6.16 Representing Multiple Inheritance with Intersecting Places 96
6.17 Multiple Inheritance between C2C Mappings – Symmetric Example 98
6.18 Unmapped Subclasses and Multiple Inheritance – Example 99
6.19 From Streamer to ColorChanger . 101
6.20 Multiple Inheritance between C2C Mappings – Asymmetric Example 102

8.1 Integration Scenarios Revisited – Focus of Part III 111
8.2 Supporting Simultaneous Updates by Different Users 115

9.1 AspectCAR . 118
9.2 Running Example – Base Mapping Model . 121
9.3 Running Example – Weaving Aspects into Mapping Models 123
9.4 Running Example – Roundtrip-aware Transformation Nets 124

10.1 DSL/UML Integration. (a) Ad-hoc Approach, (b) Systematic Approach . . . 128
10.2 DSL2UML Bridging Language . 133
10.3 Profile Generation Rule 2 - Feat2Feat Operators 136
10.4 Profile Generation Rule 4 - A2C Operator . 137

xii

10.5 Profile Generation Rule 5 - C2A Operator . 138
10.6 Profile Generation Rule 6 - R2C Operator . 139
10.7 Profile Generation Rule 7 - C2R Operator . 140
10.8 Profile Generation Rule 8 - A2R Operator . 140
10.9 Profile Generation Rule 9 - R2A Operator . 141
10.10 Stereotype Generation for Unmapped Subclasses 142
10.11 Mapping Cases Involving Bi-directional Associations 144
10.12 Generation Rule for Superclass/Subclass Feature Mappings 146
10.13 Tasks Supported by ProfileGen . 149
10.14 Mapping Editor Based on AMW . 150
10.15 ATL Runtime Configuration . 151
10.16 C2C Mappings at a Glance . 152
10.17 Stereotypes for C2C Mappings . 153
10.18 EntityType_2_Class Mapping . 154

12.1 CA2CC Operator by Composing C2C and A2C Operators 168
12.2 Using R2C Trace Models. (a) Mapping Example, (b) Adaptation of the A2A

Operator . 168
12.3 ObjectFactory Operator. (a) Mapping Example, (b) White-Box View 170

xiii

xiv

List of Tables

2.1 Transformation Rules from DTD to Ecore . 27
2.2 Heuristics from DTD to Ecore . 30

3.1 Linking Possibilities in WebML . 44
3.2 Metamodel Metrics . 50

6.1 Overview on Mapping Situations with Respect to Complete, Incomplete,
and Non-Applicable Configurations . 87

8.1 Model Metrics for Data Model/Class Diagram Roundtrip 116

10.1 Model Metrics for Data Model/Class Diagram Roundtrip Revisited 156
10.2 Bridge Metrics Overview. (a) Mapping Model Metrics, (b) Profile Metrics,

and (c) Model Transformation Metrics . 157

xv

xvi

Listings

3.1 WebML’s Concepts Grouped With External DTDs 38
3.2 Alternative has Two or More Sub-Pages . 41
3.3 Page is Placed Either Within a Siteview or Within an Area 42
3.4 Area has Either a defaultPage or a defaultArea 42
3.5 Page Contains Different Kinds of ContentUnits 42
3.6 Link Targets are not Specified . 44
3.7 Roles of the Selector Concept . 45
6.1 Well-formedness Rules for C2C Generalizations 83
10.1 Stereotype Generation . 135
10.2 Transformation Generation Template . 147
10.3 Resulting ATL Code . 155

xvii

xviii

Chapter 1

Introduction

Contents
1.1 Motivation . 1

1.1.1 Tool Integration . 2
1.1.2 Model-Driven Engineering . 3
1.1.3 Information Integration . 3
1.1.4 Model-based Tool Integration in the Context of the ModelCVS Project 6

1.2 Contribution of This Thesis . 10
1.3 Thesis Outline . 13

1.1 Motivation

With the advent of Model Driven Engineering (MDE) [Sch06], seamless exchange of mod-
els among different modeling tools increasingly becomes a crucial prerequisite for effective
model-driven software development processes. The Model Driven Architecture (MDA) ini-
tiative [OMG03a] of the Object Management Group1, probably the most prominent protag-
onist of MDE, strongly focuses on the interoperability between tools by using standards to
avoid vendor lock-in which was one of the main problems of earlier CASE tools [Iiv96].
However, in practice, the implementations of these standards are not fully compliant and
with trends such as using domain-specific modeling languages instead of one standardized
general purpose language, interoperability based on the usage of standards, only, cannot
be achieved. Due to this lack of interoperability, however, it is often difficult to use tools
in combination, thus the potential of model-driven software development cannot be fully
utilized.

Therefore, this thesis aims at providing suitable concepts and mechanisms for realizing
model-based tool integration, a research topic which lies in the intersection of the research
areas tool integration, model-driven engineering, and information integration, which are
introduced in the following three subsections.
1www.omg.org

Chapter 1 Introduction

1.1.1 Tool Integration

Research in tool integration has been a "hot" topic since the Stoneman Model was proposed
at the end of the 70’s and summarized by Brown et al. [BFW92] in two categories, the
conceptual level ("what is integration?") and the mechanical level ("how do we provide integra-
tion?").

Conceptual level of integration. In general, commercial of the shelf tools are meant to be
integrated if they function coherently and effectively in an environment as a whole, as is the
case in an integrated development environment. Wasserman [Was89] is regarded as the first
author who has suggested a categorization to describe the integration of tools from a func-
tional point of view comprising integration in terms of platforms, GUIs, data, control, and
processes. Other categorizations used for characterizing tool integration comprises depth
of integration, varying from exchanging byte streams to semantics-preserving integration,
and the universal applicability of the integration approach. In this thesis, we do not aim
at providing one integrated modeling environment, instead the modeling tools should stay
lossy coupled but should be able to exchange data between them in a semantically mean-
ingful way. Thus, the models developed in one tool should also be accessible from other
tools by transparent transformations.

Mechanical level of integration. The research efforts at the mechanical level of tool in-
tegration include (1) a series of standardization efforts and middleware services like CAIS
[Obe88], PCTE [BGMT88], CDIF [Fla02], CORBA [OMG08], and OMG’s recent request for
proposals OTIF (open tool integration framework) to support tool interoperability, (2) ar-
chitecture models, infrastructures, and tool suites like the ECMA toaster model [Ear90], the
ToolBus architecture [BK98], and finally (3) basic tool integration mechanisms such as data
sharing, data linkage, data interchange, and message passing [SD05]. Some of these efforts
were often grounded in large initiatives but have not been widely accepted. The Euro-
pean standardization effort PCTE, e.g., supporting data integration by providing tools with
a common repository and services to store, retrieve, and manipulate data was not widely
adopted in industry, not least because of its heavyweight architecture and high usage costs.

Regarding, e.g., tool suites, they are often incomplete with respect to the various develop-
ment activities requiring tool support, and most often do not allow to select between "best
of class" tools (apart from promising exceptions like Eclipse) [SD05]. Despite of all these im-
portant efforts, tool integration is still a challenging task, leading most often to hand-crafted
bilateral integration solutions [SD05]. These "solutions" suffer from high maintenance over-
heads not least in case of evolutions of the underlying data or tools themselves, are often
strongly technology-dependent and, most importantly, do not scale.

2

1.1 Motivation

1.1.2 Model-Driven Engineering

With the advent of Model-Driven Engineering (MDE) and in particular the introduction of
Model-Driven Architecture (MDA) by the OMG, new possibilities have been opened up
to cope with the aforementioned challenges. The key idea of MDE is to focus on mod-
els instead of code as the major artefact in software development. This allows modeling
tools to be integrated on basis of the metamodels describing the modeling languages sup-
ported by the tools, i.e., the tool metamodels, thus paving the way for another generation
of (meta)model-based tool integration approaches and providing a basis to overcome the
above mentioned limitations of existing integration approaches. For this, MDA includes a
set of interrelated standards, comprising a language for metamodel definition (Meta Ob-
ject Facility - MOF [OMG04]), and the MOF-compliant languages for constraint specifica-
tion (Object Constraint Language - OCL [OMG05d]), model transformation (Query/View/-
Transformations - QVT [OMG05b]), and (meta)data interchange (XML Metadata Interchange
- XMI [OMG05c]).

XMI is the proposed model interchange format, however, it has only a very limited scope
and some drawbacks. First, XMI import/export can only be used if two tools are based
on exactly the same metamodel, and second, tools must support the same XMI format2.
When two tools have to be integrated having two different metamodels, or two different
versions of the same modeling language, or even more aggravated, the metamodels are
defined in different meta-languages, XMI is no longer sufficient for model exchange. To
cope with such integration scenarios, one has to bridge the tool metamodels, e.g., by using
model transformation languages, in order to transform the models from one modeling tool
to another.

1.1.3 Information Integration

When models are treated as data, and consequently metamodels as schemas, then the model
exchange problem can be seen as a subproblem of data exchange which leads to a much
broader research field, namely information integration, with database integration as its most
prominent protagonist. Database integration has a long history, e.g., one of the earliest sys-
tems for realizing information integration was the EXPRESS system, developed in the 1970s
by IBM [SHT+77]. Integration scenarios in the data engineering field mostly concern in-
tegrating different local schemas into one global schema, however also data exchange be-
tween a source schema and a target schema have been investigated, e.g., between relational
databases and object-oriented databases, between XML schemas and relational databases,
or between databases and data warehouses [DH05, Haa07].

2In [LLPM06] et al. it is reported that in practice, even between UML 2.0 tools, model exchange is only supported
to a limited extend. The reasons for this are mainly that first, tool vendors use XMI dialects, and second, there are
currently six different XMI versions proposed by the OMG.

3

Chapter 1 Introduction

In order to discuss communalities as well as differences between data exchange in the
data engineering field and model exchange in the model engineering field, an alignment of
the meta-modeling layers of both fields seems to be beneficial. Figure 2 shows this align-
ment by using the 4-layer meta-modeling architecture proposed by the OMG [OMG05e].
On the layer M0 concrete objects reside which represent "real world" entities. Layer M1 de-
termines which objects shall be created for the domain of interest, described in a so-called
domain model. On layer M2, all concepts needed for describing domain models are defined,
so to say the language for describing domain models. In order to define the language spec-
ification on M2 requires another meta-layer, i.e. layer M3, that covers meta-concepts neces-
sary for creating one’s own language, so to say it represents the meta-language. Normally,
as meta-language, a language is chosen which is able to describe itself, in order to ensure
that the M3 layer is self-contained.

Data Engineering Model Engineering

XML
Schema

DataModel
Relational
DataModel UML

aUML
Model

aSysML
Model

o1 o1 o1

SysML

MOFNo explicit formalism

o1

M1

M2

M3

M0

aRelational
Model

anXMLSchema
Model

Legend

Correspondence

Transformation

Instance-Of

Figure 1.1: Meta-layers of Data Engineering and Model Engineering in Comparison

In the area of data engineering, integration scenarios concerning the layers M0 to M2 have
been considered, but no scenarios concerning the M3 layer have been investigated, because
in most cases no explicit meta-language has been applied to define the used data models3.
Furthermore, no user-defined data models are employed as is the case in model driven en-
gineering with user-defined modeling languages which gain more and more importance
through the trend to domain-specific languages (DSL) [Fow05]. In model engineering, the
integration scenarios are "lifted" one layer upwards, i.e., layer M1 to M3 are primarily con-
cerned. Nevertheless, similar problems occur when two modeling languages are integrated
on the M2 layer as when two schemas are integrated on the M1 layer. In particular, the
notion of heterogeneity as main driver for integration problems has been established in the

3The main reason for this circumstance is that the relational data model and the XML schema data model represent
reflexive languages, i.e., they can be described in their own terms.

4

1.1 Motivation

data engineering field. Various heterogeneity problems and categorizations have been re-
ported, cf., e.g., [Mot87, KS91, SPD92, KS96]. Especially in data exchange scenarios which
are mostly related to model exchange scenarios, the following two kinds of heterogeneity
problems have to be resolved.

Problem 1 – Heterogenous data models. Different data models (cf. meta-layer M2 of data
engineering in Figure 1.1) have been proposed over the last decades in the field of data
engineering. These data models offer a similar core of modeling concepts, but some details
differ not least since some data models provide additional modeling concepts for enhancing
expressiveness [HK87]. Consequently, schemas expressed in different data models are dif-
ficult to compare and the problem of migrating schemas to other data models arises. These
problems have been tackled with a technique called schema translation [AT95, ACB05] which
can be seen as a pre-processing step in order to reach one common integration data model,
i.e., schema elements expressed in a source data model are transformed into semantic equiv-
alent schema elements of another target data model. One important property of this kind of
schema translation is that during the transformation, the represented "real world" seman-
tics should not change or at least should be as stable as possible. A prominent example for
schema translation is transforming relational schemas into XML schemas and vice versa.

Problem 2 –Structural heterogeneities between schemas. Although the same data model
is used to define two schemas, various heterogeneities can occur between them, e.g., struc-
tural heterogeneities meaning that semantically equivalent schemas are modeled with dif-
ferent concepts. Mappings, i.e., semantic correspondences between elements of two dif-
ferent schemas, are the proposed mechanism for resolving those kind of heterogeneities
[SPD92, BM07]. The semantics of mappings are described by the correspondences between
the instances of the schemas. Thus, from mappings, transformations can be derived which
are actually capable of translating instances conforming to a source schema into instances
conforming to a target schema. Various classifications of mappings on the schema level have
been proposed in the last three decades. One of the latest and most comprehensive classi-
fications, which actually focus on the automatic generation of transformations out of map-
pings, is that of Legler and Naumann [LN07]. The authors distinguish between three main
mapping situation classes: missing correspondences, single correspondences, and multiple
correspondences, which are summarized in the following.

• Missing correspondences: This class comprises mapping situations which occur when
elements of the source or target schema are not part of the mapping. Such situa-
tions are also often called zero-to-one or one-to-zero mappings. If elements of the source
schema are not mapped, there is of course a loss of information during the transfor-
mation. Consequently, the source data cannot be reproduced from the target data. If

5

Chapter 1 Introduction

elements of the target schema are not mapped, constraints of the target schema may
be violated, e.g., if an unmapped attribute of the target schema is mandatory.

• Single correspondences: For this class, the most important property of the correspon-
dences is cardinality. According to the number of the participating elements in a cor-
respondence, it can be distinguished between one-to-one, one-to-many, many-to-one, and
many-to-many correspondences. On the instance level, one-to-one means that one ele-
ment of the source model has exactly one corresponding element in the target model,
one-to-many means that one element has to be splitted into several elements, many-
to-one means that several elements have to be combined into one element, and many-
to-many means a combination of one-to-many and many-to-one correspondences4.

• Multiple correspondences: This class focuses on the structure of the source schema and
the target schema. On the instance level this means, structurally related elements in
the source model should also maintain their semantic relationship in the generated
target model. Furthermore, this means, it should be possible to reproduce the origi-
nal source model from the generated target model. For ensuring semantic preserving
transformations, a set of single correspondences must be properly interpreted in com-
bination with the structures of source schema and target schema.

This thesis mainly deals with the two above mentioned kinds of heterogeneities, in the
area of model engineering. As a consequence, heterogeneity issues have to be considered
on higher levels of abstraction leading to the notions of meta-metamodel heterogeneity5 at M3-
level and structural metamodel heterogeneities at M2-level.

1.1.4 Model-based Tool Integration in the Context of the ModelCVS
Project

To tackle the previous mentioned problems of meta-metamodel heterogeneity and struc-
tural metamodel heterogeneity, we developed a system called ModelCVS aiming at provid-
ing a framework for model-based tool integration [KKK+06b, KKR+06]. ModelCVS enables
transparent transformation of models between different tools’ languages and exchange for-
mats going beyond existing low-level model transformation approaches.

As can be seen in Figure 1.2, the proposed architecture of ModelCVS is organized into
three major components. The red boxes represent tasks which are supported by tools and

4In practice, mostly all many-to-many correspondences can be reduced to a combination of one-to-many/many-
to-one mappings. However, for specifying mappings, many-to-many mappings can at least provide a suitable
mechanism to combine correspondences, thus reducing the size and enhancing the readability of a mapping
model.

5Although MOF is the standardized meta-metamodel of the OMG, in practice other formats are also employed as
meta-metamodels.

6

1.1 Motivation

the green boxes represent the involved artifacts in the integration process. First, the Techno-
logical Framework provides the actual tool integration services by comprising tool adapters
and a model transformation engine. Second, the Metamodel Bridging Framework provides
support for defining bridges between metamodels in terms of bridiging operators which are
subsumed by a dedicated metamodel bridging language. From these metamodel bridges
the required model transformations executable by the model transformation engine can be
automatically derived. Third, the Ontology Framework is an optional component and sup-
ports ontology-based metamodel bridging in terms of lifting the metamodels into ontolo-
gies and then using ontology matching techniques or mappings to domain ontologies to
semi-automatically determine mappings between the generated ontologies which can be
propagated back on the metamodel layer, i.e., as mappings between the metamodels. Thus,
the Ontology Framework is used for automation purposes of the mapping task. The rele-
vant parts of the ModelCVS project for this thesis are the tool adapter components and the
Metamodel Bridging Framework, which are both explained in the following in more detail.

Ontology Matching

Lifting

Tool Ontology

Tool
MetaModel A

Upper Ontology

Tool OntologyOntology Mapping

Tool
MetaModel B

Bridging Model

QVT Code

Tool A

Tool Adapter Tool Adapter

ModelA.xmiModelA.xmiModelA.xmi ModelB.xmiModelB.xmiModelB.xmi

Trace Model

ModelA

Tool B

ModelB

Trace Model

Semantic Enrichment

Bridge Generation

QVT Generation

Model Transformation

Domain Ontology
Domain Ontology

Domain Ontology

Repository
Interface

Model
Merger

Conflict
Detection

Ontology Matching

Lifting

Tool Ontology

Tool
MetaModel A

Upper Ontology

Tool OntologyOntology Mapping

Tool
MetaModel B

Bridging Model

QVT Code

Tool A

Tool Adapter Tool Adapter

ModelA.xmiModelA.xmiModelA.xmiModelA.xmiModelA.xmiModelA.xmi ModelB.xmiModelB.xmiModelB.xmiModelB.xmiModelB.xmiModelB.xmi

Trace Model

ModelA

Tool B

ModelB

Trace Model

Semantic Enrichment

Bridge Generation

QVT Generation

Model Transformation

Domain Ontology
Domain Ontology

Domain Ontology

Repository
Interface

Model
Merger

Conflict
Detection

O
n

to
lo

g
y

Fr
a

m
ew

o
rk

M
et

a
m

o
d

el
B

ri
d

g
in

g
 F

ra
m

ew
o

rk
Te

ch
n

o
lo

g
ic

a
l

Fr
a

m
ew

o
rk

Figure 1.2: ModelCVS Technological Tree

7

Chapter 1 Introduction

1.1.4.1 Tool Adapter

The prerequisite for using the ModelCVS infrastructure is that the models are conform to the
Eclipse Modeling Framework6 (EMF) XMI and that an Ecore-based metamodel is available.
We decided to use EMF as model repository infrastructure and Ecore as meta-modeling
language, because EMF is currently the most standard conform implementation of the latest
MOF version, thus the terms Ecore and MOF are often used as synonyms in this thesis. If
the models are expressed in other formats, tool adapters are needed to connect ModelCVS
with proprietary tools. Simple tool adapters are used to resolve incompatible XMI files, a
issue which can often be solved with the construction of tool adapters based on XSLT, for
instance, that finally render XMI files interchangeably. In this thesis, the focus lies not on
incompatible XMI files, instead it is focused on problems coming from meta-metamodel
heterogeneity.

When integrating two modeling tools, it is often the case that modeling languages are not
defined with the same meta-language. Although, standardized meta-languages have been
proposed in the model engineering world by the OMG, it is currently not the case that all
modeling languages are defined with the same meta-language. A collection of currently
used meta-languages for language engineering are shown in Figure 1.3.

9© 2007 BIG Vienna University of Technology, TK & IFS University Linz

MOF 1.4

UML UML Profile

XML Schema EBNF OWL

Ecore

DTD

MOF 2.0
DomainModels

RDFS

OMG IBM Microsoft

OntologiesPLsMarkup-Languages

Model Engineering

Figure 1.3: Meta-Languages Used for Language Engineering

For example, even the OMG has proposed two distinct approaches for developing mod-
eling languages: first, the development from scratch by building a completely new meta-
model, and second, the extension of standard UML by exploiting the profile mechanism
[OMG05e]. For the first approach, dedicated meta-languages are necessary. The OMG has
published the standardized meta-language MOF, however, various versions of MOF are
available, each endowed with its own model serialization technique, i.e., XMI specifica-
tion. Even within the OMG, an additional meta-language is proposed by the UML-related
group called the UML Infrastructure [OMG03b], which represents the core of UML and is

6www.eclipse.org/emf

8

1.1 Motivation

used for defining the UML 2 standard. Moreover, industry use their own implementation
of MOF which are not completely conform to the MOF standard, such as in the Eclipse
Modeling Framework7 meta-language called Ecore that can be seen as a slightly modified
MOF subset for the Java platform. Since UML 1.4, UML profiles can be created for ex-
tending standard UML with domain-specific modeling concepts. This is done by extending
classes of the UML metamodel with stereotypes, which contain tagged values for express-
ing domain-specific values in UML models. One strong point of the profile mechanism is
that standard UML tools can be reused, also for domain-specific modelling concerns. The
problematic of meta-metamodel heterogeneity is, however, further aggravated, because in
practice additional languages are used as meta-languages . In particular, two cases often
occur in typical model engineering scenarios. First, pre-MDA modeling tools have not yet
adopted OMG standards and therefore use meta-languages from other technical spaces, in
particular XML-based languages. Second, mappings between modeling and programming
languages defined in EBNF-like grammars or XML-based description languages defined in
Document Type Definitions (DTDs) or XML Schemas, are needed for realizing the transfor-
mations between platform independent and platform dependent models as requested by
the MDA initiative.

Requirements for Tool Adapters. First, tool adapters must be capable of converting mod-
els into the format supported by ModelCVS (EMF-based models) as well as generating
Ecore-based metamodels from the proprietary modeling language descriptions. Second,
tool adapters are nowadays mostly manually implemented for each different tool integra-
tion scenario, however, what is really needed are generic adapters which are capable of pro-
ducing metamodels from any language description defined in a particular meta-language
(M2-layer) and also the automatic generation of tool adapters which are capable of import-
ing/exporting models on the M1-layer.

1.1.4.2 Metamodel Bridging Framework

For achieving interoperability between two modeling tools in terms of transparent model
exchange, current best practices (cf. [Tra05]) comprise creating model transformations based
on mappings between concepts of different tool metamodels. As mentioned before, the
prevalent form of heterogeneity one has to cope with when creating such mappings between
different metamodels is structural heterogeneity. Current model transformation languages,
e.g., the OMG standard QVT [OMG05b], provide no appropriate abstraction mechanisms
or libraries for resolving recurring kinds of structural heterogeneities. Thus, resolving struc-
tural heterogeneities requires to manually specify partly tricky model transformations again
and again which simply will not scale up having also negative influence on understanding
the transformation’s execution and on debugging. Furthermore, having model transforma-

7www.elcipse.org/emf

9

Chapter 1 Introduction

tion code as the only integration description, it is hard to get an idea what really happens in
the transformation, e.g., which information is lost in the transformation. Information loss is
actually a problem when models are exported from tool A into tool B and then back from
tool B into tool A, which is a quite common tool integration scenario.

Requirements for the Metamodel Bridging Framework. First, for tackling the men-
tioned problems, a framework should be developed for building reusable mapping oper-
ators which are used to define so-called metamodel bridges. Such metamodel bridges al-
low the automatic transformation of models. For this, a uniform formalism should be used
not only for representing the transformation logic together with the metamodels and the
models themselves, but also for executing the transformations.

Second, the proposed framework should be applied for defining a set of mapping op-
erators subsumed in a mapping language which is intended to resolve typical structural
heterogeneities occurring between the core concepts usually used to define metamodels as
provided by the OMG standard MOF [OMG04]. In case a problem is not directly solvable,
new mapping operators can be defined by the user or the operational semantics of existing
mapping operators can be tweaked.

Third, the defined metamodel bridges in terms of mapping operators, should allow the
engineering of roundtrip transformations. This kind of transformations is especially needed
for tool integration, namely if models are transformed from tool A to tool B and then back
again to tool A. In such scenarios it is important that no information is lost during the trans-
formation. However, practice shows that information loss often occurs in modeling tool
integration, because of the high possibility of missing correspondences in mapping mod-
els. Therefore, mechanisms are needed that can support the user by developing roundtrip
transformation in a systematic way where mapping models play a crucial role.

1.2 Contribution of This Thesis

In regard of these crucial problems and requirements for Tool Adapters and the Metamodel
Bridging Framework, the contribution of this thesis is threefold.

Contribution 1. To ease the burden of developing tool adapters for each tool combina-
tion again and again, we propose a mining pattern for metamodels and models which can
be used for implementing bridges on the M3-layer between two different meta-languages.
With the term mining, we are not referring to stochastic methods such as used in the area
of data mining [HK00], instead, we use the term mining as a name for the process of gen-
erating model-based representations out of text-based descriptions. In particular, we have
implemented this mining pattern in the DTD2Ecore framework, a framework for producing
Ecore-based metamodels out of Document Type Definitions (DTD). Therefore, we present a
semi-automatic process how a language definition described in a language with limited ex-
pressiveness, e.g., DTD, is transformed into a language definition described in a language

10

1.2 Contribution of This Thesis

with much more language features, e.g., Ecore. This (meta)model mining pattern opens
the door to the model engineering technical space, which can be also applied in Architec-
ture Driven Modernization (ADM) [OMG05a, Ulr05] scenarios where the aim is to extract
models for different purposes, e.g., documentation or introspection, from legacy systems.

Contribution 2. In order to raise the abstraction level of metamodel bridges, we propose
a framework for defining mapping operators and metamodel bridges in a declarative man-
ner. Nevertheless, such metamodel bridges allow the automatic transformation of models
since for each mapping operator the operational semantics is specified on basis of Colored
Petri Nets [Jen92]. Colored Petri Nets provide a uniform formalism not only for represent-
ing the transformation logic together with the metamodels and the models themselves, but
also for executing the transformations, thus facilitating understanding and debugging. To
demonstrate the applicability of our approach, we apply the proposed framework for defin-
ing a set of mapping operators subsumed in our mapping language called CAR. This map-
ping language is intended to resolve typical structural heterogeneities occurring between
the core concepts usually used to define metamodels, i.e., class, attribute, and reference, as
provided by the OMG standard MOF.

Contribution 3. To facilitate the task of building roundtrip transformations, first we dis-
cuss how information loss, which can be seen as a cross-cutting concern, can be tackled with
aspect-oriented concepts. Therefore, we propose an aspect-oriented extension for the CAR
mapping language called AspectCAR. Second, we present an approach for a particular in-
tegration scenario which is quite often occurring in the field of model driven engineering,
namely bridging domain-specific modeling tools with UML tools. This scenario is selected,
because it has a high possibility for information loss due to the fact that DSLs have fea-
tures which cannot be directly represented in a general purpose language such as UML.
Nevertheless, these features can be indirectly expressed with the help of UML profiles rep-
resenting the inherent language extension mechanism of UML [FFVM04]. In our proposed
approach called ProfileGen, UML profiles are automatically derivable from CAR mapping
models between the DSM metamodel and the UML metamodel. This approach can be also
seen as a framework for developing tool adapters between domain-specific modeling tools
and UML tools.

Big Picture. According to this contribution, this thesis is structured into three parts, con-
sidering mining of metamodels and models, mapping of metamodels to derive executable
transformations, and engineering of roundtrip transformations, respectively. Figure 1.4 pro-
vides an overview of the considered integration scenarios, the thesis’ contributions, and the
relationship to the structure of this thesis.

Integration Example. In the following, we will discuss how the individual concepts, frame-
works, and tools proposed in this thesis can be combined to solve a larger integration prob-

11

Chapter 1 Introduction
Wiss. Beiträge der Arbeit

MLX MLY

LA LA‘

M1 M1 ‘

LB

M2

LEXT

M1

M2

M3

Part I
Mining Pattern
DTD2MOF Framework

Part II
Framework for Building Mapping Operators
CAR Mapping Language

Part III
-) AspectCAR
-) ProfileGen

For each chapter:
1. Concepts

2. Solution/Implementation

3. Case Study

Legend

Correspondence

Transformation

Instance-Of

Extension

Figure 1.4: Contribution and Supported Integration Scenarios of this Thesis

lem in the area of integrating modeling tools for web applications. For this, we present
an integration scenario from the MDWEnet project [VKC+07], the integration of WebRatio8

which is a CASE tool for the web modeling language WebML [CFB+03] developed at the
Politecnico de Milano with VisualWade9 another prominent web modeling tool supporting
the language OO-H [GCP01] as well as an UML tool, the Rational Software Modeler10 from
IBM.

The first problem which has to be solved is that WebRatio employs XML technologies
such as Document Type Definitions (DTD) for defining its supported language WebML and
XML documents for storing WebML models persistently. Therefore, the DTD2Ecore Frame-
work is needed to generate, first a metamodel for WebML out of the DTD, and second, to
generate a WebRatio tool adapter which is capable of transforming WebML documents into
WebML models. In particular, the WebRatio tool adapter is able to bridge the XML technical
space with the model technical space [KAB02]. As soon as the WebML metamodel is gen-
erated, the user can define a mapping model between the WebML and OO-H metamodel.
This mapping model can be executed within the Metamodel Bridging Framework which is ca-
pable of generating an OO-H model out of the WebML model. Finally, a mapping model can
be also defined between the WebML metamodel and the UML metamodel. This mapping
model is used as input for the ProfileGen component to produce, first an UML profile for
WebML, and second, a transformation expressed in the ATLAS Transformation Language
(ATL) [JK06] which is capable of producing from the WebML model an UML model which

8www.webratio.com
9www.visualwade.com
10www-306.ibm.com/software/awdtools/modeler/swmodeler

12

1.3 Thesis Outline

17© 2007 BIG Vienna University of Technology, TK & IFS University Linz

DTD2MOF
Framework

«exists»
WebML.dtd

«exists»
UML.uml

WebRatio – XML Technical Space

Model Technical Space

«exists»
model.xml

«generated»
WebML.ecore

«exists»
OO-H.ecore

«generated»
model.webml

«generated»
WebRatio

Tool Adapter

Map

ProfileGen

«generated»
WebML.profile

Metamodel
Bridging Framework

«generated»
model.ooh

«exists»
ATL Engine

«generated»
model.uml

«generated»
WebML2UML.atl

Map

Figure 1.5: Combination of Proposed Frameworks – MDWEnet Example

also employs the WebML profile.

1.3 Thesis Outline

Part I. The subsequent Chapter 2 presents a framework which implements the (meta)model
mining pattern for transforming DTDs into semantically enriched Ecore-based metamodels
in a three-step process. In Chapter 3, the proposed framework is evaluated by employing
it to produce a metamodel for WebML and discussing its resulting properties. Chapter 4
summarizes Part I and discusses related work.

Part II. Chapter 5 introduces the Metamodel Bridging Framework, in particular how the
syntax and operational semantics of mapping operators can be defined as well as how the
mapping operators can be applied to define bridges between metamodels. In Chapter 6, the
proposed framework is employed for defining mapping operators for resolving structural
heterogeneities between metamodels which are subsumed under the mapping language
CAR. Chapter 7 summarizes Part II and related work concerning reusable model transfor-
mations is given.

Part III. Chapter 8 introduces the term roundtrip transformations and two integration
scenarios exemplifying the need for roundtrip transformations in the context of tool in-
tegration. In Chapter 9, an aspect-oriented approach for engineering roundtrip transfor-
mations is presented, which allows to separate the definition of existing correspondences

13

Chapter 1 Introduction

and missing correspondences. Chapter 10 presents an alternative approach for engineering
roundtrip transformations aiming at the integration of DSLs with UML. Chapter 11 sum-
marizes Part III and discusses related work.

Finally, Chapter 12 concludes the thesis by means of a short summary and a discussion
of future work is given.

14

Part I

Mining

Chapter 2

From DTDs to Ecore-based Metamodels

Contents
2.1 Motivation . 18
2.2 DTDs and Ecore at a Glance . 19

2.2.1 Document Type Definition (DTD) Concepts 21
2.2.2 MOF Concepts in Terms of Ecore . 22
2.2.3 DTD Deficiencies . 23

2.3 A DTD to Ecore Transformation Framework 25
2.3.1 Transformation Rules . 26
2.3.2 Heuristics . 29
2.3.3 Manual Validation and Refactoring of the Generated Metamodel . . 35
2.3.4 Implementation Architecture of the MetaModelGenerator 35

In this part of the thesis, the mining pattern is applied to define a bridge between the
XML technical space and the model technical space. In particular, the mining pattern ex-
ploits the fact that most technical spaces use at least three meta-layers as shown in Figure
2.1. This figure also highlights the focussed integration scenario of this part of the thesis.
On the M3 meta-layer, meta-languages reside, whereas each technical space employs its
own meta-language. In order to bridge two technical spaces, the correspondences between
concepts of the meta-languages have to be defined. These correspondences are the basis for
establishing mining techniques. First, the correspondences can be used to generate from
the source language description (cf. LA) conforming to a source meta-language (cf. MLX),
a target language description (cf. LA

′) conforming to the target meta-language (cf. MLY).
Second, in the generation process of the target language description, a transformation can
be automatically produced which is capable of generating from models conforming to the
source language (cf. M1), models conforming to the target language (cf. LA

′).
In this chapter, the mining pattern is applied to define a bridge between the meta-languages

XML Document Type Definitions (DTDs) and Ecore. This bridge is needed, because the
WebML language has been partly specified in terms of DTDs and partly hard-coded within
the tool accompanying the language. Consequently, in order to support model-driven

Chapter 2 From DTDs to Ecore-based Metamodels

Part I

MLX MLY

LA LA‘

M1 M1‘

LB

M2

LEXT

M1

M2

M3

Legend

Correspondence

Transformation

Instance-Of

Extension

Figure 2.1: Integration Scenarios Revisited – Focus of Part I

development of web applications in the sense of Model-Driven Engineering (MDE), the
WebML language needs to be specified in a MDE-suitable way, e.g., in terms of a meta-
model. Considering the language’s size, however, we refrain from manually re-modeling
WebML from scratch, since this would be a cumbersome and error-prone process. Instead,
the existing DTD-based language specification shall be reused in a semi-automatic process
for metamodel generation from DTDs which implements the previously discussed mining
pattern. In this respect, constraints hard-coded within the language’s modeling tool We-
bRatio shall be extracted as well. After an introduction to this chapter’s particular motiva-
tion in Section 2.1, Section 2.2 is dedicated to the explanation of the concepts of DTDs and
metamodels as well as certain deficiencies of DTDs when used as a mechanism for defin-
ing modeling languages. Section 2.3 then describes the transformation process, including a
set of transformation rules, and a set of heuristics giving indication for a manual refactor-
ing, as well as a presentation of the implementation of the semi-automatic transformation
approach in the form of the so-called MetaModelGenerator (MMG).

2.1 Motivation

Metamodels are a prerequisite for MDE in general and consequently for Model-Driven Web
Engineering (MDWE) in particular. As already stated in previous chapters, various model-
ing languages, just as in the web engineering field, however, are not based on metamodels
and standards, like OMG’s prominent Meta Object Facility (MOF) [OMG04]. While web
modeling approaches originally were based on proprietary languages and rather focused
on notational aspects, today more and more approaches do provide language specifica-
tions based on standards though not always from the model technical space (cf. Chapter
1). Consequently, MDE techniques and tools cannot be deployed for such languages, which
prevents exploiting the full potential of MDE in terms of standardized storage, exchange,
and transformation of models.

18

2.2 DTDs and Ecore at a Glance

Amongst the approaches not yet in line with MDE, WebML [CFB+03] is one of the most
elaborated web modeling languages stemming from academia and is supported already
over several years by the commercial tool WebRatio as already explained in Chapter 1.
WebML’s language concepts are partly defined in terms of XML document type definitions
(DTDs) [W3C06], i.e., a grammar-like textual definition, specifying an XML document’s
structure, and partly hard-coded within the corresponding modeling tool. In contrast to
MOF, DTDs represent a rather restricted mechanism for describing modeling languages,
e.g., with respect to expressiveness, extensibility as well as readability and understand-
ability for humans. Furthermore, since WebRatio internally represents models in XML
[W3C06], it uses XSLT for generating code directly from WebML models. In contrast to
dedicated MDE code generation technologies, e.g., MOFScript1, writing XSLT programs
for code generation, however, is difficult and error-prone. Concerning these problems, a
metamodel-based approach allows expressing transformation rules in a more compact and
readable way by using existing MDE-conform code generation techniques or model trans-
formation languages such as QVT [OMG05b] and ATL [JK06] in order to produce platform-
specific models in an additional step before generating code.

In order to define WebML’s language concepts in an MDE-suitable way and thus to bridge
WebML to MDE, a MOF-based metamodel for WebML is a fundamental prerequisite. Con-
sidering the language’s size, however, we refrain from re-modeling WebML from scratch,
since this would be a cumbersome and error-prone process. Instead, the existing DTD-based
language specification as well as constraints hard-coded within WebRatio shall be reused in
a semi-automatic process for MOF-based metamodel generation from DTDs. This process
is illustrated in Figure 2.2 and encompasses three phases, whereby the first two phases con-
cern the semi-automatic generation of the basic WebML language concepts defined within
the WebML DTD. During the first phase a preliminary version of the metamodel is auto-
matically generated from the available DTD, while in the second phase this preliminary
version is manually validated and refactored according to constraints captured within the
WebRatio tool support.

The following section explains the concepts of DTDs and MOF and points out the afore-
mentioned DTD deficiencies.

2.2 DTDs and Ecore at a Glance

As a first step towards bridging WebML to MDE, this section elaborates on the expressive-
ness of DTDs, i.e., the concepts used to describe the WebML language, with respect to MOF.
In the context of OMG’s meta-level architecture [OMG05e], this means that a WebML model,
which is represented by an XML document, relates to the model level (M1) (cf. Figure 2.3).

1www.eclipse.org/gmt/mofscript

19

Chapter 2 From DTDs to Ecore-based Metamodels

Figure 2.2: Process of Designing the WebML Metamodel

Such a model has to conform to the WebML DTD describing the WebML language con-
cepts at the metamodel-level (M2). The WebML DTD in turn is based on the DTD-grammar
[W3C06] defined at the meta-metamodel-level (M3). Note that, while in case of WebML, a
DTD is used to define a modeling language and therefore can be assigned to the M2 level,
DTDs typically are used at M1 in order to describe the structure of data stored in XML doc-
uments. Analogously, MOF concepts defined at M3 are used to describe metamodels in the
sense of MDE at M2. In the present case, this is the targeted WebML metamodel of which in-
stances in terms of WebML models can be formulated at M1. This discussion shows that the
two M3 level formalisms, in terms of the DTD-grammar and MOF respectively, represent
the concepts on which to identify correspondences. In turn, these correspondences serve as
a basis for the M2-level done by the framework presented in Section 2.3.

M2

M1

WebML Metamodel

WebML Model

WebML DTD

M3

conformsTo

MOFDTD-Grammar

WebML XML Doc

Correspondences

conformsTo

conformsTo

conformsTo

Metamodel
Transformation

Model
Transformation

implies

implies

Figure 2.3: Interrelationships Between the Language Layers of DTD and MOF

In the following, UML class diagrams [OMG05e] are used as a common formalism to
explain and to illustrate the major concepts of the DTD-grammar (cf. Subsection 2.2.1) and
MOF (cf. Subsection 2.2.2). This explanation serves as the basis for identifying differences
in the expressiveness of the two meta-meta-languages (cf. Subsection 2.2.3).

20

2.2 DTDs and Ecore at a Glance

2.2.1 Document Type Definition (DTD) Concepts

The UML class diagram given in Figure 2.4 is based on previous work [KKR04] and depicts
the DTD concepts present in the WebML DTD. These concepts need to be considered for
finding correspondences to MOF concepts and consequently are reviewed briefly in the
following.

DTD

XMLCompositeET

XMLElemType

XMLAtomicET XMLEmptyET

XMLAttribute

*XMLCompositeET
MixedContent

XMLCompositeET
ElemContent

1..*

1

1..*

1

XMLDTD

*

XMLElemType

XMLContentParticle

XMLSequence XMLChoice

2..*

1..*

• ID
• IDREF
• IDREFS
• NMTOKEN
• NMTOKENS

XMLEnumAtt

XMLTokenAtt

XMLStringAtt

XMLEnumLiteral

name:String kind:TokenKind

1

1..*

name:String
declaration:AttDec

cardinality:ContCard [0..1]
nested:Boolean

«enumeration»
TokenKind

• default_value
• #REQUIRED
• #IMPLIED
• #FIXED

«enumeration»
AttDec

• zero-or-one
• zero-or-many
• one-or-many

«enumeration»
ContCard

XMLAnyET

ParameterEntityDec
*1 name:String

value:String

1 *

value:String

Figure 2.4: Overview of Relevant DTD Language Concepts

In general, DTD’s contain markup declarations comprising element types (XMLElemType)
and attributes (XMLAttributes) for defining the logical structure as well as primarily
entity declarations (e.g., ParameterEntityDec), as a reuse mechanism for certain re-
occurring markup declarations, defining the physical structure.

Element types, being first-class citizens in DTDs, have a name and are specialized into
XMLAtomicET (contains no other element types but character data), XMLEmptyET (no con-
tent is allowed), XMLAnyET (the content is not constrained), XMLCompositeETMixed-
Content (a mix of character data and child element types), and XMLCompositeETElem-

Content (consists of an XMLContentParticle). An XMLContentParticle either is an
XMLSequence, an XMLChoice, or an XMLElemType. An XMLChoice or an XMLSequence
can be enclosed in parentheses for grouping purposes and suffixed with a ’?’ (zero or one
occurrences), ’*’ (zero or more occurrences), or ’+’ (one or more occurrences), whereas the
absence of a particular symbol denotes a cardinality of exactly one.

Attribute declarations define one or multiple XMLAttributes (i.e., name-value pairs)
for a single element type. Each XMLAttribute has a name, a data type, and a default dec-
laration. The most commonly used data types for attributes are: CDATA (XMLStringAtt),
ID, IDREF (refers to one ID-typed element), IDREFS (refers to multiple ID-typed elements),

21

Chapter 2 From DTDs to Ecore-based Metamodels

and Enumeration (XMLEnumAtt). For default declarations there are four possibilities: #IM-
PLIED (zero or one), #REQUIRED (exactly one), #FIXED (the attribute value is constant and
immutable), and Literal (the default value is a quoted string).

Please note that, the order constraints imposed by DTDs and the majority of physical
structures of the DTD-grammar (i.e., general entity declarations, notation declarations as
well as XMLAttributes of type ENTITY, ENTITIES, and NOTATION) are ignored, since
they are actually more relevant to XML documents than to DTDs and the purpose of finding
correspondences to MOF concepts is rather questionable [LM05].

2.2.2 MOF Concepts in Terms of Ecore

In the following, a brief overview of the most important concepts of MOF with respect to
finding correspondences to DTD concepts is given. Note that, by the time of writing there
is no standardized implementation of MOF 2.0 available. Therefore, in this thesis, Ecore -
a slightly modified Essential MOF (EMOF) implementation in Java - which is provided by
the widespread Eclipse Modeling Framework (EMF) [BSM+04], is used. In Figure 2.5, the
most important concepts of Ecore with respect to finding correspondences to DTD concepts
are summarized.

Ecore

EModelElement

EAnnotation ENamedElement

ETypedElement EClassifier EPackage

EClass EDataTypeEStructuralFeature

EAttribute EReference

changeable : boolean
defaultValue : String

EEnum

EEnumLiteral

name : String

ordered : boolean
lowerBound : int
upperBound : int

containment : booleanid : boolean

abstract : boolean

0..*

0..*

0..*0..*

0..*

0..*

source : String

eSuperTypes

eOpposite

0..1

1

eReferenceType 1

eSuperPackage
eSubPackages

1

1 1

1

1

0..1

eAttributeType

ePackage

eClassifiers

eStructuralFeatures

eContainingClass

eType eLiterals

eEnum

eAnnotations

eReferences0..*

Figure 2.5: Overview of Relevant Ecore Language Concepts

In Ecore there is a single root concept (EModelElement) being the base class for all mod-
eling elements. Its sub-class EAnnotation is used for describing additional information

22

2.2 DTDs and Ecore at a Glance

which cannot be presented directly in Ecore-based metamodels. ENamedElement is the
base for the remaining Ecore modeling elements, because it provides for a ’name’ meta-
attribute. An EClassifier represents a type in a model and as such, is the base class for
EClass and EDataType, whereas an ETypedElement serves as the base for other mod-
eling concepts having a type such as EStructuralFeature, which in turn represents a
structural feature of an EClass. EClasses are the first-class citizens in Ecore-based meta-
models. An EClass may have multiple EReferences and EAttributes for defining its
structural features as well as multiple super-EClasses. An EAttribute is part of a spe-
cific EClass and can have, as any ETypedElement, a lower and an upper bound multiplic-
ity. Additionally, it can be specified as being able to uniquely identify the instance of its con-
taining EClass (cf. ’id’ meta-attribute) and as being ordered. The type of an EAttribute

is either a simple EDataType or an enumeration. EString, EBoolean, EInt, and EFloat

are part of Ecore’s default data type set. EEnum allows to model enumerations defined
by an explicit list of possible values, i.e., its literals (cf. EEnumLiterals). Analogous to
EAttribute, an EReference is part of a specific EClass and can have a lower and an
upper bound multiplicity. An EReference refers to an EClass and optionally to an oppo-
site EReference for expressing bi-directional associations. Besides, an EReference can
be declared as a being ordered and as a containment reference. EPackages group related
EClasses, EEnums, as well as related EPackages. Each element is directly owned by an
EPackage and each EPackage can contain multiple model elements.

2.2.3 DTD Deficiencies

When comparing a language specified in Ecore to one specified on the basis of DTDs, it
is obvious that DTDs considerably lack extensibility, readability, and understandability for
humans, and above all expressiveness [LM05]. In the following, the major deficiencies of
DTDs when used as a mechanism for defining modeling languages are described. Note
that some of these deficiencies have been resolved with the introduction of XMLSchema
[W3C04], such as limited set of data types, awkward cardinalities, missing inheritance con-
cept, and lack of an explicit grouping mechanism. A profound comparison between DTD
and XMLSchema can be found in Lee et al. [LC00]. Nevertheless, in the context of WebML,
which is based on DTDs, the following shortcomings need to be addressed.

Limited Set of Data Types

In contrast to Ecore, DTDs have a limited set of data types that cannot be extended to sup-
port, e.g., Integer or Float data types. While the provided data types generally are based on
Strings, some other data type may be simulated by defining an enumeration with specific
literals. In this way, a Boolean attribute can be simulated by an attribute of type Enumer-
ation having two literals, e.g., ’true’ and ’false’. Enumerations, however, cannot capture

23

Chapter 2 From DTDs to Ecore-based Metamodels

numeric data types such as Integer or Float, which are naturally infinite.

Unknown Referenced Element Type(s)

DTDs referencing mechanism is based on IDREF(S)-typed attributes, which are able to ref-
erence any element type having an ID-typed attribute. Unlike Ecore, which provides typed
references, it is not possible to identify the element type that may be referenced from an
IDREF(S)-typed attribute based on the information given in DTDs. DTDs even allow to
reference different element types. These referenced element types potentially have a com-
mon super-type, which, however, cannot be specified in the DTD. Due to this peculiarity of
DTDs, it is neither possible to determine which element type(s) may be referenced based on
the information given in the DTD nor if a certain set of element types may be referenced,
only.

No Bi-directional Associations

While Ecore offers bi-directional associations, in DTDs only uni-directional references can
be specified. There is no way to specify that two uni-directional references in combination
form a bi-directional association either.

Awkward Cardinalities

DTDs offer a restricted mechanism to specify cardinalities. More specifically, in contrast to
Ecore there are no explicit concepts for defining cardinalities having a lower bound greater
than ’1’ and for defining cardinalities having an upper bound other than ’1’ or ’*’. This
can only be simulated in an awkward way by redundantly specifying a certain element
type within the content specification of its related (parent) element type according to the
required cardinality.

Missing Role Concept

In DTDs, there is no explicit concept to express that an element type can be deployed in
different contexts, i.e., a role concept such as in Ecore is missing. Thus, in DTDs this is
sometimes bypassed by defining each role as a separate element type each named after
the specific role they represent, and redundantly defining the same content and attribute
specifications.

Missing Inheritance Concept

DTDs are not able to express inheritance relationships between element types as provided
for Ecore. Hence, DTDs cannot profit from the typical benefits of inheritance such as reuse.

24

2.3 A DTD to Ecore Transformation Framework

No Explicit Grouping Mechanism

There is no explicit mechanism to group parts of a DTD that semantically belong together
as it is supported in Ecore. Nevertheless, this deficiency can be bypassed by encapsulating
parts of a DTD in separate files and employing parameter entities to import these separated
definitions where appropriate.

Missing Constraint Mechanism

A mechanism for defining complex constraints, as it is supported in Ecore by using the
OCL standard [OMG05d], is not provided for DTDs. Thus, even simple XOR constraints,
which are often required in metamodels, cannot be specified. This deficiency is specifically
problematic, since possible ambiguities in DTDs cannot be resolved and XML documents,
while valid according to their DTD, might still not represent the domain data correctly.

2.3 A DTD to Ecore Transformation Framework

On the basis of the discussion of DTD and Ecore concepts as done in the previous section,
it is now possible to give more insight into the semi-automatic transformation approach,
which is based on previous work [SWK06]. Generally, the transformation approach consists
of an automatic phase and a manual phase (cf. Figure 2.6). The first phase is responsible
for automatically generating a first version of the WebML metamodel and is performed by a
component called MetaModelGenerator (MMG). The metamodel generator employs, in a first
step, a set of transformation rules expressing all identified non-ambiguous correspondences
between DTD concepts and Ecore concepts (cf. Subsection 2.3.1). In a second step of that
phase, a set of heuristics is applied, dealing mainly with the aforementioned deficiencies
by proposing possible correspondences (cf. Subsection 2.3.2). On the basis of these sugges-
tions, in the second phase, the user needs to manually validate the generated metamodel
and refactor it accordingly (cf. Subsection 2.3.3). The implementation architecture of the
transformation framework is presented in Subsection 2.3.4.

M2 WebML MetamodelWebML DTD

M3

conformsTo

MOFDTD-Grammar Correspondences

conformsToimplies

Validation &
Refactoring

Rules &
Heuristics1 2

Figure 2.6: Two Phase Semi-Automatic Transformation Approach

To illustrate the transformation approach, a small sub-set of the WebML DTD is used to

25

Chapter 2 From DTDs to Ecore-based Metamodels

show the effects of applying transformation rules, heuristics and refactoring steps in terms
of the resulting WebML metamodel (M2). In particular, this small sub-set consists of part of
the concepts provided by WebML to represent a web application’s content layer which in
fact resembles the well-known ER-model [Che76]. It has to be emphasized that the focus in
this section is on the illustration of the transformation approach, i.e., the consecutive appli-
cation of (some) transformation rules, heuristics, and refactoring steps. As a consequence,
using an example requiring concepts for modeling a web application’s hypertext has been
avoided, since the concepts are too numerous and often relate to concepts defined for the
content layer. In this respect, the WebML content layer serves as a self-contained and small
example. For those rules and heuristics that cannot be illustrated in the context of WebML’s
content model, an abstract example is provided in this section as well as a reference to an
illustration of their concrete application in the context of WebML’s hypertext model in Sec-
tion 3.1.

2.3.1 Transformation Rules

A couple of rules for transforming concepts of DTDs into Ecore concepts have been de-
signed. Table 2.1 summarizes these rules by differentiating between rules for XMLElement-
Types, XMLAttributes and XOR-Constraints, denoting DTD concepts on the left-hand
side and their Ecore counterparts on the right-hand side. Rules are marked using a decimal
numbering schema and may contain sub-rules, further specializing the correspondences be-
tween DTD concepts and Ecore concepts. Finally, alternative correspondences depending
on the concrete DTD concept are depicted by a distinction of cases. Following, the applica-
tion of some of these rules are illustrated using the running example introduced above.

Rule 1 - Element Type

For each XMLElemType, an EClass is created and the name of the EClass is set to the
element type’s name. Depending on the particular sub-class of XMLElemType, additional
metamodel elements have to be created in the transformation process, which is outlined in
Table 2.1.

Example. In Figure 2.7(a), the WebML DTD specifies amongst others element types for
ENTITY and RELATIONSHIP, since WebML’s content model is based on the ER-model. Ac-
cording to Rule 1, two EClasses are generated and named after the element types (cf.
Figure 2.7(b)). In addition, the ENTITY XMLCompositeETElemContent contains the RE-
LATIONSHIP XMLEmptyET, and with respect to case (4) in Table 2.1 an EReference is
produced, specifying RELATIONSHIP as the contained EClass.

26

2.3 A DTD to Ecore Transformation Framework

Table 2.1: Transformation Rules from DTD to Ecore

 Rule DTD Concept Ecore Concept

R 1 XMLElemType (ET) EClass
 XMLElemType. Name EClass.name

(1) XMLEmptyET no additional elements required
(2) XMLAnyET no additional elements required
(3) XMLAtomicET add EAttribute

 EAttribute.name=”PCDATA”, EAttribute.eAttributeType=EString,
 EAttribute.defaultValue=XMLAtomicET.value

If XMLSequence with
cardinality=1 and nested=false

add EReference for each XMLElementType in XMLSequence
 EReference.name=XMLElementType.name, EReference.containment=true

If XMLChoice with cardinality=1
and nested=false

add EReference for each XMLElementType in XMLChoice
 EReference.name=XMLElementType.name, EReference.containment=true
add OCL constraints restricting the alternative EReferences

(4) XMLCompositeET
ElemContent

If XMLContentParticle with
cardinality>1 or nested=true

add helper EClasses for each XMLSequence or XMLChoice serving as containers
for nested XMLContentParticles

(5) XMLCompositeETMixedContent add EReference for each XMLElementType
 EReference.name=XMLElementType.name, EReference.containment=true
add EAttribute
 EAttribute.name=”PCDATA”, EAttribute.eAttributeType=EString,
 EAttribute.defaultValue= XMLCompositeETMixedContent.value

R1.1 XMLContentParticle.cardinality EReference.multiplicity
(1) ? (Zero-or-one) EReference.lowerBound=0, EReference.upperBound=1
(2) * (Zero-or-more) EReference.lowerBound=0, EReference.upperBound=-1
(3) + (One-or-more) EReference.lowerBound=1, EReference.upperBound=-1

XM
L

El
em

en
t T

yp
e

(4) no symbol EReference.lowerBound=1, EReference.upperBound=1
R2 XMLAttribute EAttribute

 XMLAttribute.name EAttribute.name
(1) XMLStringAtt, NMTOKEN(S), IDREF(S) EAttribute.eAttributeType=EString
(2) ID EAttribute.eAttributeType=EString, EAttribute.id=true
(3) XMLEnumAtt add EEnum

 EEnum.name= XMLEnumAtt.name+”_ENUM”
 for each XMLEnumLiteral add EEnumLiteral
EAttribute.eAttributeType=EEnum

R2.1 XMLAttribute.cardinality EAttribute.multiplicity

Single-valued
EAttribute.lowerBound=1, EAttribute.upperBound=1,
EAttribute.defaultValue=XMLAttribute.default_value

(1) default_value

Multi-valued
EAttribute.lowerBound=1, EAttribute.upperBound=-1,
EAttribute.defaultValue=XMLAttribute.default_value

Single-valued
EAttribute.lowerBound=1, EAttribute.upperBound=1,
EAttribute.defaultValue=default_value, EAttribute.unchangeable=true

(2) #FIXED

Multi-valued
EAttribute.lowerBound=1, EAttribute.upperBound=-1,
EAttribute.defaultValue=default_value, EAttribute.unchangeable=true

Single-valued EAttribute.lowerBound=1, EAttribute.upperBound=1
(3) #REQUIRED

Multi-valued EAttribute.lowerBound=1, EAttribute.upperBound=-1
Single-valued EAttribute.lowerBound=0, EAttribute.upperBound=1

XM
L

At
tr

ib
ut

e

(4) #IMPLIED
Multi-valued EAttribute.lowerBound=0, EAttribute.upperBound=1

XO
R R3 If XMLElemType is part of several

XMLCompositeETElemContent
then add OCL constraint to contained EClass specifying that the produced
EReferences are exclusive

27

Chapter 2 From DTDs to Ecore-based Metamodels

<!ELEMENT RELATIONSHIP EMPTY>

<!ELEMENT ENTITY (RELATIONSHIP*)>

0..*

RELATIONSHIP
relationship

ENTITY

<!ATTLIST RELATIONSHIP
id ID #REQUIRED
name CDATA #IMPLIED
entity IDREF #REQUIRED
minCard CDATA #REQUIRED
maxCard CDATA #REQUIRED
…>

<!ATTLIST ENTITY
id ID #REQUIRED
name CDATA #IMPLIED
superEntity IDREF #IMPLIED
persistent (true|false) ‘true’
…>

id:EString
name:EString[0..1]
superEntity:EString[0..1]
persistent:persistenceENUM=“true“

persistence
ENUM

-true
-false

id:EString
name:EString[0..1]
entity:EString
minCard:EString
maxCard:EString(a) (b)

Step 1: Application of Transformation Rules

Figure 2.7: Example of Applying the Transformation Rules (Step 1)

Rule 1.1 - Content Particle Cardinality

Each XMLContentParticle may have a certain cardinality, which is represented in meta-
models through the EReference’s multiplicity in terms of lower and upper bound.

Example. Considering the running example in Figure 2.7(b), according to this rule the
cardinality of the relationship from ENTITY to RELATIONSHIP is set to ’0..*’.

Rule 2 - Attribute

For each XMLAttribute an EAttribute is created and attached to the EClass repre-
senting the XMLElemType, which in turn owns the XMLAttribute. The name of the
EAttribute is set to the name of the XMLAttribute. The data type of XMLAttribute is
one of the following: CDATA, NMTOKEN, NMTOKENS, ID, IDREF, IDREFS, and Enumeration.
Each of these possibilities requires an appropriate transformation as is outlined in Table 2.1.

Example. The example in Figure 2.7(b), shows that all XMLAttributes of type ID,
CDATA, and IDREF have been transformed into EAttributes of type EString, while the
XMLEnumAtt persistent has been transformed to an EEnum having two EEnumLiterals.

Rule 2.1 - Attribute Cardinality

Attributes in both, DTDs and Ecore have a certain kind of cardinality. In DTDs, the cardi-
nality of an XMLAttribute is determined on the one hand by the differentiation between
single-valued (e.g., ID, CDATA, IDREF, NMTOKEN, and XMLEnumAtt) and multi-valued (e.g.,
IDREFS, NMTOKENS) attributes and on the other hand by the XMLAttribute declaration
(#REQUIRED, #IMPLIED, #FIXED, and Literal). Table 2.1 illustrates how XMLAttribute

cardinalities are transformed into EAttribute multiplicities.

28

2.3 A DTD to Ecore Transformation Framework

Example. In Figure 2.7(b), all XMLAttributes are single-valued meaning that the upper
bound is set to one. Only the EAttributes name and superEntity of EClass ENTITY as
well as name of EClass RELATIONSHIP have a multiplicity of ’0..1’ since their correspond-
ing XMLAttributes have been defined #IMPLIED. The default value of the EAttribute
persistent is set to one of the EEnumLiterals, i.e., ’true’.

Rule 3 - XOR Containment References

An XMLElemType can be part of an XMLContentParticle of different instances of XML-
CompositeETElemContent. In the corresponding Ecore-based metamodel an EClass

can participate as the contained element in an arbitrary number of containment references.
At instance level, the contained object, however, can be contained by an instance of only
one of the container EClasses at the same time. Hence, this rule adds an OCL constraint
to the contained EClass specifying this restriction.

Example. In the abstract example in Figure 2.8(a), the XMLElemType C is an XML-

ContentParticle of XMLElemType A and XMLElemType B. The corresponding meta-
model in Figure 2.8(b) must ensure that an instance of EClass C is contained either by an
instance of EClass A or by an instance of EClass B. Therefore, an XOR constraint is in-
troduced between the relationship c from A to C and the relationship c from B to C. For an
example application of Rule 3 in the context of WebML the reader is referred to Listing 3.3
in Subsection 3.1.3.

<!ELEMENT B (… C* …)>

<!ELEMENT A (… C* …)>

0..*
C

c

A

<!ELEMENT C (…)>

B

0..* c

{xor}

(a) (b)

Figure 2.8: Rule 3 - XOR Containment References

2.3.2 Heuristics

As mentioned before, transformation rules are not enough to obtain an Ecore-based meta-
model from a specific DTD, due to the deficiencies of DTDs described in Subsection 2.2.3.
Thus, for resolving most of these deficiencies, a set of six heuristics (cf. Table 2.2) is pro-
posed, exploiting the assumption that design patterns and naming conventions have been
used by DTD designers that have also been found when analyzing the WebML DTDs. This
means that the effectiveness of the heuristics, however, is strongly correlated with the qual-
ity of the design of the DTDs. For example, the heuristics operate more effectively if nam-
ing conventions are used, e.g., for IDREF(S)-typed XMLAttributes, (cf. Heuristic 1 -

29

Chapter 2 From DTDs to Ecore-based Metamodels

IDREF(S) Resolution) or a common DTD design pattern [VIG05] for grouping related ele-
ment types by splitting up a DTD into several external DTDs is employed (cf. Heuristic 3 -
Grouping Mechanism).

In any case, these heuristics propose possible correspondences along with annotations
guiding the validation and refactoring step in phase 2. In this way, semantically rich lan-
guage concepts of Ecore such as typed references, data types, and packages can be used to
equalize the DTD deficiencies. Following, the application of some of the heuristics is shown
in using the running example in Figure 2.9.

Table 2.2: Heuristics from DTD to Ecore
Heuristic DTD Concept Ecore Concept DTD Deficiency

Resolved

If (XMLTokenAtt.kind=IDREF)
AND (XMLElemType.name=XMLAttribute.name)

then
 add EReference to EClass with name=
 XMLElemType.name,
 EReference.name=XMLAttribute.name
 annotate with «Validate IDREF(S)»

H1

else then
annotate EAttribute with «Resolve IDREF(S) manually»

Unknown Referenced
Element Type(s)

If XMLEnumAtt has two XMLEnumLiterals
and XMLEnumAtt is one of {true, false}, {1, 0},
{on, off}, {yes, no}

then
 EAttribute.eAttributeType=EBoolean
 annotate with «Validate Boolean»
 H2

else if XMLEnumAtt has two XMLEnumLiterals
then
 annotate EEnum with two EEnumLiterals with «Resolve
 possible Boolean type manually»

Limited Set Of Data Types

H3 If DTD imports external DTDs
then
 add EPackages for each external DTDs to the root
 EPackage

No Explicit Grouping
Mechanism)

H4 If the name of two or more XMLElemTypes in a
XMLSequence are equal

then
 annotate container EClass with «Resolve multiplicity
 manually»

Awkward Cardinalities

H5
If XMLElemType has two or more XMLTokenAtts
with declaration=#IMPLIED and (kind=IDREF or
kind=IDREFS)

then
 annotate each EAttribute or EReference (cf. Heuristic 1)
 with «Resolve XOR constraint manually»

Missing Constraint
Mechanism

H6 If XMLElemType is of type XMLAnyET
then
 annotate EClass with «Resolve XMLAnyET manually» Missing Inheritance Concept

Heuristic 1 - IDREF(S) Resolution

The first heuristic is based on the assumption that an IDREF(S)-typed XMLAttribute

might be named after the XMLElemType it is intended to reference. Thus, although DTDs
lack the possibility to explicitly specify the referenced element types (cf. Subsection 2.2.3
Unknown referenced element type(s)), it is possible to find them relying on naming conven-
tions of element types and attributes. Heuristic 1 is intended to find such name matches in
DTDs. If a match is found, an EReference is generated pointing to the identified EClass.
In addition, the EReference is annotated with �Validate IDREF(S)�. Furthermore, the

30

2.3 A DTD to Ecore Transformation Framework

multiplicity of the EReference is set to the multiplicity of the XMLAttribute.
It has to be emphasized that, since this heuristic is based on name matches, two problem-

atic cases can occur. On the one hand, it may falsely resolve references in case IDREF(S)
attributes are incidentally named like XMLElemTypes but in fact do not reference them.
On the other hand, it may not be possible to resolve a reference in case IDREF(S) attributes
are not named according to the XMLElemType they shall refer to. Consequently, the user
has to validate if the resolution of the IDREF(S) is correct or if another EClass should be
referenced.

Example. In the running example, the XMLAttribute entity in Figure 2.9(a) is resolved
to an EReference in Figure 2.9(b). In case no name match is found, the IDREF(S)-
typed XMLAttribute is transformed into an EAttribute of type EString annotated
with �Resolve IDREF(S) manually�, such as the superEntity EAttribute in Figure 2.9(b).

0..*
RELATIONSHIP

relationship

ENTITY
id:EString
name:EString[0..1]
superEntity:EString[0..1] «Resolve IDREF manually»
persistent:EBoolean=“true“«Validate Boolean»

id:EString
name:EString[0..1]
minCard:EString
maxCard:EString

entity1
«Validate IDREF»

(b)

Step 2: Application of Heuristics

<!ELEMENT RELATIONSHIP EMPTY>

<!ELEMENT ENTITY (RELATIONSHIP*)>

<!ATTLIST RELATIONSHIP
id ID #REQUIRED
name CDATA #IMPLIED
entity IDREF #REQUIRED
minCard CDATA #REQUIRED
maxCard CDATA #REQUIRED
…>

<!ATTLIST ENTITY
id ID #REQUIRED
name CDATA #IMPLIED
superEntity IDREF #IMPLIED
persistent (true|false) ‘true’
…>

(a)

Figure 2.9: Example of Applying the Heuristics (Step 2)

Heuristic 2 - Boolean Identification

Heuristic 2 is based on the assumption that an XMLEnumAtt consisting of two XMLEnum-

Literalsmight represent an attribute of type Boolean (cf. 2.2.3 Limited set of data types).
It recognizes such optimization possibilities and, instead of generating an EEnum, produces
an EAttribute of type EBoolean for the following sets of enumeration literals: {true,
false}, {1, 0}, {on, off}, and {yes, no}. Furthermore, an annotation �Validate EBoolean� is
added to the attribute. In case the two XMLEnumLiterals are not one of the aforemen-
tioned sets, the produced EEnum is annotated with �Resolve possible EBoolean type manu-
ally�, indicating the possibility of replacing the EEnum by the EBoolean data type.

Example. In the running example, the XMLEnumAtt persistent is identified to be of type
Boolean (cf. Figure 2.9(a)). Thus, in the metamodel, the EAttribute persistent is of type
EBoolean and no EEnum is generated (cf. Figure 2.9(b)).

31

Chapter 2 From DTDs to Ecore-based Metamodels

Heuristic 3 - Grouping Mechanism

In Heuristic 3, a parameter entity declaration that points to a further DTD file is interpreted
as representing a group of related markup declarations (cf. Subsection 2.2.3 No explicit
grouping mechanism), that can be referenced from within a so called root DTD. A root DTD
is equivalent to a root package in a metamodel and external DTDs are equivalent to sub-
packages of the root package. Thus, a package for each external DTD and one root package
for the root DTD needs to be generated.

Example. In the abstract example of Figure 2.10(a) a DTD named Root is shown which
defines two ParameterEntityDec PartA and PartB, both referencing an external DTD,
A.dtd and B.dtd. The DTD Root is transformed into the EPackage Root which contains
an EPackage A and EPackage B for the external DTDs (cf. Figure 2.10(b)). An example
application of Heuristic 3 in the context of WebML may be found in Listing 3.1 in Subsection
3.1.1.

<!ENTITY %PartA SYSTEM “A.dtd”>

Root.dtd

<!ENTITY %PartB SYSTEM “B.dtd”>

%PartA

%PartB
A B

Root

(a) (b)

Figure 2.10: Heuristic 3 - Grouping Mechanism

Heuristic 4 - Cardinalities Identification

This heuristic is based on the assumption that an XMLSequence containing element types
of the same name has to be interpreted as "one piece of information" (cf. 2.2.3 Awkward
cardinalities). This means that instead of producing an EReference for each single element
type, only one EReference should be generated and the cardinality has to be inferred
from all element type cardinalities within the sequence. Heuristic 4 adds an annotation
�Resolve cardinality manually� to the EClass containing the EReferences to indicate that
a specific sequence of element types transformed into a set of EReferences possibly has
to be remodeled into one EReference and the appropriate multiplicity has to be assigned.

<!ELEMENT B (…)>

<!ELEMENT A (… B, B+ …)> b1

A B
1

(a) (b)b21..*

«Resolve multiplicity
manually»

Figure 2.11: Heuristic 4 - Cardinalities Identification

32

2.3 A DTD to Ecore Transformation Framework

Example. In Figure 2.11(a), an example for the awkward cardinality deficiency of DTDs
can be found. The problem is that the first and the second XMLContentParticle B of
XMLElemType A together may represent one set of elements with a cardinality restriction
of ’2..*’ instead of representing two separate sets of elements. Consequently, in the cor-
responding metamodel (cf. Figure 2.11(b)), this ambiguity is marked by the annotation
�Resolve cardinality manually�. This annotation indicates that in the validation and refac-
toring step the user has to decide, if b1 and b2 are two separate sets or if b1 and b2 should be
merged into one set with a cardinality of ’2..*’. This heuristic has been applied for example
in the context of WebML’s hypertext model (cf. Listing 3.2 in Subsection 3.1.3).

Heuristic 5 - XOR Constraints Identification

If two XMLAttributes within an attribute list declaration of an element type are both of
type IDREF(S) and have been declared as #IMPLIED they might represent two exclud-
ing EReferences in the metamodel and hence require an XOR constraint. Heuristic 5
annotates these EReferences (or EAttributes if the reference could not be resolved au-
tomatically by Heuristic 1) with�Resolve XOR constraint manually� to indicate the possible
need for an XOR constraint.

<!ELEMENT A (…)>

0..1

C
b

A

B
0..1 c

<!ATTLIST A
…
b IDREF #IMPLIED
c IDREF #IMPLIED
…> (a) (b)

«Resolve XOR constraint manually»

Figure 2.12: Heuristic 5 - XOR Constraints Identification

Example. In Figure 2.12(a), an excerpt of a DTD is shown which defines an XMLElemType
A containing two attributes, namely b and c. Both attributes are IDREF-typed and defined
as #IMPLIED which means both attributes are optional. In this example, Heuristic 1 is used
to resolve the IDREF attributes as EReferences. In some cases, however, two optional
IDREF-typed attributes are mutually exclusive. Therefore, EReferences b and c are anno-
tated with the annotation �Resolve XOR constraint manually� indicating that the user must
decide if actually an XOR constraint exists between these two relationships or not. For an
example application of Heuristic 5 in the context of WebML see Listing 3.4 in Subsection
3.1.3.

Heuristic 6 - Inheritance Identification

This heuristic is based on the assumption that the element type XMLAnyET sometimes is
used as a container element for other concepts in the described language, i.e., concepts that

33

Chapter 2 From DTDs to Ecore-based Metamodels

have similar properties and in this way may represent sub-types of the XMLAnyET element.
Hence, Heuristic 6 annotates EClasses resulting from an XMLAnyET with �Resolve XM-
LAnyET manually� in order to propose a possible candidate for inheritance.

<!ELEMENT B ANY>
<!ELEMENT A (B*)>

<!ELEMENT C (…)>
<!ELEMENT D (…)>

<A>

<C …/>
<D …/>

B

b 0..*

C D

«Resolve XMLAnyET manually»
(a)

(b) (c)

A

Figure 2.13: Heuristic 6 - Inheritance Identification

Example. In Figure 2.13(a), the abstract example shows a DTD, in which XMLElemType

A contains an XMLElemParticle B. XMLElemType B, in turn, is defined as XMLAnyET
stating that element B can be any XMLElemType or any text. In Figure 2.13(b), an exam-
ple XML document is shown, where element A contains element B which in turn contains
elements of type C and D. In Figure 2.13(c) the corresponding metamodel from the DTD
definition contains amongst others an EClass B which is annotated with �Resolve XM-
LAnyET manually�. This annotation indicates that the user has to decide, how to express
the possibility that an instance of EClass B can contain instances of EClass C and D. In
general, this possibility can be expressed as an inheritance relationship, defining EClass

B as the super-class of EClasses C and D. In the context of WebML’s hypertext model, an
example application of Heuristic 6 is provided in Listing 3.5 in Subsection 3.1.4.

0..*
RELATIONSHIP

relationship

ENTITY
id:EString
name:EString[0..1]
superEntity:EString[0..1] «Resolve IDREF manually»
persistent:EBoolean=“true“«Validate Boolean»

id:EString
name:EString[0..1]
minCard:EString
maxCard:EString

entity1
«Validate IDREF»

(a)

Step 2: Application of Heuristics

0..*
RELATIONSHIP

relationship

ENTITY
id:EString
name:EString[0..1]
persistent:EBoolean=“true“

id:EString
name:EString[0..1]
minCard:EString
maxCard:EString

entity1

superEntity
0..1

(b)

Step 3: Validation and Refactoring

Figure 2.14: Example of Applying Manual Refactoring (Step 3)

34

2.3 A DTD to Ecore Transformation Framework

2.3.3 Manual Validation and Refactoring of the Generated Metamodel

The second, manual phase of the transformation framework requires user interaction for
validating and refactoring the automatically produced metamodel on the basis of domain-
knowledge and specifically on the basis of the suggestions annotated by the applied heuris-
tics. In the example shown in Figure 2.14(a), two annotations with respect to Heuristic 1
were introduced indicating that the user should validate, on the one hand, the directed ref-
erence introduced between ENTITY and RELATIONSHIP (�Validate IDREF�) and, on the
other hand, the introduced attribute superEntity which was marked with�Resolve IDREF(S)
manually�. While the directed reference appears to be a correct transformation, the intro-
duced attribute superEntity is, in fact, a reference to the ENTITY in its role as super-entity
used to model inheritance in WebML and therefore shall be manually refactored accord-
ingly by replacing the EAttribute with an EReference from ENTITY to itself with the
role name superEntity (cf. Figure 2.14(b)). Furthermore, according to Heuristic 2, in the given
example the EAttribute persistent has been annotated with�Resolve possible EBoolean type
manually� to indicate the need of manual validation. In this case no manual refactoring is
necessary and the annotation can be deleted.

M2 WebML MetamodelWebML DTD

M3

«conformsTo»«conformsTo»

MOFDTD-Grammar

«parses» «generates»

XMI-Serializer
<ecore class>

<ecore>
<ecore class>

<ecore att>

Preliminary
Metamodel

MetaModelGenerator
(MMG)

DTD element
type object graph

Metamodel
element object graph

DTD-Parser Transformer

«uses» «uses»

TransformationRules Heuristics

Correspondences

Class

Class Class Class

Class

Class Class

Omondo

User

Ph
as

e
1

Ph
as

e
2

Semantic
enrichment

<!ELEMENT A>
<!ATTLIST A>

<!ELEMENT B>
<!ATTLIST B>

<!ELEMENT C>
<!ATTLIST C>

Figure 2.15: Architecture and Mode of Operation of the MMG

2.3.4 Implementation Architecture of the MetaModelGenerator

As already mentioned, the core component of the transformation framework is represented
by the MetaModelGenerator. Figure 2.15 shows the details of its implementation architec-

35

Chapter 2 From DTDs to Ecore-based Metamodels

ture. The MMG is based on the EMF and on an open source DTD parser2. In a first step a
specific DTD, in this case, the WebML DTD, serves as input to the DTD parser, which builds
a Java object graph of DTD markup declarations in memory. Then, each element type in the
object graph is visited and transformed according to the transformation rules and heuristics
described in Subsection 2.3.1 and Subsection 2.3.2 respectively. Each transformation rule
is implemented as a separate Java method which takes DTD element type objects as input
and generates the objects for the corresponding Ecore elements. If a transformation rule
uses a heuristic, then the corresponding method calls a helper method which implements
that heuristic. As soon as the complete element object graph of the Ecore-based metamodel
has been generated, the default XMI serializer of EMF is activated in order to serialize the
metamodel as an XMI file. This XMI file can be loaded into OMONDO3, a graphical editor
for Ecore-based metamodels available as an Eclipse plug-in. In a last step, the annotations
created to indicate that a heuristic has been applied, should be validated by the user and
the metamodel should be refactored accordingly.

2www.wutka.com/dtdparser.html
3www.omondo.com

36

Chapter 3

Evaluation of the DTD to Ecore
Framework

Contents
3.1 Case Study on WebML . 37

3.1.1 Root Package "WebML" . 38
3.1.2 Package "Structure" . 40
3.1.3 Package "HypertextOrganization" . 40
3.1.4 Package "Hypertext" . 42
3.1.5 Package "ContentManagement" . 45
3.1.6 Package "AccessControl" . 47
3.1.7 Package "Basic" . 47

3.2 Discussion of the Generated WebML Metamodel 47
3.2.1 Completeness Criteria . 48
3.2.2 Quality Metrics . 49

This chapter is dedicated to the evaluation of the DTD2Ecore framework. In Section 3.1,
the transformation framework is applied to the WebML DTD and the resulting WebML
metamodel is presented. A discussion of the metamodel’s completeness with respect to the
WebML DTD and the metamodel’s quality is given in Section 3.2. Note that the generated
WebML metamodel has been used in [Sch07] to define an aspect-oriented extension of the
WebML language.

3.1 Case Study on WebML

The Ecore-based metamodel for WebML resulting from the application of the DTD2Ecore
transformation framework to the WebML DTD is subject of this section. In particular, the
rationale behind some of the manual refactoring decisions shall be explained. Additionally,
the WebML metamodel shall be illustrated by relating it to a concrete modeling example,
i.e., a demo WebML model that is shipped with WebRatio. This way, the intention is to

Chapter 3 Evaluation of the DTD to Ecore Framework

briefly explain the language and notation to those unfamiliar with WebML and at the same
time indicate the relationship between the model and the metamodel specification as well
as informally show the equivalence of the metamodel with the original WebML DTD. A
more profound evaluation of the WebML metamodel is provided in Section 3.2.

Please note that the following figures depicting some of the metamodel’s packages have
been simplified for readability purposes. For the same reason, XOR constraints are illus-
trated in UML syntax, i.e., with XOR annotated dependencies. For an in-depth description
of each modeling concept the reader is referred to [CFB+03]. Before describing some of the
packages in more detail and explaining some of the refactoring actions (cf. Subsection 3.1.2
- 3.1.7), an overview on the overall package structure is given.

3.1.1 Root Package "WebML"

The WebML designers have used parameter entities as a mechanism to structure the WebML’s
language specification. Thus, the WebML language definition consists of several DTDs with
WebML.dtd being the root DTD that imports the others, which is expressed in Listing 3.1.

Listing 3.1: WebML’s Concepts Grouped With External DTDs
<!−− WebML. dtd −−>
<!ENTITY % StructureDTD SYSTEM " S t r u c t u r e . dtd">

%StructureDTD ;
<!ENTITY % NavigationDTD SYSTEM " Navigation . dtd">

%NavigationDTD ;
<!ENTITY % PresentationDTD SYSTEM " P r e s e n t a t i o n . dtd">

%PresentationDTD ;
. . .

While Structure.dtd and Navigation.dtd define the main language concepts that have been
introduced in [CFB+03], other rather tool-related DTDs have been introduced in the We-
bRatio tool. In contrast to previous work [SWK06], where the main focus has been WebML’s
main language concepts, in this thesis all of WebML’s DTDs are considered. This allows for
migrating existing WebML models that have been generated using WebRatio into models
conforming to the metamodel specification without loosing any information (cf. Subsection
3.2.1) and thus profiting from further MDE techniques such as model transformation.

Figure 3.1 presents a bird’s eye view of the resulting WebML metamodel, i.e., its packages
and their interrelationships. This structural organization of the WebML concepts has been
automatically generated on the basis of Heuristic 3. While Structure.dtd corresponds to the
Structure package in Figure 3.1 and contains concepts for modeling the content level of a
web application, the Navigation package contains modeling concepts for the hypertext level
and has been automatically generated from the Navigation.dtd. The rather large Navigation
package has been manually reorganized into four sub-packages, namely HypertextOrgani-
zation, Hypertext, ContentManagement, and AccessControl. In addition, the package Basic has
been introduced, which includes typical abstract concepts, e.g., ModelElement and Named-

38

3.1 Case Study on WebML

WebML

Structure

Hypertext Content
Management

Access
ControlHypertext

Organization

Navigation

Localization

Presentation Auxiliary

Basic

RDBMS
Mapping

Mapping

Figure 3.1: Overview of WebML Metamodel Packages

Element, from which all other WebML concepts are derived. The additional gray-shaded
packages have been generated from the tool-related DTDs: First, the Mapping package im-
ports the RDBMSMapping package which provides concepts for specifying the mapping
of WebML’s content model to a relational database, second, the Localization package offers
modeling concepts for multilingual web applications, third the Presentation package defines
concepts for modeling the Look & Feel of web applications, and fourth, the graphical illustra-
tion and positioning of WebML’s notational elements within the WebRatio modeling editor
is determined by concepts defined in the Auxiliary package.

In the following, a detailed description of the tool-related packages is omitted in favor of
presenting the actual WebML language, i.e., the Structure, Navigation, and Basic packages,
as well as some of the applied refactoring actions. In order to better illustrate the semantics
of the metamodel, the corresponding part of a concrete WebML modeling example will
be provided for each package. For this reason, the ACME (A Company Manufacturing
Everything) example model, which is a demo WebML model shipped with WebRatio, shall
be used. It represents a company’s website where users can browse and search products as
well as special combinations of products. These products and combinations can be edited,
extended, and deleted by administrators of the web application.

39

Chapter 3 Evaluation of the DTD to Ecore Framework

3.1.2 Package "Structure"

The Structure package (cf. Figure 3.2(a)) contains modeling concepts that allow modeling
the content layer of a web application, which regards the specification of the data used by
the application. Since, as already mentioned, WebML’s content model is based on the ER-
model, it basically supports ER modeling concepts: An Entity represents a description of
common features, i.e., Attributes, of a set of objects.

0:NCategory
OID:OID
category:String

Product
OID:OID
code:String
description:Text
highlighted:Boolean
name:String
price:Float
thumbnail:BLOB

TechRecord
OID:OID
colors:BLOB
dimensions:String

BigImage
OID:OID
description:Text
picture:BLOB

Combination
OID:OID
code:Text
description:Text
endDate:Date
highlighted:Boolean
name:String
photo:BLOB
price:Float
startDate:Date

0:1

User
OID:OID
Email:String
Password:Password
UserName:String

Group
OID:OID
GroupName:String

Module
OID:OID
ModuleD:String

0:N

0:N

0:N 1:1

1:1 1:1

1:1 1:N

1:N 1:N

Store
OID:OID
address:String
http:URL
map:BLOB
photo:BLOB

Structure

minCard:EInt
maxCard:EInt

Entity

Relationship Domain

superentity0..1

inverse
1

attribute
*

* domainValue

relationship*

1 to

DomainValue

Attribute
type:WebMLTypes

userType0..1

{xor}• String
• Text
• Password
• Number
• Integer
• Float
• Date
• Time
• TimeStamp
• Boolean
• URL
• BLOB
• OID

«enumeration»
WebMLTypes

1:1 1:N

(a) (b)

Figure 3.2: Structure

With respect to manual refactoring actions, an XOR constraint has been added to the
metamodel in order to specify that Attributes can have either a predefined type, e.g., String,
Integer, Float, Date, Time, and Boolean, or a userType, i.e., an enumeration type represented
by Domain and DomainValue, respectively. Entities that are associated with each other are
connected by Relationships whereby the type of the meta-attributes minCard and maxCard
of Relationship have been changed from EString to EInt.

In Figure 3.2(b)1, the WebML content model of the ACME web application is depicted.
Products belong to one Category and can be described by a TechnicalRecord and several BigIm-
ages. Furthermore, Products can be offered within several Combinations with other Products.
In addition, the web application provides information of available Stores. The User, Group,
and Module entities are used for user management (e.g., normal users and administrators)
and access control purposes.

3.1.3 Package "HypertextOrganization"

The HypertextOrganization package includes concepts for structuring the hypertext, i.e., it
offers concepts for organizing modeling concept from the Hypertext package (cf. Subsec-

1For readability reasons, we do not incorporate "instance-of" relationships from the modeling example part to the
metamodel part of the figure.

40

3.1 Case Study on WebML

tion 3.1.4). More specifically, the Page concept is used to organize and structure informa-
tion from the content level, e.g., ContentUnits from the Hypertext package. Siteviews and
Areas in turn group Pages as well as operations on data from the content level, e.g., Oper-
ationUnits from the ContentManagement package (cf. Subsection 3.1.5). More specifically,
Siteviews represent groups of areas and/or pages devoted to fulfilling the requirements of
one or more user groups, while Areas are containers of Pages or nested sub-areas related to
a homogeneous subject and are used to hierarchically organize the web application. These
concepts are encapsulated within the HypertextOrganization package (cf. Figure 3.3(a)).

ProductsProducts

Offers

Stores
LL

Stores
LL

ByCategory
D

ByPrice Product
Search

ProductPageProductPage ImagesPage

Search
Combinations
D

Search
Combinations
D

Combination
Page

LLLL

Home HH
LL

Home HHHome HH
LLLL

LLLL

LLLL

HypertextOrganization

landmark:EBoolean landmark:EBoolean
Page

Hypertext::
ContentUnit

Hypertext::
LinkableElement

AlternativeArea

SiteView ContentManagement::
GlobalParameter

ContentManagement::
Transaction

ContentManagement::
OperationUnit

defaultPage
0..1

*
page

0..1
defaultArea

homepage*page 0..1

*area

area *

transaction
*

operationunit
*

transaction*

operationunit*

contentUnit
*

defaultPage

0..1

alternative*
2..*
page

*

{xor} {xor}

{xor}

LLLL LLLL

(a) (b)

{xor}

Figure 3.3: HypertextOrganization

With respect to refactoring actions, it was possible to identify an example of the awkward
cardinalities problem (cf. Subsection 2.2.3) based on EAnnotations created by Heuristic
4. The definition of the Alternative concept requires the Alternative to have at least two
sub-pages, which is expressed in the WebML DTD as is depicted in Listing 3.2.

Listing 3.2: Alternative has Two or More Sub-Pages
<!ELEMENT A l t e r n a t i v e (Page , Page+)>

Yet, this definition found in the DTD might be interpreted differently in a metamodel.
One possible interpretation is that the first XMLContentParticle represents a special
page, e.g., a default page. The correct interpretation in the context of WebML [CFB+03]
is, however, that the first and the second XMLContentParticle together represent one
set of alternative Pages, i.e., one containment EReference, but with special restrictions on
their cardinalities, i.e., 2..*. In metamodels, this constraint can be expressed unambiguously,
which is shown by the Alternative.page reference in Figure 3.3(a).

While Rule 3 already detected, that Pages and Transactions can be contained by either a
Siteview or an Area (cf. Listing 3.3), Heuristic 5 identified further possible candidates for
XOR constraints in the HypertextOrganization package.

41

Chapter 3 Evaluation of the DTD to Ecore Framework

Listing 3.3: Page is Placed Either Within a Siteview or Within an Area
<!ELEMENT Siteview (. . . Page∗ . . .) >
<!ELEMENT Area (. . . Page∗ . . .) >

In Listing 3.4, an Area can have either a defaultArea or a defaultPage, but not both at the
same time.

Listing 3.4: Area has Either a defaultPage or a defaultArea
<!ELEMENT Area (. . .) >
<!ATTLIST Area

defaultPage IDREF #IMPLIED
defaultArea IDREF #IMPLIED
. . . >

In the DTD, the attribute list declaration of Area is not able to ensure this constraint at the
instance level. Therefore, an XOR constraint has been introduced to specify that either the
defaultPage EReference or the defaultArea EReferences occurs at the instance layer:

context Area inv:

defaultArea.oclIsUndefined()<>defaultPage.oclIsUndefined()

In the ACME WebML model, separate Siteviews for users and administrators have been
designed. The first one, the Web Siteview, is depicted in Figure 3.3(b). The Products Area
groups all Pages presenting some information about products and the Home Page (H) acts
as the entry point of the Siteview. The default page of an Area (D) such as the ByCategory
Page of the Products Area is the one displayed when the Area is entered. Furthermore, Pages
and Areas declared as landmark (L) are reachable from all other Pages or Areas within their
enclosing Siteview or enclosing Area. In this respect, the landmark represents a compact way
of specifying a set of links to a Page or Area, respectively.

3.1.4 Package "Hypertext"

The hypertext layer represents a view on the content layer of a web application, only, and
thus, the Hypertext package reuses concepts from the Structure package, namely, Entity,
Relationship, and Attribute. The Hypertext package (cf. Figure 3.4(a)) summarizes Content-
Units used, for example, to display information from the content layer, which may be con-
nected by Links in a certain way. Based on Heuristic 6, a candidate EClass for introducing
inheritance has been identified. In WebML, Pages contain different kinds of ContentUnits
(cf. Listing 3.5).

Listing 3.5: Page Contains Different Kinds of ContentUnits
<!ELEMENT Page (ContentUnits , . . .) >
<!ELEMENT ContentUnits ANY >

42

3.1 Case Study on WebML

The XMLAnyET, however, does not restrict which element types are allowed at the in-
stance layer. Again, these constraints have to be ensured by the WebRatio tool. In the meta-
model, this problem could be resolved by manually introducing a generalization hierarchy,
which includes the additional abstract classes ContentUnit, DisplayUnit, and SortableUnit.
This way, it can be ensured that Pages contain sub-classes of ContentUnit, only, and han-
dle the large amount of different kinds of ContentUnits more easily by reducing redundant
structural feature definitions.

Products

ByPrice

LLLL

AllProducts

Product

ByCategory

LLLL

Categories

LDLD Category

ProductSearch

LLLL

SearchProducts ProductsFound

Product
[name description contains ?]

Product

ProductDetails
TechnicalRecord

Combinations
of product

Product
Combination

[Product_2_Combination]
TechRecord

[Product_2_TechRecord]

Images

EnlargedImages

Product
BigImage

[Product_2_BigImage]

Product

sourceLinkParameter
0..1

linkParameter
*

to
1

link *

relationship0..1

relationship1

0..1attribute 1

1
attribute

attribute

selector
preselector

0..1
0..1

*

*

0..1entity

*
*

1..*

selector
0..1

*

*

LinkableElement

ContentUnit

LinkLinkParameter

EntryUnitDisplayUnit

Structure::Entity

SortableUnit DataUnit

Hierarchical
IndexUnit

MultiChoice
IndexUnit IndexUnit MultiDataUnit ScrollerUnit

Selector

Content::
Attribute

Structure::
Relationship

SelectorCondition

Hierarchical
IndexLevel

Structure::Attribute

SortAttribute

Hypertext

• normal
• transport
• automatic

«enumeration»
LinkType

type:LinkType

(a)

(b)

selectionField

field

validationrule validationrule

validationrule

slot

slot

*

* *

*

*

*
ValidationRule

SelectionField

Field

Slot
*

{xor}
{xor}

Figure 3.4: Hypertext

The abstract class LinkableElement has been manually introduced in order to cope with
other language concepts that can also be connected by Links. This was necessary, since the

43

Chapter 3 Evaluation of the DTD to Ecore Framework

IDREF-typed XMLAttribute to of the Link XMLElemType declaration does not restrict the
referenced elements to those that the designer originally intended to reference (cf. Listing
3.6).

Listing 3.6: Link Targets are not Specified
<!ELEMENT Link (. . .) >
<!ATTLIST Link

to IDREF #REQUIRED
type (normal|automatic| t r a n s p o r t) ’ normal ’
. . . >

Furthermore, besides ContentUnits, there are other LinkableElements in the Hypertext-
Organization package (cf. Subsection 3.1.3), namely Page and Area, as well as in the Content-
Management package (cf. Subsection 3.1.5), namely OperationUnits. More specifically,
three disjoint LinkTypes are available in WebML, i.e., normal, automatic, and transport (cf.
Figure 3.4(a)). Besides this Link concept, there are also the OKLink and KOLink model-
ing concepts from the ContentManagement package, which are specifically used to define
Links from OperationUnits to other LinkableElements. Consequently, there are multiple
sourceElement-link-targetElement tuples of which some are allowed in WebML, only (cf.
Table 3.1).

Table 3.1: Linking Possibilities in WebML

From\To Content
Unit

Operation
Unit Page Area

Content
Unit

normal
automatic
transport

normal
transport

Operation
Unit

transport
OK
KO

transport
OK
KO

transport
OK
KO

transport
OK
KO

Page normal
transport

normal
transport

normal

These sourceElement-link-targetElement tuples, however, are not restricted by the WebML
DTD but are implicitly ensured within the WebRatio tool. Aiming at a precise definition of
sourceElement-link-targetElement tuples, in the WebML metamodel, the introduction of the
LinkableElement concept, which acts as a super-class for all possible sources and targets, is
not enough. Consequently, a set of appropriate OCL constraints restricting the tuples to
those that are allowed in WebRatio have been introduced (cf. Table 3.1). For example, a
Page cannot link ContentUnits, which can be specified with the following OCL constraint:

context Page inv:

self.link->forAll(l | not l.to.oclIsTypeOf(ContentUnit))

44

3.1 Case Study on WebML

Figure 3.4(b) shows a refined view of the Web Siteview presented in Figure 3.3(b) de-
picting in detail the Products Area: While the ByPrice Page uses the IndexUnit AllProducts
for listing links to all products in ascending order according to their price, the ByCategory
Page displays a linked list of all products organized according to their categories using a
HierarchicalIndexUnit. The ProductSearch Page provides an EntryUnit SearchProducts with
one Field where the user can enter a keyword and displays the found products as an In-
dexUnit. A single SelectorCondition of the IndexUnit’s Selector defines that only those
products are to be retrieved, where the keyword is part of the name or the description of
the product. A specific product is shown by the Product Page, which is linked by all other
Pages via Links of type normal. The ProductDetails DataUnit represents one product from
the content model and displays the specified Attributes, only. Furthermore, an additional
DataUnit retrieves the technical record of the product and an additional IndexUnit displays
a linked list of combinations where the specific product is part of. The information about
what technical records and what combinations to retrieve is transported via LinkParame-
ters of Links of type transport (dashed arrows), which are neither navigable by nor visible to
users. Finally, the Images Page again shows some details of a product using a DataUnit and
a set of images of the product using a MultiDataUnit.

3.1.5 Package "ContentManagement"

The ContentManagement package contains modeling concepts that allow the modification
of data from the content layer. Similar to the generalization hierarchy in the Hypertext pack-
age, additional abstract classes have been introduced to the ContentManagement package
on the basis of EAnnotations created by Heuristic 6 (cf. Figure 3.5(a)), i.e., OperationUnit,
ContentManagementUnit, EntityManagementUnit, and RelationshipManagementUnit. In
particular, the introduction of the OperationUnit EClass ensures that Areas and Siteviews
from the HypertextOrganization package contain sub-classes of OperationUnit, only. Since
the specific ContentManagementUnits are able to create, modify, and delete Entities as well
as establish or delete Relationships between Entities from the content layer, the Content-
Management package reuses concepts from the Structure package, namely Entity and Rela-
tionship.

Furthermore, redundant definitions of the same concept have been identified, namely
Selector. As an example, a RelationshipManagementUnit may have two Selectors, with one
being used in the role of a sourceSelector and the other one being used as a targetSelector.
In the WebML DTD, this is expressed as follows (cf. Listing 3.7).

Listing 3.7: Roles of the Selector Concept
<!ELEMENT DisconnectUnit (S o u r c e S e l e c t o r ? , T a r g e t S e l e c t o r ? , . . .) >
<!ELEMENT S e l e c t o r (Se lec torCondi t ion +)>
<!ELEMENT S o u r c e S e l e c t o r (Se lec torCondi t ion +)>
<!ELEMENT T a r g e t S e l e c t o r (Se lec torCondi t ion +)>

45

Chapter 3 Evaluation of the DTD to Ecore Framework

Images

ExistingImages ProductDetails NewImage

DeleteImage AddImage

Product_2_BigImage BigImage BigImage_2_Product BigImage

BigImage
[Product_2_BigImage]

Product

Disconnect
Image

DeleteImage Connect
Image

CreateImage

ContentManagement

1 relationship
1
entity

1
globalparameter

1..*

operationunit

selector
0..1

0..1
0..1

0..1
targetselector

sourceselector
selector

0..1 entity

to

to

* *

0..1

0..1
okLink

koLink
OperationUnit

SetUnit ContentManagementUnit

EntityManagementUnit RelationshipManagementUnit

ConnectUnit DisconnectUnit

Structure::Relationship

CreateUnitModifyUnitDeleteUnit

Structure::Entity

GlobalParameter

Transaction

Hypertext::
Selector

OKLink
KOLink

Hypertext::
LinkableElement

(a) (b)

OK
OK

OK

OKKO KO KOKO

GetUnit1

Figure 3.5: ContentManagement

Since the Targetselector XMLElemType declaration and the SourceSelector XMLElemType
declaration are identical to the Selector XMLElemType declaration, one can conclude that
they represent the same concept as the Selector but are used in a special context. In con-
trast, in metamodels, this context information can be defined as roles, i.e., incorporated by
the EReferences’ names. Therefore, the WebML metamodel only contains the Selector
EClass, which is referenced by the RelationshipManagementUnit as a sourceSelector and
targetSelector, respectively (cf. the EReferences role names in Figure 3.5(a)). A similar
example can be found in the Hypertext package, where a Selector can act as preselector for
MultiChoiceIndexUnits (cf. Figure 3.4(a)).

In the Administrator Siteview of the ACME web application, administrators can add, edit,
and delete products, combinations, and stores. The Images Page in Figure 3.5(b) is part
of the ProductEditing Area and allows adding and deleting images of a specific product.
The Page displays product details in a DataUnit, an IndexUnit of existing images for the
product, and an EntryUnit allowing the upload of further images. Selecting an image from
the IndexUnit activates the Transaction DeleteImage, which has similar semantics as typical
database transactions. First, a DisconnectUnit disconnects the image and the products by
deleting the specific instance of the relationship, then the OKLink is followed, the image is
deleted using a DeleteUnit, and via a second OKLink the Images Page is reached again. In
case of an error, the KOLinks are followed to the Images Page. The AddImage Transaction is
activated when the user uploads a new image. It first creates a new image with a CreateUnit
and then connects it to the specific product with a ConnectUnit.

46

3.2 Discussion of the Generated WebML Metamodel

3.1.6 Package "AccessControl"

In Figure 3.6(a), the AccessControl package groups concepts for controlling the access to
Siteviews, namely LoginUnit, LogoutUnit, and ChangeGroupUnit.

Home HH

LL

Login

Get User

Home HH

LLuseruserParam

AccessControl

siteview*

ContentManagement::
OperationUnit

LoginUnitLogoutUnit ChangeGroupUnit

HypertextOrganisation::
Siteview

User

(a) (b)

KO

KO

Figure 3.6: AccessControl

The example shows the Web Siteview, i.e., the Home Page of normal users (cf. Figure
3.6(b)). Administrators have to log in via the EntryUnit Login. The LoginUnit verifies user-
name and password and switches to the user’s default Siteview, i.e., the Administrator Site-
view. In the Home Page of the Administrator Siteview, user information is displayed with the
User DataUnit. The respective user is obtained from the session with a GetUnit (cf. Sub-
section 3.1.4). A user logs out via LogoutUnit, which forwards the user back to the Web
Siteview for normal users.

3.1.7 Package "Basic"

The Basic package consists of three abstract concepts, which encompass some features need-
ed by the majority of WebML’s modeling constructs. The ModelElement metaclass repre-
sents the root element of the WebML language from which all others inherit, either directly
or indirectly. The IdentifiedElement concept encompasses an EAttribute id as well as
containment EReferences to the Comment and Property concepts of WebML. Finally,
NamedElement represents modeling concepts having an EAttribute name. Since almost
all elements of this package are abstract concepts, no excerpt of the ACME modeling exam-
ple is provided in Figure 3.7.

3.2 Discussion of the Generated WebML Metamodel

In the following, a discussion on the evaluation of the generated WebML metamodel is pro-
vided and shall give an indication on the applicability of the semi-automatic transformation
approach. This evaluation is conducted, first, with respect to the metamodel’s completeness

47

Chapter 3 Evaluation of the DTD to Ecore Framework

Basic
ModelElement

NamedElement

IdentifiedElement Comment

Property

comment
0..1

property
*

body:EStringid:EString

name:EString

value:EString

Figure 3.7: Basic Elements

compared to the language concepts defined in the original WebML DTD (cf. Subsection
3.2.1) and, second, on the basis of certain quality metrics (cf. Subsection 3.2.2).

3.2.1 Completeness Criteria

The completeness criteria is fulfilled at the meta-level M2 if the generated WebML meta-
model contains all concepts defined within WebML’s DTD and the WebRatio tool. At the
model level M1 this means that the WebML models can be exchanged in a lossless way, i.e.,
instances of the WebML metamodel can be transformed to XML documents conforming to
the WebML’s DTD and vice versa.

Although WebML does provide a formal definition of the semantics of its concepts [CF01],
[BCF02], a formal verification of the completeness criteria is not an option. This is due
to the fact that currently within EMF the definition of semantics is not provided without
executing the model itself. Nevertheless, a first prerequisite for completeness at the M2
level is provided by the fact that each WebML concept present in the DTD is dealt with by
at least one transformation rule of the framework, which in turn assures for each WebML
concept that there exists at least one counterpart in the metamodel.

In addition, completeness at the M2 level can be further underpinned by considering the
M1 level. Taking a first step towards evaluating completeness at the M1 level, an "example-
based" strategy has been followed, i.e., an existing WebML reference example has been re-
modeled on the basis of the generated metamodel. To do so, a tree-based modeling editor
for the metamodel has been generated using EMF in order to completely remodel WebRa-
tio’s demo example, the ACME E-Store. In addition, the example has been extended by
those WebML language concepts not covered in the original example2.

In a second step, the tree-based modeling editor was enhanced with an import/export
facility to demonstrate whether models could be exchanged with the WebRatio tool in a

2The modeling editor and the ACME example are available at http://big.tuwien.ac.at/projects/webml/

48

3.2 Discussion of the Generated WebML Metamodel

lossless way3. With that facility it is possible to import the extended ACME example from
WebRatio into the modeling editor and subsequently to export the model back into a We-
bRatio XML document. A comparison of the original XML document defined by WebRatio
and the exported XML document from the modeling editor with the XML Differencing fa-
cility of StylusStudio4 demonstrated that both were equivalent.

Admittedly, it has to be noted that this is only a first step towards justifying the seman-
tic equivalence of the WebML metamodel and the original language specification not least
since the evaluation shall comprise a larger set of more complex examples.

3.2.2 Quality Metrics

The WebML metamodel and its quality characteristics in terms of expressiveness, accuracy,
and understandability have evolved considerably during the three-step transformation pro-
cess. In order to illustrate this evolution, a set of metrics inspired by [MSZJ04] have been
applied to the metamodel versions resulting from each step of the transformation process,
i.e., the application of transformation rules, the employment of heuristics, and the man-
ual validation and refactoring. The results of applying these metrics are summarized in
Table 3.2.

Interpreting these metrics, one can observe that the introduction of a package structure,
inheritance, and roles as well as the resolution of the awkward cardinalities deficiency has
had a great impact on the understandability and readability of the metamodel. For the man-
ual refactoring phase, the specific impact of introducing the Basic package shall be pointed
out. The left-hand side of the manual refactoring phase column in Table 3.2 depicts the met-
rics of the refactoring actions without considering the introduction of the Basic package.
The metrics on the right-hand side then depict the numbers for the final metamodel and
illustrate the positive effect of the introduction of the Basic package. In particular, the in-
troduction of inheritance through 17 abstract EClasses has helped to decrease complexity
by reducing redundant EAttributes and EReferences. In this respect, the introduction
of the three abstract EClasses from the Basic package played an important role. The
identification of 3 roles has diminished the number of EClasses, while the resolution of
awkward cardinalities has diminished the number of EReferences. All in all, the number
of 707 modeling elements in the WebML DTD has been reduced to 487 modeling concepts
in Ecore (i.e., counting EClasses, EAttributes, EReferences, and EEnums). The ap-
plication of grouping mechanisms according to Heuristic 3 and further manual refactorings
also had a positive effect on the language’s readability in terms of an introduced package
structure and a reduced ratio of EClasses per EPackage. After manual refactoring, the
maximum number of EClasses per EPackage decreased from 53 to 26.

3Note that currently, the import/export facility supports the WebML content model only.
4www.stylusstudio.com

49

Chapter 3 Evaluation of the DTD to Ecore Framework

Concerning accuracy, the resolution of IDREF(S)-typed XMLAttributes into ERef-

erences, the introduction of EBoolean-typed EAttributes instead of enumerations
and the definition of constraints have considerably contributed to a more precise language.
E.g., Heuristic 1 already correctly resolved 39, that is 41% IDREF-typed XMLAttributes

into EReferences making the relationship between EClasses explicit. Further 56 E-

Strings had to be resolved manually into EReferences. From 50 enumeration-typed
XMLAttributes, 36 were resolved correctly by Heuristic 2 as EBooleans. Moreover, fur-
ther 4 EEnums were eliminated reducing their number to 8, the respective EAttributes
were refactored to EBooleans. Nevertheless, 3 more EEnums were introduced due to do-
main knowledge obtained from the WebRatio tool. This results in the final number of 11
EEnums, a reduction of EStrings in favor of an increase of EEnum attributes. And finally,
32 additional constraints have been defined, thus, achieving a more precise WebML meta-
model.

Table 3.2: Metamodel Metrics

Phase 1
Automatic Transformation

Phase 2
Manual Refactoring Metrics

Step 1 Step 2 Step 3
All Modeling Concepts (EClass, EEnum, EAttribute, EReference) 707 707 580 487
EPackage 1 7 11 12

nested EPackage depth (Heuristic 3) 1 3 3
EClass 96 96 104 107

abstract 0 0 14 17
inheriting from multiple EClasses 0 0 6 20
maximum inheritance depth 0 0 5 7
average inheritance depth 0 0 1.22115 1.66355
annotated with
«Resolve XMLAnyET manually» (Heuristic 6)

- 3 -

annotated with «Resolve Multiplicity manually» (Heuristic 4) - 1 -
MIN 96 1 1
MAX 96 53 26 EClasses/EPackage
AVG 96 13 9 8

EAttribute 338 338 241 191
EString 278 278 180 150

annotated with «Resolve IDREF manually» (Heuristic 1) - 51 -
annotated with «Resolve IDREFS manually» (Heuristic 1) - 5 -
annotated with «Resolve XOR manually» (Heuristic 5) - 17 -

EBoolean (Heuristic 2) 0 46 41
EEnum 50 14 16
EInteger 0 0 4

annotated with «Validate IDREF» (Heuristic 1) - 39
annotated with «Validate IDREFS» (Heuristic 1) - 0

65 EReference

annotated with «Resolve XOR manually» (Heuristic 5) - 5 -
Containment EReference 234 234 159 113
EEnum 12 12 11

annotated with «Resolve possible Boolean type manually» (Heuristic 2) - 6 -
XOR constraint 5 5 10 OCL constraints
other constraints - - 27

Identified Roles - - 3

50

Chapter 4

Summary and Related Work

Contents
4.1 Summary . 51
4.2 Related Work . 52

4.2.1 Defining Metamodels for Web Modeling Languages 52
4.2.2 Transforming between DTDs and Metamodels 53
4.2.3 Bridging Technical Spaces . 54
4.2.4 Model Management: ModelGen Operator 56

4.1 Summary

In this part of the thesis, the prominent web modeling language WebML has been bridged
to MDE for exploiting MDE benefits such as standardized storage, exchange, and transfor-
mation of models. To do so, the WebML language specifications partly available in form
of a DTD and partly hard-coded in WebML’s modeling tool has been reused to generate a
MOF-based WebML metamodel in terms of EMF’s Ecore through a semi-automatic trans-
formation process. As a consequence, this part’s contributions are as follows:

First, when comparing a language specified in MOF to one specified on the basis of DTDs,
it is obvious that DTDs considerably lack extensibility, readability, and understandability for
humans, and above all expressiveness. In this respect, a set of eight deficiencies of DTDs
when used as a language specification mechanism has been identified.

Second, having elaborated on the concepts of DTDs and MOF as well as their correspon-
dences, a set of rules and heuristics for transforming arbitrary DTDs into MOF-based meta-
models has been provided.

Third, a tool, i.e., the MetamodelGenerator for supporting a semi-automatic transforma-
tion process from DTD to MOF has been developed. As a consequence, the transforma-
tion approach enables the graphical representation of any DTD-based language in terms of
MOF-based metamodels and thus, enhances the understandability of those languages.

Chapter 4 Summary and Related Work

Fourth, the resulting metamodel for WebML represents an important prerequisite and
thus, an initial step towards a transition to employ model-driven engineering techniques
(e.g., model transformations or language extensions through profiles) within the WebML
approach. It also enables interoperability with other MDE tools and furthermore represents
another step towards a common reference metamodel for Web modeling languages.

The resulting WebML metamodel has been evaluated concerning its completeness and
quality giving in particular indication on the applicability of the semi-automatic transfor-
mation approach. For evaluating completeness, an "example-based" strategy has been fol-
lowed in that a WebML reference example has been remodeled on the basis of a tree-based
modeling editor supporting the generated metamodel. A prototype of an import/export
facility of that editor was used to demonstrate that models could be exchanged with the
WebML’s modeling tool in a lossless way. For evaluating the quality of the metamodel, a
set of quality metrics was applied to show the improvement of the metamodel during the
semi-automatic transformation process.

4.2 Related Work

With respect to the presented approach of a semi-automatic generation of a MOF-based
metamodel for WebML, four areas of related work can be distinguished: First, approaches
aiming at the design of metamodels for web modeling languages, second, approaches deal-
ing with the transformation of DTDs to MOF-based metamodels, third, own related work
concerning approaches for bridging technical spaces, and fourth, model management, in
particular the ModelGen operator.

4.2.1 Defining Metamodels for Web Modeling Languages

To the best of or knowledge, there is currently just one closely related approach focusing on
the definition of a UML 2.0 Profile for WebML [MFV06]. The motivation of this approach
is to facilitate the interoperability of the WebRatio tool with existing UML modeling tools.
More specifically, WebML has been manually remodeled using MOF and in a second step a
UML profile has been inferred from it. The approach followed in this thesis differs from the
approach of Moreno et al. [MFV06] in three ways. First, we strive for a domain-specific lan-
guage, for which today, tool support can easily be provided, e.g., based on the EMF. Second,
the presented WebML metamodel has been semi-automatically generated from WebML’s
DTD-based language specification. Third, since also tool related concepts have been con-
sidered in the transformation, this approach provides the prerequisite for migrating existing
WebML models to MOF, while the WebML profile requires developers to re-model existing
WebML models from scratch.

52

4.2 Related Work

Besides this closely related work, in the context of WebML, three other web modeling ap-
proaches which are currently defined on top of a metamodel need to be mentioned, namely
W2000 [BCMM06], UWE [KK03], and Muller et al. [MSFB05]. W2000 [BCMM06], originally
has been defined as an extension to UML. In [BGM02], the provision of a metamodel based
on MOF 1.4 [OMG02] has been motivated and adopted as a necessity for providing tool
support for an evolving language definition. The metamodel of UWE [KK03] has been de-
signed as a conservative extension to the UML 1.4 metamodel [OMG01]. It is intended as
a step towards a future common metamodel for the web application domain, which envi-
sions supporting the concepts of all existing web modeling methods. Muller et al. [MSFB05]
present a model-driven web application design and development approach through the
Netsilon tool. The tool is based on a metamodel specified with MOF 1.4 and the Xion ac-
tion language. The decision for a metamodel-based approach has been motivated by the
fact that in the web application domain the semantic distance between existing modeling
elements (e.g., UML) and newly defined modeling elements is becoming too large.

This work is complementary to W2000 and UWE in that a metamodel is proposed for
another prominent web modeling language, i.e., WebML. Furthermore, in contrast to these
approaches, the WebML metamodel presented in this thesis has been generated semi-auto-
matically, instead of manually deriving it from an existing language definition. Finally, the
resulting WebML metamodel is based on Ecore and thus, basically corresponds to MOF 2.0,
while the metamodels of the other approaches are based on MOF 1.4.

4.2.2 Transforming between DTDs and Metamodels

There have already been several approaches focusing on the transformation between XML
and metamodels [WSKK06]. Summarizing these results, the approaches can be classified ac-
cording to the direction of the transformation and the concrete formalisms used as source/-
target of the transformation. Considering the direction, one can distinguish between for-
ward and backward approaches, regarding the used formalisms the approaches focus on
the XML side either on DTDs or XML Schema and on the model side either on MOF, UML
or ER, respectively. In the context of this approach, especially those approaches conduct-
ing a forward transformation from DTD to MOF are closely relevant. To the best of our
knowledge, currently there is no such approach but there are two approaches [BCFK99]
and [Sof00] transforming DTDs into UML models which are also closely related, not least
since UML is based on MOF. There are, however, two differences with respect to the pre-
sented approach. First, a straightforward transformation on basis of the correspondences
between the two formalisms is extended by employing a set of heuristics dealing with po-
tential ambiguous correspondences, thus facilitating a manual refactoring of the resulting
metamodel. Second, the approach is based on a higher level of abstraction, meaning that
the WebML DTDs are considered at the meta-level M2 whereas the other approaches relate

53

Chapter 4 Summary and Related Work

domain DTDs to the model-level M1. Because of this higher level of abstraction, it is pos-
sible to transform WebML models in terms of XML documents conforming to the WebML
DTD into instances of the corresponding WebML Ecore metamodel, representing in fact a
so called "linguistic instantiation" according to [AK03], and to validate if these models in-
deed fully conform to the WebML Ecore metamodel which is not facilitated by the other
approaches. Note that, with respect to UML models, an XML document could in principle
be mapped onto an object model, which represents an "ontological instantiation" [AK03] at
M1. However, the problem is that the object model must not fulfil the constraints given by
the UML model and thus, the "conforms to"-relationship between the XML document and
the DTD is lost.

4.2.3 Bridging Technical Spaces

The presented approach for bridging DTDs with Ecore, can be reused for building other
technical space bridges. For example, in [WK05], we proposed a generic mechanism for
the semi-automatic generation of bridges between the grammar technical space and the
model technical space based on the EBNF of a given language. We decided to use EBNF
[Wir77, ISO96] as meta-language for the grammar technical space, because it is the most
commonly used meta-language for defining programming languages. In the model tech-
nical space, our approach is based on MOF as used for the DTD 2 Ecore framework. A
bridge between the grammar technical space and model technical space is useful in many
software development tasks. For example, platform-specific metamodels are needed in or-
der to transform platform-independent UML models into platform-specific models, such as
Java models, from which Java code can be generated. But not only forward engineering can
benefit, also reverse engineering of existing software systems is a suitable field of applica-
tion. Regarding the latter, the OMG is working on model-based reverse engineering and
software modernization. For that purpose a special work group for Architecture-Driven
Modernization (ADM) has been initiated. The main target of ADM is to rebuild existing ap-
plications, e.g, legacy systems, as models. A bridge between the grammar technical space
and the model technical space can act as a basic infrastructure tool to support various ADM
tasks.

The framework supporting our proposed approach exploits the fact that both, the gram-
mar technical space and the model technical space make a distinction between meta-languag-
es (M3) and languages (M2). Figure 4.1 shows the main idea by a correspondence relation
at the M3 layer between EBNF and MOF. The main idea is to find correspondences between
the concepts of the meta-languages EBNF and MOF. These correspondences are used for
defining bridges for the M2 as well as for the M1 layer.

EBNF is a reflexive language, i.e., EBNF can be again described in EBNF. We utilize this
property for constructing an attributed grammar, which defines, on the one hand, a gram-

54

4.2 Related Work

5© 2005 Business Informatics Group, TU Wien

EBNF2MOF Framework
Overview

M2

M3

M1

Grammarware ModelwareBridge

EBNF

Grammar

Program

MOF

CustMM

CondM CustMRawM

C

Model Transformation conformsTo

GP

PP

«uses»

ChangeM1 ChangeM2

RawMM CondMM

Figure 4.1: Overview on the EBNF 2 MOF Framework

mar for EBNF, and on the other, implements the correspondences between EBNF and MOF
as transformation rules. A compiler-compiler takes the attributed grammar as input and
generates a parser called Grammar Parser (GP). First, the GP converts grammars defined in
EBNF into Raw Metamodels, and second, it generates a parser for programs conforming to
the processed grammar. The latter is called Program Parser (PP). Via the PP, programs can
be transformed into Raw Models. The Raw Metamodel and the Raw Model are expressed
in XML Metadata Interchange (XMI) [OMG05c], thus they can be processed by tools form
the model technical space. This means, the grammar parser and the program parser act
as the main bridging technologies between grammar technical space and model technical
space. It is important to note that both parsers are automatically generated from grammars
in combination with correspondences between EBNF and MOF.

Once the Raw Metamodel and the Raw Model are created, we have reached the model
technical space. However, the Raw Metamodel and the Raw Model can grow very big in
terms of number of classes and references. To eliminate this drawback, some transforma-
tion rules for optimization are introduced, which can be automatically executed by model
transformation engines. The optimization rules are applied to the Raw Metamodel and the
outcome of this transformation is called Condensation Metamodel. Not only the metamodel
has to be optimized, but also the model has to be adjusted in such a way that it conforms to
the Condensation Metamodel. This adjustment is defined by a Change Model (cf. ChangeM1
in Figure 4.1) including all required information to rebuild the Raw Model as a Condensation
Model.

Furthermore our approach provides a mechanism to add additional semantics to the
metamodel that cannot be expressed in EBNF. These additional semantics are attached to

55

Chapter 4 Summary and Related Work

the Condensation Metamodel by user-annotations. In particular, these annotations cover
aspects like identification/reference semantics, data types and improved readability. The
annotated Condensation Metamodel is automatically transformed into a Customized Meta-
model. Again, the changes in the metamodel layer must be propagated to the model layer.
For this task, a second Change Model (cf. ChangeM2 in Figure 4.1) is introduced. The Change
Model covers all user-defined modifications and propagates them to the Condensation
Model, which is finally transformed into a Customized Model.

The main reason why the optimizations are done in the modelware and not in the gram-
marware is that the framework is designed to be used by model engineers. Apart from
that two further reasons have influenced our design decision. First, the optimization rules
require potentially complete parse trees, which are available from the Raw (Meta)models.
Second, MOF, in contrast to EBNF, has an inherent annotation mechanism, therefore we de-
cided not to directly annotate the EBNF grammars and generate the optimized metamodel
in one step.

The concrete transformation and optimization rules as well as possible user annotations
may be found in [WK05]. Furthermore, a case study is presented where the MiniJava gram-
mar [Sta05] has been used as input for the EBNF 2 MOF framework.

Compared to our proposed DTD 2 Ecore framework in Section 2.3, the same mining pat-
tern for metamodels and models has been implemented in the EBNF 2 MOF framework.
Furthermore, a similar semi-automatic approach is applied, the first step is the automatic
generation of an initial metamodel which is refined and semantically enriched in the sec-
ond step based on user annotations in order to enhance the quality of the metamodels.
Summarizing, it can be said that if language definitions are available in a declarative way,
the proposed mining pattern and mining process can be applied to define a bridge between
two technical spaces.

4.2.4 Model Management: ModelGen Operator

The presented mining pattern is comparable to the ModelGen operator proposed by Bern-
stein [Ber03] in the field of model management. The basic idea of model management is
to provide a high-level language which is based on a set of generic operators such as Mod-
elGen, Match, Merge, or Diff. These operators can be composed in so-called scripts in order
to solve more complex integration scenarios which requires the execution of a sequence of
mapping operators. In particular, the ModelGen operator is used when a source schema S1
defined in terms of the data model M1 is given, as well as a target data model M2. The Mod-
elGen operator is capable of producing a target schema S2 defined in terms of data model
M2 which semantically corresponds to the source schema S1. Furthermore, also instances of
source schema S1, i.e., the data, is transformed to instances of source schema S2. Atzeni et
al. [ACB05, ACG07] provided an implementation of the ModelGen operator regarding com-

56

4.2 Related Work

monly used data models such as ER, UML class diagrams, and the relational data model.
For the implementation of ModelGen, the authors decided to use a so-called supermodel, a
model that integrates the modeling constructs of commonly used data models and acts as a
"pivot" model. In addition, adapters are used to transform ER, UML class diagrams, and re-
lational models into the supermodel formalism. If one wants to transform an ER model into
a relational model, then the ER model is transformed with simple one-to-one translations
into a supermodel model, then a set of generic operators is applied on the model as long
as it only uses concepts of the relational data model, e.g., many-to-many relationships are
transformed into additional relations, and finally, the model can be translated with a simple
one-to-one transformation into a relational model.

Although our mining pattern also exploits the fact that correspondences on one meta-
layer can be used for transforming schemas on the next lower meta-layer as well as for
transforming instances of those schemas, we are aiming at the semantic enrichment of the
schemas, in our case the automatically produced metamodels. In particular, in the manual
tasks, the user has to incorporate constraints in the metamodels which have not been cap-
tured in the original language definitions. Therefore, in addition to transformations, we are
using on the one hand heuristics and on the other hand user annotations or refactorings
to improve the design and precision of the language description. Furthermore, we are not
using a "pivot" model, as it is done in [ACB05, ACG07] by employing a supermodel, instead
we are defining bi-literal bridges between two technical spaces. However, the applicability
of a "pivot" model to ease the definition of model transformations has been demonstrated by
Murzek and Kramler [MK07] in the area of business process model integration. For future
work, we want to clarify, first, if it is possible to find a "pivot" meta-language for currently
used meta-languages of different technical spaces, and second, if it is possible to abstract
from bi-literal transformation rules into generic rules based on the "pivot" meta-language.

57

Chapter 4 Summary and Related Work

58

Part II

Mapping

Chapter 5

A Framework for Building Mapping
Operators

Contents
5.1 Motivation . 62
5.2 Metamodel Bridging Framework . 63

5.2.1 Overview of the Metamodel Bridging Framework 63
5.2.2 Mapping View . 63
5.2.3 Transformation View . 66
5.2.4 Implementation Architecture of the Metamodel Bridging Framework 68

The second part of this thesis elaborates on the following integration scenario. Two meta-
models, both describing different modeling languages but defined with the same meta-
language, in our case the Meta Object Facility, have to be bridged in order to ensure model
exchange between modeling tools. Figure 5.1 highlights this integration scenario in the
overall context of the thesis, i.e., the focus lies on how correspondences can be defined be-
tween metamodels and how these correspondences can be used to automatically transform
models.

Part II

MLX MLY

LA LA‘

M1 M1‘

LB

M2

LEXT

M1

M2

M3

Legend

Correspondence

Transformation

Instance-Of

Extension

Figure 5.1: Integration Scenarios Revisited – Focus of Part II

Chapter 5 A Framework for Building Mapping Operators

Current best practices for realizing seamless exchange of models among different model-
ing tools employ model transformation languages to realize necessary mappings between
concepts of the metamodels defining the modeling languages supported by different tools.
Existing model transformation languages, however, lack appropriate abstraction mecha-
nisms for resolving recurring kinds of structural heterogeneities one has to primarily cope
with when creating such mappings. Therefore, this chapter proposes a framework for build-
ing reusable mapping operators which allow the automatic transformation of models. For
each mapping operator, the operational semantics is specified on basis of Colored Petri Nets,
providing a uniform formalism not only for representing the transformation logic together
with the metamodels and the models themselves, but also for executing the transforma-
tions, thus facilitating understanding and debugging.

5.1 Motivation

Interoperability between modeling tools. As already mentioned in Chapter 1, with the rise
of Model-Driven Engineering (MDE) models become the main artifacts of the software de-
velopment process. Hence, a multitude of modeling tools is available supporting, however,
due to lack of interoperability, it is often difficult to use tools in combination, thus the poten-
tial of MDE cannot be fully utilized. For achieving interoperability in terms of transparent
model exchange, current best practices comprise creating model transformations based on
mappings between concepts of different tool metamodels.

Problem Statement. We have followed the aforementioned approach in various projects
such as the ModelCVS project [KKK+06b] focusing on the interoperability between legacy
case tools (in particular CA’s AllFusion Gen) with UML tools and the MDWEnet project
[VKC+07] trying to achieve interoperability between different tools and languages for web
application modeling. The prevalent form of heterogeneity one has to cope with when
creating such mappings between different metamodels is structural heterogeneity, a form of
heterogeneity well-known in the area of database systems [BLN86, KS96]. In the realm
of metamodeling structural heterogeneity means that semantically similar modeling con-
cepts are defined with different metamodeling concepts leading to differently structured
metamodels. Current model transformation languages, provide no appropriate abstraction
mechanisms or libraries for resolving recurring kinds of structural heterogeneities. Thus,
resolving structural heterogeneities requires to manually specify partly tricky model trans-
formations again and again which simply will not scale up having also negative influence
on understanding the transformation’s execution and on debugging.

Contribution. The contribution of this part of the thesis is twofold. First, in this chapter,
a framework is proposed for building reusable mapping operators which are used to define
so-called metamodel bridges. Such a metamodel bridge allows the automatic transforma-
tion of models since for each mapping operator the operational semantics is specified on

62

5.2 Metamodel Bridging Framework

basis of Colored Petri Nets. Colored Petri Nets provide a uniform formalism not only for
representing the transformation logic together with the metamodels and the models them-
selves, but also for executing the transformations, thus facilitating understanding and de-
bugging. Second, to demonstrate the applicability of our approach we apply the proposed
framework for defining a set of mapping operators subsumed in our mapping language
called CAR which is presented in Chapter 6. This mapping language is intended to resolve
typical structural heterogeneities occurring between the core concepts usually used to de-
fine metamodels, i.e., class, attribute, and reference, as provided by the OMG standard MOF
[OMG04].

5.2 Metamodel Bridging Framework

In this section, we describe the conceptual architecture of the proposed Metamodel Bridg-
ing Framework in a by-example manner. The proposed framework provides two views on
the metamodel bridge, namely a mapping view and a transformation view as illustrated in
Figure 5.2.

5.2.1 Overview of the Metamodel Bridging Framework

At the mapping view level, the user defines mappings between elements of two metamod-
els (M2). Thereby a mapping expresses also a relationship between model elements, i.e., the
instances of the metamodels [BM07]. In our approach, we define these mappings between
metamodel elements with mapping operators standing for a processing entity encapsulat-
ing a certain kind of transformation logic. A mapping operator takes as input elements of
the source model and produces as output semantically equivalent elements of the target
model. Thus, it declaratively describes the semantic correspondences on a high-level of ab-
straction. A set of applied mapping operators defines the mapping from a left hand side
(LHS) metamodel to a right hand side (RHS) metamodel further on subsumed as mapping
model.

For actually exchanging models between different tools, the mapping models have to be
executed. Therefore, we propose, in addition to the mapping view, a transformation view
which is capable of transforming models (M1) from the LHS to the RHS on basis of Colored
Petri Nets [Jen92].

5.2.2 Mapping View

For defining mapping operators and consequently also for building mapping models, we
are using a subset of the UML 2 component diagram concepts. With this formalism, each
mapping operator can be defined as a dedicated component, representing a modular part of

63

Chapter 5 A Framework for Building Mapping Operators

RHSBridgingLHS

Target MMMapping ModelSource MM 1

Class C2C

w

M
2 name : String

EntityType

name : String

Attribute

attributes

C2C

R2R

name : String

name : String

Property
ownedAttributes

A2A
M
ap

pi
ng

 V
ie
w

Transform

Class EntityTypeC2C

Source Places Target PlacesTransformation Logic

A2A

M

Transform Transform 22 4

M
2

Class_name
EntityType_name

A2A

2 2

2 2

history

history

on
 V
ie
w

Class_ownedAttributes
EntityType attributesR2R

M
1
+
M

Tr
an

sf
or
m
at
io

Property Attribute

EntityType_attributes

C2C

2
history

2

Execution Export 75

T

Property_name Attribute_name
A2A

2

2 2
history

history
2

6

M
1 sf
or
m

o1:Class o2:Class

UML Model ER ModelToken Model Token Model

Execution

3

Export
Import 75

name=“Professor” name=“Student”

o1 o2

“Professor“

“Student“

fo
rm

8
o1:EntityType o2:EntityType

name=“Professor” name=“Student”

o1 o2

“Student“

“Professor“

M

Tr
an

o3:Property o4:Property

name=“ssn” name=“studentnr”

“ssn“

“studentnr“

Tr
an

sf

o3:Attribute o4:Attribute

name=“ssn” name=“studentnr”

o3 o4o3 o4

“ssn“

“studentnr“

Figure 5.2: Metamodel Bridging Framework by Example

64

5.2 Metamodel Bridging Framework

the mapping model which encapsulates an arbitrary complex structure and behavior, pro-
viding well-defined interfaces to the environment. The resulting components are collected
in a mapping operator library which can be seen as a domain-specific language for bridg-
ing metamodels. The user can apply the mapping operators expressed as components in a
plug&play manner, i.e., only the connections to the provided and required interfaces have
to be established manually.

Our motivation for using UML 2 component diagrams for the mapping view is the fol-
lowing. First, many software engineers are likely to be familiar with the UML component
diagram notation. Second, the provided and required interfaces which can be typed, enable
the composition of mapping operators to resolve more complex structural heterogeneities.
Third, the clear separation between black-box view and white-box view of components allows
switching between a high-level mapping view and a detailed transformation view, covering
the operational semantics, i.e., the transformation logic, of an operator.

Anatomy of a mapping operator. Each mapping operator (as for example shown in the
mapping model of Figure 5.2) has input ports with required interfaces (left side of the compo-
nent) as well as output ports with provided interfaces (right side of the component). Because
each mapping operator has its own trace model, i.e., providing a log about which output el-
ements have been produced from which input elements, an additional providedContext port
with a corresponding interface is available on the bottom of each mapping operator. This
port can be used by other operators to access the trace information for a specific element via
requiredContext ports with corresponding interfaces on top of the operator.

In the mapping view of Figure 5.2 (cf. step 1), an example is illustrated where a small part
of the metamodel of the UML class diagram (cf. source metamodel) is mapped to a part of
the metamodel of the Entity Relationship diagram (cf. target metamodel). In the mapping
view, source metamodel elements have provided interfaces and target metamodel elements
have required interfaces. This is due to the fact that in our scenario, models of the LHS are
already available whereas models of the RHS must be created by the transformation, i.e.,
the elements of the LHS must be streamed to the RHS according to the mapping operators.
Consequently, Class and Property of the source metamodel are mapped to EntityType and At-
tribute of the target metamodel with Class2Class (C2C) operators, respectively. In addition,
the C2C operator owns a providedContext port on the bottom of the component which shall
be used by the requiredContext ports of the appropriate Attribute2Attribute (A2A) and Refer-
ence2Reference (R2R) operators to preserve validity of target models. In particular, with this
mechanism it can be ensured that values of attributes are not transformed before their own-
ing objects has been transformed and links as instances of references are not transformed
before the corresponding source and target objects have been transformed.

65

Chapter 5 A Framework for Building Mapping Operators

5.2.3 Transformation View

The transformation view is capable of executing the defined mapping models. For this, so
called transformation nets [RWK07, Rei08] are used which are a special kind of Colored Petri
Nets consisting of source places at the LHS and target places at the RHS. Transitions be-
tween the source and target places describe the transformation logic located in the bridging
part of the transformation net as shown in Figure 5.2.

Transformation nets provide a suitable formalism to represent the operational semantics
of the mapping operators, i.e., the transformation logic defined in the white-box view of the
component due to several reasons. First, they enable the execution of the transformation
thereby generating the target model out of the source model, which favors also debugging
of a mapping model. Second, they allow a homogeneous representation of all artefacts
involved in a model transformation (i.e., models, metamodels, and transformation logic) by
means of a simple formalism, thus being especially suited for gaining an understanding of
the intricacies of a specific metamodel bridge.

In the next paragraphs, we discuss rules for assembling metamodels, models, and map-
ping models into a single transformation net and how the transformation can actually be
executed.

Places represent Metamodels. First of all, places of a transformation net are used to
represent the elements of the source and target metamodels (cf. step 2 in Figure 5.2). In this
respect, we currently focus on the three major building blocks of metamodels (provided,
e.g. by meta-metamodels such as MOF), namely class, attribute, and reference. In particular,
classes are mapped onto one-colored places whereby the name of the class becomes the
name of the place. The notation used to visually represent one-colored places is a circle or
oval as traditionally used in Petri Nets. Attributes and references are represented by two-
colored places, whereby the name of the containing class plus the name of the reference or
of the attribute separated by an underline becomes the name of the place (cf. e.g. Class_name
and Class_ownedAttributes in Figure 5.2). To indicate that these places contain two-colored
tokens, the border of two-colored places is double-lined.

Tokens represent Models. The tokens of the transformation net are used to represent the
source model which should be transformed according to the mapping model. Each element
of the source model is expressed by a certain token, using its color as a means to represent
the model element’s identity in terms of a String (cf. step 3 in Figure 5.2). In particular,
for every object, a one-colored token is produced, whereby for every link as an instance
of a reference, as well as for every value of an attribute, a two-colored token is produced.
The fromColor for both tokens refers to the color of the token that corresponds with the
containing object. The toColor is given by the color of the token that corresponds with the
referenced target object or the primitive value, respectively. Notationally, a two-colored
token consist of a ring (carrying the fromColor) surrounding an inner circle (depicting the

66

5.2 Metamodel Bridging Framework

toColor).

Considering our example shown in Figure 5.2, the objects o1 to o4 of the UML model
shown in the M1-layer are transformed into one-colored tokens. Each one-colored token
represents an object identity, pointed out by the object name beneath the token. E.g., the
tokens with the inner-color "Student" and "Professor" have the same outer-color as their
containing objects and the token which represents the link between object o1 and o3 has the
same outer-color as the token representing object o1 and the inner-color corresponds to the
one-colored token representing object o3.

Transitions represent Mapping Models. The mapping model is expressed by the trans-
formation logic of the transformation net connecting the source and the target places (cf.
Step 4 in Figure 5.2). In particular, the operational semantics of the mapping operators are
described with transitions, whereby the behavior of a transition is described with the help of
preconditions called query-tokens (LHS of a transition) and postconditions called generator-
tokens (RHS of a transition). Query-tokens and generator-tokens can be seen as templates,
simply visualized as color patterns, describing a certain configuration of tokens. The pre-
condition is fulfilled and the transitions fires, if the specified color pattern described by the
query-tokens matches a configuration of available input tokens. In this case, the postcondi-
tion in terms of the generator-tokens produces the required output tokens representing in
fact the necessary target model concepts.

In the following, the most simple mapping operators used in our example are described,
namely C2C, A2A, and R2R.

C2C. The white-box view of the C2C operators as shown in the transformation view of
Figure 5.2 ensures that each object instantiated from the class connected to the input port is
streamed into the mapping operator, the transition matches a single token from the input
port, and streams the exact token to the output port. This is expressed in the transition by
using the most basic query-token and generator-token combination, both having the same
color pattern. In addition, every input and output token combination is saved in a history
place representing the trace model which is connected to the providedContext port and can
be used as trace information by other operators.

A2A. The white-box view of the A2A operator is also illustrated in the bridging part of
the transformation view in Figure 5.2. Two-colored tokens representing attribute values
are streamed via the input port into the mapping operator. However, a two-colored to-
ken is only streamed to the output port if the owning object of the value has been already
transformed by a C2C operator. This is ensured in that the transition uses the same color
pattern for the one-colored query-token representing the owning object streamed from the
requiredContext port and for the outer color of the two-valued query-token representing the
containing object of the attribute value. Only, if a token configuration matches this pre-
condition, the two-colored token is streamed via the generator-token to the output port.
Again, the input tokens and the corresponding output tokens are stored in a history place

67

Chapter 5 A Framework for Building Mapping Operators

which is connected to the providedContext port.
R2R. The white-box view of the R2R operator shown in the transformation view of Figure

5.2 consists of three query-tokens, one two-colored query-token representing the link and
two one-colored query-tokens for accessing trace information from C2C operators. The two-
colored query-token must have the same inner and outer colors as provided by the C2C
trace information, i.e., the source and target objects must be already transformed. When
this precondition is satisfied by a token configuration, the two-colored token representing
the link is streamed via the generator-token to the output port.

Execution of the transformation logic. As soon as the metamodels are represented as
places, which are furthermore marked with the respective colored tokens depicting the con-
cepts of the source model (cf. step 5 in Figure 5.2), the transformation net can be started.
Now, tokens are streamed from the source places over the transitions into the target places
(cf. step 6 in Figure 5.2).

Considering our running example, in a first step only the transitions of the C2C operators
are able to fire due to the dependencies of the A2A and R2R operators. Hence, tokens
from the places Class and Property are streamed to the appropriate places of the RHS and
all combinations of the queried input and generated output tokens are stored in the trace
model of the C2C operator. As soon as all necessary tokens are available in the trace model,
depending operators, i.e., the A2A and R2R operators, are also able to fire.

Generation of the target model. After finishing the transformation, the tokens from the
target places can be exported (cf. step 7 in Figure 5.2) and transformed back into instances
of the RHS metamodel (cf. step 8 in Figure 5.2).

In our example, the one-colored tokens o1 to o4 contained in the target places are trans-
formed back into objects of type EntityType and Attribute. The two-colored tokens which
represent attribute values, e.g., "Professor" and "Student", are assigned to their containing
objects, e.g., o1 and o2 whereas "ssn" and "studentnr" are assigned to o3 and o4. Finally, the
two-colored tokens which represent links between objects are transformed back into links
between o1 and o3, as well as between o2 and o4.

5.2.4 Implementation Architecture of the Metamodel Bridging
Framework

In this subsection, the implementation of the metamodel bridging framework is described.
More specifically, this framework has been implemented based on the infrastructure pro-
vided by the Eclipse Modeling Framework (EMF)1 and the Graphical Modeling Framework
(GMF)2 as two separate Eclipse plug-ins. First, we have developed a plug-in called CAR
Mapping ENvironment (CARMEN) used for graphically defining mapping models between

1www.eclipse.org/emf
2www.eclipse.org/gmf

68

5.2 Metamodel Bridging Framework

two metamodels shown in the upper part of Figure 5.3. Second, for executing the map-
pings and for defining Transformation Nets manually from scratch, we have developed a
plug-in called Transformations On Petri nets In Color (TROPIC) shown in the lower part of
Figure 5.3. In the following, it is shortly explained how the plug-ins fit together and which
functionality is supported as is illustrated in Figure 5.3.

CARMEN. In order to provide a graphical mapping environment, we developed a pro-
totypical implementation of a mapping editor based on the GMF, which is able to load
two different metamodels in UML class diagram notation. As soon as the metamodels are
loaded, the user can build a graphical mapping model between them using a set of available
mapping operators. In particular, the initial set of mapping operators comprises the CAR
mapping operators which are introduced in Chapter 6. For new mapping operators, the
user can define new subclasses of the abstract class Mapping thereby defining their abstract
syntax as well as is able to specify a customized graphical syntax in cases where the de-
fault component-based syntax is not desired. In addition, the mapping editor provides the
validation of the mapping model that facilitates finding errors in the mappings. This vali-
dation support is especially needed for situations where mapping models are subsequently
automatically processed in order to transform models as is the case in our approach. For
executing the mappings, the user can activate the generation of a corresponding transfor-
mation net which can be loaded into TROPIC. Furthermore, this requires, if new mapping
operators are introduced by the user, also new generation rules have to be provided by the
user to represent these operators within transformation nets.

TROPIC. TROPIC provides a graphical editor based on GMF to build transformation nets
by hand, however, in our approach, it is intended that transformation nets are automatically
generated from mapping models. Therefore, TROPIC is able to load the generated trans-
formation nets into the graphical editor and visualize the transformation net by a default
layout. Besides the graphical editor, TROPIC consists of three further subcomponents: first,
a component for transforming models into tokens, second, a component for executing the
transformation nets, i.e., streaming tokens from the source places to the target places by fir-
ing enabled transitions, and third, a component for transforming tokens back into models.

Open issues concerning tool support are first, a more user-friendly definition of new map-
ping operators by using additional editors for modeling the abstract syntax and the concrete
syntax as well as the operational semantics of the operators without extending the meta-
model and implementing transformation rules by hand, and second, the separate plug-ins
should be integrated into one single environment which has two different views on the
same integration problem. This means, the user should build the mapping model and can
switch immediately to the transformation view for testing the defined mappings without
an additional generation step.

69

Chapter 5 A Framework for Building Mapping Operators

Mapping
Model

Define
Mappings

Source
MM

Class

Class Class Class

Class

Class Class Class

Class

Class Class Class

CARMEN

TROPIC

Validate
Mapping Model

errors?

[yes]

[no]
Generate

TransformationNet

TransformationNet

Generate
Initial Tokens

Source
Model

Source
Tokens

Execute
TransformationNet

Target
Tokens

Generate
Target Model

Target
Model

Target
MM

Load
Metamodels

Class

Class Class Class

Class

Class Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class

Class

Class Class

Load
TransformationNet

«c
o

n
fo

rm
sT

o
»

«c
o

n
fo

rm
sT

o
»

Class

Class Class

Class

Class Class

Class

Class Class

CAR Mapping
Operators

RHS
Metamodel

LHS
Metamodel

Mapping
Model

Generate
Transformation Net

Tokens2Model

Model2Tokens

Execute
Transformation Net

One Colored
Token

Two Colored
Token

Transition

Trace
Model

Load
Metamodels

Figure 5.3: CARMEN and TROPIC – Activities, Artifacts, and Tooling

70

Chapter 6

CAR – A Mapping Language for
Resolving Structural Heterogeneities

Contents
6.1 Motivating Example . 72

6.2 Mapping Operators . 72

6.2.1 Overview of the CAR Mapping Language 72

6.2.2 Conditional C2C Mapping Operator 73

6.2.3 R2R Mapping Operator with Annotations 75

6.2.4 A2C Mapping Operator . 76

6.2.5 R2C Mapping Operator . 77

6.2.6 A2R Mapping Operator . 78

6.3 An Inheritance Mechanism for Mapping Operators 81

6.3.1 Inheritance for C2C Mappings . 82

6.3.2 Symmetric Mapping Situations . 83

6.3.3 Representing Inheritance within Transformation Nets 88

6.3.4 Asymmetric Mapping Situation – Hierarchy vs. Collapsed Hierarchy 93

6.3.5 Multiple Inheritance for C2C Mappings 95

To demonstrate the applicability of the Metamodel Bridging Framework, we apply the
proposed framework for defining a set of mapping operators which are intended to re-
solve typical structural heterogeneities occurring between the core concepts usually used
to define metamodels. In Section 6.1, a motivating example is presented which introduces
structural heterogeneities between metamodels. To resolve these heterogeneities, in Section
6.2 the syntax and operational semantics of the operators forming the CAR mapping lan-
guage are presented and applied to solve the integration example. Finally, in Section 6.3, we
present how a reuse mechanism based on inheritance between mapping operators reduces
the size of mapping models, thus improving their readability.

Chapter 6 CAR – A Mapping Language for Resolving Structural Heterogeneities

6.1 Motivating Example

Based on experiences gained in various interoperability projects [KKK+06a, KKK+07, WSSK07,
WSS+07] it has been shown that although most meta-metamodels such as MOF offer only a
core set of language concepts for defining metamodels, numerous structural heterogeneities
occur when defining modeling languages.

As an example for structural metamodel heterogeneity consider the example shown in
Figure 6.1. Two MOF-based metamodels represent semantically equivalent core concepts of
the UML class diagram in different ways. Whereas the LHS metamodel uses only a small
set of classes, the RHS metamodel employs a much larger set of classes thereby representing
most of the UML concepts which are in the LHS metamodel implicitly defined as attributes
or references explicitly as first class citizens. More specifically, five structural metamodel
heterogeneities can be found which require mapping operators going beyond the simple
one-to-one mappings provided by the mapping operators in Section 5.2.

8© 2007 BIG Vienna University of Technology, TK & IFS University Linz

Attribute

Attribute

DesAtt IdAtt

*

*

: kind

LHS-MM RHS-MM

Class

Package Package

*

name : String

name : String
Class Generalization

*
superClasses

subClasses
*

minCard : Integer
maxCard : Integer

Multiplicity

1..1

superClasses
*

name : String

c

name : String
isID : Boolean
minCard : Integer
maxCard : Integer

e

name : String
package : String

name : String

d

a

1..1b

Figure 6.1: Structural Heterogeneities Between Metamodels - Example

6.2 Mapping Operators

6.2.1 Overview of the CAR Mapping Language

At this time, we provide nine different core mapping operators for resolving structural
metamodel heterogeneities as depicted in Figure 6.1. These nine mapping operators result
from the possible combinations between the core concepts of meta-metamodels, namely
class, attribute, and reference, which also led to the name of the CAR mapping language.

72

6.2 Mapping Operators

These mapping operators are designed to be declarative and it is possible to derive exe-
cutable transformations based on transformation nets. One important requirement for the
CAR mapping language is that it should be possible to reconstruct the source models from
the generated target models, i.e., any loss of information during transformation should be
prevented. In Figure 6.2, the mapping operators are divided according to their functionality
into the categories Copier, Peeler, and Linker which are explained in the following.

1© 2007 IFS University of Linz, BIG Vienna University of Technology

Class Attribute Relationship

Class C2C C2A C2R

Attribute A2C A2A A2R

Relationship R2C R2A R2R

… Copier
… Peeler
… Linker

Legend

Figure 6.2: CAR Mapping Operators

Copier. The diagonal of the matrix in Figure 6.2 depicts the symmetric mapping operators
of the CAR mapping language which have been already discussed in Section 5.2. The term
symmetric means that the input and outport ports of the left side and the right side of
the mapping operators are of the same type. This category is called Copier, because these
mapping operators copy one element of the LHS model into the RHS model without any
further manipulations.

Peeler. This category consists of mapping operators which create new objects by "peel-
ing"1 them out of values or links. The A2C operator bridges heterogeneities which are
resulting from the fact that a concept is expressed as an attribute in one metamodel and as
a class in another metamodel. Analogously, a concept can be expressed on the LHS as a
reference and on the RHS as a class which can be bridged by a R2C operator.

Linker. The last category consists of mapping operators which either link two objects to
each other out of value-based relationships (cf. A2R and R2A operator) or assign values or
links to objects for providing the inverse variants of the A2C and R2C operators (cf. C2A
and C2R operator).

To resolve the structural heterogeneities depicted in Figure 6.1, in the following subsec-
tions the necessary mapping operators are discussed in detail, comprising besides a varia-
tion of the C2C operator mainly mapping operators falling into the above mentioned peeler
and linker categories.

6.2.2 Conditional C2C Mapping Operator

Problem. In MOF-based metamodels, a property of a modeling concept can be expressed
via a discriminator of an inheritance branch or with an additional attribute. An example

1Note that the term "peeling" is used since when looking at the white-box view, the transformation of an attribute
value into an object requires in fact to generate a one-colored token out of a two-colored token.

73

Chapter 6 CAR – A Mapping Language for Resolving Structural Heterogeneities

for this kind of heterogeneity can be found in Figure 6.1(a), namely between Attribute.isID
on the LHS and the subclasses of the class Attribute on the RHS. This heterogeneity is not
resolvable with a primitive C2C operator per se, because one class on the LHS corresponds
to several classes on the RHS whereby each mapping is only valid under a certain condition.
On the model level, this means that a set of objects has to be splitted into several subsets
based on the object’s attribute values.

Solution. To cope with this kind of heterogeneity, the C2C operator has to be extended
with the capability of splitting a set of objects into several subsets. For this we are annotating
the C2C operator with OCL-based preconditions assigned to ports as depicted in Figure
6.3. These preconditions supplement the query-tokens of the transitions by additionally
allowing to specify constraints on the source model elements. The reason for introducing
this additional mechanism at the black-box view of a mapping operator is that the user
should be able to configure the C2C operator without having to look into the white-box
view of the operator, realizing its basic functionality.

C2C

C2C

c2c

object :
Class

object :
Class

object :
Class

object :
Class

pre: OCL-Exp

History

c2c

pre: OCL-Exp

B
la

ck
-B

o
x

V
ie

w
W

h
it
e-

B
o
x

V
ie

w

Figure 6.3: Conditional C2C Mapping Operator

Example Application. In the example shown in Figure 6.72, we can apply two C2C map-
ping operators with OCL conditions, one for mapping Attribute to DesAtt with the precon-
dition Attribute.isID = false, and one for mapping Attribute to IdAtt with the precondition
Attribute.isID = true. In addition, this example shows a way how mappings can be reused
within a mapping model by allowing inheritance between mappings. This mechanism al-
lows to define certain mappings directly between superClasses and not for each subClass
combination again and again (cf., e.g., the A2A mapping between the Attribute.name at-
tributes). More details about this inheritance mechanism are given in Section 6.3.

2The corresponding transformation net is shown in Figure 6.8.

74

6.2 Mapping Operators

6.2.3 R2R Mapping Operator with Annotations

Problem: In MOF-based metamodels, a relationship between two classes can be expressed
via a reference from Class A to Class B or, the opposite way round, from Class B to Class
A. When these two metamodels have to be bridged, it is not possible to use the basic R2R
operator, because it is not enough to simply copy the links from left to right. Instead, the
inverse reference has to be computed in order to build the target model appropriately. An
example for this kind of heterogeneity can be found in Figure 6.1(b), namely between the
reference from Class to Attribute on the LHS and the reference from Attribute to Class on the
RHS.

Solution: The computation of inverse references can be seen as a variability point of the
R2R mapping operator. Therefore, we propose to use an additional annotation mechanism,
namely tagged/value pairs, for configuring an operator to support different variants of a
bridging problem. We decided to use tagged/value pairs in addition to OCL annotations,
because some variants of operators can be easily configured via tags, which are tedious to
express in OCL for each problem again and again. More specifically, the annotation mech-
anism enables to support more than one white-box view of a mapping operator. A way to
avoid this kind of annotations would be to provide a different type of integration operator
for every situation. The other extreme case would be to have a single generic integration op-
erator that is parameterized for every situation. Of course, the first solution would result in
an overly large set of operators, with probably only minor differences in behavior. Similarly,
the other extreme would simply result in an equally large set of parameters mimicking the
different types of operators. Hence, the question arises when to use or not to use parame-
terizations or dedicated operators, respectively. We decided to use a manageable number of
mapping operators and user-definable parameters that pin down semantic variations con-
cerning specific runtime behaviors. Consequently, mapping operators which have the same
black-box view but different white-box views, are defined as one single operator which is
configurable with tagged/value pairs for deciding which transformation logic, i.e., which
white-box view, is chosen.

Figure 6.4 illustrates how the R2R mapping operator can be annotated in order to be also
capable of computing inverse references. In the black-box view, the user can define via the
inverse tag which is of kind boolean, if the inverse reference should be computed or not . If
the inverse tag is not set, the standard R2R white-box view is used (cf. left white-box view
in Figure 6.4), which only copies links from left to right. However, if the inverse tag is set,
then the right white-box view shown in Figure 6.4 is used, which matches a two colored
token from its input place, and produces an inverted token, i.e., fromColor and toColor are
interchanged, for the output place.

Example Application. In Figure 6.7, a R2R mapping operator is applied with inverse tag
set to true for mapping the reference from Class to Attribute of the LHS metamodel to the

75

Chapter 6 CAR – A Mapping Language for Resolving Structural Heterogeneities

R2R

R2R
{inverse: Boolean}

r2r

link :
Reference

link :
Reference

targetObject: c2csourceObject: c2c

R2R

History

link :
Reference

link :
Reference

r2r

targetObject: c2csourceObject: c2c

{inverse == true}

R2R

History

link :
Reference

link :
Reference

r2r

targetObject: c2csourceObject: c2c

{inverse == false}
B
la

ck
-B

o
x

V
ie

w
W

h
it
e-

B
o
x

V
ie

w

Figure 6.4: R2R Mapping Operator with Inverse Annotation

reference from Attribute to Class of the RHS metamodel.

6.2.4 A2C Mapping Operator

Problem. In Figure 6.1(c), the attributes minCard and maxCard, which are part of the class
Attribute at the LHS, are at the RHS part of a dedicated class Multiplicity. Therefore, on
the instance level, a mechanism is needed to "peel" objects out of attribute values and to
additionally take into account the structure of the LHS model in terms of the attribute’s
owning class when building the RHS model, i.e., instances of the class Multiplicity must be
connected the corresponding to instances of class Attribute.

Solution. The black-box view of the A2C mapping operator as illustrated in Figure 6.5
consists of one or more required interfaces for attributes on the LHS depending on how
many attributes are contained by the additional class, and has in minimum three provided
interfaces on the RHS. The first of these interfaces is used to mark the reference which is
responsible to link the two target classes, the second is used to mark the class that should be
instantiated, and the rest is used to link the attributes of the LHS to the RHS. Additionally,
an A2C operator has a required interface to a C2C, because the source object is splitted
into two target objects, thereby only one object is created by the A2C, the other has to be
generated by a C2C operator which maps the LHS class to its corresponding target RHS
class.

The white-box view of the A2C operator shown in Figure 6.5 comprises a transition con-
sisting of at least two query-tokens. The first query-token guarantees that the owningObject
has been already transformed by a C2C operator. The other query-tokens are two-colored
tokens representing the attribute values which have as fromColor the same color as the first
query-token. The post-condition of the transition consists of at least three generator-tokens.

76

6.2 Mapping Operators

A2C

History

A2C

a2r

dataObject : class

a2c

A2C

value :
attribute

B
la

ck
-B

o
x

V
ie

w
W

h
it
e-

B
o
x

V
ie

w

link2ContextObj: reference

value: attribute

contextObject: c2c

contextObject: c2c

value :
attribute

dataObject : class

link2ContextObject: reference

value: attribute

Figure 6.5: A2C Mapping Operator

The second generator-token introduces a new color, i.e., this color is not used in the pre-
condition part of the transition, and therefore, the generator-token produces a new object
with an unique identity. The first generator-token is used for linking the newly created
object appropriately into the target model and the other two-colored generator tokens are
used to stream the values into the newly generated object by changing the fromColor of the
input values.

Example Application. In Figure 6.7, the attributes minCard and maxCard are mapped to
attributes of the class Multiplicity. Furthermore, the reference between the classes Attribute
and Multiplicity is linked by the A2C mapping as well as the class Multiplicity. To assure
that the generated Multiplicity objects can be properly linked to Attribute objects, the A2C
mapping is in the context of the C2C mapping between the Attribute classes.

6.2.5 R2C Mapping Operator

Problem. In Figure 6.1(d), the reference superClasses of the LHS metamodel corresponds
to the class Generalization of the RHS metamodel. This kind of heterogeneity requires an
operator which is capable of "peeling" an object out of a link and to additionally preserve
the structure of the LHS in terms of the classes connected by the relationships at the RHS.

Solution. The black-box view of the R2C mapping operator, as depicted in Figure 6.6, has
one required interface on the left side for pointing to a reference. On the right side it has
three provided interfaces, one for the class which stands for the concept expressed as refer-
ence on the LHS and two for selecting the references which are responsible to connect the
object which has been peeled out of the link of the LHS into the RHS model. To determine
the objects to which the peeled object should be linked, two additional required interfaces

77

Chapter 6 CAR – A Mapping Language for Resolving Structural Heterogeneities

on the top of the R2C operator are needed for determining the corresponding objects of the
source and target objects of the LHS.

R2C

History

R2C

r2c

link2SourceObj :
Reference

r2c

link :
Reference

linkObject :
Class

link2TargetObj :
Reference

sourceObject : c2c

sourceObject : c2c

link :
Reference

link2SourceObj :
Reference

linkObject :
Class

link2TargetObj :
Reference

targetObject : c2c

targetObject : c2c

B
la

ck
-B

o
x

V
ie

w
W

h
it
e-

B
o
x

V
ie

w

Figure 6.6: R2C Mapping Operator

The white-box view of the R2C mapping operator, as illustrated in Figure 6.6, consists
of a pre-condition comprising three query-tokens. The input link is connected to a two-
colored query-token, the fromColor corresponds to the query-token standing for the source
object and the toColor corresponds to a query-token standing for the target object. The post-
condition of the transition introduces a new color and is therefore responsible to generate a
new object. Furthermore, two links are produced by the other generator-tokens for linking
the newly generated object with the corresponding source and target objects of the LHS.

Example Application. In Figure 6.7, the reference superClasses in the LHS metamodel is
mapped to the class Generalization by an R2C operator. In addition, the references subClasses
and superClasses are selected for establishing an equivalent structure on the RHS as exist-
ing on the LHS. For actually determining the Class objects which should be connected via
Generalization objects, the R2C operator has two dependencies to C2C mappings. This exam-
ple can be seen as a special case, because the reference superClasses is a reflexive reference,
therefore both requiredContext ports of the R2C operator point to the same C2C operator.

6.2.6 A2R Mapping Operator

Problem. The value-based vs. reference-based relationship heterogeneity shown in Figure
6.1(e) resembles the well-known difference between value-based and reference-based rela-
tionships, i.e, corresponding attribute values in two objects can be used to "simulate" links
between two objects. Hence, if the attribute values in two objects are equal, a link ought to
be established between them.

78

6.2 Mapping Operators

RHSBridgingLHS
Target MMMapping ModelSource MM

Attribute

*

Package

Class

superClasses

*

name : String
isID : Boolean
minCard : Integer
maxCard : Integer

name : String
package : String

name : String

Attribute

DesAtt

IdAtt

*

: kind

Class

Package

*

name : String

name : String
Generalization

*

superClasses

subClasses

*

minCard : Integer
maxCard : Integer

Multiplicity

1..1
name : String

C2C

C2C

C2C

A2A

A2A

1

R2R

A2A

C2C

C2C
isID=false

isID=ftrue

{inv: true}

R2C

A2R

A2C

Figure 6.7: Example Resolved with CAR (Mapping View)

Solution. For bridging the value-based vs. reference-based relationship heterogeneity,
the A2R mapping operator as shown in Figure 6.9 provides on the LHS two interfaces, one
for marking the keyValue attribute and another one for marking the keyRefValue attribute.
On the RHS, the operator provides only one interface for marking the reference which cor-
responds to the keyValue/keyRefValue attribute combination.

The white-box view of the operator comprises a transition which has four query-tokens.
The first two ensure that the objects which are referencing each other on the LHS have
been already transformed. The last two are the keyValue and keyRefValue query-tokens
whereby the inner-color (representing the attribute values) is the same for both tokens. The
generator-token of the transition produces one two-colored token by using the outer-color
of the keyRefValue query-token as the outer-color and the outer-color of the keyValue query-
token as the inner-color.

Example Application. In Figure 6.7, the A2R operator is used to map the Package.name
attribute as the key attribute and the Class.package attribute as the keyRef attribute of the
LHS metamodel to the reference between Package and Class on the RHS metamodel.

79

Chapter 6 CAR – A Mapping Language for Resolving Structural Heterogeneities

RHSBridgingLHS

Package

Package_name

Package

Package_name

C2C

A2A

history

history

Source Places Target PlacesTransformation Logic

Attribute_name

Class_package

Attribute

Attribute_name

Package_classes

A2A

history

A2R

history

Class

ClassC2C

history

Class_name

Class_name

A2A

history

Attribute_maxCard

Multiplicity_maxCard

A2C

history

Attribute

Class_attributes

Attribute_class

R2R

history

Class_superClass

Generalization_subClass

R2C

��
history

Attribute_isID

Attribute_minCard

DesAtt
IdAtt

Multiplicity

Multiplicity_minCard

Attribute_multiplicity

C2C <<abstract>>

C2C

history

C2C

history

Generalization_superClass

Generalization

isID=true

isID=false

Figure 6.8: Example Resolved with CAR (Transformation View)

80

6.3 An Inheritance Mechanism for Mapping Operators

A2R

a2r

link :
Reference

keyValue :
Attribute

link :
Reference

a2r

keyRefValue :
Attribute

keyValue :
Attribute

keyRefValue :
Attribute

targetObject : c2csourceObject : c2c

sourceObject : c2c targetObject : c2c

A2R

History

B
la

ck
-B

o
x

V
ie

w
W

h
it
e-

B
o
x

V
ie

w

Figure 6.9: A2R Mapping Operator

6.3 An Inheritance Mechanism for Mapping Operators

Why is an inheritance mechanism needed? MOF allows to define class hierarchies in meta-
models through generalization. A generalization defines an is-a relationship between a
specialized class (subclass) and a more general class (superclass) where the subclass inher-
its all features, i.e., attributes and references, of the superclass. Consequently, when one
defines mappings between metamodels which heavily use generalizations leading to huge
taxonomies, it should be possible to reuse previously defined mappings between general
classes for mappings between subclasses.

Required reuse mechanisms. To facilitate the definition of mapping models between MOF-
based metamodels, reuse can be achieved in three ways:

• Mappings between features of superclasses can be defined once for the superclasses
and can be inherited by mappings between subclasses which can define additional
feature mappings between the subclasses. This reuse mechanism can be compared to
code reuse through implementation inheritance supported by common object-oriented
programming languages.

• In addition to sharing of feature mappings, the following mapping situation frequently
occurs when two metamodels have to be integrated. Assume, we have on the LHS a
superclass which has a multitude of subclasses. In contrast, on the RHS we only have
a single class, i.e., the class hierarchy on the LHS is collapsed into a single class inhibit-
ing all features of the LHS class hierarchy at the RHS, which is equivalent to the LHS
superclass and also to its subclasses. To avoid that for each subclass a mapping to the

81

Chapter 6 CAR – A Mapping Language for Resolving Structural Heterogeneities

RHS class must be defined, it should be possible to apply the mapping between the
LHS superclass and the RHS class also for indirect instances of the LHS superclass.

• A refinement mechanism is needed to define for certain subclasses specific mappings,
which refine the mapping between the superclasses. Of course, the feature mappings
between the superclasses should be also applied for such submappings.

6.3.1 Inheritance for C2C Mappings

For reusing existing mappings, we introduce the possibility to define generalization re-
lationships between C2C mappings. This means, the user can define general mappings
between superclasses called supermappings and more specific mappings between subclasses
called submappings which can be used to refine (i.e., the source and target types of the su-
permappings) and extend (i.e., new feature mappings can be introduced) the supermap-
pings. As concrete syntax for generalization relationships between C2C mappings, we reuse
the notation of UML generalization relationships between classes, i.e., a line with a hollow
triangle as an arrowhead.

Concerning the second reuse mechanism, it has to be noted that there are also cases in that
the mentioned behavior of applying a supermapping for indirect instances is not desired.
Sometimes it is required that only direct instances should be transformed and not indirect
instances. Therefore, certain configuration parameters for mappings are required in order
to express such integration details in the mapping model.

We allow generalization relationships only for C2C mappings for inheriting feature-map-
pings which are dependent on C2C mappings such as symmetric mappings (A2A, R2R), or
asymmetric mappings (A2C, R2C, A2R, and their inverse operators). This is due to the fact
that C2C operators are responsible for providing the context information for all other CAR
mapping operators. The introduction of generalization relationships between C2C map-
pings results in an extension of the C2C operator as shown in Figure 6.10. In this figure, the
class C2C, representing the C2C mapping operator, is extended for defining generalization
relationships by setting the references supermappings and submappings accordingly. Further-
more, for allowing different kinds of supermappings, i.e., if a mapping is itself executable
or if it is applicable for unmapped subclasses, two additional boolean attributes, namely
C2C.isAbstract and C2C.isApplicable4SubClasses, are defined for the C2C metaclass. These
two attributes enable the user to configure the behavior of the mappings in more detail.

One important constraint for generalization relationships between C2C operators is that if
a generalization between two C2C operators is defined, the participating LHS classes of the
supermappings and the submappings must be either in a generalization relationship or it
must be actually the same class. Of course, the same constraint must hold on the RHS. These
two constraints must be ensured, because the submappings inherit the feature mappings of
the supermappings and therefore, the features of the superclasses must be also available

82

6.3 An Inheritance Mechanism for Mapping Operators

MOF

Class
DataType

AttributeReference
Enum

EnumLiteral

lowerBound : int
upperBound : int

abstract : boolean

0..*

0..*

0..*

superClasses
1type

1

0..*
lowerBound : int
upperBound : int

PrimitiveType

String Integer Boolean

C2C

Class

isAbstract: boolean

isAbstract: boolean
isApplicable4Subclasses: boolean

LHSClass RHSClass1 1

M
O

F
C

A
R

subClasses

superClasses *
*

subMappings

*

superMappings *

Figure 6.10: Abstract Syntax of C2C Operator Extended with Generalization Relationships

on instances which are transformed according to the submappings. The OCL constraints
shown in Listing 6.1 can be used to validate a mapping model with respect to the correct
usage of generalization relationships between C2C mappings.

Listing 6.1: Well-formedness Rules for C2C Generalizations
context C2C

inv1 : s e l f . superMappings −> f o r A l l (s|s . LHSClass . subClasses −>
union (s . LHSClass) −> conta ins (s e l f . LHSClass)) ;

inv2 : s e l f . superMappings −> f o r A l l (s|s . RHSClass . subClasses −>
union (s . RHSClass) −> conta ins (s e l f . RHSClass)) ;

6.3.2 Symmetric Mapping Situations

For further explanations how to use generalization between C2C operators, we assume at
first that the mapping problem is symmetric, i.e., the same generalization structure is avail-
able on the LHS and on the RHS, and that only single inheritance is used for defining the
metamodels. In particular, we assume that on the LHS and on the RHS a superclass with
various subclasses exists. Asymmetric mapping problems, i.e., one side has a taxonomy and
the other has not, and integration scenarios where metamodels use multiple inheritance are
discussed later in this section.

In general, for symmetric mapping problems we can distinguish between three different
cases of mapping models as exemplified in Figure 6.11. Thereby for each case it is assumed
that there is at least a mapping between the superclasses of the LHS and the RHS. For
explicitly defining these three mapping models, we assume that one can navigate from a
superclass to its subclasses via the subClasses reference (cf. lower half of Figure 6.10) as well
as there exists a helper method hasMapping() that checks if a class has been mapped with a
C2C operator or not.

Case A. ∀ x IN LHSsuperClass.subClasses | ¬ x.hasMapping(), meaning that only the superclasses
are mapped and no single mapping between subclasses exists as shown in Figure 6.11 (a).

83

Chapter 6 CAR – A Mapping Language for Resolving Structural Heterogeneities

Case B. ∀ x IN LHSsuperClass.subClasses | x.hasMapping(), meaning that all subclasses refine the
mapping between the superclasses as shown in Figure 6.11 (b).

Case C. ∃ x, y IN LHSsuperClass.subClasses | ¬ x.hasMapping() ∧ y.hasMapping(), meaning that
some subclasses exist that do not refine the mapping between the superclasses and some subclasses
exist that do not, as shown in Figure 6.11 (c).

A

B C D

W

x y z

A

B C D

W

x y z

A

B C D

W

x y z

Case A

Case B

Case C

(a)

(b)

(c)

Figure 6.11: Mapping Model Cases for Symmetric Inheritance

For interpreting the C2C mappings as transformations, in addition to the consideration
of the various mapping model cases, the meta-properties of classes participating in the su-
permappings have to be considered. In particular, attention has to be given if a class is
an abstract class or a concrete class (cf. Figure 6.10 Class.isAbstract) when transformation
rules have to be generated in order to ensure that only concrete classes are instantiated in
the target model. This means, orthogonal to the different mapping models, we have to dis-
tinguish four combinations of superclass on the LHS and on the RHS, namely (1) both are
abstract, (2) both are concrete, (3) the LHS superclass is abstract and the RHS superclass is
concrete, and finally (4) the LHS superclass is concrete and the the RHS superclass is ab-
stract. When these four combinations are examined for each of the three mapping model
cases, we receive twelve mapping situations which may lead to different interpretations of
the mapping models.

84

6.3 An Inheritance Mechanism for Mapping Operators

In the following subsections, we elaborate on complete, incomplete, and non-applicable map-
pings with respect to configurations of supermappings as well as mapping situations. With
configuration we mean the property setting of the supermappings, namely if a supermap-
ping itself is executable (attribute C2C.isAbstract) and if a supermapping can be applied on
indirect instances (attribute C2C.isApplicable4SubClasses). With the term complete mapping,
we mean that each queried object on the LHS can be transformed according to the mappings
in a RHS object. With incomplete mappings, we mean that at least one object is queried on
the LHS by the mappings which cannot be instantiated in the RHS model, and finally, the
term none-applicable mapping means that generally no object can be queried on the LHS
according to the mappings. For incomplete mapping situations an error message should
be provided to the user in order to give feedback how to adjust the mapping model. For
none-applicable mappings only a warning should be produced that the mappings must be
further refined in order to be effective on the instance layer.

The default configuration of the C2C operator for each mapping situation specifies that
the supermapping itself is executable and applicable for indirect instances. In order to give
the user more possibilities to explicitly define other interpretations of supermappings, we
furthermore allow three non-default supermapping configurations, thereby the first con-
figuration allows to define abstract supermappings with the capability to be applied for
indirect instances, and the other two configurations allow reuse of depending mappings of
supermappings without applying the supermappings on indirect instances. We discuss the
default mapping configuration together with the explicit options for changing this default
configuration in detail and present a summary of this discussion in Table 6.1.

Default Mapping Configuration. The first variant of supermapping configurations is that
the supermapping itself is executable (C2C.isAbstract=FALSE) and applicable to transform
instances of subclasses having no refined mappings (C2C.isApplicable4SubClasses=TRUE).
We decided to use this variant as the default configuration of C2C mappings, because it
is the most natural interpretation to transform direct and indirect instances – for which no
refined mappings are available – if a mapping between two superclasses is defined. How-
ever, when we take a closer look on this configuration, we can find mapping situations
which have no correct interpretation or the mappings are not even applicable on one sin-
gle instance. The combination of the mapping model cases and the superclass combina-
tions lead to twelve mapping situations which are discussed in the following with respect
to consequences on the generated transformation logic, i.e., which instances can be actu-
ally transformed from the LHS to the RHS, in order to identify if the mapping situation is
complete, incomplete or none-applicable. The Config 1 block of Table 6.1 summarizes the
discussed mapping situations and illustrates which of them produce complete, incomplete,
and none-applicable transformations. One can clearly see that mapping situations where
the RHS class is not a concrete class lead to problems when not all subclasses have refined

85

Chapter 6 CAR – A Mapping Language for Resolving Structural Heterogeneities

mappings.

Case A: Only superclasses are mapped.

• A1: Indirect instances of the LHS superclass cannot be transformed, because the RHS
superclass cannot be instantiated and it is not possible to determine which subclass
should be used instead. Therefore, an error message has to be given to the user that
she should refine the supermapping with appropriate submappings for each subclass.

• A2: Each LHS instance (direct and indirect) can be transformed into an instance of
type RHS superclass.

• A3: Same as A2, however, only indirect instances have to be transformed.

• A4: Same problem as in A1. Feedback to the user has to be given for such mapping
configurations.

Case B: All subclasses refine the mapping between the superclasses.

• B1: Each indirect instance can be transformed into an instance of a RHS subclass ac-
cording to the refined submapping.

• B2: Same as B1, however, additionally direct instances of the LHS superclass are trans-
formed into instances of the RHS superclass.

• B3: Same as B1, however, only indirect instances have to be transformed.

• B4: Indirect instances can be transformed according to the submappings. However,
direct instances of the LHS superclass cannot. Again, an error message has to be given
to the user.

Case C: Some, but not all subclasses refine the supermapping.

• C1: Instances of mapped subclasses can be transformed, however, the rest of the in-
stances cannot. This means, the supermapping has to be refined for each subclass.

• C2: All instances can be transformed. Instances of mapped subclasses can be instan-
tiated from specific subclasses, instances of unmapped subclasses are instantiated di-
rectly from the RHS superclass.

• C3: Same as C2, however, only indirect instances have to be transformed.

• C4: Same as C1. Furthermore, direct instances of the LHS superclass cannot be trans-
formed, too.

86

6.3 An Inheritance Mechanism for Mapping Operators

Non-default Mapping Configurations. In the following, the differences of non-default
mapping configurations with respect to the default mapping configuration are discussed
which are visualized in Table 6.1 by shaded cells.

The second configuration variant, summarized in the Config 2 block of Table 6.1, is that the
supermapping is abstract, but should be applied on indirect instances for which no specific
mappings are available. For this configuration only the situation 4 of case B differs from the
default configuration. With configuration 2, this mapping situation is complete, because
only indirect instances of the LHS superclass are transformed, the direct instances are not
queried because of the abstract supermapping.

Table 6.1: Overview on Mapping Situations with Respect to Complete, Incomplete, and
Non-Applicable Configurations

Co
nf
ig
1

is
A
bs
tr
ac
t=

 F
is
A
pp

l4
Su
bC

l =
 T

SuperClass.isAbstract

LHS RHS

T T

F F

T F

F T

∀x IN subClasses |
¬ x.hasMapping()

 ∀x IN subClasses |
x.hasMapping()

∃ x, y IN subClasses |
¬ x.hasMapping()∧
y.hasMapping()

Case A Case B Case C

(1)

(2)

(3)

(4)

T T

F F

T F

F T

(1)

(2)

(3)

(4)

T T

F F

T F

F T

~

~

(1)

(2)

(3)

(4)

T T

F F

T F

F T

~
~
~
~

(1)

(2)

(3)

(4)

Co
nf
ig
2

is
A
bs
tr
ac
t=

 T
is
A
pp

l4
Su
bC

l =
 T

Co
nf
ig
3

is
A
bs
tr
ac
t=

 F
is
A
pp

l4
Su
bC

l =
 F

Co
nf
ig
4

is
A
bs
tr
ac
t=

 T
is
A
pp

l4
Su
bC

l =
 F

complete

incomplete

none-applicable~

Legend:

The third configuration variant, summarized in the Config 3 block of Table 6.1, is about
using the supermapping only for reusing feature-mappings and for transforming direct in-
stances. For case A1 and case A3 we get a different interpretation as for the default configu-
ration, because the supermapping is not used for indirect instances and no direct instances
exist for the LHS superclass, thus the supermapping is not applicable at all and need to be
refined with concrete submappings. Furthermore, for this kind of mapping configuration,

87

Chapter 6 CAR – A Mapping Language for Resolving Structural Heterogeneities

the case C1 is complete, because the supermapping is not applied on indirect instances.

The fourth configuration variant, summarized in the Config 4 block of Table 6.1, is about
using the supermapping only for reusing feature-mappings. This means, the supermap-
ping is not used for transforming direct and indirect instances. Thus, Case A directly leads
to none-applicable mappings, which have to be refined by concrete submappings. Further-
more, there are no problematic cases when submappings exist, because only the submap-
pings are executed which have their own refined target classes and are therefore not depen-
dent on properties of the RHS classes of their supermappings.

6.3.3 Representing Inheritance within Transformation Nets

In this subsection we discuss how C2C generalization relationships influence the generation
of transformation nets and consequently the execution of the transformation logic. On over-
all design goal is naturally to express new language concepts at the black-box view – such as
mapping generalizations in this case – as far as possible by means of existing transformation
net mechanisms.

Basic Idea. When we take a closer look on supermappings with a standard configuration,
we see that these mappings must provide the context, i.e., the trace model information, for
all dependent mappings. This means, the supermappings must also provide context infor-
mation about the transformation of indirect instances, e.g., for assigning attribute values of
indirect instances when the attribute is contained by the superclass. Consequently, a su-
permapping is derived into a transformation component which contains the union of its
own trace model for logging the transformation of direct instances of the superclass and the
trace models of its submappings for logging the transformation of indirect instances. There-
fore, the corresponding transformation components of the submappings are nested into the
transformation component of the supermapping. For constructing the union of trace mod-
els of nested transformation components, each nested component gets an arc from its own
trace model to the union trace model of the outer component. Mappings which depend
on the supermapping are connected to the union trace model available on the outer com-
ponent and mappings which are dependent on submappings are directly connected to the
individual trace models of the nested components.

Figure 6.12 illustrates the derivation of generalization relationships into transformation
net components. For describing the basic mapping rule how generalization relationships
are represented in transformation nets, it is assumed that all mappings are concrete map-
pings and it is not considered if a mapping is applicable for subclasses or not. The mapping
C2C1 of the Mapping Model shown on the LHS of Figure 6.12 is transformed into the outer
component C2C1, which consists of a transition for transforming direct instances and of
two subcomponents C2C2.1 and C2C2.2. In addition, the outer component provides a union
trace model of the transformation components C2C1, C2C2.1, and C2C2.2. Because the map-

88

6.3 An Inheritance Mechanism for Mapping Operators

C2C1

C2C2.1 C2C2.2

C2C3.1 C2C3.2

C2C1

…

C2C2.1

C2C2.2

C2C3.1

C2C3.2

…

history

union(1, 2.1,2.2)

union(2.1, 3.1, 3.2, …)

Mapping Model Transformation Net

Figure 6.12: Representing Inheritance Structures with Nested Transformation Components

ping C2C2.1 has two submappings, the corresponding transformation component has also
two sub-components C2C3.1 and C2C3.2. In addition, the component C2C2.1 provides a
union trace model of itself and the subcomponents C2C3.1 and C2C3.2

Mapping Rules for Supermapping Configurations. In addition to the derivation of in-
heritance structures to nested transformation components, specific derivation rules for the
configuration variants of the supermappings are needed to represent abstract and concrete
mappings in transformation nets as well as the applicability of supermappings for subclasses.
In particular, the following four rules, which are summarized in Figure 6.13, are sufficient to
generate transformation nets for all possible supermapping configurations. The mapping
model shown in Figure 6.13 is used as an example input mapping model for describing the
mapping rules and comprises a mapping between the superclasses C1 and C1’ of the LHS
and RHS metamodels and between the subclasses C2 and C2’, whereby the subclass C3 of
the LHS remains unmapped.

• Rule 1 - Concrete/Applicable Supermapping: When a supermapping is concrete, a
transition is available in the outer transformation component for transforming direct
instances of the superclass and indirect instances for which no specific mappings are
available. Because only direct and indirect instances of subclasses without specific
mappings should be transformed by the transition of the outer component, an OCL
condition is attached on the inputPort which leads to the transition in order to re-
ject tokens for which more specific mappings are available. Such constraints can be
defined with the OCL function oclIsTypeOf which gets as parameters the superclass
and all subclasses for which no specific mappings have been defined in the mapping
model (cf. OCL condition oclIsTypeOf(C1|C3)). If there is a more specific mapping
between subclasses, a nested component is produced and the tokens are not streamed
via the superclass mapping, instead the subPlace generated from the LHS subclass

89

Chapter 6 CAR – A Mapping Language for Resolving Structural Heterogeneities

gets an additional arc which leads to a more specific transformation component.

• Rule 2 - Abstract/Applicable Supermapping: Although the supermapping is abstract,
a transition resides directly in the outer component, which is not applicable for direct
instances but for transforming all indirect instances for which no specific mapping has
been applied (cf. OCL condition oclIsTypeOf(C3)).

• Rule 3 - Concrete/Non-Applicable Supermapping: If a supermapping is defined as
concrete and non-applicable for unmapped subclasses then an outer component is
produced which consists of a transition for transforming direct instances of the super-
class (cf. OCL condition oclIsTypeOf(C1)).

• Rule 4 - Abstract/Non-Applicable Supermapping: When a supermapping is abstract
and non-applicable for unmapped subclasses only the outer component is generated
for providing a union trace model for its submappings.

C2C1

C2C2

C2C1

C2C2

history

pre: oclIsTypeOf(C1|C3)

C2C1.isAbstract = false
C2C1.isApplicable4SubClasses = true

C2C1

C2C2C2C1.isAbstract = true
C2C1.isApplicable4SubClasses = false

C2C1

C2C2
C2C1.isAbstract = false
C2C1.isApplicable4SubClasses = false

history

pre: oclIsTypeOf(C1)

C2C1

C2C2
C2C1.isAbstract = true
C2C1.isApplicable4SubClasses = true

history

pre: oclIsTypeOf(C3)

Config 4:

Config 3:

Config 2:

Config 1:

C1

C3 C2

C1‘

C2‘

RHS_MMLHS_MM

Mapping Model

Rule1

Rule2

Rule3

Rule4

Figure 6.13: Representing C2C Configurations in Transformation Components

The following three design alternatives exist for transformation nets to model the ap-
plicability of the supermapping transition on subPlaces. First, we could extend the place
modeling constructs with tags such as "superTransition is applicable". However, the intro-
duction of such a transformation net feature would violate our design goal that the trans-
formation net formalism should not be changed. The second possibility is to generate for

90

6.3 An Inheritance Mechanism for Mapping Operators

each unmapped class an additional arc from the corresponding source place to the outer
component generated for the supermapping. This variant would lead to much more com-
plicated transformation nets and to many duplicated arcs, which simply does not pay off
the information gain for the user. Therefore, we decided for a third variant, the usage of
OCL constraints as explained for Rule 1 to 3.

Example. To summarize this subsection, a concrete integration example, as shown in Fig-
ure 6.14, is discussed on the mapping view and on the transformation view. In the LHS
metamodel, a class Person is specialized into Supplier, Employee, and Costumer classes. The
RHS metamodel consists also of a superclass Person, and of Client, Staff, and ShareHolder
subclasses. Each LHS class can be mapped to a RHS class, except the class Supplier. Hence,
the LHS class Person is mapped with a C2C mapping operator to the RHS class Person. The
properties of this C2C are set to isAbstract=FALSE and Applicable4subclasses=TRUE. Con-
sequently, each instance of the LHS class Person is transformed into an instance of the RHS
class Person, as well as each instance of a subclass which has no further refinement mapping
is also transformed into an instance of the RHS Person class. For example, each instance of
the class Supplier becomes an instance of the class Person. Additionally, the name attribute
of the LHS class Person is mapped by an A2A mapping operator to the name attribute of the
RHS class Person.

The subclasses Employee and Customer of the class Person on the LHS are mapped by C2C
mappings to Staff and Client of the RHS, respectively. Additionally, the attributes of these
classes, namely Customer.cuNr, Employee.emNr, and Client.clNr, Staff.stNr, are mapped by
A2A mappings, respectively. Due to the fact that each of the subclasses inherit the attributes
of the superclass – the attribute Person.name – the A2A mapping between the superclasses
is also inherited by the C2C mappings by setting the superMappings reference to the C2C
mapping which resides between the Person classes.

The corresponding transformation net for the presented mapping model is depicted in
the Transformation View of Figure 6.14. The Person classes become places which comprise
for each subclass an inner place. As subclass places are nested in superclass places, the
inheriting submappings are nested in the transformation component which correspond to
the supermappings. The outer transformation component, corresponding to the supermap-
ping, contains a transition, because the isAbstract property of the C2C mapping is set to
FALSE. Furthermore, due to the isApplicable4subclasses property of the C2C mapping, which
is set to TRUE, the outer transformation component of the transformation net receives an
additional OCL constraint, namely oclTypeOf(Person|Supplier). Due to readability purposes,
we refrain from displaying these features in Figure 6.14. Consequently, each direct instance
of type Person from the LHS is transformed into an instance of class Person on the RHS. Fur-
thermore, this OCL constraint ensures that each instance of subclasses of the class Person,
which have no refined mapping, is also transformed by the supermapping into an instance
of type Person on the RHS.

91

Chapter 6 CAR – A Mapping Language for Resolving Structural Heterogeneities

RHSBridgingLHS

Target MMMapping ModelSource MM

Transform

Source Places Target PlacesTransformation Logic

Transform Transform

C2C

C2C

C2C

Person

Supplier CustomerEmployee

Person

Client Share Holder
Staff

C2C

history

C2C

history

C2C

history

Person

name:String

Supplier

suNr:int

Employee

emNr:int

Customer

cuNr:int

Person

name:String

Client

clNr:int

Staff

stNr:int

Share Holder

shNr:int

A2A

A2A

A2A

A2A

history

A2A

history

A2A

history

Person_name

Employee_emNr

Customer_cuNr

Supplier_suNr

Person_name

Staff_stNr

Client_clNr

ShareHolder_shNr

Figure 6.14: Inheritance between C2C Mappings – Symmetric Example

92

6.3 An Inheritance Mechanism for Mapping Operators

The attribute Person.name can be transformed only if the containing instance which can
be of type Person, Employee, or Customer has been already transformed. Consequently, the
A2A transformation component for name values must be in the context of three C2C trans-
formation components. This is achieved by the trace model provided by the black port in
the middle of the bottom of the outer C2C transformation component. This trace model
unifies the individual trace models of the C2C transformation components. The other A2A
operators are connected to the gray ports which link directly to individual trace models of
the nested components.

6.3.4 Asymmetric Mapping Situation – Hierarchy vs. Collapsed
Hierarchy

In the previous subsections we only elaborated on the symmetric integration scenario, where
the hierarchical structures of the metamodels are fully corresponding to each other. In prac-
tice, however, the inheritance structures between metamodels can vary considerably. The
worst case of asymmetric mapping situations is that on one side an inheritance hierarchy is
applied to structure the metamodel and on the other side no inheritance relationships are
used at all. For example, Figure 6.15 illustrates a mapping example which comprises a typ-
ical refactoring pattern from object-oriented programming [Fow99], namely the way how
an inheritance hierarchy can be flattened. Thus, when two metamodels have to be bridged,
it is possible that one metamodel uses an inheritance structure and the other metamodel
does not. In particular, this means, in one metamodel an additional attribute is used to split
a set of objects into various subsets, whereas on the other side these subsets are explicitly
expressed through subclasses.

When one wants to bridge two metamodels where one metamodel has a generalization
hierarchy and the other one has a collapsed hierarchy, generalization between C2C map-
pings should be used. More specifically, as introduced in Subsection 6.3.1, an OCL con-
straint allows to use generalization between C2C operators also for cases where the partici-
pating classes of the supermapping and the submapping are actually the same. Exactly this
special case is exploited for defining supermappings for asymmetric cases as is explained
in the following.

The following C2C mappings are needed for resolving the asymmetric bridging case as
shown in Figure 6.15. First, a mapping from the single class on the LHS to the superclass
on the RHS is defined which comprises all possible feature mappings. Second, for each
subclass of the RHS a mapping is defined to the class on the LHS. The mappings inherit
from the previously defined mapping. In addition, each submapping gets an OCL condition
which selects from all instances of the LHS class a certain subset of instances which matches
to the subclass, i.e., which fulfill the OCL condition. All submappings must have mutually
exclusive conditions in order not to instantiate duplicates on the RHS side.

93

Chapter 6 CAR – A Mapping Language for Resolving Structural Heterogeneities

RHSBridgingLHS

Target MMMapping ModelSource MM

Transform

Source Places Target PlacesTransformation Logic

Transform Transform

C2C

C2C

C2C

Person
Person

Client
Staff

C2C <<abstract>>

C2C

history

C2C

history

Person

name : String
kind : Kind

Person

name:String

Client

Staff

A2A

A2A

history

Person_name Person_name

«Enumeration»
Kind

• Cust
• Emp

kind=Cust

kind=Emp

kind=Cust

kind=Emp

Person_kind

„Emp“ „Emp“ „Cust“

Tr
an

sf
or
m
at
io
n
V
ie
w

Figure 6.15: Inheritance between C2C Mappings – Asymmetric Example

94

6.3 An Inheritance Mechanism for Mapping Operators

6.3.5 Multiple Inheritance for C2C Mappings

MOF allows not only single inheritance between classes, but also multiple inheritance. This
means in metamodels, classes can collect features from more than one superclass. In this
subsection, we discuss the consequences of multiple inheritance provided by MOF for our
proposed C2C generalization mechanism based on two examples. The first example cov-
ers the case that both metamodels use multiple inheritance (symmetric case) and the second
example covers the case that one metamodel uses multiple inheritance and the other meta-
model makes use of single inheritance and duplication of attributes for avoiding multiple
inheritance (asymmetric case).

Before we continue with discussing the consequences of multiple inheritance in meta-
models for our proposed mapping language, we first describe how multiple inheritance is
expressed with the Place concept of the transformation net formalism. We decided for our
approach to represent multiple inheritance in transformation nets as intersecting places,
thereby the intersection of places itself represents a place, which can be used for connecting
arcs to transitions.

In Figure 6.16, an example metamodel is presented which makes use of multiple inher-
itance. In particular, the class CustomerEmployee is the subclass of Customer and Employee
and consequently inherits the features of both superclasses. When we take a look on the
corresponding transformation net representation, we see that the places for Customer and
Employee have an intersecting part, which contains the place for CustomerEmployee tokens.
We decided to use this representation, because when looking at the inheritance structures
from an extensional viewpoint (the extension of a class is the set of all its instances), we can
define the concepts of Figure 6.16 as the following instance sets (the numbers of the instance
sets can be found as annotations in Figure 6.16).

• Extension(Person) = {1,2,3,4}

• Extension(Customer) = {2, 4}

• Extension(Employee) = {3, 4}

• Extension(CustomerEmployee) = {4}

The extensions of the classes Customer and Employee have an intersecting part (cf. instance
set 4) which can be appropriately expressed with intersecting places in the transformation
net formalism.

6.3.5.1 Symmetric Mapping Situation

For reusing feature mappings from more than one supermapping, we offer in our mapping
models the possibility to define multiple inheritance for C2C operators as is shown in Figure

95

Chapter 6 CAR – A Mapping Language for Resolving Structural Heterogeneities

Person

Customer Employee

CustomerEmployee Customer Employee

CustomerEmployee

Person

T

Metamodel Transformation Net

1

2 3

4

Figure 6.16: Representing Multiple Inheritance with Intersecting Places

6.10 where the upper cardinality of the reference superMapping is not restricted. The design
rationale for this extension is that if a class has more than one superclass it makes sense to
reuse the feature mappings from all superclasses and not only from one. Furthermore, this
means that multiple inheritance between mapping operators should only be used for such
cases where multiple inheritance structures exist also in the metamodel.

In our approach, multiple inheritance for C2C mappings can be seen as N single inher-
itance relationships, at least on the mapping layer. This means, we can use the individual
inheritance relationships for reusing feature mappings, for applying the supermappings
also for indirect instances, and the target classes of supermappinges can be refined within a
submapping.

Representing Multiple Inheritance between C2C operators in Transformation Nets.
Considering the representation of multiple inheritance by means of transformation nets,
as for single inheritance, the supermappings must provide the union trace models of the
submappings. However, the fact that in case of multiple inheritance, a submapping has
more than one supermapping, aggravates the mapping of the C2C mappings into transfor-
mation net components. The main driver for the complication is that, on the one hand, we
have more than one transformation component in the transformation net because we can
have more than one supermapping and, on the other hand, only one token exists for an
instance which is actually an indirect instance of more than one superclass. This means, it is
not possible to simply nest the submapping into the supermappings as it was done before
to get a fully working transformation net.

In order to adapt the mapping of generalizations of C2C mappings for supporting also
multiple inheritance, there are several possibilities how the mapping model can be repre-
sented in transformation nets in order to realize the intended transformation behavior. In
the following, we discuss three alternatives together with their advantages and disadvan-
tages.

• Updating trace models from the outside: The first alternative would be that the trace mod-
els of the supermapping components are updated from the outside, i.e., from other

96

6.3 An Inheritance Mechanism for Mapping Operators

components. This would allow that the submapping component resides outside of
the supermapping components, but requires that for each streamed token, the trace
model of the supermapping is updated by the submapping. However, this solution
should be avoided, because an update of the trace models should only be possible
within a component and not from outside in order to have a clear separation between
the black-box and white-box view.

• Nesting supermappings as well as submappings into one component: The second alternative
is very similar to the nesting of submappings into supermappings, however, now the
supermappings and submappings are nested into one component on the same level.
This allows that the individual trace models of the nested components can be unified
into one common trace model which is available on the outside of the outer compo-
nent. However, this solution is in contradiction with the previous mapping rules for
single inheritance where submappings are nested into supermappings.

• Duplicating tokens for the transformation: For using the same mapping rules for multiple
inheritance as for single inheritance, the tokens of subclasses which inherit from more
than one superclass have to be duplicated. Furthermore, this allows to duplicate also
the submapping component and nest them into the supermapping components. In
particular, for each supermapping component, a duplicated token must be available
in order to be streamed through the component of the supermapping. This is required,
because the trace model of the supermappings must also provide information about
the indirect instances. After streaming each duplicated token through the supermap-
ping components, the tokens have to be merged again into one single token which can
then be stored in the target place.

We have decided to use the third alternative, because it allows us to use the same deriva-
tion rules for producing the transformation nets as for single inheritance by nesting the
submapping components into the supermapping components, plus using the additional
duplicator and merge components in the source and target places.

Example. To summarize the discussed mapping rules, the integration example illustrated
in Figure 6.17 shows a symmetric integration scenario for multiple inheritance in metamod-
els. Each class of the LHS can be mapped to a class of the RHS. The mapping between
the CustomerEmployee classes inherits from the mappings between the superclasses which
furthermore provide the context for two A2A mappings. In order to apply these two A2A
mappings for the submapping, the transformation net is built as follows. First, two transfor-
mation components are generated for the supermappings. Second, each component com-
prises a nested component for transforming instances of the class CustomerEmployee. Third,
in order that both nested components can transform all CustomerEmployee instances, a du-
plicator component is interposed between the CustomerEmployee place and the nested com-
ponents. By duplicating the tokens, it can be ensured that both components can provide the

97

Chapter 6 CAR – A Mapping Language for Resolving Structural Heterogeneities

union trace models, i.e., for their direct instances and for their indirect instances. Before the
tokens representing CustomerEmployee instances can be put into the target place, a merge
component must ensure that the duplicated tokens are again merged into one single token.
With the help of the duplicate and merge workaround, it can be ensured that both compo-
nents can provide complete trace models, which are needed for the depending components,
in this case the A2A operator in order to transform cuNr values and emNr values also for
CustomerEmployee instances.

RHSBridgingLHS

Target MMMapping ModelSource MM

Transform

Source Places Target PlacesTransformation Logic

Transform Transform

cuNr: String

Customer

emNr: String

Employee

CustomerEmployee

C2C

C2C

C2C

A2A
A2A

Customer Employee

Customer_cuNr
Client_clNr

Staff_stNr

A2A

historyA2A

history

C2C

history

Employee_emNr

C2C

history

clNr: String

Client stNr: String

Staff

ClientStaff

CustomerEmployee Client

Staff

ClientStaff

C2C

history

C2C

history

Duplicator

Merger

Figure 6.17: Multiple Inheritance between C2C Mappings – Symmetric Example

6.3.5.2 Unmapped Subclasses

Until now, it has been discussed how multiple inheritance influences the transformation
logic for submappings, only. Now, we want to discuss what happens if no submappings are

98

6.3 An Inheritance Mechanism for Mapping Operators

defined for subclasses which inherit from more than one superclass. In particular, in cases
where a class inherits from multiple classes, which have been mapped with C2C mappings
applicable for unmapped subclasses, it is not clear how the instances of the subclass should
be actually transformed.

ColorChanger

RHSBridgingLHS
Target MMMapping ModelSource MM

Transform

Source Places Target PlacesTransformation Logic

Transform Transform

cuNr: String

Customer

emNr: String

Employee

CustomerEmployee

C2C

C2C

A2A
A2A

Customer Employee

Customer_cuNr
Client_clNr

Staff_stNr

A2A

history
A2A

history

C2C

history

Employee_emNr

C2C

history

clNr: String

Client stNr: String

Staff

CustomerEmployee

Client

Staff

C2C

history

C2C

history

Duplicator

A2A

history

C2C

history

C2C

history

A2A

history

Streamer

M
ap

pi
ng

V
ie
w

Figure 6.18: Unmapped Subclasses and Multiple Inheritance – Example

In the example shown in Figure 6.18, the classes Customer and Employee of the LHS are
mapped to their corresponding classes on the RHS. However, for the class CustomerEm-
ployee of the LHS, no mapping can be defined, because this concept is not available on the
RHS. For deciding if and how instances of CustomerEmployee are transformed, one has to
look at the properties of the C2C mappings between the superclasses. When both are not
applicable for subclasses, instances of CustomerEmployee are simply ignored in the transfor-
mation. In cases where only one C2C mapping is applicable for subclasses, then the same
transformation component is generated as presented before for single inheritance and no
conflicts arise in the transformation. However, in cases where both C2C mappings are ap-

99

Chapter 6 CAR – A Mapping Language for Resolving Structural Heterogeneities

plicable for subclasses, the problem arises that for an instance of the unmapped subclass
only one corresponding token exists, but two transformation components are available for
such instances. As mentioned before, for solving this problem, a duplicator component is
introduced as discussed before, but additionally, a second problem exists. On the RHS, the
duplicated tokens cannot be merged into one single token, because two instances should be
available in the RHS, one residing in the Customer place and one residing in the Employee
place. This requires that two different tokens are generated out of one single token. Unfor-
tunately, with the streamer components, this is not possible. Therefore, we need a modified
C2C component for transforming instances of unmapped subclasses which are capable of
generating a new token color. The extension of the streamer C2C component into a so-
called ColorChanger is shown in the upper part of Figure 6.19. The generation of a new color
can be easily defined, only a new color pattern has to be used in the generation part of the
transition.

The modification of the C2C mapping operator also influences the trace model, i.e., now
the input and output colors are no longer the same as the normal streamer mapping opera-
tor guarantees. Consequently, also depending feature mappings, such as the A2A mappings
shown in Figure 6.18, have to be modified, because it is no longer sufficient to stream only
the two-colored token from left to right. Instead, the outer color of the two-colored tokens
contained by instances of unmapped subclasses have to be changed to the newly generated
color for the containing instance. Therefore, the A2A components also need some modifica-
tion concerning the querying of the trace model provided by the C2C operator, in particular
for the ColorChanger C2C components. More specifically, the trace model of the Color-
Changer C2C has not only to be asked: Has this instance been already transformed? Instead,
the question should be: Has the instance been transformed, and if yes, into which element? This
means, the color can change in the C2C operator, and therefore, an extended query-token
concept is needed in the A2A mapping operator. In particular, the incoming outer-value
must be send to the C2C trace model, and the C2C trace model must send back the color
of the generated element. Until now, the input tokens had the same colors as the output
tokens, i.e., only streamer C2C mappings has been used as context for feature mappings.

For using other mapping operators which produce also new colors for output tokens, we
extend the query part of the A2A mapping operator as shown in the lower part of Figure
6.19. The query tokens for querying the trace models now consist of two color patterns.
First, a token (shown on the upper left side of the transition) is sent to the trace model in-
dicated by the arrow pointing to the required trace port of the A2A operator. In addition, a
second token (shown in the upper middle of the transition) displays a color pattern which
represents the answer (it is assumed that the input element has been already transformed)
of the trace model indicated by an arrow pointing from the required trace port to the to-
ken. This additional token is required, because an additional color for the generation part is
needed, in order to be able to access the probably newly generated token color for the con-

100

6.3 An Inheritance Mechanism for Mapping Operators

ColorChanger

RHSBridgingLHS

Target MMMapping ModelSource MM

Transform

Source Places Target PlacesTransformation Logic

Transform Transform

KNr: String

Customer

ANr: String

Employee

CustomerEmployee

C2C

C2C

A2A
A2A

Kunde Angestellter

Kunde_KNr
Kunde_KNr

AngestellterKeinKunde_ANr

A2A

history
A2A

history

C2C

history

Angestellter_ANr

C2C

history

KNr: String

Client ANr: String

Staff

KundeAngestellter

Kunde

Angestellter

C2C

history

C2C

history

Duplicator

A2A

history

C2C

history

C2C

history

A2A

history

Streamer

Figure 6.19: From Streamer to ColorChanger

taining object. In the generation part, the token gets as outer color the color pattern queried
from the trace model of the C2C operator assigned and the inner color is the same value as
for the input token.

6.3.5.3 Asymmetric Mapping Situation – Multiple Inheritance vs. Single Inheritance

So far we have assumed that both metamodels make use of multiple inheritance in the same
way. However, the use of multiple inheritance can be easily avoided by the duplication of
features which allows one to use single inheritance solely. Therefore, in this subsection we
discuss how to deal with integration scenarios where on one side single inheritance is used
and on the other side multiple inheritance.

Example. Figure 6.20 shows such an integration example where the metamodel on the
LHS uses multiple inheritance and the metamodel on the RHS uses single inheritance, only.
Nevertheless, both metamodels express the same information, namely that a set of persons
is divided into customers and employees, thereby some employees are also customers. The
LHS metamodel expresses the fact that employees can be also customers by defining a class
CustomerEmployee which is a subclass of the classes Customer and Employee. In contrast, the
RHS metamodel expresses this aspect by separating first customers and employees which
are not customers from each other (cf. classes Customer and EmployeeNoCustomer in Figure
6.20). Subsequently, customers which are also employees are modeled by the class Cus-
tomerEmployee which is a subclass of the class Customer, only. The avoidance of extension-
ally overlapping classes lead directly to redundancies on the intensional level, namely, as
one can immediately see, the attribute emNr has to be defined in several classes, namely for
EmployeeNoCustomer and also for CustomerEmployee.

This two different modeling styles regarding the usage of inheritance lead to one main
heterogeneity problem in this example, namely dividing the set of CustomerEmployee.emNr

101

Chapter 6 CAR – A Mapping Language for Resolving Structural Heterogeneities

RHSBridgingLHS
Target MMMapping ModelSource MM

Transform

Source Places Target PlacesTransformation Logic

Transform Transform

name : String

Person

cuNr: String

Customer

emNr: String

Employee

CustomerEmployee

name : String

Person

cuNr: String

Customer

emNr: String

Employee
NoCustomer

CustomerEmployee

emNr: String

C2C

C2C

C2C

C2C

A2A

A2A

A2A

A2A

Person

Customer Employee
CustomerEmployee

Customer

Employee
NoCustomer

CustomerEmployee

Person

Person_name

Customer_cuNr

Person_name

Customer_cuNr

EmployeeNoCustomer_emNr

CustomerEmployee_emNrA2A

history

A2A

history

A2A

history

A2A

history

C2C

C2C

history

C2C

history

Employee_emNr

C2C

history

Figure 6.20: Multiple Inheritance between C2C Mappings – Asymmetric Example

102

6.3 An Inheritance Mechanism for Mapping Operators

values on the LHS into the subsets EmployeeNoCustomer.emNr and CustomerEmployee.emNr
on the RHS. For overcoming this heterogeneity problem, the mapping model is built as
illustrated in Figure 6.20. The tricky part of this integration example is how to map the
classes Employee and CustomerEmployee of the LHS to the classes EmployeeNoCustomer and
CustomerEmployee of the RHS as well as how to define the inheritance relationships between
the mappings.

Mapping View. First, a mapping is needed for transforming direct instances of the class
Employee, i.e., employees which are not simultaneously customers. This can be achieved by
mapping the Employee class of the LHS to the EmployeeNoCustomer class on the RHS. How-
ever, to ensure that only direct instances are transformed via this mapping, the subclass
CustomerEmployee needs a specific mapping, because instances of CustomerEmployee on the
LHS should be transformed into CustomerEmployee instances on the RHS and of course not
into EmployeeNoCustomer instances. Therefore, the CustomerEmployee class on the LHS holds
its own C2C mapping to the CustomerEmployee class on the RHS. Now the question arises
from which C2C mappings should the last mentioned mapping inherit. To answer this
question, one has to take a closer look at the inheritance structures in the LHS metamodel
and in the RHS metamodel. It can be seen that for the mapping, it is only allowed to in-
herit from the mapping between the Customer classes, because an inheritance relationship
between Customer and CustomerEmployee is available in the LHS metamodel and in the RHS
metamodel. A specialization of the mapping between Employee and EmployeeNoCustomer
is not allowed, because an inheritance relationship is missing and simply not meaningful
between EmployeeNoCustomer and EmployeeCustomer in the RHS metamodel. With this set
of C2C mappings and the usage of one generalization relationship it is guaranteed that in-
stances of Customer at the LHS are transformed into Customer instances at the RHS, direct
instances of the class Employee into instances of class EmployeeNoCustomer, and instances of
CustomerEmployees into CustomerEmployees instances.

Through the generalization relationship between the mapping Customer2Customer and
the mapping CustomerEmployee2CustomerEmployee it is achieved that also for customerEm-
ployees the values of the custNr attribute are transformed, because this featureMapping is
inherited from the supermapping. What is missing is the transformation of empNr attribute
values. Here comes the heterogeneity of different inheritance structures into play. The sin-
gle set of Employee.empNr values on the LHS has to be splitted into two sets on the RHS,
namely EmployeeNoCustomer.empNr and CustomerEmployee.empNr. This can be expressed in
the mapping model by using two A2A mappings for the Employee.empNr attribute on the
LHS. One A2A mapping is applied from Employee.empNr to EmployeeNoCustomer.empNr and
is therefore in the context of the Employee2EmployeeNoCustomer mapping. The second A2A
mapping is also applied to map Employee.empNr to CustomerEmployee.empNr, but this time
the mapping is in the context of the CustomerEmployee2CustomerEmployee mapping. It has
to be noted, that these two A2A mappings which are using trace models of different C2C

103

Chapter 6 CAR – A Mapping Language for Resolving Structural Heterogeneities

operators are sufficient to split the attribute values into two sets.
Transformation View. The corresponding transformation net is shown in the transfor-

mation view of Figure 6.20. The derivation of the C2C mappings into transformation com-
ponents and the nesting of transformation components for expressing generalization rela-
tionships is done as already explained. What we want to discuss now in more detail is
the linking of the corresponding components of the feature mappings to the provided trace
models of the C2C components in order to realize the intended transformation behavior.
The A2A mapping for the Person.name attributes is connected to the union trace model of
the Person2Person transformation component, because for each person (each instance in our
example is an indirect instance of Person) the value of the name attribute has to be trans-
formed. Therefore, we need the whole trace information of all nested transformation com-
ponents, which is provided by the most outer transformation component. The A2A map-
ping for Customer.custNr values depends on the Customer2Customer component, because
the union trace model for direct instances of Customer and for CustomerEmployee instances
is needed. For transforming the Employee.empNr values, two transformation components
are required. First, an A2A transformation component is used to transform Employee.empNr
values of direct instances of Employee to the EmployeeNoCustomer.empNr place. Therefore,
this A2A transformation component depends on the Employee2EmployeeNoCustomer com-
ponent, which ensures that Employee.empNr values contained in direct instances of the class
CustomerEmployee remain in the source place, because no history information about direct
instances of the CustomerEmployee class can be provided from the required trace model
of the Employee2EmployeeNoCustomer component. In order to transform the remaining to-
kens as well, a second A2A transformation component is used, which depends on the Cus-
tomerEmployee2CustomerEmployee transformation component and streams the tokens to an-
other target place, namely to the CustomerEmployee.empNr place. The CustomerEmployee-
2CustomerEmployee trace model only provides information about the transformation of di-
rect instances of the CustomerEmployee class and therefore ensures that no values of direct
instances of the class Employee are streamed through the dependent A2A transformation
component.

This example shows the value of using an explicit notion of trace models together with
a union of trace models for automatically synchronizing transformation net components.
With the automatic synchronization provided by the Petri Net semantic, the splitting of sets
into subsets comes for free. Thus, no additional control structures and OCL constraints are
required, and the derivation of transformation nets from mapping models is straightfor-
ward.

104

Chapter 7

Summary and Related Work

Contents
7.1 Summary . 105
7.2 Related Work . 105

7.2.1 Reusable Model Transformations . 106
7.2.2 Ontology Mapping for Bridging Structural Heterogeneities 107

7.1 Summary

In this part of the thesis, we have introduced a framework allowing the definition of map-
ping operators and their application for building metamodel bridges. Metamodel bridges
are defined by the user on a high-level mapping view which represents the semantic corre-
spondences between metamodel elements and are tested and executed on a more detailed
transformation view which also comprises the transformation logic of the mapping opera-
tors. The close integration of these two views and the usage of models during the whole
bridging process further enhances understandability and the possibility of debugging the
defined mappings in terms of the mapping operators. The applicability of the framework
has been demonstrated by implementing mapping operators subsumed under the mapping
language CAR for resolving common structural metamodel heterogeneities. Furthermore,
we have shown how the mappings can be reused within a mapping model by using inheri-
tance. The inheritance mechanism introduced for the CAR mapping language has been also
derived into appropriate transformation net concepts by building union trace models out
of individual trace models of single mapping operators.

7.2 Related Work

With respect to our approach we can distinguish between two categories of related work:
first, related work in the field of model-driven engineering concerning the design of reusable

Chapter 7 Summary and Related Work

model transformations, and second, related work in the field of ontology engineering con-
cerning the usage of dedicated mapping languages for bridging structural heterogeneities.

7.2.1 Reusable Model Transformations

Generic Model Transformations. Typically, model transformation languages, e.g., ATL
[JK06] and QVT [OMG05b], allow to define transformation rules based on types defined
as classes in the corresponding metamodels. Consequently, model transformations are not
reusable and must be defined from scratch again and again with each transformation spec-
ification. One exception thereof is the approach of Varró et al. [VP04], who propose the
notion of generic transformations within their VIATRA2 framework, which in fact resem-
bles the concept of templates in C++ or generics in Java. VIATRA2 also provides a way to
implement reusable model transformations, although it does not foster an easy to debug
execution model as is the case with our proposed transformation nets. In addition, there
exists no explicit mapping model between source and target metamodel which makes it
cumbersome to reconstruct the correspondences between the metamodel elements based
on the graph transformation rules, only.

Transformation Patterns. Very similar to the idea of generic transformations is the defi-
nition of reusable idioms and design patterns for transformation rules described by Karsai
et al. [AVK+04]. Instead of claiming to have generic model transformations, the authors
propose the documentation and description of recurring problems in a general way. Thus,
this approach solely targets the documentation of transformation patterns. Indications how
these patterns could be implemented in a generic way are not given.

Mappings for bridging metamodels. Another way of reuse can be achieved by the ab-
straction from model transformations to mappings as is done in our approach or by the
ATLAS Model Weaver (AMW) [FBJ+05]. AMW lets the user extend a generic so-called
weaving metamodel, which allows the definition of simple correspondences between two
metamodels. Through the extension of the weaving metamodel, one can define the abstract
syntax of new weaving operators which roughly correspond to our mapping operators. The
semantics of weaving operators are determined by a higher-order transformation that take
a weaving model as input and generates model transformation code. Compared to our ap-
proach, the weaving models are compiled into low-level transformation code in terms of
ATL which is in fact a mixture of declarative and imperative language constructs. Thus, it is
difficult to debug a weaving model in terms of weaving operators, because they do not ex-
plicitly remain in the model transformation code. Furthermore, the abstraction of mapping
operators from model transformations expressed in ATL seems more challenging compared
to the abstraction from our proposed transformation net components.

106

7.2 Related Work

7.2.2 Ontology Mapping for Bridging Structural Heterogeneities

In the field of ontology engineering, several approaches exist which make use of high-level
languages for defining mappings between ontologies (cf. [KS05] for an overview). For ex-
ample, in Maedche et al. [MMSV02], a framework called MAFRA for mapping two hetero-
geneous ontologies is proposed. Within this framework, the mapping ontology called Se-
mantic Bridge Ontology usually provides different ways of linking concepts from the source
ontology to the target ontology. In addition to the Semantic Bridge Ontology, MAFRA pro-
vides an execution platform for the defined mappings based on services whereby for each
semantic bridge type a specific service is available for executing the applied bridges. In
[SdB05], Scharffe et al. describe a library of so called Ontology Mediation Patterns which can
be seen as a library of mapping patterns for integrating ontologies. Furthermore, the au-
thors provide a mapping language which incorporates the established mapping patterns
and they discuss useful tool support around the pattern library, e.g., for transforming on-
tology instances between different ontology schemas.

The main difference to our approach is that ontology mapping approaches are based on
Semantic Web standards, such as OWL and RDFS, and therefore contain mapping operators
for typical description logic related mapping problems, e.g., union or intersection of classes.
We are bridging metamodels expressed in MOF, a language which has only a partial overlap
with OWL or RDFS, leading to different mapping problems. Furthermore, in contrast to the
ontology mapping frameworks, we provide a framework allowing to build new mapping
operators by using well-known modeling techniques not only for defining the syntax but
also for the operational semantics of the operators.

107

Chapter 7 Summary and Related Work

108

Part III

Roundtrip Transformations

Chapter 8

Why Roundtrip Transformations?

Contents
8.1 Motivation . 112
8.2 Integration Scenarios . 114

8.2.1 Scenario 1: Loss of Meta-Information 114
8.2.2 Scenario 2: Loss of Information . 115

The third part of this thesis elaborates on roundtrip transformations and how this kind
of transformations can be systematically engineered. Figure 8.1 highlights the focus of this
part. In particular, for supporting this integration scenario, a mechanism is needed to extend
the target language (cf. LB) with concepts of the source language (cf. LA

′), which are not
available in the target language. This means, the language extension (cf. LEXT) represents
the concepts which are in the source language but not in the target language.

Part III

MLX MLY

LA LA‘

M1 M1‘

LB

M2

LEXT

M1

M2

M3

Legend

Correspondence

Transformation

Instance-Of

Extension

Figure 8.1: Integration Scenarios Revisited – Focus of Part III

This chapter introduces the term roundtrip transformations and explains why this kind
of transformation is actually needed in the context of tool integration. Furthermore, two
integration scenarios requiring roundtrip capability are presented and used as running ex-
amples or case studies in the subsequent chapters.

Chapter 8 Why Roundtrip Transformations?

8.1 Motivation

The basic case of tool integration occurs when two different tools’ modeling languages con-
ceptually overlap to a large extent. This means, that both modeling languages cover the
same or very similar domains, in a way that semantically equivalent modeling concepts can
be identified in either metamodel and models can be transformed correspondingly. Varia-
tions address directionality and completeness of a transformation.

A transformation may be bidirectional, allowing two-way transformations between meta-
models. In case a tool, for instance a code generator, is purely consuming and not producing
models, unidirectional transformation suffice, e.g., in the typical MDA scenario where code
is generated from a platform-specific model. However, in case of bridging two tools, bidi-
rectional transformations are mostly necessary in order to move from tool A to tool B and
then back again from B to A. This process is further on called roundtrip. The CAR language
presented in Chapter 5 of this thesis is a bidirectional mapping language in the sense that
two unidirectional transformation nets (both going in opposite directions) can be derived
from one mapping model.

In case modeling languages of two different tools are not entirely overlapping, meaning
that either some modeling concepts or features of modeling concepts are available in one
modeling language which cannot be expressed in the other modeling language, a transfor-
mation may be lossy. Thus, although bidirectional transformations are available, the initial
model Ma of tool A may be different from the roundtrip result M ′

a which is computed by
translating Ma into Mb via the transformation Ta2b and the application of Tb2a on Mb to
produce M ′

a or short M ′
a := Tb2a(Ta2b(Ma)). The main reason for not roundtripping trans-

formations is the fact that bijective mappings are not always possible to establish between
metamodels as for example reported in [Ste07].

In this part of the thesis, we provide two approaches for supporting the engineering of
roundtrip transformations. In particular, we focus on two bridging cases, namely when two
modeling languages are completely overlapping in terms of their modeling concepts or the
modeling concepts of a language are only a subset of another, but the modeling concepts
themselves have not completely overlapping features. Thus, there are missing correspon-
dences [LN07], as already mentioned in 1, between the features of the source and target
metamodels, i.e., no mappings are possible for those kind of metamodel elements. If ele-
ments of the source metamodel are not part of a mapping, there is definitely an information
loss, meaning that the source model cannot be completely reconstructed from the generated
target model.

Both approaches enrich transformations in order to achieve that the models before and
after roundtrip are equal Ma == Tb2a(Ta2b(Ma)) by explicitly storing information, which
would normally get lost due to missing correspondences when performing the round-trip,
within the target models in terms of annotations. This means, we are proposing lightweight

112

8.1 Motivation

approaches for which the use of current model transformation techniques is sufficient, in
contrast to using heavyweight approaches such as complex model management systems
[Mel04] or logging the information in separate files.

We decided to use annotation mechanisms for storing information which has no corre-
sponding parts in the target model, because annotation mechanisms are quite common in
currently used modeling languages, such as Ecore or UML. However, the annotation mech-
anism can range from simple comment-like strings via tagged/value pairs to sophisticated
language extension mechanisms of general but extensible modeling languages such as the
extension of UML through profiles.

Saving all information of the source models in the target models, i.e., corresponding but
also non-corresponding information, offers several advantages in tool bridging scenarios
compared to saving non-corresponding information in separate files or models. First, in
tool modernization scenarios [OMG05a, Ulr05] it is often helpful to explore information of
models of a source metamodel which is not directly representable within the target model-
ing language, e.g., for understanding design decisions or for reproducing constraints which
are not directly representable in the target modeling language. Second, the information can
be further processed in subsequent tasks, being, for example, the driver for model transfor-
mation or code generation for a specific platform. Third, no additional tooling is necessary
such as a special repository which can provide merge functionalities for incorporating the
initial information back into the resulting model after roundtrip.

Various model exchange scenarios realized in the ModelCVS project have shown that
information loss during a transformation is in most cases a cross-cutting concern, i.e., it is
not bound to a specific transformation rule, but rather spread over the whole transforma-
tion leading to more complex transformation code compared to code which only covers the
transformation of corresponding elements. Therefore, the definition of transformation logic
for corresponding elements should be separated from transformation logic responsible for
saving information in annotations taking care of missing correspondences.

In the next sections, two approaches are presented for tackling the problem of information
loss in roundtrip scenarios. Both approaches allow for clearly separating the specification of
mappings for corresponding parts from the specification of non-corresponding information
in annotations. Both approaches are based on the CAR mapping language which has been
introduced in part two of this theses. The first approach can be seen as an aspect-orientated
extension of the CAR mapping language, whereas the second approach focusses on the
integration of DSLs with UML by using the mapping model not only for generating the
transformations, but also for generating language extensions in terms of UML profiles.

AspectCAR. This approach represents an aspect-oriented extension of the CAR mapping
language, which can be used to enrich existing CAR mapping models to prevent informa-
tion loss during roundtrip. The separation in base mapping models and aspects allows to
separate mappings between semantically corresponding elements from mappings for sav-

113

Chapter 8 Why Roundtrip Transformations?

ing additional information in annotations. A weaver component can then combine the base
mapping model with the aspects in order to produce the intended mapping model which is
capable of preserving important information during roundtrip. This approach is individu-
ally configurable with respect to the annotation mechanism and which information should
be saved to ensure roundtrip.

ProfileGen. One often recurring bridging scenario is to integrate DSLs with UML. How-
ever, due to the fact that UML is a generic object-oriented modeling language which is not
tailored to a specific domain or platform, the bad thing is that a transformation inherently
looses information when moving from a DSL to UML. The good message is that UML pro-
vides a sophisticated extension mechanism in terms of profiles which can be used to extend
UML for specific domains and platforms. Therefore, we present an approach dedicated to
bridging DSLs with UML based on profiles. The profile definitions are used for storing
information from the DSL models which is not directly representable in UML. The gen-
eral idea of this approach is to use a mapping model also for automatically generate UML
profiles which in turn can be used by the model transformations.

8.2 Integration Scenarios

In this section, we introduce two integration scenarios where in the first scenario loss of
meta-information exists whereas in the second scenario a loss of information occurs. These
two scenarios are subsequently used to elaborate on the proposed approaches for enabling
roundtrip transformations.

8.2.1 Scenario 1: Loss of Meta-Information

In this subsection, we present a scenario in which important meta-information is lost, even
though for the modeler all visible model elements can be exchanged between the tools.
With meta-information, we mean in this case administrative and technical information [(NI04]
which is not part of the modeling domain but is needed to achieve and preserve the model
by the tooling environment such as unique identifiers for model elements.

Consider the following bridging scenario as depicted in Figure 8.2. Two modeling tools
(cf. ToolA and ToolB) have to be bridged based on their metamodels to ensure model ex-
change between the tools (cf. step 1). One requirement for the bridging solution is that
models can be simultaneously updated by different users leading to concurrent changes of
models (cf. step 2). Consequently, this means, when updated models from different mod-
elers are integrated in one consolidated version (cf. step 3), the models have to be merged
via a merge operator which in turn requires a possibility to compute the differences between
the models via a diff operator [Ber03] (cf. step 4 and 5). In this scenario it is assumed that
the diff operator is essentially based on the unique identities of the model elements and is

114

8.2 Integration Scenarios

only available for one tool A. In contrast, tool B does not make use of explicit identifiers
(because no merge or diff functionalities are intended) and therefore, the problem arises
that the original identifiers from models of tool A get lost during roundtrip. Without any
additional solution, only new identity values can be automatically generated when trans-
forming models from tool B to tool A. This meta-information loss prevents the usage of the
diff techniques and simultaneous updating of the models cannot be supported. This means,
the transformations Ta2b and Tb2a have to be enriched with transformation logic for saving
the identifiers in additional annotations (Ta2b) and to retrieve the annotated values in order
to set the identifier values accordingly (Tb2a).

14© 2007 BIG Vienna University of Technology, TK & IFS University Linz

User1 User2

«artifact»
ModelA

«artifact»
ModelA’

«artifact»
ModelB

«artifact»
ModelB’

«artifact»
ModelA’’

«diff»

«Ta2b»

«Tb2a»

«update» «update»

«artifact»
ModelA’’’

ToolA ToolB

«merge»

Figure 8.2: Supporting Simultaneous Updates by Different Users

8.2.2 Scenario 2: Loss of Information

The common case in model exchange is that it is not possible to bridge each modeling con-
cept with all its features from one modeling language to another. Thus, the target models
are only a projection of the source models. For example, consider that in a software devel-
opment department one development team uses an UML tool for modeling data-intensive
applications and a second team uses a dedicated database design tool, whereas the second
tool can be seen as a domain-specific modeling tool for databases which allows the user
to define much more technical details about the persistence layer of the application. In
contrast, the UML tool provides a platform independent modeling style also for the persis-
tence layer. Although, there is a high overlap of the used languages, they are not exactly
on the same abstraction level, a circumstance which further aggravates the bridging task.
In such cases, it makes sense that also the difference between the models can be accessed

115

Chapter 8 Why Roundtrip Transformations?

in both tools, e.g., also the platform specific information should be available in the UML
tool. However, when only plain UML is used, there is no way to represent platform specific
information, e.g., database configuration details such as the average occurrence of instances
of a class, which is necessary for optimizing the performance of databases.

Table 8.1: Model Metrics for Data Model/Class Diagram Roundtrip
Metrics Initial AFG Model Generated UML Model AFG Model after Roundtrip Diff in %

#Objects 156 165 156 0
#Values 1099 156 156 85,8
#Links 44 54 36 18,2

#Containment Links 155 164 155 0
File Size 32,8 KB 16 KB 14,6 KB 55,5

In the ModelCVS project, we have bridged the AllFusion Gen1 (AFG) modeling tool
and its DSL for defining database schemas with the UML Rational Software Modeler2 tool.
Thereby, the first case study was to bridge structural modeling, i.e., the AFG Data Model
with the UML Class Diagram. The first attempt was to bridge AFG with plain UML. The
resulting bridge was not appropriate for using the tools in combination. Because, although
we have defined for each AFG modeling concept a specific transformation rule, a lot of in-
formation was lost during roundtrip or even though after the first step when moving from
the DSL to UML. Table 8.1 summarizes the roundtrip scenario by depicting some model
metrics for each step in the roundtrip.

The main reason for the massive loss of information was the fact that on the meta-attribute
level only a minimal overlap between the languages exists. In most cases, only the name
attribute of the modeling concepts may be bridged, but all platform specific attributes of
the AFG modeling language may not. When we take a look at the model metrics in Table
8.1, the initial AFG model and the generated UML model have nearly the same amount of
objects and containment links, only some derived objects are additionally instantiated in
the UML model. This means, the same model structure can be reproduced on the UML
side. However, when we compare the amount of values, we see that a huge amount of
information gets lost in the first step. In particular, when comparing the number of values
of the initial AFG model and the resulting AFG model after roundtrip, 85,8 % of values are
lost during the roundtrip. For links which are not containment links we see that more links
exist in the generated UML model compared to the initial AFG model. This is due to the fact,
that also derived links are generated for the aforementioned additionally derived objects.
Therefore, even though we have more links and objects on the UML side, less information
is expressed and some links cannot be reconstructed when transforming the UML models
back to AFG models. Finally, the information loss has of course an effect on the file size,
namely the resulting file after roundtrip has only half the size of the initial file.
1http://ca.com/us/products/product.aspx?ID=256
2http://www-306.ibm.com/software/awdtools/modeler/swmodeler

116

Chapter 9

AspectCAR – An Aspect-oriented
Extension for the CAR Mapping Language

Contents
9.1 Motivation . 117
9.2 AspectCAR by Example . 120

9.2.1 Running Example . 120
9.2.2 Problem of the Bridging Solution . 121
9.2.3 Defining the Aspect . 122
9.2.4 Generated Transformation Net . 122

9.3 Critical Discussion . 125

In this chapter, an aspect-oriented extension for the CAR mapping language called As-
pectCAR is presented. To define this language extension, a reference architecture for aspect-
oriented modeling is employed in Section 9.1. While in Section 9.2, AspectCAR is explained
by example, Section 9.3 provides a critical discussion concerning some limitations of the
presented approach.

9.1 Motivation

In this section, we present an approach for saving information in roundtrip scenarios which
would be lost focusing only on the semantically corresponding parts of the metamodels.
More specifically, we introduce an approach which is based on aspect-oriented concepts,
for separating the definition of mappings for semantically corresponding elements between
metamodels (one-to-one, one-to-many, and many-to-many mappings) from the definition how
to save information which has no semantically corresponding parts (one-to-zero and zero-to-
one mappings) in annotations.
Introducing aspect-orientation for mapping models. In this subsection, we describe the
basic ingredients of aspect-orientation and how aspect-orientation can be applied for map-
ping models. The concept of separation of concerns can be traced back to Dijkstra [Dij76]

Chapter 9 AspectCAR – An Aspect-oriented Extension for the CAR Mapping Language

and Parnas [Par72]. Its key idea is the identification of different concerns in software de-
velopment and their separation by encapsulating them in appropriate modules or parts of
the software. Aspect-Oriented Software Development (AOSD), adopts this idea and further
aims at providing new ways of modularization in order to separate crosscutting concerns
from traditional units of decomposition during software development.

From a software development point of view, aspect-orientation has originally emerged at
the programming level with AspectJ as one of the most prominent protagonists. Meanwhile,
the application of the aspect-oriented paradigm is no longer restricted to the programming
level but more and more stretches over phases prior to the implementation phase of the
software development life cycle such as requirements engineering, analysis, and design.
This development is also driven by the simultaneous rise of MDE employing models as the
primary artifact in software development. In the context of this, Aspect-Oriented Modeling
(AOM) languages attract more and more attention. Consequently, AOM can also be applied
for mapping and transformation models.

«import» «import»

ConcernDecomposition

ConcernDecomposition

*

weavingTarget

1..*

Weaving
dynamicity
Weaving

dynamicity

AdaptationRule

0..*

Aspect

Concern

«import»

«import»

AdaptationSubject

«enumeration»
RelativePositionKind

before
around
after

Simple
Pointcut

PointcutrelPos:RelativePositionKind
RelativePosition

relPos: RelativePositionKind
RelativePosition

0..*
JoinPointJoinPoint

selectionMethod
Selection

selectedJP

«import»

«import»

«import»

CAR

MappingOperator1..*MappingModel

AdaptationKind

Adaptation

Simple
Adaptation

C2C

Base

…

1

AspectCAR

A2A

0..1 1
1

1..*1

Figure 9.1: AspectCAR

In Figure 9.1, the architecture of our aspect-oriented approach for the CAR mapping lan-
guage is shown which is based on a reference architecture for aspect-oriented modeling
proposed by Schauerhuber et al. [SSK+06, Sch07]. Because we introduce only an asymmet-

118

9.1 Motivation

ric aspect-oriented approach1 for the CAR mapping language, we reuse only those parts of
this architecture concerning asymmetric concepts. In the following, we elaborate on com-
mon aspect-oriented concepts and how the aspect-oriented extension is integrated into the
CAR mapping language.

Concern Decomposition. Concern decomposition deals with the general decomposition
of the system under development, in our case the mapping model, into concerns and their
interrelationships. A concern is an inclusive term for aspect and base, which is depicted us-
ing generalization in Figure 9.1. A distinction between aspect and base concerns means
supporting the asymmetric approach to decomposition. A base is a unit of modularization
formalizing a non-crosscutting concern. An aspect is a unit of modularization formaliz-
ing a crosscutting concern. In AOSD, the composition of aspects with other concerns, is
called weaving. In general, one can distinguish between two ways of weaving aspects into
the base model, namely static (i.e., at design time) and dynamic (i.e., at runtime). For our
approach, design time weaving is sufficient, because we are weaving aspects into the base
mapping model which is in turn transformed into a transformation net, so the weaving
happens before the actual execution of the transformation. An aspect’s adaptation rules in-
troduce adaptations at certain points of concerns. Consequently, an adaptation rule consists
of an adaptation describing how to adapt the base model, and a pointcut describing where
to adapt the concern.

Language. The language package describes the language underlying the specification of
base and aspect, in our case the CAR mapping language. Concerns are formalized using
elements of the CAR mapping language, in particular the mapping operators. With respect
to aspect-orientation, mapping operators serve two purposes. First, they may represent join
points and thus, in the role of join points specify where to introduce adaptations. Second,
mapping operators are used for formulating an adaptation.

Adaptation Subject. The adaptation subject package describes the concepts required for
identifying where to introduce an aspect’s adaptations. A join point specifies where an as-
pect might insert adaptations. Thus, a join point is a representation of an identifiable ele-
ment of the underlying language used to capture a concern. The join point model comprises
all elements of a certain language where aspects are allowed to introduce adaptations. A
pointcut represents a subset of the join point model, i.e., the join points used for specifying
certain adaptations. In our approach, the selection of join points as pointcuts is done by
OCL-like queries on the mapping models. A relative position may provide further informa-
tion as to where adaptations have to be introduced. This is necessary since in some cases,
selecting join points by pointcuts, only, is not enough to specify where adaptations have
to be inserted, since an adaptation can be introduced for example before or after a certain

1AOM approaches follow different schools of thoughts, some adhering to an asymmetric view supporting the
distinction between aspect and base, while others have a symmetric understanding where all concerns are treated
on an equal basis and no distinguished base model is selected [HOT02].

119

Chapter 9 AspectCAR – An Aspect-oriented Extension for the CAR Mapping Language

join point. Still, in many other cases, a relative position specification is not necessary, e.g.,
when a new attribute is introduced into a class, the order of the attributes is insignificant.
For our purposes, we do not use relative positions, because the mapping operators can be
connected to all existing ports of the mapping components, thus, the user can decide the
exact position where the aspect is woven into the mapping model.
Adaptation Kind. The adaptation kind package comprises the concepts necessary to de-
scribe an aspect’s adaptation. An adaptation specifies in what way the concern’s structure
or behavior is adapted, i.e., enhanced, replaced or deleted. For our purposes, the use of con-
structive adaptation effects (cf. enhancements) is sufficient, because we only have to intro-
duce mappings for storing information of the source model with no corresponding elements
in the target model within annotations. This means, the existing mappings for semantically
corresponding elements should not change, i.e., there is no deletion or replacements of al-
ready existing mappings.

9.2 AspectCAR by Example

9.2.1 Running Example

For describing our approach, the following running example is used which basically ad-
heres to the previously discussed scenario 1 about a loss of meta-information.

The running example deals with the specification of a bridge between two metamod-
els depicting two heterogenous data structures (an array and a linked list) in terms of a
mapping model, which is compiled into a transformation net that finally executes the trans-
formation process. Figure 9.2 shows the source and target metamodels, as well as the input
model and the desired output model. As shown, a transformation between these two meta-
models has to transform array input models into linked-list output models. The transfor-
mation specification in-between the metamodels is given in an extended version of the CAR
mapping language, which comprises several operators whose exact transformation net se-
mantics will be given in the following section when describing the runtime level. The C2C
(Class2Class) operator takes objects from the Element class as input, and outputs them into
the Node class. Analogously, the R2R (Reference2Reference) operator streams links from
the reference contains to the reference head. The C2C operator offers another output port
history, which offers the possibility to access all yet transformed tokens. The 2-Buf opera-
tor connected to C2C’s history port sequentially fills an internal buffer of size two, which is
again provided as output port. A Linker operator takes the two objects in the 2-Buf operator,
and produces a link between them which is streamed into the next reference. A back-link is
produced by the Inverter operator from the next reference and streams them into the prev
reference. The 2-Buf, Linker, and Inverter operators can be seen as an extension of the core
CAR mapping language for converting graph structures. The operational semantics of the

120

9.2 AspectCAR by Example

LinkedList

Node

prevnext

head

Array

Element

contains

* *

* 1

C2CArray2List

C2C

R2R

Att2Annot

aspect Annotation

%allC2C

contains2head

Elem2Node

id : String

id : String

historyin.id

2-Buf

Linker
Inverter

in

in

in out

out

out
history

history

one two
fromto

out

outin

objects

annot
out

Annotation
text : String

values

next

Example Source Model Desired Target Model

E1:Element
id = „E1“

E2:Element
id = „E2“

E3:Element
id = „E3“

E4:Element
id = „E4“

Arr:Array
id = „Arr “

N1:Node

N2:Node

N3:Node

N4:Node

L1:LinkedList

A1:Annot.
text = „E1“

A2:Annot.
text = „E2“

A3:Annot.
text = „E3“

A4:Annot.
text = „E4“

prev

head annot

contains

ref att class Annotation
text : String

annot

annot

LinkedList

Node

prevnext

head

Array

Element

contains

* *

* 1

C2CArray2List

C2C

R2Rcontains2head

Elem2Node

id : String

id : String

2-Buf

Linker
Inverter

in

in

in out

out

out
history

history

one two
fromto

out

outin

next

Example Source Model Corresponding Target Model

E1:Element
id = „E1“

E2:Element
id = „E2“

E3:Element
id = „E3“

E4:Element
id = „E4“

Arr:Array
id = „Arr “

N1:Node

N2:Node

N3:Node

N4:Node

L1:LinkedList

prev

head

contains

annot
annot

Annotation
text : String

Figure 9.2: Running Example – Base Mapping Model

operators are presented in a by-example manner in the next section.

9.2.2 Problem of the Bridging Solution

As one can see in Figure 9.2, the id values of the LHS model are lost when moving to the
RHS. Fortunately, the RHS metamodel provides an annotation mechanism (cf. class Annota-
tion in the RHS metamodel) for each metamodel element. This means, each model element
can have arbitrary annotations, each annotation containing a string value. This annotation
mechanism can be exploited for storing the id values of the LHS models also in the RHS
models. Thus, the id values can be used for the inverse transformation to set the same values
in the newly generated LHS model as in the original one before roundtrip. Consequently,
the diff technique based on id values can then be used for merging the models.

For saving the id values, each C2C mapping would require an additional component for
transforming the id values into Annotation objects, having in turn a text value which cor-
responds to the id value. For this purpose, the previously introduced A2C operator can be
used. However, the adaptation of the transformation with the capability of saving the id val-
ues can be seen as a cross-cutting concern which is manifested in the whole transformation.
In particular each C2C mapping has to be extended with an A2C operator. In order to avoid
defining this transformation logic for each id attribute again and again, aspect-orientation

121

Chapter 9 AspectCAR – An Aspect-oriented Extension for the CAR Mapping Language

can be applied to encapsulate this transformation logic and to weave this functionality into
the base mapping models which is discussed for this example in the next subsection.

Additionally to these "manually" assembled components, certain operators can cross-cut
a transformation specification: Because the target metamodel classes do not have id at-
tributes, these should be stored within an annotation for eventual round-tripping. This can
be accomplished by the A2C component, which henceforth crosscuts the transformation of
every object and is therefore woven with every C2C component. The transformation speci-
fication is itself a model, and due to the component-like assembly, existing model weavers
can be used to merge the aspect model into the base transformation specification.

9.2.3 Defining the Aspect

The top of Figure 9.3 shows the aspect’s definition in a notation inspired by XWeave [GV07].
The query %allC2C in the aspect ID2Annotation selects all C2Cs, with three additional sub-
queries in.id, history and out, relative to the current C2C operator. The results of in.id and
history are bound to the value and object ports of the A2C operator. This operator instantiates
for every transformed object a new Annotation object (class port) which is linked up (ref
port) with the according Node object and sets its text attribute (att port) to the value of the
source objects’ id attribute. The result of the out query determines the classes to which an
annot reference will be added. In the middle of Figure 9.3, the resulting mapping model (cf.
Composed Mapping Model) of the weaving process is illustrated,

9.2.4 Generated Transformation Net

After the weaving process is carried out by the weaver component on the mapping level,
generation takes place to produce a transformation net out of the composed mapping model.
The top of Figure 9.4 shows a transformation net resulting from the above integration spec-
ification. Note that places marked as ordered provide contained tokens in a sorted fashion.
For instance, the R2R component’s transition matches ArrE1 - the "first" input token. Fur-
thermore, according to the multiplicity of a reference, a place (e.g. head) can have a capacity,
which constrains the amount of tokens a place can hold. For simplicity reasons, the exam-
ple assumes only a single array object, and since there is only a single ordered reference, the
Element place is compiled into an ordered place as well, as not to unnecessarily complicate
the example.

The middle and the bottom of Figure 9.4 show the transformation net during execution
and in its finished configuration. For instance, one can see how the tokens streamed through
the C2C component are stored in its history place. Note that the history place is duplicated
in the lower C2C, as both the Att2Annot and the 2-Buf components are bound to it. The
2-Buf component takes in these tokens and fills its two-place buffer. Once the buffer is full
(both places have a capacity of just one token), the Linker component’s transition can fire

122

9.2 AspectCAR by Example

A2C

aspect ID2Annotation

%allC2C

historyin.id object

annot
out

Annotation
text : String

value

ref att class

Base Mapping Model

LinkedList

Node
prevnext

head

Array

Element

contains

* *

* 1

C2CArray2List

C2C

R2Rcontains2head

Elem2Node

id : String

id : String 2-Buf

Linker Inverter

in

in

in out

out

out
history

history

one two
fromto

out

outin

annot
annot

Annotation
text : String

Weaver

A2C

object

value

ref

att
class

A2C

object

value

ref
att

class

next

Example Source Model Corresponding Target Model

E1:Element
id = „E1“

E2:Element
id = „E2“

E3:Element
id = „E3“

E4:Element
id = „E4“

Arr:Array
id = „Arr “

N1:Node

N2:Node

N3:Node

N4:Node

L1:LinkedList

A1:Annot.
text = „E1“

A2:Annot.
text = „E2“

A3:Annot.
text = „E3“

A4:Annot.
text = „E4“

prev

head annot

contains

Composed Mapping Model

T

M2

M1

LinkedList

Node

prevnext

head

Array

Element

contains

* *

* 1

C2CArray2List

C2C

R2Rcontains2head

Elem2Node

id : String

id : String

2-Buf

Linker
Inverter

in

in

in out

out

out
history

history

one two
fromto outin

annot
annot

Annotation
text : String

Figure 9.3: Running Example – Weaving Aspects into Mapping Models

123

Chapter 9 AspectCAR – An Aspect-oriented Extension for the CAR Mapping Language

Array

contains

LinkedList

Node

head

E1 E2

E3 E4

Arr

Arr
E1

prevnext

1

Arr
E2Arr

E3
Arr
E4

Initial state…

ordered

StringAnnotation

text

annot

annotArr
‚Arr‘

E4
‚E4‘

E1
‚E1‘E2

‚E2‘E3
‚E3‘

‚E1‘

‚E2‘
‚E3‘

‚E4‘

‚Arr‘

id

id

String

Array MM
LinkedList MM

2-Buffer

C2C

R2R

C2C

Att2Ann

Att2Ann

Inverter1 1

ordered

Linker

history

hist.
out

one two
fromto

obj.

val.

in

in out

out

in

out

obj.

val.

att

class

ref

ref
class

att

hist.

Element

in out

Array

contains

LinkedList

Node

head

prevnext

1

ordered

StringAnnotation

text

annot

annot
id

id

String

Array MM
LinkedList MM

2-Buffer

C2C

R2R

C2C

Att2Ann

Att2Ann

Inverter1 1

ordered

LinkerE4

Arr
E1

Arr
E2Arr

E3
Arr
E4

‚E1‘

‚E2‘

‚E4‘

‚A‘

Arr
‚Arr‘

E4
‚E4‘

E2
‚E2‘E3

‚E3‘

‚E3‘

E1

Arr
‚E1‘

A1

E1
A1

A1
‚E1‘

E3 E2
E1
E2

E2E3

E3
E2

Arr

history

hist.
out

one two
fromto

obj.

val.

in

in out

in

out

obj.

val.

att

class

ref

ref
class

att

hist.

…running…

Element

in out

Array

contains

LinkedList

Node

head

prevnext

1

ordered

StringAnnotation

textannot

annot
id

id

String

Array MM
LinkedList MM

2-Buffer

C2C

R2R

C2C

Att2Ann

Att2Ann

Inverter1 1

ordered

Linker

E1

E2E3

E4

Arr

Arr
E1

Arr
E2Arr

E3
Arr
E4

‚E1‘

‚E2‘
‚E3‘

‚E4‘

‚A‘

‚Arr‘

‚E1‘ ‚E2‘

‚E3‘ ‚E4‘

E1
E2

E2
E3

E3
E4

E2
E1

E3
E2

E4
E3

A1 A2

A3
A5

A4
E1
A1 E2

A2 E3
A3 E4

A4

Arr
A5

A1
‚E1‘
A2

‚E2‘
A3

‚E3‘
A4

‚E4‘
A5

‚Arr‘

history

hist.
out

one two
fromto

obj.

val.

in

in out

in

out

obj.

val.

att

class

ref

ref
class

att

hist.

…final state

Element

in out

Figure 9.4: Running Example – Roundtrip-aware Transformation Nets

124

9.3 Critical Discussion

and empty the buffer, producing a two-colored token which is streamed into the next place.
Thereby it is to note, that the creation of two-colored tokens for the next link is based on a
certain state of the execution, rather than on the input model alone. Furthermore, one can
see how the previously weaved operators form Petri Net patterns that become active after
an Array or Element token was streamed. As an example, in the "running" net, the lower
A2C pattern has already created an Annotation object with the corresponding value for the
E1 object, and is currently enabled to do the same for E2 and E3, as both have already been
handled by a C2C component. Analogously, the rest of the patterns stream tokens from
source to target places, possibly depending on other patterns in turn. The actual firing
order, however, is handled by the underlying Petri Net engine. Once the transformation
process has finished, the final net configuration is used to instantiate a model that conforms
to the target metamodel, as shown in the bottom-right corner of Figure 9.3. This running
example has been implemented within the open Architecture Ware (oAW) framework2. In
particular, we used the XWeave [GV07] component for defining the aspect definitions as
well as for weaving the base models in combination with the aspects into composed models.

9.3 Critical Discussion

The presented aspect-oriented approach for remedy of information loss can be seen as a
very first step, only. First of all, we use a very small set of aspect-oriented concepts, e.g., we
have not introduced composite aspects, pointcuts, or adaptations for allowing a more fine-
grained reuse of already existing aspect definitions. Second, we are only using adaptations
which are enhancements, although using adaptations which are modifications of existing
mapping operators of the mapping model would offer some interesting possibilities, for ex-
ample, to exchange basic mapping operators with mapping operators providing a modified
operational semantic. However, this would require to look into the implementation of the
mapping components, i.e., the white-box view must be adapted, which leads to the third
limitation of our presented approach. For more fine-grained adaptations, a weaving capa-
bility for the transformation nets would be necessary for adapting the white-box view of the
components. In particular, changing pre-conditions and post-conditions of the transitions
would offer a much more fine-grained adaptation approach.

Despite these limitations, the presented approach of weaving whole mapping operators
into the existing mapping models shows the benefit of adapting an already existing map-
ping model with information preserving capabilities for attribute values. However, if a
complete information preserving approach is needed, the usage of an annotation mecha-
nisms based on string values falls too short. In particular, when in addition to values, also
objects and links, as is the case in scenario 2, should be preserved in the transformation, sim-

2www.eclipse.org/gmt/oaw

125

Chapter 9 AspectCAR – An Aspect-oriented Extension for the CAR Mapping Language

ple string based annotation values are not appropriate and do not scale for large bridging
tasks. One way to cope with such extended requirements is to use a more sophisticated an-
notation mechanism for models such as is provided in UML with the profile mechanism. In
the following section, we present an approach for realizing information preserving transfor-
mations with the help of UML profiles for bridging scenarios which falls under the category
of bridging DSLs to UML.

126

Chapter 10

ProfileGen – A Generator-based Approach
for Bridging DSLs with UML

Contents
10.1 Motivation . 127
10.2 Overview of the DSL2UML Bridging Approach 129
10.3 DSL2UML Bridging Language . 131
10.4 Automatic Generation Process . 134

10.4.1 UML Profile Generation . 134
10.4.2 Model Transformation Generation . 147
10.4.3 Validating Mapping Models . 147

10.5 Implementation Architecture of the ProfileGen Framework 148
10.5.1 Mapping Editor . 149
10.5.2 Executing DSL2UML Bridges . 150

10.6 Case Study . 151
10.6.1 AllFusion Gen’s Data Model . 151
10.6.2 UML Class Diagram . 152
10.6.3 Overview of the Mapping Model . 152
10.6.4 EntityType_2_Class Mapping in Detail 153
10.6.5 Profile Generation . 153
10.6.6 Transformation Generation . 154
10.6.7 Discussion . 154

After discussing the motivation for developing a systematic approach for bridging do-
main specific languages (DSLs) with UML in Section 10.1, the subsequent sections present
an approach for bridging DSLs to UML in a semi-automatic way. Finally, the applicability
of the proposed approach is demonstrated in a case study.

10.1 Motivation

In software engineering in general and in MDE in particular, there is a movement from
general-purpose languages (GPLs) to domain-specific languages (DSLs). For defining DSLs

Chapter 10 ProfileGen – A Generator-based Approach for Bridging DSLs with UML

5© 2007 BIG Vienna University of Technology, TK & IFS University Linz

DSL-MM

DSL2UML
rule EntityType2Class
from e : EntityType to c : Class {

c.name = e.name;
c.applyStereotype(EntityType);
c.maxInstances = e.maxInstances;

}

TransformationsUML-Profile
«Metaclass»

Class

«Stereotype»
EntityType

maxInstances : Integer

rule Class2EntityType
from c: Class to e: EntityType
[c.appliedStereotype(EntityType)] {

e.name = c.name;
e.maxInstances = c.maxInstances;

}

UML2DSL

UML-MMC

C
DSL-MM

DSL2UML
rule EntityType2Class
from e : EntityType to c : Class {

c.name = e.name;
c.applyStereotype(EntityType);
c.maxInstances = e.maxInstances;

}

TransformationsUML-Profile

rule Class2EntityType
from c: Class to e: EntityType
[c.appliedStereotype(EntityType)] {

e.name = c.name;
e.maxInstances = c.maxInstances;

}

UML2DSL

UML-MM
C
C

Bridge Generator

MappingModel

(a) (b)

«Metaclass»
Class

«Stereotype»
EntityType

maxInstances : Integer

Figure 10.1: DSL/UML Integration. (a) Ad-hoc Approach, (b) Systematic Approach

in the field of MDE, metamodels and UML profiles are the proposed options. While metamod-
els, mostly based on the Meta Object Facility (MOF) [OMG04], allow the definition of DSLs
from scratch, UML profiles are used to extend UML with domain-specific concepts.

In this part of the thesis, we focus on the interoperability between these two approaches,
because the need to bridge modeling languages originally defined as DSLs to UML often
arises in practice. For example, as already mentioned in Section 1, in the ModelCVS project
[KKK+06b], our industry partner is using the CASE tool AllFusion Gen1 from ComputerAs-
sociate which supports a DSL for designing data-intensive applications and provides so-
phisticated code generation facilities. Due to modernization of the IT department and the
search for an exit strategy (if tool support is no longer guaranteed), the need arises to extract
models from the legacy tool and import them into UML modeling tools while at the same
time the code generation of AllFusion Gen should in the future be usable for UML models
as well. Besides these typical tool integration and interoperability issues, when buidling
UML profiles from scratch, in a first step domain-specific modeling concepts are often col-
lected in a metamodel and in a second step the corresponding UML profile is created, as it
was done for example in [MFV07] for WebML.

Ingredients for a DSL/UML bridge. First of all, it has to be mentioned that the current
practice in bridge development is characterized by ad-hoc solutions mainly focusing on
implementation tasks as illustrated in Figure 10.1(a). First, one has to reason about corre-
spondences between DSL and UML metamodel elements. Then, a profile must be defined

1http://ca.com/us/products/product.aspx?ID=256

128

10.2 Overview of the DSL2UML Bridging Approach

for the DSL metamodel in which stereotypes for each metaclass of the DSL are added as
well as tagged values for DSL features which are not directly representable in UML. After-
wards, one has to define the transformations from DSL to UML and back again, whereas
the transformations are based on the UML profile definition, e.g., for assigning stereotypes
and tagged values to UML model elements.

Drawbacks of ad-hoc implementation. The described approach for bridging DSLs to
UML has several drawbacks, making the bridging task tedious and error-prone which re-
sults in low productivity and maintainability.

1. Transformations and profiles are highly coupled. A change in the profile definition
requires changes in the model transformation code.

2. Bridging covers many repetitive tasks. For each DSL modeling concept nearly the
same tasks have to be carried out in the integration process.

3. No guidelines available. Users are not familiar with the integration task since it is
typically a one-time job.

4. No explicit correspondences between DSL and UML elements. No explicit mapping
model is available for defining the correspondences between the languages on a high-
level of abstraction. Instead one has to start with an implementation of the UML
profile and the transformation rules directly.

10.2 Overview of the DSL2UML Bridging Approach

We propose a semi-automatic approach for bridging DSLs with UML and introduce two
additional facilities for the integration process, as can be seen in Figure 10.1(b). First, we
propose the use of an explicit mapping model which is built manually. Second, we provide a
Bridge Genenerator component which is capable of generating the required profiles and trans-
formations from the mapping models. The resulting integration process is as follows: First,
the user defines the correspondences between the DSL metamodel and the UML metamodel
in terms of a mapping model on basis of an interactive mapping environment. The mapping
model is expressed in terms of a dedicated metamodel bridging language representing the
pre-requisite for automatic processing. Out of the mapping model, the Bridge Generator
automatically generates the UML profile and in case that an uni-directional model transfor-
mation language is used, it generates also the necessary transformations from the DSL to
UML and back again.

Benefits of this systematic integration approach. Our approach tackles the four men-
tioned drawbacks of the ad-hoc implementation approach in the following way:

129

Chapter 10 ProfileGen – A Generator-based Approach for Bridging DSLs with UML

1. Mapping model is the single source of information. In our approach, it is sufficient
that one modifies the mapping model, only. The changes made in the mapping model
are automatically propagated to the UML profile and to the transformation defini-
tions. Hence, the high coupling between the UML profiles and the transformations is
transparent to the user.

2. Repetitive tasks are automated by model transformations. The only manual task is
the definition of the mapping model. All subsequent implementation artifacts, i.e.,
the UML profile and the transformations are automatically produced by the Bridge
Generator component. Furthermore, the Bridge Generator component ensures that
the profiles and transformations are always developed in the same manner for the
same kind of integration problem, leading directly to the next benefit.

3. Guideline support for systematic integration. First, the mapping model is built with
a specific mapping language, and second, there is an explicit integration method for
corresponding elements and non-corresponding elements of DSLs and UML imple-
mented in the Bridge Generator component.

4. Explicit representation of correspondences. Our approach supports an explicit map-
ping model which represents the whole integration specification in a single conceptual
model. Furthermore, currently used documentations such as mapping tables can be
automatically generated out of the mapping model.

Qualitative Criteria for generated UML profiles. The generated UML profiles should
preserve the following qualitative criteria which are based on criteria for integrated schemas
produced out of a set of independent schemas in the field of database integration [BLN86]:

• Correctness: The generated profiles have to ensure the same modeling possibilities
and constraints as the DSL metamodel. Furthermore, the profile definitions must not
be in contradiction with plain UML, i.e., UML must be extended in a consistent way.

• Completeness: All information of the DSL metamodel must be represented in the
UML metamodel which is extended with the profile. This means, it should be possible
to transform the DSL models into UML models from which the original DSL models
can be completely reconstructed.

• Minimalism: Minimalism requires that there are no redundant information defini-
tions in the UML models. This is possible, when a modeling feature can be defined
in plain UML and as tagged/values, leading to redundant definition of information.
In such cases it is possible for the user to set for one modeling feature different values
which leads directly to inconsistent models.

130

10.3 DSL2UML Bridging Language

• Understandability: One major requirement is that the profile should be understand-
able by human users, e.g., inheritance between stereotypes for sharing common prop-
erties and conditions should be used where appropriate. Understandability of profiles
ensures that subsequent tasks, such as extending the profile by hand or using the pro-
files in model transformations or code generation scripts, can be achieved, so to say
from understandability follows usability.

Tooling. For supporting our approach with proper tooling, the following components are
needed as a prerequisite for implementing a DSL2UML bridging framework. First of all,
for step 1, a mapping editor is needed, which allows to define proper mappings between
a DSL metamodel and an UML metamodel. This leads directly to the next requirement, a
metamodel for UML. We reuse the UML metamodel of the UML 2 project2 from Eclipse. For
using UML models and UML profiles within transformations, we need a transformation
language and a corresponding engine fulfilling two requirements. First, the use of UML
profiles for extending the base UML metamodel, i.e., in addition to the UML metamodel,
profiles must be loaded. Second, there must be a mechanism for calling external APIs, in
our case the API of the UML 2 metamodel, in order to apply profiles, stereotypes, and
tagged values on UML model elements. Currently, no transformation language and engine
supports the use of UML profiles as it is intended by the UML standard. The main problem
is that UML profiles are instances of the UML metamodel and at the same time extend
the UML metamodel with new concepts. However, when using transformation languages
supporting an arbitrary number of input models, the UML profiles can be at least read in
and processed as normal input models. Due to these requirements, we decided to use the
ATLAS Transformation Language (ATL) [JK06] instead of the transformation net formalism
presented in Chapter 5, because ATL supports access to the UML 2 API as well as provides
the possibility to use arbitrary input models.

10.3 DSL2UML Bridging Language

In this section we introduce the abstract syntax of the language used to describe the map-
pings between DSL and UML metamodels named DSL2UML bridging language. In par-
ticular, we are using the CAR mapping language concepts from Part 2 of this thesis as the
basis for the DSL2UML bridging language and extend it with concepts for mapping types,
such as data types and enumerations. Furthermore, we are reusing a generic mapping tool,
called ATLAS Model Weaver (AMW) [FBJ+05], which provides a graphical user interface for
building mapping models and is available for the Eclipse platform. The mapping language
of the AMW can be easily extended with new mapping concepts. Consequently, for the
definition of the DSL2UML bridging language, as one can be seen in Figure 10.2, we reuse

2www.eclipse.org/uml2

131

Chapter 10 ProfileGen – A Generator-based Approach for Bridging DSLs with UML

the core weaving language of the ATLAS Model Weaver, displayed in the mwcore package
in Figure 10.2, which defines abstract concepts for namespaces such as ModelRef and Ele-
mentRef and linking semantics, such as a WModel, WLink, and WLinkEnd. Note that each
concept in the core weaving language is defined abstract. The extension of these abstract
concepts with concrete concepts is sufficient to use the AMW tool for defining mapping
models between two metamodels.

Our dedicated bridging language, defined in the package DSL2UMLbridgingLanguage,
consequently refines the abstract core weaving concepts with concrete concepts. In particu-
lar, we defined a metamodel bridging language which allows symmetric mappings, mean-
ing one-to-one mappings between elements which are instances of the same meta concept.
Furthermore, also asymmetric mappings can be used for describing m-to-n mappings be-
tween elements which are instances of arbitrary meta concepts. In the following, we briefly
describe each concrete subclass of the class WLink, which represents the mapping operators
of the bridging language, whereas first, the symmetric operators and then the asymmetric
operators are presented. The semantics of the mapping operators are the same as presented
for the CAR mappping language in Section 6. Therefore, in the following only a short sum-
mary of the operators are given.

Symmetric Mapping Operators

• C2C-Mapping. This kind of mapping operator allows the user to map classes of the
DSL metamodel to classes of the UML metamodel. One pecularity of C2C mappings
is, that they can have superMappings, i.e., the feature mappings from super mappings
are inherited to sub mappings. This allows for reuse of already provided mapping
information. Furthermore, the user can mark C2C mappings as abstract, meaning that
they have to be refined with concrete sub mappings. Finally, C2C mappings can have
invariants expressed in the Object Constraint Language (OCL) [OMG05d] for defining
conditions when a mapping should be executed.

• A2A-Mapping. This kind of mapping allows to map corresponding attributes be-
tween DSLs and UML metamodels. In order to derive executable transformations
for each A2A mapping, the C2C mapping that contains the A2A mapping has to be
specified.

• R2R-Mapping. This kind of mapping is similar to A2A mappings with the difference
that corresponding references are mapped instead of attributes.

• E2E-Mapping. In order to transform attribute values correctly between DSL and UML
models, corresponding enumerations must be mapped. Therefore, we introduce E2E
mappings to allow the definition of equivalent enumerations.

132

10.3 DSL2UML Bridging Language

m
w

co
re

D
SL

2
U

M
Lb

ri
d

g
in

g
La

n
g

u
ag

e

W
M

o
d

el
M

o
d

el
R

ef

El
em

en
tR

ef

W
Li

n
kE

n
d

W
Li

n
k

W
M

o
d

el

C
2

l-
M

ap
p

in
g

0.
.*

Fe
a

t2
Fe

a
t-

M
a

p
p

in
g

W
Li

n
k

A
2

A
-M

ap
p

in
g

R
2

R
-M

ap
p

in
g

E2
E-

M
ap

p
in

g

L2
L-

M
ap

p
in

g
is

A
b

st
ra

ct
: B

O
O

L
is

A
p

p
l4

Su
b

C
L

: B
O

O
L

is
Ro

o
t

: B
O

O
L

In
va

ri
an

t
ex

p
: O

C
LE

xp
re

ss
io

n

2

**
1

0.
.*

0.
.*

0.
.*

0.
.*

0.
.*

rig
ht

In
v

le
ftI

nv

0.
.*

su
pe

rM
ap

pi
ng

0.
.*

M
ap

p
in

g
M

o
d

el

0.
.*

D
2

D
-M

ap
p

in
g

Ty
p

e2
Ty

p
e-

M
a

p
p

in
g

Sy
m

m
et

ri
c-

M
a

p
p

in
g

A
sy

m
m

et
ri

c-
M

a
p

p
in

g

A
2

C
-M

ap
p

in
g

C
2

A
-M

ap
p

in
g

R
2

C
-M

ap
p

in
g

C
2

R
-M

ap
p

in
g

A
2

R
-M

ap
p

in
g

R
2

A
-M

ap
p

in
g

0.
.*

Fi
gu

re
10

.2
:D

SL
2U

M
L

Br
id

gi
ng

La
ng

ua
ge

133

Chapter 10 ProfileGen – A Generator-based Approach for Bridging DSLs with UML

• L2L-Mapping. This kind of mapping is used to define equivalences between literals
of enumerations and consequently, each L2L mapping is owned by an E2E mapping.
Note that only enumerations which have completely corresponding literals can be
mapped, i.e., each literal must be mapped to exactly one other literal.

• D2D-Mapping. This kind of mapping is used to define equivalences between data
types of DSLs and UML. It is required because (1) data types which are semantically
identical are sometimes named differently and (2) DSLs often support specific data
types which are not available in plain UML and therefore have to be additionally
defined in profiles.

Asymmetric Mapping Operators. This kind of mapping operators are used to bridge
structural heterogeneities as presented in part two of this thesis. Summarizing, we have
the A2C-/C2A-Mapping for resolving the attribute vs. class heterogeneity, the R2C-/C2R-
Mapping for resolving the reference vs. class heterogeneity, and finally, the A2R-/R2A-
Mapping for bridging the attribute vs. reference heterogeneity.

10.4 Automatic Generation Process

The distinction between mapped and unmapped elements is the main driver for the two-
step bridge generation process which is discussed in this subsection:

• Step1 – UML Profile Generation: The first step of the generation process is the profile
generation.

• Step2 – Model Transformation Generation: As soon as the profile is available, the model
transformation generation can be carried out.

10.4.1 UML Profile Generation

For the UML profile generation, the mapping model is parsed and for each mapping as
well as for each unmapped element appropriate generation rules are called which together
produce the content of the profile. In the following, the profile generation rules are pre-
sented, namely rules for symmetric mapping operators, subsequently rules for asymmetric
mapping operators, and finally, additional rules which are necessary to derive meaningful
and understandable profile definitions. These generation rules are implemented by a Java
component based on the UML 2 project3.

3www.eclipse.org/uml2

134

10.4 Automatic Generation Process

10.4.1.1 Generation Rules for Symmetric Operators

In the following, generation rules for symmetric operators are discussed. First, the gen-
eration rule for C2C mappings is presented which is the driver for creating stereotypes.
Second, the generation rule for Feat2Feat mappings is presented. This rule is responsible
for generating tagged values. Third, the generation rule for Type2Type is discussed which
is responsible for generating types in the profile, such as data types or enumerations.

Profile Generation Rule 1 - C2C Operator. To prevent any loss of information, it is re-
quired that each DSL metaclass is mapped in the final mapping model. Unmapped DSL
metaclasses are only allowed in incomplete mapping models, since they are not included
in the generation process and consequently no complete bridge can be generated. Thus,
instances of unmapped classes cannot be transformed. For each C2C mapping, a stereo-
type is generated which extends the UML metaclass being referenced by the right end of
the mapping. If the C2C mapping has super mappings, the generated stereotype is a sub-
stereotype of the stereotypes generated for the super mappings. Listing 10.1 summarizes
the stereotype generation from C2C-Mappings in pseudo code.

Listing 10.1: Stereotype Generation
FOR EACH c2c IN mappingModel . getC2C−Mappings () {

CREATE Stereotype {
s e l f . setName (c2c . getRightClass () . getName ()) ;
s e l f . se tExtens ion (c2c . g e t L e f t C l a s s ()) ;
FOR EACH superMapping IN c2c . getSuperMappings () {

s e l f . getSuperStereotype () . add (
reso lveCreatedStereotypeFor (superMapping)) ;

}
}

}

Profile Generation Rule 2 - Feat2Feat Operators. The next step concerns the generation
of the tagged values from Feat2Feat mappings, i.e., A2A and R2R mappings. Assume the
following C2C mapping: DSL::Class ! UML::Class. If we want to derive the tagged values
for the stereotype which is generated for the DSL class, we must analyze the features of the
DSL class and whether they are mapped to corresponding UML features or not. We can
distinguish the following three distinct cases:

• DSL::Class.features ∩ UML::Class.features. Features which are available in the DSL
and in the UML metamodel should be linked in the mapping model via feature map-
pings, i.e., the values of the DSL features are directly representable with UML features.

• DSL::Class.features \ UML::Class.features. Features which are only available in the
DSL must not be mapped via feature mappings to UML features. Furthermore, this

135

Chapter 10 ProfileGen – A Generator-based Approach for Bridging DSLs with UML

means that the values of these features are not representable in plain UML. There-
fore, for each DSL feature which is not mapped to an UML feature a tagged value is
generated. In particular, if the feature is an attribute then a tagged value having as
type a data type is generated. If the feature is a reference, a tagged value is generated
which can link to the stereotype actually representing the referenced type in the DSL
metamodel.

• UML::Class.features \DSL::Class.features. Features which are only available in UML
must be specially treated. Though not relevant for profile generation, this case is rel-
evant for generating model transformations. The problem is that the values of this
kind of features cannot be set with values of the DSL models. In order to produce
valid UML models, we must distinguish between optional and mandatory features.
Optional features are easy to handle since a null value can be assigned. Mandatory
features are more problematic. If there is no default value defined for the feature, the
user must specify a value in the mapping model which is automatically assigned for
this particular feature.

13© 2007 BIG Vienna University of Technology

Step 2: UML Profile Generation (2/3)
Tagged Value Generation

General Idea of Tagged Value Generation:
Distinction between mapped and unmapped features

UML::
Class_B

DSL::
Class_A

Mapped features
No tagged values are produced

Unmapped DSL features
Generate tagged values

Unmapped UML features
No tagged values are produced

features features

C2C

Figure 10.3: Profile Generation Rule 2 - Feat2Feat Operators

Profile Generation Rule 3 - Type2Type Operators. The last step in the generation process
concerning symmetric mappings is about type mappings, i.e., (un)mapped Enumerations,
Literals, and DataTypes. If an enumeration of the DSL metamodel fully corresponds to an
enumeration of the UML metamodel then they are mapped with an E2E mapping. This
E2E mapping further requires that each literal is mapped to exactly one literal with a L2L
mapping. No further definitions are required in the UML profile. Otherwise, an additional
enumeration with corresponding literals must be generated in the profile. The treatment of
DataTypes is similar to that of enumerations.

136

10.4 Automatic Generation Process

10.4.1.2 Generation Rules for Asymmetric Operators

After discussing the generation rules for symmetric operators, we present the generation
rules for asymmetric operators. These rules can influence the generation rules of symmetric
operators, because asymmetric operators depend on at least one symmetric C2C operator.
More specifically, new elements have to be generated in the profile or already existing ele-
ments have to be deleted. For discussing how the generation rules of asymmetric operators
influence the generation rules of symmetric ones, we are using mapping model examples
and illustrate how the profile generation take place for these examples.

Profile Generation Rule 4 - A2C Operator. For all attributes of a DSL class which are
linked to the LHS of the A2C operator, no tagged values are generated for the stereotype
generated out of the C2C mapping on which the A2C depends. Furthermore, no additional
profile definitions such as stereotypes or tagged values have to be generated for the A2C
mappings.

Example. For an example application of the generation rule for the A2C operator consider
Figure 10.4. The input for the generation rule is the mapping model shown on the LHS,
whereby the DSL class X semantically corresponds to the UML class A. The attribute att1 of
DSL class X corresponds to the attribute att1 of UML class B which can be mapped via the
A2C operator.

The result of the generation rule is shown on the RHS of Figure 10.4. As explained above,
the generation process produces for the C2C mapping a stereotype X which extends the
UML class A. For attribute att1 of DSL class X, no tagged value for the stereotype X is
generated, because this attribute is mapped to the attribute att1 of the UML class B and
therefore the value of the DSL attribute can be directly represented in plain UML.

7© 2007 BIG Vienna University of Technology, TK & IFS University Linz

Profile

Gen

A2C

X

att1

A

B

att1

C2C

A2C

«stereotype»

X
«metaclass»

Ab

C2A

A

att1

X

…

Y
att1
att2

C2C

C2A

y

att1 {del}

«stereotype»

X
«metaclass»

A
…
y {del}
Y_att2 {add}

Gen

Profile

UML_MMDSL_MM

UML_MMDSL_MM
Figure 10.4: Profile Generation Rule 4 - A2C Operator

Profile Generation Rule 5 - C2A Operator. For a DSL class which is mapped with a C2A
operator, no stereotype is generated in the UML profile, because there is no directly corre-
sponding class in UML, thus no UML metaclass can be extended. Also for the reference and

137

Chapter 10 ProfileGen – A Generator-based Approach for Bridging DSLs with UML

attributes of the DSL side participating in the C2A mapping, no tagged values have to be
generated. However, for unmapped features of the DSL class which is mapped with a C2A
operator, tagged values have to be generated for the stereotype generated out of the C2C
mapping on which the C2A operator depends.

Example. For the application of the generation rule for the C2A operator consider the
example in Figure 10.5. In this figure, two DSL classes are mapped to the same UML class,
thereby the DSL class X directly corresponds to the class A of the UML metamodel. The
DSL class Y does not have a directly corresponding class on the UML side, but its attribute
att1 corresponds to the attribute att1 of the UML class A. Furthermore, for the attribute att2
no corresponding attribute is available in UML.

The result of the generation rule is shown on the RHS of Figure 10.5. First, for all mapped
attributes of the DSL class Y (e.g., att1) no tagged values have to be generated for the stereo-
type X generated out of the C2C mapping on which the C2A mapping depends. However,
for each unmapped feature of the DSL class Y (e.g., att2), a tagged value has to be produced
for the stereotype X. In order to avoid name clashes of tagged values, the name of the con-
taining DSL class is used as prefix (cf. Y_att2 in Figure 10.5). For the reference between the
two DSL classes, no tagged value has to be generated, because the grouping of the values
is expressed at the UML side by the fact that the UML class directly contains all necessary
attributes. Furthermore, for the DSL class Y, no stereotype has to be defined in the profile,
because there is no UML class on which the stereotype would be applicable.

7© 2007 BIG Vienna University of Technology, TK & IFS University Linz

Profile

Gen

A2C

X

att1

A

B

att1

C2C

A2C

«stereotype»

X
«metaclass»

Ab

C2A

A

att1

X

…

Y
att1
att2

C2C

C2A

y

att1 {del}

«stereotype»

X
«metaclass»

A
…
y {del}
Y_att2 {add}

Gen

Profile

UML_MMDSL_MM

UML_MMDSL_MM

Figure 10.5: Profile Generation Rule 5 - C2A Operator

Profile Generation Rule 6 - R2C Operator. For references which are mapped with an R2C
mapping, no tagged values have to be generated, because this reference can be directly
represented in UML in terms of an association class. Besides this, no additional profile
elements have to be generated for the R2C operator.

Example. For the application of the generation rule for the R2C operator, consider the
example shown in Figure 10.6. The DSL classes X and Y have corresponding classes on the
UML side, but the reference between X and Y corresponds to the UML class AB connecting
the UML classes A and B.

138

10.4 Automatic Generation Process

The result of the generation rule is shown on the RHS of Figure 10.6. This kind of mapping
influences the profile generation for the C2C operator, because for the reference y, no tagged
value has to be generated. This is due to the fact that this reference is directly representable
in UML via the path from class A to class B via the association class AB.

8© 2007 BIG Vienna University of Technology, TK & IFS University Linz

Profile

Gen

Gen

A

R2C

X

Y

C2C

B

AB

C2C

y

ab

b

R2C

«stereotype»

X
«metaclass»

A

«stereotype»

Y
«metaclass»

B

C2R

X A

B

C2C

Y

XY

C2C

b

xy

y

C2R

att1

«stereotype»

X
«metaclass»

A

«stereotype»

Y
«metaclass»

B

xy {del}
XY_att1 {add}

y {del}

ProfileUML_MMDSL_MM

UML_MMDSL_MM

Figure 10.6: Profile Generation Rule 6 - R2C Operator

Profile Generation Rule 7 - C2R Operator. For each DSL class which is mapped with a
C2R mapping, no stereotype has to be generated. Furthermore, also for the participating
references of the C2R operator no tagged values are required in the profile definition. How-
ever, for unmapped features of DSL classes mapped with a C2R mapping, additional tagged
values are needed for the stereotype generated out of the C2C mapping.

Example. For the application of the generation rule for the C2R operator consider the
example in Figure 10.7. The DSL classes X and Y correspond directly to classes on the UML
side, but the DSL class XY which connects the DSL classes X and Y corresponds to the
reference b on the UML side. The attribute att1 of the DSL class XY has no counterpart on
the UML side.

The resulting profile is shown at the RHS of Figure 10.7. The C2R operator ensures that
for the references xy and y no tagged values are generated. However, for each unmapped
feature of the class XY (cf. XY.att1), an additional tagged value (cf. X.XY_att1) has to be
generated for the stereotype generated out of the C2C mapping on which the C2R operator
depends. For the class XY itself, no stereotype has to be generated, because no correspond-
ing class on the UML side is available. Thus, the stereotype would not be applicable on
UML elements.

Profile Generation Rule 8 - A2R Operator. The A2R operator influences the profile gener-
ation in the following way. For the id attribute, a tagged value is generated which is owned
by the stereotype generated out of the C2C mapping, except the id attribute is mapped with
an additional A2A operator to an UML attribute. For the idref attribute, no tagged value
has to be generated, because the value-based relationship can be expressed in plain UML
via a simple link.

139

Chapter 10 ProfileGen – A Generator-based Approach for Bridging DSLs with UML

8© 2007 BIG Vienna University of Technology, TK & IFS University Linz

Profile

Gen

Gen

A

R2C

X

Y

C2C

B

AB

C2C

y

ab

b

R2C

«stereotype»

X
«metaclass»

A

«stereotype»

Y
«metaclass»

B

C2R

X A

B

C2C

Y

XY

C2C

b

xy

y

C2R

att1

«stereotype»

X
«metaclass»

A

«stereotype»

Y
«metaclass»

B

xy {del}
XY_att1 {add}

y {del}

ProfileUML_MMDSL_MM

UML_MMDSL_MM

Figure 10.7: Profile Generation Rule 7 - C2R Operator

Example. For the application of the generation rule for the A2R operator consider the
example illustrated in Figure 10.8. The DSL classes X and Y have corresponding classes on
the UML side, however, the reference b between the UML classes A and B is on the DSL
side expressed through value-based relationships (cf. attributes id and idref). Therefore, the
attributes of the DSL side are mapped via an A2R mapping to the reference b on the UML
side.

The resulting profile is shown at the RHS of Figure 10.8. The id tagged value of the stereo-
type Y is necessary, because the attribute id of the DSL class Y has no additional A2A map-
ping. However, the idref tagged value of the stereotype X has to be eliminated, because in
UML the relationship between instances of class A and B should be set via the reference b
and not via id/idref tagged values.

9© 2007 BIG Vienna University of Technology, TK & IFS University Linz

Gen

Profile

A2R

X

idref

Y

id

C2C

C2C

A

B

A2R

«stereotype»

X
«metaclass»

A

id

«stereotype»

Y
«metaclass»

Bb

A

idref

B

id

C2C

C2C

X

Y

R2A

R2A

«stereotype»

X
«metaclass»

A

«stereotype»

Y
«metaclass»

B
y

Gen y {del}

Profile

idref {del}

UML_MMDSL_MM

UML_MMDSL_MM
Figure 10.8: Profile Generation Rule 8 - A2R Operator

Profile Generation Rule 9 - R2A Operator. First of all, it has to be noted that this case does
not occur when DSLs are integrated with UML, because the UML metamodel is carefully
engineered and therefore all relationships are explicitly modelled as references. However,
for completeness of the description how CAR mapping operators can be used for profile
generation, we shortly discuss also this case4. In particular, only tagged values generated

4At least, generation rule 9 can be applied for metamodels which are aware of profile extensions and use value-
based relationships.

140

10.4 Automatic Generation Process

for references which are participating in R2A mappings have to be deleted from the profile
definition.

Example. For the application of the generation rule for the R2A operator, consider the
example in Figure 10.9. The DSL classes X and Y have corresponding classes on the UML
side, however the reference between them corresponds to the id/idref attribute combination
on the UML side.

The result for the generation rule is shown at the RHS of Figure 10.9. For the reference
y between the DSL classes, no tagged value should be generated, because relationships
between instances of class A and B can be directly expressed in UML via id/idref attributes.

9© 2007 BIG Vienna University of Technology, TK & IFS University Linz

Gen

Profile

A2R

X

idref

Y

id

C2C

C2C

A

B

A2R

«stereotype»

X
«metaclass»

A

id

«stereotype»

Y
«metaclass»

Bb

A

idref

B

id

C2C

C2C

X

Y

R2A

R2A

«stereotype»

X
«metaclass»

A

«stereotype»

Y
«metaclass»

B
y

Gen y {del}

Profile

idref {del}

UML_MMDSL_MM

UML_MMDSL_MM

Figure 10.9: Profile Generation Rule 9 - R2A Operator

10.4.1.3 Additional Profile Generation Rules

In this subsection, we discuss additional profile generation rules which are necessary to
fulfill the aforementioned qualitative criteria for generated profiles. These additional gen-
eration rules concern unmapped subclasses, constraints, bi-directional references, derived
properties, and refined feature mappings.

Unmapped Subclasses. As for the generation of transformations out of CAR mapping
models, it has to be clarified how the inheritance relationships between C2C operators and
their configuration settings influence the profile generation. In order to get working trans-
formations, the same constraints as for the core CAR mapping language must be fulfilled
by the mapping models as discussed in Section 6.3. In addition to these constraints, it also
has to be discussed how unmapped subclasses of mapped superclasses influence the profile
generation.

Furthermore, it has to be distinguished, if a stereotype is defined as a concrete stereo-
type or as an abstract stereotype. A concrete stereotype is applicable on the instances of
the corresponding UML metaclass. In contrast, an abstract stereotype is not applicable, but
only its concrete substereotypes are. This means, an abstract stereotype can only be used
for grouping common properties of its substereotypes. We decided to generate concrete

141

Chapter 10 ProfileGen – A Generator-based Approach for Bridging DSLs with UML

stereotypes for C2C mappings where the DSL class is concrete, because on the UML side,
corresponding objects have to be annotated with an appropriate stereotype. Thus, the gen-
erated stereotype must be applicable on instances. In cases where the DSL class is abstract,
an abstract stereotype is generated. This design decision is also the basis for the next gener-
ation rule concerning unmapped subclasses of mapped superclasses.

We decided against concrete stereotypes for abstract superclasses which can be used for
annotating indirect instances for which no specific mappings are available, because when
moving back from UML models to DSL models, there is no way to determine how to split
the big set of objects all annotated with the same stereotype of the superclass into subsets
according to the subclasses of the DSL metamodel. Furthermore, for ensuring that no infor-
mation is lost during roundtrip, tagged values are required also for features of unmapped
subclasses. Therefore, we decided to generate for unmapped subclasses of mapped super-
classes substereotypes which extend the stereotype generated for the mapping between the
superclasses. However, these substereotypes only inherit the extension relationship to the
metaclass of the superstereotype, i.e., no specific metaclass is given for such stereotypes,
and for each feature of the subclasses a tagged values is produced.

11© 2007 BIG Vienna University of Technology, TK & IFS University Linz

Co
nf
ig
1

is
A
bs
tr
ac
t=

 F
is
A
pp

l4
Su
bC

l =
 T

SuperClass.isAbstract

LHS RHS

T T

F F

T F

F T

abstract
concrete

concrete/abstract
concrete

Only valid when all subClasses are mapped
None
if all subclasses mapped: abstract, else: concrete
ERROR. Direct instances cannot be transformed

Stereotype Problem

(1)

(2)

(3)

(4)

A X

B C D Y Z

Profile
«stereotype»

A
«metaclass»

X

«stereotype»
C

«metaclass»
Y

«stereotype»
B

«metaclass»
Z

«stereotype»
D

DSL UML

Figure 10.10: Stereotype Generation for Unmapped Subclasses

The upper half of Figure 10.10 shows an example for the generation of stereotypes for
mapped superclasses, mapped subclasses, as well as for unmapped subclasses. The DSL
class A is mapped to the UML class X with a C2C mapping which is also the supermap-
ping for the C2C mappings between class B and Z as well as class C and Y. The DSL class
D remains unmapped. For this mapping model, the profile is generated as depicted in the
lower half of Figure 10.10. First, for the supermapping the stereotype A is generated. Sec-
ond, for the submappings the stereotypes B and C are created which have refined extension

142

10.4 Automatic Generation Process

relationships to UML metaclasses. Third, for the unmapped class D, a stereotype is gener-
ated which has no refined extension relationship, but may have tagged values generated for
properties of the DSL class D.

Constraints. For A2A and R2R mappings, additional reasoning capabilities have to be
provided. This is needed, because features themselves have various properties, such as
data types and multiplicity constraints. In cases where an upper multiplicity greater than
one is allowed, unique and ordered constraints can be defined. Furthermore, this means
that for mapped features the properties or constraints should be not contradicting. How-
ever, there are many possible mapping cases where this requirement cannot be ensured,
because constraints are differently defined on the DSL and on the UML side. In particular,
the following two cases have to be distinguished when generating profiles out of mapping
models, namely, the DSL is more restrictive compared to UML or the opposite case, namely
UML is more restrictive.

• Stricter DSL constraints: First, in the DSL metamodel, there can be more restrictive
constraints than defined in the UML metamodel. For example, in the DSL metamodel
a reference named superEntity with multiplicity zero-to-one is mapped with an R2R
mapping to a reference superClasses of the UML metamodel having as multiplicity
zero-to-many. In such cases, OCL constraints can be defined for profile elements to
ensure that stricter constraints are checked on the UML models which have the pro-
file applied. In particular, with OCL constraints it is possible to restrict the usage of
UML. For our previous example, the following OCL constraint can be automatically
generated which must be checked for each stereotype application:

context Class:

inv1: superClasses.upper = 1

• Stricter UML constraints: In the DSL metamodel, there can be less-restrictive con-
straints than in the UML metamodel. For this, we can just invert the previous exam-
ple, i.e., assume that in the DSL metamodel a reference with multiplicity zero-to-many
exists which is mapped with an R2R mapping to an UML reference having a multi-
plicity of one-to-one. For such cases, OCL constraints cannot be used, because it is only
allowed to further restrict UML with profiles as also stated in the UML superstructure
specification [OMG05e] (page 649):

"A profile must provide mechanisms for specializing a reference metamodel (such
as a set of UML packages) in such a way that the specialized semantics do not
contradict the semantics of the reference metamodel. That is, profile constraints may
typically define well-formedness rules that are more constraining (but consistent
with) those specified by the reference metamodel."

143

Chapter 10 ProfileGen – A Generator-based Approach for Bridging DSLs with UML

Contradicting this requirement would mean that we build UML models which are no
longer conform to the UML metamodel. Fortunately, such mapping situations where
the constraints on the UML side are more restrictive than on the DSL side are very
rare, because most constraints in the UML metamodel are very general, e.g., most of
the multiplicity constraints are zero-to-many.

Additionally to the constraints defined directly in the metamodel, OCL constraints can
be applied to ensure further well-formedness rules which have also to be considered for the
generation of OCL constraints for an UML profile out of a DSL metamodel. These addition-
ally defined OCL constraints for the DSL must be also ensured from the generated UML
profile. In particular, the OCL constraints of the DSL metamodel must be converted into
constraints which use the corresponding terms of the UML profile. More specifically, this
means that constraints defined for a class of the DSL metamodel must be converted into
constraints for the corresponding stereotype, whereby actually constrained features of the
DSL class are on the UML side either properties of the UML metaclass or generated tagged
values.

Bi-directional References. In Ecore-based metamodels, it is possible to define bi-directional
references. More specifically, such references are defined as two uni-directional references,
whereby both references point to each other via a so-called eOpposite reference. Setting two
uni-directional references can be regarded as an additional constraint on the model level,
namely if an object o1 has a link to object o2, then o2 must also have a link to o1.

However, defining bi-directional references with two uni-directional references intro-
duces various mapping problems, e.g., one can define a R2R mapping for one reference
but not for the eOpposite reference. When we look at mapping models which consists of
bi-directional references, the following cases can occur which are summarized in Figure
10.11.

14© 2007 BIG Vienna University of Technology, TK & IFS University Linz

Bi-directional Associations

UML_MMDSL_MM UML_MMDSL_MM UML_MMDSL_MM UML_MMDSL_MM

(a) (b) (c) (d)

Figure 10.11: Mapping Cases Involving Bi-directional Associations

In the first case shown in Figure 10.11(a), a bi-directional reference is mapped to a bi-
directional reference on the UML side. This case is not problematic, because no tagged
values have to be derived and the transformation of instantiated links is straightforward.

144

10.4 Automatic Generation Process

Furthermore, the same constraints are ensured on the UML side, i.e., it is assumed that
the references have the same multiplicities. If this is not the case, the constraint generation
described in the previous paragraph comes into play.

In the second case shown in Figure 10.11(b), on both sides bi-directional references exists,
but only one reference is mapped. For such cases, a warning must be given to the user,
because it is not clear why only one reference is mapped. In most cases, the other reference
should also be mapped. However, for all other cases, it is necessary to adapt the tagged
value generation. In particular, for the unmapped reference on the DSL side, either no
tagged value is generated or a tagged value is generated which is derived as the inverse
reference of the mapped reference.

In the third case shown in Figure 10.11(c), on the DSL side, a bi-directional reference exists
and on the UML side only an uni-directional reference corresponds to the bi-directional one,
in particular only to one reference end. For such cases, either no tagged values are produced
for the unmapped reference end or a derived tagged value is generated. Furthermore, the
multiplicity of the unmapped reference end of the DSL has to be considered. Because of
the missing reference end on the UML side, there is no restriction of the multiplicity of the
missing end. This means, only for unrestricted references, no additional constraints are nec-
essary. For all other cases, additional OCL constraints have to be generated for ensuring that
the linking of objects on the UML side offers exactly the same possibilities and restrictions
as on the DSL side.

The fourth case shown in Figure 10.11(d) is that on the DSL side a uni-directional refer-
ence exists, which corresponds to a reference being part of a bi-directional association on
the UML side. In principle, no problems are encountered for the profile generation. How-
ever, problems can occur in the model transformation execution when on the UML side the
unmapped reference has a cardinality different from zero-to-many. For example, if the mul-
tiplicty is one-to-one, then the problem occurs that on the DSL side models may exist that
cannot be represented in UML, e.g., one object is not linked at all or a single object is linked
by two other objects at the same time.

Derived Properties. In the UML metamodel, several properties are set as derived prop-
erties, i.e., meta-property derived is set to true meaning that these properties cannot be set
directly, instead they are computed from other properties. An example in the UML meta-
model is the reference nestedPackage of the class Package which actually represents a derived
reference, namely the owned members of a Package that are of type Package. This reference
is computed as a subset of the reference packagedElement:

nestedPackage:= packagedElement->select(e|e.oclIsTypeOf(Package));

Feature mappings to derived properties must be especially treated in the generation pro-
cess, because when generating the transformations normally the feature mappings result in

145

Chapter 10 ProfileGen – A Generator-based Approach for Bridging DSLs with UML

property assignments which lead to runtime errors in ATL5. However, derived properties
are appropriate for the query parts of transformations. They cannot be set, but they can be
accessed. In our example, the nestedPackage reference can be used for selecting only nested
packages out of all owned elements for defining specific feature mappings for this derived
reference. This means, for derived properties which are subsets of other properties, when
moving from DSL to UML, the superset property has to be filled in the generation part6, but
when moving from UML to DSL, the subset can be used in the query part directly. There-
fore, the mapping model needs to be validated, if no mapping points to a derived property,
which is different from subset relationships of the UML metamodel.

Superclass/Subclass Feature Mappings. In CAR mapping models it is allowed that fea-
tures of superclasses can be mapped in submappings between subclasses as shown at the
left hand side of Figure 10.12. However, when it is required to derive stereotypes from such
mapping models as shown at the RHS of Figure 10.12, the problem arises that for the su-
perstereotype (generated for the super C2C mapping) a tagged value is generated for the
attribute x2, which is unmapped in the context of the superclass, but mapped in the con-
text of the subclass. For the substereotype, however, no tagged value is necessary for the
attribute x2, because an A2A mapping is available, meaning that a corresponding attribute
exists in plain UML. For ensuring that for a single attribute of the DSL metamodel only one
value can be specified within an UML model, we have to redefine the tagged value7 as de-
rived, where the value is exactly the same as the value of the UML attribute b1. Note that
for the user it is not possible to set derived tagged values directly, because in UML, derived
properties are automatically readonly.

13© 2007 BIG Vienna University of Technology, TK & IFS University Linz

Profile

Profile Derivation
Troubles with Inheritance and Abstraction – Example 4

x1
x2

y1
/x2 {refines X.x2}

X
x1
x2

Y
y1
y2

A

B
b1
b2

C2C

C2C

A2A

A2A Gen

UML_MMDSL_MM

«metaclass»

A

«metaclass»

B

«Stereotype»

X

«Stereotype»

Y

{ x2 = B.b1 }

Figure 10.12: Generation Rule for Superclass/Subclass Feature Mappings

5Derived features cannot be set directly by ATL. In such cases, an exception is thrown and the transformation
execution is aborted.

6ATL allows to use several assignments for one target property by automatically computing the union of all as-
signed elements.

7In UML 2 it is possible to redefine tagged values, because a tagged value is actually a property which can be
redefined.

146

10.4 Automatic Generation Process

10.4.2 Model Transformation Generation

After derivation of the UML profile, the model transformations can be generated. Due to
brevity reasons we will not discuss the model transformation generation in detail, but give
an overview of the main characteristics of the generation process.

Generation Rules for Symmetric Operators. As already mentioned, we generate model
transformation rules for mapped classes and for unmapped subclasses of mapped super-
classes which transform instances of the source class to instances of the target class. If the
target model is an UML model we must also apply the profile. Therefore, we have to check
if the C2C mapping is the rootMapping (C2C.isRoot = true) in order to apply the profile to the
generated UML element (a direct or indirect instance of the class Package). This is required in
order to be able to assign the corresponding stereotypes to the generated objects and to set
tagged values for unmapped DSL features. When transforming attribute values, we have
to take care that enumerations are treated correctly, i.e., if the enumeration is not mapped
then the generated literal has to be assigned, else the mapped literal has to be assigned.

Listing 10.2: Transformation Generation Template
r u l e c2c . g e t L e f t . name () + _2_ + c2c . getRight () . name

extends ge tRules for (c2c . superMappings) {
from s : DSL ! c2c . g e t L e f t () [c2c . g e t L e f t I n v ()]
to t : UML! c2c . getRight () (

// s e t a t t r i b u t e s / r e f e r e n c e s f o r mapped f e a t u r e s
)

do {
i f (c2c . i sRoot ()) { t . a p p l y P r o f i l e (getLeftModel . name) ; }
t . a ss ignStereo type (c2c . g e t L e f t () . name) ;
// s e t tagged values f o r unmapped f e a t u r e s

}
}

10.4.3 Validating Mapping Models

In order to ensure that only useful UML profiles and working model transformations are
derived from a mapping model, certain constraints should be checked before the generation
process is actually started. It has to be noted that it is not possible to represent the following
constraints directly in the metamodel, therefore OCL constraints are used to define addi-
tional well-formedness rules. In the following, we present some OCL constraints to give
the reader an idea which kinds of problems can be automatically detected in the mapping
model.

For deriving working ATL transformations, OCL constraints are needed for the CAR
mapping language as presented in Chapter 6. For example, basic OCL constraints can be
defined for verifying if it is possible to derive working transformation rules from A2A map-
pings. Two attributes mapped with an A2A mapping should be compatible with respect
to their meta-properties. For example, it can be verified if both attributes have the same,

147

Chapter 10 ProfileGen – A Generator-based Approach for Bridging DSLs with UML

compatible, or at least partly compatible data types. This can be ensured by the follow-
ing OCL constraint that checks if the type of the attribute from the DSL metamodel (cf.
self.leftEnd) is the same type or a subtype of the type of the attribute from the UML
metamodel (cf. self.rightEnd).

context A2A:

inv: self.leftEnd.type.oclIsKindOf(self.rightEnd.type)

Finally, there are some constraints that need to be checked directly on the mapping model.
For example, an OCL constraint is needed for verifying that each mapping model has at
least one root mapping. This is required, because for root mappings, transformation rules
are produced that apply the UML profile on the UML model. Without a root mapping,
no UML profile application is achieved within the model transformation, consequently no
stereotypes can be applied on UML model elements. In such cases, the execution of the
transformation results in a runtime error. Therefore, the following OCL constraint should
be evaluated before the generation process is started. In particular, the constraint checks if
at least one C2C mapping exists in the mapping model that has set the isRoot attribute to
true.

context MappingModel:

inv: self.Cl2Cl-Mappings -> exists(m|m.isRoot)

10.5 Implementation Architecture of the ProfileGen
Framework

We have developed a prototype called "ProfileGen" which supports our approach for bridg-
ing DSLs with UML. First of all, we decided to build on existing components available
in the Eclipse8 platform. As already mentioned before, as model repository we use the
EMF. As mapping environment we use the ATLAS Model Weaver9 which is built on EMF.
The Eclipse UML2 project10 is used as UML framework for two reasons, first, this project
provides a complete implementation of the UML 2.0 metamodel, and second, it is com-
patible with several common UML tools such as IBM Rational Software Modeler or Magic
Draw. Finally, we use the ATLAS Transformation Language11 (ATL) for transforming the
DSL models into UML models and vice versa.

As can be seen in Figure 10.13, the ProfileGen prototype allows to build mapping models
between arbitrary DSL metamodels and the UML metamodel which can be validated with

8www.eclipse.org
9www.eclipse.org/gmt/amw
10www.eclipse.org/uml2
11www.eclipse.org/m2m/atl

148

10.5 Implementation Architecture of the ProfileGen Framework

Mapping
Model

Build
Mapping Model

UML MM
(constant)

Class

Class Class Class

Class

Class Class Class

Class

Class Class Class

UML Profile
Generation

UMLProfile

ATL Code

ATL Code
Generation

DSL MM
(variabel)

Class

Class Class Class

Class

Class Class Class

Class

Class Class Class

Transformation
Model Generation

Class

Class Class Class

Class

Class Class Class

Class

Class Class Class

Transformation
Model

Class

Class Class Class

Class

Class Class Class

Class

Class Class Class

Rule X{from to}
Rule Y{from to}
Rule Z{from to}

Design Time – DSL 2 UML

Validate
Mapping Model

[Errors]

[No Error]

Figure 10.13: Tasks Supported by ProfileGen

respect to the abstract syntax defined with the metamodel together with OCL constraints. If
errors exists in the mapping model, then the user has to correct the mapping model, else the
automatic generation process can be started. More specifically, the profile is generated and
in addition, a transformation model is created from which the ATL transformation code is
derived. We decided to use an explicit transformation model instead of directly generating
ATL code, because it allows to support further transformation languages in the future, such
as the operational part of the QVT standard.

10.5.1 Mapping Editor

In Figure 10.14, a screenshot of the mapping editor for defining the mapping models is
shown. As mentioned before, the mapping editor is based on AMW and uses a dedicated
bridging language for mapping elements of metamodels which are defined in Ecore.

The user interface of the mapping editor is divided into the following four parts:

1. On the LHS, the elements of the DSL metamodel are shown in a tree viewer.

2. On the RHS, the elements of the UML metamodel are displayed.

3. The mapping model is placed in the middle and comprises user-defined mappings
between the DSL metamodel and the UML metamodel. The user can create new map-
pings via the context menu. Via drag-and-drop it is possible to define the mapping
ends.

4. In the left lower part of the mapping editor, a property view is used to define addi-
tional properties of mappings, such as inheritance relationships between mappings as
well as root or abstract properties of mappings.

5. In the right lower part of the mapping editor, a problem view displays errors existing
in the mapping models, found by the validation support. Note that these errors have
to be corrected before the generation process can be started.

149

Chapter 10 ProfileGen – A Generator-based Approach for Bridging DSLs with UML

1 2

3

4 5

Figure 10.14: Mapping Editor Based on AMW

10.5.2 Executing DSL2UML Bridges

As already mentioned, we did not find model transformation languages and execution en-
gines capable of using UML profiles as language definitions which extend the base UML
metamodel. Hence, currently the only way to make use of UML profiles in model transfor-
mations is that the profiles are additional input models for the model transformation.

Figure 10.15 illustrates this problem for both transformation directions. The left hand side
shows the runtime configuration for transforming DSL models into UML with ATL. The
user has to define the DSL model as first input model, and the UML profile as second input
model. The output model is the UML model, which both conforms to the UML metamodel
and to the UML profile, which also conforms to the UML metamodel. This configuration
reveals the problem, that UML profiles are located on the M1 layer (because they conform to
the UML metamodel being located at the M2 layer), and also on the M2 layer (because UML
models are located at the M1 layer and instantiate the profile, which is thereby located at the
M2 layer). The work-around of reading UML profiles as additional input models hampers
the definition of model transformations. In particular, stereotypes cannot be used as type
definitions in query and generation patterns, and furthermore, profile and stereotype ap-
plications as well as setting tagged values can only be done in the imperative parts of ATL
transformation rules. Since ATL only supports tracing for its declarative part, it is not pos-

150

10.6 Case Study

29© 2007 BIG Vienna University of Technology, TK & IFS University Linz

Output

Mapping
Model

Map DSL
elements with
UML elements

UML MM
(constant)

Class

Class Class Class

Class

Class Class Class

Class

Class Class Class

UML Profile
Generation

UMLProfile

ATL Code

ATL Code
Generation

DSL MM
(variable)

Class

Class Class Class

Class

Class Class Class

Class

Class Class Class

Transformation
Model

Generation

Class

Class Class Class

Class

Class Class Class

Class

Class Class Class

Transformation
Models

Class

Class Class Class

Class

Class Class Class

Class

Class Class Class

Rule
X{fro
m to}

Design Time

UML
Model

Execute ATL
Transformation

Runtime –
DSL 2 UML

UML MM
(constant)

DSL MM
(constant)

Input

UML Profile
(constant)

DSL Model

Output

DSL
Model

Execute ATL
Transformation

Runtime –
UML 2 DSL

UML MM
(constant)

DSL MM
(constant)

Input

UML Profile
(constant)

UML
Model

Legend:
conformsTo

Figure 10.15: ATL Runtime Configuration

sible to automatically provide trace models for objects generated in imperative code blocks
of ATL.

10.6 Case Study

In this section we present our approach within a case study for bridging parts of the Com-
puterAssociate’s DSL of the AllFusion Gen CASE tool and IBM’s Rational Software Modeler
which implements the UML 2.0 standard. First, we briefly describe the involved metamod-
els, then, we give an overview of the mappings, and finally, we present the details for one
particular C2C mapping. Further details of the case study can be found on our project’s
web site12 including the details for all C2C mappings.

10.6.1 AllFusion Gen’s Data Model

The metamodel for the data model of AllFusion Gen is illustrated in the package DataModel
of Figure 10.16 and contains concepts that allow modeling the data used by the applications.
Since AllFusion Gen’s data model is based on the ER model, it supports ER modelling con-
cepts like EntityTypes, Attributes, and Relationships. In addition to the ER modeling concepts,
a grouping mechanism in terms of SubjectAreas can be used that is allowed to contain Enti-
tyTypes as well as further SubjectAreas. EntityTypes can have zero-or-one supertype. Further-
more, two concrete subtypes of the abstract EntityType concept can be distinguished, namely
AnalysisEntityType and DesignEntityType. As already mentioned, AllFusion Gen is typically
used for modeling data intensive applications which make excessive use of database tech-
nologies. Therefore, the data model allows the definition of platform specific information

12www.modelcvs.org/prototypes

151

Chapter 10 ProfileGen – A Generator-based Approach for Bridging DSLs with UML

6© 2007 BIG Vienna University of Technology, TK & IFS University Linz

lower:Int
upper:Int
agg:Aggregation

DataModel

SubjectArea

0..*

EntityType

DataDefinitionElement

Attribute

Relationship

avgOccurrence:Int
minOccurrence:Int
maxOccurence:Int
percentageOfGrowth:Int

superEntity

0..1

name : String [1:1]

PackageableElement
0..*

Package

NamedElement

Property

Class
superClass

0..*

name : String [1:1]

ClassModelMappingModel

C2C

C2C

C2C

C2C

C2C

0..*

0..*

inverse

1

AnalysisEntityType DesignEntityType

0..*

caseSensitive: Bool
length:Int
defaultValue:String

deletionKind
optional:Float

0..1

isAbstract:Bool

opposite

0..*

Macro-View – DataModel2UMLModel

Figure 10.16: C2C Mappings at a Glance

typically usable for generating optimized database code, e.g., EntityTypes have special oc-
currence configurations.

10.6.2 UML Class Diagram

It is obvious that the corresponding UML model type for AllFusion Gen’s data model is the
class diagram. In this work we only present those part of the UML metamodel which is
relevant for integration purposes. The metamodel excerpt is shown in Figure 10.16 in the
package ClassModel. In UML, Packages can contain further Packages as well as Classes. Classes
can be defined as either abstract or concrete and can have properties as well as an arbitrary
number of superclasses. Properties represent attributes if the opposite property is not set, or
role ends if the opposite property is set.

10.6.3 Overview of the Mapping Model

In this subsection, we present an overview of the mappings (cf. package MappingModel in
Figure 10.16), covering only the C2C mappings. Both metamodels make use of inheritance
which results in abstract superclasses containing the name attribute, only. In order to allow
for reuse of mapping information in sub mappings and to minimize the number of feature
mappings, the abstract classes are mapped with an abstract C2C mapping which is used as
super mapping for all other C2C mappings. SubjectArea, EntityType, Attribute, and Relation-
ship are mapped to Package, Class, and Property, respectively. While the first two mappings
are obvious, the last two mappings have both the same target class. This is due the fact that

152

10.6 Case Study

33© 2007 BIG Vienna University of Technology, TK & IFS University Linz

Macro-View – DataModel2UMLModel

«profile»

DataModel

«metaclass»

Package

«metaclass»

NamedElement

«metaclass»

Class

«metaclass»

Property

«stereotype»

SubjectArea

«stereotype»

EntityType

«stereotype»

DataDefinitionElement

«stereotype»

Attribute

«stereotype»

Relationship

«stereotype»

AnalysisEntityType
«stereotype»

DesignEntityType

{redefines}

Figure 10.17: Stereotypes for C2C Mappings

UML does not distinguish explicitly between attributes and relationships in the metamodel.
AnalysisEntityType and DesignEntityType are not mapped to UML metamodel elements, be-
cause both concepts would be mapped to Class in UML. Hence we decided to reuse the
mapping of the abstract EntityType class in order to infer that both subclasses should be also
mapped to Class.

In Figure 10.17, the resulting stereotypes for the C2C mappings are shown. Besides con-
crete stereotypes, two abstract stereotypes have been produced: �DataDefinitionElement�
is the superstereotype for all others and �EntityType� has two concrete substereotypes
corresponding to the subclasses of the metaclass EntityType.

10.6.4 EntityType_2_Class Mapping in Detail

The mapping details for the C2C mapping between EntityType and Class are illustrated in
the upper half of Figure 10.18. Both concepts support inheritance, but with the difference
that EntityTypes only support single inheritance and Classes allow multiple inheritance. De-
spite this difference, the two references are mapped with a R2R mapping because they sup-
port a similar feature. Furthermore, EntityTypes can have attributes and references, whereas
UML classes can have properties which can be divided into two distinct subsets. As dis-
criminator, the opposite reference is used, whereas the property is either an attribute if the
opposite value is null or a reference if the opposite value is not null. Thus, we can map the
attribute and relationship references to the property reference with two R2R mappings with
specific OCL conditions.

10.6.5 Profile Generation

The profile details resulting from the EntityType_2_Class mapping is shown in the lower half
of Figure 10.18. An abstract stereotype �EntityType� is generated for the abstract meta-

153

Chapter 10 ProfileGen – A Generator-based Approach for Bridging DSLs with UML

36© 2007 BIG Vienna University of Technology, TK & IFS University Linz

DataModel

EntityType

Attribute

Relationship

avgOccurrence:Int
minOccurrence:Int
maxOccurence:Int
percentageOfGrowth:Int

superEntity

0..1

Property

Class
superClass

0..*

UMLModelMappingModel

C2C

0..*

0..*

AnalysisEntityType DesignEntityType

isAbstract:Bool

0..*
R2R

R2R

R2R

Micro-View – EntityType 2 Class

«profile»
DataModel

«stereotype»
EntityType

«stereotype»
AnalysisEntityType

«stereotype»
DesignEntityType

avgOccurrence:Int
minOccurrence:Int
maxOccurrence:Int
percentageOfGrowth:Int if(self.getAssignedStereotype()

.oclIsKindOf(EntityType)){
self.superClass.upper = 1

}

«metaclass»
Class

Figure 10.18: EntityType_2_Class Mapping

class EntityType. Furthermore, the metaclass EntityType has four platform specific attributes
which are not available in UML. These attributes are represented in the �EntityType�
stereotype as tagged values. Finally, the multiple inheritance mechanism of UML classes is
restricted by assigning a special OCL constraint to the metaclass Class.

10.6.6 Transformation Generation

A simplified excerpt of the resulting ATL code is shown in Listing 10.3. An abstract trans-
formation rule (cf. first rule in Listing 10.3) with three reference mappings is generated.
However, the current ATL version does not allow to define do blocks for super rules, thus,
feature to tagged value mappings must be defined in concrete sub rules. In fact, two concrete
sub rules are generated, one for transforming AnalysisEntityTypes (cf. second rule in List-
ing 10.3) and one for DesignEntityTypes, implementing the feature to tagged value mappings
- which are also defined for unmapped features of the superclasses, e.g., the avgOccurrence
attribute.

10.6.7 Discussion

In this subsection, a discussion on the evaluation of the generated bridge between the AFG
tool and the UML tool is provided and shall give an indication on the applicability of the

154

10.6 Case Study

semi-automatic DSL2UML bridging approach. This evaluation is conducted, first, with re-
spect to roundtrip capabilities of the generated bridge based on the integration scenario 2
presented in Section 8.2, and second, on the basis of certain metrics for the manually de-
fined mapping model as well as for the generated artifacts, i.e., the profile and the model
transformations.

Listing 10.3: Resulting ATL Code
module DSL2UML; c r e a t e OUT:UML from IN : DSL ;

a b s t r a c t r u l e Enti tyType_2_Class {
from s : DSL ! EntityType
to t : UML! Class (

property <− s . a t t r i b u t e ,
property <− s . r e l a t i o n s h i p ,
superClass <− s . superEnt i ty

)
}

r u l e AnalysisEnt i tyType_2_Class extends
Enti tyType_2_Class {

from s : DSL ! AnalysisEnti tyType
to t : UML! Class
do {

t . ass ignStereo type (AnalysisEnti tyType) ;
t . setTaggedValue (" avgOccurrence " ,

s . avgOccurrence) ;
. . .
}

}

Integration Scenario 2 Revisited. In Section 8.2, the presented motivating scenario 2 sum-
marized information loss for an input model which conforms to the afore presented meta-
model of AllFusion Gen’s Data Model. In this scenario, no UML profiles and adapted model
transformations have been used. Now, the model metrics are again presented in Table 10.1,
however, now the afore presented profile definitions and model transformations have been
used for preserving information during roundtrip. As one can see in the most right column
of the table, no difference regarding to the number of model elements between the initial
AFG model and the AFG model after roundtrip exists. The information could be preserved
by applying for each corresponding object an appropriate stereotype allowing to use tagged
values for saving feature values which otherwise would be lost. Furthermore, a compari-
son of the initial AFG model and the resulting AFG model using the comparison facility of
EMF Compare13 demonstrated that both were equivalent, thus no information has been lost
during roundtrip.

Metrics for Mapping Model, Profile, and Model Transformations. In addition to dis-
cussing the roundtrip capability of the generated bridge based on an example input model,

13www.eclipse.org/modeling/emft/?project=compare#compare

155

Chapter 10 ProfileGen – A Generator-based Approach for Bridging DSLs with UML

Table 10.1: Model Metrics for Data Model/Class Diagram Roundtrip Revisited
Metrics Initial AFG Model Generated UML Model AFG Model after roundtrip Diff in %

#Objects 156 165 156 0
#Values 1099 156 1099 0
#Links 44 54 44 0

#Containment Links 155 164 155 0
File Size 32,8 KB 58,5 KB 32,8 KB 0

#Applied Stereotypes - 156 - -
#Tagged Values - 951 - -

the number of model elements of the manually created mapping model compared to the
number of elements of the generated bridge artifacts is presented. This should give an in-
dication on how much effort requires the creation of the mapping model and using the
generator in contrast to building the desired bridge artifacts manually from scratch.

Table 10.2 summarizes some metrics for the mapping model (cf. Table 10.2(a)), for the
generated profile (cf. Table 10.2(b)), and finally for the generated model transformations (cf.
Table 10.2(c)). We decided to use as metrics for the mapping model, first, the number of
applied mapping operators, and second, how many non-default property values have to be
set by the user, because this is exactly the work the user has to do for creating the mapping
model. For the profile, we use as metrics the number of profile elements the user has to
create, i.e., how many elements have to be imported from the UML metamodel (used as
types and metaclasses within the profile), how many stereotypes and tagged values have to
be created, and finally, how many constraints and additional data types have to be defined
within the profile. Finally, for the transformation code we simply use lines of code (LOC)
as metric, just to give an indication how much effort the manual implementation of the
transformations for both directions (DSL2UML, UML2DSL) would cause.

Interpreting these metrics, one can observe that the number of created elements of the
mapping model is less than the number of elements of the profile definition. More specif-
ically, one can see that even for the stereotype definitions alone, i.e., stereotypes, imported
metaclasses, extension relationships, and generalization between the stereotypes, more el-
ements have to be created (in sum 29 elements) than are needed for the whole mapping
model (in sum 14 applied mapping operators). In addition, tagged values (which need ad-
ditional property settings such as multiplicity or data types), enumerations with literals,
data types, and constraints have to be defined.

Furthermore, for realizing model exchange between AFG and UML, 220 lines of ATL
code are necessary, where most parts are declarative rules. However, for using profiles
within the transformation, imperative code is needed, e.g., for applying profiles and stereo-
types, for setting tagged values when moving from AFG to UML as well as for assigning
tagged values as attribute values when we are going back from UML to AFG. Summariz-
ing, it can be said that the generator based approach offers the possibility to derive a bridge,

156

10.6 Case Study

i.e., profiles and transformations, from declarative mappings defined in an interactive en-
vironment. Compared to the tedious authoring of profiles by hand, e.g., supported by the
Rational Software Modeler or by the Eclipse UML2 project, the ProfileGen tool offers faster
development of profiles in cases where a metamodel is already existing.

Table 10.2: Bridge Metrics Overview. (a) Mapping Model Metrics, (b) Profile Metrics, and
(c) Model Transformation Metrics

Mapping Operator # Element Type #
C2C 6 Element Import 8
A2A 1 Stereotype
R2R 7 Abstract Stereotype 2
Properties 7 Concrete Stereotype 6

Relationship
Extension 6
Generalization 7

Data Type
Enumeration 1
Literal 3
Primitive Type 1

Tagged Value 9
Constraint 2
Properties 27

ATL File LOC

AFG2UML 120
declarative 75%
imperative 25%

UML2AFG 100
declarative 87%
imperative 13%

(b) Profile Metrics

P
ro

fi
le

M
o

d
el

Tr

an
sf

o
rm

at
io

n

Manually Created Automatically Generated

(a) Mapping Model Metrics

(c) Model Transformation Metrics

M
ap

p
in

g

M
o

d
el

157

Chapter 10 ProfileGen – A Generator-based Approach for Bridging DSLs with UML

158

Chapter 11

Summary and Related Work

Contents
11.1 Summary . 159
11.2 Related Work . 160

11.2.1 Adapting Model Transformations . 160
11.2.2 Integrating DSLs with UML . 161

11.1 Summary

In this part of the thesis, we have discussed the problem of information loss during roundtrip,
which is a frequently occurring problem in tool integration practice. We further motivated
that information loss is a cross-cutting concern, which is spread over the whole transforma-
tion and needs special treatment in the integration process. Therefore, we presented two
approaches for establishing bridges between tools which are capable of saving information
which is otherwise lost during roundtrip.

As first approach, we presented AspectCAR, a generic aspect-oriented extension of the
CAR mapping language. With the help of AspectCAR the development of mappings repre-
senting semantic correspondences between metamodel elements can be separated from the
development of mappings which are necessary to save information in annotations which
would get otherwise lost during roundtrip. The approach has been presented with the help
of a running example and finally some limitations have been discussed. It has to be noted
that the user has full control over the mapping model with AspectCAR. This means, other
concerns can be implemented as aspects as well, e.g., for logging information if there is a
mismatch in abstraction, aggregation, or precision between source and target elements.

As second approach, we have introduced a semi-automatic approach for bridging DSL
tools with UML tools. First, we presented a dedicated metamodel mapping language based
on the CAR mapping language which can be used to build a mapping model between the
DSL metamodel and the UML metamodel. Second, a set of rules for generating profiles out

Chapter 11 Summary and Related Work

of mapping models has been presented. With the help of these rules, it is possible to gener-
ate complete profile definitions, i.e., stereotypes, tagged values, enumerations, data types,
and also constraints. Third, a discussion on the generation of ATL transformation rules for
exchanging the models between the DSL tools and UML tools has been presented. Fourth,
tool support has been developed for supporting our bridging approach which is built on
existing components available on the Eclipse platform. We extended the ATLAS Model
Weaver (AMW) in order to create mapping models in a more user friendly way, validate the
mapping model for ensuring that only working bridge definitions are produced, and finally,
for starting the automatic generation process. Further information about tool support can
be found on our project site1. Finally, we presented a case study of the ModelCVS project
and discussed the benefits of using a mapping model combined with a generator instead of
manually implementing the bridge.

Summarizing, the presented approach allows for faster development and a higher main-
tainability of bridges between DSL and UML tools. The approach can also be applied for
generating a profile out of a metamodel, only. Another application scenario would be that
the generated profiles can be used to annotate already existing models, because UML pro-
files allow the dynamic extension of existing UML models. As soon as a UML model is
marked with stereotypes and tagged values, it can be transformed into a DSL model which
then can be the input for the DSL code generator component. This way, code generation
facilities can also be supported for already existing UML models.

11.2 Related Work

With respect to the presented approaches for engineering information preserving roundtrip
transformations, three areas of related work can be distinguished. First, approaches related
to AspectCAR aiming at adapting existing model transformations, second, widely related
work to ProfileGen, namely approaches dealing with the definition of DSLs on the one hand
in terms of MOF-based metamodels and on the other hand using UML profiling, and third,
closely related work to ProfileGen, namely establishing model exchange between DSL and
UML tools.

11.2.1 Adapting Model Transformations

Adapting Model Transformations with Aspects. Closely related work to AspectCAR is
presented in [VG07a, VG07b], where variability in model transformations and code gener-
ators is handled with aspect-oriented techniques. The authors propose to combine DSLs,
aspect-orientation, and MDE in order to improve software product line engineering. In

1www.modelcvs.org

160

11.2 Related Work

particular, the process starts with the definition of variability models, which drive the sub-
sequent generation tasks. In order to realize variants of model transformations and code
generators, aspect-oriented language concepts are offered by the model transformation lan-
guage Xtend and also by the code generation language XPand of the openArchitectureWare
framework2. Compared to AspectCAR, the presented approach in [VG07b] and [VG07a]
is used to define variants of model transformations which are specific to a certain product
line. On the contrary, we propose to use aspect-orientation to solve a more general prob-
lem, namely loss of information which occurs in each tool integration scenario. However,
it has to be mentioned that in general, also the model transformation language Xtend could
be used to define bridges between tools by using aspects for preserving information loss,
whereas the resulting bridge is on a lower-level of abstraction which furthermore hampers
the definition of aspects for ensuring roundtrip capability and reasoning on possible infor-
mation loss.

Adapting Model Transformations with Model Transformations. Further related work
to AspectCAR are approaches adapting a model transformation with the help of an addi-
tional model transformation3, as presented for example in [Jou05]. The author proposes to
use model transformations to introduce traceability issues in already existing model trans-
formations where tracing is actually considered as a cross-cutting concern. The benefit of
the proposed approach is that the traceability code is clearly separated from the rest of the
model transformation code. Using a model transformation for adapting existing model
transformations is similar to the AspectCAR approach, however, the pointcut expressions
and adaptations are encoded and intermingled in the model transformation rules and are
therefore not reusable in isolation.

11.2.2 Integrating DSLs with UML

Although many debates4 on pros and cons of MOF-based metamodels and UML profiles are
going on, only a few scientific work discussing DSL development with metamodels com-
pared to UML profiles can be found and even less papers can be found on the integration
of MOF-based metamodels with UML profiles. In this subsection, we discuss first widely
related work concerning a comparison of different approaches for defining domain-specific
modeling languages with OMG standards, and finally closely related work, namely two
approaches concerning the visualization of DSL models with UML based on model trans-

2www.eclipse.org/gmt/oaw
3This mechanism is called Higher-Order Transformation (HOT), i.e., a transformation itself can be seen as a model
and therefore can be input for another transformation called HOT, which again produces as output a transforma-
tion.

4For example, a very interesting debate about DSLs and UML profiles was a panel named A DSL or UML Profile.
Which would you use? at the Models 2005 conference (http://www.cs.colostate.edu/models05/panels.html)

161

Chapter 11 Summary and Related Work

formations, as well as an approach for bridging DSLs defined as MOF-based metamodels
with already existing UML profiles.

Comparing Modeling Approaches for defining DSLs. In several papers, the benefits and
drawbacks of using MOF for defining metamodels from scratch or using UML profiles for
tailoring UML have been discussed. For example, Weisemöller and Schürr [WS07] discuss
the definition of a DSL for architectural description languages with the usage of UML pro-
files, the definition of a completely new language based on a MOF-based metamodel, and
finally, by a heavyweight extension of the UML metamodel.

In contrast to our work, Weisemöller and Schürr only discuss as future work the com-
bination of UML profiles with metamodels by using triple graph grammars for defining
a bridge between DSL tools and UML tools. Besides bridging UML tools with DSL tools,
Weisemöller and Schürr discuss some design alternatives how an example profile can be
expressed as metamodels. This discussion could be a good starting point to develop a semi-
automatic approach to transform UML profiles into MOF-based metamodels as pointed out
as future work in Subsection 12.2.3 of this thesis.

Defining model transformations between DSLs and UML. In [GvD07], the authors pro-
pose to use UML as visualization technique for documenting domain-specific models. The
motivation for using UML as visualization technique is that the development of graphical
editors is still in its infancy, although there are some promising frameworks emerging such
as the Graphical Modeling Framework (GMF). The authors also argument that it is not al-
ways necessary to have a graphical editor, e.g., the models can be also defined in concrete
textual syntax (e.g., by employing the Textual Concrete Syntax framework [JBK06] or the
Xtext framework [EV06]). However, other use cases, such as documentation of models, re-
quire some form of graphical representation. Therefore, Graaf and van Deursen propose to
use model transformations to specify mappings between the DSL metamodel and the UML
metamodel. With the help of the model transformations, the DSL models can be trans-
formed into UML models which can be in turn visualized in UML tools. They exemplified
their approach in the domain of software architecture, more specifically by using architec-
ture description languages.

There are several differences to our approach. First, the authors propose to directly use
model transformation languages for describing the mapping between the DSL and UML,
i.e., they only focus on an uni-directional transformation. Second, they are not concerned of
automatically deriving a profile for the DSL. If there is a semantic gap between the DSL and
UML, stereotypes are directly generated within the transformation, thus the profile is more
or less developed manually by the transformation engineer. Third, only a projection of the
DSL model is achieved by the transformation, because for documentation purposes it is not
necessary to represent each tiny detail of the DSL model.

162

11.2 Related Work

Annotating DSL metamodels with UML notations. Brucker and Doser [BD07] propose
an approach for annotating a DSL metamodel with concrete syntax information which may
be seen as most closely related work to our approach. More specifically, the authors propose
to use the UML notation as concrete syntax for graphical DSLs. Therefore, they use an OCL
dialect to annotate the metaclasses, attributes, and associations in the metamodel and from
these annotations model transformations can be derived. These model transformations can
be used to transform DSL models into UML models annotated with stereotypes and vice
versa. Moreover, the authors present how the user-interface of the UML tool ArgoUML5

can be extended to provide a more concise presentation of the UML models.
Although the approach presented in [BD07] and ours target similar problems, the realiza-

tion of both is different. First, we favor for an interactive environment based on a graphical
environment, especially for searching for appropriate metaclasses used for a stereotype and
for finding corresponding attributes and references. We believe that an interactive environ-
ment is required, because the UML metamodel is a very large metamodel which should be
only explored on demand. Second, the approach of [BD07] has a strong coupling between
the UML notation and the DSL metamodel. On the contrary, our approach has only a loose
coupling between UML and the DSL, because the correspondences between them are stored
in an external mapping model and not within the DSL metamodel. Third, we also allow to
define mappings between data types, enumerations, and literals which are not considered
in [BD07]. Fourth, in [BD07] it is not clearly stated, if an explicit profile definition is gener-
ated, as well as, if tagged values are generated or if all attributes and references of a DSL
class have to be mapped to UML. Fifth, no constraints are generated for the UML models.
The authors claim that this is not necessary because the constraints are defined through the
metamodel. However, if a user builds an UML model by hand, constraints are necessary in
order to check some well-formedness rules to ensure that, on the one hand, the model trans-
formation to the DSL is working and on the other hand it seems to be tedious to transform
an UML model into a DSL model, then checking the constraints, and finally, propagating
identified errors back to the UML model. Therefore, we decided to incorporate all con-
straints of the metamodel also in the UML profile. Sixth, we are using a dedicated mapping
language which consists of reusable mapping operators. In contrast, the authors in [BD07]
propose to use a subset of OCL to describe the mapping between the DSL and UML with
OCL queries which are not reusable except on basis of copy/paste. Finally, we employ the
UML 2 framework for our ProfileGen framework instead of using a specific UML case tool
as is done in [BD07] by using ArgoUML. We decided to use the UML 2 framework, because
it provides a standard conform implementation of the UML 2 metamodel and several com-
mercial and open source UML tools provide import/export functionalities for the UML 2
framework. Consequently, the UML 2 framework can be used as a common format which
is not bound to a specific UML tool. Moreover, ArgoUML currently only supports UML 1.4

5http://argouml.tigris.org

163

Chapter 11 Summary and Related Work

providing only a restricted profile mechanism compared to UML 2.

Bridging DSL metamodels with UML profiles. In Abouzahra et al. [ABFJ05], the inte-
gration process starts with an already existing, probably manually defined UML profile
and one has to define the mappings between the DSL metamodel and the UML profile el-
ements. Subsequently, the model transformations between DSL models and UML models
are automatically derived from these mappings. As stated in [ABFJ05], the proposed tool
aims at automatically generating transformations between models and not on transforming
a metamodel to a profile or the opposite. This means, our work is different in that we do not
assume that an UML profile is available yet. Instead, we assume that the whole bridge, i.e.,
the transformations and the UML profile, has to be developed. Therefore, we generate not
only the transformations between the DSL and UML, but also the UML profile is generated
automatically.

Furthermore, the presented approach in [ABFJ05] does not use the standardized UML 2
metamodel with built in profile support, instead a proprietary profile metamodel has been
used. Finally, also the proposed mapping language is quite different to our metamodel
bridging language, in that sense that our language provides mapping operators with more
specifically typed mapping ends. This allows more accurate validation of the mapping
models which in turn ensures the generation of meaningful profile definitions and correctly
working model transformations.

164

Chapter 12

Conclusion and Outlook

Contents
12.1 Major Contributions of the Thesis . 165
12.2 Outlook . 166

12.2.1 Bridging Technical Spaces . 167
12.2.2 Mapping Metamodels . 167
12.2.3 Integrating DSLs with UML . 171

12.1 Major Contributions of the Thesis

In this thesis, various tool integration scenarios have been discussed and concepts, mecha-
nisms, and tools supporting the establishment of tool bridges have been presented. Sum-
marizing, it can be said that reuse of existing integration knowledge is crucial for providing
a faster and more systematic development of tool bridges compared to using model trans-
formation languages, only. It has to be noted that on the one hand, reuse may be achieved
on several meta-layers, i.e., on the M3 and the M2 layer, and that on the other hand, inte-
gration knowledge may be generic, i.e., reusable for each integration scenario, but it may
be also specific, i.e., reusable for a certain kind of integration scenario such as integrating
domain-specific modeling tools with UML tools.

Concerning the first part of the thesis, reuse can be achieved by defining correspondences
between the meta-languages of different technical spaces, from which transformations for
producing metamodels and also models can be derived. This allows to provide generic
adapters between technical spaces based on the M3-layer which can be reused to build
specific adapters for pre-MDE modeling tools. Our proposed mining pattern and semi-
automatic process further opens the door to the model technical space by showing how
already existing languages definitions, e.g., residing in the XML technical space or in the
grammar technical space, can be rebuilt as metamodels. Furthermore, the semi-automatic
process allows to incorporate constraints into the metamodels, which are not expressed in

Chapter 12 Conclusion and Outlook

the source language definitions. The semantic enrichment of the language definitions is
possible by reusing existing integration knowledge specific for a particular technical space
combination by employing heuristics and a set of predefined user-annotations or refactor-
ings.

The second part of the thesis addresses reuse of generic mapping operators which are
used to resolve frequently occurring integration problems, e.g., structural metamodel het-
erogeneities, between two MOF-based metamodels. This kind of integration knowledge
can be reused in nearly each integration scenario where two MOF-based metamodels have
to be bridged. In our approach, the integration knowledge is encapsulated into mapping
operators, thereby not only the syntax of the operators is defined, but also the operational
semantics can be expressed in terms of Colored Petri Nets. Furthermore, we refrain from
recommending only one single set of mapping operators which is intended to be capable
of resolving each integration problem, instead we are proposing an open platform which
supports the user by defining new mapping operators. To demonstrate the applicability
of this framework, we provide a set of mapping operators subsumed in the CAR mapping
language for resolving the prevalent form of structural heterogeneities.

The third part of the thesis focusses on how roundtrip transformations can be built in
a systematic way. The first approach for ensuring roundtrip transformations is based on
aspect-orientation. In particular, it has been shown how integration knowledge about roun-
trip capabilities of transformations can be encapsulated into aspect definitions, which can
be employed to adapt existing non-roundtripping transformations. These aspect definitions
can be reused in various integration scenarios. The only precondition is that the CAR map-
ping language is used to define the tool bridges. The second approach is dedicated to the
integration of domain-specific modeling tools with UML tools by using a generator-based
approach for enhancing reuse of existing integration knowledge specific to this scenario. In-
stead of manually developing UML profiles for metamodels which describe DSLs, the user
should indicate semantic correspondences between the elements of the DSL metamodel and
the elements of the UML metamodel in terms of a mapping model. A generator component,
which implements generation rules reflecting best practices how an UML profile should be
built for a DSL metamodel, produces the bridge between the domain-specific modeling
tools and UML tools.

12.2 Outlook

The work presented in this thesis leaves several issues open for further research. First, con-
cerning Part I of this thesis, the presented DTD 2 Ecore framework can be used as founda-
tion for building other technical space bridges, in particular for bridging XML schema with
Ecore. Second, concerning Part II of this thesis, there are many issues for future work, such
as extending the CAR mapping language by firstly, allowing new combinations of existing

166

12.2 Outlook

mapping operators, and secondly, by proposing additional operators which further leads
to the development of a methodology for finding mapping operators. Another issue is the
automatic creation of mapping models between two metamodels, which has not been dis-
cussed in this thesis at all. Third, although the case study presented in Section 10.6 showed
various benefits of using a semi-automatic approach for bridging domain-specific model-
ing tools with UML tools, various challenges concerning roundtrip transformations and the
integration of metamodels with UML profiles lies ahead. In the following subsections, we
elaborate on these open issues and future challenges in more detail.

12.2.1 Bridging Technical Spaces

DTD 2 Ecore as foundation for XML schema 2 Ecore

When XML schema is used for language engineering, it is not possible to generate an ap-
propriate Ecore-based metamodel out of the XML schema without additional information.
For example, within the Eclipse Modeling Framework, there is the possibility to define a
metamodel with XML schema syntax, however, there are many "extensions" of pure XML
schema constructs by using specific annotations, in particular, for every Ecore language
feature that is not directly representable in XML schema, a specific annotation is available.
However, when switching from already existing XML schemas to Ecore-based metamod-
els, these annotations are not provided. One possibility would be to annotate the XML
schema with the proposed annotations of the Eclipse Modeling Framework, or to employ
our semi-automatic approach for generating a first version of a metamodel, and then, en-
hancing the quality of the automatically generated metamodel by appling heuristics as well
as refactorings. The benefit of the latter approach would be to have in addition to the gen-
erated metamodel, a bridge for transforming XML documents into models. For example,
WebRatio uses XML schema for defining language extensions of the WebML language. To
incorporate these extensions in the WebML metamodel, we developed a prototypical im-
plementation of an XML schema 2 Ecore bridge in order to generate first metamodel drafts
which have to be manually improved. However, this prototype can only be seen as a first
step towards developing a complete bridging approach for XML schema and Ecore.

12.2.2 Mapping Metamodels

Extending the CAR mapping language

The first extension possibility of the CAR mapping language is the composition of existing
mapping operators into composite operators. Such composite operators enhance the read-
ability of the mapping model and allow faster development by avoiding the definition of
trace model dependencies again and again. Figure 12.1 illustrates, how the C2C and A2C

167

Chapter 12 Conclusion and Outlook

operator can be composed into a CA2CC operator by nesting both individual operators into
one component.

LHS RHSMapping Model

Combining Mapping Operators

Attribute

minCard : Integer
maxCard : Integer

Attribute

minCard : Integer
maxCard : Integer

Multiplicity

1..1

C2C

A2C

CA2CC

Figure 12.1: CA2CC Operator by Composing C2C and A2C Operators

The second extension is allowing new trace model dependencies between operators, or
in other words, allowing other operators to provide their trace models as context for other
mappings, in addition to the C2C operator. For example, the A2C and R2C mapping oper-
ators can provide the context for A2A and R2R mappings.

A2A

A2A

LHS RHSMapping Model

New Trace Model Dependencies

Person

salary : Float

Person

salary : Float

Employment

1..*

C2C

Employer

Company

1..1

1..1

R2C

C2C

A2A

(a) Mapping Example (b) Adapting the white-box view
of the A2A operator

Streamer

Relocator

Sophisticated tracing
Figure 12.2: Using R2C Trace Models. (a) Mapping Example, (b) Adaptation of the A2A

Operator

The example shown in Figure 12.2(a) requires the combination of an R2C with an A2A
operator. Attention has to be given to the dependency between the R2C and A2A operators.
In order to allow such kind of dependencies, the white-box view of the A2A operator as
shown in the upper part of Figure 12.2(b) has to be adapted as shown in the lower part of
Figure 12.2(b). The Relocator component has to provide an explicit query pattern token to

168

12.2 Outlook

ask the trace model of the R2C operator which object color has been generated for the link
which has the same outer color as the input value of the A2A component. For using the
answer of the trace model within the A2A component, an explicit answer token pattern is
introduced, which is used for the generator token as outer color.

The third extension possibility comprises finding additional mapping operators in a top-
down approach as well as in a bottom-up approach. The CAR mapping language has been
defined in a top-down approach by primarily studying existing database integration liter-
ature and investigating the MOF standard of the OMG. However, a bottom-up approach
seems also promising to find new mapping operators. This can be done by developing
transformation nets by hand and then "lifting" the transformation net components into map-
ping operators. For example, by building various transformation nets manually, we found
out that mapping operators are quite often needed that generated elements in the target
model which are not explicitly and even not implicitly represented in the source model, i.e.,
they cannot be produced out of elements from source models.

In Figure 12.3(a), an integration example is shown in that on the LHS only one class called
EntityType exists, i.e., no root object representing the whole model is required on the instance
level. On the RHS, a class Model exists which has a containment reference to the class Class.
On the instance level, only one instance of Model is allowed to exist, which contains all in-
stances of Class. This means, when moving from left to right, only one Model instance should
be generated, but all instances of Class, which corresponds to EntityType instances, should
be connected to the Model instance. For resolving this heterogeneity, we have introduced
an ObjectFactory mapping operator (cf. Figure 12.3(b)), which is configurable, allowing to
specify if for each transformed element of the context mapping, an object is generated or if
only a single object is generated for all transformed elements. This configuration is possible
via the singleton tag. In this example, it is necessary to set the singleton tag to true, because
not for all classes an additional model object should be generated, but only for the first one.
In case the singleton tag is set to true, the white-box view of the ObjectFactory has a place
with only one initial token, standing for the singleton object which is streamed with the first
input element from the contextObject port. When the following tokens are streamed from
the contextObject port into the component, only the context2singleton link is generated.

Automatic establishment of mapping models

This thesis elaborated on the manual development of mapping models, only. However,
when looking at the ontology or schema integration field, much effort is investigated into
automatic matching approaches1, which take two ontologies or schemas as input and auto-
matically compute correspondences between them. It has to be noted that matching tech-
niques is based on heuristics, thus the approaches do not claim for full completeness and
1For more information on matching techniques, the interested reader is kindly referred to the Ontology Alignment
Evaluation Initiative (http://oaei.ontologymatching.org).

169

Chapter 12 Conclusion and Outlook

New Mapping Operators

Object
Factory

context2singleton:
Reference

singletonObject:
Class

contextObject: c2c

C2C
EntityType Class

Model

0..*

ObjectFactory
{singleton=true}

LHS RHSMapping Model

(a) Mapping Example (b) White-Box View of SingletonObjectFactory

Figure 12.3: ObjectFactory Operator. (a) Mapping Example, (b) White-Box View

correctness of the mappings. We have picked up the idea of automatically computing a
first draft of a mapping model, on the one hand, by using existing ontology matching tools
in combination with a machine-learning approach, and on the other hand, by using a by-
example based approach which also exploits the graphical notation of modeling languages.
Both approaches, which are subject to future work, are presented in the following in more
detail.

Smart Matcher. With the rise of the semantic web and the emerging abundance of on-
tologies, several automated matching approaches and tools have been proposed, for an
overview see [RB01, SE05]. The typical output of such tools are simple one-to-one cor-
respondences mostly based on schema information, e.g., similar names and structures of
schema elements. However, these correspondences cannot cope with structural hetero-
geneities as is often the case between MOF-based metamodels, hence, these problems, on
the one hand, lowers the quality of automatically computed correspondences2, and on the
other, must be resolved manually by defining additional transformation code. Furthermore,
there is no automated evaluation of the quality of the alignments based on the instance
level, because the matching approaches are not bound to a specific integration scenario,
e.g., transformation or merge. In [KW08], we have proposed the SmartMatching approach,
which can be seen as an orthogonal extension to existing matching approaches for increas-
ing the quality of the automatically produced alignments for the transformation scenario.
This is achieved by first, using the executable CAR mapping language for bridging struc-
tural heterogeneities, and second, by using concrete models to evaluate the quality of the
alignments in an iterative and feedback-driven process inspired by machine learning ap-
proaches. Further steps are improving our current prototype, and the evaluation of the
hypothesis that the preparation phase, i.e., building the test models, is less work than the
reworking phase, i.e, validating the correspondences and programming additional transfor-
mation code which cannot be derived from simple mappings. Finally, we have to evaluate

2For an evaluation of existing ontology matching tools regarding their metamodel matching capabilities see
[KKK+07].

170

12.2 Outlook

our matching approach extension regarding completeness and correctness of the mappings
with empirical experiments against already existing matching tools.

Model Transformation By Example. Current approaches for tool integration, as is also
the case for the CAR mapping language and for the transformation nets, are only focussing
on the abstract syntax in terms of MOF-based metamodels. However, this implementation
specific focus makes it difficult for modelers to develop model transformations, because
metamodels do not necessarily define all language concepts explicitly which are available
for notation purposes. Therefore, in [WSSK07], we have proposed Model Transformation
By Example, a by-example approach for defining semantic correspondences between graph-
ical domain models which is more user-friendly then directly specifying correspondences
between metamodels. The correspondences between domain models can be used to gener-
ate model transformations, by-example, taking into account the already defined mapping
between abstract and concrete syntax elements. With this approach, the user’s knowledge
about the notation of the modeling language is sufficient for the definition of model trans-
formations. Hence, no detailed knowledge about metamodels and model transformation
languages or mapping languages is required. In particular, the proposed by-example ap-
proach for model transformations requires proper tool support and methods guiding the
mapping of graphical domain models as well as the generation of the transformation code
in order to fulfill the requirements for the user-friendly application. Therefore, future work
is the implementation of a prototype in order to further evaluate our proposed approach in
the large.

12.2.3 Integrating DSLs with UML

Lost information during roundtrip

The goal of supporting full round-trip transformations is currently not always achieved due
to heterogeneity issues which have been first identified in the area of database integration
[KS96]. These issues lead to value transformations that go beyond simple copying of values.
Hence, some transformations can be inverted and some transformations can’t. We are con-
fronted with this challenge when there is a mismatch in abstraction, aggregation, or precision
between the source and the target model elements. In the field of model-driven engineering,
some issues are reported concerning the definition of bi-directional model transformations
with QVT [Ste07]. In future work, these issues have to be clarified for our roundtrip trans-
formation approaches, in particular, when feature mappings are not bijective.

Co-Evolution of UML Profiles

One "hot" topic in MDE is the co-evolution of models, transformations, code generation
scripts, constraints, the concrete syntax definitions, and the modeling editor, to mention

171

Chapter 12 Conclusion and Outlook

just a few, when metamodels evolve over time. For example, this has been extensively dis-
cussed at the 7th OOPSLA Workshop on Domain-Specific Modeling3. Our approach based
on a mapping model between the DSL metamodel and the UML metamodel may be ex-
ploited to co-evolve already existing UML profiles when the DSL metamodel evolves. For
example, one simple case would be if an attribute of a DSL metaclass is deleted, also the
corresponding tagged value in the profile may be automatically deleted (it is assumed that
no feature mapping is available for the DSL attribute). This co-evolution capability would
allow to reuse the mapping model also for evolved metamodels, and it is not necessary to
create a new mapping model between the modified DSL metamodel and the UML meta-
model.

Generate Metamodels from UML Profiles

What has not been discussed in this thesis is the opposite integration case, namely an UML
profile already exists and a metamodel is needed. This direction has only barely been dis-
cussed in literature. In [WS07] a small example is presented how an UML profile can be
modeled as metamodel, however, no integration approach, even not a completely manual
methodology, has been published, yet. Information of the profiles can be more or less easily
transformed into a metamodel, however, it is not clear which UML metaclasses and features
should be available in the corresponding metamodel. One possibility would be to use the
whole UML metamodel, however, this would explode the corresponding metamodel, con-
sequently leading to a too complex metamodel even for a simple DSL, actually requiring a
heavyweight extension of the UML metamodel.

A transformation language using profiles as language extensions

As mentioned in Subsection 10.5.2, currently no transformation language and correspond-
ing transformation engine exist which support UML profiles as first class language exten-
sions. Stereotypes should be usable as types in transformations rules, which means that
rules can be directly applied on instances which have a certain stereotype assigned - so
to say using the stereotype as a subclass. In particular, the Transformation Net formalism
could be extended with the capability of using profiles as first class citizens. Stereotypes can
be presented as one-colored places, tagged values as two-colored places. Only an additional
adapter must be written in order to convert UML models into tokens as well as tokens into
UML models, accordingly.

3www.dsmforum.org/events/DSM07

172

Bibliography

[ABFJ05] Anas Abouzahra, Jean Bézivin, Marcos Didonet Del Fabro, and Frédéric
Jouault. A Practical Approach to Bridging Domain Specific Languages with
UML profiles. In Proceedings of the Best Practices for Model Driven Software Devel-
opment at OOPSLA’05, San Diego, California, USA, 2005.

[ACB05] Paolo Atzeni, Paolo Cappellari, and Philip A. Bernstein. ModelGen: Model In-
dependent Schema Translation. In Proceedings of the 21st International Conference
on Data Engineering (ICDE’05), Tokyo, Japan, 2005.

[ACG07] Paolo Atzeni, Paolo Cappellari, and Giorgio Gianforme. MIDST: model inde-
pendent schema and data translation. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, Beijing, China, 2007.

[AK03] Colin Atkinson and Thomas Kühne. Model-Driven Development: A Metamod-
eling Foundation. IEEE Software, 20(5):36–41, 2003.

[AT95] Paolo Atzeni and Riccardo Torlone. Schema translation between heterogeneous
data models in a lattice framework. In Proceedings of the 6th Working Conference
on Data Semantics (DS-6), Atlanta, Georgia, 1995.

[AVK+04] Aditya Agrawal, Attila Vizhanyo, Zsolt Kalmar, Feng Shi, Anantha Narayanan,
and Gabor Karsai. Reusable Idioms and Patterns in Graph Transformation Lan-
guages. In Proceedings of the International Workshop on Graph-Based Tools (Gra-
BaTs’04), Italy, 2004.

[BCF02] Marco Brambilla, Sara Comai, and Piero Fraternali. Hypertext Semantics for
Web Applications. In Proceedings of the 10th Italian National Symposium on Ad-
vanced DataBase Systems (SEBD), Portoferraio, Italy, 2002.

[BCFK99] Grady Booch, Magnus Christerson, Matthew Fuchs, and Jari Koistinen. UML
for XML Schema Mapping Specification. Technical report, Rational Software
and CommerceOne, August 1999.

[BCMM06] Luciano Baresi, Sebastiano Colazzo, Luca Mainetti, and Sandro Morasca.
W2000: A Modeling Notation for Complex Web Applications. In Emilia Mendes

Bibliography

and Nile Mosley, editors, Web Engineering: Theory and Practice of Metrics and Mea-
surement for Web Development, pages 335–364. Springer, 2006.

[BD07] Achim D. Brucker and Jürgen Doser. Metamodel-based UML Notations for
Domain-specific Languages. In Proceedings of the 4th International Workshop on
Software Language Engineering (ATEM’07), 2007.

[Ber03] Philip A. Bernstein. Applying model management to classical meta data prob-
lems. In Proceedings of the 1st Biennial Conference on Innovative Data Systems Re-
search (CIDR’03), California, 2003.

[BFW92] Alan W. Brown, Peter H. Feiler, and Kurt C. Wallnau. Past and future models of
CASE integration. In Proceedings of the 5th International Workshop on Computer-
Aided Software Engineering (CASE’92), Montreal, Canada, 1992.

[BGM02] Luciano Baresi, Franca Garzotto, and Monica Maritati. W2000 as a MOF meta-
model. In Proceedings of the 6th World Multiconference on Systemics, Cybernetics
and Informatics (SCI’02), Orlando, Florida, USA, July 2002.

[BGMT88] Gerard Boudier, Ferdinando Gallo, Regis Minot, and Ian Thomas. An overview
of PCTE and PCTE+. SIGSOFT Softw. Eng. Notes, 13(5):248–257, 1988.

[BK98] Jan A. Bergstra and Paul Klint. The discrete time TOOLBUS — A software co-
ordination architecture. Science of Computer Programming, 31(2-3):205–229, 1998.

[BLN86] Carlo Batini, Maurizio Lenzerini, and Shamkant B. Navathe. A comparative
analysis of methodologies for database schema integration. ACM Computing
Survey, 18(4):323–364, 1986.

[BM07] Philip A. Bernstein and Sergey Melnik. Model management 2.0: manipulating
richer mappings. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, China, 2007.

[BSM+04] Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, and Timothy J.
Grose. Eclipse Modeling Framework. Addison-Wesely, 1st edition, 2004.

[CF01] Sara Comai and Piero Fraternali. A semantic model for specifying data-
intensive Web applications using WebML. In Proceedings of the 1st Semantic Web
Working Symposium (SWWS’01), CA, USA, July/August 2001.

[CFB+03] Stefano Ceri, Piero Fraternali, Aldo Bongio, Marco Brambilla, Sara Comai, and
Maristella Matera. Designing Data-Intensive Web Applications. Morgan Kauf-
mann, 1st edition, 2003.

174

Bibliography

[Che76] Peter P. Chen. The Entity-Relationship Model - Toward a Unified View of Data.
ACM Transactions on Database Systems, 1(1):9–36, 1976.

[DH05] AnHai Doan and Alon Y. Halevy. Semantic integration research in the database
community: A brief survey. AI Magazine, 26(1):83–94, 2005.

[Dij76] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[Ear90] Anthony Earl. Principles of a reference model for computer aided software
engineering environments. In Proceedings of the International workshop on Envi-
ronments on Software engineering environments, Chinon, France, 1990.

[EV06] Sven Efftinge and Markus Voelter. oAW xText - A framework for textual DSLs.
In Proceedings of the Eclipse Modeling Symposium at the Eclipse Summit Europe Con-
ference, Esslingen, Germany, 2006.

[FBJ+05] Marcos Didonet Del Fabro, Jean Bézivin, Frédéric Jouault, Erwan Breton, and
Guillaume Gueltas. AMW: a generic model weaver. In Proceedings of the 1ère
Journée sur l’Ingénierie Dirigée par les Modèles (IDM’05), France, 2005.

[FFVM04] Lidia Fuentes-Fernández and Antonio Vallecillo-Moreno. An Introduction to
UML Profiles. European Journal for the Informatics Professional, 5(2):5–13, April
2004.

[Fla02] Rony G. Flatscher. Metamodeling in EIA/CDIF—meta-metamodel and meta-
models. ACM Transactions on Modeling and Computer Simulation (TOMACS),
12(4):322–342, 2002.

[Fow99] Martin Fowler. Refactorings. Addison-Wesley, 1st edition, 1999.

[Fow05] Martin Fowler. Language Workbenches: The Killer-
App for Domain Specific Languages? available at
http://martinfowler.com/articles/languageWorkbench.html, June 2005.

[GCP01] Jaime Gómez, Cristina Cachero, and Oscar Pastor. Conceptual Modeling of
Device-Independent Web Applications. IEEE MultiMedia, 8(2):26–39, 2001.

[GV07] Iris Groher and Markus Voelter. XWeave: models and aspects in concert. In Pro-
ceedings of the 11th International Workshop on Aspect-oriented modeling (AOM’07),
Nashville, TN, 2007.

[GvD07] Bas Graaf and Arie van Deursen. Visualisation of Domain-Specific Modelling
Languages Using UML. In Proceedings of the 14th Annual IEEE International Con-
ference and Workshops on the Engineering of Computer-Based Systems (ECBS’07),
2007.

175

Bibliography

[Haa07] Laura M. Haas. Beauty and the beast: The theory and practice of information
integration. In Proceedings of the 11th International Conference on Database Theory
(ICDT’07), Barcelona, Spain, 2007.

[HK87] Richard Hull and Roger King. Semantic database modeling: Survey, applica-
tions, and research issues. ACM Computing Survey, 19(3):201–260, 1987.

[HK00] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques. Mor-
gan Kaufmann, 1st edition, 2000.

[HOT02] William H. Harrison, Harold L. Ossher, and Peri L. Tarr. Asymmetrically vs.
Symmetrically Organized Paradigms for Software Composition. Technical re-
port, IBM Research Division, Thomas J. Watson Research Center, December
2002.

[Iiv96] Juhani Iivari. Why are case tools not used? Communications of the ACM,
39(10):94–103, 1996.

[ISO96] ISO/IEC. 14977:1996(E) Information technology – Syntactic metalanguage –
Extended BNF, International standard, 1996.

[JBK06] Frédéric Jouault, Jean Bézivin, and Ivan Kurtev. TCS: a DSL for the specifica-
tion of textual concrete syntaxes in model engineering. In Proceedings of the 5th
International Conference on Generative Programming and Component Engineering,
(GPCE’06), Oregon, USA, 2006.

[Jen92] Kurt Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use. Springer, 1992.

[JK06] Frederic Jouault and Ivan Kurtev. Transforming Models with ATL. In Proceed-
ings of Satellite Events at the MoDELS 2005 Conference, Jamaica, 2006.

[Jou05] Frédéric Jouault. Loosely Coupled Traceability for ATL. In Proceedings of the
1st European Conference on Model Driven Architecture (ECMDA’05) – Workshop on
Traceability, Nuremberg, Germany, 2005.

[KAB02] Ivan Kurtev, Mehmet Aksit, and Jean Bézivin. Technical Spaces: An Initial Ap-
praisal. In Proceedings of the 10th International Conference on Cooperative Informa-
tion Systems (CoopIS’02), Carlifornia, Irvine, 2002.

[KK03] Nora Koch and Andreas Kraus. Towards a Common Metamodell for the Devel-
opment of Web Appliactions. In Proceedings of the 3rd International Conference on
Web Engineering (ICWE 2003), Oviedo, Spain, July 2003.

176

Bibliography

[KKK+06a] Gerti Kappel, Elisabeth Kapsammer, Horst Kargl, Gerhard Kramler, Thomas
Reiter, Werner Retschitzegger, Wieland Schwinger, and Manuel Wimmer. Lift-
ing Metamodels to Ontologies - A Step to the Semantic Integration of Modeling
Languages. In 9th International Conference on Model Driven Engineering Languages
and Systems (MoDELS’06), Italy, 2006.

[KKK+06b] Elisabeth Kapsammer, Horst Kargl, Gerhard Kramler, Gerti Kappel, Thomas
Reiter, Werner Retschitzegger, Wieland Schwinger, and Manuel Wimmer. On
Models and Ontologies - A Semantic Infrastructure Supporting Model Integra-
tion. In Proceedings of Modellierung 2006, Austria, 2006.

[KKK+07] Gerti Kappel, Horst Kargl, Gerhard Kramler, Andrea Schauerhuber, Martina
Seidl, Michael Strommer, and Manuel Wimmer. Matching Metamodels with
Semantic Systems - An Experience Report. In Workshop Proceedings of Daten-
banksysteme in Business, Technologie und Web (BTW’07), Germany, 2007.

[KKR04] Gerti Kappel, Elisabeth Kapsammer, and Werner Retschitzegger. Integrating
XML and Relational Database Systems. World Wide Web, 7(4):343–384, 2004.

[KKR+06] Gerhard Kramler, Gerti Kappel, Thomas Reiter, Elisabeth Kapsammer, Werner
Retschitzegger, and Wieland Schwinger. Towards a semantic infrastructure sup-
porting model-based tool integration. In Proceedings of the 1st International Work-
shop on Global integrated Model Management (GaMMa’06), Shanghai, China, 2006.

[KS91] Won Kim and Jungyun Seo. Classifying schematic and data heterogeneity in
multidatabase systems. IEEE Computer, 24(12):12–18, 1991.

[KS96] Vipul Kashyap and Amit P. Sheth. Semantic and Schematic Similarities Be-
tween Database Objects: A Context-Based Approach. VLDB Journal, 5(4):276–
304, 1996.

[KS05] Yannis Kalfoglou and W. Marco Schorlemmer. Ontology Mapping: The State of
the Art. In Dagstuhl Seminar Proceedings: Semantic Interoperability and Integration,
2005.

[KW08] Horst Kargl and Manuel Wimmer. SmartMatcher - How Examples and a Dedi-
cated Mapping Language can Improve the Quality of Automatic Matching Ap-
proaches. In Proceedings of the 1st International Workshop on Ontology Alignment
and Visualization (OnAV’08), Spain, 2008.

[LC00] Dongwon Lee and Wesley W. Chu. Comparative Analysis of Six XML Schema
Languages. ACM SIGMOD Record, 29(3):76–87, 2000.

177

Bibliography

[LLPM06] Björn Lundell, Brian Lings, Anna Persson, and Anders Mattsson. UML Model
Interchange in Heterogeneous Tool Environments: An Analysis of Adoptions
of XMI 2. In 9th International Conference on Model Driven Engineering Languages
and Systems (MoDELS’06), Italy, 2006.

[LM05] Ralf Lämmel and Erik Meijer. Mappings make data processing go ’round. In
Pre-Proceedings of the International Summer School on Generative and Transformation
Techniques in Software Engineering (GTTSE 2005), Braga, Portugal, July 2005.

[LN07] Frank Legler and Felix Naumann. A Classification of Schema Mappings and
Analysis of Mapping Tools. In Datenbanksysteme in Business, Technologie und
Web (BTW’07), Aachen, Germany, 2007.

[Mel04] Sergey Melnik. Generic Model Management: Concepts and Algorithms. Springer,
2004.

[MFV06] Nathalie Moreno, Piero Fraternalli, and Antonio Vallecillo. A UML 2.0 profile
for WebML modeling. In Proceedings of the 2nd International Workshop on Model-
Driven Web Engineering (MDWE 2006), Palo Alto, California, USA, page 4. ACM
Press, July 2006.

[MFV07] Nathalie Moreno, Piero Fraternali, and Antonio Vallecillo. WebML modeling in
UML. IET Software Journal, 1(3):67–80, 2007.

[MK07] Marion Murzek and Gerhard Kramler. The Model Morphing Approach - Hor-
izontal Transformations between Business Process Models. In Proceedings of
the 6th International Conference on Perspecitves in Business Information Research
(BIR’07), Tampere, Finnland, 2007.

[MMSV02] Alexander Maedche, Boris Motik, Nuno Silva, and Raphael Volz. MAFRA
- A MApping FRAmework for Distributed Ontologies. In Proceedings of the
13th European Conference on Knowledge Engineering and Knowledge Management
(EKAW’02), Spain, 2002.

[Mot87] A. Motro. Superviews: virtual integration of multiple databases. IEEE Trans.
Softw. Eng., 13(7):785–798, 1987.

[MSFB05] Pierre-Alain Muller, Philippe Studer, Frédéric Fondement, and Jean Bézivin.
Platform independent Web application modeling and development with Net-
silon. Software and System Modeling, 4(4):424–442, 2005.

[MSZJ04] Haohai Ma, Weizhong Shao, Lu Zhang, and Yanbing Jiang. Applying OO Met-
rics to Assess UML Meta-models. In Proceedings of the 7th International Conference

178

Bibliography

on the Unified Modelling Language: Modelling Languages and Applications (UML
2004), Lisbon, Portugal, October 2004.

[(NI04] National Information Standards Organization
(NISO). Understanding Metadata. available at
http://www.niso.org/standards/resources/UnderstandingMetadata.pdf,
2004.

[Obe88] Patricia A. Oberndorf. The Common Ada Programming Support Environ-
ment (APSE) Interface Set (CAIS). IEEE Transactions on Software Engineering,
14(6):742–748, 1988.

[OMG01] Object Management Group OMG. UML Specification Version 1.4.
http://www.omg.org/docs/formal/01-09-67.pdf, September 2001.

[OMG02] Object Management Group OMG. Meta Object Facility (MOF) Specification 1.4.
http://www.omg.org/docs/formal/02-04-03.pdf, April 2002.

[OMG03a] Object Management Group OMG. MDA Guide Version 1.0.1.
http://www.omg.org/docs/omg/03-06-01.pdf, June 2003.

[OMG03b] Object Management Group OMG. UML Specification: Infrastructure Version
2.0. http://www.omg.org/docs/ptc/03-09-15.pdf, November 2003.

[OMG04] Object Management Group OMG. Meta Object Facility (MOF) 2.0 Core Speci-
fication Version 2.0. http://www.omg.org/docs/formal/06-01-01.pdf, October
2004.

[OMG05a] Object Management Group OMG. Architecture Driven Modernization (ADM).
http://www.omg.org/adm, June 2005.

[OMG05b] Object Management Group OMG. Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification. Final Adopted Specification.,
November 2005.

[OMG05c] Object Management Group OMG. MOF 2.0/XMI Mapping Specification 2.1.
http://www.omg.org/docs/formal/05-09-01.pdf, September 2005.

[OMG05d] Object Management Group OMG. OCL Specification Version 2.0.
http://www.omg.org/docs/ptc/05-06-06.pdf, June 2005.

[OMG05e] Object Management Group OMG. UML Specification: Superstructure Version
2.0. http://www.omg.org/docs/formal/05-07-04.pdf, August 2005.

[OMG08] OMG. Common Object Request Broker Architecture (CORBA/IIOP). OMG,
http://www.omg.org/spec/CORBA/3.1/, 2008.

179

Bibliography

[Par72] David L. Parnas. On the Criteria To Be Used in Decomposing Systems into
Modules. Communications of the ACM, 15(12):1053–1058, December 1972.

[RB01] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic
schema matching. VLDB Journal, 10(4):334–350, 2001.

[Rei08] Thomas Reiter. T.R.O.P.I.C.: Transformation on Petri Nets In Color. PhD thesis,
Johannes Kepler University Linz, 2008.

[RWK07] Thomas Reiter, Manuel Wimmer, and Horst Kargl. Towards a runtime model
based on colored Petri-nets for the execution of model transformations. In Pro-
ceedings of the 3rd Workshop on Models and Aspects, Germany, 2007.

[Sch06] Douglas C. Schmidt. Guest editor’s introduction: Model-driven engineering.
IEEE Computer, 39(2):25–31, 2006.

[Sch07] Andrea Schauerhuber. aspectUWA - Applying Aspect-Orientation to the Model-
Driven Development of Ubiquitous Web Applications. PhD thesis, Vienna Univer-
sity of Technology, 2007.

[SD05] Andy Schürr and Heiko Dörr. Introduction to the special SoSym section on
model-based tool integration. Software and System Modeling (SoSym), 4(2):109–
111, 2005.

[SdB05] François Scharffe and Jos de Bruijn. A language to specify mappings between
ontologies. In Proceedings of the 1st International Conference on Signal-Image Tech-
nology & Internet-Based Systems (SITIS’05), Yaounde, Cameroon, 2005.

[SE05] Pavel Shvaiko and Jérôme Euzenat. A survey of schema-based matching ap-
proaches. Journal on Data Semantics IV, pages 146–171, 2005.

[SHT+77] Nan C. Shu, Barron C. Housel, Robert W. Taylor, Sakti P. Ghosh, and Vincent Y.
Lum. EXPRESS: A Data EXtraction, Processing, amd REStructuring System.
ACM Trans. Database Syst., 2(2):134–174, 1977.

[Sof00] Rational Software. Migrating from XML DTD to XMLSchema using UML. Ra-
tional Software White Paper, August 2000.

[SPD92] Stefano Spaccapietra, Christine Parent, and Yann Dupont. Model independent
assertions for integration of heterogeneous schemas. VLDB Journal, 1(1):81–126,
1992.

[SSK+06] Andrea Schauerhuber, Wieland Schwinger, Elisabeth Kapsammer, Werner Rets-
chitzegger, and Manuel Wimmer. Towards a Common Reference Architecture
for Aspect-Oriented Modeling. In Proceedings of the 8th International Workshop on
Aspect-Oriented Modeling (AOM’06), Bonn, Germany, March 2006.

180

Bibliography

[Sta05] Ryan Stansifer. EBNF Grammar for Mini-Java. available at
http://www.cs.fit.edu/ryan/cse4251/mini_java_grammar.html, August
2005.

[Ste07] Perdita Stevens. Bidirectional Model Transformations in QVT: Semantic Issues
and Open Questions. In Proceedings of the 10th International Conference on Model
Driven Engineering Languages and Systems (MoDELS’07), Nashville, USA, 2007.

[SWK06] Andrea Schauerhuber, Manuel Wimmer, and Elisabeth Kapsammer. Bridg-
ing Existing Web Modeling Languages to Model-Driven Engineering: A Meta-
model for WebML. In Proceedings of the 2nd International Workshop on Model-
Driven Web Engineering (MDWE’06), Palo Alto, California, USA, July 2006.

[Tra05] Laurence Tratt. Model transformations and tool integration. Software and System
Modeling, 4(2):112–122, 2005.

[Ulr05] William Ulrich. A Status on OMG Architecture-Driven Modernization Task
Force. available at http://www.omg.org/adm-status/, 2005.

[VG07a] Markus Voelter and Iris Groher. Handling Variabilitiy in Model Transforma-
tions and Generators. In Workshop Proceedings of 7th OOPSLA Workshop on
Domain-Specific Modeling (DSM’07), Montreal, Canada, 2007.

[VG07b] Markus Voelter and Iris Groher. Product Line Implementation using Aspect-
Oriented and Model-Driven Software Development. In Proceedings of the 11th
International Software Product Line Conference (SPLC’07), 2007.

[VIG05] Fabio Vitali, Angelo Di Iorio, and Daniele Gubellini. Design patterns for de-
scriptive document substructures. In Proceedings of the Extreme Markup Lan-
guages Conference, Montréal, Quebec, Canada, August 2005.

[VKC+07] Antonio Vallecillo, Nora Koch, Cristina Cachero, Sara Comai, Piero Fraternali,
Irene Garrigós, Jaime Gómez, Gerti Kappel, Alexander Knapp, Maristella Mat-
era, Santiago Meliá, Nathalie Moreno, Birgit Pröll, Thomas Reiter, Werner Rets-
chitzegger, Eduardo Rivera, Andrea Schauerhuber, Wieland Schwinger, Manuel
Wimmer, and Gefei Zhang. MDWEnet: A Practical Approach to Achieving In-
teroperability of Model-Driven Web Engineering Methods. In Workshop Pro-
ceedings of 7th International Conference on Web Engineering (ICWE’07), Italy, July,
2007.

[VP04] Dániel Varró and András Pataricza. Generic and Meta-transformations for
Model Transformation Engineering. In Proceedings of the 7th International Confer-
ence on the Unified Modeling Language (UML’04), Portugal, 2004.

181

Bibliography

[W3C04] World Wide Web Consortium W3C. XML Schema Part 0: Primer Second Edi-
tion. http://www.w3.org/TR/XML Schema-0/, October 2004.

[W3C06] World Wide Web Consortium W3C. Extensible Markup Language (XML) 1.1
(Second Edition). http://www.w3c/TR/xml11/, September 2006.

[Was89] Anthony I. Wasserman. Tool integration in software engineering environments.
In Proceedings of the International Workshop on Software Engineering Environments,
Chinon, France, 1989.

[Wir77] Niklaus Wirth. What can we do about the unnecessary diversity of notation for
syntactic definitions? Communications of the ACM, 20(11):822–823, 1977.

[WK05] Manuel Wimmer and Gerhard Kramler. Bridging Grammarware and Model-
ware. In Proceedings of Satellite Events at the MoDELS 2005 Conference, Jamaica,
2005.

[WS07] Ingo Weisemöller and Andy Schürr. A comparison of standard compliant ways
to define domain specific languages. In Proceedings of the 4th International Work-
shop on Software Language Engineering (ATEM’07), 2007.

[WSKK06] Manuel Wimmer, Andrea Schauerhuber, Elisabeth Kapsammer, and Gerhard
Kramler. From Document Type Definitions to Metamodels: The WebML Case
Study. Technical report, Vienna University of Technology, March 2006.

[WSS+07] Manuel Wimmer, Andrea Schauerhuber, Michael Strommer, Wieland
Schwinger, and Gerti Kappel. A Semi-automatic Approach for Bridging
DSLs with UML. In Workshop Proceedings of 7th OOPSLA Workshop on
Domain-Specific Modeling (DSM’07), Canada, 2007.

[WSSK07] Manuel Wimmer, Andrea Schauerhuber, Wieland Schwinger, and Horst Kargl.
On the Integration of Web Modeling Languages: Preliminary Results and Fu-
ture Challenges. In Workshop Proceedings of 7th International Conference on Web
Engineering (ICWE’07), Italy, 2007.

182

Curriculum Vitae

Manuel Wimmer, MSc.
Schanzstrasse 49/4 Email: wimmer@big.tuwien.ac.at
1140 Wien, Austria Web: http://www.big.tuwien.ac.at/staff/wimmer

Date of Birth: 25-Mar-1980
Nationality: Austria

Education

PhD Studies in Business Informatics April 2005 - April 2008
Vienna University of Technology, Austria
Supervision:
o.Univ.-Prof. Dipl.-Ing. Mag. Dr. Gerti Kappel, Vienna University of Technology, Austria
a.Univ.-Prof. Mag. Dr. Werner Retschitzegger, Johannes Kepler University Linz, Austria

MSc Business Informatics October 2000 - March 2005
Vienna University of Technology, Austria
Supervision: o.Univ.-Prof. Dipl.-Ing. Mag. Dr. Gerti Kappel
Thesis: Model Driven Architecture in der Praxis - Evaluierung von aktuellen Werkzeugen
und Fallstudie.

Graduation from Secondary School June 1999

Work Experience

University Assistant April 2005 - April 2008
Vienna University of Technology, Institute of Software Technology and Interactive Sys-
tems
Courses:
• Object-oriented Analysis and Design (UML)
• Modeling Techniques and Methods (ER, UML)
• Web Engineering (Servlets, JSPs, XML, Web Services)

Bibliography

• Model Engineering (Metamodeling, Model Transformations, Code Generation)

Teaching Assistant March 2004 - March 2005
Vienna University of Technology, Institute of Software Technology and Interactive Sys-
tems
Courses:
• Object-oriented Analysis and Design (UML)
• Modeling Techniques and Methods (ER, UML)
• Web Engineering (Servlets, JSPs, XML, Web Services)

Tutor October 2002 - January 2005
Vienna University of Technology, Institute of Software Technology and Interactive Sys-
tems
Courses:
• Introduction to Programming with Java
• Object-oriented Analysis and Design (UML)
• Modeling Techniques and Methods (ER, UML)
• Web Engineering (Servlets, JSPs, XML, Web Services)

Awards & Achievments

Best Paper Award 2005
M. Wimmer, G. Kramler: Bridging Grammarware and Modelware. 4th Workshop in Soft-
ware Model Engineering, in conjunction with MoDELS/UML’06, October 3rd, 2005.

Lower Austria Top-Scholarship 2003
(In German: Top-Stipendium des Landes Niederösterreich)

Publications

Book Chapters

1. “Modellgetriebene Softwareentwicklung in der Praxis”. In Martin Hitz, Gerti Kappel,
Elisabeth Kapsammer, and Werner Retschitzegger, “UML@Work - Objektorientierte
Modellierung mit UML 2”. 3rd Edition, dpunkt.verlag, 2005, pp. 343-368.

Journal Papers

1. Andrea Schauerhuber, Manuel Wimmer, Elisabeth Kapsammer, Wieland Schwinger,
and Werner Retschitzegger. “Bridging WebML to Model-Driven Engineering: From

184

Bibliography

DTDs to MOF”. IET Software Journal, Vol. 1, No. 3, Institution of Engineering and
Technology, June 2007.

Conference Papers

1. Michael Strommer and Manuel Wimmer. “A Framework for Model Transformation
By-Example: Concepts and Tool Support”. Proc. of the 46th International Confer-
ence on Technology of Object-Oriented Languages and Systems (TOOLS’08), Zurich,
Switzerland, July 2008. (to appear)

2. Gerti Kappel, Horst Kargl, Thomas Reiter, Werner Retschitzegger, Wieland Schwinger,
Michael Strommer, and Manuel Wimmer. “A Framework for Building Mapping Oper-
ators Resolving Structural Heterogeneities”. Proc. of the 7th International Conference
on Information Systems Technology and its Applications (ISTA’08), Klagenfurt, Aus-
tria, April 2008. (to appear)

3. Manuel Wimmer, Michael Strommer, Horst Kargl, and Gerhard Kramler. “Model
Transformation Generation By-Example”. Proc. of the 40th Hawaii International Con-
ference on Systems Science (HICSS’07), Hawaii, January 2007.

4. Gerti Kappel, Elisabeth Kapsammer, Horst Kargl, Gerhard Kramler, Thomas Reiter,
Werner Retschitzegger, Wieland Schwinger, and Manuel Wimmer. “Lifting metamod-
els to ontologies - a step to the semantic integration of modeling languages”. Proc. of
the 9th International Conference on Model Driven Engineering Languages and Sys-
tems (MoDELS/UML’06), Genova, Italy, October 2006.

5. Gerti Kappel, Elisabeth Kapsammer, Horst Kargl, Gerhard Kramler, Thomas Reiter,
Werner Retschitzegger, Wieland Schwinger, and Manuel Wimmer. “On Models and
Ontologies - A Layered Approach for Model-based Tool Integration”. Proc. of Model-
lierung 2006, Innsbruck, March 2006.

Workshop Papers

1. Manuel Wimmer, Andrea Schauerhuber, Michael Strommer, Jürgen Flandorfer, and
Gerti Kappel. “How Web 2.0 can leverage Model Engineering in Practice”. Proc. of the
Workshop on Domänenspezifische Modellierungssprachen (DSML’08), in conjunction
with Modellierung’08, Berlin, Deutschland, March 2008.

2. Horst Kargl and Manuel Wimmer. “SmartMatcher - How Examples and a Dedicated
Mapping Language can Improve the Quality of Automatic Matching Approaches”.
Proc. of the 1st International Workshop on Ontology Alignment and Visualization
(OnAV’08), in conjunction with CISIS’08, Barcelona, Spain, March 2008.

3. Manuel Wimmer, Andrea Schauerhuber, Michael Strommer, Wieland Schwinger, and
Gerti Kappel. “A Semi-automatic Approach for bridging DSLs with UML”. Proc. of

185

Bibliography

the 7th OOPSLA Workshop on Domain-Specific Modeling, in conjunction with OOP-
SLA’07, Montreal, Canada, October 2007.

4. Michael Strommer, Marion Murzek, and Manuel Wimmer. “Applying Model Trans-
formation By-Example on Business Process Modeling Languages”. Proc. of the 3rd
International Workshop on Foundations and Practices of UML, in conjunction with
ER’07, Auckland, New Zealand, November 2007

5. Thomas Reiter, Manuel Wimmer, and Horst Kargl. “Towards a runtime model based
on colored Petri-nets for the execution of model transformations”. Proc. of the 3rd
Workshop on Models and Aspects - Handling Crosscutting Concerns in MDSD, in
conjunction with ECCOP’07, Berlin, Germany, July 2007.

6. Manuel Wimmer, Horst Kargl, Martina Seidl, Michael Strommer, and Thomas Reiter.
“Integrating Ontologies with CAR-Mappings”. Proc. of the 1st International Work-
shop on Semantic Technology Adoption in Business (STAB’07), in conjunction with
ESCT’07, Vienna, June 2007.

7. Manuel Wimmer, Andrea Schauerhuber, Wieland Schwinger, and Horst Kargl. “On
the Integration of Web Modeling Languages: Preliminary Results and Future Chal-
lenges”. Proc. of the 3rd International Workshop on Model-Driven Web Engineering
(MDWE 2007), in conjunction with ICWE’07, Como, Italy, July 2007.

8. A. Vallecillo, N. Koch, C. Cachero, S. Comai, P. Fraternali, I. Garrigós, J. Gómez, G.
Kappel, A. Knapp, M. Matera, S. Meliá, N. Moreno, B. Pröll, T. Reiter, W. Retschitzeg-
ger, J. E. Rivera, A. Schauerhuber, W. Schwinger, M. Wimmer, G. Zhang: “MDWEnet:
A Practical Approach to Achieving Interoperability of Model-Driven Web Engineering
Methods”. Proc. of the 3rd International Workshop on Model-Driven Web Engineer-
ing (MDWE 2007), in conjunction with ICWE’07, Como, Italy, July 2007.

9. Andrea Schauerhuber, Manuel Wimmer, Wieland Schwinger, Elisabeth Kapsammer,
and Werner Retschitzegger. “Aspect-Oriented Modeling of Ubiquitous Web Appli-
cations: The aspectWebML Approach”. Proc. of the 14th Annual IEEE International
Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’07),
Tucson, Arizona, USA, March 2007.

10. Gerti Kappel, Horst Kargl , Gerhard Kramler , Andrea Schauerhuber , Martina Seidl,
Michael Strommer, and Manuel Wimmer. “Matching Metamodels with Semantic Sys-
tems - An Experience Report”. 12. GI-Fachtagung für Datenbanksysteme in Business,
Technologie und Web, Aachen, Germany, March 2007.

11. Horst Kargl, Michael Strommer, and Manuel Wimmer. “Measuring the Explicitness
of Modeling Concepts in Metamodels”. Proc. of the 1st Workshop on Model Size
Metrics, in conjunction with MoDELS/UML’06, Genova, Italy, October 2006.

12. Andrea Schauerhuber, Manuel Wimmer, and Elisabeth Kapsammer. “Bridging ex-
isting Web Modeling Languages to Model-Driven Engineering: A Metamodel for
WebML.” Proc. of the 2nd International Workshop on Model-Driven Web Engineer-

186

Bibliography

ing (MDWE 2006), in conjunction with ICWE’06, Standford Linear Accelerator Center,
Palo Alto, California, USA, July 2006.

13. Andrea Schauerhuber, Wieland Schwinger, Elisabeth Kapsammer, Werner Retschitzeg-
ger, Manuel Wimmer. “Towards a Common Reference Architecture for Aspect-Oriented
Modeling”. 8th International Workshop on Aspect-Oriented Modeling, in conjunction
with AOSD 2006, Bonn, Germany, March 21, 2006.

14. Manuel Wimmer and Gerhard Kramler. “Bridging Grammarware and Modelware”.
Proc. of the 4th Workshop in Software Model Engineering, in conjunction with MoD-
ELS/UML’05, Jamaica, October 2005.

Technical Reports

1. Andrea Schauerhuber, Wieland Schwinger, Werner Retschitzegger, Manuel Wimmer,
and Gerti Kappel. “A Survey on Web Modeling Approaches for Ubiquitous Web Ap-
plications”. Technical Report, Vienna University of Technology, October 2007.

2. Andrea Schauerhuber, Wieland Schwinger, Elisabeth Kapsammer, Werner Retschitzeg-
ger, Manuel Wimmer, and Gerti Kappel. “A Survey on Aspect-Oriented Modeling
Approaches”. Technical Report, Vienna University of Technology, October 2007.

3. Manuel Wimmer, Andrea Schauerhuber, Elisabeth Kapsammer, and Gerhard Kramler.
“From Document Type Definitions to Metamodels: The WebML Case Study”. Techni-
cal Report, Vienna University of Technology, March 2006.

187

