
DIPLOMARBEIT

AMBA4SPEAR2: An AMBA

Extension Module for the

SPEAR2 Processor Core

ausgeführt am Institut für

Technische Informatik, Embedded Computing Systems Group

Technische Universität Wien

unter der Anleitung von

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Steininger

und

Univ.Ass. Dipl.-Ing. Dr.techn. Martin Delvai

von

Josef Mosser

Matr.-Nr. 0126655

Bruggen 20

9761 Greifenburg

Wien, 6. März 2008

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Acknowledgements

I want to thank my parents and my grandparents who offered me the possi-

bility to study computer science at the technical university of Vienna. They

supported me on many occasions and also offered financial help.

My thanks also go to Martin Delvai for supervising my thesis, offering me

help whenever I needed it. I would also like to thank him, Andreas Steininger

and Heidemarie Rice for proofreading my thesis.

Kurzfassung

Die immer mächtiger und kostengünstiger werdenden FPGAs haben den Ent-

wurf digitaler Schaltungen revolutioniert - zum einen können ganz maßge-

schneiderte System in einem einzigen Chip integriert werden zum anderen

haben nun auch klein- und mittelständische Unternehmen die Möglichkeit

ihre eigenen “ICs” zu bauen. Diesem Trend Rechnung tragend werden einer-

seits immer mehr vorgefertigte und getestete IP-Cores angeboten und ande-

rerseits bieten Werkzeughersteller sogenannte “Frameworks” an, um solche

Systeme besser assemblieren zu können. Um verschiedene IP-Cores unter-

einander bzw. mit der selbstentworfenen Hardware zu verbinden, bedarf es

einer normierten Schnittstelle oder eines normierten Busssystems. Im Rah-

men dieser Diplomarbeit werden die gängigsten Bussysteme untersucht und

miteinander verglichen und anschließend ein Busssystem, der AMBA Bus,

näher vorgestellt. Im praktischen Teil der Diplomarbeit wurde für den am

Institut entwickelten Prozessorkern SPEAR2 ein AMBA Interface entwor-

fen und speziell auf letzteren zugeschnitten. Abschließend wurde die korrek-

te Funktionalität durch Anbinden verschiedener IP Module (SPI Interface,

UART, etc.) an den Prozessor getestet und verifiziert.

Abstract

FPGAs are getting more powerful and more economical, leading to a rev-

olution in designing digital circuits - on the one hand whole custom made

systems can be integrated on a single chip, on the other hand small and

medium-sized enterprises have the possibility to design their own ICs. Driven

by this trend, more and more predesigned and pretested IP cores are avail-

able and the tool suppliers now offer so called frameworks to help assembling

those systems. To connect different IP cores and/or its own custom hardware,

standardized interfaces or standardized bus systems are needed. Within the

scope of this thesis, common bus systems will be analyzed and compared fol-

lowed by a more detailed description of one bus system: the AMBA bus. In

the practical part of this thesis, an AMBA interface for the already existing

SPEAR2 processor developed by our institute will be developed. Finally, the

functionality of this new interface will be tested and verified by connecting

IP cores (SPI Interface, UART, etc.) to the SPEAR2.

Contents

1 Introduction 1

2 State of the Art bus systems 4

2.1 Different types of integrating components into a system 4

2.1.1 Memory-mapped components 4

2.1.2 Port-mapped components 5

2.1.3 Shared Memory components 6

2.2 Different bus systems . 8

2.2.1 CoreConnect . 8

2.2.2 Wishbone . 11

2.2.3 System Interconnect Fabric 15

2.3 Comparison of the State of the Art bus systems 17

2.4 Conclusion of the State of the Art bus systems 20

3 AMBA 2.0 21

3.1 Overview of the AMBA 2.0 bus system 21

3.2 AMBA 2.0 architecture . 22

3.3 Features of AMBA 2.0 . 26

3.4 Traps of AMBA 2.0 . 27

3.5 Simple AHB/ASB data transfers 27

3.6 Complex AHB/ASB data transfers 29

3.6.1 Burst data transfers 29

3.6.2 Retry (or split) data transfers 32

3.7 APB data transfers . 33

3.8 Usage of AMBA 2.0 . 35

CONTENTS vi

4 AMBA Extension Module for SPEAR2 36

4.1 AMBA and the GRLIB . 36

4.1.1 What is GRLIB? . 36

4.1.2 GRLIB and its extensions in regard to AMBA 2.0 . . . 38

4.1.3 GRLIB and its address space 39

4.2 SPEAR2 Extension Modules 42

4.2.1 Overview of the SPEAR2 extension concept 42

4.2.2 Limitations of the SPEAR2 extension concept 44

4.3 AMBA integration approaches for SPEAR2 44

4.3.1 First approach . 45

4.3.2 Limitations of the first approach 51

4.3.3 Second approach . 52

4.3.4 Integration of the second approach into SPEAR2 . . . 54

4.3.5 Two different state machines 55

4.3.6 Summary of the whole AMBA Extension Module inte-

gration . 56

5 Results and Experiments 58

5.1 Integrating the AMBA Extension Module into the SPEAR2 . 58

5.1.1 Interfaces of the AMBA Extension Modules 58

5.1.2 Integrating the new Extension Modules 60

5.1.3 Transparent mode transfer and the address space . . . 65

5.2 Comparison of SPEAR2 and SPEAR2 with AMBA 66

5.2.1 Setup of the experiment environment 66

5.2.2 Result of the experiment 67

5.2.3 Summary of the experiment 68

Conclusion 70

A Signal description 72

A.1 Shared memory . 72

A.2 AMBA state machine . 73

A.3 AMBA Extension Module . 76

CONTENTS vii

B Integration code 79

B.1 Internal signals . 79

B.2 AMBA components integration 80

B.3 SPEAR2 code modification . 83

List of Figures

2.1 schematics of a memory-mapped system 5

2.2 schematics of a port-mapped system 6

2.3 schematics of a MESI system 7

2.4 CoreConnect bus system schematic[11] 9

2.5 Wishbone on a SoC example 13

2.6 System Interconnect Fabric on a FPGA example[2] 16

3.1 typical AMBA system[4] . 23

3.2 AMBA multiplexer interconnect 24

3.3 AHB master requests bus[4] 28

3.4 example of AHB data transfer[4] 28

3.5 example of AHB data transfer with stall[4] 29

3.6 difference between wrapping burst and incremental burst . . . 31

3.7 example of AHB incremental burst data transfer with stall[4] . 32

3.8 example of a AHB retry data transfer[4] 33

3.9 APB state diagram[4] . 34

3.10 APB write transfer[4] . 34

3.11 APB read transfer[4] . 35

4.1 GRLIB interconnect[8] . 40

4.2 Plug & Play information register layout[8] 41

4.3 schematics of the AMBA state machine 45

4.4 schematic of AMBA Extension Module - first approach 50

4.5 schematic of AMBA extension of SPEAR2 51

LIST OF FIGURES ix

5.1 Interconnect of AMBA modules 59

5.2 Internal structure of a SPEAR2 with AMBA Extension Module 61

List of Tables

2.1 Comparison of state of the art bus systems 18

3.1 Comparison of burst modes 30

5.1 Result of the experiment . 67

Chapter 1

Introduction

In these days the complexity of digital circuits is rising dramatically fast.

Driving forces for this trend are the introduction of new technologies such as

FPGAs, higher integration densities and resulting from that lower costs[10].

In contrast to that, high level design tools cannot keep up with the technolog-

ical progress. This results in the so called “productivity” gap as mentioned

in the International Rechnology Roadmap for Semiconductors 1999.

To reduce the productivity gap, new approaches for faster and less error

prone design methods were needed: the birth of the IP based design. The

IP based design uses predesigned function blocks like UARTs, processors,

memories ... and put them together on a chip. The big advantage of this

method is the breakdown of the complexity since the whole design can be

broken down into smaller sub designs. Another advantage is that those com-

ponents can be reused or, if the component is not available in the company’s

own library, can be bought from a 3rd party vendor that specialises on IP

component design. This gives the advantage that the bought component is

functioning and far less error prone than someone’s own design written under

time pressure since the 3rd party vendor makes it’s living by selling function-

ing components. Another side effect of this design method is the time saving

in the coding phase and thus this time can be used to enhance the design.

But this step alone is not enough because the blocks are not connected.

So new interconnection methods that take general purpose communication

2

systems into consideration were needed: the bus systems.

Now having these two fundamental new design approaches, the limitation

of the new idea was quickly reached. There is no such thing as a general

purpose communication system that is good in every field of application.

Having reached that conclusion, a differentiation of the bus systems was

introduced. This differentiation takes different properties of the bus systems

into consideration and categorizes the bus system based on those properties.

The most common of those differentiations is the performance based cat-

egorization: high performance bus systems versus low to middle range per-

formance bus systems. Another reason why this property is willingly chosen

is because of the dependency of a lot of other properties on this property. In

most cases the other properties like overhead and complexity are dependent

on the performance of the bus. Normally a high performance bus system

needs a higher overhead and a more complex structure to ensure high per-

formance, low latency and good bus utilization when lots of components

use the bus. In contrast to high performance, low and middle range perfor-

mance components normally do not need such complex structures, because

the components are not so fast as necessary to utilize the bus to its fullest.

Today there are quite a few bus systems to choose among. The range of

those bus systems cover error prone bus systems to low latency bus systems,

specialized bus systems to common bus systems, proprietary bus systems to

open bus systems.

The choice of the bus system should also be influenced by its popularity

and the available supply of 3rd party components.

This thesis is about bus systems with a focus on the AMBA bus and its

implementation in the SPEAR2 project.

In Chapter 2 an overview of the state of the art bus systems will be given.

Three different bus systems will be described where every bus system covers

another area of application. The AMBA 2.0 bus system will be described in

Chapter 3. This description will be more detailed than in the one in Chapter

2 since the AMBA 2.0 bus will be needed in the 4th Chapter, where the

3

integration of the SPEAR2 processor core into an AMBA 2.0 communica-

tion network will be presented. Having presented different design approaches

for integration the SPEAR2 into an AMBA 2.0 network with all its limita-

tions and solutions, the results and experiments of the integration will be

presented. In Chapter 5 a short summary of the whole thesis will be given,

pointing out the most important aspects of this thesis. Finally a short con-

clusion will sum up everything and point out the most important findings of

this thesis.

Chapter 2

State of the Art bus systems

This chapter is about state of the art bus systems and different ways of inte-

grating components. After presenting different methods of tying components

to the existing design, selected state of the art bus systems will be described

with a following comparison of those. Since there are lots of different bus

systems, three representative bus systems were chosen.

2.1 Different types of integrating components

into a system

Knowing that IP based designs are a way to reduce complexity, design pat-

terns for tying components to the core are needed. Since different needs

cannot be solved with one pattern in a satisfying way, this Section will cover

the most common ones and describe their characteristics.

2.1.1 Memory-mapped components

Memory-mapped components use the same data and address bus as the mem-

ory. This means, that for the CPU there is no difference between writing (or

reading) to the memory or writing (or reading) to a component[7, 15] (see

Figure 2.1 for a schematic).

The advantage of this method is its practically non existing complexity.

2.1. DIFFERENT TYPES OF INTEGRATING COMPONENTS INTO A
SYSTEM 5

Figure 2.1: schematics of a memory-mapped system

Besides that, it is transparent for software, too. The CPU needs only and ad-

ditional decoder to join the responce of the memory and the memory mapped

components. The CPU applies the same address and data bus to both, mem-

ory and memory mapped components. The response of the components and

the memory is unified by a simple MUX. In this way the CPU gets only a

single response. Besides that, all memory access methods are also available

for memory-mapped components (address with an offset ...).

The disadvantage of this method is the address space that is wasted since

no data can be memory stored in those address spaces. In modern 32 bit

CPU’s or higher ones this does not matter, since the address space is big

enough. In 8 bit or 16 bit CPU’s this matters, since the address space is

already limited. Another disadvantage occurs when using slow components

and fast memories. In this constellation, the slow components block the CPU

and caching becomes tricky.

2.1.2 Port-mapped components

Port-mapped components have a dedicated address space accomplished by

using an extra bus dedicated to the components or by using and extra compo-

nent - signal that indicates if a component is meant or the memory[7, 18, 15]

(see Figure 2.2 for a schematic). To write to (or read from) a component,

special dedicated CPU instructions are needed.

The advantage of port-mapped components is the distinction between

2.1. DIFFERENT TYPES OF INTEGRATING COMPONENTS INTO A
SYSTEM 6

Figure 2.2: schematics of a port-mapped system

memory address space and component address space. This is an enormous

improvement for CPU’s with limited addressing capabilities, because now

the whole address space can be used for accessing memory. This integration

method is more secure, too. For example it is not possible for a stack to grow

outside its own memory space and push data into a components address

space. Port-mapped components also produce more understandable code

since own instructions are needed for using those components.

The main disadvantage of this integration type is its overhead. It results

in a more complex structure of the CPU, because of the additional data and

address bus, and it also needs its own decoder logic. Another disadvantage is

the larger ISA 1 because own instructions are needed to write to port-mapped

components.

2.1.3 Shared Memory components

Shared Memory components share, like the name suggests, a memory where

every component has access to. The advantage of this integration method

is that nearly every component can be connected using this method (i.e.

two CPUs)[7, 18, 10]. It also supports the sharing of large amounts of data

1Instruction Set Architecture

2.1. DIFFERENT TYPES OF INTEGRATING COMPONENTS INTO A
SYSTEM 7

between components. But in order to function properly a coordinated access

is required. A method for coordinating the access to the shared memory is

the MESI protocol.

The MESI protocol was invented at the Illinous University and thus also

known as Illinois protocol. It is used to assure memory (or cache) coherency.

It uses status flags for every memory word to define its current status and

a shared memory that holds the data that every connected component has

access to. The four states that a memory word can have are: Modified,

Exclusive, Shared or Invalid. Another precondition that has to be met is that

every component can “hear” what another component wants to read[7, 18, 15]

(and thus a shared bus is often used for connecting all components; see Figure

2.3 for a schematic).

Figure 2.3: schematics of a MESI system

The function of the protocol is simple: If component X wants to use the

data at a given address A, it signals this to the bus. In the next cycle, the

shared memory sends the data on the bus, component X receives it and marks

it with an E since no other component has the data at address A. Sometime

later, component Y wants the same data, too. It also sends it request to the

bus. The shared memory sends the desired data back, but since X already

got the data, X signals that it has the data, too. So now component X and

Y mark the data with an S since both of them hold the data. After some

time component X finishes its manipulation of the data and marks it now

with an M since it has another value than in component Y. At the same

time is tells every other component that is has changed the value and thus

every other component marks the data at the address A with an I. Now, if

2.2. DIFFERENT BUS SYSTEMS 8

Y wants to use the data, it has to get it again since it is marked with an

I. So Y sends the request on the bus again. Hearing the request of Y, X

sends a retry back, signalling that Y has to send the request again. At the

same time X sends the new data to the shared memory and marks the data

it holds with an E (since it is again the only component that has the current

value of address A). Now Y sends its request again, this time receiving the

new data from the shared memory. X signals again that it has the value too,

so both components mark the data with an S again, and so on.

The drawback of this integration method is its memory overhead. For

every data word additional 2 bits of status information have to be stored.

Thus the MESI protocol is mainly used in caches. In addition to that, the

component always has to listen to the bus and check / update its memory if

an invalid or a data request appears. Thus power saving techniques are not

as easy to implement as in other integration methods.

2.2 Different bus systems

After reading about different integration approaches, this Section will discuss

different State of the Art bus systems. All below mentioned bus systems can

be implemented using one of the above mentioned integration methods.

2.2.1 CoreConnect

The CoreConnect bus system[12] was invented by IBM2. Its original purpose

was to ensure communication between macros in IBM Blue LogicTM design.

Soon realizing, that those macros and the bus system are powerful design

patterns, IBM expanded their use. Today it is a powerful bus system with

lots of components available for it, either provided by IBM or 3rd party

vendors.

2International Business Machines

2.2. DIFFERENT BUS SYSTEMS 9

CoreConnect buses

The CoreConnect architecture provides three different buses to connect user

logic, cores and library macros:

• Processor Local Bus (PLB)

• On-Chip Peripheral Bus (OPB)

• Device Control Register (DCR) Bus

For a visualization of the schematic of the CoreConnect bus system, see

Figure 2.4

Figure 2.4: CoreConnect bus system schematic[11]

Of these three buses only two are used for transferring data between con-

nected components: the Processor Local Bus (PLB) and the On-Chip Pe-

ripheral Bus (OPB)[12]. As the name suggests, the PLB is designed for high

bandwidth, low latency and highly integrated components like processors,

external memory controllers and DMA3 controllers. The OPB is used to

prevent bottlenecks implied by high latency or low bandwidth components.

So the primary usage of this bus is for I/O - components like serial ports,

3Direct Memory Access

2.2. DIFFERENT BUS SYSTEMS 10

timers, UARTs4 or parallel ports. To ensure an ordered access to the bus,

every PLB and every OPB bus needs its own arbiter (see Chapter 3.2 for an

example of an arbiter) that controls the usage of the bus. To connect those

two buses, a so called OPB bridge is needed. Its function is simple: to act

as a PLB slave and as an OPB master and establish a connection between

those two “virtual” components.

The third of the above mentioned buses is the Device Control Register

(DCR) Bus[12]. It is used for transferring status and configuration data

between the connected components. Since in most cases the status and con-

figuration data does not need to be accessed in low latency context, there

is not a distinction between high performance and low performance DCR.

Every component (either PLB or OPB) uses the same DCR bus.

Features of CoreConnect

After describing the different buses in CoreConnect, the features of Core-

Connect will be mentioned next.

The advantages of CoreConnect[11] are:

• fully specified and published CoreConnect specification

• no-fee, no-royalty license

• 3 different CoreConnect version to support a variety of applications

(32-, 64- and 128 bit version)

• 2 data buses to prevent bottlenecks: a high speed bus (PLB) and a low

speed bus (OPB)

• dedicated bus for status and configuration data (connects all compo-

nents for status information sharing or ...)

4Universal Asynchronous Receiver Transmitter

2.2. DIFFERENT BUS SYSTEMS 11

Traps of CoreConnect

There is no advantage without a disadvantage. The same applies to the

CoreConnect bus system, too.

The main disadvantages of CoreConnect[13, 11] are:

• complex bus system resulting in more error prone designs due to its

complexity

• different versions of CoreConnect are not compatible (they can only be

made compatible by adding a new complexity level to the master that

supports transactions)

• every bus (in highest degree usage three buses) has to be managed

Usage of CoreConnect

Since CoreConnect is an invention of IBM, it is used in nearly every Pow-

erPC based application. This also includes Xilinx FPGA’s, which uses the

PowerPC 440 as its hard processor core.

Summary of CoreConnect

To sum everything up, the CoreConnect bus system is a complex and pow-

erful bus system. It combines speed, high bandwidth and low latencies for

applications at the cost of more overhead and more error prone designs due

to its complexity.

2.2.2 Wishbone

The main difference between Wishbone5 and the above mentioned bus sys-

tems is that Wishbone is an open source bus system. No fees or licensing

5The term “WISHBONE interconnect” was coined by Wade Peterson of Silicore Cor-
poration. During the initial definition of the scheme he was attempting to find a name
that was descriptive of a bi-directional data bus that used either multiplexers or three-
state logic. This was solved by forming an interface with separate input and output paths.
When these paths are connected to three-state logic it forms a “Y” shaped configuration
that resembles a wishbone.

2.2. DIFFERENT BUS SYSTEMS 12

costs emerge from using it and no patent violations emerge[14].

Wishbone was designed to utilize only one general purpose interface. Its

design was influenced by three major factors[14]:

• to define a good and reliable bus system

• to provide a common interface specification for structured design meth-

ods and large project teams

• to take the idea of traditional system integrating microcomputer buses

like PCI6 bus or VME7 bus and adapt it

Wishbone bus

As mentioned before, Wishbone took the idea of microcomputer buses and

thus also provides its advantages[14]:

• a flexible integration solution

• it offers a wide variety of different data bus width and different bus

cycles

• components can also be designed by 3rd party companies

The Wishbone architecture does not specifically define how the compo-

nents are connected. This can be done through a point-to-point connection,

through a shared bus (two data paths or a tri-state data path) or through

a crossbar switch. Although different interconnects are possible, Wishbone

only defines one interface, making it the same access pattern on every in-

terconnect system. Since the most common usage of Wishbone is a shared

bus, designers have to be aware that using only one bus can be a bottle-

neck for the application. If a DMA controller and an UART are connected

with a processor core, the whole system will have a high latency and a slow

throughput since the UART is in most systems the slowest component of

all. Therefore it is quite common that two Wishbone shared bus systems are

6Peripheral Component Interconnect
7Versa Module Eurocard

2.2. DIFFERENT BUS SYSTEMS 13

used on the same system: one for high performance components, one for low

performance components.

For a visualization of an example on employing Wishbone in a SoC, see

Figure 2.5 showing a Wishbone system on a SoC using the tri-state shared

bus as an interconnect.

Figure 2.5: Wishbone on a SoC example

Features of Wishbone

Since Wishbone has only got one interface[14], its features differ from the

above mentioned CoreConnect. Below, the more important features of Wish-

bone are listed:

• since it is open source it is absolutely free

• simple and compact bus system resulting in usage of few resources

• supports different interconnect methods: point-to-point, shared bus,

switch fabric and crossbar switch

• supports user defined tags for marking the current purpose for data

transfer (i.e. data transfer, interrupt vector transfer, parity or error

correction bits ...)

• supports structured design approaches since there is only one interface

2.2. DIFFERENT BUS SYSTEMS 14

Traps of Wishbone

As there are advantages of Wishbone, there are also its disadvantages[14].

Below the most important ones are mentioned:

• connecting components with different latency / bandwidth with the

same bus may result in a bottleneck

• specification is not as complete as the CoreConnet specification

• specification defines 5 different degrees of implementation:

– RULE: this has to be implemented as written in the documenta-

tion

– RECOMMENDATION: this should be implemented by the de-

signer but is not a must

– SUGGESTION: these are optional guidelines for designers

– PERMISSION: if a RULE is not as specific as needed, the PER-

MISSION should give the designer some insight to understand why

and if he can implement the not strictly specified functionality

– OBSERVATION: they just remind the designer of already implied

facts that can be overseen

• tri-state bus signals are not explicitly forbidden (can result in slower

speeds)

Usage of Wishbone

The Wishbone bus system is mainly used in Open Cores components and

open source designs. But there is a rising number of 3rd party vendors that

modify their design to support Wishbone.

Summary of Wishbone

Wishbone is a simple alternative to CoreConnect, but to gain its simplicity,

a number of performance optimizing design patterns were not implemented.

2.2. DIFFERENT BUS SYSTEMS 15

The big advantage is that it is open source and it is patent free. It is sufficient

for normal design, but when low latencies and high bandwidth is needed, it

is hard to achieve without taking heavy constrains on the desired design.

2.2.3 System Interconnect Fabric

The System Interconnect Fabric is used by Altera and was prior known as

Avalon switch fabric[3]. In contrast to the above mentioned bus systems,

the System Interconnect Fabric was designed for SOPC8-applications. Thus,

its implementation in a SOPC-application is done by the SOPC Builder of

Altera which connects components that implement the Avalon interface. A

speciality of this SOPC optimized bus system is its streaming capability (see

next few lines for explanation) besides the standard data transfers.

System Interconnect Fabric bus

As already mentioned, the System Interconnect Fabric supports streaming

capability. Streaming is used when a data transfer between two components

is needed, where the receiver has to process a continuous data stream. Since

a lot of algorithms (for example video encoding / decoding) process data

blocks instead of continuous arriving data, the streaming data is queued and

the receiver has the possibility to access the data in bursts. The drawback

of streaming is the fact that streaming is only available between a sender

and a receiver (point-to-point). Therefore two different buses are available

to ensure flexibility on connecting components: one streaming bus and a

shared bus.

To understand the parallel usage of both buses (streaming bus and shared

bus) see Figure 2.6

The setup of the interconnect system differs from application to applica-

tion since it is done by the SOPC builder. So adding a new component to the

application implies using the SOPC builder of Altera[2, 3]. This is a major

difference to the above mentioned bus systems.

8system-on-a-programmable-chip

2.2. DIFFERENT BUS SYSTEMS 16

Figure 2.6: System Interconnect Fabric on a FPGA example[2]

Advantages of System Interconnect Fabric

One of the greatest advantages of the System Interconnect Fabric is the

optimized implementation of the buses on a FPGA and thus resulting in the

usage of only few resources. Other advantages of the Altera bus[2, 1] system

are:

• dynamic bus sizing (meaning that the SOPC builder ensures data trans-

fers between components without the developer’s interaction, even if

the data widths of the components differ)

• separate address, data and control paths (components do not need

separate address and data decoding cycles)

• dedicated streaming bus:

– low latency and high bandwidth

– multiple channel support with flexible packet interleaving

Traps of System Interconnect Fabric

The optimization has also its price: when using other FPGAs than those

from Altera it results in a higher resource usage. Other disadvantages of the

Altera bus system[2, 1, 3] are:

• the connection of the components is only reasonably possible with the

SOPC builder of Altera

2.3. COMPARISON OF THE STATE OF THE ART BUS SYSTEMS 17

• the shared bus can be a bottleneck since there is no distinction between

high speed and low speed shared bus components

• streaming only supports one receiver (no single sender multiple receiver

support)

• Licensing of the System Interconnect Fabric is not clearly stated on the

Altera homepage

Usage of System Interconnect Fabric

The System Interconnect Fabric is mainly used in Altera FPGA-designs.

There are 3rd party components which have the Avalon interface imple-

mented, but the main source for components is the Altera IP center.

Summary of System Interconnect Fabric

System Interconnect Fabric is an interesting FPGA optimized bus system

that has streaming as a feature. Since the licensing is not clearly stated

on the homepage, it is hard to tell if this bus is interesting for non Altera

designs. A major drawback of the bus system is its major dependency on

the SOPC builder.

2.3 Comparison of the State of the Art bus

systems

The following table will give a summary of the previously mentioned bus

systems. The attributes of the buses that are compared are those which make

up the characteristics of the previously mentioned buses and are widely used

for comparing.

2.3. COMPARISON OF THE STATE OF THE ART BUS SYSTEMS 18
T

ab
le

2.
1:

C
om

p
ar

is
on

of
st

at
e

of
th

e
ar

t
b
u
s

sy
st

em
s

C
o
re

C
o
n
n
e
ct

W
is

h
b

o
n
e

S
y
st

e
m

In
te

rc
o
n
n

e
ct

F
a
b

ri
ce

S
tr

u
ct

u
re

S
h
ar

ed
b
u
s

in
-

te
rc

on
n
ec

t

h
as

th
re

e
d
iff

er
en

t
b
u
se

s:

on
e

fo
r

h
ig

h
an

d
on

e
fo

r
lo

w

sp
ee

d
co

m
m

u
n
ic

at
io

n

on
e

fo
r

st
at

u
s

/
co

n
fi
g

in
fo

r-

m
at

io
n

co
m

m
u
n
ic

at
io

n

d
efi

n
es

on
ly

on
e

in
te

rf
ac

e

b
ot

tl
en

ec
k

if
al

l
co

m
p

on
en

ts

u
se

th
e

sa
m

e
b
u
s

tw
o

d
iff

er
en

t
b
u
se

s:

on
e

b
u
s

fo
r

n
or

m
al

d
at

a

co
m

m
u
n
ic

at
io

n

on
e

b
u
s

fo
r

st
re

am
in

g

C
om

p
le

x
it

y
av

er
ag

e
si

n
ce

b
u
s

is

p
ip

el
in

ed

h
ig

h
if

al
l

b
u
se

s
ar

e
u
se

d

lo
w

si
n
ce

on
ly

on
e

in
te

rf
ac

e

is
d
efi

n
ed

h
ig

h
if

a
co

m
p

on
en

t
u
se

s

tw
o

b
u
se

s

av
er

ag
e

si
n
ce

n
or

m
al

b
u
s

is

p
ip

el
in

ed

h
ig

h
if

st
re

am
in

g
is

u
se

d
to

it
s

ex
te

n
t

C
on

ti
n
u
ed

on
N

ex
t

P
ag

e.
..

2.3. COMPARISON OF THE STATE OF THE ART BUS SYSTEMS 19
T

ab
le

2.
1

–
C

on
ti

n
u
ed

C
o
re

C
o
n
n
e
ct

W
is

h
b

o
n
e

S
y
st

e
m

In
te

rc
o
n
n

e
ct

F
a
b

ri
ce

O
ve

rh
ea

d
h
ig

h
if

al
l

th
re

e
b
u
se

s
ar

e

u
se

d

av
er

ag
e

if
on

ly
on

e
b
u
s

is

u
se

d

b
ri

d
gi

n
g

th
e

tw
o

b
u
se

s
re

-

su
lt

s
in

a
h
ig

h
er

ov
er

h
ea

d

lo
w

if
th

e
m

in
im

u
m

is
im

-

p
le

m
en

te
d

av
er

ag
e

if
ta

gg
in

g
fe

at
u
re

is

u
se

d

h
ig

h
if

a
co

m
p

on
en

t
u
se

s

tw
o

b
u
se

s

av
er

ag
e

w
h
en

on
ly

p
ip

el
in

ed

b
u
s

u
se

d

h
ig

h
if

st
re

am
in

g
is

u
se

d
,

to
o

L
ic

en
si

n
g

n
o

fe
es

ar
e

n
ec

es
sa

ry

n
o

li
ce

n
se

is
n
ee

d
ed

b
u
s

sy
st

em
is

op
en

so
u
rc

e

W
is

h
b

on
e

ca
n

b
e

u
se

d
co

m
-

m
er

ci
al

ly

on
A

lt
er

a
d
es

ig
n
s

it
is

fr
ee

n
o

cl
ea

r
in

fo
rm

at
io

n
on

ot
h
er

p
la

tf
or

m
s

In
te

gr
at

io
n

ty
p

e
sp

ec
ifi

ca
ti

on
is

op
ti

m
iz

ed

fo
r

m
em

or
y
-m

ap
p

ed
co

m
-

p
on

en
ts

sp
ec

ifi
ca

ti
on

le
av

es
in

te
gr

a-

ti
on

u
p

to
th

e
d
es

ig
n
er

m
os

t
d
es

ig
n
s

ar
e

m
em

or
y
-

m
ap

p
ed

or
/a

n
d

p
or

t-

m
ap

p
ed

sp
ec

ifi
ca

ti
on

is
op

ti
m

iz
ed

fo
r

m
em

or
y
-m

ap
p

ed
co

m
-

p
on

en
ts

st
re

am
in

g
b
u
s

u
se

s
d
ir

ec
t

co
n
n
ec

ti
on

b
et

w
ee

n
co

m
p

o-

n
en

ts

2.4. CONCLUSION OF THE STATE OF THE ART BUS SYSTEMS 20

2.4 Conclusion of the State of the Art bus

systems

The presented state of the art bus systems show that the ideal bus system

for every possible field of application does not exist. Every bus system has

its pros and cons. It is up to the designer to choose which is the best one for

his project. To be able to make a qualified decision, a lot of literature has to

be read and compared to find out about the advantages and disadvantages of

a system. There are still a lot of other bus systems which are not described

in this thesis. Only three different characteristic bus systems have been

presented.

In Chapter 3 another state of the art bus will be introduced: the AMBA

bus, while in Chapter 4 the implementation adaptations for the SPEAR2 are

discussed in detail.

Chapter 3

AMBA 2.0

The AMBA bus has been chosen for the SPEAR2 processor core, because

of the many available components and because it is free. This chapter will

give a more detailed insight into the AMBA 2.0 bus systems, including the

description of different data transfer modes. In contrast to the previous

chapter, the bus access control will be described, too. This information is

required to understand the limitations of the AMBA 2.0 bus discussed in

Chapter 4.

3.1 Overview of the AMBA 2.0 bus system

The AMBA1 bus architecture was introduced by ARM2 Limited in 1995.

Four years later, ARM redesigned the AMBA bus architecture and released

the AMBA 2.0 specification. Today, the AMBA 2.0 specification is a de-facto

standard for 32 bit processors. In 2003, ARM introduced the 3rd generation

of the AMBA bus system, the AMBA 3 AXI bus system. In every new

generation of AMBA, a new bus was introduced, resulting in four different

buses for the AMBA 3 AXI bus system.

AMBA 2.0 defines two interface protocols that cover data intensive pro-

cessing components and low bandwidth/latency components. The essential

requirements for data intensive processing components are a high bandwidth

1Advanced Microcontroller Bus Architecture
2Advanced RISC Machines

3.2. AMBA 2.0 ARCHITECTURE 22

and a low latency whereas slow components like an UART only need a mod-

erate latency and bandwidth. The low bandwidth interface protocol was also

designed to assure little power consumption and little resource consumption

whereas the focus of the high bandwidth interface protocols was set on data

throughput.

Goals of the AMBA 2.0 specifications (and this also applies to all AMBA

specifications) are:

• to assure a specification that is technology independent

• to support larger design teams that work on the same project

• to enhance the reusability of already designed components

• to specify a bus system that meets today’s and future requirements of

designers

• to provide a framework that can break down the complexity of a design

• to provide a bus system that has the right amount of tradeoffs between

flexibility and overhead

The AMBA 2.0 bus system can be used without paying royalty fees, which

makes the bus system interesting for 3rd party vendors. For example, Infi-

neon uses the AMBA bus system in some of its MIPS3 based SoC applica-

tions.

The next section is about the AMBA 2.0 architecture, its mechanism for

bus control and its limitations given by the specification.

3.2 AMBA 2.0 architecture

The AMBA 2.0 specification defines 3 buses:

• Advanced High-performance Bus (AHB)

• Advanced System Bus (ASB)

3Microprocessor without Interlocked Pipeline Stages

3.2. AMBA 2.0 ARCHITECTURE 23

• Advanced Peripheral Bus (APB)

Between the Advanced High-performance Bus (AHB) and the Advanced

System Bus (ASB) there is no big difference from a functional point of view.

Both are used for a fixed one stage pipelined data transfer. The main differ-

ence between them is that the AHB bus uses 2 data paths (one for reading

and one for writing) whereas the ASB bus uses only one bus (and thus im-

plying a “tristate” bus4).

In contrast, the Advanced Peripheral Bus (APB) was introduced to pre-

vent bottlenecks when using high and low performance components. The

main usage of the APB bus is for low performance peripherals such as UARTs,

timers and so on. To combine the high performance bus (or system bus) and

the peripheral bus, a bridging component was introduced. This bridging

component (like in CoreConnect) is an AHB (or ASB) slave and an APB

master at the same time. The APB bus itself is simple due to the fact that

it does not use pipelining for data transfer. This yields to a lower resource

usage for the APB bus and components.

For a schematic example of a typical AMBA system, see Figure 3.1.

Figure 3.1: typical AMBA system[4]

Besides the components that are connected via the AHB, ASB or APB

bus, components for bus access control are needed:

4In most cases there are not real tristate interconnect lines on a chip. Today, real
tristates are only implemented in I/O’s since tristates need powerful drivers for high clock
rates

3.2. AMBA 2.0 ARCHITECTURE 24

• the arbiter

• the decoder

The AMBA arbiter is responsible for controlling the bus access of the

AHB master components since more than one AMBA masters are allowed.

On the one hand the AMBA decoder is needed to drive the select signal

of the corresponding slave component and on the other hand to filter the

responses of the slave components. For a detailed view of the interconnect

between the AHB masters, the AHB slaves, the AHB bus arbiter and the

AHB bus decoder see Figure 3.2.

Figure 3.2: AMBA multiplexer interconnect

The access control, performed by the arbiter, is realised through two cen-

tral multiplexors (one for the control and address signals and one for the

write data signals). If a master component wants to use the bus, it has to

send a request through its request signal (HBUSREQx). The arbiter receives

3.2. AMBA 2.0 ARCHITECTURE 25

the request and decides if the master can invoke the bus. The decision is nor-

mally made on a priority base or a round robin base (it is up to the designer

to decide or to extend the decision algorithms). After the decision has been

made, the arbiter signals its decision to the master through the separate

grant signal (HGRANTx). If the master gets the bus (HGRANTx is high) it

can start its transfer, otherwise (HGRANTx remains low) the master has to

wait until it is its turn. Besides that, the arbiter also sets the two multiplexer

to pass through the data of the selected master to the slaves.

The arbiter also gets the current address and control signals of the active

master. This is a precaution to prevent a component from monopolizing

the bus or it can be used for an “intelligent” decision algorithm where those

information is used as parameters, too. In most cases the arbiter is just

programmed to prevent components from monopolizing the bus (for example,

if a master just holds the line without using it thus blocking the bus for

transfers of other masters).

The second component needed for bus control, the AMBA decoder, is

responsible for selecting the right slave component and routing the right

output of the slave components back to the master components. Based on

the address, it decides which select signal has to be set. A slave component

only responds to AMBA requests if its select signal has been set. If a slave

component has been selected, it responds to the AMBA request by sending

back control signals and, if a read memory takes place, data too. The AMBA

decoder also masks out all other responses from the slave components in

case that faulty slave components send data back even though they are not

selected.

This however implies that the address space of all components has to be

defined a priori and has to be encoded into the AMBA bus system[4]. If

a new AMBA slave component has to be added to the existing design, not

only the top entity of the design has to change, but also the whole AMBA

decoder and arbiter logic has to be changed for the following reasons:

• the multiplexors have to accept another component

• the decoder has to consider another address space

3.3. FEATURES OF AMBA 2.0 26

• the decoder has to be extended by another select signal

• the arbiter has to take another component into consideration in its

decision algorithm

In Chapter 4 it will be explained how the AMBA module used in the

GRLIB was modified to overcome this weakness.

3.3 Features of AMBA 2.0

The previous section already described some features of the AMBA 2.0 bus.

To complete the list of the most important features, the following additional

features are provided by AMBA 2.0[4], too:

• no royalty fees necessary

• supports burst data transfer for more data throughput

• supports split transaction for a better utilization of the bus

• 2 categories of buses (one for high bandwidth, one for low bandwidth)

• 2 different high bandwidth buses (a tristate and a non tristate bus)

• data width is configurable

• supports multiple masters

• supports flexible address modes (word aligned or word wrap)

• offers a combination of high and low bandwidth bus through a bridge

component

• APB bus utilizes only few resources and has a simple interface

3.4. TRAPS OF AMBA 2.0 27

3.4 Traps of AMBA 2.0

AMBA 2.0 also has its disadvantages compared to other bus systems:

• complex transfer modes cannot so easily be implemented

• components with different data width cannot so easily be combined

• implementation of all features is not easy (for example split transfer)

and thus more error prone

• although they have the same functional basis, the AHB and ASB com-

ponents cannot be connected on the same bus

This section has presented the architecture, the advantages and the disad-

vantages of AMBA, the next section will go into more detail. In the following

section the AMBA data transfers and their illustrations will be given.

3.5 Simple AHB/ASB data transfers

Every access to the AMBA bus can only be initiated by an AHB (or ASB)

master. From now on, only the data transfer of an AHB master will be

described (but since the AHB and ASB master are similar, it is also valid

for an ASB master). Thus, an AMBA AHB master has to signal the arbiter

that it wants to use the bus5 (see 3.2). In the next clock cycle, the arbiter

can grant the AHB master bus access if the bus is free6. Otherwise the AHB

master has to wait until the arbiter grants bus access (see Figure 3.3).

After the arbiter has granted access to the bus, the AHB master has to

start with the transfer. For this purpose the master has to write the address,

the access type (write or read), the transfer type (8 bit, 16 bit, 32 bit, burst

mode, normal mode, wrapping mode) and the status information (transfer

in progress, stall) to the bus in the next clock cycle7. This is also called the

address phase.

5the signal is called HBUSREQx where x is the id of the master
6this is indicated by the HGRANTx signal
7see the AMBA 2.0 specification for a complete list of the signal names

3.5. SIMPLE AHB/ASB DATA TRANSFERS 28

Figure 3.3: AHB master requests bus[4]

In the next clock cycle, the master must provide (or receive) the data on

the bus. This is called the data phase. Since address and data phase are

separated, the AMBA AHB bus is a fixed length pipelined8 bus (see Figure

3.4).

Figure 3.4: example of AHB data transfer[4]

Since it is not easy to write complex components that can keep up with

the speed of the bus, AMBA 2.0 uses a method that allows the AHB slave

to stall the bus. This is realized with a ready signal9. So if a slave sets the

8Pipelining means that a data processing task is broken down into smaller subtasks
where the output of the current subtask is the input of the next subtask. All of those
smaller subtasks are computed concurrent and need one cycle to finish. Pipelining was
introduced to utilize the hardware better and to increase the speed of complex systems.
The down side of this technique is a higher overhead for preventing data inconsistency.

9in the AMBA 2.0 specification the signal has the name HREADY

3.6. COMPLEX AHB/ASB DATA TRANSFERS 29

ready signal to low, the master has to stall its data transfer until the slave

sets the ready signal to high again (see Figure 3.5).

Figure 3.5: example of AHB data transfer with stall[4]

3.6 Complex AHB/ASB data transfers

Besides the simple AHB/ASB data transfers mentioned above, AMBA 2.0

also supports more complex data transfers. This section will cover the more

complex data transfers since those are the ones that boost the performance

of an AMBA 2.0 bus system.

3.6.1 Burst data transfers

The first more complex data transfer is the burst mode. In contrast to the

simple data transfer, the burst mode was designed to transfer data bulks

with a predefined length or with no predefined length. The burst mode is

available for every simple transfer mode (8 bit data transfer, 16 bit data

transfer and 32 bit data transfer). A restriction introduced by the burst

mode is the necessity of continuous data. The burst mode must not cross a

1kB address boundary.

AMBA supports two different burst modes:

• incrementing burst

3.6. COMPLEX AHB/ASB DATA TRANSFERS 30

• wrapping burst

The incrementing burst accesses sequential locations and thus every trans-

fer in the burst is just an increment of the previous address by the data width.

The wrapping burst is only available if the length of the burst is specified.

In contrast to the incrementing burst, the wrapping burst writes (or reads)

only data from a size aligned address space.

To understand the difference of these two burst modes, they will be com-

pared in the following table (Table 3.1), followed by an illustration of the

more complicate wrapping burst mode.

incremental burst wrapping burst
size of transfer can be predefined (two, four

or eight data junks)
undefined burst length are
also supported

can only be predefined (two,
four or eight data junks)

address of data address of data starts at
given start address and in-
crements with every new
data junk until the transfer
is finished or the 1k transfer
boundary is reached

Address of data starts at
given address, but wraps
at the higher transfer size
aligned start address to the
lower transfer size aligned
start address (see following
example)

complexity of
transfer

complexity is low since the
next address is the previous
address plus the size of a
data junk

complexity is high since the
transfer size aligned address
boundaries have to be taken
into consideration

usage of transfer incremental mode is mainly
used for transferring large
amounts of data
this mode is the more com-
mon transfer mode

wrapping mode can be used
for efficient data shifting
within a given boundary
this mode is rarely used and
often not implemented

Table 3.1: Comparison of burst modes

Having compared the two different burst modes, an illustration of the

burst mode will be given with the help of an example:

Let us take a four beat wrapping burst of word length access (meaning four

4 byte data junks are transferred, making up a 16 byte data transfer) and let

3.6. COMPLEX AHB/ASB DATA TRANSFERS 31

the start address be 0x38. 0x38 is not a 16 byte aligned address. The 16 byte

aligned addresses before and after 0x38 are 0x30 and 0x40. Thus, the first 4

byte data is stored at 0x38 and the second 4 byte data is stored at 0x3C. So

far there is no difference to the incrementing burst. The third 4 byte data

would be stored at 0x40, but since the boundary of the size aligned address

space has been reached, it is placed at the beginning of the size aligned

address space: 0x30. This is the difference to the incrementing burst. The

fourth and last 4 byte data is stored at 0x34, back in correspondence with

the incrementing burst. For an illustration of the wrapping mode, see Figure

3.6.

Figure 3.6: difference between wrapping burst and incremental burst

As previously mentioned, the incrementing burst mode is the more com-

mon burst mode and thus the following more detailed example will describe

an incrementing burst.

To start an incrementing burst mode, the master must simply set the

corresponding signal (in the specification called HBURST) and then provide

the data in the data phase in every clock cycle. As in the simple data transfer,

the slave also has the possibility to stall the data transfer. Thus, the burst

mode must be stalled until the slave asserts the HREADY signal to high

again (see Figure 3.7).

3.6. COMPLEX AHB/ASB DATA TRANSFERS 32

Figure 3.7: example of AHB incremental burst data transfer with stall[4]

3.6.2 Retry (or split) data transfers

The retry data transfer is something special and can only be initiated by a

slave component. It stalls the transfer for two more clock cycles and then

restarts it again. To do so, the slave has to send a retry response10 to the

master. Then, the master has a time span of 2 clock cycles to prepare the

transfer again. For more details, see Figure 3.8.

The retry data transfer is also the basis for the split data transfer. As

mentioned in Section 3.3 (Features of AMBA 2.0), the split transaction is

used to provide a better bus utilization. If a component does know it needs

some time before it can provide the data, it can initiate a split transfer,

meaning that another master should make its transfer in the meantime and

after that, the original master can continue hoping, that the component has

the required data now.

10in the specification, the bus for sending the information back is called HRESP

3.7. APB DATA TRANSFERS 33

Figure 3.8: example of a AHB retry data transfer[4]

3.7 APB data transfers

In the previous section, AHB/ASB data transfers were explained in more

detail. In contrast to those data transfers, the APB transfer differs funda-

mentally: it is not pipelined. Another difference is its simple interface. The

data transfers on the APB bus can be visualized in a simple state diagram

(see Figure 3.9).

Since there is only one APB master allowed, the bus arbitration is not

needed. In most cases, the bridging component represents the APB master.

To initiate a write transfer, the master must write the address and the data

on the bus in the same cycle. Since no central decoder unit is defined, the

master must also set the select signal of the corresponding slave in the same

clock cycle. Now, the signals are held on the bus until the slave component

asserts the enable signal11 to high to indicate that the data has been received.

After that, the write transfer has been completed and the slave component

resets the enable signal to low again (see Figure 3.10).

The read transfer is nearly the same on an APB bus. The signals have to

be set up the same way (except the PWRITE signal: it indicates if a write

11in the specification known as PENABLE

3.7. APB DATA TRANSFERS 34

Figure 3.9: APB state diagram[4]

Figure 3.10: APB write transfer[4]

3.8. USAGE OF AMBA 2.0 35

or a read takes place), the only difference is that not the master has to write

the data on the bus, but the slave has to provide the data during its assertion

of the enable signal to high (see Figure 3.11). This also means that the APB

master must always accept the data a slave provides in one cycle, since there

is no way of stalling the data transfer for the master.

Figure 3.11: APB read transfer[4]

3.8 Usage of AMBA 2.0

The AMBA 2.0 bus system is used in nearly every ARM design. Besides

that, AMBA is also used in some of Infineon’s SoC applications (mostly

MIPS based). Another implementation of the AMBA bus system is in the

GRLIB IP-package of Gaisler Research12 which uses the LEON3 processor

core as a basis. Some companies like EADS Astrium13, Ball Aerospace14 or

Vineyard Technologies15 use the LEON3 processor for their applications. It

is safe to say that the AMBA bus is one of the most widely used bus systems

and in 32 bit processors a de-facto standard. Many 3rd party vendors equip

their components with AMBA interfaces for a better marketing chance.

12http://www.gaisler.com/cms/
13http://www.astrium.eads.net/
14http://www.ballaerospace.com/page.jsp?page=1
15http://www.vineyardtechnologies.com/

Chapter 4

AMBA Extension Module for

SPEAR2

In the previous chapter AMBA 2.0 was described. In this chapter, a frame-

work for the AMBA 2.0 implementation will be introduced: the GRLIB.

After giving a more detailed view of the GRLIB, the extension concept of

the SPEAR2 will be described. Those constrains are the basis for the design

approach taken to extend the SPEAR2 processor core to be able to oper-

ate in an AMBA 2.0 network. The resulting problems and the implemented

solutions are presented in the second part of this chapter.

4.1 AMBA and the GRLIB

As already mentioned in Chapter 3, the AMBA 2.0 bus system was chosen for

the SPEAR2 processor core. But instead of implementing the pure AMBA

2.0 specification, it was decided to implement the extended AMBA 2.0 bus

system, defined by the GRLIB1.

4.1.1 What is GRLIB?

The GRLIB was introduced by Gaisler Research. Its purpose is to help

designers to reuse existing IP cores and to simplify software development

1Gaisler Research IP Library

4.1. AMBA AND THE GRLIB 37

and debugging on those designs. This was achieved by extending the AMBA

2.0 bus in the following manners:

• distributed address decoding

• interrupt steering

• Plug & Play capability

But the GRLIB does not solely consist of a new specification. It includes

also a number of already designed components, such as:

• AHB arbiter/multiplexer

• AHB/APB bridge

• 10/100 MBit Ethernet MAC

• 32 bit PC133 SDRAM controller

• PCI interface

• PROM and SRAM controller

• UART

• timer

• interrupt controller

• fully pipelined single and double precision IEEE-754 FPU2

Those components are a major help for SoC designers since those compo-

nents are tested and ready to use. The library itself is available under the

GNU GPL license and, if required, under commercial licensing conditions[9],

too.

2Floating Point Unit

4.1. AMBA AND THE GRLIB 38

4.1.2 GRLIB and its extensions in regard to AMBA

2.0

As mentioned in the previous chapter (Chapter 4.1.1), GRLIB uses the

AMBA 2.0 bus as a basis and introduces new signals. The combination of

those put new features into effect. Now let us analyze those new features[8]

in regard to extending AMBA 2.0:

distributed address decoding: As mentioned in Chapter 3.2, AMBA uses

two centralized multiplexors for controlling the AMBA bus. Adding or

removing components always results in modifying the multiplexer logic

and thus also affects the arbiter. Besides that, it can also be necessary

to modify the decoder if new slave components were added.

GRLIB avoids this dependency by utilizing a distributed address de-

coding. To provide this mechanism, the GRLIB cores and the AMBA

AHB/APB controller have to be modified. The modification enfolds by

introducing generics and constants. Instead of adding new components

by adding a new AHB bus, changing the control logic of the multi-

plexors and changing the arbiter/decoder, GRLIB defines two AHB

bus vectors (one for the connection between the masters outputs and

the multiplexor, one for the connection between the slaves outputs and

the multiplexor) that contain a number of AHB buses (value can be

changed by changing the constant NAHBMST and NAHBSLV). Now

every AHB component gets an index (defined by generic) and thus it

knows, which AHB bus has to be used and the decoder knows which

master it has to forward to the slaves.

Additionally, every AHB slave component has generics that define

which address spaces the component belongs to. With those gener-

ics, the arbiter knows which slave is meant and which slave response

has to be forwarded to the masters.

interrupt steering: AMBA 2.0 does not support interrupt steering. In

modern architectures this is a necessity.

4.1. AMBA AND THE GRLIB 39

The GRLIB provides a unified interrupt handling scheme. 32 different

interrupts can be driven by the AMBA components (including APB

components) since all components share the same view on the interrupt

bus3. It is up to the component how many interrupts it needs, but

for most components one interrupt is sufficient. Those interrupts are

monitored by one component that is connected to the global interrupt

register of the processor. Now if any interrupt is driven, this component

maps them to the corresponding processor interrupt(s).

Plug & Play capability: In the AMBA 2.0 specification there is no room

for an operating system Plug & Play support of component.

The GRLIB package offers dedicated read-only information register

where every used component is registered. The register information

consists of a unique IP core ID, the corresponding memory mapping of

the component and the interrupt vector it uses. Those values are set

by each components generics. A maximum of 64 master and 64 slave

components are supported. The information registers are mapped to

the end of the AMBA address space, consuming 4096 byte of address

space (for an overview of the GRLIB address space see 4.1.3). Those

registers are automatically filled at synthesize time.

To sum this up, GRLIB uses the AMBA 2.0 bus as a basis and introduces

some signals. The arbiter and multiplexors have been integrated into one

component for the distributed address decoding (see Figure 4.1). The new

features are meaningful and not only for marketing, making the GRLIB a

powerful SoC bus system.

4.1.3 GRLIB and its address space

The address space can be broken down into four parts:

• AHB memory bank

• AHB I/O bank

3it is called hirq in the GRLIB package

4.1. AMBA AND THE GRLIB 40

Figure 4.1: GRLIB interconnect[8]

• master information registers

• slave information registers

The AHB memory bank and AHB I/O bank are read and write spaces,

whereas the information registers are solely for reading (and thus normally

implemented as ROM’s). Comparing those by their size, the AHB memory

bank is the biggest with a size of 4293918720 bytes (= 4095 MByte) followed

by the AHB I/O bank with a size of 1044480 bytes (= 1020 KByte). The

information registers are the smallest with each a size of 2048 bytes (= 2

KByte).

The AHB memory bank resides on the top of the address space from

0x0000 0000 to 0xFFF0 0000. Components in this section have to reserve

a minimum of 1 MByte address space and may use address space up to

2048 MByte. The actual size of a component is defined by its generics. As

mentioned in Chapter 4.1.2, those generics are used to define the memory

mapping and its size, which is stored in the Plug & Play information registers.

For a better understanding, the Plug & Play information register layout

of a component (see Figure 4.2) will be described. It consists of eight 32 bit

4.1. AMBA AND THE GRLIB 41

words.

Figure 4.2: Plug & Play information register layout[8]

The first 32 bit word is for the identification of the component. It has

a vendor ID which is administrated by Gaisler Research, a device ID which

is administrated by the vendor, a version number which is administrated by

the vendor and the interrupt it uses.

The second, third and fourth 32 bit words are free and can be used to

store some additional read only information.

The 5th to the 8th 32 bit word is used for address mapping. Every com-

ponent can have up to four address mappings. Every 32 bit word represents

a mapping. The mapping consists of a base address which uses the upper

12 bit of an address, an address mask which is used for defining the size of

the memory block, the type of the memory block and the information if the

component supports prefetch or caches.

Let us illustrate the address mapping with an example. A component

has to be placed at address 0x3600 0000 and it should have a memory size

of 8 MByte. This means the base address is 0x360. If the arbiter just

compared the highest 12 bits of the address to 0x360 now, this would result

in a maximum memory size of 1 MByte. So, the mask register has to do

the trick. It has to be set to 0xFF8. 0xFF8 is 1111 1111 1000 in binary

representation. The zeros in the binary representation mask the comparison

bits out, meaning that not the highest 12 bits are used for comparison but

only the highest 9 bits. Now the component has an address space of 8 MByte.

4.2. SPEAR2 EXTENSION MODULES 42

Besides, in the memory bank this mapping is also used in the I/O bank.

The I/O bank resides below the memory bank, using up the address space

between 0xFFF0 0000 and 0xFFFF F000. The minimum size of memory a

component can allocate is 256 Byte. The maximum memory size a compo-

nent may use is 1024 KByte. Like in the memory bank, components residing

in the I/O bank have to set their generics for a precise address space defini-

tion, too. The only difference to the memory bank is the bits that are taken

for the base address and the mask register. In the memory bank the highest

12 bits were used, in the I/O bank the following 12 bits are used (meaning

bit 19 to 8). The bits 31 to 20 are already predefined with ones.

The last parts of the address space are the information registers. As above

mentioned, both are equally big and have the same structure. The infor-

mation registers concerning the master components reside between 0xFFFF

F000 and 0xFFFF F800 whereas the information registers concerning the

slave components reside between 0xFFFF F800 and 0xFFFF FFFF. The

content of those memory spaces is solely made up by the Plug & Play con-

figuration layout as described in Figure 4.2.

4.2 SPEAR2 Extension Modules

This section will give a brief overview of the SPEAR2 extension concept.

Only the most important parts of the extension system will be given. For

a more detailed explanation of the SPEAR2 extension system, refer to the

master thesis about the SPEAR2 processor [6].

4.2.1 Overview of the SPEAR2 extension concept

The SPEAR2 extension concept uses a generic interface to map modules

into the address space of the data memory. This generic interface is rather

simple. It behaves like a synchronous RAM and thus has nearly the same

signals as found in most basic synchronous rams. Besides those signals, it got

two special signals: an interrupt signal and a so called ”byte enable” signal.

The reason behind the byte enable signal is that normally only 32 bit access

4.2. SPEAR2 EXTENSION MODULES 43

is allowed. To improve the granularity of the access, a four bit wide signal

was defined that states which 8 bit parts of the 32 bit data word should be

processed and which not. This is the byte enable signal.

So, to sum this up, the generic interface defines the following signals for

information transfer from the SPEAR2 to the Extension Module:

• write en: it indicates if a write (high) or a read (low) operation should

take place

• byte en: as mentioned, this 4 bit wide signal indicates which 8 bit part

of the data word is valid and which is not (an example will be given

shortly)

• data: this 32 bit wide signal holds the data that has to be written when

the write en signal is high

• addr: this 15 bit wide signal holds the address from which the data

should be taken or where the new data has to be written

The information transfer from the Extension Module to the SPEAR2 is

realised through the following signals:

• data: this 32 bit wide signal holds the data from a read operation

• intreq: this signal indicates if the Extension Modules has raised an

interrupt or not

The next point is the address space that an Extension Module can take.

By default an Extension Module has an address space of 32 byte. Thus,

having a 15 bit wide address signal, it is possible to use up to 1024 Extension

Modules at the same time. Of course, an Extension Module can take more

than 32 byte of address space. To achieve that, it must only be mapped

multiple times into the address space.

Instead of implementing a 15 bit comparator in each Extension Module a

centralized Extension Module Access Control is used. Thus the component

address mapping takes place in one location. This is also advantageous for

4.3. AMBA INTEGRATION APPROACHES FOR SPEAR2 44

remapping components. Now only one signal is needed that tells the compo-

nent if it is meant or not: the ”select” signal. Every Extension Module has

its own select signal that indicates if it is meant or not.

4.2.2 Limitations of the SPEAR2 extension concept

Like everything, the SPEAR2 extension concept also got its limitations. In

the following lines the most important limitations will be described.

First: the not standardized interface. Although it is a quite simple in-

terface, new Extension Modules always have to be written by the designer

since the interface is not standardized. There is no possibility to use existing

components like it is done in IP based designs today.

Second: the speed of the extension concept. It is always as fast as the

SPEAR2. In modern bus systems the bus can operate at a lower (or higher)

speed than the processor. This can be quite useful when the processor is

so complex that it is rather slow while the bus and other components can

operate at a higher speed.

Third: the absence of another bus. This can be in some cases a bottleneck.

The bus can only operate as fast as its slowest component. If the Extension

Modules are poorly designed, it can decrease the performance of the whole

system.

To sum up, the SPEAR2 extension concept is a simple extension concept

with little overhead. Because of this simplicity it has of course limitations

that can decrease system performance, but this is always the trade off be-

tween complexity and speed.

4.3 AMBA integration approaches for SPEAR2

This section is about the approaches that were taken to implement another

extension system for the SPEAR2. Besides that, the limitations of the design

approaches and the solutions to them will be presented, too.

4.3. AMBA INTEGRATION APPROACHES FOR SPEAR2 45

4.3.1 First approach

The AMBA state machine

The first thing to do was to read the AMBA 2.0 specification to get an

overview on how AMBA 2.0 works and what means can be taken to imple-

ment it. Having read the AMBA 2.0 specification, the idea of using a state

machine was concluded. This state machine should include the AMBA con-

trol logic. This state machine can also be seen as the core of every different

implementation approach. So, building a solid and functioning state machine

was the first objective to accomplish.

Figure 4.3: schematics of the AMBA state machine

The first idea was to write down the state machine (see Figure 4.3) and

implement it. The first try of implementing the state machine was accom-

plished by using a visual tool that generates the VHDL code after drawing

the state machine. The tool used was the Xilinx StateCAD Release 8.1i. But

after some further use of the program it was clear that the produced VHDL

4.3. AMBA INTEGRATION APPROACHES FOR SPEAR2 46

code was not user friendly and that changes always result in generating a new

VHLD code, overwriting manual changes made to the previous VHDL code.

Manual changes in the VHDL code were required for interfacing the state

machine with the SPEAR2. So the idea of using a visual tool was discarded.

Still having the visualization of the state machine, the approach of coding

was taken.

The next step was to define an interface between the AMBA state machine

and the processor core. The requirements for this interface are:

• general use interface

• processor independent

• a way of transporting data between the state machine (and thus AMBA)

and the processor

• a way of transporting configuration/status data between the state ma-

chine and the processor

We chose the already existing Extension Module concept for implementing

the AMBA state machine into the SPEAR2.

for reading data from the processor: after steering the address, the cor-

responding data will be available in the next clock cycle

for writing data to the processor: after steering the address and the data,

the memory will store it at the next rising clock edge

The configuration/status data that will be exchanged are:

AMBA bus request: This signal indicates if the processor wants to use

the AMBA bus.

SPEAR2 base address: This 32 bit signal states the address where the

sending or receiving data starts. If memory mapping is used, the ad-

dress is the same as the AMBA address. If port mapping is used, the

address can be different to the AMBA address.

4.3. AMBA INTEGRATION APPROACHES FOR SPEAR2 47

AMBA address: The address on the AMBA bus where the data has to be

sent or where the data has to be read from.

size of the AMBA transfer: This 3 bit signal indicates how much data

will be transferred or should be received.

write or read transfer: This signal is used to indicate if the transfer is a

write to AMBA or a read from AMBA transfer.

stall: This signal presents a possibility to stall the AMBA transfer if the

processor is busy.

error: This signal gives information if the AMBA transfer is still OK or if

an error occurred.

finished: If the transfer is finished, the signal will be driven from the state

machine.

AMBA bus access granted: This signal signals the processor that the

previous requested bus access has been granted.

interrupt: This 8 bit wide signal forwards 8 interrupts of the GRLIB sys-

tem.

Now that the second interface of the AMBA state machine had been de-

fined, the realization of the state machine started and finished quite smoothly.

The testbench for the AMBA state machine

As the AMBA state machine had been defined, the next step would be to

integrate it into the SPEAR2 in form of an Extension Module. But since

the AMBA state machine is the core and used in every design approach, the

decision to postpone the integration had been made. Instead, the next step

was writing a testbench for the just finished AMBA state machine.

The testbench contains all the necessary timing diagrams of the AMBA 2.0

AHB master specification. Further, to enhance the usability of the testbench,

each necessary value is checked by assertions. It is also a goal of the testbench

to write it once and never change it again.

4.3. AMBA INTEGRATION APPROACHES FOR SPEAR2 48

So after writing the testbench, a test run in ModelSimTM was scheduled.

This test run should show how well the implementation of the state machine

was done. Like in most cases, there are always some errors. Since the checks

are made by assertions, the errors of the state machine are shown immedi-

ately. After analysing the failure and correcting it, the testbench is started

again. This “game” has to continue until the testbench finishes error free.

After checking the correctness of the AMBA state machine, the state

machine represents a solid basis for further integration approaches.

It should also be mentioned that writing a testbench is very time consum-

ing and error prone since forgetting to write an assertion is not so uncommon

but introduces great consequences. Writing a good testbench needs nearly

as long as writing the component.

The AMBA Extension Module for the AMBA state machine

Once a solid basis had been built, the next step was to integrate it into the

SPEAR2 processor core in form of an Extension Module.

The idea of tying the SPEAR2 to the AMBA bus was to use an explicit

send command, applied through the Extension Module Interface. Instead of

transferring the data from the processors data RAM to the AMBA Extension

Module Interface, we decided to use a (small) shared memory. From the

processors point of view, the shared memory can be used in the same way

as normal DRAM. Thus data, which is intended to be sent or received can

be stored and manipulated directly in the shared memory. This significantly

reduces the overhead when using the AMBA interface. However using a

shared memory requires:

1. a true dual ported memory which is expensive in terms of area overhead

and

2. some kind of access control in order to achieve data consistency (see

MESI)

Thus we used a dual port memory, enhanced by a small access control unit.

So, an AMBA access would be realised if the following guide lines were

observed:

4.3. AMBA INTEGRATION APPROACHES FOR SPEAR2 49

1. if a send data should take place, then this data has to be written into

the shared memory before the transfer takes place

2. write the AMBA address where the data has to be written (or read)

into an Extension Module Register

3. write the SPEAR2 address where the data for transfer has to be read (or

written) from the shared memory into an Extension Module Register

4. write the configuration data for the AMBA state machine into an Ex-

tension Module Register

5. set the start bit in the custom configuration register of the Extension

Module

6. the finish bit will be set and, if not masked out, an interrupt will be

generated after the AMBA state machine is finished

Since only one and a half registers are needed for storing all the necessary

data and only half of the read only register, a second AMBA transfer slot is

implemented for better utilization. The Extension Module would then look

like in Figure 4.4.

The shared memory for the AMBA Extension Module

As previously mentioned, a shared memory is needed since the AMBA Exten-

sion Module should make the transfer in the background while the SPEAR2

continues with its program. The shared memory is tied as an Extension

Module to the SPEAR2. Besides that, it also hat a second interface for a

direct connection to the AMBA Extension Module. So, the schematic of the

whole AMBA extension for the SPEAR2 looks like in Figure 4.5.

Due to this integration approach, the access to the shared memory has

to follow some rules: either the SPEAR2 or the AMBA Extension Module

uses the shared memory. Also, to ensure the safety of the AMBA transfer,

the AMBA Extension Module will steer an interrupt if the SPEAR2 tries

to access the shared memory while the ownership lies with the Extension

Module.

4.3. AMBA INTEGRATION APPROACHES FOR SPEAR2 50

Figure 4.4: schematic of AMBA Extension Module - first approach

4.3. AMBA INTEGRATION APPROACHES FOR SPEAR2 51

Figure 4.5: schematic of AMBA extension of SPEAR2

All the above mentioned rules, guidelines and the implementation make up

the first approach of the AMBA Extension Module. Like every first approach,

it has its limitations.

4.3.2 Limitations of the first approach

The first approach has some limitation in its practical use.

The SPEAR2 has no direct access to the AMBA state machine. Thus the

entire data to setup an AMBA transfer must be provided to the AMBA state

machine through the AMBA Extension Module Interface. This implies that

accessing an AMBA component needs some time.

First: at least three store operations are required to setup an AMBA

transfer:

• write the AMBA address to the register

• write the shared memory offset to the register

• write the config data to the register + set the start bit

4.3. AMBA INTEGRATION APPROACHES FOR SPEAR2 52

Of course, if a send operation from the SPEAR2 to AMBA should take place,

the data must already be adjusted.

Second: an access to AMBA has a big delay. As mentioned, three oper-

ations are neede to setup a data transfer in the AMBA Extension Module.

Now a minimum of three cycles are needed for transfering the data itself:

1. one cycle for the state machine to request the bus

2. wait till the arbiter grants access to the AMBA bus (at least one cycle)

3. another cycle for steering the config data and address to the AMBA

bus

When using the burst mode, this is not so important since a lot of data is

transferred with a new data word each cycle. But when transferring only

small amounts of data, this is an unacceptable delay.

These are the two most important limitations that the AMBA Extension

Module introduced. Since the practical use of the Extension Module is not as

good as it could be, a second approach is needed that takes those limitations

into consideration.

4.3.3 Second approach

The first limitation origins from the fact that the SPEAR2 has no direct

access to the AMBA address space. So, the first logic consequence is to unify

those address spaces.

This sounds easy, but given the existing architecture it is not so easy to

achieve. The big problem that makes it not so easy is the shared memory:

every AMBA transfer takes or writes its data into the shared memory.

The first idea was to write a self organizing shared memory that maps the

address space reserved for AMBA to its limited space. Then, based on the

access to the data memory, the AMBA state machine should autonomously

decide whether the transfer should take place or not. It is worth mention-

ing that this approach also supports complex data transfers. This decision

algorithm would be as follows:

If the address refers to an AMBA component then:

4.3. AMBA INTEGRATION APPROACHES FOR SPEAR2 53

• if a read on the AMBA bus is needed, make a burst transfer of four 32

bit words to the shared memory, beginning at the desired address and

write back the first 32 bit word to the SPEAR2

• if a write to the AMBA bus is needed, store the AMBA address and

the data word and wait if either:

– two clock cycles passed and no new data is written to the AMBA

address space ⇒ transfer the data to the address as a 32 bit data

transfer

– a new data word is written to the AMBA address space, but not

directly after the previous AMBA address⇒ transfer the previous

stored data to the address as a 32 bit data transfer, and store the

new data and AMBA address to a new space in the shared memory

– a new data word is written to the AMBA address space directly

after the previous AMBA address ⇒ store the data to the shared

memory and wait again; if no new data follows or the new data

should be transferred to another address segment, take the col-

lected data and transfer it with a burst transfer

The self organizing shared memory would behave like a simple cache con-

troller. But the goal was to write an AMBA Extension Module that is really

just an add on to the SPEAR2 processor core and needs few resources. So

this design approach was discarded.

Knowing that the first idea of unifying the address space was a failure,

the decision to strip down the idea has been made. The controller logic of

the shared memory was the reason why the new shared memory would need

so many resources. So, why use such a complex logic? This was the birth of

the final design approach: the hybrid approach.

The hybrid approach uses the old approach for large data transfers and

the new approach for small data transfer (32 bit maximum). Thus the “intel-

ligent” AMBA transfer mode is only available for simple access to the AMBA

bus. This is easy to handle because small transfers occur and no temporal

saving of data is needed since no burst transfers can occur. This transfer

4.3. AMBA INTEGRATION APPROACHES FOR SPEAR2 54

would also be transparent to the SPEAR2 processor because when used, the

SPEAR2 would be stalled and so it would seem that the transfer was made

in an instant. From now on, this new transfer will be called “transparent

mode”.

This new idea also solves the problem of the big delay for sending small

amounts of data: no setup phase is needed for a transfer. The new transfer

only needs three clock cycles for transferring data.

Complex transfers, such as bursts are not possible in this transparent

mode. Thus, depending on the size of data which has to be transferred,

either the normal mode or the transparent mode may be the better choice.

This is a big achievement in comparison to the first design approach and

it also enhances the practical use.

4.3.4 Integration of the second approach into SPEAR2

The integration of the above mentioned idea is not so hard to accomplish.

The first approach can be taken as basis and just needs some extensions.

First, a differentiation whether an internal SPEAR2 component (Exten-

sion Module or DRAM) or an AMBA component should be accessed is

needed. This is achieved by adding a new signal.

After being able to distinguish between accessing a SPEAR2 component

or an AMBA component, a stall signal for the processor core is needed.

The third step is extending the internal logic of the Extension Module.

Besides the normal mode access for burst transfers, the transparent mode

needs its own control logic. It can also happen that the SPEAR2 wants

to initiate a transparent mode transfer, but another normal mode AMBA

transfer is still running in the background. Then the SPEAR2 has to be

stalled until the normal mode transfer finishes and the transparent mode

transfer can take place. Besides that, status flags are needed, too. Suppose

that something went wrong with the transfer. This is realised by adding

another two status bits to the read only status register.

The fourth and last step in extending the already existing design is the

address comparator that decides if a transparent mode takes place or not.

4.3. AMBA INTEGRATION APPROACHES FOR SPEAR2 55

This address comparator is not realized in the Extension Module but in the

top module of the SPEAR2. The reason is simple: The Extension Module

only functions when the select signal of the module is driven. Since the

address space of the Extension Module is now much greater (it also contains

the address space of the transparent mode), it needs its own select steering

logic. And this select steering logic can only be implemented on a higher

level (for a more detailed explanation of the extension system see Section

4.2.1 or [6]).

4.3.5 Two different state machines

Having finished the AMBA Extension Module for the SPEAR2 processor

core, one minor detail still exists: the state machine.

The implementation of the state machine is not meant for high speed

grades. The reason is the optimization for low latency. When the input

signals change, the state machine computes the new output signals and puts

them immediately on the bus, meaning that on the next rising clock edge all

components can already use the new signals.

This means that the timing tool takes takes following factors into consid-

eration for computing the worst execution time of the state machine:

• the time that the latest possible input signal for the state machine of

all AMBA components needs after the rising clock edge

• the time that the longest possible computation branch in the state

machine needs

• the time that the farthest away AMBA component needs to receive the

output signals of the AMBA state machine

• the worst setup hold time of all the AMBA components

Summing up all these factors, the time needed for one cycle will dramat-

ically increase and thus the speed will dramatically decrease, too.

To solve this problem, it was decided to build a second state machine that

solves this problem. The second state machine uses a fixed 1 stage pipeline,

4.3. AMBA INTEGRATION APPROACHES FOR SPEAR2 56

meaning that the computed signals will be sent in the next clock cycle to

the AMBA component. This increases the speed as the timing tool does

not need to take into account the way of the output signals to the AMBA

components, but increases the latency by a clock cycle.

The second state machine was also designed to have the same interface as

the first state machine, meaning that changing the state machine only results

in changing the VHDL file and nothing more.

4.3.6 Summary of the whole AMBA Extension Mod-

ule integration

This chapter describes the way that led to the current design. It also shows

that connecting an existing processor to a bus system sounds easy but can

yield to some problems.

The approach that has been taken was to write a solid basis that is tested

and then, based on this, write the “glue code” that ties the basis to the pro-

cessor. But this “glue code” has to be designed well. Like in this case, the

first approach that was taken to implement the glue code led to some limi-

tations, making the Extension Module not user friendly and hard to handle

in an interactive way. A failure in the first approach normally shows exactly

what problems exist in combination with the existing processor architecture.

After a redesign, in most cases a far better result will be achieved because of

the previously gained information.

Implementing the second approach results in most cases in a usable, stable

and quite well manageable component, ready for testing and, of course, for

using.

In the last stage the speed factor should be analysed. As in this case, the

state machine was too optimized on latency, resulting in lower speeds of the

bus system. If the processor or some other components are still slower than

the bus system, this does not matter. But if the bus system is responsible

for the bottleneck, another redesign should be considered. The redesign is

quite straight forward in most cases: just introducing pipelining or adding

another pipeline stage. This normally boosts the speed of the bus system,

4.3. AMBA INTEGRATION APPROACHES FOR SPEAR2 57

leaving the bottleneck at some other component.

Chapter 5

Results and Experiments

5.1 Integrating the AMBA Extension Mod-

ule into the SPEAR2

This section is about the modifications that have to be made to integrate the

AMBA Extension Modules into the SPEAR2. In the first part the interfaces

of the Extension Modules needed will be described, in the second part the

integration process itself will be presented.

5.1.1 Interfaces of the AMBA Extension Modules

Two Extension Modules are needed to make an existing SPEAR2 design

AMBA capable: the shared memory and the AMBA Extension Module.

Besides those two modules, another one will be described: the AMBA state

machine. The AMBA state machine is embedded in the AMBA Extension

Module, but since this is the core of the whole AMBA extension and since

it is platform independent, it will be described, too. For a schematic of the

connections between the modules, see the following Figure 5.1.

The purpose of the signals can be looked up in Appendix A.

5.1. INTEGRATING THE AMBA EXTENSION MODULE INTO THE
SPEAR2 59

Figure 5.1: Interconnect of AMBA modules

5.1. INTEGRATING THE AMBA EXTENSION MODULE INTO THE
SPEAR2 60

5.1.2 Integrating the new Extension Modules

Integrating the above mentioned two Extension Modules, the SPEAR2 will

be AMBA capable. Since the SPEAR2 is a flexible processor it was decided

that integrating the AMBA modules should not decrease its flexibility. The

most common way to achieve that is to integrate the AMBA modules into

the SPEAR2 processor and tag them with a boolean value that states if

the modules should be synthesized or not. This boolen value is declared in

the SPEAR2 configuration file (see the master thesis about the SPEAR2 for

further information [6]).

Besides that, it was also decided that the SPEAR2 is the only AHB master

in an AMBA network in most cases, thus the AMBA arbiter, the AMBA

decoder and the AMBA multiplexers will be integrated, too.

The last decision regarding the AMBA extension of the SPEAR2 that was

made was the integration of the AMBA AHB/APB bridge. Since a lot of

commonly used components like timers, UARTS, watchdogs and so on are

APB slave components, it would definitely improve the usage of the SPEAR2

processor if the designer did not have to integrate the AHB / APB bridge

too, but to provide the APB bus directly beside the AHB bus. Then he just

has to attach the components to the provided AHB and APB buses. See the

following Figure 5.2 for a simplified schematic of the internal structure of a

SPEAR2 with the AMBA Extension Module.

The AHB master, the AHB decoder, the AHB multiplexors and the

AHB/APB bridge used for integration are the ones provided by the GR-

LIB package since the AMBA Extension Module was also written by using

the GRLIB extension specification of the AMBA bus.

The integration of the AMBA bus system into the SPEAR2 requires the

following three steps:

1. extending the SPEAR2 config file

2. altering the GRLIB AMBA definition file

3. altering the SPEAR2 (spear.vhd)

5.1. INTEGRATING THE AMBA EXTENSION MODULE INTO THE
SPEAR2 61

Figure 5.2: Internal structure of a SPEAR2 with AMBA Extension Module

Extending the SPEAR2 config file

The SPEAR2 config file has to be extended to provide the new config pa-

rameters that are needed for the AMBA components.

--

-- Defines if the AMBA modules should be loaded

--

constant ENABLE_AMBA : boolean := false;

--

-- Defines the start address of the AMBA APB bus

--

constant AMBA_APB_ADDRESS : integer := 16#800#;

--

-- Defines the number of AHB slaves

5.1. INTEGRATING THE AMBA EXTENSION MODULE INTO THE
SPEAR2 62

--

constant AMBA_AHB_SLAVES : natural range 1 to 16 := 1;

--

-- Defines the number of APB slaves

--

constant AMBA_APB_SLAVES : natural range 0 to 16 := 0;

The number of AHB slaves must be equal or higher than one since the

AHB/APB bridge (an AHB slave component) is part of the integrating

AMBA modules, too.

Altering the GRLIB AMBA definition file

Since in the GRLIB the maximum numbers of AHB masters, AHB slaves

and APB slaves are each set to 16, a lot of warnings will be generated when

synthesizing your design. Thus those values should be altered to reduce the

number of warnings. The number of AHB masters is set to one since only

one AHB master is present. The number of AHB slaves is set to two or

higher since the AHB/APB bridge is one slave and the other one is needed

for maintaining the port to the top level entity. If no other AHB slave is

used, the port to the top level entity will be filled with dummy data. Last

is the number of APB slaves. Since the AHB/APB bridge is no APB slave

but an APB master, the exact number of APB slaves has to be filled in. All

those values are taken from the SPEAR2 config file.

library work;

use work.spear_conf.all;

...

constant NAHBMST : integer := 1; -- maximum AHB masters

constant NAHBSLV : integer := AMBA_AHB_SLAVES+1; -- maximum AHB slaves

constant NAPBSLV : integer := AMBA_APB_SLAVES; -- maximum APB slaves

5.1. INTEGRATING THE AMBA EXTENSION MODULE INTO THE
SPEAR2 63

Altering the SPEAR2 (spear.vhd)

The next step is to integrate all components into the SPEAR2 processor.

The first step is to alter the interface of the SPEAR2. It has to be extended

to support AHB and APB slaves. Thus the new interface looks as follows:

component spear

port (

clk : in std_ulogic;

sysrst : out std_ulogic;

extrst : in std_ulogic;

speari : in spear_in_type;

spearo : out spear_out_type;

ahbsl2sp : in ahb_slv_out_vector_type(NAHBSLV-1 downto 1);

ahbsp2sl : out ahb_slv_in_type;

apbsl2sp : in apb_slv_out_vector;

apbsp2sl : out apb_slv_in_type

);

end component;

The AHB slave vector with index 0 is used for the AHB/APB bridge and in-

ternally connected. Of course, these changes have to be made in the SPEAR2

package, too.

Next the internal AMBA signals for interconnecting the AMBA compo-

nents and the SPEAR2 core components have to be defined. For a complete

list refer to Appendix B Section B.1 where the signals are listed.

Having defined all signals, the next step is to instantiate the following com-

ponents:

• the AMBA Extension Module of the SPEAR2 which represents an AHB

master

• the AMBA shared memory Extension Module of the SPEAR2 which is

needed for non transparent transfers

5.1. INTEGRATING THE AMBA EXTENSION MODULE INTO THE
SPEAR2 64

• the AHB arbiter, the AHB multiplexors and the AHB decoder which

are needed for controlling the AHB bus

• the AHB/APB bridge

In the framework developed with this Master thesis all those components are

tagged with a boolean config parameter that states if those components are

synthesized or not. For the listing refer to Appendix B Section B.2. Since the

AHB/APB bridge is only small, the idea of using another tag for deciding if

it should be synthesized or not was discarded.

As already mentioned in the previous lines, the SPEAR2 is the only AHB

master. Thus the AHB arbiter / AHB multiplexor is parameterized with

support for only one AHB master. Besides that, split support is disabled,

the number of AHB slaves is 1 plus the number stated in the SPEAR2 config

file and the fixed burst length is supported. All other parameters use the

default value as described in the GRLIB IP library user’s manual[8].

The AHB/APB bridge can be parameterized in the SPEAR2 config file,

too. The parameter that can be set is the address where the bridge should be

placed. As default value 0x800 is recommended for an easier implementation

of the transparent mode. For details see the following Section 5.1.3.

The last step is to change the control code inside the SPEAR2. For a

listing of the changes that have to be made, refer to Appendix B Section

B.3.

In the following lines the most important code segments are explained.

As already written in the section about the SPEAR2 extension interface

(see Section 4.2.1), the address has only a width of 15 bit. Since the trans-

parent mode needs the full 32 bit, those other 17 bit have to be sent to the

AMBA Extension Module when the 32 bit SPEAR2 is used. This is achieved

by the following code:

if (ENABLE_AMBA = true and WORD_CFG_C = 2) then

addr_high(31 downto 15) <= coreo.extaddr(31 downto 15);

else

5.1. INTEGRATING THE AMBA EXTENSION MODULE INTO THE
SPEAR2 65

addr_high(31 downto 15) <= (others => ’0’);

end if;

The AMBA Extension Module also has the possibility to stall the proces-

sor. For this reason the hold signal of the SPEAR2 has to accept another

input in case the AMBA modules are loaded:

if (ENABLE_AMBA = true) then

exthold <= spearhold and speari.hold;

else

exthold <= speari.hold;

end if;

Summary of the changes

The above mentioned steps sum up the changes that have to be made to the

SPEAR2 to make it AMBA capable. The changes are only few in numbers

and they also maintain the flexibility of the SPEAR2 processor.

For more details refer to the homepage of the SPEAR2 project where the

altered SPEAR2, documentations and the necessary tools can be found.

5.1.3 Transparent mode transfer and the address space

As already described in Section 4.3.3 there is another transfer mode besides

the standard transfer: the transparent mode.

This transparent mode is initiated when the transmode signal of the

AMBA Extension Module asserts from low to high. But there must be a

rule if a transparent mode transfer should happen or if not. For this rea-

son it was decided that when writing to a certain address space it will be

activated automatically. The address space that has been chosen starts at

0x8000 0000 and ends at 0xFFFF F800, the start address of the AMBA Ex-

tension Modules. This address space also simplifies the logic that asserts the

transmode signal:

if (coreo.extaddr(WORD_W-1 downto 15) = EXTMODACT) then

5.2. COMPARISON OF SPEAR2 AND SPEAR2 WITH AMBA 66

transmode <= ’0’;

...

else

...

if (WORD_CFG_C = 2) then

transmode <= coreo.extaddr(31);

else

transmode <= ’0’;

end if;

end if;

Of course, this address space is only available when using the 32 bit SPEAR2

version. When using the 16 bit SPEAR2 version, the transparent mode does

not make any sense since the address space is too limited and thus it is

deactivated by default.

5.2 Comparison of SPEAR2 and SPEAR2 with

AMBA

Next to follow is a comparison between the SPEAR2 with a native extension

UART and a SPEAR2 with an AMBA UART by Gaisler Research. This

comparison should show the difference in the size and speed.

First the setup will be described, followed by the comparison itself. Finally

a short conclusion will be given.

5.2.1 Setup of the experiment environment

Since size and speed will be compared first a suitable hardware has to be

chosen. The example designs will be be compared on an Altera Cyclone

II Type EP2C35F484C6. This FPGA is attached to the Gleichmann Elec-

tronics development board ”Hpe mini AC2” which will be used as hardware

platform. As development tool Quartus II 6.0sp1 Web Edition was chosen

for synthesizing, mapping and FPGA programming of the competing designs.

5.2. COMPARISON OF SPEAR2 AND SPEAR2 WITH AMBA 67

Besides that, no tuning attempts were made in regard of the synthesis and

the mapping.

For the comparison I used a minimal SPEAR2 in its 32 bit configuration.

The instruction memory and the programmer module were disabled. The

data memory were the size of 8192 byte. The boot ROM was capable of

storing 128 half words. In one case a UART with the Extension Module

interface was used, in the other case the AMBA UART and the AMBA

Extension Module were used.

After having described the setup of the experiment, the following part will

present the results of the experiment.

5.2.2 Result of the experiment

The summary of the result can be taken from the table 5.1. Following this

table, a more detailed explanation and a conclusion of the experiment will

be given.

SPEAR2 ext. UART SPEAR2 AMBA UART
size 2760 logic elements

69632 memory bits
20 M4K memory blocks

3504 logic elements
71680 memory bits
24 M4K memory blocks

speed 55 MHz State Machine without pipeline:
51 MHz
State Machine with pipeline:
55 MHz

Table 5.1: Result of the experiment

As expected, the SPEAR2 with AMBA extension is larger. The difference

is about 750 logic elements. Besides that, the SPEAR2 with AMBA interface

uses 2048 bits of memory and 4 M4K memory blocks. Using 4 Cyclon II M4K

memory blocks for only 2048 bit is extremely high. The reason for such a high

degree of usage is the 4 independent 8 bit wide memory blocks that make

up the shared memory. But since every memory block has to be controlled

independently in regard to reading or writing, 4 blocks are needed.

5.2. COMPARISON OF SPEAR2 AND SPEAR2 WITH AMBA 68

The higher usage of the logic elements can easily be explained. In order

to use AMBA, an AMBA master, an AMBA arbiter and an AMBA decoder

are needed before a usable AMBA component can be used. These elements

need, of course, logic elements. This is the price to pay to make an existing

SPEAR2 design AMBA capable. But the advantages that come with the

AMBA interface are manifold. Existing components can simply be added.

For example the GRLIB1[8] has over 70 IPs at the moment and the number

is growing.

The reason of the speed difference between the two state machine is the

critical path.

As in the comparison table stated, the SPEAR2 with the non pipelined

AMBA state machine is 4 MHz slower than the SPEAR2 without AMBA.

The reason is that:

• a signal has to start at the SPEAR2 dram,

• this signal goes through the AMBA Extension Module and the AMBA

state machine,

• the state machine waits till the computation of the AMBA state ma-

chine is ”final” and

• the computed signal finally goes through the AMBA bus and the AMBA

multiplexer controlled by the AMBA arbiter to the AMBA UART.

The bottleneck in this design is the AMBA extension system.

The critical path can be broken by adding an additional pipeline inside

the AMBA module. The resulting design is as fast as the SPEAR2 without

the AMBA extension. But this also leads to a higher latency.

5.2.3 Summary of the experiment

The experiment was quite successful. It substantiated the initial assumption

that the design with the AMBA extension is larger than the original design.

1version 1.0.17, November 2007 was taken as reference

5.2. COMPARISON OF SPEAR2 AND SPEAR2 WITH AMBA 69

But it also shows that the amount of logic elements needed is not partic-

ularly high. The sacrifice in space can easily be justified by the fact that

already existing components can be used and do not have to be modified or

programmed again in order to accept the SPEAR2 extension interface.

The experiment also shows that the AMBA extension can be a bottleneck

if it is poorly designed. But using current design rules like pipelining can

easily prevent such bottlenecks.

Finally, this experiment shows that the SPEAR2 processor has to be al-

tered in some of its elements (see Section 5.1.2 for more details) in order to

make the SPEAR2 accept the AMBA Extension Module but the changes are

few in numbers and can easily be changed.

Conclusion

A lot of different bus systems are available today. The reason for this is

that there is no general purpose bus system, but each of them has got its

advantages and disadvantages. Three characteristic bus systems were de-

scribed, leading to the fourth one, the AMBA bus system. AMBA, like the

other bus systems, has its advantages and disadvantages, leading to enhanced

implementations of the bus to diminish these disadvantages.

The GRLIB package of Gaisler Research is such an enhancement of the

AMBA 2.0 bus. This enhancement was chosen to implement on the SPEAR2

processor, leading to a more user friendly and more flexible extended SPEAR2.

The reason to use GRLIB is because it is free and because a lot of already

existing components (over 70 in number) are available.

A state machine and a shared memory represent the core components

of the AMBA Extension Module for the SPEAR2 processor core. These

components were customized in such a way that they fit in perfectly with

the SPEAR2 design, leading to a better usability of the AMBA bus.

To enhance the usability of the SPEAR2 processor even more, the AMBA

arbiter, the AMBA decoder and the AMBA AHB/APB bridge are integrated,

too. Besides the standard Extension Module Interface the SPEAR2 has an

AHB Interface and an APB interface where the designer can directly connect

his AHB or APB components. He does not have to think about managing

the bus or connecting the APB components to the AMBA master, he only

has to connect the desired components to the bus. This makes the SPEAR2

processor extremely user friendly.

Of course, by extending the SPEAR2 with an AMBA interface, the pro-

cessor becomes bigger. But the price for this extension (about 700 logic

71

elements) is justifiable when facing the fact that predesigned and pretested

components can now simply be used with the SPEAR2 processor.

The experiment also shows that the implementation should not be done

without thinking. If this is done, the danger arises that the extension can be

the new bottleneck of the design. But if you apply the standard design rules

like using pipelining or drawing down the outline of the design (for example

the state machine with its transitions), the extension should not be the new

bottleneck of the design.

An application for the SPEAR2 with the AMBA interface is the lecture

“Hardware Software Co-Design” at the technical university of Vienna where

the new AMBA interface opened a whole new segment of practical examples.

Due to the AMBA interface, the IP based approach can be understood and

experienced much better now.

Appendix A

Signal description

A.1 Shared memory

The shared memory is mainly needed for bulk data transfers. Besides the

standard Extension Module Interface, it has another interface that is used

for communication between the AMBA Extension Module and itself. The

shared memory interfaces consist of the following signals:

clk: This is the clock signal of the module.

rst: This is the reset signal of the module

ambadramsel: This signal represents the select signal of the SPEAR2 Ex-

tension Module Interface.

exti: This bus is the connection of the SPEAR2 to the Extension Module

as defined in the SPEAR2 Extension Module Interface.

exto: This bus represents the output signals of the Extension Module defined

in the SPEAR2 Extension Module Interface with a small difference: if

ambadramlock is active, the output is the default output (every one of

the 32 signals is low).

ambadram ren: If the shared memory is used by the AMBA Extension

Module (ambadramlock is active), this signal controls if the memory of

the shared memory is enabled or not.

A.2. AMBA STATE MACHINE 73

ambadramlock: This signal controls if the AMBA Extension Module ex-

clusively uses the shared memory or not. If the signal is active, the

SPEAR2 core is not allowed to access the shared memory. If it still

does, an interrupt is generated to prevent data inconsistencies.

adrami - write en: This signal is used for writes from the AMBA Exten-

sion Module (write en is active) to the shared memory or reads from

it. This signal is only processed if ambadramlock is active.

adrami - byte en: This 4 bit wide signal has the same purpose as in the

Extension Module Interface. It signals the shared memory which mem-

ory banks are active and which are not. This signal is only processed

if ambadramlock is active.

adrami - data: This 32 bit wide signal delivers data that has to be written

to the shared memory. At the same time the address where the data

has to be stored must be present. This signal is only processed if

ambadramlock is active.

adrami - addr: This signal states where data has to be stored or where

data has to be read from. Its width depends on the size of the shared

memory. This signal is only processed if ambadramlock is active.

adramo - data: This 32 bit wide signal delivers the data of the shared

memory from a read process. The data that has to be read from a

given address is valid only in the following clock cycle.

A.2 AMBA state machine

The AMBA state machine is the core of the whole extension system. It asserts

the AMBA master outputs in dependency of the AMBA master input and

the AMBA Extension Module input. For this reason it has an interface to

the AMBA bus and another one to the AMBA Extension Module.

HRESET: This is the reset signal of the module.

A.2. AMBA STATE MACHINE 74

HCLK: This is the clock signal of the module.

BAtS - sMADDR: This 32 bit address signal is used to access the shared

memory. The AMBA state machine also considers the access pattern

of the shared memory: for reading, the address is asserted and in the

next clock cycle the data will be present; for writing, the data and the

address have to be asserted in the same clock cycle.

BAtS - sMWDATA: This 32 bit data signal is directly routed to the

shared memory, forwarding the incoming AMBA data to the memory.

BAtS - sMWRITE: This signal is used to state if the data send to the

memory should be read from or written to it. It is an obsolete signal in

this AMBA implementation since the byte en signal does the trick, but

it has not been discarded because the module was created for general

purpose use.

BAtS - sByteEn: This 4 bit signal has the same usage as the byte en signal

in the SPEAR2 Extension Module Interface specification.

BAtS - sERROR: This signal is used to indicate if an error occurred in

the AMBA transfer. If so, the corresponding error flag in the AMBA

Extension Module register is set.

BAtS - sFinished: This signal signals the successful transfer of an AMBA

transfer. If it is asserted, the AMBA Extension Module sets the corre-

sponding flag in the status register.

BAtS - sBusRequest: This signal indicates if the AMBA state machine

has successfully requested the AMBA bus. It is needed to signal the

AMBA Extension Module that an AMBA transfer will start shortly.

BAtS - sIRQ: This 8 bit signal represents the AMBA interrupts. It sends

the information to the AMBA Extension Module where a logical or of

the AMBA Extension Module interrupt register and the current AMBA

interrupts takes place.

A.2. AMBA STATE MACHINE 75

BStA - sHBUSREQ: This signal tells the AMBA state machine that an

AMBA transfer is needed.

BStA - sBADDR: This 32 bit address signal indicates from which shared

memory address the data should be taken from or written to. If a burst

transfer takes place, this address is the base address for the data in the

shared memory.

BStA - sHADDR: This 32 bit address signal indicates on the AMBA bus

where the data should be sent to or read from.

BStA - sMRDATA: This 32 bit data signal holds the value of the shared

memory read action. The data is from the address that was asserted

in the previous clock cycle.

BStA - sHWRITE: This signal is used to tell the AMBA state machine if

a read transfer or a write transfer on the AMBA bus should take place.

BStA - sHSIZE: This 3 bit signal indicates how much data will be trans-

ferred.

BStA - sWAIT: This signal can be used to stall the AMBA transfer. It

is the equivalent of the hready signal of the AMBA AHB slave compo-

nents.

AMBAI: This bus represents the AMBA AHB master in bus as described

by the GRLIB specification. These signals are processed by the AMBA

state machine module which is embedded in this module. For a detailed

explanation of this bus refer to the GRLIB specification[8] and the

AMBA 2.0 specification[4].

AMBAO: This bus represents the AMBA AHB master out bus as described

by the GRLIB specification. These signals are asserted by the AMBA

state machine module which is embedded in this module. For a detailed

explanation of this bus refer to the GRLIB specification[8] and the

AMBA 2.0 specification[4].

A.3. AMBA EXTENSION MODULE 76

A.3 AMBA Extension Module

The AMBA Extension Module is the main Extension Module needed for mak-

ing a SPEAR2 design AMBA capable. It has an Extension Module Interface,

an interface to the shared memory and another interface for the AMBA bus.

Although the AMBA Extension Module hat the AMBA interface, the embed-

ded AMBA state machine module is the part that drives these ports. Thus

the AMBA Extension Module Interfaces consist of the following signals:

clk: This is the clock signal of the module.

rst: This is the reset signal of the module

extsel: This signal represents the select signal of the SPEAR2 Extension

Module Interface.

exti: This bus is the connection of the SPEAR2 to the Extension Module

as defined in the SPEAR2 Extension Module Interface.

exto: This bus represents the output signals of the Extension Module defined

in the SPEAR2 Extension Module Interface with an enhancement: if

a transparent mode read from AMBA transfer takes place, the result

will be put on the bus when the hold signal is released again. Thus

the data will be present only in the next clock cycle like when using a

normal Extension Module.

gIRQ: This signal is used to indicate if an interrupt occurred on the AMBA

bus. If an interrupt occurred, the interrupt register of the AMBA

Extension Module has to be read because this signal is a logical or over

the 8 possible AMBA interrupts. For more details regarding the AMBA

interrupt, refer to section 4.1.2 where the GRLIB and its enhancements

to AMBA 2.0 are explained.

spearhold: This signal is used to stall the SPEAR2 processor. It is used

when a transparent mode transfer takes place. For more details re-

garding the transparent mode transfer, refer to section 4.3.3 where the

transparent mode transfer is introduced.

A.3. AMBA EXTENSION MODULE 77

ambadram ren: If the shared memory is used by the AMBA Extension

Module (ambadramlock is active), this signal indicates if the memory

of the shared memory is enabled or not.

ambadramlock: This signal indicates if the AMBA Extension Module ex-

clusively uses the shared memory or not. If the signal is active, the

SPEAR2 core is not allowed to access the shared memory. If it still

does, an interrupt is generated to prevent data inconsistencies.

AtD - write en: This signal indicates if the AMBA Extension Module writes

(write en is active) to the shared memory or reads from it. This signal

is only processed if ambadramlock is active.

AtD - byte en: This 4 bit wide signal has the same purpose as in the Ex-

tension Module Interface. It signals the shared memory which memory

banks are active and which are not. This signal is only processed if

ambadramlock is active.

AtD - data: This 32 bit wide signal delivers data that has to be written

to the shared memory. At the same time the address where the data

has to be stored must be present. This signal is only processed if

ambadramlock is active.

AtD - addr: This signal indicates where data has to be stored or where

data has to be read from. Its width depends on the size of the shared

memory. This signal is only processed if ambadramlock is active.

DtA - data: This 32 bit wide signal delivers the data of the shared memory

from a read process. The data that has to be read from a given address

is valid only in the following clock cycle.

AMBAI: This bus represents the AMBA AHB master in bus as described

by the GRLIB specification. These signals are processed by the AMBA

state machine module which is embedded in this module.

A.3. AMBA EXTENSION MODULE 78

AMBAO: This bus represents the AMBA AHB master out bus as described

by the GRLIB specification. These signals are asserted by the AMBA

state machine module which is embedded in this module.

Appendix B

Integration code

B.1 Internal signals

-- signals for component amba shared memory

signal ambadram_ren : std_ulogic;

signal ambadramsel : std_ulogic;

signal ambadramlock : std_ulogic;

signal ambadramexto : module_out_type;

signal ambadrami : sm_dram_in_type;

signal ambadramo : sm_dram_out_type;

-- signals for component amba extension module

signal ambaexto : module_out_type;

signal ambasel : std_ulogic;

signal addr_high : std_logic_vector(31 downto 15);

-- signal for transparent mode

signal transmode : std_ulogic;

-- signal for Gaisler interrupt system

signal gIRQ : std_ulogic;

-- signal for stalling spear

signal spearhold : std_ulogic;

-- signals for amba bus system + amba module outputs

signal ahbmi : ahb_mst_in_type;

B.2. AMBA COMPONENTS INTEGRATION 80

signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

signal ahbsi : ahb_slv_in_type;

signal ahbso : ahb_slv_out_vector := (others => ahbs_none);

B.2 AMBA components integration

ena_amba : if (ENABLE_AMBA = true) generate

--- AMBA DRAM-Module on Extension-Bus

ambadram_unit: ext_AMBA_sharedmem

port map(

clk => clk,

rst => intrst,

ren => ambadram_ren,

-- control and select signals

ambadramsel => ambadramsel,

ambadramlock => ambadramlock,

-- Extension-Module Interface

exti => exti,

exto => ambadramexto,

-- AMBA <-> Shared DRAM

adrami => ambadrami,

adramo => ambadramo

);

--- AMBA-Module on Extension-Bus

amba_unit: ext_AMBA

generic map(

hindex => 0,

DRAMOffset => (others => ’0’)

B.2. AMBA COMPONENTS INTEGRATION 81

)

port map(

clk => clk,

rst => intrst,

extsel => ambasel,

ambadramlock => ambadramlock,

transmode => transmode,

-- Extension-Module Interface

exti => exti,

exto => ambaexto,

addr_high => addr_high,

-- Gaisler interrupt

gIRQ => gIRQ,

spearhold => spearhold,

-- AMBA-Interface

AMBAI => ahbmi,

AMBAO => ahbmo(0),

-- DRAM-Interface

ambadram_ren => ambadram_ren,

AtD => ambadrami,

DtA => ambadramo

);

--- AMBA AHB arbiter/multiplexer

ahb0 : ahbctrl

generic map(

defmast => 0, -- default master

split => 0, -- split support

nahbm => 1, -- number of masters

nahbs => 1+AMBA_AHB_SLAVES, -- number of slaves

fixbrst => 1 -- support fix-length bursts

B.2. AMBA COMPONENTS INTEGRATION 82

)

port map(

rst => intrst,

clk => clk,

msti => ahbmi,

msto => ahbmo,

slvi => ahbsi,

slvo => ahbso

);

--- AMBA AHB/APB Bridge

apb0 : apbctrl

generic map(

hindex => 0,

haddr => AMBA_APB_ADDRESS,

hmask => 16#fff#,

nslaves => AMBA_APB_SLAVES

)

port map(

rst => intrst,

clk => clk,

ahbi => ahbsi, -- from master to bridge

ahbo => ahbso(0), -- from bridge to master

apbi => apbsp2sl, -- from bridge to slaves

apbo => apbsl2sp -- from slaves to bridge

);

-- route the remaining AHB slave outputs to the

-- AHB slave output vector (remaining slaves are present

-- in the top level entity)

ahbso(NAHBSLV-1 downto 1) <= ahbsl2sp(NAHBSLV-1 downto 1);

B.3. SPEAR2 CODE MODIFICATION 83

-- send the slave in signal to the top level entity

-- is needed for attaching other AHB slaves

ahbsp2sl <= ahbsi;

end generate;

no_amba : if (ENABLE_AMBA = false) generate

ahbsp2sl <= ((others => ’0’),(others => ’0’),’0’,(others => ’0’),

(others => ’0’),(others => ’0’),(others => ’0’),(others => ’0’),

’0’,(others => ’0’),’0’,(others => ’0’),’0’,(others => ’0’),

’0’,’0’,’0’,’0’);

apbsp2sl <= ((others => ’0’),’0’,(others => ’0’),’0’,

(others => ’0’),(others => ’0’),’0’,’0’,’0’,’0’);

end generate;

-- End Configurable SPEAR Modules

B.3 SPEAR2 code modification

spear2ext.data <= (others => ’0’);

spear2ext.addr <= coreo.extaddr(14 downto 0);

spear2ext.byte_en <= (others => ’0’);

spear2ext.write_en <= coreo.extwr;

if (ENABLE_AMBA = true and WORD_CFG_C = 2) then

addr_high(31 downto 15) <= coreo.extaddr(31 downto 15);

else

addr_high(31 downto 15) <= (others => ’0’);

end if;

...

syscsel <= ’0’;

B.3. SPEAR2 CODE MODIFICATION 84

progsel <= ’0’;

spearo.extsel <= ’0’;

dramsel <= ’0’;

ambasel <= ’0’;

ambadramsel <= ’0’;

v.ext_mod_sel := ’0’;

if (coreo.extaddr(WORD_W-1 downto 15) = EXTMODACT) then

transmode <= ’0’;

v.ext_mod_sel := ’1’;

case coreo.extaddr(14 downto 5) is

when "1111111111" =>

--SYSC Module

syscsel <= coreo.extwr or coreo.memen;

when "1111111110" =>

--PROG Module

if (USE_IRAM_CFG_C = true) then

progsel <= coreo.extwr or coreo.memen;

else

null;

end if;

when "1111111000" =>

--AMBA Module

if (ENABLE_AMBA = true) then

ambasel <= coreo.extwr or coreo.memen;

else

null;

end if;

when "1000000000" =>

--AMBA Shared Memory

if (ENABLE_AMBA = true) then

ambadramsel <= coreo.extwr or coreo.memen;

else

B.3. SPEAR2 CODE MODIFICATION 85

null;

end if;

when "1000000001" =>

--AMBA Shared Memory

if (ENABLE_AMBA = true) then

ambadramsel <= coreo.extwr or coreo.memen;

else

null;

end if;

when "1000000010" =>

--AMBA Shared Memory

if (ENABLE_AMBA = true) then

ambadramsel <= coreo.extwr or coreo.memen;

else

null;

end if;

when "1000000011" =>

--AMBA Shared Memory

if (ENABLE_AMBA = true) then

ambadramsel <= coreo.extwr or coreo.memen;

else

null;

end if;

when others =>

null;

end case;

spearo.extsel <= coreo.extwr or coreo.memen;

else

dramsel <= coreo.extwr or coreo.memen;

if (WORD_CFG_C = 2) then

transmode <= coreo.extaddr(31);

else

transmode <= ’0’;

B.3. SPEAR2 CODE MODIFICATION 86

end if;

end if;

v.extdata := (others => ’0’);

for i in v.extdata’left downto v.extdata’right loop

if (ENABLE_AMBA = true) then

v.extdata(i) := speari.data(i) or syscexto.data(i) or

progexto.data(i) or ambaexto.data(i) or ambadramexto.data(i);

else

v.extdata(i) := speari.data(i) or syscexto.data(i) or

progexto.data(i);

end if;

end loop;

...

if (ENABLE_AMBA = true) then

exthold <= spearhold and speari.hold;

else

exthold <= speari.hold;

end if;

r_next <= v;

Bibliography

[1] Altera Corporation. Avalon Memory-Mapped Interface Specification,

Apr. 2007. URL,http://www.altera.com/literature/fs/fs_avalon_

streaming.pdf.

[2] Altera Corporation. Avalon Streaming Interface Specification, June 2007.

URL,http://www.altera.com/literature/fs/fs_avalon_streaming.

pdf.

[3] Altera Corporation. SOPC Builder’s System Interconnect Fabric,

2007. URL,http://www.altera.com/products/software/products/sopc/

avalon/nio-avalon_bus.html.

[4] ARM Limited. AMBATM Specification (Rev 2.0), May 1999. URL,http:

//www.arm.com/products/solutions/AMBA_Spec.html.

[5] M. Barr. Embedded Systems Glossary, 1999-2007. URL,http://www.

netrino.com/Publications/Glossary/E.php.

[6] M. Fletzer. Spear2. Master’s thesis, TU Wien, Institut für Technische Infor-

matik, Vienna, Austria, Mar. 2008.

[7] T. Flik. Mikroprozessortechnik und Rechnerstrukturen. Springer Verlag, 7.

edition edition, 2004.

[8] J. Gaisler and S. Habinc. GRLIB IP Library User’s Manual, 2006. URL,http:

//gaisler.com/products/grlib/grlib.pdf.

[9] Gaisler Research. GRLIB product brief, Sept. 2004. URL,http://www.

gaisler.com/doc/Leon3%20Grlib%20folder.pdf.

[10] J. L. Hennessy and D. A. Patterson. Computer Architecture - A Quantitative

Approach. Morgan Kaufmann Publishers, 4th edition edition, 2007.

[11] International Business Machines Corporation. CoreConnectTM Bus Architec-

ture, 1999. URL,http://www-01.ibm.com/chips/techlib/techlib.nsf/

techdocs/852569B20050FF7785256991004DB5D9/file/crcon_pb.pdf.

http://www.altera.com/literature/fs/fs_avalon_streaming.pdf
http://www.altera.com/literature/fs/fs_avalon_streaming.pdf
http://www.altera.com/literature/fs/fs_avalon_streaming.pdf
http://www.altera.com/literature/fs/fs_avalon_streaming.pdf
http://www.altera.com/products/software/products/sopc/avalon/nio-avalon_bus.html
http://www.altera.com/products/software/products/sopc/avalon/nio-avalon_bus.html
http://www.arm.com/products/solutions/AMBA_Spec.html
http://www.arm.com/products/solutions/AMBA_Spec.html
http://www.netrino.com/Publications/Glossary/E.php
http://www.netrino.com/Publications/Glossary/E.php
http://gaisler.com/products/grlib/grlib.pdf
http://gaisler.com/products/grlib/grlib.pdf
http://www.gaisler.com/doc/Leon3%20Grlib%20folder.pdf
http://www.gaisler.com/doc/Leon3%20Grlib%20folder.pdf
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF7785256991004DB5D9/file/crcon_pb.pdf
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF7785256991004DB5D9/file/crcon_pb.pdf

BIBLIOGRAPHY 88

[12] International Business Machines Corporation. The CoreConnectTM Bus Ar-

chitecture, 1999. URL,http://www-01.ibm.com/chips/techlib/techlib.

nsf/techdocs/852569B20050FF77852569910050C0FB/file/crcon_wp.pdf.

[13] International Business Machines Corporation. CoreConnect FAQ,

Sept. 2002. URL,http://www-01.ibm.com/chips/techlib/techlib.nsf/

techdocs/3C53ED93E1397EF487256B190068A363.

[14] OpenCores Organization. WISHBONE, Revision B.3 Specification, July

2002. URL,http://www.opencores.org/projects.cgi/web/wishbone/

wbspec_b3.pdf.

[15] D. A. Patterson and J. L. Hennessy. Rechnerorganisation und -entwurf. Spek-

trum, 3. auflage edition, 2005. translated by Elke Jauch and Judith Muhr.

[16] W. Peterson. An introduction to WISHBONE: A chip-level microcomputer

bus, 2004. URL,http://www.vmebus-systems.com/pdf/Silicore.Feb04.

pdf.

[17] SiliconFarEast. SiliconFarEast, 2005. URL,http://www.siliconfareast.

com/soc.htm.

[18] A. S. Tanenbaum. Computerarchitektur. Pearson Studium, 5th edition edi-

tion, 2006. translated by Dipl.-Ing. Frank Langenau.

http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF77852569910050C0FB/file/crcon_wp.pdf
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF77852569910050C0FB/file/crcon_wp.pdf
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/3C53ED93E1397EF487256B190068A363
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/3C53ED93E1397EF487256B190068A363
http://www.opencores.org/projects.cgi/web/wishbone/wbspec_b3.pdf
http://www.opencores.org/projects.cgi/web/wishbone/wbspec_b3.pdf
http://www.vmebus-systems.com/pdf/Silicore.Feb04.pdf
http://www.vmebus-systems.com/pdf/Silicore.Feb04.pdf
http://www.siliconfareast.com/soc.htm
http://www.siliconfareast.com/soc.htm

	Introduction
	State of the Art bus systems
	Different types of integrating components into a system
	Memory-mapped components
	Port-mapped components
	Shared Memory components

	Different bus systems
	CoreConnect
	Wishbone
	System Interconnect Fabric

	Comparison of the State of the Art bus systems
	Conclusion of the State of the Art bus systems

	AMBA 2.0
	Overview of the AMBA 2.0 bus system
	AMBA 2.0 architecture
	Features of AMBA 2.0
	Traps of AMBA 2.0
	Simple AHB/ASB data transfers
	Complex AHB/ASB data transfers
	Burst data transfers
	Retry (or split) data transfers

	APB data transfers
	Usage of AMBA 2.0

	AMBA Extension Module for SPEAR2
	AMBA and the GRLIB
	What is GRLIB?
	GRLIB and its extensions in regard to AMBA 2.0
	GRLIB and its address space

	SPEAR2 Extension Modules
	Overview of the SPEAR2 extension concept
	Limitations of the SPEAR2 extension concept

	AMBA integration approaches for SPEAR2
	First approach
	Limitations of the first approach
	Second approach
	Integration of the second approach into SPEAR2
	Two different state machines
	Summary of the whole AMBA Extension Module integration

	Results and Experiments
	Integrating the AMBA Extension Module into the SPEAR2
	Interfaces of the AMBA Extension Modules
	Integrating the new Extension Modules
	Transparent mode transfer and the address space

	Comparison of SPEAR2 and SPEAR2 with AMBA
	Setup of the experiment environment
	Result of the experiment
	Summary of the experiment

	Conclusion
	Signal description
	Shared memory
	AMBA state machine
	AMBA Extension Module

	Integration code
	Internal signals
	AMBA components integration
	SPEAR2 code modification

