
MAGISTERARBEIT

ReUse Cases: Supporting
Knowledge Management and Reuse
with Self-Organizing Use Case Maps

ausgeführt am

Institut für Softwaretechnik und Interaktive Systeme

der Technischen Universität Wien

unter der Anleitung von

ao.univ.Prof. Dr. Andreas Rauber

durch

Christoph Becker
9952542

Gumpendorferstrasse 83-85/2/28
1060 Wien

Wien, im März 2006

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

i

Abstract

Organizations in today’s software industry are increasingly faced with the chal-
lenge of managing information about their past, present, and future projects. The
effective and efficient reuse of past knowledge, experience, and assets is one of the
key success factors in the software business. To organize the huge number of doc-
uments arising during software projects, e. g. use case documents, a digital library
offering content-based organization may be used. It allows the user to explore and
analyze a potentially unknown library in an intuitive way.

In software reuse, finding suitable reuse candidates for a more or less accurately
specified problem is one of the critical questions. In knowledge managment, an
important issue is finding correct sources of tacit knowledge. Mapping the use
cases of a new project to the existing collection may reveal valuable similarities
that might not be uncovered by traditional information retrieval methods like
key-word based search.

This thesis investigates a digital library system based on self-organizing maps
(SOMs) as potential solution to these problems. SOMs are a powerful unsuper-
vised neural network technique mapping high-dimensional input data to lower-
dimensional representations while preservering the topological ordering of input
data.

However, so far there have been a number of obstacles hindering this and
other potential applications of SOMs to document collections. The successive
steps of data extraction, indexing and feature space reduction can be very tedious
and prohibitively expensive. Furthermore, the inherent structure of use cases and
other texts containing several specific segments of text with different characteristic
content is not taken into account yet.

To overcome these obstacles, this thesis proposes a new tool, called SERUM –
SElf oRganizing Use case Maps, that combines and extends existing tools for index-
ing, feature space reduction, SOM training and map interaction to a comfortable
toolset that supports the user during the complete workflow of pre-processing doc-
uments, training SOMs and exploring the resulting maps. The tool features a
pattern-controlled extraction process, organization of documents according to the
similarities of specific sections according to the needs of the user, sophisticated
feature space reduction modules and comfortable map training.

We describe the architecture, components, and workflow, and apply the tool
to organize several real-world collections of use cases obtained from industrial
partners from different software branches. We point out potential benefits to a
software organization and directions for future research.

ii

Kurzfassung

Unternehmen in der heutigen Software-Industrie sehen sich zunehmend kon-
frontiert mit der Herausforderung, Informationen über ihre vergangenen, aktuellen
und zukünftigen Projekte zu verwalten. Die effektive und effiziente Wiederver-
wendung von Wissen, Erfahrung und Software-Artefakten ist einer der Schlüssel-
faktoren zum Erfolg. Um die gewaltige Anzahl dieser Dokumente, wie z.B. Beschrei-
bungen von Anforderungsfällen, zu organisieren, kann eine digitale Bibliothek zum
Einsatz kommen, die Dokumente basierend auf ihrem Inhalt organisiert und den
Benutzern ermöglicht, eine potenziell unbekannte Sammlung auf intuitive Weise
zu erforschen und analysieren.

Im Bereich der Software-Wiederverwendung ist eines der kritischen Probleme
das Auffinden geeigneter Kandidaten für Wiederverwendung; im Bereich des Wis-
sensmanagements ist das Finden der richtigen Quellen, die im Besitz von stillem
Wissen sind, eine wichtige Frage. Das Abbilden von Anforderungsfällen eines
neuen Projektes auf die bestehende Sammlung kann wertvolle Ähnlichkeiten auf-
zeigen, die mit herkömmlichen Methoden zur Informationsgewinnung wie der Suche
nach Schlüsselwörtern nicht aufgedeckt werden.

Diese Arbeit untersucht self-organizing maps (SOMs) als eine mögliche Lösung
der skizzierten Probleme. SOMs sind eine Technik aus dem Bereich der neuronalen
Netze, die hochdimensionale Daten auf nieder-dimensionale Repräsentationen ab-
bilden und dabei die topologische Ordnung der Daten beibehalten.

Momentan erschwert jedoch eine Reihe von Hindernissen diese und andere
potenzielle Anwendungen von SOMs. Die notwendigen Schritte der Datenextrak-
tion, Indizierung und feature space reduction sind mit den zur Verfügung ste-
henden Werkzeugen sehr zeitaufwändig und mühsam zu bewältigen; auch wird
die inhärente Struktur von Anwendungsfällen und anderen Texten, die spezifische
Text-Segmente mit verschiedenen Charakteristiken enthalten, nicht berücksichtigt.

Um diese Hindernisse zu beseitigen, stellt diese Arbeit ein neues System mit
dem Namen SERUM – SElf oRganizing Use case Maps vor, das bestehende Module
zur Textindizierung, feature space reduction sowie Training und Anzeige der SOMS
kombiniert und erweitert, um den Benutzer während des gesamten Arbeitsablaufes
von der Vorbereitung der Dokumente bis zur Analyse der resultierenden Karten
zu unterstützen. SERUM bietet einen Muster-basierten Extraktionsprozess, die
Organisation von Dokumenten nach den Ähnlichkeiten bestimmter Abschnitte,
differenzierte feature space reduction und komfortables Training der SOMs.

Wir beschreiben Architektur, Komponenten und Arbeitsablauf und wenden
das System an, um mehrere Sammlungen von Anforderungsfällen von Partnern
aus der Software-Industrie zu organisieren. Wir zeigen potenzielle Anwendungen
und Vorteile für eine Software-Organisation sowie künftige Forschungsrichtungen.

Table of Contents

1 Introduction 1

2 Related Work 6
2.1 Digital libraries . 6
2.2 The SOMLib digital library system 7

2.2.1 The Self-Organizing Map 7
2.2.2 Using self-orgainizing maps for clustering documents . 12
2.2.3 An overview of the SOMLib sytem 13
2.2.4 Summary . 21

2.3 Use cases . 21
2.4 Application areas of use case clustering 25

2.4.1 Software Reuse . 25
2.4.2 Knowledge Management and the Learning Software

Organization . 27
2.5 Summary . 30

3 The SERUM tool suite 31
3.1 Current deficiencies in tool support 31
3.2 The goals of SERUM . 33
3.3 Requirements . 36

3.3.1 Use Case Descriptions 37
3.3.2 Non-functional requirements 38

3.4 Supporting frameworks and tools 44
3.5 Tool architecture . 46

3.5.1 Components . 46
3.6 The domain model . 48
3.7 Extracting text artifacts from documents 50

3.7.1 Pattern definition . 50
3.7.2 The Digester object mapping 52
3.7.3 The Extractor . 55
3.7.4 The user interface . 58

iii

TABLE OF CONTENTS iv

3.8 Indexing . 61
3.8.1 Feature extraction: Indexing 62
3.8.2 Pruning the feature space 63

3.9 Map training . 66
3.10 Interaction . 67
3.11 Batch mode . 68
3.12 Summary . 69

4 Extracting and Clustering Use Cases 70
4.1 The Use Case sets . 70
4.2 Importing and indexing use cases 72

4.2.1 Pattern definition . 74
4.2.2 Feature space reduction 76

4.3 The resulting maps . 80
4.4 Viewing linked documents . 83
4.5 Finding similar use cases: practical benefits 86
4.6 A recursive view of SERUM 87
4.7 Performance . 88

5 Summary and Outlook 90
5.1 Outlook . 92

Bibliography 93

Appendices 104

A Document type configuration file 105

B Sample batch worker input file 112

List of Figures

1.1 Steps needed to organize texts contained in a documents with
a self-orgaizing map. 4

2.1 Examples showing the differing growth processes and hierar-
chy concepts in various extensions to the standard static SOM:
(a) Incremental Grid Growing, (b) Growing Grid, (c) Hierar-
chical Feature Map, (d) Growing Hierarchical SOM (GHSOM). 11

2.2 Overall workflow in the SOMLib digital library as seen by the
user. 13

2.3 Steps involved in organizing documents with the SOMLib sys-
tem in detail. 14

2.4 Indexing and stemming . 15
2.5 Stop word filtering . 16
2.6 Term weighting . 17
2.7 Map training and labelling . 18
2.8 libViewer interface in action. 19
2.9 SOMViewer interface showing a collection of use cases. 20
2.10 SOMViewer interface showing smoothed data histograms of a

use case document collection. 21

3.1 Four main steps of SERUM. 37
3.2 Overview of the components of the SERUM toolsuite. 47
3.3 SERUM’s domainmodel. 49
3.4 Regular expression for matching a complex requirements doc-

ument containing several hundreds of use case descriptions. . . 51
3.5 Part of the XML configuration modelling the pattern that re-

sults in the regular expression as listed in Figure 3.4. 52
3.6 Document type definition (DTD) of the doctypes configura-

tion file. 53
3.7 Rule setup for the Digester component. 54

v

LIST OF FIGURES vi

3.8 Sequence diagram showing the main classes collaborating in
the extraction process. 56

3.9 Sequence diagram of TextPattern.makeText() showing the
process of creating a Doc from an input string. 57

3.10 Import screen of SERUM. 58
3.11 Chainsaw log during the extraction process. 59
3.12 Reviewing extraction results. 60
3.13 Selection of segments to include in indexing. 61
3.14 Sequence diagram showing the indexing of a subproject. . . . 63
3.15 Feature space reduction screen while merging terms. 65
3.16 SERUM’s map training window. 66
3.17 Document type definition of the batch input file. 68
3.18 Way of a use case and its segments from extraction to interaction. 69

4.1 Comparison chart for word dimensions with and without re-
ductions. 76

4.2 Chart comparing the effects of reduction settings on map quality. 79
4.3 SomViewer showing the MOBILE static SOM. 81
4.4 SOMViewer showing smoothed data histograms of the MO-

BILE SOM. 81
4.5 SOMViewer with a D-matrix visualization of the MOBILE SOM. 82
4.6 MOBILE map shown in a normal web browser. 82
4.7 SOMViewer showing the TICKET map. 83
4.8 Detail of the SOMViewer showing the TICKET map. 84
4.9 DocViewer component displaying a use case description. . . . 85
4.10 SOMViewer displaying a map with use cases from 2 different

categories. 86
4.11 SOMViewer displaying a map with all use cases, including

SERUM’s own. 88

List of Tables

3.1 UC1: Use Serum . 39
3.2 UC2: Import a collection of documents 40
3.3 UC3: Create a map for a document collection (normal) 41
3.4 UC4: Create a map for a document collection (simple) 42
3.5 UC5: Browse a map . 42
3.6 UC6: Full-service SERUM . 43
3.7 Default parameter settings used for feature space reduction. . 64
3.8 Default parameter settings used for map training. 67

4.1 Properties of the use case sets 72
4.2 Segments contained in each use case set 73
4.3 Terms in the MOBILE set with and without stemming. 77
4.4 Removed terms in the MOBILE set with manual and auto-

matic reduction after stemming. 78
4.5 Effect of varying feature reduction settings on map quality . . 80
4.6 Time required for performing the various steps from document

extraction to map training . 89

vii

Chapter 1

Introduction

Organizations in today’s software industry are increasingly faced with the
challenge of managing information about their past, present, and future
projects. This means both storing and organizing artifacts ranging from
requirements and design documents to test cases and software source code,
as well as being able to find and retrieve appropriate information when a
more or less specific question arises. The effective and efficient reuse of past
knowledge, experience, and assets is one of the key factors to success in the
software business. The areas of software reuse and knowledge management
have therefore received a lot of attention from practitioners and researchers
over the last decade.

The management of information and its retrieval according to problem
statements that are sometimes accurate, but often not very concrete, leads
to another important area in the fields of information and computer science:
digital libraries.

Digital libraries have been a prominent research topic over the last decade.
In the information age we are living in, having digital objects like texts and
multimedia data accesible through a computer greatly adds to the possibili-
ties of using a library. As Levy et. al. [LM95] point out,

The highest priority of a library, digital or otherwise, is to serve
the research needs of its constituents.

The main responsibilities of a digital library are:

1. to store digital information and organize it according to its con-
tent, and

2. to provide users with services to find what they are looking for, i. e.
services for information discovery and retrieval.

1

CHAPTER 1. INTRODUCTION 2

The problems of content-based organization and information retrieval
have gained tremendous interest over the past years, and various techniques
have been employed to tackle these questions.

A number of researchers started to use unsupervised neural network mod-
els, specifically the self-organizing map, to organize document collections
based on their content. This approach also forms the core of the SOMLib
digital library project1.

The SOMLib system organizes text documents according to their content
into a 2-dimensional grid, whereby similar documents are located near to each
other on the grid. The user can thus gain an overview of the content of large,
potentially unknown document collections, and find documents similar to a
given one that he2 or she would probably not find using a simple query-based
retrieval method.

The self-orgainizing map has been shown to be well suited for text clus-
tering and has been applied to document collections ranging from newspa-
per articles [RMD02, RM99b, RM99d] and newsgroup archives [KKLH96] to
large collections of patent abstracts [KKL+00].

Auer et. al.[ABRB05] applied it to collections of use case descriptions and
concluded that the clustering worked very well here, too. While they used
this approach for analogy-based cost estimation, it seems that other areas
should profit even more from the content-based organization features of the
self-organizing map.

If an organization uses a digital library approach to organize its collec-
tions of use cases with an unsupervised learning technology such as the self-
organizing map, it would be able to create such a library without extensive
investment, as no supervised classification schemes are employed.

Whenever a new project is undertaken and its requirements are specified
with use cases, mapping these use case descriptions to the existing collection
may reveal valuable similarities that might not be uncovered by traditional
information retrieval methods such as keyword-based search.

Specifically, this approach is of considerable interest in two areas men-
tioned above: software reuse and knowledge management resp. the “Learning
Software Organization”.

1. In software reuse, the process of finding suitable reuse candidates
for a given, specified problem still is one of the main problems to solve
in each potential reuse instance. Leading researchers in this field plead

1The SOMLib project homepage can be found at http://www.ifs.tuwien.ac.at/
∼andi/somlib/index.html

2For sake of readability, we stick to the male pronoun throughout this work. Of course,
we mean both genders.

CHAPTER 1. INTRODUCTION 3

to rely on artifacts on the level of the problem space for the retrieval
of reuse candidates – as opposed to the often dominating usage of
artifacts in the solution space coming from later stages, such as source
code documentation. For example, Jacobson[JGJ97] writes

If we delay considering reuse to the design or implementa-
tion stage, we may find our design is incompatible with the
features offered . . .

Use cases are one of the leading methodologies in software requirements
engineering and are being applied in countless organizations throughout
all software industries. Thus the potential data base for experiments
in this area is very large.

2. In knowledge management, a critical problem is pointing a user to
the correct source of information for a specific problem, which often
means referring him to a colleague holding valuable information in form
of tacit knowledge. With use case descriptions pointing to their
responsible authors, this can be achieved with minimum effort.

Using a digital library of use case descriptions for software reuse and
knowledge management thus is a promising approach, but to investigate its
possible benefits and limitations in these areas, detailed experiments are
needed.

To cluster use cases in a self-organizing map, the descriptions need to
be extracted from larger requirements documents, as most organizations do
not rely on dedicated requirements management tools, but simply on text-
processing applications, for specifying the requirements for their projects.

Ideally, a user could take a document containing a number of texts that
he or she wants to be organized in a map, feed it into the system, and be
presented with a map showing the extracted, indexed, and organized text
documents.

But this scenario is not yet reality. Figure 1.1 shows the steps that have to
be conducted to use the SOMLib toolsuite. So far, there are several obstacles
hindering the wider accepted usage of the SOM.

• First, the extraction process is tedious. To apply the SOM algo-
rithm, feature extraction has to be done in the form of text indexing
similar to that done inside a search engine, which transforms docu-
ments into a numerical representation. This process usually works on
single files. But relevant document passages in real life are contained
in larger documents, which have to be split up first in order to allow

CHAPTER 1. INTRODUCTION 4

Single documents
Feature

extraction and
pruning

(Growing)
SOM

Map viewing
Document

containing text
documents

Figure 1.1: Steps needed to organize texts contained in a documents with a
self-orgaizing map.

text indexing. So far, this has to be done in a manual preprocessing
step that can take quite a long time and may be prohibiting in terms
of effort.

• Second, tool support automating the workflow of extracting, index-
ing, and training is yet quite poor. The user has to manually handle
the input and output files and feed the input files of preceding steps to
successive tools.

• Third, tool support allowing the user to view the content of the
original documents is not very user-friendly.

• Moreover, current approaches do not take into account the structured
nature of text documents like use cases, which consist of several text
sections with specific characterstics and relations across the single doc-
uments; clustering documents according to the content of specific sec-
tions, which could lead to a better insight into specific aspects of doc-
ument collections, can only be done by manually partitioning the text.

To overcome these problems and thus support the application of SOMs
to software reuse and the Learning Software Organization, this thesis focuses
on tool enhancement for the SOMLib digital library system to facilitate an
automated workflow ranging from the extraction and indexing to the map
interaction stages.

Goal is the further development, enhancement and integration of
the existing components of the SOM Toolbox and the SOMLib digital library
to a tool that allows the user in a comfortable way

• to import in a way as automated as possible collections of seg-
mented documents containing short texts (in particular require-
ments specifications containing use case descriptions),

• to manage these document collections and organize them according
to configurable criteria in SOMs. The resulting maps should be
saved, and an extended SOMviewer shall present them in a convenient
and helpful way and thus support the analysis process.

CHAPTER 1. INTRODUCTION 5

For use case documents, the user defines templates with specified parts
and keywords. The system imports use cases according to these patterns into
the database, trains SOMs according to the user’s needs and presents them
to the user for browsing and exploration, which includes viewing the text of
the original use cases.

The resulting tool is being developed under the working title “SERUM
– SElf oRganizing Use case Maps”.

The remainder of this thesis is structured as follows.

• Chapter 2 explains the self-organizing map models and tools underly-
ing the tool suite to be developed, lines out relations to digital libraries
and text mining and introduces use cases and the application areas
discussed later, namely software reuse and knowledge management re-
spectively the “Learning Software Organization”.

• A detailed description of the requirements, design and the components
of the SERUM toolsuite follows in chapter 3.

• In chapter 4, we describe the application of SERUM to four different
collections of use cases with differing size, target domains, sources and
languages. We highlight selected aspects of the feature extraction and
reduction steps, and point out possible benefits to software reuse and
knowledge management.

• The last chapter summarizes the work of this thesis and points out
further work and research directions.

Chapter 2

Related Work

This chapter contains introductory explanations on digital libraries and text
mining, as well as the self-organizing map and extensions thereof. It further
outlines the SOM toolbox and the components of the SOMLib project. A
short introduction to use cases leads to potential application areas of cluster-
ing use case documents, namely software reuse and knowledge management.

2.1 Digital libraries

Digital libraries have been a prominent research topic in the fields of infor-
mation and computer science over the last decade, with a wealth of papers
published and several series of conferences focusing on digital libraries like
the European Conferences on Digital Libraries (ECDL)1, the Joint Confer-
ences on Digital Libraries (JCDL)2 or the Internation Conference on Digital
Libraries 3, among others.

Definitions for digital libraries vary. Lesk describes a digital library as

a collection of information that is both digitized and organized
([Les97] as cited in [Rau00]),

and Harter defines it as

a computerized “libary” that would supplement, add functional-
ity, and even replace traditional libraries. [Har96]

According to Harter, the term originates from the Digital Library Initia-
tive of the Library of Congress and the National Science Fund [NSF06]. This
initiative was started in 1994 and moved on to the second phase in 1998.

1www.ecdl2006.org
2http://www.jcdl.org/
3http://www.teriin.org/events/icdl/

6

CHAPTER 2. RELATED WORK 7

Digital library systems today take a vast variety of different forms. Some
examples are provided below; this list is by no means meant to be complete.

• Digital archives like the Internet Archive dedicate themselves to
archivation of content, e. g. from the web, for

preserving artifacts of . . . culture and heritage. [Int]

This includes webpages, multimedia content, etc. The father figure of
these archives can be seen in the ancient Library of Alexandria.

• Several efforts initiated by conventional libraries, often national
libraries, strive to digitize content and make it available in an online
form together with content already present in digital form. [BFN04]

• Other efforts include learning systems for universities, collections of
lectures, or specialized digital libraries for scientific communities
like the ACM digital library[Ass06], among many others[LGR04, iee06].

Compared to the classic paradigm of a library, modern digital libraries
often present new challenges to their users who have to accustom themselves
to new ways of using a library. To combine the advantages of traditional li-
braries, in particular the ways users interact with them, with the possibilities
of digital libraries, the SOMLib digital library was conceived.

2.2 The SOMLib digital library system

This system was first presented in [Rau98], later it was elaborated in detail
in [Rau00, RM99c]. In the last years, numerous experiments have led to a
number of improvements and further insights[Rau03, RM03, ABRB05].

The SOMLib digital library system uses at its core an unsupervised neural
network model, the self-organizing map, to organize documents according to
their content. The following section describes the self-organizing map (SOM).
It is followed by a discussion on the applicability of the SOM to organize
document collections and an introduction to the components constituting
the SOMLib digital library.

2.2.1 The Self-Organizing Map

The self-organizing map (SOM) was proposed by Prof. Kohonen in [Koh82]
and later described extensively in [Koh89] and [Koh01]. It uses an un-
supervised neural network to map high-dimensional input data to lower-
dimensional reprentations while preserving the topological ordering of the

CHAPTER 2. RELATED WORK 8

input data as far as possible. By compressing high-dimensional information
to a lower-dimensional form, usually a 2-dimensional grid structure, it vi-
sualizes this information in a way more easily accessible to human beings.
It is especially popular and effective in the areas of cluster analysis, data
classification and visualization of high-dimensional data.

A set of units are arranged in some topology, the most common form of
which is the 2-dimensional grid. A weight vector mi is assigned to every unit
i. These weight vectors are of the same dimensions as the input data and
are initialized with random values.

The input data are represented by n-dimensional vectors xi ∈R
n describ-

ing n features in the input space.
The training process works as follows:

1. An input vector x is selected randomly.

2. The activation of the output units is calculated according to the dis-
tance between the input vector x and the weight vector of each unit.

3. The best-matching unit c (the “winner”), i. e. the unit having the
weight vector with the lowest Euclidian distance to the current input
vector x, is selected.

4. The weight vectors of the “winner” c and its neighbors are modified
by moving them toward the input vector x. The amount of adaption
is determined by a gradually decreasing learning rate α, the size of the
neighborhood depends on the neighborhood-kernel hci.

5. Steps 1-4 are repeated until the predefined stop criterion is fulfilled.

The decreasing amount of adaption as determined by the learning rate
α enables first large adaption steps away from the random initialization of
the weight vectors, while allowing for a fine-tuned modification of the input
space representation towards the end of the training process.

As mentioned, not only a single winner unit is moved in each step, but
also the units in it’s vicinity as described by a Gaussian neighborhood-kernel
hci. This function takes into account the Euclidian distance in the output
space between a unit i and the winner c, as weel as the current time t. With
ri as the 2-dimensional vector representing the location of unit i within the
grid under consideration, we get the Gaussian neighborhood kernel

hci(t) = e
− rc−ri

2

2·δ(t)2 (2.1)

that scalars in the range of [0,1] and decreases during the learning process.

CHAPTER 2. RELATED WORK 9

With α denoting the learning rate that is decreasing over the course
of time, hci representing the neighborhood-kernel also varying over time, x
representing the current input pattern, and mi denoting the weight vector
assigned to unit i, the learning rule is

mi(t + 1) = mi(t) + α(t)hci(t)[x(t) − mi(t)] (2.2)

Pragmatically speaking, at each step in the learning process, the weight
vectors of the winner unit and the units in its vicinity are tuned towards
the currently presented input vector, so that if the input vector is presented
again, the activity level of the winner unit and its region will be even higher.
The amount of adaption of each unit in the vicinity of the winner decreases
with the distance to the winner unit.

As similar inputs are mapped onto regions close to each other, the topo-
logical ordering of input data is preserved. The decreasing neighborhood
kernel allows for coarse clustering at the beginning of the learning process
and fine-tuning of weight vectors towards the end, thus fostering a better
topological representation of the input space.

The quantization error QE (also called distortion measure) is a metric
for the quality of the mapping of the data onto the grid. The QE of a cell
measures the dissimilarity of all input data mapped onto a particular unit
by the Euclidian distance. Thus, the mean QE or MQE is the mean distance
between each input vector and it’s best-matching unit.

Termination criteria

The training process may be terminated by meeting a variety of different
criteria. Most commonly, it is terminated

1. if a fixed amount of iterations has elapsed; this is a very commonly
used criterion;

2. if the quantization error does not change any more, or

3. if a predefined threshold for the quantization error is reached.

Extensions of the static SOM

Despite its usefulness and effectiveness, the static structure of the classic
SOM has some drawbacks [RMD02, BM93].

1. It cannot capture the inherent hierarchical structure of data;

CHAPTER 2. RELATED WORK 10

2. The size of the map has to be specified in advance and cannot be
changed later. This is a serious limitation, beause often the ideal size
of the map is not known beforehand, and thus several simulations have
to be run to determine the optimal sizing.

3. It is difficult to decide where the boundaries of clusters and regions are.

These restrictions led to a large amount of research (cf. [KKK98]) bring-
ing forth several extensions that try to add dynamic growth and structural
flexibility to the SOM.

• Incremental Grid Growing as proposed in [BM93] uses a 2-dimen-
sional self-organizing map, starting at a size of 2x2 units. During the
learning process, the grid structure is adapted in two ways. When the
input data cannot be mapped to the grid with the desired granularity,
units are added at the boundaries of the map. On the other hand,
connections between units are added and removed according to the
distances between input patterns.

• The Growing Grid as described in [Fri95] features a 2-dimensional
rectangular ordering of units and adds rows or columns to the grid
during the growth process where the input space cannot be mapped
with the desired quality.

• The Hierarchical Feature Map is described in [Mii90] and [KO90].
It features a predefined hierarchical architecture of SOMs, thus leading
to a balanced tree representing the input data. Furthermore, because
the size of each map to trained is much smaller, the time needed for
computation is reduced. However, it is not dynamic because the map
size and the depth of the hierarchy of maps have to be defined in
advance.

• The Growing Hierarchical SOM (GHSOM) was described in de-
tail in [RMD02], [DMR00] and [Dit00]. It’s key idea is

to represent the inherent hierarchical structure present in
many data collections in the most accurate way. ([Dit00],p. 19)

To achieve this, the GHSOM has a dynamic hierarchical structure of
SOM layers, where data mapped onto a unit in a higher level is ex-
panded and mapped in detail onto a new map underlying the respec-
tive unit if a specific threshold is reached. Each of the connected maps
is able to grow independently of the others; the growth process within

CHAPTER 2. RELATED WORK 11

one of these maps in the hierarchy works similar to that in the growing
grid, where rows and columns may be added as necessary to reach the
desired granularity of the input representation.

Other extensions include Growing Cell Structures [Fri91, Fri94], the Grow-
ing SOM (GSOM) [AHS98, AHS00], and the hypercubical growing SOM
[BV97].

Figure 2.1 shows the structure of various possible growth processes that
can be found in the above mentioned variations of the static SOM. Cells
shaded with dark grey are being selected as extension points; cells that are
added during a learning iteration are indicated in light grey. Note that
the hierarchical feature map is not growing dynamically during the training
process; it’s structure has to be predefined in advance.

For our purposes most relevant are the classic static SOM, the Grow-
ing Hierarchical SOM, and especially its flat relative, the Growing SOM.
These models are readily supported by the SOMLib system, and with their
2-dimensional grid topology, they provide an intuitive visualization and ex-
cellent exploration facilities. Thus, they feature an easy-to-understand yet
flexible network model.

2.2.2 Using self-orgainizing maps for clustering docu-

ments

The self-orgainizing map has been shown to be well suited for text clustering
and has been successfully applied to a wide range of document collections
ranging from newspaper articles and newsgroup archives to large collections
of patent abstracts.

• Possibly the first to use SOMs for document collections were Lin et. al.
[Lin91], who clustered a small collection of 140 documents with a static
SOM.

• Kohonen et. al. used the first version of their WEBSOM tool4 to orga-
nize messages from newsgroup archives [KKLH96].

• In a later effort, they employed the WEBSOM to organize a large
collection containing of more than 6 million patent abstracts [KKL+00].

• Lagus et. al.[LKK04] organized texts from the Encyclopedia Britannica
with an improved version of the WEBSOM.

4The WEBSOM project homepage can be found at http://websom.hut.fi/websom/.

CHAPTER 2. RELATED WORK 12

(b) Growing Grid(a) Incremental Grid Growing

…..

(c) Growing Hierarchical SOM (GHSOM, dynamic)(c) Hierarchical Feature Map (static)

Figure 2.1: Examples showing the differing growth processes and hierarchy
concepts in various extensions to the standard static SOM: (a) Incremental
Grid Growing, (b) Growing Grid, (c) Hierarchical Feature Map, (d) Growing
Hierarchical SOM (GHSOM).

CHAPTER 2. RELATED WORK 13

• Nürnberger et. al. [NKK03] present a prototypical system for infor-
mation retrieval combining keyword-based search and visualization of
similarity based on content. They argue that

In order to visualize document collections methods are re-
quired that are able to group documents based on their sim-
ilarity and furthermore visualize the similarity between dis-
covered groups of documents. ([NKK03],p. 120)

• Rauber et. al. employed the SOMLib system to cluster a broad range of
documents, among others scientific abstracts and articles from the CIA
Factbook and a variety of newspapers and magazines like the TIME
magazine. [RMD02, RM99b, RM99d, Rau00]

All of these different methods yielded good results in organizing docu-
ments according to the similarity of their content. As Lagus puts it,

Experiments with the various data sets show that the method
can be successfully applied to organizing both very small and
very large collections, to colloquial discussions and to carefully
written scientific documents. . . ([Lag00], p. 35)

In this work, we will focus on the SOMLib digital library, which is intro-
duced in the next section.

2.2.3 An overview of the SOMLib sytem

The SOMLib system consists of several layers, the collaboration of which
leads to a workflow that is seen by the user as depicted in Figure 2.2.

Single documents
Feature extraction
and feature space

pruning

(Growing) SOM

and labelling

Interaction:

libViewer

Figure 2.2: Overall workflow in the SOMLib digital library as seen by the
user.

1. At its basis there are simple modules for parsing text that transform
the textual representation of documents into a vector space model that
can be fed into the self-organizing map.

CHAPTER 2. RELATED WORK 14

2. This self-organinzing map constitutes the heart of the system. Sim-
ilar documents are grouped together by feeding their vector space rep-
resentation into a SOM, thus performing a cluster analysis on the doc-
uments. The SOM adapts itself to reflect the input data in the best
possible way and thereby topologically preserves the inherent structure
of the document collection.

3. SOMLib also includes means for the integration of distributed li-
braries, which are not of primary interest here. Please refer to [RM98,
Rau98] for details.

4. More interesting for our purposes is the LabelSOM algorithm which
automatically creates labels for clusters by analyzing term frequencies
and generating lists of keywords that describe the content of documents
contained in a cluster.

5. Interaction with the library is managed by the libViewer component,
which provides a metaphor-based graphical interface to the digital li-
brary that is based on the way users interact with conventional libraries
- i. e., books and folders contained in bookshelves.

To utilize a SOM for organizing a document collection, a number of pre-
processing steps have to be performed. We will discuss these steps in the
following. Figure 2.3 provides an overview of the detailed steps that consti-
tute the workflow and collaboration of the components of SOMLib.

Feature extraction and feature space pruning

Interaction:
libViewer,

SOMviewer

(Growing)
SOM

Single
documents

Full-text
indexing

Word
stemming

Stop
word

filtering

Term
weighting

Labelling

Figure 2.3: Steps involved in organizing documents with the SOMLib system
in detail.

Because the SOM operates on a number of input vectors containing
real numbers, feature extraction has to take place. Documents are pre-
processed and represented in an appropriate data structure.

CHAPTER 2. RELATED WORK 15

The starting point: Indexing text documents

Single
documents

Interaction

Full-text
indexing

Word
stemming

Stop word
filtering

Term
weighting

(Growing)
SOM

Labelling

Figure 2.4:
Indexing and
stemming

A number of different approaches to text indexing can
be found in information retrieval literature; some of the
most important ones are keyword indexing, full-text index-
ing and n-gram indexing. As fulltext indexing is nearly
completely independent of the language and can be ex-
ecuted automatically and efficiently without supervision
(as opposed to approaches which need supervision, e. g.,
keyword indexing), this approach has gained a lot of in-
terest in the information retrieval community. Since we
are striving for automation and miminization of manual
interaction, it can be considered the most suitable for our
needs, and this is also the approach used by SOMLib.

Full-text indexing automatically creates a list of words
occuring in a document, whereby the occurence of each
word in the document constitutes one dimension in the
feature space.

Pruning the feature space: Word stemming

Crude indexing of every distinct word occuring in a docu-
ment would lead to a situation where words like partition,
partitions, and partitioning would be considered three dis-
tinct concepts and thus form different dimensions in the
feature space. This could cause documents that contain
these terms to be located far from each other, even though
they contain the same semantic concepts as understood
by humans. As this is certainly not what is desired, we would like to reduce
words to their stems to unify concepts like those mentioned above. This
is performed by stemming algorithms like the famous one introduced by
Porter [Por80] that remove suffixes from words. For example, the concept
mentioned above would be reduced to partit.

While this reduces the feature space and successfully unifies a lot of se-
mantically equivalent terms, it also introduces language dependency.

Pruning continued: Stop word filtering

Full-text indexing generally leads to a quite high-dimensional feature space,
as the number of distinct words occuring in texts of any language tends to
be rather large. This applies even after stemming has been performed. Fur-
thermore, using all terms contained in a document collection for clustering

CHAPTER 2. RELATED WORK 16

would cause the feature vectors of documents to be determined to a large
extent by the occurence of frequent words like the, and, of, in, etc., that are
irrelevant to the content.

Single
documents

Interaction

Full-text
indexing

Word
stemming

Stop word
filtering

Term
weighting

(Growing)
SOM

Labelling

Figure 2.5: Stop
word filtering

Thus, we would like to remove words like these by
a simple and efficient algorithm to reduce the feature
space. There are two main concepts for doing this.

1. We can use stop word lists containing common
words of a specified language like those mentioned
above. While being efficient and quite effective, this
method adds a language dependency that might not
be desirable. Moreover, it may be necessary to add
domain dependency, as, e. g., the term software may
not be very distinctive for a collection of abstracts
from proceedings of a conference on software engi-
neering. This further adds a necessity for manual
construction of these stop words that is not in our
interest.

2. A different approach is defining fixed limits or
percentage thresholds for the document fre-
quency of terms. This method removes words that
occur too often or too seldomly in a document col-
lection, assuming that these words can be considered
to be semantically unimportant. The SOMLib sys-
tem primarily uses this approach, which has been
shown to work surprisingly well. A good way is to
use percentage thresholds for the maximum number
of documents that a term is allowed to appear in, and a fixed limit for
the minimum number of documents.[Rau00]

Feature representation

After the previous reduction steps, the documents have to be transformed
into a representation usable for a self-organizing map. The model of choice
here is the vector space model of information retrieval as proposed in
[SWY75, SAB94].

It represents each document in terms of a vector in the feature space
spanned by all distinctive words in the collection. Thus the number of di-
mensions is equal to the number of words occuring in the document collection
(after stemming and reduction of the feature space), while the value of each

CHAPTER 2. RELATED WORK 17

component of a vector representing a document depends on the occurrence
of this specific term in the document.

Single
documents

Interaction

Full-text
indexing

Word
stemming

Stop word
filtering

Term
weighting

(Growing)
SOM

Labelling

Figure 2.6:
Term weighting

Different schemes for these values have been proposed.
Figure 2.6 shows the position of these alternative schemes
in the overall workflow.

1. The simplest scheme in this regard is binary index-
ing. This method simply assigns a boolean true or
false value, resp. 1 or 0, to a component of the vec-
tor depending on whether the corresponding term
occurs in the document or not. While appearing
rather crude, this approach already yields quite sat-
isfying results.

2. Nevertheless, the situation can be greatly improved
by using term weighting schemes. We want a
document to obtain a high value for a word that ap-
pears often in this document in relation to its total
appearance in the whole document collection, thus
emphasizing the distinctiveness of a specific term.
This goal is aimed at by the prominent so-called
tfxidf or term frequency times inverse document
frequency scheme[SY73, Sal75]. If we consider the
number of documents in a collection that a given
term i occurs in as document frequency dfi and
the number of times this term i occurs inside one
document j as term frequency tfij, we can divide
the latter by the former and obtain the weight wij of the term i for a
document j as

wij = tfij
1

dfi
(2.3)

The tfxidf scheme is one of the most widely used schemes in information
retrieval and also employed within the SOMLib system.

Map training

The content-based organization of documents as provided by the SOM is the
core part of SOMLib. Different network models have been integrated into
the SOMLib framework; the most important ones for our purposes are

• the standard static SOM with a predefined fixed size, and

• the growing SOM.

CHAPTER 2. RELATED WORK 18

Single
documents

Interaction

Full-text
indexing

Word
stemming

Stop word
filtering

Term
weighting

(Growing)
SOM

Labelling

Figure 2.7: Map
training and la-
belling

The map training outputs map description files that
can be interpreted by the interaction module; furthermore,
also HTML files can be generated if needed.

Labelling: The LabelSOM algorithm

Having the documents organized into topical clusters and
being able to browse them in an explorative way is only
part of the game; if we have to look into each document
and read it before we can decide whether it is relevant or
not, the representation is only half as helpful, especially
if the number of documents and thus the size of the map
we are exploring is large. It would be a lot easier if there
would be some hints on the content of a document visi-
ble directly on the map. SOMLib addresses this issue in
two ways: In the libViewer, it uses metaphors for visual-
izing properties of documents, as we will see in the next
section. Furthermore, it uses a labelling algorithm called
LabelSOM that automatically extracts keywords describ-
ing document clusters in a helpful way based on their oc-
curence frequency.

The LabelSOM algorithm was described in [MR99,
RM99e, Rau99, RM99a]. It extracts keywords that are
common to the documents mapped onto a unit in the map
and distinguish them from others. These keywords are dis-
played directly on the map.

Interacting with the map

To allow users of the digital library to transfer their experience with conven-
tional libraries to the new paradigm, a metaphor-based viewing interface to
the library system was introduced: the libViewer component[RB00a, RB99].

A map is represented as a bookshelf containing books of different size,
color, and shape, with labels written on the backs like titles. Furthermore,
indications on the usage of books are provided like the position in the shelf,
and even spiderwebs are depicted on books that have been rarely used. Figure
2.8 presents a screenshot of the libViewer interface obtained from http:

//www.ifs.tuwien.ac.at/∼andi/libviewer/description.html.

CHAPTER 2. RELATED WORK 19

Figure 2.8: libViewer interface in action.

Although an innovative approach, this interface is not central to our in-
tended usage. Instead, there is another interface that has been developed
related to the SOMLib system, though it does not form a core part of it: the
SOMviewer.

The SOMviewer

This tool provides an intuitive interface to a 2-dimensional grid-like map. It
allows the user to zoom in and out of the map, provides information like
the number of documents mapped onto a specific unit and labels assigned
to this unit by the LabelSOM method, and also incorporates a variety of
different visualization options for the displayed SOM. Figures 2.9 and 2.10
show screenshots of the SOMviewer with different visualization options.

CHAPTER 2. RELATED WORK 20

Figure 2.9: SOMViewer interface showing a collection of use cases.

1. The U-Matrix described by [Kra92, US89] uses the mean distance
between weight vectors of neighboring units to visualize cluster struc-
tures with gray scales or color scales. Light shading indicates small,
dark shades indicate large distances between vectors. Thus, a “land-
scape” of vectors is constructed that allows a human viewer to grasp
clusterings more easily.

2. The spreading of data on the map is visualized using data histograms or
hit histograms that show mapped input data on the map. In Figure
2.9, the circles represent mapped input units, with the number aside a
circle giving the number of input vectors mapped to this unit.

3. An extension to hit histograms are smoothed data histograms [PRM02],
where each data point is assigned to more than one unit in a fuzzy way
that leads to a smoothed transition between clusters. This is depicted
in Figure 2.10.

CHAPTER 2. RELATED WORK 21

Figure 2.10: SOMViewer interface showing smoothed data histograms of a
use case document collection.

2.2.4 Summary

In this section we introduced the SOMLib digital library system, its meth-
ods, paradigms, components and the corresponding workflow. We introduced
the concept of self-organizing maps and varations thereof that improve both
the flexibility in the representation as well as topology preservation. We
described efforts aimed at using the self-organizing map for organizing docu-
ment collections according to their content, and described the steps necessary
to achieve this, in particular the workflow and components of the SOMLib
toolsuite.

We will now take a look at the type of documents we are going to exper-
iment with, namely use case descriptions, and further outline how clustering
these documents might be be of actual value in industrial practice.

2.3 Use cases

The concept of use cases emerged in the early nineties and is discussed ex-
tensively in several textbooks [JCJv93, Coc00, OP04]. Cockburn describes

CHAPTER 2. RELATED WORK 22

this concept as follows:

A use case captures a contract between the stakeholders of a
system about its behaviour. The use case describes the system’s
behaviour under various conditions as the system responds to a
request from one of the stakeholders, called the primary actor.
([Coc00],p. 1)

Similarly, Övergaard et. al. define use cases as

...defining how the modeled system is to be used by its surround-
ings. A use case models one usage of the system; that is, it
describes what sequences of actions will be performed by the sys-
tem as a response to events occuring outside the system caused
by the users. ([OP04], p. 35)

Thus, a use case is a textual description of the behaviour of a system
in reponse to outside events caused by the system users. Use cases have
been applied successfully in a vast variety of fields, ranging from embedded
systems [NMB02] and client-server supply-chain simulations [CBC+99] to
B2B e-commerce applications[SJP02]. They are not only successfully being
applied for systems analysis, but also in areas like business process reengi-
neering [JEJ94, Coc00].

A use case may be written in different forms and may contain several
sections of text; which ones are actually contained varies greatly between
projects and depends on a number of parameters like

• the style of writing,

• the intended audience,

• organization-wide policies, and

• the requirements of the project.

Some of the most common sections that may be present in a use case
description are

• The name of the use case.

• The scope defines what is considered black box, i. e. the system under
design.

• Level should be one of summary, user-goal, or subfunction.

CHAPTER 2. RELATED WORK 23

1. A summary level use case describes a (probably longer-term)
overall goal of a user, like Sell an item in an online auctioning
system.

2. A use case at the user-goal level describes a necessary step for
achieving a summary level goal, e. g. Register user.

3. A subfunction use case in turn describes a lower-level goal that
does not yield any direct benefit to the primary actor; it is neces-
sary to complete a higher-level step. A common example is Logon
user.

• The Primary Actor is the stakeholder requesting a service from the
system in order to achieve a goal. Usually, the primary actor is the one
triggering the use case.

• Intent captures the goal of the actor in a short statement.

• Context of Use may consist of a statement of the goal and possibly
the circumstances under which this use case occurs.

• Secondary or Supporting Actors are other systems that are sup-
posed to deliver subgoals for the system under design.

• Preconditions state the conditions that have to be met before the use
case can execute. The most common example is User is logged on.

• Minimal Guarantees state what the system guarantees to be achieved
even in case of a failure during the flow of events. Some common min-
imal guarantee would be The system logs the progress of the use case
execution.

• Success Guarantees state what is achieved if the use case executed
successfully. For the Logon use case, this might be User is successfully
authenticated and session initialized.

• Trigger describes the event causing the use case to start. For a use
case Handle emergency call in an emergency operation call center, this
might be Someone calls 911.

• Includes states which use cases are included, or used, within the flow
of this use case. E. g., a use case Edit Something may include a use
case Search for Something.

CHAPTER 2. RELATED WORK 24

• The section Flow of events, also named Main Success Scenario or
simply Description, contains the main eventflow, the description of
a series of steps that comprise a successful execution of the use case.
Errors and alternative flows are usually handled separately, in the next
section.

• Extensions defines alternative flows of events, e. g. when conditions
cannot be validated successfully. If, for instance, in the above men-
tioned use case Logon user some steps of the main success scenario
read 4. The system verifies the provided credentials. . . 5. The sytem
grants access, a possible extension would be 4a. The supplied creden-
tials are not correct: The user is notified and may enter the credentials
again.

• Management information like priority, due date, history of changes,
responsible author, frequency of occurence, etc., is sometimes attached
to the use case description.

Cockburn suggests (among others) two different styles of writing a use
case:

1. The casual use case form is often used in agile environments or during
early stages of a software project. It contains only a few sections, e. g.

(a) Primary Actor,

(b) Scope,

(c) Level, and

(d) the description of the eventflow.

2. A fully dressed use case, on the contrary, features a much more
thoroughly structured way of description; it may consist of a lot more
sections like those mentioned in the listing above, and will usually use
numbered steps to describe the flow of events and the extension list.

Furthermore, he suggests a simple way of employing some of the benefits
of use case writing while at the same time investing minimum time, effort and
standardization: Writing use case briefs that contain as little as the sections
described in the casual case above or even less, with the description being
just a few lines. These use case briefs can be of benefit especially in agile
environments where communication between team members is very tight.

Of course, in reality one finds use case styles everywhere inbetween the
range of variations described above. For examples regarding the sections that
are likely to be found in real-world use case descriptions of industrial practice
and how these differ in aspects like size, etc., please refer to Section 4.1.

CHAPTER 2. RELATED WORK 25

2.4 Application areas of use case clustering

In 2004, the author was involved in writing the paper which initiated the
research leading to this thesis. Auer et. al. [ABRB05] investigated the possi-
bilities of using implicit analogies like textual similarities between use cases to
facilitate the analogy-based cost estimation of software projects. We used the
SOMLib digital library system to cluster use cases manually extracted from
larger requirement documents that we obtained from industrial partners.

We argued that it should be possible for project managers to benefit from
the advantages of a digital library system like SOMLib using self-organizing
maps, namely

• the automatic unsupervised organization of documents according to
their content, without the need for explicit ordering and intense human
involvement,

• the topology-preserving ordering of documents on an intuitively gras-
pable 2-dimensional map, and

• the possibilities for exploring yet unknown document collections and
projects and thus gaining a fast overview of the inherent structure of
projects and their functionality’s cluster structures.

This implicit analogy can complement, or maybe under some circum-
stances even substitute, costly collected project metrics in aiding the decision
processes in software engineering.

While the idea of clustering use cases seems promising, it is not clear if
it can really help substantially in estimating software project effort. This
is mainly because a similarity in content does not have to be correlated by
any means to cost structures of implementing this functionality, and know-
ing functional clusters in itself does not mean knowing the effort needed to
support these features.

Instead, there seem to be other areas that would benefit more from the
content-based organization of use cases than cost estimation, in particular,
software reuse and knowledge management.

2.4.1 Software Reuse

The concept of formal software reuse was first introduced by McIlroy in
[McI69]. Prieto-Diaz [PD93] refers to [Fre83] and defines software reuse as

the use of existing software components to construct new systems.
Reuse applies not only to source-code fragments, but to all the

CHAPTER 2. RELATED WORK 26

intermediate work products generated during software develop-
ment, including requirements documents, systems specifications,
design structures, and any information the developer needs to
create software.

Mili et. al. [MMYA01] take on a similar perspective when they define
software reuse as

the process whereby an organization defines a set of systematic
operating procedures to specify, produce, classify, retrieve, and
adapt software artifacts for the purpose of using them in its de-
velopment activities.

Software Reuse has been an active research area for several decades and
has been successfully adopted by a large number of organizations [MET02].

A central aspect in software reuse is the concept of software repositories
[GL00], also called software component libraries or reusable software libraries,
for storing, searching, and retrieving reusable software assets.

Examples for public software libraries range from large libraries like Source-
forge [Ope06] hosting open source software projects to collections of design
patterns like the GoF design patterns[Tal06]. These repositories or libraries
can also be seen as kinds of digital libraries as we described them in Section
2.1. In practice, the critical aspect with these reusable software libraries usu-
ally lies in the classification and retrieval process, in the process of finding
reuse candidates.

A lot of research effort has been put into methods for the classification and
retrieval of reuse candidates, like faceted classification schemes [PD91, PY93]
that are now widely used in software libraries, also e. g. by Sourceforge,
together with retrieval methods like full-text indexing and keyword search.

Most of these mehods rely on supervised classification schemes. However,
there have also been topological approaches, and several researchers used self-
organizing maps for organizing software libraries. [TS04]

• Merkl. et. al. [MTK94] used a self-organizing map to organize a small
set of 36 MS-DOS commands according to their documentation. The
feature space consisted of only 39 dimensions, the terms were extracted
using a binary indexing scheme.

• Ye and Lo [YL01] clustered a library of UNIX commands, incorporating
a thesaurus and a public synonym dictionary. They implemented a
prototype and compared its performance to another public retrieval
system.

CHAPTER 2. RELATED WORK 27

• Tangsripairoj et. al. [TS05] use the more flexible growing hierarchical
self-organizing map because, as they state,

the use of the traditional SOM . . .may not be practical when
the number of software components stored in a software repos-
itory is large.

The input they are using are C/C++ source code files, i. e. they do
not rely on natural language descriptions of the software, but instead
directly use the source code.

• Brittle et. al. [BB03a, BB03b] apply the self-organizing map to large
software collections, building a distributed system to support interac-
tive exploration of software collections; however, they do not present
results.

The results of these studies suggest that using textual descriptions of
software is a suitable approach to organize a software repository. Yet, detailed
experiments involving datasets from industrial practice are needed to further
investigate the applicability to real-world situations.

2.4.2 Knowledge Management and the Learning Soft-
ware Organization

Another area which we deem suitable for employing the use-case clustering
is knowledge management (KM) or, more specifically, the concept of the
Learning Software Organization (LSO).

The Learning Software Organization as described by Ruhe et. al. is

a continous endeavor of actively identifying (discovering), evalu-
ating, securing (documenting), disseminating, and systematically
deploying knowledge throughout the software develeopment or-
ganization. ([RB00b], p.3)

It extends an approach that has gained tremendous interest in research
and practice, the concept of the so-called experience factory promoted by
[BCM+92, MPP+94, VZM+97]. The experience factory (EF) concepts en-
hances organizational learning in the domain of software engineering by pro-
viding an organizational infrastructure to support knowledge management,
thus also forming a foundational framework for tackling the technological
issues of KM.

CHAPTER 2. RELATED WORK 28

Objects of learning are all kinds of models, knowledge and lessons
learned related to the different processes, products, tools, tech-
niques, and methods applied during the different stages of the
software development process. ([RB00b], p.6)

Two trends that have been pointed out by several researchers in this field
are of particular interest here: Agility and tacit knowledge.

Agility

Doran [Dor04] reports on experience with knowledge management techniques
in an agile environment. Because of the organizational burden and the some-
times prohibitive technological requirements of a full-fledged experience fac-
tory including organizational knowledge management, an experience base,
etc., these heavy-weight approaches are often not viable for smaller orga-
nizations. In their keynote to the 2004 conference on Learning Software
Organizsations [HM04], Holz and Melnik emphasized that

. . . there is an increasing trend towards knowledge management
approaches that are lightweight, i. e., do not introduce a consid-
erable additional burden on developers and end users, while at
the same time ensuring that the hoped for experience factories
do not become “experience cemeteries” which no employee uses.

Because of their high degree of automation and their ability to operate
directly on documents that are being created anyway during the course of
software projects, SOM-based digital libraries may be a convenient method
with a low-entry barrier to allow for organizational learning, as long as tool
support for organizing documents into collections is sufficiently effective.

Tacit knowledge

Tacit or hidden knowledge is the part of knowledge that is not codified in an
explicit form. As Horvath explains,

lots of valuable knowledge “falls through the cracks” within busi-
ness organizations, never finding its way into databases, process
diagrams, or corporate libraries. As a consequence, much of what
the firm “knows” remains unknown or inaccessible to those who
need it. Such knowledge is present within the organization, but it
remains hidden, unspoken, tacit. In business organizations, this
hidden or tacit knowledge takes one of two forms: 1) knowledge
embodied in people and social networks, 2) knowledge embedded
in the processes and products that people create. ([Hor], p. 3)

CHAPTER 2. RELATED WORK 29

Several authors point out that tacit knowledge forms the most valuable
experience in an organization.

• Ruhe et. al.[RB00b] point out that one of the main challenges facing
the LSO community is

to extend the knowledge management approach of the EF to
also handle the tacit knowledge available within an organi-
zation. ([RB00b], p.4)

• Horvath points out that

some of the most valuable knowledge within a firm is essen-
tially hidden or tacit – residing not in documents or databases
but in the experience and skill of human beings. ([Hor], p.
2; cf. [Hor00])

• Similarly, Johansson and his colleagues [JHC99] claim that

the most valuable experience is tacit. . .

but, opposed to others laying major focus on experience databases, they
further add that this valuable tacit knowledge is usually not captured
in a database, but stays within the humans:

the most valuable experience is tacit and stored on the indi-
vidual level. ([JHC99],p.171)

They focus on pointing the user looking for information to the right
source, which is usually a human being.

Our approach . . . focuses on mediating referrals to sources
holding the correct expertise – usually human sources.

Conclusion

Using automatically constructed self-organizing libraries of software artifacts,
e. g. use case descriptions, instead of costly built databases, might have two
main advantages:

1. A light-weight approach could be beneficial especially to smaller organi-
zations that do not have the resources to start a demanding knowledge
management initiative. It could enable these organizations to start an
initiative which they probably would not undertake otherwise.

CHAPTER 2. RELATED WORK 30

2. It would be very easy and simple to integrate approaches like the ex-
perience engine proposed by Johansson et. al.[JHC99] with the orga-
nized document collections. Because this approaches could initially rely
solely on the documents already present in an organization, even small
organizations following agile development patterns without maintain-
ing extensive knowledge databases und documentation could benefit
from this agile knowledge management approach.

Though the ideas might be promising, further investigation is needed, es-
pecially on the practical applicability of approaches based on these ideas.
Improving tool support is an important step in this direction.

2.5 Summary

In this chapter we introduced the concept of digital libraries and described
the SOMLib digital library system, which relies on self-organizing maps to
achieve a content-based organization of document collections without the
need for supervision.

We then discussed the concept of use case descriptions and outlined two
areas that might benefit from clustering use case documents using the SOM-
Lib system, namely software reuse and knowledge management.

The next chapter will outline the current deficiencies in tool support re-
garding the workflow of pre-processing, organizing and viewing documents,
and propose tool enhancements to improve the situation. The SERUM tool-
suite and it’s development is then described in detail.

Chapter 3

The SERUM tool suite

This chapter presents the tool SERUM – SElf oRganizing Use case Maps.
We start by explaining the need to develop such a tool and discussing the
requirements for SERUM. After a description of the supporting tools and
frameworks that were used, we present the overall architecture, the domain
model and the building blocks of SERUM. These components are then ex-
plained in detail. The chapter is concluded by a summary.

3.1 Current deficiencies in tool support

Digital libraries are an important part of the information age we are living
in. In the last chapter we introduced the concept of digital libraries and
presented an overview of the SOMLib digital library system.

While this system is offering a number of advantages and possibilites for
content-based organization, there are still several problems hindering both
wider accepted usage in practice and an easier exploration of, and experi-
mentation with, the possibilities the system provides us with.

In particular, the following obstacles stand in the way of a user or an
organization that wants to reap the benefits of employing self-organizing
maps to organize document collections by using the SOMLib digital library:

1. The extraction process is tedious. To apply the SOM algorithm,
feature extraction has to be done in the form of text indexing that
transforms texts into a numerical representation suitable for the SOM.
This process usually works on single files. But relevant document pas-
sages in real life are contained in larger documents, which have to be
split up first in order to allow text indexing. So far, this has to be
done in a manual preprocessing step that can take quite a long time
and may be prohibiting in terms of effort.

31

CHAPTER 3. THE SERUM TOOL SUITE 32

Furthermore, often texts are being clustered that are themselves struc-
tured in various segments. For example, a scientific paper usually con-
sists of

• A list of authors,

• the title,

• an abstract,

• a list of keywords,

• several sections of text, and

• a listing of references.

Similarly, a use case description might contain sections like

• A name,

• actors,

• event flow description,

• pre- and post-conditions,

• etc. (see Section 2.3)

With the tools currently used, all these sections are used together to
organize documents according to their similarity as provided by the
word frequency distributions. But if we take a closer look at the sec-
tions of these documents, we can easily see that they are not equally
important, that each section contains text of very distinct character-
stics, and corresponding sections across different text documents are
often very similar in structure and content. By using different sec-
tions of texts or combinations of sections – e. g., the preconditions,
successconditions and failure conditions of use case descriptions – and
possibly comparing clusterings according to different combinations of
sections, we might get a much better insight into specific aspects of
these document collections.

To explore this, however, we need a tool that allows us to flexibly
configure these combinations without the need for manual and repeated
partitioning of the texts.

Another aspect of the extraction process is the performance of index-
ing documents. While it is not taking hours to index a few hundred
use cases, it still takes several minutes, with larger collections taking
prohibitively long for a comfortable workflow.

CHAPTER 3. THE SERUM TOOL SUITE 33

2. Tool support automating the workflow of feature extraction, index-
ing, and training is yet quite poor. The user has to manually handle
the input and output files of the various stages and feed the input files
of preceding steps to following tools.

3. Tool support linking the user to the content of the original
documents is not comfortable. While both the libViewer and the
SOMviewer include a link to the original document, these merely open
the original documents in a dedicated viewer. Especially in the com-
mon situation where the text that is mapped onto a unit on the map
has been extracted from a larger document containing a number of
texts, this approach is not sufficient. For example, when 300 use cases
contained in one pdf file are being organized in a map according to the
content of their pre- and postconditions, simply putting a reference to
the pdf file clearly is not enough.

What is needed is a flexible and comfortable way to display the original
texts, respectively parts of them like the sections actually used for
clustering, directly inside the map browsing application. This includes
both a quick preview while browsing the map, as well as the option to
view the complete text directly in the map browser.

This thesis strives to overcome the deficiencies explained above. It focuses
on tool enhancement for the SOMLib digital library system to facilitate an
automated workflow ranging from the extraction and indexing to the map in-
teraction stages by addressing the issues mentioned above and provide further
support. The tool to be developed is named “SERUM – SElf oRganizing
Use case Maps”.

3.2 The goals of SERUM

Goal is the further development, enhancement and integration of the
existing components of the SOMLib system to a tool that allows the user in
a comfortable way

• to import in a way as automated as possible collections of seg-
mented documents containing short texts (in particular require-
ments specifications containing use case descriptions),

• to manage these document collections and organize them according
to configurable criteria in SOMs. The resulting maps should be
saved, and an extended SOMviewer shall present them in a convenient
and helpful way and thus support the analysis process.

CHAPTER 3. THE SERUM TOOL SUITE 34

For use case documents, e.g., the user defines templates with specified
parts and keywords. The system imports use cases according to these pat-
terns, trains SOMs according to the user’s needs and presents them to the
user for browsing and exploration, which includes viewing the text of the
original use cases.

Of course, depending on the types of texts to be organized, users of
SERUM will have different backgrounds and requirements. We concentrate
here on the needs of two groups of people:

1. People working in a team on a software project who capture the
requirements of their projects with use cases want to extract the use
case descriptions from their documents and analyze them with self-
organizing maps. These are in particular project managers, software
architects, reuse specialists, developers, etc.

2. Researchers working with different types of document collections,
possibly also use case documents, want to extract the short texts con-
tained in their documents and analyze them with self-organizing maps.
In particular, they might be interested in

• the repeated and possibly automated execution of tasks like fea-
ture space pruning,

• the tuning of parameter settings like index limits or parameters
controlling the growth process of a self-organizing map, and

• an efficient way to configure pattern matching criteria for the seg-
mentation of documents.

While starting our requirements analysis with scenarios involving Use Case
documents, we try to keep the resulting usage scenarios as general as fea-
sible to facilitate different tool applications. Furthermore, we implement a
generic solution, thus making it possible to use the tool for entirely different
collections of segmented texts.

Specifically, we want to improve and integrate existing components, com-
plement them with additional modules and enhance the execution of the
following steps of the workflow:

1. Feature extraction from documents

SERUM should allow a comfortable way of feeding documents into a
collection. In particular, it should work on the documents provided
on an as-is basis without further pre-processing needs like converting
the documents to flat text files, manually extracting texts contained in
larger documents, etc.

CHAPTER 3. THE SERUM TOOL SUITE 35

This involves the following steps:

(a) Extract text artifacts and sections of texts out of larger
documents. – This means allowing the user to import a large
document containing lots of pieces of text, e. g., a requirements
document available in doc or pdf format that contains a number
of use case descriptions.

These use cases and their constituting sections shall be extracted
automatically and saved. Due to the nature of natural language
text written by human beings, which does not always follow the
exactly same pattern, this extraction process has to be supervised
by the user, allowing her or him to view the results of extraction
and correct them efficiently.

(b) Create a number of maps with different criteria, combi-
nation of input sections and configuration for the same
document collection. – The user shall be able to create a num-
ber of distinct maps, e. g. one map clustering use cases according
to their similarities in the sections describing non-functional re-
quirements, another one organizing them according to the content
of the eventflow, etc., while keeping an overview of the various
maps and the sections included in each map.

(c) Extract feature vectors from documents and configurable
sections of documents. – This feature allows the user to intu-
itively select which sections of texts to include in the organization
of documents in a map, and apply the feature extraction on these
sections.

2. Efficient and effective feature space reduction. – This step au-
tomates the pre-processing necessary to reduce the feature space. It
should be possible to

(a) perform fully automated feature space reduction based on
heuristics or preset defaults to be incorporated into the tool, as
well as

(b) support sophisticated fine-tuning of the feature space reduc-
tion by allowing the user to adjust settings like stop word limits
and the usage of stop word lists, while at the same time previewing
the effects of these adjustments for rapid feedback.

3. Comfortable integration of map training. – The training process
should be initiated directly in the tool, allowing the user to choose

CHAPTER 3. THE SERUM TOOL SUITE 36

the desired network model to use, set parameters like the number of
iterations or the labelling to be applied, etc.

During the training process, feedback on the progress of the training
process shall be provided to the user.

4. Display the input documents in the map. – SERUM should
provide the user with quick information on the content of cells in a map
and be able to display the contents of texts mapped onto a specific unit
that the user has selected on the map.

5. Unify all steps within one tool. – All of these steps should be
integrated into one application to enhance the workflow. Only the
map browsing is being kept separate, both due to technical limitations
and due to the reasoning that often the ones who explore maps will
not necessarily be the same users as those who import and organize
documents.

6. Spare the user from manually handling input and output files.
– The user should be able to handle the whole process in a comfort-
able way without editing a file other than the pattern configuration of
document types.

7. Provide batch processing options. – To facilitate the automated
processing of large amounts of data according to predefined configu-
ration criteria for document and feature extraction, feature space re-
duction and map training, batch processing should be possible. This
option is aimed at advanced users.

The next sections will discuss the requirements for the tool in detail, also
from a user perspective by describing them with use cases, and present the
components of the tool and their collaboration.

In chapter 4, we then use the tool to cluster use case descriptions in a
SOM. We describe the feature extraction and feature space reduction steps
and the workflow that is employed as well as the resulting maps. We further
point out possible applications to software reuse and knowledge management.

3.3 Requirements

Similar to the workflow described in Section 2.2.3, the four main steps in
using SERUM as depicted in Figure 3.1 are

CHAPTER 3. THE SERUM TOOL SUITE 37

1. Import documents into collections, which includes the segmenta-
tion into the contained texts and sections;

2. index collections,

3. train maps, and

4. interact with the trained maps.

Import
Index and

reduce
Train Interact

Figure 3.1: Four main steps of SERUM.

Based on these steps, we can derive the main use cases, unfolding from high-
level goals to lower-level functions. We will provide use case descriptions
for the main tasks requested by the user, and proceed with presenting the
components that support these tasks in the corresponding order.

3.3.1 Use Case Descriptions

The following section lists the use cases describing the functionality covered
by SERUM. We will not produce fully elaborated use case descriptions with
extensions, includes, etc. in this work; these use case descriptions are meant
to give the reader an overall view of the functionality provided by SERUM
and thus contain mainly the so-called main success scenarios and the most
central sections of a use case description. We thus follow the casual use
case approach as desecribed by Cockburn [Coc00] and explained in Section
2.3. While being rather informal, this approach is the most appropriate for
the environment in which SERUM is being developed, and allows for an easy
overview of the functionality supported by SERUM.

Underlined phrases in the use case descriptions significate that a lower-
level use case is being included.

The use cases we will describe are:

UC 1. Use SERUM
This high-level summary use case is described as an entry point to
the included use cases as suggested by Cockburn[Coc00]. Its casual
description is provided in Table 3.1.

CHAPTER 3. THE SERUM TOOL SUITE 38

UC 2. Import a collection of documents
This use case, described in Table 3.2, constitutes the first step of the
workflow, where texts contained in larger documents are imported
into SERUM according to specified patterns.

UC 3. Create a map for a document collection (normal)
The standard procedure for creating a map is described in Table 3.3.
For convenience, and also for inexperienced users, a more automated
way of map creation is modelled in

UC 4. Create a map for a document collection (simple)
This simplified method, described in Table 3.4, relieves the user of the
details of feature space reduction.

UC 5. Browse a map
This allows the user to explore a trained map using the SOMViewer.
It is described in Table 3.5.

UC 6. Organize a collection of documents in a map
(fully automatic)
For the convenience of (primarily novice) users, this “full-service”
feature, described in Table 3.6, does everything from importing docu-
ments to training the map by itself, providing the user a nearly instant
access to the resulting map.

Details of the functionality and workflow that SERUM provides will be
discussed in the next chapter.

3.3.2 Non-functional requirements

A number of goals describing non-functional requirements and constraints
had to be considered. The most relevant are

• usability,

• performance,

• platform independence, and

• easy distribution.

CHAPTER 3. THE SERUM TOOL SUITE 39

UseCase Use SERUM

Level Summary

Precondition Template for use case extraction has been defined

1. User starts SERUM.

2. User creates a new project for a text type, i.e. the Use
Cases as predefined in the company template.

4. User imports a collection of documents containing use case
descriptions matching the company use case pattern into
the project.

5. User creates a subproject for this collection with all seg-
ments included and trains a map.

6. User browses the map.

7. User exits SERUM.

Table 3.1: UC1: Use Serum

Usability

One of the main goals in developing SERUM is to ease the workflow and
relieve the user of the burden of tedious, repetitive tasks, automating as
many of them as possible. Thus, an intuitive user interface that is easy
to understand and use, together with an accessible workflow that does not
require long training, is essential.

Performance

The steps of extraction, indexing, feature space pruning, and training should
take no longer than a few minutes for an average collection consisting of
several dozens to a few hundreds of use cases, as long as the pattern for
extraction has already been defined. In particular, it should be feasible for
the user to wait for the steps to complete, instead of working with the tool
asynchronously. Otherwise, the workflow would be interrupted, which is
considered uncomfortable by most users. This also calls for feedback on the
progress of work to the user.

The process of defining the patterns for text extraction out of documents
is not as critical, because it is typically performed more rarely and by more
experienced users. A maximum of a few hours is considered to be sufficient;
moreover, extracting text documents from ill-formatted documents within a
few minutes is not feasible.

CHAPTER 3. THE SERUM TOOL SUITE 40

UseCase Import a collection of documents

Level User

Precondition Template for use case extraction has been defined.

The user has created or opened a project.

1. User selects to import a collection of documents.

2. User selects

• the document type,

• the category (e.g., a project) that should be assigned,
and

• the file or directory to import.

3. SERUM presents information about the amount of texts
that were found.

4. User verifies amount and initiates segmentation.

5. SERUM segments documents and extracts the texts while
providing information on its progress by displaying

• the number of texts correctly parsed,

• the number of texts that do not confirm to the pat-
tern, and

• for each text that cannot be parsed: the content.

6. The user verifies the segmentation by browsing the list of
extracted texts and segments, and initiates the writing of
the segmented texts.

7. SERUM writes the texts and segments to the filesystem.

Table 3.2: UC2: Import a collection of documents

CHAPTER 3. THE SERUM TOOL SUITE 41

UseCase Create a map for a document collection (normal)

Level User

Precondition The user has opened a project which already contains some
documents.

1. User selects to create a subproject and enters a name.

2. SERUM creates a subproject and activates it; it displays a
list of sections available for indexing.

3. User selects which segments of the text type shall be used
for content-based organization and initiates indexing.

4. SERUM indexes texts constituted by aggregating the se-
lected sections.

5. The user reduces the feature space by setting word limits
and viewing the effects of his adjustments.

6. SERUM saves the vector space model as edited by the user.

7. The user sets the parameters for map training and initiates
the training process.

8. SERUM trains a self-organizing map while providing feed-
back to the user.

Table 3.3: UC3: Create a map for a document collection (normal)

CHAPTER 3. THE SERUM TOOL SUITE 42

UseCase Create a map for a document collection (simple)

Level User

Precondition The user has opened a project which already contains some
documents.

1. User selects to create a subproject and enters a name.

2. SERUM creates a subproject and activates it; it displays a
list of sections available for indexing.

3. User selects which segments of the text type shall be used
for content-based organization and initiates automatic in-
dexing.

4. SERUM indexes texts constituted by aggregating the se-
lected sections, and automatically reduces the feature
space. It provides information on the results and suggests
parameters for the training of a self-organizing map.

7. The user may adjust the parameters for map training and
initiates the training process.

8. SERUM trains a map while providing feedback to the user.

Table 3.4: UC4: Create a map for a document collection (simple)

UseCase Browse a map

Level User

Precondition The user has opened a project which already has a map
associated.

1. User selects to browse a map.

2. SERUM opens the SOMViewer with the selected map.

3. User interacts with the map and selects visualizations.
While browsing, the system shows information on currently
selected cells in an appropriate degree of detail.

4. At any time, the user may view a document mapped onto
a cell.

5. User exits SOMViewer.

Table 3.5: UC5: Browse a map

CHAPTER 3. THE SERUM TOOL SUITE 43

UseCase Full-service SERUM

Level Summary

Precondition Template for use case extraction has been defined, SERUM
is running, a project is active

1. User selects a document type and a file to import and trig-
gers full-service action.

2. SERUM imports the document and prompts the user for a
name for the map to create.

3. User provides a map name.

4. SERUM creates a subproject with this name for the active
project with all segments included, indexes it and reduces
the feature space, trains a map, and finally opens the map
in the viewer application.

6. User browses the map.

Table 3.6: UC6: Full-service SERUM

Portability

The tool should be platform-independent respectively portable as far as pos-
sible to allow usage on different systems. The fact that the existing compo-
nents of the SOMLib system are implemented on the Java platform greatly
supports this goal.

Easy and fast distribution and installation

SERUM should be quickly distributable in a fast way to lower the entry bar-
rier required to use the tool. Thus, the installation procedure, if required,
should be short, and it should not be necessary to rely on additional compo-
nents that have to be installed, like a relational database for the persistence
layer.

Some of these requirements had to be traded off against each other in
order to provide maximum value to the user. In particular, usability was
considered to be more important than complete platform independence and
fast installation.

CHAPTER 3. THE SERUM TOOL SUITE 44

3.4 Supporting frameworks and tools

A wide variety of frameworks and tools, most of them coming from the open-
source community, supports the developer in the modern Java world. These
frameworks relieve us from a lot of work, while being both freely available
and easy to integrate in an application simply by including the jar file of
the library. This section describes supporting components and frameworks
that are used by SERUM:

1. Logging Framework: Log4J [Fou05]
The open-source log4j framework is the most prominent logging frame-
work in the Java world. It features a flexible configuration, high-speed
logging and extremely flexible options of logging to text files, XML
files, databases, and even sockets that may be attached directly to a
log viewer. Specifically the Chainsaw log viewer [Fou06b] developed
within the Log4j project is used to provide the users with detailed
feedback on the extraction process.

2. Object mapping: Jakarta Commons Digester [Pro06a]
The Digester component allows us to define a mapping for the XML
file we are using to configure the patterns used for extracting texts out
of documents. We use it to directly create a hierarchy of objects from
the XML document. This is described in detail in Section 3.7.

3. GUI toolkits: Standard Widget Toolkit (SWT) and JFace
[Fou06c, SBJ04]

The Standard Widget Toolkit, implemented as part of the Eclipse Tools
Project, is one of the leading GUI toolkits for Java. It works in a hy-
brid way, standing between completely platform-independent toolkits
like AWT and Swing and proprietary toolkits designed for a specific
platform.

SWT is an open source widget toolkit for Java designed to
provide efficient, portable access to the user-interface facil-
ities of the operating systems on which it is implemented.
[Fou06c]

SWT uses the JNI1 features of Java to call native functions of the Op-
erating System it is running on, while shielding users and developers

1http://java.sun.com/j2se/1.4.2/docs/guide/jni/index.html

CHAPTER 3. THE SERUM TOOL SUITE 45

from these dependencies. Because we consider usability to be more
important than complete platform independence and fast installation,
the SWT fits the requirements of SERUM best; it forms a trade-off ex-
changing platform independency for portability, getting standard look-
and-feel and significantly improved performance in return. Though an
SWT runtime does need to be installed on some platforms, this can be
boundled easily with the distribution and even be deployed using Java
Web Start2 [Gun03]. Moreover, SWT supports all major operating
systems.

JFace is an extension to SWT, similar as Swing is based on AWT. It al-
lows an MVC-based programming style featuring sophisticated widgets
like tree and table viewers.

The Jigloo GUI Builder [Clo06] was used to design the user interface.

4. Parse document formats: Jakarta POI and pdfBox [Pro06d,
Pro06c]
For parsing documents in office formats like PDF and DOC, we use the
possibilities of the Jakarta POI and pdfBox libraries that are able to
extract the content of files in these formats.

5. Indexing: Apache Lucene [Fou06a]
The Lucene project develops an open-source framework for search en-
gines. We use the indexing possibilities of Lucene for our feature ex-
traction module.

6. Detect language automatically - Java Text Categorizing Li-
brary[Sol06]
When indexing texts, taking account the language of them can improve
results for two reasons:

• Word stemming algorithms can be used that are tailored for this
language, and

• language-specific stop words can be used.

The JCTL library supports this by automatically detecting the lan-
guage of texts by an n-gram algorithm [CT94].

7. Supporting frameworks: Jakarta Commons
Several libraries developed by subprojects of the Jakarta Commons
project are used, partly because they are required by other Jakarta

2http://java.sun.com/products/javawebstart

CHAPTER 3. THE SERUM TOOL SUITE 46

frameworks we are using; e. g., the Digester relies on the Beanutils and
Collections libraries. [Pro06b] provides detailed descriptions of these
frameworks.

(a) Logging wraps common logging implementations including the
Java Logging API and log4j, allowing to switch between these
without having to change the source code.

(b) Beanutils wraps the reflection and introspection APIs of Java in
a convenient way.

(c) Collections extends the possibilities of the collection classes in-
cluded in Java.

(d) Discovery provides functionality for resource discovery.

(e) Math contains components complementing the Java language
with often-used mathematical and statistical features.

3.5 Tool architecture

This section presents the components of SERUM and the way they collabo-
rate to achieve the desired functionality.

3.5.1 Components

SERUM mainly consists of the following components, corresponding to the
workflow as provided in Figure 3.1:

1. The Extractor retrieves texts and their constituting sections from doc-
uments according to configurable patterns by using regular expressions
constructed from the user-defined XML configuration.

2. The Indexer uses functionality provided by Lucene to write index files
of word frequencies. It also encapsulates the next module.

3. The Feature space reduction module is based on the TeSeT –
TErm SElection Tool developed by Andreas Pesenhofer at the eCom-
merce Competence Center.3 It supports the user in the feature re-
duction process, allowing both a fully automated reduction as well as
manual fine-tuning of the reduction process.

3The ec3 homepage can be found at http://www.ec3.at/.

CHAPTER 3. THE SERUM TOOL SUITE 47

SOM Toolbox
SOMViewer Self-organizing maps

SERUM core
SOMviewrunner Trainer Indexer Extractor

User Interface
SERUM Worker SERUM GUI

Figure 3.2: Overview of the components of the SERUM toolsuite.

CHAPTER 3. THE SERUM TOOL SUITE 48

4. The Map trainer controls the training processes of self-organizing
maps as provided by the SOMLib library.

5. The map training process itself is executed by the existing SOM Tool-
box that is being slightly adapted and extended for SERUM.

6. SERUM also contains an extended version of the SOMViewer cus-
tomized to provide a comfortable way of displaying the documents
mapped onto units on the map.

7. The complete workflow can be exercised both by a graphical user
interface and a batch-processing mode.

Figure 3.2 provides an overview of the components and their relationships.
We will now present the main classes in our domain model and then

discuss the components in the order of their appearance in the workflow.

3.6 The domain model

Figure 3.3 shows the main elements of our domainmodel. The elements in the
lower right corner form the main concepts in the workingspace of SERUM,
while the other classes are used for the processes of document extraction and
import.

A Project is the container which holds the documents that we want to
organize in different maps. These documents are imported as described in
Section 3.7 and usually confer to the same doctype. A project maintains a
list of subprojects and a list of all segment names occuring inside the project.

A Subproject represents the configuration of a self-organizing map to
be trained with the set of documents in the project. The map can be orga-
nized not only according to the content of documents as a whole, but also
according to the similarity of specific sections or segments, like the pre- and
postconditions of use cases. Each subproject thus handles the configuration
of segments to include in the indexing and training process.

A Doc represents a single document contained in a collection, e. g. a
scientific paper or the description of a single use case. It consists of several
segments, each having name and content. In the document pattern, this is
represented by a prefix, followed by a body of text. E.g., a segment could be
“Preconditions: User is logged on”, where Preconditions: is the prefix and
User is logged on is the content.

A Doc also belongs to a category that can be assigned during the import
process and is used to discern documents when browsing the map. For a use
case, this would normally be the name of the project.

CHAPTER 3. THE SERUM TOOL SUITE 49

 DocType
+DocType()
+getSegmentPatterns(): Vector<SegmentPattern>
+DocType(name : String , type: String , directory:boolean)
+isDirectory():boolean
+getSegmentNames(): ArrayList<String>
-directory:boolean
-type: String
-name: String
-textPattern: TextPattern

Prefix

-line:boolean
-maystartline:boolean
-content: String
-startline:boolean

Doc
-segments: Hashtable<String,String>
+getTitle(): String
+setSegment(name: String , text: String):void
+getSegment(name: String): String
-id: String
-index:int=0
-idKey: String
-category: String
-titleKey: String

Line
+getRPattern(): Pattern

SegmentPattern
+SegmentPattern()
+isId():boolean
+getRPattern(): Pattern
+isTitle():boolean
+isOptional():boolean
#body: String =".*"
#title:boolean=false
#id:boolean=false
-name: String
-prefix: Prefix =null
-optional:boolean=false

Subproject

-mapDir: String
-segments: ArrayList<String> =new ArrayList<String>()
-project: Project
-name: String

TextPattern
+TextPattern()
+TextPattern(delimiter: String)
+getPattern(): String
+addSegme ntPattern(s: SegmentPattern):void
+makeText(input: String , log: Log): Doc
-getStartIndex(input: String , prefix: Prefix):int
-getEndIndex(input: String , startSearch:int, i:int):int
+cleanup(string: String): String
-segmentPattern s: Vector<SegmentPattern>
-removeList: Vector<String>
-delimiter: String

Project

-segments: ArrayList<String> =new ArrayList<String>()
-name: String
-subprojects: ArrayList<Subproject> =new ArrayList<Subproject>()
-directory: String =""

0..*

1

0..*
1

Figure 3.3: SERUM’s domainmodel.

CHAPTER 3. THE SERUM TOOL SUITE 50

The remaining classes collaborate in extracting the Docs from files:

• DocTypes and TextPatterns are created from a user-defined XML
pattern. They model the structure of a document containing texts that
the user wants to import by defining

– the delimiter separating single Docs, and

– the structure and patterns inside these texts that define the con-
tained segments.

• This structure is modelled by a list of SegmentPatterns contained in
the TextPattern, each of which contains a prefix and a body. These are
defined in the doctype XML file by a combination of regular expressions
and attributes, as we will describe in the next section. A Line is a
special kind of SegmentPattern modelling a segment that fits into one
line.

3.7 Extracting text artifacts from documents

The indexing process, as supported by the existing code from the Term se-
lection tool TeseT that we build upon, relies on accessing single text, .pdf or
.doc files. However, in reality document passages like use cases are usually
maintained in a requirements document containing dozens or hundreds of use
case documents. Thus an important step has to be carried out before we are
able to construct an index: the segmentation of larger documents into the
smaller parts that interest us, or more specifically, the extraction of texts out
of larger documents according to specified patterns.

The most common method to achieve tasks like this is to use regular
expressions, which are readily supported to a sufficient extent by the native
features of Java. They provide a flexible and powerful way of text pattern
matching and extraction.

3.7.1 Pattern definition

For short texts or simple structures, directly using regular expressions might
be sufficient, at least for experienced users. However, a lot of complexity is
added by the irregularity that the human factor brings into natural language
texts: Sections may be missing, section headings may be spelled or written
differently within a document, or markup elements like colons and the like
may be missing. Figure 3.4 gives an example of a regular expression necessary

CHAPTER 3. THE SERUM TOOL SUITE 51

(Goal in Context.*)?Use\s+Case\s+UC_.*(Covered\s+feature\s+
.*)?(()?Goal in Context.*)?Creator(s)?\s+(Responsible\s)?
.*History of\s+(Changes\s+)?.*Scope.*Preconditions.* Success
End\s+Condition\s+.*Failed End\s+Condition\s+.*Primary Actor.*
Secondary\s+Actor\(s\)\s.*Trigger.*\sSCENARIO SHEET\s+ (Use
Case\s+Scenario\s+)?Step\s+Action\s?.*(()? Extens(t)?ion to\s+
Scenario\s+Steps\s+Step(\s+Branching\s+Action)? \s{0,2}.*)?
(()?Variation(s)? to\s+Scenario\s+Steps\s+Step(\s+Branching\s+
Action)? \s{0,2}.*)?(()?Extens(t)?ion to\s+Scenario\s+Steps\s+
Step(\s+Branching\s+Action)?\s{0,2}.*)?(Superordinates .*)?
(Subordinates.*)?\s+QUALITY ISSUES\s+Priority:?\s?.*Time
Constrain(ts)?.* Frequency.*((Channels)|(connections))
to\s+(actors)? .* OPEN\s+ISSUES.*Due Date.*...any
other\s+(management \s+ (i|I)nformation...)?\s?.*

Figure 3.4: Regular expression for matching a complex requirements docu-
ment containing several hundreds of use case descriptions.

to extract use cases from a rather complicated requirements document from
industrial practice. We will discuss this document in detail in Chapter 4.

Forcing the user to define this pattern as a single complex regular ex-
pression string would not be very comfortable; besides, this approach would
not allow the program to extract the single element bodies and assign them
to named sections. Instead, building the document pattern hierarchically
enables the desired extraction and makes the pattern definition much more
flexible. Complexity is reduced to a large extent, as we will see in the follow-
ing and in Chapter 4.

The user describes document patterns with short elements in an XML
file, each one defining the pattern of a specific segment of text occuring in
the document, all in their order of occurence. The segments contain a prefix
and a body, the latter one defaults to match any string if it is not provided.
By using XML attributes like optional="true" instead of regular expression
constructs, overview and readability are improved. These XML attributes
are later converted to regular expressions during the extraction process.

A passage of the XML file leading to the regular expression given in Figure
3.4 is provided in Figure 3.5. Obviously, this pattern definition is much more
accessible to humans.

The XML structure of the complete configuration file is shown in Figure
3.6. Its hierarchy confers to the structure of pattern elements as it is described
in Section 3.6 and shown in Figure 3.3.

The attributes id and title, present in the elements segment and its

CHAPTER 3. THE SERUM TOOL SUITE 52

...
<line name="Goal in Context" title="true" optional="true">
<prefix>Goal in Context</prefix>

</line>

<line name="id" id="true">
<prefix>Use\s+Case\s+UC_</prefix>

</line>

<segment name="Covered feature requests" optional="true">
<prefix startline="true">Covered\s+feature\s+</prefix>

</segment>
...

Figure 3.5: Part of the XML configuration modelling the pattern that results
in the regular expression as listed in Figure 3.4.

specialized version line, refer to the state of a segment - usually, one of the
segments is a unique identifier that may be used for referencing the document,
and another segment contains the title of the document.

The XML configuration file is mapped onto the objects mentioned above
by an object mapping module called Digester. This very helpful module
has been developed as part of the Jakarta project and is used by countless
applications for reading in configuration files.

Basically, the Digester package lets you configure an XML → Java
object mapping module, which triggers certain actions called rules
whenever a particular pattern of nested XML elements is recog-
nized. [Pro06a]

3.7.2 The Digester object mapping

The rule setup for creating our object tree of pattern elements is shown in
Figure 3.7. Four different types of rules are used:

1. An ObjectCreate rule triggers the Digester to create a new instance
of the specified class and push it onto the stack.

2. SetProperties causes the Digester to initialize all properties of the
stack’s top object according to the attribute values provided in the
triggering XML element by using the JavaBeans Introspection API.

3. CallMethod triggers the call of a method with the content of the trig-
gering XML node provided as input parameter.

CHAPTER 3. THE SERUM TOOL SUITE 53

<!DOCTYPE doctypes [

<!ELEMENT doctypes (doctype+)>
<!ELEMENT doctype (textpattern)>
<!ELEMENT textpattern(removelist,

delimiter,
(segment|line)+)>

<!ELEMENT removelist(remove+)>
<!ELEMENT delimiter(#PCDATA)>
<!ELEMENT segment (prefix)>
<!ELEMENT line (prefix)>
<!ELEMENT prefix (#PCDATA)>

<!ATTLIST doctype
name CDATA #REQUIRED
type CDATA #REQUIRED
directory (true|false) "false"

>

<!ATTLIST segment
name CDATA #REQUIRED
id (true|false) "false"
title (true|false) "false"
optional (true|false) "false"

>

<!ATTLIST line
name CDATA #REQUIRED
id (true|false) "false"
title (true|false) "false"
optional (true|false) "false"

>

<!ATTLIST prefix
line (true|false) "false"
startline (true|false) "false"
maystartline (true|false) "false"

>
]>

Figure 3.6: Document type definition (DTD) of the doctypes configuration
file.

CHAPTER 3. THE SERUM TOOL SUITE 54

digester.push(this);

digester.addObjectCreate("*/doctype",
"at.tuwien.serum.model.DocType");

digester.addSetProperties("*/doctype");

// Textpattern
digester.addObjectCreate("*/textpattern",

"at.tuwien.serum.model.TextPattern");
digester.addCallMethod("*/delimiter","setDelimiter",0);
digester.addCallMethod("*/remove","addRemove",0);

// Line
digester.addObjectCreate("*/line",

"at.tuwien.serum.model.Line");
digester.addSetProperties("*/line");

// Prefix
digester.addObjectCreate("*/prefix",

"at.tuwien.serum.model.Prefix");
digester.addSetProperties("*/prefix");
digester.addCallMethod("*/prefix","setContent",0);
digester.addSetNext("*/prefix","setPrefix");

// Body
digester.addCallMethod("*/body","setBody",0);

// end Line
digester.addSetNext("*/line","addSegmentPattern");

// Segment
digester.addObjectCreate("*/segment",

"at.tuwien.serum.model.SegmentPattern");
digester.addSetProperties("*/segment");

// end Segment
digester.addSetNext("*/segment","addSegmentPattern");

// end textpattern
digester.addSetNext("*/textpattern","setTextPattern");

// end doctype
digester.addSetNext("*/doctype","addDocType");

digester.parse(file);

Figure 3.7: Rule setup for the Digester component.

CHAPTER 3. THE SERUM TOOL SUITE 55

4. SetNext causes the Digester to use the object on top of the stack as a
parameter to a method call that is executed on the following object on
the stack.

All of these rules are triggered when an XML parser event matches an
XML path specified by the XPath4 expression that is provided in the rule
definition, e. g. */textpattern.

The digester component operates on an object stack, each action is ap-
plied to the object on top of the stack. The last rule of the setup, applying
to the end of the root element in the XML file, thus causes the Digester to
set the root element of the object hierarchy, containing the complete object
tree, to the calling object that was pushed onto the stack before the parse()
method was executed.

3.7.3 The Extractor

To initiate the training process, SERUM needs an open project, a document
type, and a source to import from. When working with the user interface,
the user will usually employ an iterative two-way approch:

1. Define and edit the document type pattern file and load the document
types into the SERUM workspace.

2. Initiate the extraction process and review the results achieved with the
current pattern.

3. If the user is satisfied with the results, he will save the extracted docu-
ments. If not, he may edit the pattern definition, reload it and initiate
the extraction again until the results are satisfying.

The extraction algorithm itself works in a top-down manner from match-
ing the patterns of complete documents to the small patterns of prefix and
body inside the segments. The sequence diagram in Figure 3.8 shows the
most important classes collaborating in the implementation; some steps and
classes were omitted for clarity. The extraction starts with splitting the
complete input string into a list of strings representing candidate documents
according to the delimiter specified in the text pattern.

These candidate strings are then matched to the text pattern, and for each
match, a new Doc is created by the TextPattern in the method makeText.
The corresponding sequence diagram detailing this creation is provided in
Figure 3.9, again with several steps omitted.

4Information about the XML Path Language can be found at http://www.w3.org/
TR/xpath.

CHAPTER 3. THE SERUM TOOL SUITE 56

DocType

Doc

Serum

Extractor: Extractor

textPattern

try

for(int i = 0;i<arr.length;i++)
if(m.find())

catch(FileNotFoundException fex)
catch(IOException ioe)

1.1: 'extractAndParseTexts(file,doctype,category)'

1.1.2.3: 'setCategory(category)'

1.1.2: 'parseDocs(doctype,arr,category)'

1: 'importFile'

1.1.1: arr:='extractTexts(file,doctype)'

1.1.2.1: tp:=getTextPattern():at.tuwien.serum.model.TextPattern

1.1.2.2: doc:='makeText(found,log)'

1.2: writeFiles(extractAndParseTexts(file,doctype,category),doctype,c):void //i...

Figure 3.8: Sequence diagram showing the main classes collaborating in the
extraction process.

CHAPTER 3. THE SERUM TOOL SUITE 57

t: Doc

pattern: SegmentPattern

extractor
tp: TextPattern

input

for(SegmentPattern pattern:segmentPatt erns)

if(pattern.isTitle())

if(pattern.isId())

1.7: getName():java.lang.String

1.11: 'setTitleKey(pattern.getName())'

1.1: new

1: 'makeText'

1.9: 'setSegment(pattern.getName(),text.trim())'

1.3: startIndex:='getSt artIndex(input,prefix)'
1.4: endIndex:='getEndIndex(input,startIndex,i)'

1.15: 'setIdKey(pattern.getName())'

1.2: prefix:=getPrefix():at.tuwien.serum.model.Prefix

t

1.5: text:='substring(startIndex,endIndex)'

Figure 3.9: Sequence diagram of TextPattern.makeText() showing the
process of creating a Doc from an input string.

CHAPTER 3. THE SERUM TOOL SUITE 58

The TextPattern iterates over its SegmentPatterns, computes the bound-
aries of each segment and its prefix and body in the input string and initializes
the segments from the according substrings. It also sets the keys to the title
and id segments in the Doc.

After the Doc has been created and the call has returned to the Extractor,
the category of the new Doc is set. After all Docs have been parsed, the re-
sulting files are written to disk.

For each text that cannot be matched to the pattern, a notification is
logged, and the GUI presents these texts to the user after finishing the ex-
traction process. Furthermore, documents with duplicate IDs are logged and
saved with altered IDs, and the user is warned about these events.

3.7.4 The user interface

Figure 3.10 shows the import screen of SERUM during the process of extrac-
tion.

Figure 3.10: Import screen of SERUM.

CHAPTER 3. THE SERUM TOOL SUITE 59

In the toolbar, the user may select a project to work on, create a new one,
etc.; in the upper left, he may select the document type conferring to the file
he wants to import. The main part allows him to select a file or directory
containing the documents he wants to extract, and initiate the extraction
process according to the three steps of

1. Importing the file and splitting it into candidate documents,

2. Extracting these documents and their segments, and

3. Writing the extracted documents and segments to disk.

The user gets live feedback on the progress in the main panel as well as
the preliminary results of document extraction in the table in the lower part
of the window. If he wants even more detailed information about the pattern
matching process, he may start the Chainsaw log viewer [Fou06b] and open
a standard socket on his computer. SERUM will connect to this socket and
directly send log messages to Chainsaw. A screenshot of Chainsaw during
the extraction process is shown in Figure 3.11.

Figure 3.11: Chainsaw log during the extraction process.

CHAPTER 3. THE SERUM TOOL SUITE 60

Figure 3.12: Reviewing extraction results.

After the extraction process has finished, the user may view the results
in the screen depicted in Figure 3.12.

By clicking on the table items and the segments in the upper tree, he
can review the extraction results and decide if he wants to further optimize
the pattern definition or return to the main panel and write the segments to
disk.

CHAPTER 3. THE SERUM TOOL SUITE 61

Figure 3.13: Selection of segments to include in indexing.

3.8 Indexing

As soon as a project contains some documents, a map can be created to
organize these into a 2-dimensional grid. The first steps are then to decide on
which segments of the contained documents shall be relevant for organization
and thus shall be used for indexing. This step is shown in Figure 3.13.

To cluster documents with the SOM, we need to represent them in a
vector space model. The next step is creating an index, which can then be
reduced by applying stop word filtering, defining percentage thresholds for
word frequencies, etc. – this is initiated by the controls in the lower right of
the screen, where the user can also decide whether to use a word stemming
filter or not.

The next sections will describe the indexing component of SERUM and
the feature reduction process.

CHAPTER 3. THE SERUM TOOL SUITE 62

3.8.1 Feature extraction: Indexing

SERUM relies on the indexing capabilities provided by the Apache Lucene
framework. The SERUM Indexer adds documents to an IndexWriter,
where each document consists of a series of fields like the title, the content,
an ID, etc.; only the content is used for indexing.

Because we want to be able to cluster documents according to the simi-
larity of specific sections as described above, we need to construct the content
field of a document; moreover, we want to preserve information about the
category a document belongs to, like the project name of a use case descrip-
tion. These services are provided by the SerumDocument, which dynamically
concatenates the desired sections as configured by the user in the settings of
the map, and provides this content to the IndexWriter. The latter saves the
resulting index to a file that can be read by the IndexReader.

The index() method of the Indexer, which is depicted in Figure 3.14,
serves two purposes.

1. It controls the index creation process of the Lucene IndexWriter com-
ponent adapted from the Term Selection Tool (TeseT), and

2. it creates a DocWriter that writes each document contained in the map
to an HTML file which can later be linked in the HTML output of a
SOM and displayed in the SOMviewer.

The IndexWriter itself relies on an Analyzer that inspects each docu-
ment and retrieves its word frequencies. This component can also be used for
preliminary feature reduction steps, in particular for stemming words as
described in Section 2.2.3, but also for stop word filtering. These methods
are heavily language-dependent, it is necessary to take the language of each
text into consideration before applying an appropriate algorithm.

To be able to do this automatically, we use the Java Text Categorization
Library (JCTL) [Sol06], which provides a convenient service taking a string
as input and returning the language of this string. This service is called
inside the AnalyzerFactory at createAnalyzer, which is called before the
indexing process actually starts, with the content of the first document to
index as input. The analyzer factory then constructs an appropriate analyzer
according to the returned language and the settings provided by the user,
which determine if stemming and stop word filtering shall be applied.

The Lucene framework provides ready-to-use classes for english, german,
and russian texts providing both stop word removal and word stemming
filters; additional languages can easily be added and are likely to be supplied
in future releases of the framework.

CHAPTER 3. THE SERUM TOOL SUITE 63

Serum

luceneIndexWrite r

AnalyzerFactory

w: DocWriter

SerumDocument

subproject

indexer: Indexer

try
if(list.length > 0)

for(String f:list)

catch(FileNotFoundException e)
catch(InterruptedException e)

1.1: doc:='SerumDocument.makeDocument(dir,list[0],"",segments)'

1.12: 'writeDoc(f,category)'

1.13: optimize

1.8: 'setSegments(collection.getSegments())'

1.9: segments:=getSegments

1.7: docWriter:='new DocWriter'(indexDir,outputDir)

1.3: indexWriter:='new IndexWriter'(indexDir,analyzer)

1.14: close

1: index(map)

1.11: a ddDocument'(document)

1.2: analyzer:='AnalyzerFactory.createAnalyzer'

1.10: document:='Document(dir,f,category,segments)'

true

Figure 3.14: Sequence diagram showing the indexing of a subproject.

The AnalyzerFactory creates an Analyzer with the desired combination
of filters and returns it to the Indexer, which then initializes the DocWriter

component and runs the actual indexing and HTML writing process. This
means adding all documents of the project to both IndexWriter and DocWriter,
and finally closing the IndexWriter.

3.8.2 Pruning the feature space

The feature space pruning is carried out by an adapted version of the TeSeT
component; this module provides feature space reduction by the following
services:

1. Stop word filtering for english and german,

2. Removal of terms that match a regular expression,

CHAPTER 3. THE SERUM TOOL SUITE 64

3. Manual merging of terms through the user interface, and

4. Filtering of terms according to

(a) their length, and

(b) their frequency of occurence.

Because of the irregularities of natural language, the user will usually
have to trade-off between an efficient workflow and optimal results. This
means providing both an automatic feature reduction without manual inter-
action, as well as the option of manually fine-tuning the reduction parameters
by adjusting the threshold settings, combining or merging terms, manually
selecting terms for removal, and the like.

Table 3.7 provides the default values that are used for the reduction
process if the user chooses automatic reduction; terms lying outside the given
thresholds are marked for removal. These values are also preset in the re-
duction screen on activation, so the user can start at a reasonable point
and further optimize it until the outcome meets his expectations. The user
can adjust these default settings to his needs by editing the properties file
serum.prop in SERUM’s working directory.

The user interface of TeSeT is quite comfortable, a part of it is integrated
into SERUM and shown in Figure 3.15. The user can manually fine-tune
the settings or just decide to go along with the presets and proceed to map
training. All removed terms are written to a text file that can be examined
by the user.

An interesting and often useful option is the function to merge terms that
denote the same semantic concept, yet cannot be automatically reduced to
this concept with standard algorithmic approaches. For example, while the

Name Default Value Description

minDF 3 minimum number of documents a term must appear

maxDF 0.8 maximum percentage of documents a term may appear

mintermlength 5 the minimum length of a term

maxtermlength 30 the maximum length of a term

regex (d+(-|.|/|,)?)+ a regular expression matching strings to be removed; the de-
fault value removes all numbers and dates given in common
notations

stopDE true use german stop word list

stopEN true use english stop word list

stem false use appropriate stemming filter

Table 3.7: Default parameter settings used for feature space reduction.

CHAPTER 3. THE SERUM TOOL SUITE 65

Figure 3.15: Feature space reduction screen while merging terms.

Porter stemmer would reduce the term parts to its root part, it would fail
to do the same for words like partial. A human user can thus achieve much
better results than a stemming algorithm in this regard; yet, he needs some
time for this.

The performance of the original TeSeT component at the start of this
project came out to be rather unsatisfying for larger collections; however,
by optimizing the inner loops of the indexing classes during an early stage
of development, the time needed for indexing could be reduced by more
than 80 percent. This performance gain by a factor of six allows the user
to repeatedly index and reduce document collections without experiencing
significant idle times. Performance values measuring the time required to
perform the various steps from extraction to map training are provided in
Chapter 4.

When the user is finally satisfied with the results of the feature space
reduction (or after the automatic reduction has taken place), a vector space

CHAPTER 3. THE SERUM TOOL SUITE 66

Figure 3.16: SERUM’s map training window.

model has to be written as input for the self-organizing map. This is the last
step of preprocessing that is necessary before a map can be trained.

3.9 Map training

The last of the four panels in SERUM’s user interface controls the map
training process and provides live feedback on its progress to the user. It is
depicted in Figure 3.16.

By default, SERUM suggests to train a growing self-organizing map
(GSOM) with 10000 learning iterations between each expansion check and
4 labels assigned to each unit by the LabelSOM algorithm, and it further
suggests to write an HTML output file.

The user can adjust these parameter settings for map training and initiate
the training process. A progress bar informs him about the current state of
training. Table 3.8 provides the values that are preset when the user enters

CHAPTER 3. THE SERUM TOOL SUITE 67

Name Default Value Description

model growing Use a growing self-organizing map

iterations 10000 number of iterations; for the growing map model, this para-
meter indicates the number of iterations before an expansion
check is performed

tau 0.02 threshold that determines the desired data representation
granularity and thus controls the growth process

learningrate 0.75 initial learningrate

x 3 initial number of columns in the map

y 3 initial number of rows in the map

labels 4 number of labels to generate for each unit

html true create an HTML output file for each map

Table 3.8: Default parameter settings used for map training.

the screen. Like the values provided in Table 3.7, these default settings can
be changed by the user by editing the properties file serum.prop.

While the map grows, its current dimensions are updated in the user
interface, and the user is notified with detailed status information in the
log window below. The SOM Toolbox was extended with several progress
listener interfaces to support this feedback.

The HTML output option allows users to view the resulting maps without
needing a dedicated software; it is also convenient for publishing training
results on the web.

This is the point which can also be reached directly from the first screen
by selecting the “Full service” option in the upper right. The user may watch
the application proceed through the successive steps until it stops here; the
only information he has to provide is a name for the new map.

3.10 Interaction

After training a map, the user is ready to analyze it. The button “View
map” starts a new SOMViewer application opening the currently active map
in document mode – which means that the SERUM DocViewer component is
activated instead of, e. g., the PlaySOMPanel that would be used with maps
containing audio files. It is possible to start more than one SOMViewer in
parallel to compare different maps.

The SOMViewer and DocViewer components will be discussed in detail
in the next chapter.

CHAPTER 3. THE SERUM TOOL SUITE 68

<!DOCTYPE serum-jobs [

<!ELEMENT serum-jobs (collection+)>

<!ELEMENT collection (imports,maps)>

<!ELEMENT imports (import+)>

<!ELEMENT import EMPTY>

<!ELEMENT maps (map+)>

<!ELEMENT map (segments)>

<!ELEMENT segments (segment+)>

<!ELEMENT segment #PCDATA>

<!ATTLIST collection name CDATA #REQUIRED>

<!ATTLIST import doctype CDATA #REQUIRED

importPath CDATA #REQUIRED

category CDATA #REQUIRED>

<!ATTLIST map name CDATA #REQUIRED

config CDATA>

]>

Figure 3.17: Document type definition of the batch input file.

3.11 Batch mode

If we want to process large amounts of text with similar characteristics –
for example if we want import a large number of similar documents into a
collection and train a number of maps with varying parameter settings to
compare the outcomes – we may not want to do this by hand, no matter
how comfortable the user interface is. Instead, we need a batch processing
facility.

SERUM provides this by defining an XML input structure containing
collections, map settings and import instructions that are followed by the
batchworker component. Figure 3.17 provides the structural definition of
the input XML file. This XML file is read by the SerumWorker in a similar
way as the doctypes.xml discussed in Section 3.7.2 by using the Digester
object mapping.

The settings in the XML file correspond to those discussed in the last
sections; the attribute config of a map denotes the filename of a properties
file containing the settings that should be used for map training; this is more
convenient to provide these parameters, and also allows more than one map
to share the same settings. A sample file that is used for batch processing is
provided in appendix B. While processing this input, the batch worker logs
its progress to the standard output as well as to the Chainsaw application,
if the latter is active.

CHAPTER 3. THE SERUM TOOL SUITE 69

Figure 3.18: Way of a use case and its segments from extraction to interac-
tion.

3.12 Summary

In this chapter, we discussed the tool SERUM – Self-oRganizing Use case
Maps. We explained the need for such a tool, outlined the requirements that
had to be met, and discussed its architecture, components and workflow in
detail. Before moving on to presenting the resulting maps in the extended
SOMViewer application, we would like to review the way a use case and its
segments take from being extracted out of document files to being viewed
by the user in the DocViewer. Figure 3.18 presents a diagram depicting this
way.

The next chapter introduces the use case sets that we will use as a case
study, and describes the extraction process, its parameters and results. We
will then present the extended SOMViewer component with the DocViewer,
and discuss the resulting maps.

Chapter 4

Extracting and Clustering Use
Cases

In this chapter, we will use the tool presented in the last chapter to organize
several collections of documents containing use case descriptions.

The chapter starts with an introduction to the use case sets we obtained
from industrial partners. We will then describe the steps of importing, in-
dexing, etc., and provide the parameters that were used. Finally, we present
some of the resulting self-organizing maps and discuss the possibilities of ex-
ploring them in the SOMViewer as well as with a normal web browser. Both
alternatives provide the option of viewing the original texts that have been
mapped onto specific units on the map in the course of exploration.

4.1 The Use Case sets

Unsurprisingly, it is not trivial to get access to real-world instances of use
cases in industrial environments. While several companies and institutions do
actively apply use cases in describing user requirements (indeed, more than
we initially expected), they are reluctant to give access to those use case sets,
often even under terms of non-disclosure agreements. Similar experiences
were indicated to us by several academics working in the field of use case
applications.

In addition, some basic criteria had to be met by the use case sets, further
narrowing the number of options for analysis:

• Size. A set of use cases should contain sufficient use cases to make
content-based organization and clustering feasible. Several sets con-
taining less than 20 use cases were dismissed.

70

CHAPTER 4. EXTRACTING AND CLUSTERING USE CASES 71

• Relevance. A set should consist of real-world use cases, used in in-
dustrial environments, and not be artificially constructed. It should
possibly involve large institutions with a software engineering track
record, not just small software producers.

• Structure. The use cases should more or less conform to use case tem-
plates structured in some way, and not be totally informal text frag-
ments describing some ill-defined system aspects.

• Readiness. The use cases should be ready to use with the techniques
applied; it should not be necessary to prepare or substantially change
the use cases – this would not be possible in a real-world environments,
too.

We finally obtained access to four suitable sets of use cases; they are
described in the following. Company names and details had to be omitted
due to the terms of confidentiality agreements.

• Set 1: TICKET. TicketLine is a ticket reservation system developed at
the Vienna University of Technology, primarily by graduate students,
for use in both graduate and undergraduate courses. Three main re-
leases were developed over the years, each with state-of-the-art meth-
ods and terminology; release 3 used use cases as primary requirement
description approach. This set contains 66 use cases in German.

• Set 2: AUTO. This set of 20 use cases in English describes a control
application in the automotive industry. The original specification on
which the use case set is based was provided by a very large, interna-
tional car manufacturer. The use case description was developed at a
large German software engineering institute.

• Set 3: COLLAB. This is a large collaboration and document man-
agement framework. Project partners in this joint effort included an
international company that is a large producer of white goods, and a
very large international company in the market of global telecommu-
nication systems and equipment. This set contains 26 use cases (in
English).

• Set 4: MOBILE. This large use case set describes the behavior of soft-
ware functionality in the field of mobile communication. It was created
at one of the largest international organizations operating in commu-
nication, power infrastructure, and electrical engineering (not the com-
pany involved in set 3). This set contains 450 use cases (in English).

CHAPTER 4. EXTRACTING AND CLUSTERING USE CASES 72

Property TICKET AUTO COLLAB MOBILE

Domain Administration Automotive indus-
try

Collaboration,
document manage-
ment

Mobile communi-
cation

Number of
use cases

66 20 26 450

Document
format

separate txt files in
directory, each con-
taining a single use
case

single pdf contain-
ing all use cases

single doc contain-
ing all use cases

large 850-page pdf

containing all use
cases

Average use
case size, in
characters

1396 1054 657 1814

Standard
deviation in
use case size

460 365 244 642

Number of
segments
contained

7 11 8 25

Total num-
ber of
segments

462 231 234 11700

Use case
style

casual fully dressed medium (no de-
tailed eventflow)

fully dressed

Complexity low medium low very high

Language german english english english

Table 4.1: Properties of the use case sets

Table 4.1 gives an overview of the four sets, along with the file formats,
average use case size, variance of use case size in characters, and characteris-
tics of the use case descriptions. The size of a single use case varies between
one and three pages.

The segments contained in the use case sets varied greatly, as the orga-
nizations obviously follow very different guidelines and templates. Table 4.2
lists the segments contained in each of the four use case sets in their order
of appearance in the use case descriptions.

4.2 Importing and indexing use cases

The four use case sets come in three different input forms, as Table 4.1 shows.

1. The use case descriptions in the TICKET set are already split up into
text files, where each file contains one use case description;

2. Descriptions in the sets AUTO and MOBILE were delivered as part of

CHAPTER 4. EXTRACTING AND CLUSTERING USE CASES 73

TICKET AUTO COLLAB MOBILE

Name

Summary

Preconditions

Eventflow

Success
conditions

Non-functional
requirements

Notes

Full name

Actors

Intent

Preconditions

Event flow

Exceptions

Rules

Quality constraints

Monitored
environment variables

Controlled
environment variables

Post conditions

Name

Actors

Goal

Includes

Triggers

Preconditions

Success
end conditions

Failed
end conditions

Goal in Context

ID

Covered feature requests

Creator and Responsible

History of Changes

Scope

Preconditions

Success end conditions

Failed end conditions

Primary actor

Secondary actors

Trigger

Scenario sheet

Scenario extensions

Scenario variations

Superordinates

Subordinates

Quality issues

Priority

Time constraints

Frequency

Channels to actors

Open issues

Due date

Other management
information

7 segments 11 segments 8 segments 25 segments

Table 4.2: Segments contained in each use case set

CHAPTER 4. EXTRACTING AND CLUSTERING USE CASES 74

a requirements document in pdf format; and

3. COLLAB use cases were contained in a doc file, again within a require-
ments document.

4.2.1 Pattern definition

The doctypes.xml is provided in full length in Appendix A. We will here
only discuss a few short examples of segment definitions that illustrate typical
requirements in practice. These are

• Inconsistent section headings,

• missing sections, and

• inconsistent ordering of sections.

Inconsistent section headings

The segment definition

<segment name="eventflow">
<prefix startline="true">((Flow of events)|(Description)).</prefix>

</segment>

targets a common problem: People inevitably make small, accidental errors
when writing headlines and texts – often typing errors, but also small con-
fusions of terms, etc.

Furthermore, it brings to our attention that even in the largest projects,
consistent usage of requirements management tools is obviously very rare.
Dedicated requirements management tools would of course produce uniform
section headings instead of naming a section inconsistently like Flow of events
and Description. Only in the COLLAB document was the usage of section
headings and the like completely consistent. This greatly facilitated pattern
definition and speeded up the import process considerably.

Similar problems of inconsistency are present in other sets, e. g. MOBILE,
as can be seen in the following definition.

<segment name="Channels to actors">
<prefix startline="true">((Channels)|(connections)) to\s+(actors)?
</prefix>

</segment>

CHAPTER 4. EXTRACTING AND CLUSTERING USE CASES 75

Missing sections

Especially in the MOBILE set, a lot of descriptions miss one or more sections.
This leads to most of the sections being classified as optional, which of course
complicates string matching. Nevertheless, this is a minor problem; the
performance is still satisfying, as we will se later.

Mixed ordering of sections

Like the problem of missing sections, the disorder of segments is primarily
present in the largest and most complex use case set, MOBILE. It is solved
simply by declaring the disordered element twice, as can be seen in the fol-
lowing fragment of the corresponding doctype. Goal in context is defined as
first and as fourth element, because it does not always occur at the same
place in the use case descriptions.

<delimiter>((USE CASE)|(Use Case)) DESCRIPTION \r?\n?</delimiter>
<!-- sequence of segment patterns -->

<line name="Goal in Context" title="true" optional="true">
<prefix>Goal in Context</prefix>

</line>

<line name="id" id="true">
<prefix>Use\s+Case\s+UC_</prefix>

</line>

<segment name="Covered feature requests" optional="true">
<prefix startline="true">Covered\s+feature\s+</prefix>

</segment>

<line name="Goal in Context" title="true" optional="true">
<prefix maystartline="true">Goal in Context</prefix>

</line>

<segment name="Creator-Responsible">
<prefix line="true">Creator(s)?\s+(Responsible\s)?</prefix>

</segment>

The fragment above also illustrates another occurence of differing spelling,
namely the delimiter in the first line. In several instances, the title text
was written partly in lower case letters.

CHAPTER 4. EXTRACTING AND CLUSTERING USE CASES 76

4.2.2 Feature space reduction

We applied several different reduction settings to each collection, varying
parameters like the word frequency thresholds as well as comparing manual
fine-tuning with the results achieved by automatic reduction. Figure 4.1
provides a comparison chart showing the dimensions, i. e. the number of
distinct terms, of all four collections.

Dimensions

0

1000

2000

3000

4000

5000

6000

Collection

Total dimensions without
stemmer

790 302 1526 5647

Total dimensions with stemmer 679 245 1040 2835

Dimensions without stemmer
after automatic reduction

304 88 106 1602

Dimensions with stemmer after
automatic reduction

277 74 112 1167

TICKET AUTO COLLAB MOBILE

Figure 4.1: Comparison chart for word dimensions with and without reduc-
tions.

Table 4.3 provides an excerpt of terms of the MOBILE documents prior

CHAPTER 4. EXTRACTING AND CLUSTERING USE CASES 77

No stemmer Porter stemmer

common common

communication comun

communications –

communicationsalarm communicationsalarm

compact compact

compared compar

compares –

compatibility compat

compatible –

competence compet

competenceflag competenceflag

compl compl

complete –

completed complet

completely –

completeness –

completion –

complex complex

(total: 6354) (total: 2835)

Table 4.3: Terms in the MOBILE set with and without stemming.

to feature reduction. The left column displays terms identified without stem-
ming, the right column lists terms retrieved by an analyzer using the Porter
stemmer. Terms on both sides have been filtered with the same short english
stop-word list.

Obviously, stemming reduces the feature space by a large factor and does
a good job in unifying terms belonging to the same root. However, there are
terms which cannot be stemmed automatically. The drawback of stemming
is two-fold: First, it introduces language dependency; second, the labelling
on the map can become more difficult to read. For example, a label reading
compatibility would be more readable for a user exploring a map than the
corresponding root term compat. When working with maps, the user thus
may have to choose between optimized feature space reduction and optimized
labelling.

Manual fine-tuning of the MOBILE feature space after analyzing it with
a Porter stemmer took about 28 minutes; 834 terms remained. The changes
that were made to the automatic presets were mainly of one of the following
kinds:

CHAPTER 4. EXTRACTING AND CLUSTERING USE CASES 78

• Merge semantically equivalent terms like min,minim, and minimum;

• Include terms that were marked for their removal due to their shortness,
e. g. log, unix, valu, etc.;

• Merge typing errors like objet to object ;

• Include abbreviations occuring quite often that obviously represent im-
portant concepts of a target domain, but were marked for removal be-
cause of their length;

• Remove common terms. Longer stop word lists would do the same
task, but at the cost of increasing the probability that important terms
are removed.

Table 4.4 provides some examples for removed terms using manual and
automatic reduction, both with a stemmer. The column df gives the doc-
ument frequency of the removed terms, i. e. the number of documents it
appears in.

manual reduction df automatic reduction df

abi 2 abi 2

abl 19

abnorm 2 abnorm 2

abortact 1 abortact 1

abortalarmalign 1 abortalarmalign 1

aborterror 1 aborterror 1

abov 9 abov 9

absenc 1 absenc 1

absolut 3

abstract 1 abstract 1

acc 2 acc 2

accordingli 1 accordingli 1

accumul 1 accumul 1

ack 13

ackactivealarm 1 ackactivealarm 1

acknowldeg 1 acknowldeg 1

acknowledgeactivealarm 1 acknowledgeactivealarm 1

. . .

dbm 204

nma 21

nmc 45

Table 4.4: Removed terms in the MOBILE set with manual and automatic
reduction after stemming.

CHAPTER 4. EXTRACTING AND CLUSTERING USE CASES 79

To get an idea of the effects of automatic reduction and compare the
quality of the input mapping with the results of manual fine-tuning, we
ran a series of tests with the MOBILE set and compared the outcomes of
automatic versus manual reduction in terms of the Mean Quantization Error
(MQE) and the Mean MQE (MMQE) of some resulting maps. Table 4.5
provides the results, which are also depicted in Figure 4.2.1 Interestingly,
automatic reduction produced lower MQE values than manual reduction,
while removing fewer terms.

The effects of different reduction settings on map quality

0

20

40

60

80

100

120

140

160

180

200

MQE Mean
MQE

MQE Mean
MQE

MQE Mean
MQE

static 15x10 static 25x15 growing 0.01

Training mode

(M
ea

n
)

m
q

e

automatic reduction without
stemming (2062 remaining terms)

automatic reduction with stemming
(1167 remaining terms)

manual reduction with stemming
(834 remaining terms)

Figure 4.2: Chart comparing the effects of reduction settings on map quality.

1The static maps were trained with 50000 iterations, the growing maps with 10000
iterations between each expansion, starting with 5x5 units; the initial learning rate in
both modes was set to 0.75. The resulting dimensions are provided below the MQE values
in Table 4.5.

CHAPTER 4. EXTRACTING AND CLUSTERING USE CASES 80

Reduction
mode

Dimensions
before | after
reduction

Static SOM
size = 15x10
MQE | MMQE

Static SOM
size = 25x15
MQE | MMQE

Growing SOM
τ = 0.01
MQE | MMQE

Automatic reduc-
tion without stem-
ming

5647 | 1602 104.6 | 29.69 50.52 | 25.83 178.22 | 32.45
(size: 9x9)

Automatic reduc-
tion with stem-
ming

2835 | 1167 79.01 | 22.32 34.73 | 19.34 146.08 | 26.04
(size: 9x9)

Manual reduction
with stemming

2835 | 834 94.74 | 26.96 46.61 | 23.56 170.28 | 31.19
(size: 10x8)

Table 4.5: Effect of varying feature reduction settings on map quality

4.3 The resulting maps

The last step in the workflow of SERUM is starting the SOMViewer to ana-
lyze the resulting maps. The following figures show the SOMViewer display-
ing the static 15x10 map created of the MOBILE dataset after stemming and
automatic feature reduction.

Figure 4.3 shows the full map of the MOBILE set, no enhanced visual-
ization is active. The DocSOM control panel lists the names of all use cases
that have been mapped onto the units currently selected on the map. The
DocViewer panel shows the content of the use case with the name that is
highlighted in the DocSOM panel.

If we turn on the smoothed data histograms visualization (SDH), we get
a screen like that shown in Figure 4.4. This time, the zoom factor is higher;
the color palette contains 256 gradients.

Figure 4.5 depicts another region of the same map with a 16-gradient
grayscale D-Matrix visualization, and Figure 4.6 shows the HTML output of
the MOBILE map in a web browser.

Due to confidentiality agreements, we cannot discuss all of the result-
ing maps in detail; only the TICKET set is available for closer examina-
tion. Consider the map depicted in Figure 4.7, which shows the use cases of
the TICKET set. The visualization shows that occurences of the term auf-
fuehrung tend to concentrate in the upper left corner. The use cases mapped
onto the selected units as listed in the box on the left side accordingly con-
tain use cases dealing with creating, editing, and cancelling events. But also
mapped onto this region are use cases describing ticket reservation and ticket
sales. Analyzing the use cases reveals high similarities of these descriptions.

Earlier experiments [ABRB05] revealed that the use case clustering is not
simply determined by the main entity, like the event mentioned above. For
example, use case descriptions dealing with search functionality are clustered

CHAPTER 4. EXTRACTING AND CLUSTERING USE CASES 81

Figure 4.3: SomViewer showing the MOBILE static SOM.

Figure 4.4: SOMViewer showing smoothed data histograms of the MOBILE
SOM.

CHAPTER 4. EXTRACTING AND CLUSTERING USE CASES 82

Figure 4.5: SOMViewer with a D-matrix visualization of the MOBILE SOM.

Figure 4.6: MOBILE map shown in a normal web browser.

CHAPTER 4. EXTRACTING AND CLUSTERING USE CASES 83

Figure 4.7: SOMViewer showing the TICKET map.

in the lower right corner of the map, because the similarity of the search
logic description is determining the clusters rather than the main entities
of the use cases. Figure 4.8 show this cluster of use cases. The labels that
have been assigned to the units illustrate the main focus of the mapped
use case descriptions, as they deal partly with search criteria and user input
(suchkriterien, eingegeben, entsprechen), and partly with the objects that are
being searched (kuenstler, reservierung, auffuehrungen, veranstaltungen).

4.4 Viewing linked documents

With the DocViewer, it is possible to view the documents mapped onto units
of the map directly within the SOMViewer. Figure 4.9 shows the DocViewer
component in detail, displaying a MOBILE use case.

Within a web browser, the same map looks like shown in Figure 4.6.
Of course, the information displayed is not nearly as helpful and rich as in
the SOMViewer; but the map is readily distributable and easy to publish
on the web. The documents themselves look exactly like in the DocViewer,
because the latter displays the generated html that is also linked from the
html output generated after map training.

CHAPTER 4. EXTRACTING AND CLUSTERING USE CASES 84

Figure 4.8: Detail of the SOMViewer showing the TICKET map.

CHAPTER 4. EXTRACTING AND CLUSTERING USE CASES 85

Figure 4.9: DocViewer component displaying a use case description.

CHAPTER 4. EXTRACTING AND CLUSTERING USE CASES 86

4.5 Finding similar use cases: practical ben-

efits

In earlier chapters, we mentioned that people in project organizations could
benefit from their use case descriptions being organized in a SOM. So, how in
particular can a single user benefit? Consider a situation where the use case
descriptions of a new project are added to a collection already containing a
lot of descriptions. The resulting map could look like that shown in Figure
4.10. The pie charts depict the shares of use cases from different projects
in each unit; the class legend shows the corresponding category names, i. e.
project names. By analyzing the surrounding use case descriptions in the
neighborhood of each of the new use case descriptions, users might find out
a lot about the project they are going to undertake.

Figure 4.10: SOMViewer displaying a map with use cases from 2 different
categories.

1. They will probably discover use cases that describe similar func-
tionality in the vicinity of the new use cases. This intuitive neighbor
discovery provides a much easier and thorough understanding than the
user could get by simply searching for single index terms with a full-text
search in the use case descriptions of existing projects. This full-text
search also would not reveal the actual distance relations between

CHAPTER 4. EXTRACTING AND CLUSTERING USE CASES 87

the new use cases and potential matches. By graphically visual-
izing these similarities in terms of distances on the map, users will gain
a much better understanding in a short time. Moreover, they could use
the added information provided by the linking to past projects in
various ways.

(a) They might probably want to reuse existing use case descrip-
tions, domain descriptions, or domain models;

(b) They might want to review and eventually revise the new
use case descriptions to incorporate specific details or peculiar-
ities pointed out in related descriptions;

(c) They will probably contact the authors of use cases that are
very similar to the new ones to find out more about the domain
or reuse possibilites, thus uncovering tacit knowledge present
in the organization. This informal support of knowledge transfer
would not be possible with traditional reuse approaches. Further-
more, the provided linkage to members of an organization who are
knowledgeable in the domain of a software project may comple-
ment traditional knowledge management systems.

Further on, it could also be advisable to transfer responsibilities
for complex domain-specific questions to colleagues who are
already knowledgeable in a specific area and know its pecu-
liarities.

(d) Most importantly, users analyzing a use case map might probably
find reuse candidates not only for use case descriptions, but
also for software artifacts implementing parts of or even the
whole functionality described in the new use cases.

2. They might also find isolated use case descriptions that cover
new terrain in terms of target domains; this might be an indicator to
exercise special caution.

However, for a thorough judgement about the practical applicability and
to determine the benefits actually gained in practice, extensive experiments
are needed; we will refer to that in the next chapter.

4.6 A recursive view of SERUM

In Section 3.3, we described the requirements for SERUM with use cases.
We now use these documents together with all four use case sets described
in Section 4.1 and put them together into one map.

CHAPTER 4. EXTRACTING AND CLUSTERING USE CASES 88

Figure 4.11: SOMViewer displaying a map with all use cases, including
SERUM’s own.

Figure 4.11 presents the result of this effort, a 15x10 static SOM of 569
use case documents with a total of about 1600 dimensions. Of course, be-
cause these documents come from five different domains and are of radically
different complexity, length, and even language, the clusters correspond by
and large to the project boundaries. But on the cluster boundaries, we can
see that some descriptions do indeed overlap a bit, which is also reflected in
the labels that were identified by the LabelSOM algorithm. On the screen-
shot provided in Figure 4.11, the component plane of the term administrator
is visualized; the highlighted cell in the lower right contains all SERUM use
cases. Their nearest neighbors are mostly use case descriptions from the
COLLAB, MOBILE and TICKET data sets.

4.7 Performance

Performance values measuring the time required to perform the various steps
from extraction to map training are provided in Table 4.6. Note that similar
to the IndexWriter of TeseT, the HtmlOutputter of the SOM Toolbox was
optimized and brought up to speed by a factor of 3.

These values were measured on a 32-bit 2,4GHz machine with 1GB RAM

CHAPTER 4. EXTRACTING AND CLUSTERING USE CASES 89

Step TICKET AUTO COLLAB MOBILE

Read and split file (sec) 0.5 2.5 3 76

Extract use cases (sec) 1 1 1 38

Match a single candidate document
to the pattern (minimum ms)

1 1 1 15

Match a single candidate document
to the pattern (maximum ms)

16 15 94 562

Write segments to disk (sec) 2 1 1 31

Create index without stemmer (sec) 2 1 2 17

Create index

with stemmer (sec) 2.5 1 2 17

Create and reduce index

without stemmer (sec) 2.5 1 2 17

Create and reduce index with stem-
mer (sec)

3 1 2 17

Dimensions after reduction 277 74 112 1167

Train a static map

(50000 iterations):

Map size 10x10 6x4 6x4 15x10

Training time (sec) 15 10 10 300

Train a growing map (10000 itera-
tions between expansion checks):

Map size 7x5 4x4 4x5 8x5

Training time (sec) 20 7 8 98

Write html output: (ms) 47 46 32 328

Table 4.6: Time required for performing the various steps from document
extraction to map training

running Windows XP. Logging was activated with loglevel DEBUG; it can be
safely assumed that turning it off would considerably speed up map training
and extraction because of the large amount of log messages appended both
to the Chainsaw socket and written to the filesystem (e. g., about 20000 for
a complete run from extracting to training the MOBILE dataset). τ was
set to 0.01 in the Growing SOM starting with a size of 3x3; 4 labels were
assigned to each unit. The stemmed and automatically reduced index was
used as input for the map training.

The table shows that the usage of stemmers and automatic reduction
does not have a measurable impact on the processing time. Moreover, even
complex documents can be extracted and corresponding maps trained within
reasonable waiting time for the user.

Chapter 5

Summary and Outlook

In this thesis, we described a tool enhancement extending the components
of the existing SOMLib digital library system and related tools to form an
application that we called SERUM – SElf-oRganizing Use case Maps.

The first two chapters introduced the concepts of digital libraries and self-
organizing maps and explained the steps necessary to organize document
collections based on their content by means of SOMs. Chapter 2 further
introduced a type of document that is of particular interest for our research,
namely use cases.

Self-organizing maps are a powerful tool for clustering high-dimensional
input data and have been proven to be very useful in the areas of digital li-
brary systems and content-based organization of large document collections.
The topology-preserving mapping to a 2-dimensional output space is par-
ticularly useful, because it allows the user to explore potentially unknown
collections in an intuitive way and easily grasp the clusters and similarities
of the contained documents.

If an organization uses a digital library approach to organize its collec-
tions of use cases with an unsupervised learning technology such as the self-
organizing map, it would be able to create such a library without extensive
investment, as no supervised classification schemes are employed.

Whenever a new project is undertaken and its requirements are specified
with use cases, mapping these use case descriptions to the existing collection
may reveal valuable similarities that might not be uncovered by traditional
information retrieval methods such as keyword-based search.

This approach may be of interest to areas such as software reuse and
knowledge management. In software reuse, the process of finding suitable
reuse candidates for a given, specified problem is still one of the main
problems to solve in each potential reuse instance.

Leading researchers in this field plead to rely on artifacts on the level of

90

CHAPTER 5. SUMMARY AND OUTLOOK 91

the problem space for the retrieval of reuse candidates – as opposed to the
often dominating usage of artifacts in the solution space coming from later
stages, such as source code documentation. Use cases as one of the leading
methodologies in software requirements engineering thus are the perfect can-
didate artifacts, and the potential data base for experiments in this area is
very large.

In knowledge management, a critical problem is pointing a user to the cor-
rect source of information for a specific problem, which often means referring
him to a colleague holding valuable information in form of tacit knowledge.
With use case descriptions pointing to their responsible authors, this can be
achieved with minimum effort.

However, to cluster use cases in a self-organizing map, these use case de-
scriptions need to be extracted from larger requirements documents, as most
organizations do not rely on dedicated requirements management tools, but
simply on text-processing applications, for specifying the requirements for
their projects. This extraction process can be a very tediuos task, pro-
hibitively time-consuming and expensive for many organizations; this also
hinders further experiments in this area. What is needed thus is a tool that
allows practitioners and researchers to extract document passages roughly
following a common pattern from larger documents without substantial ef-
fort, and support the complete workflow through the successive steps of text
indexing, feature space reduction and training the SOMs.

Such a tool, implemented in a generic way, would also be of great benefit
to every similar application of self-organizing maps where we need to extract
documents that contain segments following a common pattern. An obvi-
ous example are scientific publications consisting of a heading, an abstract,
authors, keywords, several sections of texts, and a bibliography.

Moreover, it opens up further options of working only with selected sec-
tions of these texts, such as using only the abstracts or solely the bibliogra-
phies of publications for clustering, etc.

In Chapter 3 of this work, we proposed such a tool, outlined the require-
ments, and described the main building blocks and supporting components
of SERUM. We described critical aspects as well as the user interface and
the steps of the workflow.

Chapter 4 described the application of SERUM to four different collec-
tions of use cases with differing size, target domains, sources and languages.
We highlighted selected aspects of the feature extraction and reduction steps,
described the resulting maps and interaction features, and pointed out pos-
sible benefits to software reuse and knowledge management.

A small homepage of SERUM is currently (as of March 2006) located
at http://athena.ifs.tuwien.ac.at/∼becker. The interested reader will

CHAPTER 5. SUMMARY AND OUTLOOK 92

find there a short introduction to the tool, as well as a deployment using
Java Webstart that enables him to instantly start the application.

5.1 Outlook

While the current status of SERUM is already quite productive, a lot of
opportunities for follow-up research and extension options for the tool have
opened.

• To support software reuse, it might be necessary to extend the ex-
isting tool with a domain model describing software projects, their
artifacts, attributes and relations, thus semantically enriching use
case collections.

• This may be accompanied by more sophisticated feature extrac-
tion modules, for example by incorporating segments that represent
numbers, dates, currencies, etc., or by additionally relying on structural
markup information for feature extraction.

• To examine the practical applicability of the outlined approach to soft-
ware reuse, detailed experiments, preferably with industrial partners
and data sets from practice, have to be carried out.

• The effects of different feature reduction settings regarding word fre-
quency thresholds, word stemming, etc. on the resulting maps, in terms
of the MQEs of maps and labellings and other metrics, should be ex-
plored.

• Similarly, the effects of using only specific clusters for self-
organization, for example only the condition sections of use case de-
scriptions, on the resulting maps are yet to be uncovered.

• A related question is how to handle documents that vary radi-
cally in length – e. g., inconsistent collections consisting both of use
case briefs and fully dressed use cases, or collections containing paper
abstracts as well as full papers.

• Feature extraction modules operating on different input types such
as non-textual input data could be integrated into the tool.

These and further questions will be addressed in future research efforts,
for which this thesis provides the basis.

Bibliography

[ABRB05] Martin Auer, Christoph Becker, Andreas Rauber, and Stefan
Biffl. Implicit analogy-based cost estimation using textual use
case similarities. In Proceedings of the Second International Con-
ference on Intelligent Computing and Information Systems (ICI-
CIS’05), pages 369–376, Cairo, March 2005. ACM.

[AHS98] D. Alahakoon, S.K. Halgamuge, and B. Srinivasan. A self-
growing cluster development approach to data mining. In 1998
IEEE International Conference on Systems, Man, and Cybernet-
ics, pages 2901–2906, October 1998.

[AHS00] D. Alahakoon, S. K. Halgamuge, and B. Srinivasan. Dynamic
self-organizing maps with controlled growth for knowledge dis-
covery. IEEE Transactions on Neural Networks, 11(3):601–614,
May 2000.

[Ass06] Assocation for Computing Machinery (ACM). ACM Digital Li-
brary. Website, May 2006. http://www.acm.org/dl, as of Feb-
ruary 2006.

[BB03a] James Brittle and C. Boldyreff. Genisom: Self-organizing maps
applied in visualising large software collections. In Proceedings of
the 2nd International Workshop on Visualizing Software for Un-
derstanding and Analysis (VISSOFT), pages 60–61, Amsterdam,
Netherlands, 2003.

[BB03b] James Brittle and Cornelia Boldyreff. Self-organizing maps ap-
plied in visualising large software collections. In Proceedings of
the IEEE VISSOFT 2003, 2003.

[BCM+92] Victor Basili, Gianluigi Caldiera, Frank McGarry, Rose Pajerski,
Gerald Page, and Sharon Waligora. The software engineering
laboratory: an operational software experience factory. In ICSE

93

BIBLIOGRAPHY 94

’92: Proceedings of the 14th international conference on Software
engineering, pages 370–381, New York, NY, USA, 1992. ACM
Press.

[BFN04] José Borbinha, Nuno Freire, and João Neves. Bnd: The archi-
tecture of a national digital library. In Proceedings of the 2004
Joint ACM/IEEE Conference on Digital Libraries (JCDL’04),
pages 21–22. ACM, 2004.

[BM93] J. Blackmore and R. Miikkulainen. Incremental grid growing:
Encoding high-dimensional structure into a two-dimensional fea-
ture map. In Proceedings of the IEEE International Conference
on Neural Networks (ICNN’93), volume 1, pages 450–455, San
Francisco, CA, USA, 1993. http://ieeexplore.ieee.org/.

[BV97] H.-U. Bauer and T. Villmann. Growing a hypercubical output
space in a self-organizing feature map. IEEE Transactions on
Neural Networks, 8(2):226 – 233, 1997.

[CBC+99] H.B. Chen, O. Bimber, C. Chhatre, E. Poole, and S. J. Buckley.
eSCA: a thin-client/server/web-enabled system for distributed
supply chain simulation. In Proceedings of the 1999 Winter Sim-
ulation Conference, 1999.

[Clo06] Cloudgarden. Jigloo SWT/Swing GUI Builder for Eclipse
and Websphere. Website, February 2006. http://www.

cloudgarden.com/jigloo/.

[Coc00] Alistair Cockburn. Writing Effective Use Cases. The Agile Soft-
ware Development Series. Addison-Wesley, 2000.

[CT94] William B. Cavnar and John M. Trenkle. N-gram-based text
categorization. In Proceedings of SDAIR-94, 3rd Annual Sym-
posium on Document Analysis and Information Retrieval, pages
161–175, Las Vegas, US, 1994.

[Dit00] Michael Dittenbach. The growing hierarchical self-organizing
map: Uncovering hierarchical structure in data. Master’s thesis,
Technische Universität Wien, 2000.

[DMR00] M. Dittenbach, D. Merkl, and A. Rauber. The growing hierar-
chical self-organizing map. In S. Amari, C. L. Giles, M. Gori,
and V. Puri, editors, Proceedings of the International Joint
Conference on Neural Networks (IJCNN 2000), volume VI,

BIBLIOGRAPHY 95

pages 15 – 19, Como, Italy, July 24-27 2000. IEEE Com-
puter Society. http://www.ifs.tuwien.ac.at/ifs/research/
publications.html.

[Dor04] H. D. Doran. Agile knowledge management in practice. In
Advances in Learning Software Organizations: 6th Workshop,
LSO’2004, 2004.

[Fou05] The Apache Software Foundation. Log4j Project – Introduction.
Website, December 2005. http://logging.apache.org/log4j/
docs/index.html.

[Fou06a] The Apache Software Foundation. Apache Lucene – Overview.
Website, February 2006. http://lucene.apache.org/java/

docs/index.html.

[Fou06b] The Apache Software Foundation. Chainsaw v2 Documentation.
Website, February 2006. http://logging.apache.org/log4j/
docs/chainsaw.html.

[Fou06c] The Eclipse Foundation. Swt: The standard widget toolkit.
Website, February 2006. http://www.eclipse.org/swt/.

[Fre83] P. Freeman. Reusable software engineering: Concepts and re-
search directions. In Alan Perlis, editor, Proc. Workshop on
Reusability in Programming, pages 2–16, Newport, 1983. ITT
Programming.

[Fri91] Bernd Fritzke. Let it grow – self-organizing feature maps
with problem dependent cell structure. In Proceedings of the
1991 International Conference on Artificial Neural Networks
(ICANN’91), 1991.

[Fri94] B. Fritzke. Growing cell structures – A self-organizing network
for unsupervised and supervised learning. Neural Networks,
7(9):1441 – 1460, 1994. http://pikas.inf.tu-dresden.de/
∼fritzke.

[Fri95] B. Fritzke. Growing Grid – A self-organizing network with
constant neighborhood range and adaption strength. Neural
Processing Letters, 2(5):1 – 5, 1995. http://pikas.inf.

tu-dresden.de/∼fritzke.

BIBLIOGRAPHY 96

[GL00] Jiang Guo and Luqi. A survey of software reuse repositories.
In Proceedings of the 7th IEEE International Conference and
Workshop on the Engineering of Computer Based Systems, pages
92–100, Edinburgh, UK, April 2000. IEEE.

[Gun03] Jeff Gunther. Deploy an SWT application using Java Web Start.
IBM developerWorks, June 2003. http://www-128.ibm.com/

developerworks/opensource/library/os-jws/.

[Har96] S. P. Harter. What is a digital library? Definitions, content,
and issues. In Proceedings of the International Conference on
Digital Libraries and Information Services for the 21st Century
(KOLISS DL96), Seoul, Korea, September 1996. http://php.

indiana.edu/∼harter/korea-paper.htm.

[HM04] Harald Holz and Grigori Melnik. Research on learning software
organizations – past, present, and future. In Advances in Learn-
ing Software Organizations: 6th Workshop, LSO’2004, pages 1–
6, 2004.

[Hor] Joseph A. Horvath. Working with tacit knowledge. Whitepaper,
IBM Institute for Knowledge Management, 2000.

[Hor00] Joseph A. Horvath. The Knowledge Management Yearbook 2000-
2001, chapter Working with tacit knowledge. Elsevier, 2000.

[iee06] IEEE xplore. Website, February 2006. http://ieeexplore.

ieee.org/.

[Int] Internet Archive. Website. http://www.archive.org.

[JCJv93] I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard.
Object-oriented software engineering: a use-case driven ap-
proach. Addison-Wesley, 1993.

[JEJ94] I. Jacobson, M. Ericsson, and A. Jacobson. The Object Advan-
tage. ACM Press Books, 1994.

[JGJ97] Ivar Jacobson, Martin Griss, and Patrik Jonsson. Software
Reuse: Architecture, Process and Organization for Business Suc-
cess. ACM Press, 1997.

[JHC99] Cunny Johansson, Patrik Hall, and Michael Coquard. Talk to
Paula and Peter – they are experienced. the experience engine

BIBLIOGRAPHY 97

in a nutshell. In Learning Software Organizations: Methodology
and Applications. 11th International Conference on Software En-
gineering and Knowledge Engineering, SEKE’99., number 1756
in Lecture Notes in Computer Science, pages 171–185. Springer,
1999.

[KKK98] S. Kaski, J. Kangas, and T. Kohonen. Bibliography of self-
organizing map (SOM) papers 1981-1997. Neural Comput-
ing Surveys, 1(3&4):1–176, 1998. http://www.icsi.berkeley.
edu/∼jagota/NCS/vol1.html.

[KKL+00] T. Kohonen, S. Kaski, K. Lagus, J. Salojärvi, J. Honkela,
V. Paatero, and A. Saarela. Self-organization of a massive
document collection. IEEE Transactions on Neural Networks,
11(3):574–585, May 2000.

[KKLH96] Teuvo Kohonen, Samuel Kaski, Krista Lagus, and Timo Honkela.
Very large two-level SOM for the browsing of newsgroups. In
Proceedings of the International Conference on Artificial Neural
Networks (ICANN96), Lecture Notes in Computer Science, vol.
1112, pages 269–274. Springer, Bochum, Germany, July, 16 - 19
1996.

[KO90] P. Koikkalainen and E. Oja. Self-organizing hierarchical feature
maps. In Proceedings of the International Joint Conference on
Neural Networks, volume 2, pages 279 – 284, San Diego, CA,
1990.

[Koh82] T. Kohonen. Self-organized formation of topologically correct
feature maps. Biological Cybernetics, 43:59–69, 1982.

[Koh89] T. Kohonen. Self-Organization and Associative Memory.
Springer Verlag, Berlin, Germany, 3 edition, 1989.

[Koh01] T. Kohonen. Self-organizing maps. Springer-Verlag, Berlin, 3rd
edition, 2001.

[Kra92] M.A. Kraaijveld. A non-linear projection method based on ko-
honen’s topology preserving maps. In Proceedings of the 11th
IAPR International Conference on Pattern Recognition, Vol.II.
Conference B: Pattern Recognition Methodology and Systems,
volume II, pages 41–45, 1992.

BIBLIOGRAPHY 98

[Lag00] Krista Lagus. Text Mining with the WEBSOM. PhD thesis,
Helsinki University of Technology Neural Networks Research
Centre, 2000.

[Les97] M. Lesk. Practical Digital Libraries: Books, Bytes, and Bucks.
Morgan Kaufmann, San Francisco, CA, 1997.

[LGR04] Alberto H. F. Laender, Marcos André Gonçalves, and Pablo A.
Roberto. BDBComp: building a digital library for the Brazilian
computer science community. In Proceedings of the 2004 Joint
ACM/IEEE Conference on Digital Libraries (JCDL’04), pages
23–24. ACM, 2004.

[Lin91] X. Lin. A self-organizing semantic map for information retrieval.
In Proceedings of the 14th Annual International ACM SIGIR
Conference on Research and Development in Information Re-
trieval (SIGIR91), pages 262–269, Chicago, IL, October 13 - 16
1991. ACM. http://www.acm.org/dl.

[LKK04] Krista Lagus, Samuel Kaski, and Teuvo Kohonen. Mining mas-
sive document collections by the websom method. Information
Sciences, 163(1–3):135–136, 2004.

[LM95] David M. Levy and Catherine C. Marshall. Going digital: a look
at assumptions underlying digital libraries. Communications of
the ACM, 38(4):77–84, 1995.

[McI69] M. D. McIlroy. Mass-produced software components. In J. M.
Buxton, P. Naur, and B. Randell, editors, Software Engineer-
ing Concepts and Techniques: Proceedings of the 1968 NATO
Conference on Software Engineering, New York, 1969. Petro-
celli/Charter.

[MET02] Maurizio Morisio, Michel Ezran, and Colin Tully. Success and
failure factors in software reuse. IEEE Transactions on Software
Engineering, 28(4):340–357, 2002.

[Mii90] R. Miikkulainen. Script recognition with hierarchical feature
maps. Connection Science, 2:83 – 101, 1990.

[MMYA01] Hafedh Mili, Ali Mili, Sherif Yacoub, and Edward Addy. Reuse
based software engineering : techniques, organization, and mea-
surement. Wiley, December 2001.

BIBLIOGRAPHY 99

[MPP+94] F. McGarry, R. Pajerski, G. Page, S. Waligora, V.R. Basili, and
M.V.Zelkovitz. Software process improvement in the NASA soft-
ware engineering laboratory. Technical Report CMU/SEI-94-
TR-22, Software Engineering Institute, 1994.

[MR99] D. Merkl and A. Rauber. Automatic labeling of self-organizing
maps for information retrieval. In Proceedings of the 6th
International Conference on Neural Information Processing
(ICONIP99), Perth, Australia, November 16 - 20 1999. http://
www.ifs.tuwien.ac.at/ifs/research/publications.html.

[MTK94] Dieter Merkl, A Min Tjoa, and Gerti Kappel. A self-organizing
map that learns the semantic similarity of reusable software com-
ponents. In Proceedings of the 5th Australian Conference on
Neural Networks (ACNN’94), pages 13–16, Brisbane, Australia,
Jan 31 - Feb 2 1994.

[NKK03] Andreas Nürnberger, Aljoscha Klose, and Rudolf Kruse. Intel-
ligent Exploration of the Web, chapter Self-Organizing Maps for
Interactive Search in Document Databases, pages 119–135. Stud-
ies in Fuzziness and Soft Computing. Physica Verlag Heidelberg
New York, 2003.

[NMB02] E. Nasr, L. McDermid, and G. Bernat. Eliciting and specifying
requirements with use cases for embedded systems. In Proceed-
ings of the 7th International Workshop on Object-Oriented Real-
Time Dependable Systems (WORDS’02), pages 350–357, Janu-
ary 2002.

[NSF06] Library of Congress et.al. National Science Foundation. Digital
libraries initiative phase 2. Website, February 2006. http://

www.dli2.nsf.gov/.

[OP04] Gunnar Övergaard and Karin Palmkvist. Use Cases : Patterns
and Blueprints. The Software Patterns Series. Addison-Wesley
Professional, November 2004.

[Ope06] Open Source Technology Group. Sourceforge. Website, February
2006. http://sourceforge.net.

[PD91] Rubén Prieto-Dı́az. Implementing faceted classification for soft-
ware reuse. Communications of the ACM, 34(5):88–97, May
1991.

BIBLIOGRAPHY 100

[PD93] R. Prieto-Diaz. Status report: software reusability. IEEE Soft-
ware, 10(3):61–66, May 1993.

[Por80] M. F. Porter. An algorithm for suffix stripping. Pro-
gram, 14(3):130–137, July 1980. http://open.muscat.com/

developer/docs/porterstem.html.

[PRM02] E. Pampalk, A. Rauber, and D. Merkl. Using smoothed data
histograms for cluster visualization in self-organizing maps. In
Proceedings of the International Conference on Neural Networks
(ICANN 2002), pages 871–876, Madrid, Spain, August 27-30
2002. Springer.

[Pro06a] The Apache Jakarta Project. Commons Digester. Web-
site, February 2006. http://jakarta.apache.org/commons/

digester/.

[Pro06b] The Apache Jakarta Project. Jakarta Commons. Web-
site, February 2006. http://jakarta.apache.org/

commons/http://jakarta.apache.org/commons/logging/.

[Pro06c] The Apache Jakarta Project. Jakarta POI - Java API to ac-
cess Microsoft format files. Website, February 2006. http:

//jakarta.apache.org/poi/.

[Pro06d] The PDFBox Project. PDFBox - Java PDF Library. Website,
February 2006. http://www.pdfbox.org/.

[PY93] J. S. Poulin and K.P. Yglesias. Experiences with a faceted clas-
sification scheme in a large reusable software library (RSL). In
Proceedings of the Seventeenth Annual International Computer
Software and Applications Conference, 1993 (COMPSAC 93),
pages 90–99, Phoenix,AZ, November 1993. IEEE.

[Rau98] A. Rauber. SOMLib: A distributed digital library system based
on self-organizing maps. In M. Marinaro and R. Tagliaferri, ed-
itors, Proceedings of the 10th Italian Workshop on Neural Nets
(WIRN98), Perspectives in Neural Computing, pages 365–370,
Vietri sul Mare, Italy, May 21 - 23 1998. Springer. http://www.
ifs.tuwien.ac.at/ifs/research/publications.html.

[Rau99] A. Rauber. LabelSOM: On the labeling of self-organizing
maps. In Proceedings of the International Joint Conference
on Neural Networks (IJCNN’99), Washington, DC, July 10

BIBLIOGRAPHY 101

- 16 1999. http://www.ifs.tuwien.ac.at/ifs/research/

publications.html.

[Rau00] A. Rauber. Digital Libraries or: The Art of Storing, Draw-
ing, and Exploring Document Collections. PhD thesis, Vienna
University of Technology, Favoritenstr. 9-11, A - 1040 Vienna,
Austria, November, 11 2000. http://www.ifs.tuwien.ac.at/

ifs/research/publications.html.

[Rau03] A. Rauber. SOMLib - New approaches for information
presentation and handling. ERCIM News, 52:45–46, Janu-
ary 2003. http://www.ercim.org/publication/Ercim News/

enw52/rauber.html.

[RB99] A. Rauber and H. Bina. A metaphor graphics based represen-
tation of digital libraries on the World Wide Web: Using the
libViewer to make metadata visible. In A.M. Tjoa, A. Cammelli,
and R.R. Wagner, editors, Proceedings of the DEXA-Workshop
on Web-based Information Visualization (WebVis99), pages 286–
290, Florence, Italy, September 1 - 3 1999. IEEE. http://www.

ifs.tuwien.ac.at/ifs/research/publications.html.

[RB00a] A. Rauber and H. Bina. Visualizing electronic document reposi-
tories: Drawing books and papers in a digital library. In H. Ari-
sawa and T. Catarci, editors, Advances in Visual Database Sys-
tems: Proceedings of the IFIP TC2 WG2.6 5th Working Con-
ference on Visual Database Systems, pages 95 – 114, Fukuoka,
Japan, May, 10 - 12 2000. Kluwer Academic Publishers. http:

//www.ifs.tuwien.ac.at/ifs/research/publications/.

[RB00b] Günter Ruhe and Frank Bomarius, editors. Learning Software
Organizations: Methodology and Applications. Proceedings of
the 11th International Conference on Software Engineering and
Knowledge Engineering, SEKE’99, volume 1756 of Lecture Notes
in Computer Science (LNCS). Springer Verlag, 2000.

[RM98] A. Rauber and D. Merkl. Creating an order in distributed digi-
tal libraries by integrating independent self-organizing maps. In
L. Niklasson, M. Boden, and T. Ziemke, editors, Proceedings
of the International Conference on Artificial Neural Networks
(ICANN’98), Perspectives in Neural Computing, Skövde, Swe-
den, September 2 - 4 1998. Springer. http://www.ifs.tuwien.
ac.at/ifs/research/publications.html.

BIBLIOGRAPHY 102

[RM99a] A. Rauber and D. Merkl. Automatic labeling of self-
organizing maps: Making a treasure map reveal its secrets.
In N. Zhong and L. Zhou, editors, Proceedings of the 3rd
Pacific-Asia Conference on Knowledge Discovery and Data Min-
ing (PAKDD99), number LNCS/LNAI 1574 in Lecture Notes
in Artificial Intelligence, pages 228–237, Beijing, China, April
26 - 29 1999. Springer. http://www.ifs.tuwien.ac.at/ifs/

research/publications.html.

[RM99b] A. Rauber and D. Merkl. Mining text archives: Creating read-
able maps to structure and describe document collections. In
J.M. Zytkow and J. Rauch, editors, Proceedings of the 3rd Eu-
ropean Conference on Principles of Data Mining and Knowledge
Discovery, number LNCS/LNAI 1704 in Lecture Notes in Arti-
ficial Intelligence, pages 524–529, Prague, Czech Republic, Sep-
tember 15 - 18 1999. Springer. http://www.ifs.tuwien.ac.at/
ifs/research/publications.html.

[RM99c] A. Rauber and D. Merkl. SOMLib: A digital library system
based on neural networks. In E.A. Fox and N. Rowe, edi-
tors, Proceedings of the ACM Conference on Digital Libraries
(ACMDL’99), pages 240–241, Berkeley, CA, August 11 - 14
1999. ACM. http://www.ifs.tuwien.ac.at/ifs/research/

publications.html.

[RM99d] A. Rauber and D. Merkl. The SOMLib Digital Library System.
In S. Abiteboul and A.M. Vercoustre, editors, Proceedings of the
3rd European Conference on Research and Advanced Technology
for Digital Libraries (ECDL99), number LNCS 1696 in Lecture
Notes in Computer Science, pages 323–342, Paris, September
1999. Springer.

[RM99e] A. Rauber and D. Merkl. Using self-organizing maps to orga-
nize document collections and to characterize subject matters:
How to make a map tell the news of the world. In T. Bench-
Capon, G. Soda, and A.M. Tjoa, editors, Proceedings of the
10th International Conference on Database and Expert Systems
Applications (DEXA99), number LNCS 1677 in Lecture Notes
in Computer Science, pages 302–311, Florence, Italy, Septem-
ber 1 - 3 1999. Springer. http://www.ifs.tuwien.ac.at/ifs/
research/publications.html.

BIBLIOGRAPHY 103

[RM03] A. Rauber and D. Merkl. Text mining in the SOMLib dig-
ital library system: The representation of topics and gen-
res. Applied Intelligence, 18(3):271–293, May-June 2003.
http://www.kluweronline.com/issn/0924-669X/current.

[RMD02] A. Rauber, D. Merkl, and M. Dittenbach. The growing hi-
erarchical self-organizing map: Exploratory analysis of high-
dimensional data. IEEE Transactions on Neural Networks,
13(6):1331–1341, November 2002.

[SAB94] Gerard Salton, James Allan, and Chris Buckley. Automatic
structuring and retrieval of large text files. Communications of
the ACM, 37(2):97–108, February 1994.

[Sal75] Gerard Salton. A theory of indexing. In Regional conference
series in applied mathematics, volume 18. Society for Industrial
and Applied Mathematics, 1975.

[SBJ04] Brian Sam-Bodden and Christopher Judd. Rich clients with the
SWT and JFace. JavaWorld, April 2004.

[SJP02] F.T. Sheldon, K. Jerath, and O. Pilskalns. Case study: B2B
e-commerce system specification and implementation employing
use-case diagrams, digital signatures and XML. In Proceedings
of the 4th International Symposium on Multimedia Software En-
gineering (MSE’02), pages 106–113, December 2002.

[Sol06] Knallgrau New Media Solutions. Java text categorizing library.
Website, February 2006. http://textcat.sourceforge.net/.

[SWY75] G. Salton, A. Wong, and C. S. Yang. A vector space model for
automatic indexing. Communications of the ACM, 18(11):613–
620, November 1975.

[SY73] G. Salton and C.S. Yang. On the specification of term values in
automatic indexing. Journal of Documentation, 29(4):351–372,
1973.

[Tal06] Joe Tallet. Gof design patterns. Website, February
2006. http://www.acm.org/sigada/wg/patterns/patterns/

GOF Toc.html.

BIBLIOGRAPHY 104

[TS04] Songsri Tangsripairoj and M. H. Samadzadeh. Application of
self-organizing maps to software repositories in reuse-based soft-
ware development. In Hamid R. Arabnia and Hassan Reza, ed-
itors, Proceedings of the 2004 International Conference on Soft-
ware Engineering Research and Practice (SERP’04), volume II,
pages 741–747, Las Vegas, Nevada, June 2004.

[TS05] Songsri Tangsripairoj and M. H. Samadzadeh. Organizing and
visualizing software repositories using the growing hierarchical
self-organizing map. In Proceedings of the 20th ACM Symposium
on Applied Computing (SAC’05), Software Engineering Track,
pages 1539–1545, Santa Fe, New Mexico, March 2005.

[US89] A. Ultsch and H. Siemon. Exploratory data analysis: Using ko-
honen’s topology preserving maps. Technical Report 329, Uni-
versity of Dortmund, 1989.

[VZM+97] V.R.Basili, M.V. Zelkovitz, F. McGarry, J. Page, S. Waligora,
and R. Pajerski. SEL’s software process improvement program.
IEEE Software, 12(6):83–87, 1997.

[YL01] H. Ye and B.W.N. Lo. Towards a self-structuring software li-
brary. In IEE Proceedings-Software, volume 148, pages 45–55,
April 2001.

Appendix A

Document type configuration
file

The following listing displays the complete configuration file doctypes.xml

used for the four use case sets discussed in Chapter 4.

<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE doctypes [

<!ELEMENT doctypes (doctype+)>

<!ELEMENT doctype (textpattern)>

<!ELEMENT textpattern(removelist,delimiter,(segment|line)+)>

<!ELEMENT removelist(remove+)>

<!ELEMENT delimiter(#PCDATA)>

<!ELEMENT segment (prefix)>

<!ELEMENT line (prefix)>

<!ELEMENT prefix (#PCDATA)>

<!ATTLIST doctype

name CDATA #REQUIRED

type CDATA #REQUIRED

directory (true|false) "false"

>

<!ATTLIST segment

name CDATA #REQUIRED

id (true|false) "false"

title (true|false) "false"

optional (true|false) "false"

>

<!ATTLIST line

name CDATA #REQUIRED

id (true|false) "false"

title (true|false) "false"

optional (true|false) "false"

>

<!ATTLIST prefix

line (true|false) "false"

startline (true|false) "false"

maystartline (true|false) "false"

>

105

APPENDIX A. DOCUMENT TYPE CONFIGURATION FILE 106

]>

<doctypes>

<doctype name="simple textfiles in directory" type="simple" directory="true">

<textpattern>

<removelist>

</removelist>

<delimiter>

</delimiter>

<segment name="content">

<prefix></prefix>

</segment>

</textpattern>

</doctype>

<doctype name="simple text in document" type="simple">

<textpattern>

<removelist>

</removelist>

<delimiter>

\n\n

<!-- just an idea, could be any other -->

</delimiter>

<segment name="content">

<prefix></prefix>

</segment>

</textpattern>

</doctype>

<doctype name="MOBILE" type="usecase">

<textpattern>

<removelist>

<remove>\s\d\d?-\d\d?\d?\s</remove>

</removelist>

<delimiter>((USE CASE)|(Use Case)) DESCRIPTION \r?\n?</delimiter>

<!-- sequence of segment patterns -->

<line name="Goal in Context" title="true" optional="true">

<prefix>Goal in Context</prefix>

</line>

<line name="id" id="true">

<prefix>Use\s+Case\s+UC_</prefix>

</line>

<segment name="Covered feature requests" optional="true">

<prefix startline="true">Covered\s+feature\s+</prefix>

</segment>

<line name="Goal in Context" title="true" optional="true">

<prefix maystartline="true">Goal in Context</prefix>

</line>

<segment name="Creator-Responsible">

<prefix line="true">Creator(s)?\s+(Responsible\s)?</prefix>

</segment>

<segment name="History of changes">

<prefix line="true">History of\s+(Changes\s+)?</prefix>

</segment>

<line name="Scope">

<prefix startline="true">Scope</prefix>

</line>

<segment name="Preconditions">

<prefix startline="true">Preconditions</prefix>

</segment>

APPENDIX A. DOCUMENT TYPE CONFIGURATION FILE 107

<segment name="Sucess end conditions">

<prefix line="true">Success End\s+Condition\s+</prefix>

</segment>

<segment name="Failed end conditions">

<prefix line="true">Failed End\s+Condition\s+</prefix>

</segment>

<segment name="Primary actor">

<prefix startline="true">Primary Actor</prefix>

</segment>

<segment name="Secondary actors">

<prefix line="true">Secondary\s+Actor\(s\)\s</prefix>

</segment>

<segment name="Trigger">

<prefix startline="true">Trigger</prefix>

</segment>

<segment name="Scenario sheet">

<prefix line="true">\sSCENARIO SHEET\s+(Use Case\s+Scenario\s+)?Step

\s+Action\s?</prefix>

</segment>

<segment name="Scenario extensions" optional="true">

<prefix maystartline="true">Extens(t)?ion to\s+Scenario\s+Steps\s+Step

(\s+Branching\s+Action)?\s{0,2}</prefix>

</segment>

<segment name="Scenario variations" optional="true">

<prefix maystartline="true">Variation(s)? to\s+Scenario\s+Steps\s+Step

(\s+Branching\s+Action)?\s{0,2}</prefix>

</segment>

<segment name="Scenario extensions" optional="true">

<prefix maystartline="true">Extens(t)?ion to\s+Scenario\s+Steps\s+Step

(\s+Branching\s+Action)?\s{0,2}</prefix>

</segment>

<segment name="Superordinates" optional="true">

<prefix startline="true">Superordinates</prefix>

</segment>

<segment name="Subordinates" optional="true">

<prefix startline="true">Subordinates</prefix>

</segment>

<segment name="Quality issues - priority">

<prefix startline="true">\s+QUALITY ISSUES\s+Priority:?\s?</prefix>

</segment>

<segment name="Time constraints">

<prefix startline="true">Time Constrain(ts)?</prefix>

</segment>

<segment name="Frequency">

<prefix startline="true">Frequency</prefix>

</segment>

<segment name="Channels to actors">

<prefix startline="true">((Channels)|(connections)) to\s+(actors)?</prefix>

</segment>

<segment name="Open issues">

<prefix startline="true">OPEN\s+ISSUES</prefix>

APPENDIX A. DOCUMENT TYPE CONFIGURATION FILE 108

</segment>

<segment name="Due date">

<prefix startline="true">Due Date</prefix>

</segment>

<segment name="Other management information">

<prefix line="true">...any other\s+(management\s+(i|I)nformation...)?\s?

</prefix>

</segment>

</textpattern> <!-- mobnet -->

</doctype>

<doctype name="AUTO" type="usecase">

<textpattern>

<removelist>

<remove>Seite \d* von \d*</remove>

</removelist>

<delimiter>UseCase </delimiter>

<!-- sequence of segment patterns -->

<line name="fullname" title="true" id="true">

<prefix startline="false"></prefix>

</line>

<line name="actors">

<prefix startline="true">Actors?.</prefix>

</line>

<segment name="intent">

<prefix startline="true">Intent.</prefix>

</segment>

<segment name="preconditions">

<prefix startline="true">Preconditions?.</prefix>

</segment>

<segment name="eventflow">

<prefix startline="true">((Flow of events)|(Description)).</prefix>

</segment>

<segment name="exceptions">

<prefix startline="true">Exceptions.</prefix>

</segment>

<segment name="rules">

<prefix startline="true">Rules.</prefix>

</segment>

<segment name="qualityConstraints">

<prefix startline="true">Quality constraints.</prefix>

</segment>

<segment name="monitor">

<prefix startline="true">Monitored.{0,3}environ.{0,3}ment(al)?.{0,3}variables

.?</prefix>

</segment>

<segment name="control">

<prefix startline="true">Controlled.{0,3}environ.{0,3}ment(al)?.{0,3}variables

.?</prefix>

</segment>

<segment name="postcondition">

<prefix startline="true">Post.?conditions?.</prefix>

</segment>

</textpattern>

</doctype>

APPENDIX A. DOCUMENT TYPE CONFIGURATION FILE 109

<doctype name="COLLAB-mergeAUTO" type="usecase">

<textpattern>

<removelist>

<remove>Revision: \d\.\d</remove>

<remove>Date: \d*/\d*\d*</remove>

<remove>Page: \d* of \d*</remove>

</removelist>

<delimiter>Name:</delimiter>

<!-- sequence of segment patterns -->

<segment name="id" id="true">

<prefix>U</prefix>

<body>\d+\.\d+</body>

</segment>

<line name="fullname" title="true">

<prefix startline="false">\s</prefix>

</line>

<line name="actors">

<prefix line="true">Actors:</prefix>

</line>

<segment name="intent">

<prefix line="true">Goal:</prefix>

</segment>

<segment name="includes" optional="true">

<prefix line="true">Includes:</prefix>

</segment>

<segment name="triggers">

<prefix line="true">Triggers:</prefix>

</segment>

<segment name="preconditions" optional="true">

<prefix line="true">Preconditions:</prefix>

</segment>

<segment name="postcondition">

<prefix line="true">Success end conditions:</prefix>

</segment>

<segment name="failcondition">

<prefix line="true">Failed end conditions:</prefix>

</segment>

</textpattern>

</doctype>

<doctype name="COLLAB" type="usecase">

<textpattern>

<removelist>

<remove>Revision: \d\.\d</remove>

<remove>Date: \d*/\d*\d*</remove>

<remove>Page: \d* of \d*</remove>

</removelist>

<delimiter>Name:</delimiter>

<!-- sequence of segment patterns -->

<segment name="id" id="true">

<prefix>U</prefix>

<body>\d+\.\d+</body>

</segment>

<line name="name" title="true">

<prefix startline="false">\s</prefix>

</line>

<line name="actors">

<prefix line="true">Actors:</prefix>

</line>

APPENDIX A. DOCUMENT TYPE CONFIGURATION FILE 110

<segment name="goal">

<prefix line="true">Goal:</prefix>

</segment>

<segment name="includes" optional="true">

<prefix line="true">Includes:</prefix>

</segment>

<segment name="triggers">

<prefix line="true">Triggers:</prefix>

</segment>

<segment name="precondition" optional="true">

<prefix line="true">Preconditions:</prefix>

</segment>

<segment name="sucesscondition">

<prefix line="true">Success end conditions:</prefix>

</segment>

<segment name="failcondition">

<prefix line="true">Failed end conditions:</prefix>

</segment>

</textpattern>

</doctype>

<doctype name="TICKET" type="usecase" directory="true">

<!-- if directory=true, the field "id" of each text is set to the filename,

and no delimiter is needed: each file in the directory contains one text

-->

<textpattern>

<removelist>

<!-- empty -->

</removelist>

<delimiter><!-- in directory obsolete --></delimiter>

<!-- sequence of segment patterns -->

<line name="name" title="true" id="true">

<prefix startline="true">Titel:\s</prefix>

</line>

<line name="summary">

<prefix startline="true">Kurzbeschreibung:\s</prefix>

</line>

<line name="precondition">

<prefix startline="true">Vorbedingung(en)?:\s</prefix>

</line>

<segment name="eventflow">

<prefix line="true">Beschreibung des Ablaufe?s:\s</prefix>

</segment>

<segment name="successcondition">

<prefix line="true">Auswirkungen: </prefix>

</segment>

<segment name="nonfunctional">

<prefix line="true">Nichtfunktionale Anforderung(en)?:\s</prefix>

</segment>

<segment name="notes">

<prefix line="true">Anmerkungen:\s</prefix>

</segment>

</textpattern>

</doctype>

<doctype name="TICKET-NEU" type="usecase" directory="true">

<!-- if directory=true, the field "id" of each text is set to the filename,

and no delimiter is needed: each file in the directory contains one text

-->

<textpattern>

<removelist>

<!-- empty -->

</removelist>

APPENDIX A. DOCUMENT TYPE CONFIGURATION FILE 111

<delimiter><!-- in directory obsolete --></delimiter>

<!-- sequence of segment patterns -->

<line name="Titel" title="true" id="true">

<prefix startline="true">Titel:\s</prefix>

</line>

<line name="Kurzbeschreibung">

<prefix startline="true">Kurzbeschreibung:\s</prefix>

</line>

<line name="Vorbedingungen">

<prefix startline="true">Vorbedingung(en)?:\s</prefix>

</line>

<segment name="Beschreibung des Ablaufes">

<prefix line="true">Beschreibung des Ablaufe?s:\s</prefix>

</segment>

<segment name="Auswirkungen">

<prefix line="true">Auswirkungen: </prefix>

</segment>

<segment name="Nichtfunktionale Anforderungen">

<prefix line="true">Nichtfunktionale Anforderung(en)?:\s</prefix>

</segment>

<segment name="Anmerkungen">

<prefix line="true">Anmerkungen:\s</prefix>

</segment>

</textpattern>

</doctype>

</doctypes>

Appendix B

Sample batch worker input file

The following listing displays a complete sample that serves as input for the
batch processing module of SERUM.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE serum-jobs [

<!ELEMENT serum-jobs (collection+)>

<!ELEMENT collection (imports,maps)>

<!ELEMENT imports (import+)>

<!ELEMENT import EMPTY>

<!ELEMENT maps (map+)>

<!ELEMENT map (segments)>

<!ELEMENT segments (segment+)>

<!ELEMENT segment #PCDATA>

<!ATTLIST collection name CDATA #REQUIRED>

<!ATTLIST import doctype CDATA #REQUIRED

importPath CDATA #REQUIRED

category CDATA #REQUIRED>

<!ATTLIST map name CDATA #REQUIRED

config CDATA>

]>

<serum-jobs>

<collection name="ticketline2">

<imports>

<import doctype="TICKET-NEU"

importPath="F:/SERUM/_inputs/use case inputs/ticketline/"

category="Ticketline"/>

<import doctype="COLLAB"

importPath="F:/SERUM/_inputs/use case inputs/motion1.doc"

category="Motion"/>

</imports>

<maps>

<!-- config is optional, file has to be in workingdir -->

<map name="complete" config="ticketline-complete.prop">

<segments>

<segment>Titel</segment>

<segment>Kurzbeschreibung</segment>

<segment>Auswirkungen</segment>

112

APPENDIX B. SAMPLE BATCH WORKER INPUT FILE 113

<segment>Vorbedingungen</segment>

<segment>Beschreibung des Ablaufes</segment>

<segment>Nichtfunktionale Anforderungen</segment>

<segment>Anmerkungen</segment>

</segments>

</map>

<map name="4segments-static" config="ticketline-static.prop">

<segments>

<segment>Titel</segment>

<segment>Kurzbeschreibung</segment>

<segment>Auswirkungen</segment>

<segment>Beschreibung des Ablaufes</segment>

</segments>

</map>

<map name="complete-default"> <!-- use default properties -->

<segments>

<segment>Titel</segment>

<segment>Kurzbeschreibung</segment>

<segment>Auswirkungen</segment>

<segment>Vorbedingungen</segment>

<segment>Beschreibung des Ablaufes</segment>

<segment>Nichtfunktionale Anforderungen</segment>

<segment>Anmerkungen</segment>

</segments>

</map>

</maps>

</collection>

</serum-jobs>

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

