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Abstract

In computational complexity theory alternating machines are nondeterministic machines
which alternate between existential and universal states. A nondeterministic machine in each
computation state may have several possibilities for the further computation. An existential
state accepts an input if at least one of this possible computations leads to acceptance. An
universal state accepts an input only if all possible computations lead to acceptance.

There is a strong connection between the complexity classes defined by alternating machines
and deterministic complexity classes. So the concept of alternating algorithms is often used in
computational complexity theory to show that a problem is decidable in a specific complexity
class. Alternating algorithms are useful to solve problems in theory but there is no language to
use this concept for practical programming.

Very natural examples of problems with an alternating character are games, more precisely,
the question if there is a winning strategy for the start player in the game. To find a winning
strategy we recursively look for a move for the start player such that for all possible moves of
the opponent he has a winning strategy. Many popular games, for example Go, are known to
be inherent hard problems for computational purposes, so that they can’t be solved in practice.
But there is also a large class of games that can be computed in reasonable time.

What is missing is a framework that allows us to apply this useful theoretic alternating
constructs in practical programming. Further it should simulate the alternating programs in a
feasible way to make alternating programming practicable.

In this thesis we first identify natural alternating problems which are feasible computable.
So these are problems which induce very complex deterministic algorithms but can be intuitively
solved with an alternating algorithm.

Then we break down the theoretic model of alternating machines to an intuitive language
for writing alternating programs in practice. We confirm the intuitiveness of our language by
presenting some alternating programs. Further we introduce a framework that simulates these
alternating programs in an efficient way.
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Zusammenfassung

In der Komplexitätstheorie versteht man unter alternierenden Maschinen, nichtdeterministi-
sche Maschinen bei denen existentielle und universelle Zustände alternieren. Unter einer nicht-
deterministischen Maschine versteht man eine Maschine bei der es in jedem Zustand mehrere
Möglichkeiten für die weitere Berechnung geben kann. Existentielle Zustände akzeptieren die
Eingabe dann wenn mindestens eine der möglichen Berechnungen die Eingabe akzeptiert. Uni-
verselle Zustände akzeptieren die Eingabe nur dann wenn alle möglichen Berechnungen die
Eingabe akzeptieren.

Die Komplexitätsklassen die mittels alternierenden Maschinen definiert werden stehen in
einem starken Zusammenhang mit der Hierarchie der gewöhnlichen deterministischen Kom-
plexitätsklassen. Deshalb werden alternierende Algorithmen oft verwendet um zu zeigen das
Probleme in bestimmten Komplexitätsklassen lösbar sind. Alternierende Algorithmen sind also
ein nützliches Werkzeug in der Komplexitätstheorie, dennoch gibt es keine Programmiersprache
die dieses Konzept für die Praxis bereitstellt.

Das Paradebeispiel für Problem mit einem alternierenden Kern sind Spiele. Die Frage die uns
bei Spielen interessiert ist ob es eine Gewinnstrategie für den Startspieler gibt. Um diese Frage zu
beantworten müssen wir rekursiv folgendes Problem lösen. Existiert ein Zug für den Startspieler
sodass für alle möglichen Züge des Gegners es wieder eine Gewinnstrategie für den Startspieler
gibt. Viele bekannte Spiele, wie zum Beispiel Go, sind in der Komplexitätstheorie als inhärent
schwierige Probleme bekannt und damit auch für praktische Programmierung uninteressant. Es
gibt aber eine weite Bandbreite von Spielen und anderen alternierenden Problem mit niedriger
Komplexität die auch in der Praxis berechnet werden können.

Alternierung scheint also ein nützliches Programmier Paradigma in der Theorie zu sein, es
stellt sich also die Frage ob es sich auch in einer praktischen Programmiersprache umsetzen lässt.
Um es in der Praxis auch nutzen zu können stellt sich weiter die Frage nach einer Umgebung in
der sich die alternierenden Programme auch effizient ausführen lassen.

In dieser Arbeit identifizieren wir zunächst natürliche alternierende Probleme die mit ak-
zeptablem Aufwand berechenbar sind. Das sind Probleme die sehr komplizierte deterministische
Algorithmen benötigen aber mit dem Konzept der Alternierung sehr intuitiv gelöst werden
können.

Dann führen wir eine Sprache ein die es ermöglicht in einer kompakten und intuitiven Art
alternierende Programme zu schreiben. Wir untermauern die Natürlichkeit dieser Sprache mit
einer Reihe von Programmbeispielen für die vorher identifizierten Probleme. Weiters stellen wir
ein System vor, das diese alternierenden Programme auf eine effiziente Art simuliert.
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Chapter 1

Introduction

Alternating problems, problems where existential and universal states alternate, are well studied
problems in computational complexity theory, but there are no programming languages to write
alternating algorithms in practice. In this thesis, we introduce a Java language extension for
alternating algorithms based on the concept of Alternating Turing machines by [Chandra et al.,
1981].

An alternating machine is a special nondeterministic machine, where every configuration may
have many successors and the states of the machine are divided in existential states, universal
states and the halting states accept and reject. An existential state accepts an input if at least
one of the successors accept. A universal state accepts only if all the successors accept.

Chandra et al., 1981 have shown that an alternating Turing machine can be simulated by
a deterministic Turing machine and therefore it is possible to simulate an alternating machine
with a traditional computer. Further, they have show that the hierarchy of the main complexity
classes of alternating Turing machines corresponding to the hierarchy of complexity classes of
deterministic Turing machines shift by one level. Although alternating Turing machines seem
to be very unnatural models of computation they are often used in complexity theory to show
some problems to be in or complete for some complexity class. There are many problems which
have intuitive alternating algorithms, for example, Boolean circuit evaluation, finding a winning
strategy in games and logic problems on Horn clauses.

A very natural alternating problem is the question if there is a winning strategy in a two-
player game. Searching for a winning strategy, we ask if there exists a move for Player 1 so that
for all possible moves of Player 2 there is a winning strategy for Player 1. This is a very simple
algorithm but there is no easy way to notate these existential and universal quantifiers in Java
or any other imperative programming language.

So what we desire is a programming language that offers constructs to write alternating
programs in an intuitive way. In such a language the programmer should specify how to compute
the successors and the quantifier of a state, and the corresponding framework has to evaluate
the alternating program. Further the framework simulating the alternating machine has to work
efficiently to make alternating programming practicable.

1



2 CHAPTER 1. INTRODUCTION

One of the main problems with alternating algorithms is the, in general exponentially large
computation tree. This leads in worst case to an exponential time simulating algorithm. If
we implement polynomial time alternating Turing machines without restrictions we will get a
simulation in PSPACE. Coming back to the problem of winning strategies in games, the problem
of deciding if there is a winning strategy in chess or Go is well known to be an inherent hard
problem.

Another problem is caused by alternating machines with a computation path that does not
halt, in games this means that there is a cycle in the strategy. There is a result in Chandra et al.,
1981 how to construct an equivalent machine such that all computation paths halt by introducing
a counter, but using this technique produces a polynomial blow up of space requirement for the
simulation. This has no effect on the theoretic usage but it is indeed infeasible for many practical
applications.

To prevent exponential space requirements and running time caused by the exponentially big
computation tree, we either have to restrict the size of the computation tree or the workspace
used in the alternating machine. The former would lead to the complexity class of LOGCFL

Venkateswaran, 1987 while the latter leads to a class of alternating machines equivalent to
deterministic polynomial time Chandra et al., 1981. The alternation extension in the thesis
follows the idea of space restriction to capture a much larger class of alternating problems.

Eliminating non halting computation paths in the usual way,i.e. with a counter which
increases each computation step and rejects if exceeding a polynomial bound, we get a polynomial
blow up of space requirements for the simulation algorithm. To avoid this blow up, we shift
the detection of non-halting paths in alternating programs from the programming level to the
simulation algorithm. So our framework handles cycles in programs and the programmer need
not care about this when writing an alternating program.

In this thesis we introduce a Java language extension that offers alternating constructs to
write alternating programs in a very intuitive way. This extension only adds a few new constructs
to ordinary Java and therefore is quite intuitive and easy to learn. The main advantages of this
alternating programming language are much shorter programs than in traditional Java, the very
intuitive manner they are written, and therefore, a well readable code. The efficient simulation
algorithm in the according framework ensures that these programs can be evaluated in reasonable
space and time bounds. Further we give examples of programs and problems that demonstrate
the existence of interesting and feasible alternating problems and beside problems in PSPACE

and beyond.

In this thesis we introduce

• a sample of natural alternating problems,

• a Java language extension that gives the programmer the facility to write alternating
algorithms,

• a tabled evaluation program simulating an alternating machine in an efficient way.
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Organisation of the Thesis

In Chapter 2 we first give an overview of the basic concepts in computational complexity theory.
We present a formal concept of alternation, the alternating Turing machine. The definitions of
alternating complexity classes and their connection to the deterministic complexity hierarchy
are listed. Furthermore we identify problems which can be solved intuitively with an alternating
algorithm.

In Chapter 3 we introduce both a language and a framework for writing alternating programs
in practice. There is a section describing the language, a section that gives example programs
and a section that discusses the algorithms used in the framework.

In Chapter 4 we present some empirical tests that compare programs from our framework
with ordinary Java programs. Furthermore we compare different algorithms for simulating
alternating machines.

In Chapter 5 we summarize our results and give an outlook of possible future work. In
the appendix, there is the developed grammar for the alternation language and the Javadoc
documentation of the alternation framework.





Chapter 2

Computational Complexity

The concept of alternating algorithms we use stems from computational complexity theory. So
at the beginning of this chapter there is a short introduction to the basic concepts of complexity
theory like Turing machines, reductions, time and space complexity. We introduce these concepts
following the book by Papadimitriou, 1994 sometimes we may use slightly modified definitions.

Then we give a formal definition of an alternating Turing machine and a summary of the
most important theoretic results in this context. At the end of the section we look at some
well-known problems, which can be solved intuitively with an alternating machine.

2.1 Machine Models

In theoretical computer science we are interested in formally proving if a problem is solvable by
a computer or not. Further if the problem is computable we are interested in the time and space
requirements. To formally prove such properties, we need exact definitions of computability,
time and space demand. We do this by defining some abstract automatas and look at the
problems solvable by these machines. A very common model for computation is the formal
model of Turing machines, named after Alan Turing, who introduced this abstract machine
model Turing, 1936.

2.1.1 Deterministic Turing Machine

Despite its weak and clumsy appearance, the Turing machine can simulate arbitrary
algorithms with inconsequential loss of efficiency.Papadimitriou, 1994

A (deterministic) Turing machine is a formal model of a machine that operates on a tape with
symbols written on it. This machine has a finite state register and a read/write head to read and
modify tape symbols. In every computation step the machine reads the symbol under the tape
head and then it does some computation depending on the state stored in the register and the
read symbol. In this computation, the machine may change its state, override the tape symbol
and move the tape head to a neighbor symbol. So the program of such a machine is a set of

5



6 CHAPTER 2. COMPUTATIONAL COMPLEXITY

rules that tells the machine, for given a state and a symbol, which is the next state, the new
tape symbol and how to move the tape head.

There are many slightly different definitions of Turing machine in the literature which are
equivalent to each other. Here we give a formal definition what we mean by a Turing machine
in this thesis.

Definiton 2.1.1. A (deterministic) Turing machine (TM) is a tuple

M = 〈S,Σ, δ, s〉

with:

• S a finite set of states - not including the accepting state “yes”, the rejecting state “no”
and the halting state h

• Σ the alphabet of M - a finite set of symbols including the blank symbol t and the start-
symbol .

• δ a transition function :

δ : S × Σ→ S ∪ {“yes”, “no”, h} × Σ× {→,←,−}

The last set denotes the possible cursor movements: → (right), ← (left), − (stay)

• s ∈ S the initial state

The (partial) function δ can be seen as the program of the Turing machine as it computes a
new state, a new symbol and the tape cursor movement for a given state and symbol. Looking
at δ(s1, σ1) = (s2, σ2, D) with s1, s2 ∈ S, σ1, σ2 ∈ Σ and D ∈ {→,←,−}. The function δ maps
the current state s1 and the symbol σ1 under the cursor to a new state s2, a new symbol σ2 and
cursor movement D.

The usage of the start symbol is to prevent the machine to move the tape head out of the
tape. For this reason the function δ is restricted when reading the start symbol. Whenever
reading the start symbol, the machine is not allowed to override the start symbol and must
move the tape head to the right (δ(s, .) = (s′, .,→)).

At the start, the Turing machine is in the initial state s and the tape string is initialized
with the start symbol . followed by a finite string x ∈ Σ∗ (the input). Then the machine iterates
applying the function δ to change its state, write a symbol and move the cursor.
We have already mentioned that the cursor will never exceed the left end of the string but there
is still the possibility of exceeding the right end of the input. If this happens the cursor just
scans the blank symbol t. So we have a tape that is infinite to the right side.

So far, we described how the machine works but what is the ”return value” for a given input?
δ is defined for all states in S and all symbols in Σ so the machine only stops computing when
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reaching one of the halting states {“yes”, “no”,h}. It is an important fact that a Turing machine
started with some input may never reach a halting state and so loops forever.

If a machine M halts on an input x we define the output M(x) as follows: If M(x) halts in
the accepting / rejecting state “yes”/“no” we define M(x) = “yes” / M(x) = “no” and we say
M accepts / rejects the input x.

If the machine halts in the state h then we define the output as the string y of the machine
M and write M(x) = y. More precise: After the machine reaches the halting state the string
of the machine still starts with . followed by finite string y ending with the symbol before the
first t. There may follow some non blank symbols, but they are not part of the output. As it
is possible that the machine M never halts on some input x we have an additional notation for
this case. We simple write M(x) =↗.

Example 2.1.2. A Turing machine M that computes the binary successor from a binary number
with a leading 0 Papadimitriou, 1994: M = 〈{s, q}, {0, 1,t, .}, δ, s〉 with δ as follows:

si ∈ S σ ∈ Σ δ(si, σ)

s 0 (s, 0,→)
s 1 (s, 1,→)
s t (q,t,←)
s . (s, .,→)
q 0 (h, 1,−)
q 1 (q, 0,←)
q . (h, .,→)

Now we can feed the Turing machine with some input (”” indicates the position of the tape
head):

step state tape

0 s .110
1 s .110
2 s .110
3 s .110
4 s .110t
5 q .110t
6 h .111t

step state tape

0 s .111
1 s .111
2 s .111
3 s .111
4 s .111t
5 q .111t
6 q .110t
7 q .100t
8 q .000t
9 h .000t

So we now have an intuition how a Turing machine works, but what is still missing is a
formal definition. To speak about how modifying the current configuration of a machine we first
have to define what are the characteristics of such a configuration. Intuitively states of a Turing
machine are characterized by the state, the string and the cursor position on the tape. This is
captured by Definition 2.1.3.
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Definiton 2.1.3 (configuration). Let M = 〈S,Σ, δ, s〉 be a fixed Turing machine. A configu-
ration of this machine is a triple (q, w, u), where q ∈ S is the current state and w, u ∈ Σ∗ are
strings. u is the string to the left of the cursor, including the symbol under the cursor and w is
the string to the right of the cursor.

As an example we notate the initial configuration (s, ., x). Using the concept of configuration,
Definition 2.1.4 formalizes computation steps.

Definiton 2.1.4 (yields in one step). We say a configuration (q, w, u) with w = w1 . . . wn and
u = u1 . . . um yields a configuration (q′, w′, u′) in one step iff one of the following conditions
holds:

1. δ(q, wn) = (q′, ρ,−), w′ = w1 . . . wn−1 ρ and u′ = u

2. δ(q, wn) = (q′, ρ,→), w′ = w1 . . . wn−1 ρ u1 and u′ = u2 . . . um

3. δ(q, wn) = (q′, ρ,←), w′ = w1 . . . wn−1 and u′ = ρ u1 . . . um

We denote yields in on step by (q, w, u) M→ (q′, w′, u′).

We now use the transitive closure of yields in one step to define the more general yields relation.

Definiton 2.1.5 (yields). We say one configuration (q′, w′, u′) yields a configuration (q′, w′, u′)
in k-steps if there is a series Ci of k+1 configurations such that C0 = (q, w, u), Ck+1 = (q′, w′, u′)

and for every 1 ≤ i ≤ k holds that Ci
M→ Ci+1. We denote this by (q, w, u) M

k

→ (q′, w′, u′).
We say a configuration C yields to another configuration C ′ if there exists a positive integer k
such that C Mk

→ C ′ and denote this by C M∗→ C ′.

Example 2.1.6. Back to our Turing machine M for computing the binary successor from some
input. If we start M on x we denote the computation like this:
for input x = 110:
(s, ., 110) M→ (s, .1, 10) M→ (s, .11, 0) M→ (s, .110, ε) M→ (s, .110t, ε) M→ (q, .110,t) M→ (h, .111,t)

for input x = 111:
(s, ., 111) M→ (s, .1, 11) M→ (s, .11, 1) M→ (s, .111, ε) M→ (s, .111t, ε) M→ (q, .111,t) M→ (q, .11, 0t) M→
(q, .1, 00t) M→ (q, ., 000t) M→ (h, .0, 00t)

Using the former definitions we can give a formal definition of a Turing machine’s output in
Definition 2.1.7.

Definiton 2.1.7 (output). The Output of a Turing machine M with input x is defined as

M(x) =


“yes” (s, ., x) M

∗
→ (“yes”, u, w)

“no” (s, ., x) M
∗
→ (“no”, u, w)

y (s, ., x) M
∗
→ (h, ., y)
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Computable Functions

Given an input x, Turing machines can accept/reject it or compute some output. This leads us
to the following definitions of recursive languages and functions.

Definiton 2.1.8 (recursive language). A language L is a set of strings L ⊂ (Σ− t)∗. We say
a Turing M decides the language L iff for any x ∈ (Σ − t)∗ holds that M(x) = “yes” if x ∈ L
and M(x) = “no” otherwise.
We call a language L a recursive/decidable language if there exists a Turing machine that decides
L.

We have to mention this notion of languages captures even more than just natural languages.
A language may be the encodings of graphs, boolean circuits or logical formulas and the Turing
machines decides for example, if the graph is connected, the output gate is true or the formula
is satisfiable.

But there are more problems than just these decision problems. Many natural problems
can’t be solved by a yes/no answer, but by a number or a string encoding. This leads us to
string functions and their computability.

Definiton 2.1.9 (recursive function). A string function f from (Σ − t)∗ to Σ∗ is called a
recursive / computable function iff there exists a Turing machine M with M(x) = f(x) for all
x ∈ (Σ− t)∗. We say M computes f .

As we mentioned for recursive languages the function f is not necessarily a mathematical
function. It may map encodings of graphs to the length of the shortest tour or even to the
encoding of such a tour.

The Church-Turing thesis captures why the computability of Turing machines is so interest-
ing for us.

Theorem 2.1.10 (Church-Turing thesis). Every effectively calculable function is a recursive
function.

The Church-Turing thesis is not a provable statement, it is a common belief. This thesis
is confirmed by the fact that many other reasonable computation models like λ-calculus, µ-
recursive functions and register machines leads to equivalent computability terms.

k-String Machines

Sometimes the generalized machine model of k-String Turing machines is useful, for example it
is necessary when distinguish the space for the input from space used for the computation. A
k-String Turing machine is a deterministic Turing machine operating on k tapes instead of only
one.

Definiton 2.1.11. A k-string Turing machine (TM) is a tuple

M = 〈S,Σ, δ, s〉
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with:

• S,Σ, s defined as for ordinary deterministic Turing machines.

• δ a (partial) transition function:

δ : S × Σk → S ∪ {“yes”, “no”, h} × (Σ× {→,←,−})k

The configuration of the k-string machine is defined analogously to normal Turing machines.
So a configuration is a (2k + 1)-tuple (q, w1, u1, . . . wk, uk) where q is the state and wiui the ith
string and the ith cursor is on the last symbol of wi.

The model of k-String Turing machines is a direct generalization of the simple Turing ma-
chine. If we set k = 1 we get a simple Turing machine. Therefore it suffices to define/ prove
properties for k-String machines.

Definiton 2.1.12 (time). Let M be a k-String Turing machine and (s, ., x, ., ε, . . . , ., ε) Mt

→
(H,w1, u1, . . . , wk, uk) holds for some input x and halting state H ∈ {accept, reject, h}. The time
required by M on input x is t.
If Mdoes not halt on x, M(x) =↗, we define the time to be ∞.

Theorem 2.1.13 says that the expressive power of k-String machines is not stronger than the
expressive power of ordinary Turing machines. They are only a little bit faster.

Theorem 2.1.13. Given a k-string Turing machine M , we can construct a Turing machine M ′

with M(x) = M ′(x) for all inputs x. Let n be the size of the input. If M needs O(f(n)) steps
for the computation on a arbitrary input we can construct M ′ that works in O(f(n)2)

Proof. See Papadimitriou, 1994 Theorem 2.1.

Beside time there are some other resources used by an algorithm, which we are interested
in. These are the space required by the computation, and ,if analyzing parallel computing, the
number of processors. We don’t care about parallel computing here but space bounds plays an
important role in this thesis.

If we measure the space needed by an algorithm it would be unfair to include the size of the
input or the size of the output. In practice we may print the output symbols immediately and
so have no reason to save it. Our machine model makes no difference between input, output
and space used for the computation. As we want to define the space usage consider the former
comments we have to improve the model of k-string Turing machines slightly.

Definiton 2.1.14. A k-String Turing machine with input and output is an ordinary k-String
Turing machine, with some restrictions to the function δ:

δ(q, σ1, . . . , σk) = (p, σ1, D1, p2, D2, . . . , pk, Dk)

with Dk 6=← and if σ1 = t then D1 =←
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If we assume the first tape as input tape and the last tape as output tape this definition
implements that the machine does not modify the content on the input tape or move the input
cursor out of the “input area” into the t-symbols. Further the restriction on Dk prohibits the
access to the output we have already written.

The next theorem guaranties that the input and output improvement does not change the
time bounds of a machine significantly.

Theorem 2.1.15. Let M be a k-string Turing machine operating in some time bound f(n),
with n the size of the input. We can find a (k + 2)-string Turing machine M ′ with input and
output that operates in time O(f(n)).

Proof. The machineM ′ first copies the input on the second string. Then it simulates the machine
M on the tapes 2, . . . k+ 1. When the simulation of M halts M ′ completes the computation by
copying the output to the last string.
Copying the input is in linear time and therefore in O(f(n)). (assuming f(n) > n)
Simulating M is in O(f(n)) by the precondition. The size of the output is bounded by the time
of the computation and therefore copying the output is also in O(f(n)).

With this improved Turing machine we define the space used by a computation. In the following
we denote the length of a string x as |x|.

Definiton 2.1.16 (space). Let M be a k-string Turing machine with input and output tape.
The space of a computation on input x (s, ., x, ., ε, . . . , ., ε) M∗→ (H,w1, u1, . . . , wk, uk), with H

a halting state, is defined as
∑k−1

i=2 |wiui|.

2.1.2 Nondeterministic Turing Machine

So far we looked on machines that seemed to be quite natural models of “computers”. Beside
these deterministic machines there are some other useful models which may seem unnatural
and can’t be mapped to a common programming language but are very useful in computational
complexity theory.

In this section we generalize Turing machines by adding nondeterminism to the ordinary
Turing machine. This leads us to the definition of nondeterministic Turing machines.

Definiton 2.1.17. A nondeterministic Turing machine (NTM) is a tuple M = (K,Σ, δ, s)

N = 〈S,Σ, δ, s〉

with:

• S a finite set of states

• Σ the alphabet of M - a finite set of symbols including the symbols t, .
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• δ a (partial) transition relation:

δ ⊆ (S × Σ)× [S ∪ {“yes”, “no”, h} × Σ× {→,←,−}]

• s ∈ S the initial state

In a nondeterministic Turing machine there are in every step several possible actions the
machine may choice. This is realized in the definition by replacing the function δ with a relation.
This enforces an adaptation of “yields” for nondeterministic Turing machines.

Definiton 2.1.18 (yields in one step). Let N be a nondeterministic machine: We say a config-
uration (q, w, u) with w′ = w1 . . . wn and u = u1 . . . um yields a configuration (q′, w′, u′) in one
step ((q, w, u) N→ (q′, w′, u′)) iff one of the following conditions holds:

1. (q, wn, q′, ρ,−) ∈ δ, w′ = w1 . . . wn−1 ρ and u′ = u

2. (q, wn, q′, ρ,→) ∈ δ, w′ = w1 . . . wn−1 ρ u1 and u′ = u2 . . . um

3. (q, wn, q′, ρ,←) ∈ δ, w′ = w1 . . . wn−1 and u′ = ρ u1 . . . um

The terms “yields in k steps” and “yields” are defined as transitive closure to “yields in one
step” in the same way as we did for deterministic machines.

We notice that every deterministic Turing machine is also a nondeterministic Turing machine
as every function δ is also a relation. Furthermore the “yields” definitions for nondeterministic
machines are compatible with those from the deterministic machines. The model of a nondeter-
ministic Turing machine is a generalization of ordinary Turing machines.

So far, it is not clear what the output of such a machine would be. As there are many
possible computations there may be different outputs and accepting states for the same input.
We are mainly interested in decision problems, so we solve this inconsistency only for accepting
languages.

Definiton 2.1.19 (decide). Let N be a nondeterministic machine and L ⊂ (Σ−t)∗ a language.
N decides L if it holds for all x ∈ Σ∗ that x ∈ L iff (s, ., x) N

∗
→ (“yes”, w, u)

So we accept an input x if there exists an accepting computation and rejects if all possible
computations reject. This is an asymmetry between “yes” and “no” instances.

Theorem 2.1.20. Let L be a language decided by a nondeterministic Turing Machine N in time
f(n). There exists a 3-string deterministic Turing machine M that decides L in time O(cf(n)),
with c > 0 a constant depending of N .

Proof idea. In each computation step, for each (q, σ), there is only a finite number dq,σ of choices.
The ”degree of nondeterminism” of N is the maximum value of these d = max

q,σ
dq,σ

Every computation of the machine N is basically a sequence of nondeterministic choices. We
can represent each choice as a integer in {0, 1, . . . , d − 1} and therefore each nondeterministic



2.2. BASIC CONCEPTS OF COMPLEXITY THEORY 13

computation as sequence of integers.
The idea for simulating N is to consider all sequences of choices, in order of increasing length,
and simulate N on them. If we find a sequence that N accepts the input x then M halts with
“yes”. In this case we found a computation of N that accepts x and so accepting the input is
the right thing for M .

But its not so easy to verify if M should reject the input. It not suffices to find a choice that
rejects the input we have to verify that all choice sequences lead to reject. What we have to do
is checking if we already have tested all relevant choice sequences. If M has simulated all choice
sequences of a specific length and all of them halt with “no” then M returns “no”.
How to handle all this computations:
In every simulation of N we have to protect our input for later simulations and additionally we
need some place to save the current sequence of choices.
To partition these things, we use tape 1 as a input tape, save the sequence of choices on tape 2
and make our computation on tape 3 of M .

If a problem or language can be decided by a nondeterministic Turing machine, there is also
a deterministic Turing machine deciding the same problem. So the non deterministic machine
gives no additional power when studying computability of problems.

In the former theorem there is a exponential time blow up when simulating the nondetermin-
istic Turing machine with a deterministic Turing machine so this makes a significant difference
when comparing the necessary running time of problems. We should mention here that we don’t
know if this exponential blow up is necessary or not, but it is a common belief. This question
has a strong connection to one of the most important open problems in theoretical computer
science, the problem P 6= NP.

2.2 Basic Concepts of Complexity Theory

We have already used Turing machines to distinguish decidable languages / computable functions
from languages / functions that we can’t solve algorithmically. Computational complexity theory
is not only interested in the solvability of problems it is further interested in the complexity of
deciding a problem or computing a function. We start this section with discussing what the
definition of problem in computational complexity theory is. Further we present the concepts
of complexity classes, problem reductions and completeness which are used to measure the
computational complexity of problems and subdivide the set of decidable problems according to
their different complexity.

2.2.1 Problems

Computer scientists often analyze algorithms and their run time and space requirements relating
to the size of the input. This is good for comparing algorithms solving the same problem or
showing that a problem is efficiently solvable. But this can’t be used to prove that no efficient
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algorithm exists and we may waste time searching for one. So complexity theory focuses on the
computational complexity of problems and not on the complexity of algorithms.

So first we have to specify what our understanding of a problem is.

Definiton 2.2.1 (problem). In complexity theory a problem specification consist of two parts.
A criterion that defines an infinite set of possible instances and a question on these instances.

In the most cases we deal with decision problems. A decision problem is a problem containing
a question that can be answered either by yes or no. To make this definition more concrete we
give graph reachability as ansimple example for a decision problem:

REACHABILITY

Given: A graph G = (V,E) and two nodes v1, v2 ∈ V
Problem: Is there a path from v1 to v2?

Here the infinite set of instances is the set of graphs with two marked nodes. We can’t feed this
problem direct to a Turing machine. We have to find a reasonable encoding of the problem in
the machines alphabet (Σ−t). So the decision problem maps to a language acceptance problem
of the encodings.

2.2.2 Complexity Classes

A complexity class basically is set of problems having the same computational complexity. To
define such a class we usually first fix a computation model, for example k-string Turing machines
or nondeterministic machines. Then we chose the mode of computation, the way to determine
if the machine accepts an input. The different modes we already defined are the deterministic
(Definition 2.1.8) and the nondeterministic mode (Definition 2.1.19) of computation. We define
one more nondeterministic and the alternating mode later when discussing alternating Turing
machines. In the third step we chose the resource we want to bound, in the most cases time or
space, and of course a bound f(n) for the resource.

The complexity class is the set of languages / problems decided by such a computation
model operating in the specified mode and for any input x the computation does not exceed the
resource bound f(n).

To avoid technical problems and counterintuitive effects we restrict the functions f used for
resource bounds to the class of proper complexity functions. Intuitively we assume that a larger
input would need more computation resources therefore it is natural to assume a function f

to be increasing or at least non decreasing. Further we claim the function f to be efficiently
computable.

Definiton 2.2.2 (proper complexity functions). We call a function f from the nonnegative
integers to the nonnegative integers a proper complexity function if f is non decreasing and the
following conditions hold. There exists a k-string Turing machine Mf mapping any input x to
uf(|x|) in time O (|x|+ f(|x|)) and space O (f(|x|)).
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The Turing machine Mf operates in linear time according to the size of the input and the output
and needs linear space according to the size of the output. (encoding the value of f(n) in unary)

In the following we always assume our resource bound functions f to be proper complexity
functions.

Time Complexity

The first important resource for computation is time.To get complexity classes distinguishing
problems with respect to the time required for computation, we first fix our computation model
to k-string Turing machines with the deterministic mode of computation. In the following n

denotes the string length of the input.

Definiton 2.2.3 (TIME). Let L ⊂ (Σ− {t})∗ be a language. If L is decided by a deterministic
(k-string) Turing machine working in time O (f(n)) we write L ∈ TIME(f(n)). So TIME(f(n))
is the set of languages that can be decided by deterministic Turing machines within time bound
f(n).

So this is a kind of asymptotic worst case complexity. A problem is in the complexity class
TIME(f(n)) only if every problem instance is decided in f(n). So as soon there is one instance
not decided in f(n) the problem is not in TIME(f(n)).

We define time complexity classes for nondeterministic Turing machines analogously:

Definiton 2.2.4 (NTIME). Let L ⊂ (Σ− {t})∗ be a language. If L is decided by a nondetermin-
istic Turing machine working in time O (f(n)) we write L ∈ NTIME(f(n)). So NTIME(f(n)) is
the set of languages that can be decided by nondeterministic Turing machines within time bound
f(n).

Space Complexity

We have already mentioned that there are other important resources beside the time used by
a machine. Here we introduce complexity classes measuring the space used by a deterministic
Turing machine in Definition 2.2.5 and by a nondeterministic Turing machine in Definition 2.2.6.

Definiton 2.2.5 (SPACE). Let L ⊂ (Σ− {t})∗ be a language. If L is decided by a deterministic
Turing machine with input working in space f(n) we write L ∈ SPACE(f(n)). So SPACE(f(n))
is the set of languages that can be decided by deterministic Turing machines within space bound
f(n).

Definiton 2.2.6 (NSPACE). Let L ⊂ (Σ− {t})∗ be a language. If L is decided by a nonde-
terministic Turing machine with input working in space f(n) we write L ∈ NSPACE(f(n)). So
NSPACE(f(n)) is the set of languages that can be decided by nondeterministic Turing machines
within space bound f(n).
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2.2.3 Problem Reductions

In computational complexity theory we want to compare the difficulty of problems or classes.
So we need a concept which tells us that a problem is harder or at least as hard as another. The
basic idea is to reduce problems to other problems. A reduction is a function R that transforms
the instances ai of a problem A to instances of another problem B such that ai is true iff R(ai)
is true.

If problem A can be reduced to another problem B then A can’t be harder than B together
with the effort for the reduction. This is because problem A can be solved by applying the
reduction and an algorithm for problem B. Using this argumentation we have to care about the
resources used by the reduction. If we allow arbitrary functions R for reductions we can put the
complexity of a very hard problem in the function R and reduce it to a much simpler problem.
So we have to restrict reductions to functions that are computable in the restrictions of the
lowest complexity classes we are interested in. For our purposes log-space reduction suffices:

Definiton 2.2.7 (log n reduction). A language L1 is reducible to a language L2 if there is a
function R computable by a deterministic Turing machine in space O(log n) and it holds that
x ∈ L1 iff R(x) ∈ L2. The function R is called a reduction from L1 to L2.

Sometimes reductions are defined as polynomial time computable functions instead of the
log n space bound. We mention here that our definition of reduction is more restrictive, all log n
reductions are polynomial time algorithms.

Theorem 2.2.8. Let R be a log n-reduction computed by a Turing machine M . M halts after
a polynomial number of steps on each input x.

Proof. There are O(n · clogn) possible configurations for M and in deterministic machines a
configuration can’t repeat in a computation (assuming the machine halts).

Theorem 2.2.9. Let f be an reduction from L1 to L2 and g an reduction from L2 to L3 then
f ◦ g is a reduction from L1 to L3

Proof. See Papadimitriou, 1994 Proposition 8.2

2.2.4 Completeness

We defined our complexity classes as set of languages / problems decidable in some time and
space bounds. This is just an upper bound for complexity and so there are problems with
different hardness in the same complexity class. To get lower bounds for complexity we define
the hardness of a problem.

Definiton 2.2.10 (hardness). Given a complexity class C and a language L.
We say L is C-hard if any L

′ ∈ C can be reduced to L

We use the hardness term to define representative problems for a complexity class:
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Definiton 2.2.11 (completeness). Given a complexity class C and a language L ∈ C.
We call L C-complete if any language L

′ ∈ C can be reduced to L.

So a problem P is complete for a complexity class C if P is a member of the class C and P

is C-hard.

Definiton 2.2.12. A complexity class C is closed under reductions when the following property
holds. If a language L is reducible to a language L

′ ∈ C then L ∈ C

We are only interested in complexity classes that are closed under reductions. Especially all
complexity classes we define in the next section are closed under reductions.
The next theorem gives a strong connection between complexity classes and their complete
problems:

Theorem 2.2.13. Let C,C
′

be complexity classes closed under reductions. If there exists a
language L which is complete for both classes C and C

′
then C = C

′
.

Proof. As this is a symmetric problem it suffices to show that C ⊆ C
′
. The other inclusion

follows by interchanging C and C
′

in the proof.
Every language LC ∈ C reduces to L ∈ C

′
, as L is hard for the class C. Further C

′
is closed

under reductions and therefore LC ∈ C
′
. So it holds that C ⊆ C

′
.

2.3 Important Complexity classes

In this section we first give an overview of the important complexity classes based on determin-
istic and nondeterministic Turing machines. Then we present the few known relations between
these complexity classes.

2.3.1 Deterministic Complexity Classes

First we define the classes based on the deterministic Turing machines. Deterministic Turing
machines are believed to be realistic models for computations. Therefore we assume there is a
good correspondence between the resources the computation needs on a Turing machine and the
resources the computation needs on a real computer and therefore there is a good understanding
of the complexity these classes provide.

To define the first complexity classes we choose bounds for the computation time. As every
program should at least read the whole input the time bound must be at least a linear polynomial.
So the lowest time complexity class closed under reductions is given by polynomial bounds:

Definiton 2.3.1 (P). The class P (polynomial time) is the class of problems decided by a
deterministic Turing machine in polynomial time.

P = TIME(nk) =
⋃
j>0

TIME(nj)
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Now we have the class P for the efficiently solvable problems. But there are many hard problems
solved by algorithms requiring exponential time in relation to the input. This leads us to the
following definition.

Definiton 2.3.2 (EXPTIME). The class EXPTIME (exponential time) is the class of problems
decided by a deterministic Turing machine in exponential time.

EXPTIME = TIME(2n
k
) =

⋃
j>0

TIME(2n
j
)

After defining the classes P and EXPTIME we can specify space bounded complexity classes in a
similar way. The assumption that space is a more restricted resource than time is a motivation
for using less increasing functions.

Definiton 2.3.3 (L). The class L (deterministic logarithmic space) is the class of problems
decided by a deterministic Turing machine in logarithmic space.

L = SPACE(log n)

So logarithmic space seems to be a very strict restriction, for example we can’t copy great
parts of the inputs. But there are some important things that can be done in logarithmic
space. First we can use variables which not depend on the input size. Second we consider that
encoding numbers needs logarithmic size to their value and therefore we can use counters with
values polynomial to the input size. Furthermore we can implement cursors to input symbols,
using counters.

A complexity class with less restrictive space bounds is the class PSPACE.

Definiton 2.3.4 (PSPACE). The class PSPACE (deterministic polynomial space) is the class of
problems decided by a deterministic Turing machine in polynomial space.

PSPACE = SPACE(nk) =
⋃
j>0

SPACE(nj)

2.3.2 Nondeterministic Complexity Classes

Using nondeterministic Turing machines with the ordinary nondeterministic computation mode
we define nondeterministic complexity classes in the same way as for deterministic ones.

Definiton 2.3.5 (NP). The class NP (nondeterministic polynomial time) is the class of problems
decided by a nondeterministic Turing machine in polynomial time.

NP = NTIME(nk) =
⋃
j>0

NTIME(nj)
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It is believed, but not shown yet, that nondeterministic time complexity is not closed under
complementation. This is the asymmetry between “yes” and “no” instances we mentioned in
Section 2.1.2. So it makes sense to define the complementary class of NP:

Definiton 2.3.6 (co-NP). The class co-NP is the class of languages L, with the complement L̄
decided by a nondeterministic Turing machine in polynomial Time. When L is a language over
the alphabet Σ the complement L̄ is defined as L̄ = Σ∗ \ L

Definiton 2.3.7 (NEXPTIME). The class NEXPTIME (nondeterministic exponential time) is
the class of problems decided by a nondeterministic Turing machine in exponential time.

NEXPTIME = NTIME(2n
k
) =

⋃
j>0

NTIME(2n
j
)

Definiton 2.3.8 (NL). The class NL (nondeterministic logarithmic space) is the class of prob-
lems decided by a nondeterministic Turing machine in logarithmic space.

NL = NSPACE(log n)

Definiton 2.3.9 (NPSPACE). The class NPSPACE (nondeterministic polynomial space) is the
class of problems decided by a nondeterministic Turing machine in polynomial space.

NPSPACE = NSPACE(nk) =
⋃
j>0

NSPACE(nj)

2.3.3 Relations

Now we have a lot complexity classes but what is still missing is an ordering in the set of
complexity classes. So what are ”good” complexity classes and what are classes for worse
problems. Here we present the known relations between our complexity classes.

Theorem 2.3.10. Let f(n) be a proper complexity function, then the following relations hold:

• TIME(f(n)) ⊆ NTIME(f(n)) and SPACE(f(n)) ⊆ NSPACE(f(n))

• NTIME(f(n)) ⊆ SPACE(f(n))

• NSPACE(f(n)) ⊆ TIME(clogn+f(n))

Proof ideas. a) Follows from the fact that every deterministic Turing machine is also a nonde-
terministic Turing machine.
b) Using the construction of a deterministic machine simulating the nondeterministic machine
from Theorem 2.1.20. The sequence of choices can be saved in O(f(n)) and a time f(n) machine
can write at most f(n) symbols.
c) W.l.o.g we assume that the nondeterministic machine N has two tapes, an input and a work
tape. Now we use the fact that the number of possible configurations is bounded by the space



20 CHAPTER 2. COMPUTATIONAL COMPLEXITY

used in the computation path. When counting the configurations there are s = |S| possible
states and σ = |Σ| possible symbols for every tape cell. Further we have to mention the different
cursor positions. There are n+ 1 possible positions for the input cursor and f(n) for the cursor
on the work tape.
So we have s · σf(n) · n · f(n) as an upper bound. We can find a new constant k such that the
upper bound for the number of configurations simplifies to klogn+f(n).
The deterministic machine M just generates a graph G = (V,E) with all possible configura-
tions as nodes and edges as following. For two configurations C1, C2 the edge (C1, C2) ∈ E iff
C1

N→ C2. To check if N accepts the input, M starts a reachability algorithm starting at the
initial configuration of N and searching for accepting configurations.

The next theorem gives us the reason to skip the complementary classes of nondeterministic
space classes.

Theorem 2.3.11. Immerman, 1988

NSPACE(f(n)) = co−NSPACE(f(n)) , f(n) ≥ log n

Theorem 2.3.12 (Savitch’s theorem). Savitch, 1970

PSPACE = NPSPACE

In the next theorem we summarize the results in a hierarchy of our complexity classes.

Theorem 2.3.13 (Relations).

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME

But not any of these relations is know to be proper. There are only a few results that
complexity classes are proper included in another class, so it is proofed that they are not equal.

Theorem 2.3.14.

NL ⊂ PSPACE

P ⊂ EXPTIME

Further complexity classes and relations between them can be found in Aaronson et al., 2008.

2.4 Alternating Turing Machine

In this section we get in contact with alternation as a concept of computation. To introduce
alternating Turing machines it is useful to have an alternative look at the already known concept
of nondeterministic machines. We associate an acceptance attribute to each configuration which
is computed recursively by its successors. With a successor of a configuration (q, w, u) we mean
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a configuration that is yielded in one step from (q, w, u).
Now we give the definition how to compute the acceptance attribute of a configuration:

Definiton 2.4.1 (leads to acceptance). A configuration of a nondeterministic Turing machine
leads to acceptance iff it is a final accepting configuration (the configuration includes the “yes”
state) or at least one of its successors leads to acceptance.
A nondeterministic Turing machine accepts an input iff the initial configuration is an accepting
configuration.

We mention that this leading-to-acceptance notion is equivalent to the original yields notion.
A nondeterministic Turing machine N accepts an input x according to leading to acceptance
notion if and only if N accepts x according to the yields notion. With this new notion we can
interpret the leading to acceptance value of a configuration just as an OR of its successors. As
we now have machines computing the accepting configurations with an OR functionality it is
natural to ask what happens if we use ANDs to combine the results of the successors.

Let L be a language decided by a nondeterministic Turing machine N . Then there exists a
nondeterministic machine M deciding the complement of L using an AND acceptance rule. AND
acceptance rule here means that a configuration is accepted only if all successors are accepted.
We can easily construct such a machine M by interchanging the “yes”,“no” states in N .

Using this we give another characterization of the class co-NP using the AND computation
mode. The class co-NP is the class of languages decided by a nondeterministic Turing with the
AND computation mode machine in polynomial time.

The concept of alternating Turing machines, introduced by Chandra et al., 1981, allows
both types of configurations. So in an alternating machine there are universal states, which
accept a configuration only if all successors are accepted, and existential states, which accept a
configuration if there is at least one accepted successor.
In the following we give a formal definition of such an alternating Turing machine:

Definiton 2.4.2. An alternating Turing machine (ATM) with k strings is a tuple

A = (S,Σ, δ, s, g)

with:

• S a finite set of states - not including the states “yes” and “no”

• Σ the alphabet of M - a finite set of symbols including the symbols t, .

• δ a (partial) transition relation:

δ ⊆ (S × Σ× Σk)×
[
S ∪ {“yes”, “no”, h} × Σk × {→,←,−}k+1

]
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• s ∈ S the initial state

• g a function that maps states to boolean functions: S → {∧,∨, accept, reject}

So an alternating machine basically is a nondeterministic Turing machine with some labels
on the states. We call a state labeled with ∧ universal state and a state labeled with ∨ existential
state. Furthermore we assume that only the “yes” state is labeled with accept and only the “no”
state is labeled with reject.

We use the labeling g to define the acceptance-rule for non-deterministic Turing machines
in the following way:

Definiton 2.4.3 (leading to acceptance). We define the leading to acceptance value of an al-
ternating Turing machine recursively:

• A configuration with state “yes” leads to acceptance; a configuration with state “no” does
not lead to acceptance.

• A configuration with a universal state leads to acceptance if and only if all successor con-
figurations lead to acceptance

• A configuration with an existential state leads to acceptance if at least one successor leads
to acceptance.

An alternating Turing machine accepts an input iff the related initial configuration leads to
acceptance. Sometime we say a configuration leads to rejection instead of the configuration does
not lead to acceptance.

An alternating Turing machine that uses only existential states and no universal states is
equivalent to an ordinary nondeterministic Turing machine. So an alternating Turing machine
is a generalization of nondeterministic Turing machines. As we have already mentioned we can
use universal state to construct nondeterministic machines deciding the co-problems of ordinary
nondeterministic problems. An alternating Turing machine with no existential state is equivalent
to a nondeterministic machine deciding the co-problems.

The original definition of alternating machines in Chandra et al., 1981 also includes negating
states. A negating state is a state with exactly one successor and a negating state accepts/rejects
if its successor rejects/accepts. They further show that for every alternating Turing machine
with negating states there is an equivalent alternating Turing machine without negating states
working in the same time and space bounds. Therefore negation gives us no additional power
and so we can restrict our alternating Turing machines to universal and existential states.

Further having an alternating Turing machine A solving a problem, there exists an alter-
nating Turing machine working in the same resource bounds and deciding the complementary
problem. To prove this, we just add a negating state n as initial state to A and extend δ

such that the old initial configuration is the successor of the new one. Now we simple use the
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above result to eliminate negation. Therefore all alternating complexity classes are closed under
complement.

When dealing with computations of alternating machines the concepts of computation paths
and computation trees are often useful.

Definiton 2.4.4 (computation path). A computation path of an (alternating) Turing machine
M on input x is a sequence of configurations ci with:

1. c0 the initial configuration

2. c0
M→ c1

M→ . . .
M→ cn

Definiton 2.4.5 (computation graph). The computation graph of an (alternating) Turing ma-
chine M on input x is the smallest directed graph G = (V,E) fulfilling the following conditions:

1. The initial configuration cstart is the root of the tree and therefore cstart ∈ V

2. if c1 ∈ V and c1
M→ c2 then c2 ∈ V and (c1, c2) ∈ E

We should mention here that a computation path is not necessarily a path in the graph the-
oretic sense, because it may contain a configuration twice. For the same reason the computation
graph in general is no graph theoretic tree (a cycle free graph). Modifying rule 2 such that for
every edge there is a new node for c2 even if this configuration is already in the graph leads to
the definition of a computation tree.

Definiton 2.4.6 (computation tree). The computation tree of an (alternating) Turing machine
M on input x is the smallest directed graph G = (V,E) fulfilling the following conditions:

1. Every v ∈ V has the form v = (id, C) where C is configuration

2. For the initial configuration cstart there is the root node of the tree (0, cstart) ∈ V

3. For each (id, ci) ∈ V and ci
M→ cj it holds that there is a (id′, cj) ∈ V such that (id, ci) is

the only predecessor.

Figures 2.1 and 2.3 illustrate the difference between computation graphs and computation
trees.

Example 2.4.7 (An alternating Turing machine). The following alternating Turing machine A
tests if a string x ∈ {a, b}∗ fulfills the following condition. For each cell containing an a either
the left or right neighbor contains a b and for each b both neighbors cells contains an a.
Let A = (S,Σ, δ, s, g) be a 1-tape machine with δ defined as follows:
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si ∈ S σ ∈ Σ δ(si, σ)

s . (r, .,→)
r a (r, a,→)
r a (ra, a,−)
r b (r, b,→)
r b (rb, b,−)
r t (“yes”,t,−)
ra a (cb, a,←)
ra a (cb, a,→)
rb b (ca, b,←)

si ∈ S σ ∈ Σ δ(si, σ)

rb b (ca, b,→)
ca a (“yes”, a,−)
ca b (“no”, b,−)
ca . (“no”, .,−)
ca t (“no”,t,−)
cb a (“no”, a,−)
cb b (“yes”, b,−)
cb . (“no”, .,−)
cb t (“no”,t,−)

We define the function g only on nondeterministic and halting states. For states with only one
successor both quantifiers evaluate to an accept if and and only if the successor evaluates to an
accept. So it has no effect to the acceptance value which of the labels ∧ and ∨ we assign to the
remaining states.

si ∈ S g(si)

r ∧
ra ∨
rb ∧

“yes” accept
“no” reject

Figure 2.1 illustrates how this machine works on input aba and Figure 2.2 shows how the
acceptance is computed.

Figure 2.1: Computation tree of the computation with input aba on the alternating Turing
machine from Example 2.4.7.
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Figure 2.2: The way how the acceptance is computed on the computation tree in Figure2.1 from
Example 2.4.7.

Figure 2.3: Computation graph of the computation with input aba on the alternating Turing
machine from Example 2.4.7.

2.4.1 Short-Circuit Evaluation

To compute the acceptance value of a configuration we so far compute the acceptance value of
all successors and then combine them with a logical AND or logical OR. First this method seems
inefficient for practical computation, which is no problem when dealing with asymptotic worst
case complexity, but furthermore it fails as soon as one successor configuration leads to a non
halting computation and can’t be evaluated.
In the case of an existential configuration with an accepting successor we won’t care about
the other successors and similar holds for universal configurations. If there is one rejecting
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successor we won’t care about the other successors. So we can decide the acceptance of quantified
configurations with non halting successors as long we have a witness for the leading to acceptance
value.

To give a formal definition of this concept we define functions that map every configuration
to 1 (leading to acceptance), 0 (leading to rejection) or ⊥ (don’t care). So we have to extend
the logic operators ∨,∧ to the new domain:

∧ 1 ⊥ 0

1 1 ⊥ 0
⊥ ⊥ ⊥ 0
0 0 0 0

∨ 1 ⊥ 0

1 1 1 1
⊥ 1 ⊥ ⊥
0 1 ⊥ 0

Now we give the definition of a labeling that associates leading to acceptance values to the
configurations.

Definiton 2.4.8 (labeling of configurations). Let A be an alternating Turing machine and CA
the set of configurations from the computation of x. A labeling of configurations is a function
l : M → {0,⊥, 1}, M ⊆ CA.

To fulfill the definition of leading to acceptance a labeling l that decides the output of our
Turing machine must label the initial configuration to 1 or 0 and satisfy the following condition.

l(α) =



∧
α

A→β
l(β) if α is universal∨

α
A→β

l(β) if α existential

1 if α is accepting

0 if α is rejecting

(2.1)

We assume that successors α not in the range of the labeling to be labeled with ⊥ for this
equation. (α 6∈M → l(α) =⊥).

In Figure 2.4 we see an example illustrating the benefit of short-circuit evaluation compared
to the naive evaluation.

2.4.2 Alternating Complexity

Like for deterministic and nondeterministic Turing machines we define alternating time and
space.

To get a good measure of resources an alternating machine needs for a computation we should
not count configurations not necessary for deciding the input. To decide which configurations
have an impact on the complexity we use the labeling function l.

Definiton 2.4.9 (ATIME). Let A be an alternating Turing machine. A accepts an input x in
time t if there is a labeling l satisfying the Conditions 2.1 with l ((s, ., x, ., ε, . . . , ., ε)) = 1 and

for every configuration C it holds that l(C) 6=⊥ implies ∃k < t : (s, ., x, ., ε, . . . , ., ε) A
k

→ C.



2.4. ALTERNATING TURING MACHINE 27

(a) The computation tree

(b) tree for naive evaluation (c) tree for short-circuit evaluation

Figure 2.4: Computation tree of the computation with input ba on the alternating Turing machine
from Example 2.4.7.

So an alternating Turing machine may accept an input in linear time even if there are some
infinite computation paths.

As for deterministic and nondeterministic Turing machines we want to define space com-
plexity for alternating Turing machines. Like for time complexity we exclude the configurations
not necessary for deciding the input.

Definiton 2.4.10 (ASPACE). Let A be an alternating Turing machine. A accepts an input x
in space s if there is labeling l sufficing the conditions 2.1 with l ((s, ., x, ., ε, . . . , ., ε)) = 1 and
for every configuration C in the range of l holds that SPACE(C) ≤ s.
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Complexity Classes

We know define some alternating complexity classes that are closed under reductions.

Definiton 2.4.11 (ALOGSPACE). The class ALOGSPACE (alternating logarithmic space) is the
class of problems decided by an alternating Turing machine in logarithmic space.

ALOGSPACE = ASPACE(log n)

Definiton 2.4.12 (AP). The class AP (alternating polynomial time) is the class of problems
decided by an alternating Turing machine in polynomial time.

AP =
⋃
j>0

ATIME(nj)

Definiton 2.4.13 (APSPACE). The class APSPACE (alternating polynomial space) is the class
of problems decided by an alternating Turing machine in polynomial space.

APSPACE =
⋃
j>0

ASPACE(nj)

Definiton 2.4.14 (AEXPTIME). The class AEXPTIME (alternating exponential time) is the
class of problems decided by an alternating Turing machine in exponential time.

AEXPTIME =
⋃
j>0

ATIME(2n
j
)

2.5 Simulating alternating Turing Machines

In this section we focus on the relations between alternating complexity classes and determin-
istic complexity classes. Our overall goal is writing alternating programs that can be executed
efficiently on a common computer. So we are interested in alternating complexity classes that
are contained in feasible deterministic classes.

Theorem 2.5.1. Chandra et al., 1981 Let T (n) ≥ n be a function computable in time O(T (n)).If
an alternating Turing machine M accepts in time T (n) then there exists an alternating Turing
machine N with L(M) = L(N) and all computation paths of N are at most of length O(T (n))

Proof. Let M be a k-tape alternating Turing machine satisfying the conditions of the theorem.
Construct the following k + 1-tape alternating Turing machine N :
N first computes T (n) on the additional tape. Then N simulates M and decreases the counter
on the additional tape in every computation step of M . If the counter equals 0 and M is not in
a halting configuration then N rejects.

Clearly all computation paths of N are at most of length O(T (n)). It remains to show that
N(x) = M(x) for all possible inputs x. Let CN , CM be the sets of configurations from N(x) and
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M(x). After the computation of T (n) each configuration in N can be written as tuple (cMi , t)
with cMi ∈ CM and t is an integer with 0 ≤ t ≤ t(n). By the definition of N it holds that:

(cMi , t)
N→ (cMj , t− 1)⇐⇒ cMi

M→ cMj

The computation of T (n) is deterministic and therefore the machine N accepts an input if and
only if the labeling l deciding the input suffices l((cM , t)) = 1 for cM the initial configuration of
M .

As M works in time T (n) there is a evaluation tree that only uses configurations reachable
in at most T (n) step from the initial configuration. So all configurations of M(x) are also
represented in the evaluation tree of N . The difference in the two evaluations is the labeling
of configurations with distance T (n) to the initial configuration cM/(cM , T (n)). M labels such
configurations with ⊥ while N labels them with 0.

To prove that these evaluations are equal, we define the an equivalence relation {{1}, {⊥, 0}},
that is that 0 ≡ ⊥. It is just a calculation that the ∧ and ∨ operators preserve this equivalence
relation and therefore N(x) ≡ M(x). We notice the fact that a labeling for N only uses the
values {0, 1} and a deciding labeling for M labels cM with either 0 or 1. Combing this with
N(x) ≡M(x) we get N(x) = M(x).

Theorem 2.5.2. Chandra et al., 1981 Let S(n) ≥ log n be a function computable in space
O(S(n)). Let be M an alternating Turing machine accepting in space S(n). Then there exist an
alternating Turing machine N with M(x) = N(x) and the following hold for N . All computation
paths of any input are at most of length O(cS(n)), for some constant c. Every configuration C

reachable from the initial configuration satisfies SPACE(C) ≤ S(n).

Proof. Let M be a k-tape alternating Turing machine satisfying the conditions of the theorem.
We define a constant c′ = |S ∪ {“yes”, “no”}| · |Σ|. The number of configurations necessary for
deciding the acceptance is bounded by c′S(n) · S(n)k−1 · n =: cS(n) and therefore M accepts in
time cS(n).

Construct the k + 1-tape alternating Turing machine N :
N initially writes cS(n) on the additional tape. To keep in the space bounds the machine uses
a c-ary representation. On the other tapes N writes a tape end symbol after S(n) symbols. N
simulates M and decrements the counter an the additional tape for every computation step of
M . If the counter goes down to 0 or one of the tapes reaches the tape end symbol N rejects.

It is clear that N suffices the theorem’s time and space bounds. What is remained is to show
that N(x) = M(x) for all possible inputs x. This is done in the same way as in the proof of
Theorem 2.5.1.

Whenever we deal with alternating Turing machines we can assume that these machines
have no infinite paths, simple using Theorem 2.5.1 and Theorem 2.5.2. This is very useful for
theoretic purposes but we show later that the counter technique used in the proofs can be very
awful in practice.
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Chandra et al., 1981 developed very strong relations between alternating and deterministic
complexity classes, which are useful to identify alternating programs that can be simulated
efficiently:

Theorem 2.5.3. Chandra et al., 1981

ATIME(f(n)) ⊆ SPACE(f(n)) f(n) ≥ n

Theorem 2.5.4. Chandra et al., 1981

ASPACE(f(n)) =
⋃
c>0

TIME(cf(n)) f(n) ≥ log n

Proof sketch. The most interesting part for our purposes is the technique used in the reduction
from alternating space to deterministic time, because we want to reuse it for our framework. So
we bring the main proof ideas for the following equation and refer the reader to Chandra et al.,
1981 for the other direction.

ASPACE(f(n)) ⊆
⋃
c>0

TIME(cf(n)) f(n) ≥ log n (2.2)

Let A be an alternating Turing machine working in space f(n). The deterministic Turing
machine M works as follows:

• M computes f(n)

• M writes down all possible configurations C with SPACE(C) ≤ f(n) (these are at most
bf(n) for some constant b)

• label each of this configurations with a ⊥

• compute a labeling which fulfills Conditions 2.1 by iterating the rules in 2.1 for computing
the new labels. (we need at most bf(n) iterations)

• return the label of the initial configuration

So M works on an tape of length O(S(n) ·bf(n)) and read it at most bf(n) times. We can simplify
these bounds to: M works in time cf(n) for a new constant c.

So the main idea in the proof is to save configurations and their leading to acceptance value.
This prevents the algorithm from computing a configuration leading to acceptance value several
times, when the configuration occurs multiple times in the computation tree.
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Corollary 2.5.5. Chandra et al., 1981 Using the Theorems 2.5.3, 2.5.4 and the fact that QSAT

is in AP we get the following identities:

EXPSPACE = AEXPTIME

EXPTIME = APSPACE

PSPACE = AP

P = ALOGSPACE

Recall that P is a class of feasible computable problems and a problem hard for one of the
classes PSPACE,EXPTIME,EXPSPACE is considered as inherent hard problem. So we identify
ALOGSPACE as the class of feasible computable alternating problems.

2.6 Natural Alternating Problems (in the class P)

In the last section we mentioned that the complexity classes ALOGSPACE and P are equivalent
and therefore identified the class ALOGSPACE as the class of feasible computable alternating
problems. Further there are many problems known to be in the class P and therefore many
problems that can be computed with an alternating program in a feasible way.
But in general there is no benefit in solving P problems with an alternating machine and then
simulate this alternating machine. In fact for many problems it’s much harder to find an alter-
nating algorithm than a deterministic one and even if we find some, it would be a counterintuitive
algorithm with much more code to write.

So alternation is not the right solution for all problems in P but there are some problems
that can be solved by alternating machines in a very natural and much easier way than with
traditional algorithms. In this section we present some problems in the class P which can be
solved very intuitively with an alternating algorithm.
We identified such problems using the collections of P-complete problems in Greenlaw et al.,
1995 and Miyano et al., 1989, so all problems in this section can be found there.

2.6.1 HORN problems

The first group of problems comes from propositional logic. We are interested in properties of
so called Horn formulas, so we start with the definition of Horn clauses and Horn formulas.

Definiton 2.6.1 (Horn clause). We call a formula Horn clause iff ϕ is a clause (disjunction of
literals) with at most one positive literal.

We distinguish three different types of Horn clauses. The clauses with a positive literal p
and some negative literals ¬q1, . . . .¬qn. They are equivalent to a formula q1 ∧ · · · ∧ qn → p and
so we call them rules. Clauses which only consist of a positive literal are facts. Clauses with
negative literals but no positive literals are called constraints.
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Definiton 2.6.2 (definite Horn clause). We call a formula definite Horn clause iff ϕ is a clause
with exactly one positive literal.

A definite Horn clause is either a fact or a rule.

Definiton 2.6.3 (Horn formula). We call a formula ϕ (definite) Horn formula iff ϕ is in
conjunctive normal form and each clause is in (definite) Horn form.

Definite Horn Minimal Model

Given: A define Horn formula ϕ and a atom p.
Problem: Is p in the minimal model of ϕ

So p is in the minimal model if p is a fact in ϕ or p is the positive literal in a clause and all
other atoms occurring in the same clause are in the minimal model. The case that p is a fact is
just a special case of the second one where p is the only literal in the clause.

Alternating Approach 2.6.4 (Definite Horn Minimal Model). p is in the minimal model if
there EXISTS a clause C ∈ ϕ containing p as literal such that FORALL negative literals ¬qi ∈ C
it holds that qi is in the minimal model. Checking that qi is in the minimal model is done in the
same way.

This algorithm terminates when arriving at a clause C that is a fact. For fact C there are
no negative literals and therefore no successors. It is common to interpret universal quantifiers
over the empty set as accept and existential quantifiers over the empty set as reject.

A problem in this algorithm is that we may get some cycles. For example if ϕ includes the
rules q → p, p → q asking for p would lead to infinite computation path alternating this two
rules. This can be resolved by introducing a counter that is incremented for every clause we use
and rejecting when we exceed the total number of clauses. In a computation path that exceeds
this counter at least one literal is computed twice and therefore we have a cycle in the path. We
present a better solution to get rid of such cycles later.

As we already mentioned alternating complexity classes are closed under complement and
therefore we can give an alternating algorithm for the co-problem.

Alternating Approach 2.6.5 (co-Definite Horn Minimal Model). p is not in the minimal
model if FORALL clauses C ∈ ϕ containing p as literal there EXISTS a negative literal ¬qi ∈ C
such that qi is not in the minimal model. Checking that qi is not in the minimal model is done
in the same way.

We now use this algorithm to solve the satisfiability problem for Horn clauses.

Horn Satisfiability (HORNSAT)

Given: A Horn formula.
Problem: The task is to decide if the clauses are satisfiable or not.
Ref: Kasif, 1990,Plaisted, 1984
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The satisfiability problem of general propositional logic formulas is a famous NP-complete prob-
lem.

A Horn formula is a definite Horn formula plus some constraint clauses. A deterministic
algorithm would compute the minimal model for the definite Horn part and then check all
constraints with this model. We reuse this concept for our alternating approach but the other
way round. In the first step we branch over the constraints and then we check them.

Alternating Approach 2.6.6 (Horn Satisfiability). ϕ is satisfiable if FORALL constraint
clauses C ∈ ϕ there EXISTS a negative literal ¬qi ∈ C such that qi is not in the minimal
model. For Checking that qi is not in the minimal model we use the Alternating Approach 2.6.5.

2.6.2 Games

A very common class of natural alternating problems are two player games, more precisely the
problem of finding a winning strategy in such a game. For the most games this problem is much
harder than P, its well known that Go (with Japanese rules) is EXPTIME completeFraenkel and
Lichtenstein, 1981,Robson, 1983 and even the simplified version in Papadimitriou, 1994, which
forbids exponentially long games is PSPACE-complete. But if every configuration of the game
can be encoded efficiently (means in SPACE(log n)), we can decide the existence of a winning
strategy in P.
We start with a simple two player game.

Two player Game (GAME)

Given: A two player game G.
This is a tuple G = (P1, P2,W1, s,M) with P1 ∩ P2 = ∅, W1 ⊆ P1 ∪ P2, s ∈ P1 and
M ⊆ P1 × P2 ∪ P2 × P1.

• P1 is the set of game position where it is Player 1’s turn and P2 is defined similar.

• W1 the set of immediate winning positions for player 1

• s the starting position

• M is the set of allowed moves. So if a player is in position p and (p, q) ∈ M the player
may move to position q. The definition of M ensures that the turns alternate between the
two Players.

We define a winning position with a kind of recursion. A position p is called a winning
position if and only if one of the following conditions holds:

• p ∈W1 (p is a immediate winning position)

• p ∈ P1 and there exists a move (p, w) ∈M such that w is a winning position

• p ∈ P2 and for every move (p, w) ∈M holds that w is a winning position
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Problem: Is s a winning position for Player 1 ?
Ref: Jones and Laaser, 1974,Greenlaw et al., 1995

It is straightforward to solve this with an alternating approach.

Alternating Approach 2.6.7 (Two player Game). Player 1 has a winning strategy in the
Game G if there EXISTS a move for player 1 such that FORALL possible moves of player 2
player 1 has a winning strategy

The definition of GAME captures almost all two player games, but for the most games the
encoding as GAME would lead to an exponential or higher blow up of the input. It is quite
intuitive that GAME captures deterministic games where 2 players alternate moving but it even
captures many games with nondeterministic elements like rolling dices. In our definition of
winning strategy we make no assumption about the strategy of player 2. So player 2 does not
try to optimize something he just randomly picks out one possible move and our strategy for
player 1 has to handle all possible moves. To encode nondeterministic games we just encode the
dicing in the possible moves for player 2.

But for nondeterministic games the question for a winning strategy is inferior because the
answer would be no in the most cases. For nondeterministic games we would need a strategy
that optimizes the winning probability, but we do not mention such problems here.
With a similar technique we can reduce the problem of finding a winning strategy in n-player
games to Two player Game. We just encode each possible combination of moves from player
2, 3, . . . , n as move for player 2 in the Two player Game.

In the following we present some games, with simple configurations that can be saved in
SPACE(log n) such that the problem of finding a winning strategy is in the class P .

Cat and Mouse(CM)

Given: A directed graph (V,E). Vertices c,m, g ∈ V
The game is played as follows: The cat starts on vertex c, the mouse on m and vertex g is
the goal (the mouse hole). The mouse has the first move and then moves alternate between
cat and mouse. In each move the player (cat or mouse) has the choice to follow an edge in
the graph or stay at the current vertex. The mouse loses if it gets caught by the cat, which
means that mouse and cat occupy the same vertex. The mouse wins if it reaches the mouse
hole without being caught.
Problem: Does the mouse have a winning strategy?
Ref: Chandra et al., 1981

Alternating Approach 2.6.8 (Cat and mouse). The mouse has a winning strategy if there
EXISTS a move for the mouse such that FORALL possible moves of the cat, the mouse has a
winning strategy

Acyclic Geography Game (AGG)

Given: An acyclic directed graph G = (V,E) and a vertex s. The game is played as follows:
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We start with a token on the vertex s. Player 1 has the first move and then the players
alternate moving. In each move the active player can move the token along one edge. The
first player with no possible move loses.
Problem: Does Player 1 have a winning strategy?
Ref: Chandra and Tompa, 1990

Alternating Approach 2.6.9 (Acyclic Geography Game). Player 1 has a winning strategy
starting in s if there EXISTS an edge (s, v) such that FORALL edges (v, v′) there is winning
strategy for player 1 starting in v′.

Two-person Pebble Game Fixed Rank(PEBBLE)

Given: A fixed rank pebble game. A pebble Game of rank k is a tuple G = (X,R, S, t) with:

• X a finite set (of pebbles)

• R ⊆ {(x, y, z)|x, y, z ∈ X,x 6= y, x 6= z, y 6= z} the set of rules

• S ⊆ X the start set of size k

• t ∈ X the terminal pebble

The Pebble Game is played as follows:
At the beginning the pebbles of S are on the board B := S. Then the players alternate
(starting with player 1) replacing one pebble from the board by another pebble from the pool
X according to the rules. The rule (x, y, z) says that if the pebbles x, y are on the board
(x, y ∈ B) and z is not (z /∈ B) the active player can replace x by z.
The player who pebbles t or gets the opponent in a no move position wins.
Problem: Does Player 1 have a winning strategy?
Ref: Kasai et al., 1979

Alternating Approach 2.6.10 (Two-person Pebble Game Fixed Rank). Player 1 has a
winning strategy in the pebble Game G starting with S if there EXISTS a rule (x, y, z) with
x, y ∈ S, z /∈ B such that FORALL rules (x′, y′, z′) with x′, y′ ∈ {S\{x}}∪{z}, z′ /∈ {S\{x}}∪{z}}
there is winning strategy for player 1 with start set S′ = {{S \ {x} ∪ {z}} \ {x′}} ∪ {z′}.

2.6.3 Circuits

We start with a family of circuits restricted to AND and OR gates:

Monotone Circuit Value Problem (MCVP)
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Given: A monotone Boolean circuit α (a circuit built only of AND and OR gates) with
inputs x1, . . . , xn and output y
Problem: Is output y true on the inputs x1, . . . , xn

Ref: Greenlaw et al., 1995

Alternating Approach 2.6.11 (Monotone Circuit Value Problem). An AND gate is true if
FORALL predecessor gates it holds that they are true and false otherwise. A OR gate is true if
there EXISTS a predecessor gate which is true and false when no such predecessor exists. An
input gate has the true value of his corresponding input. To compute the value of y we just use
these rules.

Alternating Approach 2.6.12 (co-Monotone Circuit Value Problem). An AND gate is true
if there EXISTS a predecessor gate that is true and false otherwise. A OR gate is true if FORALL

predecessor gates it holds that they are true and false otherwise. An input gate has the negated
true value of his corresponding input. To compute the value of 6= y we just use these rules.

Now we use these rules for solving the Circuit Value Problem for general boolean circuits,
we add negating gates to the circuits.

Circuit Value Problem (CVP)

Given: A Boolean circuit α with inputs x1, . . . , xn and output y
Problem: Is output y true on the inputs x1, . . . , xn

Ref: Ladner, 1975

Alternating Approach 2.6.13 (Circuit Value Problem). To compute the true value of y We
start using the rules from the Alternating Approach2.6.11 for AND and OR gates. When evalu-
ating a NOT gate then we skip to the rules for the successors from the rules of the Alternating
Approach 2.6.11 to the rules of Alternating Approach 2.6.12 or the other way round.

Alternating Monotone Fanin 2, Fanout 2 Circuit Value Problem (AM2CVP)

Given: A monotone Boolean circuit α with inputs x1, . . . , xn and a output y with the
following properties: The gates alternate between AND and OR on every path from a input
to the output. Inputs are only connected to OR gates. The gates have fanout exactly 2
(except output gates) and fanin 2 except the input gates. y is an OR gate.
Problem: Is output y true on the inputs x1, . . . , xn

Ref: Greenlaw et al., 1995

The class of Alternating Monotone circuits leads to a very simple alternating algorithm:

Alternating Approach 2.6.14 (Alternating Monotone Circuit Value Problem). The output
y is true if there EXISTS a predecessor gate p such that FORALL predecessors pi of p it holds
that they are true. All these pi are OR gates or input gates. In the first case we use the same
alternating procedure as for y in the other case we just took the true value from the corresponding
input.



2.7. THE COMPUTATION TREE 37

2.6.4 Graphs

We saw some games played on graphs as alternating problems, but there are still more graph
problems that can be solved with alternating algorithms. As example we bring the alternating
graph accessibility problem.

Alternating Graph Accessibility Problem (AGAP)

Given: A directed Graph G = (V,E), with V = A ∪B, A ∩B = ∅ and two vertices s, t,
The relation apath(x, y) on G holds if one of the following conditions is satisfied:

• x = y

• x ∈ B and ∃z ∈ V, (x, z) ∈ E such that apath(z, y)

• x ∈ A and ∀z ∈ V, (x, z) ∈ E such that apath(z, y)

Problem: Is apath(s, t) true
Ref: Chandra et al., 1981, Immerman, 1981, Immerman, 1987

Alternating Approach 2.6.15 (Alternating Graph Accessibility Problem). if s = t apath(s, t)
holds otherwise we check apath(s, t) with an alternating approach.
If s ∈ A apath(s, t) is true if FORALL neighbors z, (s, z) ∈ E holds apath(z, y). Otherwise if
s ∈ B apath(s, t) is true if there EXISTS a neighbor z, (s, z) ∈ E with apath(z, y). The true
value from apath(z, y) is computed in the same way.

2.7 The Computation Tree

Using alternating Turing machines we get yes and no answers, for example there is a winning
strategy or not. Often we are interested in more details. We want to know which strategy is
a winning strategy and not just that there exists one (Mathematicians happy with existence
statements may skip this section). When using deterministic Turing machines there is the tape
content of the halting configuration that gives additional information about the solution. An
alternating Turing machine in generall has many leaves in its computation tree, so we can’t
pick the information just from one configuration. We have to consider all configurations in
the computation tree and also the edges between them to get additional information about the
solutions.

We remind the Definitions 2.4.4, 2.4.6 and bring some examples of how information can be
encoded in the computation tree of an alternating machine with some input.

2.7.1 Proof Trees in Horn Problems

When computing that p is in the minimal model of a definite Horn formula ϕ we may also be
interested in proving this. We can use the computation tree as proof tree. To prove that p is
in the minimal model we have to find a rule q1, . . . , qn → p, n ≥ 0 and proofs for q1, . . . , qn.
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There are two types of configurations in the computation tree. First the existentially quantified
configurations with literals to be proven and then the universal configurations with rules to be
satisfied.

To get a proof that p is in the minimal model we start with the configuration representing
p (the initial configuration) and then follow the (first) leading to acceptance successor configu-
ration. This successor configuration represents a rule of the form q1, . . . , qn → p, n ≥ 0 and has
the successor configurations representing q1, . . . , qn and all of them leads to acceptance.

Assuming we have a proof for q1, . . . , qn are in the minimal model we can construct the proof
for p is in the minimal model by simple adding q1, . . . , qn → p to the proof. The proofs for
the qi can be computed recursively from the computation tree with the same idea. This can
be formally proven by induction on the tree size and the fact that every accepting computation
path is a finite path.

We mention here that in general it is not possible to compute the minimal model from the
computation tree. There may be facts and rules in ϕ that the alternating machine A has not
used to compute that p is in the minimal model.

2.7.2 Winning Strategy in Games

The computation tree of a game problem saves game configurations, i.e. the position of tokens
on the game board, in the machine configurations. The difference between two connected config-
urations is the move made by one player. Machine configurations of a winning strategy machine
can be distinguished in two sets. The existentially quantified moves where player 1 has to make
a move and the universally quantified moves where its player 2 turn.

We can identify the first move of a winning strategy by choosing a leading to acceptance suc-
cessor A of the initial configuration. Now the opponent makes a move which leads to a successor
E of A. A was universal quantified and therefore E is a leading to acceptance configuration.
Therefore there is a leading to acceptance successor for E which gives us the next move for the
winning strategy. We do this until there is an immediate winning position. For a formal proof
once more we can use induction and the fact that an accepting computation path is finite.

2.7.3 Circuit Value

An alternating Turing machine evaluating circuit value problems would save the current gate
of the evaluation in the configuration. So here we can use the computation tree to get the true
values of some internal gates or find all gates that were evaluated to compute the true value of
the output gate. A gate is true if it is encoded in a leading to acceptance configuration (it is
labeled with 1) and false if the configuration is labeled with 0. We can’t make a decision about
gates not encoded in a configuration or encoded in a configuration labeled with ⊥.



Chapter 3

A Java extension for the alternation

paradigm

In the last chapter we introduced the concept of alternation in form of alternating Turing ma-
chines. Further we gave a method how to simulate alternating Turing machines on deterministic
ones. The question left is how we can use this concepts for programming in practice.

To get an answer for this question we introduce a language, based on Java syntax, to write
alternating programs. Sure it does not suffice to get a syntax for programming, we further
want to compute the output of such a program. So we present a framework that simulates the
alternating algorithms written in our language.

3.1 Language Specification

Following ideas from alternating Turing machines we introduce a programming language for
alternating algorithms. For specifying the syntax of alternating programs we use ANTLR gram-
mar syntax Parr, 2007. To keep the big picture, we sometimes skip some details of the syntax
but a full grammar for our alternating language is attached as Appendix A.

3.1.1 Idea of Alternating Programming

The main idea of alternating programming, following the concept of alternating Turing machines,
is to define states which compute successor states and combine the successors results to a return
value for the primal state. Following the idea of alternating Turing machines we have further to
distinguish between input variables and work variables. Input variables are variables that the
alternating algorithm can not modify. We give a more precise specification later. Work variables
are variables that describe the configurations of an alternating program.

According to the previous comments, an alternating program is structured as follows. At the
beginning there is the place for header information. The program starts with the atm keyword
and the programs name. After the name there is the place to define the input variables for the
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alternating algorithm. Then there is a block with the definition of our work variables and the
code for the states, the central part of an alternating program.� �

header
'atm ' I d e n t i f i e r ' ( ' input ' ) ' {

worktape
s t a t e+

}� �
Listing 3.1: syntax: alternating program

An alternating program works like this: The machine initializes the work variables and
starts the computation in the first state. A state makes some computation using input and work
variables and then either immediately accepts / rejects the input or computes a quantifier and a
set of successor configurations. A configuration in an alternating program is defined analogously
to alternating Turing machines, so a configuration is simply a state with an instance of the work
variables. A configuration that does not immediately decide the input, has a successors set and
a quantifier. Such a configuration accepts the input if one or all successors, according to the
quantifier, accepts.

3.1.2 Input Variables

As we already mentioned it is necessary to distinguish between input variables and work variables
in our alternating programs. So input variables basically are variables we should not modify, but
for using arbitrary objects we have to be a bit careful. Sure it should be possible to call methods
of input objects, but on the other hand a method call may change the object properties. There
are also some changes in the object that would not violate the input characterization. So it
would be ok to initialize an attribute of the object when we access it the first time. So we have
to define precisely what we expect the programmer to do with input objects and what not to
do.

Postulation 3.1.1 (input variables). In our framework the access on input variables is restricted
to the following actions:

• read access to primitive data type variables

• read access to objects variables

• ”read method” calls

A read method is a method that returns the same value whenever we call it with the same
parameters. Furthermore such a method must not influence the results of other read methods or
Java primitive variables we use in our alternating program.

So calling an ordinary get-method that just hands over a variable is ok. It’s also allowed to
use a method computing its return value deterministically out of the objects attributes. The
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second condition causes that the read method property is not an independent property of one
method but of the collection of methods used in the program. For example we assume a get-
method that increments a counter at every access to the variable. We can use this get-method
for input variables in alternating programs as long as we do not access the counter or methods
using the counter.

We define the programs input variables simply as a list of type-name pairs. The syntax is
described in Listing 3.2.� �
type I d e n t i f i e r ( ' , ' type I d e n t i f i e r ) ∗� �

Listing 3.2: syntax: input

Finally we give an example of an input definition:

atm GGAtm ( Graph . Node<GraphGame . Pos i t ion> s ta r tP laye r ,
Graph<Pos i t ion> gameBoard )

Listing 3.3: example for a head of an alternating program

3.1.3 Work Variables

With work variables we mean the variables representing the configurations of our machine. This
is almost equivalent to the variables used for computations in the states but there are some cases
where local variables can be used for computations. We come back to these local variables later.
As the work variables represent the configurations, they also determine the number of possible
configurations. To prevent too bad running time the work variables have to be restricted to
something like SPACE(log n).

According to SPACE(log n) Turing machines we can use counters and cursors in our Turing
machine. So we can use primitive data types for counting or saving some flags and variables
with an arbitrary Object-Type for cursors on the input.

Postulation 3.1.2 (work variables). There are two different kind of work variables. Those
storing data that can be modified and those holding a reference to an input object.

Data variables: These are variables having one of the following primitive data types
’boolean’, ’char’, ’byte’, ’short’, ’int’, ’long’, ’float’, ’double’. In alternating algorithms any
value of the specified type, can be assigned to such variables. For technical reasons all such
variables must be initialized before the alternating computation starts.

Cursor variables: Variables with object type are handled as cursor variables. This means
an alternating algorithm can’t assign arbitrary ”values” to such variables. So an alternating
program can’t create new objects and assign them to variables. The only valid way a cursor
variable can be used is storing an object from the input or the ’null’ value.

Arrays: A special case is the one-dimensional array. As arrays are objects they should be
cursor variables, but to get the full power of alternating Turing machines we use them as data
variables. When using an array as work variable we first have to restrict us to one-dimensional
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arrays. The array must be initialized before the alternating computation starts. The elements of
an array are handled according to their type. So an array of object types holds references to the
input and an array of primitive types holds values.

We can’t use an array as cursor to an input array, if we need such a functionality we have
to use other data types like java.util.List.

We mention a graph problem, where the graph G is part of the input. For counting the
edges already used for the computation we would use a data variable of type int or long. For
saving the current position in the graph we would use a cursor variable of an appropriate object
type. When solving graph games where the number of tokens may vary between the instances
an array would be an appropriate way to store the tokens positions.

The listings 3.4 and 3.5 give the syntax for defining the work variables. This syntax guar-
antees that primitive variables and arrays are initialized.� �

d e c l a r a t i o n ∗� �
Listing 3.4: syntax: worktape� �

c l a s sOr Inte r f aceType I d e n t i f i e r ( ' , ' =I d e n t i f i e r ) ∗ ' ; '
| primit iveType I d e n t i f i e r '= ' expres s ion ' ; '
| c l a s sOr Inte r f aceType I d e n t i f i e r '= ' expres s ion ' ; '
| oneDimensionalArrayType I d e n t i f i e r '= ' 'new ' arrayCreator ' ; '� �

Listing 3.5: syntax: declaration

We complete this section with an example of a work tape definition.

Graph . Node<Integer> c a t P o s i t i o n=ca tS ta r t ;
Graph . Node<Integer> mousePosit ion=mouseStart ;
int counter =0;

Listing 3.6: example for a work variable declaration in an alternating program

local variables

Often we need variables to iterate over some collections or arrays. As these variables have no
descriptive statement about the configuration we should not define them as work variables. So
there is the option to define local variables in For and For-Each loops.� �
for ( int i=0 ; i<=2∗r ; i++){

[ . . . ]
}� �

Listing 3.7: For loop with local variable
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� �
for ( Graph . Node c h i l d : mousePosit ion . getChi ldren ( ) ) {

[ . . . ]
}� �

Listing 3.8: For–Each loop with local variable

3.1.4 States

States are the central part of an alternating program, the part where the alternating algorithm
is written. A state definition begins with the state keyword followed by the states name and a
code block.� �

' s ta te ' I d e n t i f i e r {
statement+

}� �
Listing 3.9: syntax: state

In alternating programs a state usually starts with an ordinary deterministic computation.
For this computation the programmer can use most of the Java constructs. An important
restriction is that the programmer is not allowed to define local variables, except the mentioned
special cases. Further the programmer has to care about the input objects; they should not be
modified by the program.

Further there are some restrictions on object-oriented features. So there is no new command,
in alternating programs, since no new objects should be created. As an alternating program is
no ordinary class there are no methods, class or interface definitions and no keywords this or
super. Listing 3.10 gives the definition of the allowed Java statements.� �

block
| ' i f ' parExpress ion statement ( opt ions {k =1;} : ' e l s e ' statement ) ?
| ' f o r ' ' ( ' f o rCont ro l ' ) ' statement
| ' while ' parExpress ion statement
| 'do ' statement ' while ' parExpress ion ' ; '
| ' try ' block catches ' f i n a l l y ' block
| ' switch ' parExpress ion '{ ' switchBlockStatementGroups '} '
| ' throw ' exp r e s s i on ' ; '
| ' break ' ( I d e n t i f i e r ) ? ' ; '
| ' continue ' ( I d e n t i f i e r ) ? ' ; '
| ' ; '
| statementExpress ion ' ; '
| I d e n t i f i e r ' : ' statement� �

Listing 3.10: syntax: statement part1
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To enable alternation there are some additional constructs in an alternating program. First
there are the commands accept, reject which immediately decide a configuration. The accept
command says that this configuration is a leading to acceptance configuration and the reject
command tells that the configuration does not lead to acceptance.
The alternation in the algorithms comes from the forall and exists statement. The forall com-
mand says that the configuration has a set of successors (maybe the empty set) and it only leads
to acceptance if all successors lead to acceptance. The exists statement has similar semantics,
the configuration leads to acceptance if one successor leads to acceptance. As the semantics of
the forall and exists commands needs the successor configurations they are always followed by
a block defining these successors.� �
| ' accept ' ' ; '
| ' r e j e c t ' ' ; '
| ' f o r a l l ' '{ ' nondeterminism '} '
| ' e x i s t s ' '{ ' nondeterminism '} '� �

Listing 3.11: syntax: statement part2

When programming functions every valid computation has to end with a return statement.
Similarly this holds for states in alternating programs. Every possible computation must end
either with an immediate decision of the input (accept/reject) or with an nondeterminism (foral-
l/exists).

state a l ternat ingTur ingMachine {
i f ( stateType . get ( a c t i v e S t a t e ) . equa l s ( 'A ' ) ) {

accept ;
}
i f ( stateType . get ( a c t i v e S t a t e ) . equa l s ( 'F ' ) ) {

f o ra l l {
[ . . . ]

}
}
i f ( stateType . get ( a c t i v e S t a t e ) . equa l s ( 'E ' ) ) {

exists {
[ . . . ]

}
}
reject ;

}

Listing 3.12: An example for a state in an alternating program (simplified)
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Forall / Exists Blocks

The thing still missing on our alternating programs is the computation of the successors. So a
nondeterminism block after the forall or exists statement has to define new configurations. For
a configuration we need a state and work variables. So a nondeterminism block is basically a list
of state, work variables pairs. Such a pair is the name of the state and a block defining the work
variables. Sometimes the number of successors depends on the input. In such cases alternating
programs uses for loops to compute the successors.� �

( I d e n t i f i e r '{ ' s tateStatement ∗ '} ' | stateLoop )+� �
Listing 3.13: syntax: nondeterminism

We can use all the Java constructs defined in 3.10 to modify the work variables for the new
configuration. It is important to mention that the computations for the different configurations
are independent of each other. So each computation starts with the work variables as they are
set when the computation enters the nondeterminism block.� �

' f o r ' ' ( ' f o rCont ro l ' ) ' '{ ' s t a t e C a l l '} '� �
Listing 3.14: syntax: stateLoop

Such a stateLoop is useful when needing a successor for each element of an input set, for example
for each node in the neighborhood of the current node.

f o ra l l {
mouseTurn{

counter++;
}
for ( Graph . Node c h i l d : c a t P o s i t i o n . getChi ldren ( ) ) {

mouseTurn{
counter++;
c a t P o s i t i o n=c h i l d ;

}
}

}

Listing 3.15: example for a forall block in alternating programs

3.1.5 Header

As we deal with Java Classes and our compiler generates Java Classes there are some Java
Features for the Header. The first one is the package. At the beginning of an alternating
program there is the definition of the Java package the compiled program should be included.
The second feature in the header is the possibility of Java class imports. So we can use Java
Classes in our alternating program without qualifying the whole package.
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� �
' package ' qual i f iedName ' ; '
' import ' ' s t a t i c ' ? qual i f iedName ( ' . ' ' ∗ ' ) ? ' ; '� �

Listing 3.16: syntax: header

package at . ac . tuwien . dbai . s t a f f . dvorak . examples ;
import java . u t i l . Set ;
import java . u t i l . L i s t ;

Listing 3.17: example for a header in an alternating program

3.2 Programs

In the last section we introduced a language for writing alternating programs, but it would be
hard to capture the beauty of this language without programs. In this section we present some
alternating algorithms written in our language. First there are programs for some problems
from Section 2.6. We then present a program simulating an alternating Turing machine. Then
there are alternating programs for P-complete problems, which at first sight do not seem to
be alternating problems. We close this section with an alternating program for the PSPACE-
complete problem Tic-Tac-Toe.

3.2.1 Alternating Programs

Here we present some nice alternating programs for the intuitive alternating problems from
Section 2.6. Further we try to give an idea how to write an alternating program starting with
an alternating description of a problem.

Definite Horn Minimal Model

Here we give an alternating program for the definite horn minimal model problem we presented
in Section 2.6.1. First we need a Java encoding of the problem. We decide to encode variables
as characters and therefore we encode a problem instance as a triple:

char goal: the variable we test to be in the minimal model
Map<Character, Set<Set<Character>>> rules: a mapping from a head h to the bodies
of the rules with head h

<Character> fact: a set of facts.

We mentioned in the alternating approach 2.6.4 that a variable p is in the minimal model
of a definite Horn formula if it is either a fact or there is a rule with head p and a body which
is true in the minimal model. So we get two states in the program, the state head that tests
if a variable is in the minimal model and the state body that tests if the body of a rule is in
the minimal model. A configuration is characterized either by a positive literal or by a body
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we have to prove. So the program has two work variables head, body and further there is a
counter used to prevent derivation cycles.

Program: Definite Horn Minimal Model

package at.ac.tuwien.dbai.staff.dvorak.alternation.examples;

import java.util.Map;

import java.util.Set;

atm Horn(char goal, Map<Character, Set<Set<Character>>> rules, Set<Character>

facts) {
char head=goal;

Set<Character> body;

int counter=rules.keySet().size();

state head {
// catch cycles

if (counter<0) {
reject;

} else {
counter--;

}

if (facts.contains(head)) {
accept;

} else {
exists {

for (Set<Character> rule: rules.get(head)) {
body {

body=rule;

}
}

}
}

}

state body {
forall{

for (Character literal: body) {
head {

head=literal;
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}
}

}
}

}

As our framework has a technique to prevent cycles we can drop the counter in this program.
Further it would make the tabled evaluation more efficient if we set body to the null reference
for the head state instances and the head to null for the body state instances.

Graph Game

Here we present a program solving the Acyclic Geography Game we presented in Section 2.6.2.
The program even handles some generalizations. So the input graph can include cycles and
nodes can be marked as winning fields; the player who enters the field wins.

The encoding of a problem instance is:

char goal: the variable we test to be in the minimal model
Graph.Node<Position> startNode: the node where the token is placed at the beginning
Graph<Position> gameBoard: the graph the game is played on

To describe the current game configuration we just need a cursor to the node with the token,
the program saves this in the work variable Graph.Node<Position> position.

In two player games there is a winning strategy for player 1 if there is a move for player 1
such that all possible moves for player 2 lead to a winning position for player 1. So the program
has two states, one for each player. Such a state first checks if the token is at a winning node,
then the other player who moved there wins. If there is no immediate winning position the
program follows all possible moves, in this case all outgoing edges.

Program: Graph Game

package at.ac.tuwien.dbai.staff.dvorak.alternation.examples;

import at.ac.tuwien.dbai.staff.dvorak.alternation.examples.GraphGame.Position;

atm GGAtm (Graph.Node<Position> startNode, Graph<Position> gameBoard) {
Graph.Node<Position> position=startNode;

state ExistsState {
if (position.getObject().winning) {

reject;

} else {
exists {
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for (Graph.Node<Position> node : position.getChildren()) {
ForallState {

position=node;

}
}

}
}

}

state ForallState {
if (position.getObject().winning) {

accept;

} else {
forall {

for (Graph.Node<Position> node : position.getChildren()) {
ExistsState {

position=node;

}
}

}

}
}

}

Cat and Mouse

Cat and Mouse is another program searching for a winning strategy in a game from Section
2.6.2. The Cat and Mouse program is very similar to the program for the geography game.
One difference is that there are two tokens on the graph one for the mouse and one for the cat,
so beside the game board saved as graph and goal Graph<Integer> gameboard, Graph.Node

<Integer> goal we need two start positions Graph.Node<Integer> catStart, Graph.Node<

Integer> mouseStart and two work variables Graph.Node<Integer> catPosition, Graph.

Node<Integer> mousePosition holding the current game configuration.

Another difference between the two games is that the mouse/player1 only wins when it
reaches the goal and not when the cat/player2 has no possible moves. Further the cat and the
mouse always have the choice to pass moving and stay at their node.



50 CHAPTER 3. A JAVA EXTENSION FOR THE ALTERNATION PARADIGM

Program: Cat and Mouse

package at.ac.tuwien.dbai.staff.dvorak.alternation.examples;

atm CatAndMouse(Graph<Integer> gameboard, Graph.Node<Integer> catStart, Graph.

Node<Integer> mouseStart,Graph.Node<Integer> goal) {
Graph.Node<Integer> catPosition=catStart;

Graph.Node<Integer> mousePosition=mouseStart;

int counter=0;

state mouseTurn {
if (mousePosition==catPosition) {

reject;

}
if (counter>gameboard.size()*gameboard.size()) {

reject;

}
exists{

// mouse doesn’t move

catTurn{
counter++;

}
// mouse move

for (Graph.Node child: mousePosition.getChildren()) {
catTurn {

counter++;

mousePosition=child;

}
}

}
}

state catTurn {
if (mousePosition==goal) {

accept;

}
if (mousePosition==catPosition) {

reject;

}
forall{

// cat doesn’t move
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mouseTurn{
counter++;

}
// cat move

for (Graph.Node child: catPosition.getChildren()) {
if (child!=goal) {

mouseTurn {
counter++;

catPosition=child;

}
}

}

}
}

}

The program uses a counter to eliminate strategies where cat and mouse run in cycles, with
the approach of cycle detection1 in our framework this won’t be necessary and even bad for the
performance. We get another optimization approach by observing that if the mouse passes, this
leads to a cycle in the strategy when the cat passes. As the cat choices are universally quantified
we would always get such a cycle in a winning strategy and therefore there is a smaller one
without passing. So it is dispensable to follow such a passing successor and we can remove this
possibility for the mouse player.

Pebble

As third game we present a program for the two-person pebble game from Section 2.6.2. As
this is a two-player game, the program has two states, one for each player, that compute all the
possible moves and recursively evaluate if they lead to a winning strategy. The pebble game
is encoded as follows: A pebble is encoded as String and all pebbles in the game are saved in
a set Set<String> pebbles. The rules are saved as list of length 3 and pooled in Set<List<

String>> rules. The pebble that should be reached is encoded as String goal and further
the initial configuration for the game is in String[] startSet.

The rank of the game is implicitly encoded in the initial configuration, it is the dimen-
sion of the startSet. A configuration of the pebble game is an array String[] S holding the

1We discuss the cycle detection in Section 3.3.3
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current pebbles on the table. This program is a nice example for using arrays in alternating
programming. Without arrays we would have to write a new program for each rank k.

Program: Pebble

package at.ac.tuwien.dbai.staff.dvorak.alternation.examples;

import java.util.Set;

import java.util.List;

import java.util.Arrays;

atm PEBBLE(Set<String> pebbles,Set<List<String>> rules,String goal, String[]

startSet) {
String[] S = startSet.clone();

int counter=(int)Math.pow(pebbles.size(),startSet.length);

state player1 {
Arrays.sort(S);

if (Arrays.binarySearch(S,goal)>=0) reject;

if (counter<0) reject;

exists{
for (List<String> rule : rules) {

if (Arrays.binarySearch(S,rule.get(0))>=0 && Arrays.binarySearch(

S,rule.get(1))>=0 && Arrays.binarySearch(S,rule.get(2))<0) {
player2 {

S[Arrays.binarySearch(S,rule.get(0))]=rule.get(2);

counter--;

}
}

}
}

}

state player2 {
Arrays.sort(S);

if (Arrays.binarySearch(S,goal)>=0) accept;

if (counter<0) reject;

forall{
for (List<String> rule : rules) {

if (Arrays.binarySearch(S,rule.get(0))>=0 && Arrays.binarySearch(
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S,rule.get(1))>=0 && Arrays.binarySearch(S,rule.get(2))<0) {
player1 {

S[Arrays.binarySearch(S,rule.get(0))]=rule.get(2);

counter--;

}
}

}
}

}
}

One thing we have to care about is that the two-person pebble game is in polynomial time, only
for a fixed rank. So if we take a too large value for the rank the run time and space requirements
get bad. Using the counter technique makes things worse as the initial value of the counter grows
exponentially with the rank.

The pebble game is also interesting in the one player version. So one player tries to reach
the goal pebble by applying the interchange rules and we want to know if there exists a series
of moves such that the goal pebble is reached. This is equivalent to the question in n-person
pebble games if it is possible that a player interchanges the goal pebble. Clearly this problem is
in NL and in fact it is NL-complete Kasai et al., 1979. We can solve this with an ”alternating”
algorithm by modifying the program above. First we discard the player2 state and then we
update the player1 state as it is in Listing 3.18.

state player1 {
Arrays . s o r t (S) ;
i f ( Arrays . b inarySearch (S , goa l )>=0) reject ;
i f ( counter <0) reject ;

exists {
for ( L is t<Str ing> r u l e : r u l e s ) {

i f ( Arrays . b inarySearch (S , r u l e . get (0 ) )>=0 && Arrays .
b inarySearch (S , r u l e . get (1 ) )>=0 && Arrays . b inarySearch
(S , r u l e . get (2 ) )<0){

player1 {
S [ Arrays . b inarySearch (S , r u l e . get (0 ) ) ]= r u l e . get

(2 ) ;
counter−−;

}
}

}
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}
}

Listing 3.18: the states in one player pebble program

Circuit Value

The program solving the Monotone Circuit Value Problem from Section 2.6.3 is a program that
works with a single state but still has a quantifier alternation in the computation. A problem
instance consists of the circuit Circuit circuit with an id for each gate, a series of input values
boolean[] input and the id of output gate int outIndex. A configuration of the program is
described by the gate Circuit.Gate<Circuit.GateTypes> gate that is currently evaluated.
The state evaluate chooses the quantifier to use according to the type of the gate. If it is an
OR gate the program quantifies existentially over the predecessor gates and universally for AND
gates.

Program: Monotone Circuit Value Problem

package at.ac.tuwien.dbai.staff.dvorak.alternation.examples;

/** Monotone Circuit Value Problem **/

atm MCVP(Circuit circuit,boolean[] input,int outIndex) {
Circuit.Gate<Circuit.GateTypes> gate=circuit.getOutGate(outIndex);

state evaluate {
switch (gate.type) {
case INPUT:

if (input[circuit.getInputIndex(gate)]==true) {
accept;

} else {
reject;

}
case AND:

forall {
for (Circuit.Gate<Circuit.GateTypes> tempGate: gate.getIn()) {

evaluate {
gate=tempGate;

}
}

}
case OR:

exists {
for (Circuit.Gate<Circuit.GateTypes> tempGate: gate.getIn()) {
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evaluate {
gate=tempGate;

}
}

}
case OUTPUT:

exists {
for (Circuit.Gate<Circuit.GateTypes> tempGate: gate.getIn()) {

evaluate {
gate=tempGate;

}
}

}
default:

reject;

}
}

}

Even if we never reach the default: reject; code, it is necessary for a valid program as each
computation possible for the compiler must have an alternating return value.

3.2.2 An Alternating Turing Machine

As our language is an implementation of the alternating concept introduced by alternating
Turing machines, we are interested whether the language has the whole power of alternating
Turing machines. We show this by simulating an alternating Turing machine in our language.

We simulate a 2-string alternating Turing machine with an input and a work tape over the
alphabet of Java characters, where the symbol ’b’ is reserved for the blank symbol. We encode
an alternating Turing machine as a tuple of:

char[] inputtape: the input
TransitionFunction delta: a nice encoding of the relation δ. The Javadoc documenta-
tion of this class can be found in the Appendix B.1.6
Map<Integer,Character> stateType: a mapping from the states into the set {A,R, F,E}
representing {accept, reject,∧,∨}
int initialState: The initial state
int C: an upper bound for the space requirements

The simulating program encodes a configuration of such a machine as
char[] worktape: the current worktape
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int inputCursor, int workCursor: the cursor position
int activeState: the active state

For technical reasons we use an additional work variable first for some initializing work.

The alternating program has one state that evaluates a configuration. Depending on the
labeling of the states it either accepts/rejects or computes successor configurations and combines
them with the corresponding quantifier.

Program: Alternating Turing Machine

package at.ac.tuwien.dbai.staff.dvorak.alternation.examples;

import java.util.Set;

import java.util.Map;

atm AlternatingTuringMachine(char[] inputtape, TransitionFunction delta, Map<

Integer,Character> stateType, int initialState,int

C) {
char[] worktape=new char[C];

int inputCursor = 0;

int workCursor = 0;

int activeState=initialState;

boolean first =true;

state alternatingTuringMachine {
if (first) {

java.util.Arrays.fill(worktape, ’b’);

first=false;

}
if (stateType.get(activeState).equals(’A’)) {

accept;

}
if (stateType.get(activeState).equals(’R’)) {

reject;

}
if (stateType.get(activeState).equals(’F’)) {

forall {
for (TransitionFunction.Output outputTuple : delta.compute(

inputtape[inputCursor],worktape[workCursor],activeState)) {
alternatingTuringMachine {

worktape[workCursor]=outputTuple.workSymbol;

activeState =outputTuple.newState;

inputCursor+=outputTuple.inputCursor;
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workCursor+=outputTuple.workCursor;

}
}

}
}
if (stateType.get(activeState).equals(’E’)) {

exists {
for (TransitionFunction.Output outputTuple : delta.compute(

inputtape[inputCursor],worktape[workCursor],activeState)) {
alternatingTuringMachine {

worktape[workCursor]=outputTuple.workSymbol;

activeState =outputTuple.newState;

inputCursor+=outputTuple.inputCursor;

workCursor+=outputTuple.workCursor;

}
}

}
}
reject;

}
}

3.2.3 More Alternating Programs

There are problems in P which have intuitive deterministic polynomial time algorithms, but
also have a nice alternating approach. In the following we present two examples for such the
problems.

Lexicographically First Maximal Clique

Here we present a deterministic and an alternating algorithm for the graph problem of finding
a lexicographically first maximal clique. So we start with a definition of this problem

Lexicographically First Maximal Clique (LFMC)

Given: An undirected graph G = (V,E) with an ordering on the vertices and a vertex v
Problem: Is v in the lexicographically first maximal clique?
A clique is a set of nodes with an edge between every two nodes. So a clique is set C ⊆ V

with the property vi, vj ∈ C → (vi, vj) ∈ E. A maximal clique is a clique such that no more
nodes can be added without destroying the clique property.
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Ref: Cook, 1985

A deterministic algorithm would simply compute the lexicographically first maximal clique
iterating over the nodes according to their order. A vertex is added to the clique if it is connected
with all vertices already in the clique. When the algorithm arrives at v it can decide if v is in
the clique or not.

The alternating approach starts with v and uses a recursive characterization of being in a
lexicographically first maximal clique.

Lemma 3.2.1. A node v is in the lexicographically first maximal clique C iff for all vertices
vi < v holds that if (v, vi) 6∈ E then vi 6∈ C.

Proof. ⇒ : v ∈ C implies ∀vi ∈ C : (v, vi) ∈ E. So there is no vi with vi ≤ v, (v, vi) 6∈ E and
vi ∈ C. Therefore the right hand side holds.
⇐ : Adding v to a clique makes this clique lexicographically smaller than adding any series of
vj > v. So we can ignore nodes with higher index.
If the right hand side holds we know that every vertex vi ∈ C is connected with v, other wise
we have a vi with ((v, vi) 6∈ E) and vi ∈ C  .
As v is connected to all vertices in the clique we can add v without destroying the clique property
and therefore v is in the lexicographically first maximal clique.

The alternating algorithm uses Lemma 3.2.1 to decide the Lexicographically First Maximal
Clique problem. First we have to mention the negated statement: A node v is not in the
lexicographically first maximal clique C iff there exists a vertex v′ < v with (v, v′) 6∈ E and
v′ ∈ C. So in the alternating program there is (i) one state that tests if a vertex is in that clique
using the lemma and, (ii) one state that tests if a vertex is not in the clique using the negated
lemma.

Program: Lexicographically First Maximal Clique

package at.ac.tuwien.dbai.staff.dvorak.alternation.examples;

/** Lexicographically First Maximal Clique **/

atm LFMC(UndirectedGraph<Integer> graph, UndirectedGraph.Node<Integer> vertex)

{

UndirectedGraph.Node<Integer> node=vertex;

state inClique {
if (node.getObject().equals(1)) {

accept;

}
forall {

for (int i=1;i<node.getObject();i++) {
if (!graph.get(i).getNeighbours().contains(node)) {
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notInClique {
node=graph.get(i);

}
}

}
}

}

state notInClique {
if (node.getObject().equals(1)) {

reject;

}
exists {

for (int i=1;i<node.getObject();i++) {
if (!graph.get(i).getNeighbours().contains(node)) {

inClique {
node=graph.get(i);

}
}

}
}

}
}

In the states the program always checks if the current node is the first node in the ordering
and if so it accepts or rejects. This is not necessary as the first node has no successors and
therefore a universally quantified state always accepts and a existentially quantified state always
rejects what is exactly what we need here.

Cellular Automata

The second problem is the problem of evaluating a cellular automatons cell state.

One Dimensional Cellular Automata (CA)

Given: A one-dimensional cellular automaton and a state q, a cell c, a time bound t in
unary encoding and an initial configuration. The cellular automaton consists of a bi-infinite
lattice where each square has a value from a finite alphabet Σ and a local transition rule
Φ : Σ2r+1 → Σ. We call r the range. The function Φ computes the state of a cell at time
t+ 1 out of the states from itself and its r-left/right neighbors at time t.
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Problem: Is the cell c in state q at time t?
Ref: Greenlaw et al., 1995, Lindgren and Nordahl, 1990, Alvy Ray Smith, 1971, Albert and
Culik, 1987

The deterministic algorithm starts at time t’=0 with the initial configuration. In each
iteration the algorithm computes the content of the (t− t′) · r right and left neighbors of c and
for c itself using the function Φ.

Once more we use a recursive approach for the alternating program.

Lemma 3.2.2. The cell ci is in state q at time t (ci(t) = q) iff there exists a rule
q−r, . . . , q0, . . . , qr → q with qj ∈ Σ and for all qj it holds that ci+j(t− 1) = qj.

Proof. ⇒ The cellular automaton used a rule to compute ci(t) out of the values ci−r(t −
1), . . . , ci+r(t− 1). So we have found a rule satisfying the right hand side.
⇐ As a cellular automaton is deterministic (Φ is a function) the computation uses the rule from
the right hand side and computes ci(t) = q

The alternating program uses the idea of Lemma 3.2.2 to compute the state. So there is one
state that branches over the rules deriving q and an other state that checks the conditions to
apply a rule.

Program: One Dimensional Cellular Automata

package at.ac.tuwien.dbai.staff.dvorak.alternation.examples;

import java.util.List;

import java.util.Set;

import java.util.Map;

atm OneDimensionalCellularAutomata (char[] cells, int cell, char finalstate, int

T,Byte r, Map<List<Character>,Character>

rphi) {
List<Character> parents;

int t=T;

int position=cell;

char caState=finalstate;

//look for rules deriving the state

state ExistsState {
if (t==0) {

if (position>=0 && position<cells.length) {
if (caState==cells[position]) {

accept;

} else {
reject;
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}
} else {

if (caState==’b’) {
accept;

} else {
reject;

}
}

}
exists{

for (Map.Entry<List<Character>,Character> hilf : rphi.entrySet()) {
if (hilf.getValue().equals(caState)) {

ForallState {
parents=hilf.getKey();

}
}

}
}

}

//check preconditions for the selected rule

state ForallState {
t--;

forall {
for (int i=0 ; i<=2*r; i++) {

ExistsState {
position=position-r+i;

caState=parents.get(i);

}
}

}
}

}

The CA-problem is in polynomial time according to the values of r and t but not according
to the size of an efficient (logarithmic) encoding of them. So this problem is only in the class P

if we encode r and t in a unary way.
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3.2.4 Tic-tac-toe or PSPACE in our Framework

Problems hard for the class PSPACE are known as inherent hard problems, but when dealing
with small instances of such problems we often can solve them in reasonable time and space.
Here we present an alternating program that decides if a tic-tac-toe configuration has a winning
strategy.

Tic-tac-toe is a two-player game played on a 3× 3 grid. The players alternate marking a cell
with their symbol (cross or naught). A player wins if he get a horizontal, vertical or diagonal
row with his symbols. Tic-tac-toe can be generalized as game played on an m × n board and
the players need k cells in a row. It is well known that this generalization of tic-tac-toe is
PSPACE-complete Reisch, 1980, but tic-tac-toe itself is a very small instance and therefore we
can use our framework to compute winning strategies.

The alternating algorithm is very simple. The game grid is encoded as one dimensional array.
The indices 0-2 for the first, 3-5 for the second and 6-8 for the third row. The program uses
an initial state that decides which player starts moving. Then there is a state for each player,
which first computes if the other player already has three in a row. Then it branches over all
possible moves, the empty cells in the grid.

Program: TicTacToe

package at.ac.tuwien.dbai.staff.dvorak.alternation.examples;

atm TicTacToe (byte[] game, boolean crossPlayersTurn) {
byte[] paper = game.clone();

state start {
if (crossPlayersTurn) {

forall {
crossPlayer{
}

}
} else {

forall {
noughtPlayer{
}

}
}

}

state crossPlayer {
// check if there are three noughts in a row

if (paper[4]==2) {
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if ( paper[0]==2 & paper[8]==2) reject;

if ( paper[1]==2 & paper[7]==2) reject;

if ( paper[2]==2 & paper[6]==2) reject;

if ( paper[3]==2 & paper[5]==2) reject;

}
if (paper[0]==2 & paper[1]==2 & paper[2]==2) reject;

if (paper[0]==2 & paper[3]==2 & paper[6]==2) reject;

if (paper[2]==2 & paper[5]==2 & paper[8]==2) reject;

if (paper[6]==2 & paper[7]==2 & paper[8]==2) reject;

exists{
for (int i=0;i<9;i++) {

if (paper[i]==0) {
noughtPlayer {

paper[i]=1;

}
}

}
}

}

state noughtPlayer {
// check if there are three crosses in a row

if (paper[4]==1) {
if ( paper[0]==1 & paper[8]==1) accept;

if ( paper[1]==1 & paper[7]==1) accept;

if ( paper[2]==1 & paper[6]==1) accept;

if ( paper[3]==1 & paper[5]==1) accept;

}
if (paper[0]==1 & paper[1]==1 & paper[2]==1) accept;

if (paper[0]==1 & paper[3]==1 & paper[6]==1) accept;

if (paper[2]==1 & paper[5]==1 & paper[8]==1) accept;

if (paper[6]==1 & paper[7]==1 & paper[8]==1) accept;

if (paper[0]!=0 & paper[1]!=0 & paper[2]!=0 & paper[3]!=0 & paper[4]!=0

& paper[5]!=0 & paper[6]!=0 & paper[7]!=0 & paper[8]!=0) {
reject;

}
forall {

for (int i=0;i<9;i++) {
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if (paper[i]==0) {
crossPlayer {

paper[i]=2;

}
}

}
}

}
}

We computed the output for the empty game board on the authors computer in 4,83 milliseconds
which is indeed feasible. (Intel(R) Core(TM)2 Duo CPU E7200 @ 2.53GHz) As the reader may
know there is no winning strategy for tic-tac-toe.

3.3 The Framework

As we have a language for alternating programs it would be reasonable to have a framework for
executing such programs. In this section we present a framework that efficiently simulates the
alternating programs using the simulating technique from the proof of Theorem 2.5.4.

3.3.1 Used Technologies

First of all a list of technologies used in this framework:

• Sun Java 1.6 - http://java.sun.com/

• ANTLR 3.0.1 - http://www.antlr.org Parr, 2007

• StringTemplate 1.2 - http://www.stringtemplate.org/

• ANTLR Java 1.5 grammar Parr, 2008

3.3.2 Parts of the Framework

The framework consists of 3 parts:

• ANTLR Grammar for alternating programming language - see Appendix A

• A Compiler that translates an alternating programs into Java classes - see Appendix D

• A Java package for simulating alternating programs - see Appendix C

The grammar defines the accurate syntax for writing alternating programs. Based on this gram-
mar the compiler is written in ANTLR and compiled into Java classes.

http://java.sun.com/
http://www.antlr.org
http://www.stringtemplate.org/
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The compiler maps an alternating program to a single Java file but to multiple Java classes.
The package alternation.runtime contains the Java classes for simulating the alternating algo-
rithm. So this package has to be in the class path when executing an alternating program. This
framework is available on the following website:

www.dbai.tuwien.ac.at/staff/dvorak/alternation/

3.3.3 Simulation Algorithms

In this section we present the idea of our simulation algorithms. The corresponding Java -
classes are in the package alternation.runtime (Appendix C). The type for simulation algorithms
is defined in the interface alternation.runtime.ATM (Appendix C.1.1).

We present three algorithms for simulation alternating programs. Starting with a very simple
algorithm and improving it stepwise we present the standard algorithm in our framework. All
three algorithms work in the following way.

1. initializing the work variables

2. Compute the leading-to-acceptance value of the initial state on these work variables.

The algorithms in this section use different ways to evaluate the the leading-to-acceptance value
of a configuration of an alternating program. With a configuration of an alternating program
we mean a pair of a state and a set of work variables instances.

Naive Simulation

The naive way to evaluate the leading-to-acceptance value of a configuration is:

1. Compute the deterministic code of the state until there is an alternating construct.

2. If this construct is an accept / reject statement, the algorithm returns true / false.

3. If this construct is a forall or exists construct the algorithm

(a) computes all successor configurations and store them until there is a decision about
the original configuration.

(b) evaluates the leading-to-acceptance value of the successors and combines them, ac-
cording to the quantifier, to a leading-to-acceptance value for the original configura-
tion.
We use a kind of short-circuit evaluation, so in the forall case the algorithm returns
false when a successor is evaluated to false and returns true when all successors are
evaluated to true. Similar holds for the exists case.

www.dbai.tuwien.ac.at/staff/dvorak/alternation/
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This algorithm makes something like a depth first search in the computation tree. So the
worst case runtime is in proportion to the size of the computation tree. The computation tree
in general grows exponentially with its input, as in worst case it branches in each step and
uses polynomial time. So this is not a good algorithm for problems in the complexity class
ALOGSPACE as we know from Theorem 2.5.5 that such problems can be solved in polynomial
time. Further if there is a loop in the computation tree the algorithm may never halt. We can
avoid this problem by using the counter technique from the proof of Theorem 2.5.1 but this
shifts the responsibility to the programmer and, furthermore, is not optimal for running time
and space behavior.

This algorithm is implemented in the Java class alternation.runtime.ATMsimple (Appendix
C.2.3).

Tabled evaluation

Following the idea from Theorem 2.2 we improve the naive algorithm. The idea is to add a table
where we save all computed configurations with their leading-to-acceptance value.
The leading-to-acceptance value of a configuration is computed as follows:

1. Check if the configuration is in the table and if so return the value from the table

2. Save a copy of the configuration.

3. Compute the deterministic code of the state until there is an alternating construct.

4. If this construct is an accept / reject statement the algorithm returns true / false.

5. If this construct is a forall or exists construct the algorithm

(a) computes all successor configurations and stores them until there is a decision about
the original configuration.

(b) evaluates the leading to acceptance value of the successors and combines them, ac-
cording to the quantifier, to a leading to acceptance value for original configuration.

6. Store the copy of the original configuration and the acceptance value in the table.

The table prevents us from computing the same configuration multiple times. The runtime of
this algorithm is in proportion to the number of configurations. For problems in the complexity
class ALOGSPACE the number of configurations is bounded by a polynomial and therefore this
algorithm is faster than the naive one. This algorithm saves all computed configurations so the
required space is more or less in the order of the running time. This often leads to high space
requirements.

The remaining problem is to handle the cycles in the computation tree. To prevent cycles, the
programmer still has to use a counter or similar techniques. Such counters are usually initialized
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by a polynomial in the input. For the Horn minimal model it is simply the linear polynomial
n. For Cat and Mouse the counter is n2 and it gets worse for a pebble game with a start set of
size 5 where the counter is initialized by n5. We can encode such counters in SPACE(log n) and
so the counter has only a little effect to the size of configurations but the pebble counter gives
a factor n5 to the number of possible configurations and therefore to the running time and to
the space requirements. In the worst case a problem configuration is evaluated once for each
counter value.

This algorithm is implemented in the Java class alternation.runtime.ATMacyclic (Appendix
C.2.1).

Cycle detection

As we have seen the counter technique, a very useful concept for theoretic purposes, makes things
bad in practical computation. But we are favored by fortune and so there is a simple solution
for this problem. While the theoretic approach solves the problem at the level of alternating
machines our approach handles cycles in the simulation algorithm instead of the alternating
program.

We start with thinking about what a simulation algorithm should do when detecting a cycle.
The answer is that the algorithm should reject the last edge of this computation path, because
this cycle would never lead to a minimal solution. With rejecting an edge, we mean to send a
reject to the successor’s evaluation but don’t save the reject value for the last node in the table.

This leads to an algorithm for handling cycles. The algorithm saves the current computation
path in a list with some stack functionality. Whenever a computation revisits a configuration
saved in this list, the algorithm simple determines this edge as false, what is exactly what we
need for this computation path.

When using tabled evaluation we have to be a bit careful with this cycle detection technique.
With cycle detection the evaluation of a configuration is no more independent of the computation
path. An edge that leads to a cycle in one computation path may be a valid choice in another
path. We resolve this problem by flagging rejects caused by cycles. As soon as the first node
of the cycle, we call it cycle leader, is decided to an accept or non-flagged reject, the algorithm
recomputes the leading-to-acceptance values of the states mapped to flagged rejects. If the first
cycle leader in the computation path is determined to a flagged reject we save this as an ordinary
reject.

So this algorithm works as follows:

1. Check if the configuration is in the table and if so return the value from the table

2. Check if the configuration is in the predecessor list and if so return a flaged reject.

3. Save a copy of the configuration.

4. Compute the deterministic code of the state until there is an alternating construct.
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5. If this construct is an accept / reject statement the algorithm returns true / false.

6. If this construct is a forall or exists construct the algorithm

(a) stores the copy of the original configuration and the acceptance value false in the
table;

(b) computes all successor configurations and stores them until we made a decision about
the original configuration;

(c) evaluates the leading-to-acceptance value of the successors and combines them, ac-
cording to the quantifier, to a leading-to-acceptance value for original configuration.

7. If this configuration is a cycle leader then update the table according to the acceptance
value.

This is the algorithm used by default in our framework, it is implemented in the Java class
alternation.runtime.ATMcyclic (Appendix C.2.2).

3.3.4 The Compiler

As we have mentioned, the compiler maps an alternating program to several Java classes but
only generates one file. So we handle nested classes. The main class adopts the alternating
programs name and has the following nested classes:

• a class Inputtape which is a container for the input variables of the alternating program

• a container class Worktape to handle the work variables.

• a class for each state in the alternating algorithm. Such a class inherits a method to
set the input of the computation and defines a method given a configuration of work
variables computing the Result of the state. Such a Result is either accept/reject or a set
of successors with a quantifier.

Listing 3.19 shows an example of such a Java file with nested classes.

public class Horn {
private ATM<Inputtape , Worktape> atm ;
public class Inputtape {

[ . . . ]
}
public class Worktape implements InterfaceWorktape<Inputtape> {

[ . . . ]
}
private class head extends State<Inputtape , Worktape> {

public ResultTuple<Worktape> compute ( Worktape atmWorktape ) {
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[ . . . ]
}

}
private class body State<Inputtape , Worktape> {

public ResultTuple<Worktape> compute ( Worktape atmWorktape ) {
[ . . . ]

}
}

Listing 3.19: Classes in the compiled Horn program (simplified)

The main class itself has two methods. The compute method computes the alternating
algorithm on an input. The method getComputationTree() method is the interface to the
computation tree of the alternating computation.

public boolean compute (char goal ,Map<Character , Set<Set<
Character>>> ru l e s , Set<Character> f a c t s ) {

[ . . . ]
}
public ComputationTree<Worktape> getComputationTree ( ) {

[ . . . ]
}

}

Listing 3.20: Methods in the compiled Horn program (simplified)

3.3.5 The Computation Tree in our Framework

As we mentioned in Section 2.7 the computation tree is our resource for additional information
about the solution. In our algorithm with tabled evaluation we save the whole computation tree
and therefore we have access to this information.

After computing the decision of one problem instance we can access the computation tree
with the getComputationTree() method. This method returns an object of the type alternation
.runtime.ComputationTree (Appendix C.2.6), which offers a tree functionality to navigate be-
tween configurations and access to their work variables. So we can write programs playing
winning strategies in a specific game or get a proof tree for a Horn problem

In Listing 3.21 there is an example program that extracts all rules from the proof tree of a
definite Horn minimal model instance. We simply do this by recursive access to the leading to
acceptance successors starting with the initial configuration, the root of the computation tree.

public stat ic void drawProofTree ( ComputationTree<Horn . Worktape> cT) {
drawNode (cT , cT . getRoot ( ) ) ;

}
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public stat ic void drawNode ( ComputationTree<Horn . Worktape> cT ,
ComputationNode<Horn . Worktape> node ) {

List<ComputationNode<Horn . Worktape>> c h i l d r e n=cT . getChi ldren (
node ) ;

i f ( c h i l d r e n !=null ) {
i f ( node . i s A l l Q u a n t i f i e d ( ) ) {

System . out . p r i n t l n ( node . getWorktape ( ) . head + ”:− ”+ node
. getWorktape ( ) . body ) ;

for ( ComputationNode<Horn . Worktape> c h i l d : c h i l d r e n ) {
i f (cT . get ( c h i l d ) . equa l s ( true ) ) {

drawNode (cT , c h i l d ) ;
}

}
} else {

for ( ComputationNode<Horn . Worktape> c h i l d : c h i l d r e n ) {
drawNode (cT , c h i l d ) ;

}
}

}
}

Listing 3.21: Program that prints all clauses used to decide a definite Horn minimal model
instance



Chapter 4

Experimental results

In this chapter we present some empirical tests with our framework. First we compare the
running time behavior of alternating programs in contrast to deterministic programs for the same
problems. In the second part of this chapter we compare the different simulation algorithms for
alternating programs we introduced in Section 3.3.3.

The run time measurement data present in this chapter was generated on the following
system.

Test System

• CPU: PE T300 Quad Core Xeon X3323, 2.5GHz, 2x3MB, 1333MHz FSB

• RAM: 4GB DDR2 667MHz Memory

• OS: SUSE Linux Enterprise Server 10

• Java: Java(TM) SE Runtime Environment (build 1.6.0 10-rc-b28)

Further we started the Java virtual machine with the following parameters -Xms512m -Xmx1536m
-Xss2024k. So the programs where restricted to 1,5 GB memory.

4.1 Alternating Programs vs Iterative Programs

In this section we compare a deterministic program deciding the Horn minimal model problem
with our alternating program. We are interested in their run time behavior and for the Horn
program if the given memory suffices for a computation.

The deterministic algorithm computes the minimal model as follows. The set M is initialized
as empty set. Then the set iterates over the clauses of the formula. If all negated literals of a
clause are already in M , then the positive literal is added to M and the rule is removed. The
algorithm accepts as soon we add the variable we ate interested in to M and rejects if it iterates
over all remaining rules without changing M . The Java implementation of this algorithm can
be found in Listing 4.1.
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public stat ic boolean solveHorn (Map<Set<Integer >,Set<Integer>>
c l ause s , int goa l ) {
Set<Integer> model=new HashSet<Integer >() ;
i f ( c l a u s e s . containsKey (new HashSet<Integer >() ) ) {

model . addAll ( c l a u s e s . get (new HashSet<Integer >() ) ) ;
}
boolean modify=true ;
while ( modify ) {

modify=fa l se ;
for ( Set<Integer> body : c l a u s e s . keySet ( ) ) {

i f ( model . c o n t a i n s A l l ( body ) ) {
Set<Integer> head=c l a u s e s . get ( body ) ;
i f ( head . conta in s ( goa l ) ) {return true ;}
model . addAll ( c l a u s e s . get ( body ) ) ;
modify=true ;
c l a u s e s . remove ( body ) ;
break ;

}

}
}
return fa l se ;

}

Listing 4.1: Java program for the definite Horn minimal model problem

4.1.1 Test Data

All starts with generating some examples to test the algorithms. A problem instance is a definite
horn formula over some variables Σ and a variable that should be tested. So we fix the set of
variables to Σ1 = {0, 1, . . . , 48, 49} or Σ2 = {0, 1, . . . , 98, 99} and the goal to 0. To complete the
instances we randomly generate a definite Horn formula as described in the following.

First we restrict the clauses of our horn formula to have at most three literals. Then we
generate k clauses by selecting variables uniformly distributed. In this process we eliminate
duplicates such that we have k different clauses in the formula. We generated test instances
with different combinations of Σi and k over all 2700 instances.
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Σ k # instances

Σ1 800 150
Σ1 1600 150
Σ1 3200 150
Σ1 6400 150
Σ1 12800 150
Σ1 25600 150
Σ1 51200 150
Σ1 102400 150

Σ k # instances

Σ2 1600 150
Σ2 3200 150
Σ2 6400 150
Σ2 12800 150
Σ2 25600 150
Σ2 51200 150
Σ2 102400 150
Σ2 204800 150
Σ2 409600 150
Σ2 819200 150

4.1.2 Results

As we see in Figure 4.1 the algorithms plays in the same league for a low density of clauses,
while in average the deterministic algorithm is a little bit faster. For a high density of clauses
which causes a very high branching in the alternating algorithm the deterministic algorithm is
about two times faster.

(a) Σ1 (b) Σ2

Figure 4.1: deterministic Horn vs. alternating Horn program, mean running time according to
the number of clauses and different number of variables

Overall the running time of alternating program is very near to the running time of the
deterministic program for an average problem instance. The mean difference is about 480
milliseconds.

4.2 Simulation algorithms

In this section we compare the simple tabled evaluation algorithm with the algorithm improved
by the cycle detection. For this purpose we used the Horn program and a slightly optimized
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version of the Cat and Mouse program from Section 3.2.1. In both programs we removed the stay
possibility for the mouse, which never leads to a ”minimal” winning strategy. In the algorithm
for the cycle detection simulation we further removed the counter.

state mouseTurn {
i f ( mousePosit ion==c a t P o s i t i o n ) {

reject ;
}
exists {

for ( Graph . Node c h i l d : mousePosit ion . getChi ldren ( ) ) {
catTurn{

mousePosit ion=c h i l d ;
}

}
}

}

Listing 4.2: mouse state in the algorithm with cycle detection

4.2.1 Test Data

For the Horn algorithms we used test data described in section 4.1.1. The CatAndMouse al-
gorithms required new test data. An instance of a cat and mouse game is a graph with three
designated nodes. We fixed the set of nodes as {1, 2, 3, . . . , n}. The mouse starts at node 1, the
cat at node 2 and the goal is 3. We generated random graphs by iterating over all possible edges
and add them with probability p in the graph. We vary n in the values {10, 15, . . . , 45, 50} and
p in {0.3, 0.5, 0.7}. For each combination of n and p we created 150 graphs and overall we get
4050 test instances.

4.2.2 Results

First we look at Horn problems where the value of the counter is only linear so that should not
make things too worse. Figure 4.2 shows that even for this good case the algorithm with cycle
detection is significantly faster.

Figure 4.3 shows why a good cycle detection is so important for our framework. The simple
tabled evaluation algorithm is about a factor 10 slower than the improved one for graphs of size
50.

The reader may ask why there is no comparison with the simple simulation algorithm without
tabled evaluation. The answer is that this algorithm is too bad, it can take days to get an answer
for an instance even for graphs of size 10.



(a) Σ1 (b) Σ2

Figure 4.2: simple tabled evaluation vs. tabled evaluation with cycle detection , Horn programs
mean running time according to the number of clauses and different number of variables



(a) p=0.3 (b) p=0.5

(c) p=0.7

Figure 4.3: simple tabled evaluation vs. tabled evaluation with cycle detection, Cat and Mouse
programs mean running time according to the number of nodes and the edge density
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Summary & Conclusion

We explained why alternation is an important and useful programming concept in computational
complexity theory and why it is desirable to have this concept available in practice. Further we
identified the class ALOGSPACE as the class of feasible alternating problems.

In Section 2.6 we presented a range of natural alternating problems, i.e. problems that have
a very intuitive alternating algorithm among them logic problems on Horn formulas, two player
games, circuit evaluation problems and graph problems. We mentioned that these problems
are feasible computable problems and therefore we have got a range of problems for which our
framework is a benefit.

The language we introduced for alternating programming gives us a very intuitive tool to
solve these problems. Further this languages also saves the power of Java and so that we can
also use object-oriented features. The fact that our language is the appropriate method for
alternating problems is confirmed by the program examples for these problems in Section 3.2.

Additional to solve the decision problems with alternating programs we also presented the
computation tree as resource for additional information about the solution of the decision prob-
lem. So our framework has an interface to access the computation tree to construct for example
a proof tree or a wining strategy.

The practical tests which we performed on our framework empirically showed that the run-
ning time of alternation programs simulated in our framework is almost as good as for de-
terministic programs. This means that the simulation algorithm in the framework does good
work.

We have natural problems where alternating programming is the appropriate approach, a
language to write alternating programs in a very intuitive way and a framework that executes the
program in an efficient way. Therefore alternation is a programming paradigm that is useful for
practical programming. Further the alternating paradigm is not restricted to decision problems,
with the access to the computation tree we can do even more. In particular, having computed
a winning strategy, we can use the computation tree to output or play this strategy.
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5.1 Future Work

With our framework we developed a useful prototype for alternating programming, but there
may be optimization potential in the simulation algorithm. So it seems to be wasted time to
compute all successors in the cases where the algorithm only evaluates a few of them. A technique
that computes the successors on demand when they are needed may be an improvement.

Another effect we observed is the fact that the order in which the successors are evaluated
has a big effect on the running time. Thinking of games, it is bad if the move which leads
immediately to a result is computed as last and the moves bringing no decision but causes big
computation trees computed first. In many games this effect would be significantly reduced
when adding some game specific heuristics for the evaluation order. So it would be a nice
improvement for the language to add constructs that allows a programmer to modify the order
of the successors.
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APPENDIX

This appendix offers additional resources for the alternation framework we introduced in the
thesis.

• Appendix A: A ANTLR Grammar for the alternating programming language. It can be
used to verify whether an alternating program fulfills the syntax of the language.

• Appendix B: The Javadoc documentation of the alternation.example package. Here we
present the classes we used in our examples in all details.

• Appendix C: The Javadoc documentation of the alternation.runtime package. This is the
package with the classes used for the different simulation algorithms.

• Appendix D: The Javadoc documentation of the main compiler class of our framework.
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Appendix A

Grammar

grammar alternating machine;

atm file:
packageDecl
importDeclaration*
head

’{’
worktape
state+

’}’
;

packageDecl: ’package’ qualifiedName ’;’
;

importDeclaration: ’import’ ’static’? qualifiedName (’.’ ’*’)? ’;’
;

head : (Identifier)? ’atm’ Identifier ’(’input’)’
;

input : arg(’,’ arg)*
;

arg : type Identifier
;

worktape: declaration*
;

declaration :
args ’;’

| primitiveType Identifier ’=’ expression’;’
| classOrInterfaceType Identifier ’=’ expression’;’
| oneDimensionalArrayType Identifier ’=’ ( ’new’ arrayCreator ’;’

83
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|expression’;’)
;

oneDimensionalArrayType : (primitiveType| classOrInterfaceType)’[’’]’
;

args : classOrInterfaceType Identifier (’,’ =Identifier)*
;

state : ’state’ Identifier ’{’ atmJava ’}’
;

atmJava : statement+
;

/*
[The ”BSD licence”]
Copyright (c) 2007-2008 Terence Parr
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS” AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOW-
EVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
*/

typeList: type (’,’ type)*
;

variableDeclarators: variableDeclarator (’,’ variableDeclarator)*
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;

variableDeclarator: variableDeclaratorId (’=’ variableInitializer)?
;

variableDeclaratorId: Identifier (’[’ ’]’)*
;

variableInitializer:
arrayInitializer

| expression
;

arrayInitializer: ’{’ (variableInitializer (’,’ variableInitializer)* (’,’)? )
? ’}’

;

type:
classOrInterfaceType (’[’ ’]’)*

| primitiveType (’[’ ’]’)*
;

classOrInterfaceType: Identifier typeArguments? (’.’ Identifier typeArguments?
)*

;

primitiveType:
’boolean’

| ’char’
| ’byte’
| ’short’
| ’int’
| ’long’
| ’float’
| ’double’
;

typeArguments: ’<’ typeArgument (’,’ typeArgument)* ’>’
;

typeArgument:
type

| ’?’ ((’extends’ | ’super’) type)?
;
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qualifiedName: Identifier(’.’ Identifier)*
;

literal:
integerLiteral

| FloatingPointLiteral
| CharacterLiteral
| StringLiteral
| booleanLiteral
| ’null’
;

integerLiteral:
HexLiteral

| OctalLiteral
| DecimalLiteral
;

booleanLiteral:
’true’

| ’false’
;

// STATEMENTS / BLOCKS

block: ’{’ stmts+=blockStatement* ’}’
;

blockStatement: statement
;

localVariableDeclaration: type variableDeclarators
;

statement:
block

| ’if’ parExpression statement (’else’ statement)?
| ’for’ ’(’ forControl ’)’ statement
| ’while’ parExpression statement
| ’do’ statement ’while’ parExpression ’;’
| ’try’ block

( catches ’finally’ block
| catches
| ’finally’ block
)

| ’switch’ parExpression ’{’ switchBlockStatementGroups ’}’
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| ’throw’ expression ’;’
| ’break’ (Identifier)? ’;’
| ’continue’ (Identifier)? ’;’
| ’;’
| statementExpression ’;’
| Identifier ’:’ statement
| ACCEPT ’;’
| REJECT ’;’
| FORALL ’{’ nondeterminism ’}’
| EXISTS ’{’ nondeterminism ’}’
;

catches: (catchClause)+
;

catchClause: ’catch’ ’(’ formalParameter ’)’ block
;

formalParameter: type variableDeclaratorId
;

switchBlockStatementGroups: (switchBlockStatementGroup)*
;

/* The change here (switchLabel -> switchLabel+) technically makes this grammar
ambiguous; but with appropriately greedy parsing it yields the most
appropriate AST, one in which each group, except possibly the last one, has
labels and statements. */

switchBlockStatementGroup: switchLabel+ blockStatement*
;

switchLabel:
’case’ constantExpression ’:’

| ’default’ ’:’
;

forControl:
enhancedForControl

| forInit? ’;’ expression? ’;’ forUpdate?
;

forInit:
localVariableDeclaration

| expressionList
;

enhancedForControl: type Identifier ’:’ expression
;
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forUpdate: expressionList
;

// EXPRESSIONS

parExpression: ’(’ expression ’)’
;

expressionList: expression (’,’ expression)*
;

statementExpression: expression
;

constantExpression: expression
;

expression: conditionalExpression (assignmentOperator expression)?
;

assignmentOperator:
’=’

| ’+=’
| ’-=’
| ’*=’
| ’/=’
| ’&=’
| ’|=’
| ’^=’
| ’%=’
| (’<’ ’<’ ’=’)=> t1=’<’ t2=’<’ t3=’=’

{ $t1.getLine() == $t2.getLine() &&
$t1.getCharPositionInLine() + 1 == $t2.getCharPositionInLine() &&
$t2.getLine() == $t3.getLine() &&
$t2.getCharPositionInLine() + 1 == $t3.getCharPositionInLine() }?

| (’>’ ’>’ ’>’ ’=’)=> t1=’>’ t2=’>’ t3=’>’ t4=’=’
{ $t1.getLine() == $t2.getLine() &&

$t1.getCharPositionInLine() + 1 == $t2.getCharPositionInLine() &&
$t2.getLine() == $t3.getLine() &&
$t2.getCharPositionInLine() + 1 == $t3.getCharPositionInLine() &&
$t3.getLine() == $t4.getLine() &&
$t3.getCharPositionInLine() + 1 == $t4.getCharPositionInLine() }?

| (’>’ ’>’ ’=’)=> t1=’>’ t2=’>’ t3=’=’
{ $t1.getLine() == $t2.getLine() &&

$t1.getCharPositionInLine() + 1 == $t2.getCharPositionInLine() &&
$t2.getLine() == $t3.getLine() &&
$t2.getCharPositionInLine() + 1 == $t3.getCharPositionInLine() }?



89

;

conditionalExpression: conditionalOrExpression ( ’?’ expression ’:’ expression
)?

;

conditionalOrExpression: conditionalAndExpression ( ’||’
conditionalAndExpression )
*

;

conditionalAndExpression: inclusiveOrExpression ( ’&&’ inclusiveOrExpression )
*

;

inclusiveOrExpression: exclusiveOrExpression ( ’|’ exclusiveOrExpression )*
;

exclusiveOrExpression: andExpression ( ’^’ andExpression )*
;

andExpression: equalityExpression ( ’&’ equalityExpression )*
;

equalityExpression: instanceOfExpression ( (’==’ | ’!=’) instanceOfExpression )
*

;

instanceOfExpression: relationalExpression (’instanceof’ type)?
;

relationalExpression: shiftExpression ( relationalOp shiftExpression )*
;

relationalOp:
(’<’ ’=’)=> t1=’<’ t2=’=’
{ $t1.getLine() == $t2.getLine() &&

$t1.getCharPositionInLine() + 1 == $t2.getCharPositionInLine() }?
| (’>’ ’=’)=> t1=’>’ t2=’=’

{ $t1.getLine() == $t2.getLine() &&
$t1.getCharPositionInLine() + 1 == $t2.getCharPositionInLine() }?

| ’<’
| ’>’
;

shiftExpression: additiveExpression ( shiftOp additiveExpression )*
;
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shiftOp:
(’<’ ’<’)=> t1=’<’ t2=’<’
{ $t1.getLine() == $t2.getLine() &&

$t1.getCharPositionInLine() + 1 == $t2.getCharPositionInLine() }?
| (’>’ ’>’ ’>’)=> t1=’>’ t2=’>’ t3=’>’

{ $t1.getLine() == $t2.getLine() &&
$t1.getCharPositionInLine() + 1 == $t2.getCharPositionInLine() &&
$t2.getLine() == $t3.getLine() &&
$t2.getCharPositionInLine() + 1 == $t3.getCharPositionInLine() }?

| (’>’ ’>’)=> t1=’>’ t2=’>’
{ $t1.getLine() == $t2.getLine() &&

$t1.getCharPositionInLine() + 1 == $t2.getCharPositionInLine() }?
;

additiveExpression: multiplicativeExpression ( (’+’ | ’-’)
multiplicativeExpression )*

;

multiplicativeExpression: unaryExpression ( ( ’*’ | ’/’ | ’%’ )
unaryExpression )*

;

unaryExpression:
’+’ unaryExpression

| ’-’ unaryExpression
| ’++’ unaryExpression
| ’--’ unaryExpression
| unaryExpressionNotPlusMinus
;

unaryExpressionNotPlusMinus:
’∼’ unaryExpression

| ’!’ unaryExpression
| castExpression
| primary selector* (’++’|’--’)?
;

castExpression:
’(’ primitiveType ’)’ unaryExpression

| ’(’ (type | expression) ’)’ unaryExpressionNotPlusMinus
;

primary:
parExpression

| literal
| id=Identifier (’.’ Identifier)* identifierSuffix?
| primitiveType (’[’ ’]’)* ’.’ ’class’
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| ’void’ ’.’ ’class’
;

identifierSuffix:
(’[’ ’]’)+ ’.’ ’class’

| (’[’ expression ’]’)+ // can also be matched by selector, but do here
| arguments
| ’.’ ’class’
| ’.’ explicitGenericInvocation
;

arrayCreator:
createdName ’[’
( ’]’ arrayInitializer
| expression ’]’
)

;

createdName:
classOrInterfaceType

| primitiveType
;

explicitGenericInvocation: nonWildcardTypeArguments Identifier arguments
;

nonWildcardTypeArguments: ’<’ typeList ’>’
;

selector:
’.’ Identifier arguments?

| ’[’ expression ’]’
;

arguments: ’(’ expressionList? ’)’
;

// forall - exists
nondeterminism:

(stateCall
| stateLoop)+
;

stateCall:
Identifier stateBlock

| ’if’ parExpression ’{’ stateCall+ ’}’ (’else’ ’{’stateCall+’}’)?
;
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stateLoop:
’for’ ’(’ forControl ’)’ ’{’ stateCall ’}’

;

stateBlock: ’{’ stateStatement* ’}’
;

stateStatement:
stateBlock

| ’if’ parExpression stateStatement (’else’ stateStatement)?
| ’for’ ’(’ forControl ’)’ stateStatement
| ’while’ parExpression stateStatement
| ’do’ stateStatement ’while’ parExpression ’;’
| ’try’ b1=stateBlock

( catches ’finally’ stateBlock
| catches
| ’finally’ stateBlock
)

| ’switch’ parExpression ’{’ switchBlockStatementGroups ’}’
| ’throw’ expression ’;’
| ’break’ (Identifier)? ’;’
| ’continue’ (Identifier)? ’;’
| ’;’
| statementExpression ’;’
| Identifier ’:’ statement
;

// LEXER
ACCEPT : ’accept’;

REJECT : ’reject’;

FORALL : ’forall’;

EXISTS : ’exists’;

HexLiteral : ’0’ (’x’|’X’) HexDigit+ IntegerTypeSuffix? ;

DecimalLiteral : (’0’ | ’1’..’9’ ’0’..’9’*) IntegerTypeSuffix? ;

OctalLiteral : ’0’ (’0’..’7’)+ IntegerTypeSuffix? ;

fragment
HexDigit : (’0’..’9’|’a’..’f’|’A’..’F’) ;

fragment
IntegerTypeSuffix : (’l’|’L’) ;
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FloatingPointLiteral:
(’0’..’9’)+ ’.’ (’0’..’9’)* Exponent? FloatTypeSuffix?

| ’.’ (’0’..’9’)+ Exponent? FloatTypeSuffix?
| (’0’..’9’)+ Exponent FloatTypeSuffix?
| (’0’..’9’)+ FloatTypeSuffix
;

fragment
Exponent : (’e’|’E’) (’+’|’-’)? (’0’..’9’)+ ;

fragment
FloatTypeSuffix : (’f’|’F’|’d’|’D’) ;

CharacterLiteral: ’\’’ ( EscapeSequence | ∼(’\’’|’\\’) ) ’\’’
;

StringLiteral: ’"’ ( EscapeSequence | ∼(’\\’|’"’) )* ’"’
;

fragment
EscapeSequence:

’\\’ (’b’|’t’|’n’|’f’|’r’|’\"’|’\’’|’\\’)
| UnicodeEscape
| OctalEscape
;

fragment
OctalEscape:

’\\’ (’0’..’3’) (’0’..’7’) (’0’..’7’)
| ’\\’ (’0’..’7’) (’0’..’7’)
| ’\\’ (’0’..’7’)
;

fragment
UnicodeEscape: ’\\’ ’u’ HexDigit HexDigit HexDigit HexDigit

;

Identifier: Letter (Letter|JavaIDDigit)*
;

fragment
Letter:

’\u0024’ |
’\u0041’..’\u005a’ |
’\u005f’ |
’\u0061’..’\u007a’ |
’\u00c0’..’\u00d6’ |
’\u00d8’..’\u00f6’ |
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’\u00f8’..’\u00ff’ |
’\u0100’..’\u1fff’ |
’\u3040’..’\u318f’ |
’\u3300’..’\u337f’ |
’\u3400’..’\u3d2d’ |
’\u4e00’..’\u9fff’ |
’\uf900’..’\ufaff’

;

fragment
JavaIDDigit:

’\u0030’..’\u0039’ |
’\u0660’..’\u0669’ |
’\u06f0’..’\u06f9’ |
’\u0966’..’\u096f’ |
’\u09e6’..’\u09ef’ |
’\u0a66’..’\u0a6f’ |
’\u0ae6’..’\u0aef’ |
’\u0b66’..’\u0b6f’ |
’\u0be7’..’\u0bef’ |
’\u0c66’..’\u0c6f’ |
’\u0ce6’..’\u0cef’ |
’\u0d66’..’\u0d6f’ |
’\u0e50’..’\u0e59’ |
’\u0ed0’..’\u0ed9’ |
’\u1040’..’\u1049’

;

CMT: ’/*’(options {greedy=false;}:.)* ’*/’{$channel = HIDDEN;};
LCMT: ’//’ ∼(’\n’|’\r’)* ’\r’? ’\n’ {$channel = HIDDEN;};
WS: (’ ’|’\t’|’\r’|’\n’)+ {$channel = HIDDEN;};
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B.1 Classes

B.1.1 Class Circuit

A boolean circuit

Declaration

public class Circuit
extends java.lang.Object

Constructors

• Circuit
public Circuit( )

Methods

• addGate
public void addGate( int gateNumber,
alternation.examples.Circuit.GateTypes type )

– Usage
∗ add a gate to the circuit

– Parameters
∗ gateNumber - gate identifier
∗ type - type of the gate

• connect
public void connect( alternation.examples.Circuit.Gate from,
alternation.examples.Circuit.Gate to )

– Usage
∗ connect a gates output with another gates input

– Parameters
∗ from -
∗ to -

• getGate
public Circuit.Gate getGate( int gateNumber )

– Parameters
∗ gateNumber - identifier

– Returns - the gate with the specified identifier

• getInputGate
public Circuit.Gate getInputGate( int index )
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– Parameters
∗ index -

– Returns - the specified input Gate

• getInputIndex
public int getInputIndex( alternation.examples.Circuit.Gate gate )

– Parameters
∗ gate -

– Returns - number in the ordering of input gates

• getOutGate
public Circuit.Gate getOutGate( int index )

– Parameters
∗ index -

– Returns - the specified output Gate

B.1.2 Class Circuit.Gate

A Gate in the boolean circuit

Declaration

class Circuit.Gate
extends java.lang.Object

Fields

• public Object type

–

Constructors

• Circuit.Gate
public Circuit.Gate( java.lang.Object type )

Methods

• addIn
boolean addIn( alternation.examples.Circuit.Gate from )

• addOut
boolean addOut( alternation.examples.Circuit.Gate to )
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• getIn
public Set getIn( )

• getOut
public Set getOut( )

B.1.3 Class Circuit.GateTypes

The different types of gates

Declaration

static final class Circuit.GateTypes
extends java.lang.Enum

Fields

• public static final Circuit.GateTypes AND

–

• public static final Circuit.GateTypes OR

–

• public static final Circuit.GateTypes NOT

–

• public static final Circuit.GateTypes INPUT

–

• public static final Circuit.GateTypes OUTPUT

–

Methods

• valueOf
public static Circuit.GateTypes valueOf( java.lang.String name )

• values
public static Circuit.GateTypes values( )
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Methods inherited from class java.lang.Enum

• clone
protected final Object clone( )

• compareTo
public final int compareTo( java.lang.Enum arg0 )

• equals
public final boolean equals( java.lang.Object arg0 )

• finalize
protected final void finalize( )

• getDeclaringClass
public final Class getDeclaringClass( )

• hashCode
public final int hashCode( )

• name
public final String name( )

• ordinal
public final int ordinal( )

• toString
public String toString( )

• valueOf
public static Enum valueOf( java.lang.Class arg0, java.lang.String arg1 )

B.1.4 Class Graph

A directed graph

Declaration

public class Graph
extends java.lang.Object
implements java.lang.Iterable

Constructors

• Graph
public Graph( )

Methods

• addEdge
public boolean addEdge( java.lang.Object node1, java.lang.Object
node2 )

• addNode
public boolean addNode( java.lang.Object node )
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• get
public Graph.Node get( java.lang.Object node )

• iterator
public Iterator iterator( )

• removeEdge
public boolean removeEdge( java.lang.Object node1, java.lang.Object
node2 )

• removeNode
public boolean removeNode( java.lang.Object node )

• size
public int size( )

– Returns - number of nodes

B.1.5 Class Graph.Node

Node in a directed graph

Declaration

public static class Graph.Node
extends java.lang.Object

Constructors

• Graph.Node
public Graph.Node( java.lang.Object object )

Methods

• addChild
public boolean addChild( alternation.examples.Graph.Node child )

• addParent
public boolean addParent( alternation.examples.Graph.Node parent )

• childIterator
public Iterator childIterator( )

• getChildren
public Set getChildren( )

• getObject
public Object getObject( )

• getParents
public Set getParents( )
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• isLinked
public boolean isLinked( )

• parentIterator
public Iterator parentIterator( )

• removeChild
public boolean removeChild( alternation.examples.Graph.Node child )

• removeParent
public boolean removeParent( alternation.examples.Graph.Node parent )

• toString
public String toString( )

B.1.6 Class TransitionFunction

Transition Function delta for a nondeterministic 2-string Turing machines

Declaration

public class TransitionFunction
extends java.lang.Object

Constructors

• TransitionFunction
public TransitionFunction( )

Methods

• addRule
public void addRule( char inputSymbol, char workSymbol, int state,
char newWorkSymbol, int newState, int inputCursor, int
workCursor )

– Usage
∗ adds a transition rule

– Parameters
∗ inputSymbol -
∗ workSymbol -
∗ state -
∗ newWorkSymbol -
∗ newState -
∗ inputCursor -
∗ workCursor -

• compute
public Set compute( char inputSymbol, char workSymbol, int state )
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– Usage
∗ computes the transition function

– Parameters
∗ inputSymbol -
∗ workSymbol -
∗ state -

– Returns - the set of possible successors

B.1.7 Class TransitionFunction.Input

An Input tuple (input symbol, worksymbol, state) for the transition function

Declaration

static class TransitionFunction.Input
extends java.lang.Object

Constructors

• TransitionFunction.Input
public TransitionFunction.Input( char inputSymbol, char workSymbol,
int state )

Methods

• equals
public boolean equals( java.lang.Object obj )

• hashCode
public int hashCode( )

B.1.8 Class TransitionFunction.Output

An tuple in the Output Set (work symbol, new state, inputCursor movement, workCursor movement)

Declaration

static class TransitionFunction.Output
extends java.lang.Object

Constructors

• TransitionFunction.Output
public TransitionFunction.Output( char workSymbol, int newState, int
inputCursor, int workCursor )
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Methods

• equals
public boolean equals( java.lang.Object obj )

• hashCode
public int hashCode( )

B.1.9 Class UndirectedGraph

An undirected graph

Declaration

public class UndirectedGraph
extends java.lang.Object
implements java.lang.Iterable

Constructors

• UndirectedGraph
public UndirectedGraph( )

Methods

• addEdge
public boolean addEdge( java.lang.Object node1, java.lang.Object
node2 )

• addNode
public boolean addNode( java.lang.Object node )

• get
public UndirectedGraph.Node get( java.lang.Object position )

• iterator
public Iterator iterator( )

• removeEdge
public boolean removeEdge( java.lang.Object node1, java.lang.Object
node2 )

• removeNode
public boolean removeNode( java.lang.Object node )

• size
public int size( )
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B.1.10 Class UndirectedGraph.Node

A node in an undirected graph

Declaration

public static class UndirectedGraph.Node
extends java.lang.Object

Constructors

• UndirectedGraph.Node
public UndirectedGraph.Node( java.lang.Object object )

Methods

• addNeighbour
public boolean addNeighbour( alternation.examples.UndirectedGraph.Node
child )

• getNeighbours
public Set getNeighbours( )

• getObject
public Object getObject( )

• isLinked
public boolean isLinked( )

• neighboursIterator
public Iterator neighboursIterator( )

• removeNeighbour
public boolean removeNeighbour(
alternation.examples.UndirectedGraph.Node child )

• toString
public String toString( )
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C.1 Interfaces

C.1.1 Interface ATM

simulation algorithm for alternating programs

Declaration

public interface ATM

Methods

• compute
public boolean compute( java.lang.Object input )

– Usage
∗ simulates the machine on the given input

– Parameters
∗ input - Container with the input

– Returns - true if accepts and false if rejects

• getComputationTree
public ComputationTree getComputationTree( )

– Returns - computation tree if available otherwise null

C.1.2 Interface InterfaceWorktape

Container of work variables in our alternating machine.

Declaration

public interface InterfaceWorktape

Methods

• clone
public InterfaceWorktape clone( )

– Returns - a (flat) copy from the worktape

• reset
public void reset( java.lang.Object input )

– Parameters
∗ input - initialize the worktape with the given input
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C.2 Classes

C.2.1 Class ATMacyclic

This class uses tabled evaluation to simulate an alternating program.

Declaration

public class ATMacyclic
extends java.lang.Object
implements ATM

Constructors

• ATMacyclic
public ATMacyclic( java.util.Map states,
alternation.runtime.InterfaceWorktape worktape, byte startState )

– Usage
∗ constructor

– Parameters
∗ states - Map with states
∗ worktape - a (empty) worktape
∗ startState - stateid from the state the computation should start with

Methods

• compute
public boolean compute( java.lang.Object input )

• getComputationTree
public ComputationTree getComputationTree( )

C.2.2 Class ATMcyclic

This class uses tabled evaluation and cycle detection to simulate an alternating program.

Declaration

public class ATMcyclic
extends java.lang.Object
implements ATM
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Constructors

• ATMcyclic
public ATMcyclic( java.util.Map states,
alternation.runtime.InterfaceWorktape worktape, byte startState )

– Usage
∗ constructor

– Parameters
∗ states - Map with states
∗ worktape - a (empty) worktape
∗ startState - stateid from the state the computation should start with

Methods

• compute
public boolean compute( java.lang.Object input )

• getComputationTree
public ComputationTree getComputationTree( )

C.2.3 Class ATMsimple

This class simulates an alternating machine. (without tabled evaluation)

Declaration

public class ATMsimple
extends java.lang.Object
implements ATM

Constructors

• ATMsimple
public ATMsimple( java.util.Map states,
alternation.runtime.InterfaceWorktape worktape, byte startState )

– Parameters
∗ states - algorithms states
∗ worktape - an empty worktape
∗ startState - stateid from the state the computation should start with

Methods

• compute
public boolean compute( java.lang.Object input )

• getComputationTree
public ComputationTree getComputationTree( )
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C.2.4 Class ComputationNode

Node in the ComputionTree holds: # the state of the machine # the worktape with the work variables
# the Quantifier associed with the node - unset if halting ( immediate accepting / rejecting) node

Declaration

public class ComputationNode
extends java.lang.Object

Constructors

• ComputationNode
public ComputationNode( byte state,
alternation.runtime.InterfaceWorktape worktape )

– Parameters
∗ state -
∗ worktape -

Methods

• equals
public boolean equals( java.lang.Object obj )

• getState
public byte getState( )

– Returns - the id of the state

• getWorktape
public InterfaceWorktape getWorktape( )

– Returns - container with work variables

• hashCode
public int hashCode( )

• isAllQuantified
public Boolean isAllQuantified( )

– Returns - true if universal quantified, false if existential quantified otherwise null

• setQuantifier
public void setQuantifier( boolean forallState )

– Parameters
∗ forallState - true for a universal quantifier and false for a existential

Quantifier

• toString
public String toString( )
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C.2.5 Class ComputationTree

Computation Tree of an alternating computation - saves the configurations and their succesor relation

Declaration

public class ComputationTree
extends java.util.HashMap

Serializable Fields

• private Map stateIdToName

–

• private Map nameToStateId

–

• private ComputationNode root

–

Constructors

• ComputationTree
public ComputationTree( )

Methods

• addEdge
public void addEdge( alternation.runtime.ComputationNode parent,
alternation.runtime.ComputationNode child )

– Usage
∗ Adds a edge between two Computation Nodes

– Parameters
∗ parent - fromNode
∗ child - toNode

• getChildren
public List getChildren( alternation.runtime.ComputationNode node )

– Parameters
∗ node - ComputationNode

– Returns - Successors in the ComputationTree
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• getRoot
public ComputationNode getRoot( )

– Returns - the root of the computation tree

• getStateId
public Byte getStateId( java.lang.String name )

– Usage
∗ returns a states id for a given name

– Parameters
∗ name - state name

– Returns - state id

• getStateName
public String getStateName( java.lang.Byte stateId )

– Usage
∗ returns a states name for a given id

– Parameters
∗ stateId - state id

– Returns - state name

• put
public Boolean put( alternation.runtime.ComputationNode node,
java.lang.Boolean acceptance )

• setNameToStateId
public void setNameToStateId( java.lang.String string, java.lang.Byte
b )

– Usage
∗ maps the state name with its id

– Parameters
∗ string - state name
∗ b - state id

• setRoot
public void setRoot( alternation.runtime.ComputationNode root )

– Parameters
∗ root - ComputationNode constucted by the input and the initial worktape

• setStateIdToName
public void setStateIdToName( java.lang.Byte b, java.lang.String
string )

– Usage
∗ maps the state id with its name

– Parameters
∗ b - state id
∗ string - state name
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Methods inherited from class java.util.HashMap

• addEntry
void addEntry( int arg0, java.lang.Object arg1, java.lang.Object arg2, int
arg3 )

• capacity
int capacity( )

• clear
public void clear( )

• clone
public Object clone( )

• containsKey
public boolean containsKey( java.lang.Object arg0 )

• containsValue
public boolean containsValue( java.lang.Object arg0 )

• createEntry
void createEntry( int arg0, java.lang.Object arg1, java.lang.Object arg2, int
arg3 )

• entrySet
public Set entrySet( )

• get
public Object get( java.lang.Object arg0 )

• getEntry
final HashMap.Entry getEntry( java.lang.Object arg0 )

• hash
static int hash( int arg0 )

• indexFor
static int indexFor( int arg0, int arg1 )

• init
void init( )

• isEmpty
public boolean isEmpty( )

• keySet
public Set keySet( )

• loadFactor
float loadFactor( )

• newEntryIterator
Iterator newEntryIterator( )

• newKeyIterator
Iterator newKeyIterator( )

• newValueIterator
Iterator newValueIterator( )

• put
public Object put( java.lang.Object arg0, java.lang.Object arg1 )

• putAll
public void putAll( java.util.Map arg0 )

• remove
public Object remove( java.lang.Object arg0 )

• removeEntryForKey
final HashMap.Entry removeEntryForKey( java.lang.Object arg0 )
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• removeMapping
final HashMap.Entry removeMapping( java.lang.Object arg0 )

• resize
void resize( int arg0 )

• size
public int size( )

• transfer
void transfer( java.util.HashMap.Entry [] arg0 )

• values
public Collection values( )

Methods inherited from class java.util.AbstractMap

• clear
public void clear( )

• clone
protected Object clone( )

• containsKey
public boolean containsKey( java.lang.Object arg0 )

• containsValue
public boolean containsValue( java.lang.Object arg0 )

• entrySet
public abstract Set entrySet( )

• equals
public boolean equals( java.lang.Object arg0 )

• get
public Object get( java.lang.Object arg0 )

• hashCode
public int hashCode( )

• isEmpty
public boolean isEmpty( )

• keySet
public Set keySet( )

• put
public Object put( java.lang.Object arg0, java.lang.Object arg1 )

• putAll
public void putAll( java.util.Map arg0 )

• remove
public Object remove( java.lang.Object arg0 )

• size
public int size( )

• toString
public String toString( )

• values
public Collection values( )

C.2.6 Class ComputationTreeCyclic
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Declaration

public class ComputationTreeCyclic
extends alternation.runtime.ComputationTree

Serializable Fields

• private Map nullEdges

–

Constructors

• ComputationTreeCyclic
public ComputationTreeCyclic( )

Methods

• addNullEdge
public boolean addNullEdge( alternation.runtime.ComputationNode parent,
alternation.runtime.ComputationNode child )

• getParents
public List getParents( alternation.runtime.ComputationNode child )

• removeNullEdges
public void removeNullEdges( alternation.runtime.ComputationNode child )

Methods inherited from class alternation.runtime.ComputationTree

( in C.2.5, page 110)
• addEdge
public void addEdge( alternation.runtime.ComputationNode parent,
alternation.runtime.ComputationNode child )

– Usage
∗ Adds a edge between two Computation Nodes

– Parameters
∗ parent - fromNode
∗ child - toNode

• getChildren
public List getChildren( alternation.runtime.ComputationNode node )

– Parameters
∗ node - ComputationNode

– Returns - Successors in the ComputationTree
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• getRoot
public ComputationNode getRoot( )

– Returns - the root of the computation tree

• getStateId
public Byte getStateId( java.lang.String name )

– Usage

∗ returns a states id for a given name

– Parameters

∗ name - state name

– Returns - state id

• getStateName
public String getStateName( java.lang.Byte stateId )

– Usage

∗ returns a states name for a given id

– Parameters

∗ stateId - state id

– Returns - state name

• put
public Boolean put( alternation.runtime.ComputationNode node, java.lang.Boolean
acceptance )

• setNameToStateId
public void setNameToStateId( java.lang.String string, java.lang.Byte b )

– Usage

∗ maps the state name with its id

– Parameters

∗ string - state name
∗ b - state id

• setRoot
public void setRoot( alternation.runtime.ComputationNode root )

– Parameters

∗ root - ComputationNode constucted by the input and the initial worktape

• setStateIdToName
public void setStateIdToName( java.lang.Byte b, java.lang.String string )

– Usage

∗ maps the state id with its name

– Parameters

∗ b - state id
∗ string - state name
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Methods inherited from class java.util.HashMap

• addEntry
void addEntry( int arg0, java.lang.Object arg1, java.lang.Object arg2, int
arg3 )

• capacity
int capacity( )

• clear
public void clear( )

• clone
public Object clone( )

• containsKey
public boolean containsKey( java.lang.Object arg0 )

• containsValue
public boolean containsValue( java.lang.Object arg0 )

• createEntry
void createEntry( int arg0, java.lang.Object arg1, java.lang.Object arg2, int
arg3 )

• entrySet
public Set entrySet( )

• get
public Object get( java.lang.Object arg0 )

• getEntry
final HashMap.Entry getEntry( java.lang.Object arg0 )

• hash
static int hash( int arg0 )

• indexFor
static int indexFor( int arg0, int arg1 )

• init
void init( )

• isEmpty
public boolean isEmpty( )

• keySet
public Set keySet( )

• loadFactor
float loadFactor( )

• newEntryIterator
Iterator newEntryIterator( )

• newKeyIterator
Iterator newKeyIterator( )

• newValueIterator
Iterator newValueIterator( )

• put
public Object put( java.lang.Object arg0, java.lang.Object arg1 )

• putAll
public void putAll( java.util.Map arg0 )

• remove
public Object remove( java.lang.Object arg0 )

• removeEntryForKey
final HashMap.Entry removeEntryForKey( java.lang.Object arg0 )
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• removeMapping
final HashMap.Entry removeMapping( java.lang.Object arg0 )

• resize
void resize( int arg0 )

• size
public int size( )

• transfer
void transfer( java.util.HashMap.Entry [] arg0 )

• values
public Collection values( )

Methods inherited from class java.util.AbstractMap

• clear
public void clear( )

• clone
protected Object clone( )

• containsKey
public boolean containsKey( java.lang.Object arg0 )

• containsValue
public boolean containsValue( java.lang.Object arg0 )

• entrySet
public abstract Set entrySet( )

• equals
public boolean equals( java.lang.Object arg0 )

• get
public Object get( java.lang.Object arg0 )

• hashCode
public int hashCode( )

• isEmpty
public boolean isEmpty( )

• keySet
public Set keySet( )

• put
public Object put( java.lang.Object arg0, java.lang.Object arg1 )

• putAll
public void putAll( java.util.Map arg0 )

• remove
public Object remove( java.lang.Object arg0 )

• size
public int size( )

• toString
public String toString( )

• values
public Collection values( )

C.2.7 Class ResultTuple

Result of a state-computation on a worktape. So it saves if a configuration immediate accepts / rejects
or its successors and if it is a universal or existential quantified configuration
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Declaration

public class ResultTuple
extends java.lang.Object

Fields

• public static final ResultTuple ACCEPT

– ResultTuple the means a computation accepts

• public static final ResultTuple REJECT

– ResultTuple the means a computation rejects

Constructors

• ResultTuple
public ResultTuple( boolean accept, boolean reject, boolean forall )

– Usage
∗ Constructor

– Parameters
∗ accept - true if the computation accepts
∗ reject - true if the computation rejects
∗ forall - if unversal quantified, false if existential quantified

Methods

• add
public void add( byte state, java.lang.Object worktape )

– Usage
∗ adds a new Configuration to the Successors

– Parameters
∗ state - stateId
∗ worktape - worktape

C.2.8 Class ResultTuple.AtmConfiguration

simple container to save pairs of states and worktapes

Declaration

protected static class ResultTuple.AtmConfiguration
extends java.lang.Object
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Fields

• public byte state

–

• public Object worktape

–

Constructors

• ResultTuple.AtmConfiguration
public ResultTuple.AtmConfiguration( byte state, java.lang.Object
worktape )

C.2.9 Class State

abstract class representing a state of the alternating machine

Declaration

public abstract class State
extends java.lang.Object

Fields

• public Object atmInputtape

–

Constructors

• State
public State( )

Methods

• compute
public abstract ResultTuple compute( java.lang.Object worktape )

– Usage
∗ computes the Result from a worktape

– Parameters
∗ worktape - Work variables
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– Returns - Either accept / reject or a set of successors and a Quantifier (existential
or universal).

• setInput
public void setInput( java.lang.Object input )

– Parameters
∗ input - the actual input from the alternating machine



Appendix D

alternation.compiler

Package Contents Page

Classes
atmCompile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122

Gernerates Java code from an alternating algorithm

121



122 alternation.compiler– atmCompile

D.1 Classes

D.1.1 Class atmCompile

Gernerates Java code from an alternating algorithm

Declaration

public class atmCompile
extends java.lang.Object

Constructors

• atmCompile
public atmCompile( )

Methods

• compile
public static void compile( java.lang.String inputPath, java.lang.String
outputPath )

– Usage
∗ Takes a .atm file and computes a java class

– Parameters
∗ inputPath - path to a .atm file
∗ outputPath - path to save the output .java file

– Exceptions
∗ java.io.IOException -
∗ org.antlr.runtime.RecognitionException -

• main
public static void main( java.lang.String [] args )
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