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1. Introduction

This is about the interpretation of spatio-temporal data as chronology of sequential or parallel
occuring situations. A situation is a dynamic incident, which incorporates participants and

their interactions. Situation recognition is then the task to single out specific incidents from the
space-time continuum. By comprising incidents in a situation, it is made comprehensive for
human beings. In this work spatio-temporal predicates [6] are suggested to effect recognition
of situations in field sports.

1.1. Motivation

The widespread use of modern position measuring technologies raises the need for new meth-
ods to deal with the collected data. Data inherently lacks the property to be well readable by
us human beings. We need to find ways to facilitate the extraction of information out of raw
data. This is a technical process called data mining or knowledge discovery. It uses statistical
computations and pattern recognition to achieve its goal.

The use of information systems finds its way in sports. Computer scientists as well as sport
scientists try to find possibilities to install new information technologies successfully to the
domain of sport science. By revealing shortcomings or special abilities, these technologies
empower the coaches to adjust the training methods more exactly to the athlete’s specific
needs. During a competition, the benefit of knowledge can change the odds.

In team sports the cooperation between single players is a crucial issue. It is difficult to evalu-
ate cooperation, because individual perceptions lead to different interpretations of situations.
Information systems can give a more objective view on the situation. For example, video

judgement has become the final instance for a referee’s decision in many sports.

Various techniques exist to measure positions of players in field sports. These systems can
provide data rates exceeding 1000 measurements per second, accurate down to a few cen-
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timetres. This represents a rather big data resource. To deal with this resource, data mining
techniques have to be applied to find useful information.

1.2. Time geography in sport

In time geography ([12], [13]) BEigerstrand developed a set of visual tools for looking at geo-
graphic reality at the individual level. The motivation of his approach comes from the social
sciences and the need to examine the spatial and temporal coordinates of human activity.

His model illustrates how a person moves through the spatio-temporal environment. Two hor-
izontal axes form a two dimensional spatial plane. A third vertical axis represents time. His
simplified world is enclosed in a cube, which he calls "aquarium” (Figure 1.1) and represents
a portion of space-time.

Inside, lines represent the paths, which individuals follow through space and time. These
so-called lifelines go from the bottom of the aquarium to the top in a continuous way. This
corresponds to the limitation in human movement, that one can neither move in discrete steps,
nor exist in more than one location at the same time. Widlgéistrand this is one of three
limitations to space-time paths and calledpability’. The tool to visualize the capability to
move is theprism, which represents the total area of space reachable by an individual. The
shallower the slopes of thaism the faster the individual can travel. A common sense term

for this fact is the action radius, which makes an assumption, how far an object can move
during a certain period of time.

Multiple paths, which link up temporarily, are calledndlesand imply a possible interaction
of people. This iscoupling’. In the sport context this happens for example when two players
are fighting for the ball. A location, which remains unchanged for some time is caltatien

The last constraint i&uthority’ and refers tadomains which are areas with access limits.

Note that the boundaries of these areas can change as well as time goes on, take for example the
offside zone in soccer, which is expanding and contracting with the last defender’'s movement.

In terms of Hagerstrand’s time geography situation recognition is the locating of certain bun-
dles in an aquarium. To identify the correct bundles the user has to enter some information
about the situation prior to the recognition. Since an aquarium is a restriction to time and
space, a bundle is itself an aquarium, which can again contain other aquaria. Thus a situation
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Figure 1.1.Hagerstrand’s aquarium: A space-time model

can be part of another situation and the recognition of a situation in a field sports match is the
computation of a bundle in an aquarium.

Definition 1 (Situation recognition) Situation recognition is the computation of a subset A
in a given situation environment A through a recognition function p.
p:A— A A A ... setof lifelines, AC A

Some fields of application make already use of situation recognition techniques; for example,
collision detection systems for air traffic try to identify dangerous situations, or in road traffic,
variable speed signs are installed to avoid traffic jams. There exist several reasons to introduce
these techniques into the world of field sports. Studying spatio-temporal relationships in the
sports domain has several advantages over the real-world social environment.

Following properties justify our interest to model them in a Geographic Information System
(GIS) with regard to spatio-temporal properties:
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Bounded spatial and temporal extent (closed world assumption).

Finite number of entities (pitch, players, ball, referee).

Interaction between entities is well-defined.

Simple rules apply to the game.

Complex situations can occur during a match.

Recurrent situations follow a certain pattern.

The first two properties constrain the world and its entities we are working with. This makes
the computation more convenient for finite machines. The third and fourth property define in
which ways the entities can be related temporarily or permanently. The fifth property says that
nevertheless the elements of a field sports game are simple, they can develop a very complex
structures. Finally the last one states, that for recurrent situations a fundamental pattern can
be identified. An abstraction of this pattern can serve as a template.

1.3. Connection to scientific discussion and outline

We are living in a world of constant change. To understand the world, we got to understand
this change. Studying time-varying concepts has a long history in philosophy, physics and
computer science. Many models have been developed for different purposes and applications.
They range from very simple to very complex like the theory of general relativity from Ein-
stein. It has been shown that time and space are linked in many ways. So they have to be
considered together.

In [4] an approach to spatio-temporal patterns is given. Erwig suggest the use of spatio-
temporal predicates [6] to effect their recognition. The paper_in [16] investigates possible
ways to make use of different techniques from time geography in Rugby. The first two papers
build the analytical foundation of this thesis, the third one describes how time geography can
be useful in sports analysis.



2. Data capturing techniques

The goal of a data capturing method is to bring a set of incidents from physical reality into
virtual reality. Then the virtual model can be subject to further processing. Various data col-
lection methods exist to record the changing position of moving objects. The task performed
by these techniques is to perpetually sample the location of a set of objects. Thus obtained
positions are forwarded to a storage device and/or processed on the fly. The data collected in
one of these ways represents the data source used in the following chapters.

This chapter explains the four most common methods to collect position data - manual input,
video position extraction, position tracking and virtual sports.

2.1. Manual input

This is the low-tech approach to position recording: an observer logs the events from the pitch.
This task can be performed simultaneous to the game (live) or fram a data store (retrospec-
tive). TV companies use this technique to manually index their video recordings. This index
helps with making new compilations out of existing video sources, like a match summary or
"golden moments” at the end of the season.

However in our setup one observer is following the changing position of one or more players
on a screen. On a recording device the observer is plotting the object’s change of location.
This procedere can be easily mapped to software: one window displays the video of the game,
another one provides some sort of drawing program, where the objects of a game can be
placed and moved on a virtual pitch. The actual position measurement is effected by the
visual judgement of the observer. There are three possible sources for inaccuracies: First the
observer’s guess of the position; second the manual action of drawing; third the grid used by
the software adds some inaccuracy.

- Pro: Easy setup: Just one computer is needed and the software is rather simple to use,
is commercially available and can be put quickly into service.
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- Contra: Data capture is very cumbersome and uses lots of manpower. The accuracy of
the data is low.

Examples. The SCRUM (Spatio Chronological Rugby Union Model) developed by the In-
formation Science Department, University of Otago [17] is a system to virtually move players
over a pitch and watch a match video a the same time in order to record the position data.

2.2. Video position extraction

This technique computes positions by applying a series of image processing and pattern
matching algorithms on several video frames. An object’s position is calculated in relation
to static elements in the picture, which are previously identified (calibration). Images from
several views are nescessary to overcome the warping effects of the camera’s lenses. The first
system of this kind was named LucentVision and brought into service for the ATP tour in 1998.

Video position tracking is a very promising approach, since the matches recorded and broad-
casted by TV companies build a large video resource. An efficient technology could help in
digitizing matches from the past. This method is related to video indexing techniques, which
are an issue of active research ([19]). One of the strong points of this technology lies in its
remote sensing concept, so the measurement does not influence it's outcome.

- Pro: Videos build a large resource of past matches. No extra setup required: uses
existing cameras from broadcasting companies.

- Contra: Every camera perspective has to be calibrated.

Examples. A description of the LucentVision system is found ungetp: //www.bell-1labs.
com/org/1133/Research/Visualinfosystems/, last accessed in June 2005.

2.3. Position tracking

At present position measuring devices get more and more affordable and start to penetrate
our everyday life. They are built in cars and cell phones to improve our navigation. Another
application is the tracking of moving objects. The signal propagation delay between sender
and receiver devices is used to measure the position. Unlike with Video position extraction
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systems no intervisibility is nescessary.

The range of setups is broad: systems using satellites moving in the orbit and mobile devices
on the earth surface are construed for global usage, other ones using fixed stations to provide
this service within fixed boundaries for local usage.

In the context of sports, the latter setup is more important. Microchips are attached to the
ball, the player’s and referee’s feet and interconnected relay stations are built around the pitch.
Additionally the pitch and the station must be surveyed with a high resolution in order to
configure the stations properly.

- Pro: Very accurate and reliable service.

- Contra: Big effort setup. New hardware required.

Examples. Global systems operating from outer space are the american GPS, the russian
GLONASS and the european Galileo. Local systems are the Cairos System; (/www.
cairos.comaccessed August 2005) and LPM{p: //www.lpm-world.com/html/press/
press.htm, accessed June 2005).

2.4. Virtual sports

As the name suggests, virtual sport events are purely computational matches. One big seg-
ment is sport games, one other sport simulations. Sport games are primarily designed for
entertainment. Recent publications amaze not only with love to the detail, but also with very
natural game compartment. Sport simulations emerge from a more academic corner. They are
used to study the behaviour of multi-agent simulation systems or to test artificial intelligence
algorithms. Since the holding of virtual sports is based on computations, it is easy to derive
valuable information like position data directly from the memory.

- Pro: Datais available in digitized form. The captured data is accurate up to one hundred
percent.

- Contra: Works only in its respective virtual domain.

Examples. The RoboCup Simulation league is a pure virtual soccer league with four divi-
sions in 2005.
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3. Spatio-temporal Data Types

Data types provide structures for organising data in a database. Out in the database world
there exist many approaches to deal with temporal and spatial data. In the past these two
domains have been treated separately. During the development of concepts for the two distinct
domains, footnotes were set, that these concepts could also be useful to the respective other
domain. From these deliberations the domain of spatio-temporal databases evolved, with the
goal to research data models which model the affinity between time and space sufficiently. A
spatio-temporal database embodies spatial, temporal and spatio-temporal information.

Figure 3.1..Spatial, temporal and spatio-temporal domain

The special properties of spatio-temporal data raise the need for independent concepts for
the spatio-temporal domain. The DOMINO project/[18] surveyed following set of critical
capabilities for spatio-temporal databases:

e Location modelling: Existing dbms cannot easily handle continuously changing data,
like locations of moving objects. Updates of the location datum have to be performed
constantly.

e Linguistic Issues: Traditional query languages such as SQL are inadequate for express-
ing queries. A database language must support spatial and temporal range queries.

e Indexing: For continuous change of location, the index has to be updated continuously,
which sweeps off the benefit from indexing.
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e Uncertainty/Imprecision: The object’s location in the database cannot always be iden-
tical to the actual location. Some mechanism determining a measurement of the correct-
ness of the answer must exist, e.g. the probability.

3.1. ROSE Algebra

An algebra for spatial data types is needed to allow queries to take into consideration the
special nature of spatial data. Spatial Data Types (SDT) thus facilitate a conceptualisation
of spatial entities in a database management system (DBMS). Basing the definition of these
spatial data types on an abstract interface, separates the algebra from a particular data model
of a DBMS.

ROSE stands for foRObustSpatial Extension algebra. It realises a set of spatial data types
and operations on them as extension to an existing DBMS. In this work it shows as a fun-
damental explanation of how spatial data types work and serves as basics for the following
chapters, which continue with the concept of spatio-temporal predicates and are built upon
the ROSE algebra. The ROSE algebra is defined together with a type system in [11]. In the
following a short review is given.

To achieve its demand to be robust and have spatial extension capabilities, it puts up certain
requirements:

e Generality: The geometric objects should be as general as possible, i. e. allow holes in
regions; closed set of operations.

¢ Rigorous definition: Complete definition of carrier sets and operations to avoid ambi-
guities for programmer and user.

e Finite resolution: To be computable in finite devices.

e Treatment of geomeric consistencyDistinct objects must be hold geometrically con-
sistent in the database.

e General object model interface: An interface to an existing DBMS data model must
exist. This is an implementation issue.

The ROSE algebra fulfills these criteria by using an underlying structure catésdra Thus
it defines realm-based spatial data types. A realm in this sense is a finite set of points and
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non-intersecting line segments. Geometric objects on the realm are defined as elements of this
set.

Realms are the foundation of the ROSE algebra. In contrast to euclidean space, which is a
continuous plane, a realm got a finite represention. "A realm is a set of points and line seg-
ments over a discrete domain, that is, a grid, as shown in Higure 3.2” ([11]).

Figure 3.2.Example of a realm

So a realm has two parts: a set of points (callepdity and a set of lines (called N-
segments with a line consisting of a two point tuple. These are the basic elements of which
the data types are composed. The two most important criteria to the algebra are, firstly that no
point lies on a possible line segment and secondly no two lines intersect or overlap. This way
every point of interest is contained in the underlying grid.

The problem arising in this context is, that intersection points of lines do not lie automatically
on the grid and have to be transformed to fit into the realm. The rule is to move the real in-
tersection point of two lines to the nearest point on the grid. Lines are to be transformed into
"chains of segments”. A so called envelope contains all the segments of a line. The number
of line segments within the envelope changes due to the insertion and removal of intersecting
lines. When a new line is added to the realm, new intersection points are computed and trans-
formed. Existing lines are broken into two parts if nescessary, to maintain the non-inersecting
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property of the algebra. The envelope guarantees the error produced through this operation
is minimized. The concept of a realm facilitatgsneralityandgeometric consisten®@s de-
manded in the requirements. One drawback is, that after performing several updates of the
realm slight numerical errors may occur, due to the re-computation of intersection points.

The spatial data types of the ROSE algebra are forged in a layered approach. First a discrete
spaceN x N is defined oveN = {0,...,n— 1} a subset of the natural number set. This is

the representation of the underlying grid. Only coordinates which are part of this space are
valid. Computation is done in error-free integer arithmetic. This definition ensures some nice
properties for the algebra and features a direct and robust implementation. Next layer are
the Npointsand Nsegments the two parts of a given realm over N. An point is a pair

(x,¥) € N x N. An N-segmenis a pair of distinct Npoints(p,q) [(p,q) and(q, p) are equall.

Some primitive predicates (with their natural language semantics) are defined to test the rela-
tion of two N-segmentsmeet distinct, overlap

Under this definition a realm can be viewed as a graph with the points as nodes and line seg-
ments as edges. Then we introduce the definition Rf-acycleas cycle and & — faceas

face of this graph. A face is a cycle possibly enclosing other cycles, i. e. a region with holes.
Furthermore & — unit is a minimalR— face These definitions facilitate the construction

of aregionsdata type. Next &— blockis a collection of connected line segments and thus
supports the definition of knesdata type.

The spatial data types of the ROSE algebra are:

e points: A point is an object, whose location but not extent is important. Described
through a set oR— points

e lines: A line is a connection in space. It has a starting and an ending point. Supported
by a set of pairwise disjoirlR — blocks

e regions An Object whose extent is relevant is called a region. It is defined through its
boundaries. So a set of pairwise egde-disjBint facesis a region.

Some example operations on the data types of the ROSE algebra with their intuitive meaning:
- Predicates:equal, disjoint, inside, intersects, meets, ...

- SDT operators: contour, interior, plus, minus, ...
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- Number operators: dist, diameter, length, ...

- Set operators:sum, closest, fushion, overlay, . ..

Summary. The ROSE algebra defines realm-based spatial data types. It uses points and non-
interesecting line segments to build theints linesandregionsdata types. A realm is a grid
and serves following purposes:

e Geometric consistency

e Closure properties

e No new intersection points are calculated.

e Realm data structure can be used as an index.

e Topological correctness precedes numerical correctness.

Most important, the ROSE algebra has an efficient implementation and is open to extensions.

3.2. Temporal lifting operation

The operation of temporal lifting has the function to add a temporal component to any entity.
In the area of data types this function is realised as a type constructor. The application of type
constructort on a given atomic data tygetransforms it to the temporal data type):

T(a) =time— a (3.1)

If ais a spatial typet(a) represents a mapping from time into space. For every timestamp on
a time linetime (definition seX exists a corresponding value in tlleage set Thus a tempo-
rally lifted data type describes the domain and an attribute’s changes over time.

In the abstract moving object mod¢] time is considered to be linear and continuous. A
graphical representation for this conceptualisation is the infinite time line, in algebraic terms
we say time is isomorphic to the set of real numbers. Two structures are isomorphic, if they
can be mapped onto each other and each part of one structure has a corresponding part in the
other. For example the carrier set for temporal typsantis:
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instant := Ajnstant= RU{L} (3.2)

Themovingtype constructor performs the lifting operation similar to thagerator. This term
is used in theabstract moving object mod# signify the newly gained possibility to record
change (in location) of (spatial) data types. Here is the formal definition from [8]:

moving := Anovinga) = {f |f: Ainstant — Aaq, partial function A T'(f)finite} (3.3)

Now we obtain instead of the representation of a single value a partial finite function over
time containing the changes of the value during a period of time as a data type. This function
cannot be fully defined due to the fact, that the "recording” of the changing entity must have
a start and an end. The latest value for end would be now. The finite property also makes the
design implementable.

Since we want to work with values rather than with functions, we need a way to access the
values in such a function. "Thatimetype constructor converts a given typénto a type that
associatemtime values with values ofi.” By the use of this type single elements (instant-
value-pairs) within such a function can be accessed.

intime(a) := Aintime((x) = Ainstant X Aq (3.4)

Table [3.1 lists some generic operations taken frorn [8] to work with these data types. The
argument types are on the left side of the arrow, the return type on the right sideat The
operation extracts the value at a specific point in time. The extreme values are yielded by the
minvalue andmaxvalue operations. Note that a total order for typenust exist to be able to
compute either of these operations. N&teatrt andstopyield the respective values at some pre-
defined point in time. For examp$tart can mark a point whea changes from undefined to
defined andtop whena changes from defined to undefined. The last four operations depend
strongly on the definitions of type and the notion of time¢ime The duration operation

yields a real number representing a certain condition is valid. Atdesst performs the
function of a wrapper for non-temporal types. Non-temporal types do not change over time
and are thus constant. This operation serves as interface between temporal and non-temporal

types.
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1(a) x time— a at

T(a) —a minvalue, maxvalue
1(0) —time  start, stop

T(a) — real duration

a — 1(0) const

Table 3.1.: Generic operations for moving objects

3.3. Abstract and discrete models

Abstract and discrete models are two fashions of design and represent different levels of ab-
straction. Abstract data models use infinite sets, the temporal lifting openatoduces types

over an infinite domain. Remember time is defined continuous and infinite, i. e. isomorphic
to the real numbers. For example consider a player running on a pitch; the player himself is
modelled by a point moving through space. Viewed in 3D space (an aquarium, see[seftion 1.2)
the moving point morphs to a continuous curve. This continuity corresponds to physical real-
ity. An example of objects moving discretely through time and space would be land parcels:
an area changes it’s extent at a genuine point in time. When it comes to implementation, the
continuous property is an insuperable barrier. Therefore the abstract model must be translated
into a discrete one, which is computable. Thus the continuous curve representing the running
line of a player morphs into a polyline, which is a set of connected line segments. Discrete
models use finite representations of infinite sets. A discrete model is mostly an approximation
of an abstract one and represents a subset of an abstract model’s domain. One possibility to
do the transition from continuous to discrete space-time is to divide the time line in slices like
shown in Figur¢ 3]3.

The design procedure of a data model is, first define an abstract model, next to derive a discrete
one. Starting with a discrete model might lead to disregard some important options, which can
be easily included in the abstract model. According to [5] (p10) there are two steps to develop
a data model:

1. Design a signature of a many-sorted algebjiB4]): invent a number of names for types
and operations between them. Formally a signature consistertsfand operators
which are names for types and operations.

2. Define semanticsassociate a many-sorted algebra by defimagier setsfor the sorts
and functions for the operators. Carrier sets are collections of possible valuesoidr a
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Figure 3.3.Sliced representation of a moving real (a) and a moving point (b).

and functions are mappings between them.

Another possibility to model a continuous movement is to use a function rather than a set of
observations.

3.4. Moving object model

This section gives a short summary of #leving Objects Modallefined in[[8] as an example

for an abstract spatio-temporal data model. It follows the abstract data type approach and
defines a type system for spatial, temporal and spatio-temporal types and operations on them.
Most important, it features temporally lifted types and operations.

Argument set Type constructors Instances
— BASE int, real, string, bool
— SPATIAL point, points line, region
— TIME instant

BASEU TIME — RANGE range

BASE U SPATIAL — TEMPORAL intime, moving

Table 3.2.: Signature of the type system of the abstract moving objects model

Basic types and type constructors. Table[3.2 shows the type system of the moving object
model. There are type constructors with and without arguments. If a type constructor takes no
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Apoint = R2U{ L}

Apoints= {P C R?|P is finite}

Ainstant= RU{L}

Amovinga) = { f | f : Ainstant — Aq, partial function A T'(f) finite}
Aintime(cx) = Alnstant X Aa

Arangea) = {X € Aq | Jana —range RX = pointgR)) }

Table 3.3.: Some carrier sets for th®ving Object Modetlata types.

arguments it is a type already and callahstant typeOtherwise it can generate a new type
out of itself and one instance of it's argument set. For examplentbangtype constructor
applied to the constameal type yields thenovingreal) type.

The base types have the common sense semantics and include an undefined value. The spatial
types are similar to those of the ROSE algebra (see Séctipn 3.1/or [11]). As said before, time
is considered infinite and continuous. So the time type is isomorphic to the real numbers. A
temporal type yields a mapping from time to the argument type. A range type contains subsets
of types over totally ordered domains.

A total order on a domain is a binary relation, which sorts the elements according to antisym-
metry (if a < b andb < athena = b), transitivity (if a < b andb < c thena = ¢) and totality
(@a<borb<a).

Table[ 3.8 gives an overview of the carrier set for the types as definad|in [10]nfiine type
describes a value at a certain point in time. Under the assumption that a total ordering for the
argument types exists, a range type can be defined to represent sets of intervals. Lines are
interpreted as connected line segments (polyline), which are characterised by their endpoints
and thus use thé@yints carrier set. Note that due to the fact that sets can be infinite, every
curve can be represented by an infinite point set. Regions interpret a point set for a polyline as
graph (points as nodes, lines as edges). Then a region is a cyclic polyline. Finally a value of
amovingregion) is a set of volumes in 3D space (x,y,t). An intersection of that volume with

a plane parallel to the (x,y) plane yields the state of the region at specific time, a fact which is
reflected by théntime(region) data type.

Operations.  Different types of operations on the data types exist. Temporal lifting produces
new operations out of existing operations through generalisatidtingset al. identify a series
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Operation class Description Example
Base type Operations which are specific for soménd, Or, Not for Booleans.
specific base types.
Predicates Topological predicates. Inside, touches, attached, over-
laps for point sets.

Set operations Fundamental operations on sets. Union, minus, intersection.
Aggregation Reduces sets of points to points. Minimum, maximum, average.
Numeric Structural computations. Counting adjacent areas.
properties
Lifting Any argument of a non-temporal typeThe area hold by a football team.
operations is lifted to a temporal type, which re-

turns a temporal type too.
Derivative A measurement for the rate of chang@cceleration.

of an entity.

Table 3.4.: Some operation classes ofMaving Object Model

of operation classes (see Taple| 3.4) on the types.[See [8] for more details including signatures
of example operations.

Transition to discrete model. This breaks down the moving type constructor (of the ab-
stract model) to a discrete mapping. One new type ("UNIT’) and one new type constructor are
introduced to replace the moving constructor. A’UNIT’ is a time interval - value pair, several
UNITs are assembled in a mapping data type. Instead of a continuous partial function we got
a set of time - value pairs.

The discrete representation of the moving object models introduces a new super-type called
'UNIT’, which is a time interval - value pair. The mapping data type assembles a set of UNITs
in order to make a linear approximation the continuous movement. A continuous curve is thus
modelled by several snapshot values.

3.5. Tripod data model

This section reviews an example for a discrete data model. The origin of both the Tripod data
model and the Moving Object Model 3.4 lie in the ROSE algébra 3.1. Both augment the spa-
tial types to spatio-temporal types.
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The Tripod System [9] implements a spatio-historical data model to represent spatial and as-
patial data. It extends the ODMG standalrd [2] for object relational databases with the ROSE
types, temporal types and allows reflection on an entity’s evolution throughitherical
keyword. Spatial types are realised as 2D ROSE types, temporal types as 1D representation
of them and the aspatial types are those from the ODMG standard. A historical attribute’s
changes caused by assignment operations are tracked in the database.

This database system is built on top of the PostgreSQL server. It features a thick Tayer 3.4
architecture approach. The first layer is an implementation of the ODMG standard, which
specifies an ODBMS (object database management system). An ODBMS integrates relational
or other non-object DBMS with object-oriented programming language capabilities and thus
makes database objects appear as programming language objects.

AF AP | | AP AR AR || AP AP AP | | AP

= T 3 e —— — . i

Extensipnzs Monalithic DEM S with built- Extensible DBME
[ in Extensians

—\___\___".'I ===

DEMS o
| |
Dperating System Operating Systam

Figure 3.4.DBMS Extension architectures: (a) layered, (b) built-in and (c) data blade ap-
proach.

"The key principles underpinning the Tripod project aréhogonalityandsynergy’ The Tri-

pod system adds spatial, temporal and historical functionality to a database. Orthogonality on
the one hand means, that these features can be used separately in an effective manner, syn-
ergy on the other hand means, that the system allows a "combined use of spatial and temporal
capabilities in a seamless and complementary manner”. Shortly the new types and facilities
integrate transparently in the existing system and can be used together or separately.
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Histories

Temporal Spatial
Types Types

ODMG Model

Figure 3.5.Tripod architecture

Temporal extension.  The Tripod system defines two types of timestamps,tants and
TimeIntervals. Either of them is a collection type, the first is holding instant values, the
other half-open time intervals. Simple integers are used to represent instant timestamps. In
addition every time type has a granulantyNo more than one snapshot value can be stored
for each granule of. This view of an underlying temporal grid with granulantgorresponds
directly to a realm in the ROSE algebra. Actually both temporal types are 1D projections
of ROSE types. A subinterval of theimeIntervals type uses of two instants to mark the
begin and end of the period. Thus a series of intervats—t;j,...,tp —tg) - represents a
TimeIntervals value;tj andt, are included in the time periot, andtg not.

Spatial extension.  ThePoints, Lines andRegions data types in the Tripod system are

a direct implementation of the ROSE spatial types. They are set based and singletons of
these types are used to access an individual element of a set. As discussed, ia a pair of
coordinates in the underlying geometry,iae a connection between two points angkgion

a polygon. Note that spatial operations exist only on the set based types.

History mechanism.  The goal of the Tripod history mechanism is to "provide functionality

to support the storage, management and querying of entities that change over time.” To achieve
this, a history embodies information about the type (domain) of the tracked entity, a time
model plus its granularity and a set of different states. These states represent an entities’
changes due to assignment operations. So every left hand side construct of an assignment
operation can have a history. The right hand side values collected in a history are called
snapshots. So states are a set of time-value pairs, which are snapshots of the value at a certain
point in time. They are related through an injective function:
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stateg :T— O T€TH, 0€Vy (3.5)

Every timestamp has a corresponding snapshot, but not every snapshot got a timestamp. These
not related snapshots refer to non-historical types, which got the same value at all times.

Definition 2 (Lifeline, Aquarium) The lifeline of an individual object is a history corre-
sponding to [[9]. An aquarium (according to [12], [13]) sets the boundaries
to a collection of lifelines in time (starting time up to now) and space (domain
Vs of a spatial type)

2.1 history: H={V,0,y,2} V | Domain of changing values
6 | {Instants , Timelntervals }
y | Granularity off

2.2 state: (1,0) € X > | States collection of the forrt, o)
T | Timestamp

2.3 aquariumA=H* 0 | Snapshot

In Definition[2, the history definition froni [9], page 36 is cited: Mstoryis a quadrupel
H={V,0,y,Z}, whereV denotes the domain of values whose chardescords 9 is either
Instants Or TimeIntervals, Y the granularity ofd andX is a collection of pairs, called
states of the form(t, o), wheret is a timestamp and is a snapshot.”



4. Spatio-temporal Predicates

This kind of predicate logic addresses the change in spatial relationships over time. Starting
with a small set of elementary predicates as "building blocks”, the user is able to build more
and more complex ones. Spatial relationships are defined as topological predicates. The
9-intersection mode[ [15] provides a canonical collection of topological predicates for each
combination of spatial types. In this context three basic spatial typeisits linesandregions

- are identified. Examples for topological predicatesraeet overlapandinside A spatio-
temporal relationship is then "a sequence of (well-known) spatial relationships that hold over
time intervals or at time points; we will call it a development’ [6]. Spatio-temporal predicates
then express spatio-temporal relationship facts which can be either true or false.

overlaps

Legend :
apatial
types are
marked
bhold,
topological
predicates
talic.

Figure 4.1.:Spatial types and topological relationships

The idea of spatio-temporal predicates is taken fram [6]. Various other publications have
small sections on spatio-temporal predicates ([4], [7], [8]). Similar work has been done
by [3]. The rest of this paper explains the idea of temporal lifting, a powerful concept to
integrate the temporal aspect in all kinds of entities, then it presents the definition of spatio-
temporal predicates and discusses some of the properties. Next it is shown how to build
complex predicates - developments - out of the set of basic predicates. At last the approach to

21
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spatio-temporal evolution done by Griffiths et al. [9] is presented.

4.1. From spatial predicates to spatio-temporal predicates

Egenhofer defined in [15] a collection of meaningful spatial predicates, which represent topo-
logical relationships. See figufe #.1 for an illustrative example. Now we want to extend these
predicates to the spatio-temporal case, in order to represent spatio-temporal relationship facts,
which can be either true or false. This is achieved by the operation of temporal lifting in sec-
tion [3.2. Spatial predicates can be seen as special case of spatio-temporal predicates. They
are defined for certain points in time.

Consider a barn standing next to a road. The topological relation "barn near road” holds as
long as both barn and road exist. If the barn burns down or the road decays, the quoted pred-
icate will evaluate to false. To evaluate the "barn near road” predicate to true, two conditions
must be true: both objects have to exist at the same time and the spatial relationship must hold.
Thus a spatio-temporal predicate describes the change of a spatial (topological, geometrical)
relationship. To enable common spatial predicates to fulfill this task, their temporal extent
has to be extended from one instant to a time line. This is called temporal lifting. Analogies
exist in all branches of science; many physical functions are dependent on time, sports people
monitor a runner’s heartbeat in a function over time, in biology different populations form and
vanish at distinct points in time and space.

4.1.1. Time dependent functions

Another example for a time dependent function is the distance between two players during a
match. As the players are in a constant movement, their distance changes over time. Time
is considered to be linear and continuous, so for every instant a distance value between our
two players exists. Following this definition, this value is a real number, distance over time a
function:

distance= positiona) x position3) — d a,B € Player, d € R (4.1)

It reads: "The distance of two playets 3 is computed as a cross product between their
positions.” This phrase states nothing about time, so whenever there are two positions, their
distance can be computed. After adding the temporal component or making the distance
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dependent on time, this distance value is replaced by a function over time. We can use the
cross product notation as place holder for any binary operation.

distancet) := positiona,t) x position,t) — d(t) a, BePlayer, d(t) e R (4.2)

The evaluation oflistancetp) takes the positions of two playensp at time pointg and yields
the distance as a real number r.plbsitionis not defined at one instatjton the time line for
a, B, it returns the undefined value .

4.1.2. Lifting predicates

With spatio-temporal predicates we want to compute Boolean values rather than numbers
and functions. It would be interesting to find out whether two players stand next to each
other (meet) during a match. The spatial predicate 'meet’ from the 9-intersection maodel [15]
formalizes this relation. It is a function from two spatial objects to a Boolean value.

meet=a xB—Db oa,BeA beB (4.3)

A is a set of spatial object designat@sint, region, which we call data types. @@ing et al.
introduce in [8] the second order operator tau Given a set of arbitrary atomic data types
A, the application of type constructoron any elementt € A lifts any flat data typex to a
temporal data type. Thus tau) (effects the operation of temporal lifting, which is adding a
temporal component to its argument. Formally:

(o) = time—a €A (4.4)

We can apply temporal lifting to the non-temporal (flat) typep:

meet:=1(a) x T(B) — 1(b) a,peA, beB (4.5)

Similar to distancet) defined in the last sectiomeetdescribes now a function over time.

Now we got a function to describe the changing relationship of two players. At some instants
they meet, at some they don’t. The function reflectes this behavior. Evaluations of the func-
tion can be performed points in time specified as argument to the function. The behavior of
a function at a certain instant is similar to the behavior of a corresponding spatial predicate.
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Different evaluations at different points in time are likely to have distinct results. What we
now want to do is to set those single evaluations in relation to each other in order to unlock
the spatio-temporal information.

Note that temporal lifting yields a partial function. In places where it is not defined it returns
the bottom element!’” and is thus extended to a total function.

4.1.3. Quantification

The nature of a predicate is to yield a single value, generally either true or false, not to yield
a function. The magic word to solve this problem is quantification. In natural language, ex-
amples of quantifiers are for all, for some, many, few, a lot. Examples for phrases are: "Two
players meet in a spatio-temporal sense, if they meet at least once.” Or "Two players meet
in a spatio-temporal sense, if they meet for all time.” The first phrase is easy to understand,
if there is one instant on the time line, for which the spatial relationship 'meet’ holds, the
spatio-temporal predicate 'meet’ holds. The second uses another form of quantification and is
a bit more difficult. The spatial predicate 'meet’ has to hold for the two players for all time.
Earlier we defined time as linear and continuous. So time has no beginning and no end. The
conclusion is, in order to evaluate the spatio-temporal predicate 'meet’ to true, the spatial re-
lationship 'meet’ must hold infinitely.

In the previous paragraph two possible quantifications were presented, in the examples namely
the existence (‘'one instant existsq’y and the unification (‘for all time’, ¥’) quantifiers. The
assumption, that two objects share infinitely one relationship is highly unrealistic, so some
restrictions are introduced. Quantifiers are restricted to perform evaluation only on a part of
an object’s lifetime. A lifetime in this context are the periods, where an object is defined.
Different restriction levels exist, the default is, that a spatio-temporal predicate only operates
on the common lifetime of its argument. In talfle 4.1 a summary of all different time notion
modes is given.

A temporal Boolears a function from time to the boolean set united with the undefined ele-
ment,T : time— {true, falsg L}). This is the usual return type of a lifted predicate. In order

to get a spatio-temporal predicate, which evaluates to a single Boolean, this intermediate result
must be aggregated or quantified.

A binary spatio-temporal predicate is then a function from two temporal types to a single
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Boolean value:

(o) xT(B)—B a, B € {point, region} (4.6)

This concept can be easily extended to n-ary predicates, but in the following we will mainly
deal with binary spatio-temporal predicates.

Table[4.]1 presents five different ways to quantify a temporal Boolean returned by a binary
spatio-temporal predicate. The leftmost column says how the two temporal domains of the
two argument objects are set in relation, additionally a description and a diagram are pro-
vided. The first quantification policy is the most restrictive, the last one is the least restrictive.
The additional & property works on time instants. The two columns outside right are a no-
tation to mark the predicates with their corresponding quantification policy and its semantics.
Quantifiers are the existencél(j and the universal {’) quantifiers. The semantics of the first

one is, if there exists at least one point in time, where the predicate expression is true for both
objects, the predicate evaluates to true. The for all quantifier means, that the temporal Boolean
must be true for the whole time span yielded by quantifying the objects’ temporal domains.
The return value of a quantified temporal Boolean is a single boolean.

Time | Description Picture Short
vo—_

time | both objects hold over all times - unrealismtz ------ 2
1

ty Uty | both arguments have the same lifetime = * | P | Vup
1

t1 Cty | one is part of the other’s lifetime = * | p VY P
1

t1 Dty | one is part of the other’s lifetime k * | P VP
1

t1Nty | holds on common lifetime k. * | p YA p
1 +

t1 €ty | instant on lifetime k > | p dp

Table 4.1.: Time quantification policies
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4.1.4. Evaluating predicates

Following steps are to be performed for evaluating a spatio-temporal pre@gptaith a
quantifier® € {V,3} and a quantification methode {U,N, Ty, TR}

1. The temporal domaih on which both predicates operate is computed:

T —y(don(§,),dom))

2. The predicate is aggregated for the whole temporal domain in a temporal Boolean:

B —p(Si(t), S(t)vteT

3. The temporal Boolean is quantified:
if ©®b; € B=true thentrue else false with @ € {V,3}, 1 < b < |B]

The next section presents several relations between temporal data types in more detail [Sgction 4.3).

4.1.5. Basic spatio-temporal predicates

Basic spatio-temporal predicates are the spatial predicates from the 9-intersection lifted to
spatio-temporal predicates. For each of those predicates exists a default temporal aggregation
which corresponds to the common sense interpretation. In the literature [6] this is explained
for the predicatelis jointin the following way: "For example, when we ask by usingigjoint
predicate whether the route of a plane did not encounter a storm, we usually require disjoint-
edness only on the common lifetime, that is, the result of this query is not affected by the fact
that either the storm or the flight started or ended before the respective other object. Thus, the
preferred of default interpretation for spatio-tempatisjoint is the predicatelis joint.”

Two sorts of predicates can be distingushed, instant and period predicates. The former hold
on one point in time and start with a lowercase letter, the latter hold for a timespan and are
indicated by an uppercase initial letter, to be in agreement with the literature. In[Taple 4.2 a
choice of default aggregations for some basic spatio temporal predicates for regions.

4.1.6. Summary

Summarized, three steps have to be taken to create a basic spatio-temporal predicate:

e Take a spatial predicate.
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Disjoint :=disjoint

>
Meet :=meet
>
Overlap :=overlap
—>

Equal :=equal
Covers :=Covers
%
CoveredBy :=coveredBy
. —_—
Contains :=contains
Inside :=inside

Table 4.2.: Some default aggregations ([4], [8]).

e Liftit to a spatio-temporal function to add the temporal component.

e Reduce function to a spatio-temporal predicate by quantification.

Two major classes of predicates can be distinguished by regarding their temporal aspect: in-
stant predicates and period predicates. The latter can hold only for a period of time, whereas
the former can hold for an instant in time as well as for a period of time. This property is
due to the fact that they are defined in a continuous context. In the following lowercase letters
imply an instant predicate and uppercase letters a period predicate.

Alternatively, a two-dimensional spatial object moving along the time axis can be considered
as a three-dimensional object. In this sense a point becomes a line, a line a region and a region
a volume. Then the topological relations between three-dimensional objects can be used as
spatio-temporal predicates. For every basic spatio-temporal predicate exists a corresponding
three-dimensional predicate, except fisjoint, InsideandContains

4.2. Developments

Several spatio-temporal predicates can be combined to build a more complex predicate. Tem-
poral combinators serve as glue between the predicates.

Developments are sequences of spatio-temporal predicates. By means of temporal combina-
tors, several predicates are connected to build a more complex predicate. Single predicates are
evaluated one by one in a consecutive order. If all the predicates and their composition holds,
the development holds. So every spatio-temporal predicate can possibly consist of other predi-
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Compositor| Syntax Description Automaton
From p-P P holds from a certain pointin O"
time.
Until P-dp P holds until a certain point in O"
time.
Then P -4 p F Q | Pholds until a certain pointin O"O
P> Q time; then Q holds.

Table 4.3.: Temporal combinators

cates and thus be a development. This conception enforces the reuse of existing developments
for new purposes.

Predicate combinators. Predicate composition defines three possible operatibom -

until - then with the same temporal semantics like in natural language. Talle 4.2 gives a
detailed overview of the semantics of these operators. The syntactical and the language de-
scription are found in [6]. Informally, combinators wire single predicates together. Temporal
composition is not the only possible way to form a development. A more advanced combina-
tor is the alternative, which branches the timeline into several possible ways to follow, or the
reflection - the development is executed in reverse order after reaching its end.

Almost any logical formula can be interpreted as an automaton. The rightmost column in
Tableg 4.2 shows parts of automons to assign them the spatio-temporal meaning of the temporal
combinators. Here an explanation based on automata theory:

Automata. An automaton is a mathematical model for a finite state machine (FSM). A FSM
reflects changes of the model driven by the input data from its starting time to the present
moment. Automata consist of states and transitions. Given an input the FSM jumps through a
series of states following its transition function. Thus an automaton stays in one state until a
transition function triggers the next state.

What we want to do is to use automaton interpretations of spatio-temporal developments to
visualize and facilitate their composition. In the diagrams in Table 4.2, states are to be taken
for period predicates and transitions for instant predicates. Automata provide a possible visu-
alisation for spatio-temporal developments like discussed in [7]. See Kiglire 4.2 for example,
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where the events forming a pass are formulated as a development and illustrated in an au-

tomaton. The next section explains in more detail how to describe or specify situations with
spatio-temporal predicates.

W,

Player
one has
the hall

Flayer
one
throws
the ball

Player
twa
catches
the hall

Ball is in
the air

Figure 4.2./An automaton for a pass

In a development the order of predicates cannot be arbitrary, since objects do not jump dis-
cretely through time and space, but move continuously. Figufe 4.3 summarizes the predicates
listed in Sectiof 4.1]5 in a so called development graph. Such a graph provides possible tran-
sitions between predicates like in an automaton. Another interpretation is the development

graph as an automaton for spatio-temporal objects. Changes in state of the object are allowed
only along the edges.

Disjoint Disjoint
Pl A

meet Meet meet Meet

(a) Ye K7

Disjoint /S’er'ap
Pl

meet Meet coveredBy CoveredBy
\‘ J i/ equal Equa

Inside Inside
(b) (c)

Figure 4.3.Development graph for (a) points, (b) lines and (c) regions
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4.3. Spatio-temporal Evolution based on the Tripod

spatio-temporal data model

The paper![B] contributes an approach to spatio-temporal queries. In this context queries in-
volving an object’s change over time are calladlution queries The algorithms presented

in the paper work on the historical data types of the Tripod data model (see Section 3.5, [9]).
They provide the funcionality of a "spatio-temporal algebra” as shown in the graphical de-
scription of the Tripod implementation in Figyre B.5.

A change patteriis a "chronologically ordered sequence of observations”. These observations
can be made upon a single entitiy’s history or multiple entities’ relationships. It is supposed
that an entity or the relationship changes its state over time and is supposed to follow a change
pattern. This automaton behavior is similar to spatio-temporal developments described in Sec-
tion[4.2.

To make a change pattern computable, it is specified as regular expression over the interpreta-
tion structure. This structure takes the form of a list with the elemtents u}. The elements

are arranged in temporal order and each element states the change in value at a certain granule.
In this contextt stands for true (there is a change)or false (no change) andis the un-

defined element. Note the similarity to the definition of a temporal Boolean in S¢ction 4.1.3.
Various mapping operations can precede the building of this structure. For example to query

if the distace between two objects changed during a period of time. First the distance function
builds a list of distance values for two obje@sand p,, next two subsequent list elments are
checked for difference, which results in the intermediate representation:

Given two lists pg, p2  with:
p1=((3,1),(3,0),(2,3),(2,4))
p2=((1,1),(3,2),(2,2),(2,1))
do < distancépi, p2) = (2,2,1,3)
distchangédp) = (f,t,t) 4.7)

The distchange list can now be aggregated with the for all quantifier (i.e. the distance does not
remain equal) resulting in false, or the exists quantifier resulting in true (i.e. there is a change
in distance).
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Summary. Following steps have to be performed to evaluate an evolution query in the Tripod
system:

e Apply mapping if nescessary.
e Build intermediate representation.

e Evaluate regular expression.

Three kinds of possible queries are presented lin [3], namely intra-history cross-timestamp
(IHC), cross-history cross-timestamp (CHC) and cross-history intra-timestamp (CHI). The

example above performs a IHC type query. Starting with two histories one intermediate list is

generated and the elements of the list are set in relation to each other.

- IHC Evolution query over consecutive snaphots within a single (non-empty) history
- CHC Evolution query over consecutive snaphots in a paired (non-empty) history

- CHI Evolution query over snaphots in a paired (non-empty) history at each timestamp

HO tO t1 t2 tn-1 tn

\/

Hot®Hq,t;, i#J

Figure 4.4.1HC evolution query over consecutive snaphots within a single (non-empty) his-
tory

4.4. Recognition function

Now that we know about spatio-temporal predicates, we can explain how to use them for
situation recognition. Following Definitidn 3 a recognition function is constructed as a term
of spatio-temporal predicates combined by compositora.
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Definition 3 (Recognition function) The recognition function is composed by one or more
predicates through combinatora.

P=PpP1°1...% Pn
oj € {compository 1< j<k
ppeP 1<i<n P...set of spatio-temporal predicates

Notethat the compositora have to be used in a meaningful way.

A situation is broken down to activities, which are translated to appropriate predicates. Each
predicatep; stands for a single activity. They are put together again in a recognition function,
which is similar to a spatio-temporal development or evolution query. Predicate compositora
serve as glue between the predicates. They structure the temporal succession of activities and
thus have to be choosen in a meaningful and unambiguous way.

The recognition function thus provides a genuine formal description of a situation and is com-
puteable, because its fundamental functions and compositora are computeable. A function can
be applied to a spatio-temporal dataset. Following Definjtion 1 it yields a subset of the input
data. Thus it performs the operation of a filter. The result has to be interpreted with respect
to the information, which has to be gained. Examples are the counting of the occurences of
a situation, or length of a player’s route. The next Ch&pter 5 shows the case study of how to
translate a common game situation to a recognition function.



5. Case study: Rugby "Kick to touch”
pattern

Game patterns represent an abstraction of moves trainers draw on, say, a blackboard or white-
board to show their players how to field the team. They consist of a basic initial position
configuration and possible further moves. In Figurg 5.1 an example for such a drawing is
given. It demonstrates the very common ’Kick to touch’ game pattern in rugby.

stordine:

2
1. number 9 collects ball
19 from number &
/.\ 2. backs pass to each

th
< SCRUM > cHer
\/ T 3. no proceeding possible
4
. 4 kcks ball out of bounds

Figure 5.1.Rugby "Kick to touch” pattern drawing

Consider the picture in Figufe 5.1. The starting position on the pitch is a "scrum” (in this para-
graph, rugby specific words are in quotes), which is a formation of players set by the referee.
Up to eight fellow team mates hold on tight to each other to be able to act as one pushing
machine. After the referee blows his whistle to restart the game, the ball is deployed into the
"scrum”. Now the opponent "scrum-halves” are pushing each other to gain ball possession.
Eventually the ball leaves the back of the "scrum” via player number eight ("No0.8"). This
action marks the start of the game pattern:

1. Player number nine ("Scrum-Half”) collects the ball from player number eight’s feet.

33
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2. A series of passes among a formation of players, called the "backs” follows. At some
stage no forward progress on the pitch is possible.

3. Mostly this happens, when the defending team stops the player in possession of the ball.

4. Sensing this and to avoid a possible loss of ball possession, the player holding the ball
kicks it out of bounds.

Figure[5.2 is an abstraction of this game pattern in the form of an automaton. An automaton
or finite state machine (FSM) consists of states and transitions, which are noted as circles and
(directed) arrows. Only one state can be active and external events trigger transitions, which
are changes of the active state. Possible events can be everything from reading a character
from the input stream to passing a ball. An initial event puts the automaton into work. In
the diagram the initial state is marked by a lightning arrow. An automaton can have only
one initial state. When the automton reaches a final state - noted by a doubly lined circle - it
terminates. Automatons which come to an end are called determined finite state machines.

Back
kicks ball
out of
bounds

Referee
sets
SCrum

collects
ball from
Mumber 3

pass ball
to each
other

Figure 5.2.Rugby 'Kick to touch’ automaton (FSM)

5.1. Modelling

We now want to use a more precise description than pictures and natural language for the
pattern. In[[7] three categories of entities for describing a video scene are identified. We use
the same definitions for our purpose (Tgblg 5.1)

A look at the picture gives us the objects acting in the rugby video scene. There are several
figures and one ball on a pitch. Figures can act as individuals or be summed up in a group (like
a 'scrum’ in the example). The player figures belong to teams, where they are distinguished
by numbers. A team is divided into two groups, the forwards and the backs. An extra figure is
the referee ("third team”). A pitch is characterized through its boundaries and playing space.
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Entity | Description In natural language In the drawing

Object | Type of actors noun, role Shape

Activity | Type of action verb + roles Arrows

Event | Instance of activity complete phrase group of shapes and arrows

Table 5.1.: Actions and actors on the pitch

Here the objects from the example are expressed in an informal list notation with nested lists.

objects := { figures; ball; pitch }
figures := { players; referee }

ball := { ball }

pitch := { locations; boundaries }
players := { team_red; team_blue }
team_red := { forwards; backs }
team_blue := { forwards; backs }
forwards := { player_1l ... player_8 }
backs := { player_9 ... player_15 }

player_1 := { player_number_1 }

player_15 := { player_number_15 }

locations { point; line; region }

point := { (X,y)GFCRZ}
line := { pjE€points |2<i<n, po+# Pn,i €N}
region := { pj € points|3<i<n, pp=pnieN}

boundaries := { outline, far22line, near22line, ... }

outline := { r € region |N=4}
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setpiece := { lineout, scrummage }

scrummage := { P; € team_red V team blue |1<i<8}
lineout := { pPj € team_red,Qj € team_blue |i,j>2Ai=]}

Activities describe the dynamics of the system. They describe how and where the game flows.
Objects take roles in activities, so activities describe scenes in a generic way. Instantiating an
activity through filling the roles with objects yields an event. Following the storyline in Figure
(5.7, we identify the activities in the example:

1. [role player] collects|role ball] from [role player]
2. [role player] passes tfrole player] passesto...
3. [role player] cannot proceed = is blocked by the otfrete team]
4. [role player] kicks[role ball] to [role boundaries]
Finally we add the preconditiorfrole referee]sets[role setpiece]at[role location].
A role says how someone or something can participate in an activity. This makes sure things

don’t get confused in the model. The word 'roles’ is used as an intuitive synonym for data
types. Next we need to determine which objects can act in which roles:

role player — players

role team — team.red || team blue
role ball —  Dball

role referee — referee

role setpiece — setpieces

role location — locations

Till now we've defined some activities and their participants, a signature in other words. It's
time to give the signature of our activities some semantics by means of tying it up to spatio-
temporal predicates. For our purpose tHedbiantification over time (see Ta.l) is appro-
priate. It holds on the common lifetime for two objects and is the default for spatio-temporal
predicates. Facts like one player leaves the pitch (due to an injury) the end of a player’s
"lifetime” - and gets replaced by a reserve player - the beginning of a "lifetime” - are thus
sufficiently modelled.
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Objects in a game are modelled as moving points. This is not the only possible geometrical
interpretation of a match’s structure. Formations like a scrum in rugby can be perceived as a
moving region. The scrum region can be described as minimum bounding polygon over the
set of players participating in the scrum. [n]16] a whole team is understood as a polygon
(region), which gives an interesting views on how two teams interact.

The spatial representation changes with the observer’s perspective. The atoms are moving
points (players, ball, referee) and depending on the context, which formation is executed, the
observer’s spatial perception changes. Single players are united to a formation with a certain
name (e.g. scrum) and a certain spatial representation (e.g. a scrum is a region). The thus
emerging zooming effect is quite natural; when many different things happen around us at
the same time, the human brain tries to build abstractions and groupings, in order to keep the
overview.

In this work we want to model players and ball as point entities. Furthermore, an ideal world
is assumed, where the moving points meet each other in time and exaa®; when their
respective entities interact directly. This is for example when a player catches the ball, then the
moving points of the player and the ball meet. In the real world this cannot be true, because
entities have an extent, a property which points don’t have. Additionally, entities don’t meet
exactly, they touch in some way. This problem is solved by using an underlying grid (see
Sectior] 3.]1). This ensures that points can meet exactly. Moreover measuring errors, etc. have
to be taken into account. So real world data has to be corrected in some way.

5.2. Building predicates

5.2.1. Collect

Firstly, the activity 1 Trole player] collects[role ball] from [role player]” is considered. Col-
lecting a ball is to grab it either from the ground, in the air or from another player’s possession.
Thus first one player must initially possess the ball. Next someone else nearby takes the ball.
So the problem to solve is to model the two new activities - possession and grabbing - with
spatio-temporal techniques:

1. [role player] possessesole ball]

2. [role player] grabs[role ball]
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A player can posses a ball by holding it in his hands. We can perform a check for every instant
of the game, whether the player holds the ball or not. The partly aggregation of the resulting
Boolean vector tells us for an interval of time, if the player possesses the ball or not (the
mode of aggregation leaves space for an interpretation of ‘possession’ in rugby). The spatial
translation of ’holding’ is both player and ball share the same position (under the assumption
we made at the beginning). So the mapping between activity '‘possess’ and a spatio-temporal
predicate is:

[role player] possessdsole ball] — Meet p,b) (5.1)
JdpeP,dbeB

There is exactly one player out of all players, who can possess the ball. Grabbing describes the
transition of bringing the ball in one’s possession. So first the grabbing player is approaching
the player in possession (spatially speaking all three are sharing the same space), followed by
taking the ball and leaving the player without the ball. There is no spatial equivalent for taking

a ball (at least not in 2D space).

[role player] grabs[role balll —  Meet(p1, p2,b) 4 meetpy,b) (5.2)
3(p1, p2) €P, p1# p; FbeB

We model this in a 'from’ predicate:From the time of meeting on, the other player got the
ball”. Now we can put everything together, in the fashion of spatio-temporal developments:

Collect(p1, p2,b) — Posses,b) > Grab(p1, p2,b) > Possesg2, b) (5.3)

The picture in Figurg 5|3 describes the three phases of the @e#lect( py, p2, p3). For each
phase the corresponding predicate holds. Parallel trajectories indicate that the object meet
each other in time and space.

Repeated application of ti& ) operator deducts the developmé&ht Collect(ps, p2, p3) by
substitution to a sequence of spatio-temporal predicates:
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th

Fossess(p],
b)

()

Figure 5.3.Collect

C(M) = C(Possesys,b) > Grab(p1, p2,b) > Possesgy,b))
= Meet(p1,b) 4 meetps,b) - C(Grabr i > Possess
= Meef(py,b) 4 meet py,b) - Meet{ p1, p2,b) - meet p, b) - C(Possess
= Meet(p1,b) 4 meetpl,b) - Meet(p, p2,b) 4 meet pp,b) - Meet( py, b)

3(p1,p2) €P, pl# p2; dbeB
qed (5.4)

Summary.  Firstly an event was defined as an instance of an activity. An event exists, when
its corresponding activity can be satisfied on a dataset. The entry and the exit point of the
predicate determine the beginning and end of the event. For example, to count the occurrences
of a game pattern is to find all the events of an activity in a dataset.

5.2.2. Pass

The next activity (2) [role player] passes t¢role player] passes to ...” introduces the con-

cept of repetition. When a the execution of a predicate has ended, it begins again right from
the start. This can be repeated for several times. This behavior corresponds in an automaton
to the transition of a state to itself.

A pass is giving the ball to another player by throwing or kicking it. Note that in our two-
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dimensional model of the field it is hard to distinguish the different modes of passing (throw-

ing, kicking) the ball. To accomplish this, it would be necessary to somehow capture and
analyse the body motion of the acting player, which is beyond the scope of this thesis. In
case a player passes to the opponent team this is called a bad pass. The sequence of events is
similar to theCollect(p1, p2, p3) predicate from before, with the difference, that the players

don’t have to stand next to each other, a pass is usually performed over a distance between two
players. To allow both modes of passing tirg’|') operator is introduced, which represents

a branch on the timeline of the development. So either the predicate ’kick’ or the predicate
'throw’ can to be evaluated. Thar ('|") operator is associative and has a higher precedence
than the =’ (then) operator.

Pasgpi, p2,b) — Possess,b) > Kick(py,b) | Throw(pib) > (5.5)
Catch(p1,b) > Possesgy, b)

So three new sub predicates need to be defined:
e Kick(p,b) — meetp,b) - Disjoint(p,b)
e Throw(p,b) — meetp,b) - Disjoint(p,b)

e Catch(p,b) — Disjoint(p,b) - meetp,b)

A
b p2

Possess(p2,b)

o1 Catch(p2, b)

Throw(pl, b)
Possess(pl, b)

Figure 5.4.Pass

The deduction fronT1 = Pasgpz, p2 b) to a sequence of basic spatio-temporal predicates
follows:
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C(N) = C(Possess Kick|Throwr> Catchr> Possess

= Meet(p1,b) 4 meetps,b) - C(Kick|T hrowr> Catchr> Possesk

= Meet(p1,b) I meetfps,b) - True- (meet p1,b) - Disjoint(p1,b)) |
(meetp1,b) 4 Disjoint(pz,b)) 4 C(Catch> Possess

= Meet(p1,b) 4 meefps,b) - True- (meetps,b) - Disjoint(p1,b)) |
(meet p1,b) - Disjoint(pz,b)) H Disjoint(pz,b) - meet p2, b) - C(Possess

= Meet(p1,b) - meetpy,b) - True- (meet ps, b) - Disjoint(py, b)) |
(meet py, b) - Disjoint(py, b)) 4 Disjoint(pz,b) - meet pz, b) - Meet(pz, b) -
meet p2,b)
3(p1,P2) €P,p1 < p2,b€B

ged (5.6)

Furthermore the activity of 'pass’ is a repeated action. So the predicate contains a 'zero-to-
many’ repetition of passes, an operation covered by the star "*’ operator:

*

Pasgpi, p2,b)* — Pass> Pass> ... (5.7)
Summary. In this section two new combinators were introduced, the repetition with the
star '*’ operator and the temporal branch with the’|" operator. This notation is somehow
similar to the EBNF notation. The predicd®asg p1, p2,b) has been decomposed in simpler
activities and assembled as spatio-temporal development. Some simplifications have to be
made.

5.2.3. Blocked

The activity 'Trole player] is blocked” is translated in this section. In a rugby game a player

is blocked, when he can not move any further forward, 'cannot proceed’ suggests that the
player is in a movement. Remember the diagram of the ’kick-to-touch’ game pattern, step 3,

where the player moves forward, but is surrounded by opponents. Because no forward move
is possible and tackle followed by a loss of ball possession is probable, the player kicks the
ball out-of-bounds as soon as he gets aware of his unfortunate position. A player’s notion of

being in distress is very subjective. Different players will feel in different ways and stop their
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run at different distances to the opponents.

This situation is difficult to recognize, because it involves to conclude from a topological state
to a situation. Unlike the other predicates, this one captures a standstill situation as opposed
to situations in motion.

To build a block it takes at least two players standing on the pitch and one player carrying the
ball, running towards them and stopping his movement near them.

th o
bip<

AN

=¥

(&,

Figure 5.5.Blocked

The space/time diagram sketch (Figlrg 5.5) shows two plgyergs) moving to a position
and stopping there (building a block); the player in possession of the ball runs and stops in
front of the block.

Blocked p,b,t) — Possesg;,b) > Rungp;) > Near(py, 3p; € teamyp, ) > Stopgpy) (5.8)

At this point new types of predicates must be introduced. Till now, the used predicates rely on
strict topological relationships. The new types extended the existing ones and also introduce a
new concept. Firstly a threshold based predicate "Near” is defined, followed by "Stop” which
works on the historical values of an object. At last a predicate called "Runs” represents a
combination of both concepits.

The notion of being near somebody is very subjective. Here we define being near as sharing
buffer space. To compute the predicate "Near” for the case where the time axis is frozen, the
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distances between the object of interest and all others taken into account must be calculated
and compared to the arbitrary threshold value.

The predicate "Stops” takes an object as argument and yields true as long as this object re-
mains on the same position. To compute this at a time pointe must know the location at

ti_1 (which is the time point of the immediate previous tick). As long as the two positions are
equal, the predicate evaluates to true. The paper!in [3] refers to this kind of predicates - or
queries in their terms - as IHC query (Intra History Cross Timestamp) or see Seciion 4.3 for
more information.

Finally the predicate "Run” combines both concepts. To compute the actual speed, the current
and the previous positions are needed. We insert the distance between the two poamd as

the distance in time betwedg andt; as time in Newton’s equation of motiow £ ) and
compare the resulting average veloaityo a threshold value for running (e.g.< 6km/h is
walking, v > 6km/h is running).

C(M) = C(Posses®1,b)>Rungp:)>Near(pg,pi € teamp, ) > Stopsps))
= Meet(p1,b) 4 meetpy,b) - C(Rungpy) > Near(py,3p; € teamy, ) > Stopgpr))
= Meef(p1,b) 4 meetpy,b) - Rungp;) 4 C(Near(py,Ipi € team,, ) > Stopgp:))
= Meef(py,b) i meetpy,b) - Rungpy) 4 truet- Near(pg,3p; € teamp,)

C(Stopgps))
= Meef(py,b) A meetpy,b) - Rungpy) 4 truet- Near(pg, 3p; € teamp,)
truet Stopsgp;)
qed (5.9)

Summary. This section introduces treshold based predicates, historical predicates and a
combination of them. Till now only basic spatio-temporal predicates based on the 9-intersection
model [15] were discussed. These examples show how spatio-temporal predicates can be cre-
ated to consider other interpretations than those based on topological relations. In this context
predicate constriction and quantification are a big issue, for example no player stops for the
whole duration of a game, but moves and stops. These predicate relations are constantly built
and loosened.
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5.2.4. KickOut

Next the activity Trole player] kicks [role ball] [role boundaries] is taken into analysis.
A player in possession of the ball kicks it at some stage and the ball leaves the pitch over
a defined boundary. In the example’s gameplay this is done after a blockage, so this is the

starting predicate in the sequence.

th

boundary

Outside(b, pitch)
Kick{ni, b)

Possassipl, b)

|
=5

Figure 5.6.KickOut

KickOut(p,b,r) — Posses®, b) > Kick(p, b)|T hrow( p, b) > Outsidéb,r) (5.10)

I € boundaries

Basically the predicat®utsidé€b, pitch) computes a topological relation between a moving
point and a fixed region. In the universe of a field sports game boundaries and special spots are
not likely to change, on the contrary they have to be set according to proper rules. The main
action of this activity is the ball’s crossing of the outline, or in other words entering the region
which is not the pitch (there are two regions: the pitch and everything around it). The entering
and leaving (crossing) of a region is discussed in full detaillin ([4], [7], [8]). The predicate
Outsidéb, pitch) is thus similar to the predicatenterin the literature.
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C(M) = C(Possesy,b) > Kick(p,b)|Throw(p,b) > Outsid€b,r))

= Meet(p,b) 4 meetp,b) - C(Kick|T hrowr Outside

= Meet(p,b) 1meetp,b) - True- (meetp,b) - Disjoint(p,b)) |
(meetp,b) 4 Disjoint(p,b)) 4 C(Outsidg

= Meet(p,b) 4meetp,b) - True- (meefp,b) - Disjoint(p,b)) |
(meetp,b) - Disjoint(p,b)) - truetr Disjoint(pitch,b) + meef pitch, b)
 Insidg pitch, b)
pePbeB

ged (5.11)

5.3. Assembling the pattern

Now that we have definitions for all four parts of the automaton in Figufe 5.2, they are assem-
bled to one pattern. Simple transitions are modelled by the 'then’ compositdr ($ee 4.2). The
advanced combinatot”is short for predicate repetition.

KickToTouclity,to,b,r) — Collect(pg, pi,b) > Pasgpi, pj,b)* > (5.12)
Blocked pj,b,t2) > KickTo( pj, b, outline)
beB; po,pi,pj €ty; i # j,i,j€{1...15}

This is the kick-to-touch game pattern formulated as spatio-temporal development. By using
theC(-) operator, one could deduct the sequence of basic spatio-temporal predicates forming
the pattern.

5.4. Summary

This section develops step-by-step a specification of a rugby game pattern, formulated as a
spatio-temporal development. The topological relationship between spatio-temporal objects
can change like shown in the graph in Figlire] 4.3. The postulated specification is built by
alternating sequences of spatio-temporal predicates. The basic spatio-temporal predicates
as revised in Chaptél 4 proved to be not sufficient, mainly because of their origin in the 9-
intersection model and thus their focus on topological relations. New types of predicates were
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demanded, which were introduced by a combination of evolution queries 4.3 and simple com-

putations.

Tablg[5.2 lists all predicates used in this section. Coltikame” gives the predicate a speak-
ing name; Signature” notes the signature and und@onditions” the domain sets are found.
The”Level” at which a development resides is one higher than the highest of its composing
predicates. This is a value denoting the complexity or the effort for a computation. The basic

spatio-temporal predicates are on level 1.

Name | Level | Signature Conditions

True 0 True

False 0 False

Meet 1 | Meet(p,b) peP,beB

Disjoint 1 | Disjoint(p,b) peP,beB

Outside| 1 | Outsidéf,r) feF,reD

Possess| 2 | Posses®,b) peP,beB

Grab 2 | Grab(ps, p2,b) P1, P2 €P, p1# p2
beB

Kick 2 | Kick(p,b) peP,beB

Throw 2 | Throw(p,b) peP,beB

Catch 2 | Catch(p,b) peP,beB

Pass 3 Pass p1, p2,b) p1, P2 € P, p1# p2
beB

Collect 3 | Collect(p1, p2,b) | p1,p2 € P, p1# p2
beB

Runs 1 | Rungp) peP

Near 1 | Near(p,t) dJpeTr—teTp VvV
dpeTg—teTRr

Stops 1 | Stopsp) peP

Blocked| 2 | Blockedp,b,t) |dpeTr—teTpV
dpeTg—teTr

B...ball D...boundaries F...figures
P...players Tg...team blue TR...team red

Table 5.2.: Overview of Kick-to-touch predicates




6. Implementing the concepts

Here the concepts from the last sections are put together. A a sample realisation in Prolog
gives an outline how to tackle the task of implementing the predicates and performing their

evaluation. The whole procedure of computing a spatio-temporal predicate is explained from
the start where a user gives an input till the end where the result of a computed function exists
in the memory.

The first section discusses the steps to be taken to perform the computation of a spatio-
temporal predicate.

6.1. Phases of specification and computation

The computation a spatio-temporal development is broken down to three consecutive phases:

1. Formalization of specificationDescribe the real-world events with a formalism. Con-
struct an abstract model.

2. Compilation of the modelBuild a computable function from the abstract model by
finding an interpretation.

3. Execution:Matching against a dataset. Apply the function to an input dataset.

A possible forth phase is the collection of data, which is skipped, because it has no direct
impact on the implementation. This phase can be performed before or in parallel to the three
phases of the computation (retrospective vs. simultaneous).

6.1.1. Formalization of specification

At this stage the real-world events are formalized. This has to be done by a human user, be-
cause this task is hard to automate. The user has to have an understanding of the game he
wants to analyse and he has to know how the predicates work. Furthermore he must know the

47
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goal of the query, which kind of answer he wants and what he can get from the system.

To support the user to input his specification several possibilities exist. There are formal query
languages with some spatial-temporal capabilies likelin [1]lor [9]. To stress the importance of
spatio-temporal predicates in this context, it is imaginable to formulate a proper predicate lan-
guage. A very promising approach is donelih [7], a paper, which presents some fundamental
ideas how to use a visual query language as a frontend to build spatio-temporal developments.

Summary. At the end of this phase a set of combined and syntactically correct predicates
are present.

6.1.2. Compilation of the model

The task of this phase is to build a computable function from the abstract model. The pred-

icates defined during the formalization phase are broken down to the basic and atomic pred-
icates and assigned some semantics. In Figuie 6.1 the breakdown of the "kick to touch”-
development from Chaptgf 5 is shown. At this stage an optimization of the development is

possible. For example, similar predicates at the beginning and end of neighbouring develop-
ments can be eliminated, or data structures can be shared.

Kick to touch
paTss
possess throw catch possess
collect

possess grab possess

bIo<|:ked
pOssess —» runs —» near —» stops
kickout
pOSSSESS tﬁlr(c:)i\(/v outside

Figure 6.1.Kick-to-touch predicate order
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The result of this phase is a computable function. This function follows some interface speci-
fication, which specify properties of the input data and other necessities for a computation. In
this context a computable function defines not amhatto compute, but alsbowto compute

things. In this sense such a function incorporates algorithms and data structures. In the end a
function in the form of machine executable code is generated.

Summary. This phase does an optimization and assigns evaluation algorithms to predicate
definitions.

6.1.3. Matching against a dataset

At last the compiled function mapping a spatio-temporal predicate is executed with an input
database. There are two requirements for function and data: the data is available in a prede-
fined form, for example in a database following some schema and the function is aware of the
schema and can work on it. If both requirements are met, the function can be forwarded to
a processor for execution and the result can be stored in the memory. In the context of this
thesis, this procedure is called the "matching of a predicate against a dataset”.

Summary. The last phase applies the function to an input dataset and stores the result.

6.2. Theoretic concept to implementation in Prolog

After the first phase is finished, the user decides on which predicates to use for his query.
They are passed on to the system in phase two, in which they are broken down to atomic
spatio-temporal predicates and submitted to the next phase. In phase three these predicates are
actually computed and reassembled to build the result of the operation. These two stages of
computing and reassembling are reflected in the implementation.

6.2.1. The data

The data is organised as Prolog facts. A simplification of the Tripod data model’s history
serves as data structure: = {N? TimeIntervals,1 {(1,0)}icicn }. It reads:i pairs con-
sisting of coordinatesN?) and time intervals of length one form a history. This history is
implemented as a list holding the object’s positions at timesteps of length one:
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playerpos (playerl, [position(0,0), position(l,1), position(2,2),
position(2,2), position(l,3),position(0,4),

position(0,4),position(0,4)]).

To facilitate the implementation, an expliditmeIntervals value is replaced through the
implicit position in the list. Thus the first element in the listsition (0, 0) is valid during
the time interval0, 1), the second elemeptsition(1,1) during[1,0), ...

6.2.2. First stage: computation

In 4.1 a quick look at a predicate’s mode of operation was given. Here this idea is pursued
in more detail. A predicate is implemented as a Prolog goal and takes some objects as argu-
ments. It queries the database for the object’s positions and and computes the predicate for
each instant. The result of a spatio-temporal predicate is a temporal BoGean (..., en),

g € {T,F},0<i <n), which is a vector of truth values. Each elementf the vector reflects

the result of the predicate at instant

As an example the implementation of predicdieét is presented. First the database - in this
example the prolog facts - is queried for the needed histarigsdndr1.2). In the next step
either goalneet3 or meet4 is called depending on the number of arguments. This recursive
goal goes to the end of the list and then builds the result vector. If the two struatares

are the samenE=B), the result of the predicate for this time-slicecisie. Otherwise ifa and

B are different £\==B), the value appended to the result vectofdsse.

meet3 ([1,[],[]).

meet3 ([A|P], [B|Q],L) :- meet3(P,Q,NL), A==B, append([true],NL,L).
meet3 ([A|P], [B|Q],L) :- meet3(P,Q,NL), A\==B, append([false],NL,L).

meet (P1,P2,L) :- playerpos(P1,PLl), playerpos(P2,PL2), meet3(PL1,PL2,L).
meet (P1,P2,B,L) :- playerpos(P1l,PLl), playerpos(P2,PL2), playerpos (B,BL),
meet4 (PL1,PL2,BL, L) .

So the result of the computation stage is a vector of truth values, for example the evaluation of
predicateneet (p1,b) yields:
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meet (pl,b) = (true,true,true,true,true,false,false )

Several of these temporal Booleans are used as input for the next stage.

6.2.3. Second stage: reassembly

During the second stage, the temporal Booleans are reassembled to validate the predicate. The
main data structure used here is a matrix of string values, where each boolean vector is a row.
The rows are ordered by the occurence of the corresponding predicate in the development.
Several predicates are chained togethertbgri compositors. The order in the chain deter-
mines the order of the rows: the earlier predicates stand on top, the later ones on the bottom.
The columns of this matrix shows then, at which point in time the composing predicates are
true or false.

At this point the problem of evaluating a consecutive set of spatio-temporal predicates is trans-
formed into a string search problem: The evaluation algorithm hops fronmt arevalue to

the other and searches a path from the left upper corner to the right bottom corner in the
marix. If such a path exists, the evaluation algorithm’s prolog goal is successful. Thus the

spatio-temporal predicate/development itself is successful. As a consequence of time being
linear, only hops from the left to the right are valid and - since the predicates are executed in a
consecutive order - from the top downwards.

The Prolog code effects the evaluaion of a chain of spatio-temporal predicates and reads as

follows:

walk (DL,C,R) :- getrc(DL,R,M),C>=M, write(’success\r\n’).

walk (DL,C,R) :- NC is C+l, NR is R+1l, getval (DL,NR,NC,A), A==true,
jump (NR,NC), walk (DL, NC,NR) .

walk (DL,C,R) :- NC is C+1, getval(DL,R,NC,A), A==true, jump(R,NC),

walk (DL, NC,R) .

If the rightmost column is exceeded and the last row is reached, the algorithm terminates suc-
cessfully. Otherwise the algorithm looks for the next marix value to visit. First it tries to hop
to the next predicate, which is one to the right for the next instant and one down for the next
predicate. If this is not successful the next instant (one right) in the row is checked and - if
true - visited. So if the algorithm cannot proceed with the next predicate, it tries to proceed
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with the current one. If either of them fail, there is a gap in the sucession of the predicate. and
thus the algorithm fails. Of course more than one path through the matrix can exist.

Figure$ 6.7, 6/3, 6l4 and 6.5 show some examples from the last section. The temporal Booleans
of the predicates are aligned and the emphasised values represent the field of operation for the
algorithm. Possible paths are marked by pulled through arrows. In Higure 6.4 two paths
are marked. during this development two predicates are valid in parallel. So there is a one-
elemental chain and one three-elemental chain to be resolved by the algorithm.

t
P1 b p2

77
; meet (p1, b)

(
meet (p1,p2,0) = (
(

— f 5 meet (p2,b)

(x,¥)
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Figure 6.2..Temporal Boolean for predicate 'collect’
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Figure 6.3..Temporal Boolean for predicate 'pass’

6.3. Executing the prolog code

The resulting temporal Booleans of the predicates computations are taken as rows of a ma-
trix like explained above. Then all possible paths from the upper left corner of the matrix to
the lower right are found. Reading the matrix in this way corresponds to an execution of the
predicates in temporal succession. The algorithm first goes into depth and then finds the other
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b1, P2
; b P3
6 meet (p1,b) = (-BB-TF )
; runs (p1) = ¢ FE)
3 near (pi1,p2,p3)= ( F F T )
o—— stops(p1)=( F F F )
17

Figure 6.4. Temporal Boolean for predicate 'blocked’

pl outline
b
5 meet (p1,b) ( FFF)
4 —t— disjoint (pi,b) = ( F F i
gioutside(b,boundaries) =(FFF )
11—

Figure 6.5. Temporal Boolean for predicate 'kickout’
solutions to the graph search problem when backtracking.

In the output of the goalx stands forow number Xandcy is for column number YAfter the

first solution is found, the prolog system probes for the next while backtracking. If there are
other solutions possible, after one has been found, the system prompts. The user can
either tell the systemto show more solutions (epjesr stop the execution (entereturn>).

6.3.1. Calling goal: collect

In this part of the example it is easy to notice, that the graph search problem has multiple
solutions. For the considered spatio-temporal problem, only one solution is needed to show,
that the whole predicate is successful. The spatio-temporal predicatect has six possible
solutions. When probing for a seventh, the system fails and terminates the execution.

The input data is encoded in Prolog facts:

playerpos (player3, [position(0,0), position(l,1),
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position(2,2), position(2,2), position(2,2),

position(1,3),position(0,4)]).

playerpos (player4,

position(2,2), position(2,2), position(2,2),

[position(4,0), position(3,1),

position(3,3),position(4,4)]).

playerpos (ballz,

position(2,2), position(2,2), position(2,2),

[position(0,0), position(l,1),

position(3,3),position(4,4)]).

And one execution of the goal predicate yields this output:

GNU Prolog 1.2.18
By Daniel Diaz
(C)

Copyright

1999-2004 Daniel Diaz

| ?- test_collect.

Calling goal: collect (player3,playerd,ball2).

rl cl rl

true ? ;
r2 c4 r3

true ? ;
r2 ¢c5 r3

true ? ;

rl ¢c3 r2

true ? ;

r2 ¢5 r3

true ? ;

rl c4 r2

true ? ;

c2

c5

cb6

cd

c6

ch

r2

r3

r3

r3

r3

r3

c3

c6

c’

c5

c’

co6

r3 c4d r3 ch r3 c6 r3 c’

r3 c7 success

Success

r3 c6 r3 c7 success

Success

r3 ¢7 success

Success
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rl cb

(3 ms) no

| 2-

6.3.2. Calling goal: pass

The execution of this predicates is straight forward. Only one solution is possible and only
one path is found.

The input data is encoded in Prolog facts:

playerpos (playerl, [position(0,0), position(l,1),
position(2,2), position(2,2), position(l,3),
position(0,4),position(0,4),position(0,4)]).

playerpos (player2, [position(8,0), position(8,0),
position(7,1), position(6,2), position(5,3),
position(4,4),position(4,4),position(5,5)]).

playerpos (ball, [position(0,0), position(l,1),
position(2,2), position(2,2), position(3,3),
position(4,4),position(4,4),position(5,5)]1).

And one execution of the goal predicate yields this output:

GNU Prolog 1.2.18

By Daniel Diaz

Copyright (C) 1999-2004 Daniel Diaz

| ?- test_pass.

Calling goal: pass(playerl,player2,ball).

rl ¢l rl c2 rlc3 rlcd r2c5 r3 c6 r3 c7 r3 c8 success

true ? ;

(1 ms) no

| 2=
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6.3.3. Calling goal: blocked

Here the algoritm has to called twice, since there are two actions in parallel: The player pos-
sesses the ball and runs and stops. These two parts are evaluated seperately and the respective
results are tied with a logical and operation. This is expressed in Prolog through tying the right
hand goals with colons. Writing several clauses for one goal is then read as logical or.

The input data is encoded in Prolog facts:

playerpos (player7, [position(0,0), position(3,3),
position(6,6), position(9,9), position(9,9)]).

playerpos (player8, [position(18,18), position(1l5,15),
position(12,12), position(10,10), position(10,10)]).

playerpos (player9, [position(18,17), position(15,14),
position(12,11), position(10,9),position(10,9)]).

playerpos(ball3, [position(0,0),position(3,3),position(6,6),
position(9,9), position(9,9)1]).

And one execution of the goal predicate yields this output:

GNU Prolog 1.2.18

By Daniel Diaz

Copyright (C) 1999-2004 Daniel Diaz

| ?- test_blocked.

Calling goal: blocked(player7,player8,player9,ball3).
rl ¢l rl c2 rlc3 rlcd rl c5 success

r2 ¢l r2 c2 r2 c3 r3 cd rd c5 success

true ? ;

r3 c5 success

true ? ;

(2 ms) no
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?_

6.4. Summary and outlook

This section shows, how the concept of a spatio-temporal predicate can be implemented us-
ing a Prolog system. Two main phases of computation and reassembly were identified and
a sample implementation was done, in order to show how the predicates are put into work.
After finding a solution for the spatial relations, the validation of the temporal succession was
transformed into a string search problem and the solution was then transfered back. Starting
with some facts representiing the input postion data of players and a ball, the predicates were
deducted. If a predicate’s prolog goal is successful, the predicate is satisfied and if the prolog
goal fails the predicate fails.

This way of deducting predicates and thus obtaining a boolean as a result is not the only way
of computing spatio-temporal relations. Another possibility is the use of functions rather than
predicates. Such a function takes a database as input and yields a subset of this database as a
result, thus it acts as filter. This subset can reveal more detailed information on the situation
like for example the length of a player’s roudering a situation. Spatio-temporal filters cut

out portions of a spatio-temporal dataset, and combined with some evaluation functions, they
represent a powerful way of penetrating spatio-temporal data. Since predicates are functions,
which have the boolean set as image det A — B), they are a special case of a filter. If

they are satisfied, then a subset containig the specified situation exists in the database. In
practice, the computation of a spatio-temporal filter is similar to the evaluation of a spatio-
temporal predicate: the portion of the dataset, where the predicate is fulfilled, is cut out for
all participating objects in the specified situation. Thus the aggregation is replaced through a
copy operation.



7. Conclusion

This work discussed the application of spatio-temporal predicates to effect situation recog-
nition in field sports. It shows how the framework of spatio-temporal predicates ([6]) can
be adapted to create domain-specific predicates. Basic predicates and combinators from the
canonical set are taken and given some semantics from the domain of field sports. This way
an application-dependent subset of predicates is defined. A link is made to the topic of spatio-
temporal patterns [4].

An example game pattern is explained and stepwise broken down to it’'s rudimentary actions.
These are then translated into the language of spatio-temporal predicates. The single predi-
cates are wired by sequential or parallel combinators to form a development. This development
serves as specification of a situation, which can be matched against an appropriate database.
A development hides the underlying predicates and is a predicate itself. The use of speaking
names for predicates facilitates an intuitive way for specifying situations. Automata are sug-
gested as possible visualisation and to facilitate the intuitive design of developments.

A basic implementation was made and the main steps to build a system for spatio-temporal
predicates are discussed. The spatio-temporal predicates were mapped to Prolog goals and
the validation was executed as a deduction from facts representing spatio-temporal data. For
a realization there are many challenges to be met and problems to be solved. A big topic is to
find proper user-interfaces to specify developments. In Chipter 5 tactical drawings of a sports
team is taken as a spatio-temporal map. A visual query language derived from such a drawing
is an intuitive way of specifying queries and one which many users have already executed.

This work shows how the adaption of spatio-temporal predicates is used to penetrate a spatio-
temporal dataset in order to reveal inherent information. The topic of field sports has been
chosen, because the special properties of sport make it especially practical to study spatio-
temporal relations. A field sports game can be understood as a system and spatio-temporal
predicates represent one way to give a formal description of such a system.

58



A. Acronyms

ATP
Cairos
CHC
CHI
DBMS
DOMINO
EBNF
IHC
LPM
ODMG
ROSE
SDT
SQL

Association of Tennis Professionals

Cross-History Cross-timestamp
Cross-History Intra-timestamp
Database Management System
Databases fOr MovINg Objects tracking [1
Extended Backus Naur Form
Intra-History Cross-timestamp

Local Position Measurement

Object Database Management Group
RObust Spatial Extension

Spatial Data Type

Structured Query Language
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C. Sample implementation in Prolog

o

o

THE DATA REPRESENTED AS FACTS

o

G FORMAT-—

make_position(X,Y,position(X,Y)).
get_x(position(X,_),X).
get_y (position(_,Y),Y).

playerpos (playerl, [position(0,0), position(1l,1), position(2,2), position(2,2),
position(1l,3),position(0,4),position(0,4),position(0,4)1]).

playerpos (player2, [position(8,0), position(8,0), position(7,1), position(6,2),
position(5,3),position(4,4),position(4,4),position(5,5)1).

playerpos (ball, [position(0,0), position(l,1), position(2,2), position(2,2),
position(3,3),position(4,4),position(4,4),position(5,5)]).

T COLLECT--

playerpos (player3, [position(0,0), position(l,1), position(2,2), position(2,2),
position(2,2),position(1l,3),position(0,4)7]).

playerpos (playerd4, [position(4,0), position(3,1), position(2,2), position(2,2),
position(2,2),position(3,3),position(4,4)]).

playerpos (ball2, [position(0,0), position(l,1), position(2,2), position(2,2),
position(2,2),position(3,3),position(4,4)]).

T BLOCKED-—
playerpos (player7, [position(0,0), position(3,3), position(6,6), position(9,9),
position(9,9)1]).

playerpos (player8, [position(18,18), position(15,15), position(12,12),
position(10,10), position(10,10)1]).

playerpos (player9, [position(18,17), position(15,14), position(12,11),
position(10,9),position(10,9)1).

playerpos(ball3, [position(0,0),position(3,3),position(6,6),position(9,9),
position(9,9)1).

revert ([]1, []

revert ([H|T],S) :- revert(T,NS), append([H],NS,S).
invert ([],[]).

invert ([H|T],
invert ([H|T],

) :— invert(T,NS), H==true, append([false],NS,S).
) :— invert(T,NS), H==false, append([true],NS,S).

same (A,B,_) :—
same (A,_,C) :—
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same(_,B,C) — B==C

op_or (A,B,X) :- A==true, B==true, X=true.

op_or (A,B,X) :— A==true, B==false, X=true.

op_or (A,B,X) :- A==false, B==true, X=true.

op_or (A,B,X) :- A==false, B==false, X=false.

op_and(A,B,X) :- A==true, B==true, X=true.

op_and(A,B,X) :— A==true, B==false, X=false.

op_and (A, B, X) - A==false, B==true, X=false.

op_and (A,B,X) :- A==false, B==false, X=false.
myfirst (F, [F|_]).

myrest (R, [_IR]) .

fold _or([],false).

fold_or([A|T],V) :- fold_or(T,NV), op_or(A,NV,V).
fold_and([],true).

fold_and([A|T],V) :- fold_and(T,NV), op_and(A,NV,V).

merge ([],[],[]).

merge ([H1|T1], [H2|T2],L) :- merge(Tl1l,T2,NL), op_and(H1l,H2,A), append([A],NL,L).
not (P) :— call(p), !, fail.

not (_) .

equal3(A,B,C) :- A==B, B==C, A==C.

nequal3 (A,B,C) :— A\==B, B\==C, A\==C.

eqlist(A,B,C,L) :—- equal3(A,B,C), append([true],[],L).
eglist(A,B,C,L) :—- not(equal3(A,B,C)), append([false],[],L).
neqglist(A,B,C,L) :- not(equal3(A,B,C)), append([true],[],L).
neqglist(A,B,C,L) :- equal3(A,B,C), append([false],[],L).
doublend (A, [], [A]) .

doublend(_, [H|T], [HIL]) :- doublend(H,T,L).

distance(P,Q,D) :- get_x(P,Px), get_y(P,Py), get_x(Q,0x), get_y(Q,Qy),

D is sqgrt ((Px-Qx)* (Px-0Qx)+ (Py—-Qy) * (Py-Qy)) .

velocity(S,T,V) :— V is S/T.

velo_list([],[]).

velo_list([_1,11).

velo_list([F|T],L) :- velo_list(T,NL), myfirst(S,T), distance(F,S,D),

velocity(D,1,N), append([N],NL,L).

o _ _ _
5

% EVALUATING 1: Build the strings

)

).

Ql,L) :— meet3(P,Q,NL), A==B, append([true],NL,L).
Q],L) :- meet3(P,Q,NL), A\==B, append([false],NL,L).

7).
meetd ([A|P], [BIQ], [CIR],L) :- meet4(P,Q,R,NL),
equal3 (A,B,C),
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append([true],NL, L) .

meetd ([A|P], [BIQ], [CIR],L) :- meetd(P,Q,R,NL),
not (equal3 (A,B,C)),
append([false],NL,L).

meet (P1,P2,L) :- playerpos(Pl,PLl), playerpos(P2,PL2), meet3(PL1,PL2,L).
meet (P1,P2,B,L) :- playerpos(Pl,PLl), playerpos(P2,PL2), playerpos(B,BL),
meet4 (PL1,PL2,BL,L) .

testmeet (L) :- playerpos(playerl,PLl), playerpos(player2,PL2), playerpos(ball,
PL3),
meet4 (PL1,PL2,PL3,L).

G DISJOINT--

disjoint3([],
disjoint3([_], .
disjoint3([1,[_1,[]).

disjoint3([A|P], [BIQ],L) :- disjoint3(P,Q,NL), A==B, append([false],NL,L).
disjoint3([A|P], [BIQ],L) :- disjoint3(P,Q,NL), A\==B, append([true],NL,L).

disjointd ([1,[1,[1,[1).

disjoint4 ([A|P], [BIQ], [CIR],L) :- disjoint4(P,Q,R,NL),
nequal3 (A,B,C),
append([true],NL, L) .

disjoint4 ([A|P], [BIQ], [CIR],L) :- disjoint4(P,Q,R,NL),
not (nequal3 (A,B,C)),
append([false],NL,L).

disjoint (P1,P2,L) :- playerpos(P1l,PLl), playerpos(P2,PL2), disjoint3(PL1l,PL2,L).

disjoint (P1,P2,B,L) :- playerpos(Pl,PLl), playerpos(P2,PL2), playerpos(B,BL),
disjoint4(PL1,PL2,BL,L).

testdis (L) :- playerpos(playerl,PLl), playerpos(player2,PL2), playerpos(ball,
PL3),
disjoint (PL1,PL2,PL3,L).

G STOPS——
stopsl ([1,[]).

stopsl ([H|T],L) :- stopsl(T,NL), H=0.0, append([true],NL,L).

stopsl([H|T],L) :— stopsl(T,NL), H\=0.0, append([false],NL,L).

stops (P,L) :- playerpos(P,PL),velo_list (PL,VL),stopsl(VL,TL), doublend(_,TL,L).
G NEAR-—
near3(A,B,C) :— distance(A,B,X),X<1.5, distance(A,C,Y),Y¥<1.5,

distance(B,C,Z),Z<1.5.

near_list ([], [1, [1, [1).

near_list([A|P], [B|Q], [C|IR],L) :- near_list(P,Q,R,NL), near3(A,B,C),
append([true],NL, L) .

near_list ([A|P], [B|Q], [C|IR],L) :- near_list(P,Q,R,NL), not(near3(A,B,C)),
append([false],NL,L).

near (A,B,C,L) :- playerpos(A,Ll), playerpos(B,L2), playerpos(C,L3),

near_list(L1,L2,L3,L).



walk ([L1l,L2,L3],1,1).

T COLLECT--

collect(P1,P2,B) :— meet(Pl,B,Ll), meet(P1l,P2,B,L2), meet(P2,B,L3), jump(l,1),
walk ([L1,L2,L3],1,1).

T BLOCKED——

blocked(P1,P2,P3,B) :- meet(P1l,B,L1l), jump(l,1), walk([L1l],1,1),

runs (P1,L2), near (P1l,P2,P3,L3), stops(Pl,L4), jump(2,1),

walk([L1l,L2,L3,L4],1,2).
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G RUNS-——
runsl ([],[]).
runsl([H|T],L) :- runsl(T,NL), H>=4.0, append([true],NL,L).
runsl([H|T],L) :- runsl(T,NL), H>=0.0, H<4.0, append([false],NL,L).
runs (P,L) :- playerpos(P,PL),velo_list (PL,VL),runsl (VL,TL),doublend(_,TL,L).
% EVALUATING 2: Search the strings
G GETVAL-—
count ([],0).
count ([_|T],S) :- count(T,NS), S is NS+1.
nth_member (1, [M|_],M).
nth_member (N, [_|T],M) :— N>1, N1 is N-1, nth_member (N1,T,M).
getval(DL,R,C,V) :- nth_member (R,DL,L), nth_member (C,L,V).
getrc (DL, R, V) :— nth_member (R,DL, L), count (L,V).
jump (R, C) :— write('r'),write(R),tab(l),write('c'),write(C),tab(2).
e ———,———,———H-t WALK-—
walk (DL,C,R) :— getrc(DL,R,M),C>=M, write('success\r\n').
walk (DL,C,R) :— NC is C+1, NR is R+1, getval(DL,NR,NC,A), A==true,

jump (NR,NC), walk (DL, NC,NR) .
walk (DL,C,R) :- NC is C+1, getval(DL,R,NC,A), A==true, jump(R,NC),
walk (DL, NC,R) .
% THE PREDICATES
G PASS—-
pass (P1,P2,B) :—- meet(Pl,B,L1l), disjoint (P1,P2,B,L2), meet(P2,B,L3), jump(l,1),
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G EXECUTION--

test_pass :— write('Calling goal: pass(playerl,player2,ball).\r\n'"),
pass (playerl,player2,ball).

test_collect :— write('Calling goal: collect(player3,player4,ball2).\r\n'"),
collect (player3,player4,ball2).

test_blocked :- write('Calling goal: blocked(player7,player8,player9,
ball3) .\r\n'),
blocked(player7,player8,player9,ball3).
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