
TECHNISCHEUNIVERSITÄT WIEN

DIPLOMARBEIT

Spatio-temporal patterns: Using spatio-temporal

predicates to recognize situations in field sports

Ausgef̈uhrt am

INSTITUT FÜR GEOINFORMATION UND KARTOGRAPHIE (E127)

der technischen Universität Wien

unter der Anleitung von

O.Univ. Prof. Dipl.-Ing. Dr. techn. André Frank

durch

Armin Wasicek

Lederergasse 6, 4100 Ottensheim

Wien, February 21, 2006

Armin Wasicek

 
 
Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der 
Hauptbibliothek der Technischen Universität Wien aufgestellt  
(http://www.ub.tuwien.ac.at). 
 
The approved original version of this diploma or master thesis is available at the 
main library of the Vienna University of Technology   
(http://www.ub.tuwien.ac.at/englweb/). 

 



i

Danksagung

Für Ihre Unterstützung bei der Verwirklichung meiner Ideen, meinen Eltern.

Für Lob und Kritik an meiner Arbeit, meinem Betreuer Professor Frank.

Für Freundschaft und Zusammenarbeit, meinen Kollegen.

Für den Zusammenhalt, meinen Freunden.

Danke.



Contents

1. Introduction 1

1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Time geography in sport . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3. Connection to scientific discussion and outline . . . . . . . . . . . . . . . . . 4

2. Data capturing techniques 5

2.1. Manual input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2. Video position extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3. Position tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4. Virtual sports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3. Spatio-temporal Data Types 8

3.1. ROSE Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2. Temporal lifting operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3. Abstract and discrete models . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4. Moving object model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5. Tripod data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4. Spatio-temporal Predicates 21

4.1. From spatial predicates to spatio-temporal predicates . . . . . . . . . . . . . 22

4.1.1. Time dependent functions . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.2. Lifting predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.3. Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.4. Evaluating predicates . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.5. Basic spatio-temporal predicates . . . . . . . . . . . . . . . . . . . . 26

4.1.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2. Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

ii



Contents iii

4.3. Spatio-temporal Evolution based on the Tripod spatio-temporal data model . 30

4.4. Recognition function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5. Case study: Rugby ”Kick to touch” pattern 33

5.1. Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2. Building predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.1. Collect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.2. Pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.3. Blocked . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2.4. KickOut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3. Assembling the pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6. Implementing the concepts 47

6.1. Phases of specification and computation . . . . . . . . . . . . . . . . . . . . 47

6.1.1. Formalization of specification . . . . . . . . . . . . . . . . . . . . . 47

6.1.2. Compilation of the model . . . . . . . . . . . . . . . . . . . . . . . 48

6.1.3. Matching against a dataset . . . . . . . . . . . . . . . . . . . . . . . 49

6.2. Theoretic concept to implementation in Prolog . . . . . . . . . . . . . . . . . 49

6.2.1. The data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2.2. First stage: computation . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2.3. Second stage: reassembly . . . . . . . . . . . . . . . . . . . . . . . 51

6.3. Executing the prolog code . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3.1. Calling goal: collect . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.3.2. Calling goal: pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3.3. Calling goal: blocked . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.4. Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7. Conclusion 58

A. Acronyms 59

B. Bibliography 60

C. Sample implementation in Prolog 62



1. Introduction

This is about the interpretation of spatio-temporal data as chronology of sequential or parallel

occuring situations. A situation is a dynamic incident, which incorporates participants and

their interactions. Situation recognition is then the task to single out specific incidents from the

space-time continuum. By comprising incidents in a situation, it is made comprehensive for

human beings. In this work spatio-temporal predicates [6] are suggested to effect recognition

of situations in field sports.

1.1. Motivation

The widespread use of modern position measuring technologies raises the need for new meth-

ods to deal with the collected data. Data inherently lacks the property to be well readable by

us human beings. We need to find ways to facilitate the extraction of information out of raw

data. This is a technical process called data mining or knowledge discovery. It uses statistical

computations and pattern recognition to achieve its goal.

The use of information systems finds its way in sports. Computer scientists as well as sport

scientists try to find possibilities to install new information technologies successfully to the

domain of sport science. By revealing shortcomings or special abilities, these technologies

empower the coaches to adjust the training methods more exactly to the athlete’s specific

needs. During a competition, the benefit of knowledge can change the odds.

In team sports the cooperation between single players is a crucial issue. It is difficult to evalu-

ate cooperation, because individual perceptions lead to different interpretations of situations.

Information systems can give a more objective view on the situation. For example, video

judgement has become the final instance for a referee’s decision in many sports.

Various techniques exist to measure positions of players in field sports. These systems can

provide data rates exceeding 1000 measurements per second, accurate down to a few cen-

1



1. Introduction 2

timetres. This represents a rather big data resource. To deal with this resource, data mining

techniques have to be applied to find useful information.

1.2. Time geography in sport

In time geography ([12], [13]) Ḧagerstrand developed a set of visual tools for looking at geo-

graphic reality at the individual level. The motivation of his approach comes from the social

sciences and the need to examine the spatial and temporal coordinates of human activity.

His model illustrates how a person moves through the spatio-temporal environment. Two hor-

izontal axes form a two dimensional spatial plane. A third vertical axis represents time. His

simplified world is enclosed in a cube, which he calls ”aquarium” (Figure 1.1) and represents

a portion of space-time.

Inside, lines represent the paths, which individuals follow through space and time. These

so-called lifelines go from the bottom of the aquarium to the top in a continuous way. This

corresponds to the limitation in human movement, that one can neither move in discrete steps,

nor exist in more than one location at the same time. With Hägerstrand this is one of three

limitations to space-time paths and called’capability’. The tool to visualize the capability to

move is theprism, which represents the total area of space reachable by an individual. The

shallower the slopes of theprism, the faster the individual can travel. A common sense term

for this fact is the action radius, which makes an assumption, how far an object can move

during a certain period of time.

Multiple paths, which link up temporarily, are calledbundlesand imply a possible interaction

of people. This is’coupling’. In the sport context this happens for example when two players

are fighting for the ball. A location, which remains unchanged for some time is called astation.

The last constraint is’authority’ and refers todomains, which are areas with access limits.

Note that the boundaries of these areas can change as well as time goes on, take for example the

offside zone in soccer, which is expanding and contracting with the last defender’s movement.

In terms of Ḧagerstrand’s time geography situation recognition is the locating of certain bun-

dles in an aquarium. To identify the correct bundles the user has to enter some information

about the situation prior to the recognition. Since an aquarium is a restriction to time and

space, a bundle is itself an aquarium, which can again contain other aquaria. Thus a situation



1. Introduction 3

Figure 1.1.:Hägerstrand’s aquarium: A space-time model

can be part of another situation and the recognition of a situation in a field sports match is the

computation of a bundle in an aquarium.

Definition 1 (Situation recognition) Situation recognition is the computation of a subset A′

in a given situation environment A through a recognition function p.

p : A→ A′ A, A′ ... set of lifelines, A′ ⊆ A

Some fields of application make already use of situation recognition techniques; for example,

collision detection systems for air traffic try to identify dangerous situations, or in road traffic,

variable speed signs are installed to avoid traffic jams. There exist several reasons to introduce

these techniques into the world of field sports. Studying spatio-temporal relationships in the

sports domain has several advantages over the real-world social environment.

Following properties justify our interest to model them in a Geographic Information System

(GIS) with regard to spatio-temporal properties:



1. Introduction 4

• Bounded spatial and temporal extent (closed world assumption).

• Finite number of entities (pitch, players, ball, referee).

• Interaction between entities is well-defined.

• Simple rules apply to the game.

• Complex situations can occur during a match.

• Recurrent situations follow a certain pattern.

The first two properties constrain the world and its entities we are working with. This makes

the computation more convenient for finite machines. The third and fourth property define in

which ways the entities can be related temporarily or permanently. The fifth property says that

nevertheless the elements of a field sports game are simple, they can develop a very complex

structures. Finally the last one states, that for recurrent situations a fundamental pattern can

be identified. An abstraction of this pattern can serve as a template.

1.3. Connection to scientific discussion and outline

We are living in a world of constant change. To understand the world, we got to understand

this change. Studying time-varying concepts has a long history in philosophy, physics and

computer science. Many models have been developed for different purposes and applications.

They range from very simple to very complex like the theory of general relativity from Ein-

stein. It has been shown that time and space are linked in many ways. So they have to be

considered together.

In [4] an approach to spatio-temporal patterns is given. Erwig suggest the use of spatio-

temporal predicates [6] to effect their recognition. The paper in [16] investigates possible

ways to make use of different techniques from time geography in Rugby. The first two papers

build the analytical foundation of this thesis, the third one describes how time geography can

be useful in sports analysis.



2. Data capturing techniques

The goal of a data capturing method is to bring a set of incidents from physical reality into

virtual reality. Then the virtual model can be subject to further processing. Various data col-

lection methods exist to record the changing position of moving objects. The task performed

by these techniques is to perpetually sample the location of a set of objects. Thus obtained

positions are forwarded to a storage device and/or processed on the fly. The data collected in

one of these ways represents the data source used in the following chapters.

This chapter explains the four most common methods to collect position data - manual input,

video position extraction, position tracking and virtual sports.

2.1. Manual input

This is the low-tech approach to position recording: an observer logs the events from the pitch.

This task can be performed simultaneous to the game (live) or fram a data store (retrospec-

tive). TV companies use this technique to manually index their video recordings. This index

helps with making new compilations out of existing video sources, like a match summary or

”golden moments” at the end of the season.

However in our setup one observer is following the changing position of one or more players

on a screen. On a recording device the observer is plotting the object’s change of location.

This procedere can be easily mapped to software: one window displays the video of the game,

another one provides some sort of drawing program, where the objects of a game can be

placed and moved on a virtual pitch. The actual position measurement is effected by the

visual judgement of the observer. There are three possible sources for inaccuracies: First the

observer’s guess of the position; second the manual action of drawing; third the grid used by

the software adds some inaccuracy.

- Pro: Easy setup: Just one computer is needed and the software is rather simple to use,

is commercially available and can be put quickly into service.

5



2. Data capturing techniques 6

- Contra: Data capture is very cumbersome and uses lots of manpower. The accuracy of

the data is low.

Examples. The SCRUM (Spatio Chronological Rugby Union Model) developed by the In-

formation Science Department, University of Otago [17] is a system to virtually move players

over a pitch and watch a match video a the same time in order to record the position data.

2.2. Video position extraction

This technique computes positions by applying a series of image processing and pattern

matching algorithms on several video frames. An object’s position is calculated in relation

to static elements in the picture, which are previously identified (calibration). Images from

several views are nescessary to overcome the warping effects of the camera’s lenses. The first

system of this kind was named LucentVision and brought into service for the ATP tour in 1998.

Video position tracking is a very promising approach, since the matches recorded and broad-

casted by TV companies build a large video resource. An efficient technology could help in

digitizing matches from the past. This method is related to video indexing techniques, which

are an issue of active research ([19]). One of the strong points of this technology lies in its

remote sensing concept, so the measurement does not influence it’s outcome.

- Pro: Videos build a large resource of past matches. No extra setup required: uses

existing cameras from broadcasting companies.

- Contra: Every camera perspective has to be calibrated.

Examples. A description of the LucentVision system is found underhttp://www.bell-labs.

com/org/1133/Research/Visualinfosystems/, last accessed in June 2005.

2.3. Position tracking

At present position measuring devices get more and more affordable and start to penetrate

our everyday life. They are built in cars and cell phones to improve our navigation. Another

application is the tracking of moving objects. The signal propagation delay between sender

and receiver devices is used to measure the position. Unlike with Video position extraction

http://www.bell-labs.com/org/1133/Research/Visualinfosystems/
http://www.bell-labs.com/org/1133/Research/Visualinfosystems/


2. Data capturing techniques 7

systems no intervisibility is nescessary.

The range of setups is broad: systems using satellites moving in the orbit and mobile devices

on the earth surface are construed for global usage, other ones using fixed stations to provide

this service within fixed boundaries for local usage.

In the context of sports, the latter setup is more important. Microchips are attached to the

ball, the player’s and referee’s feet and interconnected relay stations are built around the pitch.

Additionally the pitch and the station must be surveyed with a high resolution in order to

configure the stations properly.

- Pro: Very accurate and reliable service.

- Contra: Big effort setup. New hardware required.

Examples. Global systems operating from outer space are the american GPS, the russian

GLONASS and the european Galileo. Local systems are the Cairos System, (http://www.

cairos.com accessed August 2005) and LPM (http://www.lpm-world.com/html/press/

press.htm, accessed June 2005).

2.4. Virtual sports

As the name suggests, virtual sport events are purely computational matches. One big seg-

ment is sport games, one other sport simulations. Sport games are primarily designed for

entertainment. Recent publications amaze not only with love to the detail, but also with very

natural game compartment. Sport simulations emerge from a more academic corner. They are

used to study the behaviour of multi-agent simulation systems or to test artificial intelligence

algorithms. Since the holding of virtual sports is based on computations, it is easy to derive

valuable information like position data directly from the memory.

- Pro: Data is available in digitized form. The captured data is accurate up to one hundred

percent.

- Contra: Works only in its respective virtual domain.

Examples. The RoboCup Simulation league is a pure virtual soccer league with four divi-

sions in 2005.

http://www.cairos.com
http://www.cairos.com
http://www.lpm-world.com/html/press/press.htm
http://www.lpm-world.com/html/press/press.htm


3. Spatio-temporal Data Types

Data types provide structures for organising data in a database. Out in the database world

there exist many approaches to deal with temporal and spatial data. In the past these two

domains have been treated separately. During the development of concepts for the two distinct

domains, footnotes were set, that these concepts could also be useful to the respective other

domain. From these deliberations the domain of spatio-temporal databases evolved, with the

goal to research data models which model the affinity between time and space sufficiently. A

spatio-temporal database embodies spatial, temporal and spatio-temporal information.

Figure 3.1.:Spatial, temporal and spatio-temporal domain

The special properties of spatio-temporal data raise the need for independent concepts for

the spatio-temporal domain. The DOMINO project [18] surveyed following set of critical

capabilities for spatio-temporal databases:

• Location modelling: Existing dbms cannot easily handle continuously changing data,

like locations of moving objects. Updates of the location datum have to be performed

constantly.

• Linguistic Issues:Traditional query languages such as SQL are inadequate for express-

ing queries. A database language must support spatial and temporal range queries.

• Indexing: For continuous change of location, the index has to be updated continuously,

which sweeps off the benefit from indexing.

8



3. Spatio-temporal Data Types 9

• Uncertainty/Imprecision: The object’s location in the database cannot always be iden-

tical to the actual location. Some mechanism determining a measurement of the correct-

ness of the answer must exist, e.g. the probability.

3.1. ROSE Algebra

An algebra for spatial data types is needed to allow queries to take into consideration the

special nature of spatial data. Spatial Data Types (SDT) thus facilitate a conceptualisation

of spatial entities in a database management system (DBMS). Basing the definition of these

spatial data types on an abstract interface, separates the algebra from a particular data model

of a DBMS.

ROSE stands for forRObustSpatialExtension algebra. It realises a set of spatial data types

and operations on them as extension to an existing DBMS. In this work it shows as a fun-

damental explanation of how spatial data types work and serves as basics for the following

chapters, which continue with the concept of spatio-temporal predicates and are built upon

the ROSE algebra. The ROSE algebra is defined together with a type system in [11]. In the

following a short review is given.

To achieve its demand to be robust and have spatial extension capabilities, it puts up certain

requirements:

• Generality: The geometric objects should be as general as possible, i. e. allow holes in

regions; closed set of operations.

• Rigorous definition: Complete definition of carrier sets and operations to avoid ambi-

guities for programmer and user.

• Finite resolution: To be computable in finite devices.

• Treatment of geomeric consistency:Distinct objects must be hold geometrically con-

sistent in the database.

• General object model interface:An interface to an existing DBMS data model must

exist. This is an implementation issue.

The ROSE algebra fulfills these criteria by using an underlying structure called arealm. Thus

it defines realm-based spatial data types. A realm in this sense is a finite set of points and



3. Spatio-temporal Data Types 10

non-intersecting line segments. Geometric objects on the realm are defined as elements of this

set.

Realms are the foundation of the ROSE algebra. In contrast to euclidean space, which is a

continuous plane, a realm got a finite represention. ”A realm is a set of points and line seg-

ments over a discrete domain, that is, a grid, as shown in Figure 3.2” ([11]).

Figure 3.2.:Example of a realm

So a realm has two parts: a set of points (called N-points) and a set of lines (called N-

segments), with a line consisting of a two point tuple. These are the basic elements of which

the data types are composed. The two most important criteria to the algebra are, firstly that no

point lies on a possible line segment and secondly no two lines intersect or overlap. This way

every point of interest is contained in the underlying grid.

The problem arising in this context is, that intersection points of lines do not lie automatically

on the grid and have to be transformed to fit into the realm. The rule is to move the real in-

tersection point of two lines to the nearest point on the grid. Lines are to be transformed into

”chains of segments”. A so called envelope contains all the segments of a line. The number

of line segments within the envelope changes due to the insertion and removal of intersecting

lines. When a new line is added to the realm, new intersection points are computed and trans-

formed. Existing lines are broken into two parts if nescessary, to maintain the non-inersecting



3. Spatio-temporal Data Types 11

property of the algebra. The envelope guarantees the error produced through this operation

is minimized. The concept of a realm facilitatesgeneralityandgeometric consistencyas de-

manded in the requirements. One drawback is, that after performing several updates of the

realm slight numerical errors may occur, due to the re-computation of intersection points.

The spatial data types of the ROSE algebra are forged in a layered approach. First a discrete

spaceN×N is defined overN = {0, . . . ,n− 1} a subset of the natural number set. This is

the representation of the underlying grid. Only coordinates which are part of this space are

valid. Computation is done in error-free integer arithmetic. This definition ensures some nice

properties for the algebra and features a direct and robust implementation. Next layer are

the N-pointsand N-segments- the two parts of a given realm over N. An N-point is a pair

(x,y) ∈ N×N. An N-segmentis a pair of distinct N-points(p,q) [(p,q) and(q, p) are equal].

Some primitive predicates (with their natural language semantics) are defined to test the rela-

tion of two N-segments: meet, distinct, overlap.

Under this definition a realm can be viewed as a graph with the points as nodes and line seg-

ments as edges. Then we introduce the definition of aR− cycleas cycle and aR− f aceas

face of this graph. A face is a cycle possibly enclosing other cycles, i. e. a region with holes.

Furthermore aR− unit is a minimalR− f ace. These definitions facilitate the construction

of a regionsdata type. Next aR−block is a collection of connected line segments and thus

supports the definition of alinesdata type.

The spatial data types of the ROSE algebra are:

• points: A point is an object, whose location but not extent is important. Described

through a set ofR− points.

• lines: A line is a connection in space. It has a starting and an ending point. Supported

by a set of pairwise disjointR−blocks.

• regions: An Object whose extent is relevant is called a region. It is defined through its

boundaries. So a set of pairwise egde-disjointR− f acesis a region.

Some example operations on the data types of the ROSE algebra with their intuitive meaning:

- Predicates:equal, disjoint, inside, intersects, meets, . . .

- SDT operators: contour, interior, plus, minus, . . .



3. Spatio-temporal Data Types 12

- Number operators: dist, diameter, length, . . .

- Set operators:sum, closest, fushion, overlay, . . .

Summary. The ROSE algebra defines realm-based spatial data types. It uses points and non-

interesecting line segments to build thepoints, linesandregionsdata types. A realm is a grid

and serves following purposes:

• Geometric consistency

• Closure properties

• No new intersection points are calculated.

• Realm data structure can be used as an index.

• Topological correctness precedes numerical correctness.

Most important, the ROSE algebra has an efficient implementation and is open to extensions.

3.2. Temporal lifting operation

The operation of temporal lifting has the function to add a temporal component to any entity.

In the area of data types this function is realised as a type constructor. The application of type

constructorτ on a given atomic data typeα transforms it to the temporal data typeτ(α):

τ(α) = time→ α (3.1)

If α is a spatial type,τ(α) represents a mapping from time into space. For every timestamp on

a time linetime (definition set) exists a corresponding value in theimage set. Thus a tempo-

rally lifted data type describes the domain and an attribute’s changes over time.

In the abstract moving object model[8] time is considered to be linear and continuous. A

graphical representation for this conceptualisation is the infinite time line, in algebraic terms

we say time is isomorphic to the set of real numbers. Two structures are isomorphic, if they

can be mapped onto each other and each part of one structure has a corresponding part in the

other. For example the carrier set for temporal typeinstant is:



3. Spatio-temporal Data Types 13

instant := Ainstant = R∪{⊥} (3.2)

Themovingtype constructor performs the lifting operation similar to theτ operator. This term

is used in theabstract moving object modelto signify the newly gained possibility to record

change (in location) of (spatial) data types. Here is the formal definition from [8]:

moving := Amoving(α) = { f | f : Ainstant→ Aα, partial f unction∧ Γ( f ) f inite} (3.3)

Now we obtain instead of the representation of a single value a partial finite function over

time containing the changes of the value during a period of time as a data type. This function

cannot be fully defined due to the fact, that the ”recording” of the changing entity must have

a start and an end. The latest value for end would be now. The finite property also makes the

design implementable.

Since we want to work with values rather than with functions, we need a way to access the

values in such a function. ”Theintimetype constructor converts a given typeα into a type that

associatesintime values with values ofα.” By the use of this type single elements (instant-

value-pairs) within such a function can be accessed.

intime(α) := Aintime(α) = Ainstant×Aα (3.4)

Table 3.1 lists some generic operations taken from [8] to work with these data types. The

argument types are on the left side of the arrow, the return type on the right side. Theat

operation extracts the value at a specific point in time. The extreme values are yielded by the

minvalue andmaxvalueoperations. Note that a total order for typeα must exist to be able to

compute either of these operations. Nextstart andstopyield the respective values at some pre-

defined point in time. For examplestart can mark a point whenα changes from undefined to

defined andstop whenα changes from defined to undefined. The last four operations depend

strongly on the definitions of typeα and the notion of timetime. The duration operation

yields a real number representing a certain condition is valid. At lastconst performs the

function of a wrapper for non-temporal types. Non-temporal types do not change over time

and are thus constant. This operation serves as interface between temporal and non-temporal

types.



3. Spatio-temporal Data Types 14

τ(α) × time→ α at

τ(α) → α minvalue, maxvalue

τ(α) → time start, stop

τ(α) → real duration

α → τ(α) const

Table 3.1.: Generic operations for moving objects

3.3. Abstract and discrete models

Abstract and discrete models are two fashions of design and represent different levels of ab-

straction. Abstract data models use infinite sets, the temporal lifting operatorτ produces types

over an infinite domain. Remember time is defined continuous and infinite, i. e. isomorphic

to the real numbers. For example consider a player running on a pitch; the player himself is

modelled by a point moving through space. Viewed in 3D space (an aquarium, see section 1.2)

the moving point morphs to a continuous curve. This continuity corresponds to physical real-

ity. An example of objects moving discretely through time and space would be land parcels:

an area changes it’s extent at a genuine point in time. When it comes to implementation, the

continuous property is an insuperable barrier. Therefore the abstract model must be translated

into a discrete one, which is computable. Thus the continuous curve representing the running

line of a player morphs into a polyline, which is a set of connected line segments. Discrete

models use finite representations of infinite sets. A discrete model is mostly an approximation

of an abstract one and represents a subset of an abstract model’s domain. One possibility to

do the transition from continuous to discrete space-time is to divide the time line in slices like

shown in Figure 3.3.

The design procedure of a data model is, first define an abstract model, next to derive a discrete

one. Starting with a discrete model might lead to disregard some important options, which can

be easily included in the abstract model. According to [5] (p10) there are two steps to develop

a data model:

1. Design a signature of a many-sorted algebra ([14]): invent a number of names for types

and operations between them. Formally a signature consists ofsorts and operators,

which are names for types and operations.

2. Define semantics:associate a many-sorted algebra by definingcarrier setsfor thesorts

and functions for the operators. Carrier sets are collections of possible values for asort



3. Spatio-temporal Data Types 15

Figure 3.3.:Sliced representation of a moving real (a) and a moving point (b).

and functions are mappings between them.

Another possibility to model a continuous movement is to use a function rather than a set of

observations.

3.4. Moving object model

This section gives a short summary of theMoving Objects Modeldefined in [8] as an example

for an abstract spatio-temporal data model. It follows the abstract data type approach and

defines a type system for spatial, temporal and spatio-temporal types and operations on them.

Most important, it features temporally lifted types and operations.

Argument set Type constructors Instances

→ BASE int, real, string, bool

→ SPATIAL point, points, line, region

→ TIME instant

BASE∪ TIME → RANGE range

BASE∪ SPATIAL → TEMPORAL intime, moving

Table 3.2.: Signature of the type system of the abstract moving objects model

Basic types and type constructors. Table 3.2 shows the type system of the moving object

model. There are type constructors with and without arguments. If a type constructor takes no



3. Spatio-temporal Data Types 16

Apoint = R2∪{⊥}
Apoints= {P⊆ R2 |P is f inite}
Ainstant = R∪{⊥}
Amoving(α) = { f | f : Ainstant→ Aα, partial f unction∧ Γ( f ) f inite}
Aintime(α) = Ainstant×Aα

Arange(α) = {X ⊆ Aα | ∃ an α− range R(X = points(R)) }

Table 3.3.: Some carrier sets for theMoving Object Modeldata types.

arguments it is a type already and calledconstant type. Otherwise it can generate a new type

out of itself and one instance of it’s argument set. For example themovingtype constructor

applied to the constantreal type yields themoving(real) type.

The base types have the common sense semantics and include an undefined value. The spatial

types are similar to those of the ROSE algebra (see Section 3.1 or [11]). As said before, time

is considered infinite and continuous. So the time type is isomorphic to the real numbers. A

temporal type yields a mapping from time to the argument type. A range type contains subsets

of types over totally ordered domains.

A total order on a domain is a binary relation, which sorts the elements according to antisym-

metry (if a≤ b andb≤ a thena = b), transitivity (if a≤ b andb≤ c thena = c) and totality

(a≤ b or b≤ a).

Table 3.3 gives an overview of the carrier set for the types as defined in [10]. Theintime type

describes a value at a certain point in time. Under the assumption that a total ordering for the

argument types exists, a range type can be defined to represent sets of intervals. Lines are

interpreted as connected line segments (polyline), which are characterised by their endpoints

and thus use theApoints carrier set. Note that due to the fact that sets can be infinite, every

curve can be represented by an infinite point set. Regions interpret a point set for a polyline as

graph (points as nodes, lines as edges). Then a region is a cyclic polyline. Finally a value of

a moving(region) is a set of volumes in 3D space (x,y,t). An intersection of that volume with

a plane parallel to the (x,y) plane yields the state of the region at specific time, a fact which is

reflected by theintime(region) data type.

Operations. Different types of operations on the data types exist. Temporal lifting produces

new operations out of existing operations through generalisation. Güting et al. identify a series



3. Spatio-temporal Data Types 17

Operation class Description Example

Base type

specific

Operations which are specific for some

base types.

And, Or, Not for Booleans.

Predicates Topological predicates. Inside, touches, attached, over-

laps for point sets.

Set operations Fundamental operations on sets. Union, minus, intersection.

Aggregation Reduces sets of points to points. Minimum, maximum, average.

Numeric

properties

Structural computations. Counting adjacent areas.

Lifting

operations

Any argument of a non-temporal type

is lifted to a temporal type, which re-

turns a temporal type too.

The area hold by a football team.

Derivative A measurement for the rate of change

of an entity.

Acceleration.

Table 3.4.: Some operation classes of theMoving Object Model.

of operation classes (see Table 3.4) on the types. See [8] for more details including signatures

of example operations.

Transition to discrete model. This breaks down the moving type constructor (of the ab-

stract model) to a discrete mapping. One new type (’UNIT’) and one new type constructor are

introduced to replace the moving constructor. A ’UNIT’ is a time interval - value pair, several

UNITs are assembled in a mapping data type. Instead of a continuous partial function we got

a set of time - value pairs.

The discrete representation of the moving object models introduces a new super-type called

’UNIT’, which is a time interval - value pair. The mapping data type assembles a set of UNITs

in order to make a linear approximation the continuous movement. A continuous curve is thus

modelled by several snapshot values.

3.5. Tripod data model

This section reviews an example for a discrete data model. The origin of both the Tripod data

model and the Moving Object Model 3.4 lie in the ROSE algebra 3.1. Both augment the spa-

tial types to spatio-temporal types.



3. Spatio-temporal Data Types 18

The Tripod System [9] implements a spatio-historical data model to represent spatial and as-

patial data. It extends the ODMG standard [2] for object relational databases with the ROSE

types, temporal types and allows reflection on an entity’s evolution through thehistorical

keyword. Spatial types are realised as 2D ROSE types, temporal types as 1D representation

of them and the aspatial types are those from the ODMG standard. A historical attribute’s

changes caused by assignment operations are tracked in the database.

This database system is built on top of the PostgreSQL server. It features a thick layer 3.4

architecture approach. The first layer is an implementation of the ODMG standard, which

specifies an ODBMS (object database management system). An ODBMS integrates relational

or other non-object DBMS with object-oriented programming language capabilities and thus

makes database objects appear as programming language objects.

Figure 3.4.:DBMS Extension architectures: (a) layered, (b) built-in and (c) data blade ap-

proach.

”The key principles underpinning the Tripod project areorthogonalityandsynergy.” The Tri-

pod system adds spatial, temporal and historical functionality to a database. Orthogonality on

the one hand means, that these features can be used separately in an effective manner, syn-

ergy on the other hand means, that the system allows a ”combined use of spatial and temporal

capabilities in a seamless and complementary manner”. Shortly the new types and facilities

integrate transparently in the existing system and can be used together or separately.



3. Spatio-temporal Data Types 19

 

Figure 3.5.:Tripod architecture

Temporal extension. The Tripod system defines two types of timestamps,Instants and

TimeIntervals. Either of them is a collection type, the first is holding instant values, the

other half-open time intervals. Simple integers are used to represent instant timestamps. In

addition every time type has a granularityγ. No more than one snapshot value can be stored

for each granule ofγ. This view of an underlying temporal grid with granularityγ corresponds

directly to a realm in the ROSE algebra. Actually both temporal types are 1D projections

of ROSE types. A subinterval of theTimeIntervals type uses of two instants to mark the

begin and end of the period. Thus a series of intervals -[ti − t j , . . . , tp− tq) - represents a

TimeIntervals value;ti andtp are included in the time period,t j andtq not.

Spatial extension. The Points, Lines andRegions data types in the Tripod system are

a direct implementation of the ROSE spatial types. They are set based and singletons of

these types are used to access an individual element of a set. As discussed, aPoint is a pair of

coordinates in the underlying geometry, aLine a connection between two points and aRegion

a polygon. Note that spatial operations exist only on the set based types.

History mechanism. The goal of the Tripod history mechanism is to ”provide functionality

to support the storage, management and querying of entities that change over time.” To achieve

this, a history embodies information about the type (domain) of the tracked entity, a time

model plus its granularity and a set of different states. These states represent an entities’

changes due to assignment operations. So every left hand side construct of an assignment

operation can have a history. The right hand side values collected in a history are called

snapshots. So states are a set of time-value pairs, which are snapshots of the value at a certain

point in time. They are related through an injective function:



3. Spatio-temporal Data Types 20

statesH : τ→ σ τ ∈ TH , σ ∈ VH (3.5)

Every timestamp has a corresponding snapshot, but not every snapshot got a timestamp. These

not related snapshots refer to non-historical types, which got the same value at all times.

Definition 2 (Lifeline, Aquarium) The lifeline of an individual object is a history corre-

sponding to [9]. An aquarium (according to [12], [13]) sets the boundaries

to a collection of lifelines in time (starting time up to now) and space (domain

Vs of a spatial type)

2.1 history: H = {V,θ,γ,Σ}

2.2 state: 〈τ,σ〉 ∈ Σ

2.3 aquarium:A = H∗

V Domain of changing values

θ {Instants , TimeIntervals }
γ Granularity ofθ
Σ States collection of the form〈τ,σ〉
τ Timestamp

σ Snapshot

In Definition 2, the history definition from [9], page 36 is cited: ”Ahistory is a quadrupel

H = {V,θ,γ,Σ}, whereV denotes the domain of values whose changesH records,θ is either

Instants or TimeIntervals, γ the granularity ofθ and Σ is a collection of pairs, called

states, of the form〈τ,σ〉, whereτ is a timestamp andσ is a snapshot.”



4. Spatio-temporal Predicates

This kind of predicate logic addresses the change in spatial relationships over time. Starting

with a small set of elementary predicates as ”building blocks”, the user is able to build more

and more complex ones. Spatial relationships are defined as topological predicates. The

9-intersection model [15] provides a canonical collection of topological predicates for each

combination of spatial types. In this context three basic spatial types -points, linesandregions

- are identified. Examples for topological predicates aremeet, overlapand inside. A spatio-

temporal relationship is then ”a sequence of (well-known) spatial relationships that hold over

time intervals or at time points; we will call it a development” [6]. Spatio-temporal predicates

then express spatio-temporal relationship facts which can be either true or false.

Figure 4.1.:Spatial types and topological relationships

The idea of spatio-temporal predicates is taken from [6]. Various other publications have

small sections on spatio-temporal predicates ([4], [7], [8]). Similar work has been done

by [3]. The rest of this paper explains the idea of temporal lifting, a powerful concept to

integrate the temporal aspect in all kinds of entities, then it presents the definition of spatio-

temporal predicates and discusses some of the properties. Next it is shown how to build

complex predicates - developments - out of the set of basic predicates. At last the approach to

21



4. Spatio-temporal Predicates 22

spatio-temporal evolution done by Griffiths et al. [9] is presented.

4.1. From spatial predicates to spatio-temporal predicates

Egenhofer defined in [15] a collection of meaningful spatial predicates, which represent topo-

logical relationships. See figure 4.1 for an illustrative example. Now we want to extend these

predicates to the spatio-temporal case, in order to represent spatio-temporal relationship facts,

which can be either true or false. This is achieved by the operation of temporal lifting in sec-

tion 3.2. Spatial predicates can be seen as special case of spatio-temporal predicates. They

are defined for certain points in time.

Consider a barn standing next to a road. The topological relation ”barn near road” holds as

long as both barn and road exist. If the barn burns down or the road decays, the quoted pred-

icate will evaluate to false. To evaluate the ”barn near road” predicate to true, two conditions

must be true: both objects have to exist at the same time and the spatial relationship must hold.

Thus a spatio-temporal predicate describes the change of a spatial (topological, geometrical)

relationship. To enable common spatial predicates to fulfill this task, their temporal extent

has to be extended from one instant to a time line. This is called temporal lifting. Analogies

exist in all branches of science; many physical functions are dependent on time, sports people

monitor a runner’s heartbeat in a function over time, in biology different populations form and

vanish at distinct points in time and space.

4.1.1. Time dependent functions

Another example for a time dependent function is the distance between two players during a

match. As the players are in a constant movement, their distance changes over time. Time

is considered to be linear and continuous, so for every instant a distance value between our

two players exists. Following this definition, this value is a real number, distance over time a

function:

distance:= position(α)× position(β)→ d α,β ∈ Player, d ∈ R (4.1)

It reads: ”The distance of two playersα,β is computed as a cross product between their

positions.” This phrase states nothing about time, so whenever there are two positions, their

distance can be computed. After adding the temporal component or making the distance



4. Spatio-temporal Predicates 23

dependent on time, this distance value is replaced by a function over time. We can use the

cross product notation as place holder for any binary operation.

distance(t) := position(α, t)× position(β, t)→ d(t) α, β ∈ Player, d(t) ∈ R (4.2)

The evaluation ofdistance(t0) takes the positions of two playersα,β at time pointt0 and yields

the distance as a real number r. Ifpositionis not defined at one instantti on the time line for

α,β, it returns the undefined value ’⊥’.

4.1.2. Lifting predicates

With spatio-temporal predicates we want to compute Boolean values rather than numbers

and functions. It would be interesting to find out whether two players stand next to each

other (meet) during a match. The spatial predicate ’meet’ from the 9-intersection model [15]

formalizes this relation. It is a function from two spatial objects to a Boolean value.

meet:= α×β→ b α,β ∈ A, b∈ B (4.3)

A is a set of spatial object designatorspoint, region, which we call data types. G̈uting et al.

introduce in [8] the second order operator tau (τ): Given a set of arbitrary atomic data types

A, the application of type constructorτ on any elementα ∈ A lifts any flat data typeα to a

temporal data type. Thus tau (τ) effects the operation of temporal lifting, which is adding a

temporal component to its argument. Formally:

τ(α) = time→ α ∈ A (4.4)

We can apply temporal lifting to the non-temporal (flat) typesα,β:

meet:= τ(α)× τ(β)→ τ(b) α,β ∈ A, b∈ B (4.5)

Similar to distance(t) defined in the last section,meetdescribes now a function over time.

Now we got a function to describe the changing relationship of two players. At some instants

they meet, at some they don’t. The function reflectes this behavior. Evaluations of the func-

tion can be performed points in time specified as argument to the function. The behavior of

a function at a certain instant is similar to the behavior of a corresponding spatial predicate.



4. Spatio-temporal Predicates 24

Different evaluations at different points in time are likely to have distinct results. What we

now want to do is to set those single evaluations in relation to each other in order to unlock

the spatio-temporal information.

Note that temporal lifting yields a partial function. In places where it is not defined it returns

the bottom element ’⊥’ and is thus extended to a total function.

4.1.3. Quantification

The nature of a predicate is to yield a single value, generally either true or false, not to yield

a function. The magic word to solve this problem is quantification. In natural language, ex-

amples of quantifiers are for all, for some, many, few, a lot. Examples for phrases are: ”Two

players meet in a spatio-temporal sense, if they meet at least once.” Or ”Two players meet

in a spatio-temporal sense, if they meet for all time.” The first phrase is easy to understand,

if there is one instant on the time line, for which the spatial relationship ’meet’ holds, the

spatio-temporal predicate ’meet’ holds. The second uses another form of quantification and is

a bit more difficult. The spatial predicate ’meet’ has to hold for the two players for all time.

Earlier we defined time as linear and continuous. So time has no beginning and no end. The

conclusion is, in order to evaluate the spatio-temporal predicate ’meet’ to true, the spatial re-

lationship ’meet’ must hold infinitely.

In the previous paragraph two possible quantifications were presented, in the examples namely

the existence (’one instant exists’, ’∃’) and the unification (’for all time’, ’∀’) quantifiers. The

assumption, that two objects share infinitely one relationship is highly unrealistic, so some

restrictions are introduced. Quantifiers are restricted to perform evaluation only on a part of

an object’s lifetime. A lifetime in this context are the periods, where an object is defined.

Different restriction levels exist, the default is, that a spatio-temporal predicate only operates

on the common lifetime of its argument. In table 4.1 a summary of all different time notion

modes is given.

A temporal Booleanis a function from time to the boolean set united with the undefined ele-

ment,τ : time→{true, f alse,⊥}). This is the usual return type of a lifted predicate. In order

to get a spatio-temporal predicate, which evaluates to a single Boolean, this intermediate result

must be aggregated or quantified.

A binary spatio-temporal predicate is then a function from two temporal types to a single



4. Spatio-temporal Predicates 25

Boolean value:

τ(α)× τ(β)→ B α, β ∈ {point, region} (4.6)

This concept can be easily extended to n-ary predicates, but in the following we will mainly

deal with binary spatio-temporal predicates.

Table 4.1 presents five different ways to quantify a temporal Boolean returned by a binary

spatio-temporal predicate. The leftmost column says how the two temporal domains of the

two argument objects are set in relation, additionally a description and a diagram are pro-

vided. The first quantification policy is the most restrictive, the last one is the least restrictive.

The additional 6th property works on time instants. The two columns outside right are a no-

tation to mark the predicates with their corresponding quantification policy and its semantics.

Quantifiers are the existence (’∃’) and the universal (’∀’) quantifiers. The semantics of the first

one is, if there exists at least one point in time, where the predicate expression is true for both

objects, the predicate evaluates to true. The for all quantifier means, that the temporal Boolean

must be true for the whole time span yielded by quantifying the objects’ temporal domains.

The return value of a quantified temporal Boolean is a single boolean.

Time Description Picture Short

time both objects hold over all times - unrealistic

t1∪ t2 both arguments have the same lifetime ←→p ∀∪p

t1⊆ t2 one is part of the other’s lifetime ←−p ∀π1 p

t1⊇ t2 one is part of the other’s lifetime −→p ∀π2 p

t1∩ t2 holds on common lifetime p̄ ∀∩p

t1 ∈ t2 instant on lifetime ṗ ∃p

Table 4.1.: Time quantification policies



4. Spatio-temporal Predicates 26

4.1.4. Evaluating predicates

Following steps are to be performed for evaluating a spatio-temporal predicateΘγ p with a

quantifierΘ ∈ {∀,∃} and a quantification methodγ ∈ {∪,∩,π1,π2}.

1. The temporal domainT on which both predicates operate is computed:

T← γ(dom(S1),dom(S2))

2. The predicate is aggregated for the whole temporal domain in a temporal Boolean:

B← p(S1(t),S2(t))∀t ∈ T

3. The temporal Boolean is quantified:

if Θ bi ∈ B = true then true else f alse with Θ ∈ {∀,∃}, 1≤ bi ≤ |B|

The next section presents several relations between temporal data types in more detail (Section 4.3).

4.1.5. Basic spatio-temporal predicates

Basic spatio-temporal predicates are the spatial predicates from the 9-intersection lifted to

spatio-temporal predicates. For each of those predicates exists a default temporal aggregation

which corresponds to the common sense interpretation. In the literature [6] this is explained

for the predicatedis joint in the following way: ”For example, when we ask by using adis joint

predicate whether the route of a plane did not encounter a storm, we usually require disjoint-

edness only on the common lifetime, that is, the result of this query is not affected by the fact

that either the storm or the flight started or ended before the respective other object. Thus, the

preferred of default interpretation for spatio-temporaldis joint is the predicatedis joint.”

Two sorts of predicates can be distingushed, instant and period predicates. The former hold

on one point in time and start with a lowercase letter, the latter hold for a timespan and are

indicated by an uppercase initial letter, to be in agreement with the literature. In Table 4.2 a

choice of default aggregations for some basic spatio temporal predicates for regions.

4.1.6. Summary

Summarized, three steps have to be taken to create a basic spatio-temporal predicate:

• Take a spatial predicate.



4. Spatio-temporal Predicates 27

Disjoint := dis joint

Meet :=←−→meet

Overlap :=
←−−−→
overlap

Equal :=
←−→
equal

Covers :=−−−→covers

CoveredBy :=
←−−−−−−
coveredBy

Contains :=
−−−−−→
contains

Inside :=
←−−−
inside

Table 4.2.: Some default aggregations ([4], [8]).

• Lift it to a spatio-temporal function to add the temporal component.

• Reduce function to a spatio-temporal predicate by quantification.

Two major classes of predicates can be distinguished by regarding their temporal aspect: in-

stant predicates and period predicates. The latter can hold only for a period of time, whereas

the former can hold for an instant in time as well as for a period of time. This property is

due to the fact that they are defined in a continuous context. In the following lowercase letters

imply an instant predicate and uppercase letters a period predicate.

Alternatively, a two-dimensional spatial object moving along the time axis can be considered

as a three-dimensional object. In this sense a point becomes a line, a line a region and a region

a volume. Then the topological relations between three-dimensional objects can be used as

spatio-temporal predicates. For every basic spatio-temporal predicate exists a corresponding

three-dimensional predicate, except forDisjoint, InsideandContains.

4.2. Developments

Several spatio-temporal predicates can be combined to build a more complex predicate. Tem-

poral combinators serve as glue between the predicates.

Developments are sequences of spatio-temporal predicates. By means of temporal combina-

tors, several predicates are connected to build a more complex predicate. Single predicates are

evaluated one by one in a consecutive order. If all the predicates and their composition holds,

the development holds. So every spatio-temporal predicate can possibly consist of other predi-



4. Spatio-temporal Predicates 28

Compositor Syntax Description Automaton

From p` P P holds from a certain point in

time.

 

Until Pa p P holds until a certain point in

time.

 

Then P a p ` Q

P B Q

P holds until a certain point in

time; then Q holds.

 

Table 4.3.: Temporal combinators

cates and thus be a development. This conception enforces the reuse of existing developments

for new purposes.

Predicate combinators. Predicate composition defines three possible operations:from -

until - then, with the same temporal semantics like in natural language. Table 4.2 gives a

detailed overview of the semantics of these operators. The syntactical and the language de-

scription are found in [6]. Informally, combinators wire single predicates together. Temporal

composition is not the only possible way to form a development. A more advanced combina-

tor is the alternative, which branches the timeline into several possible ways to follow, or the

reflection - the development is executed in reverse order after reaching its end.

Almost any logical formula can be interpreted as an automaton. The rightmost column in

Table 4.2 shows parts of automons to assign them the spatio-temporal meaning of the temporal

combinators. Here an explanation based on automata theory:

Automata. An automaton is a mathematical model for a finite state machine (FSM). A FSM

reflects changes of the model driven by the input data from its starting time to the present

moment. Automata consist of states and transitions. Given an input the FSM jumps through a

series of states following its transition function. Thus an automaton stays in one state until a

transition function triggers the next state.

What we want to do is to use automaton interpretations of spatio-temporal developments to

visualize and facilitate their composition. In the diagrams in Table 4.2, states are to be taken

for period predicates and transitions for instant predicates. Automata provide a possible visu-

alisation for spatio-temporal developments like discussed in [7]. See Figure 4.2 for example,



4. Spatio-temporal Predicates 29

where the events forming a pass are formulated as a development and illustrated in an au-

tomaton. The next section explains in more detail how to describe or specify situations with

spatio-temporal predicates.

Figure 4.2.:An automaton for a pass

In a development the order of predicates cannot be arbitrary, since objects do not jump dis-

cretely through time and space, but move continuously. Figure 4.3 summarizes the predicates

listed in Section 4.1.5 in a so called development graph. Such a graph provides possible tran-

sitions between predicates like in an automaton. Another interpretation is the development

graph as an automaton for spatio-temporal objects. Changes in state of the object are allowed

only along the edges.

 

Figure 4.3.:Development graph for (a) points, (b) lines and (c) regions



4. Spatio-temporal Predicates 30

4.3. Spatio-temporal Evolution based on the Tripod

spatio-temporal data model

The paper [3] contributes an approach to spatio-temporal queries. In this context queries in-

volving an object’s change over time are calledevolution queries. The algorithms presented

in the paper work on the historical data types of the Tripod data model (see Section 3.5, [9]).

They provide the funcionality of a ”spatio-temporal algebra” as shown in the graphical de-

scription of the Tripod implementation in Figure 3.5.

A change patternis a ”chronologically ordered sequence of observations”. These observations

can be made upon a single entitiy’s history or multiple entities’ relationships. It is supposed

that an entity or the relationship changes its state over time and is supposed to follow a change

pattern. This automaton behavior is similar to spatio-temporal developments described in Sec-

tion 4.2.

To make a change pattern computable, it is specified as regular expression over the interpreta-

tion structure. This structure takes the form of a list with the elemtents{t,f,u}. The elements

are arranged in temporal order and each element states the change in value at a certain granule.

In this contextt stands for true (there is a change),f for false (no change) andu is the un-

defined element. Note the similarity to the definition of a temporal Boolean in Section 4.1.3.

Various mapping operations can precede the building of this structure. For example to query

if the distace between two objects changed during a period of time. First the distance function

builds a list of distance values for two objectsp1 andp2, next two subsequent list elments are

checked for difference, which results in the intermediate representation:

Given two lists p1, p2 with:

p1 = 〈(3,1),(3,0),(2,3),(2,4)〉

p2 = 〈(1,1),(3,2),(2,2),(2,1)〉

d0← distance(p1, p2) = 〈2,2,1,3〉

distchange(d0) = 〈f,t,t〉 (4.7)

The distchange list can now be aggregated with the for all quantifier (i.e. the distance does not

remain equal) resulting in false, or the exists quantifier resulting in true (i.e. there is a change

in distance).



4. Spatio-temporal Predicates 31

Summary. Following steps have to be performed to evaluate an evolution query in the Tripod

system:

• Apply mapping if nescessary.

• Build intermediate representation.

• Evaluate regular expression.

Three kinds of possible queries are presented in [3], namely intra-history cross-timestamp

(IHC), cross-history cross-timestamp (CHC) and cross-history intra-timestamp (CHI). The

example above performs a IHC type query. Starting with two histories one intermediate list is

generated and the elements of the list are set in relation to each other.

- IHC Evolution query over consecutive snaphots within a single (non-empty) history

- CHC Evolution query over consecutive snaphots in a paired (non-empty) history

- CHI Evolution query over snaphots in a paired (non-empty) history at each timestamp

H0 tntn-1t2t1t0

jitHtH ji
≠⊗ ..

00

Figure 4.4.:IHC evolution query over consecutive snaphots within a single (non-empty) his-

tory

4.4. Recognition function

Now that we know about spatio-temporal predicates, we can explain how to use them for

situation recognition. Following Definition 3 a recognition function is constructed as a term

of spatio-temporal predicates combined by compositora.



4. Spatio-temporal Predicates 32

Definition 3 (Recognition function) The recognition function is composed by one or more

predicates through combinatora.

p = p1◦1 ...◦k pn

◦ j ∈ {compositors} 1≤ j ≤ k

pi ∈ P 1≤ i ≤ n P...set of spatio-temporal predicates

Notethat the compositora have to be used in a meaningful way.

A situation is broken down to activities, which are translated to appropriate predicates. Each

predicatepi stands for a single activity. They are put together again in a recognition function,

which is similar to a spatio-temporal development or evolution query. Predicate compositora

serve as glue between the predicates. They structure the temporal succession of activities and

thus have to be choosen in a meaningful and unambiguous way.

The recognition function thus provides a genuine formal description of a situation and is com-

puteable, because its fundamental functions and compositora are computeable. A function can

be applied to a spatio-temporal dataset. Following Definition 1 it yields a subset of the input

data. Thus it performs the operation of a filter. The result has to be interpreted with respect

to the information, which has to be gained. Examples are the counting of the occurences of

a situation, or length of a player’s route. The next Chapter 5 shows the case study of how to

translate a common game situation to a recognition function.



5. Case study: Rugby ”Kick to touch”

pattern

Game patterns represent an abstraction of moves trainers draw on, say, a blackboard or white-

board to show their players how to field the team. They consist of a basic initial position

configuration and possible further moves. In Figure 5.1 an example for such a drawing is

given. It demonstrates the very common ’Kick to touch’ game pattern in rugby.

Figure 5.1.:Rugby ”Kick to touch” pattern drawing

Consider the picture in Figure 5.1. The starting position on the pitch is a ”scrum” (in this para-

graph, rugby specific words are in quotes), which is a formation of players set by the referee.

Up to eight fellow team mates hold on tight to each other to be able to act as one pushing

machine. After the referee blows his whistle to restart the game, the ball is deployed into the

”scrum”. Now the opponent ”scrum-halves” are pushing each other to gain ball possession.

Eventually the ball leaves the back of the ”scrum” via player number eight (”No.8”). This

action marks the start of the game pattern:

1. Player number nine (”Scrum-Half”) collects the ball from player number eight’s feet.

33



5. Case study: Rugby ”Kick to touch” pattern 34

2. A series of passes among a formation of players, called the ”backs” follows. At some

stage no forward progress on the pitch is possible.

3. Mostly this happens, when the defending team stops the player in possession of the ball.

4. Sensing this and to avoid a possible loss of ball possession, the player holding the ball

kicks it out of bounds.

Figure 5.2 is an abstraction of this game pattern in the form of an automaton. An automaton

or finite state machine (FSM) consists of states and transitions, which are noted as circles and

(directed) arrows. Only one state can be active and external events trigger transitions, which

are changes of the active state. Possible events can be everything from reading a character

from the input stream to passing a ball. An initial event puts the automaton into work. In

the diagram the initial state is marked by a lightning arrow. An automaton can have only

one initial state. When the automton reaches a final state - noted by a doubly lined circle - it

terminates. Automatons which come to an end are called determined finite state machines.

Figure 5.2.:Rugby ’Kick to touch’ automaton (FSM)

5.1. Modelling

We now want to use a more precise description than pictures and natural language for the

pattern. In [7] three categories of entities for describing a video scene are identified. We use

the same definitions for our purpose (Table 5.1)

A look at the picture gives us the objects acting in the rugby video scene. There are several

figures and one ball on a pitch. Figures can act as individuals or be summed up in a group (like

a ’scrum’ in the example). The player figures belong to teams, where they are distinguished

by numbers. A team is divided into two groups, the forwards and the backs. An extra figure is

the referee (”third team”). A pitch is characterized through its boundaries and playing space.



5. Case study: Rugby ”Kick to touch” pattern 35

Entity Description In natural language In the drawing

Object Type of actors noun, role Shape

Activity Type of action verb + roles Arrows

Event Instance of activity complete phrase group of shapes and arrows

Table 5.1.: Actions and actors on the pitch

Here the objects from the example are expressed in an informal list notation with nested lists.

objects := { figures; ball; pitch }

figures := { players; referee }

ball := { ball }

pitch := { locations; boundaries }

players := { team_red; team_blue }

team_red := { forwards; backs }

team_blue := { forwards; backs }

forwards := { player_1 ... player_8 }

backs := { player_9 ... player_15 }

player_1 := { player_number_1 }

...

player_15 := { player_number_15 }

locations := { point; line; region }

point := { (x,y) ∈ Γ⊂ R2 }

line := { pi ∈ points | 2 < i < n, p0 6= pn, i ∈ N }

region := { pi ∈ points | 3 < i < n, p0 = pn, i ∈ N }

boundaries := { outline, far22line, near22line, ... }

outline := { r ∈ region | n = 4 }



5. Case study: Rugby ”Kick to touch” pattern 36

setpiece := { lineout, scrummage }

scrummage := { pi ∈ team_red ∨ team_blue | 1 < i < 8 }

lineout := { pi ∈ team_red ,q j ∈ team_blue | i, j > 2∧ i = j }

Activities describe the dynamics of the system. They describe how and where the game flows.

Objects take roles in activities, so activities describe scenes in a generic way. Instantiating an

activity through filling the roles with objects yields an event. Following the storyline in Figure

5.1, we identify the activities in the example:

1. [role player] collects[role ball] from [role player]

2. [role player] passes to[role player] passes to . . .

3. [role player] cannot proceed = is blocked by the other[role team]

4. [role player] kicks [role ball] to [role boundaries]

Finally we add the precondition:[role referee]sets[role setpiece]at [role location].

A role says how someone or something can participate in an activity. This makes sure things

don’t get confused in the model. The word ’roles’ is used as an intuitive synonym for data

types. Next we need to determine which objects can act in which roles:

role player → players

role team → team red ‖ team blue

role ball → ball

role referee → referee

role setpiece → setpieces

role location → locations

Till now we’ve defined some activities and their participants, a signature in other words. It’s

time to give the signature of our activities some semantics by means of tying it up to spatio-

temporal predicates. For our purpose the 5th quantification over time (see Table 4.1) is appro-

priate. It holds on the common lifetime for two objects and is the default for spatio-temporal

predicates. Facts like one player leaves the pitch (due to an injury) the end of a player’s

”lifetime” - and gets replaced by a reserve player - the beginning of a ”lifetime” - are thus

sufficiently modelled.



5. Case study: Rugby ”Kick to touch” pattern 37

Objects in a game are modelled as moving points. This is not the only possible geometrical

interpretation of a match’s structure. Formations like a scrum in rugby can be perceived as a

moving region. The scrum region can be described as minimum bounding polygon over the

set of players participating in the scrum. In [16] a whole team is understood as a polygon

(region), which gives an interesting views on how two teams interact.

The spatial representation changes with the observer’s perspective. The atoms are moving

points (players, ball, referee) and depending on the context, which formation is executed, the

observer’s spatial perception changes. Single players are united to a formation with a certain

name (e.g. scrum) and a certain spatial representation (e.g. a scrum is a region). The thus

emerging zooming effect is quite natural; when many different things happen around us at

the same time, the human brain tries to build abstractions and groupings, in order to keep the

overview.

In this work we want to model players and ball as point entities. Furthermore, an ideal world

is assumed, where the moving points meet each other in time and spaceexactly, when their

respective entities interact directly. This is for example when a player catches the ball, then the

moving points of the player and the ball meet. In the real world this cannot be true, because

entities have an extent, a property which points don’t have. Additionally, entities don’t meet

exactly, they touch in some way. This problem is solved by using an underlying grid (see

Section 3.1). This ensures that points can meet exactly. Moreover measuring errors, etc. have

to be taken into account. So real world data has to be corrected in some way.

5.2. Building predicates

5.2.1. Collect

Firstly, the activity 1 ”[role player] collects[role ball] from [role player]” is considered. Col-

lecting a ball is to grab it either from the ground, in the air or from another player’s possession.

Thus first one player must initially possess the ball. Next someone else nearby takes the ball.

So the problem to solve is to model the two new activities - possession and grabbing - with

spatio-temporal techniques:

1. [role player] possesses[role ball]

2. [role player] grabs[role ball]



5. Case study: Rugby ”Kick to touch” pattern 38

A player can posses a ball by holding it in his hands. We can perform a check for every instant

of the game, whether the player holds the ball or not. The partly aggregation of the resulting

Boolean vector tells us for an interval of time, if the player possesses the ball or not (the

mode of aggregation leaves space for an interpretation of ’possession’ in rugby). The spatial

translation of ’holding’ is both player and ball share the same position (under the assumption

we made at the beginning). So the mapping between activity ’possess’ and a spatio-temporal

predicate is:

[role player] possesses[role ball] → Meet(p,b) (5.1)

∃p∈ P, ∃b∈ B

There is exactly one player out of all players, who can possess the ball. Grabbing describes the

transition of bringing the ball in one’s possession. So first the grabbing player is approaching

the player in possession (spatially speaking all three are sharing the same space), followed by

taking the ball and leaving the player without the ball. There is no spatial equivalent for taking

a ball (at least not in 2D space).

[role player] grabs[role ball] → Meet(p1, p2,b) ameet(p2,b) (5.2)

∃(p1, p2) ∈ P, p1 6= p2; ∃b∈ B

We model this in a ’from’ predicate: ”From the time of meeting on, the other player got the

ball”. Now we can put everything together, in the fashion of spatio-temporal developments:

Collect(p1, p2,b)→ Possess(p1,b)BGrab(p1, p2,b)BPossess(p2,b) (5.3)

The picture in Figure 5.3 describes the three phases of the eventCollect(p1, p2, p3). For each

phase the corresponding predicate holds. Parallel trajectories indicate that the object meet

each other in time and space.

Repeated application of theC(·) operator deducts the developmentΠ =Collect(p1, p2, p3) by

substitution to a sequence of spatio-temporal predicates:



5. Case study: Rugby ”Kick to touch” pattern 39

Figure 5.3.:Collect

C(Π) = C(Possess(p1,b)BGrab(p1, p2,b)BPossess(p2,b))

= Meet(p1,b) ameet(p1,b) `C(GrabB i BPossess)

= Meet(p1,b) ameet(p1,b) `Meet(p1, p2,b) ameet(p2,b) `C(Possess)

= Meet(p1,b) ameet(p1,b) `Meet(p1, p2,b) ameet(p2,b) `Meet(p2,b)

∃(p1, p2) ∈ P, p1 6= p2; ∃b∈ B

qed. (5.4)

Summary. Firstly an event was defined as an instance of an activity. An event exists, when

its corresponding activity can be satisfied on a dataset. The entry and the exit point of the

predicate determine the beginning and end of the event. For example, to count the occurrences

of a game pattern is to find all the events of an activity in a dataset.

5.2.2. Pass

The next activity (2) ”[role player] passes to[role player] passes to . . . ” introduces the con-

cept of repetition. When a the execution of a predicate has ended, it begins again right from

the start. This can be repeated for several times. This behavior corresponds in an automaton

to the transition of a state to itself.

A pass is giving the ball to another player by throwing or kicking it. Note that in our two-



5. Case study: Rugby ”Kick to touch” pattern 40

dimensional model of the field it is hard to distinguish the different modes of passing (throw-

ing, kicking) the ball. To accomplish this, it would be necessary to somehow capture and

analyse the body motion of the acting player, which is beyond the scope of this thesis. In

case a player passes to the opponent team this is called a bad pass. The sequence of events is

similar to theCollect(p1, p2, p3) predicate from before, with the difference, that the players

don’t have to stand next to each other, a pass is usually performed over a distance between two

players. To allow both modes of passing theor (’ |’) operator is introduced, which represents

a branch on the timeline of the development. So either the predicate ’kick’ or the predicate

’throw’ can to be evaluated. Theor (’ |’) operator is associative and has a higher precedence

than the ’a’ (then) operator.

Pass(p1, p2,b) → Possess(p1,b)BKick(p1,b) | Throw(p1b)B (5.5)

Catch(p1,b)BPossess(p2,b)

So three new sub predicates need to be defined:

• Kick(p,b)→meet(p,b) ` Dis joint(p,b)

• Throw(p,b)→meet(p,b) ` Dis joint(p,b)

• Catch(p,b)→ Dis joint(p,b) `meet(p,b)

t

(x,y)

Throw(p1, b)

Possess(p1, b)

Catch(p2, b)

Possess(p2,b)

bp2

p1

Figure 5.4.:Pass

The deduction fromΠ = Pass(p1, p2,b) to a sequence of basic spatio-temporal predicates

follows:



5. Case study: Rugby ”Kick to touch” pattern 41

C(Π) = C(PossessBKick|ThrowBCatchBPossess)

= Meet(p1,b) ameet(p1,b) `C(Kick|ThrowBCatchBPossess)

= Meet(p1,b) ameet(p1,b) ` Truea (meet(p1,b) ` Dis joint(p1,b)) |

(meet(p1,b) a Dis joint(p1,b)) aC(CatchBPossess)

= Meet(p1,b) ameet(p1,b) ` Truea (meet(p1,b) ` Dis joint(p1,b)) |

(meet(p1,b) a Dis joint(p1,b)) a Dis joint(p2,b) `meet(p2,b) aC(Possess)

= Meet(p1,b) ameet(p1,b) ` Truea (meet(p1,b) ` Dis joint(p1,b)) |

(meet(p1,b) a Dis joint(p1,b)) a Dis joint(p2,b) `meet(p2,b) aMeet(p2,b) a

meet(p2,b)

∃(p1, p2) ∈ P, p1≤ p2,b∈ B

qed. (5.6)

Furthermore the activity of ’pass’ is a repeated action. So the predicate contains a ’zero-to-

many’ repetition of passes, an operation covered by the star ’*’ operator:

Pass(p1, p2,b)∗→ PassBPassB . . . (5.7)

Summary. In this section two new combinators were introduced, the repetition with the

star ’*’ operator and the temporal branch with theor ’ |’ operator. This notation is somehow

similar to the EBNF notation. The predicatePass(p1, p2,b) has been decomposed in simpler

activities and assembled as spatio-temporal development. Some simplifications have to be

made.

5.2.3. Blocked

The activity ”[role player] is blocked” is translated in this section. In a rugby game a player

is blocked, when he can not move any further forward, ’cannot proceed’ suggests that the

player is in a movement. Remember the diagram of the ’kick-to-touch’ game pattern, step 3,

where the player moves forward, but is surrounded by opponents. Because no forward move

is possible and tackle followed by a loss of ball possession is probable, the player kicks the

ball out-of-bounds as soon as he gets aware of his unfortunate position. A player’s notion of

being in distress is very subjective. Different players will feel in different ways and stop their



5. Case study: Rugby ”Kick to touch” pattern 42

run at different distances to the opponents.

This situation is difficult to recognize, because it involves to conclude from a topological state

to a situation. Unlike the other predicates, this one captures a standstill situation as opposed

to situations in motion.

To build a block it takes at least two players standing on the pitch and one player carrying the

ball, running towards them and stopping his movement near them.

Figure 5.5.:Blocked

The space/time diagram sketch (Figure 5.5) shows two players(p2, p3) moving to a position

and stopping there (building a block); the player in possession of the ball runs and stops in

front of the block.

Blocked(p,b, t)→ Possess(p1,b)BRuns(p1)BNear(p1,∃pi ∈ teamqp1)BStops(p1) (5.8)

At this point new types of predicates must be introduced. Till now, the used predicates rely on

strict topological relationships. The new types extended the existing ones and also introduce a

new concept. Firstly a threshold based predicate ”Near” is defined, followed by ”Stop” which

works on the historical values of an object. At last a predicate called ”Runs” represents a

combination of both concepts.

The notion of being near somebody is very subjective. Here we define being near as sharing

buffer space. To compute the predicate ”Near” for the case where the time axis is frozen, the



5. Case study: Rugby ”Kick to touch” pattern 43

distances between the object of interest and all others taken into account must be calculated

and compared to the arbitrary threshold value.

The predicate ”Stops” takes an object as argument and yields true as long as this object re-

mains on the same position. To compute this at a time pointti , we must know the location at

ti−1 (which is the time point of the immediate previous tick). As long as the two positions are

equal, the predicate evaluates to true. The paper in [3] refers to this kind of predicates - or

queries in their terms - as IHC query (Intra History Cross Timestamp) or see Section 4.3 for

more information.

Finally the predicate ”Run” combines both concepts. To compute the actual speed, the current

and the previous positions are needed. We insert the distance between the two points ass and

the distance in time betweent0 and t1 as time in Newton’s equation of motion (v = s
t ) and

compare the resulting average velocityv to a threshold value for running (e.g.v≤ 6km/h is

walking,v > 6km/h is running).

C(Π) = C(Possess(p1,b)BRuns(p1)BNear(p1,∃pi ∈ teamqp1)BStops(p1))

= Meet(p1,b) ameet(p1,b) `C(Runs(p1)BNear(p1,∃pi ∈ teamqp1)BStops(p1))

= Meet(p1,b) ameet(p1,b) ` Runs(p1) aC(Near(p1,∃pi ∈ teamqp1)BStops(p1))

= Meet(p1,b) ameet(p1,b) ` Runs(p1) a true` Near(p1,∃pi ∈ teamqp1) a

C(Stops(p1))

= Meet(p1,b) ameet(p1,b) ` Runs(p1) a true` Near(p1,∃pi ∈ teamqp1) a

true` Stops(p1)

qed. (5.9)

Summary. This section introduces treshold based predicates, historical predicates and a

combination of them. Till now only basic spatio-temporal predicates based on the 9-intersection

model [15] were discussed. These examples show how spatio-temporal predicates can be cre-

ated to consider other interpretations than those based on topological relations. In this context

predicate constriction and quantification are a big issue, for example no player stops for the

whole duration of a game, but moves and stops. These predicate relations are constantly built

and loosened.



5. Case study: Rugby ”Kick to touch” pattern 44

5.2.4. KickOut

Next the activity ”[role player] kicks [role ball] [role boundaries]” is taken into analysis.

A player in possession of the ball kicks it at some stage and the ball leaves the pitch over

a defined boundary. In the example’s gameplay this is done after a blockage, so this is the

starting predicate in the sequence.

Figure 5.6.:KickOut

KickOut(p,b, r)→ Possess(p,b)BKick(p,b)|Throw(p,b)BOutside(b, r) (5.10)

r ∈ boundaries

Basically the predicateOutside(b, pitch) computes a topological relation between a moving

point and a fixed region. In the universe of a field sports game boundaries and special spots are

not likely to change, on the contrary they have to be set according to proper rules. The main

action of this activity is the ball’s crossing of the outline, or in other words entering the region

which is not the pitch (there are two regions: the pitch and everything around it). The entering

and leaving (crossing) of a region is discussed in full detail in ([4], [7], [8]). The predicate

Outside(b, pitch) is thus similar to the predicateEnter in the literature.



5. Case study: Rugby ”Kick to touch” pattern 45

C(Π) = C(Possess(p,b)BKick(p,b)|Throw(p,b)BOutside(b, r))

= Meet(p,b) ameet(p,b) `C(Kick|ThrowBOutside)

= Meet(p,b) ameet(p,b) ` Truea (meet(p,b) ` Dis joint(p,b)) |

(meet(p,b) a Dis joint(p,b)) aC(Outside)

= Meet(p,b) ameet(p,b) ` Truea (meet(p,b) ` Dis joint(p,b)) |

(meet(p,b) ` Dis joint(p,b)) a true` Dis joint(pitch,b) ameet(pitch,b)

` Inside(pitch,b)

p∈ P,b∈ B

qed. (5.11)

5.3. Assembling the pattern

Now that we have definitions for all four parts of the automaton in Figure 5.2, they are assem-

bled to one pattern. Simple transitions are modelled by the ’then’ compositor (see 4.2). The

advanced combinator ’∗’ is short for predicate repetition.

KickToTouch(t1, t2,b, r) → Collect(p9, pi ,b)BPass(pi , p j ,b)∗B (5.12)

Blocked(p j ,b, t2)BKickTo(p j ,b,outline)

b∈ B; p9, pi , p j ∈ t1; i 6= j, i, j ∈ {1. . .15}

This is the kick-to-touch game pattern formulated as spatio-temporal development. By using

theC(·) operator, one could deduct the sequence of basic spatio-temporal predicates forming

the pattern.

5.4. Summary

This section develops step-by-step a specification of a rugby game pattern, formulated as a

spatio-temporal development. The topological relationship between spatio-temporal objects

can change like shown in the graph in Figure 4.3. The postulated specification is built by

alternating sequences of spatio-temporal predicates. The basic spatio-temporal predicates

as revised in Chapter 4 proved to be not sufficient, mainly because of their origin in the 9-

intersection model and thus their focus on topological relations. New types of predicates were



5. Case study: Rugby ”Kick to touch” pattern 46

demanded, which were introduced by a combination of evolution queries 4.3 and simple com-

putations.

Table 5.2 lists all predicates used in this section. Column”Name” gives the predicate a speak-

ing name,”Signature” notes the signature and under”Conditions” the domain sets are found.

The ”Level” at which a development resides is one higher than the highest of its composing

predicates. This is a value denoting the complexity or the effort for a computation. The basic

spatio-temporal predicates are on level 1.

Name Level Signature Conditions

True 0 True

False 0 False

Meet 1 Meet(p,b) p∈ P, b∈ B

Disjoint 1 Dis joint(p,b) p∈ P, b∈ B

Outside 1 Outside( f , r) f ∈ F, r ∈ D

Possess 2 Possess(p,b) p∈ P, b∈ B

Grab 2 Grab(p1, p2,b) p1, p2 ∈ P, p1 6= p2

b∈ B

Kick 2 Kick(p,b) p∈ P, b∈ B

Throw 2 Throw(p,b) p∈ P, b∈ B

Catch 2 Catch(p,b) p∈ P, b∈ B

Pass 3 Pass(p1, p2,b) p1, p2 ∈ P, p1 6= p2

b∈ B

Collect 3 Collect(p1, p2,b) p1, p2 ∈ P, p1 6= p2

b∈ B

Runs 1 Runs(p) p∈ P

Near 1 Near(p, t) ∃p∈ TR→ t ∈ TB ∨
∃p∈ TB→ t ∈ TR

Stops 1 Stops(p) p∈ P

Blocked 2 Blocked(p,b, t) ∃p∈ TR→ t ∈ TB ∨
∃p∈ TB→ t ∈ TR

B . . .ball D . . .boundaries F . . .figures

P . . .players TB . . .team blue TR . . .team red

Table 5.2.: Overview of Kick-to-touch predicates



6. Implementing the concepts

Here the concepts from the last sections are put together. A a sample realisation in Prolog

gives an outline how to tackle the task of implementing the predicates and performing their

evaluation. The whole procedure of computing a spatio-temporal predicate is explained from

the start where a user gives an input till the end where the result of a computed function exists

in the memory.

The first section discusses the steps to be taken to perform the computation of a spatio-

temporal predicate.

6.1. Phases of specification and computation

The computation a spatio-temporal development is broken down to three consecutive phases:

1. Formalization of specification:Describe the real-world events with a formalism. Con-

struct an abstract model.

2. Compilation of the model:Build a computable function from the abstract model by

finding an interpretation.

3. Execution:Matching against a dataset. Apply the function to an input dataset.

A possible forth phase is the collection of data, which is skipped, because it has no direct

impact on the implementation. This phase can be performed before or in parallel to the three

phases of the computation (retrospective vs. simultaneous).

6.1.1. Formalization of specification

At this stage the real-world events are formalized. This has to be done by a human user, be-

cause this task is hard to automate. The user has to have an understanding of the game he

wants to analyse and he has to know how the predicates work. Furthermore he must know the

47



6. Implementing the concepts 48

goal of the query, which kind of answer he wants and what he can get from the system.

To support the user to input his specification several possibilities exist. There are formal query

languages with some spatial-temporal capabilies like in [1] or [9]. To stress the importance of

spatio-temporal predicates in this context, it is imaginable to formulate a proper predicate lan-

guage. A very promising approach is done in [7], a paper, which presents some fundamental

ideas how to use a visual query language as a frontend to build spatio-temporal developments.

Summary. At the end of this phase a set of combined and syntactically correct predicates

are present.

6.1.2. Compilation of the model

The task of this phase is to build a computable function from the abstract model. The pred-

icates defined during the formalization phase are broken down to the basic and atomic pred-

icates and assigned some semantics. In Figure 6.1 the breakdown of the ”kick to touch”-

development from Chapter 5 is shown. At this stage an optimization of the development is

possible. For example, similar predicates at the beginning and end of neighbouring develop-

ments can be eliminated, or data structures can be shared.

pass

catchthrowpossess possess

collect

possess grab possess

blocked

runs near stopspossess

Kick to touch

kickout

posssess
throw
kick outside

Figure 6.1.:Kick-to-touch predicate order



6. Implementing the concepts 49

The result of this phase is a computable function. This function follows some interface speci-

fication, which specify properties of the input data and other necessities for a computation. In

this context a computable function defines not onlywhatto compute, but alsohowto compute

things. In this sense such a function incorporates algorithms and data structures. In the end a

function in the form of machine executable code is generated.

Summary. This phase does an optimization and assigns evaluation algorithms to predicate

definitions.

6.1.3. Matching against a dataset

At last the compiled function mapping a spatio-temporal predicate is executed with an input

database. There are two requirements for function and data: the data is available in a prede-

fined form, for example in a database following some schema and the function is aware of the

schema and can work on it. If both requirements are met, the function can be forwarded to

a processor for execution and the result can be stored in the memory. In the context of this

thesis, this procedure is called the ”matching of a predicate against a dataset”.

Summary. The last phase applies the function to an input dataset and stores the result.

6.2. Theoretic concept to implementation in Prolog

After the first phase is finished, the user decides on which predicates to use for his query.

They are passed on to the system in phase two, in which they are broken down to atomic

spatio-temporal predicates and submitted to the next phase. In phase three these predicates are

actually computed and reassembled to build the result of the operation. These two stages of

computing and reassembling are reflected in the implementation.

6.2.1. The data

The data is organised as Prolog facts. A simplification of the Tripod data model’s history

serves as data structure:H = {N2,TimeIntervals,1,{〈τ,σ〉}i∈I⊂N }. It reads: i pairs con-

sisting of coordinates (N2) and time intervals of length one form a history. This history is

implemented as a list holding the object’s positions at timesteps of length one:



6. Implementing the concepts 50

playerpos(player1, [position(0,0), position(1,1), position(2,2),

position(2,2), position(1,3),position(0,4),

position(0,4),position(0,4)]).

To facilitate the implementation, an explicitTimeIntervals value is replaced through the

implicit position in the list. Thus the first element in the listposition(0,0) is valid during

the time interval[0,1), the second elementposition(1,1) during[1,0), . . .

6.2.2. First stage: computation

In 4.7 a quick look at a predicate’s mode of operation was given. Here this idea is pursued

in more detail. A predicate is implemented as a Prolog goal and takes some objects as argu-

ments. It queries the database for the object’s positions and and computes the predicate for

each instant. The result of a spatio-temporal predicate is a temporal Boolean (〈e0,e1, . . . ,en〉,
ei ∈ {T,F},0≤ i ≤ n), which is a vector of truth values. Each elementei of the vector reflects

the result of the predicate at instanti.

As an example the implementation of predicate ’Meet’ is presented. First the database - in this

example the prolog facts - is queried for the needed histories (PL1 andPL2). In the next step

either goalmeet3 or meet4 is called depending on the number of arguments. This recursive

goal goes to the end of the list and then builds the result vector. If the two structuresA andB

are the same (A==B), the result of the predicate for this time-slice istrue. Otherwise ifA and

B are different (A\==B), the value appended to the result vector isfalse.

meet3([],[],[]).

...

meet3([A|P],[B|Q],L) :- meet3(P,Q,NL), A==B, append([true],NL,L).

meet3([A|P],[B|Q],L) :- meet3(P,Q,NL), A\==B, append([false],NL,L).

...

meet(P1,P2,L) :- playerpos(P1,PL1), playerpos(P2,PL2), meet3(PL1,PL2,L).

meet(P1,P2,B,L) :- playerpos(P1,PL1), playerpos(P2,PL2), playerpos(B,BL),

meet4(PL1,PL2,BL,L).

So the result of the computation stage is a vector of truth values, for example the evaluation of

predicatemeet(p1,b) yields:



6. Implementing the concepts 51

meet(p1,b) = 〈 true,true,true,true,true,false,false 〉

Several of these temporal Booleans are used as input for the next stage.

6.2.3. Second stage: reassembly

During the second stage, the temporal Booleans are reassembled to validate the predicate. The

main data structure used here is a matrix of string values, where each boolean vector is a row.

The rows are ordered by the occurence of the corresponding predicate in the development.

Several predicates are chained together by ’then’ compositors. The order in the chain deter-

mines the order of the rows: the earlier predicates stand on top, the later ones on the bottom.

The columns of this matrix shows then, at which point in time the composing predicates are

true or false.

At this point the problem of evaluating a consecutive set of spatio-temporal predicates is trans-

formed into a string search problem: The evaluation algorithm hops from onetrue value to

the other and searches a path from the left upper corner to the right bottom corner in the

marix. If such a path exists, the evaluation algorithm’s prolog goal is successful. Thus the

spatio-temporal predicate/development itself is successful. As a consequence of time being

linear, only hops from the left to the right are valid and - since the predicates are executed in a

consecutive order - from the top downwards.

The Prolog code effects the evaluaion of a chain of spatio-temporal predicates and reads as

follows:

walk(DL,C,R) :- getrc(DL,R,M),C>=M, write(’success\r\n’).

walk(DL,C,R) :- NC is C+1, NR is R+1, getval(DL,NR,NC,A), A==true,

jump(NR,NC), walk(DL,NC,NR).

walk(DL,C,R) :- NC is C+1, getval(DL,R,NC,A), A==true, jump(R,NC),

walk(DL,NC,R).

If the rightmost column is exceeded and the last row is reached, the algorithm terminates suc-

cessfully. Otherwise the algorithm looks for the next marix value to visit. First it tries to hop

to the next predicate, which is one to the right for the next instant and one down for the next

predicate. If this is not successful the next instant (one right) in the row is checked and - if

true - visited. So if the algorithm cannot proceed with the next predicate, it tries to proceed



6. Implementing the concepts 52

with the current one. If either of them fail, there is a gap in the sucession of the predicate. and

thus the algorithm fails. Of course more than one path through the matrix can exist.

Figures 6.2, 6.3, 6.4 and 6.5 show some examples from the last section. The temporal Booleans

of the predicates are aligned and the emphasised values represent the field of operation for the

algorithm. Possible paths are marked by pulled through arrows. In Figure 6.4 two paths

are marked. during this development two predicates are valid in parallel. So there is a one-

elemental chain and one three-elemental chain to be resolved by the algorithm.

t

(x,y)

p1 p2b
7

6

5

4

3

2

1

meet(p1,b) =  T T T T T F F 

meet(p1,p2,b) =  F F T T T F F 

meet(p2,b) =  F F T T T T T 

Figure 6.2.:Temporal Boolean for predicate ’collect’

t

(x,y)

p1

p2b
7

6

5

4

3

2

1

meet(p1,b)= T T T F F F F 

disjoint(p1,p2,b)= F F F T F F F 

meet(p2,b)= F F F F T T T 

Figure 6.3.:Temporal Boolean for predicate ’pass’

6.3. Executing the prolog code

The resulting temporal Booleans of the predicates computations are taken as rows of a ma-

trix like explained above. Then all possible paths from the upper left corner of the matrix to

the lower right are found. Reading the matrix in this way corresponds to an execution of the

predicates in temporal succession. The algorithm first goes into depth and then finds the other



6. Implementing the concepts 53

meet(p1,b)=  T T T T T 

runs(p1)=  T T T F F 

near(p1,p2,p3)=  F F T T T 

stops(p1)=  F F F T T 

7

6

5

4

3

2

1

b
p2p1
p3

Figure 6.4.:Temporal Boolean for predicate ’blocked’

meet(p1,b) =  T T F F F 

disjoint(p1,b) =  F F T T T 

outside(b,boundaries) =  F F F T T 

outline

7

6

5

4

3

2

1

p1

b

Figure 6.5.:Temporal Boolean for predicate ’kickout’

solutions to the graph search problem when backtracking.

In the output of the goalrX stands forrow number XandcY is for column number Y. After the

first solution is found, the prolog system probes for the next while backtracking. If there are

other solutions possible, after one has been found, the system promptstrue ?. The user can

either tell the systemto show more solutions (enter;) or stop the execution (enter<return>).

6.3.1. Calling goal: collect

In this part of the example it is easy to notice, that the graph search problem has multiple

solutions. For the considered spatio-temporal problem, only one solution is needed to show,

that the whole predicate is successful. The spatio-temporal predicatecollect has six possible

solutions. When probing for a seventh, the system fails and terminates the execution.

The input data is encoded in Prolog facts:

playerpos(player3, [position(0,0), position(1,1),



6. Implementing the concepts 54

position(2,2), position(2,2), position(2,2),

position(1,3),position(0,4)]).

playerpos(player4, [position(4,0), position(3,1),

position(2,2), position(2,2), position(2,2),

position(3,3),position(4,4)]).

playerpos(ball2, [position(0,0), position(1,1),

position(2,2), position(2,2), position(2,2),

position(3,3),position(4,4)]).

And one execution of the goal predicate yields this output:

GNU Prolog 1.2.18

By Daniel Diaz

Copyright (C) 1999-2004 Daniel Diaz

| ?- test_collect.

Calling goal: collect(player3,player4,ball2).

r1 c1 r1 c2 r2 c3 r3 c4 r3 c5 r3 c6 r3 c7 success

true ? ;

r2 c4 r3 c5 r3 c6 r3 c7 success

true ? ;

r2 c5 r3 c6 r3 c7 success

true ? ;

r1 c3 r2 c4 r3 c5 r3 c6 r3 c7 success

true ? ;

r2 c5 r3 c6 r3 c7 success

true ? ;

r1 c4 r2 c5 r3 c6 r3 c7 success

true ? ;



6. Implementing the concepts 55

r1 c5

(3 ms) no

| ?-

6.3.2. Calling goal: pass

The execution of this predicates is straight forward. Only one solution is possible and only

one path is found.

The input data is encoded in Prolog facts:

playerpos(player1, [position(0,0), position(1,1),

position(2,2), position(2,2), position(1,3),

position(0,4),position(0,4),position(0,4)]).

playerpos(player2, [position(8,0), position(8,0),

position(7,1), position(6,2), position(5,3),

position(4,4),position(4,4),position(5,5)]).

playerpos(ball, [position(0,0), position(1,1),

position(2,2), position(2,2), position(3,3),

position(4,4),position(4,4),position(5,5)]).

And one execution of the goal predicate yields this output:

GNU Prolog 1.2.18

By Daniel Diaz

Copyright (C) 1999-2004 Daniel Diaz

| ?- test_pass.

Calling goal: pass(player1,player2,ball).

r1 c1 r1 c2 r1 c3 r1 c4 r2 c5 r3 c6 r3 c7 r3 c8 success

true ? ;

(1 ms) no

| ?-



6. Implementing the concepts 56

6.3.3. Calling goal: blocked

Here the algoritm has to called twice, since there are two actions in parallel: The player pos-

sesses the ball and runs and stops. These two parts are evaluated seperately and the respective

results are tied with a logical and operation. This is expressed in Prolog through tying the right

hand goals with colons. Writing several clauses for one goal is then read as logical or.

The input data is encoded in Prolog facts:

playerpos(player7, [position(0,0), position(3,3),

position(6,6), position(9,9), position(9,9)]).

playerpos(player8, [position(18,18), position(15,15),

position(12,12), position(10,10), position(10,10)]).

playerpos(player9, [position(18,17), position(15,14),

position(12,11), position(10,9),position(10,9)]).

playerpos(ball3, [position(0,0),position(3,3),position(6,6),

position(9,9), position(9,9)]).

And one execution of the goal predicate yields this output:

GNU Prolog 1.2.18

By Daniel Diaz

Copyright (C) 1999-2004 Daniel Diaz

| ?- test_blocked.

Calling goal: blocked(player7,player8,player9,ball3).

r1 c1 r1 c2 r1 c3 r1 c4 r1 c5 success

r2 c1 r2 c2 r2 c3 r3 c4 r4 c5 success

true ? ;

r3 c5 success

true ? ;

(2 ms) no



6. Implementing the concepts 57

| ?-

6.4. Summary and outlook

This section shows, how the concept of a spatio-temporal predicate can be implemented us-

ing a Prolog system. Two main phases of computation and reassembly were identified and

a sample implementation was done, in order to show how the predicates are put into work.

After finding a solution for the spatial relations, the validation of the temporal succession was

transformed into a string search problem and the solution was then transfered back. Starting

with some facts representiing the input postion data of players and a ball, the predicates were

deducted. If a predicate’s prolog goal is successful, the predicate is satisfied and if the prolog

goal fails the predicate fails.

This way of deducting predicates and thus obtaining a boolean as a result is not the only way

of computing spatio-temporal relations. Another possibility is the use of functions rather than

predicates. Such a function takes a database as input and yields a subset of this database as a

result, thus it acts as filter. This subset can reveal more detailed information on the situation

like for example the length of a player’s routeduring a situation. Spatio-temporal filters cut

out portions of a spatio-temporal dataset, and combined with some evaluation functions, they

represent a powerful way of penetrating spatio-temporal data. Since predicates are functions,

which have the boolean set as image set (f : A→ B), they are a special case of a filter. If

they are satisfied, then a subset containig the specified situation exists in the database. In

practice, the computation of a spatio-temporal filter is similar to the evaluation of a spatio-

temporal predicate: the portion of the dataset, where the predicate is fulfilled, is cut out for

all participating objects in the specified situation. Thus the aggregation is replaced through a

copy operation.



7. Conclusion

This work discussed the application of spatio-temporal predicates to effect situation recog-

nition in field sports. It shows how the framework of spatio-temporal predicates ([6]) can

be adapted to create domain-specific predicates. Basic predicates and combinators from the

canonical set are taken and given some semantics from the domain of field sports. This way

an application-dependent subset of predicates is defined. A link is made to the topic of spatio-

temporal patterns [4].

An example game pattern is explained and stepwise broken down to it’s rudimentary actions.

These are then translated into the language of spatio-temporal predicates. The single predi-

cates are wired by sequential or parallel combinators to form a development. This development

serves as specification of a situation, which can be matched against an appropriate database.

A development hides the underlying predicates and is a predicate itself. The use of speaking

names for predicates facilitates an intuitive way for specifying situations. Automata are sug-

gested as possible visualisation and to facilitate the intuitive design of developments.

A basic implementation was made and the main steps to build a system for spatio-temporal

predicates are discussed. The spatio-temporal predicates were mapped to Prolog goals and

the validation was executed as a deduction from facts representing spatio-temporal data. For

a realization there are many challenges to be met and problems to be solved. A big topic is to

find proper user-interfaces to specify developments. In Chapter 5 tactical drawings of a sports

team is taken as a spatio-temporal map. A visual query language derived from such a drawing

is an intuitive way of specifying queries and one which many users have already executed.

This work shows how the adaption of spatio-temporal predicates is used to penetrate a spatio-

temporal dataset in order to reveal inherent information. The topic of field sports has been

chosen, because the special properties of sport make it especially practical to study spatio-

temporal relations. A field sports game can be understood as a system and spatio-temporal

predicates represent one way to give a formal description of such a system.

58



A. Acronyms

ATP Association of Tennis Professionals

Cairos

CHC Cross-History Cross-timestamp

CHI Cross-History Intra-timestamp

DBMS Database Management System

DOMINO Databases fOr MovINg Objects tracking [18]

EBNF Extended Backus Naur Form

IHC Intra-History Cross-timestamp

LPM Local Position Measurement

ODMG Object Database Management Group

ROSE RObust Spatial Extension

SDT Spatial Data Type

SQL Structured Query Language

59



B. Bibliography

[1] Michael Böhlen, Christian S. Jensen, and Bjorn Skjellaug. Spatio-temporal databse sup-

port for legacy applications.Proceedings of the 1998 ACM Symposium on Applied Com-

puting, Atlanta, Georgia, pages 226–234, 1998.

[2] R. G. G. Cattell, Douglas K. Barry, Mark Berler, Jeff Eastman, David Jordan, Craig Rus-

sell, Olaf Schadow, Torsten Stanienda, and Fernando Velez.The Object Data Standard:

ODMG 3.0. Morgan Kaufmann, 2000.

[3] Nassima Djafri, Alvaro A. A. Fernandes, Norman W. Paton, and Tony Griffiths. Spatio-

temporal evolution: querying patterns of change in databases.Proceedings of the 10th

ACM international symposium on Advances in geographic information systems, pages

35–41, 2002.

[4] Martin Erwig. Toward spatiotemporal patterns. In De Caluwe et al., editor,Flexible

Querying and Reasoning in Spatio-Temporal Databases: Theories and Applications,

pages 29–54. Springer Verlag, 2004.

[5] Martin Erwig, Ralf Hartmut G̈uting, Markus Schneider, and Michalis Varzirgiannis.

Spatio-temporal data types: An approach to modeling and querying moving objects in

databases.GeoInformatica, 3(3):269–296, 1999.

[6] Martin Erwig and Markus Schneider. Spatio-temporal predicates.IEEE Transactions on

Knowledge and Data Engineering (TKDE), 14(4):881–901, July 2002.

[7] Martin Erwig and Markus Schneider. A visual language for the evolution of spatial rela-

tionships and its translation into a spatio-temporal calculus.Journal of Visual Languages

and Computing, 14(2):181–211, 2003.

[8] Güting et al. Spatio-temporal models: An approach based on data types. In T. Sellis

et al., editor,Spatio-Temporal Databases - The Chorochronous Approach. LNCS 2520,

pages 117–176. Springer Verlag, 2003.

60



B. Bibliography 61

[9] Tony Griffiths, Alvaro A. A. Fernandes, Norman W. Paton, and Robert Barr. The tripod

spatio-historical data model.Data and Knowledge Engineering, 49(1):23–65, 2004.

[10] Ralf Hartmut G̈uting, Michael H. B̈ohlen, Martin Erwig, Christian S. Jensen, Nikos A.

Lorentzos, Markus Schneider, and Michalis Vazirgiannis. A foundation for representing

and querying moving objects.ACM Transactions on Database Systems, 4(1):1–42, 2000.

[11] Ralf Hartmut G̈uting and Markus Schneider. Realm-based spatial data types: Rose alge-

bra. VLDB Journal, 4:100–143, 1995.

[12] Torsten Ḧagerstrand. What about people in spatial science?Papers of the Regional

Science Association (RSAI), 24:7–21, 1970.

[13] Torsten Ḧagerstrand. Space, time and human conditions. In Anders Karlqvist,

L Lundqvist, and Folke Snickars, editors,Dynamic allocation of urban space, pages

3–12. Farnborough: Saxon House, 1975.

[14] J. Loeckx, H. D. Ehrich, and M. Wolf.Specification of abstract data types. John Wiley

and sons, Inc. and B.G. Teubner Publishers, 1996.

[15] Egenhofer MJ and Herring JR. Categorizing binary topological relationships between

regions, lines and points in geographic database. Technical Report 91-7, University of

Maine, 1991.

[16] Antoni Moore, Peter Whigham, Colin Aldridge, Alec Holt, and Ken Hodge. Spatio-

temporal and object visualization in rugby union.The Information Science Discussion

Paper Series, (2002/03), June 2002.

[17] Antoni Moore, Peter Whigham, Alec Holt, Colin Aldridge, and Ken Hodge. A time

geography approach to the visualisation of sport.Proceedings of the 7th International

Conference on GeoComputation, University of Southampton, 2003.

[18] Ouri Wolfson, A. Prasad Sistla, Bo Xu, Jutai Zhou, and Sam Chamberlain. Domino:

Databases for moving objects tracking. In Alex Delis, Christos Faloutsos, and Shahram

Ghandeharizadeh, editors,SIGMOD 1999, Proceedings ACM SIGMOD International

Conference on Management of Data, June 1-3, 1999, Philadelphia, Pennsylvania, USA,

pages 547–549. ACM Press, 1999.

[19] Adnan Yazici,Öznur Yavuz, and Roy George. An mpeg-7 based video database manage-

ment system. In De Caluwe et al., editor,Flexible Querying and Reasoning in Spatio-

Temporal Databases: Theories and Applications, pages 181–210. Springer Verlag, 2004.



62



C. Sample implementation in Prolog 63

C. Sample implementation in Prolog

%============================================================================

% THE DATA REPRESENTED AS FACTS

%============================================================================

%--------------------------------------------------------------------FORMAT--

make_position(X,Y,position(X,Y)).

get_x(position(X,_),X).

get_y(position(_,Y),Y).

%----------------------------------------------------------------------PASS--

playerpos(player1, [position(0,0), position(1,1), position(2,2), position(2,2),

        position(1,3),position(0,4),position(0,4),position(0,4)]).

playerpos(player2, [position(8,0), position(8,0), position(7,1), position(6,2),

        position(5,3),position(4,4),position(4,4),position(5,5)]).

playerpos(ball, [position(0,0), position(1,1), position(2,2), position(2,2),

        position(3,3),position(4,4),position(4,4),position(5,5)]).

%-------------------------------------------------------------------COLLECT--

playerpos(player3, [position(0,0), position(1,1), position(2,2), position(2,2),

        position(2,2),position(1,3),position(0,4)]).

playerpos(player4, [position(4,0), position(3,1), position(2,2), position(2,2),

        position(2,2),position(3,3),position(4,4)]).

playerpos(ball2, [position(0,0), position(1,1), position(2,2), position(2,2),

        position(2,2),position(3,3),position(4,4)]).

%-------------------------------------------------------------------BLOCKED--

playerpos(player7, [position(0,0), position(3,3), position(6,6), position(9,9),

        position(9,9)]).

playerpos(player8, [position(18,18), position(15,15), position(12,12),

        position(10,10), position(10,10)]).

playerpos(player9, [position(18,17), position(15,14), position(12,11),

        position(10,9),position(10,9)]).

playerpos(ball3, [position(0,0),position(3,3),position(6,6),position(9,9),

        position(9,9)]).

%============================================================================

% SOME MORE OR LESS USEFUL TOOLS

%============================================================================

%---------------------------------------------------------------------TOOLS--

revert([],[]).

revert([H|T],S) :- revert(T,NS), append([H],NS,S).

invert([],[]).

invert([H|T],S) :- invert(T,NS), H==true, append([false],NS,S).

invert([H|T],S) :- invert(T,NS), H==false, append([true],NS,S).

same(A,B,_) :- A==B.

same(A,_,C) :- A==C.



C. Sample implementation in Prolog 64

same(_,B,C) :- B==C.

op_or(A,B,X) :- A==true, B==true, X=true.

op_or(A,B,X) :- A==true, B==false, X=true.

op_or(A,B,X) :- A==false, B==true, X=true.

op_or(A,B,X) :- A==false, B==false, X=false.

op_and(A,B,X) :- A==true, B==true, X=true.

op_and(A,B,X) :- A==true, B==false, X=false.

op_and(A,B,X) :- A==false, B==true, X=false.

op_and(A,B,X) :- A==false, B==false, X=false.

myfirst(F,[F|_]).

myrest(R,[_|R]).

fold_or([],false).

fold_or([A|T],V) :- fold_or(T,NV), op_or(A,NV,V).

fold_and([],true).

fold_and([A|T],V) :- fold_and(T,NV), op_and(A,NV,V).

merge([],[],[]).

merge([H1|T1],[H2|T2],L) :- merge(T1,T2,NL), op_and(H1,H2,A), append([A],NL,L).

not(P) :- call(P), !, fail.

not(_).

equal3(A,B,C) :- A==B, B==C, A==C.

nequal3(A,B,C) :- A\==B, B\==C, A\==C.

eqlist(A,B,C,L) :- equal3(A,B,C), append([true],[],L).

eqlist(A,B,C,L) :- not(equal3(A,B,C)), append([false],[],L).

neqlist(A,B,C,L) :- not(equal3(A,B,C)), append([true],[],L).

neqlist(A,B,C,L) :- equal3(A,B,C), append([false],[],L).

doublend(A,[],[A]).

doublend(_,[H|T],[H|L]) :- doublend(H,T,L).

distance(P,Q,D) :- get_x(P,Px), get_y(P,Py), get_x(Q,Qx),  get_y(Q,Qy),

                   D is sqrt((Px-Qx)*(Px-Qx)+(Py-Qy)*(Py-Qy)).

velocity(S,T,V) :- V is S/T.

velo_list([],[]).

velo_list([_],[]).

velo_list([F|T],L) :- velo_list(T,NL), myfirst(S,T), distance(F,S,D),

                        velocity(D,1,N), append([N],NL,L).

%============================================================================

% EVALUATING 1: Build the strings

%============================================================================

%----------------------------------------------------------------------MEET--

meet3([],[],[]).

meet3([_],[],[]).

meet3([],[_],[]).

meet3([A|P],[B|Q],L) :- meet3(P,Q,NL), A==B, append([true],NL,L).

meet3([A|P],[B|Q],L) :- meet3(P,Q,NL), A\==B, append([false],NL,L).

meet4([],[],[],[]).

meet4([A|P],[B|Q],[C|R],L) :- meet4(P,Q,R,NL),

                                  equal3(A,B,C),



C. Sample implementation in Prolog 65

                                  append([true],NL,L).

meet4([A|P],[B|Q],[C|R],L) :- meet4(P,Q,R,NL),

                                  not(equal3(A,B,C)),

                                  append([false],NL,L).

meet(P1,P2,L) :- playerpos(P1,PL1), playerpos(P2,PL2), meet3(PL1,PL2,L).

meet(P1,P2,B,L) :- playerpos(P1,PL1), playerpos(P2,PL2), playerpos(B,BL),

                   meet4(PL1,PL2,BL,L).

testmeet(L) :- playerpos(player1,PL1), playerpos(player2,PL2), playerpos(ball,

PL3),

                meet4(PL1,PL2,PL3,L).

%-------------------------------------------------------------------DISJOINT--

disjoint3([],[],[]).

disjoint3([_],[],[]).

disjoint3([],[_],[]).

disjoint3([A|P],[B|Q],L) :- disjoint3(P,Q,NL), A==B, append([false],NL,L).

disjoint3([A|P],[B|Q],L) :- disjoint3(P,Q,NL), A\==B, append([true],NL,L).

disjoint4([],[],[],[]).

disjoint4([A|P],[B|Q],[C|R],L) :- disjoint4(P,Q,R,NL),

                                  nequal3(A,B,C),

                                  append([true],NL,L).

disjoint4([A|P],[B|Q],[C|R],L) :- disjoint4(P,Q,R,NL),

                                  not(nequal3(A,B,C)),

                                  append([false],NL,L).

disjoint(P1,P2,L) :- playerpos(P1,PL1), playerpos(P2,PL2), disjoint3(PL1,PL2,L).

disjoint(P1,P2,B,L) :- playerpos(P1,PL1), playerpos(P2,PL2), playerpos(B,BL),

                        disjoint4(PL1,PL2,BL,L).

testdis(L) :- playerpos(player1,PL1), playerpos(player2,PL2), playerpos(ball,

PL3),

                disjoint(PL1,PL2,PL3,L).

%---------------------------------------------------------------------STOPS--

stops1([],[]).

stops1([H|T],L) :- stops1(T,NL), H=0.0, append([true],NL,L).

stops1([H|T],L) :- stops1(T,NL), H\=0.0, append([false],NL,L).

stops(P,L) :- playerpos(P,PL),velo_list(PL,VL),stops1(VL,TL), doublend(_,TL,L).

%----------------------------------------------------------------------NEAR--

near3(A,B,C) :- distance(A,B,X),X<1.5, distance(A,C,Y),Y<1.5,

                distance(B,C,Z),Z<1.5.

near_list([], [], [], []).

near_list([A|P],[B|Q],[C|R],L) :- near_list(P,Q,R,NL), near3(A,B,C),

                                  append([true],NL,L).

near_list([A|P],[B|Q],[C|R],L) :- near_list(P,Q,R,NL), not(near3(A,B,C)),

                                  append([false],NL,L).

near(A,B,C,L) :- playerpos(A,L1), playerpos(B,L2), playerpos(C,L3),

                 near_list(L1,L2,L3,L).



C. Sample implementation in Prolog 66

%----------------------------------------------------------------------RUNS--

runs1([],[]).

runs1([H|T],L) :- runs1(T,NL), H>=4.0, append([true],NL,L).

runs1([H|T],L) :- runs1(T,NL), H>=0.0, H<4.0, append([false],NL,L).

runs(P,L) :- playerpos(P,PL),velo_list(PL,VL),runs1(VL,TL),doublend(_,TL,L).

%============================================================================

% EVALUATING 2: Search the strings

%============================================================================

%--------------------------------------------------------------------GETVAL--

count([],0).

count([_|T],S) :- count(T,NS), S is NS+1.

nth_member(1,[M|_],M).

nth_member(N,[_|T],M) :- N>1, N1 is N-1, nth_member(N1,T,M).

getval(DL,R,C,V) :- nth_member(R,DL,L), nth_member(C,L,V).

getrc(DL,R,V)  :- nth_member(R,DL,L),count(L,V).

jump(R,C) :- write('r'),write(R),tab(1),write('c'),write(C),tab(2).

%---------------------------------------------------------------------WALK--

walk(DL,C,R) :- getrc(DL,R,M),C>=M, write('success\r\n').

walk(DL,C,R) :- NC is C+1, NR is R+1, getval(DL,NR,NC,A), A==true,

                jump(NR,NC), walk(DL,NC,NR).

walk(DL,C,R) :- NC is C+1, getval(DL,R,NC,A), A==true, jump(R,NC),

                walk(DL,NC,R).

%============================================================================

% THE PREDICATES

%============================================================================

%----------------------------------------------------------------------PASS--

pass(P1,P2,B) :- meet(P1,B,L1), disjoint(P1,P2,B,L2), meet(P2,B,L3), jump(1,1),

                 walk([L1,L2,L3],1,1).

%-------------------------------------------------------------------COLLECT--

collect(P1,P2,B) :- meet(P1,B,L1), meet(P1,P2,B,L2), meet(P2,B,L3), jump(1,1),

                    walk([L1,L2,L3],1,1).

%-------------------------------------------------------------------BLOCKED--

blocked(P1,P2,P3,B) :- meet(P1,B,L1), jump(1,1), walk([L1],1,1),

                        runs(P1,L2), near(P1,P2,P3,L3), stops(P1,L4), jump(2,1),

                        walk([L1,L2,L3,L4],1,2).



C. Sample implementation in Prolog 67

%============================================================================

% EXECUTION TESTS

%============================================================================

%-----------------------------------------------------------------EXECUTION--

test_pass :- write('Calling goal: pass(player1,player2,ball).\r\n'),

             pass(player1,player2,ball).

test_collect :- write('Calling goal: collect(player3,player4,ball2).\r\n'),

                collect(player3,player4,ball2).

test_blocked :- write('Calling goal: blocked(player7,player8,player9,

ball3).\r\n'),

                blocked(player7,player8,player9,ball3).

%----------------------------------------------------------------------------


	Introduction
	Motivation
	Time geography in sport
	Connection to scientific discussion and outline

	Data capturing techniques
	Manual input
	Video position extraction
	Position tracking
	Virtual sports

	Spatio-temporal Data Types
	ROSE Algebra
	Temporal lifting operation
	Abstract and discrete models
	Moving object model
	Tripod data model

	Spatio-temporal Predicates
	From spatial predicates to spatio-temporal predicates
	Time dependent functions
	Lifting predicates
	Quantification
	Evaluating predicates
	Basic spatio-temporal predicates
	Summary

	Developments
	Spatio-temporal Evolution based on the Tripod spatio-temporal data model
	Recognition function

	Case study: Rugby "Kick to touch" pattern
	Modelling
	Building predicates
	Collect
	Pass
	Blocked
	KickOut

	Assembling the pattern
	Summary

	Implementing the concepts
	Phases of specification and computation
	Formalization of specification
	Compilation of the model
	Matching against a dataset

	Theoretic concept to implementation in Prolog
	The data
	First stage: computation
	Second stage: reassembly

	Executing the prolog code
	Calling goal: collect
	Calling goal: pass
	Calling goal: blocked

	Summary and outlook

	Conclusion
	Acronyms
	Bibliography
	Sample implementation in Prolog

