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Heutzutage sind eingebettete Computersysteme allgegenwär-
tig. Aus diesem Grund steht das Programmieren von Mikrocon-
trollern und das Entwickeln von eingebetteten Computersyste-
men im Studienplan der Informatikstudien vieler Universitäten
weltweit. Auch an der Technischen Universität Wien bietet
das Institut für Technische Informatik mit Embedded Systems
Engineering eine Lehrveranstaltung mit hohem Praxisanteil,
in der Studenten fortgeschrittene Fähigkeiten im Programmie-
ren von Mikrocontrollern erlangen sollen. Die erste Generation
der dafür entwickelten Übungshardware stellte die Übungsleiter
aber bald vor ein großes Problem hinsichtlich Wartung und Ak-
tualisierung. Die verwendeten Mikrocontroller veralteten und
die mechanische Stabilität des Laboraufbaus war nicht mehr
gegeben. Das sind nur zwei der Gründe, warum nach einer Wei-
terentwicklung der Übungshardware verlangt wurde.

Diese Arbeit umfasst Entwurf und Entwicklung einer neuen
universellen Plattform für die Lehrveranstaltung Embedded
Systems Engineering (ESE). Nach eine Darstellung verschie-
dener Abhaltemethoden einer praktischen Lehrveranstaltung
(LVA) über eingebettete Computersysteme werden diese be-
züglich ihrer Nutzbarkeit in ESE diskutiert. Der Entwurfspro-
zess der neuen Hardware wird dokumentiert und ihre Beson-
derheiten, wie zum Beispiel die Unterstützung in praktischen
Prüfungen oder die Möglichkeit für Fernarbeit, werden vorge-
stellt. Zum Schluss werden die Ergebnisse des praktischen Ein-
satzes der letzten drei Jahre mit ESE Studenten vorgestellt, ei-
ne Fallstudie, die mit freiwilligen Studenten in Prǐstina gemacht
wurde, evaluiert und eine Zusammenfassung über Forschungs-
themen, die von der Plattform unterstützt wurden, gegeben.
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Nowadays, embedded systems are present in a very wide range
of devices in everyone’s life. Therefore, microcontroller pro-
gramming is in the syllabus of computer engineering courses
at many universities. Therefore, the Department of Computer
Engineering at the Vienna University of Technology offers Em-
bedded Systems Engineering (ESE), a hands-on course teaching
advanced microcontroller programming and distributed real-
time communication between multiple microcontroller nodes.
Students were offered several embedded systems development
boards in a laboratory. Soon, course instuctors were faced with
big problems concerning the maintenance and upgrade of the
first generation hardware, which raised the desire for a more
suitable replacement.

This thesis covers the design and development of a new versatile
platform for the ESE course. Starting from a survey about
different methodologies how such an embedded systems course
can be held and their evaluation with respect to suitability
for the ESE course, the thesis describes the design process of
developing the new lab hardware with features for hands-on
exams and remote access capabilities. Our experience over the
last three years with ESE students, a case study of the remote
access with voluntary students from Prǐstina, and a summary
of supported research topics from the department conclude the
thesis.
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1
Introduction

Calculators, microwave ovens, washing machines, automotive and aircraft controlls, they
all have one thing in common: nowadays they contain embedded systems[Elm09]. Small
microcontrollers, that handle all kinds of tasks starting from simple calculations up to
fault-tolerant distributed control loops. Therefore, teaching the programming of embed-
ded systems and advanced microcontroller programming are in the syllabus of computer
engineering studies of many universities. The department of Computer Engineering at
the Vienna University of Technology also offers two courses for this purpose. Microcon-
troller programming is an undergraduate course teaching students well-founded skills in
programming microcontrollers using Assembler as low-level language and C as high-level
language. Based on this, in the course Embedded Systems Engineering (ESE) students are
taught advanced microcontroller and peripheral programming and communication among
a set of distributed microcontrollers. This thesis describes different approaches how such
courses can be structured and presents a platform which fulfills not only the needs of
teaching ESE, but also the requirements of various research topics around microcontroller
programming like interfacing a real-time sensor network or automated code generation.

1.1 Motivation and Objectives

In summer 2006, we decided to redesign the hardware used in the hands-on lab course
Embedded Systems Engineering. The one used before was built up of many small printed
circuit boards (PCB) mounted on a wooden baseplate and interconnected via a set of
wires. It consisted of four microcontroller node PCBs with several add-on boards like a
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seven-segment add-on or a bargraph add-on, connected via pin headers and several wire
connections. However, the manner the hardware was designed led to many problems:

For example, because of the wiring it was much easier to reset a single microcontroller
by unplugging the power supply to the node PCB than to reset it via a command line
tool which controlled the programmer. Thus, with every unplug – plug cycle students
caused the mounting to loose up more, which ultimately led to microcontroller nodes
which were detached from the baseplate. Furthermore, the mechanical loosening of the
nodes caused connection problems at the sockets whereon the communication between
the microcontroller nodes got unreliable and the connection to the peripheral devices like
displays or LEDs failed many times.

Another problem of the old hardware came from the way the hardware was designed.
Since it consisted of several small boards, schematics were available for those parts only,
but not for the overall system. Therefore, the understanding of the system as a whole got
very difficult and it turned out that several students who finished the course had little or
no knowledge about the connections between the parts.

Furthermore, the old hardware used two different microcontroller models with different
pinout and different oscillator frequencies. This made it very hard for the students to
write generic code for them, because every timing had to be calculated depending on the
microcontroller node for which it was compiled and also the pinout had to be conditioned
to the target node. The worst problem occurred when students had to write generic drivers
for integrated hardware like timers or analog to digital converters. Here it happened that
depending on the target platform different registers had to be initialized with different
values making it very time consuming and error-prone to write generic source code.

Programming of the nodes was done by an SPI programmer developed in-house, which
had the drawback that for every new microcontroller type that should be programmed,
the firmware had to be adapted to identify the new type and to allow its programming.
The main problem was the lack of documentation, which made it very hard to add new
devices to the ones supported by the programmer after the developer left the department.
Additionally, by supporting only SPI as programming mode, the hardware could not
provide any JTAG debugging features, as for example step-by-step debugging or setting
breakpoints.

Because of the previously mentioned programmer’s support problem of new devices,
the used microcontroller devices were outdated and hence their hardware features like on-
board Random Access Memory (RAM) or Electrically Erasable Programmable Read Only
Memory (EEPROM), or the number of timers, were minimal. This led to restrictions in
the complexity of tasks the students could be assigned.

For these reasons, we decided to design a new hardware which should avoid all these
problems. This new hardware should not only replace the old one in the hands-on part of
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the course, but it should also allow a later expansion of the course to include an additional
remote working alternative. Therefore, we defined requirements the system has to fulfill
and worked out a concept for a platform that satisfies our needs.

Apart from these practical reasons, this new approach also allows us to observe the
effects of different systems on students and staff. From our point of view, it was interesting
to observe how different system architectures affect the students’ understanding of the
system. As mentioned, the old hardware consisted of several PCBs, so although students
sometimes did not realize how they worked together, they could at least identify the
components easily. In our new approach, all components are on one PCB. While we
expected this architecture to improve students’ understanding of the interactions between
the components, we were not certain if it would not overwhelm beginners and thus lead
to a decrease in overall student understanding of the system.

Another aspect we were interested in was the effect and acceptance of the remote work-
place option. This allows providing students a 24/7 work environment, which we consid-
ered particularly attractive to students working in a job during the regular lab opening
hours, but we did not know how much actual demand there was.

From the point of view of the staff, we were of course interested in creating a system
which is easy to handle and maintain, and which also leads to a reduction of the workload
of the staff.

1.2 Content and Structure of the Thesis

This thesis documents the design of the new lab platform and its validation for different
purposes. The author of this thesis designed the PCBs of the lab hardware, organized its
production and supported assistant professors and students as a Tutor in the Embedded
Systems Engineering Lab course for 3 years during which this platform was used for
programming excercises and evaluations. He also set up an experiment for remote lab
access between Vienna, Austria and Prǐstina, Kosovo. Moreover, the author acted as
system integrator by extending the lab platform with the results from several bachelor’s
thesis (eg., remote access, debugging, etc.).

The thesis is structured as follows: Chapter 2 gives an overview about our require-
ments for a platform used both for teaching ESE and for research on distributed real-time
systems. In Chapter 3, we describe the possibilities for teaching state-of-the-art embed-
ded real-time systems and we discuss the advantages and disadvantages of hands-on labs,
hardware simulation, take-home lab kits, and remote lab access. Our developed solution is
introduced and described in detail in Chapter 4. In Chapter 5 we describe four showcases
our platform should master and the results we got after a mid-term evaluation. Finally,
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Chapter 6 summarizes the key results of the presented work and gives an outlook on open
questions, possible improvements, and further research topics.



2
Requirements

The goal of this work was to develop a versatile platform that can be used for teaching
students advanced microcontroller programming in the course Embedded Systems Engi-
neering at the Vienna University of Technology. Additionally, this platform should also
be usable in the research of distributed real-time systems at the department of Computer
Engineering. Before we started working on the development, we identified 11 requirements
for our platform. These include hardware requirements like programming without replug-
ging cables as well as more general requirements like production costs or robustness which
are described more in detail in the following.

2.1 State-of-the-Art Hardware

One of the reasons looking for a new platform for our lab course was because in the old
one, the used microcontroller units (MCU) were outdated, leading to memory problems
when writing larger embedded applications. Thus, state-of-the-art MCUs should allow
to implement interesting tasks without the fear of getting a stack overflow when using
more than five nested function calls. The platform should also provide various high level
interfaces such as SPI and a versatile bus system, as well as the standard digital and analog
interfaces. Time-critical interfaces like Input Capture (IC) and Pulse-Width Modulation
(PWM) should be available too, allowing much more interesting tasks and more versatile
usage.
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2.2 Teaching Distributed Systems

In order to teach distributed embedded programming, we need multiple MCUs on the
platform, which can interact with different peripherals and with each other. The old
hardware platform featured four MCUs, and in our opinion that is the bare minimum
one needs to provide interesting and challenging distributed tasks to the students. Also,
all the peripherals have to be split among the processing nodes, for example to allow the
implementation of a distributed fan control. We furthermore want to program systems
with a direct interface to the hardware. Thus, embedded Linux systems or similar are
out of question. We want the students to program the hardware directly and to meet the
challenge of limited processing power and especially limited memory.
When teaching distributed systems in which the processing nodes are communicating
via message passing, one thing is inevitable: a bus system between the nodes. This
bus system should not limit the possibilities, i.e., it should not only support a single
protocol, but should also provide enough flexibility to implement different protocols, for
example protocols similar to Controller Area Network (CAN) or Time Triggered Protocol
Class A (TTP/A) [Kop02]. Also, an ordinary serial communication between two nodes
should be possible to implement very easily. Another requirement to the bus system would
be to use a simple bus driver, so students do not need to read a bunch of manuals to set
up a simple peer to peer communication between two nodes.

2.3 Teaching Real-Time Systems

When teaching distributed real-time systems hands-on, the used hardware has to fulfill
some special needs. In this regard, the bus system1 is one of the most important things. If
the bus system does not provide real-time capabilities, one cannot implement a distributed
real-time application on top of it. Therefore, and because one of the tasks in our course
is the implementation of a real-time protocol, one requirement to our bus system is the
possibility of real-time communication. The additional requirement that the hardware has
to run our chosen real-time field bus protocol TTP/A is not really hard to fulfill, since
its architectural requirements [Trö02] are rather low. To make the real-time challenges
aware to the students, the system should allow some example real-time applications like
implementing a control loop for the fan speed.

2.4 Flexibility

Since the platform should be used in research too, the new hardware should be flexible
in every possible way. If more processing power is needed, it should be easily possible to

1The term “bus system” here includes the hardware bus and the line drivers used for accessing it.
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change the used MCUs against ones with more processing power. Needs for external RAM
or a hardware real-time clock should be as easy to fulfill as the change of the manufacturer
of the used microcontroller unit (MCU).

In the scope of research it is often necessary to work with special sensors or actu-
ators. Without much effort, it should be possible to connect additional nodes to the
platform which deal with the special hardware and, in terms of a smart transducer
[EHK01, OMG03], provide clean interfaces to the processing cluster. Therefore, additional
sensors like infrared or acceleration sensors should be easy to attach, and extensions like
an Ethernet port, or a gateway to higher level real-time protocols, e.g. TTP/C [TTA03],
should be simple to realize.

To implement more complex distributed tasks or algorithms without having to attach
a lot of external nodes, it should be easily possible to connect multiple platforms to form
a large cluster of nodes.

2.5 Robustness/Maintenance

The “life” in an embedded systems lab is very rough – especially for the lab hardware.
Every day dozens of students work on it, sometimes eat and drink next to it, and do
not always handle the lab hardware with care. A lab hardware might also have to suffer
lots of aggressions if the student’s solution does not work correctly. This all implies the
requirement for an enhanced physical robustness. One of the reasons looking for a new
platform for our lab course was because the old one was not integrated on a single circuit
board, and therefore loose cables from countless unplug – plug cycles by students led to
regular connection problems and loosened mountings on the wooden ground plate. Because
of this, the old hardware was very sensitive to touch and movement.

Clearly the new hardware should not have these drawbacks. Spilled out water should
not immediately lead to total destruction of the hardware, and it should survive moderate
shock without serious damage. Another issue is theft; in case of a platform which consists
of multiple parts, ideally every single part has to be protected against theft.

Apart from these issues, long service intervals and easy replacement of defect compo-
nents is also part of the platform’s robustness. MCUs have a limited amount of pro-
gramming cycles; if the limit has been reached, it should be easy and cheap to replace
them.

2.6 Lab Working Places

For the lab course ESE, we need at least 16 fully equipped lab working places during
the course. In addition to this, it should be possible to extend the lab working places by
remote working places. The physical size of a lab workstation is of interest too, because
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the smaller one lab working place is, the more can be arranged in a lab of the same size.
Therefore, the lab places should be kept simple and compact, which means we prefer a
single monolithic design instead of a system with parts spread out and tethered by a lot
of bus and power cables.

2.7 Cost

Of course, the costs for new educational hardware should be kept as low as possible. The
cheaper one lab place is, the more workstations can be made available to the students.
The cost of the development platform can be divided in hardware costs and software
costs. Software costs are dominated by licensing costs, which can be held low by using
free and open source software. We further reckon self-designed hardware whose cost can
be decomposed into the part costs, which can be minimized by using cheap standard
industry parts, and assembly costs, which can be minimized by using as much surface
mounted technology as possible, allowing automated mounting.

2.8 Development Software Support

The used software should be as much standard software as possible, because software
written by students or by department staff has one main drawback: the programmer
sooner or later is out of reach, which results in a big maintenance problem. Therefore, in
deference to maintainability and cost factor, the used software should be established open
source software which is well maintained by the community. When taking into account our
lab system, the software has to run on Linux, because our lab environment is completely
Linux based. In the ideal case, the complete tool chain starting from operating system
to editor, compiler, programmer, and also the debugger should run on Linux and should
be free of charge. For reasons of flexibility, however, the software should support other
platforms too, at least Cygwin2 in a Windows environment.

2.9 Programming without Replugging Cables

As described in Section 2.3, we want to teach distributed systems, which means that
we have multiple MCUs that should be programmed. Because we also want to enable the
possibility of remote working, the programming solution must not require the replugging
of any programming cable.

2Cygwin is a Linux-like environment for Microsoft Windows. It allows the integration of Windows

system ressources with applications and data of the Linux-like environment by introducing an Linux

Application Programming Interface (API) emulation layer. Cygwin is available at http://www.cygwin.

com/.
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2.10 Support for Hands-on Exams

On the one hand, examinations where students have to complete a task on a live micro-
controller system are a good way to check the student’s ability to use their knowledge in a
practical way. Both, teachers and students have often stated the desire for such real-world
examinations. However, after implementing such examinations in the first place, we found
out that they often have been a source of stress and hectic rush for all involved persons,
especially at the end when many students want feedback for their programmed solutions
concurrently. The new platform should therefore mitigate these problems by providing
automated feedback to the students during the examination, such that they are informed
whether their solution fulfills the specification or not. Therefore, the platform should be
capable of evaluating the students’ program output in the value and in the time domain.

If this evaluation is also the basis for grading the result, it is necessary to ensure that
the student cannot fake a correct result. Therefore, the exam evaluation should provide a
sufficient level of security.

2.11 Remote Working

When talking about remote working, this includes not only remote programming, but
also remote monitoring and debugging, which is by far more difficult, but should reduce
the lab load and enhance flexibility of the working times of the students. Especially for
students living far away from the university, or for students with jobs besides their study,
it is hard to come and work in the lab during regular opening hours. Therefore, more
flexible working times could help them finish their studies in time. The possibility of
remote working also provides a scalable extension to lab places.
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3
State-of-the-Art in Teaching

Embedded Systems Courses

This chapter deals with the different options how undergraduate and graduate courses on
embedded systems programming can be conducted. Such courses can be categorized in
four parts. In Section 3.1 we describe how a course can be held using a hands-on lab
for solving exercises. Section 3.2 shows the pros and cons of using simulated hardware in
an embedded systems course. In Section 3.3 the option of using take home hardware is
discussed, and Section 3.4 describes the advantages and disadvantages of using a remote
access to the lab. Every section comes with references to courses using the introduced
models. Of course a combination of different models is possible and most of the referenced
courses in fact do use at least two of the options together.

There are a lot of papers dealing with the question of which approach is better suited
[NMN03, WHL05, CNEC04, CF97], but in our opinion, this heavily depends on the re-
quirements of the course. In many cases a combination of several approaches is the most
suitable.

3.1 Hands-on Lab

Using a hands-on lab [Bac05] has many advantages. First, students get in touch with
real hardware which allows them to “get together” with real world problems like ground
bounces, accidental time effects, or race conditions of which, in our opinion, students of
computer engineering should be aware. Another advantage of hands-on labs is the acces-
sibility of wiring, and the availability of helpful measurement equipment like oscilloscopes
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or logic analyzers. To reduce hardware costs, the measurement equipment can also be
shared among the lab-places. When thinking of the used software, hands-on labs clearly
have the advantage that it can be maintained centrally and held consistently. Every work-
station runs the same operation system, and the same programs are installed. No things
like “. . . but the programmer does not work on my Mac . . . ” can occur. Another big ad-
vantage is the available support through tutors on site. No email, forum post, or similar
communication is needed to ask questions.

Of course there are also disadvantages of hands-on labs, for example most labs have
time restrictions when students may get access to them. Additionally, it is very hard and
time consuming for students who do not live in the city of the university to take part
in such a course. Another well-known fact is that in the days before exercise deadlines
the amount of students working in the lab is noticeably increasing. The lab has therefore
either to be dimensioned to these peak-load situations, leading to a bad average usage,
or one has to schedule the access in peak-load times by issuing restrictions on particular
time slots.

3.2 Hardware Simulation

The main advantages of hardware simulation are that students can work at home and
therefore are completely free to decide when and where they want to solve their exercises.
There is no physical lab needed, which reduces the cost needed for rooms and equipment
and therefore it does not make a big difference whether 10, or 100 students attends a course.
Another big advantage of hardware simulation is that students get a better insight into
their program, because of the very good debugging possibilities, for example step-by-step
execution. The students have full access to the internal state of the processor and can
inspect all registers and memory contents at any time.

Unfortunately, most good simulation solutions come with very high licensing costs,
although there are also some which are free of charge, for example Scilab1. However,
simulation can never be as exact as real hardware since the accuracy of processed values
is bounded. Another problem comes with different hardware of the students, since the
performance of the used simulator heavily depends on the student’s processor speed. Also
things like the used operating system or special hardware drivers have to be taken into
account.

Although simulation is way different from hands-on labs, it can help students to find
errors that could not be found that easily without simulation. For example, [BPM00]
are using simulation in addition to hands-on labs. The students first solve their tasks and
simulate their programs in a simulator. Afterwards, the students download their programs

1Available at www.scilab.org.
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to hardware. One problem was found by the students when they attempted to locate an
external device at address 0x7FFF. Switching the address lines from all 1’s to mostly 0’s
created a ground bounce which caused a disturbance at the address-latch enable line. This
ground bounce problem came from the used microcontroller and was corrected in the next
revision, but without previous simulation the students would have spent much more time
for localization of the problem.

3.3 Take-Home Lab Kits

The main advantage of take home hardware, also called lab kits, is that students can
work on real hardware not only in the lab, but also at home. Such lab kits have several
requirements to meet: First, they must not include expensive software licenses, or even
better should use open source software only to avoid any licensing problems. Any soft-
ware registration/licensing process is time-consuming and may cause trouble if not done
correctly. Second, a lab kit has to be easy to install for students and must not require
extensive knowledge of operating system functionality. For example, it must not happen
that certain registry tweaks are necessary to run the lab kit on a student’s PC. Third, the
lab kit should be independent of the student’s choice of operating system or the student’s
PC hardware. Therefore, it should be no problem whether a student uses a Windows or
Linux PC, or even a Mac, and in the best case even how old the PC might be.

[ETW06] achieve the requirements by using a Linux system based on Knoppix [Kno00],
which is included on a bootable CD and does not need any configuration. The complete
tool chain is pre-installed and only consists of open source software. One of the major
disadvantages using lab kits is, however, that no expensive hardware can be handed out
to students, for example no storage oscilloscopes or logic analyzers. Whenever expensive
hardware is needed, it is better to leave it in the lab, where at least a minimum of
supervision can be ensured.

3.4 Remote Lab Access

During the last years, remote lab courses got quite common. There are countless ex-
amples of such courses in literature [MLM03, TPA06, NMN03, CHMM04, PP00, MČŽ00,
GCARVA+01, TPE06]. Remote labs have been seen as the ideal addition to hands-on labs.
They are reducing the lab load by providing remote access to lab hardware and to the lab
equipment. Additionally, they are removing time and space constraints for accessing the
lab by providing 24/7 access to it while the students are still working on real hardware.
There are several ways how the communication between the working student and the lab
environment can be accomplished. When the feedback is given as a live stream of a video
camera like in [MLM03], there is no other possibility to interact with the hardware than
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programming it and running the programmed code. Additionally, a student may view
the screen of an oscilloscope, but is not able to change its configuration, which however
sometimes is not a drawback but an advantage. Another possibility of giving feedback
to the students is by monitoring the interesting data, like in [MČŽ00] or [TPE06]. Here,
monitoring hardware is used to collect all interesting information about the development
hardware and all physical process data. The data is sent to the students and visualized.
By adding additional hardware for dynamic configuration like in [GPPD05] to change the
hardware configuration, students can also interact with the lab hardware and experiment
as they would in the lab. This solution, however, has the drawback that it is quite expen-
sive, not really space efficient, and usually there is no way to integrate the control of lab
equipment like a logic analyzer. Remote lab access has the drawback that every student
needs to have access to the Internet with a reasonable bandwidth. This might not be a
problem in our case, but may be one in other regions.



4
System Architecture

The survey on requirements in Chapter 2 combined with the different ways a course on
embedded systems programming in Chapter 3, turned out a combination of hands-on lab
and remote lab access as ideal for Embedded Systems Engineering (ESE). A summary
of the facts can be found in Table 4.1. Additionally, it showed that there exists no

requirement hands-on hardware take home remote
lab simulation lab kits lab access

state-of-the-art hardware � �
teaching distributed systems � � �
teaching real-time systems � � �
flexibility � � � �
robustness � �
lab working places � � � �
cost � �
software support � � �
replugging cables � � � �
hands-on exams � �
remote working � � �

Table 4.1. Summary of requirements vs. course types

commercial-off-the-shelf system that would fulfill all our needs. Therefore, we decided
to create our own lab platform. After research of the requirements, we developed the
concept of our ESE–Environment containing the ESE–Board as development platform
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and providing the ESE–Toolchain. This chapter will introduce the system architecture of
the ESE–Board and will give information about how we dealt with the upcoming problems.

First the design of the basic board, which is the version of the ESE–Board that is
currently used in our labs, is introduced in Section 4.1. To allow remote monitoring some
special extensions have been made to the basic board. They are described in Section 4.2
together with an update of the software requirements. In Section 4.3 we describe how our
platform is able to evaluate hands-on exams automatically, and in Section 4.4 we introduce
our remote workplace approach, which is based on the monitoring extensions from before.

Bus Extension

LC–Display

7 Segment Display

Fan

Bulb and Sensor PCB
DC to DC Converter

Bargraph

LEDs

Microcontroller
Nodes

Extension Port
Programmer

Figure 4.1. The ESE–Board

The platform consists of four nodes interconnected by a serial bus-system. As shown
in Figure 4.2, every node has different peripherals connected to it. Node 0 has 2 LEDs
for debugging, a Universal Asynchronous Receiver Transmitter (UART) for transmitting
data to the connected PC, and some monitoring inputs for observing some chosen signals
of other nodes. The monitoring inputs are for evaluating exam tasks and will be explained
in detail in Chapter 4.3. Node 1 also features 2 LEDs for debugging and in addition an
8-Bit bargraph display for debugging and simple visualization of values. Furthermore, an
LC–Display is connected via Serial Peripheral Interface (SPI), and the display’s contrast,
the brightness of the background light, and an additional bulb can be adjusted via PWM.
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Node 0 2 LEDs

UART to PC

Monitoring Inputs

Node 1 2 LEDs

Bargraph

SPI - LC Display

Bulb

Node 2 2 LEDs

7-Segment Display

Node 3 2 LEDs

Bargraph

Temperature Sensor

Illumination Sensor

Fan

Tachometer Signal
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Figure 4.2. Basic concept of the peripherals

Node 2 also has 2 LEDs and a 7-segment display connected. Node 3 is the sensor node
and has 2 LEDs, a bargraph display, a temperature sensor, an illumination sensor, and a
fan connected to it. The fan generates an index signal, which can be read back from the
node to determine its current speed. The currently used programming mode can be seen
in Figure 4.3. The overall system is called “ESE–Board” and is shown in Figure 4.1.

4.1 Basic Board

The basic board is used in the lab as hands-on hardware only. It does not support
remote monitoring, but it provides all the functionality that is needed by the students to
solve their tasks directly in the lab. Of course, it supports the automatic exam evaluation
and thus is perfectly suited for every task inside the lab.
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4.1.1 Hardware

The concept of the hardware peripherals is shown in Figure 4.2. The solid lines represent
hardware connections, the dashed lines can be seen as external dependencies (for example,
the bulb influences the temperature and the illumination sensor). The four nodes can
be programmed by a single programmer, while the programming of multiple nodes is
possible due to a multiplexer1. The different programming possibilities are presented in
the following paragraphs.

Programmer

During the work on this thesis, several programming concepts reaching from a simple
serial boot loader to a generic Extensible Markup Language (XML) programmer were
implemented. Their advantages, disadvantages, and special features are discussed in the
following:

USB Hub

USB↔serial USB↔serial

Node 0

Node 1

Node 2

Node 3

ATmega128

CPLD
Multiplexer

ATmega16

JTAGICE

Mk.I

JTAG

Figure 4.3. Programming concept using JTAGZeusProg

JTAGZeusProg The JTAGZeusProg was developed together with the ESE–Board and
is the programmer originally designed for the board. The concept of the JTAGZeusProg
can be seen in Figure 4.3. The programmer consists of a Xilinx Complex Programmable
Logic Device (CPLD) device containing the switch circuitry for switching the JTAG signals
between up to 8 microcontroller nodes. An Atmel ATmega128 microcontroller is control-
ling the CPLD declaring which device has to be programmed. The programming itself

1JTAG Daisy Chain programming is not used, because it is not supported by every version of the

microcontroller nodes. For example, previous versions of the Atmel ATmega128 microcontroller do not

support chaining.
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is done by a Joint Test Action Group (JTAG) In–Circuit–Emulator clone running on an
Atmel ATmega16. Both the ATmega128 and the ATmega16 are connected to the host PC
via a 2-channel FTDI FT2232 Universal Serial Bus (USB) to serial converter. Via JTAG,
the programmer supports debugging via GDB such as single step execution, breakpoints,
and memory evaluation. In addition to programming and debugging, this programmer is
able to emulate virtual push buttons which can be accessed by the user via a command
line tool. This feature was implemented to eliminate the need for mechanical components,
which cannot be operated if one is accessing the board via Internet from home. The vir-
tual push buttons can be ‘pressed’ by software and be released automatically after 10ms
like a “virtual button”, or can be held and released manually like a “virtual switch”. The
virtual push buttons are connected to an external interrupt input of the microcontroller
nodes to allow detection of button presses and releases without polling.

Since the used programming device is pretty outdated, it does not support newer devices
like the Atmel ATmega1280 family, or the 2560 family, which led to problems during
the work on the remote monitoring part. Another drawback of this programmer is the
limitation to Atmel microcontroller devices.

USB Hub

USB↔serial

Node 0

Node 1

Node 2

Node 3

ATmega128

CPLD
Multiplexer

External
Programmer

to
ho

st
P

C

JTAG

Figure 4.4. Programming concept with external programmer

External JTAG Programmer Figure 4.4 shows the concept how an external JTAG
programmer can easily be included in the toolchain. This is of interest if the external
programmer provides special functions which are needed. Switching between the micro-
controller nodes can still be done by the CPLD or, if switching is not wanted, the CPLD
can be reprogrammed to connect the microcontroller nodes to a Daisy–Chain.
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Bootloader When working on the remote monitoring part of the platform, the first
problems with the JTAGZeusProg, as described above, came up. Atmel ATmega1280 were
chosen as monitoring nodes, but they were not supported by the JTAGICE Mk.I clone.
Therefore, M. Hofer and T. Mair configured a boot loader to work with those devices
and enable programming them [HM07]. The bootloader programming mode, however,
is only interesting for the monitor nodes because they have an UART connected to the
development system.

USB Hub

USB↔serial

Node 0

Node 1

Node 2

Node 3

CPLD
Multiplexer

ATmega128

XML-based

Programmer
JTAG

control

Figure 4.5. Programming concept using the XML-based programmer

Modular, XML-Based JTAG Programmer for Embedded Devices The modular
XML-based JTAG programmer is the last development related to the ESE–Toolchain. It
was done as bachelor thesis by M. Schmölzer [Sch08] and enables JTAG programming for
various devices. The key feature is the XML configurable programming algorithm which
allows adding support for new devices without recompiling the programmer or its firmware.
The programmer is designed to work for all currently available microcontrollers with a
JTAG programming interface, as well as other devices like FPGAs or memories. Currently,
the programmer does not support debugging via the JTAG interface, but interfaces are
designed to easily integrate such features in the future. By now the programmer is tested
on development boards and it is expected to be used in the next course on all ESE–Boards.

Microcontroller Nodes

Since flexibility is one of our main requirements, we do not focus on a single microcon-
troller type or model. Instead we have chosen to place every microcontroller node on
its own Printed Circuit Board (PCB) connected to the ESE–Board by a socket with a
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defined hardware interface. This makes it very easy to replace the microcontrollers, for
instance if the currently used devices are outdated, more processing power or a design
with external RAM is needed by the application, or simply the limit of programming cy-
cles of a microcontroller has been reached. Therefore, the pinout of the socket is also not
matched to a particular microcontroller but has been structured functionally (see Figure
4.6) and only describes the principal functional groups of the pins. The disadvantage is
that this functional interface is leading to misunderstandings by the students, because
often they are not used to reading more than one schematic, which is required here to find
out the respective microcontroller pin that is used to enable a particular Light Emitting
Diode (LED). Experience has shown the need to emphatically explain more than one time
how the mapping between the functional interface and the real microcontroller pins can
be found out.

Designing a new CPU–Board requires that the functional pin out is not violated. A
detailed pin out diagram which shows all the groups in detail can be found in the appendix
in Section C.2.

In our lab hardware we are currently using Atmel ATmega128 devices for all four
microcontroller nodes, because they provide all functionality that is needed to perform
our tasks and they are very easy to program. Furthermore, there exists a very good
toolchain for those devices which is available completely as open source software.

Peripherals

LEDs Each CPU board has a green and a red LED for status indication or very simple
debugging (see Figure 4.7). The LEDs are driven active-low and are connected consistently
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Figure 4.6. Functional layout of the socket interface
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to the same ports through all microcontroller nodes by default. Therefore, it is very easy
to re-use the code written for a specific node on another node even without changing the
IO settings for the LEDs. This is especially advantageous when one is programming the
core of a communication protocol running on all nodes and using the LEDs for status
indication like used in TTP/A.

Figure 4.7. LEDs on the ESE–Board

Bargraph The bargraphs are connected to 8-bit IO ports which allows various tasks
other than debugging, for example software PWM tasks like a “Knight Rider” light as
well as counter visualization tasks can be performed to provide variantly and challenging
tasks for students to solve.

There are bargraphs connected to node 1 and node 3. While the bargraph at node 1 is
connected on all pins of the digital IO port, the one at node 3 has pin 4 (count started
with 0) disconnected. This is because with our choice of microcontroller nodes, this pin
would be shared with the input capture pin of the fan index signal resulting in a flickering
led whenever the fan is running. However, this is the only time the chosen microcontroller
concerns the board layout. All other peripherals are not affected by such things and the
functional interface is perfectly preserved.

Figure 4.8. Bargraph connected to node 1
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Light Bulb The light bulb connected to node 1 is driven active high and can be used
to influence the illumination and temperature sensors connected to node 3. It can be used
as actuator in a control circuit, for example when controlling the temperature. It is not
connected directly to the microcontroller, but driven by a transistor amplifier with two
stages using a BD140 power transistor as output stage. The bulb however only requires 5V
and therefore is connected to the 5V power supply of the board. It is recommended to use
5V bulbs, since a 9V or 12V bulb hav shown not produce enough light and heat. Figure
4.9 shows the bulb with the sensor PCB containing an illumination and a temperature
sensor side by side.

Figure 4.9. Light bulb with sensor PCB

LC–Display The LC–display (shown in Figure 4.10) is connected to node 1 and has var-
ious interfaces. The background illumination and the contrast of the display are controlled
via PWM, which allows the use of different displays without the need of recalibrating the
hardware such as the contrast voltage. This is especially important since the manufacturer
of the used display provides several different types of displays with different sizes and they
are all pin compatible. Therefore, it is possible to change the display to a smaller or larger
one, or even a graphic display which is also available with the same pin out. This enables
swapping to graphic displays in the future.

The display itself is controlled via SPI and connected to the hardware SPI controller
of the microcontroller node. There are many implementation modes of the display pos-
sible, such as using/not using a frame buffer inside the microcontroller, or using hard-
ware/software SPI.

Since the Liquid Crystal Display (LCD) is certainly one of the most complex peripheral
devices on the ESE–Board, it is a good idea to provide additional information to the
students. One big problem of the display programming that comes with the advantage of
replaceable displays is that the contrast has to be set up by the students. It happened
that students lost days configuring their SPI controller, while the controller worked fine
all the time, but the contrast was not configured. So the display did show everything
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Figure 4.10. LC–Display

correctly, but the students could not see it. The hint that the contrast should be in the
range of 30% is very useful and will allow students to focus on the real problems, although
it is sure that those students had learned their lesson and will never make such a mistake
again.

Programming the SPI communication is another challenge, no matter whether the hard-
ware controller is used or not. If the display does not show anything, it is possible that
either the SPI communication does not work, or the display is not configured right. There-
fore, it is a good idea to provide a minimal set of instructions that should bring a blinking
cursor on the display if they were transmitted to the display correctly. Only after getting
this minimal example right, students should proceed to program more complex display
tasks; if they directly start with their own tasks, the debugging will cost a lot more time
if something went wrong.

Seven–Segment Display The seven–segment display connected to node 2 is a great
exercise for multiplexing since it consists of eight seven-segment digits connected to a
digital IO port of the microcontroller where the segments of the digits are connected in
parallel. The selection which digit is active is done by using a transistor for switching the
common anode of the active digit to V CC while the common anodes of the inactive digits
are left unconnected. The transistors of the digits are controlled by a 74LS138 1-of-8
binary demultiplexer which uses three inputs and demultiplexes them to eight lines.

Using all digits together requires multiplexing and switching between them fast enough.
Figure 4.11 shows the string “HELLO 42” written to the seven–segment display. Various
exercises concerning different refresh rates and multiplexing frequencies are possible.

Temperature Sensor As one can see in Figure 4.9, the temperature sensor is not
mounted directly on the ESE–Board but on a small extension PCB together with the
illumination sensor. This sensor–PCB is plugged into a socket board connector on the main
board to be easily replaceable in case of needing a different sensor. The currently used
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Figure 4.11. Seven–segment display connected to node 2

temperature sensor is a temperature–dependent Zener diode (LM335) with an accuracy of
1◦C without any calibration. The output of this temperature sensor is directly proportional
to the absolute temperature at 10mV

K , which allows direct measurement in ◦C when using
the ADC’s differential inputs with 2, 7316V on the negative line, corresponding to the
offset of 273,16◦C, and the temperature sensor on the positive one.

Illumination Sensor The illumination sensor is, like the temperature sensor, mounted
on the sensor–PCB. Currently a Light Dependend Resistor (LDR) with a resistance range
between 300Ω and 20kΩ is used. The illumination sensor can be used in exercises to detect
if the bulb is switched on or off, triggering the start of something else. For example,
students have to measure the temperature progress after switching on the bulb without
direct communication between the sensor node and the node controlling the bulb.

Fan The fan used on the ESE–Board is a 12V brushless fan (shown in Figure 4.12),
driven by a non-inverting operational amplifier circuit, which amplifies the low-pass filtered
PWM signal from node 3 by a factor of 2, resulting in a maximum supply voltage of 10V .
The index signal of the fan is fed back to the microcontroller node’s Input Capture pin,
where it can be used to determine the real speed of the fan. The fan can be used in
exercises for cooling the bulb and the resulting temperature variation can be measured by
the temperature sensor. It may also be used to build up a closed control loop to control
its speed.

As the operational amplifier chip provides two gates, a second PWM–to–analog conver-
sion is done and connected to a second, currently unused, connector. This output can be
used for external peripherals needing analog voltage.

1–Wire Bus The 1–wire bus, connecting the four microcontroller nodes the students
may program, is a simple serial bus using a standard TTL tri–state–buffer as line driver.
This means that every node that wants to write 0 on the bus may do this, all other buffers
are high impedance. Therefore 0 is the dominant state of the bus and 1 is the recessive



26 CHAPTER 4. SYSTEM ARCHITECTURE

Figure 4.12. Fan connected to node 3

one. There are several protocols that may be used on the board reaching from simple
RS232 point to point communication over a CAN-like multinode communication protocol
with bitwise bus arbitration in the header to time-triggered protocols like TTP/A.

If more than four processing nodes are needed, the bus can easily be expanded by the
bus extension interface, shown in Figure 4.13, which allows not only to connect several
ESE–Boards together, but since there is also a power supply available on the interface, to
easily add additional stand alone nodes as well. This is especially of interest if gateway
nodes to other communication protocols are needed, e.g. gateways to an Ethernet network
or gateways to a Time Triggered Protocol Class C (TTP/C) cluster, or nodes with special
hardware are needed, e.g. nodes with built in acceleration sensor, pressure sensor, or
infrared sensors.

Figure 4.13. 1–wire bus extension connector

UART The UART connected to node 0 is the main communication interface between
the ESE–Board and the host system. Students should send measurement and debugging
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data to the lab PCs and should receive data for processing. TTP/A uses this interface
for its monitoring software. Communication is provided by a Future Technology Devices
International (FTDI) USB–to–serial converter FTDI FT232BM which allows transmission
signaling by two LEDs shown in Figure 4.14. All USB ports of the ESE–Board are collected
by a TUSB2046B USB hub and transmitted to the host PC via a single USB connection.

Figure 4.14. UART traffic LEDs of node 0

4.1.2 Software

The basic board needs the current avr toolchain containing the avr-gcc cross-compiler,
and the avr-libc libraries. The avr-binutils linker is needed to generate the target bi-
nary. Those tools are provided by various Linux distributions as binaries in the package
management. The software needed for programming depends on the chosen programmer.
Using the standard on-board JTAGZeusProg, avarice is needed for programming and
the JTAGZeusProg client executable is needed for switching between the microcontroller
nodes. If the newer XML programmer is used, avarice is not needed, but the JTAGProg
executable and the device description files instead.

4.2 Monitoring Extension

This section deals with the hardware and software changes that are necessary to enable
monitoring on an ESE–Board. It does not deal with the real monitoring feature, which is
described in Section 4.4.

4.2.1 Hardware

The principle of the monitoring hardware is shown in Figure 4.15. As one can see, it is
quite similar to the programming concept shown before in Figure 4.3, in fact only the four
monitoring nodes, called A–D, and their serial interfaces to the host system were added.

The monitoring nodes are placed in between the ESE–Board and the microcontroller
nodes like in a sandwich shown in Figure 4.16. This configuration allows monitoring all
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Figure 4.15. Basic concept of the monitoring hardware

signals coming from and going to the microcontroller node, while the space requirements
remain nearly the same.

Figure 4.16. Monitoring node between ESE–Board and microcontroller node

The monitoring nodes are connected to each other by an own bus system which is,
in principle, the same as the bus between the microcontroller nodes, and therefore also
has the same characteristics. This bus system will be used in the remote workplace part
to build up a monitoring network for distributed data acquisition of the microcontroller
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nodes programmed by the students. Every monitoring node also has a UART interface
to the host PC. This is achieved by two additional FTDI FT2232 dual–channel USB–
to–serial converters. The additional pins used for the monitoring nodes are provided by
an extension of the socket shown in Figure 4.17. Therefore it is assured that, even if no
monitoring node is present at the board, the microcontroller node is working. This ensures
that boards providing the monitoring extension can also be used for regular lab usage, for
example in cases where there is a lack of lab hardware.

MON–JTAG

MON–BUS
MON–UART

Figure 4.17. Socket interface – monitoring extension

Currently, Atmel ATmega1280 microcontrollers are used as monitoring nodes, because
they provide enough IO to connect all signals that have to be monitored. Unfortunately,
as already pointed out, they are not supported by the JTAGICE Mk.I clone used by the
JTAGZeusProg. Therefore, another programming concept of the ones describes in Section
4.1.1 has to be used. During the development of the monitoring firmware, the bootloader
solution was used to program them, after the XML based programmer was finished, it was
used.

4.2.2 Software

The monitoring extension has the same software requirements as the basic board de-
scribed in Section 4.1.2. Additionally, if one is using the JTAGZeusProg for programming
the microcontroller nodes, a bootloader is needed to program the monitoring nodes, be-
cause the currently used monitoring nodes are not supported by the JTAGZeusProg. If
another programmer is used, e.g. the XML based one described in Section 4.1.1, no further
software is needed.

4.3 Exam Evaluation

One of the main advantages of our platform is the ability to check exam solutions for
correctness and provide this information to the students in real-time during the exam.
This is very useful, as it helps saving the time needed for ‘manual’ exam evaluation and
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helps the students to appraise themselves (see [KE06] for further details). A detailed
description of the whole showcase can be found in Section 5.2.

4.3.1 Workflow

A typical exam workflow is shown in Figure 4.18. After some preparation time, students
are working on their development systems to solve the exam exercises. When they think
they have finished their work, they can check their solution for correctness by executing a
checker program which sends a check request to the hardware. For security reasons, this
request also includes some information about the student calling the program, for example
the student ID. If the hardware receives such a check request, it starts the evaluation of
the student’s program by monitoring its output and if necessary stimulating its inputs.
This evaluation can be done periodically too, which means the hardware evaluation node
continuously evaluates the student’s program, which will result in a much reduced response
time of the check requests. After the evaluator has finished and decided whether the
solution is correct, wrong, or the sample solution (described in the software section below),
the hardware returns an encrypted response to the host system. This response contains
the number of the exercise and whether it is solved correctly or not. The check program
displays the result on the screen to inform the student about success or failure of the
evaluated solution. If the student’s solution was correct, the check program stores the
result locally to enable later collection of all the success information and do automatic
grading. A detailed concept is shown in Figure 4.19, and the parts are explained below in
more detail.

4.3.2 Hardware

The hardware part of the exam evaluation consists of the monitoring inputs, which can
be connected to the target nodes as needed. There are various signals from all nodes that
can be connected to the evaluator, such as analog signals, digital signals, timed signals
like IC or PWM, and the bus system. Additionally, for providing direct visual feedback
without the need of the client software, the evaluator node uses the two LEDs attached
for signaling the evaluation state. The red LED indicates that the solution was evaluated
to wrong, while the green LED indicates the solution was evaluated to correct. If both
LEDs are turned on, the example solution was identified.

4.3.3 Software

The software part of the automated exam evaluation system can be split into 3 parts.
The PC client software (called “checker process” in Figure 4.19), which interacts with the
student, the evaluator running on the evaluation node, which checks the student’s solution
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Figure 4.18. Exam workflow

for correctness, and the sample solution, which is provided to the students to allow the
detection of hardware faults. Needless to say, all three parts of this system are crucial for
the function of the whole system.

Client Software

This part of the exam evaluation tool provides a command line front end for the students
and gives them visual feedback of the evaluation of their solution.

It also stores the success of the evaluation encrypted local on the hard drive, so that
at the end of the exam all the information of the students’ solutions can be collected and
used for automated grading. The PC client needs to run a Linux operating system and
has to be able to communicate with the evaluator firmware via a serial port interface.
Further requirements are given only by the used encryption, but the system itself has no
further dependencies.

Evaluator

The evaluator is the key element in the automated exam evaluation system. It does black
box testing of the student programs, for which it needs information about the correct tem-
poral and value behavior of a correct solution, and checks the program currently running
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Figure 4.19. Detailed concept of the automated exam evaluation

on the target nodes against the correct solution by monitoring the output and, if necessary,
stimulating the inputs to create test cases. Since the system-under-test runs on a different
hardware than the evaluator, timing tests must take a possible clock drift between both
nodes into account. Therefore, the evaluator checks timing results within a correctness
window. The same mechanism is necessary to evaluate results in the analog voltage do-
main. In contrast, digital outputs can be checked using ”hard” evaluations. Because the
evaluator firmware tends to get very complex, we have built a generic framework, which
provides the core functionality every evaluator needs, like implementing the approximate
timing evaluation, a generic state machine, and the functions for the communication with
the development system. By now there are template implementations of various types of
exercise tasks, which makes it very easy to implement new exams in the future.

In the actual implementation, the value of the window range of correct solutions can be
changed easily by editing a single parameter in the evaluator program. This parameter
reflects the maximum of the relative difference to the correct solution against which the
students’ solution is evaluated.

The communication between the evaluator and the development system should be en-
crypted to prevent students from trying to hack the system instead of solving the exam
tasks. The encryption algorithm can range from basic symmetric encryption by a shared
key to high level asymmetric encryption like the public key encryption. Due to limited
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resources available for the evaluator running on a microcontroller node, simple encryption
algorithms are recommended.

Example Solution

It is very useful to provide an example solution to the students to allow them to check
that the hardware on which they are solving their exam tasks is working properly. In
microcontroller programming, there is always the possibility of a hardware fault or side
effects from other software. When providing an example solution, the numbers of questions
like ‘does the hardware work properly’ or ‘I think there is a hardware fault’ will decrease
dramatically, because every student has the possibility to check whether the hardware
works by flashing the sample. Therefore it is more than crucial that this solution really
works. The example solution has to provide visual features to distinguish it from students’
solutions without the need of an evaluator. This can be done easily by switching on a led
which should be off in the real solution. Additional, the example solution should provide
a feature to allow the evaluator program to distinguish between the example solution and
the student one, otherwise automatic evaluation cannot be done.

4.4 Remote Workplace

The Remote Workplace (RWP) is rather extensive, so most parts were outsourced as
practicals to other students. Therefore, we are just giving a brief overview here. The
interested reader is invited to get further information by reading the references [HM07]
[Luc08].

The idea of the remote workplace scenario is described in the identically named Section
5.3, and the concept is shown in Figure 4.20. The remote workplace part should reduce
the load of the lab and should provide the students with more flexibility in their work
times. Students should be able to connect via ssh to a remote workplace server and solve
their exercises. There are several ESE–Boards connected to this server, and if a student
wants to try out his work, he gets a board assigned and may test his program. Feedback is
provided through a visualization tool which also connects to the server, receives the board
state, and displays it as plugin system.

The remote workplace section consists of four parts, namely the board administration
(described in Section 4.4.1) where the hardware is managed, the node monitoring network
(Section 4.4.2) where the monitoring information is collected, the server process, described
in Section 4.4.3, which provides all board data via a single User Datagram Protocol (UDP)
or Transmission Control Protocol (TCP) port, and the Virtual Dashboard (VDB) (Sec-
tion 4.4.4) which runs on the client PC, connects to the server process, and does the
visualization of the data.
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Figure 4.20. Remote workplace concept

4.4.1 Board Administration

The board administration handles all the ESE–Boards that are connected to the remote
workplace server. It creates a pool of boards and manages the access to them. Whenever
a new board is connected, it is detected by the hotplug-system. The new board is added
to the board pool and the permissions are set correctly. If a board is removed during
operation, this board is removed from the board pool and all open connections to it are
gracefully closed. This behavior provides a very high level of maintainability, since there
is no need to reboot the remote workplace server when there is a hardware fault in one
of the boards, because the USB connections and the administration software allow hot
plugging.

If a student is working via a remote workplace and needs hardware to test his solution, he
just has to run the ‘make’ command via ssh on the remote workplace server. The special
adopted makefile executes a binary named ‘acquire’, which itself connects via a UNIX
socket to a running server process. The server process is running with root privileges to
manage the board pool and does linearization of the incoming acquire requests. It looks
for unused hardware and, if needed, it frees hardware assignments of students which have
not used the hardware for a certain amount of time. A state flow diagram of the acquire
procedure can be seen in Figure 4.21.
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Figure 4.21. State flow to acquire a board

4.4.2 Node Monitoring Network

For monitoring the programming nodes, the remote workplace board has to provide the
hardware monitoring extension described in Section 4.2. The monitoring nodes collect all
IO data from the students’ programs and send them through the monitoring network to the
gateway node. This node sends the collected data to the gateway process running on the
remote workplace server. As long as the bandwidth of a single serial connection is enough,
we recommend using only one serial line per board, even if every monitoring node has its
own serial connection to the server. This on-board data collection reduces organization
effort at the server compared to merging the data of multiple serial communications at the
server. However, if more bandwidth is needed between the monitoring network and the
server process, another serial connection can be used in addition. The original firmware
for the nodes of the monitoring network was written by Martin Hofer and Thomas Mair as
their bachelor thesis [HM07] and was extended by Werner Luckner with the bus analyzer
functionality [Luc08] to allow remote monitoring of the 1–wire bus system connecting the
students’ nodes.

4.4.3 Gateway Process

As depicted in Figure 4.20, for every ESE–Board connected to one of the USB interfaces,
one server process collects all the data from the board. The gateway is started via a UDEV
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Figure 4.22. Measurement setup of the Virtual Dashboard

rule whenever a board is connected to the remote workplace server and stopped if the
board is unplugged. Every gateway must have its own port number so the client PC can
connect to it. We recommend a fixed base value for the port number, e.g. 30000, with the
board id from the corresponding ESE–Board added. Therefore the complete data from
one ESE–Board is collected and provided to the client via a single TCP or UDP Port.
Which protocol is used depends on the requirements of the connection, and has to be
consistent with the settings of the Virtual Dashboard.

4.4.4 Virtual Dashboard

The Virtual Dashboard (VDB) is the client application of the remote workplace part. It
is written in Java and provides the visualization of the data coming from the remote ESE–
Board. The Virtual Dashboard is designed to be easily extendable via a plugin system in
a way that new instruments only need to be copied into the plugin directory and can be
used. The VDB concept is the one of a switchboard. It consists of an Instrument Panel
and a Measurement Setup. The Measurement Setup (an example is shown in Figure 4.22)
can be viewed as the backside of a switchboard, where all the wiring is done no matter
where the instruments are placed. Therefore, it just defines the logical connection between
data sources and visualization instruments.

The Instrument Panel of the Virtual Dashboard corresponds to the front side of the
switchboard where all the instruments can be seen. Therefore the virtual ESE–Board can
be built in a way that every instrument like LCD or bargraph is nearly at the same place
as in the real hardware version. The Instrument Panel also allows the usage of images for
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customizing visuals. Figure 4.23 shows a comparison between the real hardware and an
Instrument Panel of the Virtual Dashboard.

In 2008 Werner Luckner extended the Virtual Dashboard by a bus analyzer plugin which
is able to monitor the real time bus available for communication between the students’
nodes. This plugin simplifies the development of communication between the nodes, as it
not only provides simple logic evaluation of the bus state, but is also capable of a semantic
interpretation of the data. It can find UART frames and display the transmitted values
in various number systems, automatically detect the baud rate and transmission settings
of serial communication, and is even aware of the TTP/A round structure and therefore
can analyze TTP/A communication.

More information about the plugin system of the Virtual Dashboard and the features
of the bus analyzer can be found in [HM07] and [Luc08].

(a) Real world (b) Client PC

Figure 4.23. Real board compared to visualization via Virtual Dashboard
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5
Showcases

We have identified four showcases which illustrate the possible uses of the ESE–Environ-
ment. First there is the normal usage as platform in our lab course, which is explained
in detail in Showcase I. The usage of the platform for automatically evaluating practical
exams in the course is described in Showcase II. Showcase III explains the possibility
for students to participate in our course even if they do not have physical access to the
laboratory, and Showcase IV deals with the research prospects of the platform.

5.1 Showcase I – Students in Course

Embedded Systems Engineering (ESE) is a course at the Vienna University of Tech-
nology. ESE is mandatory in the bachelor study of computer engineering (where it is
scheduled in the 5th term) and, if not already heard, it is also mandatory in the master
study of computer engineering. The main goals of the lab course are:

1. teaching students advanced skills in microcontroller programming

2. experimenting with common access strategies on a shared communication media

3. giving students a deeper understanding of problems in real-time communication

4. teaching problems of distributed programming

5. teaching advanced peripherals programming

Every year about 70 – 80 students take this course. ESE is held mainly as hands-
on course, as described in Section 3.1. In the lab there are two lab rooms available
with overall 18 development systems, each consisting of a Dell Precision 390 Workstation
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running CentOS 5.2 which is connected to a ESE–Board. Four Tektronix TDS 2024B1 are
provided to the students to make measurements at the hardware.

5.1.1 Embedded Systems Engineering – A Course Overview

The Embedded Systems Engineering course is split into two major parts. The first part
teaches peripherals programming. As exercise, students have to program driver modules
for the processor’s peripherals (UART, timer, . . . ) and various of the on-board IO com-
ponents (LC–display, fan, sensors, . . . ). These driver modules should be programmed in
a generic way to enable their use later on in the course. This not only saves a lot of
time in the further tasks, but also teaches generic modular programming for better source
re-usability. An exam finalizes the first part, where the students have to show their theo-
retical background knowledge by answering some multiple-choice questions in the theory
part, and where they have to solve two practical programming tasks under certain time
pressure. More detailed information about the process of the exams in ESE is given in
Section 5.2. By the end of the first part, every student has become familiar with the
ESE-Board, the basic setup, its handling and its functions, and thus every student should
be prepared for the following part. The first part usually takes about five weeks and comes
along with tutorials and lectures.

In the second part, the students form teams of three persons to solve two successive
exercises which are a bit more extensive. In the first group exercise, the students should
learn the difficulties of networked embedded systems programming by implementing a
MAC-layer protocol. Afterwards they have to implement a small distributed applica-
tion which utilizes the developed protocol. The main focus in this exercise is clearly the
protocol implementation, where the students should perceive the problems of timing, syn-
chronicity, and also some real-time problems in a distributed communication via a shared
communication medium. The students have to implement different line encodings (Return
to Zero (RZ), Non Return to Zero (NRZ), Manchester) and different Carrier Sense Multi-
ple Access/Collision Avoidance (CSMA/CA) protocol types (Token Ring, CAN derivates,
collision avoidance by different precharge times).

In the second and last exercise of this part and the course, the students have to famil-
iarize themselves with a given real-time communication protocol (TTP/A) [Kop02] which
was developed in-house. TTP/A is a time-triggered field bus protocol which provides
real-time capabilities. The groups should build a control application on top of this proto-
col. The aim of this exercise is to demonstrate to the students how easily communication
can be accomplished, if a working protocol stack is available. Another goal is to teach
the difficulties of becoming acquainted with a given protocol stack. After the students

1The Tektronix TDS 2024B is a four channel, 200MHz, 2GS/s, digital storage oscilloscope. More

information can be found at http://www.tek.com/products/oscilloscopes/tds1000_tds2000/.
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have mastered the protocol, they have to implement a closed loop control on top of it, for
example a fan speed control loop or a temperature control loop, to learn about different
control controllers (e.g., PI–, PID–, two-position controller).

Like the first part, an examination containing a theory and a practical component
finalizes the second part and strengthens the students’ obtained knowledge.

Students may also do some voluntarily exercises, like hardware design using Eagle, to
collect bonus points for better grading.

5.1.2 The ESE–Board in Course

Our ESE–Board has to handle several tasks during a course. During normal course
operation, up to 20 students per day have their weekly and supervised time slots. Addi-
tionally, up to 10 students (in the week before the exercise deadlines up to 40 students)
are working permanently on the targets to solve their exercises during the lab opening
hours. Both exams have hands-on parts where the students have to solve programming
exercises. Therefore, the boards are in use the whole term nearly every day, which causes
the need for robustness and maintainability.

5.1.3 Results

The ESE-Environment is now running the third year without major problems. By now,
one CPU–Board had to be replaced by a new one, because the microcontroller got defect.
In the first year, on three ESE–Boards the fans lost some blades because students were
too lazy to turn them off by software. Instead, they stuck pens and similar things between
the blades to stop them. Therefore we provided a “beQuiet–Example” program to the
students, which turns off the fans.

Every year about 70–80 students are registered for the course, and about 50 – 60
students do finish the course. On average, every exercise is done in 20 hours work per
student. Assuming 60 students are working on the three exercises on the 18 boards that
are arranged in the lab, this would result in 200 working hours per board per year, where
the exam time is left unconsidered.

5.2 Showcase II – Exam Evaluation

As described in the previous section, in ESE each of the two parts is finished with an
examination. The exam details are explained in the following.

5.2.1 Exams in ESE – A More Detailed View

In the week before an exam, students choose a time slot when they want to do the
examination. Timeslots are scheduled every 30 minutes starting typically at 8.40am till
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about 2pm. In every time slot at most 8 students can do the exam synchronously. Later
timeslots are only available if all previous slots are completely filled up.

An exam takes about 2 hours and the students have to go through three stages. First
they have to solve a theory part where 12 multiple-choice questions, each offering three
answers, have to be solved in 15 minutes on a computer-aided test environment called
Generic Test Framework (GTF) [Dei09]. In these questions the students are asked funda-
mental theory concepts of microcontroller programming, embedded systems engineering,
and the development environment used in the laboratory where the embedded systemes.
Figure 5.1 shows two students working on the theory part. In every exam timeslot there
are at most 8 students doing the theory part concurrently. There are 9 PC’s running the
test environment, so one PC is available as a spare. The students are not allowed to use
any manuals or documentation during this test stage.

Figure 5.1. Students at the theory part of an exam

After the theory part, the students are guided to the next station, where they receive the
description of two programming tasks. They have 25 minutes for preparing their solutions
on paper. During this time the students have access to the datasheets and schematics, but
only as hardcopy, not electronically (which means there is no electronic search function
available). Figure 5.2 shows some students preparing for the programming part.

In the last stage, the students have 55 minutes time for coding and debugging their
previously prepared solutions on a development system with an ESE–Board connected.
Therefore, two lab rooms with 9 PC’s each are available. Again one PC per room is left
as a spare in case of problems. The PC’s are running the same development environment
as in the normal lab course but are disconnected from the local network and the Internet.
During this part of the test, the students have access to the datasheets and schematics as
print out as well as PDF files, where searching can be done more easily. Figure 5.3 shows
some students at the programming part of an exam.
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Figure 5.2. Students during preparation time

Figure 5.3. Students during hands-on part of the exam

As described in Section 4.3, every programming task the students have to solve during an
exam comes together with an example solution. This is necessary to provide the students
with the possibility to check whether the hardware works correctly. In addition to the
example solution, the exam task comes with an evaluation program that is downloaded
automatically to Node 0 and does black box testing of the student’s solution by stimulating
its inputs and monitoring the corresponding outputs. The evaluator compares the behavior
of the student’s program against the correct solution and decides wether the solution is
correct. If the solution was evaluated to correct, the students may run a submission script
which logs the successfully solved exercise. Additionally to the submission script, tutors
may also check the output of the evaluator and mark the tasks solved on the task exam
cover sheet.

After solving both tasks correctly, or if the time is up, the students have to leave the
lab and their exam is finished.
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5.2.2 Results

During the last three years 6 exams have been evaluated by the ESE–Environment.
Only one exam could not be evaluated fully automatically, not because of problems from
the environment, but because due to a mistake the task descriptions did not match the
example solutions and the evaluators.

Therefore we recommend to double check every example solution by at least two dif-
ferent persons. A wrong example solution or a not matching task description will lead to
confusion during the exam, and it is possible that a student who normally could solve the
tasks fails both, just because of the confusion of one example.

During the first three exams, every task was not only evaluated by the ESE–Environ-
ment, but was evaluated additionally during the exam by tutors. About 60× 2× 2 = 240
tasks have been evaluated per year. Assuming an assistant professor needs only 5 minutes
to evaluate a task to right or wrong by inspecting the source code, using automated
evaluation means about 20 hours per year more time for research. At every exam, about
3 students complain about hardware faults because their solution does not work correctly.
By providing an example solution during the last 3 years, approximately 18 doubts about
hardware faults could therefore be answered quickly by a counterquestion about a working
example solution.

5.3 Showcase III – Remote Working Students

In fall 2007, we started a case study with some voluntary students at the university
of Prǐstina, Kosovo (the location of the cities of the two involved universities are marked
in the map shown in Figure 5.4). The goal was to show that we can offer a lab course
also at a distant place. The students had to solve the same exercises as in the local
course, but instead of sitting in the lab in front of their targets, they were logged in
via SSH to the remote workplace server here in Vienna, which had several boards with
monitoring extension connected. An assistant professor from Vienna supervised the course
in Prǐstina and introduced the students to the hardware and the environment, but all
boards physically remained in Vienna. Programming was done via SSH and command
line; monitoring was done via the monitoring client communicating with the server by
UDP. There were no exams, just the programming tasks to do. It was the first test run to
evaluate the remote working ability of the platform, and to see whether the remote part
is ready for productive use in the lab course.

As server we used a Dell Optiplex GX260 Workstation PC running CentOS 5.2 Linux
as operating system. There were 3 ESE–Boards connected to the server, which should be
more than enough when having 5 user accounts for the groups participating. The whole
system was secured by an APC-Smart UPS 700 against power outages.
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5.3.1 Results

As mentioned in the description of this showcase, we have done a case study with some
students in Prǐstina. This study brought out that there is a major problem with the
multiuser-ability of the monitoring solution. It previously was designed for the remote
monitoring of a single board for only one student working on it. Therefore, it was not
necessary to terminate the connection by the server. However, this is exactly what is
required if a board is acquired by another student, but another monitoring session is
open. Therefore, we learned that the system architecture of the remote working part of
the platform needs a redesign with respect to the multiuser management.

Another shortcoming of the monitoring client application ia, that the whole connection
settings have to be set manually in a config file. This is bad if the ports change very
often as in our current solution. Therefore, the server-client communication should also
be extended by a port negotiation in a way that the client always connects to the same
server port and the server assigns another port for communication for each client. This
would also solve some of the authorization problems we encountered.

The work that is missing to get the remote monitoring working for multiuser-operation
is part of a bachelor thesis which is currently in progress. Adapting a quote from Edison,
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we have to conclude this showcase with the sentences “We have not failed. We’ve just
found a way that won’t work.”2

5.4 Showcase IV – Development and Research Platform

Bachelor and master theses in computer engineering often require practical program-
ming work on a microcontroller. For such practical evaluations, students require a platform
providing an easy to go solution for starting work on the one hand and support for connect-
ing and instrumenting special hardware on the other hand. As described in the section of
the system architecture, the platform therefore provides extension possibilities like inter-
faces to interact with additional hardware (analog IO, digital IO, and even timed signals
can be patched into and, respectively, generated from the ESE–Board). The bus system
is extendable too, so it is possible to add special programming nodes, e.g. with special
sensors or actuators, or just programming nodes to run larger distributed algorithms. If
more nodes are needed, it is possible to connect two or more ESE–Boards together so that
12, 16, or more microcontrollers execute a distributed application. The advantage of this
system is that there is not much external wiring for emulating, for example a large sensor
network. This is a particular advantage if one must take the assembly to a conference.

5.4.1 Results

During the last three years the board already was part of various scientific experiments.
First, there have been several bachelor theses about the platform itself, whose results
have been integrated into the platform features. An example is therefore the remote
workplace part of the platform. But there were also several bachelor and master theses
which did not deal with the platform as such, but used it as testbed for various experiments.
Four interesting projects which were supported by the ESE–Platform are described in the
following.

Graphical Development Environment for Embedded Systems

In 2006, Philipp Jahn and Thomas Polzer built a graphical development environment
which allows graphical programming of embedded systems as their bachelor thesis [JP06].
Among a different hardware setup they also used this platform as target system for their
generated code.

2The original quote was “I have not failed. I’ve just found 10,000 ways that won’t work.”, but it was

adapted to fit our showcase.
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Design and Implementation of Interfaces to the Time-Triggered Fieldbus Sys-
tem TTP/A

By 2009, Gernot Klingler wrote his master thesis about the design of gateways between
different time-triggered protocols [Kli09]. He used the ESE–Platform for implementation
of various communication interfaces to the TTP/A protocol.

A Modular XML-based JTAG Programmer for Embedded Devices

In 2008, Martin Schmölzer developed a versatile JTAG programmer as his bachelor thesis
[Sch08]. The JTAG programmer uses XML for specification of programming cycle and
type, which makes it a very versatile programming and debugging tool for embedded
microcontrollers based on the AVR architecture. It is planned to replace the current
programming software of the ESE–Board with this tool.

Implementation of a LIN v2.1 Protocol Stack for Embedded Devices

Currently, based on the Local Interconnect Network (LIN) V1.3 implementation from
Atmel [Atm05], a student implements the major parts of the LIN v2.1 protocol [ABD+08].
He uses the ESE–Board as development platform emulating a four node LIN network
consisting of one master node (Node 0) and three slave nodes (Nodes 1–3). Futhermore
he implements a closed loop control as demo application. This work should be integrated
in the ESE–Course as second available protocol stack for the students, besides TTP/A.
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6
Conclusion and Outlook

In this thesis we surveyed different approaches how state-of-the-art embedded systems lab
courses can be held. We compared them against our requirements and the aim of ESE, a
hands-on lab course at the Vienna University of Technology. We found that remote lab
access would be a very good addition to the hands-on part of the course.

We designed a new lab hardware to get around certain drawbacks of the old hardware,
like outdated microcontroller units or connection problems between them. In addition, the
hardware was constructed to reduce maintenance intervals and workload of the staff. One
big advantage that was not available prior to this work is the hardware-aided exam evalu-
ation, which dramatically reduces the stress during practical examinations by supporting
students and supervising staff. This makes hands-on microcontroller programming exams
as relaxed as they could be.

A by-product of this work was a new JTAG programmer that allows programming of
various devices. The programming algorithm is specified in an XML configuration file,
which allows adding the support for new devices without changing the firmware.

The results of various bachelor theses were integrated into the platform, for example to
provide the remote lab access that allows students to work from outside the lab without
restrictions concerning the lab opening hours. A monitoring network was designed to
supervise the microcontroller nodes the students are programming and to track their IO
behaviour. The collected data is sent via a Remote Workplace server to the Virtual
Dashboard program, where the ESE–Board is visualized. The integrated bus oscilloscope
allows inspection of the on-board serial bus and due to various different display modes,
for example the support for UART frames with an automatic detection of the used baud
rate and transmission mode, it is even more comfortable than our real oscilloscope.
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Furthermore, a remote lab experiment was set up between Vienna, Austria and Prǐstina,
Kosovo. In this case study it turned out that the multi-user part of the platform is not
optimal and a major revision is needed. Nevertheless, the system worked well in principle
and doubts about insufficient bandwidth could be resolved. A student is currently working
on a new communication and management system to solve the remaining problems and
the course coaches are working on a mode to integrate the remote workplace into the ESE
course.

The platform was also designed to support various research topics around distributed
real-time systems and networked embedded systems. For this reason, it is easily extendable
and can be adopted to a special research task with very little effort. Due to its compact
architecture it can be easily taken to conferences or presentations.

By now, the new hardware is used for the third year in ESE and the feedback of the
students is positive by all means. As we thought, the availability of an overall schematic of
the platform advances the general understanding of the interactions between the sub-parts.
Our fears about overburding beginners with a fully integrated printed circuit board of this
complexity could also be resolved by providing a detailed and well-structured schematic
of the hardware.

6.1 Outlook

During the last years while working on this platform several possible improvements
came up. In the following we want to describe the three major drawbacks of the current
system and how one could avoid it in a future revision of the hardware and software.

Programming Concept As the programming concept of the ESE–Board changed two
times during development without changing the hardware, at a major revision of the ESE–
Board one could fit the programming hardware to the currently used programmer, i.e.,
the XML based generic programmer introduced in Section 4.1.1. We would not recom-
mend to remove the switching CPLD but instead rearrange the programming channels.
For compatibility to the actual hardware channel 0 to 3 should be left unaltered to the
microcontroller nodes the students are working with, but the monitoring nodes should
be chained to use only one channel. Hence, one of the three remaining channels can be
merged to the extension interface in order to allow programming the extension nodes in a
chain as well. This would need a bit of redesign of the extension nodes currently available,
but would greatly simplify their programming.

Board Administration The board administration of the remote workplace server is
working, but it comes with some drawbacks. For example, if a student acquires an ESE–
Board and currently there is no free board available, but there are several boards assigned
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but unused, the board administration frees all idle boards, even if there is just a single one
needed. It is recommended to overhaul this part of the platform to free only one board,
for instance the one less recently used, and leave the other ones idle without taking them
away from other students.

Remote Workplace System Due to the fact that it was originally designed as a single
user application and later was integrated into the platform, the currently used solution
supporting various boards is not optimal. Presently another student takes care of this
problem by redesigning the communication system between the visualization client and
the gateway server. This should fix the major problem of the missing authentication in
the communication system, which currently leads to problems assigning the monitoring
connections to the acquired board. The plan is to overcome this problems by programming
a connection proxy which is aware of the boards acquired by the users, and thus is able
to route the monitoring traffic to the specific gateway servers.
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Acronyms

API Application Programming Interface
CAN Controller Area Network
CD Compact Disc
CPLD Complex Programmable Logic Device
CSMA/CA Carrier Sense Multiple Access/Collision Avoidance
EEPROM Electrically Erasable Programmable Read Only Memory
ESE Embedded Systems Engineering
FTDI Future Technology Devices International
GTF Generic Test Framework
IC Input Capture
JTAG Joint Test Action Group
LCD Liquid Crystal Display
LDR Light Dependend Resistor
LED Light Emitting Diode
LIN Local Interconnect Network
LVA Lehrveranstaltung
MAC Media Access Control
MCU microcontroller unit
NRZ Non Return to Zero
PC Personal Computer
PCB Printed Circuit Board
PWM Pulse-Width Modulation
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RAM Random Access Memory
RWP Remote Workplace
RZ Return to Zero
SPI Serial Peripheral Interface
TCP Transmission Control Protocol
TTP/A Time Triggered Protocol Class A
TTP/C Time Triggered Protocol Class C
UART Universal Asynchronous Receiver Transmitter
UDP User Datagram Protocol
USB Universal Serial Bus
VDB Virtual Dashboard
XML Extensible Markup Language



C
Schematics

C.1 Monitoring Board

In this Section the schematics for the ESE–Board featuring remote monitoring, exam
evaluation, and lab usage are shown.

On the sheets 1–5 the programmer is shown containing the two microcontrollers and the
CPLD for multiplexing the JTAG lines. Sheet 6 shows the power supply of the ESE–Board.
Sheet 7–11 shows the sockets for the microcontroller nodes 0–3 with their peripherals and
the monitoring addition for the sandwitch nodes. Sheet 12 and 13 shows the USB to serial
converter of the monitoring nodes to the development system.

The second schematic shows the sensor PCB.
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C.2 CPU Board Interface

This section contains the schematic for an Atmel ATmega128 microcontroller board,
which forms the microcontroller node programmed by the students. The second schematic
describes the monitoring node which, in the remote workplace showcase, monitors the
students’ programs and sends the IO-information to the gateway. At last, the pinout of
the socket for the microcontroller nodes and for the monitoring nodes is shown and all
signals are named.
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C.3 Stand Alone Acceleration Sensor

This sections holds the schematic of an extension node for the ESE–Board. The exten-
sion node was designed, because a special acceleration sensor had to be integrated into a
TTP/A network. It can be used as base for developing new extension nodes.
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