

RASCALLI Platform:
A Dynamic Modular Runtime

Environment for Agent Modeling

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Informatik

eingereicht von

Christian Eis
Matrikelnummer 9325145

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung:
Betreuer/Betreuerin: Ao. Univ.-Prof. Dipl.-Ing. Dr. Harald Trost
Mitwirkung: Mag. Dr. Brigitte Krenn

Wien, 22.10.2008 _______________________ ______________________
 (Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43/(0)1/58801-0 ▪ Hhttp://www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

1

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbständig und
ohne fremde Hilfe verfasst, andere als die angegebenen Quellen nicht benützt
und die den benutzten Quellen wörtlich oder inhaltlich entnommenen Stellen
als solche kenntlich gemacht habe.

2

Acknowledgements

I greatly value the support I received from a number of people and organi-
zations over the last few years and, in some cases, my whole life. However, I
also value conciseness, so I will keep this section short.

Many thanks go to my parents for their seemingly unlimited trust and
patience, my wife for being very patient during these last years and for at-
tempting to push me a bit from time to time, and to Markus Mayer for
pestering me with questions about my progress at university, although he
seems to have gotten tired of it in the last couple of years.

I want to thank my advisors, Harald Trost and Brigitte Krenn for the ob-
vious reasons, and my colleagues at the RASCALLI project partners (OFAI1,
SAT2, DFKI3, Radon Labs4, NBU5 and Ontotext6) for implementing various
parts of the RASCALLI system7, so that I had something to integrate.

Many thanks go to my employers, Research Studios Austria Forschungs-
gesellschaft8 and in particular the Smart Agent Technologies Studio, as well
as the Austrian Research Centers GmbH9, and to their sponsors, the Federal
Ministry of Economics and Labour and the Federal Ministry of Science and
Research of the Republic of Austria.

This work is part of the RASCALLI project10, which is funded by the
European Commission under the Sixth Framework Programme11.

1Austrian Research Institute for Artificial Intelligence, http://www.ofai.at
2Smart Agent Technologies Studio – Research Studios Austria,

http://sat.researchstudio.at
3German Research Center for Artificial Intelligence, http://www.dfki.de
4http://www.radonlabs.de
5New Bulgarian University, http://www.nbu.bg
6Ontotext Lab, Sirma Group, http://www.ontotext.com
7The individual contributions are indicated as they appear in the document.
8http://www.researchstudio.at
9http://www.arcs.ac.at

10European Commission Cognitive Systems Project FP6-IST-027596-2004 RASCALLI.
http://www.ofai.at/rascalli

11http://www.cognitivesystems.eu

3

Kurzfassung

Wir beschreiben die Architektur und Implementierung der RASCALLI Plat-
tform, einer Laufzeit- und Entwicklungsumgebung für Softwareagenten. Der
zentrale Beitrag dieser Arbeit ist die Anwendung moderner komponenten-
basierter Entwicklungsmethoden auf die Implementierung von Agenten, die
es erlaubt, solche Agenten aus einer Menge wieder verwendbarer Komponen-
ten zusammenzufügen. Mehrere unterschiedliche Agenten können in einer
einzelnen Instanz der Plattform gleichzeitig ausgeführt werden, wodurch die
Evaluierung und der Vergleich von einzelnen Komponenten, sowie von kom-
pletten Agentenarchitekturen ermöglicht wird. Schließlich erleichtert die
Service-orientierte Architektur der Plattform die Integration von externen
Komponenten.

4

Abstract

We introduce the RASCALLI platform, a runtime and development environ-
ment for software agents. The major contribution of this work is the appli-
cation of modern component-based software engineering techniques to agent
development, enabling the construction of agents from a set of reusable com-
ponents. Agents of different kinds can be implemented and executed within a
single runtime environment, allowing for effective evaluation and comparison
of individual agent components as well as entire agent architectures. Finally,
the platform’s service-oriented architecture greatly facilitates the integration
of external and legacy components.

Contents

1 Introduction 8
1.1 Component-based Development 9
1.2 Component-based Agent Development 10
1.3 RASCALLI Platform . 11
1.4 Motivation . 12
1.5 Document Structure . 12

2 Project Objectives and Requirements 14
2.1 Terms and Definitions . 14
2.2 The RASCALLI Project . 16
2.3 Additional constraints . 18
2.4 Platform Requirements . 18
2.5 Summary . 19

3 Related Work 21
3.1 Multi-Agent Systems . 21

3.1.1 FIPA . 22
3.1.2 Discussion . 22

3.2 AKIRA . 23
3.2.1 Discussion . 23

3.3 Behavior-Oriented Design . 24
3.3.1 BOD design process 24
3.3.2 Discussion . 25

3.4 Pogamut . 26
3.5 Summary . 26

4 RASCALLI Platform 27
4.1 Platform Features . 27

4.1.1 Multi-Agent . 27
4.1.2 Multi-Agent-Architecture 27
4.1.3 Multi-User . 28

5

CONTENTS 6

4.1.4 Shared Platform . 29
4.1.5 Communication . 29
4.1.6 Component-Based Architecture 30
4.1.7 Extensibility . 30
4.1.8 Multi-Version . 30

4.2 Software Architecture . 30
4.2.1 Infrastructure Layer 31
4.2.2 Framework Layer . 31
4.2.3 Agent Layer . 32

4.3 Relation to other Agent-Based Systems 33
4.4 Summary . 35

5 Infrastructure Layer 36
5.1 Technology Overview . 36

5.1.1 Why Java? . 36
5.1.2 Maven . 38
5.1.3 OSGi . 38

5.2 Development Environment . 42
5.3 Summary . 43

6 Framework Layer 44
6.1 Agent Management . 44

6.1.1 Agent State . 44
6.1.2 Agent Life-cycle . 45
6.1.3 Agent Manager . 47

6.2 User Management . 50
6.3 Event Handling . 50
6.4 Communication . 52

6.4.1 Agent-to-user Communication 52
6.4.2 Agent-to-agent Communication 55

6.5 Other Services and Components 56
6.5.1 Configuration Management 56
6.5.2 RSS Feed Management 57
6.5.3 Utility Components . 57

6.6 Summary . 57

7 Agent Layer 59
7.1 3D Client Test Agents . 59
7.2 The Mind-Body-Environment Architecture 60
7.3 MBE Agent Architecture Layer 61
7.4 MBE Agent Component Layer 62

CONTENTS 7

7.4.1 MBE Tools . 62
7.4.2 MBE Mind Implementations 63

7.5 MBE Agent Definition Layer 64
7.6 Summary . 64

8 The Platform at Work 66
8.1 RASCALLI User Interfaces . 66

8.1.1 Getting Started . 66
8.1.2 Web User Interface . 67
8.1.3 3D Client . 68
8.1.4 Jabber . 69
8.1.5 Music Explorer . 70
8.1.6 Visual Browser . 70

8.2 Available Agents . 71
8.3 Summary . 73

9 Conclusion and Future Work 74
9.1 Extending the Development Environment 74
9.2 Implementing BOD Agents in the RASCALLI Platform 75

Chapter 1

Introduction

Agent-based software engineering is becoming an ever more prominent branch
of software development, not only in the artificial intelligence and cognitive
science communities, but also in many industrial and commercial settings.
There is, however, evidence that more recent advancements in software de-
velopment have not yet found their way into agent engineering environments
and processes. Examples include object-oriented design methodologies and
iterative development ([Bry03]) and aspect-oriented programming ([GL08]).
To quote from the introductory text of the 9th International Workshop on
Agent Oriented Software Engineering (AOSE, 12-13 May, 2008, [AOS08]):

Since the mid 1980s, software agents and multi-agent systems
have grown into a very active area of research and also commercial
development activity. One of the limiting factors in industry take
up of agent technology is however the lack of adequate software
engineering support, and knowledge in this area.

Component-based software development is another technology that has
not yet been fully adopted in agent-based systems (with the possible excep-
tion of multi-agent systems). Even though many agent environments and
cognitive architectures make use of modules to structure agents (e.g. into
behavior modules), the full power of software components, including re-use
([dSdM08]) and dynamic composability, is seldom used.

This document introduces the RASCALLI platform for component-based
agent development. It builds on state of the art technology (OSGi) and a
modular system architecture to implement a fully dynamic environment for
agents that are composed from a set of building blocks.

8

CHAPTER 1. INTRODUCTION 9

1.1 Component-based Development

The utility of decomposition and modularity is well-understood in the com-
puter sciences. Virtually all programming languages support the concept of
reusable software modules or libraries, and object-oriented programming goes
even a bit further by encapsulating data and functionality in well-separated
entities (classes). The field of component-based software engineering (CBSE,
see [SH04], [PS96], [Cle96]) has evolved beyond object-oriented development
to provide a more general notion of re-usable software components. To put
it simple, a software component is an independent collection of code with a
well-defined interface and contract for collaboration with other components.
These components can be used as units of software development, but also as
deployment units, in the sense that a running system is composed of a set of
components.

Even though the idea of component-based software has been around for
quite a while ([McI68]), most modern programming languages do not (yet)
explicitly support the notion of software components. For example, Java has
the notion of packages, which might be defined as software components from
a development point of view, but not from a runtime perspective. An effort
to correct this situation is currently being undertaken in the form of Java
Specification Request 277 [JSR].

Several variants of component-based middleware technology exist, includ-
ing CORBA1, (D)COM2, various implementations of Remote Procedure Call
(RPC), such as RMI3, and many more. The most recent and currently most
popular incarnation is Service Oriented Architecture (SOA)4 and is usually
based on Web Services5. All of these technologies build on the notion that an
application is composed of distributed service components. However, these
kinds of component-based applications have several disadvantages:

• Interfaces between components are defined using a special interface
description language. Special tools are then used to implement this
interface in the programming language of choice.

• Each component is a separate application, often deployed to different
host environments. Running and maintaining such a distributed system

1Common Object Request Broker Architecture, http://www.corba.org/
2(Distributed) Component Object Model, http://www.microsoft.com/com
3Remote Method Invocation,

http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp
4There does not seem to be a definite work on SOA, so we refer to Wikipedia:

http://en.wikipedia.org/wiki/Service-oriented_architecture
5http://www.w3.org/2002/ws/

CHAPTER 1. INTRODUCTION 10

is naturally difficult.

• Network communication imposes a performance overhead on compo-
nent interaction.

• Since each component is a separate application, the granularity of the
components is quite large.

In contrast to the aforementioned technologies, OSGi provides a thin
layer on top of the Java Virtual Machine (JVM), that extends Java with
functionality for dynamic6 component-based and service-based applications.
This approach mitigates the disadvantages listed above:

• Components interact via simple Java interfaces. No special languages
or tools are required.

• All components are part of a single executable application (but compo-
nents can be added and removed at runtime). However, it is quite easy
to integrate external components, using one of the mentioned middle-
ware technologies, and making it available as a service to other com-
ponents within the OSGi application.

• There is no communication overhead, since Java objects interact di-
rectly within a single JVM.

• The granularity of the components can be arbitrarily chosen depending
on the implementation requirements.

1.2 Component-based Agent Development

Given the success of modularization and software reuse in general software
engineering, it is not very surprising that these concepts have also been em-
ployed for agent development. Many agent frameworks and cognitive archi-
tectures make use of modules in one way or another, including prominent
examples such as the Subsumption Architecture [Bro86] , ACT-R [And93]
and AKIRA (see section 3.2 on page 23). However, they are not dynamic
component-based systems in the sense described in the previous section.

Multi-agent systems (MAS, see section 3.1 on page 21) fill this gap in so
far as a complete application is built from a selection of interacting agents.
From a software engineering point of view, a MAS is a component-based

6Dynamic in this context means that components can be added and removed at run-
time, without restarting the entire application.

CHAPTER 1. INTRODUCTION 11

system, with each individual agent being a component. However, MAS have
the same drawbacks as the component-based middleware systems outlined
above.

1.3 RASCALLI Platform

The RASCALLI platform is a runtime and development environment for
agent development. Building on OSGi, it provides a dynamic component-
based architecture, within a single application.

In its current state, the platform is not meant for industrial use, but
rather as a tool for cognitive agent research. The goal is to allow a team of
researchers to implement and experiment with different kinds of agents in a
single environment and to allow these agents to be assembled from a pool of
components. New agent components can be added to and removed from a
running platform instance, allowing for a dynamic development process.

The platform also tries to minimize the effort of integrating external or
legacy components. Such components are often used in a research context,
where a given project builds on the outcome of previous projects and the
resources for re-implementing everything from scratch are not available.

While the RASCALLI platform supports the execution of multiple agents,
as well as the communication between those agents, it is not a multi-agent
system. A MAS is typically a single application that makes use of a dis-
tributed and dynamic agent model to solve a given problem. However, it
would be possible and perhaps even quite promising to integrate existing
multi-agent systems (e.g. JADE, section 3.1.1.1 on page 22) or parts of such
systems with the RASCALLI platform.

It is important to note that the RASCALLI platform is not bound to a
specific cognitive architecture. Instead, the platform explicitly supports the
idea of implementing (or integrating) a number of different cognitive or non-
cognitive agent architectures so that they can be compared and evaluated or
used for different purposes, when appropriate.

The RASCALLI platform is currently a proof-of-concept implementation
of the basic ideas described in this document. Promising directions for future
work include (for more details see chapter 9):

• the extension of the agent development environment,

• the integration of existing agent development frameworks such as BOD
(see sections 3.3 and 9.2),

• the integration of existing multi-agent systems or the implementation
of FIPA-compliant components, and

CHAPTER 1. INTRODUCTION 12

• the integration or re-implementation of existing cognitive architectures.

1.4 Motivation

The RASCALLI platform has been developed as the central software system
of the RASCALLI project, based on the objectives and requirements set
forth in chapter 2. In short, we aimed at an environment that would allow
us to implement and experiment with cognitive agents assembled from simple
components. It should be possible to re-use components for multiple different
agents and also to add components to an agent at runtime.

We also struggled with a very heterogeneous aggregation of existing and
newly built system components and tried to minimize the effort of integrating
and managing the entire system. The first prototype of a software platform
for this system proved very hard to handle in this respect.

After extensive research into available systems and technologies, and with
Java being the programming language of choice for the RASCALLI project,
we finally arrived at the idea of implementing a dynamic, component-based
agent environment on top of OSGi. One of the main goals for the platform
and for the agents developed within the platform, was extensibility both
in the sense of being able to add newly implemented components and in
the sense of being able to easily integrate existing components. After all,
implementing an entire agent system or cognitive architecture from scratch
would be a quite ambitious undertaking, especially with so many systems
already being available.

Finally, we wanted to demonstrate that the application of modern soft-
ware engineering techniques to cognitive agent research is valuable and fea-
sible. Accordingly, the resulting software platform will be made available to
the general public so that other projects can build on and extend it.

1.5 Document Structure

This document is structured as follows:
Chapter 2 outlines the RASCALLI project objectives and the require-

ments for the software platform derived from those objectives, as well as
some additional constraints.

Chapter 3 gives an overview of related work in the areas of agent systems,
cognitive architectures and agent development methodologies, discussing how
they relate to the RASCALLI platform and which requirements are not met
by these systems.

CHAPTER 1. INTRODUCTION 13

Chapter 4 introduces the RASCALLI platform features and software ar-
chitecture while chapters 5 through 7 provide more detail about the three
platform layers.

Chapter 8 presents an overview of the entire RASCALLI system, from
the user’s point of view.

Finally, chapter 9 summarizes the document and provides an outlook into
promising future directions.

Chapter 2

Project Objectives and
Requirements

This chapter starts by defining a set of terms to be used throughout the
document. It continues with a short introduction of the RASCALLI project,
describing its primary goals and objectives, insofar as they are relevant for
the design and implementation of the RASCALLI platform. We then list
some additional constraints found during the first project year, which also
had an influence on the final platform architecture. Finally, we derive a
list of requirements for the platform implementation from these goals and
constraints.

2.1 Terms and Definitions

Cognition: There is little agreement in the cognitive science community as
to the exact definition of cognition. However, most researchers in this
area would agree that cognitive systems (natural and artificial) have
at least some of the following properties: perception, action, memory,
learning and sometimes planning. For the purpose of this thesis, we
abstain from suggesting our own definition and instead concentrate on
the just mentioned set of properties, calling them aspects of cognition.
A cognitive system is thus a system that comprises one or more of these
aspects.

Agent: As with the concept of cognition, the term agent has no clear and
generally accepted definition. Many authors assign a number of at-
tributes to an agent, including persistence, autonomy, social ability,
reactivity, proactivity, ability to adapt, ability to learn and sometimes
mobility. From the RASCALLI platform point of view, any piece of

14

CHAPTER 2. PROJECT OBJECTIVES AND REQUIREMENTS 15

software could be an agent, as long as its implementation conforms to
the technical framework outlined in this document. However, the term
agent is used to refer to RASCALLI agents, as defined below.

Multi-agent system: A multi-agent system (MAS) is a system composed
of multiple agents which interact in order to solve some global goal.
MAS are usually distributed systems and each individual agent would
not be capable of fulfilling its tasks without the help of other agents.

Complete agent: “A complete agent is an agent that can function natu-
rally on its own, rather than being a dependent part of a Multi-Agent
System (MAS).” [Bry03, page 1]

Complex agent: “A complex agent is one that has multiple, conflicting
goals, and multiple, mutually-exclusive means of achieving those goals.
Examples of complete, complex agents are autonomous robots, virtual
reality (VR) characters, personified intelligent tutors or psychologically
plausible artificial life (ALife).” [Bry03, page 1]

Embodied agent: We think of an embodied agent as an agent that lives
in a defined environment (e.g. the physical world) and interacts with
this environment via sensors and effectors. The sensors and effectors are
part of the agent’s body and function as an interface between the agent
and the environment. An example of embodied agents are autonomous
robots.

Virtually embodied agent: A virtually embodied agent is one that lives
in a virtual world (as opposed to the physical world). A virtual world
could be a simulation of a physical environment, such as a game engine,
or a real world virtual environment, such as the Internet, which is used
by real world agents, such as humans. An agent living inside a virtual
environment has, of course, a virtual body instead of a physical one,
which consists of a set of software modules that act as sensors and
effectors in the virtual world.

We argue that most of the arguments for embodied cognition apply
equally well to virtual embodiment. The rational is that, in contrast to
classical purely symbolic AI-systems, the agent has a virtual equivalent
of a physical body, which is an integral part of the agent and constitutes
some of its cognitive properties.

RASCALLI agent: A RASCALLI agent is a virtually embodied, com-
plete, complex agent augmented with aspects of cognition. Throughout

CHAPTER 2. PROJECT OBJECTIVES AND REQUIREMENTS 16

the remainder of this document, the term agent refers to RASCALLI
agents, unless specified otherwise.

Rascalli, Rascalla, Rascallo: We use the term Rascalli to refer to mul-
tiple RASCALLI agents, and Rascallo or Rascalla to refer to a single
male or female RASCALLI agent, respectively1.

2.2 The RASCALLI Project

The RASCALLI project2 is a joint project of six European research and
industry partners, combining expertise in cognitive architectures, natural
language processing, multi-modal generation, machine learning, information
extraction, semantic web technology, general web technologies and 3D graph-
ical user interfaces. RASCALLI stands for Responsive Artificial Situated
Cognitive Agents Living and Learning on the Internet. Annex I of the project
contract states that

The overall goal of the RASCALLI project is to develop an ar-
tificial cognitive system that allows human and computer skills
to be combined in such a way that both abilities can be opti-
mally employed for the benefit of the human user. We develop
and implement a system platform and toolkit based on which re-
sponsive artificial situated cognitive agents, the Rascalli, can be
created and trained by the human user in order to perform certain
tasks. Their cognitive system, knowledge and skills enable them
to acquire and constantly improve their knowledge through the
Web or through communication with people and other Rascalli.
To achieve this goal, Rascalli have a built-in cognitive model and
base knowledge about people, themes, Internet, time and commu-
nication. They know about general preferences of humans, about
document structures, encodings, languages, pictures, metadata,
and gradually learn about search engines, archives, and web clas-
sification systems. They also have built-in skills: They are spe-
cialists in WWW navigation, they can communicate with each
other and the user via email, chat and animated conversation,
and they can play games. Moreover Rascalli have an enormous

1Note that the gender of an agent only determines the looks of the virtual character
representing the agent in the 3D client user interface and does not influence any other
aspect of the agent.

2European Commission Cognitive Systems Project FP6-IST-027596-2004 RASCALLI.
http://www.ofai.at/rascalli

CHAPTER 2. PROJECT OBJECTIVES AND REQUIREMENTS 17

memory capacity, however, their memory is cognitively structured
for fast associative access. Rascalli have the ability to distinguish
Rascalli and users they have already met in the past from novel
encounters, and accordingly can adapt their behaviour and com-
munication strategies, i.e. seek the company of those they have
had positive experiences with or avoid disagreeable encounters,
with (dis)agreeability being determined by means of appraisals.
[RAS05, page 4]

One of the primary goals of the project is to integrate a cognitive ar-
chitecture (DUAL/AMBR, [Kok94], [KPss]) with a set of software tools for
accessing and manipulating services on the Internet, such as search engines,
knowledge bases and communication services. These tools act as sensors and
effectors in the virtual environment of the Internet. Each tool is a separate
component and agents can be equipped with a subset of existing tools in
order to acquire different skill sets. Ideally, it would be possible to add or
remove tools at runtime in order to change an agent’s abilities. In addition,
the users can train their agents so that these will become experts in a spe-
cific sub-domain of the chosen application domain (which is popular music
information retrieval).

Another objective is to be able to experiment with different implemen-
tations of cognitive aspects, such as action selection, memory and learning.
Again, the modular nature of the system should allow for the selection and
integration of certain cognitive functions with the available tools.

RASCALLI agents have a presence on the Internet, which means that
they must be active and available all the time and therefore should run in a
server environment instead of a desktop application that is only active when
the user’s computer is running. For example, a Rascallo should be able to
monitor the Internet (e.g. RSS feeds chosen by the user) for interesting new
information and make that information available to the user. What’s more,
the Rascallo should notify the user of newly available information that is
potentially interesting.

Rascalli interact with their users via a set of communication channels,
including a client-based 3D virtual character interface with speech and ges-
ture output and an instant messaging integration (Jabber). They are also
able to communicate with other Rascalli existing in the same environment.
One of the project goals is to build a community of agents which have been
trained by their users to be experts in different knowledge domains and to
allow them to help each other in fulfilling their information retrieval tasks.

In order to allow the Rascalli to actually live on the Internet, form a
community and proactively assist their users, we had to implement a server

CHAPTER 2. PROJECT OBJECTIVES AND REQUIREMENTS 18

platform that allows multiple users to instantiate multiple Rascalli, which
then run independently inside the platform.

2.3 Additional constraints

For the realization of these objectives, system integration turned out to be a
major roadblock, due to the following reasons:

• Even though Java was chosen as the main implementation language
for the project, some project partners have no or little experience with
Java development.

• In order to avoid re-implementation, we had to integrate existing com-
ponents from previous projects. These components are based on a
wide range of technologies, such as different programming languages
(e.g. Perl, Java, Lisp) and even native binaries for different operating
systems (Linux and Windows).

• Initial attempts at providing a development environment that inte-
grates all of these components and can be replicated on each developer’s
machine proved to be difficult to use and keep up-to-date.

Figure 2.1 on the next page shows the external components that need to
be integrated with the platform for one of several kinds of agents currently
implemented3. It shows only those components that are directly connected
to the platform, but omits other components, such as databases or Internet
services, which are used by the shown external components or by compo-
nents implemented within the platform (e.g. Wikipedia is not displayed,
even though a component exists within the platform that accesses it). The
figure also shows, for each component, the kind of technology used for the
component’s implementation and/or integration. This should give a rough
impression of the integration effort required by such a setup.

2.4 Platform Requirements

Based on the project objectives and constraints outlined above, we arrived
at the following set of requirements for our software platform:

• Support the execution of various agents, belonging to different users,

3Namely the Simple Music Companion, described in section 7.2 on page 60.

CHAPTER 2. PROJECT OBJECTIVES AND REQUIREMENTS 19

<< CGI Service >>

T−QuestionAnalysis

<< Jabber Service >>

RASCALLI Jabber ServerJabber
Network

User’s Jabber Client

<< C++ , Native (MS Windows) >>

3D Client

<< Web User Interface >>

Web User Interface

<< Web Service >>

Agent Modeling Server

<< Java >>

RASCALLI Platform

<< CGI Service >>

T−IP4Simple

<< CGI Service >>

T−NALQI

<< Native (Linux) , Perl >>

T−QA

Figure 2.1: Overview of the external RASCALLI components used by the
Simple Music Companion, including implementation technologies. Single
and double arrows denote uni- and bi-directional communication between
components, respectively.

• support agent-to-agent and agent-to-user communication,

• allow developers to implement diverse agents based on shared compo-
nents (this also means that multiple versions of each component can
exist at the same time),

• integrate external and legacy components with minimal effort,

• build agents in a modular, component-based fashion,

• build the platform itself in a component-based, extensible fashion, and

• build a system that can be extended and improved dynamically at
runtime.

2.5 Summary

The RASCALLI project aims at the implementation of virtual agents that
perform tasks related to accessing and processing of information from the In-
ternet and domain-specific knowledge bases. The agents are constructed from

CHAPTER 2. PROJECT OBJECTIVES AND REQUIREMENTS 20

a set of cognitive functions and a set of sensor and effector tools to access In-
ternet services in an autonomous and proactive manner, taking into account
the interests and preferences of the individual user. Many of the functions
and components are based on existing software from previous projects that
had to be integrated with the RASCALLI software system.

Based on the project objectives and system integration constraints, we
have defined a set of requirements for the underlying software environment,
the RASCALLI platform.

Chapter 3

Related Work

Of the large number of existing frameworks and technologies for agent devel-
opment, this chapter will present those that had the most influence on the
design of the RASCALLI platform or that seem to offer the most promising
directions for future work. We also present some frameworks in order to draw
a clear line between existing wide-spread technologies and the RASCALLI
platform.

3.1 Multi-Agent Systems

Multi-agent systems (MAS) are typically used in complex domains, where
difficult or very large problems are broken down into smaller subproblems in
order to make those problems solvable. A possibly large number of simple
agents interact in order to fulfill the entire system’s goals. According to
[Syc98, page 80],

The characteristics of MASs are that (1) each agent has incom-
plete information or capabilities for solving the problem and,
thus, has a limited viewpoint; (2) there is no system global con-
trol; (3) data are decentralized; and (4) computation is asyn-
chronous.

Since MAS perform distributed computation, communication and coordi-
nation among agents are critical for the success of the entire system. Today,
multi-agent systems are used in a wide variety of application domains, in-
cluding simulation, communication, process control and financial systems.

21

CHAPTER 3. RELATED WORK 22

3.1.1 FIPA

“FIPA is an IEEE Computer Society standards organization that promotes
agent-based technology and the interoperability of its standards with other
technologies.”1 The specified standards deal mostly with agent communica-
tion (e.g. Agent Communication Language, ACL) and agent management.

3.1.1.1 JADE

The Java Agent DEvelopment Framework (JADE, [BPR01])2 is the most
prominent example of a FIPA-compliant agent development framework. It is
a Java-based middle-ware for distributed multi-agent systems and provides
basic services and infrastructure, such as

• agent life-cycle management,

• agent mobility,

• agent communication (using ACL),

• white and yellow page services, and

• security.

Furthermore, it implements a number of graphical tools for debugging
and monitoring of running agent systems. Due to its small footprint, JADE
can also be used on mobile devices, making it an ideal solution for highly
dynamic applications in a mobile context.

3.1.2 Discussion

While the RASCALLI system could have been implemented as a multi-agent
system, the scope of such systems is quite different from the one targeted
by RASCALLI. In particular, RASCALLI has no requirement for (physical)
distribution of the services. Also, in RASCALLI we aimed at a different
granularity regarding the modularization of the software. While MAS are
typically used to split a single complex application into more manageable
parts, we were looking for modularity on the agent level.

Even though, the RASCALLI project also has the goal of implementing
an agent community. On this level, some of the FIPA standards (e.g. ACL)
might be very useful, even though much simpler approaches are sufficient

1http://www.fipa.org/, retrieved October 6, 2008
2http://jade.tilab.com/

CHAPTER 3. RELATED WORK 23

for the scope of the RASCALLI project itself. Thus, one direction for the
future development of the RASCALLI platform is the integration of (parts
of) JADE with the platform.

3.2 AKIRA

“AKIRA is an open source framework designed for parallel, asynchronous and
distributed computation, on the basis of some general architectural principles
which are inspired by modular organization in biological systems.” [PC07,
page 1]

One of the most interesting aspects of AKIRA is the use of a limited
amount of energy shared between the individual modules of an agent (dae-
mons). The daemons can exchange this energy, leading to very interesting
dynamical effects. Agent communication is organized via a blackboard in-
frastructure.

3.2.1 Discussion

The use of AKIRA for the RASCALLI project was hindered by various fac-
tors:

• AKIRA is based on a very specific, biologically inspired architecture
that is not necessarily a good match for some of the components that
were to be integrated in RASCALLI (e.g. DUAL/AMBR).

• AKIRA aims at the development of single modular agents, but not at
the development of agent communities.

• AKIRA is implemented in C++ and the language of choice for RAS-
CALLI was Java.

There are, however, some aspects of AKIRA that would be interesting
to re-implement on top of the RASCALLI platform, most importantly, the
concept of a shared and limited energy pool. This approach could add the
following benefits to the RASCALLI platform:

Limited resource consumption: For a community of agents living on the
Internet, access to some resources must be limited (beyond the phys-
ical limitations of processing hardware and network connection). For
example, free access to Internet services is often limited, while payment
options offer large-scale access.

CHAPTER 3. RELATED WORK 24

Additional constraints on action selection: Agents would be required
to more carefully select their actions, based on energy cost and expected
benefit.

Interesting multi-agent dynamics: Limited resources might lead to in-
teresting effects in a society of expert agents. For example, an agent
might specialize on performing some expensive action, such as crawling
and analyzing a large set of web pages at regular intervals, and provide
access to the extracted information as a service to other agents.

3.3 Behavior-Oriented Design

Behavior-Oriented Design (BOD, [Bry01])3 is a development methodology
and software architecture for modular software agents. Its goal is to apply
the advantages of object-oriented software engineering to the design and im-
plementation of complex, complete agents. Like the RASCALLI platform, it
does not aim at the development of multi-agent systems.

The core of BOD is a software development process for the implementa-
tion of software agents. In particular, it supports the developer in finding the
right granularity of modularization by applying methodologies from object-
oriented design to agent development:

The advantages of treating a software system as modular rather
than monolithic are well understood. Modularity allows for the
problem to be decomposed into simpler components which are
easier to build, maintain and understand. In particular, the
object-oriented approach to software engineering has shown that
bundling behavior with the state it depends on simplifies both
development and maintenance. [Bry03, page 1]

3.3.1 BOD design process

BOD splits an agent into behaviors and (reactive) plans. Each behavior is
implemented as an object, containing methods for sensory and action prim-
itives. A behavior also encapsulates any state necessary to perform these
primitives.

At the core of BOD is an action selection mechanism based on hierarchical
plan structures (POSH action selection4). These plans comprise:

3http://www.cs.bath.ac.uk/ai/AmonI-sw.html
4http://www.cs.bath.ac.uk/~jjb/web/posh.html

CHAPTER 3. RELATED WORK 25

POSH Primitives: An agent’s primitive actions and senses, which are im-
plemented as methods of a behavior class.

POSH Aggregates: These build the hierarchy of the plan:

• The root of a POSH plan is called a drive-collection and deter-
mines the agent’s top-level goals. It is, in effect, a competence
with some additional properties (e.g. it never terminates).

• Competences are prioritized lists of actions, which can contain
primitives and action patterns.

• Action patterns are simple sequences of primitives and other action
patterns.

BOD starts with an initial decomposition step, during which first lists
of action sequences, sensory and action primitives, and high-level drives are
compiled. The action sequences and drives form the initial reactive plan
structures. The decomposition into behavior modules is determined based
on the state required by the sensory and action primitives. The goal is to
combine those primitives into a behavior that share some common state. This
is analogous to object-orient design, where system functions are separated
into classes in a similar fashion.

Following this first step, the agent is implemented in an iterative pro-
cess, similar to modern agile software development processes. During each
iteration, part of the specification derived from the initial decomposition is
implemented and tested. Then the specification is revised, following a set of
rules provided by the BOD development process.

3.3.2 Discussion

Similar to the RASCALLI platform, Behavior-Oriented Design aims at a
modular development of software agents. Behaviors can be reused for differ-
ent agents, running in a single runtime environment, where each agent has
its own reactive plan.

However, BOD does not address the communication requirements of the
RASCALLI project (agent-to-agent and agent-to-user communication). Fur-
thermore, the integration of external components is not explicitly addressed
(except insofar as the program code to integrate a particular component can
be re-used by multiple developers). Finally, BOD does not address the issue
of a dynamically extensible software system.

For the RASCALLI platform, we want to take the concept of component-
based, modular development one step further, beyond re-use at the code level.

CHAPTER 3. RELATED WORK 26

Components should be separate entities that can be worked on independently,
and added to and removed from a running system.

The BOD development process can be easily applied to agent develop-
ment in the RASCALLI platform. Also, the RASCALLI platform specifi-
cally allows for the implementation of multiple agent architectures instead of
proposing or focusing on a single one. In fact, it might be very interesting, to
build an agent architecture based on BOD within the platform. A possible
implementation scenario is described in section 9.2 on page 75.

3.4 Pogamut

Pogamut5 is a development environment for agent development. It specifi-
cally targets the Unreal Tournament6 game engine, using it as an environ-
ment for virtual agents, complete with physics and graphical representation.
Its most interesting aspects, from the RASCALLI point of view, are the fact
that it provides an integration with the Netbeans Java IDE, complete with
online modifications and debugging of agents in the target environment; and
that they have integrated POSH action selection as the basis of one of their
types of agents (see section 9.2 on page 75 for a similar integration scenario
for the RASCALLI platform).

3.5 Summary

After defining the requirements for the RASCALLI software system, we in-
vestigated a number of agent environments and development methodologies.
While none of these fulfilled all of our requirements, certain aspects of these
systems gave valuable input for the design of the RASCALLI platform. Even
more important, they provide inspiration and software modules for possible
future extensions of the platform.

5https://artemis.ms.mff.cuni.cz/pogamut/tiki-index.php?page=HomePage
6http://planetunreal.gamespy.com/

Chapter 4

RASCALLI Platform

This chapter gives a high-level overview of the platform’s software archi-
tecture. We first describe the platform features and how they relate to
the project objectives and requirements set forth in chapter 2. This is fol-
lowed by a section about the software architecture itself and the technologies
chosen to implement the architecture. Alternative approaches are explored
where appropriate. In the final section, we explore the relation of the RAS-
CALLI platform to other agent-based systems, by mapping the platform to
the Agent-Based Systems Reference Model.

4.1 Platform Features

The RASCALLI platform has a number of features, which have been derived
from the RASCALLI project objectives and the requirements for the plat-
form, as detailed above. Table 4.1 on the next page is an overview of the
features, which are described in more detail in the rest of this section.

4.1.1 Multi-Agent

One of the goals of the RASCALLI project is to have a number of agents with
different abilities and also different experiences, based on the interaction with
their users. We also want to provide the basis for implementing a community
of agents that help each other fulfill their tasks. Therefore, the RASCALLI
platform supports the implementation and execution of multiple agents.

4.1.2 Multi-Agent-Architecture

In order to be able to experiment with different kinds of agents, which might
be rather similar or very dissimilar, the platform allows for the implemen-

27

CHAPTER 4. RASCALLI PLATFORM 28

tation of arbitrary agent architectures. Furthermore, a component-based
approach to agent development is adopted (see below), which allows for
more fine-grained differentiation of agents within each agent architecture.
All agents are able to interact with each other.

Feature Description

Multi-agent Multiple agents can be executed
simultaneously within a single
platform instance.

Multi-agent-
architecture

Different agent architectures can
be implemented within the plat-
form and agents of these different
architectures can interact with
each other.

Multi-user Each agent has a single user
– each user owns one or more
agents.

Shared platform A single platform environment is
shared by multiple agents, users
and agent developers.

Communication Agents can communicate with
their users and other agents.

Component-based ar-
chitecture

Agents are assembled from re-
usable components. New agent
components and agents can be de-
ployed at runtime.

Extensibility The platform itself is modular
and can be extended, even at run-
time.

Multi-version Different versions of software
components can exist at the same
time within a single running plat-
form instance.

Table 4.1: RASCALLI Platform Features

4.1.3 Multi-User

RASCALLI agents are created and owned by human users. Consequently, if
the platform supports a community of agents, it must also support a com-
munity of users.

CHAPTER 4. RASCALLI PLATFORM 29

4.1.4 Shared Platform

A single instance of the RASCALLI platform is shared by multiple users
and agents. User accounts and agents can be added to or removed from the
platform at runtime. The platform is also designed to be shared by a team
of agent developers.

It should be noted that this feature does not necessarily follow from the
multi-agent and multi-user properties. For example, each user might create
its agent (or agents) locally and they might then communicate with each
other over the Internet in a peer-to-peer fashion.

However, having a single shared environment greatly facilitates the fol-
lowing activities:

System integration: External (and possibly legacy) components need to
be integrated only once and are then available to all agents running in
the platform in an easy-to-use manner. There is no need to duplicate
the entire software environment on multiple developer machines. This
could, of course, also be achieved with a distributed service-oriented
architecture, where each legacy component is hidden behind a service.
However such a system is much harder to implement and maintain than
a less-distributed system. For example, bi-directional communication
between components is far easier to implement in a shared environment
than in a distributed system.

Agent communication: A single shared environment offers more possibil-
ities for agent communication than a distributed one.

Furthermore, the agents are supposed to “live on the Internet” and per-
form certain tasks even when their users are offline. Consequently, the users’
desktop computers are not an ideal habitat for the agents.

4.1.5 Communication

The project objectives explicitly state that RASCALLI agents communicate
with their users and other agents in order to fulfill their tasks. Implementing
a selection of communication channels within the platform allows various
agents to share these communication components.

Agent-to-agent communication can be implemented on the Java level,
since all agents run within a single runtime environment. Alternatively,
agents can communicate via instant messaging (this opens the possibility
to use multiple, distributed platform instances in the future).

CHAPTER 4. RASCALLI PLATFORM 30

Several channels for agent-to-user communication have been implemented
(currently a proprietary protocol for the 3D client interface, Jabber instant
messaging and web-based communication).

4.1.6 Component-Based Architecture

In addition to the general advantages of component-based development, a
modular architecture explicitly supports the goal to experiment with differ-
ent kinds of agents. While the platform cannot enforce a component-based
approach (an agent could be implemented as a single large Java class), its
architecture certainly encourages and facilitates the use of components. This
results in agents that can be assembled from these components in a Lego-like
manner.

4.1.7 Extensibility

The platform itself is built in a component-based fashion and can therefore
be easily extended, even at runtime.

4.1.8 Multi-Version

In order to support the concurrent development of different kinds of agents
based on shared components in a single environment shared by multiple
developers, the platform supports the execution of multiple versions of the
same components at the same time.

4.2 Software Architecture

The RASCALLI platform is implemented in three layers: An Infrastructure
Layer, which contains the basic development tools and libraries; a Frame-
work Layer, comprising the general platform services and components; and
an Agent Layer, which is the actual application layer containing the RAS-
CALLI agents (see table 4.2 on the following page). These layers will now
be explained on a conceptual level while more detailed information will be
provided in the subsequent chapters.

CHAPTER 4. RASCALLI PLATFORM 31

Layer Description

Agent Layer Agent architectures, components,
definitions and instances

Framework Layer Technical services and utilities
(e.g. networking support, RDF
support, agent management)

Infrastructure Layer Basic tools and components (e.g.
Java, Maven, OSGi)

Table 4.2: RASCALLI Platform Layers

4.2.1 Infrastructure Layer

The Infrastructure Layer contains basic tools and components used in the
RASCALLI project. Specifically, these are Java, Maven1 and OSGi2. In
addition, this layer contains custom-made development and administration
tools for the RASCALLI platform, such as user interfaces for agent configu-
ration and deployment tools.

The most important feature of the Infrastructure Layer is the use of
OSGi, which implements a dynamic component model on top of Java. This
means that components can be installed, started, stopped and uninstalled
at runtime. Furthermore, dependencies between components are managed
by OSGi in a fashion that allows the execution of multiple versions of a
single component at the same time. Finally, OSGi provides a framework for
service-based architectures, where each component can provide services to
other components, based on Java interface specifications.

The use of OSGi thus enables the platform features multi-version and
extensibility, and supports the implementation of a component-based archi-
tecture in the upper two platform layers.

4.2.2 Framework Layer

The Framework Layer comprises general platform services and utilities em-
ployed by the Rascalli, including agent and user management, communication
(user-to-agent, agent-to-agent), event handling, technology integration and
various other platform services.

The services on this layer provide the basis for the multi-agent, multi-
agent-architecture, multi-user and communication features of the platform.

1http://maven.apache.org/
2http://www.osgi.org/

CHAPTER 4. RASCALLI PLATFORM 32

Figure 4.1: The four sub-layers of the Agent Layer, with a few selected com-
ponents of the Mind-Body-Environment agent architecture (see section 7.2
on page 60).

4.2.3 Agent Layer

The Agent Layer is the application layer of the platform and contains the
implementation of the actual agents. It is designed to support the develop-
ment and execution of multiple agents of different kinds as required by the
project objectives. This layer consists of the following sub-layers:

Agent Architecture Layer: An agent architecture is a blueprint defining
the architectural core of a particular type of Rascalli. More precisely,
it sets the roles of agent components and provides means for defining
and assembling a specific agent. The architecture can also contain im-
plementations of common components shared by all agent definitions.

Agent Component Layer: Contains implementations of the roles defined
on the Agent Architecture Layer.

Agent Definition Layer: An agent definition is an assembly of specific
components of the Agent Component Layer of a specific agent archi-
tecture. Different agent definitions for the same agent architecture
might contain different components for certain roles.

CHAPTER 4. RASCALLI PLATFORM 33

Agent Instance Layer: Contains the individual agent instances. Each
Rascallo is an instantiation of a specific agent definition.

Note that these sub-layers are not technically enforced by the platform,
which would be quite impossible. Instead, they are conceptual guidelines
which, if adhered to, lead to a modular agent implementation well suited for
component re-use and simple assembly of agents.

Figure 4.1 on the previous page gives a (simplified) example of an agent
architecture (the Mind-Body-Environment architecture, see section 7.2 on
page 60). The Agent Architecture Layer defines two roles, Mind and Tool,
and implements an agent component (Action Dispatcher) shared by all agent
definitions. The Agent Component Layer contains two implementations of
the Mind role, as well as two Tools. Based on this architecture, two agent
definitions combine each of the Mind implementations with the available
Tools and the Action Dispatcher into different kinds of agents. Finally, a
number of agent instances are shown on the Agent Instance Layer.

4.3 Relation to other Agent-Based Systems

The Agent-Based Systems Reference Model (ABSRM, [MMM+06]) defines a
general framework for the classification of agent-based software systems. It
has been derived from existing agent-based systems (e.g. JADE) via foren-
sic software analysis. This model defines five layers on which agent-based
systems or parts of such systems can be mapped in order to allow for a
comparison of different systems. The following is an attempt at mapping the
RASCALLI platform to the layers of this reference model. Table 4.3 provides
an overview of this mapping.

ABSRM Layer RASCALLI Platform Layer

Agents layer Agent Layer
Framework layer Framework Layer
Platform layer Infrastructure Layer
Host layer n/a
Environment layer n/a

Table 4.3: Mapping of RASCALLI Platform Layers to ABSRM Layers

CHAPTER 4. RASCALLI PLATFORM 34

Agents Layer:

The Agents layer consists of agents that perform computa-
tion, share knowledge, interact and generally execute behaviors
in order to achieve application level functionality. We make few
assumptions about the Agent layer except to state that agents are
situated computational processes – instantiated programs that
sense and effect an environment in which they exist. We make no
assumptions about the internal processing structures of an agent.
An agent could be built with a complex cognitive model or it
could be a simple rule-based system. [MMM+06, page 4]

This definition of the Agents layer is quite consistent with the definition
of the RASCALLI platform’s Agent Layer. The platform also makes little
assumptions as to the implementation of a given agent architecture, with
only a few technically motivated exceptions, such as the need for an agent
factory (see 6.1.3.1). However, the sub-layers of the RASCALLI platform’s
Agent Layer function as a guideline for the development of component-based
agents.

Framework Layer: The Framework layer provides supporting function-
ality and services for agents, including agent life-cycle management, agent
administration, communication support, etc. This again maps very well to
the RASCALLI platform’s Framework Layer.

Platform Layer: This layer contains components such as operating sys-
tems, middleware (e.g. databases) and other software used to execute an
agent-based system. This layer maps to the RASCALLI platform’s Infras-
tructure Layer.

Host Layer: The Host layer is the hardware an agent system runs on.
Since the RASCALLI platform is built in Java, it is more or less portable
and hardware-agnostic. It should, however, be noted that OSGi has originally
been developed for embedded systems and is therefore sufficiently small to
be executed on many kinds of devices, such as handheld devices or robot
hardware, as long as the operating system supports Java.

Environment Layer: The Environment layer is the physical world in
which an agent system exists. Currently, RASCALLI agents live only in
the virtual realm of the Internet, but they can interact with real-world en-
tities such as humans. It is also feasible to use the RASCALLI platform for

CHAPTER 4. RASCALLI PLATFORM 35

robotic systems, either by remote-controlling robots or even by embedding
the control software in the robot. However, in the latter case, the currently
implemented services and components would probably be of little use.

4.4 Summary

In this chapter, we have described the primary features of the RASCALLI
platform. We have also introduced the software layers of the platform archi-
tecture:

• the Agent Layer (with four sublayers),

• the Framework Layer, and

• the Infrastructure Layer.

Finally, we have shown the relation to other agent frameworks by map-
ping the RASCALLI platform layers to the Agent-Based Systems Reference
Model.

Chapter 5

Infrastructure Layer

The Infrastructure Layer comprises the software components that form the
basis of the RASCALLI platform, including Java, Maven and OSGi. Fur-
thermore, it contains a basic development environment, building on those
technologies, that allows for the creation and management of agents and
agent components for and within the platform.

5.1 Technology Overview

The RASCALLI platform is built upon a number of tools and technologies,
including Java, Maven and OSGi. This section provides a more detailed
description of the latter two and also explains how they are used within the
RASCALLI context. While it is assumed that Java is sufficiently known to
make a detailed description superfluous, the following section motivates the
decision to use Java instead of any other programming language.

5.1.1 Why Java?

The decision for Java was based on the following considerations:

Libraries: A huge number of software libraries and APIs is available for
Java. While this is also true for many other languages, we can at
least assume that other languages probably do not have better library
support than Java.

Platform independence: Even though this argument has probably been
overused, it is worth mentioning that the JVM is available for many
operating systems and Java applications are therefore mostly platform
independent.

36

CHAPTER 5. INFRASTRUCTURE LAYER 37

Excellent development support: Some of the best integrated develop-
ment environments (IDEs) are for the Java language, especially when it
comes to freely available and open source applications, such as Eclipse1.
The availability of low-cost or even no-cost software is obviously im-
portant in a research context.

In addition to powerful and free IDEs, the Java community also boasts
other excellent development tools, such as build systems like Maven and
Ant2, test frameworks, continuous integration frameworks, and many
more.

OSGi: The availability of a dynamic component system like OSGi (see be-
low) is quite unique. While it is, of course, possible to load components
into a software system dynamically with almost any current program-
ming language, the support for multiple versions of a component and
the dependency management provided by OSGi is probably hard to
find in other systems.

Dynamic language integration: While Java is a statically typed, com-
piled language, which may be considered inappropriate for a research
context, many dynamic languages have been integrated with or even
specifically created for the JVM. This includes wide-spread languages,
such as Ruby (JRuby3), Python (Jython4) or Groovy5, and even func-
tional languages like Scala6. It is also quite easy to invoke programs
written in other languages, such as C or Perl, from a Java application.

The availability and excellent integration of dynamic languages opens
the path towards an interesting scenario, where the platform is imple-
mented in Java and individual agents are then implemented in Groovy,
for example. This allows for a good mix of performance and stability
on the one hand, and flexibility and implementation speed on the other
hand.

Support for DSL: Java (and some of the dynamic languages for the JVM)
offer excellent support for Domain Specific Languages (DSL, [MHS05]).
In a DSL scenario, agents might be implemented in such a way that
they can then be assembled using a special language (a DSL).

1http://www.eclipse.org/
2http://ant.apache.org/
3http://jruby.codehaus.org/
4http://www.jython.org/
5http://groovy.codehaus.org/
6http://www.scala-lang.org/

CHAPTER 5. INFRASTRUCTURE LAYER 38

5.1.2 Maven

Maven7 is an open-source tool for software project management. It can
manage a project’s build, deployment, reporting, documentation and more.
All of these activities are based on a single configuration file (POM), which
contains, among other things, the project’s name and version, its dependen-
cies on other projects, and configuration parameters for the various Maven
components. In addition to this configuration, Maven builds on the notion of
convention over configuration, meaning for example that a project’s subdirec-
tories should be laid out in a certain fashion (convention) rather than being
configured independently for each project. This approach has a number of
advantages, but a detailed discussion is beyond the scope of this document.

In most cases, a Maven project produces what is called a Maven arti-
fact. Essentially, this is a software bundle containing the compiled software
and configuration. This artifact, together with the project’s POM file, is
deployed to a Maven repository. When a project specifies a dependency
on other projects in its POM, the corresponding artifacts are automatically
downloaded and integrated by Maven. This sort of automatic dependency
management greatly facilitates the implementation of software systems that
depend on many external components. It is therefore a very good fit for a
component-based software architecture, where each component can be im-
plemented as a separate Maven project.

In the RASCALLI context, all platform components are implemented as
Maven projects. We also make use of Maven’s OSGi support, which allows
us to generate OSGi bundles from our component projects.

5.1.3 OSGi

The OSGi technology is a set of specifications that define a dy-
namic component system for Java. These specifications enable
a development model where applications are (dynamically) com-
posed of many different (reusable) components. [OSG08b]

5.1.3.1 Motivation

By the definition of the OSGi Alliance8, OSGi is “The Dynamic Module
System for Java”. [OSG08a] contains a long list of advantages of using OSGi.
Some of the more important ones (in the context of the RASCALLI platform)
are:

7http://maven.apache.org/
8http://www.osgi.org/

CHAPTER 5. INFRASTRUCTURE LAYER 39

Reuse: “The OSGi component model makes it very easy to use many third
party components in an application. An increasing number of open
source projects provide their JARs ready made for OSGi. However,
commercial libraries are also becoming available as ready made bun-
dles.“ [OSG08a]

In addition to this, it also allows for easy integration of external non-
OSGi or even non-Java components, because they can be hidden be-
hind an OSGi service and made available to other components in the
platform.

Dynamic Updates: “The OSGi component model is a dynamic model.
Bundles can be installed, started, stopped, updated, and uninstalled
without bringing down the whole system.” [OSG08a]

This is especially useful in the context of a platform shared between
multiple developers. Individual components can be added or updated
while the rest of the system continues running.

Versioning: “OSGi technology solves JAR hell. JAR hell is the problem
that library A works with library B;version=2, but library C can only
work with B;version=3. In standard Java, you’re out of luck. In the
OSGi environment, all bundles are carefully versioned and only bun-
dles that can collaborate are wired together in the same class space.
This allows both bundle A and C to function with their own library.”
[OSG08a]

This is, again, very useful or even necessary for a shared development
platform.

Widely Used: “The OSGi specifications started out in the embedded home
automation market but since 1998 they have been extensively used in
many industries: automotive, mobile telephony, industrial automation,
gateways & routers, private branch exchanges, fixed line telephony,
and many more. Since 2003, the highly popular Eclipse Integrated
Development Environment runs on OSGi technology and provides ex-
tensive support for bundle development. In the last few years, OSGi
has been taken up by the enterprise developers. Eclipse developers dis-
covered the power of OSGi technology but also the Spring Framework
helped popularize this technology by creating a specific extension for
OSGi. Today, you can find OSGi technology at the foundation of IBM
Websphere, SpringSource Application Server, Oracle (formerly BEA)
Weblogic, Sun’s GlassFish, and Redhat’s JBoss.” [OSG08a]

CHAPTER 5. INFRASTRUCTURE LAYER 40

OSGi has been one of the major buzz-words in the Java community for
the last couple of years. Since one of the goals of the RASCALLI plat-
form is to bring state-of-the-art development tools and methodologies
to agent development, it seems to make sense to use a technology that
has been so widely adapted.

5.1.3.2 OSGi Architecture

OSGi is built around the concept of a bundle. In OSGi terminology, a bundle
is a component that can be installed, started, stopped, updated and unin-
stalled in an OSGi runtime environment (container) independently from any
other bundles. A bundle can provide two kinds of services to other bundles:

• It can export Java packages for other bundles to use. These bundles
can then instantiate classes implemented in the exported packages.

• It can register services with the OSGi service registry, where other
bundles can find and use them. Services are defined with Java interfaces
rather than a special interface specification language. These interfaces
must be exported in the bundle’s Java packages so that other bundles
can use them.

A bundle does not declare its dependencies on other bundles directly
(by naming a specific bundle), but rather by importing the Java packages
it needs. OSGi automatically resolves these dependencies and builds a class
path for each bundle, containing any required classes. The client bundle is
ignorant of which specific bundles provide the required packages.

5.1.3.3 OSGi Implementations

There are currently three major open-source implementations of the OSGi
specifications:

• Apache Felix9,

• Eclipse Equinox10, and

• Knopflerfish11.

9http://felix.apache.org/
10http://www.eclipse.org/equinox/
11http://www.knopflerfish.org/

CHAPTER 5. INFRASTRUCTURE LAYER 41

The RASCALLI platform has been developed on Apache Felix, but this
was a rather arbitrary choice. Also, since these are all implementations of
the current OSGi standard, it should be rather effortless to port the platform
to any of the other containers. Only a very small part of the platform source
code is Felix specific (namely a set of Felix shell commands).

5.1.3.4 Convenience Layers on Top of OSGi

While OSGi provides a very simple and easy to use service framework, there
are several issues with implementing an application directly on the service
specifications of OSGi. For example, it is quite tedious to track the availabil-
ity of service instances. There are currently two major efforts in the open
source community to ease these problems by providing a framework that
manages OSGi services and components, and their dependencies upon each
other. These are:

• Apache iPOJO12 and

• Spring Dynamic Modules13.

Apache iPOJO [EHL07] is a runtime environment for service compo-
nents. Components are implemented as simple Java objects (POJO means
Plain Old Java Object), and dependencies on other components as well as
component properties are injected at runtime. The definition of an iPOJO
component can be done either in XML metadata or through the use of Java
annotations. Component instances are defined in an XML metadata file
and automatically instantiated by iPOJO when the bundle is loaded into
the OSGi container. If a component provides a service, iPOJO registers the
component with the OSGi service registry.

Service dependencies are injected either directly into Java instance vari-
ables or into methods of the Java object. iPOJO manages the entire de-
pendency tree, so that individual components are either valid or invalid,
depending on whether their dependencies can currently be satisfied with the
services available in the OSGi container.

This framework makes the implementation of service-based OSGi appli-
cation really simple, but there are some limitations. For example, if compo-
nent instances need to be created at runtime, this cannot easily be done with
iPOJO, even though iPOJO supports the concept of OSGi service factories.
For this reason, the RASCALLI Framework (chapter 6 on page 44) has the

12http://felix.apache.org/site/ipojo.html
13http://www.springframework.org/osgi

CHAPTER 5. INFRASTRUCTURE LAYER 42

concept of Agent Factories, which are explicitly implemented in Java instead
of using OSGi or iPOJO mechanisms.

Spring Dynamic Modules (Spring DM) is an extension of the Spring
Framework14 for OSGi. OSGi services and dependencies can be configured
as Spring beans in XML or any other variant of Spring configuration. At
the beginning of the development of the RASCALLI platform, the Spring
Dynamic Modules project was still very much at the beginning. Therefore, all
currently available platform components are based on iPOJO. However, since
both frameworks eventually use the OSGi service framework, it is possible
to mix bundles based on either of these technologies within a single OSGi
container. Due to the fact that the Spring Framework is a widely accepted
technology in the Java community and that Spring DM seems to advance
more rapidly than iPOJO, it might be advisable to switch to Spring DM in
the future.

5.2 Development Environment

The RASCALLI platform is both a runtime and a development environment
for software agents. While the runtime part is fully functional at the time
of writing, the development parts have been implemented only as far as
necessary for the implementation of the RASCALLI agents. This includes
the following features:

Maven environment: Based on a parent POM which contains the neces-
sary plug-ins and configuration, a Maven project environment has been
implemented. Platform sub-projects inherit from this parent project
and can then be built for and deployed to the RASCALLI Maven repos-
itory.

Platform configuration: The platform configuration and startup scripts
have been designed in such a way that multiple different platform envi-
ronments, with different bundle configurations can be executed. While
this is in sharp contrast to the shared platform feature, it is a necessary
intermediate step until a full-fledged development environment is avail-
able. The problem is that currently only a single-user command shell is
available for OSGi management, so that developers could theoretically
share a single platform, but only one developer at a time can manage
OSGi bundles.

14http://www.springframework.org/

CHAPTER 5. INFRASTRUCTURE LAYER 43

Felix command shell extensions: The Felix command shell is an admin-
istration interface for the Felix OSGi container and provides basic OSGi
bundle management functionality. Several additional commands have
been implemented for this shell.

Possible improvements and extensions to the development environment
are discussed in chapter 9 on page 74. Most notably, a multi-user manage-
ment tool will be necessary, for example a web-based user interface for bundle
and agent management.

5.3 Summary

The RASCALLI platform is based on Java, Maven and OSGi. The use
of Java is motivated by the availability of OSGi and other important fea-
tures. Platform and agent components are implemented as separate Maven
projects, which are then compiled into OSGi bundles and deployed to the
platform. OSGi is the technological foundation for many of the RASCALLI
platform features, including its extensibility, support for multiple versions of
each component and the shared platform concept.

Chapter 6

Framework Layer

This chapter contains details about the services provided by the Framework
Layer and their implementation. Even though this layer is implemented
entirely in Java, the use of Java terminology is mostly avoided. Instead, we
speak of services and components, which are denoted with upper case first
letters (e.g. Agent Manager). Note that the term Agent, with an upper case
first letter, denotes a software component, as opposed to the more general
use of lowercase agent throughout the rest of the document.

6.1 Agent Management

From the platform’s point of view, Agent is a very generic concept. An
Agent is a specific instance of an Agent Definition, and has a defined state
and behavior. The Agent Manager service is responsible for loading Agent
State from external persistent data storage, creating the Agents, starting and
stopping them, and updating the Agents’ state if it changes in the external
data storage (e.g. if a user changes an Agent’s configuration).

6.1.1 Agent State

Agent Configuration: This is persistent data that specifies a particular
Agent. It includes the following attributes:

• A unique (within the platform instance) Agent ID,

• a User ID, specifying the Agent’s owner,

• an Agent Definition ID, specifying the Agent Definition to be used for
instantiating this Agent, and

44

CHAPTER 6. FRAMEWORK LAYER 45

• a set of properties consisting of key-value pairs. The exact set of prop-
erties is defined by the Agent Definition.

The Agent Configuration is stored in the Agent Modeling Server (AMS)1.
Updates to the Agent Configuration are pushed to the Agent by the Agent
Manager.

Agent Profile: This is persistent data generated during the Agent’s life-
time. This includes training data gathered during the training sessions with
the user or interaction data collected from other user or agent interactions,
as well as any information learned during the Agent’s life time (the exact
nature of this data depends on the agent architecture and Agent Definition,
so it cannot be specified in more detail here). The Agent Profile is also stored
in the Agent Modeling Server (again, this is not a technical requirement).

In contrast to the Agent Configuration, the Agent Profile is not pushed
into the Agent by the Agent Manager. Instead, the Agent is supposed to
actively access its profile in order to fulfill its tasks (e.g. retrieving keywords
for RSS news filtering).

Runtime state: This is state the Agent keeps in memory while it is run-
ning. When the Agent is stopped, the runtime state is lost.

6.1.2 Agent Life-cycle

The following events occur during an Agent’s life-cycle (see Figure 6.1 on the
next page):

• Creation: The Agent is created by an Agent Factory.

• Start: The Agent Manager starts the Agent.

• Update: The Agent Configuration has changed.

• Stop: The Agent Manager stops the Agent.

• Destruction: The Agent is consumed by the JVM’s garbage collector.

1The AMS is not part of the RASCALLI platform. It is a service provided by project
partner SAT and is currently used to store Agent Configurations and Agent Profiles.
Note that there is no technical requirement to use the Agent Modeling Server for storing
persistent Agent data. An agent architecture can make use of arbitrary data stores for
persistent state. Also, the Agent Manager (see section 6.1.3 on page 47) is designed to
load Agent Configurations from arbitrary sources.

CHAPTER 6. FRAMEWORK LAYER 46

RunningCreated

creation

start

update

stop

destruction

Figure 6.1: Agent Life-Cycle

6.1.2.1 Event details

Creation: An Agent is created by an Agent Factory (see section 6.1.3.1 on
page 48). Since the Agent Factory is part of an Agent Definition, the exact
mechanism of Agent creation cannot be defined at this point. However, the
Agent Manager passes an Agent Configuration to the Agent Factory which
then builds the Agent. Typically, the Agent is assembled from a set of Agent
Components. It will also get access to its Agent Configuration.

Start: When the Agent is started, it is expected to do any of the following:

• Allocate resources, such as database connections,

• start threads, and

• load persistent state.

Update: Whenever the Agent Configuration for an Agent changes, the
Agent Manager will pass the new configuration to the Agent. The Agent
is then expected to adapt its internal state to the new configuration. For
example, the user might add another RSS feed to an Agent’s list of feeds to
be monitored. In this case, the Agent is expected to start monitoring the
new feed.

Stop: When an Agent is stopped, it is expected to do any of the following:

• De-allocate resources (e.g. release database connections),

• terminate threads, and

• store persistent state.

CHAPTER 6. FRAMEWORK LAYER 47

Destruction: When an Agent Configuration is deleted (for reasons for
deleting an Agent see section 6.1.3), the Agent Manager will stop it (if it is
running) and then release it to the JVM’s garbage collector. The Agent will
then be consumed by the garbage collector at an arbitrary time.

6.1.2.2 Extended Agent Life-Cycle

The Agent life-cycle detailed above is that of an actual Agent instance run-
ning in the platform. In the larger context of the entire RASCALLI system,
including persistent storage, an agent (or rather an agent’s persistent state)
has a much longer life-cycle:

• Creation: The user creates the Agent Configuration.

• Update: The user updates the Agent Configuration (via a configura-
tion interface) or the Agent Profile (via interaction with the agent).

• Deletion: The user deletes the Agent Configuration.

Between these events, the agent life-cycle specified above might be ex-
ecuted multiple times (e.g. each time the platform is started/stopped, the
Agent is created/destroyed).

The persistent agent state (configuration and profile) must be stored dur-
ing the entire life-cycle, so that it is available when the Agent is restarted.

6.1.3 Agent Manager

The Agent Manager is responsible for creating, starting, updating and stop-
ping Agents running in the platform. In order to fulfill its task, the Agent
Manager makes use of several other platform components. Figure 6.2 on
the following page shows an example of the collaboration between the Agent
Manager and one instance of Agent, Agent Factory and Agent Configura-
tion Source, respectively. In this example, the Agent Configuration Source
detects a newly created Agent Configuration (x) in the persistent storage
(e.g. a config file). It sends the new Agent Configuration to the Agent Man-
ager, which looks up the appropriate Agent Factory and tells it to create
a new Agent, based on the Agent Configuration. The factory then creates
the Agent (a). Later, the user changes the configuration, which is detected
by the Agent Configuration Source. The updated Agent Configuration (x’)
is sent to the Agent Manager, which passes it on to the previously created
Agent.

CHAPTER 6. FRAMEWORK LAYER 48

a:Agent :AgentFactory

 :AgentConfigurationSource

agent_manager:AgentManager

5 : update agent configuration(c’) 1 : processNewAgentConfiguration(c)

2 : createAgent(c)
4 : start()

6 : update(c’)

3 : a:=create(c)

Figure 6.2: Example of the collaboration between the Agent Manager and
other components

6.1.3.1 Agent Manager Collaborators

Agent Configuration Source: An Agent Configuration Source manages
a set of Agent Configurations in an external persistent storage. This
might be a configuration file, a database or, as is the default case for
the RASCALLI platform, the Agent Modeling Server.

Agent Definition: The concept of agent definitions has already been de-
scribed in section 4.2.3 on page 32. On the implementation level, an
Agent Definition is an OSGi bundle that contains an Agent Factory.

Agent Factory: Each Agent Definition contains an Agent Factory. This
component is responsible for creating Agents of this Agent Definition.

6.1.3.2 Agent Manager Life-cycle

This section gives a more complete view of this collaboration and the resulting
behavior of the Agent Manager, based on events that can happen during the
Agent Manager’s life-cycle.

The Agent Manager is started: This usually happens when the plat-
form is started, but can also happen if the bundle containing the Agent
Manager has been updated. At this point, the Agent Manager knows noth-
ing about existing Agent Definitions or Agent Configuration Sources.

CHAPTER 6. FRAMEWORK LAYER 49

The Agent Manager is stopped: This can happen when the platform
is stopped or when the bundle containing the Agent Manager is stopped or
updated. The Agent Manager stops all running Agents and releases them
for garbage collection.

An Agent Configuration Source informs the Agent Manager that a
new Agent Configuration has been created: This might happen when
a user creates a new agent, but also when an Agent Configuration Source
is first started in the platform. The Agent Manager extracts the Agent
Definition ID from the new Agent Configuration. If an Agent Definition
exists for a given agent, the Agent Manager passes the Agent Configuration
to the appropriate Agent Factory in order to create the Agent. Afterwards,
the new Agent is started. If the Agent Definition does not exist, the Agent
Configuration is stored locally in case the Agent Definition is added to the
platform later on.

An Agent Configuration Source informs the Agent Manager that
an Agent Configuration has been updated: This happens when a
user changes the agent’s configuration in the external data store. The Agent
Manager passes the new configuration to the respective Agent. If the Agent
does not exist in the platform, it is created (see previous event).

An Agent Configuration Source informs the Agent Manager that
an Agent Configuration has been deleted: This happens when a user
deletes one of her agents. The Agent Manager stops the Agent (if it is
running) and releases it for garbage collection.

An Agent Definition registers its Agent Factory with the Agent
Manager: This happens whenever an Agent Definition bundle is started
in the RASCALLI platform (e.g. at startup or when a new Agent Definition
is being deployed). The Agent Manager looks through all available Agent
Configurations in order to find those for the newly registered Agent Definition
(note that the Agent Definition ID is part of the Agent Configuration). If it
finds any such configurations, they are passed to the Agent Factory, which
creates the new Agents. Afterwards, the Agent Manager starts these Agents.

An Agent Definition unregisters its Agent Factory from the Agent
Manager: This happens when an Agent Definition is removed from the
platform or the platform is stopped. The Agent Manager stops all Agents
for that Agent Definition and releases them for garbage collection. The Agent

CHAPTER 6. FRAMEWORK LAYER 50

Configurations are kept in the local storage in case the Agent Definition is
re-added to the platform later.

6.1.3.3 Sample Agent Configuration Sources

AMS-based Agent Configuration Source: This configuration source
retrieves Agent Configurations from the Agent Modeling Server (see 6.1.1).
The configurations are created, updated and deleted via the RASCALLI web
interface (see section 8.1.2 on page 67). The Agent Configuration Source polls
the AMS at regular intervals for updated Agent Configurations and passes
them on to the Agent Manager. The interaction between the Agent Con-
figuration Source and the Agent Modeling Server is based on a web service
interface.

File-based Agent Configuration Source A configuration source that
reads Agent Configurations from a configuration file. It scans the file regu-
larly to detect changes.

6.2 User Management

User management is implemented in a similar way to agent management. A
User Service keeps a list of all users. Users can be added, modified and re-
moved by User Configuration Sources in the same way Agent Configurations
are supplied by Agent Configuration Sources. Currently, the only User Con-
figuration Source available retrieves users from the Agent Modeling Server.
User accounts can be created via the Web User Interface (see section 8.1.2
on page 67).

The service provided by the User Manager is, however, much simpler
than that of the Agent Manager. Users can be retrieved by ID and can be
authenticated with user name and password.

6.3 Event Handling

The RASCALLI platform makes use of an Event Service to dispatch asyn-
chronous events between components running inside the platform. Following
the criteria proposed by [Elh99], the current implementation can be char-
acterized as a synchronous push model. Event listeners are organized in a
hierarchical way, with the Event Service as the root node.

For example, each Agent is automatically registered as an Event Listener
with the Event Service after it has been created. It is up to each specific

CHAPTER 6. FRAMEWORK LAYER 51

<< Event Listener >>

t2:Tool

<< Event Listener >>

t1:Tool

heartBeatService:HeartBeatService

<< Event Listener >>

a:Agent

agent_manager:AgentManager

event_service:Event Service

1 : a:=create(c)

2 : registerEventListener(a)3 : dispatchEvent(e:HeartBeatEvent)

4 : handleEvent(e)

5.1 : handleEvent(e) 5.2 : handleEvent(e)

Figure 6.3: Example of the collaboration between the Event Service and
other components

agent architecture to implement further event handling within the Agents.
The MBE agent architecture (see section 7.2 on page 60) allows each Agent
Component to be an Event Listener, so that the components receive all Agent
Events.

Figure 6.3 shows a sample interaction between the Event Service and some
other components: After creating an Agent instance, the Agent Manager
registers the Agent as an Event Listener. When the Heart Beat Service
dispatches a Heart Beat Event to the Event Service, this Event is forwarded
to the Agent, which in turn forwards it to all interested Agent Components.

Events can be objects of any type and it is up to the receiver of an
event to decide whether and how to process it. Therefore, the event system
itself is untyped in the sense that any kind of event can be sent across a
single communication channel. On the other hand, the event type can be
determined and the event then be processed in a type-safe manner.

It is possible to inject an event at any point in the hierarchy. For example,
when a user connects to an Agent, the Agent receives an appropriate event.
Since this event is of no interest to all the other Agents, it is sent directly to
the Agent, instead of to the Event Service.

A more sophisticated approach could improve the performance and ro-
bustness of the event system by introducing event channels and asynchronous
event dispatching.

CHAPTER 6. FRAMEWORK LAYER 52

ConnectedAgent SelectionUser Authentication

connect login select agent

switch agent

logout

disconnect

agent and user actions

Figure 6.4: Communication protocol states between platform and 3D client

6.4 Communication

The RASCALLI project objectives explicitly contain requirements for agent-
to-user and agent-to-agent communication. While the former is obvious, the
latter results from the wish to create communities of specialized agents, which
interact in order to improve each agent’s performance.

Due to the platform’s extensibility, it would be easy to add new commu-
nication channels, but this section focuses on the ones already implemented
in the current system.

6.4.1 Agent-to-user Communication

6.4.1.1 3D Client Integration

The 3D client2 is one of the major interaction interfaces between user and
agent. It displays the agent as a 3-dimensional character and produces syn-
thesized speech as well as gesture output from the agent’s messages to its
user. User input is restricted to typed text input and a small number of
buttons (speech recognition was beyond the project scope). See section 8.1.3
on page 68 for more details about the 3D client.

In order to facilitate this kind of interaction, a TCP-based communication
service has been implemented in the RASCALLI framework. This service is
designed to support arbitrary communication protocols, making it easy to
integrate additional user interfaces in the future.

The communication protocol for the 3D client integration is based on
the exchange of XML messages and a simple finite state machine, which is
depicted in figure 6.4:

2Provided by project partner Radon Labs.

CHAPTER 6. FRAMEWORK LAYER 53

1. After connecting to the platform, the client must send the user’s login
data (username and password).

2. If the user is correctly authenticated, the platform sends back the list
of agents available to the user. The user must then select one of the
agents. After this, the user is connected to the selected agent and can
communicate with it.

3. The user can switch agents or logout at any time.

4. While connected to an agent, the following user actions are sent to the
platform:

• User utterances (text input),

• praise and

• scolding for the agent, and

• other user actions, such as clicking Web links sent to the user or
switching to other user interfaces (see chapter 8 on page 66 for
available interfaces).

5. At the same time, the agent can send messages to the user. These
are encoded in an XML format that includes SSML (Speech Synthesis
Markup Language)3 and BML (Behavior Markup Language, [V+07]).
The 3D client parses these messages, generates text and speech output,
and animates the 3D character.

When a user message arrives in the platform, it is translated into an Event
and dispatched to the Agent via the Event System. The following types of
events are currently implemented:

• User Connected,

• User Disconnected,

• User Utterance (text input),

• User Praise,

• User Scolding,

• User Context Change (the user switched to another user interface), and

3http://www.w3.org/TR/speech-synthesis/

CHAPTER 6. FRAMEWORK LAYER 54

• User URL Click (the user followed one of the Web links sent by the
agent).

It is up to the agent architecture to deal with these Events in an appro-
priate fashion. Examples include answering a question posed by the user
(User Utterance) or implementing some sort of learning strategy based on
User Praise or Scolding.

6.4.1.2 Jabber Integration

Since Rascalli are supposed to be independent entities living on the Internet,
it makes sense to equip them with widespread Internet communication tools.
One of these tools is instant messaging, which has been integrated with the
RASCALLI platform employing Jabber. Jabber4 is an open instant mes-
saging technology based on the Extensible Messaging and Presence Protocol
(XMPP)5 standard.

The Framework Layer contains a Jabber client implementation6. This
can be used by an agent architecture, if it wants to make use of Jabber
communication. If it is used, a Jabber ID is automatically created on a
dedicated Jabber server for each new agent. If the agent’s user has specified
a Jabber ID in its profile, the user is automatically added to the agent’s
contact list and thus a connection between agent and user is established.
When the user is online in Jabber, the agent can send text messages to the
user’s Jabber client.

The implemented Jabber client makes use of the Event System to inform
the Agent about the following Events:

• Jabber Presence Changed (the agent’s user has gone online or offline),
and

• User Utterance (a text message from the user).

On top of this basic mechanism, an agent architecture can implement a
custom communication protocol. For example, a simple command language
could be implemented in place of or in addition to natural language text
input.

4http://www.jabber.org/
5XMPP Standards Foundation (http://www.xmpp.org/)
6The initial implementation of the Jabber client was provided by project partner OFAI

and has then been adapted and integrated with the RASCALLI framework.

CHAPTER 6. FRAMEWORK LAYER 55

6.4.1.3 Web interface

As an inhabitant of the Internet, RASCALLI agents naturally have a web
presence, which is part of the Web User Interface7 (for details see section
8.1.2). From the user’s point of view, this interface is used for the following
purposes:

• Creating a user account,

• creating and configuring agents, and

• selecting agents for creating and updating its profile via one of the
music browsing interfaces8 (see chapter 8 on page 66).

The agent, on the other hand, uses the web interface to post information
for the user via a web service interface9. This includes:

• Answers to questions asked by the user in one of the interactive inter-
faces (3D client or Jabber). This is especially useful if the answer is
too long or otherwise unsuitable for speech synthesis. In such a case, a
short answer is given at the interactive interface, together with a link
to the longer answer that was posted to the web interface.

• Information found on behalf of the user, such as interesting RSS feed
items. In this case, the items are posted on the web interface and
the user is informed that new information is available (if the user is
currently online), again with a link to the posting.

6.4.2 Agent-to-agent Communication

At the current state, agent-to-agent communication has not yet been imple-
mented. However, in the final version of RASCALLI, an agent will be able
to use the Agent Modeling Server to find relevant agents for solving a given
task. For example, an agent might try to improve its RSS filtering capabil-
ities by looking for agents with similar agent profiles. The agent can then
communicate with those other agents and exchange RSS feed URLs or filter
keywords.

7The Web User Interface is provided by project partner SAT.
8The browsing interfaces have been provided by project partners SAT (Music Explorer)

and DFKI (Visual Browser).
9Actually a part of the web service interface of the Agent Modeling Server, which is

also provided by SAT.

CHAPTER 6. FRAMEWORK LAYER 56

The implementation of agent-to-agent communication in the Framework
Layer is rather straightforward. We envision three scenarios that could be
easily implemented based on the existing framework components:

Agent-to-agent communication on the Java level: Java method
invocations are a viable option for agent communication, since all agents exist
within a single Java virtual machine. This approach could be implemented
as an extension of the Agent interface or preferably by using the existing
Event System. In the latter case, an Agent could send an Event to another
Agent, containing an arbitrary message.

Agent-to-agent communication via a blackboard service: Via a
blackboard service implemented in the Framework Layer, agents could broad-
cast messages or send messages to other agents.

Agent-to-agent communication with Jabber: Since all agents have
a Jabber account, they might as well use it to communicate with each other.
The advantage of this approach is that it would transparently allow for future
distributed versions of the platform, where agents communicate with each
other across the Internet.

Based on these basic mechanisms, which would be implemented in the
Framework Layer, an agent architecture might choose any kind of commu-
nication protocol between its Agents. For example, Agents might exchange
plain text or custom XML messages, or they might make use of an established
agent communication language.

6.5 Other Services and Components

In addition to the services already presented, the Framework Layer contains
a number of useful components to be used by the Agent Layer.

6.5.1 Configuration Management

The RASCALLI platform provides a single location where all components
deployed to the platform can store their configuration. The idea is that
each component that needs configuration creates directories and files below
a specified root directory.

The Configuration Service provides a single point of access to this con-
figuration directory by resolving relative file system paths to absolute paths.

CHAPTER 6. FRAMEWORK LAYER 57

6.5.2 RSS Feed Management

The RSS Manager is an example of the benefits of having a single runtime
environment. Each of the currently implemented agents is capable of moni-
toring RSS10 feeds, filtering their contents and passing interesting items on
to their users. In this situation, it is quite likely that multiple agents will
access the same RSS feeds. The RSS Manager is a service component in the
Framework Layer that allows agents to subscribe to RSS feeds. It monitors
these feeds and passes new items on to the subscribed agents.

6.5.3 Utility Components

The Framework also contains a number of smaller components that imple-
ment useful functionality, such as:

Heart Beat: A component that generates a Heart Beat Event at regular
intervals, so that other components can easily track time.

Thread Pool: This component wraps a Java thread pool as an OSGi ser-
vice.

Class Loader: A utility to resolve OSGi classloading issues.

System Command Execution: A utility for the execution of native sys-
tem commands.

6.6 Summary

In this chapter, we have introduced the major services and components of
the Framework Layer. These are major platform services for:

• Agent Management,

• User Management,

• Event Handling and

• Communication.

10Really Simple Syndication, see RSS Advisory Board (http://www.rssboard.org/)

CHAPTER 6. FRAMEWORK LAYER 58

In addition to these major platform services, the Framework Layer also
contains smaller services and components that make the implementation of
Agent Layer functionalities easier or provide integration of external services
and applications. For example, the web service interface of the Agent Mod-
eling Server has been integrated as an OSGi service.

The current state of the Framework Layer reflects the requirements of the
RASCALLI system up to date. Due to its modular OSGi-based implemen-
tation, it will be easy to extend the functionality provided by this layer in
the future.

Chapter 7

Agent Layer

Two agent architectures have been implemented so far: The Mind-Body-
Environment (MBE) architecture and an agent architecture for 3D client
integration tests. We start this chapter with a brief introduction of the
test agents, while the remainder of the chapter provides a more detailed
description of the MBE architecture.

7.1 3D Client Test Agents

In order to be able to systematically test the 3D client integration, a special
agent architecture has been implemented. It is rather simple – in fact it
consists of only two Java classes: The agent implementation and an Agent
Factory. Therefore, it does not serve well as an example of a full-fledged agent
architecture, but it can be seen as a proof that multiple agent architectures
can actually be implemented in the platform.

The test agents are based on an XML configuration file that defines a
number of input/output pairs. When the user sends a defined input to the
agent, the agent responds with the corresponding output. Of course, multiple
test agents can be created in a single platform instance and the behavior of
each agent can be defined in a separate configuration file.

In addition to 3D client integration tests, these agents can also be used
for scripted user evaluations, where users must enter a predefined sequence
of text messages.

59

CHAPTER 7. AGENT LAYER 60

Figure 7.1: A high-level view of the Mind-Body-Environment agent architec-
ture.

7.2 The Mind-Body-Environment Architec-

ture

The agents implemented in the RASCALLI project are based on what we call
the Mind-Body-Environment (MBE) agent architecture. Figure 7.1 presents
a high-level view of this architecture: An MBE Agent consist of a central
control unit (mind), and a set of sensor and effector tools (body), which
serve as the mind’s interface to the environment. The environment consists
of services available on the Internet (e.g. search engines or web services),
domain-specific databases, human users, other RASCALLI agents and gen-
erally any resource or service accessible from the computer executing the
agent.

Communication between mind and tools is based on a shared ontology,
describing tools, actions and sensory data so that the mind can interpret
messages received from its sensor tools (e.g. a question asked by the user or
the result of a database query), select an appropriate action (e.g. respond
to the user or access a database), and instruct one of its effector tools to
execute the selected action, by sending the action parameters to the tool
(e.g. an answer to the user’s question or a database query).

The RASCALLI project consortium has agreed on this architecture for
the following reasons:

• The basic human-like metaphor of an entity comprising a mind and
a body allows for arbitrarily complex implementations of the mind,
which can make use of a growing set of tools to perform their tasks
on the Internet. The mind implementations can be simple rule-based

CHAPTER 7. AGENT LAYER 61

action selection or complex cognitive architectures, including cognitive
aspects such as learning and planning.

• New tools can be added easily by

– implementing or integrating them with the platform,

– extending the shared ontology, and

– extending the mind to actually use the new tool.

• The simple architecture with only two roles (mind and tool) facilitates
integration testing, because each component can be easily replaced with
a dummy implementation. For example, a dummy mind can be imple-
mented to test a set of tools even when the actual mind implementation
is not yet able to work with them1.

The following sections describe the implementation of this agent archi-
tecture within the RASCALLI platform.

7.3 MBE Agent Architecture Layer

The Architecture Layer defines the basic roles for components of the Agent
Component Layer, namely Mind and Tool. While the Java interfaces for
these roles are very simple (the Mind must be able to process input data
and a Tool must be able to execute an action, based on some sort of action
data), the data sent across these interfaces can be arbitrarily complex and is
encoded as RDF2 graphs. These are based on the internal ontology shared
between Mind and Tools.

In addition to the basic roles (interfaces), the architecture also implements
a Java class MBEAgent (see figure 7.2 on the next page). This class serves
as a container for a Mind and one or more Tools to form an actual agent.
A component called Action Dispatcher is used by the MBEAgent to forward
actions issued by the Mind to the appropriate tools. Finally, the MBEAgent
provides access to various platform services to the agent components (e.g.
the Configuration Service, the Event Service, the Jabber integration and the
RSS Manager).

The architecture layer also provides extensive support for RDF handling
so that data exchange between Mind and Tools can be implemented in a
straight-forward manner.

1This is the reason why the Simple Mind (see below) was initially implemented.
2http://www.w3.org/RDF/

CHAPTER 7. AGENT LAYER 62

<< interface >>

Agent

<< interface >>

Mind

+processInput(data:RdfData):void

<< interface >>

Tool

+executeAction(data:RdfData):void

MBEAgent

ActionDispatcher

+registerTool(tool:Tool):void

+dispatchAction(data:RdfData):void

1..*

dispatchesAction uses

sendsInput

Figure 7.2: MBE Agent class diagram

7.4 MBE Agent Component Layer

This section describes some of the Mind and Tool implementations used in
the RASCALLI agents. They form the basis for the MBE agent definitions
described in the next section.

7.4.1 MBE Tools

Each of the following Tools3 is implemented as a separate OSGi bundle.
An MBEAgent can use arbitrary subsets of these Tools, depending on the
capabilities of the Mind implementation (after all, the Mind must be able to
use the selected Tools).

T-IP4DUAL, T-IP4Simple and T-IP4Adaptive: Tools for input pro-
cessing transform natural language and user feedback inputs into cat-
egorized information usable by the respective Mind components (see
below).

3The Tools have been implemented by various project partners:
T-IP4DUAL, T-IP4Simple, T-IP4Adaptive, T-MMG, T-QA, T-NALQI, T-ChatBot:
OFAI; T-QuestionAnalysis: DFKI; T-RSS: OFAI, SAT; T-TextRelevance: SAT.

CHAPTER 7. AGENT LAYER 63

T-MMG: The Multi-Modal Generation Tool transforms the agent’s output
from the internal RDF-based representation to the appropriate formats
for the interactive user interfaces. For the 3D client, it produces XML
output encoding gesture and speech information, and for the Jabber
integration, it produces plain text.

T-QA: A general purpose open-domain question answering system based on
the work described in [SA05] and [Sko05]. It is used in the RASCALLI
platform to provide answers to those user questions that cannot be
answered by any of the domain-specific tools.

T-NALQI: A natural language database query interface. The Tool is used
in the RASCALLI platform for querying the databases accessible to the
Rascalli, in a search for instances and concepts that can provide an-
swers to the user questions. The component analyses natural language
questions posed by the user and retrieves answers from the system’s
domain-specific databases.

T-ChatBot: This is an integration of the Alice4 chatbot engine, which can
be used as a fallback, whenever none of the query tools can provide
an answer to some user input. For example, it can handle aggressive
utterances, such as “You are stupid.”

T-RSS: The RSS Tool provides MBEAgents with access to the RSS Man-
ager. Agents can subscribe to RSS feeds and are then informed of newly
published articles.

T-TextRelevance: This Tool can rate the relevance of a given piece of text
for the user, using a simple keyword-based approach, based on the
agent profile collected in user-agent interactions.

T-QuestionAnalysis: A Tool that answers questions about music-related
gossip data extracted from web pages (for example personal relation-
ships of artists).

7.4.2 MBE Mind Implementations

The Mind component performs action selection, based on the current input
from the environment and the agent’s internal state. It can also make use of
supporting services, for example the Agent Modeling Server. The following
Mind components have been developed in the RASCALLI project:

4http://www.alicebot.org/downloads/programs.html

CHAPTER 7. AGENT LAYER 64

Simple Mind: A simple rule-based mechanism for action selection with
minimal internal state. The Simple Mind extracts relevant information
from the input data and passes the information on to the appropriate
effector tool.

DUAL Mind: This Mind implementation incorporates the DUAL/AMBR
([Kok94], [KPss]) cognitive architecture for action selection.5

Adaptive Mind: A Mind implementation that performs action selection
based on similarities of the current input with experiences from the
past, where it received positive or negative feedback from the user for
choosing a specific action.6

7.5 MBE Agent Definition Layer

Table 7.1 on the following page shows the agent definitions currently imple-
mented for the MBE agent architecture. They are:

Simple Music Companion: An agent definition comprising the Simple
Mind and all of the available Tools. It was originally implemented
as a proof of concept for the platform and the MBE architecture, but
is now also used as a base-line for evaluating other agent definitions.

Adaptive Music Companion: The Adaptive Music Companion is similar
to the Simple Music Companion, but uses the Adaptive Mind for action
selection.

DUAL Music Companion: This agent definition is based on the DUAL
Mind, employing only a subset of the available Tools.

The Agent Factories for these agent definitions are implemented as simple
Java classes, making use of iPOJO (see section 5.1.3 on page 38) to select
the appropriate Tool components.

7.6 Summary

The Agent Layer is the application layer of the RASCALLI platform, where
the actual agents are implemented. In this chapter, we have outlined the

5The DUAL Mind has been implemented by project partners NBU and Ontotext
6The Adaptive Mind has been implemented by project partner OFAI, based on the

Simple Mind.

CHAPTER 7. AGENT LAYER 65

Simple Adaptive DUAL
Music Music Music

Companion Companion Companion

Mind
Simple Mind x
Adaptive Mind x
DUAL Mind x

Tools

T-IP4Simple x
T-IP4Adaptive x
T-IP4DUAL x

T-MMG x x x
T-QA x x x
T-TextRelevance x x
T-RSS x x
T-NALQI x x
T-QuestionAnalysis x x
T-ChatBot x x

Table 7.1: MBE Agent Definitions

implementation of the Mind-Body-Environment (MBE) agent architecture
that is currently the basis for the RASCALLI agents.

On a conceptual level, these agents consist of a mind, which makes use
of a set of sensor and effector tools (body) to interact with the environment.
We have described the core components and roles implemented on the Agent
Architecture Layer, as well as the Tool and Mind components implemented
on the Agent Component Layer, and how they have been combined to create
three agent definitions, the Simple, DUAL and Adaptive Music Companions.

We have also briefly described the 3D client test agents, which serve
as a proof-of-concept for the platform’s ability to support multiple agent
architectures.

Chapter 8

The Platform at Work

In this final chapter, we briefly describe the entire RASCALLI system, as it
is currently implemented, from the user’s point of view. This includes a short
introduction to the user interfaces and the actual functions the agents can
perform, as well as pointers to the currently deployed system components.
This chapter is meant to provide evidence that the RASCALLI platform
has actually been used to implement a running system and to give a more
complete picture of the RASCALLI agents.

8.1 RASCALLI User Interfaces

The RASCALLI system currently comprises three major user interfaces, a
web interface, a 3D client and a Jabber instant messaging integration, as well
as two web-based interfaces for exploration of the music domain.

8.1.1 Getting Started

In order to get started, the user must

• download and install the 3D client,

• install a Jabber client and create a Jabber account, and

• register on the RASCALLI Web Interface.

Detailed instructions for these steps can be found at http://www2.ofai.
at/rascalli/rascalli-getting-started-guide.html1

1As of October 21, 2008.

66

CHAPTER 8. THE PLATFORM AT WORK 67

Figure 8.1: RASCALLI Web User Interface

After this initial setup, the user can create agents and start interacting
with them via the various user interfaces. The following sections briefly
describe the user interfaces and how they can be used to interact with the
agents.

8.1.2 Web User Interface

The Web User Interface2 is the central user interface for RASCALLI. It allows
the user to

• create an account (register),

• create agents,

• configure agents (e.g. add or remove RSS feed URLs),

2http://intralife.researchstudio.at/rascalli/, as of October 21, 2008.
The Web User Interface has been implemented by project partner SAT.

CHAPTER 8. THE PLATFORM AT WORK 68

Figure 8.2: RASCALLI 3D client

• enter one of the browser applications (the Music Explorer and the Vi-
sual Browser),

• examine the agent profiles generated from the user interactions, and

• view information posted by the agents (e.g. answers to questions asked
in the 3D client or RSS feed items found by the agent).

Figure 8.1 on the preceding page shows the home page of Rascallo Goofy.
The left section contains a list of the agent’s postings, including an RSS item
and the answer to a question. In the right section, the user can add RSS
feeds and start browsing sessions in the Music Explorer and Visual Browser.

8.1.3 3D Client

The RASCALLI 3D client3 is the primary interactive user interface of the
RASCALLI system. It is based upon the Nebula open source 3D game
engine4 and displays the agent as a three-dimensional character, sitting in a

3The 3D client has been implemented by project partner Radon Labs.
4http://nebuladevice.cubik.org/

CHAPTER 8. THE PLATFORM AT WORK 69

chair in a futuristic room. The character is able to perform bodily gestures
and direct its eye gaze, has lip synchronization and uses speech generation,
along with written messages for text output.

Figure 8.2 on the previous page is a screen shot of the 3D Client showing
the female version of the character (Rascalla). The user can

• send text messages to the agent,

• press the praise button,

• press the scold button,

• enter one of the browser applications (the Music Explorer and the Vi-
sual Browser),

• click on a URL provided as part of an agent’s answer to open that URL
in the system web browser5, and

• switch agents.

8.1.4 Jabber

Jabber6 has been integrated as an alternative interactive user interface mainly
for two reasons:

• Instant messaging is a widely accepted mode of interaction on the In-
ternet.

• The minimal resource consumption of a Jabber client, along with its
integration with the operating system (e.g. for alerts about incoming
messages) increase the availability of the user for agent interaction.
This user interface is particularly useful for proactive agents, which
can send information to the user as it becomes available (as opposed
to reacting to the user’s questions).

While the Jabber interface naturally lacks the richness of the 3D client
interface, it allows for the same basic mode of interaction: sending text
messages. Figure 8.3 on the following page shows a screenshot of a commu-
nication with an agent via Jabber.

5This is not shown in the screenshot.
6Jabber has been integrated in a joint effort with project partner OFAI.

CHAPTER 8. THE PLATFORM AT WORK 70

Figure 8.3: Screenshot of a Jabber communication with an agent

8.1.5 Music Explorer

The Music Explorer (MEX)7 is a web interface for browsing a song database.
Users can search for artists, albums and tracks, and listen to those tracks.
The most important feature of the MEX is the incorporation of song sim-
ilarity data, which allows the user to find music similar to the one she is
currently listening to. In the screenshot shown in figure 8.4 on the next
page, the user is listening to a Madonna song. The other songs in the list
(and in the display in the left half) are similar to the current song.

Using this mechanism, the users can start from a specific song they like
and explore the music collection based on sound similarity. All user actions,
such as listening to or rating a song, are used to generate the agent profile
stored in the Agent Modeling Server. This profile is then used by the agent
to filter the RSS feeds supplied by the user.

8.1.6 Visual Browser

The Visual Browser8 (figure 8.5 on page 72) is a web application for browsing
music-related gossip data about musicians, including personal relationships,
gender, birthday, policital affiliation, and so on. The data has been collected
via seed-based relation extraction from unstructured text sources on the In-

7The Music Explorer has been implemented by project partner SAT.
8The Visual Browser has been implemented by project partner DFKI.

CHAPTER 8. THE PLATFORM AT WORK 71

Figure 8.4: Music Explorer

ternet ([XUL07]). Again, the user’s actions are used to generate the agent’s
profile for filtering RSS feeds.

8.2 Available Agents

At the time of writing (October 21, 2008), the DUAL and Adaptive Mind
components are still work in progress. While they have already been in-
tegrated with the platform and used for the DUAL and Adaptive Music
Companion agent definitions, respectively, they have not yet been released
for public use. Therefore, only the Simple Music Companion is currently
available9.

The Simple Music Companion can answer music related questions (such
as “Who is the husband of Madonna?”), as well as open domain questions
(e.g. “What is the color of the sky?”). It can also deal with insults (such as
“You are really stupid!”).

In addition to these interactive capabilities, the Simple Music Companion
monitors the RSS feeds provided by the user. It makes use of the aggregated
profile (based on user interactions with the browser interfaces) to perform
keyword-based filtering of RSS items. For example, if the profile contains
the artist name “Metallica”, RSS items about Metallica will be considered

9The 3D client test agents are meant for internal use only.

CHAPTER 8. THE PLATFORM AT WORK 72

Figure 8.5: Visual Browser

CHAPTER 8. THE PLATFORM AT WORK 73

interesting to the user. Interesting items are posted on the agent’s homepage
and the user is informed via Jabber or the 3D client (depending on the user’s
availability on either of these communication channels).

8.3 Summary

In this chapter, we presented an overview of the currently implemented RAS-
CALLI system from the user’s point of view. We have given a brief intro-
duction to the available user interfaces and the modes of interaction with
the Rascalli. Interested readers can follow the steps in the Getting Started
Guide to create and interact with an agent.

The RASCALLI platform, as described in the previous chapters, forms
the basis of this software system, serves as the integration point of all system
components, and executes the actual RASCALLI agents.

Chapter 9

Conclusion and Future Work

In this work, we have presented the RASCALLI platform, an environment
for the development and execution of modular software agents. The agents,
as well as the entire platform, are implemented as a dynamic component-
based system, based on OSGi, which allows for individual components to
be added to, updated and removed from the environment at runtime. We
have described the three-layered software architecture of the platform, com-
prising the Infrastructure Layer, the Framework Layer and the Agent Layer.
The Agent Layer is again split into four sub-layers, which serve as a concep-
tual framework for the development of modular agents: Agent Architecture,
Agent Component, Agent Definition and Agent Instance Layer.

The primary contribution of this work is the application of component-
based software engineering to agent development. The RASCALLI platform
supports the execution of multiple agents, based on different agent archi-
tectures and configurations. It is a shared platform allowing multiple users,
developers and agents to use a single instance of the environment. Agents
can communicate with their users and other agents. The agents, as well as
the platform itself, are based on a component-based architecture, allowing
new agent and platform components to be deployed at runtime.

Promising directions for future work include the integration of existing
agent frameworks and cognitive architectures into the RASCALLI platform,
as outlined in chapter 3, and the extension of the RASCALLI development
environment.

9.1 Extending the Development Environment

The following features are planned to be implemented in order to turn the
RASCALLI platform into a fully functional shared development environment:

74

CHAPTER 9. CONCLUSION AND FUTURE WORK 75

Web User Interface: A web user interface (WUI) to the OSGi framework
will be implemented. This interface will allow multiple developers to
access the OSGi container for bundle management at the same time.
The WUI will provide the following functionality:

• Managing developer accounts (each developer has a separate ac-
count in the platform),

• managing OSGi bundles (bundles can be installed, uninstalled,
started, and stopped), and

• support for RASCALLI specific functions, such as managing agent
definitions and agents.

Eclipse integration: The Eclipse IDE1 is built on top of an OSGi container
(Equinox). Therefore, it would be rather easy and very convenient to
execute a platform instance within Eclipse for development and testing
purposes. The basic idea is to implement a simple integration testing
framework within Eclipse so that combinations of RASCALLI compo-
nents can be tested locally before releasing them to the RASCALLI
platform.

Maven repository extension: The RASCALLI project makes use of an
open-source Maven repository implementation called Artifactory2. All
RASCALLI components are deployed to this repository and the plat-
form makes use of the repository to install and update the bundles. We
plan to implement an extension for Artifactory so that it can be used
as an OSGi bundle repository3.

9.2 Implementing BOD Agents in the RAS-

CALLI Platform

In chapter 3, we have presented a number of agent frameworks and have also
pointed out several possible future directions for integrating aspects of those
frameworks with the RASCALLI platform. In this section, we outline the

1http://www.eclipse.org/
2http://www.jfrog.org/sites/artifactory/latest/
3An OBR, also known as Oscar Bundle Repository, can be accessed from within an

OSGi container via a special Bundle Repository bundle, which provides an OSGi service
for dynamically deploying repository bundles and the transitive closure of their deployment
dependencies into an executing OSGi framework (see http://oscar-osgi.sourceforge.
net/)

CHAPTER 9. CONCLUSION AND FUTURE WORK 76

Figure 9.1: BOD Agent Architecture

possible implementation of BOD (see section 3.3) agents within the platform.
We have chosen BOD for this section, because the integration would be
technically easy and the iterative development process of BOD seems to be
a perfect match for the RASCALLI platform.

The basis for BOD agents is POSH action selection. A Java4 and a
Jython5 implementation of POSH action selection exist and could be inte-
grated as components on the Framework Layer. Building on this central com-
ponent, we can imagine two viable routes to implement RASCALLI agents
based on BOD:

Implement a POSH Mind: Create a Mind implementation for the MBE
agent architecture that uses the POSH component for action selection.
This would require a mapping of POSH primitives (acts and senses) to
MBE sensor and effector Tools.

Implement a new agent architecture: A new agent architecture could
be implemented based on BOD. Figure 9.1 shows the components of
such an agent architecture. The Agent Architecture Layer defines the
role of a Behavior. The Behaviors are then implemented on the Agent
Component Layer and can be combined into different agent definitions.
The POSH planner component implemented on the Framework Layer
would use these Behavior components to execute POSH plans.

4YAPOSH (Yet Another POSH), http://technohippy.net/
5jyPOSH, http://www.cs.bath.ac.uk/~jjb/web/pyposh.html

List of Figures

2.1 Overview of the external RASCALLI components used by the
Simple Music Companion, including implementation technolo-
gies. Single and double arrows denote uni- and bi-directional
communication between components, respectively. 19

4.1 The four sub-layers of the Agent Layer, with a few selected
components of the Mind-Body-Environment agent architec-
ture (see section 7.2 on page 60). 32

6.1 Agent Life-Cycle . 46
6.2 Example of the collaboration between the Agent Manager and

other components . 48
6.3 Example of the collaboration between the Event Service and

other components . 51
6.4 Communication protocol states between platform and 3D client 52

7.1 A high-level view of the Mind-Body-Environment agent archi-
tecture. 60

7.2 MBE Agent class diagram . 62

8.1 RASCALLI Web User Interface 67
8.2 RASCALLI 3D client . 68
8.3 Screenshot of a Jabber communication with an agent 70
8.4 Music Explorer . 71
8.5 Visual Browser . 72

9.1 BOD Agent Architecture . 76

77

List of Tables

4.1 RASCALLI Platform Features 28
4.2 RASCALLI Platform Layers 31
4.3 Mapping of RASCALLI Platform Layers to ABSRM Layers . 33

7.1 MBE Agent Definitions . 65

78

Bibliography

[And93] J.R. Anderson. Rules of the mind, 1993.

[AOS08] 9th international workshop on agent oriented software engi-
neering – introduction, 2008. Retrieved Oktober 6, 2008 from
http://grasia.fdi.ucm.es/aose08/.

[BPR01] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa.
JADE: a FIPA2000 compliant agent development environment.
In Proceedings of the Fifth International Conference on Au-
tonomous Agents (AGENTS), pages 216–217, New York, NY,
USA, 2001. ACM.

[Bro86] Rodney Brooks. A robust layered control system for a mobile
robot. IEEE Journal of Robotics and Automation, 2:14–23, Mar
1986.

[Bry01] Joanna J. Bryson. Intelligence by Design: Principles of Modular-
ity and Coordination for Engineering Complex Adaptive Agents.
PhD thesis, MIT, Department of EECS, Cambridge, MA, June
2001. AI Technical Report 2001-003.

[Bry03] Joanna J. Bryson. The behavior-oriented design of modular
agent intelligence. In R. Kowalszyk, Jörg P. Müller, H. Tianfield,
and R. Unland, editors, Agent Technologies, Infrastructures,
Tools, and Applications for e-Services, pages 61–76. Springer,
Berlin, 2003.

[Cle96] Paul C. Clements. From subroutines to subsystems:
Component-based software development. In Alan W. Brown,
editor, Component-Based Software Engineering: Selected Papers
from the Software Engineering Institute, pages 3–6. IEEE Com-
puter Society Press, 1996.

79

BIBLIOGRAPHY 80

[dSdM08] Paulo Salem da Silva and Ana C. V. de Melo. Reusing models in
multi-agent simulation with software components. In AAMAS
’08: Proceedings of the 7th international joint conference on
Autonomous agents and multiagent systems, pages 1137–1144,
Richland, SC, 2008. International Foundation for Autonomous
Agents and Multiagent Systems.

[EHL07] C. Escoffier, R.S. Hall, and P. Lalanda. iPOJO: an extensible
service-oriented component framework. In IEEE International
Conference on Services Computing (SCC), pages 474–481, Salt
Lake City, UT, July 2007.

[Elh99] Michael Elhadad. Event models, 1999. Retrieved September 11,
2008 from http://www.cs.bgu.ac.il/~elhadad/se/events.

html.

[GL08] Alessandro Garcia and Carlos Lucena. Taming heterogeneous
agent architectures. Commun. ACM, 51(5):75–81, 2008.

[JSR] JSR 277: Java module system. Retrieved Oktober 3, 2008 from
http://jcp.org/en/jsr/detail?id=277.

[Kok94] B. Kokinov. A hybrid model of reasoning by analogy. In K.J.
Holyoak and J.A. Barnden, editors, Analogical Connections, vol-
ume 2 of Advances in Connectionist and Neural Computation
Theory, pages 247–320. Ablex, 1994.

[KPss] B.N. Kokinov and A.A. Petrov. Integration of memory and rea-
soning in analogy-making: the AMBR model. In D. Gentner,
K. Holyoak, and B. Kokinov, editors, Analogy: Perspectives from
Cognitive Science. MIT Press, in press.

[McI68] Doug McIlroy. Mass-produced software components. In Pro-
ceedings of the 1st International Conference on Software Engi-
neering, pages 88–98, Garmisch Pattenkirchen, Germany, 1968.
NATO Science Commitee.

[MHS05] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When
and how to develop domain-specific languages. ACM Comput.
Surv., 37(4):316–344, 2005.

[MMM+06] Pragnesh Jay Modi, Spiros Mancoridis, William M. Mongan,
William Regli, and Israel Mayk. Towards a reference model for
agent-based systems. In AAMAS ’06: Proceedings of the fifth

BIBLIOGRAPHY 81

international joint conference on Autonomous agents and mul-
tiagent systems, pages 1475–1482, New York, NY, USA, 2006.
ACM.

[OSG08a] Benefits of using OSGi, 2008. Retrieved September 12, 2008
from http://www.osgi.org/About/WhyOSGi.

[OSG08b] The OSGi architecture, 2008. Retrieved September 12, 2008
from http://www.osgi.org/About/WhatIsOSGi.

[PC07] Giovanni Pezzulo and Gianguglielmo Calvi. Designing modular
architectures in the framework AKIRA. Multiagent Grid Syst.,
3(1):65–86, 2007.

[PS96] Cuno Pfister and Clemens Szyperski. Why objects are not
enough. In Proceedings of the First International Component
Users Conference (CUC), Munich, Germany, July 15–19 1996.
SIGS Publishers.

[RAS05] Project RASCALLI, Annex I – “Description of Work”, Novem-
ber 2005.

[SA05] M. Skowron and K. Araki. Effectiveness of combined features for
machine learning based question classification. Special Issue of
the Journal of the Natural Language Processing Society Japan on
Question Answering and Automatic Summarization, 12(6):63–
83, 2005.

[SH04] Jean-Guy Schneider and Jun Han. Components – the past,
the present, and the future. In Clemens Szyperski, Wolf-
gang Weck, and Jan Bosch, editors, Proceedings of Ninth
International Workshop on Component-Oriented Programming
(WCOP), Oslo, Norway, June 2004.

[Sko05] M. Skowron. A Web Based Approach to Factoid and Common-
sense Knowledge Retrieval. PhD thesis, Hokkaido University,
Sapporo, Japan, 2005.

[Syc98] Katia P. Sycara. Multiagent systems. AI Magazine, 10(2):79–93,
1998.

[V+07] Hannes Vilhjálmsson et al. The behavior markup language: Re-
cent developments and challenges. In Proceedings of the 7th In-
ternational Conference on Intelligent Virtual Agents (IVA), vol-

BIBLIOGRAPHY 82

ume 4722/2007 of Lecture Notes in Computer Science, pages 99–
111, Paris, France, September 2007. Springer Berlin/Heidelberg.

[XUL07] Feiyu Xu, Hans Uszkoreit, and Hong Li. A seed-driven bottom-
up machine learning framework for extracting relations of var-
ious complexity. In Proceedings of the 45th Annual Meeting of
the Association of Computational Linguistics, pages 584–591,
Prague, Czech Republic, June 2007. Association for Computa-
tional Linguistics.

	Diplomarbeits-Deckblatt.pdf
	rascalli-platform.pdf

