

Data Modeling of Multi-agent Systems
A comparison of UML-based and

Ontology-based approaches with special

focus on didactic skills for

ontology-based modeling

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Mag.rer.soc.oec

im Rahmen des Studiums

Informatikmanagement

eingereicht von

Min Liang

Matrikelnummer 0335324

an der

Fakultät für Informatik der Technischen Universität Wien

Betreuung:

Betreuer/Betreuerin: Univ.-Prof. Dr. Stefan Biffl

Mitwirkung: Univ.-Ass. Mag. Thomas Moser

Wien, 06.05.2009 ____________________ __________________

 (Unterschrift Verfasserin) (Unterschrift Betreuer)

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43/(0)1/58801-0 http://www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

http://www.tuwien.ac.at/

Abstract
Data modeling, the process of creating a data model by applying a data

model theory to create a data model instance, always plays a crucial role in
software engineering. Both UML (Unified Modeling Language) and ontology
are important data modeling languages which correspond to data model
theories in the field of software engineering and knowledge engineering. The
target of audiences of this thesis are model engineers and software engineers
who are interested in data modeling using either UML or ontologies, as well as
at software engineers with knowledge in the traditional data modeling area
who want to analyze the advantages and possible limitations of switching to a
fairly new data modeling approach.

UML is defined by the OMG as a graphical language for visualizing,
specifying, constructing, and documenting the artifacts of a software-intensive
system. The UML offers a standard way to describe a system's blueprints,
including conceptual elements such as business processes and system
functions as well as concrete elements such as programming language
statements, database schemes, and reusable software components.

An ontology is a formal representation of a set of concepts within a domain
and the relationships between those concepts. It is used to reason about the
properties of that domain, and may be used to define the domain. Three
general ontology languages are defined in context of semantic web, namely
OWL (Web ontology language), RDF (Resource description framework), RDF
Schema. Ontologies are widely used in artificial intelligence and the semantic
web, but a relative new research area regarding software engineering.

The goals of this thesis are a) to introduce the primary principles of UML
and Ontology; b) to present overviews of standard tools like Visual Paradigm
for UML and Protégé for ontologies; c) to show major differences between
these two modeling approaches regarding a use case scenario from
multi-agent based production automation simulation; d) The four major
research issues of this thesis are to evaluate the difference between data
modeling using either UML or ontologies, compare their dissimilar model
consistency checking capabilities, research the possibility of mapping UML to
OWL, and explore the revolution of UML and OWL; and e) to suggest didactics
skills for ontology-based modeling teaching improvement. In order to answer
these research issues, the overall data modeling process is performed using
an example in the field of multi-agent systems for production automation
simulation by means of an UML-based approach and an ontology-based
approach. After the implementation of those two approaches, both approaches
are evaluated regarding their visualization and expressions, consistency,
performance and additional functions approximately. This evaluation
characterizes and appraises the general features, advantages and limitations
of UML and Ontology respectively, and additionally a detailed evaluation result
is presented.

Zusammenfassung
Datenmodellierung ist der Prozess der Herstellung eines Datenmodells

unter Verwendung von Datenmodellierungstheorien. UML und OWL sind
wichtige Datenmodellierungssprachen bzw. Datenmodellierungstheorien im
Bereich von Software Engineering und Knowledge Engineering. Die
Zielgruppe für diese Arbeit sind Software und Modell Entwickler, die ihre
Erfahrung mit traditionellen Datenmodellierungsmethoden vertiefen möchten,
indem sie die Vorteile und möglichen Einschränkungen eines neuen,
Ontologie-basierten Datenmodellierungsverfahrens analysieren.

UML wurde als eine graphische Sprache für die Visualisierung,
Spezifikation, Gestaltung und Dokumentation der Artefakte von
Software-intensiven System definiert. UML bietet ein standardisiertes
Verfahren zur Beschreibung der Ausarbeitung eines Systems. Dies beinhaltet
konzeptionelle Elemente, z.B. Geschäftsprozesse und Systemfunktionen,
auch konkrete Elemente, z.B. Statements in Programmcode, Datenbank
Schemas und wiederverwendbare Software Komponenten.

Eine Ontologie ist eine formale Darstellung einer Reihe von Konzepten
innerhalb einer Domäne und der Beziehungen zwischen diesen Konzepten.
Ontologien werden verwendet um die logische Folgerungen über die
Eigenschaften einer Domäne abzuleiten und können verwendet werden um
eine Domäne zu definieren. Ontologies sind weitverbreitet im Bereich
künstliche Intelligenz und Semantic Web, aber auch in einem relativ neuen
Forschungsbereich hinsichtlich Software Engineering verwendbar.

Die Ziele dieser Arbeit sind a) die Einführung in die Grundprinzipien von
UML und Ontologien; b) ein Überblick über Standard Werkzeuge für die beiden
Datenmodellierungssprachen, nämlich Visual Paradigm für UML und Protégé
für Ontologien; c) das Herausarbeiten von grundsätzlichen Unterschieden
zwischen beiden Modellierungsansätzen hinsichtlich eines
Anwendungsszenarios aus dem Bereich der Multi-Agenten basierten
Simulation von Produktionsautomatisierungssystemen; d) die Evaluation der
Unterschiede zwischen Datenmodellierung mit UML oder Ontologien; e) der
Vergleich ihrer jeweiligen unterschiedlichen Prüfungsfähigkeiten von
Modellkonsistenz; f) zukünftige Verbesserungen bzw. Erweiterungen von UML
und OWL zu untersuchen; und g) didaktische Methoden für die Verbesserung
der Lehre im Bereich Ontologien vorzuschlagen.

Zur Beantwortung der Forschungsfragen wird ein umfassender
Datenmodellierungsprozess im Bereich der Multi-Agenten basierten
Simulation von Produktionsautomatisierungssystemen mit UML und
Ontologien durchgeführt. Beide Ansätze werden hinsichtlich ihrer
Visualisierungsmöglichkeiten und Ausdrücke, Konsistenz, Leistung und
zusätzlicher Funktionen evaluiert. Diese Evaluation charakterisiert und
bewertet die allgemeine Eigenschaften, bzw. Vorteile und Einschränkungen
von UML und Ontologien in einem detaillierten Evaluationsergebnis.

Eidesstattliche Erklärung
Ich versichere, dass ich die beiliegende Masterarbeit selbstständig verfasst,

keine anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie alle
wörtlich oder sinngemäß übernommenen Stellen in der Arbeit gekennzeichnet
habe.

Unterschrift

Table of Contents

1. INTRODUCTION...1

2. RELATED WORK ...5

2.1 IMPORTANCE OF DATA MODELING..5
2.2 PRINCIPLES OF DATA MODELING ...6
2.3 OBJECT-ORIENTED MODELING ..8
2.4 KNOWLEDGE MODELING...8
2.5 INTRODUCTION TO UML ...9

2.5.1 History...9
2.5.2 Definition...10
2.5.3 Diagram ..13
2.5.4 Architecture...16
2.5.5 Class Diagram ..17

2.6 INTRODUCTION TO UML TOOL VISUAL PARADIGM18
2.6.1 Overview...18
2.6.2 Features..19

2.7 INTRODUCTION TO ONTOLOGY ..20
2.7.1 History...20
2.7.2 Definition...21
2.7.3 Ontology language..22
2.7.4 OWL Sub-Languages ...22

2.8 INTRODUCTION TO ONTOLOGY TOOL PROTÉGÉ23
2.8.1 Overview...23
2.8.2 Features..24

2.9 INTRODUCTION TO MULTI-AGENT SYSTEM SIMULATION25

3. RESEARCH ISSUES ..26

3.1 EVALUATION OF UML AND OWL..26
3.2 MODEL CONSISTENCY CHECKING...26
3.3 MAPPING FROM UML TO ONTOLOGY ...27
3.4 EXTENSIONS OF UML AND OWL...27

4. USE CASE DESCRIPTION...28

4.1 MANUFACTURING AGENT SIMULATION TOOL.....................................28
4.2 USE CASE DESCRIPTION ..30

4.2.1 Business manager ..30
4.2.2 Plant manager ..32
4.2.3 Shop manager ..34
4.2.4 Operation manager ...35
4.2.5 System developer ...36

4.3 COLLABORATIONS AMONG THE ROLES..38

5. DATA MODELING FOR SAW WITH UML AND ONTOLOGY40

5.1 UML-BASED APPROACH ...40
5.1.1 ER Diagram for Business Manager.......................................40
5.1.2 ER Diagram for Plant Manager...42
5.1.3 ER Diagram for Shop Manager...44
5.1.4 ER Diagram for Operation Manager46
5.1.5 ER Diagram for System Developer47

5.2 ONTOLOGY-BASED APPROACH ..49
5.2.1 Business Manager ..50
5.2.2 Plant Manager ..52
5.2.3 Shop Manager ..54
5.2.4 Operation Manager ...57
5.2.5 System Developer...59

5.3 SIMILARITIES AND DIFFERENCES ...62
5.3.1 Visualization & Expression..62
5.3.2 Consistency ..63
5.3.3 Needed Effort..63
5.3.4 Additional functions...64

6. EVALUATION..66

6.1 VISUALIZATION & EXPRESSION..66
6.1.1 Evaluation table of common features....................................66
6.1.2 Description..66
6.1.3 Evaluation table of uncommon features................................68
6.1.4 Description..68
6.1.5 Conclusion ..70

6.2 CONSISTENCY ...71
6.2.1 Evaluation table of consistency...71
6.2.2 Description..71
6.2.3 Conclusion ..72

6.3 NEEDED EFFORT ...72
6.3.1 Evaluation table of needed effort ..72
6.3.2 Description..73
6.3.3 Conclusion ..74

6.4 ADDITIONAL FUNCTIONS ...74
6.4.1 Evaluation table of additional functions.................................74
6.4.2 Description..75
6.4.3 Conclusion ..75

7. DIDACTICS IN ONTOLOGY-BASED MODELING76

7.1 DEFINITION OF DIDACTIC ELEMENTS...76
7.2 STRUCTURE OF DIDACTICS MATERIAL...77

7.2.1 Overview of ontology ..77
7.2.2 Theory enhancement ..79
7.2.3 Ontology Tool Protégé ..80
7.2.4 Ontology-based Data Modeling...81

7.2.5 Comparison...82
7.2.6 Conclusion ..84

8. DISCUSSION..85

8.1 MODEL CONSISTENCY CHECK IN RECONFIGURATION..........................85
8.1.1 UML-supported reconfiguration life cycle..............................85
8.1.2 Ontology-supported reconfiguration life cycle87
8.1.3 Concrete Example ..89

9. CONCLUSION ..96

9.1 SUMMARY ...96
9.2 RESULTS...98
9.3 FUTURE WORK ..100

REFERENCES ..101

APPENDIX ..104

1. RDF/XML SOURCE CODES OF BUSINESS MANAGER104

List of Figures
FIGURE 1: OVERVIEW OF KNOWLEDGE MODEL [1]...9
FIGURE 2: UML 2.0 DIAGRAMS [3]...14
FIGURE 3: A SYSTEM'S ARCHITECTURE [11] ..16
FIGURE 4: AN EXAMPLE OF CLASS DIAGRAM [5] ...18
FIGURE 5: SCREENSHOT OF ENTITY RELATIONSHIP DIAGRAM IN VP [45]...............20
FIGURE 6: SCREENSHOT OF OWL CLASSES IN PROTÉGÉ [33]..............................24
FIGURE 7: OVERVIEW OF MAST TEST MANAGEMENT SYSTEM [19]29
FIGURE 8: MUTUAL COLLABORATIONS AMONG EACH ROLE39
FIGURE 9: ER DIAGRAM FOR BUSINESS MANAGER...40
FIGURE 10: ER DIAGRAM FOR PLANT MANAGER..42
FIGURE 11: ER DIAGRAM FOR SHOP MANAGER ...45
FIGURE 12: ER DIAGRAM FOR OPERATION MANAGER...46
FIGURE 13: ER DIAGRAM FOR SYSTEM DEVELOPER ..48
FIGURE 14: PART OF ONTOVIZ DIAGRAM FOR BUSINESS MANAGER........................50
FIGURE 15: THE WHOLE ONTOVIZ DIAGRAM FOR BUSINESS MANAGER51
FIGURE 16: PART OF ONTOVIZ DIAGRAM FOR PLANT MANAGER52
FIGURE 17: THE WHOLE ONTOVIZ DIAGRAM FOR PLANT MANAGER53
FIGURE 18: PART OF ONTOVIZ DIAGRAM FOR SHOP MANAGER55
FIGURE 19: THE WHOLE ONTOVIZ DIAGRAM FOR SHOP MANAGER56
FIGURE 20: PART OF ONTOVIZ DIAGRAM FOR OPERATION MANAGER......................57
FIGURE 21: THE WHOLE ONTOVIZ DIAGRAM FOR OPERATION MANAGER.................58
FIGURE 22: PART OF ONTOVIZ DIAGRAM FOR SYSTEM DEVELOPER........................60
FIGURE 23: THE WHOLE ONTOVIZ DIAGRAM FOR SYSTEM DEVELOPER...................61
FIGURE 24: EXAMPLE OF CONVERSION FROM UML ER DIAGRAM INTO ONTOLOGY'S

NOTATION ..82
FIGURE 25: UML-SUPPORTED QUALITY ASSURANCE...87
FIGURE 26: ONTOLOGY-SUPPORTED QUALITY ASSURANCE [38]89
FIGURE 27: DIFFERENCES BETWEEN UML AND ONTOLOGY-SUPPORTED QUALITY

ASSURANCE ..90

List of Tables

TABLE 1: THE EVALUATION TABLE OF COMMON FEATURES.....................................66
TABLE 2: THE EVALUATION TABLE OF UNCOMMON FEATURES.................................68
TABLE 3: THE EVALUATION TABLE OF CONSISTENCY FEATURES..............................71
TABLE 4: THE EVALUATION TABLE OF NEEDED EFFORT..72
TABLE 5: THE EVALUATION TABLE OF ADDITIONAL FUNCTIONS................................74
TABLE 6: COMPARISON OF THE THREE SCENARIOS BASED ON UML- AND

ONTOLOGY-APPROACH ...92
TABLE 7: CONCLUSION OF EACH STRENGTH AND WEAKNESS BASED ON UML- AND

ONTOLOGY-APPROACH ...94

1. Introduction

The first section introduces a brief motivation of the whole project and
states the importance and primary principles of data modeling based on UML
and Ontology. Additionally, it represents the outline of the thesis structure.

Motivation

High quality software is not only built to meet customer’s requirements; but
also an “artifact” with high reliability, stability and extendibility. Moreover,
on-time and on-budget delivery is always a key point for every software
developer and project manager to consider.

Software quality has to be controlled not only at the beginning of whole
software lifecycle, but also be checked in multiple phases during the whole
software lifecycle. As emphasized in many software engineering books, a
more clear, accurate and detailed customer requirements analysis will more
likely lead to a final success. In order to achieve this, it is very important to
have a special tool for every developer to build the bridge between real world
and digital systems before the real development starts.

One of the most popular ways to achieve this goal is the usage of data
modeling. Data modeling is the process of creating a data model by applying a
data model theory to create a data model instance, it often used to define and
analyze data requirements for business processes of a system [5]. It acts as a
framework and offers a better platform to create opportunities for simplification,
reduction of monitoring and better risk management [11] [41].

A data model theory represents the formal description of the way to structure
and store the data, it usually contains three components, the structural part
represents the main data structure, such as entities and objects which are
required to model databases; the integrity part represents the constraint rules
which integrate the main data structure structurally; the manipulation part
represents the operations which can be used to update and query the data of
the structural part in the database [22].

The data model instance is always applying the data model theory in order
to create a concrete data model instance for some certain applications [2].
Each data model instance has three types normally, conceptual data model,
logical data model and physical data model. The conceptual data model
represents the domain concepts of business requirements, contains mainly
entities, attributes and relationships between entities within a domain. The
logical data model represents the technology of data manipulation, such as
data tables, XML files etc. The physical data model represents the physical
structure of database that stores the data, such as CPU etc [2].

This thesis aims at model engineers and software engineers who are

1

interested in data modeling using either UML or ontologies, as well as for
software engineers with knowledge in the traditional data modeling area who
want to analyse the advantages and possible limitations of switching to a fairly
new data modeling approach. This thesis provides both model engineers and
software engineers to learn the theories and practical experiments of UML and
ontology-based data modeling, engineers can benefit from getting the
research evaluation results of UML and ontologies in various aspects in order
to integrate and employ two data modeling approaches more wisely and
accurately.

There exist several data modeling languages and support tools based on
diverse data model theories. Both UML (Unified Modeling Language) and
ontology are important data modeling languages correspond to data model
theories in the field of software engineering and knowledge engineering. The
UML (Unified Modeling Language) is a standardized general-purpose
modeling language defined by the OMG in the field of software engineering [2].
It offers an object-oriented way to write a system's blueprints, including
conceptual elements such as business processes and system functions as
well as concrete elements such as programming language statements,
database schemas, and reusable software components [3] [11]. UML is very
easy and good at modeling and documenting the system, well understandable
for software engineers to read and denote, but it lacks of formality which
makes it hard for machine to process and ensure models consistent
automatically.

Another popular approach for data modeling is ontology. The concept of
ontologies in computer science is defined as a formal representation of a set of
concepts within a domain and the relationships between those concepts.
Ontology languages are formal languages used to construct ontologies. They
allow the encoding of knowledge about specific domains and often include
reasoning rules that support the processing of that knowledge [27]. Three
general ontology languages are created in context of semantic web, like OWL
(Web ontology language), RDF (Resource description framework)/RDF
Schema, DAML+OIL which are the current and prevenient releases of
ontology languages. Ontology has a large logical expressiveness and is a well
formal specification language for building domain knowledge, enables
automated validation and consistency checking in the field of knowledge
engineering, nevertheless, its complex and formal representations are often
difficult for engineers to learn and understand [12].

In this work, the scenario is to establish two data models of automation
production processes for different kinds of distributed agents in a
manufacturing plant by means of UML and ontologies respectively. Suppose
that a corresponding simulation system needs to be built for its monitoring and
controlling, this production line could be used separately by each kind of
various agents in this plant. At the first sight, the inner infrastructure and
architecture seems to be very complex to simulate. Therefore and in order to

2

simplify the engineering process, it is necessary for designers to design a data
model first before starting to build the production line.

Once the production line is built and its functions don't match the
customer's requirements well, it would certainly lead to severe problems. It
would be almost impossible to make any large changes again, even a slight
modification would certainly cost much money and delay the overall delivery
time. In the worst case, a complete redesign of the data model and rebuild of
the production line is necessary. To summarize, with the help of the data
modeling languages, this scenario could be better observed through analyzing
all the differences of UML and ontologies.

The goals of this thesis are a) to introduce the primary principles of UML,
such as meanings and notations of building elements, a set of diagram types
etc and Ontology such as meanings of primary building elements, three
sublanguages of ontology language and three variations of OWL etc b) to
present overviews of standard tools like Visual Paradigm for UML, such as
overviews of all functions and specific features of the Entity Relationship
Diagram while Protégé for ontologies such as overviews of all functions and
specific features of the Protégé-OWL editor for data modeling; c) to introduce
the characteristics of MAS, the components of test management tool MAST
and the similarities and differences of MAST and the employed tool SAW in
this project, analyze the main responsibilities of each kind agent, and show
major differences between these two data modeling approaches regarding the
use case scenario from multi-agent based production automation simulation; d)
the four major research issues of this thesis are to evaluate the differences
between data modeling using either UML or ontologies, compare their
dissimilar model consistency checking capabilities, research the possibility of
mapping UML to OWL, and explore the revolution of UML and OWL; and e) to
suggest didactics skills for ontology-based modeling teaching improvement,
like the creation of each concrete lecture unit and propose an optimal method
that can help the UML engineers to under and command OWL in an efficient
way. In order to answer these research issues, the overall data modeling
process is performed using an example in the field of multi-agent systems for
production automation simulation by means of an UML-based approach and
an ontology-based approach. After the implementation of those two
approaches, both approaches are evaluated regarding their visualization and
expressions, consistency, performance and additional functions approximately.
This evaluation characterizes and appraises the general features, advantages
and limitations of UML and Ontology respectively, and additionally a detailed
evaluation result is presented.

Thesis Structure

The remainder of this thesis is structured as follows: Section 2 "Related
work" introduces the primary principles of UML and Ontology, overviews of the
standard tool Visual Paradigm for UML and Protégé for Ontologies, and

3

introduction to multi-agent system simulation. Section 3 "Research Issues"
discusses and defines four meaningful and potential issues. Section 4 "Use
case description" defines five involved roles of this example in the field of
production automation and their main functions and properties. Section 5
"Data modeling" demonstrates the overall data modeling process of a concrete
example in the field of production automation based on UML and ontology
approaches. Section 6 "Evaluation" compares and analyzes their advantages
and disadvantages respectively, as well as indicates a detailed evaluation
result. Section 7 “Didactics in ontology-based modeling" places emphasis on
the didactic teaching of Ontology in high schools and universities and an
optimal way for conversion from UML diagrams to Ontology notations. Section
8 "Discussion" offers a feasible solution to the above inquired research issues.
Finally, section 9 "Conclusion" concludes and gives a future outlook.

4

2. Related work

The second section presents the related work necessary for this project,
such as importance and primary principles of data modeling and a brief
introduction to object-oriented modeling and knowledge modeling etc which
make through the way to understand UML and Ontology better and help to
build foundation steps for further research issues.

2.1 Importance of Data Modeling

One principal reason for the usage of data modeling which has been
mentioned before is to offer a simplification of the complicated reality and helps
software engineers better understand the system which is going to be
developed. Therefore, it is relevant to outline the importance of the data
modeling before starting with this project. Following are the four main aims that
designers and software engineers should achieve in data models in general.

System visualization

A diagram in data modeling provides a vital display of customer's
requirements to developers, which makes it possible for them to evaluate how
much the real system will satisfy the customer’s needs at an early stage of
development.

For example, if we would like to decorate our house, we would probably like
to draw a draft first, indicate the colors and each room style in order to make
the artisan know our needs and favors more exactly [11].

In UML, there exist several structure diagrams which are used for system
visualization: like Class diagram, Composite structure diagram, Deployment
diagram, Object diagram and Package diagram etc. The main features of UML
diagrams will be introduced in more details in section 2.5.3.

System specification

When software engineers consider building up the data model, some
indispensable sections like system architecture, functional and non-functional
behaviors of the whole software system should be cleared up. In this way, the
data model can also be used as system specifications according to the
customer’s requirements. It can also facilitate the customers to verify the
system specifications easily. Any changes or improvements could be carried
out on the basis of the data models [11].

5

System template

System templates, also called prototypes, are much closer to the real
system. They provide a precise guidance in constructing a system. When data
modeling is concrete enough, system template can be set up to help both
software engineers and customers to minimize the gap of requirements
understood between each side. For example, a stereoscopic globe supports
travelers a much better guide than a flat world map [11].

Documentation

There is a saying "a picture is better than thousand words". Data modeling
provides more clear and accurate information than words, even only with a
simple diagram. Sometimes, there exists only one way to demonstrate results
and decisions by means of diagrams or formal languages. This kind of
formalization could offer a unique and accurate solution which could be
understood by experts without a word of explanation [11].

2.2 Principles of Data Modeling

As the long history of applying data modeling suggests the following four
principles which are helpful to create an accurate modeling in an efficient way.

Precise model selection

Model selection is one of the difficulties in data modeling. Different choices
on model selections will lead to different impacts on the whole project. The
appropriate model which software engineers choose, will offer their insight into
the correct solution, even may help finding the solution of the most challenging
development problems. Otherwise, the wrong chosen models will mislead
software engineers far away from the success, spending more waste time in
the wrong direction.

In software engineering, the chosen models can also present or greatly
affect the software engineers' views. Suppose that during the development life
cycle of the system, the choice of business analysts would probably be the use
case diagrams and class diagram models, while the choice of object-oriented
developers would be the object-oriented models for the system etc [11].

Abstraction

Creating data models in an abstract way means to top-down derive logical
data models from a subject, which normally all people can understand. This
kind of method is opposite to the way of bottom-up creation of data models.
Bottom-up models are often observed as the result of a reengineering effort,
which usually start with already existing data structures forms.

A system model may be created and expressed at different levels of

6

precision, starting with the higher levels and adding more levels with more
detail as more is understood about the system.

The best kinds of models are that those could be viewed at several levels
depending on different roles or different situations. They could only show some
information necessary for a certain role, but hide all the other unnecessary
information. For instance, an analyst or an end user will rather focus on
specifications; while a developer wants to focus on realizations.

In our example, it is relevant to establish different models for different
distributed agents which could execute different independent tasks in most
cases. To merge the different tasks at the beginning of design will increase the
complexity of the system and make the software developers more confused
[11] [15].

Connection to the reality

The basic requirement of data modeling is to bridge the real world with the
computer system. Therefore, the best data models should have a connection
to the reality. Since data modeling should also abstract the concepts of the real
world, or even more than representing the reality, it should also simplify the
reality, anyway, it should make sure not to hide any important details of reality
[11].

If the designed data models do not correspond to the reality, this means
that the design is not feasible. It would make no more sense to carry out the
building processes of the data models. In this project, a data model of all the
involved roles in production automation system will be created. All basic
information of the production automation as well as the special requirements
should be ensured to be included into our consideration [11].

Structured Analysis

For a simple and trivial system, it is easy to create a corresponding and
accurate model; nevertheless, for every nontrivial system is not easy to make it
happen, the best approach is to combine a set of nearly independent models.

There are three main view types that could support a structured analysis of
the system. The primary view is the functional view which consists of the
architectural elements that specifies the system's functionalities, providing the
primary structures of the solution, such as use case descriptions. The data
view, also called a static structural view, consists of entity relationship
diagrams, etc. The dynamic view consists of e.g. state chart diagrams, which
defines for instance, what happens under certain conditions [15].

In this project, in order to understand the system architecture well, the
primary view is required at least, primary view of each agent which helps
exposing the requirements of the system.

7

2.3 Object-oriented Modeling

UML is one of the most powerful representative methods for
object-oriented modeling. Here explains a close view of some benefits to
object-oriented modeling.

In software engineering, there are two common approaches: either to
create a model from an algorithmic perspective or from an object-oriented
perspective.

The object-oriented perspective helps software engineers to address the
complexity of a problem domain by considering the problem not as a set of
functions that can be performed, but primarily as a set of related, interacting
objects. The modeling task is specifying for a specific context, those objects
and their respective set of properties and methods, shared by all objects
members of the class [28].

The main building element of the object-oriented modeling is either an
object or class. An object is a unique thing, generated from the vocabulary of
the problem domain, each object has its unique identity; states represents the
attributes of the object, and behavior represents the methods operated on the
states of an object. A class is a description of a group of objects which have the
same set of states and behaviors. The relationships among classes called
class hierarchy and inheritance, should be also modeled [11] [28].

2.4 Knowledge Modeling

Knowledge modeling is a systematic approach of representing information
and logic representations in a digitally reusable format for purpose of capturing,
sharing and processing knowledge to simulate intelligence. Ontologies share
or reuse the knowledge base that can be used as the basis for knowledge
acquisition tools for gathering domain knowledge or for generating databases
or expert systems.

Knowledge models contain three knowledge levels: task knowledge,
inference knowledge and domain knowledge. Correspondingly, there are three
steps to create knowledge modeling, i.e., knowledge identification, knowledge
specification and knowledge refinement [1].

In knowledge identification which plays the preparation stage for realizing
the customers' requirements, all useful information sources like the task
knowledge and the domain knowledge should be identified. Since the task
knowledge is often goal-oriented, potential functional components should be
decomposited and listed in a hierarchical structure. In additional, domain
schema and knowledge base of domain knowledge, such as domain types,
domain rules and domain facts should be also determined [1].

8

Figure 1: Overview of Knowledge Model [1]

Knowledge specification is defined as the construction of a specification of

the knowledge model. The knowledge developer could start with the
development of the task knowledge and domain knowledge, and later link both
with the inference knowledge, which represents the basic information
reasoning steps. The knowledge base representing the domain knowledge
could be finished in the next step [1].

Knowledge refinement is defined as the step of validating and completing
the knowledge model. The knowledge base of the domain knowledge should
be completed by inserting a set of knowledge instances. The validation is to
check whether the knowledge model could fulfill the defined goals by
simulations [1].

2.5 Introduction to UML

UML is one of the most popular specifications issued by the Object
Management Group (OMG). The following will introduce about UML's history,
its definition, diagrams and other more detail knowledge.

2.5.1 History

In about 1990s, more than 50 methods appeared in the software market at
that time, each of them has its own set of notations and processes. However,
none of them was able to provide a complete satisfaction to users. In industry,
people always would like to require a standard method and approach to
analysis their requirements [25].

The development of UML started in late 1994, three designers were Grady
Booch, Jim Rumbaugh, and Ivar Jacobson. They were trying to unify their
three well recognized methods in the world at that time; which were

9

Rumbaugh's OMT (Object Modeling Technique), Grady Booch's Booch
method, and Jacobson's OOSE (Object Oriented Software Engineering). Each
method had its own value and emphasis, such as OMT was powerful in
analysis aspect and weaker in the design, which was more suitable for
object-oriented analysis (OOA). Booch's method was relative strong in design
and weaker in analysis aspect, which was more suitable for object-oriented
design (OOD). By contrast, OOSE was stronger in behavior analysis and had
shortcomings in the other areas [25].

In 1996, a few organizations realized the large strategic value and impact
of UML on their business. Later the Object Management Group (OMG)
provided A Request for Proposal (RFP), and the achievement of UML version
1.0 was successful in 1997 [25].

The current version of UML 2.1.2 specification concludes two
complimentary parts: the UML infrastructure specification defines the
foundational language of a core meta model that specifies the abstract syntax
of the UML, such as the set of UML modeling concepts, their attributes and
relationships, as well as the combining rules. The UML Superstructure
specification defines the notation and semantics for diagrams and their model
elements, how the UML concepts are going to be realized by computers [5].

2.5.2 Definition

The official OMG (Object Management Group) proposed a standard and
comprehensive definition for UML: "The Unified Modeling Language (UML) is a
graphical language for visualizing, specifying, constructing, and documenting
the artifacts of a software-intensive system. The UML offers a standard way to
write a system's blueprints, including conceptual things such as business
processes and system functions as well as concrete things such as
programming language statements, database schemas, and reusable software
components" [24].

UML consists of three basic building blocks: Things, Relationships and
Diagrams. Things are component parts of the UML, Relationships get the
Things together and Diagrams are the mutual groups of related Things.

2.5.2.1 Things

Things are generally used to write well-formed models. There are four
species of things basically extended from object-oriented models: Structural
Things, Behavioral Things, Grouping Things and Annotational Things [11].

Structural things

The structural things represent the nouns of the UML models, play the
static roles in a model, representing either the conceptual or physical elements

10

[11]. They are the most commonly used elements in data modeling, seven
kinds of Structural Things totally.

 Class

A class is a collection of a set of objects with the same attributes,
operations, and relationships. This concept comes from
Object-Oriented Analyzing and Object-Oriented Design. It focuses on
the presentation of the basics attributes and the relationships of the
objects in the real word, in additional abstract of the common objects. It
is rendered as a rectangle with its name, attributes, and operations etc
[11].

 Interface
An interface gathers a set of operations that define a service of a class
or components. An interface only specifies the concepts of a set of
operations; these operations can only be implemented in a specified
class. It is rendered as a circle along with its name [11].

 Collaboration
A collaboration illustrates the cooperative interactions between each
role in a society. Collaborations have both structural and behavioral
dimensions in general. It is rendered as an ellipse with dashed lines,
including its name [11].

 Use case
A use case is a description of system functions, which generate results
to a certain actor. It shows the sequence of actions of the system,
without a detail internal system structure. The functions described by
use case should be a complete process, and during the creation of use
case, users can find undefined classes and precise function sequences,
therefore creation of use case is a very important part in data modeling.
In UML it is rendered as an ellipse with solid lines, including its name
[11].

 Active class
An active class contains active objects owning one or more threads that
initiate the control activity. It is rendered like as a rectangle with heavy
lines, including its name, attributes, and operations [11].

 Component
A component is a modular and replaceable part of a system that
encapsulates such as classes, interfaces and collaborations. Besides,
Java Beans is a good example of Component. It is rendered as a
rectangle with tabs, including its name [11].

 Node
A node is a computational resource always with memory and
processing capability that represents the physical elements applied at
run time. A set of components can be interconnected through
communication paths. It is rendered as a cube with its name [11].

11

Behavioral things

Behavioral things represent the verbs of UML models, play the dynamic
roles in a model, representing behaviors over time and space. There are two
species of Behavioral things: Interaction and State machine [11].

 Interaction

An interaction is a behavior that depicts a few of messages
communicated among objects in a defined society in order to achieve a
certain task. It comprises other elements, such as messages, action
sequences, and connections. It is rendered as a directed line with the
name of its operation [11].

 State machine
A state machine is a behavior that describes all sequences of an object
or an interaction' states reacting to events within its lifetime. It
comprises other elements, such as states, transitions, events, and
activities. It is rendered as a rounded rectangle with its name and
substates [11].

Grouping things

Grouping things play the connected roles of UML models. There is only
one species Grouping things: Package [11].

 Package

A package groups for elements or other packages with certain purposes
packing into groups, providing a hierarchical order. A package can
comprise Structural things, like classes, objects and use cases etc;
Behavioral things, and other Grouping things. It is rendered as a tabbed
folder, with its name and contents. Other variations of packages are
existed, such as frameworks, models, and subsystems [11].

Annotational things

Annotational things play the interpretive roles of UML models. One species
Annotational things: the Note can be applied for elements in a model to display
with comments and constraints etc [11].

 Note

A note is a symbol for an element to display or illustrate comments and
its constraints with a textual or a graphical comment. It is rendered as a
rectangle with a dog-eared corner [11].

12

2.5.2.2 Relationships

UML is especially good at describing relationships between classes. There
are four kinds of relationships below: Dependency, Association, Generalization
and Realization.

Dependency

A dependency is a semantic connection between two things, which
includes class with class, package with package, use case with use case,
model with model and so on. The change to the independent thing may lead to
the change of the dependent thing. It is rendered as a dashed line, the directed
arrowhead indicates the dependent thing [11].

Association

An association is a set of structural connections among objects, especially
different parts inside component, class and objects. The structural relationship
between a whole and its parts called aggregation. It is rendered as a solid line,
with other notations in most cases, for example multiplicity and role names
[11].

The difference between “Dependency” and “Association” is that objects with
“Dependency” relationship still can exist without each other, but objects with
“Association” cannot.

Generalization

A generalization is a generalization connection describes in which objects
of the specialized element are substitutable for objects of the generalized
element. It is rendered as a solid line with a hollow arrowhead pointing to the
generalized element [11].

Realization

A realization is a semantic connection between two classifiers normally.
One classifier specifies and assigns a task, so that another classifier is
supposed to implement the assigned task. It is rendered as a dashed line with
a hollow arrowhead pointing to the classifier implementer [11].

2.5.3 Diagram

A diagram provides the graphical notation of a set of components, groups
interrelated collections of things and relationships, rendered as a connected
graph of vertices (things) and arcs (relationships).

UML 2.0 has 13 types of diagrams that can be categorized hierarchically in

13

http://en.wikipedia.org/wiki/Category:UML_diagrams

the following figure 2.

Figure 2: UML 2.0 Diagrams [3]

Six types of Structure Diagram represent static application structures;
three types of Behaviour Diagram represent dynamic behaviours; and other
four kinds of Interaction Diagram represent different aspects of interactions.

2.5.3.1 Structural Modeling Diagrams

Structure modeling diagrams are often used to define the static
architecture of a system. They model all the elements that make up a system,
for instance, the classes, attributes, interfaces and the relationships between
elements [37].

 Class diagram

Class diagrams define the classes, attributes, operations and
relationships between classes in general that required to construct a
system [37].

 Composite Structure diagram
Composite Structure diagrams define an overview of an element's
internal structure with special focus on its inner details, and
relationships between variables [37].

 Component diagram
Component diagrams define the components and their dependencies
that consist of a complex system and drive the system run [37].

 Deployment diagram
Deployment diagrams model the physical hardware, system

14

http://www.sparxsystems.com/resources/uml2_tutorial/uml2_classdiagram.html
http://www.sparxsystems.com/resources/uml2_tutorial/uml2_compositediagram.html
http://www.sparxsystems.com/resources/uml2_tutorial/uml2_compositediagram.html
http://www.sparxsystems.com/resources/uml2_tutorial/uml2_componentdiagram.html

environment and other significant artifacts applied to real-world settings
[37].

 Object diagram
Object diagrams specify the dependencies within instances of a
system's structure at a particular run-time [37].

 Package diagram
Package diagrams define the dependencies among the Grouping things
by means of dividing the system into logical packages [37].

2.5.3.2 Behavioral Modeling Diagrams

Behavioral modeling diagrams comprise the behavioral features of
functionalities and business process among components [37].

 Activity diagram

Activity diagrams define the overall business workflow of the
components in a system, including the significant decision points and
actions [37].

 Use Case diagram
Use Case diagrams define the functionalities and relationships of a set
of actors, including requirements and constraints in the context of
scenarios [37].

 State Machine diagram
State Machine diagrams define the possible states or events of a
model's behaviors and the specific conditions or transitions that may
trigger the variation of states [37].

2.5.3.3 Interactive modeling Diagrams

Interactive modeling diagrams are a subset of behavioral modeling
diagrams, with the focus on tracking the workflow of control and interactions
among the components [3].

 Sequence diagram
Sequence diagrams define the communicative sequences of messages
among components in accordance with their life spans [37].

 Communication diagram
Communication diagrams define the communicative sequences of
messages among components at run-time, providing a combination of
classes, sequence and use case diagrams [3] [37].

 Interaction Overview diagram
Interaction Overview diagrams combine each activity diagram with the
decision points in a workflow [37].

 Timing diagram

15

http://www.sparxsystems.com/resources/uml2_tutorial/uml2_usecasediagram.html
http://www.sparxsystems.com/resources/uml2_tutorial/uml2_sequencediagram.html
http://www.sparxsystems.com/resources/uml2_tutorial/uml2_communicationdiagram.html
http://www.sparxsystems.com/resources/uml2_tutorial/uml2_interactionoverviewdiagram.html
http://www.sparxsystems.com/resources/uml2_tutorial/uml2_interactionoverviewdiagram.html

Timing diagrams are a kind of interaction overview diagrams, providing
especially the timing constraints of a component and the corresponding
interactions [3] [37].

2.5.4 Architecture

UML provides various perspectives for analyzing system architecture.
Among them there are five main views, such as Use case view, Design view,
Process view, Implementation view and Deployment view. Each view has its
own special focus on the view point of the system's structure.

Figure 3: A system's Architecture [11]

Use case view

The use case view of a system provides its end users, analysts and testers
an overview of use cases that describe the architecture and functionalities of
the system. A use case view always illustrates a typical interaction between a
user and a software system, captures a functionality of the system to be used
by a user, and shows a typical user goal planed to be achieved.

A use case view may contain use cases, actors, classes, use class
diagrams and object diagrams for demonstration of its static aspects; state
diagrams, sequence diagrams and collaboration diagrams for demonstration
of its dynamic aspects [11].

Design view

The design view of a system collects all the parts of elements, such as
classes, interfaces and so on that form the vocabulary of the requirements of
the system and its proposals. This view primarily generalizes the functional
requirements of the system required by its end users planed to be realized.

A design view may contain class diagrams, and object diagrams for
demonstration of its static aspects; state diagrams, interaction diagrams and

16

http://www.sparxsystems.com/resources/uml2_tutorial/uml2_timingdiagram.html

activity diagrams for the demonstration of its dynamic aspects [11].

Process view

The process view of a system contains the threads and processes that
ensure the system's concurrency and synchronization mechanisms. This view
primarily guarantees the performance, scalability, and maximal throughput of
the system.

A process case view is familiar with the design view, but emphasizes on
the active classes that depict the threads and processes [11].

Implementation view

The implementation view of a system depicts the way how components
and code files are gathered to assemble the physical system. This view
focuses on the configuration management of the system mainly, variations to
combine independent components together working on the system.

An implementation view may use component diagrams for demonstration of
its static aspects; interaction diagrams and state diagrams for demonstration of
its dynamic aspects in common [11].

Deployment view

The deployment view of a system collects the nodes that construct the
system's hardware topology. This view illustrates the connections of various
devices or parts of the system involved in the environment of the physical
system installed.

A deployment view may contain nodes, artifacts and deployment diagrams
for demonstration of its static aspects; interaction diagrams and state diagrams
are usually used for demonstration of its dynamic aspects [11].

2.5.5 Class Diagram

Since class diagram plays a relevant role in UML diagrams and will be
applied for a wide range of pragmatic applications in data modeling. Here will
present a brief introduction of the class diagram.

A class diagram is a special kind of structural modeling diagrams, it shows
the static structure of the system. The essential elements of the class diagram
include the system's classes, their attributes, operations and relationships
between classes.

A class is usually made up of three elements, a class name, attributes, and
operations. The first stack of the class diagram's rectangle is the class name.
The second stack is for attributes that state the data properties of the classes,
including attribute names, type, default value and visibility. The third stack
contains operations that depict the functionalities for the objects of the classes,

17

including operation names, parameters names, parameter types, parameter
visibilities, and return types [8].

There are several kinds of relationships, for example, instance level
relationship includes external links, association, aggregation, and composition
etc; class level relationship includes generalization and realization etc; general
relationship includes dependency and multiplicity [8].

Figure 4: An example of class diagram [5]

2.6 Introduction to UML Tool Visual Paradigm

Visual Paradigm is a powerful and very popular UML tool, I have chosen
this tool to implement the project. Therefore here will present a concise
overview of Visual Paradigm and features of creating ER (Entity-Relationship)
diagrams.

2.6.1 Overview

Visual Paradigm is a powerful, cross-platform and yet the most
easy-to-use visual UML modeling and CASE tool. It is especially designed for
the following actors, such as software engineers, system analysts, business
process analysts, and system architects. Visual Paradigm is developed by
Visual Paradigm International Ltd. from Hong Kong, China, and it is becoming
more and more popular all over the world with a rapid growth these years [43].

This tool mainly focuses on providing a reliable data modeling and analysis
tool for object-oriented system. Visual Paradigm supports the latest Java
standard and UML diagrams, moreover, it can be integrated with other

18

software develop tools, such as Eclipse and IBM WebSphere.
In the new version of Visual Paradigm, users can use custom picture to

replace the traditional UML symbols, O/R Mapping Diagrams, in order to
improve the diagram support of Robustness. The latest version of Visual
Paradigm supports the new deployment of UML up to 2.1 version. Visual
Paradigm enables the modeling in visualization display in order to fulfill the
requirements of today's software technology and communications [43].

Visual Paradigm supports various software development languages in
Code Generation and Reverse Engineering as well as on programming
languages Java, C++, .NET, PHP, XML Schema and so on. Visual Paradigm
provides Smart Development Environment and DB Visual ARCHITECT for
many main software development IDEs, like Eclipse, IntelliJ IDEA,
NetBeans/Sun ONE, JBuilder, JDeveloper, and Weblogic Workshop [44].

Visual Paradigm provides a synchronization support with Java code. From
Visual Paradigm, Java code can be generated based on the model and
establish models without Java code. Any changes occurred in the existing
codes can trigger the change of model, vice versa [44].

Visual Paradigm provides fast and convenient methods at a whole
software development process from creation of UML diagrams for data
modeling till code generation in different IDEs. This solution is much better
than the traditional Model-Code-Deploy software development process [44].

2.6.2 Features

Visual Paradigm for UML offers a wide range of functionalities in various
aspects, for instance, UML Modeling, Database Modeling, Object-Relational
Mapping, Interoperability, IDE Integration, Requirement Modeling, Business
Process Modeling, Team Collaboration, Code Engineering and Documentation
Generation [44].

For creating an Entity Relationship Diagram by means of Visual Paradigm,
there are a few ways available, such as Creating Data Model, Reverse
Database Engineering, Creating Array Table in Data Model, Creating Partial
Table in Data Model, Copying SQL Statements, Mapping Data Model to Object
Model, Mapping Data Model to Enterprise JavaBeans Model and so on [46].

Regarding the main way Creating Data Model, Visual Paradigm offers
some other possible features, for instance, creating a new entity element to the
ERD, modifying the entity specification, adding new column to the entity,
adding relationship to the entities, and editing relationship specification as well
[46].

For further detailed information, please see the reference [43] [44].

19

Figure 5: Screenshot of Entity Relationship Diagram in VP [45]

2.7 Introduction to Ontology

The following introduces more about ontology's history, definition, three
variations of ontology languages, such as OWL, RDF/RDF Schema and
DAML+OIL. In additional, three sublanguages of most popular ontology
language OWL and a brief overview of the standard tool Protégé.

2.7.1 History

The term Ontology was first originated from the philosophy, the Greeks
raised the question "what is the essence of the things through the changes?"
One Greek philosopher Aristole created a set of categorizations for being,
such as substance, color, relation, quantity, and state etc. Those
categorizations help to discover the changes of the things, this theory was
approved until the eighteenth century. In the beginning of 1990s, Tom Gruber
has changed the concepts of an ontology from philosophy into a technical term
by defining the ontology as a formal specification of concepts [48].

The relevant differences between the philosophical term "Ontology" and
the technical term "Ontology" in computer science are that the technical term
"Ontology" is a machine readable language, it should be also more specific
than the philosophical term. Furthermore, the reusable and sharable features

20

of the technical term "Ontology" are more essential than the philosophical
term.

In recent years, Ontologies have been widely applied in such areas as
software engineering, artificial intelligence, knowledge engineering and
information retrieval etc [4].

2.7.2 Definition

There is a standard and comprehensive definition for the ontology from the
view of an ontology engineer. "An Ontology is a formal, explicit specification of
a shared conceptualization. Conceptualization refers to an abstract model of
some phenomenon in the world by having identified the relevant concepts of
that phenomenon. Explicit means that the type of concepts used, and the
constraints on their use, are explicitly defined. Formal refers to the fact that the
ontology should be machine-readable. Shared reflects the notion that an
ontology captures consensual knowledge, that is, it is not private of some
individual, but accepted by a group" [4].

The followings represent the four main components of an ontology.

Classes

Classes represent a set of concepts that make up to define a certain
domain. Each class contains a few instances. Classes should be listed in a
taxonomy, namely superclass-subclass hierarchy. Generally, subclasses are
defined to derive from subclasses, for instance, the class "Child" is a subclass
of the class "People" [4].

Relations

Relations, also called Properties, represent a set of connections between
concepts in the domain. They are usually demonstrated as binary relations, in
a word to say, Relations bind two instances together. For instance, the Relation
"hasChild" can link the class "Father" to the class "Son" [4].

There are three types of Properties: Object properties, Datatype properties
and Annotation properties, which the first two are the main types. Nevertheless,
the difference is easy to discover. Object properties bind an instance to
another instance while Datatype properties bind an instance to an XML
schema or an RDF schema. Annotation properties help to insert metadata
information to classes, instances and Object/Datatype properties [4].

Formal axioms

Formal axioms represent the formal logical rules that describe domains in
an ontology. They help to check and ensure the consistency of the ontologies.
Furthermore, they are also helpful for concluding new knowledge [4].

21

Instances

Instances represent individuals or instances of classes in a certain domain.
For example, an instance of the class "Person" is the instance "Mary" [4].

2.7.3 Ontology language

Till now there are various ontology languages available, the followings will
introduce three common ontology languages which two of them has appeared
in ontology's history and one is currently dominant: OWL, DAML+OIL, and
RDF, DRF Schema.

OWL

The OWL (Web Ontology Language) is a knowledge representation
language proposed by the World Wide Web Consortium for defining web
ontologies. OWL ontologies are always denoted in RDF/XML syntax, it
facilitates the machine read and understand the web information better. OWL
has three expressive sub-languages: OWL Lite, OWL DL, and OWL Full. This
technology is now currently wide used in the Semantic Web [36].

RDF/RDF Schema

Both RDF (Resource Description Framework) and RDF Schema are
lightweight meta modeling languages using URI and XML technologies for
knowledge exchange in the Semantic Web. Moreover, RDF Schema is an
extension of RDF, working to structure RDF resources, such as classes and
properties. DAML+OIL has replaced RDF and RDF Schema later by providing
more expressiveness [6] [26].

DAML+OIL

DAML is also an language for defining ontologies, it was created as an
extension of RDF and XML in order to provide complicated classifications and
properties. The latest release is DAML+OIL, congregates the both features.
DAML stands for DARPA Agent Markup Language while OIL stands for
Ontology Interface Layer. However, OWL has replaced DAML+OIL later [40].

2.7.4 OWL Sub-Languages

There are three sub-languages of Web Ontology Language (OWL): OWL
Full, OWL DL and OWL Lite. OWL Lite is the least comprehensive language;
OWL DL can be viewed as an extension of OWL Lite, OWL DL is the average
comprehensive one; OWL Full is the most comprehensive variant, it can be
viewed as an extension of OWL DL [13].

22

OWL Full

OWL Full guarantees users to take advantage of the maximum
expressiveness of OWL. However, it is not possible to run the logic
computation to verify the completeness, since no reasoning software is strong
enough to support all features of OWL Full [13] [21].

OWL DL

OWL DL is less expressive than OWL Full, but it contains all OWL
structures. Additionally, DL stands for Description Logics that is Description
Logics are one part of first-order predicate logics that enable computational
completeness and decidability. Furthermore, it is also able to verify
inconsistencies and ensure the correct classification hierarchy in an ontology
automatically [7] [13] [21].

OWL LITE

OWL Lite is the simplest expressive sub-language with lower formal
complexity. It is suitable for providing users a simple classification hierarchy
and constraints. It is relatively easier to realize the tool support automatically
than other two sub-languages, a quick verification for thesauri and other
taxonomies is accessible [13] [21].

2.8 Introduction to Ontology Tool Protégé

2.8.1 Overview

Protégé is an open source software developed by Stanford University in
cooperation with the University of Manchester. It provides a suite of tools and
other useful plug-ins by third parties that help to construct domain models and
knowledge-based frameworks with Ontologies [30].

Protégé comprises a set of knowledge model implementations and
supports the definition, visualization, documentation and manipulation of
ontologies. Protégé also provide friendly GUI that make customer define
knowledge models and input data more much more convenient. Protégé is a
Java-based Application Programming Interface, so that it can be extended to
comprise more functionality for defining knowledge models and applications
through third parties plug-ins [30].

There are two main ways of modeling Ontologies supported by the
Protégé platform: the Protégé-Frames editor and the Protégé-OWL editor. The
Protégé-Frames editor allows users to create frame-based ontologies
according to the Open Knowledge Base Connectivity Protocol (OKBC). The
Protégé-OWL editor allows users to create ontologies especially for the

23

Semantic Web, in OWL (Web Ontology Language). For further detailed
information, please see the reference [31].

2.8.2 Features

The Protégé-OWL editor will be applied in the following data modeling of
the project. The following figure shows the screenshot of the GUI accessible in
the Protégé-OWL editor.

Figure 6: Screenshot of OWL Classes in Protégé [33]

The Protégé-OWL editor supports the standard ontology language OWL
for the Semantic Web. The primary features are that one side it enables users
to create/import OWL and RDF ontologies, export OWL ontologies to other
formats like Clips, N triple, and show RDF/XML source code; on the other side
to edit and display classes, properties and SWRL rules by Jambalaya, Ontoviz
and OWL Viz etc.; moreover, to define logical class features as OWL
expressions; to run reasoners to classify taxonomy, compute inferred types, or
execute the third party plug-in DIG Reasoner in order to check consistency
and completeness etc as well. Besides, it also supports to generate Java code,
Java Schema class etc, automatically.

For further detailed information, please see the references [31] [32].

24

2.9 Introduction to Multi-Agent System Simulation

A multi-agent system (MAS) is a system composed of multiple
heterogeneous intelligent agents, based on decentralized system architecture.
Each agent, acting on behalf of users with different goals and motivations, will
require the ability to cooperate, coordinate, and negotiate with each other.
Multi-agent systems can be used to build complex systems, solve problems
which are difficult or impossible for an individual agent or monolithic system to
solve [23].

The agents in a multi-agent system should possess a few relevant
characteristics, such as:

 Autonomy: each agent is capable of acting independently, exhibiting

control over their internal state.
 Local views: for each agent, it is only a local view of the system

available.
 Decentralization: there is no one controlling agent (or the system is

effectively reduced to a monolithic system).
 Flexibility: each agent is flexible to undertake other tasks which are

not defined in the schedule.
 Learning ability: each agent has the capability to adapt to the newly

reconfigured environment, react to the prompt changes.
 Social abilities: each agent has the capability to cooperate,

coordinate and negotiate with others [17].

For further detailed information regarding the related support tool MAST
(Manufacturing Agent Simulation Tool), please refer to the section 4.1.

25

http://en.wikipedia.org/wiki/Intelligent_agent
http://en.wikipedia.org/wiki/Monolithic_system

3. Research issues

This section introduces the four major research issues nowadays existed
in the related research area both in software engineering and knowledge
engineering.

3.1 Evaluation of UML and OWL

Each modeling language, no matter UML or OWL, has its own focuses and
original creation attempts. Both two have some common features; despite
sometimes their representations might look quite different.

One goal of this research study is to summarize their similarities and
differences, for instance, UML class diagrams can define entities, its
state-charts and activity diagrams are appropriate for service and process
related ontologies while OWL provides additional prediction description
language that the UML couldn't provide. It will present the result of which
approach is appropriate for a certain scenario.

Meantime, we will create two data models for this multi-agent system in the
field of manufacturing system management by means of UML and OWL
approaches. Later, we will discover and evaluate the advantages and
disadvantages of those two data models.

3.2 Model consistency checking

Nowadays, the object-oriented software design has already taken an
important place in the software engineering. To guarantee the high software
quality in the software development, it is crucial to assure the consistency of
the UML models. However, it is often hard and undecidable for the UML to
ensure its logical consistency and syntax errors checking. Due to the meaning
of the UML dependency and their specializations (abstractions, binding, usage,
permission) as well as their stereotypes are still not precisely defined. It raises
the problem how to understand and how to check consistency between
modeling artifacts.

Therefore, OWL and its language tool support this automatic consistency
checking function much better than the UML, for example, the tool Protégé and
its plug-ins.

It is unrealistic and always wasteful that a lot of efforts and costs required
on the manual consistency checking. So the second goal is to find out whether
it is conceptually possible to check UML models for their consistency in an
automated way and furthermore there is any tool available for the UML that

26

supports its automatic consistency checking. We will analyze this phenomenon,
compare the differences on the conceptual possibilities and external tools with
OWL and propose to these questions.

3.3 Mapping from UML to Ontology

The existing problem is that an ontology can't be sufficiently represented in
UML. Based on the results of the first goal, we would understand the
differences between UML and ontology. So the question is that how to
reconcile the gap between UML and OWL, and find out any solution that
supports ontology development and conceptual modeling in one standard
representation language.

The mapping from UML model to ontology enables the conversion of an
arbitrary UML model into OWL ontology, for instance, UML classes are
mapped into OWL classes, attributes into data type property, associations into
object property, etc. It takes a UML model as input and produces an ontology
conforms to the OWL meta model. The transformation can produce an OWL
model in a core format, in this way it plays a central role for bridging Model
Driven Architecture based standards and Semantic Web technologies.

The third goal is to explore the conceptual possibilities of mapping from
UML to OWL, enumerates the concrete OWL concepts that could be mapped
to UML and discover its benefits and limitations.

3.4 Extensions of UML and OWL

The initial purpose of creating the UML is to design a widely recognized
and standard visualizing language. Therefore, its strong expressiveness and
powerfulness has been recognized by the software developers. However,
there are still some critics on the high complexity of the UML. UML has 13
diagrams and its constructs contain somewhat redundancy that hinders some
junior software developers to learn and adopt UML. At the same time, UML
doesn't have a formal semantics like OWL, semantic web not supportable,
neither supports properties as first-class a model elements like OWL.

The last goal is also the question that most of software developers concern,
to list a few limitations which can be addressed using OWL and its benefits.

27

4. Use Case Description

The fourth section provides an overview of manufacturing agent simulation
tool, as well as a detailed use case description of each involved roles and their
collaborations.

4.1 Manufacturing Agent Simulation Tool

A multi-agent system is a system composed of distributed intelligent
agents that each agent can carry out his individual local jobs and collaborate
together to finish a complicated task in common [23]. The Manufacturing Agent
Simulation Tool (MAST) exploited by Rockwell Automation Research Center in
Prague, supports the simulation and demonstration of material handling tasks
using multi-agents systems [35]. It offers a clear visual overview of advantages
and shortcomings during the whole process in the industrial manufacturing
domain.

The MAST is programmed in Java language and built on the open source
agent platform JADE (Java Agent Development Framework). The initial idea is
established on the implementation of the scenario that all the agents perform
the whole manufacturing process in a virtual environment with high complexity
precisely at a lower cost. The features and benefits of this simulation tool are
to manage the real time control, for instance, the user is able to add or change
additional functions or the value of parameters like conveyor speed, machine
set up and processing time in order to check the influence of these changes. At
the same time, it is also feasible to imitate the real situation by using different
scheduling algorithms, for instance, alteration of the physical condition or
priority could bring minor or huge differences that the user could learn from. It
facilitates a better production planning and scheduling in the future. Meantime,
it offers the opportunity to integrate a seamless sales network among supplier,
customers and operators, and so on. Moreover, it helps to discover of potential
failures and assists the designer in establishing a solid system [18] [29].

28

Figure 7: Overview of MAST Test Management System [19]

The above figure 7 provides an overview of a MAST system, it consists of

the following components:

The library of agent classes

This component represents the domain of each agent, such as properties
of business manager, and the primary material handling objects like a machine,
conveyor belt etc. Each agent is supposed to do his autonomous tasks, on
demand for accomplishment of a common task needs the mutual cooperation
among those agents. For example, the optimal transportation should be
created based on the right setting up communications among those material
handling objects [19].

The simulation engine

This component simulates the behavioral functions of the agent-based
system and verifies the performance of the physical system via monitoring the
virtual movement of the products from source to destination, as well as the
normal activation or deactivation of triggers and sensors etc [19].

The GUI

This component enables the dynamic demonstration of the multi-agents
system in order to inform the user about the current process in a graphic way.
Furthermore, the user is also able to monitor the negotiation signals among the
agents in case of dynamic scheduling, such as how agents make decisions on
choosing alternative routings especially when emergent situations occur [19].

The control interface

This component is a PLC-based control interface, which bridges an

29

integration of agent classes and the simulation engine. During the simulation,
in detecting failures and emergency situations, the control interface could
inform the related agents, and the agents could make their choices on
dispatching routes, e.g., to avoid delay caused by accidents [19].

Similarities and differences between MAST and SAW

The SAW (Simulator of Assembly Workshops) is an extension and a
practical application of MAST. For this project it will be employed in the
followings: the components such as "the simulation engine" and "the GUI"
remain the same as MAST. SAW is created based on the idea to create an
improvement in MAST. The main differences between MAST and SAW are first
within the component "the library of agent classes", both simulators possess
the component agents, like conveyor agents, machine agents etc, furthermore,
in SAW there are more agents that could be added according the software
developers or customers' descriptions, such as product agents, and strategy
agents etc. In the control interface, there is no PLC-based control interface
available in SAW, it appears only possibly in the real MAST system.

4.2 Use Case Description

The following sections include a detailed use case description of the role
business manager, plant manager, shop manager, operation manager as well
as system developer.

4.2.1 Business manager

The use case description of the role business manager will describe his
responsibilities and derive all entities, their properties and relationships.

4.2.1.1 Description of the involved role business manager

The responsibilities of a business manager encompass drawing up a
production plan, win more contracts from customers, transform the format from
a contract to an order, input the order information into the system to satisfy the
corresponding production plan. The data has to be offered from the side of
business manager are the general order information, concluding the kind of
products needed by customers, the quantity of each needed product and their
delivery dates. There are also several status have to be confirmed by the
business manager, for example, execution possibility whether we are able to
supply all the products with the warrantable qualification required by the
customers within the expected dates. Order status, the business manager has
to check the status from time to time, production not started, in progress or

30

finished. The interaction should be happened between him and the plant
manager [42].

4.2.1.2 Entities and their Properties

The entity Business Manager represents the basic information of the role
business manager, should contain the properties, such as the unique ID of
business manager, the full name of business manager, the age of business
manager, the telephone number of business manager, the contact address of
business manager, could be his office or home address, the short description
of his main responsibilities.

The entity Business Order represents the basic information of business
order, should contain the properties, such as the unique ID of business order,
the delivery date of required products, the expected date to finish the
production of required products, the current process status.

The entity Client represents the basic information of the client who gives
the business order to the business manager, should contain the properties,
such as the unique ID of client, the full name of client, like legally registered
company name, the name of contact person, the telephone number of contact
person, the office address of contact person.

The entity Product represents the basic information of the product which
the client has ordered, should contain the properties, such as the unique ID of
the required product, the name of the required product, the type of the required
product in case it is available, the expected date to finish the production of this
kind of product, the process status of this kind of product.

The entity ProductTree represents the basic information of the product
decomposition into product tree, should contain the properties, such as the
unique ID of the product tree, and the complexity of the product tree.

The entity ProdTreeItem represents the basic information of each product
item that composes the whole product tree, should contain the properties, such
as the unique ID of the product tree item, the name of the product tree item,
the amount of the product tree item, the father of this product tree item, the x
position (width) of the product tree item, the y position (depth) of the product
tree item, and the brothers of this product tree item.

The entity Quantity should contain the properties, such as the unique ID of
business order's quantity, and the required number of required product.

4.2.1.3 Relationship

One Business Manager could hold several Business Orders. One
Client could order several Business Orders at the same time or different time.
One Business Order might have several Products. Each Product
decomposes a ProductTree, which is composed of several ProdTreeItems.
Each Business Order/ ProdTreeItem has a corresponding Quantity.

31

4.2.2 Plant manager

The use case description of the role plant manager will describe his
responsibilities and derive all entities, their properties and relationships.

4.2.2.1 Description of the involved role plant manager

The responsibilities of a plant manager encompass checking whether all
needed resources or raw materials are available or sufficient, calculating
whether there exist enough capacities to carry out all the working steps in time,
arranging the scheduling algorithms to individual machine and set up the
appropriate priority. The data from the plant manager has to be offered is the
division of a business order into several work orders, information about current
inventory and free production capacities, actual shop layout. The plant
manager has to decide on the acceptance of executing the work orders, the
product scheduling line for the next shifts and so on [42].

4.2.2.2 Entities and their Properties

The entity Plant Manager represents the basic information of the role
plant manager, should contain the properties, such as the unique ID of plant
manager, the full name of plant manager, the age of plant manager, the
telephone number of plant manager, the contact address of plant manager,
could be his office or home address, and the short description of his main
responsibilities.

The entity Work Order represents the basic information of the work order
which converts from the business order, should contain the properties, such as
the unique ID of the work order, the name of work order, the process status of
this work order, the expected date to finish this work order, the actual date to
finish the work order in case the finishing time has been postponed, otherwise,
the value could be empty.

The entity BillOfMaterial represents the bill of the material required for the
product production, should contain the properties, such as the unique ID of
material bill, the name of the required material, and the amount of this required
material.

The entity BoMItem represents the bill of the material item required for the
product production, should contain the properties, such as the unique ID of the
material item, the name of the material item, and the amount of this required
material item.

The entity Inventory represents the basic information of the current
inventory's situation, should contain the properties, such as the unique ID of
the inventory, the name of the inventory, the current status of the inventory's
availability, and the amount of inventory in case the current inventory is

32

available.
The entity Failure represents the generally potential of occurred failures,

should contain the properties, such as the unique ID of potential failure, the
name of the potential or occurred failure, other related effect or delay caused
by the potential or occurred failure, the short description of this occurred or
potential failure, for instance, like cause or severity of this kind of situation etc,
and the short description of the solution.

The entity MachineFailure represents the specific failures caused by the
machine, should contain the properties, such as the unique ID of the broken
machine, and the name of the machine failure.

The entity ConveyorFailure represents the specific failures caused by the
conveyor, should contain the properties, such as the unique ID of the broken
conveyor, and the name of the conveyor failure.

The entity Shift represents the basic information of arranging the shift for
the operators in turn, should contain the properties, such as the unique ID of
the shift, the name of the shift, for instance, day shift or night shift, etc, the
period time for switching a shift, for instance, each four hours per shift, and the
work load of each shift.

The entity Machine represents the basic information of the machine,
should contain the properties, such as the unique ID of the machine, the name
of machine, the current status of machine, for instance, busy or idle etc, the
short description of the machine, for instance, functions, conditions etc.

The entity MachineItem represents the basic information of the machine
item, should contain the properties, such as the unique ID of the machine item,
the name of the machine item, the current status of machine, the run step of
the machine item during the machine operation period, the short description of
the machine item, for instance, functions, conditions, etc.

The entity Strategy represents the basic information of the feasible
strategy that could be applied for the machine operation, should contain the
properties, such as the unique ID of the strategy in use, the name of the
strategy in use, for instance, FCFS (First Come, First Served) or EDD (Earliest
Due Date) etc, the type of the strategy in use, for instance, static or dynamic
scheduling etc, the priority of the strategy in use, for instance, high, average,
low etc.

The entity Capacity represents the basic information of the machine
capacity, should contain the properties, such as the unique ID of the machine
capacity, the amount of the occupied machine capacity at the moment, the
amount of the full provided machine capacity, the available percentage of the
machine capacity, for instance, 1 minus the result of the occupied capacity
divides the provided capacity by calculation in general.

4.2.2.3 Relationship

One Plant Manager could hold several Work Orders. Each Work Order

33

has one BillOfMaterial, one BillOfMaterial may have several BoMItems.
Each BoMItem has one Inventory. One Plant Manager might assume
several Failures. Each Failure is either a MachineFailure or
ConveyorFailure according to its characteristics. There are several Shifts
available working on one Work Order. Each Work Order could be applied one
Strategy according to the various requirements. One Plant Manager could
monitor several Machines, each Machine is composed of several
MachineItems. Each Machine can have one Capacity.

4.2.3 Shop manager

The use case description of the role shop manager will describe his
responsibilities and derive all entities, their properties and relationships.

4.2.3.1 Description for the involved role shop manager

The responsibilities of a shop manager encompass decomposition of the
whole production process into every single procedure steps, discovery of the
optimal sequence of the production process and its sub processes for the shift;
plan the agile adaption to the shop layout. The shop manager has to offer the
data about the time and resource scheduling for the actual shift, actual shop
layout, and state problems of actual execution process. The shop manager is
responsible to estimate the work steps to assemble the products, set-up time
and costs for adapting shop layout should be taken into consideration [42].

4.2.3.2 Entities and their Properties

The entity Shop Manager represents the basic information of the role
shop manager, should contain the properties, such as the unique ID of shop
manager, the full name of shop manager, the age of shop manager, the
telephone number of shop manager, the contact address of shop manager,
could be his office or home address, and the short description of his main
responsibilities.

The entity Machine please see the section 4.2.2.2.
The entity MachineItem please see the section 4.2.2.2.
The entity Transport represents the basic information of the product

transportation, should contain the properties, such as the unique ID of the
product transport, the product that would be transported, the place from where
the products would be obtained, the place to where the products should be
transported, the short description of the product transport, and the graphical
notation of this product transport.

The entity ArrivalSequence represents the basic information of the
product's arrival sequence, should contain the properties, such as the unique

34

ID of the arrival sequence, and the chronological sequence of the product
arrival.

The entity Testcase represents the basic information of the test cases in
case the shop manager needs to verify the machine or transport, should
contain the properties, such as the unique ID of test case, and the short
description of test case.

4.2.3.3 Relationship

One Shop Manager could observe several Machines and meantime
supervise several Transports, like one Product is transfered from the source
to the destination. Each Machine is composed of several MachineItems.
Each MachineItem contains exactly one ArrivalSequence. Each Transport
contains exactly one ArrivalSequence. Each MachineItem could perform
several Testcases, in other words it means that one or several Testcases can
be designed to verify whether each MachineItem works correctly. Each
Transport could perform several Testcases, in other words it means that one
or several Testcases can be designed to verify whether each Transport works
correctly.

4.2.4 Operation manager

The use case description of the role operation manager will describe his
responsibilities and derive all entities, their properties and relationships.

4.2.4.1 Description for the involved role operation manager

The responsibilities of a operation manager encompass controlling and
inspecting the coordination of all the procedure steps, rapid reaction on
possible appearing problems like power failures, machine failures and so on,
balancing the utilization frequency of the machines in order to achieve the best
throughput. The operation manager has to deal with the work steps defined by
the shop manager to fabricate the products, fill the requirements for adapting
shop layout. His responsibility is to arrange the efficient sequence of working
steps for each machine, set up the correct shop layout, record the finished
products, and output their log files of the simulation for future references [42].

4.2.4.2 Entities and their Properties

The entity Operation Manager represents the basic information of the role
operation manager, should contain the properties, such as the unique ID of
operation manager, the full name of operation manager, the age of operation

35

manager, the telephone number of operation manager, the contact address of
operation manager, could be his office or home address, the short description
of his main responsibilities.

The entity Palette represents the basic information of the palettes in a
conveyor, should contain the properties, such as the unique ID of palette, the
length of the palette, the current status of the palette, for instance, busy or idle,
the unique ID of other palette that should be followed by this palette, the short
description of this palette's situation.

The entity Route represents the basic information of the palette's route,
should contain the properties, such as the unique ID of the route, and the short
description of the scheduled route, like its environment etc.

The entity Conveyor represents the basic information of the conveyor,
should contain the properties, such as the unique ID of the conveyor, the start
point of conveyor, the end point of conveyor, the length of the conveyor that
equals the distance from the start point to the end point, the amount of palettes
in this conveyor, and the run speed of this conveyor.

The entity Transport please see the section 4.2.3.2.
The entity Failure please see the section 4.2.2.2
The entity MachineFailure please see the section 4.2.2.2.
The entity ConveyorFailure please see the section 4.2.2.2.
The entity FinishedProduct represents the basic information of the

product that has been already finished, should contain the properties, such as
the unique ID of the finished product, the name of the finished product, the
amount of the finished product, and the log files of the finished product during
its whole production process.

4.2.4.3 Relationship

One Operation Manager could supervise several Palettes. Each Palette
follows one Route. One Conveyor can contain several Palettes. Each
Conveyor can operate one Transport, like one Product is transferred from
the source to the destination. One Operation Manager could supervise
several Failures, each Failure is either a MachineFailure or a
ConveyorFailure according to its characteristics. One Operation Manager
could check several FinishedProducts, namely which Products have been
finished and their amounts etc.

4.2.5 System developer

The use case description of the role system developer will describe his
responsibilities and derive all entities, their properties and relationships.

36

4.2.5.1 Description for the involved role system developer

The responsibilities of a system developer encompass bridging a
background platform for each layer, providing basic information for the
simulation of the production, including products, shop layout, etc. The system
developer handles the changes, and basic data of each role involved during
the production process. He is responsible to monitor, provide information of the
production line, and meantime also guarantee that all the roles and process
are good in operation. He has the interaction with all the roles over all the
levels, is available for all roles. In case of any change, the four roles should
inform the system developer at their earliest convenience, and the system
developer is obligatory to response promptly [42].

4.2.5.2 Entities and their Properties

The entity System Developer represents the basic information of the role
system developer, should contain the properties, such as the unique ID of
system developer, the full name of system developer, the age of system
developer, the telephone number of system developer, the contact address of
system developer, could be his office or home address, and the short
description of his main responsibilities.

The entity Product please see the section 4.2.1.2.
The entity ProductTree please see the section 4.2.1.2.
The entity ProdTreeItem please see the section 4.2.1.2.
The entity Function represents the basic information of the general

function, should contain the properties, such as the unique ID of the function,
and the short description of the function.

The entity MachineFunction represents the basic information of the
specific machine function, should contain the properties, such as the unique ID
of the machine function, the minimum required time for this machine to finish
processing the particular task, the maximum required time for this machine to
finish processing the particular task, the expected time for this machine to
finish processing the particular task, and the required time for this machine to
unload.

The entity TransportFunction represents the basic information of the
specific transport function, should contain the properties, such as the unique
ID of the transport function, the place from where the products would be
obtained, the place to where the products should be transported, the minimum
required transportation time for products, the maximum required transportation
time for products, and the expected transportation time for products.

The entity ShopLayout represents the basic information of the shop layout,
should contain the properties, such as the unique ID of the shop layout, the
costs required when the shop layout is changed, and the time required when

37

the shop layout is changed.
The entity Conveyor please see the section 4.2.4.2.
The entity Crane represents the basic information of the transportation

vehicle crane, should contain the properties, such as the unique ID of the
crane, and the free space of the crane.

The entity Inventory please see the section 4.2.2.2.
The entity Machine please see the section 4.2.2.2.
The entity Diverter represents the basic information of the diverter, should

contain the properties, such as the unique ID of diverter, and the direction of
the conveyor's junction, for instance, left, right or straight.

4.2.5.3 Relationship

One System Developer maintains the basic information of several
Products. Each Product is composed following a ProductTree, which is
composed of several ProdTreeItems. One System Developer operates
several Functions, each Function is either a MachineFunction or a
TransportFunction according to its characteristics. One System Developer
adapts several ShopLayouts and vice versa, several System Developers
can adapt one ShopLayout. There are several Conveyors available in each
ShopLayout. Every Conveyor is connected to exactly two Nodes. Each
Node is equal to either a Crane or a Inventory. In a Crane or a Inventory, it
can contain several Machines. One Conveyor comprises several Diverters,
such as turn to forward, backward, left or right directions.

4.3 Collaborations among the roles

The following figure 8 represents the simplest situation of the mutual
collaborations among the roles. The collaboration takes place among those
five roles.

For example, the business manager should notify the plant manager of
business order and product related information etc, meanwhile, the plant
manager is also responsible to report the newest status of the work order
process to him. The plant manager is ready to give the shop manager the draft
of shop layout, the shop manager is assigned to execute the shop layout and
offer the feedbacks as well. The operation manager has to implement each
single work step made by the shop manager; simultaneously, the operation
manager should submit the log file of whole implementation. The system
developer is needed to collect and store the raw data for all the other roles, if
any data is changed or system failure occurred etc, the other roles should
inform him.

38

Figure 8: Mutual collaborations among each role

Furthermore, this use case can be extended for a large and complex
system. For example, there are multiple business managers, plant managers
or other agents available in a complicated large system. Thus, the multiplicity
should be 1 to n, n to 1 or n to n etc.

39

5. Data Modeling for SAW with UML and Ontology

The fifth section describes two data modeling approaches based on UML
and Ontology approaches and finally compares the two approaches.

5.1 UML-based approach

The data modeling based on UML approach implements the use case
descriptions defined in above section 4, demonstrates five ER diagrams for
each role, business manager, plant manager, shop manager, operation
manager and system developer, in production automation multi-agents
system.

5.1.1 ER Diagram for Business Manager

This section presents the ER Diagram for business manager and its
corresponding descriptions.

5.1.1.1 Diagram

Figure 9: ER Diagram for business manager

40

5.1.1.2 Description

The above figure 9 "ER Diagram for business manager" implements the
use case description defined in section 4.2.1.2 "Entities and their properties".
Each defined Entity has been created in ER Diagram and inserted their
corresponding properties. Each property's type and its length like integer(20),
varchar(255) etc and the initial value of null able true or false should be
estimated for the physical database. During the modeling, the primary key, for
instance bManagerID, and the foreign keys should be defined additionally. The
relationship among each Entity and the multiplicity of relationship implement
"Relationship" defined in section "4.2.1.3" respectively. The limitation of ER
Diagram is that the instance of each Entity could not be shown.

 The entity Business Manager represents the basic information of the
role business manager, should contain the properties, such as bManagerID
that indicates the unique ID of business manager, name indicates the full name
of business manager, age indicates the age of business manager, teleNr
indicates the telephone number of business manager, address indicates the
contact address of business manager, could be his office or home address,
responsibilities indicates the short description of his main responsibilities.

The entity Business Order represents the basic information of business
order, should contain the properties, such as orderID that indicates the unique
ID of business order, dueDate indicates the delivery date of required products,
finishingTime indicates the expected date to finish the production of required
products, status indicates the current process status, for instance, 3 choices,
including not started, in progress and finished.

The entity Client represents the basic information of the client who gives
the business order to the business manager, should contain the properties,
such as clientID that indicates the unique ID of client, companyName indicates
the full name of client, like legally registered company name, contactName
indicates the name of contact person, contactTeleNr indicates the telephone
number of contact person, contactAddress indicates the office address of
contact person.

The entity Product represents the basic information of the product which
the client has ordered, should contain the properties, such as productID that
indicates the unique ID of the required product, productName indicates the
name of the required product, productType indicates the type of the required
product in case it is available, finishingTime indicates the expected date to
finish the production of this kind of product, status indicates the process status
of this kind of product, for instance, 3 choices, including not started, in
progress, and finished.

The entity ProductTree represents the basic information of the product
decomposition into product tree, should contain the properties, such as

41

pTreeID that indicates the unique ID of the product tree, complexity indicates
the complexity of the product tree.

The entity ProdTreeItem represents the basic information of each product
item that composes the whole product tree, should contain the properties, such
as pTreeItemID that indicates the unique ID of the product tree item,
pTreeItemName indicates the name of the product tree item, amount indicates
the amount of the product tree item, dependOf indicates the father of this
product tree item, positionX indicates the x position (width) of the product tree
item, positionY indicates the y position (depth) of the product tree item,
Siblings indicates the brothers of this product tree item.

The entity Quantity should contain the properties, such as quantityID that
indicates the unique ID of business order's quantity, number indicates the
required number of required product

5.1.2 ER Diagram for Plant Manager

This section presents the ER Diagram for plant manager and its
corresponding descriptions.

5.1.2.1 Diagram

Figure 10: ER Diagram for plant manager

42

5.1.2.2 Description

The entity Plant Manager represents the basic information of the role
plant manager, should contain the properties, such as pManagerID that
indicates the unique ID of plant manager, name indicates the full name of plant
manager, age indicates the age of plant manager, teleNr indicates the
telephone number of plant manager, address indicates the contact address of
plant manager, could be his office or home address, responsibilities indicates
the short description of his main responsibilities.

The entity Work Order represents the basic information of the work order
which converts from the business order, should contain the properties, such as
workOrderID that indicates the unique ID of the work order, workOrderName
indicates the name of work order, status indicates the process status of this
work order, for instance, not started, in progress, and finished, finishingTime
indicates the expected date to finish this work order, delay indicates the actual
date to finish the work order in case the finishing time has been postponed,
otherwise, the value could be empty.

The entity BillOfMaterial represents the bill of the material required for the
product production, should contain the properties, such as materialID that
indicates the unique ID of material bill, materialName indicates the name of the
required material, amount indicates the amount of this required material.

The entity BoMItem represents the bill of the material item required for the
product production, should contain the properties, such as materialItemID that
indicates the unique ID of the material item, materialItemName indicates the
name of the material item, itemAmount indicates the amount of this required
material item.

The entity Inventory represents the basic information of the current
inventory's situation, should contain the properties, such as inventoryID that
indicates the unique ID of the inventory, inventoryName indicates the name of
the inventory, available indicates the current status of the inventory's
availability, for instance, yes or no, amount indicates the amount of inventory in
case the current inventory is available.

The entity Failure represents the generally potential or occurred failures,
should contain the properties, such as failureID that indicates the unique ID of
potential failure, failureName indicates the name of the potential or occurred
failure, effect indicates other related effect or delay caused by the potential or
occurred failure, description indicates the short description of this occurred or
potential failure, for instance, like cause or severity of this kind of situation etc,
solution indicates the short description of the solution.

The entity MachineFailure represents the specific failures caused by the
machine, should contain the properties, such as machineFailureID that
indicates the unique ID of the broken machine, machineFailureName indicates
the name of the machine failure.

The entity ConveyorFailure represents the specific failures caused by the

43

conveyor, should contain the properties, such as conveyorFailureID that
indicates the unique ID of the broken conveyor, conveyorFailureName
indicates the name of the conveyor failure.

The entity Shift represents the basic information of arranging the shift for
the operators in turn, should contain the properties, such as shiftID that
indicates the unique ID of the shift, shiftName indicates the name of the shift,
for instance, day shift or night shift, etc, periodTime indicates the period time
for switching a shift, for instance, each four hours per shift, workload indicates
the work load of each shift.

The entity Machine represents the basic information of the machine,
should contain the properties, such as machineID that indicates the unique ID
of the machine, machineName indicates the name of machine, status indicates
the current status of machine, for instance, busy or idle etc, description
indicates the short description of the machine, for instance, functions,
conditions, etc.

The entity MachineItem represents the basic information of the machine
item, should contain the properties, such as machineItemID that indicates the
unique ID of the machine item, machineItemName indicates the name of the
machine item, status indicates the current status of machine, for instance,
busy or idle etc, machineItemStep indicates the run step of the machine item
during the machine operation period, description indicates the short
description of the machine item, for instance, functions, conditions, etc.

The entity Strategy represents the basic information of the feasible
strategy that could be applied for the machine operation, should contain the
properties, such as strategyID that indicates the unique ID of the strategy in
use, strategyName indicates the name of the strategy in use, for instance,
FCFS (First Come, First Served) or EDD (Earliest Due Date) etc, type
indicates the type of the strategy in use, for instance, static or dynamic
scheduling etc, priority indicates the priority of the strategy in use, for instance,
high, average, low etc.

The entity Capacity represents the basic information of the machine
capacity, should contain the properties, such as capacityID that indicates the
unique ID of the machine capacity, occupiedCapacity indicates the amount of
the occupied machine capacity at the moment, providedCapacity indicates the
amount of the full provided machine capacity, availPercentage indicates the
available percentage of the machine capacity, for instance, 1 minus the result
of the occupied capacity divides the provided capacity by calculation in
general.

5.1.3 ER Diagram for Shop Manager

This section presents the ER Diagram for shop manager and its
corresponding descriptions.

44

5.1.3.1 Diagram

Figure 11: ER Diagram for shop manager

5.1.3.2 Description

The entity Shop Manager represents the basic information of the role
shop manager, should contain the properties, such as sManagerID that
indicates the unique ID of shop manager, name indicates the full name of shop
manager, age indicates the age of shop manager, teleNr indicates the
telephone number of shop manager, address indicates the contact address of
shop manager, could be his office or home address, responsibilities indicates
the short description of his main responsibilities.

The entity Machine please see the section 4.2.2.2.
The entity MachineItem please see the section 4.2.2.2.
The entity Transport represents the basic information of the product

transportation, should contain the properties, such as transportID that
indicates the unique ID of the product transport, productID indicates the
product that would be transported, source indicates the place from where the
products would be obtained, destination indicates the place to where the
products should be transported, description indicates the short description of
the product transport, notation indicates the graphical notation of this product

45

transport.
The entity ArrivalSequence represents the basic information of the

product's arrival sequence, should contain the properties, such as
arrSequenceID that indicates the unique ID of the arrival sequence,
sequenceNo indicates the chronological sequence of the product arrival.

The entity Testcase represents the basic information of the test cases in
case the shop manager needs to verify the machine or transport, should
contain the properties, such as testcaseID that indicates the unique ID of test
case, description indicates the short description of test case.

5.1.4 ER Diagram for Operation Manager

This section presents the ER Diagram for operation manager and its
corresponding descriptions.

5.1.4.1 Diagram

Figure 12: ER Diagram for operation manager

46

5.1.4.2 Description

The entity Operation Manager represents the basic information of the role
operation manager, should contain the properties, such as oManagerID that
indicates the unique ID of operation manager, name indicates the full name of
operation manager, age indicates the age of operation manager, teleNr
indicates the telephone number of operation manager, address indicates the
contact address of operation manager, could be his office or home address,
responsibilities indicates the short description of his main responsibilities.

The entity Palette represents the basic information of the palettes in a
conveyor, should contain the properties, such as paletteID that indicates the
unique ID of palette, length indicates the length of the palette, status indicates
the current status of the palette, for instance, busy or idle, followPaletteID
indicates the unique ID of other palette that should be followed by this palette,
description indicates the short description of this palette's situation.

The entity Route represents the basic information of the palette's route,
should contain the properties, such as routeID that indicates the unique ID of
the route, routeDescription indicates the short description of the scheduled
route, like its environment etc.

The entity Conveyor represents the basic information of the conveyor,
should contain the properties, such as conveyorID that indicates the unique ID
of the conveyor, startpoint indicates the start point of conveyor, endpoint
indicates the end point of conveyor, length indicates the length of the conveyor
that equals the distance from the start point to the end point, numberOfPalettes
indicates the amount of palettes in this conveyor, speed indicates the run
speed of this conveyor.

The entity Transport please see the section 4.2.3.2.
The entity Failure please see the section 4.2.2.2
The entity MachineFailure please see the section 4.2.2.2.
The entity ConveyorFailure please see the section 4.2.2.2.
The entity FinishedProduct represents the basic information of the

product that has been already finished, should contain the properties, such as
finishedProductID that indicates the unique ID of the finished product,
finishedProductName indicates the name of the finished product,
finishedProductAmount indicates the amount of the finished product, and
logfile indicates the logfile of the finished product during its whole production
process.

5.1.5 ER Diagram for System Developer

This section presents the ER Diagram for system developer and its
corresponding descriptions.

47

5.1.5.1 Diagram

Figure 13: ER Diagram for system developer

5.1.5.2 Description

The entity System Developer represents the basic information of the role
system developer, should contain the properties, such as sysDeveloperID that
indicates the unique ID of system developer, name indicates the full name of
system developer, age indicates the age of system developer, teleNr indicates
the telephone number of system developer, address indicates the contact
address of system developer, could be his office or home address,
responsibilities indicates the short description of his main responsibilities.

The entity Product please see the section 4.2.1.2.
The entity ProductTree please see the section 4.2.1.2.
The entity ProdTreeItem please see the section 4.2.1.2.
The entity Function represents the basic information of the general

function, should contain the properties, such as functionID that indicates the
unique ID of the function, description indicates the short description of the

48

function.
The entity MachineFunction represents the basic information of the

specific machine function, should contain the properties, such as
machineFunctionID that indicates the unique ID of the machine function,
processTimeMin indicates the minimum required time for this machine to finish
processing the particular task, processTimeMax indicates the maximum
required time for this machine to finish processing the particular task,
processTimeExp indicates the expected time for this machine to finish
processing the particular task, unloadTime indicates the required time for this
machine to unload.

The entity TransportFunction represents the basic information of the
specific transport function, should contain the properties, such as
transportFunctionID that indicates the unique ID of the transport function,
source indicates the place from where the products would be obtained,
destination indicates the place to where the products should be transported,
transTimeMin indicates the minimum required transportation time for products,
transTimeMax indicates the maximum required transportation time for
products, transTimeExp indicates the expected transportation time for
products.

The entity ShopLayout represents the basic information of the shop layout,
should contain the properties, such as layoutID that indicates the unique ID of
the shop layout, changeCosts indicates the costs required, if the shop layout is
changed, changeTime indicates the time required, if the shop layout is
changed.

The entity Conveyor please see the section 4.2.4.2.
The entity Crane represents the basic information of the transportation

vehicle crane, should contain the properties, such as craneID that indicates the
unique ID of the crane, craneVolume indicates the free space of the crane.

The entity Inventory please see the section 4.2.2.2.
The entity Machine please see the section 4.2.2.2.
The entity Diverter represents the basic information of the diverter, should

contain the properties, such as diverterID that indicates the unique ID of
diverter, diverterDirection indicates the direction of the conveyor's junction, for
instance, left, right or straight.

5.2 Ontology-based approach

The data modeling based on Ontology approach implements the use case
descriptions defined in above section 4, demonstrates five Ontoviz diagrams
for each role, business manager, plant manager, shop manager, operation
manager and system developer, in production automation multi-agents
system.

49

5.2.1 Business Manager

This section presents the Ontoviz Diagram for business manager and its
corresponding descriptions.

5.2.1.1 Diagram

Figure 14: Part of Ontoviz diagram for business manager

5.2.1.2 Description

The building elements of OWL are defined differently and each with a
different name, unlike the elements of UML. In OWL, there are some own
components available, such as individuals, datatype properties of each
individual, restriction on each datatype property, object properties links two
individuals together and restriction on each object property etc.

The individuals here are businessManager, businessOrder, client, product,
productTree, productTreeItem, and quantity.

The datatype properties of businessManager are bManagerID, name, age,
teleNr, address, responsibilities. Restriction on slots are the restriction on
bManagerID exactly one, name exactly one, age exactly one, teleNr exactly
one, address exactly one, responsibilities exactly one. All properties and their
cardinalities of individual businessManager can be represented in a formal
logic language like bManagerID exactly 1 AND name exactly 1 AND age
exactly 1 AND teleNr exactly 1 AND address exactly 1 AND responsibilities
exactly 1 AND holds MIN 1 businessOrder.

50

Figure 15: The whole Ontoviz diagram for business manager

51

The object property consistsOf links the individual product to the individual
productTree, restriction is product consistsOf exactly one productTree, and
links the individual productTree to the individual productTreeItem, restriction is
productTree consistsOf minimum one productTreeItem. The object property
holds links the individual businessManager to the individual businessOrder,
restriction is businessManager holds minimum one businessOrder.

The individuals are equal to the entities in UML, such as businessManager,
businessOrder etc. The datatype properties are equal to each entity's
properties, such as the datatype properties of businessManager are
bManagerID, name, age, teleNr, address, responsibilities. Restriction on slots
are equal to the bManagerID exactly one, name exactly one, age exactly one,
teleNr exactly one, address exactly one, responsibilities exactly one. The
object property is equal to multiplicity, such as the object property consistsOf
links the individual product to the individual productTree.

5.2.2 Plant Manager

This section presents the Ontoviz Diagram for plant manager and its
corresponding descriptions.

5.2.2.1 Diagram

Figure 16: Part of Ontoviz diagram for plant manager

52

Figure 17: The whole Ontoviz diagram for plant manager

53

5.2.2.2 Description

The individuals are billOfMaterial, BoMItem, capacity, failure, inventory,
machine, machineItem, plantManager, shift, strategy, workOrder.

The datatype properties of plantManager are pManagerID, name, age,
teleNr, address, responsibilities. Restriction on slots are the restriction on
pManagerID exactly one, name exactly one, age exactly one, teleNr exactly
one, address exactly one, responsibilities exactly one. All properties and their
cardinalities of individual plantManager can be represented in a formal logic
language like pManagerID exactly 1 AND name exactly 1 AND age exactly 1
AND teleNr exactly 1 AND address exactly 1 AND responsibilities exactly 1
AND holds MIN 1 workOrder AND assumes MIN 1 failure AND monitors MIN 1
machine.

The object property monitors links the individual plantManager to the
individual machine, restriction is plantManager monitors minimum one
machine.The object property holds links the individual plantManager to the
individual workOrder, restriction is plantManager holds minimum one
workOrder. The object property assumes links the individual plantManager to
the individual failure, restriction is plantManager assumes minimum one
failure.

The individuals are equal to the entities in UML, such as plantManager,
workOrder etc. The datatype properties are equal to each entity's properties,
such as the datatype properties of plantManager are pManagerID, name, age,
teleNr, address, responsibilities. Restriction on slots are equal to the
pManagerID exactly one, name exactly one, age exactly one, teleNr exactly
one, address exactly one, responsibilities exactly one. The object property is
equal to multiplicity, such as the object property monitors links the individual
plantManager to the individual machine.

5.2.3 Shop Manager

This section presents the Ontoviz Diagram for shop manager and its
corresponding descriptions.

54

5.2.3.1 Diagram

Figure 18: Part of Ontoviz diagram for shop manager

5.2.3.2 Description

The individuals are arrivalSequence, machine, machineItem,
shopManager, testcase, transport.

The datatype properties of Shop Manager are sManagerID, name, age,
teleNr, address, responsibilities. Restriction on slots are the restriction on
sManagerID exactly one, name exactly one, age exactly one, teleNr exactly
one, address exactly one, responsibilities exactly one. All properties and their
cardinalities of individual shopManager can be represented in a formal logic
language like sManagerID exactly 1 AND name exactly 1 AND age exactly 1
AND teleNr exactly 1 AND address exactly 1 AND responsibilities exactly 1
AND monitors MIN 1 machine AND monitors MIN 1 transport. The datatype
properties of transport are transportID, productID, source, destination,
description, notation. Restriction on slots are the restriction on transportID
exactly one, productID exactly one, source minimum one, destination minimum
one, notation exactly one.

55

Figure 19: The whole Ontoviz diagram for shop manager

56

The object property monitors links the individual shopManager to the
individual machine, restriction is shopManager monitors minimum one
machine, and links the individual shopManager to the individual transport,
restriction is shopManager monitors minimum one transport

The individuals are equal to the entities in UML, such as shopManager,
transport etc. The datatype properties are equal to each entity's properties,
such as the datatype properties of shopManager are sManagerID, name, age,
teleNr, address, responsibilities. Restriction on slots are equal to the
sManagerID exactly one, name exactly one, age exactly one, teleNr exactly
one, address exactly one, responsibilities exactly one. The object property is
equal to multiplicity, such as the object property monitors links the individual
shopManager to the individual machine and links the individual shopManager
to the individual transport.

5.2.4 Operation Manager

This section presents the Ontoviz Diagram for operation manager and its
corresponding descriptions.

5.2.4.1 Diagram

Figure 20: Part of Ontoviz diagram for operation manager

57

Figure 21: The whole Ontoviz diagram for operation manager

58

5.2.4.2 Description

The individuals are conveyor, failure, finishedProduct, operationManager,
palette, route, transport.

The datatype properties of operationManager are oManagerID, name, age,
teleNr, address, responsibilities. Restriction on slots are the restriction on
oManagerID exactly one, name exactly one, age exactly one, teleNr exactly
one, address exactly one, responsibilities exactly one. All properties and their
cardinalities of individual operationManager can be represented in a formal
logic language like oManagerID exactly 1 AND name exactly 1 AND age
exactly 1 AND teleNr exactly 1 AND address exactly 1 AND responsibilities
exactly 1 AND monitors MIN 1 failure AND monitors MIN 1 palette AND
monitors SOME finishedProduct. The datatype properties of finishedProduct
are finishedProductID, finishedProductName, finishedProductAmount, logfile.
Restriction on slots are the restriction on finishedProductID exactly one,
finishedProductName exactly one, finishedProductAmount exactly one, logfile
exactly one.

The object property monitors links the individual operationManager to the
individual failure, restriction is operationManager monitors minimum one
failure, and links the individual operationManager to the individual palette,
restriction is operationManager monitors minimum one palette, and links the
individual operationManager to the individual finishedProduct, restriction is
operationManager monitors some finishedProduct.

The individuals are equal to the entities in UML, such as operationManager,
transport etc. The datatype properties are equal to each entity's properties,
such as the datatype properties of operationManager are oManagerID, name,
age, teleNr, address, responsibilities. Restriction on slots are equal to the
oManagerID exactly one, name exactly one, age exactly one, teleNr exactly
one, address exactly one, responsibilities exactly one. The object property is
equal to multiplicity, such as the object property monitors links the individual
operationManager to the individual failure, restriction is operationManager
monitors minimum one failure, and links the individual operationManager to
the individual palette, restriction is operationManager monitors minimum one
palette, and links the individual operationManager to the individual
finishedProduct, restriction is operationManager monitors some
finishedProduct.

5.2.5 System Developer

This section presents the Ontoviz Diagram for system developer and its
corresponding descriptions.

59

5.2.5.1 Diagram

Figure 22: Part of Ontoviz diagram for system developer

5.2.5.2 Description

The individuals are conveyor, crane, diverter, function, inventory, machine,
node, prodTreeItem, product, productTree, shopLayout, systemDeveloper.

The datatype properties of systemDeveloper have the properties such as
sysManagerID, name, age, teleNr, address, responsibilities. Restriction on
slots are the restriction on sysManagerID exactly one, name exactly one, age
exactly one, teleNr exactly one, address exactly one, responsibilities exactly
one. The datatype properties of product are productID, productName,
productType, finishingTime, status. Restriction on slots are the restriction on
productID exactly one, productName exactly one, productType exactly one,
finishingTime exactly one, status exactly one. All properties and their
cardinalities of individual systemDeveloper can be represented in a formal
logic language like sysManagerID exactly 1 AND name exactly 1 AND age
exactly 1 AND teleNr exactly 1 AND address exactly 1 AND responsibilities
exactly 1 AND contains EXACTLY 1 productTree. The datatype properties of
productTree are pTreeID, complexity. Restriction on slots are the restriction on
pTreeID exactly one, complexity exactly one.

The object property contains links the individual product to the individual
productTree, restriction is product contains exactly one productTree.

60

Figure 23: The whole Ontoviz diagram for system developer

61

The individuals are equal to the entities in UML, such as systemDeveloper,
product, productTree etc. The datatype properties are equal to each entity's
properties, such as the datatype properties of systemDeveloper are
sysManagerID, name, age, teleNr, address, responsibilities. Restriction on
slots are equal to the sysManagerID exactly one, name exactly one, age
exactly one, teleNr exactly one, address exactly one, responsibilities exactly
one. The object property is equal to multiplicity, such as the object property
contains links the individual product to the individual productTree, restriction is
product contains exactly one productTree

5.3 Similarities and Differences

This section analyzes and compares four main evaluation criteria
regarding UML and ontologies based on the data models created above using
these two approaches.

5.3.1 Visualization & Expression

UML provides a wide range of diagrams for visualization, for instance, use
case diagrams, class diagrams etc. Users could decide for the suitable
diagrams according to their needs, either use case diagram is appropriate for
the use case description or class diagram and entity relationship diagram are
appropriate for creating data models. In this case with the help of the UML tool
Visual Paradigm, the entity relationship diagram is chosen to visualize the use
case description. In section 5.1 above, the diagrams shown present all the
necessary entities as rectangles in a graph for each role, their corresponding
properties are shown inside the rectangles, concluding type, value range etc,
relationships between entities and their cardinalities are represented as
directed lines connected with the entities.

Ontology also offers the possibility for visualization by installing the
ontology tool protégé plug-ins, for instance, Ontoviz, Jambalaya, OWLViz etc.
Jambalaya is an interactive visualization tool that helps users to visualize,
navigate, understand a sophisticated knowledge based system while OWLViz
allows the visualization of asserted and inferred classification hierarchies. In
this case with the help of the tool Protégé, the nested view of Jambalaya is
chosen to visualize the ontologies of the use cases. In section 5.2 above, the
diagrams shown present all the necessary classes and instances as nodes in
a graph, their corresponding properties as arcs, concluding type, range, OWL
syntax, relationships between concepts and instances shown as directed
edges. A node contained within another node indicates a child-parent
relationship. Arcs have types as well, roughly corresponding to slots, or
properties in OWL. Jambalaya groups arcs (properties or slots) according to
their function. If you click on a group of arcs, you can hide them all or show

62

them all [20].
In comparison, ER diagram from UML and Jambalaya diagram from

ontology don't have too much difference basically. Generally speaking, UML
offers a more powerful visualization than ontology because of its wide range of
specified diagram support and easy use of manipulation on diagrams in UML.
Users could choose their preferred diagrams depend on their functions and
requirements. On the other hand, ontology is more appropriate for creating a
better vocabulary, strong expressiveness on data modeling in knowledge
domain than UML. Ontology has its own OWL syntax that show the constraints
on the properties, each owl element specify the cardinality of the classes and
instances' properties which UML is not able to provide.

5.3.2 Consistency

The editor tool Visual Paradigm guarantees the consistency feature in
diagrams for UML, for example, both in the roles plant manager and shop
manager could monitor several machines, and meantime each machine is
composed of several machineItems. Suppose that the user has finished the
establishment of the entities machine, machineItem and the assignment of the
properties values for the plant manager. Later the user would like to set a
machine or machineItem entity, it is redundant to retype all the properties of
machine or machineItem, the point is to keep the entity name consistently. If
anything would be changed in either side, it would be adjusted automatically;
the both sides remain the same.

Ontology does also guarantee this consistency feature, nevertheless
represented in another form. With the assistance of the DIG (Description Logic
Implementers Group) interface, it enables the computation and examination on
the subsumption relationships between classes and detects inconsistent
classes. Reasoners (like Racer) can be used to checks whether or not all of
the statements and definitions in the ontology are mutually consistent and can
also recognize which concepts fit under which definition.

In comparison, UML provides a set of consistent diagrams for different
roles; ontology might provide a set of inconsistent diagrams for different roles
triggered by manual causes. Only an entire ontology file could be imported
under Protégé's support, an individual element can not be imported into
another ontology file directly, so the model engineer would create it manually,
the errors might occur meanwhile. The UML users don't have to worry about
the consistency problem in diagrams, but the disadvantage is the lack of the
model consistent checking while ontology could make it happen [21].

5.3.3 Needed Effort

Establishing the diagrams in UML using Visual Paradigm is easy and

63

convenient, for example, both in the roles plant manager and shop manager
could monitor several machines, and meantime each machine is composed of
several machineItems. When the user finishes the establishment of the entities
machine, machineItem and their properties in plant manager, it is not
necessary to retype the properties of machine and machineItem which saves a
lot of time and efforts.

However, it does cost more time and efforts in order to establish the
diagrams in ontology using Protégé. For example, the user has to retype the
Classes machine, machineItem, their properties and restrictions on properties
in both roles plant manager and shop manager, although the user has already
typed once. In this case, this kind of procedure raises the possibility of faults
caused by human being.

In comparison, it is more wasteful both in time cost and artificial efforts to
establish the diagrams in ontology than in UML. Under rough estimation, the
time required to establish all the diagrams in UML is twice as much as the time
required to establish all the diagrams in ontology considering this example of
multi-agent systems. For more complicated situations and systems, the time
cost and efforts keep increasing in accordance with the system's complexity.
Regarding the time and efforts needed for model checking, ontologies save
definitely a lot of time than UML, because of its automatic model consistency
checking that has been mentioned in section 5.3.2. For inconsistency
discovery, ontology does have dominant advantage.

5.3.4 Additional functions

UML is famous because of its strong support and expressiveness of
diagrams. Besides, it provides also other additional functions, like XMI (XML
Metadata Interchange) standard which is designed to facilitate the interchange
of UML models. Visual Paradigm tool can reverse engineer 9x, C++, Java, IDL,
PHP and Python source code, XML and XML schema files, databases (with
JDBC), and .NET .exe and .dll files etc.

Protégé supports not only the visualization, but also other pragmatic
functions in ontology. Actually, for instance, it provides the possibility to
generate XML schemas which are a means for defining the structure, content
and semantics of XML documents, express shared vocabularies and allow
machines to carry out rules made by people. RDF/XML source code allows
RDF models to be sent easily from one computer application to another in a
common XML format. In addition it offers also the query tools, for example,
SPARQL can be used to express queries across diverse data sources,
whether the data is stored natively as RDF or viewed as RDF via middleware.
SPARQL contains capabilities for querying required and optional graph
patterns along with their conjunctions and disjunctions, it also supports
extensible value testing and constraining queries by source RDF graph
[10][30][47].

64

In comparison, Protégé offers more plug-ins and additional functions in
ontology than Visual Paradigm in UML. It enhances the strong ability in
ontology and widens its user range. However, UML is constrained by diagram
functions which narrow its popularity to some degree.

65

6. Evaluation

The section 6 characterizes and evaluates the fundamental features of
UML and OWL in four main aspects, visualization & expression, consistency,
performance and additional functions.

6.1 Visualization & Expression

This section will present the evaluation results of UML and OWL in both
common and uncommon features respectively.

6.1.1 Evaluation table of common features

Table 1: The evaluation table of common features
UML features OWL features

class class
instance individual
ownedAttribute
binary association

property

Subclass
generalization

Subclass
subproperty

N-ary association
association class

Class
property

enumeration oneOf
navigable, non-navigable Domain

range
disjoint, cover disjointWith

unionOf
multiplicity minCardinality

maxCardinality
inverseOf

package ontology
dependency reserved name RDF: properties

6.1.2 Description

Table 1 shows the equivalent features both in UML and OWL. For instance,
UML and OWL are all based on class. In UML it is a basic element stand for an
object, it could be any person, concept to the system, while in ontology class

66

consists of the ontology library.
In UML the extent of a class is denoted as a set of instances,

corresponding, in OWL the extent of a class is a set of individuals [16].
An association represents the relationship among classes. There are two

kinds of association: binary association and n-ary association. In UML binary
association is the structural connection between two classes, appears as a
straight line while in OWL it is represented as owl:ObjectProperty. There are
two kinds of property in OWL, such as owl:ObjectProperty and
owl:DatatypeProperty. The ownedAttribute indicates a bundle of owned
properties of a class, if the ownedAttribute is a unique key, then it is equivalent
to owl:ObjectProperty, otherwise it is equivalent to owl:DatatypeProperty [16].

Both two languages support the subclass relationship, it is represented as
generalization in UML and rdfs:subClassOf in OWL, regarding the property
hierarchies, it is represented as generalization of association in UML and
rdfs:subPropertyOf in OWL [16].

The other association n-ary association in UML is the connection among
three or more classes, appears as a set of lines connected to a central
diamond. The similar element is OWL classes with bundles of binary
owl:FunctionalProperty [16].

The enumeration of the individuals or instances that consist of the class is
denoted as enumeration in UML and in OWL is owl:oneOf [16].

UML has two options for binary associations are navigable that means the
association can be traversed or queried and non-navigable that means the
association is bi-directional. OWL properties are always binary and with two
distinguished ends, one is rdfs:domain that limits the individuals to which the
property can be applied and rdfs:range that limits the individuals that the
property may have as its value [16].

Both UML and OWL allow multiple inheritances, that is to say, a class can
be a subclass of more than one class. Disjoint of the subclasses in UML is
equal to owl:disjointWith statement asserts that two subclasses of a class
involved have no individuals in common. The concept cover which a collection
of subclasses to be declared to cover a super class is equal to the owl:unionOf
property links a class to a list of class descriptions. An owl:unionOf statement
describes an anonymous class for which the class extension contains those
individuals that occur in at least one of the class extensions of the class
descriptions in the list [16].

Multiplicity in UML means that an association can have minimum and
maximum cardinalities. In comparison with OWL, a property can be
constrained by cardinality restrictions such as the minimum number of
instances owl:minCardinality, and maximum number of instances
owl:maxCardinality. The owl:inverseOf construct can be used to define such
an inverse relation between properties, from domain to range and vice versa
[16].

The module structure called package in UML that organizes elements in

67

http://www.w3.org/TR/2004/REC-owl-semantics-20040210/#owl_unionOf
http://www.w3.org/TR/2004/REC-owl-semantics-20040210/#owl_inverseOf

groups, establishing ownership of elements etc and an OWL ontology may
include such elements as descriptions of classes, properties and their
instances etc [16].

In UML the relationship that the change of a supplier element may affect
the client's element is represented as dependency and could be translated to a
reserved name rdf: properties whose domain and range are both rdf:class in
OWL [16].

6.1.3 Evaluation table of uncommon features

Table 2: The evaluation table of uncommon features
Feature UML OWL

Boolean combination of
class expressions

No intersectionOf,
unionOf,
complementOf

Property value restriction No hasValue,
equivalentClass,
allValuesFrom,
someValueFrom

Unique name assumption No allDifferent, sameAs,
differentFrom

Unique name assumption
of classes and properties

No equivalentClass,
equivalentProperty

Thing element No Yes
Symmertic/Transitive
Property

No Yes

Behavioral features operations,
responsibilities,
interface/abstract/active
classes

No

Composite structure structured classifier,
connector, collaboration,
port

No

Part-of relationship composition, aggregation No
Derive element Yes No
Access control public, protected, private,

package
No

Keywords <<interfaces>> No

6.1.4 Description

Table 2 shows the evaluation of uncommon features in UML and OWL.
There are some features existed in OWL but are not included in UML, vice

68

versa. For instance, OWL provides additional boolean combination of class
expressions, such as the owl:intersectionOf element defines that the class
consists of exactly all the objects that are common to all class expressions
from the list, is similar to the logical conjunction, the owl:unionOf element
defines that the class consists of all the objects that belong to at least one of
the class expression from the list, is similar to the logical disjunction. The
owl:complementOf element defines that the class consists of exactly all objects
that do not belong to the class expression, is similar to the logical negation.
Both owl:unionOf and owl:complementOf are not parts of OWL Lite [16].

In additional, OWL provides some kinds of property value restrictions, such
as the owl:hasValue element defines that a property must have at least one
value which could be either an individual or a data value. The
owl:allValuesFrom element requires the particular class has a local range
restriction associated with it and the owl:someValuesFrom restriction requires
the particular class may have a restriction on a property that at least one value
for that property is of a certain type [16].

OWL does not have this unique name assumption, but it allows expressing
explicitly that two names refer to distinct entities. For example, the owl:sameAs
element states that two given named individuals have the same identity, by
contrast, the owl:differentFrom element states that two given named
individuals have different identities. Furthermore, the owl:AllDifferent element
states that a number of individuals should be mutually distinct [16].

Regarding the unique name assumption of classes and properties in OWL,
it also allows to express explicitly. The owl:equivalentClass element is used to
indicate that two classes have precisely the same instances, and the
owl:equivalentProperty element indicates that two properties are the same.

It is special and only in OWL that a universal class owl:Thing is available,
all classes are subclasses of owl:Thing [16].

There are two subclasses of owl:ObjectProperty, one is the
owl:SymmetricProperty element asserts that a property is symmetrically valid
in two directions. The other is the owl:FunctionalProperty element asserts that
a property can only have one unique value or semantically equal [16].

Considering UML, it provides the behavioral features additionally, including
operation that is a specification of a transformation or query that an object may
be called to execute; responsibility that indicates the obligation of a class or
other elements, expressed as comments; abstract class indicates that a class
may not be instantiated; active class is the class whose instances are active
objects etc [16].

The composite structure is also a special feature of UML that describes the
interconnection of objects within a context to form an entity. Composite
structures include structured classifiers and collaborations, connectors and
ports etc [16].

There are several kinds of part-of relationship between classes, for
example, an aggregation specifies a whole-part relationship between an

69

aggregate and a constituent part. A composition relationship represents a
whole–part relationship and is a type of aggregation [16].

In the aspect of access control, UML identifies four types of visibility for
each attribute and operation, for instance public, protected, private, and
package.

UML allows a target element to be derived from other source elements,
denoted with the keyword derive, for example a composition derived from a
generalization [16].

A UML keyword is a textual adornment to categorize a model element.
Most keywords are shown in «». The keyword categorizes that a classifier box
is an interface shown as «interface» [16].

6.1.5 Conclusion

In a word, OWL supports more features than UML, such as boolean
combination of class expressions, property value restriction, unique name
assumption, thing element and symmetric/transitive property. The intent of
OWL is to produce machine readable codes, process and integrate information
automatically. Since OWL semantics are based on description logics, relation
to description logics has to be represented as intersection, union, and
complement. Property value restriction limits the value range of classes in
OWL while in UML the value of classes are shown in other forms, like
aggregation, composition etc. Unique name assumption is not defined in OWL,
so it is necessary to mark them explicitly. In UML there is no need for unique
name assumption, because all the classes are defined by default that two
equivalent class names refer to the same class. In the theory of ontology, all
other individuals are defined to derive from thing element that in comparison
not necessary in UML that based on object-oriented data modeling primarily.
Symmetric/transitive property is the typical features of logical language, so
they are not supposed to appear in UML [16].

By contrast, UML supports additional features than OWL, such as
behavioral features, composite structure, part-of relationship, derive element,
access control, keywords. UML is designed to be a graphical notion modeling
language originally, facilitates the human beings to understand the system
model. UML's statechart diagrams are used to describe dynamic behaviors of
a system, such as the possible states of an object as events occur. Therefore,
OWL is a knowledge representation of ontology, provides a static ontology
vocabulary, thus behavioral features are surplus in OWL. Composite structure
is a set of interconnected elements that collaborate at runtime to achieve some
purpose. Relationships in UML are for instance aggregation, association,
composition that in OWL are represented as boolean combination of class
expressions. Classes, variables and methods could be declared as four kinds
of access controls public, private, protected, and package in UML that could be
in accordance with java syntax, enables the UML tool to generate

70

http://en.wikipedia.org/wiki/Behavior
http://en.wikipedia.org/wiki/System

corresponding consistent codes. Otherwise, OWL is written in RDF/XML codes,
so it is useless to define access controls. Keywords in UML could be used to
distinguish abstract class and interface, the aim is also to be in accordance
with java syntax [16].

6.2 Consistency

This section will present the evaluation results of UML and OWL in the
diagram or model consistency aspects.

6.2.1 Evaluation table of consistency

Table 3: The evaluation table of consistency features
Consistency UML Ontology

Diagram consistency
1. Class consistency Yes No
2. Attribute consistency Yes No
3. Relationship consistency Yes No
Model consistency
1. Class consistency No Yes
2. Property consistency No Yes
3. Instance consistency No Yes

6.2.2 Description

Table 3 shows the evaluation of the consistency checking features in UML
and ontology.

For instance, regarding the diagram consistency, UML tool Visual
Paradigm provides the diagram consistency checking that ontology tool
Protégé doesn't provide it. Visual Paradigm keeps all the classes' names and
their attributes consistent, if any change occurs, they will be changed
automatically. Suppose there exists a kind of relationship between two classes,
if one of the both classes are deleted, the relationship would be deleted
automatically.

Regarding the model consistency, UML doesn't provide this kind of
function. In OWL it doesn't allow to create two individuals/properties with the
same name, furthermore, the tool Protégé could examine whether the required
instance has been created. With installation of an additional plugin Racer
(Renamed Abox and Concept Expression Racer), ontology could carry out
model consistency checking [34].

The description logic reasoner offers the possibility of OWL to deduce their
correct logical inheritance in order to determine whether a class is consistent

71

or not, decide whether one class is subsumed by another or not, etc [34].
Racer is so to say a robust server for scalable ontology reasoning. The

theory of Racer is to combine large Aboxes with large and expressive Tboxes.
It provides highly optimized standard and non-standard inference services for
sophisticated ontology applications. Racer offers much more than OWL by
supporting rules, constraint reasoning, and expressive query answering (e.g.,
in SPARQL syntax), etc [34].

6.2.3 Conclusion

UML provides class consistency, attribute consistency and relationship
consistency checking in diagram checking. UML aims at to offer a strong
robust diagram system, so that it doesn't allow appearing inconsistency in
different diagrams. In OWL, all the diagrams are generated automatically
based on the created ontology models, thus for OWL it is more important to
keep models consistent.

OWL provides class consistency, property consistency and instance
consistency checking in model checking. UML doesn’t provide model
consistency checking basically, but this function could be realized through one
additional plug-in "MCC". More details would be explained later in section 6.4.

6.3 Needed Effort

This section will present the evaluation of UML and OWL's needed Effort
for creation and consistency checking.

6.3.1 Evaluation table of needed effort

Table 4: The evaluation table of needed effort
Function Time cost in UML Time cost in Ontology

Creation
Creation of classes 1 min/class 1 min/class
Creation of attributes 2 min/attribute 4 min/attribute
Creation of relationships 0.5 min/relationship 4 min/relationship
Creation of instances No 2 min/instance
Diagram export 1 min/diagram 5 min/diagram
Creation of one agent 1 hour/agent 2 hour/agent
Creation of five agents 3 hours/five agents 6 hours/five agents

Consistency checking
Class consistency 0.5 min/class 0.5 min/class
Attribute consistency 0.5 min/attribute 0.5 min/attribute
Relationship consistency 0.5 min/relationship 0.5 min/relationship

72

Instance consistency No 1 min/instance

6.3.2 Description

Table 4 shows the evaluation of the functional performance in UML and
OWL. For instance, creation of one class in UML is quite easy, the user is
required to create an entity and rename it, and this operation needs 1 minute.
In comparison with OWL in Protégé, creation of one class needs also 1 minute.
The user is first required to click "create subclass of thing" and then rename it.

In creation of one attribute in UML, the user is required to add "new
column" to the corresponding entity, and then click "open column specification",
fill out some mandatory options like name, type, length etc. It requires the user
about 2 minutes. In comparison with OWL in Protégé, the user has to first
create a "datatype property" in Property Browser and rename it, input its
domain and range. Then the user turns back to "OWL Classes", click "edit
class description" in order to assign the "datatype property" to the
corresponding class, input its attributes and their cardinality in OWL syntax. All
operations require the user about 4 minutes.

In creation of one relationship in UML, the user is required to choose the
right relation among a few options, like "one to one relationship", "one to many
relationship", "many to many relationship" etc, and then assign this relation to
two appropriate entities. It requires about 0.5 minute. In comparison with OWL
in Protégé, the user has to first create an "object property" in Property Browser
and rename it, input its domain and range. Then the user turns back to "OWL
Classes", click "edit class description" in order to assign the "object property"
to the corresponding class, input its attributes and their cardinality in OWL
syntax. All operations require the user about 4 minutes.

In creation of one diagram for each agent, it is convenient to click export
"Diagrams as Image", and then the user is required to choose "output
destination", "export type", "quality" etc. All operations require about 1 minute.
In comparison with OWL in Protégé, considering creation of the diagram, the
user has to choose the right tab under "project configure", there are a few
diagram options, such as Jambalaya Tab, Ontoviz Tab or OWL Viz Tab etc. It
requires the user about 5 minutes.

In creation of one agent in UML, for about 7 entities, 30 attributes of the
agent business manager, reference in section 5.1.1, the needed effort for all
the operations requires about 1 hour. In comparison with OWL in Protégé, it
requires about 2 hours.

In creation of five agents in UML, for about 50 entities, 200 attributes of five
agents business manager, plant manager, shop manager, operation manager
and system developer, reference in section 5.1.1, 5.1.2, 5.1.3, 5.1.4 and 5.1.5.
This needed effort requires about 3 hours. In comparison with OWL in Protégé,
it requires about 6 hours.

Regarding consistency checking in general, the needed effort for class

73

consistency checking in OWL is 0.5 min/class, attribute consistency requires
0.5 min/attribute, relationship consistency requires 0.5 min/relationship,
instance consistency requires 1 min/instance. Similarly, in UML class
consistency checking requires 0.5 min/class, attribute consistency requires 0.5
min/attribute, relationship consistency requires 0.5 min/relationship.
Unfortunately, there is no instance defined in UML diagram, so it is impossible
to compare the needed effort.

6.3.3 Conclusion

The needed effort for creation of classes both in UML and OWL are almost
equal. The difference occurs on creation of attributes and creation of
relationships, in UML the time cost is shorter than in OWL. For in OWL, for
example, creation of a class requires the user to form all the attributes and
their cardinality in logic expressions which cost more time than UML. UML is a
graphical language, its models are all produced as diagrams, and by contrast,
in OWL the user has to decide for what kind of diagram type to generate that
needs more time.

Suppose creation of one agent as one unit in comparison with creation of
five agents as five units, the efforts invested in creation of models in OWL raise
according to the project's range.

The needed effort for consistency checking in parts class consistency,
attribute consistency and relationship consistency are no big difference
between UML and OWL. But OWL has more advantages of import a few
ontology models and checks their consistency simultaneously.

6.4 Additional functions

This section will present the evaluation of UML and OWL in additional
functions.

6.4.1 Evaluation table of additional functions

Table 5: The evaluation table of additional functions
Reasoning UML Ontology

Check consistency in Tool MCC feasible Yes
Classify taxonomy in Tool MCC feasible Yes
Compute inferred types in Tool MCC feasible Yes
SPARQL Query in Tool MCC feasible Yes

Codes
Generate EMF Java Interfaces Yes Yes
Generate Java Schema class Yes Yes

74

Generate Java code Yes Yes
Show DIG Code No Yes
Show RDF/XML Source code Yes Yes

6.4.2 Description

Table 5 shows the evaluation of additional features both in UML and OWL.
In the reasoning part, Protégé provides reasoning plug-in to check consistency,
classify taxonomy, compute inferred types, and SPARQL Query allows for a
query to consist of triple patterns, conjunctions, disjunctions, and optional
patterns, could be used to express queries across diverse data sources,
whether the data is stored natively as RDF or viewed as RDF via middleware.

In the codes part, both UML and Protégé provide generation of EMF Java
interfaces, Java schema class and RDF/XML Source code. In additional,
Protégé provides Java code, and DIG code.

6.4.3 Conclusion

The plug-in reasoning engine Racer (Renamed ABox and Concept
Expression Reasoner) supports the ontology editor Protégé to verify the model
consistency of ontologies. The Racer guarantees such functionalities as check
the model consistency of OWL ontologies, discover implicit
subclass-superclass relationships, ensure consistent resources, and enable
an OWL-QL query processing system.

The possibility to realize the automatic consistency checking of UML
models is offered by the tool MCC (Model Consistency Checker). It is based on
Description Logic, implemented as a plug-in of Poseidon for UML, applies
Racer as the reasoning engine. The MCC consists of the three components
like Fact Extractor, Visual Query Interface and Query Processor basically and
link the Poseidon for UML to Racer. First, the Poseidon loads the MCC plug-in
and any UML model can be loaded by the Fact Extractor while any user events
can be loaded by the Visual Query Interface. The Query Processor translates
the model consistency analysis from a user-friendly and communicates with
the Racer, and then it translates the reasoner results from Racer to well
understandable information for users.

The similarities of UML and Ontology are that both automatic model
consistency checking are implemented by the Racer finally, it means no matter
the models are checked directly or converted to be verified by the Racer.
The differences are that since the Ontology models has a logic semantics and
be expressed machine readable, so it can be executed without any
transformation. The UML models are always shown in the UML diagrams, such
as class diagrams. The class diagrams should be translated first into the
Description logics.

75

7. Didactics in ontology-based modeling

UML has been payed a close attention for a long time in software
engineering. Since it is widespread and has become an indispensable
didactics part in high schools and universities. There is already a wide range of
didactic teachings of UML available. So now it is important to suggest some
didactics improvements on ontology-based modeling.

7.1 Definition of didactic elements

At the beginning of didactics planning, it is absolutely necessary to answer
several relevant questions of didactics in general. The followings define 9
characteristic elements, namely the primary questions of didactics:

1. Teacher

This part of didactics is appropriate for teachers whose responsibilities are
for software engineering and knowledge engineering learning or junior
teachers who have less experience in ontology-based modeling teaching.

2. Content

The contents of this ontology learning should conclude two main parts, the
first part is didactics of basic ontology's theories, and the second part is
didactics of ontology-based modeling in practice. The more details of each
lecture unit would be described in section 7.2.

3. Time

The time schedule of this ontology-based modeling didactics is supposed
to last for one semester. Each lecture unit is supposed to last for 1.5 hour.

4. Students

The learners are aimed at students of high-schools and universities niveau
or model engineers and software engineers who are interested in data
modeling using ontologies, and software engineers with knowledge in the
traditional data modeling area who want to analyze the advantages and
possible limitations of switching to ontology-based modeling approach.
Knowledge of data modeling in advance is required, meanwhile, knowledge of
ontology is not required, but knowledge of UML is preferred, and knowledge of
software/knowledge engineering is also a plus.

76

5. Location

The location could be classrooms of high schools or universities,
vocational schools, and meeting rooms of companies' train bases etc. The
practical exercises could take place in computer labs.

6. Method

The teacher can use traditional didactic methods like presentation,
face-to-face explaining, demonstrating as the main techniques. Otherwise, it is
also commendatory that the teacher could use questioning, brain-storming,
collaborating and learning by teaching etc. The didactic methods are
dependent of students' abilities and levels of classes.

7. Medium

The teacher can use such media like slides, beamer as the main media
tools for presentation, questioning and so on. It is commendatory for the
teacher to apply the e-learning platform "moodle" [9]. For example, the teacher
could upload presentation slides and learning material, creating forum also
increases the communication possibilities for teacher and students.

8. Learning motivation

Ontology has become one of potential data modeling languages in
software engineering. The learning motivation is the effectiveness of
ontology-based data modeling based on its automatic consistency verification
and strong logic expressivity used in the data modeling process.

9. Educational objective

The target of ontology-based modeling didactics is to provide students and
interested engineers a fundamental overview of ontology and command of
ontology-based data modeling by means of the tool Protégé.

7.2 Structure of didactics material

This section plans each unit of lectures for ontology didactics
approximately and each unit comprises the whole didactics material required
and depicts the involved relevant didactic elements.

7.2.1 Overview of ontology

1. Motivation for students

This part is to introduce the overview of ontology to students. For students

77

without previous ontology knowledge, it is good to know about ontology's
history, definition and application ranges etc in the beginning.

2. Content

The content should contain ontology's history, including its origin and
development phases. Another part is definition of ontology, especially should
point out three primary components of ontology. For application ranges, it is
easy for students to memory by enumeration of some concrete examples of
applications.

3. Precondition of students

Basically no specific knowledge is required, but knowledge of software
engineering (UML) or knowledge engineering is an advantage for both
students and teacher.

4. Method

At the beginning it is commendatory for the teacher to use brain-storming
in order to test the level of students which facilitates the continued lecture plan.
After obtaining students' feedbacks, the teacher could use the traditional
teaching method, namely face-to-class presentation.

5. Medium

The teacher could use some flip charts or cards during brain-storming,
moreover, he could use slides and beamer to present his presentation.

6. Exercises for students

It is benefit for students to solidify the knowledge they have learned from
this lecture unit. Two students make up one team, their tasks are to find out an
example of ontology in practice by themselves. Each team should describe the
scenario of this example, explain the reasons of their choice, decompose and
analyse their components and usage, etc. Length: 2-3 pages.

7. Time cost

The lecture unit is supposed to be 1.5 hour. The time cost by the exercises
for each team is supposed to be 1-1.5 hour.

78

7.2.2 Theory enhancement

1. Motivation for students

The first step "overview of ontology" serves a good preparation for
students. Since ontology is an important theory in knowledge engineering and
now it takes a relevant place in software engineering by and by. So it is
demandable for students to enhance and command the knowledge of
ontology.

2. Content

In order to enhance the memory of ontology, it is relevant for students to
practice the knowledge they have learned before by themselves. One side,
presentation of more details about ontology for the teacher; on the other side,
brain-storming for students to find out the differences between UML and
Ontology, focus only on the principal theories.

3. Precondition of students

A few knowledge of ontology is required; moreover, knowledge of UML is
an advantage for students and the teacher.

4. Method

The teacher could use presentation to state more details about ontology in
software engineering. In addition, face-to-face explaining and questioning are
also useful in case any student has questions. At last, brain-storming will be
applied for the comparison between UML and Ontology.

5. Medium

The teacher could use slides and beamer to present his presentation;
moreover, he could also use some flip charts or slides during brain-storming
etc.

6. Exercises for students

The tasks for each team are to research or conclude reasons which cause
the differences between UML and Ontology deeply and write a document
about the results. Length: 2-3 pages.

7. Time cost

The lecture unit is supposed to be 1.5 hour. The time cost by the exercises
for each team is supposed to be 1-1.5 hour.

79

7.2.3 Ontology Tool Protégé

1. Motivation

Protégé is a free, open source and one authorized tool for ontology editor.
For model engineers who use ontology-based modeling are indispensible to
command the use of Protégé tool, furthermore, with the help of its other
feasible plug-ins.

2. Content

The first part contains the introduction of the tool Protégé, and theory of its
basic functions. The second part is to demonstrate an example of creating
ontologies. The third part is about the introduction of some feasible useful
plug-ins, such as Racer, etc.

3. Precondition of students

Knowledge of tool Protégé is not required, but knowledge of basic
ontology' theories is a must, furthermore, knowledge of data modeling is an
advantage for the teacher and students.

4. Method

The teacher could use presentation to explain basic functions of tool
Protégé as the first part. For the second part, the teacher could use
demonstrating to perform the creation of ontologies by Protégé. In addition,
face-to-face explaining and questioning are also useful in case any student
has questions. At last, the teacher should allow students to get used with
Protégé in computer labor.

5. Medium

The teacher could use screenshots of tool Protégé in slides and beamer to
present his presentation; moreover, he could also perform the demonstration
of Protégé by applying a teacher-students network in computer labor.

6. Exercises for students

The tasks of each team are to install the tool Protégé and its plug-ins, get
familiar with the tool environment.

7. Time cost

The lecture unit is supposed to be 1.5 hour. The labor unit is supposed to
be 45 minutes. The time cost by the exercises for each team is supposed to be
1 hour.

80

7.2.4 Ontology-based Data Modeling

1. Motivation

The purpose of this lecture unit is to enable students to command how to
create a data model based on ontology, then get an overview of several typical
data modeling diagrams in ontologies.

2. Content

The contents should contain demonstration of ontology-based data
modeling, and introduction of its features, advantages and disadvantages of
several data modeling diagrams in ontologies, such as OWL, OntoViz etc.

3. Precondition of students

Knowledge of data modeling theory, basic ontology's theory and usage of
Tool Protégé are required for students.

4. Method

The teacher could use demonstrating to perform ontology-based data
modeling. For the introduction of data modeling diagrams in ontologies, the
teacher could use presentation to present features of data modeling diagrams.
In addition, face-to-face explaining and questioning are also useful in case any
student has questions.

5. Medium

The teacher could perform the demonstration of ontology-based data
modeling by applying a teacher-students network in computer labor, moreover,
he could also use screenshots of Protégé in slides and beamer to present his
presentation.

6. Exercises for students

The tasks of each team are to define a scenario, and implement it by
means of tool Protégé. Each team should construct ontologies according this
scenario. The results should conclude the screenshots of one data modeling
diagram in ontologies, and enumerate the problems occurred in their works.
Length: 2-3 pages.

7. Time cost

The lecture unit is supposed to be 1.5 hour. The labor unit is supposed to
be 45 minutes. The time cost by the exercises for each team is supposed to be
1-1.5 hour.

81

7.2.5 Comparison

1. Motivation

The purpose of this part is to compare the differences of data modeling
based on UML and Ontology. Since the UML approach is already familiar for
some other software engineers, so it is ingenious to find a easy and optimal
way to convert a data model from UML to Ontology.

2. Content

The contents should contain methods about how to convert from a class
diagram or an entity relationship diagram of UML into a tuple notation of
ontology and demonstrate the theory through a concrete example.

Example

The following figure 24 shows the example cut from ER Diagram of
Business Manager partly for conversion from the ER Diagram to the
Ontology's notation tuples.

Figure 24: Example of conversion from UML ER Diagram into Ontology's
notation

According to the responsibilities of business manager defined in section

4.2.1, it is easy for UML software engineers and other model engineers to

82

understand this ER Diagram. The meaning of this ER Diagram can be
understood like one "Business Manager" could hold several "Business Orders".
One "Client" could order several "Business Orders" at the same time or
different time. Each "Business Order" has a corresponding "Quantity".

One Client instance can be notated in ontologies as Client [C1, Company1,
Contact1, 0043123456, ContactAddress1, (BO1, BO2)]. One Business Order
instance can be notated as [BO1, 01.July.2009, 2 Months, in process, BM1].
Another Business Order instance can be notated as [BO2, 01.October.2009, 2
Months, new, BM2]. One Business Manager instance can be notated as [BM1,
Anna, 30, 0699 123456, Karlsplatz 13, responsible for BO1]. Another Business
Manager instance can be notated as [BM2, Amy, 35, 0676 123456, Karlsplatz
13, responsible for BO2].

The Ontology's tuple notations insert the concrete configuration
information of instances in each entity. The instances of each class can be
presented as tuples, containing concrete data of elements in formal
formulations for better machine planning and reasoning. Otherwise, within
each tuple notation, the relationships between each entity and instance are
represented.

3. Precondition of students

Knowledge of data modeling theory, basic ontology's theory and usage of
Tool Protégé are required for students. Knowledge of UML's data modeling,
either theory or praxis is a plus for students.

4. Method

The teacher could first use demonstrating to explain the use case diagram
or entity diagram, for example, class's names, attributes and operations, then
demonstrate the way to convert from UML diagram to Ontology's notation.
Furthermore, face-to-face explaining and questioning are also useful in case
any student has questions.

5. Medium

The teacher could use slides and beamer to present his presentation.
Moreover, he could also use some flip charts during questioning etc.

6. Exercises for students

Each team has already defined a scenario in the last exercise. The tasks
of each team are to find a partial scenario, implement it using either a class
diagram or an entity relationship diagram containing at least four classes or
entities, and transform this diagram to Ontology's tuple notations. Each team
should conclude the transformation of the notations in 1-2 pages, additionally,
summarize the differences and their experience in 1-2 pages.

83

7. Time cost

The lecture unit is supposed to be 1.5 hour. The time cost by the exercises
for each team is supposed to be 1-1.5 hour.

7.2.6 Conclusion

1. Motivation

The purpose of this part is to recall the memories of students and remind of
all the learning materials in order to strengthen their knowledge and command
of ontologies.

2. Content

The contents of this part is to first repeat all the relevant information of
ontology, then make a conclusion, and forecast its future development in
software engineering.

3. Precondition of students

Knowledge of basic ontology's theory, usage of Tool Protégé and
ontology-based data modeling are required for students.

4. Method

The teacher could use presentation to repeat all the important parts of
ontology. Furthermore, the teacher should prepare some questions about the
learning materials in order to test the learning results of students. Face-to-face
explaining is helpful in case any student has questions.

5. Medium

The teacher could use slides and beamer to present his presentation;
moreover, he could also use some flip charts or slides during questioning etc.

6. Exercises for students

The tasks of each team are to conclude the important knowledge of
ontology which they have learned during this semester. Each team should
present their results on the scenario of last exercise unit to the class.
Presentation: 5-10 minutes

7. Time cost

The lecture unit is supposed to be 1.5 hour. The time cost by the exercises
for each team is supposed to be 1-1.5 hour.

84

8. Discussion

The section 8 discusses the research issue regarding the model
consistency check in reconfiguration. It describes the main process steps of
UML-supported and Ontology-supported reconfiguration life cycle respectively.
Three application scenarios are designed in order to compare based on UML-
and Ontology-approach in various criteria, and conclude each strength and
weakness of UML- and Ontology-based approach.

8.1 Model consistency check in reconfiguration

In consideration of high competitions in e-commerce nowadays, a major
challenge of multi-agent system (MAS) in production automation is to face with
numerous potential and unexpected changes. A MAS should have the
capabilities to adapt to reconfigurations agilely and efficiently with the minimum
of risks in causing and not discovering defects. A MAS is divided into two levels
in general, its requirements and functionalities of each different level are
described semantically. One is the domain level, it indicates all the
development activities for a reusable set of software components in the
"Component Tool Box", concluding the step "Component Development", such
as agent identification, functionality definition etc. The other one is the
production-line level, it indicates all the iterative configuration activities of
domain-level agents for a specified product production, concluding such steps
as "Component Analysis", "New Design" and "Testing and Simulation" [38]
[39].

8.1.1 UML-supported reconfiguration life cycle

This section presents the four key process steps of UML-supported
reconfiguration life cycle.

Step 1 Component Development

According to the stakeholder requirements on reconfigurations,
UML-supported development will first analyze and generate a use case model
that contains system functionalities as use cases. The Quality Assurance
check point verifies whether the generated use case model is compatible with
the original requirements, the Quality Assurance test is done manually in
general. If the use case model has passed the Quality Assurance test, it will be
stored to "Component Tool Box". If any design errors occurred and failed in the
Quality Assurance test, they will be reported to the developer of "Component

85

Development". It is often difficult to create and maintain a complete system
sequence chart diagram for modeling the whole system behavior. Moreover,
no method in UML is available to define the configurations of agent instances
and their properties [39].

Step 2 Component Analysis

The entire system model is composed of a variety of distribute agent
models. Furthermore, each agent chooses the corresponding type of UML
diagrams to present some certain aspects, such as class diagrams show basic
parameters of an agent. When a large number of agents exist, it is always
difficult to model the whole system behavior. For instance, it is particularly hard
to handle and understand the overall system through state charts diagrams
and sequence diagrams, then to measure inconsistencies and violated
dependencies between models. The required agents should be identified and
selected from all available agents which "Component Tool Box" could provide,
in order to fulfill the global system functionalities and meantime, the
corresponding XML files would be generated. The Quality Assurance check
point verifies the model consistencies between current models and defined
requirements manually. Here exist external model checkers, such MCC (Model
Consistency Checker), but in most cases, not well populated and
well-integrated in the UML methodology. When the Quality Assurance test has
been passed successfully, it will transfer to next step; otherwise, the design
errors will be returned to step 2 "Component Analysis" [39].

Step 3 New Design

According to UML models, some UML modeling tools support to generate
some parts of implementation automatically, such as basic information of agent
classes. The "Component Tool Box" which provides reusable agents could
export some behaviors of the agents. It is dependent of requirements on
reconfigurations to modify reusable agents slightly or implement some specific
features manually. Thus, a few UML modeling tools are possible to generate
codes from some parts of state charts and sequence charts regarding agents'
behaviors. XML configuration file contains instances of agents, specific
parameters etc additionally. The Quality Assurance check point verifies
whether new configuration results match the requirements; otherwise, errors
will return to Step 3 [39].

Step 4 Testing and Simulation

A MAS in production automation area is required to ensure high system
quality and performance, agile reactions to failure scenarios etc. As mentioned
before, UML modeling tools offer the possibilities of simulations for
configuration tests. Tools can generate system test cases from the use case
model and sequence charts, agent unit test cases from state charts and

86

sequence charts as well. The Quality Assurance check point verifies whether
the new configurations and its generated XML configuration file could pass the
simulation test successfully and fulfill the criteria of safety-critical systems. If
any configuration errors occurred, the current system configuration will be
reported to the step 2 "Component Analysis" and step 3 "New Design" [39].

The following figure 25 shows the whole process flow of UML-supported

Quality Assurance in accordance with the above descriptions.

Figure 25: UML-supported Quality Assurance

8.1.2 Ontology-supported reconfiguration life cycle

This section presents the four key process steps of ontology-supported
reconfiguration life cycle.

Step 1 Component Development

As long as any requirement has been changed, or new technology and
new roles are planned to be added, it requires to develop those components
such as agent identification, relationship identification, task definition and so
on that are going to be used in the newly changed production automation
system. The first Quality Assurance check point based on ontology-supported
approach will generate some domain test instances automatically, such as unit
tests for a particular use case or system tests for component dependencies
and security-critical problems etc, and verify whether the developed
components could fulfill requirements' criteria. If such components could pass
the tests successfully, they will be added to "Component Tool Box"; otherwise
errors will be reported to the developers and returned to the step "Component
Development" [38] [39].

87

Step 2 Component Analysis

After step 1, new requirements and components or any changes with the
impact of global system functionalities would trigger the step 2 "Component
Analysis". Its input can be selection of components in the "Component Tool
Box" that indicates all possible combinations of reusable components would be
selected in order to satisfy the global system requirements and functionalities.
Those ontologies contain both static and dynamic structures of a MAS system,
for instance, static information on components of production automation
system, behavioral information on models of dynamically generated and
updated instances. The second Quality Assurance check point is responsible
to verify whether each parameterized combination satisfies changed
requirements, ensure the formal consistency and semantic validation of the
designed model; any design errors will be returned as feedbacks to the step 2
"Component Analysis" [38] [39].

Step 3 New Design

During the design phase, it takes the responsibilities to make decisions for
the right combination of components that satisfies non-functional requirements,
such as production time, cost etc; besides, ontologies of components can be
directly used as inputs and filled by concrete instances and property values.
The production system is able to interpret this configuration view which has
been transformed from the selected combination. The third Quality Assurance
check point will emphasis on verifying on the completeness or correct syntax
of new reconfigurations, any build errors will be returned as feedbacks to the
step 3 "New Design", design errors will be returned to the step 2 "Component
Analysis" or "New Design" [38] [39].

Step 4 Testing and Simulation

During the Testing and Simulation phase, for production automation
system it is relevant to ensure the safety and high quality of systems. The
simulations check the relevant properties of the actual system; the built-in
monitoring functionality is well to help producing representable monitoring data
in order to be evaluated by step 2 "component analysis" for selection of
components. The fourth Quality Assurance check point verifies whether the
tested new configuration fulfills the defined quality measurement. Any build
and design errors will be returned as feedbacks to the step 3 "New Design" [38]
[39].

The following figure 26 shows the whole process flow of

Ontology-supported Quality Assurance in accordance with the above
descriptions.

88

Figure 26: Ontology-supported Quality Assurance [38]

8.1.3 Concrete Example

This section concludes the relevant differences between UML and
Ontology-based approach on reconfiguration processes. Through the three
application scenarios, for instance, "adding a machine", "machine removal",
and "change of the machine status", concludes the efforts on UML- and
Ontology-approach in model complexity, modeling effort and quality risk.
Furthermore, it derives the conclusion of each strength and weakness based
on UML- and Ontology-approach.

8.1.3.1 Differences in reconfiguration process

The relevant differences between UML and Ontology-supported
reconfiguration processes are concluded as two main parts. The first one is the
extraction of reusable agents from "Component Tool Box", as we can see from
the following figure 27, it shows that in Ontology all the reusable components
from "Component Tool Box" will be imported in step 1 "Component
Development" and be selected in step 2 "Component Analysis"; in comparison
with UML, reusable components from "Component Tool Box" will be imported
in step 1 "Component Development" and be extracted in step 2 "Component
Analysis" and step 3 "New Design". This phenomenon indicates that UML
Diagram has violated dependencies among each component. Suppose that if
any component in "Component Tool Box" is required to change, such as
additional functions should be added to a "Conveyor" component, it will relate
step 1, 2, and 3, which would cause potential failures more easily.

In Quality measurement and assurance, the following figure shows the
second main difference that errors may occur in measurements of system
quality and performance. In Ontology, during the step 4 "Testing and
Simulation", new configurations will be tested, if any error occurred, it will be

89

returned to step 2 "Component Analysis". In comparison with UML, any error of
new configurations will be reported to step 1 "Component Development" and
step 2 "Component Analysis".

The following figure 27 shows the differences between the process flow of

UML and Ontology-supported Quality Assurance in accordance with the above
descriptions.

Order Data Shift DataShift DataShift DataShift Data
Order DataOrder Data

Figure 27: Differences between UML and Ontology-supported Quality
Assurance

8.1.3.2 Application scenario

Scenario 1: Adding a machine

The application scenario "adding a machine" indicates the situation that a
new component "Machine" is planned to be added in order to increase the
throughput and effectiveness of the system.

UML

The new requirements "adding a machine" will trigger step 1 "Component
Development", the use case model will be manually changed in conformity
with stakeholders’ requirements. If this newly changed use case model has
passed the Quality Assurance test, it will be added to "Component Tool Box".
In step 2 "Component Analysis", this component should be exported and used
from "Component Tool Box", it will generate UML/XML codes and transfer to
step 3 "New Design", as long as no inconsistencies are found. In step 3, new
configurations will be reconfigured; some parts of behaviors of the "Machine"
can be derived from the "Component Tool Box" into XML configuration file,
concluding "Machine" classes, number of instances, and additional behavioral

90

parameters etc. In step 4 "Testing and Simulation", new configurations of
"Machine" will be tested in a simulation environment. If any error occurs, it will
be returned to step 1 "Component Development" or step 2 "Component
Analysis" [39].

Ontology

The new requirement "adding a machine" should first trigger "Component
Development", it will analyze whether the component "Machine" should have
any new functionalities. If yes, the component "Machine" should be redefined
in step 1 "Component Development", after successfully Quality Assurance
check, a new "Machine" component will be added to "Component Tool Box";
otherwise since the component "Machine" has been already applied to the
multi-agent production automation system, the "Machine" could be selected
directly from "Component Tool Box", so it means the component "Machine"
would be reused in step 2 "Component Analysis". The component "Machine"
would be parameterized and carried out by the automatic Quality Assurance
test. In step "New Design", Quality Assurance test will check whether the
component "Machine" is compatible with the whole complex system. If any
error occurs, it will be returned to step 3 "New Design". Finally, it will transfer to
the step 4 "Testing and Simulation", its logical rules and potential hardware
failures etc. will be tested and monitored, errors will returned to step 2
"Component Analysis" [39].

Scenario 2: machine removal

The application scenario "machine removal" indicates the situation that
one component "Machine" is planned to be deleted.

UML

The changes of requirement "machine removal" will trigger the step 2
"Component Analysis", the use case model will be changed according to the
current requirement changes, and then it will generate a UML or XML
configuration file. In step 3 "New Design", it requires the new design to be
compatible with global functionalities of the system; the Quality Assurance test
will check if the new configurations are correct manually executed by
designers. If any error occurred in step 4 "Testing and Simulation", it will back
to "Component Analysis" [39].

Ontology

The change of requirements "machine removal" will trigger also the step 2
"Component Analysis", in this step, it will analyze whether the removal of
component "Machine" will affect other functionalities. Above all, the instance of
"Machine" class and the responsible software agents, moreover, the surplus

91

connections between the component "Machine" with other components should
be also removed, unless it will cause design errors. In step 3 "New Design", it
will check if the new configurations are correct. During the step 4 "Testing and
Simulation", any errors caused by new configurations, will be reported to step
2 "Component Analysis" [39].

Scenario 3: change of the machine status

The application scenario "change of the machine status" indicates status
of the machine has been changed according to the different situations of the
multi-agents production automation system.

UML

The change of requirements "change of the machine status" works
similarly like scenario2 will trigger the step 2 "Component Analysis", a new
UML or XML configuration file with the newly changed machine status will be
generated. In step 3 "New Design", it will check again by designer or software
developer whether the overview of the whole system is correct. In step 4
"Testing and Simulation", the related errors will be reported to either step 1 or
step 2 [39].

Ontology

The change of requirements "change of the machine status" will trigger
first the step 2 "Component Analysis", it has to check whether the change of
machine status will affect other functionalities. For example, the change of the
machine status will change some values of Component "Capacity", properties
like occupied capacity, available capacity etc.

Moreover, some potential failures will occur because of the reconfiguration
of the machine status, but through the logical Quality Assurance test, the built
reconfiguration errors will be discovered soon [39].

8.1.3.3 Comparison

Table 6: Comparison of the three scenarios based on UML- and
Ontology-approach

 UML-based Approach Ontology-based Approach
Scenario 1 - adding a machine
Model complexity medium low
Modeling effort Model changes: medium

Dependency analysis: high
Quality assurance: high

Model changes: low
Dependency analysis:
medium
Quality assurance: low

Quality risk medium low

92

Scenario 2 - machine removal
Model complexity medium low
Modeling effort Model changes: medium

Dependency analysis: high
Quality assurance: high

Model changes: low
Dependency analysis:
medium
Quality assurance: low

Quality risk medium low
Scenario 3 - change of the machine status
Model complexity high low
Modeling effort Model changes: high

Dependency analysis: high
Quality assurance: high

Model changes: low
Dependency analysis:
medium
Quality assurance: low

Quality risk medium low

Conclusion

As mentioned in section 8.1.3.2, the use case model will be manually
changed in conformity with stakeholders' requirements by means of the
UML-based approach. For scenario 1 "adding a machine", the effort of Model
changes is medium, because the component "Machine" could be reused from
the "Component Tool Box" and designers only need to insert the "Machine"
instance in the XML configuration file when no further functionalities of
"Machine" required by customers. The Dependency analysis is high, because
the entire model has to be checked manually whether this added activity has
an impact on other functions and components. The Quality assurance is also
high, because designers should ensure whether this added component
integrates well with the current design pattern of the system, and the whole
integrated system could pass the failure tests. The Quality risk is medium,
because it relates strong with the ability and accuracy of the software
engineers, and furthermore, it relates also with the risk possibilities of
Dependency analysis and Quality assurance, which should be executed very
seriously in order to reduce mistakes caused manually [39]. The other two
scenarios work actually like the scenario 1 and have the same scalabilities.

By means of the Ontology-based approach, a new instance of "Machine"
class should be added and inserted its properties according to the
requirements in the Ontology, therefore, the effort of Model changes is low.
The Dependency analysis is medium, because all the errors introduced by
adding a new machine, such as no available agent is responsible for this
machine etc could be detected by Ontology logic reasoner automatically. The
Quality risk is also low, because the automatic tool check and low cost on
Quality assurance help to avoid the large manual modeling efforts and errors
and then reduce the Quality risk to low [39].

The "machine removal" activity will require a few instances to be removed,

93

such as the responsible agent for this machine instance and the instance of
"Machine" class and other connections link to other agents and machines
should be removed. The efforts of Model change are also relatively low. The
Dependency analysis is low, because it works similar like scenario 1 that all the
errors introduced by the machine removal, such as no available agent is
responsible for this machine etc, could be detected by Ontology logic reasoner
automatically. The Quality risk is low, it works also similar like scenario 1,
automatic tool checks ensure the high quality and reduce the related risks [39].

Table 7: Conclusion of each strength and weakness based on UML- and

Ontology-approach
 UML-based Approach Ontology-based Approach

Strength

 UML diagrams provide
clear and well
understandable
visualizations for software
designers and engineers

 UML diagrams provide a
detailed and well
understandable overview of
all the agents' classes, their
properties and
relationships.

 Creation of data models
and instances in an
integrated ontology model

 Logical text-based syntax
supports machines for
automatic dependency
analysis and consistency
checking

 Synchronization risk is low
because ontology model
can be used both at
design and run time

Weakness

 External model checker to
carry out automatic model
reviews

 High error potential and
cost in manual model
reviews

 No diagram available to
present the instance and
configuration information

 Higher complexity and
large volume of ontology
model

 A general overview and
visualization is hard for
human to understand

 Preconditions on
understanding of the
domain required

Conclusion

The strengths of UML-based approach are that UML diagrams provide
clear and well understandable visualizations for software designers and
engineers, such as each kind of UML diagram has its own strong focus on
various business processes and workflows etc. Software engineers can get an
overview of the agent tool box containing all reusable components for
reconfiguration processes on the other hand. Moreover, UML provide a well
overview of component classes, their properties and relationships etc [39].

The strengths of Ontology-based approach are that an ontology model is

94

able to integrate all the detailed configuration information, such as instances of
the classes and dependencies, their schema and data. The automatic
consistency check and quality assurance of the ontology model are able to be
realized by logical tool. The ontology model is able to be used not only at the
design time but also at the run time, such as, run-time reconfiguration checks
[39].

The weaknesses of UML-based approach are that the modeling effort is
higher for the UML-based approach than for the ontology-based approach.
Because UML requires manual dependency analysis and quality assurance
which cost more efforts and leads to more errors, otherwise, Ontology is
supported by automated reasoning. Each agent has its own components in
separate diagram with a fractured view, the sequence diagram that models all
the collaborations of agents could lead to large complexity. Finally, there is no
type of UML diagrams is able to present the instance of classes and their
configuration information [39].

The weaknesses of Ontology-based approach are that the ontology model
integrates always all detailed reconfiguration information; therefore the model
is too large with higher complexity. The visualizations that provided by the
standard tool Protégé are not well to visualize an overview of a certain domain,
for example, in Ontoviz some expressions are interpreted in logics. Finally, it is
difficult for designers and software engineers to figure out the contribution of
each ontology element without the preconditions on understanding of the
domain [39].

95

9. Conclusion

This section summarizes the whole thesis, mention the most important
points of this project. Besides, it concludes the relevant explored results of the
research issues. Finally, it suggests some interesting and meaningful future
works.

9.1 Summary

In the beginning of the thesis, I have depicted the motivations of this
project, for example, the importance of using data modeling during the whole
software lifecycle, introduction to data model theory and instances, and mostly
the extension to the abstract. At last, the thesis structure provides a superficial
overview of the whole thesis structure.

In "Related Work", I have described the principles of creating an accurate
data modeling in an efficient way, in additional the brief introduction to the two
data modeling approaches, including the basic concepts and their main
building elements of object-oriented data modeling and knowledge modeling
respectively. Later, I have explained the UML's development history shortly
and introduced the OMG's standard and official definition for UML, and primary
principles of UML's specifications, such as its three basic building blocks, their
classifications and components of each classification, 13 kinds of notation
diagrams with focus on the details of the class diagram, various views for
analyzing system architecture as well, so that those kind of knowledge can
help build a strong foundation to whose have already a smattering in UML and
otherwise help some UML users to recall the knowledge. Moreover, there are a
lot of assistant visualization tools available for UML-based approach, Visual
Paradigm is one of the most powerful comprehensive and easy-to-use tools, it
presents a brief of its overviews and some features and specific functionalities
for creating an ER Diagram.

Since ontology is a relative newly concept appeared in software
engineering and knowledge engineering, it is recommended to have a look at
the ontology's development history, and definitions including the main
components which consist of an ontology. I chose three ontology languages,
two of them RDF/RDF Schema and DAML+OIL were preceding releases, now
both have been replaced by the current popular ontology language OWL.
Furthermore, OWL has been developed to its three sublanguages OWL Full,
OWL DL and OWL Lite regarding different usage requirements and situations,
where OWL DL is relatively common used in most cases. Protégé is a
standard tool for definition and manipulation of ontologies, therefore, it is
necessary for software engineers to get an overview, screenshots and main

96

features of Protégé. At the end of this section, it is still worthy to mention the
theory of the multi-agent system simulation.

According to some research and papers, four research issues have been
defined to be discussed in a deep level. The issue "Evaluation of UML and
Ontology" presents such as the creation of two data models for this multi-agent
production automation system by means of UML and OWL, and then gain the
evaluation of UML and Ontology on their common and uncommon features,
finally derive the summary of their similarities and differences. The issue
"Model consistency checking" is to explore the similarities and differences of
model consistency checking life cycle supported from UML and Ontology, to
find out whether there is any external tool available for UML that supports its
automatic consistency checking. The third issue is to find out the process of
the mapping from UML to OWL and discover its benefits and limitations. The
last issue is to discover the possibilities to improve the UML on strengthen its
disadvantages, reduce its redundancy, lessen the gap between UML and
Ontology, and find an optimal combination of UML and Ontology.

Since the audience have already got a superficial impact of the multi-agent
system in section 2, section 4 "Use Case Description" introduced the specific
tool Manufacturing Agent Simulation Tool for the test management of the
multi-agent system with special emphasis on its technical assembled
components, moreover, it explained shortly the main differences between the
MAST and SAW which is an improvement of MAST employed in this project. It
is very exigent to define the use case descriptions before any data modeling.
Therefore, I defined the responsibilities of each agent's job, derive the
generalized use cases for each six involved roles. Collaborations among all
the involved roles are also relevant that help the users observe the whole
multi-agent system in a centralized view.

The definitions of use cases serve a solid foundation to the section "Data
Modeling for SAW with UML and Ontology". I employed the tool Visual
Paradigm to create the data modeling for UML, and chose to implement the
use cases defined above in Entity Relationship Diagrams. The essential parts
of ER Diagram, such as each entity's name, their properties, each property's
type, the initial value of each property, relationship between each entity and
relationship multiplicity should be denoted. The descriptions below explain the
notations of ER Diagram and help users to understand well.

Meanwhile, I employed the tool Protégé to create the data modeling for
ontologies and chose to implement the use cases in OWL DL displayed with
Ontoviz Diagrams. The essential parts of OWL ontologies, such as individuals,
two kinds of properties: datatype properties and object properties, and
restrictions on slots should be denoted. The Ontoviz diagrams are too large to
be displayed, therefore, I cut each diagram into two parts, the upper part and
the lower part. The descriptions below help to explain the notations of Ontoviz
diagrams better.

According to the whole processes of the data modeling for UML and

97

Ontology-based approaches which have been demonstrated in the previous
sections, it is time for the evaluation of their main features in various significant
aspects. The first aspect "Visualization & Expression" lists the evaluation
results of both common and uncommon features in two tables respectively for
a clear demonstration, and concluded each similarity and difference in the
description below. The second aspect "Consistency" splits into 2 parts
"Diagram consistency" and "Model consistency". The evaluation table
summarizes the supported or non-supported consistency features of UML and
Ontology. In the third aspect "Needed Effort" compares each approximate time
cost required for creation and consistency checking on UML and Ontology. The
last aspect "Additional Features" lists the available additional features, mainly
"Reasoning" and "Codes" aspects provided by UML or Ontology, and their
external plug-ins and support tools etc.

Since UML occurred for several decades, there have yet existed a lot of
valuable researches and skills in its didactic aspect, so I focused on giving
some suggestions and improvements on ontology-based data modeling in
didactics. First, I defined the seven characteristic elements of didactics for this
scenario. During the establishment for the structure of didactic materials, for
example, the concrete tasks of the didactic elements, lecture units like
overview of ontology, theory enhancement, ontology tool Protégé,
ontology-based data modeling, comparison and conclusion. One of the most
important points is the conversion way from UML Class Diagrams or ER
Diagrams into Ontology's tuple notations; it facilitates the UML software
engineers to find a easy and well understandable way to grasp of using
ontology as soon as possible.

The section "Discussion" emphasized on answering the research issue
"model consistency check in reconfiguration". It describes and compares the
key process steps of UML and Ontology-supported reconfiguration lifecycle.
The comparison results have been demonstrated by a concrete example of
three scenarios, like adding a machine, machine removal and change of the
machine status. According to the exploration of the three scenarios, it lists two
tables that conclude the main modeling efforts of the three scenarios, each
strength and weakness based on UML- and Ontology-approach as well.

9.2 Results

The main results of this work can be found in section 6, 7 and 8. The
section 6 comprises the evaluation results of the four aspects, "Visualization &
Expression", "Consistency check", "Needed Effort" and "Additional features".
The first aspect list two tables, one table contains the corresponding common
features of UML and OWL. The descriptions explain the detailed common
features visualized and expressed in UML and OWL. The other table contains
all the features that can be either expressed in UML or only in OWL. The
descriptions explain the uncommon features. The conclusion of this aspect

98

gives a brief overview of all specified features. UML is designed to be a
graphical notion modeling language originally, facilitates the human beings to
understand the system model. UML's state chart diagrams are used to
describe dynamic behaviors of a system, such as the possible states of an
object as events occur. Therefore, OWL is a knowledge representation of
ontology, provides a static ontology vocabulary, thus behavioral features are
surplus in OWL.

The "Consistency check" lists the evaluation table of the results. For UML it
aims to be a robust diagram system, so it provides class consistency, attribute
consistency and relationship consistency checking in diagram checking. For
Ontology it is more important to ensure models consistent, so it provides class
consistency, property consistency and instance consistency checking in model
checking.

The "Needed effort" list each time cost for UML and OWL creations, and
for consistency checking of UML and OWL. Time cost for creation of classes
both in UML and OWL are almost equal while the time cost for creation of
attributes and creation of relationships required in UML is shorter than in OWL.

The "Additional Features" list the additional features such as "Reasoning"
and "Show/generate codes", the "Reasoning" functions for example UML are
not supposed to be designed to have such functions originally, but all
reasoning features can be realized by applying the third party plug-in MCC.

The section 7 "Didactics in ontology-based modeling" gives a solution and
suggestions for improvements to the didactics in ontology-based modeling.
The normal didactics lecture units can be established like "Overview of
ontology" introduces the students to some ontology's development history,
definitions and its practical applications. "Theory enhancement" helps the
students get a deep insight into more details of ontology. "Tool Protégé"
enables the students to grasp using the support tool Protégé for
ontology-based data modeling. "Ontology-based data modeling" teaches the
students how to create a data model based on ontology, and get to know an
overview of several typical data modeling diagrams, such as OntoViz, OWL etc.
"Comparison" is the most important point of this didactics part, explains
differences of data modeling based on UML and Ontology and introduce a
method and its example about transformation from UML to Ontology. In urgent
situations, for example, UML software engineers have no plentiful time to learn
ontology step by step, they can use the transformation method to understand
and denote OWL. Finally, "Conclusion" recalls the memories of students and
reminds of all the learning materials in order to strength their knowledge and
command ontologies.

The section 8 "Discussion" describes the model consistency checking in
UML-supported and Ontology-supported reconfiguration life cycles
respectively. The whole life cycle can be divided into 4 steps, "Component
Development", "Component Analysis", "New Design" and "Testing and
Simulation". The relevant differences between UML and Ontology-supported

99

http://en.wikipedia.org/wiki/Behavior
http://en.wikipedia.org/wiki/System

reconfiguration process are the extraction of reusable agents from
"Component Tool Box" in ontology will be imported in step 1 "Component
Development" and be selected in step 2 "Component Analysis"; in comparison
with UML, reusable components from "Component Tool Box" will be imported
in step 1 "Component Development" and be extracted in step 2 "Component
Analysis" and step 3 "New Design". Another significant difference is that in
case errors may occur in measurements of system quality and performance, in
Ontology during the step 4 "Testing and Simulation", new configurations will be
tested, if any error occurred, it will be returned to step 2 "Component Analysis".
In comparison with UML, any error of new configurations will be reported to
step 1 "Component Development" and step 2 "Component Analysis". At the
end, it lists the evaluation of comparison of the three scenarios like adding a
machine, machine removal and change of the machine status, based on UML-
and Ontology-approach and conclusion of each strength and weakness based
on UML- and Ontology-approach.

9.3 Future work

Regarding the limited space and range of my thesis, there are still some
future work required and would be very interesting for this area.

In Section 6.4.3, I stated the theory possibilities for the automatic model
consistency checking of UML models by means of integrating the MCC and
Racer together. Such empirical experiments and proofs regarding the runtime
complexity of MCC are firmly recommended.

In Section 7 "Didactics in ontology-based modeling", I suggested the
didactic units of lectures for ontologies and an easy understandable way for
UML software engineers to grasp the ontology, but empirical studies and
experiments are also required in order to find a more acceptable and better
way in the future. In section 8 "Discussion", I discussed the theory of model
consistency checking in reconfiguration life cycle both using UML and
Ontology aspects. Corresponding empirical studies should be proved to raise
the correctness and sufficient performance of model consistency checking and
reconfigurations [38].

A challenging question is for some organizations which have been already
employing a traditional software development approach such as UML, when to
determine the crucial time point and how to introduce a new development
approach, like ontology-based approach. Researches and empirical studies
regarding benefits, limitations and how to achieve the best results are required
according to different situations [38]. The other issue in the current research
fields, for example, mapping from UML to Ontology concerning the question
how to bridge and transfer the UML to Ontology. The section 7 which
suggested the transformation from UML diagrams to Ontology notations could
be used as reference; more specific transformation rules from UML models to
Ontology models should be researched and defined in the future.

100

References

1. A. Th. Schreiber and B. J. Wielinga (2008): Knowledge Model Construction,
http://ksi.cpsc.ucalgary.ca/KAW/KAW98/schreiber/
2. American National Standards Institute (1975): ANSI/X3/SPARC Study
Group on Data Base Management Systems
3. Armin Zimmermann (2007): Stochastic Discrete Event Systems: Modeling,
Evaluation, Applications
4. Coral Calero (2006): Ontologies for software engineering and software
technology. Springer
5. Crag Systems (1997-2004): A UML Tutorial Introduction,
http://www.cragsystems.co.uk/ITMUML/the02/08the02.htm
6. Dan Brickley, R.V. Guha (2004): RDF Schema, W3C,
http://www.w3.org/TR/rdf-schema/
7. Deborah L. McGuinness, Frank van Harmelen (2004): OWL Overview, W3C,
http://www.w3.org/TR/owl-features/
8. Donald Bell (2004): UML basics: The class diagram,
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep
04/bell/
9. Edumoodle (2009), http://www.edumoodle.at/moodle/
10. Eric Prud'hommeaux, Andy Seaborne (2008): SPARQL Query Language
for RDF, W3C, http://www.w3.org/TR/rdf-sparql-query/
11. Grady Booch, James Rumbaugh, Ivar Jacobson (1999): The Unified
Modeling Language User Guide. Addison-Wesley
12. Hans-Jörg Happel, Stefan Seedorf (2006): Applications of Ontologies in
Software Engineering, Workshop on Semantic Web Enabled Software
Engineering,
http://km.aifb.uni-karlsruhe.de/ws/swese2006/final/happel_full.pdf
13. IBM, Sandpiper Software, Inc. (2004): Ontology Definition Metamodel,
www.omg.org/docs/ad/05-08-01.pdf
14. Jocelyn Simmonds, M.Cecilia Bastarrica (2005): A Tool for Automatic UML
Model Consistency Checking, Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering
15. Jon Holt, Institution of Electrical Engineers (2004): UML for Systems
Engineering: watching the wheels. IET
16. Lewis Hart, Patrick Emery, Bob Colomb, Kerry Raymond, Sarah
Taraporewalla, Dan Chang, Yiming Ye, Elisa Kendall, Mark Dutra (2004): OWL
Full and UML 2.0 Compared, OMG TFC Report,
http://www.itee.uq.edu.au/~colomb/Papers/UML-OWLont04.03.01.pdf
17. Liviu Panait, Sean Luke (2005): Cooperative Multi-Agent Learning: The
State of the Art. Autonomous Agents and Multi-Agent Systems, Springer
Netherlands

101

18. M. Merdan, T Moser, D. Wahyudin, S. Biffl (2008): Performance Evaluation
of Workflow Scheduling Strategies Considering Transportation Times and
Coveyor Failures. Proceedings of 6th international Workshop on Software
Quality"
19. M. Merdan, T Moser, D. Wahyudin, S. Biffl, P. Vrba (2008): Simulation of
workflow scheduling strategies using the MAST Test management system.
Proceedings 10th International Conference on Control, Automation, Robotics
and Vision
20. Margaret-Anne Storey, Robert Lintern, Neil Ernst, David Perrin (2004):
Visualization and Protégé, 7th International Protégé Conference,
http://protege.stanford.edu/conference/2004/abstracts/Storey.pdf
21. Matthew Horridge, Holger Knublauch, Alan Rector, Robert Stevens, Chris
Wroe (2004): A Practical Guide To Building OWL Ontologies Using The
Protégé-OWL Plugin and COODE Tools Edition 1.0, The University Of
Manchester Stanford University,
http://www.co-ode.org/resources/tutorials/ProtegeOWLTutorial.pdf
22. Michael R. McCaleb (1999): A Conceptual Data Model of Datum Systems.
Journal of Research of the National Institute of Standards and Technology
23. Michael Wooldridge (2002): An Introduction to MultiAgent Systems. John
Wiley & Sons
24. Object Group Management (2007): UML Version 2.1.2 Specifications,
http://www.omg.org/spec/UML/2.1.2/
25. Object Oriented Analysis and Design Team of Kennesaw State University
(2000): History of UML,
http://atlas.kennesaw.edu/~dbraun/csis4650/A&D/UML_tutorial/history_of_uml
.htm
26. Ora Lassila, Ralph R. Swick (1999): Resource Description Framework
27. Oscar Corcho, Asuncion Gomez-Perez (2000): A Roadmap to Ontology
Specification Languages. Springer Berlin
28. Osmar Zaiane (1998): The Object-Oriented Data Model,
http://www.cs.sfu.ca/CC/354/zaiane/material/notes/Chapter8/node3.html
29. Pavel Vrba (2003): MAST Manufacturing agent simulation tool. Emerging
Technologies and Factory Automation, 2003. Proceedings. ETFA '03. IEEE
Conference
30. Protege (2009): http://protege.stanford.edu/
31. Protege (2009): what is Protege, http://protege.stanford.edu/overview/
32. Protege (2009): what is protégé-owl?,
http://protege.stanford.edu/overview/protege-owl.html
33. Protege (2009): Screenshots of protégé-owl,
http://protege.stanford.edu/plugins/owl/images/OWLClasses-FamilyDestinatio
n.png
34. [49] Racer Systems (2004): Overview of RacerPro,
http://www.racer-systems.com/products/racerpro/index.phtml
35. Rockwell Automation Research Center (2009):

102

http://www.rockwellautomation.com/
36. Smith, Michael K.; Chris Welty, Deborah L. McGuinness (2004): OWL Web
Ontology Language Guide, W3C, http://www.w3.org/TR/owl-guide/
37. Sparx Systems(2008): UML 2.1 Tutorial:
http://www.sparxsystems.com.au/resources/uml2_tutorial/
38. Steffan Biffl, Thomas Moser, Richard Mordinyi, Dindin Wahyudin (2008):
Ontology-Supported Quality Assurance for Component-Based Systems
Configuration, Proceedings of 6th international Workshop on Software Quality
39. T Moser, K. Kunz, K. Matousek, D. Wahyudin (2008): Investigating UML-
and Ontology-Based Approaches for Process Improvement in Developing
Agile Multi-agent Systems, 34th EUROMICRO Conference on Software
Engineering and Advanced Applications, IEEE Computer Society
40. The DARPA Agent Markup Language Homepage (2006),
http://www.daml.org/
41. Tim McLellan (1995): An Introduction to Data Modeling
http://www.islandnet.com/~tmc/html/articles/datamodl.htm
42. Uwe Szabo (2008): EER-model
43. Visual Paradigm (2009): http://www.visual-paradigm.com/
44. Visual Paradigm (2009): Why Visual Paradigm for UML?
http://www.visual-paradigm.com/product/vpuml/
45. Visual Paradigm (2009): UML CASE Tool Screenshots,
http://www.visual-paradigm.com/product/vpuml/vpumlscreenshots.jsp
46. Visual Paradigm (2009): Data Model,
http://content.europe.visual-paradigm.com/media/documents/vpuml60ug2/htm
l/Chapter_14_Data_Model/Chapter_14_Data_Model.html
47. W3C (2008): XML Schema, http://www.w3.org/XML/Schema
48. Wikipeida (2009): Ontology, http://en.wikipedia.org/wiki/Ontology

103

Appendix

1. RDF/XML Source Codes of business manager

The followings are the RDF/XML source codes of the agent business
manager. They could be generated automatically by the tool support Protégé
according to the ontology model of business manager. Within the codes, they
contain some relevant basic structures of business manager and represent in
a formal logical formalization, such as each datatype property, its domain and
range etc. For further understanding on source codes, please see reference
[7].

<rdf:RDF
xmlns="http://qse.tuwien.ac.at/datamodel/ontology/businesslayer#"

 xml:base="http://qse.tuwien.ac.at/datamodel/ontology/businesslayer"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:swrl="http://www.w3.org/2003/11/swrl#"
 xmlns:Protégé="http://Protégé.stanford.edu/plugins/owl/Protégé#"
 xmlns:xsp="http://www.owl-ontologies.com/2005/08/07/xsp.owl#"
 xmlns:swrlb="http://www.w3.org/2003/11/swrlb#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<owl:Ontology rdf:about=""/>
<owl:AllDifferent>
<owl:distinctMembers rdf:parseType="Collection"/>
</owl:AllDifferent>
<owl:DatatypeProperty rdf:ID="address">
<rdfs:domain rdf:resource="#businessManager"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="age">
<rdfs:domain rdf:resource="#businessManager"/>
<rdfs:range rdf:resource="&xsd;int"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="amount">
<rdfs:domain rdf:resource="#businessManager"/>
<rdfs:range rdf:resource="&xsd;int"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="bManagerID">
<rdfs:domain rdf:resource="#businessManager"/>
<rdfs:range rdf:resource="&xsd;int"/>

104

</owl:DatatypeProperty>
<owl:Class rdf:ID="businessManager">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>
<owl:onProperty rdf:resource="#address"/>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#age"/>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#bManagerID"/>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#holds"/>
<owl:minCardinality rdf:datatype="&xsd;int">1</owl:minCardinality>
<owl:valuesFrom rdf:resource="#businessOrder"/>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#name"/>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#responsibilities"/>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#teleNr"/>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:ID="businessOrder">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>
<owl:onProperty rdf:resource="#dueDate"/>

105

<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#finishingTime"/>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#includes"/>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
<owl:valuesFrom rdf:resource="#quantity"/>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#includes"/>
<owl:minCardinality rdf:datatype="&xsd;int">1</owl:minCardinality>
<owl:valuesFrom rdf:resource="#product"/>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#orderID"/>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#status"/>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:ID="client">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>
<owl:onProperty rdf:resource="#clientID"/>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#companyName"/>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#contactAddress"/>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
</owl:Restriction>

106

<owl:Restriction>
<owl:onProperty rdf:resource="#contactName"/>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#contactTeleNr"/>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#orders"/>
<owl:minCardinality rdf:datatype="&xsd;int">1</owl:minCardinality>
<owl:valuesFrom rdf:resource="#businessOrder"/>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:DatatypeProperty rdf:ID="clientID">
<rdfs:domain rdf:resource="#client"/>
<rdfs:range rdf:resource="&xsd;int"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="companyName">
<rdfs:domain rdf:resource="#client"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="complexity">
<rdfs:domain rdf:resource="#productTree"/>
<rdfs:range rdf:resource="&xsd;int"/>
</owl:DatatypeProperty>
<owl:ObjectProperty rdf:ID="consistsOf">
<rdfs:domain>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#product"/>
<owl:Class rdf:about="#productTree"/>
</owl:unionOf>
</owl:Class>
</rdfs:domain>
<rdfs:range>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#productTree"/>
<owl:Class rdf:about="#productTreeItem"/>
</owl:unionOf>

107

</owl:Class>
</rdfs:range>
</owl:ObjectProperty>
<owl:DatatypeProperty rdf:ID="contactAddress">
<rdfs:domain rdf:resource="#client"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="contactName">
<rdfs:domain rdf:resource="#client"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="contactTeleNr">
<rdfs:domain rdf:resource="#client"/>
<rdfs:range rdf:resource="&xsd;int"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="dependOf">
<rdfs:domain rdf:resource="#productTreeItem"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="dueDate">
<rdfs:domain rdf:resource="#businessOrder"/>
<rdfs:range rdf:resource="&xsd;date"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="finishingTime">
<rdfs:domain rdf:resource="#businessOrder"/>
<rdfs:range rdf:resource="&xsd;date"/>
</owl:DatatypeProperty>
<owl:ObjectProperty rdf:ID="holds">
<rdfs:domain rdf:resource="#businessManager"/>
<rdfs:range rdf:resource="#businessOrder"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="includes">
<rdfs:domain>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#businessOrder"/>
<owl:Class rdf:about="#productTreeItem"/>
</owl:unionOf>
</owl:Class>
</rdfs:domain>
<rdfs:range>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#product"/>

108

<owl:Class rdf:about="#quantity"/>
</owl:unionOf>
</owl:Class>
</rdfs:range>
</owl:ObjectProperty>
<owl:DatatypeProperty rdf:ID="name">
<rdfs:domain rdf:resource="#businessManager"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="number">
<rdfs:domain rdf:resource="#quantity"/>
<rdfs:range rdf:resource="&xsd;int"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="orderID">
<rdfs:domain rdf:resource="#businessOrder"/>
<rdfs:range rdf:resource="&xsd;int"/>
</owl:DatatypeProperty>
<owl:ObjectProperty rdf:ID="orders">
<rdfs:domain rdf:resource="#client"/>
<rdfs:range rdf:resource="#businessOrder"/>
</owl:ObjectProperty>
<owl:DatatypeProperty rdf:ID="positionX">
<rdfs:domain rdf:resource="#productTreeItem"/>
<rdfs:range rdf:resource="&xsd;int"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="positionY">
<rdfs:domain rdf:resource="#productTreeItem"/>
<rdfs:range rdf:resource="&xsd;int"/>
</owl:DatatypeProperty>
<owl:Class rdf:ID="product">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>
<owl:onProperty rdf:resource="#consistsOf"/>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
<owl:valuesFrom rdf:resource="#productTree"/>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#finishingTime"/>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#productID"/>

109

<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#productName"/>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#productType"/>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#status"/>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:DatatypeProperty rdf:ID="productID">
<rdfs:domain rdf:resource="#product"/>
<rdfs:range rdf:resource="&xsd;int"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="productName">
<rdfs:domain rdf:resource="#product"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
<owl:Class rdf:ID="productTree">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>
<owl:onProperty rdf:resource="#complexity"/>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#consistsOf"/>
<owl:minCardinality rdf:datatype="&xsd;int">1</owl:minCardinality>
<owl:valuesFrom rdf:resource="#productTreeItem"/>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#pTreeID"/>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
</owl:Restriction>
</owl:intersectionOf>

110

</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:ID="productTreeItem">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>
<owl:onProperty rdf:resource="#amount"/>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#dependOf"/>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#includes"/>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
<owl:valuesFrom rdf:resource="#quantity"/>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#positionX"/>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#positionY"/>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#pTreeItemID"/>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#pTreeItemName"/>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#siblings"/>
<owl:minCardinality rdf:datatype="&xsd;int">1</owl:minCardinality>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>

111

<owl:DatatypeProperty rdf:ID="productType">
<rdfs:domain rdf:resource="#product"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="pTreeID">
<rdfs:domain rdf:resource="#productTree"/>
<rdfs:range rdf:resource="&xsd;int"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="pTreeItemID">
<rdfs:domain rdf:resource="#productTreeItem"/>
<rdfs:range rdf:resource="&xsd;int"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="pTreeItemName">
<rdfs:domain rdf:resource="#productTreeItem"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
<owl:Class rdf:ID="quantity">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>
<owl:onProperty rdf:resource="#number"/>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#quantityID"/>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>
</owl:Class>
<owl:DatatypeProperty rdf:ID="quantityID">
<rdfs:domain rdf:resource="#quantity"/>
<rdfs:range rdf:resource="&xsd;int"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="responsibilities">
<rdfs:domain rdf:resource="#businessManager"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="siblings">
<rdfs:domain>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">

112

113

<owl:Class rdf:about="#businessOrder"/>
<owl:Class rdf:about="#productTreeItem"/>
</owl:unionOf>
</owl:Class>
</rdfs:domain>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="status">
<rdfs:domain>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#businessOrder"/>
<owl:Class rdf:about="#product"/>
</owl:unionOf>
</owl:Class>
</rdfs:domain>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="teleNr">
<rdfs:domain rdf:resource="#businessManager"/>
<rdfs:range rdf:resource="&xsd;int"/>
</owl:DatatypeProperty>
</rdf:RDF>

	1. Introduction
	2. Related work
	2.1 Importance of Data Modeling
	2.2 Principles of Data Modeling
	2.3 Object-oriented Modeling
	2.4 Knowledge Modeling
	2.5 Introduction to UML
	2.5.1 History
	2.5.2 Definition
	2.5.2.1 Things
	2.5.2.2 Relationships

	2.5.3 Diagram
	2.5.3.1 Structural Modeling Diagrams
	2.5.3.2 Behavioral Modeling Diagrams
	2.5.3.3 Interactive modeling Diagrams

	2.5.4 Architecture
	2.5.5 Class Diagram

	2.6 Introduction to UML Tool Visual Paradigm
	2.6.1 Overview
	2.6.2 Features

	2.7 Introduction to Ontology
	2.7.1 History
	2.7.2 Definition
	2.7.3 Ontology language
	2.7.4 OWL Sub-Languages

	2.8 Introduction to Ontology Tool Protégé
	2.8.1 Overview
	2.8.2 Features

	2.9 Introduction to Multi-Agent System Simulation

	3. Research issues
	3.1 Evaluation of UML and OWL
	3.2 Model consistency checking
	3.3 Mapping from UML to Ontology
	3.4 Extensions of UML and OWL

	4. Use Case Description
	4.1 Manufacturing Agent Simulation Tool
	4.2 Use Case Description
	4.2.1 Business manager
	4.2.1.1 Description of the involved role business manager
	4.2.1.2 Entities and their Properties
	4.2.1.3 Relationship

	4.2.2 Plant manager
	4.2.2.1 Description of the involved role plant manager
	4.2.2.2 Entities and their Properties
	4.2.2.3 Relationship

	4.2.3 Shop manager
	4.2.3.1 Description for the involved role shop manager
	4.2.3.2 Entities and their Properties
	4.2.3.3 Relationship

	4.2.4 Operation manager
	4.2.4.1 Description for the involved role operation manager
	4.2.4.2 Entities and their Properties
	4.2.4.3 Relationship

	4.2.5 System developer
	4.2.5.1 Description for the involved role system developer
	4.2.5.2 Entities and their Properties
	4.2.5.3 Relationship

	4.3 Collaborations among the roles

	5. Data Modeling for SAW with UML and Ontology
	5.1 UML-based approach
	5.1.1 ER Diagram for Business Manager
	5.1.1.1 Diagram
	5.1.1.2 Description

	5.1.2 ER Diagram for Plant Manager
	5.1.2.1 Diagram
	5.1.2.2 Description

	5.1.3 ER Diagram for Shop Manager
	5.1.3.1 Diagram
	5.1.3.2 Description

	5.1.4 ER Diagram for Operation Manager
	5.1.4.1 Diagram
	5.1.4.2 Description

	5.1.5 ER Diagram for System Developer
	5.1.5.1 Diagram
	5.1.5.2 Description

	5.2 Ontology-based approach
	5.2.1 Business Manager
	5.2.1.1 Diagram
	5.2.1.2 Description

	5.2.2 Plant Manager
	5.2.2.1 Diagram
	5.2.2.2 Description

	5.2.3 Shop Manager
	5.2.3.1 Diagram
	5.2.3.2 Description

	5.2.4 Operation Manager
	5.2.4.1 Diagram
	5.2.4.2 Description

	5.2.5 System Developer
	5.2.5.1 Diagram
	5.2.5.2 Description

	5.3 Similarities and Differences
	5.3.1 Visualization & Expression
	5.3.2 Consistency
	5.3.3 Needed Effort
	5.3.4 Additional functions

	6. Evaluation
	6.1 Visualization & Expression
	6.1.1 Evaluation table of common features
	6.1.2 Description
	6.1.3 Evaluation table of uncommon features
	6.1.4 Description
	6.1.5 Conclusion

	6.2 Consistency
	6.2.1 Evaluation table of consistency
	6.2.2 Description
	6.2.3 Conclusion

	6.3 Needed Effort
	6.3.1 Evaluation table of needed effort
	6.3.2 Description
	6.3.3 Conclusion

	6.4 Additional functions
	6.4.1 Evaluation table of additional functions
	6.4.2 Description
	6.4.3 Conclusion

	7. Didactics in ontology-based modeling
	7.1 Definition of didactic elements
	7.2 Structure of didactics material
	7.2.1 Overview of ontology
	7.2.2 Theory enhancement
	7.2.3 Ontology Tool Protégé
	7.2.4 Ontology-based Data Modeling
	7.2.5 Comparison
	7.2.6 Conclusion

	8. Discussion
	8.1 Model consistency check in reconfiguration
	8.1.1 UML-supported reconfiguration life cycle
	8.1.2 Ontology-supported reconfiguration life cycle
	8.1.3 Concrete Example
	8.1.3.1 Differences in reconfiguration process
	8.1.3.2 Application scenario
	8.1.3.3 Comparison

	9. Conclusion
	9.1 Summary
	9.2 Results
	9.3 Future work

	References
	Appendix
	1. RDF/XML Source Codes of business manager

