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Kurzfassung

Die Modellierung mit Markov-Ketten ist ein elegantes und äußerst effizientes Verfahren
zur Untersuchung von Warteschlangensystemen: Es ist für eine große Klasse von Warte-
schlangensystemen geeignet, die zugrunde liegende Theorie ist nicht allzu schwierig
zu erlernen, und man kann damit viele verschiedene Informationen zum untersuchten
Warteschlangensystem erhalten.

Derzeit werden Markov-Ketten hauptsächlich verwendet, um die transienten oder sta-
tionären Zustandswahrscheinlichkeiten eines Warteschlangensystems zu ermitteln. Mit-
hilfe dieser Zustandswahrscheinlichkeiten können beispielsweise die Anzahl der An-
forderungen im System oder die Auslastung der Bedieneinheiten berechnet werden.
Manchmal wird auch die Durchflusszeit durch ein Warteschlangensystem mit Markov-
Ketten bestimmt oder es wird ermittelt, wieviel Zeit vergeht, bis ein bestimmter Zustand
erreicht wird. Damit werden die Möglichkeiten der Modellierung mit Markov-Ketten je-
doch nicht ausgeschöpft.

In dieser Arbeit werden fortgeschrittene Techniken der Modellierung von Warteschlan-
gensystemen mit zeitkontinuierlichen Markov-Ketten gezeigt. Wir zeigen Techniken zur
Analyse von Leerlauf- und Arbeitsphasen der Bedieneinheiten von Warteschlangensys-
temen (Länge der Leerlaufphase, Länge der Arbeitsphase, Anzahl der während einer
Arbeitsphase bedienten Anforderungen), des Ausgangsstroms von Warteschlangensys-
temen mit einer Bedieneinheit (Zwischenereigniszeiten des Ausgangsstroms) und des
Überlauf-Verkehrs von Warteschlangensystemen (Zeit zwischen zwei Abweisungen, An-
zahl der erfolgreichen Ankünfte zwischen zwei Abweisungen). Weiters wird gezeigt, wie
Markov-Ketten verwendet werden können, um die Überlagerung und die Aufteilung von
Verkehrsströmen zu untersuchen (Zwischenereigniszeiten).

Die gezeigten Techniken werden anhand zahlreicher Beispiele erläutert. Für die prak-
tische Anwendung wichtige verwandte Themen, wie die Annäherung von gegebenen
Verteilungen durch Phasenverteilungen und die Auswirkung statistischer Abhängigkei-
ten innerhalb von Verkehrsströmen, werden ebenfalls besprochen.
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Abstract

Modelling with Markov chains is a very powerful and efficient technique for the inves-
tigation of queueing systems: it is suitable for a broad class of queueing systems, the
underlying theory is relatively easy to understand, and many different characteristics of
queueing systems can be explored. Traditionally, Markov chains are used to calculate
the transient or stationary system state probabilities of queueing systems, from which
characteristics such as the number of customers in the system and the server utilisation
can be obtained. Sometimes the flow time through a queueing system is determined
using Markov chains, or the time that is needed to reach a certain state. However, with
these applications the capabilities of Markov chain modelling are not fully utilised.

In this work, more advanced ways of modelling queueing systems with continuous-
time Markov chains are presented. We show techniques to analyse the idle and the
busy period of queueing systems (length of the idle period, length of the busy period,
number of customers served during the busy period), the departure stream of single-
server queueing systems (interdeparture times), and the overflow traffic of queueing
systems (interoverflow times, number of successful arrivals between two overflows).
Moreover, we show how Markov chains can be used to analyse the superposition and
the decomposition of traffic streams (interevent times).

The techniques are explained with many examples. Related issues, which are important
for the practical application, such as the approximation of given distributions by phase-
type distributions and the effects of statistical interdependence within traffic streams,
are also discussed.
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1. Introduction

Modelling with Markov chains is a very powerful and efficient technique for the inves-
tigation of queueing systems: it is suitable for a broad class of queueing systems, the
underlying theory is relatively easy to understand, and many different characteristics of
queueing systems can be explored.

Unfortunately, the full potential of modelling queueing systems with Markov chains
is seldom utilised. Mostly only the system state probabilities are calculated and then
simple characteristics such as the number of customers in the system and the server
utilisation are obtained.

The aim of this work is to show more sophisticated ways of modelling queueing systems
with continuous-time Markov chains, whereby, in particular, we focus on the investiga-
tion of traffic streams. We present Markov chain techniques for the analysis of

• the idle and the busy period of queueing systems,

• the departure stream of queueing systems,

• the overflow stream of queueing systems,

• the superposition of streams, and

• the decomposition of streams.

An application of the techniques presented is network decomposition. Network decom-
position means that a network, which is too complex to be analysed as a whole, is
broken up into several subsystems, which are small enough to be analysable. These
subsystems are then investigated individually, whereby the input stream into a subsys-
tem consists – depending on the network topology – of the output streams of one or
more other subsystems (Figure 1.1).1

The Markov chain techniques presented in this work cover all tasks needed to analyse a
queueing network using network decomposition.

1Since, in most cases, the traffic streams between the subsystems cannot be described exactly and
have to be approximated, e.g., by renewal processes that match in the first k moments, the network
decomposition method does not yield exact results. However, by varying the size of the subsystems
and the precision with which the traffic streams are described, the accuracy of the results can be
controlled.

13



1. Introduction

(a)

(b)

Figure 1.1.: Network decomposition. The queueing network shown in (a) is broken up into sub-
systems (b), which are analysed individually. Since the input of some subsystems
depends on the output of other subsystems, we must choose an appropriate order,
e.g., system 1 – system 4 – system 2 – system 3.
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Our work is organised as follows:

Part I, “Introduction”, gives an introduction to modelling with Markov chains.

After an overview of the mathematical theory of Markov chains in Chapter 2, Chapter 3
reviews well-known techniques currently used to model queueing systems with Markov
chains, such as determining the system state and the flow time through a queueing
system. It is also shown how general probability distributions can be approximated by
phase type distributions. In Chapter 4, we briefly discuss some topics related to the
content of this work.

In part II, “Advanced Markov Chain Techniques”, the advanced Markov chain techniques
are presented. For the sake of clarity, we chose simple examples to explain the tech-
niques. Of course, it is possible to apply the techniques to queueing systems of arbitrary
complexity. For some of the problems described other techniques rather than modelling
with Markov chains might be more appropriate. However, even in such cases it can be
useful to have, in addition, a Markov chain model so that the solutions obtained can be
verified.

In Chapter 5, we analyse the idle and the busy period of queueing systems: the length
of the idle period, the length of the busy period, and the number of customers served
during a busy period.

These results are needed in Chapter 6, where the departure stream of single-server
queueing systems is considered.

In Chapter 7, we investigate characteristics of overflow traffic. We determine the block-
ing probability, the interoverflow time, and the number of successful arrivals between
two overflows.

Finally, Chapters 8 and 9 deal with the manipulation of traffic streams: In Chapter 8, we
consider the superposition of streams, and in Chapter 9, we analyse the decomposition
(splitting) of streams.

15
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2. Markov chains

2.1. Stochastic processes

Stochastic processes

A stochastic process (or random process) Xt, t ∈ T is a family of random variables
defined on a given probability space.

The ordered set T is called the index set. T is usually interpreted as time; so Xt

denotes the value of the stochastic process at time t. When the index set is countable
(e.g., T = N), the process is said to be a discrete-time process, otherwise (e.g., when
T = R+

0 ) it is said to be a continuous-time stochastic process.

The values that can be assumed by the random variables Xt are called the states of the
stochastic process. The state space is the set of all states. The state space can be finite,
countably infinite or uncountably infinite.

Markov processes

A Markov process (named after the Russian mathematician Andrej A. Markov, 1856-
1922) is a stochastic process, whose further evolution depends only on its current state,
and not on the past history, that is, when the current state has been reached and how it
has been reached:

P {Xt ≤ x | Xt0 = x0, Xt1 = x1, . . . , Xtn = xn} =

P {Xt ≤ x | Xtn = xn} for all t0 < t1 < · · · < tn < t (2.1)

This important property is called Markov property or memoryless property.

Markov processes are much easier to analyse than general random processes. In many
cases, it is possible to convert general random processes into Markov processes.

If the behaviour of a Markov process is independent of the absolute time, that is, if

P {Xt = j | X0 = i} = P {Xt+s = j | Xs = i} (2.2)

holds for all s ∈ T , the Markov process is said to be homogeneous, otherwise it is
said to be nonhomogeneous. In the following, we consider only homogeneous Markov
processes.

Markov chains

Markov processes with a countable state space are called Markov chains. Usually the
state space of Markov chains is set to the natural numbers N or to a subset of N.

17



2. Markov chains

In this work, we number the states of the Markov chains with the positive integers 1,2,3,
. . . For the sake of readability, in addition, we give a unique name to all states, such as
“Idle”, “2”, “3/1/a”. These names help to understand what the respective state means.
We use these two notations as needed. To distinguish the number of a state from its
name, we enclose the names in angle brackets. For example, Xt = 2 means that the
Markov chain is in the state with number 2, whereas Xt = 〈2〉 means that the Markov
chain is in the state with the name “2”.

In the following, we discuss some important properties of discrete-time Markov chains
(DTMC) and continuous-time Markov chains (CTMC).

2.2. Discrete-time Markov chains

2.2.1. Transition probabilities

Discrete-time Markov chains can change their state at discrete points in time. The
probability for such a change is determined by the transition probabilities.

The transition probability pij is the probability that the Markov chain will be in state j
at the time n+ 1, given that it is in state i at time n:

pij = P {Xn+1 = j | Xn = i} (2.3)

The transition probabilities pij can be written as a matrix P:

P = (pij) =

 p1,1 p1,2 · · ·
p2,1 p2,2 · · ·

...
... . . .

 (2.4)

This matrix is called the transition probability matrix for the discrete-time Markov
chain.

2.2.2. Multi-step transition probabilities

The probability p(m)
ij that the Markov chain is in state j at time n + m (m ≥ 2), given

that it is in state i at time n,

p
(m)
ij = P {Xn+m = j | Xn = i} (2.5)

can be calculated as follows: In order to get in m steps from state i to state j, first an
intermediate state k must be reached in l (0 < l < m) steps (probability p

(l)
ik ). Then

there must be a transition from this intermediate state k to state j in m− l steps (prob-
ability p(m−l)

kj ). For the intermediate states all states of the Markov chain are possible.
Therefore, we have

p
(1)
ij = pij (2.6)

p
(m)
ij =

∑
all k

p
(l)
ik p

(m−l)
kj , for 0 < l < m (2.7)

18



2.2. Discrete-time Markov chains

or in matrix notation

P(1) = P (2.8)

P(m) = P(l) P(m−l), for 0 < l < m (2.9)

From this it follows (with l = 1)

P(m) = P P(m−1) = P P P(m−2) = · · · = Pm (2.10)

2.2.3. Representation by state diagrams

Discrete-time Markov chains can be graphically represented by state diagrams: The
states of the Markov chains are represented by circles, and the possible transitions
between the states are represented by arcs, which are annotated with the transition
probabilities.

Figure 2.1.: State diagram of a discrete-time Markov chain.

Figure 2.1 shows the state diagram for a discrete-time Markov chain with the transition
probabilities

P =


0.2 0.8 0 0 0
0.4 0 0.6 0 0
0 1 0 0 0
0 0 0.85 0 0.15
0 0 0 0 1



2.2.4. Classification of states

A state j is accessible from a state i (i  j), if j can be reached from i in an arbitrary
number of steps:

i j ⇔ ∃ m ≥ 0 : p
(m)
ij > 0 (2.11)

A set of states is said to be closed if no state outside the set can be reached from a
state within the set. If a closed set consists of only one state, this state is said to be
absorbing.

19



2. Markov chains

Two states i and j communicate (i! j), if they are accessible to each other:

i! j ⇔ i j ∧ j  i (2.12)

The relation of communication is an equivalence relation (i! i, i! j ⇔ j! i, and
i! j ∧ j! k ⇒ i! k for all i, j, k). The associated equivalence classes are called
communication classes.

A Markov chain is said to be irreducible if all states communicate with each other, that
is, there is only one communication class.

The states of a communication class that is not closed are said to be transient. Transient
states are taken only a finite number of times (because once the communication class
of such a state is left, it cannot be reached again).

In the Markov chain shown in Figure 2.1, there are three communication classes: {1, 2, 3},
{4} and {5}. The sets {1, 2, 3} and {5} are closed, state 5 is absorbing. State 4 is tran-
sient.

States which are not transient are said to be recurrent. When a recurrent state is taken
once, it is taken infinitely often.

With f
(n)
i we denote the probability that the Markov chain will return to state i in

exactly n steps after leaving it. The probability that the Markov chain ever returns to
state i (that is, in an arbitrary number of steps), is

fi =
∞∑
m=1

f
(m)
i (2.13)

For a recurrent state i this probability is fi = 1, for a transient state j it is fj < 1.

The expected number of steps between two consecutive sojourns in a recurrent state i
(the mean recurrence time) is

Mi =
∞∑
n=1

n f
(n)
i (2.14)

When the mean recurrence time is finite (Mi < ∞), state i is said to be positive-
recurrent, otherwise null-recurrent. Null-recurrent states can occur only in Markov
chains with an infinite state space.

The states of an irreducible Markov chain are all either positive-recurrent, null-recurrent
or transient.

The states of a finite, irreducible Markov chain are all positive-recurrent.

A state j is said to be periodic with period p, when, after the state has been left, a return
to the state is possible only in a number of steps, which is a multiple of p. That is, p is
the greatest common divisor or all numbers r, for which p

(r)
jj > 0. A state with period

p = 1 is said to be aperiodic.

If a state of an irreducible Markov chain is aperiodic, then all other states of the Markov
chains are aperiodic, too.

A discrete-time Markov chain is said to be ergodic, if it is irreducible, and all states of
the Markov chain are aperiodic and positive-recurrent.
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2.2. Discrete-time Markov chains

2.2.5. State probabilities

The probability that the Markov chain is in state i at time n (state probability) is πi(n),

πi(n) = P {Xn = i} (2.15)

The probability distribution of a Markov chain (the state probabilities of all states) can
be written as a vector,

π(n) = (π0(n), π1(n), . . . ) (2.16)

If the initial probability distribution π(0) is known, the state probabilities can be calcu-
lated with

πi(n) =
∑
all k

p
(n)
ki πk(0) (2.17)

or in matrix notation

π(n) = π(0) P(n) = π(0) Pn (2.18)

A stationary probability distribution π = (π1, π2, . . . ) is a distribution where

π · P = π (2.19)

holds. That is, when the Markov chain has reached a stationary probability distribution,
it will be retained forever.

If a certain initial probability distribution π(0) is given and the limit π̃ = lim
n→∞

π(n) exists,

then π̃ is called limiting probability distribution.

For the existence and uniqueness of the two probability distributions, we have:

• In an aperiodic Markov chain, there exists the limiting probability distribution for
every initial probability distribution. In a periodic Markov chain, this is not the
case, which can easily be seen when we look at a Markov chain with P = ( 0 1

1 0 ).

• In an aperiodic and irreducible Markov chain, there exists a unique limiting proba-
bility distribution, which is independent of the initial probability distribution. In a
reducible Markov chain, this is not the case. For example, in a Markov chain with
P = ( 1 0

0 1 ) every initial probability distribution is its own limiting distribution.

• In an irreducible and positive-recurrent Markov chain, there is a unique station-
ary probability distribution. In a reducible Markov chain, this is not the case.
For example, in a Markov chain with P = ( 1 0

0 1 ) every probability distribution is
stationary.

• In an aperiodic, irreducible, and positive-recurrent (that is, ergodic) Markov chain,
there is a unique limiting probability distribution, which equals the unique sta-
tionary probability distribution. This probability distribution can be calculated by
solving equation (2.19) under the side condition

∑
i πi = 1. Alternatively π can

be obtained from the relation

lim
n→∞

Pn = (π, π, . . . )T (2.20)
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2. Markov chains

• In an aperiodic, irreducible, but not positive-recurrent Markov chain (such Markov
chains have an infinite state space), there is no stationary probability distribution.

2.2.6. Sojourn times

The time Ri that a Markov chain spends in state i is called sojourn time. Because
of the Markov property at any point in time the remaining sojourn time of a state is
independent of the time already spent in the state. Therefore, the sojourn times are
geometrically distributed,

P {Ri = k} = pk−1
ii

∑
j 6=i

pij (2.21)

The mean sojourn time is

E (Ri) =
1

1− pii
(2.22)

and its variance is

Var (Ri) =
pii

(1− pii)2
(2.23)

2.3. Continuous-time Markov chains

2.3.1. Transition rates

Continuous-time Markov chains can change their state at each point in time. Therefore,
the transition probabilities depend on the considered interval:

The transition probability pij(τ) (τ ≥ 0) is the probability that the Markov chain is in
state j at time t+ τ , given that it is in state i at time t:

pij(τ) = P {Xt+τ = j | Xt = i} (2.24)

The smaller the interval τ is, the smaller the probability for a transition to another state
is. For τ = 0 we have

pij(0) =

{
0 i 6= j

1 i = j
(2.25)

As the interval τ becomes larger, the probability for a transition increases, whereby also
multiple transitions (that is, the Markov chain changes from state i to some intermediate
state k, and then from state k to state j) can occur and have to be taken into account.
In order to describe only single transitions, τ must be chosen as small as possible.

The transition rate qij is defined as the derivation of the transition probability pij(τ) at
time τ = 0 (see Figure 2.2):

qij(τ) = p′ij(0) = lim
τ→0

pij(τ)− pij(0)

τ − 0
(2.26)
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2.3. Continuous-time Markov chains

(a) (b)

Figure 2.2.: The transition rate is defined as the derivation of the transition probability pij(τ) at

τ = 0. (a) Q =
(−3 2 1

0 0 0
0 0 0

)
. (b) Q =

(−3 2 1
0.5 −0.5 0
0 5 −5

)
.

For j 6= i we have

qij(τ) = lim
τ→0

pij(τ)

τ
(2.27)

For j = i we have

qii(τ) = lim
τ→0

pii(τ)− 1

τ
(2.28)

With pii(τ) = 1−
∑

j 6=i pij(τ) follows

qii(τ) = lim
τ→0

1−
∑

j 6=i pij(τ)− 1

τ
= −

∑
j 6=i

j lim
τ→0

pij(τ)

τ
(2.29)

qii(τ) = −
∑
j 6=i

qij(τ) (2.30)

The transition rates can also be written as a matrix,

Q = (qij) =

 q1,1 q1,2 · · ·
q2,1 q2,2 · · ·
...

... . . .

 (2.31)

This matrix is called the transition rate matrix or infinitesimal generator matrix for
the continuous-time Markov chain.
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2. Markov chains

2.3.2. Representation by state diagrams

Continuous-time Markov chains can be graphically represented by state diagrams: The
states are represented by circles, and the possible transitions between states are repre-
sented by arcs, which are annotated with the transition rates.

Figure 2.3.: State diagram of a continuous-time Markov chain.

Figure 2.3 shows the state diagram for a continuous-time Markov chain with the transi-
tion rates

Q =


−0.1 0.1 0 0 0
10 −10.01 0.01 0 0
0 10 −10 0 0
0 0 284.3 −284.45 0.15
0 0 0 0 0



2.3.3. Chapman-Kolmogorov equations

The transition probability between two states (also considering multiple transitions)
can be calculated with the aid of the following consideration:

Let the Markov chain be in state i at time t. If the Markov chain is in state j at time
t + τ + α, then it must have been at time t + τ in some intermediate state k. The
probability for this is pik(τ). Then there must have been a transition from state k to
state j in α time units. The probability for this is pkj(α). Since all states of the Markov
chain (including i and j) can be intermediate states, we have

pij(τ + α) =
∑
k

pik(τ) pkj(α) (2.32)

Because of τ + α = α + τ we also have

pij(τ + α) =
∑
k

pik(α) pkj(τ) (2.33)

From this it follows that

pij(τ + α)− pij(τ) =
∑
k 6=j

pik(τ) pkj(α) + pij(τ) pjj(α)− pij(τ)

=
∑
k 6=j

pik(τ) pkj(α) + pij(τ) (pjj(α)− 1)
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2.3. Continuous-time Markov chains

and

pij(τ + α)− pij(τ) =
∑
k 6=i

pik(α) pkj(τ) + pii(α) pij(τ)− pij(τ)

=
∑
k 6=i

pik(α) pkj(τ) + pij(τ) (pii(α)− 1)

With equation (2.25) follows

pij(τ + α)− pij(τ) =
∑
k 6=j

pik(τ) (pkj(α)− pkj(0)) + pij(τ) (pjj(α)− pjj(0)) (2.34)

and

pij(τ + α)− pij(τ) =
∑
k 6=i

pkj(τ) (pik(α)− pik(0)) + pij(τ) (pii(α)− pii(0)) (2.35)

Dividing both sides by α and taking the limit α→ 0 yields

lim
α→0

pij(τ + α)− pij(τ)

α︸ ︷︷ ︸
→p′ij(τ)

=

lim
α→0

∑
k 6=j

pik(τ)
pkj(α)− pkj(0)

α︸ ︷︷ ︸
→p′kj(0)=qkj

+ lim
α→0

pij(τ)
pjj(α)− pjj(0)

α︸ ︷︷ ︸
→p′jj(0)=qjj

(2.36)

and

lim
α→0

pij(τ + α)− pij(τ)

α︸ ︷︷ ︸
→p′ij(τ)

=

lim
α→0

∑
k 6=i

pkj(τ)
pik(α)− pik(0)

α︸ ︷︷ ︸
→p′ik(0)=qik

+ lim
α→0

pij(τ)
pii(α)− pii(0)

α︸ ︷︷ ︸
→p′ii(0)=qii

(2.37)

The first equation is called the Chapman-Kolmogorov forward equation:

p′ij(τ) =
∑
k

pik(τ) qkj (2.38)

The second equation is the Chapman-Kolmogorov backward equation:

p′ij(τ) =
∑
k

qik pkj(τ) (2.39)
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2. Markov chains

2.3.4. Classification of states

States of a countinuous-time Markov chain are classified similarly to states of discrete-
time Markov chains:

A state j is accessible from state i (i j), if j can be reached from i in arbitrary time:

i j ⇔ ∃ t : pij(t) > 0 (2.40)

A set of states is said to be closed if no state outside the set can be reached from a
state within the set. When a closed set consists of only one state, that state is said to be
absorbing.

Two states i and j communicate (i! j), if both are accessible to each other:

i! j ⇔ i j ∧ j  i (2.41)

A communication class is a set which contains all communicating states.

A Markov chain is said to be irreducible if all states communicate with each other, that
is, there is only one communication class.

The states of a communication class that is not closed are said to be transient. Transient
states are taken only a finite number of times (because once the communication class
of such a state is left, it cannot be reached again).

States that are not transient are said to be recurrent. When a recurrent state is taken
once, it is taken infinitely often.

The expected time between two consecutive sojourns in a recurrent state i is called
mean recurrence time. When the mean recurrence time is finite, state i is said to be
positive-recurrent, otherwise null-recurrent.

A continuous-time Markov chain is said to be ergodic if it is irreducible and all states
are positive-recurrent.

2.3.5. State probabilities

The probability πj(τ) that the Markov chain is in state j at time τ can be determined by
means of the Chapman-Kolmogorov forward equation (2.38).

We have

πj(τ) =
∑
i

πi(0) pij(τ) (2.42)
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2.3. Continuous-time Markov chains

Differentiation of both sides yields:

π′j(τ) =
∑
i

πi(0) p′ij(τ) =
∑
i

πi(0)
∑
k

pik(τ) qkj =
∑
k

∑
i

πi(0) pik(τ)︸ ︷︷ ︸
πk(τ)

qkj (2.43)

π′j(τ) =
∑
k

πk(τ) qkj (2.44)

Using π(τ) = (π1(τ), π2(τ), . . . , πN(τ)), this equation can be written in matrix form:

π′(τ) = π(τ) Q (2.45)

A probability distribution π = (π1, π2, . . . ) is called stationary probability distribu-
tion, if

π′ = π Q = 0 (2.46)

holds. This means that if a Markov chain has reached a stationary probability distribu-
tion, the change in the probability distribution is 0 and the probability distribution will
be retained forever.

If an initial probability distribution π(0) is given and the limit π̃ = lim
t→∞

π(t) exists, π̃ is

called limiting probability distribution.

For the existence and the uniqueness of these two probability distributions, the follow-
ing holds:

• In an irreducible Markov chain, there is a unique limiting probability distribution,
which is independent of the initial probability distribution.

• In an irreducible and finite Markov chain, there is unique stationary probability
distribution. This probability distribution can be obtained by solving equation
(2.46) under the side condition

∑
i πi = 1.

2.3.6. Sojourn times

The time Ri that a Markov chain spends in a state i is called sojourn time. Because
of the memory-less property of Markov chains, the sojourn times are exponentially dis-
tributed (with parameter −qii):

P {Ri ≤ t} = 1− eqiit (2.47)

The mean of the sojourn time is

E (Ri) = − 1

qii
(2.48)

and the variance is

Var (Ri) =
1

qii2
(2.49)
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2. Markov chains

Sometimes we are interested in the probability that the Markov chain is at a certain
point in time in a state that does not belong to a subset H of the state space. This
probability can be calculated with the Chapman-Kolmogorov backward equation:

Let ϕi(τ) be the probability that the Markov chain is in a state that is not contained in
H after τ time units, given that it is in state i at time t:

ϕi(τ) = P{Xt+τ /∈ H | Xt = i} (2.50)

Then we have

ϕi(τ) =
∑
j /∈H

pij(τ) (2.51)

Differentiation of both sides yields

ϕ′i(τ) =
∑
j /∈H

p′ij(τ) =
∑
j /∈H

∑
k

qik pkj(τ) =
∑
k

qik
∑
j /∈H

pkj(τ)︸ ︷︷ ︸
ϕk(τ)

(2.52)

ϕ′i(τ) =
∑
k

qik ϕk(τ) (2.53)

Using ϕ(τ) = (ϕ1(τ), ϕ2(τ), . . . , ϕN(τ))T , this equation can be written in matrix form:

ϕ′(τ) = Q · ϕ(τ) (2.54)

For the initial conditions ϕi(0), we have

ϕi(0) = 1 ∀i /∈ H ϕi(0) = 0 ∀i ∈ H (2.55)

2.3.7. Embedded Markov chain

If we consider only the transitions between the states of a continuous-time Markov
chain and not the time spent in the states, we obtain a discrete-time Markov chain, the
so-called embedded Markov chain. The embedded Markov chain has the same state
space as the continuous-time Markov chain.

For the calculation of the transition probabilities sij of the embedded Markov chain,
we first show that Yi is the smallest of the exponentially distributed random variables
Y1, Y2, . . . , Yn (with respective rates λ1, λ2, . . . , λn) with probability λi/ (λ1 + λ2 + · · ·+ λn):
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2.3. Continuous-time Markov chains

P
{
Yi = min

j
Yj

}
= P

{
Yi ≤

=:YM︷ ︸︸ ︷
min
j 6=i

Yj

}
= P {Yi ≤ YM} =

=

∫ ∞
0

P {Yi ≤ YM | Yi = x}P {Yi = x} dx =

=

∫ ∞
0

P {x ≤ YM}P {Yi = x} dx =

=

∫ ∞
0

e−
∑
j 6=i λjxλie

−λixdx =

= λi

∫ ∞
0

e−
∑
j λjxdx =

λi∑
j λj

(2.56)

Now let Ni be the states of the continuous-time Markov chain that can be directly
reached from state i,

Ni = {j | qij > 0}

and let Tij, j ∈ Ni, be the time the continuous-time Markov chain would need to go from
state i to state j if we would allow no other transitions than that from i to j. Then the Tij
are exponentially distributed random variables with respective rates qij. The probability
that Tik, k ∈ Ni, is the smallest of these random variables – and thus the next transition
will be to state k – is (according to Equation 2.56) qik/

∑
j∈Ni qij = −qik/qii

Therefore, the transition probabilities sij of the embedded Markov chain are

sij =

{
− qij
qii

=
qij∑
k 6=i qik

for i 6= j

0 for i = j
(2.57)

or in matrix form

S = (sij) = I − (diag (Q))−1Q (2.58)

The embedded Markov chain can be used to analyse the underlying continuous-time
Markov chain. For example, the stationary state probabilities πi of the continuous-time
Markov chain can be obtained by multiplying the stationary state probabilities of the
embedded Markov chain εi by the sojourn time in each state:

πi = C · εi
1

−qii
(2.59)

where C is chosen such that
∑

i πi = 1 holds.
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3. Modelling of queueing systems with
Markov chains

In general, modelling of queueing systems with Markov chains is done in three steps:

First, a Markov chain that deals with the problem under consideration is constructed.
Attention should be paid that the Markov chain contains all the important properties of
the queueing system. However, at the same time it should not contain too many details,
because otherwise the effort for the calculation of the properties of the Markov chain is
unnecessarily great.

Then the properties of the Markov chain (such as transient and stationary state prob-
abilities) are calculated. This is done by means of the formulas shown in Chapter 2.
Mathematical procedures that can be used for this task are described in [Heath 1997],
[Press et al. 1992], [Stewart 1994] and [Watkins 2002]. Finally, the quantities of inter-
est for the real system can be calculated from the properties of the Markov chain.

In this chapter, we briefly show some well-known techniques that are used to model
queueing systems with Markov chains: In Section 3.1, we show how the system state
is modelled, in Section 3.2, we explain how the flow time through a queueing system
is calculated. In Section 3.3, we describe how to determine the time needed until a
certain state is reached or until a certain event occurs for the first time.

Due to the memory-less property of Markov chains, only such processes can be modelled
directly whose interevent times are exponentially distributed. How general processes
can be modelled is described in Section 3.4.

Finally, in Section 3.5, we show how traffic streams can be modelled.

31



3. Modelling of queueing systems with Markov chains

3.1. System state

For most problems it is necessary to model the system state. The Markov chain for
the system state, we call it MS, contains a state for each possible state of the queue-
ing system under consideration. The transition rates between the states of the Markov
chain are the respective transition rates (e.g., arrival and service rates) in the queue-
ing system. From the state probabilities of the states of the Markov chain MS we can
determine the probability for the states of the queueing system. The transient state
probabilities correspond to transient processes in the queueing system, and the station-
ary state probabilities correspond to the steady-state of the queueing system. By means
of the state probabilities, we can determine quantities such as

• number of customers in the system,

• length of the waiting queue,

• utilisation of the server,

• probability that the system is full,

• mean waiting time of the customers.

3.1.1. M/M/1/S queueing system

The Markov chain for the system state of an M/M/1/S queueing system with system
size S = 3, arrival rate λ and service rate µ is shown in Figure 3.1. Each state of this
Markov chain corresponds to one of the four possible states the queueing system can
be in: State 1 / 〈Idle〉 corresponds to an empty system, State 2 / 〈1〉 corresponds to a
system in which there is one customer, and so on.

Figure 3.1.: M/M/1/S queueing system: Markov chain for the system state (S = 3). Meaning of
the names of the states: number of customers in the system, or Idle if the system
is empty.

The transition rate matrix of this Markov chain is

Q =


−λ λ 0 0
µ −λ− µ λ 0
0 µ −λ− µ λ
0 0 µ −µ


It should be noted that in this queueing system all states of the system have a corre-
sponding state in the Markov chainMS, but not all events have a corresponding transi-
tion: When the queueing system is full and a customer arrives, there is an event but no
transition in the Markov chain. We call such events “silent events”. The corresponding
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3.1. System state

transitions – which are not contained in the Markov chain we currently use, but might
be contained in another Markov chain for the queueing system under consideration –
are called “hidden transitions”.

The stationary state probabilities of the Markov chain π =
(
π〈Idle〉, π〈1〉, π〈2〉, π〈3〉

)
are

calculated by solving the system of linear equations

π · Q = 0 (3.1)

under the side condition

π〈Idle〉 + π〈1〉 + π〈2〉 + π〈3〉 = 1 (3.2)

When we have calculated the stationary system state probabilities of the Markov chain,
we can determine, among other things, the following steady-state characteristics of the
queueing system:

The expected number of customers in the system is

E(X) =
3∑

k=1

k · π〈k〉 (3.3)

Figure 3.2 shows the number of customers in the system as a function of the arrival rate
λ.

The probability that an arriving customer is rejected (blocking probability) is the prob-
ability that the system is full:

pblocking = π4 (3.4)

Figure 3.3 shows the blocking probability as a function of the arrival rate λ.

The utilisation of the server ρ is the probability that it is not idle,

ρ = 1− π〈Idle〉 = π〈1〉 + π〈2〉 + π〈3〉 (3.5)

The transient state probabilities of the Markov chain π(t) =
(
π〈Idle〉(t), π〈1〉(t), π〈2〉(t),

π〈3〉(t)
)

are calculated by solving the system of first order ordinary differential equations

π′(t) = π(t) · Q (3.6)

The value for π(0) is chosen according to the initial state of the queueing system.

For example, if we want to investigate the transient behaviour of a queueing system
that is empty at the beginning, we would have π(0) = (1, 0, 0, 0).

The probability that at time t there are n customers in the system is

P {X(t) = n} =

{
π〈Idle〉(t) for n = 0

π〈n〉(t) for n ≥ 1
(3.7)

The expected number of customers in the system at time t is

E(X)(t) =
3∑

k=1

k · π〈k〉(t) (3.8)

Some results are shown in Figures 3.4 and 3.5.
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3. Modelling of queueing systems with Markov chains

Figure 3.2.: M/M/1/S queueing system with S = 3, arrival rate λ and service rate µ = 1: ex-
pected number of customers in the system in the steady state.

Figure 3.3.: M/M/1/S queueing system with S = 3, arrival rate λ and service rate µ = 1: block-
ing probability in the steady state.
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3.1. System state

Figure 3.4.: Transient behaviour of an M/M/1/S queueing system: probability that there are n
customers in the system at time t, given that the system is empty at time 0. S = 3,
arrival rate λ = 0.8, service rate µ = 1.

Figure 3.5.: Transient behaviour of an M/M/1/S queueing system: expected number of cus-
tomers in the system at time t, given that the system is empty at time 0. S = 3,
arrival rate λ, service rate µ = 1.
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3. Modelling of queueing systems with Markov chains

Closed-form solution for the stationary state probabilities

A closed-form solution for the stationary state probabilities can be obtained by using
the so-called balance equations. The balance equations state that, in steady state, the
rate at which a state is left equals the rate at which it is entered:

πi
∑
j 6=i

qij︸ ︷︷ ︸
rate at which state i is left

=
∑
j 6=i

πjqji︸ ︷︷ ︸
rate at which state i is entered

∀ i (3.9)

Therefore, in the Markov chain for the M/M/1/S queueing system we have

π〈Idle〉λ = π〈1〉µ ⇒ π〈1〉 = π〈Idle〉
λ

µ

π〈1〉λ = π〈2〉µ ⇒ π〈2〉 = π〈1〉
λ

µ
= π〈Idle〉

(
λ

µ

)2

. . .

πS−1λ = π〈S〉µ ⇒ π〈S〉 = π〈S−1〉
λ

µ
= π〈Idle〉

(
λ

µ

)S
(3.10)

To simplify the formulas, we change the name of state 1 from 〈Idle〉 to 〈0〉. So we have

π〈n〉 = π〈0〉

(
λ

µ

)n
n = 1, . . . , S (3.11)

Using the fact that the sum of all probabilities must equal 1, we can write

1 =
S∑
k=0

π〈k〉 = π〈0〉 + π〈1〉 + · · ·+ π〈S〉 =

= π〈0〉 + π〈0〉
λ

µ
+ π〈0〉

(
λ

µ

)2

+ · · ·+ π〈0〉

(
λ

µ

)S
= π〈0〉

S∑
k=0

(
λ

µ

)k
=

= π〈0〉

 1

1− λ
µ

−

(
λ
µ

)S+1

1− λ
µ

 = π〈0〉

1−
(
λ
µ

)S+1

1− λ
µ


(3.12)

and

π〈0〉 =
1− λ

µ

1−
(
λ
µ

)S+1
(3.13)

In the special case λ = µ we obtain

1 =
S∑
k=0

π〈k〉 = π〈0〉 + π〈1〉 + · · ·+ π〈S〉 =

= π〈0〉 + π〈0〉1 + π〈0〉1
2 + · · ·+ π〈0〉1

S = π〈0〉(S + 1)

(3.14)

π〈0〉 =
1

S + 1
(3.15)
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3.1. System state

Therefore, we have

π〈0〉 =


1−λ/µ

1−(λ/µ)S+1 for λ 6= µ

1
S+1

for λ = µ
(3.16)

π〈n〉 = π〈0〉

(
λ

µ

)n
n = 1, . . . , S (3.17)

3.1.2. M/M/1/S queueing system with controlled arrival rate

In this queueing system (Figure 3.6a), the arrival rate is controlled depending on the
number of customers in the system. The normal arrival rate is λn. If the number of
customers in the queueing system reaches Sstop, the arrival rate is reduced to λr, in
order to decrease the probability that the system will become full. When the number of
customers in the system reaches Sgo, the arrival rate is switched back to its normal rate
λn (see Figure 3.6b). The service rate is always µ.

(a) (b)

Figure 3.6.: M/M/1/S queueing system with controlled arrival rate. (a) Overview, (b) arrival rate
for S = 5, Sstop = 4, Sgo = 1

The Markov chain for the system state of this queueing system (with S = 5, Sstop = 4
and Sgo = 1) is shown in Figure 3.7.

The transition rate matrix of this Markov chain is

Q =



−λn λn 0 0 0 0 0 0
µ −λn − µ λn 0 0 0 0 0
0 µ −λn − µ λn 0 0 0 0
0 0 µ −λn − µ 0 0 λn 0
0 µ 0 0 −λr − µ λr 0 0
0 0 0 0 µ −λr − µ λr 0
0 0 0 0 0 µ −λr − µ λr

0 0 0 0 0 0 µ −µ


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3. Modelling of queueing systems with Markov chains

Figure 3.7.: M/M/1/S queueing system with controlled arrival rate. S = 5, Sstop = 4, Sgo = 1.
Meaning of the names of the states: number of customers in the system / “n” for
normal arrival rate or “r” for reduced arrival rate.

After calculating the stationary state probabilities of this Markov chain, we can obtain
some characteristics of the queueing system:

The expected number of customers in the system is

E(X) = 1 · π〈1/n〉 + 2 ·
(
π〈2/n〉 + π〈2/r〉

)
+

3 ·
(
π〈3/n〉 + π〈3/r〉

)
+ 4 · π〈4/r〉 + 5 · π〈5/r〉 (3.18)

or generally

E(X) =

Sstop−1∑
k=0

k · π〈k/n〉 +
S∑

k=Sgo+1

k · π〈k/r〉 (3.19)

The probability that the arrival rate is reduced is

preduced = π〈2/r〉 + π〈3/r〉 + π〈4/r〉 + π〈5/r〉 (3.20)

or generally

preduced =
S∑

k=Sgo+1

π〈k/r〉 (3.21)

The utilisation of the server is

ρ = 1− π〈0/n〉 (3.22)
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3.2. Calculation of the flow time

3.2. Calculation of the flow time

In general, it is not possible to determine the time Φ that a customer needs to flow
through a queueing system based only on the system state. Instead, the fate of a so-
called test customer is considered.1 The test customer enters the queueing system at
an arbitrary point of time and begins its flow process. The flow process ends when the
test customer has again left the system. The length of the interval between entry and
departure of the test customer is the flow time. Only such test customers are considered
that are accepted by the queueing system when they arrive. Test customers who are
rejected (for example, because the system is full) are ignored.

In most cases, the fate of the test customer depends on the system state as well as on
its evolution within the service discipline of the system (in the following referred to as
service process). Therefore, the Markov chain for the flow processMΦ is a combination
of the Markov chain for the system state and the Markov chain that describes the service
process.

InMΦ three kinds of states can be distinguished:

• States in which the flow process can start. These states can be taken immediately
after the arrival of the test customer. The set of these states is denoted byM1.

• States in which the flow process cannot start. These states can be reached only
indirectly. The set of these states is denoted byM2.

• States in which the test customer has left the queueing system. The set of these
states is denoted by H. These states are absorbing, because when such a state is
reached, the flow process has ended.

Depending on in which state the queueing system is when the test customer arrives,
and therefore in which stateMΦ is when the flow process begins, the flow time will be
longer or shorter.

Let ϕi(·) be the complementary cumulative distribution function of the time the Markov
chain needs to go from state i to one of the absorbing states H. This time equals the
flow time given thatMΦ is in state i when the flow process begins,

ϕi(τ) = P {Φ > τ | starting state i} (3.23)

According to Equations 2.54 and 2.55, we calculate ϕi(·) with

ϕi(0) =

{
1 for i ∈M1 ∪M2

0 for i ∈ H
(3.24)

ϕ′(τ) = Q · ϕ(τ) (3.25)

Now the cumulative distribution function of the total flow time is

FΦ(τ) = 1−
∑
i

σΦ
i ϕi(τ) (3.26)

1cf. [Kühn 1972]
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3. Modelling of queueing systems with Markov chains

where σΦ
i is the probability that the Markov chainMΦ is in state i when the flow process

begins.

The mean flow time is obtained with2

E (Φ) =

∞∫
τ=0

FC
Φ (τ) dτ (3.27)

(where FC
Φ (·) is the complementary cumulative distribution function of Φ) or with Lit-

tle’s law.

Little’s law states that the average number of customers in a system E(X) is equal to
the average arrival rate λ multiplied by the average time E (Φ) that a customer spends
in the system:

E(X) = λ · E (Φ) (3.28)

Therefore, we have

E(Φ) = E (X) · λ−1 (3.29)

3.2.1. M/M/1/S queueing system

First, we consider a simple M/M/1/S queueing system with S = 5, arrival rate λ, service
rate µ and service discipline FIFO (first in – first out).

In this queueing system the system state does not affect the flow process, except for
the determination of the probabilities of the starting states. The evolution within the
service discipline, and thus the evolution within the flow process, is determined by the
number of customers that are in the queueing system when the test customer arrives
(and, therefore, will be served before the test customer).

Figure 3.8.: M/M/1/S queueing system: Markov chain for the flow process (=service process)
for S = 5. Meaning of the names of the states: number of customers which will be
served before the test customer.

The Markov chain for the flow process is shown in Figure 3.8. The flow process is in the
absorbing state 1 when the test customer has left the queueing system. The other states

2Let fΦ(·) be the probability density function of Φ. Then we have:

∞∫
x=0

FCΦ (x) dx =

∞∫
x=0

∞∫
y=x

fΦ(y) dy dx =

∞∫
y=0

y∫
x=0

fΦ(y) dxdy =

∞∫
y=0

fΦ(y)

y∫
x=0

dx

︸ ︷︷ ︸
=y

dy = E (Φ)
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3.2. Calculation of the flow time

are possible starting states for the flow process. For example, the flow process starts
in state 2, if the test customer finds an empty system upon arrival. The test customer
is served immediately, and at the service rate µ the flow process reaches state 1. The
flow process starts in state 3, if the test customer finds a system in which there is one
customer. This customer leaves the system at the service rate µ (the flow process is then
in state 2), whereupon the test customer is served. The service of the test customer
finishes at rate µ, afterwards the test customer leaves the system (the flow process is
then in state 1).

The probabilities for the different starting states depend on the system state probabilities
π(0) at the moment when the test customer arrives:

P {starting state 2} = σΦ
2 = π〈Idle〉(0)

1

1− π〈5〉(0)

P {starting state 3} = σΦ
3 = π〈1〉(0)

1

1− π〈5〉(0)

P {starting state 4} = σΦ
4 = π〈2〉(0)

1

1− π〈5〉(0)

P {starting state 5} = σΦ
5 = π〈3〉(0)

1

1− π〈5〉(0)

P {starting state 6} = σΦ
6 = π〈4〉(0)

1

1− π〈5〉(0)

The factor 1/
(
1− π〈5〉(0)

)
occurs because the test customer can begin its flow process

only if the queueing system is not full when it arrives.3

If we look at the Markov chain in Figure 3.8, we see that the flow time of a test customer
that finds n customers in the system upon arrival is the convolution of n+1 exponentially
distributed service times.

Therefore, we can express the flow time through an M/M/1/S queueing system as
weighted sum of Erlang distributions (see Section 3.4.1):

Φ ∼ σF2 Exp (µ) +

σF3 HypoExp (µ, µ) +

σF4 HypoExp (µ, µ, µ) +

σF5 HypoExp (µ, µ, µ, µ) +

σF6 HypoExp (µ, µ, µ, µ, µ)

(3.30)

If we want to use Equation 3.25 to calculate the flow time, we would solve
ϕ′1(t)
ϕ′2(t)
ϕ′3(t)
ϕ′4(t)
ϕ′5(t)
ϕ′6(t)

 =


0 0 0 0 0 0
µ −µ 0 0 0 0
0 µ −µ 0 0 0
0 0 µ −µ 0 0
0 0 0 µ −µ 0
0 0 0 0 µ −µ

 ·

ϕ1(t)
ϕ2(t)
ϕ3(t)
ϕ4(t)
ϕ5(t)
ϕ6(t)

 (3.31)

3P {system in state 〈i〉 (0 ≤ i ≤ 4) | system not full} = P{system in state 〈i〉 ∧ system not full}
P{system not full} = πi

1−π〈5〉
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3. Modelling of queueing systems with Markov chains

or

ϕ′1(t) = 0

ϕ′2(t) = ϕ1(t) µ− ϕ2(t) µ = −µ ϕ2(t)

ϕ′3(t) = ϕ2(t) µ− ϕ3(t) µ = µ (ϕ2(t)− ϕ3(t))

ϕ′4(t) = ϕ3(t) µ− ϕ4(t) µ = µ (ϕ3(t)− ϕ4(t))

ϕ′5(t) = ϕ4(t) µ− ϕ5(t) µ = µ (ϕ4(t)− ϕ5(t))

ϕ′6(t) = ϕ5(t) µ− ϕ6(t) µ = µ (ϕ5(t)− ϕ6(t))

(3.32)

with the initial conditions

ϕi(0) =

{
0 for i = 1

1 otherwise
(3.33)

The solution is

ϕ1(t) = 0

ϕ2(t) = e−µ t

ϕ3(t) = e−µ t (1 + µ t)

ϕ4(t) = e−µ t
(

1 + µ t+
µ2 t2

2

)
ϕ5(t) = e−µ t

(
1 + µ t+

µ2 t2

2
+
µ3 t3

6

)
ϕ6(t) = e−µ t

(
1 + µ t+

µ2 t2

2
+
µ3 t3

6
+
µ4 t4

24

)
(3.34)

As expected, for k ≥ 2, ϕk(·) is the complementary cumulative distribution function of
a (k − 1)-stage Erlang distribution (Equation 3.55).

The cumulative distribution function of the total flow time is

FΦ(τ) = 1−
∑
i

ϕi(τ)σΦ
i

= 1−
(
ϕ2(τ) π〈Idle〉(0) + ϕ3(τ) π〈1〉(0) + ϕ4(τ) π〈2〉(0)+

ϕ5(τ) π〈3〉(0) + ϕ6(τ) π〈4〉(0)
)
/
(
1− π〈5〉(0)

) (3.35)
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3.2. Calculation of the flow time

3.2.2. M/M/1/S queueing system with controlled service rate

Figure 3.9.: M/M/1/S queueing system with controlled service rate.

In this queueing system (Figure 3.9), the service rate depends on the number of cus-
tomers in the system: The normal service rate is µ1. If the length of the queue exceeds
S1, the service rate is increased to µ2. This is done in order to decrease the probability
that the system will become full. The service rate is decreased to µ1, if the length of the
queue reaches or falls below S1. The arrival rate is constant λ, and the service discipline
is FIFO.

Now the fate of the test customer is also influenced by following customers: If after the
test customer has arrived, there are so many arrivals of further customers that there are
always more than S1 customers in the system, then the test customer and all customers
that are served before the test customer are served at the increased service rate µ2, so
that the flow time decreases. On the other hand, if for a long time no customers arrive
at the queueing system after the test customer has, the test customer and up to S1 − 1
customers that are served before the test customer are served only at the normal service
rate µ1, which leads to a higher flow time.

The Markov chain for the flow process is shown in Figure 3.10c. It can be constructed
from the Markov chain for the system state (Figure 3.10a) and the Markov chain for the
service process (Figure 3.10b).

The probabilities for the different starting states depend on the system state probabilities
π(0) at the moment of the arrival of the test customer:

P {starting state 〈1/0〉} = σΦ
〈1/0〉 = π〈0〉(0)

1

1− π〈4〉(0)

P {starting state 〈2/1〉} = σΦ
〈2/1〉 = π〈1〉(0)

1

1− π〈4〉(0)

P {starting state 〈3/2〉} = σΦ
〈3/2〉 = π〈2〉(0)

1

1− π〈4〉(0)

P {starting state 〈4/3〉} = σΦ
〈4/3〉 = π〈3〉(0)

1

1− π〈4〉(0)

After calculating ϕi(·) with

ϕ′(τ) = Q · ϕ(τ) ϕi(0) =

{
0 for 1 ≤ i ≤ 5

1 for 6 ≤ i ≤ 15
(3.36)
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3. Modelling of queueing systems with Markov chains

(a) System state.

(b) Service
process.

(c) Flow process. Meaning of the names of the states: number of customers in the
system / number of customers which are served before the test customer or “S”, if
the test customer has been served. States which can be reached only indirectly (set
M2) are painted with dashed lines, absorbing states (set H) are painted with double
lines.

Figure 3.10.: M/M/1/S queueing system with controlled service rate: Markov chains for system
state, service process and flow process. (S = 4, S1 = 2.)
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3.2. Calculation of the flow time

we can calculate the cumulative distribution function of the total flow time with

FΦ(τ) = 1−
∑
i

ϕi(τ) σΦ
i

= 1−
(
ϕ〈1/0〉(τ) π〈0〉(0) + ϕ〈2/1〉(τ) π〈1〉(0)+

ϕ〈3/2〉(τ) π〈2〉(0) + ϕ〈4/3〉(τ) π〈3〉(0)
)
/
(
1− π〈4〉(0)

) (3.37)

We could also express the flow time as a weighted sum of hypoexponential random
variables. However, since we have to consider all possible paths from the starting states
to the absorbing states, this approach is not suitable here:

Φ ∼ σΦ
〈1/0〉

µ1

λ+ µ1

Exp (µ1) +

σΦ
〈1/0〉

λ

λ+ µ1

µ1

λ+ µ1

HypoExp (λ, µ1) +

σΦ
〈1/0〉

λ

λ+ µ1

λ

λ+ µ1

µ2

λ+ µ2

HypoExp (λ, λ, µ2) +

σΦ
〈1/0〉

λ

λ+ µ1

λ

λ+ µ1

λ

λ+ µ2

HypoExp (λ, λ, λ, µ2) +

σΦ
〈2/1〉

µ1

λ+ µ1

µ1

λ+ µ1

HypoExp (µ1, µ1) +

σΦ
〈2/1〉

µ1

λ+ µ1

λ

λ+ µ1

µ1

λ+ µ1

HypoExp (µ1, λ, µ1) +

. . .

(3.38)

Figure 3.11 shows the flow time depending on the system state at the moment when
the test customer arrives.

The impact of following customers on the flow time of the test customer can be seen in
Figure 3.12: we consider an M/M/1/S queueing system with controlled service rate in
which the arrival rate changes immediately after the test customer has arrived. If the
arrival rate decreases, the flow time of the test customer increases, and vice versa.
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3. Modelling of queueing systems with Markov chains

Figure 3.11.: M/M/1/S queueing system with controlled service rate: flow time depending on the
system state when the test customer arrives (dashed lines), total flow time (solid
line). S = 3, λ = 0.8, µ1 = 1, µ2 = 2.

Figure 3.12.: M/M/1/S queueing system with controlled service rate: impact of following cus-
tomers on the flow time Φ of the test customer. The arrival rate is λ = 0.8
until the test customer arrives. Then it changes to λ∗. The service rates are
µ1 = 1, µ2 = 2. S = 3.
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3.3. Calculation of the time until a certain state is
reached

A problem similar to the calculation of the flow time through a queueing system is that
we know the queueing system is in state j now and we want to know how long it will
take until it is, for the first time, in some state h ∈ H, or until, for the first time, a certain
event takes place.

This time can be calculated as follows: If we are interested in the time until a state of the
setH is reached, we remove all transitions originating in a state h ∈ H, that is, we make
the states inH absorbing. If we are interested in the first occurrence of an event, we add
a new state 〈R〉 – which will constitute the set H – to the Markov chain for the system
state and redirect all transitions that correspond to the event under consideration to
this new state.

Then we calculate the complementary cumulative distribution function ϕi(·) of the time
that the Markov chain needs to go from state i to a state in H with

ϕi(0) =

{
1 i /∈ H
0 i ∈ H

(3.39)

ϕ′(τ) = Q · ϕ(τ) (3.40)

The time T we are looking for is

P (T > t) = ϕj(t) (3.41)

The expected value of T is

E(T ) =

∞∫
t=0

ϕj(t) dt (3.42)

3.3.1. M/M/1/S queueing system

We are interested in how long an M/M/1/S queueing system (S = 3, arrival rate λ,
service rate µ), which is empty at time t = 0, is able to serve all arriving customers.
That is, we want to know how long it takes until, for the first time, an arriving customer
is blocked because the system is full.

Figure 3.13.: M/M/1/S queueing system: Markov chain for the system state, extended by the
state 〈R〉, which is taken, when for the first time a customer is rejected.
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The needed Markov chain is shown in Figure 3.13. It is the Markov chain for the system
state of the M/M/1/S queueing system, extended by the state 〈R〉. This state is taken
when the system is full and a customer arrives.

Now we set

ϕi(0) =

{
1 i ∈ {1, 2, 3, 4}
0 i = 5

(3.43)

and calculate

ϕ′(τ) = Q · ϕ(τ) (3.44)

We start with an empty system (state 1), so the solution is

P {no rejection until time t} = ϕ1(t) (3.45)

The expected time E(T ) to the first rejection is

E(T ) =

∞∫
t=0

ϕ1(t) dt (3.46)

Some results are shown in Figure 3.14.

Figure 3.14.: M/M/1/S queueing system: probability that at the first rejection of an arriving cus-
tomer takes place after time t. S = 5, µ = 1.
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3.4. Modelling general processes

In Markov chains the time between two consecutive transitions (that is, the sojourn
time in a state) is exponentially distributed. Hence, in Markov chains only such pro-
cesses can be modelled directly, in which the interevent times are likewise exponentially
distributed (so-called Poisson processes).

Nevertheless, the interevent times of general processes can often be approximated by
phase-type distributions. Phase-type distributions are probability distributions that orig-
inate from a combination of several exponential distributions and therefore can be gen-
erated in a Markov chain.

The approximation of the actual interevent times can be done with arbitrary accuracy.
However, in general a better approximation requires more exponential distributions,
which increases the size of the resulting Markov chains.

In this section, some important phase-type distributions are presented. Moreover, we
show algorithms with which the parameters of phase-type distributions can be deter-
mined so that they can be used to approximate a given distribution.

3.4.1. Hypoexponential distribution

Let X1, . . . , Xk, be independent exponential random variables with respective rates
µ1, . . . , µk. The random variable

Y =
k∑
j=1

Xj (3.47)

is said to be a hypoexponential random variable with parameters µ1, . . . , µk,

Y ∼ HypoExp(µ1, . . . , µk) (3.48)

Figure 3.15.: Hypoexponential distribution (3 stages).

Hypoexponential random variables arise when a customer passes through several stages
with exponentially distributed sojourn times, as shown in Figure 3.15. The flow time
through such a network has a hypoexponential distribution.

A hypoexponential random variable X with parameters µ1, . . . , µk (where we assume
that µi 6= µj for i 6= j) has the probability density function

fX(t) =
k∑
i=1

(
k∏

j=1,j 6=i

µj
µj − µi

)
µi e−µit, t ≥ 0 (3.49)
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and the cumulative distribution function

FX(t) =
k∑
i=1

(
k∏

j=1,j 6=i

µj
µj − µi

)(
1− e−µit

)
, t ≥ 0 (3.50)

Mean and variance are

E(X) =
k∑
i=1

1

µi
(3.51)

Var(X) =
k∑
i=1

1

µ2
i

(3.52)

The coefficient of variation of hypoexponential random variables is ≤ 1:

cX =

√
Var(X)

E(X)
=

√√√√√√√√
k∑
i=1

1
µ2
i

k∑
i=1

1
µ2
i

+ 2
∑
i<j

1
µiµj

≤ 1 (3.53)

Figure 3.16 shows the probability density function of two hypoexponential distributions.

Figure 3.16.: Probability density functions of two hypoexponential random variables. (a) µ1 =
1.12, µ2 = 9.41 (cX = 0.9), (b) µ1 = µ2 = µ3 = µ4 = 4 (cX = 0.5). Dashed
lines: exponential random variable. All three random variables have mean 1.
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Erlang distribution

An important special case of the hypoexponential distribution is the Erlang distribution.
An Erlang distribution is a hypoexponential distribution with µ1 = µ2 = · · · = µk.

An Erlang random variable has the probability density function

fX(t) =
µk1

(k − 1)!
tk−1 e−µ1 t, t ≥ 0 (3.54)

and the cumulative distribution function

FX(t) = 1− e−µ1 t

k−1∑
j=0

(µ1 t)
j

j!
, t ≥ 0 (3.55)

Mean and variance are

E(X) =
k

µ1

(3.56)

Var(X) =
k

µ2
1

(3.57)

The coefficient of variation is

cX =
1√
k
≤ 1 (3.58)

As shown in Figure 3.17, with a growing number of stages the Erlang distribution ap-
proaches a normal distribution, whereby the coefficient of variation becomes smaller
and smaller. Hence, Erlang distributions with a large number of stages can be used as
an approximation of deterministic distributions. However, because of the huge number
of required stages this should be done only in special cases.

Modelling hypoexponentially distributed transition times in Markov chains

Assume we have a system with states A, B and C (Figure 3.18a). The system spends
an exponentially distributed time (parameter λ) in state A. Then it goes to state B, in
which it spends a hypoexponentially distributed time (parameters µ1, µ2, µ3), before it
goes to state C. We model such a situation by thinking of state B as a network as shown
in Figure 3.15. That is, we represent state B by three Markov chain states 〈B/1〉, 〈B/2〉
and 〈B/3〉 (Figure 3.18b). The transition of the system into state B corresponds to the
transition by which the network is entered. The transition of the system out of state B
corresponds to the transition by which the network is left.

In Figure 3.19, it is shown how the system state of a GI/M/1/S queueing system with
hypoexponentially distributed interarrival times (a Hypo/M/1/S queueing system) is
modelled.

A state of the Markov chain is defined by the number of customers in the queueing
system and the current stage of the arrival process. Before an arrival really takes place,
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3. Modelling of queueing systems with Markov chains

Figure 3.17.: Probability density functions of some Erlang random variables. (a) 10 stages,
µ1 = 10 (cX = 0.32), (b) 20 stages, µ1 = 20 (cX = 0.22), (c) 50 stages, µ1 = 50
(cX = 0.14), (d) 100 stages, µ1 = 100 (cX = 0.1). All four random variables have
mean 1.

(a)

(b)

Figure 3.18.: Modelling a hypoexponentially distributed transition time in a Markov chain.
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(a)

(b)

Figure 3.19.: Modelling the system state of a Hypo/M/1/S queueing system. (a) State transi-
tion diagram, (b) Markov chain. Meaning of the names of the states: number of
customers in the system / state of the hypoexponential distribution of the arrival
process.
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3. Modelling of queueing systems with Markov chains

several states of the Markov chain (namely those that represent the stages of the hy-
poexponential distribution) have to be passed. Services take place in one step and can
occur – independent of the arrival process – always when there is a customer in the
system.

A state of the queueing system is represented by several states of the Markov chain. For
example, the state Idle of the queueing system is represented by the states 〈0/1〉, 〈0/2〉
and 〈0/3〉 of the Markov chain. To calculate the probability of a state of the queue-
ing system, the state probabilities of all associated states of the Markov chain must be
added.

For example, we have for the probability pidle that the system is idle

pidle =
3∑
p=1

π〈0/p〉 (3.59)

and for the number of customers in the system X

E(X) =
3∑

n=0

3∑
p=1

nπ〈n/p〉 (3.60)

Figure 3.20 shows the Markov chain for the system state of an M/G/1/S queueing sys-
tem with hypoexponentially distributed service times (an M/Hypo/1/S queueing sys-
tem).

Figure 3.20.: Markov chain for the system state of an M/Hypo/1/S queueing system. Meaning
of the names of the states: number of customers in the system / state of the
hypoexponential distribution of the service process.

54



3.4. Modelling general processes

3.4.2. Hyperexponential distribution

Let X1, . . . , Xk be independent exponential random variables with respective rates
µ1, . . . , µk, and let D be a discrete random variable with P {D = d} = αd, where∑k

d=1 αd = 1 holds. The random variable

Y = XD (3.61)

is said to be a hyperexponential random variable with parameters µ1, α1, . . . , µk, αk,

Y ∼ HyperExp(µ1, α1, . . . , µk, αk) (3.62)

Figure 3.21.: Hyperexponential distribution (3 stages).

Hyperexponential random variables arise when a customer passes through a randomly
chosen stage of a group of in parallel switched stages with exponentially distributed
sojourn times, as shown in Figure 3.21. The flow time through such a network has a
hyperexponential distribution.

A hyperexponential random variable with the parameters µ1, α1, . . . , µk, αk has the prob-
ability density function

fX(t) =
k∑
j=1

αj µj e
−µjt, t ≥ 0 (3.63)

and the cumulative distribution function

FX(t) =
k∑
j=1

αj
(
1− e−µjt

)
, t ≥ 0 (3.64)
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3. Modelling of queueing systems with Markov chains

Mean and variance are

E(X) =
k∑
j=1

αj
µj

(3.65)

Var(X) = 2
k∑
j=1

αj
µ2
j

− E(X)2 (3.66)

The coefficient of variation of hyperexponential distributions is ≥ 1:

cX =

√√√√2
1

E(X)2

k∑
j=1

αj
µ2
j

− 1 ≥ 1 (3.67)

In Figure 3.22, the probability density function of two hyperexponential random vari-
ables is shown.

Figure 3.22.: Probability density functions of two hyperexponential random variables. (a) µ1 =
0.38, µ2 = 1.62, α1 = 0.19, α2 = 0.81 (cX = 1.5). (b) µ1 = 0.01, µ2 = 1.99,
α1 = 0.005, α2 = 0.995 (cX = 10). Dashed line: exponential random variable.
All three random variables have mean 1.

Modelling hyperexponentially distributed transition times in Markov chains

Assume we have a system with states A, B and C (Figure 3.23a). The system spends
an exponentially distributed time (parameter λ) in state A. Then it goes to state B, in
which it spends a hyperexponentially distributed time (parameters µ1, α1, µ2, α2, µ3, α3),
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3.4. Modelling general processes

(a)

(b)

Figure 3.23.: Modelling a hyperexponentially distributed transition time in a Markov chain.

before it goes to state C. We model such a situation by thinking of state B as a network
as shown in Figure 3.21. That is, we represent state B by three Markov chain states
〈B/1〉, 〈B/2〉 and 〈B/3〉 (Figure 3.23b). The transition of the system into state B corre-
sponds to the transitions by which the network is entered. The transition of the system
out of state B corresponds to the transitions by which the network is left.

Figure 3.24 shows how the system state of a GI/M/1/S queueing system with hyper-
exponentially distributed interarrival times (a Hyper/M/1/S queueing system) is mod-
elled.

Figure 3.24.: Markov chain for the system state of a Hyper/M/1/S queueing system. Meaning
of the names of the states: number of customers in the system / state of the
hyperexponential distribution of the arrival process.
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3. Modelling of queueing systems with Markov chains

A state of the Markov chain is defined by the number of customers in the queueing
system and the current stage of the arrival process. Arrivals take place at different
rates, depending on the stage of the arrival process. After each arrival, the rate for the
next arrival is chosen. Services take place in one step and can occur – independent of
the arrival process – always when there is a customer in the system.

A state of the queueing system is represented by several states of the Markov chain.
For example, the state Idle of the queueing system is represented by the states 〈0/1〉 and
〈0/2〉 of the Markov chain. To calculate the probability of a state of the queueing system,
the state probabilities of all associated states of the Markov chain must be added.

For example, we have for the probability pidle that the system is idle

pidle = π〈0/1〉 + π〈0/2〉 (3.68)

and for the number of customers in the system X

E(X) =
3∑

n=0

n
(
π〈n/1〉 + π〈n/2〉

)
(3.69)

Figure 3.25 shows the Markov chain for the system state of an M/G/1/S queueing
system with hyperexponentially distributed service times (an M/Hyper/1/S queueing
system).

Figure 3.25.: Markov chain for the system state of an M/Hyper/1/S queueing system. Meaning
of the names of the states: number of customers in the system / state of the
hyperexponential distribution of the service process.
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3.4. Modelling general processes

3.4.3. Coxian distribution

Let X1, . . . , Xk be independent exponential random variables with respective rates
µ1, . . . , µk, and let D be a discrete random variable with P {D = d} = Pd, where∑k

d=1 Pd = 1 holds. The random variable

Y =
D∑
j=1

Xj (3.70)

is said to be a Coxian random variable with parameters µ1, α1, . . . , µk−1, αk−1, µk,

Y ∼ Cox(µ1, α1, . . . , µk−1, αk−1, µk) (3.71)

where

Pd = (1− αd)
d−1∑
i=1

αi (3.72)

Coxian random variables arise when a customer passes through a sequence of stages
with exponentially distributed sojourn times, whereby after each stage i it enters the
next stage with probability αi or leaves the network (with probability 1− αi). The flow
time through such a network has a Coxian distribution.

Figure 3.26.: Coxian distribution (3 stages).

For a 2-stage Coxian distribution we have

E(X) =
1

µ1

+
α1

µ2

(3.73)

c2
X = 1− 2α1µ1 (µ2 − µ1(1− α1))

(µ2 + α1µ1)2
(3.74)

With Coxian distributions, many probability distributions can be approximated. Figure
3.27 shows two examples.

In general, Markov modelling is done best with Coxian distributions. The reason is that
with the same structure of the Markov chain it is possible to model interevent times
with coefficients of variation smaller than, equal to, and greater than 1. If hypoexpo-
nential, hyperexponential, and exponential distributions are used for modelling, one
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3. Modelling of queueing systems with Markov chains

Figure 3.27.: Probability density functions of two Coxian random variables. (a) µ1 = 1.99,
µ2 = 19.9, µ3 = 0.199, α1 = 0.9, α2 = 0.1. (b) µ1 = 61, µ2 = 1.22, µ3 = 1.22,
α1 = 0.8, α2 = 0.5. Dashed line: exponential random variable. All three random
variables have mean 1.

needs several different Markov chains to cover all possible combinations of coefficients
of variation.4

Because a Coxian distribution can also be an exponential distribution,5 it is often possi-
ble to test the correctness of Markov chains containing Coxian distributions: We set the
parameters of the Coxian distribution to values that result in an exponential distribution
and compare the achieved results with those of a model where the same distribution
is assumed to be exponential (e.g., we could test the Markov chain for a Cox/M/1/S
queueing system by comparing it to an M/M/1/S queueing system). For such queueing
systems, the Markov chains are easier, and sometimes even closed-form solutions exist.
With hypoexponential and hyperexponential distributions this procedure is not possible
– these distributions always have a coefficient of variation that is strictly greater and
smaller than 1, respectively.

Further information on the Coxian distribution can be found in [Augustin 1982].

4If we want to model a GI/G/1/S queueing system with arbitrary coefficients of variation for both arrival
and service process, we would need |{Hypo,M,Hyper} × {Hypo,M,Hyper}| = 9 different Markov
chains.

5This can be achieved by setting µk = r and µi = µk/(1−αi), i = 1 . . . k− 1, where r is the desired rate
of the exponential distribution and k is the number of stages of the Coxian distribution.
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3.4. Modelling general processes

Coxian* distribution

Let X1, . . . , Xk be independent exponential random variables with respective rates
µ1, . . . , µk, and let D be a discrete random variable with P {D = d} = Pd, where∑k

d=0 Pd = 1 holds. We will call the random variable

Y =
D∑
j=0

Xj (3.75)

a Coxian* random variable with parameters p, µ1, α1, . . . , µk−1, αk−1, µk,

Y ∼ Cox*(p, µ1, α1, . . . , µk−1, αk−1, µk) (3.76)

where

P0 = 1− p (3.77)

Pd = p(1− αd)
d−1∑
i=1

αi d = 1 . . . k (3.78)

Coxian* random variables arise when a customer traverses through a network shown
in Figure 3.26 with probability p and bypasses the network with probability 1 − p. The
flow time through such a network (Figure 3.28) has a Coxian* distribution.

Figure 3.28.: Coxian distribution with bypass (3 stages).

Coxian* random variables equal 0 with a positive probability. This means that if they
are used to describe interevent times, batches of events can occur.

It is possible to use Coxian* distributions with Markov modelling, but since we have
to take batches of events into account, the resulting Markov chains are much more
complex than if we use, for example, a normal Coxian distribution (see Figures 3.32
and 3.33).

Although in this work we do not consider arrival streams or service processes where
batches of events can occur, we describe how some of the techniques that we present
can be used in combination with Coxian* distributions. The reason is that one of the
most important algorithms to find a phase type distribution with given moments (see
Section 3.4.4) is based on this distribution.
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3. Modelling of queueing systems with Markov chains

(a)

(b)

Figure 3.29.: Modelling a Coxian distributed transition time in a Markov chain.

Modelling Coxian distributed transition times in Markov chains

Assume we have a system with states A, B and C (Figure 3.18a). The system spends
an exponentially distributed time (parameter λ) in state A. Then it goes to state B, in
which it spends a Coxian distributed time (parameters µ1, α1, µ2, α2, µ3), before it goes
to state C. We model such a situation by thinking of state B as a network as shown in
Figure 3.26. That is, we represent state B by three Markov chain states 〈B/1〉, 〈B/2〉
and 〈B/3〉 (Figure 3.29b). The transition of the system into state B corresponds to the
transition by which the network is entered. The transition of the system out of state B
corresponds to the transitions by which the network is left.

Figure 3.30 shows how the system state of a GI/M/1/S queueing system with Coxian
distributed interarrival times (a Cox/M/1/S queueing system) is modelled.

Figure 3.30.: Markov chain for the system state of a Cox/M/1/S queueing system. Meaning of
the names of the states: number of customers in the system / state of the Coxian
distribution of the arrival process.
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A state of the Markov chain is defined by the number of customers in the queueing
system and the current stage of the arrival process. Before an arrival really takes place,
one or more states of the Markov chain have to be passed. Services take place in one step
and can occur – independent of the arrival process – always when there is a customer
in the system.

A state of the queueing system is represented by several states of the Markov chain. For
example, the state Idle of the queueing system is represented by the states 〈0/1〉, 〈0/2〉
and 〈0/3〉 of the Markov chain. To calculate the probability of a state of the queue-
ing system, the state probabilities of all associated states of the Markov chain must be
added.

For example, we have for the probability pidle that the system is idle

pidle =
3∑
p=1

π〈0/p〉 (3.79)

and for the number of customers in the system X

E(X) =
3∑

n=0

3∑
p=1

nπ〈n/p〉 (3.80)

Figure 3.31 shows the Markov chain for the system state of an M/G/1/S queueing
system with Coxian distributed service times (an M/Cox/1/S queueing system).

Figure 3.31.: Markov chain for the system state of an M/Cox/1/S queueing system. Meaning of
the names of the states: number of customers in the system / state of the Coxian
distribution of the service process.
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3. Modelling of queueing systems with Markov chains

Figure 3.32.: Markov chain for the system state of a Cox*/M/1/S queueing system. Meaning of
the names of the states: number of customers in the system / state of the Coxian*
distribution of the arrival process. ηn = (1− p)n−1p is the probability that a batch
of n customers arrives. ηn+ = (1 − p)n−1 is the probability that a batch of n or
more customers arrives. The transitions represented by dashed lines are needed
to take batch arrivals into account.
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Figure 3.33.: Markov chain for the system state of an M/Cox*/1/S queueing system. Meaning of
the names of the states: number of customers in the system / state of the Coxian*
distribution of the service process. ηn = (1−p)n−1p is the probability that a batch
of n customers is served. ηn+ = (1 − p)n−1 is the probability that a batch of n
or more customers is served. The transitions represented by dashed lines are
needed to take batch services into account.
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3.4.4. Approximation of a given distribution by a phase-type
distribution

To approximate a given general probability distribution, usually a phase-type distri-
bution whose first moments match those of the given distribution is used. For many
applications, it is sufficient to consider only the first two moments (mean and vari-
ance). In this case, a suitable phase-type distribution can be found easily. However, for
some applications two moments are not sufficient. To achieve a match in more than
two moments, complex phase-type distributions (e.g., multistage Coxian distributions)
are needed. Determining the parameters of such distributions is often very difficult.

Another approach to approximate a given probability distribution is to find a phase-type
distribution whose cumulative distribution function has a curve shape which is similar
to that of the given distribution. Whether it is better to match the moments or the curve
shape depends on the application.

In the following, we present some important approximation algorithms. Unless oth-
erwise mentioned, we use r and c to denote the rate and the coefficient of variation,
respectively, of the given distribution.

Two moments, hypoexponential + hyperexponential distribution

The easiest method is to approximate a given distribution by finding a phase-type distri-
bution that matches the first two moments. If the coefficient of variation is greater than
1, we choose a hyperexponential distribution, if the coefficient of variation is smaller
than 1, we choose a hypoexponential distribution.

The hyperexponential distribution has two stages and its parameters are calculated from
Equations 3.65 and 3.66 as follows:

α1 =
1

2

(
1−

√
c2 − 1

c2 + 1

)
(3.81)

α2 = 1− α1 (3.82)
µ1 = 2α1r (3.83)
µ2 = 2α2r (3.84)

If 1/
√

2 ≤ c < 1, we use a 2-stage hypoexponential distribution whose parameters are
calculated from Equations 3.51 and 3.52:

µ2 =
r
(
1 +
√

2c2 − 1
)

1− c2
(3.85)

µ1 =
µ2r

µ2 − r
(3.86)

If c < 1/
√

2, we need three or more stages whose rates cannot be determined so easily.
In this case, the hypoexponential distribution can be constructed as follows:

The coefficient of variation of an n-stage Erlang distribution – which has the lowest
variability among all hypoexponential distributions with the same number of stages –
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Figure 3.34.: Hypoexponential distribution as a sum of an Erlang and an exponential distribu-
tion.

is 1/
√
n. That means we can achieve the given coefficient of variation by setting the

number k of used stages to

k =

⌈
1

c2

⌉
(3.87)

Now we use a combination of a k − 1-stage Erlang distribution A and an exponential
distribution B as shown in Figure 3.34. The Erlang distribution produces a coefficient
of variation of cA = 1/

√
k − 1 > c, and we determine the rate of the exponential distri-

bution so that the total coefficient of variation is decreased to c.

The procedure consists of two steps. In the first step, we find a hypoexponential dis-
tribution (consisting of the Erlang distribution A∗ with mean 1 and the exponential
distribution B∗) that has coefficient of variation c but a rate that may differ from r. In
the second step, we adjust the rates of the stages of the hypoexponential distribution
so that its rate becomes r. This approach is possible since changing the rates of the
stages of a hypoexponential distribution while keeping the ratio of the rates fixed does
not change the coefficient of variation.

Mean and variance of the Erlang distribution A∗ are

E(A∗) = 1 (3.88)

Var(A∗) = (cA E(A∗))2 = c2
A =

1

k − 1
(3.89)

Now we have

c =

√
Var(A∗) + Var(B∗)
E(A∗) + E(B∗)

=

√
Var(A∗) + (E(B∗))2

1 + E(B∗)
(3.90)

From this we can calculate E(B∗) with

E(B∗) =
c2 ±

√
Var(A∗)(c2 − 1) + c2

1− c2
=
c2 ±

√
c2k−1
k−1

1− c2
(3.91)

Unless c2k− 1 = 0, in which case we need a pure Erlang distribution for the approxima-
tion (c = 1/

√
k ⇒ c2k = 1), we get two results for E(B∗).
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In principle both results can be used, but if E(B∗) is very small or very large this results
in extremely unbalanced rates which can lead to numerical instabilities.6 Therefore, we
should use E(B∗)(1) if

∣∣log E(B∗)(1)
∣∣ ≤ ∣∣log E(B∗)(2)

∣∣ and E(B∗)(2) otherwise.

We adjust the total rate of the hypoexponential distribution:

1

r
= E(A) (1 + E(B∗)) (3.92)

E(A) =
1

r((1 + E(B∗))
(3.93)

E(B) = E(A) E(B∗) (3.94)

The rates of the stages of the hypoexponential distribution are

µ1, . . . , µk−1 =
k − 1

E(A)
(3.95)

µk =
1

E(B)
(3.96)

Another method is to use a combination of two Erlang distributions A and B with a
similar number of stages (kA and kB, respectively), as shown in Figure 3.35

Figure 3.35.: Hypoexponential distribution as a sum of two Erlang distributions.

The number of stages for the distributions is

k =

⌈
1

c2

⌉
(3.97)

kA =

⌈
k

2

⌉
(3.98)

kB = k − kA (3.99)

We set the mean of distribution A∗ to 1 and calculate which mean distribution B∗ must
have to achieve the requested coefficient of variation c:

6An example: When r = 1 and c = 0.499 we have E(B∗)(1) = 0.00201 and E(B∗)(2) = 0.661.
If we use E(B∗)(1), the resulting rates are µ = (4.01, 4.01, 4.01, 4.01, 498), otherwise we have
µ = (6.64, 6.64, 6.64, 6.64, 2.51). Such extreme cases occur when c is only slightly below the coef-
ficient of variation of a pure Erlang distribution.
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c =

√
Var(A∗) + Var(B∗)
E(A∗) + E(B∗)

=

√
1
kA

+ (E(B∗))2
kB

1 + E(B∗)
(3.100)

E(B∗) =
kAkBc

2 ±
√
kAkB(c2(kA + kB)− 1)

kA(1− c2kB)
(3.101)

Again, in most cases there are two solutions, both of which can be used and – in contrast
to the previously shown method – lead to acceptable results.7

Adjusting the total rate of the hypoexponential distribution:

E(A) =
1

r((1 + E(B∗))
(3.102)

E(B) = E(A) E(B∗) (3.103)

The rates of the stages of the hypoexponential distribution are

µA =
kA

E(A)
(3.104)

µB =
kB

E(B)
(3.105)

Sauer/Chandy: two moments, hyperexponential + generalised Erlang distribution

In [Sauer 1975], C. H. Sauer and K. M. Chandy use a generalised Erlang distribution if
c < 1 and a two-branch hyperexponential distributions if c > 1.

Figure 3.36.: Generalised Erlang distribution.

The generalised Erlang (GE) distribution is a modification of a standard Erlang distri-
bution with k stages where a customer, after passing through the first stage, leaves the
system with probability p, or continues through the remaining k − 1 stages with proba-
bility 1 − p (see Figure 3.36). By varying p between 1 to 0, the coefficient of variation
can be set to a value in the range from 1 to 1/

√
k.

7When r = 1 and c = 0.499 we have E(B∗)(1) = 0.187 and E(B∗)(2) = 1.797. If we use E(B∗)(1), the
resulting rates are µ = (3.56, 3.56, 3.56, 12.7, 12.7), otherwise we have µ = (8.39, 8.39, 8.39, 3.11, 3.11).
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The parameters are calculated as follows:

k =

⌈
1

c2

⌉
(3.106)

p =
2kc2 + k − 2−

√
k2 + 4− 4kc2

2(c2 + 1)(k − 1)
(3.107)

µ = r(k − p(k − 1)) (3.108)

The parameters of the hyperexponential distribution are calculated with

α1 =
c2 + 1−

√
c4 − 1

2(c2 + 1)
(3.109)

α2 = 1− α1 (3.110)
λ1 = 2rα1 (3.111)
λ2 = 2rα2 (3.112)

Figures 3.37 and 3.38 show the Markov chains for the system state of a GE/M/1/S
queueing system and an M/GE/1/S queueing system.

Figure 3.37.: Markov chain for the system state of a GE/M/1/S queueing system. Meaning of
the names of the states: number of customers in the system / state of the GE
distribution of the arrival process.
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Figure 3.38.: Markov chain for the system state of an M/GE/1/S queueing system. Meaning of
the names of the states: number of customers in the system / state of the GE
distribution of the service process.

Marie: two moments, 2-stage Coxian distribution

Marie [Marie 1980] uses a 2-stage Coxian distribution, with which coefficients of vari-
ation ≥ 1/

√
2 can be achieved.

The parameters of the Coxian distribution are calculated as follows:

µ1 = 2r (3.113)

µ2 =
r

c2
(3.114)

α1 =
1

2c2
(3.115)

For coefficients of variation smaller than 1/
√

2 he also suggests using a generalised
Erlang distribution.

Osogami/Marchol-Balter: three moments, EC distribution

T. Osogami and M. Harchol-Balter present in [Osogami 2005] an algorithm that cal-
culates the parameters of a so-called “EC distribution” (a combination of an Erlang
distribution Y and a 2-stage Coxian distribution X, see Figure 3.39), which matches 3
moments of a given distribution.

The algorithm is fast, finds a solution with a nearly minimal number of phases, and
works for almost all non-negative input distributions. A big disadvantage is that the EC
distribution is in fact a Coxian* distribution, which is not very suitable for the use in
Markov chains.
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Figure 3.39.: EC distribution.

Figure 3.40.: Classification of distributions.

The parameters of the EC distribution are calculated as follows:

First it is determined to which of the following sets the distribution G that we want to
approximate belongs (Figure 3.40):

U1 =
{
F : mF

2 > 2 and mF
3 > 2mF

2 − 1
}

(3.116)

U2 =
{
F : 1 < mF

2 ≤ 2 and mF
3 > 2mF

2 − 1
}

(3.117)

M1 =
{
F : mF

2 ≥ 2 and mF
3 = 2mF

2 − 1
}

(3.118)

M2 =
{
F : 1 < mF

2 < 2 and mF
3 = 2mF

2 − 1
}

(3.119)

L =
{
F : mF

2 > 1 and mF
2 < mF

3 < 2mF
2 − 1

}
(3.120)

mF
2 and mF

3 refer to the second and third normalised moments of the random variable
F , which are defined as

mF
2 =

E(F 2)

(E(F ))2
= c2

F + 1 (3.121)

mF
3 =

E(F 3)

E(F ) E(F 2)
= γF

√
mF

2 (3.122)

(γF is the skewness of F .)
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Depending on to which set G belongs, we need different structures of the EC distribu-
tion.

(i) If G ∈ U1 ∪M1, then a 2-stage Coxian distribution suffices to match the first three
moments of G. Let Z be the EC distribution, then we have

Z = X (3.123)
⇒ p = 1, n = 2 (3.124)

The parameters of the Coxian distribution are calculated as follows:

µX1 =
u+
√
u2 − 4v

2 E(G)
(3.125)

µX2 =
u−
√
u2 − 4v

2 E(G)
(3.126)

pX =
µX2 E(G)(µX1 E(G)− 1)

µX1 E(G)
(3.127)

where

u =
6− 2mG

3

3mG
2 − 2mG

3

(3.128)

v =
12− 6mG

2

mG
2 (3mG

2 − 2mG
3 )

(3.129)

(ii) If G ∈ U2 ∪M2, we need an Erlang distribution and a 2-stage Coxian distribution:

p = 1 (3.130)

Z =
n−2∑
k=1

Yk +X (3.131)

The necessary number of stages is

n =

⌊
mG

2

mG
2 − 1

+ 1

⌋
(3.132)

The Coxian distribution has the moments

mX
2 =

(n− 3)mG
2 − (n− 2)

(n− 2)mG
2 − (n− 1)

(3.133)

mX
3 =

γmG
3 − β
mX

2

(3.134)

E(X) =
E(G)

(n− 2)mX
2 − (n− 3)

(3.135)
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where

β = (n− 2)(mX
2 − 1)(n(n− 1)(mX

2 )2 − n(2n− 5)mX
2 + (n− 1)(n− 3)) (3.136)

γ =
(
(n− 1)mX

2 − (n− 2)
) (

(n− 2)mX
2 − (n− 3)

)2
(3.137)

The parameters of the Coxian distributed are calculated according to case (i), whereby
the moments of X (Equations 3.133 - 3.135) are used instead of the moments of G.

(iii) If G ∈ L, we need a probability mass at 0.

Z =

{
W with probability p
0 with probability 1− p

(3.138)

where

p =
1

2mG
2 −mG

3

(3.139)

The moments of the distribution W are

mW
2 = pmG

2 (3.140)

mW
3 = pmG

3 (3.141)

E(W ) =
E(G)

p
(3.142)

Depending on to which distribution set W belongs (Equations 3.116 - 3.120), we need
either a Coxian distribution or a Coxian/Erlang combination for the generation of W : If
W ∈ M1, the parameters of W are calculated according to case (i), otherwise (we then
have W ∈ M2) the parameters are calculated according to case (ii). In both cases, the
moments of W (Equations 3.140 - 3.142) are used instead of the moments of G.

Whitt: three moments, hyperexponential distribution

W. Whitt shows in [Whitt 1982] how the parameters of a 2-stage hyperexponential
distribution can be determined so that the distribution matches 3 given moments.

λ1,2 =
6M1y

(x+ 1.5y2 + 3M1
2y)±

√
(x+ 1.5y2 − 3M1

2y)2 + 18M1
2y3

(3.143)

p1 =
M1 − 1

λ2

1
λ1
− 1

λ2

(3.144)

p2 = 1− p1 (3.145)

where Mi is the ith moment of the given distribution and

x = M1M3 − 1.5M2
2 (3.146)

y = M2 − 2M1
2 (3.147)
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distribution m1 m2 m3 m4 m5

given distribution 1 1.475 1.929 2.375 2.817
exponential 1 2 3 4 5
hypoexponential 1 1.475 2.016 2.604 3.220
generalised Erlang 1 1.475 1.885 2.280 2.669

Table 3.1.: Normalised moments of the given distribution and the distributions used for the ap-
proximation.

If M3 is not sufficiently high, no 2-stage hyperexponential distribution with the given
moments exists. In this case, Whitt suggests that one could use a hyperexponential
distribution with a third moment slightly above 3M2

2/(2M1). (In a 2-stage hyperexpo-
nential distribution, M3M1 ≥ 3/2 ·M2

2 holds.)

Curve fitting algorithms

A. Feldmann and W. Whitt present in [Feldmann 1998] a method with which long-
tail distributions can be approximated by hyperexponential distributions. Y. Sasaki de-
scribes in [Sasaki 2001] how a Coxian distribution can be used to approximate both
short and long-tail distributions.

In [Sommereder 2008], it is shown how an evolutionary algorithm can be used to find a
Coxian distribution that has a similar cumulative distribution function as a given distri-
bution. This algorithm can easily be adapted so that a Coxian distribution with certain
moments (instead of a certain shape of the cumulative distribution function) is found.

Comparison of approximation algorithms

Which approximation method should be used depends strongly on the actual applica-
tion. It is not possible to say that a certain approximation method is superior to the
others in all cases.

In the following, we demonstrate how some of the shown approximation algorithms
perform when used to approximate given distributions that are used as distributions for
the interarrival times of a GI/M/1/S queueing system and as service time distributions
of an M/G/1/S queueing system.

The first distribution8 we want to approximate has a coefficient of variation smaller than
1. We approximate it by

• an exponential distribution, which matches in the first moment,

• a 3-stage hypoexponential distribution, which is constructed as shown on page 68
and matches in the first two moments, and

• a 3-stage generalised Erlang distribution, which matches in the first two moments.

Figure 3.41 shows the probability density function of the given distribution and the
approximations, Table 3.1 shows the higher moments of the distributions.

8It is a Coxian distribution with parameters λ1 = λ2 = 2.235, λ3 = 2.98, α1 = 0.95, α2 = 0.4.
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3. Modelling of queueing systems with Markov chains

Figures 3.42 and 3.43 show the number of customers and the probability that the server
is idle in a GI/M/1/S (M/G/1/S) queueing system when, for the distribution of the in-
terarrival times (service times), the given distribution and the approximation distribu-
tions are used.

Figure 3.41.: Approximation of a given distribution (a) by (b) an exponential distribution, (c) a
hypoexponential distribution and (d) a generalised Erlang distribution. The figure
shows the probability density function of the distributions.
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3.4. Modelling general processes

Figure 3.42.: Number of customers in the system and probability that the server is idle in a
GI/M/1/S queueing system where the interarrival times are distributed according
to (a) the given distribution and (b) the exponential distribution, (c) the hypoex-
ponential distribution and (d) the generalised Erlang distribution that are used to
approximate the given distribution. S = 3, the service rate is µ.
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3. Modelling of queueing systems with Markov chains

Figure 3.43.: Number of customers in the system and probability that the server is idle in an
M/G/1/S queueing system where the service times are distributed according to
(a) the given distribution and (b) the exponential distribution, (c) the hypoexpo-
nential distribution and (d) the generalised Erlang distribution that are used to
approximate the given distribution. S = 3, the arrival rate is λ.
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The second distribution9 we want to approximate has a coefficient of variation greater
than 1. We approximate it by

• an exponential distribution, which matches in the first moment,

• a 2-stage hyperexponential distribution, which is constructed as shown on page
66 and matches in the first two moments,

• a 2-stage hyperexponential distribution, which is constructed according to Whitt’s
formula and matches in the first three moments, and

• an EC-distribution, which matches in the first three moments.

Figure 3.44 shows the probability density function of the given distribution and the
approximations, Table 3.2 shows the higher moments of the distributions.

Figures 3.45 and 3.46 show the number of customers and the probability that the server
is idle in a GI/M/1/S (M/G/1/S) queueing system when, for the distribution of the in-
terarrival times (service times), the given distribution and the approximation distribu-
tions are used.

Figure 3.44.: Approximation of a given distribution (a) by (b) an exponential distribution, (c) a
2-stage hyperexponential distribution (2 moments match), (d) a 2-stage hyperex-
ponential distribution (3 moments match), (e) an EC distribution. The figure shows
the probability density function of the distributions.

9It is a Coxian distribution with parameters λ1 = 70.2247, λ2 = 7.9824, λ3 = 0.4122, α1 = 0.9, α2 = 0.4.
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3. Modelling of queueing systems with Markov chains

distribution m1 m2 m3 m4 m5

given distribution 1 4.51 7.247 9.699 12.13
exponential 1 2 3 4 5
hyperexponential 1 4.51 10.53 15.47 19.63
hyperexponential (Whitt) 1 4.51 7.247 9.697 12.12
EC 1 4.51 7.247 9.82 12.32

Table 3.2.: Normalised moments of the given distribution and the distributions used for the ap-
proximation.

Figure 3.45.: Number of customers and probability that the server is idle in a GI/M/1/S queue-
ing system where the interarrival times are distributed according to (a) the given
distribution and (b) the exponential distribution, (c) the first hyperexponential dis-
tribution (2 moments match), (d) the second hyperexponential distribution (3 mo-
ments match) and (d) the EC distribution that are used to approximate the given
distribution. S = 3, the service rate is µ.
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Figure 3.46.: Number of customers and probability that the server is idle in an M/G/1/S queue-
ing system where the service times are distributed according to (a) the given dis-
tribution and (b) the exponential distribution, (c) the first hyperexponential distribu-
tion (2 moments match), (d) the second hyperexponential distribution (3 moments
match) and (d) the EC distribution that are used to approximate the given distribu-
tion. S = 3, the arrival rate is λ.
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3. Modelling of queueing systems with Markov chains

3.5. Modelling of traffic streams

The counting process N(t) = max {0, j : Tj ≤ t} of a point process (traffic stream)
T = 〈T1, T2, . . . 〉 can be thought of as the number of customers in a queueing system
with an infinite queue and no servers whose arrival stream is the point process under
consideration. Therefore, we can model the state of a counting process of a traffic
stream with phase-type distributed interevent times with the techniques shown in the
previous section.

Figure 3.47a shows the state transition diagram of the counting process of a traffic
stream with Coxian distributed interevent times. By applying the rules shown in Figure
3.29, we obtain the Markov chain MC for the state of the counting process (Figure
3.47b).

(a)

(b)

Figure 3.47.: Counting process of a point process with Coxian distributed interevent times.
Meaning of the names of the states: value of the counting process / state of the
Coxian distribution.

The Markov chains for the state of the counting process of traffic streams with exponen-
tially, hypoexponentially and hyperexponentially distributed interevent times are shown
in Figure 3.48.
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3.5. Modelling of traffic streams

(a) Exponentially distributed interevent times.

(b) Hypoexponentially distributed interevent times.

(c) Hyperexponentially distributed interevent times.

Figure 3.48.: Markov chains for the state of the counting process of traffic streams.
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In Chapters 8 and 9, where we deal with the manipulation of traffic streams, we are
interested only in the state of the point process, and not in the state of the counting
process.

To model the state of the point process, we remove the part that describes the value of
the counting process in the names of the states of the Markov chain for the state of the
counting processMC . If we do this, many states will have the same name. These states
describe the same state of the point process and are therefore combined into one single
state.

Figure 3.49 shows the Markov chains for the state of point processes with exponentially,
hypoexponentially, hyperexponentially and Coxian distributed interevent times.

(a) Exponentially distributed interevent times.

(b) Hypoexponentially distributed interevent times.

(c) Hyperexponentially distributed interevent times.

(d) Coxian distributed interevent times.

Figure 3.49.: Markov chains for the system state of streams. Hidden transitions are painted with
dashed lines. States in which the Markov chain is after an event has taken place
are shaded grey. Transitions annotated with “E” create events.
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In this chapter, we give an overview of some topics related to the content of this work.
In Sections 4.1 to 4.3, we discuss performance evaluation techniques based on Markov
chains: the embedded Markov chain method, the matrix geometric method, and matrix
analytic methods. In Section 4.4, we present the regenerative method, which is not
based on Markov chains, but contains interesting probabilistic arguments, which might
be combined with the techniques shown in this work.

4.1. Embedded Markov chain method

When the service times or the interarrival times of a queueing system are not expo-
nentially (or phase-type) distributed, but have a general distribution, the state of the
system cannot be modelled as a Markov chain any more. The reason is that the further
evolution of the state of the queueing system does not depend only on the current state,
but also on the time that has elapsed since the last arrival or the time when the current
service began.

However, it is often possible to find quantities of the queueing system that do constitute
a Markov chain. By means of this embedded Markov chain, many characteristics of the
underlying queueing system can be determined.

Let us consider an M/G/1 queueing system.1 The interarrival times are independent
and exponentially distributed with rate λ, and the service times are independent and
have a general distribution with cumulative distribution function FS(·) and rate µ.

Assume t0 = 0 < t1 < t2 < . . . denote the times at which services are completed, and
let the sequence 〈Yn〉n≥0 be the number of customers in the queueing system immedi-
ately after the service completions that take place at times tn (Figure 4.1). Then 〈Yn〉
constitutes a discrete-time Markov chain. (Since the interarrival times are exponentially
distributed and independent of the system state, Yj+1 depends only on Yj.)

Let the random variable k be the number of customers that arrive during a service and
let kn be the probability that there are n arrivals during a service period. Then we can
write2

kn = P {k = n} =

∞∫
t=0

P {k = n | S = t} dFS(t) =

∞∫
t=0

e−λt
(λt)n

n!
dFS(t) (4.1)

1cf. [Allen 1978]
2The Stiltjes integral

∫∞
t=0

g(t)dFX(t) is evaluated as
∫∞
t=0

g(t)fX(t) dt or as
∑
i g(ti)pX(ti), depending

upon whether the random variable X with distribution function FX(·) is continuous with probability
density function fX(·) or discrete with probability mass function pX(·).
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Figure 4.1.: Embedded Markov chain method. The sequence of the number of customers in
the system immediately after service completions constitute a discrete-time Markov
chain.

Now we have

Yn+1 =

{
Yn − 1 + k if Yn ≥ 1

k if Yn = 0
(4.2)

and therefore the transition probabilities of the embedded Markov chain are

P =


k0 k1 k2 k3 k4 · · ·
k0 k1 k2 k3 k4 · · ·
0 k0 k1 k2 k3 · · ·
0 0 k0 k1 k2 · · ·
...

...
...

...
... . . .

 (4.3)

It can be shown3 that in an M/G/1 queueing system the steady-state probability that
after a service completion there are n customers in the system equals the steady-state
probability π〈n〉 that there are n customers in the system at an arbitrary moment.

So we have

π〈n〉 = π〈0〉kn +
n+1∑
j=1

π〈j〉kn−j+1 n ≥ 0 (4.4)

3cf. [Gross/Harris 1974] and [Kleinrock 1975]
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To calculate π〈0〉, we first note that

E (k) =
∞∑
n=0

nkn =

∞∫
t=0

e−λt
∞∑
n=0

n(λt)n

n!
dFS(t)

=

∞∫
t=0

e−λt(λt)
∞∑
n=0

(λt)n

n!
dFS(t)

= λ

∞∫
t=0

t dFS(t) = λE (S) =
λ

µ

(4.5)

Now we define the generating functions of 〈π〈n〉〉n≥0 and 〈k0, k1, k2, . . . 〉 by

Π(z) =
∞∑
n=0

π〈n〉z
n (4.6)

and

K(z) =
∞∑
n=0

knz
n (4.7)

Multiplying Equation 4.4 by zn yields

π〈n〉z
n = π〈0〉knz

n +
1

z

n+1∑
j=0

π〈j〉kn−j+1z
n+1 −

π〈0〉kn+1z
n+1

z
i ≥ 0 (4.8)

and
∞∑
n=0

π〈n〉z
n = Π(z) = π〈0〉K(z) +

1

z
(K(z)Π(z)− π0k0)−

π〈0〉
z

(K(z)− k0) (4.9)

So we have

Π(z) =
π〈0〉(1− z)K(z)

K(z)− z
(4.10)

With
∞∑
n=0

π〈n〉 = Π(1) = 1 (4.11)

∞∑
n=0

kn = K(1) = 1 (4.12)

and

K ′(1) = E (k) =
λ

µ
(4.13)
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we get

lim
z→1

Π(z) = lim
z→1

π〈0〉 ((1− z)K ′(z)−K(z))

K ′(z)− 1
=

π〈0〉K(1)

1− λ
µ

=
π〈0〉

1− λ
µ

= Π(1) = 1 (4.14)

or

π〈0〉 = 1− λ

µ
(4.15)

Therefore, the stationary state probabilities of an M/G/1 queueing system are

π〈0〉 = 1− λ

µ
(4.16)

π〈n+1〉 =

(
π〈n〉 − π〈0〉kn +

n∑
j=1

π〈j〉kn−j+1

)
1

k0

n ≥ 0 (4.17)

with

kn =

∞∫
t=0

e−λt
(λt)n

n!
dFS(t) (4.18)
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4.2. Matrix geometric method

The matrix geometric method, which was developed by M. Neuts,4 exploits regularities
in the structure of Markov chains for the calculation of the stationary state probabili-
ties.

To illustrate how it works, we show how to determine the stationary state probabilities
of an M/Hypo/1 queueing system using the matrix geometric method.5

Let us first consider an M/M/1 queueing system. If the system is empty, customers
arrive at rate λ∗, otherwise at rate λ. The service rate is always µ. Figure 4.2 shows the
Markov chain for the system state of this queueing system.

Figure 4.2.: M/M/1 queueing system: Markov chain for the system state. Meaning of the names
of the states: number of customers in the system.

The transition rate matrix of this Markov chain is

Q =


−λ∗ λ∗ 0 0 0 · · ·
µ −(λ+ µ) λ 0 0 · · ·
0 µ −(λ+ µ) λ 0 · · ·
0 0 µ −(λ+ µ) λ · · ·
...

...
...

...
... . . .

 (4.19)

We see that columns 4, 5, . . . have the same structure as column 3, with the only differ-
ence that they are shifted down by j − 3 steps, where j is the number of the column.
We call equations arising from these columns the repeating portion of the process. The
associated states (〈2〉, 〈3〉, . . . ) are called repeating states. The remaining equations are
called the boundary portion of the process, the associated states (〈0〉 and 〈1〉) are called
boundary states.

To calculate the stationary state probabilities π = (π1, π2, . . . ), we need to find a solution
to

π · Q = 0 (4.20)

under the side condition∑
i

πi = 1 (4.21)

4[Neuts 1981], [Neuts 1989]
5This example is taken from [Nelson 1991].
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This is done with the following approach: We assume6 that it is possible to express the
state probability of the repeating states πj as a function of πj−1. This is reasonable,
because the probability of each state depends only on the probabilities of its direct
neighbours. Moreover, we assume that the function has the form

πj = πj−1 · ρ j ≥ 3 (4.22)

with an unknown constant ρ.

Therefore, the state probabilities πj, j ≥ 3 are assumed to have the form

πj = π2 · ρj−2 j ≥ 3 (4.23)

To determine ρ, we combine Equation 4.22 with the balance equation for the repeating
portion of the process,

πj(λ+ µ) = πj−1λ+ πj+1µ j ≥ 3 (4.24)

This leads to

πj−1ρ(λ+ µ) = πj−1λ+ πj−1ρ
2µ (4.25)

and

λ− ρ(λ+ µ) + ρ2µ = 0 (4.26)

The two solutions of this quadratic equation are

ρ1 =
λ

µ
ρ2 = 1 (4.27)

ρ2 would require πj = 0 for all j ≥ 2 to satisfy Equation 4.21, therefore

ρ = ρ1 =
λ

µ
(4.28)

The equations for the boundary portion of the process are

−π1λ
∗ + π2µ = 0 (4.29)

π1λ
∗ − π2(λ+ µ) + π3µ = 0 (4.30)

or in matrix form

(π1, π2)

(
−λ∗ λ∗

µ −µ

)
= 0 (4.31)

6 Of course, we know that this is true because in steady state πj−1λ = πjµ must hold. However, we
“guess” the form of the solution because we will need to do so when we use the matrix geometric
method with the M/Hypo/1 queueing system.
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Together with Equation 4.21, which states that

1 = π1 + π2

∞∑
j=0

ρj = π1 + π2
1

1− ρ
(4.32)

we get the solution

π1 =
µ− λ

µ− λ+ λ∗
(4.33)

π2 =
λ∗(µ− λ

µ(µ− λ+ λ∗)
(4.34)

Finally we have to prove that the assumption in Equation 4.22 is correct. This is done
by showing that the solution (Equations 4.23, 4.33 and 4.34), which must be unique,
satisfies Equations 4.20 and 4.21.

Now we analyse the M/Hypo/1 queueing system.

Figure 4.3.: M/Hypo/1 queueing system: Markov chain for the system state. Meaning of the
names of the states: number of customers in the system / state of the service
process.

Figure 4.3 shows the Markov chain for the system state. The transition rate matrix of
this Markov chain is

Q =



−λ∗ λ∗ 0 0 0 0 0 0 0 · · ·
0 −a1 µ1 λ 0 0 0 0 0 · · ·
µ2 0 −a2 0 λ 0 0 0 0 · · ·
0 0 0 −a1 µ1 λ 0 0 0 · · ·
0 µ2 0 0 −a2 0 λ 0 0 · · ·
0 0 0 0 0 −a1 µ1 λ 0 · · ·
...

...
...

...
...

...
...

...
... . . .


(4.35)

where a1 = λ+ µ1 and a2 = λ+ µ2.
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If we group the elements of Q into blocks,

Q =



−λ∗ λ∗ 0 0 0 0 0 0 0 · · ·
0 −a1 µ1 λ 0 0 0 0 0 · · ·
µ2 0 −a2 0 λ 0 0 0 0 · · ·
0 0 0 −a1 µ1 λ 0 0 0 · · ·
0 µ2 0 0 −a2 0 λ 0 0 · · ·
0 0 0 0 0 −a1 µ1 λ 0 · · ·
0 0 0 µ2 0 0 −a2 0 λ · · ·
...

...
...

...
...

...
...

...
... . . .


(4.36)

and set

L∗ =

 −λ∗ λ∗ 0
0 −a1 µ1

µ2 0 −a2

 F∗ =

 0 0
λ 0
0 λ


B∗ =

(
0 0 0
0 µ2 0

)
L =

(
−a1 µ1

0 −a2

)
F =

(
λ 0
0 λ

)
B =

(
0 0
µ2 0

)
(4.37)

(The letters “L”, “B” and “F” relate to the type of the transitions – “local”, “backward”
and “forward”.)

we get a new matrix

Q =


L∗ F∗ 0 0 0 · · ·
B∗ L F 0 0 · · ·
0 B L F 0 · · ·
0 0 B L F · · ·
...

...
...

...
... . . .

 (4.38)

which has the same structure as the matrix in Equation 4.19. The only difference is that
scalar entries have been replaced with matrix entries. Therefore, we will try to calculate
the stationary state probabilities in the same manner as in the M/M/1 example, except
that we deal with vectors and matrices instead of scalars.

Again we call equations that arise from columns 3, 4, . . . of Q the repeating portion of
the process and equations arising from columns 1 and 2 the boundary portion. States 1,
. . . , 5 are called boundary states, states 6, 7, . . . are are called repeating states.

We assume that it is possible to express the probabilities of repeating states
(
π〈j,1〉, π〈j,2〉

)
as a function of

(
π〈j−1,1〉, π〈j−1,2〉

)
and we assume that the function has the form(

π〈j,1〉, π〈j,2〉
)

=
(
π〈j−1,1〉, π〈j−1,2〉

)
R j ≥ 3 (4.39)

with an unknown constant matrix R.
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Therefore, the state probabilities
(
π〈j,1〉, π〈j,2〉

)
, j ≥ 3 are assumed to have the form(

π〈j,1〉, π〈j,2〉
)

=
(
π〈2,1〉, π〈2,2〉

)
Rj−2 j ≥ 3 (4.40)

To determineR, we combine Equation 4.39 with the balance equation for the repeating
portion of the process,(

π〈j−1,1〉, π〈j−1,2〉
)
F +

(
π〈j,1〉, π〈j,2〉

)
L+

(
π〈j+1,1〉, π〈j+1,2〉

)
B = 0

j ≥ 3 (4.41)

This leads to(
π〈j−1,1〉, π〈j−1,2〉

)
F +

(
π〈j−1,1〉, π〈j−1,2〉

)
RL+(
π〈j−1,1〉, π〈j−1,2〉

)
R2B = 0 j ≥ 3 (4.42)

and

F +RL+R2B = 0 (4.43)

As in the M/M/1 example, there can be more than one solution to this quadratic equa-
tion. We need to find the minimal non-negative solution.

There are a number of algorithms for calculating R. For example, we could set

R(0) =

(
0 0
0 0

)
(4.44)

and repeat the iteration

R(n+1) = −
(
F +R(n)2B

)
L−1 (4.45)

until |R(n+1) −R(n)| becomes sufficiently small.

The equations for the boundary portion of the process are(
π〈0/−〉, π〈1,1〉, π〈1,2〉

)
L∗ +

(
π〈2,1〉, π〈2,2〉

)
B∗ = 0 (4.46)(

π〈0/−〉, π〈1,1〉, π〈1,2〉
)
F∗ +

(
π〈2,1〉, π〈2,2〉

)
L+

(
π〈3,1〉, π〈3,2〉

)
B = 0 (4.47)

or in matrix form((
π〈0/−〉, π〈1,1〉, π〈1,2〉

)
,
(
π〈2,1〉, π〈2,2〉

))(L∗ F∗
B∗ L+RB

)
(4.48)

Together with Equation 4.21, which states that

1 = π〈0/−〉 + π〈1,1〉 + π〈1,2〉 +
(
π〈2,1〉, π〈2,2〉

) ∞∑
j=0

Rj

(
1
1

)
(4.49)

= π〈0/−〉 + π〈1,1〉 + π〈1,2〉 +
(
π〈2,1〉, π〈2,2〉

)
(I −R)−1

(
1
1

)
(4.50)
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we can find a solution for
(
π〈0/−〉, π〈1,1〉, π〈1,2〉

)
and

(
π〈2,1〉, π〈2,2〉

)
.

Finally, we have to prove that the assumption in Equation 4.39 is correct. This is done
by showing that the solution satisfies Equations 4.20 and 4.21.

The matrix geometric method can be used to determine the stationary state probabil-
ities of all quasi-birth-death processes (QBD), such as the state of PH/PH/n queueing
systems. In general, the transition rate matrices of QBD processes have the form

Q =


L∗ F∗ 0 0 0 · · ·
B∗ L F 0 0 · · ·
0 B L F 0 · · ·
0 0 B L F · · ·
...

...
...

...
... . . .

 (4.51)

Moreover, GI/M/1-type Markov chains can be analysed. GI/M/1-type Markov chains
are Markov chains which are a matrix generalisation of the embedded Markov chains of
GI/M/1 queueing systems. These Markov chains have transition rate matrices of lower
block Hessenberg form,

Q =


L∗ F∗ 0 0 0 · · ·
B∗1 L F 0 0 · · ·
B∗2 B1 L F 0 · · ·
B∗3 B2 B1 L F · · ·
...

...
...

...
... . . .

 (4.52)

and the matrix R is a solution to

F +RL+
∞∑
k=1

Rk+1Bk = 0 (4.53)

94



4.3. Matrix analytic methods

4.3. Matrix analytic methods

For M/G/1-type Markov chains (Markov chains which are a matrix generalisation of the
embedded Markov chains of M/G/1 queueing systems), there is no geometric relation
between the probability vectors. Therefore, they cannot be analysed using the matrix
geometric method. Instead, matrix analytic techniques are needed.

As an example for an M/G/1-type Markov chain, let us consider a BMAP/Cox/1 queue-
ing system.7 In this system, the interarrival times are exponentially distributed with rate
2λ, and customers arrive in batches of size n with probability 1/2n. The service times
are Coxian distributed with parameters (µ1, α1, µ2). Figure 4.4 shows the Marov chain
for the system state.

Figure 4.4.: Markov chain for the system state of a BMAP/Cox/1 queueing system.

The transition rate matrix is

Q =



−2λ λ 0 λ/2 0 λ/4 0 · · ·
ν −a1 µ1α1 λ 0 λ/2 0 · · ·
µ2 0 −a2 0 λ 0 λ/2 · · ·
0 ν 0 −a1 µ1α1 λ 0 · · ·
0 µ2 0 0 −a2 0 λ · · ·
0 0 0 ν 0 −a1 µ1α1 · · ·
0 0 0 µ2 0 0 −a2 · · ·
...

...
...

...
...

...
... . . .


(4.54)

with ν = µ1(1− α1), a1 = −2λ− µ1 and a2 = −2λ− µ2.

7A MAP (Markovian Arrival Process) is an arrival process where arrivals are associated with transitions
in an underlying Markov chain. Examples for MAPs are Poisson process, Markov-modulated Poisson
process (MMPP) and the point processes discussed in Section 3.5. A BMAP (Batch Markovian Arrival
Process) is a MAP where customers can arrive in batches.
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If we group the elements of Q into blocks, and substitute

L∗ =
(
−2λ

)
F∗i =

(
λ/2i−1 0

)
(4.55)

B∗ =

(
µ1(1− α1)

µ2

)
(4.56)

L =

(
−2λ− µ1 µ1α1

0 −2λ− µ2

)
Fi =

(
λ/2i−1 0

0 λ/2i−1

)
(4.57)

B =

(
µ1(1− α1) 0

µ2 0

)
(4.58)

we get a matrix in upper block Hessenberg form:

Q =


L∗ F∗1 F∗2 F∗3 · · ·
B∗ L F1 F2 · · ·
0 B L F1 · · ·
0 0 B L · · ·
...

...
...

... . . .

 (4.59)

We will not discuss how a solution can be found, but it should be mentioned that in
general an important step is to calculate an auxiliary matrix G, which is the solution to

B + LG +
∞∑
i=1

FiGi+1 = 0 (4.60)

Further information about matrix analytic methods can be found in [Riska/Smirni 2002]
(which also contains the solution to the BMAP/Cox/1 queueing system) and in
[Lucantoni 1993] and [Neuts 1989].
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4.4. Regenerative method

The regenerative method, introduced in [Hordijk/Tijms 1976], considers regeneration
cycles of the the queueing process. Within a regeneration cycle, quantities, which
are strongly related to the stationary state probabilities, are described in two differ-
ent ways using sophisticated probabilistic arguments. By combining the two resulting
sets of equations, the quantities and thus the stationary state probabilities can be deter-
mined.

We demonstrate the regenerative method by calculating the stationary state probabil-
ities of an M/G/1 queueing system.8 Customers arrive according to a Poisson process
with rate λ, the service times S have a general distribution with rate µ and cumulative
distribution function FS(t).

As a regeneration cycle, we can use a busy cycle consisting of the idle period and the
busy period (Figure 4.5).

Figure 4.5.: Number of customers in an M/G/1 queueing system during a busy cycle.

First, we define the following variables:

T . . . length of the busy cycle. We assume that the busy cycle begins at time 0.

Tn . . . amount of time in [0, T ] that there are n customers in the system. Due to the
Poisson arrivals, the length of the idle period T0 is exponentially distributed with rate λ,
therefore E (T0) = 1/λ.

ξ . . . number of customers served during the busy cycle.

Xj . . . number of services in a busy cycle after which there are n customers in the system.
There is always only one service after which there are no customers in the system (this
is the last service in the busy cycle), therefore X0 = 1.

8cf. [van Hoorn 1983] and [Tijms 1986]
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Our goal is to find two sets of equations that describe the relation between E (Tn) and
E (Xn). By combining these two sets of equations, we can then determine E (Tn) and
E (Xn).

Let state 〈n〉 be the state when there are n customers in the queueing system.

For the first set of relations, we consider transitions between state 〈n〉 and state 〈n+ 1〉.

A transition from state 〈n〉 to state 〈n+ 1〉 occurs at rate λ when there are n customers
in the system, so we have on average λE (Tn) transitions from state 〈n〉 to state 〈n+ 1〉
during a busy cycle.

A transition from state 〈n+ 1〉 to state 〈n〉 takes place when there are n + 1 customers
in the system and a service is finished, after which there are n customers in the system.
The expected number of such services in a busy cycle is E (Xn).

Since both at the beginning and at the end of the busy cycle the queueing system is
empty and we do not have batch arrivals or services, the number of transitions from
state 〈n〉 to state 〈n+ 1〉 must equal the number of transitions from state 〈n+ 1〉 to
state 〈n〉. Therefore, we have

λE (Tn) = E (Xn) n ≥ 0 (4.61)

To derive the second set of equations, we first note that the number of services at whose
beginning there are j ≥ 2 customers in the system equals Xn, the number of services
after whose completion there are j customers in the system. Since at the beginning of
the first service in the busy cycle there is one customer in the system and this service
does not follow another service, the number of services at whose beginning there is one
customer in the system is X1 + 1.

Now assume that there are j customers in the system when a service begins. While this
service is in progress, there will be j or more customers in the system. That is during
the service the system can spend time in states 〈j〉, 〈j + 1〉, 〈j + 2〉, . . .

Let Ajn(j, n ≥ 1) be the amount of time during which there are n customers in the
system until the current service is completed, given that there are j customers in the
system when the current service has begun (Figure 4.6).

For the calculation of Ajn, we define the indicator function χjn(t). Given that at the
beginning of the service under consideration there were j customers in the system,
χjn(t) = 1 if at time t the service is still in progress and there are exactly n customers in
the system. Otherwise, χjn(t) = 0.

P {χjn(t) = 1} = E (χjn(t)) = P {S > t, n− j arrivals until time t} =

P {S > t}P {n− j arrivals until time t} = (1− FS(t)) e−λt
(λt)n−j

(n− j)!
(4.62)

Now we have

Ajn =

∞∫
t=0

E (χjn(t)) dt =

∞∫
t=0

(1− FS(t)) e−λt
(λt)n−j

(n− j)!
dt (4.63)
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(a) (b)

Figure 4.6.: Number of customers in an M/G/1 queueing system during a service. When the
service begins, there are j customers in the system. (a) During the service there
are arrivals, (b) during the service there are no arrivals.

Considering only services starting with j customers in the system, the time Tn is a
compound random variable consisting of Ajn and of the number of services Xj after
which there are j customers in the system.

Therefore, we have

E (Tn) = A1,n +
n∑
j=1

Ajn E (Xj) n ≥ 1 (4.64)

From Equations 4.61 and 4.64 follows the solution

E (T0) =
1

λ
(4.65)

E (X0) = 1 (4.66)

E (Tn) =
A1n +

∑n−1
j=1 Ajn E (Xj)

1− λAnn
n ≥ 1 (4.67)

E (Xn) = λE (Tn) n ≥ 1 (4.68)

It remains to calculate the length of the busy cycle T .

The length of the busy period T − T0 is a compound random variable consisting of
the number of customers served during the busy period and the service time for each
customer. Therefore, we have

E (T )− E (T0) = E (ξ)
1

µ
(4.69)
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Moreover, the number of customers served during a busy cycle equals the number of
customers arriving during the busy cycle,

E (ξ) = E (T ) · λ (4.70)

From these two equations, we can express the length of the idle period as

E (T0) = E (T )

(
1− λ

µ

)
(4.71)

Together with E (T0) = 1/λ we get for the length of the busy cycle

E (T ) =
1

λ
(

1− λ
µ

) (4.72)

Now we can calculate the steady-state probability π〈n〉 that there are n customers in the
queueing system. Since π〈n〉 equals the long-run proportion of time that there are n
customers in the system and since a regeneration cycle has the same statistical charac-
teristics as the whole process, we have

π〈n〉 =
E (Tn)

E (T )
(4.73)
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5. Idle and busy period

In this chapter we show how the idle and the busy period of queueing systems (Figure
5.1) can be analysed using Markov chains.

In Sections 5.1 and 5.2, we calculate the length of the idle and the busy period. In
Section 5.3, we determine the number of customers that are served during the busy
period.

To simplify the explanations, we restrict ourselves to single-server queueing systems.
However, the techniques shown work just as well with multi-server queueing systems.

Figure 5.1.: Idle and busy period of a single-server queueing system.

In the following discussion, we call states of the Markov chain for the system state that
correspond to states of the queueing system where the server is idle idle states, and
states of the Markov chain for the system state corresponding to states of the queueing
system where the server is busy busy states. The set of the idle states is denoted with I,
the set of the busy states is denoted with B.
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5.1. Length of the idle period

The idle period is the time frame in which there are no customers in the queueing
systems and, therefore, the server is idle. The idle period begins when the last customer
leaves the system, and it ends, when the next customer arrives.

To calculate the length I of the idle period we identify (by means of the Markov chain for
the system stateMS) the states in which the Markov chain can be when the idle period
begins (that is, the states in which the Markov chain can be after the last customer has
left the system). The probability σIj that the Markov chain is in state j when the idle
period begins is the ratio of the rate at which state j is entered from busy states to the
rate at which all idle states are entered from busy states:

σIj =

∑
b∈B

πbqbj∑
b∈B

πb
∑
i∈I

qbi
j ∈ I (5.1)

Next we create a new Markov chain MI by removing all transitions of MS that do
not originate in an idle state. That means, inMI , all busy states are absorbing states.
With this Markov chain, we calculate ϕi(·), the complementary cumulative distribution
function of the remaining length of the idle period (that is, the time needed to reach a
busy state) given that the Markov chain is in state i:

ϕi(0) =

{
1 if i is an idle state
0 if i is a busy state

(5.2)

ϕ′(τ) = Q · ϕ(τ) (5.3)

The cumulative distribution function of the length of the idle period is then

P(I ≤ t) = 1−
∑
j

σIj · ϕj(t) (5.4)

Often it is possible to express the length of the idle period as a weighted sum of hypo-
exponential random variables1:

I ∼ σI1 HypoExp(· · · ) + σI2 HypoExp(· · · ) + . . . (5.5)

This approach should be preferred, because since we can use closed-form solutions
(instead of numerical approximation algorithms), the achieved solution will be more
accurate.

5.1.1. M/M/1/S queueing system

Figure 5.2a shows the Markov chain for the system state of an M/M/1/S queueing
system with S = 3.

1In this work we will use the following notation: Let X ∼ A(a1, a2, . . . ) (the random variable X is
distributed according to the distribution A with parameters a1, a2, . . . ) and Y ∼ B(b1, b2, . . . ). Then
we define: Z = c1X + c2Y ⇔ Z ∼ c1 A(a1, a2, . . . ) + c2 B(b1, b2, . . . ) ⇔ fZ(τ) = c1fX(τ) + c2fY (τ),
where fi(τ) are the probability density functions of the random variables X, Y and Z.
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(a)

(b)

Figure 5.2.: M/M/1/S queueing system (S = 3). (a) Markov chain for the system state, (b)
Markov chain for the calculation of the length of the idle period. Meaning of the
names of the states: number of customers in the system.

The only idle state is state 〈0〉, therefore,

σI〈0〉 = 1 (5.6)

The Markov chain for the calculation of the length of the idle period is shown in Figure
5.2b. All transitions of MS have been removed, except for the transition 〈0〉 → 〈1〉,
which originates in an idle state.

Since the idle period always begins in state 〈0〉 and it needs only one transition with rate
λ to reach a busy state, the idle period is exponentially distributed with mean 1/λ:

I ∼ Exp(λ) (5.7)

E(I) =
1

λ
(5.8)

5.1.2. Hypo/M/1/S queueing system

The Markov chain for a Hypo/M/1/S queueing system is shown in Figure 5.3a. Now we
have two states that represent an empty system: state 〈0/1〉 and state 〈0/2〉. The Markov
chain can be in either of them when the idle period begins. If it was in state 〈1/1〉 before
the last service finished (probability π〈1/1〉/

(
π〈1/1〉 + π〈1/2〉

)
), it is in state 〈0/1〉 when the

idle period begins. If it was in state 〈1/2〉 (probability π〈1/2〉/
(
π〈1/1〉 + π〈1/2〉

)
), it is in

state 〈0/2〉 when the idle period begins. Therefore, we have

σI〈0/1〉 =
π〈1/1〉

π〈1/1〉 + π〈1/2〉
(5.9)

σI〈0/2〉 =
π〈1/2〉

π〈1/1〉 + π〈1/2〉
(5.10)

The Markov chain for the calculation of the length of the idle period is shown in Figure
5.3b. We see that if the Markov chain is in state 〈0/1〉 when the idle period begins, it
needs two transitions (with rates λ1 and λ2) to reach a busy state. That means, in this
case, the idle period is hypoexponentially distributed. If the Markov chain is in state
〈0/2〉 when the idle period begins, it needs only one transition (with rate λ2) to reach a
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(a)

(b)

Figure 5.3.: Hypo/M/1/S queueing system (S = 3). (a) Markov chain for the system state,
(b) Markov chain for the calculation of the length of the idle period. Meaning of
the names of the states: number of customers in the system / state of the arrival
process.
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busy state, which means the idle period would be exponentially distributed. Therefore,
we can express the length of the idle period as a weighted sum of an exponential and a
hypoexponential distribution:

I ∼
π〈1/1〉

π〈1/1〉 + π〈1/2〉
HypoExp(λ1, λ2) +

π〈1/2〉
π〈1/1〉 + π〈1/2〉

Exp(λ2) (5.11)

The mean length of the idle period is

E(I) =
π〈1/1〉

π〈1/1〉 + π〈1/2〉

1

λ1

+
1

λ2

(5.12)

5.1.3. Hyper/M/1/S queueing system

Figure 5.4a shows the Markov chain for the system state of a Hyper/M/1/S queueing
system. Again there are two states in which the Markov chain can be when the idle pe-
riod begins: state 〈0/1〉 and state 〈0/2〉. If the Markov chain was in state 〈1/1〉 before the
last customer left the system (probability π〈1/1〉/

(
π〈1/1〉 + π〈1/2〉

)
), it is state 〈0/1〉 when

the idle period begins. If it was in state 〈1/2〉 (probability 1 − π〈1/1〉/
(
π〈1/1〉 + π〈1/2〉

)
=

π〈1/2〉/
(
π〈1/1〉 + π〈1/2〉

)
), it is in state 〈0/2〉 when the idle period begins. Therefore, we

have

σI〈0/1〉 =
π〈1/1〉

π〈1/1〉 + π〈1/2〉
(5.13)

σI〈0/2〉 =
π〈1/2〉

π〈1/1〉 + π〈1/2〉
(5.14)

The Markov chain for the calculation of the length of the idle period in a Hyper/M/1/S
queueing system is shown in Figure 5.4b. Since α1 + α2 equals 1, the length of the
idle period, given that the Markov chain is in state 1 or in state 2 when the idle period
begins, is exponentially distributed.

The length of the idle period is the weighted sum of these two exponential distribu-
tions:

I ∼
π〈1/1〉

π〈1/1〉 + π〈1/2〉
Exp(λ1) +

π〈1/2〉
π〈1/1〉 + π〈1/2〉

Exp(λ2) =

HyperExp

(
λ1,

π〈1/1〉
π〈1/1〉 + π〈1/2〉

, λ2,
π〈1/2〉

π〈1/1〉 + π〈1/2〉

)
(5.15)

Its mean is

E(I) =
π〈1/1〉

π〈1/1〉 + π〈1/2〉

1

λ1

+
π〈1/2〉

π〈1/1〉 + π〈1/2〉

1

λ2

(5.16)
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(a)

(b)

Figure 5.4.: Hyper/M/1/S queueing system (S = 3). (a) Markov chain for the system state,
(b) Markov chain for the calculation of the length of the idle period. Meaning of
the names of the states: number of customers in the system / state of the arrival
process.

108



5.1. Length of the idle period

(a)

(b)

Figure 5.5.: M/Hypo/1/S queueing system (S = 3). (a) Markov chain for the system state, (b)
Markov chain for the calculation of the length of the idle period. Meaning of the
names of the states: number of customers in the system / state of the service
process.
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5.1.4. Other PH/PH/1/S queueing systems

M/Hypo/1/S queueing system

The Markov chains for an M/Hypo/1/S queueing system are shown in Figure 5.5.

As in the M/M/1/S queueing system, there is only one idle state (state 〈0〉), so the
length of the idle period is exponentially distributed with mean 1/λ.

I ∼ Exp(λ) (5.17)

E(I) =
1

λ
(5.18)

M/Hyper/1/S queueing system

The Markov chains for an M/Hyper/1/S queueing system are shown in Figure 5.6.

(a)

(b)

Figure 5.6.: M/Hyper/1/S queueing system (S = 3). (a) Markov chain for the system state,
(b) Markov chain for the calculation of the length of the idle period. Meaning of
the names of the states: number of customers in the system / state of the service
process.

Again there is only one idle state (state 〈0〉), so the length of the idle period is exponen-
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tially distributed with mean 1/λ:

I ∼ Exp(λ) (5.19)

E(I) =
1

λ
(5.20)

Hypo/Hypo/1/S queueing system

Figure 5.7a shows the Markov chain for the system state of a Hypo/Hypo/1/S queueing
system.

The Markov chain can be in the states 〈0/1/−〉 and 〈0/2/−〉 when the idle period be-
gins. If it was in state 〈1/1/2〉 before the last customer left the system (probability
π〈1/1/2〉/

(
π〈1/1/2〉 + π〈1/2/2〉

)
), it is in state 〈0/1/−〉 when the idle period begins. If it was

in state 〈1/2/2〉 (probability π〈1/2/2〉/
(
π〈1/1/2〉 + π〈1/2/2〉

)
), it is in state 〈0/2/−〉 when the

idle period begins. Therefore, we have

σI〈0/1/−〉 =
π〈1/1/2〉

π〈1/1/2〉 + π〈1/2/2〉
(5.21)

σI〈0/2/−〉 =
π〈1/2/2〉

π〈1/1/2〉 + π〈1/2/2〉
(5.22)

(a)

(b)

Figure 5.7.: Hypo/Hypo/1/S queueing system (S = 3). (a) Markov chain for the system state,
(b) Markov chain for the calculation of the length of the idle period. Meaning of
the names of the states: number of customers in the system / state of the arrival
process / state of the service process.
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5. Idle and busy period

The Markov chain for the calculation of the length of the idle period is shown in Figure
5.7b. If the Markov chain is in state 〈0/1/−〉 when the idle period begins, the length of
the idle period is hypoexponentially distributed. If it is in state 〈0/2/−〉 when the idle
period begins, the length of the idle period is exponentially distributed. Therefore, I
has the distribution

I ∼
π〈1/1/2〉

π〈1/1/2〉 + π〈1/2/2〉
HypoExp(λ1, λ2) +

π〈1/2/2〉
π〈1/1/2〉 + π〈1/2/2〉

Exp(λ2) (5.23)

Its mean is

E(I) =
1

λ2

+
π〈1/1/2〉

π〈1/1/2〉 + π〈1/2/2〉

1

λ1

(5.24)

Hypo/Hyper/1/S queueing system

The Markov chains for a Hypo/Hyper/1/S queueing system are shown in Figure 5.8.

(a)

(b)

Figure 5.8.: Hypo/Hyper/1/S queueing system (S = 3). (a) Markov chain for the system state,
(b) Markov chain for the calculation of the length of the idle period. Meaning of
the names of the states: number of customers in the system / state of the arrival
process / state of the service process.

There are two idle states, state 〈0/1/−〉 and state 〈0/2/−〉. The Markov chain can be
in both of them when the idle period begins. If it was in state 〈1/1/1〉 or in state

112



5.1. Length of the idle period

〈1/1/2〉 before the last customer left the system (probability
(
µ1π〈1/1/1〉 + µ2π〈1/1/2〉

)
/∑2

i=1

∑2
j=1 µjπ〈1/i/j〉), it is in state 〈0/1/−〉 afterwards. If it was in state 〈1/2/1〉 or

in state 〈1/2/2〉 (probability
(
µ1π〈1/2/1〉 + µ2π〈1/2/2〉

)
/
∑2

i=1

∑2
j=1 µjπ〈1/i/j〉), it is in state

〈0/2/−〉:

σI〈0/1/−〉 =
µ1π〈1/1/1〉 + µ2π〈1/1/2〉∑2

i=1

∑2
j=1 µjπ〈1/i/j〉

(5.25)

σI〈0/2/−〉 =
µ1π〈1/2/1〉 + µ2π〈1/2/2〉∑2

i=1

∑2
j=1 µjπ〈1/i/j〉

(5.26)

If the Markov chain is in state 〈0/1/−〉when the idle period begins, the length of the idle
period is hypoexponentially distributed (because α1 + α2 = 1). If it is in state 〈0/2/−〉
when the idle period begins, the length of the idle period is exponentially distributed.
Therefore, I has the distribution

I ∼
µ1π〈1/1/1〉 + µ2π〈1/1/2〉∑2

i=1

∑2
j=1 µjπ〈1/i/j〉

HypoExp(λ1, λ2) +
µ1π〈1/2/1〉 + µ2π〈1/2/2〉∑2

i=1

∑2
j=1 µjπ〈1/i/j〉

Exp(λ2) (5.27)

Its mean is

E(I) =
1

λ2

+
µ1π〈1/1/1〉 + µ2π〈1/1/2〉∑2

i=1

∑2
j=1 µjπ〈1/i/j〉

1

λ1

(5.28)

Hyper/Hypo/1/S queueing system

Figure 5.9a shows the Markov chain for the system state of a Hyper/Hypo/1/S queueing
system.

The Markov chain can be in the states 〈0/1/−〉 and 〈0/2/−〉 when the idle period be-
gins. If it was in state 〈1/1/2〉 before the last customer left the system (probability
π〈1/1/2〉/

(
π〈1/1/2〉 + π〈1/2/2〉

)
), it is in state 〈0/1/−〉 when the idle period begins. If it was

in state 〈1/2/2〉 (probability π〈1/2/2〉/
(
π〈1/1/2〉 + π〈1/2/2〉

)
), it is in state 〈0/2/−〉 when the

idle period begins. Therefore, we have

σI〈0/1/−〉 =
π〈1/1/2〉

π〈1/1/2〉 + π〈1/2/2〉
(5.29)

σI〈0/2/−〉 =
π〈1/2/2〉

π〈1/1/2〉 + π〈1/2/2〉
(5.30)

The Markov chain for the calculation of the length of the idle period is shown in Figure
5.9b. If the Markov chain is in state 〈0/1/−〉 when the idle period begins, the length of
the idle period is exponentially distributed with rate λ1. If it is in state 〈0/2/−〉 when
the idle period begins, the length of the idle period is exponentially distributed with
rate λ2. Therefore, I has the distribution

I ∼
π〈1/1/2〉

π〈1/1/2〉 + π〈1/2/2〉
Exp(λ1) +

π〈1/2/2〉
π〈1/1/2〉 + π〈1/2/2〉

Exp(λ2) =

HyperExp

(
λ1,

π〈1/1/2〉
π〈1/1/2〉 + π〈1/2/2〉

, λ2,
π〈1/2/2〉

π〈1/1/2〉 + π〈1/2/2〉

)
(5.31)
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5. Idle and busy period

(a)

(b)

Figure 5.9.: Hyper/Hypo/1/S queueing system (S = 3). (a) Markov chain for the system state,
(b) Markov chain for the calculation of the length of the idle period. Meaning of
the names of the states: number of customers in the system / state of the arrival
process / state of the service process.
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5.1. Length of the idle period

Its mean is

E(I) =
π〈1/1/2〉

π〈1/1/2〉 + π〈1/2/2〉

1

λ1

+
π〈1/2/2〉

π〈1/1/2〉 + π〈1/2/2〉

1

λ2

(5.32)

Hyper/Hyper/1/S queueing system

The Markov chains for a Hyper/Hyper/1/S queueing system are shown in Figure 5.10.

(a)

(b)

Figure 5.10.: Hyper/Hyper/1/S queueing system (S = 3). (a) Markov chain for the system state,
(b) Markov chain for the calculation of the length of the idle period. Meaning of
the names of the states: number of customers in the system / state of the arrival
process / state of the service process.

There are two idle states, state 〈0/1/−〉 and state 〈0/2/−〉. The Markov chain can be
in both of them when the idle period begins. If it was in state 〈1/1/1〉 or in state
〈1/1/2〉 before the last customer left the system (probability

(
µ1π〈1/1/1〉 + µ2π〈1/1/2〉

)
/∑2

i=1

∑2
j=1 µjπ〈1/i/j〉), it is in state 〈0/1/−〉 afterwards. If it was in state 〈1/2/1〉 or
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5. Idle and busy period

in state 〈1/2/2〉 (probability
(
µ1π〈1/2/1〉 + µ2π〈1/2/2〉

)
/
∑2

i=1

∑2
j=1 µjπ〈1/i/j〉), it is in state

〈0/2/−〉:

σI〈0/1/−〉 =
µ1π〈1/1/1〉 + µ2π〈1/1/2〉∑2

i=1

∑2
j=1 µjπ〈1/i/j〉

(5.33)

σI〈0/2/−〉 =
µ1π〈1/2/1〉 + µ2π〈1/2/2〉∑2

i=1

∑2
j=1 µjπ〈1/i/j〉

(5.34)

If the Markov chain is in state 〈0/1/−〉 when the idle period begins, the length of the
idle period is exponentially distributed with rate λ1 (because α1 + α2 = β1 + β2 = 1).
If it is in state 〈0/2/−〉 when the idle period begins, the length of the idle period is
exponentially distributed with rate λ2. Therefore, I has the distribution

I ∼
µ1π〈1/1/1〉 + µ2π〈1/1/2〉∑2

i=1

∑2
j=1 µjπ〈1/i/j〉

Exp(λ1) +
µ1π〈1/2/1〉 + µ2π〈1/2/2〉∑2

i=1

∑2
j=1 µjπ〈1/i/j〉

Exp(λ2) =

HyperExp

(
λ1,

µ1π〈1/1/1〉 + µ2π〈1/1/2〉∑2
i=1

∑2
j=1 µjπ〈1/i/j〉

, λ2,
µ1π〈1/2/1〉 + µ2π〈1/2/2〉∑2

i=1

∑2
j=1 µjπ〈1/i/j〉

)
(5.35)

Its mean is

E(I) =
µ1π〈1/1/1〉 + µ2π〈1/1/2〉∑2

i=1

∑2
j=1 µjπ〈1/i/j〉

1

λ1

+
µ1π〈1/2/1〉 + µ2π〈1/2/2〉∑2

i=1

∑2
j=1 µjπ〈1/i/j〉

1

λ2

(5.36)
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5.2. Length of the busy period

5.2. Length of the busy period

The busy period is the time frame in which there are customers in the system, and,
therefore, the server is busy. The busy period begins when the system is idle and a
customer arrives. It ends when the system becomes idle again.

To calculate the length B of the busy period, we identify (by means of the Markov chain
for the system state MS) the states in which the Markov chain can be when the busy
period begins (that is, the states in which the Markov chain can be after a customer
enters an empty system). The probability σBj that the Markov chain is in state j when
the busy period begins is the ratio of the rate at which state j is entered from idle states
to the rate at which all busy states are entered from idle states:

σBj =

∑
i∈I

πiqij∑
i∈I

πi
∑
b∈B

qib
j ∈ B (5.37)

Next we create a new Markov chain MB by removing all transitions of MS which do
not originate in a busy state. That means, in MB, all idle states are absorbing states.
With this Markov chain, we calculate ϕi(·), the complementary cumulative distribution
function of the remaining length of the busy period (that is, the time needed to reach
an idle state) given that the Markov chain is in state i:

ϕi(0) =

{
1 if i is a busy state
0 if i is an idle state

(5.38)

ϕ′(τ) = Q · ϕ(τ) (5.39)

The cumulative distribution function of the length of the busy period is then

P(B ≤ t) = 1−
∑
j

σBj · ϕj(t) (5.40)

The mean length of the busy period can be calculated with

E(B) =

∞∫
t=0

∑
j

σBj ϕj(t)dt (5.41)

If we know the utilisation of the server and the mean length of the idle period, we can
also use these quantities to calculate the mean length of the busy period: Since the
steady-state probability that the server is busy equals the long-run ratio of busy periods
to the total time,

P {Server is busy} = ρ =
E(B)

E(B) + E(I)
(5.42)

we have

E(B) = E(I) · ρ

1− ρ
(5.43)

117



5. Idle and busy period

Another approach to determine the mean length of the busy period is the following:

Suppose the Markov chain is in state i and let L(i) be the expected time the Markov
chain needs to go from state i to an idle state. L(i) depends on the sojourn time in
state i and the state that is taken next. If the next transition is to state j, the expected
time until an idle state is reached is the mean sojourn time in state i plus the time the
Markov chain needs to go from state j to an idle state. If we denote the mean sojourn
time in state i by S(i), we have

L(i) | next transition is to state j = S(i) + L(j) (5.44)

The probability that the next state is j is −qij/qii. The mean sojourn time in state i is
S(i) = −1/qii. Summing over all possible transitions yields

L(i) =

S(i) +
∑
j 6=i

L(j)
qij
−qii i is no idle state

0 i is an idle state
(5.45)

Now the expected length of the busy period is

E(B) =
∑
b∈B

L(b)σBb (5.46)

5.2.1. M/M/1/S queueing system

The Markov chain for the system state of an M/M/1/S queueing system is shown in
Figure 5.11a. The only idle state is state 〈0〉, all other states are busy states. When the
system is empty and a customer arrives, the Markov chain is in state 〈1〉:

σB〈1〉 = 1 (5.47)

Therefore, we have to calculate the time it takes to go from state 〈1〉 to the idle state
〈0〉. This is done with the Markov chainMB, which is shown in Figure 5.11b.

(a)

(b)

Figure 5.11.: M/M/1/S queueing system. (a) Markov chain for the system state, (b) Markov
chain for the calculation of the length of the busy period. Meaning of the names
of the states: number of customers in the system.
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5.2. Length of the busy period

We have

ϕ′(t) = Q · ϕ(t) ϕi(0) =

{
0 i = 〈0〉
1 i 6= 〈0〉

(5.48)

The cumulative distribution function of the length of the busy period is

P(B ≤ t) = 1− ϕ2(t) (5.49)

The expected length of the busy period is

E(B) =

∞∫
t=0

ϕ2(t)dt (5.50)

If we use the result that the mean length of the idle period is

E(I) =
1

λ
(5.51)

we can calculate the mean length of the busy period with

E(B) = E(I) · ρ

1− ρ
=

1− π〈0〉
λπ〈0〉

(5.52)

Using the closed-form solution

π〈0〉 =


1−λ/µ

1−(λ/µ)S+1 λ 6= µ

1
S+1

λ = µ
(5.53)

we obtain

E(B) =


λ/µ−(λ/µ)S+1

λ(1−λ/µ)
λ 6= µ

S
λ

λ = µ
(5.54)

Alternative method for the calculation of the mean of the length of the busy period:

The mean sojourn times in states 2, 3 and 4 are

S(2) =
1

−q2,2

=
1

λ+ µ

S(3) =
1

−q3,3

=
1

λ+ µ

S(4) =
1

−q4,4

=
1

µ

(5.55)
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5. Idle and busy period

The remaining length of the busy period given that the Markov chain is in state i,
i = 2 . . . 4 is

L(2) = S(2) +
λ

λ+ µ
L(3)

L(3) = S(3) +
λ

λ+ µ
L(4) +

µ

λ+ µ
L(2)

L(4) = S(4) + L(3)

(5.56)

Solving this system of equations yields

L(2) =
µ2 + λµ+ λ2

µ3

L(3) =
2µ2 + 2λµ+ λ2

µ3

L(4) =
3µ2 + 2λµ+ λ2

µ3

(5.57)

Since the Markov chain is in state 2 when the busy period begins, the expected length
of the busy period is

E(B) = L(2) =
µ2 + λµ+ λ2

µ3
(5.58)

Figure 5.12 shows the length of the idle and the busy period in an M/M/1/S queueing
system as a function of the arrival rate.

5.2.2. Hypo/M/1/S queueing system

Figure 5.13a shows the Markov chain for the system state of a Hypo/M/1/S queueing
system. States 〈0/1〉 and 〈0/2〉 are idle states, the other states are busy states. When the
busy period begins, the Markov chain is in state 〈1/1〉.

σB〈1/1〉 = 1 (5.59)

Therefore, we have to calculate the time which it takes to go from state 〈1/1〉 to one of
the idle states 〈0/1〉 and 〈0/2〉. This is done with the Markov chainMB, which is shown
in Figure 5.13b.

We have

ϕ′(t) = Q · ϕ(t) ϕ〈i,j〉(0) =

{
0 i = 0

1 i 6= 0
(5.60)

The cumulative distribution function of the length of the busy period is

P(B ≤ t) = 1− ϕ〈1/1〉(t) (5.61)
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5.2. Length of the busy period

Figure 5.12.: M/M/1/S queueing system. Mean length of (a) idle period and (b) busy period.
S = 3, µ = 1.
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5. Idle and busy period

(a)

(b)

Figure 5.13.: Hypo/M/1/S queueing system. (a) Markov chain for the system state, (b) Markov
chain for the calculation of the length of the busy period. Meaning of the names
of the states: number of customers in the system / state of the arrival process.

The expected length of the busy period is

E(B) =

∞∫
t=0

ϕ〈1/1〉dt (5.62)

Alternative method for the calculation of the mean of the length of the busy period:

The mean sojourn times in the busy states are

S(3) =
1

−q3,3

=
1

λ1 + µ

S(4) =
1

−q4,4

=
1

λ2 + µ

S(5) =
1

−q5,5

=
1

λ1 + µ

S(6) =
1

−q6,6

=
1

λ2 + µ

S(7) =
1

−q7,7

=
1

λ1 + µ

S(8) =
1

−q8,8

=
1

λ2 + µ

(5.63)
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5.2. Length of the busy period

The remaining length of the busy period given that the Markov chain is in state i,
i = 3 . . . 8 is

L(3) = S(3) +
λ1

λ1 + µ
L(4)

L(4) = S(4) +
λ2

λ2 + µ
L(5)

L(5) = S(5) +
λ1

λ1 + µ
L(6) +

µ

λ1 + µ
L(3)

L(6) = S(6) +
λ2

λ2 + µ
L(7) +

µ

λ2 + µ
L(4)

L(7) = S(7) +
λ1

λ1 + µ
L(8) +

µ

λ1 + µ
L(5)

L(8) = S(8) +
λ2

λ2 + µ
L(7) +

µ

λ2 + µ
L(6)

(5.64)

Solving this system of equations yields

L(3) =
(
µ5 + (3λ2 + 3λ1)µ4 +

(
3λ1

2 + 5λ2λ1 + 3λ2
2
)
µ3+

(λ2 + λ1)3 µ2 + λ2λ1 (λ2 + λ1)2 µ+ λ2
2λ1

2 (λ2 + λ1)
)
/α

(5.65)

L(4) =
(
µ5 + (4λ2 + 3λ1)µ4 +

(
3λ1

2 + 7λ2λ1 + 5λ2
2
)
µ3+

(2λ2 + λ1) (λ2 + λ1)2 µ2+

λ2λ1 (2λ2 + λ1) (λ2 + λ1)µ+ λ2
2λ1

2 (λ2 + λ1)
)
/α

(5.66)

L(5) =
(
2µ5 + (6λ2 + 6λ1)µ4 +

(
6λ1

2 + 11λ2λ1 + 6λ2
2
)
µ3+

(2λ2 + λ1) (λ2 + λ1) (2λ1 + λ2)µ2+

2λ2λ1 (λ2 + λ1)2 µ+ λ2
2λ1

2 (λ2 + λ1)
)
/α

(5.67)

L(6) =
(
2µ5 + (8λ2 + 6λ1)µ4 +

(
6λ1

2 + 14λ2λ1 + 9λ2
2
)
µ3+(

2λ1
3 + 8λ1

2λ2 + 3λ2
3 + 9λ2

2λ1

)
µ2+

2λ2λ1 (λ2 + λ1)2 µ+ λ2
2λ1

2 (λ2 + λ1)
)
/α

(5.68)

L(7) =
(
3µ5 + (9λ2 + 9λ1)µ4 +

(
9λ2

2 + 17λ2λ1 + 9λ1
2
)
µ3+

3 (λ2 + λ1)3 µ2 + 2λ2λ1 (λ2 + λ1)2 µ+ λ2
2λ1

2 (λ2 + λ1)
)
/α

(5.69)

L(8) =
(
3µ5 + (11λ2 + 9λ1)µ4 +

(
10λ2

2 + 18λ2λ1 + 9λ1
2
)
µ3+

3 (λ2 + λ1 )3 µ2 + 2λ2λ1 (λ2 + λ1)2 µ+ λ2
2λ1

2 (λ2 + λ1)
)
/α

(5.70)

where

α = (λ1 + λ2 + µ)(λ2
1 + λ2

2 + µ2 + 2µ(λ1 + λ2))µ3 (5.71)

When the busy period begins, the Markov chain is in state 3, therefore,

E(B) = L(3) (5.72)

123



5. Idle and busy period

5.2.3. Hyper/M/1/S queueing system

The Markov chain for the system state of a Hyper/M/1/S queueing system is shown in
Figure 5.14a. In this system, the states 〈0/1〉 and 〈0/2〉 are idle states, all other states
are busy states. When the system is empty and a customer arrives, the Markov chain is
in state 〈1/1〉 with probability α1 and in state 〈1/2〉 with probability α2:

σB〈1/1〉 = α1 (5.73)

σB〈1/2〉 = α2 (5.74)

(a)

(b)

Figure 5.14.: Hyper/M/1/S queueing system. (a) Markov chain for the system state, (b) Markov
chain for the calculation of the length of the busy period. Meaning of the names
of the states: number of customers in the system / state of the arrival process.

The Markov chain for the calculation of the length of the busy period is shown in Figure
5.14b.

We have

ϕ′(t) = Q · ϕ(t) ϕ〈i/j〉(0) =

{
0 i = 0

1 i > 0
(5.75)

If the Markov chain is in state 〈1/1〉 when the busy period begins, the complementary
cumulative distribution function of the length of the busy period is ϕ〈1/1〉(·), otherwise
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5.2. Length of the busy period

it is ϕ〈1/2〉(·). Therefore, the cumulative distribution function of the length of the busy
period is

P(B ≤ t) = 1− α1ϕ〈1/1〉(t)− α2ϕ〈1/2〉(t) (5.76)

The expected length of the busy period is

E(B) =

∞∫
t=0

α1ϕ〈1/1〉(t) + α2ϕ〈1/2〉(t) dt (5.77)

If we use the result that the mean length of the idle period is

E(I) =
π〈1/1〉

π〈1/1〉 + π〈1/2〉

1

λ1

+
π〈1/2〉

π〈1/1〉 + π〈1/2〉

1

λ2

(5.78)

we can calculate the mean length of the busy period with

E(B) = E(I) · ρ

1− ρ
=

(
λ1π〈1/2〉 + λ2π〈1/1〉

) (
1− π〈0/1〉 − π〈0/2〉

)
λ1λ2

(
π〈1/1〉 + π〈1/2〉

) (
π〈0/1〉 + π〈0/2〉

) (5.79)

5.2.4. Other PH/PH/1/S queueing systems

M/Hypo/1/S queueing system

Figure 5.15a shows the Markov chain for the system state of an M/Hypo/1/S queueing
system. State 〈0/−〉 is the only idle state. When the busy period begins, the Markov
chain is in state 〈1/1〉:

σB〈1/1〉 = 1 (5.80)

Therefore, we have to calculate the time it takes to go from state 〈1/1〉 to the idle state
〈0/−〉. This is done with the Markov chainMB, which is shown in Figure 5.15b.

We have

ϕ′(t) = Q · ϕ(t) ϕi(0) =

{
0 i = 〈0/−〉
1 i 6= 〈0/−〉

(5.81)

The cumulative distribution function of the length of the busy period is

P(B ≤ t) = 1− ϕ〈1/1〉(t) (5.82)

The expected length of the busy period is

E(B) =

∞∫
t=0

ϕ〈1/1〉dt (5.83)

125



5. Idle and busy period

(a)

(b)

Figure 5.15.: M/Hypo/1/S queueing system. (a) Markov chain for the system state, (b) Markov
chain for the calculation of the length of the busy period. Meaning of the names
of the states: number of customers in the system / state of the service process.

M/Hyper/1/S queueing system

The Markov chain for the system state of an M/Hyper/1/S queueing system is shown
in Figure 5.16a. In this system, the state 〈0/−〉 is the only idle state. When the system
is empty and a customer arrives, the Markov chain is in state 〈1/1〉 with probability α1

and in state 〈1/2〉 with probability α2:

σB〈1/1〉 = α1 (5.84)

σB〈1/2〉 = α2 (5.85)

The Markov chain for the calculation of the length of the busy period is shown in Figure
5.16b.

We have

ϕ′(t) = Q · ϕ(t) ϕ〈i/j〉(0) =

{
0 i = 0

1 i > 0
(5.86)

If the Markov chain is in state 〈1/1〉 when the busy period begins, the complementary
cumulative distribution function of the length of the busy period is ϕ〈1/1〉(t), otherwise
it is ϕ〈1/2〉(t). Therefore, the cumulative distribution function of the length of the busy
period is

P(B ≤ t) = 1− α1ϕ〈1/1〉(t)− α2ϕ〈1/2〉(t) (5.87)
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5.2. Length of the busy period

(a)

(b)

Figure 5.16.: M/Hyper/1/S queueing system. (a) Markov chain for the system state, (b) Markov
chain for the calculation of the length of the busy period. Meaning of the names
of the states: number of customers in the system / state of the service process.

The expected length of the busy period is

E(B) =

∞∫
t=0

α1ϕ〈1/1〉(t) + α2ϕ〈1/2〉(t) dt (5.88)

Hypo/Hypo/1/S queueing system

Figure 5.17a shows the Markov chain for the system state of a Hypo/Hypo/1/S queue-
ing system. The states 〈0/1/−〉 and 〈0/2/−〉 are idle states, all other states are busy
states. When the busy period begins, the Markov chain is in state 〈1/1/1〉:

σB〈1/1/1〉 = 1 (5.89)

Therefore, we have to calculate the time it takes to go from state 〈1/1/1〉 to one of the
idle states. This is done with the Markov chainMB, which is shown in Figure 5.17b.

We have

ϕ′(t) = Q · ϕ(t) ϕ〈i/j/k〉(0) =

{
0 i = 0

1 i > 0
(5.90)
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5. Idle and busy period

(a)

(b)

Figure 5.17.: Hypo/Hypo/1/S queueing system. (a) Markov chain for the system state, (b)
Markov chain for the calculation of the length of the busy period. Meaning of
the names of the states: number of customers in the system / state of the arrival
process / state of the service process.
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5.2. Length of the busy period

The cumulative distribution function of the length of the busy period is

P(B ≤ t) = 1− ϕ〈1/1/1〉(t) (5.91)

The expected length of the busy period is

E(B) =

∞∫
t=0

ϕ〈1/1/1〉dt (5.92)

Hypo/Hyper/1/S queueing system

Figure 5.18a shows the Markov chain for the system state of a Hypo/Hyper/1/S queue-
ing system. The states 〈0/1/−〉 and 〈0/2/−〉 are idle state, all other states are busy
states. When the busy period begins, the Markov chain is in state 〈1/1/1〉 or in state
〈1/1/2〉:

σB〈1/1/1〉 = α1 (5.93)

σB〈1/1/2〉 = α2 (5.94)

The Markov chainMB is shown in Figure 5.18b.

We have

ϕ′(t) = Q · ϕ(t) ϕ〈i/j/k〉(0) =

{
0 i = 0

1 i > 0
(5.95)

The cumulative distribution function of the length of the busy period is

P(B ≤ t) = 1− α1ϕ〈1/1/1〉(t)− α2ϕ〈1/1/2〉(t) (5.96)

The expected length of the busy period is

E(B) =

∞∫
t=0

α1ϕ〈1/1/1〉(t) + α2ϕ〈1/1/2〉(t) dt (5.97)

Hyper/Hypo/1/S queueing system

The Markov chain for the system state of a Hyper/Hypo/1/S queueing system is shown
in Figure 5.19a. In this system, the states 〈0/1/−〉 and 〈0/2/−〉 are idle states, all other
states are busy states. When the system is empty and a customer arrives, the Markov
chain is in state 〈1/1/1〉 with probability α1 and in state 〈1/2/1〉 with probability α2:

σB〈1/1/1〉 = α1 (5.98)

σB〈1/2/1〉 = α2 (5.99)
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5. Idle and busy period

(a)

(b)

Figure 5.18.: Hypo/Hyper/1/S queueing system. (a) Markov chain for the system state, (b)
Markov chain for the calculation of the length of the busy period. Meaning of
the names of the states: number of customers in the system / state of the arrival
process / state of the service process.
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(a)

(b)

Figure 5.19.: Hyper/Hypo/1/S queueing system. (a) Markov chain for the system state, (b)
Markov chain for the calculation of the length of the busy period. Meaning of
the names of the states: number of customers in the system / state of the arrival
process / state of the service process.
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5. Idle and busy period

The Markov chain for the calculation of the length of the busy period is shown in Figure
5.19b.

We have

ϕ′(t) = Q · ϕ(t) ϕ〈i/j/k〉(0) =

{
0 i = 0

1 i > 0
(5.100)

If the Markov chain is in state 〈1/1/1〉 when the busy period begins, the complementary
cumulative distribution function of the length of the busy period is ϕ〈1/1/1〉(t), otherwise
it is ϕ〈1/2/1〉(t). Therefore, the cumulative distribution function of the length of the busy
period is

P(B ≤ t) = 1− α1ϕ〈1/1/1〉(t)− α2ϕ〈1/2/1〉(t) (5.101)

The expected length of the busy period is

E(B) =

∞∫
t=0

α1ϕ〈1/1/1〉(t) + α2ϕ〈1/2/1〉(t) dt (5.102)

Hyper/Hyper/1/S queueing system

Figure 5.20a shows the Markov chain for the system state of a Hyper/Hyper/1/S queue-
ing system. The states 〈0/1/−〉 and 〈0/2/−〉 are idle states, all other states are busy
states. When the busy period begins, the Markov chain is in one of the states 〈1/1/1〉,
〈1/1/2〉, 〈1/2/1〉 and 〈1/2/2〉:

σB〈1/1/1〉 = α1β1 (5.103)

σB〈1/1/2〉 = α1β2 (5.104)

σB〈1/2/1〉 = α2β1 (5.105)

σB〈1/2/2〉 = α2β2 (5.106)

The Markov chain for the calculation of the length of the busy period is shown in Figure
5.20b.

We have

ϕ′(t) = Q · ϕ(t) ϕ〈i/j/k〉(0) =

{
0 i = 0

1 i > 0
(5.107)

The cumulative distribution function of the length of the busy period is

P(B ≤ t) = 1− α1β1ϕ〈1/1/1〉(t)− α1β2ϕ〈1/1/2〉(t)

− α2β1ϕ〈1/2/1〉(t) − α2β2ϕ〈1/2/2〉(t) (5.108)
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5.2. Length of the busy period

The expected length of the busy period is

E(B) =

∞∫
t=0

α1β1ϕ〈1/1/1〉(t) + α1β2ϕ〈1/1/2〉(t)

+ α2β1ϕ〈1/2/1〉(t) + α2β2ϕ〈1/2/2〉(t) dt (5.109)

(a)

(b)

Figure 5.20.: Hyper/Hyper/1/S queueing system. (a) Markov chain for the system state, (b)
Markov chain for the calculation of the length of the busy period. Meaning of the
names of the states: number of customers in the system / state of the arrival
process / state of the service process.
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5. Idle and busy period

5.3. Number of customers served during the busy period

The length of the busy period is a compound random variable consisting of the number
of customers served during the busy period ξ and the service times Si of the single
customers:

B =

ξ∑
i=1

Si (5.110)

and

E(B) = E(Si) · E(ξ) (5.111)

Therefore, if we have a constant service rate µ and know the mean length of the busy
period E(B), we can calculate the mean number of customers being served during a
busy period with

E (ξ) = E(B) · µ (5.112)

The probability distribution of ξ is determined by extending the Markov chainMB we
used in the previous section for the calculation of the length of the busy period with a
counting Markov chainMC , which counts services.

We start the observation at the moment when the busy period begins. Since there
has not been a service yet, the new Markov chain Mξ is in a state 〈b/0〉, b ∈ B. The
probabilities σξ〈b/0〉 that it is in state 〈b/0〉 are

σξ〈b/0〉 = σBb (5.113)

As time goes by and Mξ evolves, the counting Markov chain MC increases its value
whenever there is a service, until eventually Mξ reaches an absorbing state 〈i/n〉, i ∈
I, n ∈ N+. This means that the system has become idle and we are interested in the
number of counted services.

So we have

π〈b/0〉(0) = σBb b ∈ B (5.114)
π′(τ) = π(τ) · Q (5.115)

If we had an infinite counting Markov chain MC , the probability that there were n
services during the busy period would be

P (ξ = n) =
∑
i∈I

lim
t→∞

π〈i/n〉(t) (5.116)

However, since we do not concern ourselves with infinite Markov chains in this work,
MC is finite. Assume it counts from 0 to N . In this case we have

P (ξ = n) =
∑
i∈I

lim
t→∞

π〈i/n〉(t) n < N (5.117)

P (ξ ≥ N) =
∑
i∈I

lim
t→∞

π〈i/N〉(t) (5.118)
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5.3. Number of customers served during the busy period

In practice the computation of π(t) can be stopped when the Markov chain is with very
high probability in a state 〈i/·〉, i ∈ I, that is,

∑N
n=0

∑
i∈I π〈i/n〉(t) ≈ 1.

It should be noted that it is not possible to obtain the limiting probability distribution
limt→∞ π(t), which is also a stationary probability distribution, by solving the system of
linear equations π · Q = 0 or by using other techniques for the calculation of unique
stationary state probabilities. The reason is that the Markov chain Mξ has absorbing
states, and therefore the stationary probability distribution is not unique, but depends
on the initial state.

We can also use the following method to calculate the number of customers served
during the busy period:

Suppose the Markov chain MB is in state i and let C(i) be the expected number of
remaining services in the current busy period given that the Markov chain is in state
i. C(i) depends on the state taken next. If the next transition is to state j (probability
−qij/qii) and corresponds to a service, then C(i) = C(j) + 1. If the transition to j does
not correspond to a service, then C(i) = C(j). For idle states we have C(i) = 0.

C(i) =


∑
j 6=i

qij
−qii (C(j) + s(i, j)) i /∈ I

0 i ∈ I
(5.119)

where

s(i, j) =

{
1 transition i→ j corresponds to a service
0 otherwise

(5.120)

Now the mean number of customers served during the busy period is

E(ξ) =
∑
b∈B

C(b)σBb (5.121)

Let further be T (i, n) the probability that there will be n services until an idle state is
reached, given that the Markov chain is in state i. T (i, n) depends on the next transition.
If the next transition leads to state j (probability −qij/qii) and corresponds to a service,
then T (i, n) = T (j, n − 1). If the transition to j does not correspond to a service, we
have T (i, n) = T (j, n):

T (i, n) =



∑
j 6=i

qij
−qiiT (j, n− s(i, j)) i /∈ I, n ≥ 0

0 i ∈ I, n > 0

1 i ∈ I, n = 0

0 n < 0

(5.122)

where

s(i, j) =

{
1 transition i→ j corresponds to a service
0 otherwise

(5.123)
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5. Idle and busy period

The probability that there are n customers served during the busy period is

P (ξ = n) =
∑
b∈B

T (b, n)σBb (5.124)

5.3.1. M/M/1/S queueing system

The construction of the Markov chain Mξ for an M/M/1/S queueing system is shown
in Figure 5.21. Figure 5.21a shows the Markov chain MB used for the calculation
of the length of the busy period. This Markov chain is combined with the counting
Markov chain MC shown in Figure 5.21b, which increases its value when a service
takes place.

When the busy period begins, MB is in state 〈1〉 and MC is in state 〈0〉 (because by
then there were no services in the current busy period). Therefore,Mξ is in state 〈1/0〉:

πi(0) =

{
1 i = 〈1/0〉
0 otherwise

(5.125)

Now we calculate the state probabilities with

π′(τ) = π(τ) · Q (5.126)

until, for example,

1−
N∑
n=0

π〈0/n〉(τ) < 10−6 (5.127)

The probability distribution of ξ is

P (ξ = n) = lim
t→∞

π〈0/n〉(t) n < N (5.128)

P (ξ ≥ N) = lim
t→∞

π〈0/N〉(t) (5.129)

or

P (ξ > n) =
N∑
i=n

lim
t→∞

π〈0/n〉(t) n ≤ N (5.130)

Given the mean length of the busy period we can calculate E (ξ) with

E (ξ) = E(B) µ (5.131)

By using the closed-form solution for the mean length of the busy period (Equation
5.54), we obtain

E (ξ) =

{
1−(λ/µ)S

1−λ/µ λ 6= µ

S λ = µ
(5.132)
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5.3. Number of customers served during the busy period

(a) Markov chain for the calculation of the length of the busy period.

(b) Counting
Markov chain.

(c) Markov chain for the calculation of the probability distribution of
the number of customers served during a busy period. Meaning
of the names of the states: number of customers in the system /
number of counted services. Absorbing states are painted with
double lines, states in which the system is when the busy period
begins are shaded grey.

Figure 5.21.: M/M/1/S queueing system (S = 3): calculation of the number of customers served
during a busy period
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5. Idle and busy period

Alternative method for the calculation of the number of customers served during the
busy period:

C(2) =
µ

λ+ µ
(1 + C(1)︸︷︷︸

0

) +
λ

λ+ µ
C(3)

C(3) =
µ

λ+ µ
(1 + C(2)) +

λ

λ+ µ
C(4)

C(4) = 1 + C(3)

(5.133)

Solving this system of equations yields

C(2) =
µ2 + λµ+ λ2

µ2

C(3) =
2µ2 + 2λµ+ λ2

µ2

C(4) =
3µ2 + 2λµ+ λ2

µ2

(5.134)

The Markov chain is in state 2 when the busy period begins, therefore,

E (ξ) = C(2) =
µ2 + λµ+ λ2

µ2
= 1 +

λ

µ
+
λ2

µ2
(5.135)

Moreover, T (2, n) is the probability that n customers are served during the busy period.
We show the calculation for n = 1 . . . 3.

n = 1 :

T (2, 1) = T (1, 0)︸ ︷︷ ︸
1

µ

λ+ µ
+ T (3, 1)

λ

λ+ µ

T (3, 1) = T (2, 0)
µ

λ+ µ
+ T (4, 1)

λ

λ+ µ

T (4, 1) = T (3, 0)

T (3, 0) = T (2,−1)︸ ︷︷ ︸
0

µ

λ+ µ
+ T (4, 0)

λ

λ+ µ

T (4, 0) = T (3,−1)︸ ︷︷ ︸
0

T (4, 0) = 0

T (3, 0) = 0

T (4, 1) = 0

T (2, 0) = T (1,−1)︸ ︷︷ ︸
0

µ

λ+ µ
+ T (3, 0)︸ ︷︷ ︸

0

λ

λ+ µ

T (2, 0) = 0

T (3, 1) = 0

T (2, 1) =
µ

λ+ µ

(5.136)
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5.3. Number of customers served during the busy period

n = 2 :

T (2, 2) = T (1, 1)︸ ︷︷ ︸
0

µ

λ+ µ
+ T (3, 2)

λ

λ+ µ

T (3, 2) = T (2, 1)︸ ︷︷ ︸
µ/(λ+µ)

µ

λ+ µ
+ T (4, 2)

λ

λ+ µ

T (4, 2) = T (3, 1)︸ ︷︷ ︸
0

T (4, 2) = 0

T (3, 2) =
µ2

(λ+ µ)2

T (2, 2) =
λµ2

(λ+ µ)3

(5.137)

n = 3 :

T (2, 3) = T (1, 2)︸ ︷︷ ︸
0

µ

λ+ µ
+ T (3, 3)

λ

λ+ µ

T (3, 3) = T (2, 2)︸ ︷︷ ︸
λµ2/(λ+µ)3

µ

λ+ µ
+ T (4, 3)

λ

λ+ µ

T (4, 3) = T (3, 2)︸ ︷︷ ︸
µ2/(λ+µ)2

T (4, 3) =
µ2

(λ+ µ)2

T (3, 3) =
λµ2(λ+ 2µ)

(λ+ µ)4

T (2, 3) =
λ2µ2(λ+ 2µ)

(λ+ µ)5

(5.138)

So we have

P (ξ = 1) =
µ

λ+ µ

P (ξ = 2) =
λµ2

(λ+ µ)3

P (ξ = 3) =
λ2µ2(λ+ 2µ)

(λ+ µ)5

(5.139)

We also can obtain a general solution:

P (ξ = 1) =
µ

λ+ µ
(5.140)

P (ξ = n) =
λn−1µ2(λ+ 2µ)n−2

(λ+ µ)2n−1
n ≥ 2 (5.141)
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5. Idle and busy period

Figure 5.22.: M/M/1/S queueing system: number of customers served during the busy period.
S = 3, λ = 0.7, µ = 1.
Dots: calculation, circles: simulation.
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5.3. Number of customers served during the busy period

Figure 5.23.: M/M/1/S queueing system: number of customers served during the busy period.
S = 3, λ = 0.7, µ = 1.
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5. Idle and busy period

Figure 5.24.: M/M/1/S queueing system: number of customers served during the busy period
for various arrival rates. S = 3, µ = 1.

Figure 5.25.: Number of customers served during the busy period in an M/M/1/S queueing sys-
tem, a Hypo/M/1/S queueing system (cA = 0.75) and an M/Hypo/1/S queueing
system (cS = 0.75). All: S = 3, λ = 1, µ = 1.
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5.3. Number of customers served during the busy period

An alternative approach to model an M/M/1/S queueing system

In Chapter 6, we have a situation where it would be helpful to be able to describe the
state of a queueing system by the number of remaining services in the current busy
period. So we could try to model an M/M/1/S queueing system with the Markov chain
shown in Figure 5.26.

Figure 5.26.: An alternative approach to model an M/M/1/S queueing system. This approach
does not work! Meaning of the names of the states: remaining number of cus-
tomers served in the current busy period, or “Idle” if the queueing system is empty.
ξi = P (ξ = i).

Unfortunately, this is not possible. Although the service times are independent, the
service times within a busy period are not independent. For example, if S = 3, it is very
unlikely that we would have 8 consecutive short service times within the same busy
period: Unless we have a few short interarrival times at the same time, the busy period
ends after around 3 short service times because the system becomes empty. That is,
the probability that within a busy period we have 8 short service times is the probability
that we have 8 short service times and that we have, in addition, a few short interarrival
times.

Another reason is that the transition rate between state “n remaining services in the cur-
rent busy period” and state “n− 1 remaining services in the current busy period” depends
on n: The last service in a busy period finishes at rate λ + µ instead of µ, because a
service time can be the last one only if it is smaller than the next interarrival time.2 The
second to last service is not that short, but also shorter than an average service time.
(If it were longer, it would be likely that customers arrive, which would prevent it from
being the second to last by prolonging the busy period.) The first service time in the
busy period tends to be longer than average, and so on.

Figures 5.27 and 5.28 show the actual transition rates and the coefficient of variation of
the sojourn times in the states of the process we tried to model with the Markov chain
shown in Figure 5.26. We see that the rates and coefficients of variation depend not
only on the state, but also on ξ.

2 The smallest of independent exponential random variables X1, X2, . . . , Xn with respective rates
λ1, λ2, . . . , λn is also an exponential random variable, whose rate is the sum of the λjs:
P {minj Xj ≥ x} = P {Xj ≥ x} ∀j =

∏
j P {Xj ≥ x} =

∏
j e−λjx = e−

∑
j λjx. The last expres-

sion is the complementary cumulative distribution function for an exponential random variable with
rate

∑
j λj .
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5. Idle and busy period

Figure 5.27.: Actual transition rates in the process we tried to describe by the Markov chain
shown in Figure 5.26. S = 3, λ = 0.7, µ = 1. Simulation study.

Figure 5.28.: Actual coefficient of variation of the sojourn times in the states of the process we
tried to describe by the Markov chain shown in Figure 5.26. S = 3, λ = 0.7, µ = 1.
Simulation study.
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5.3. Number of customers served during the busy period

5.3.2. Hypo/M/1/S queueing system

Figure 5.29 shows the Markov chain for the calculation of the probability distribution
of the number of customers served during a busy period in a Hypo/M/1/S queueing
system.

When the busy period begins, there is one customer in the system, the arrival process is
in its initial state and there have not yet been any services in the current busy period.
Therefore, the Markov chain is in state 〈1/1/0〉:

πi(0) =

{
1 i = 〈1/1/0〉
0 otherwise

(5.142)

Now we calculate the state probabilities with

π′(τ) = π(τ) · Q (5.143)

until, for example,

1−
N∑
n=0

(
π〈0/1/n〉(τ) + π〈0/2/n〉(τ)

)
< 10−6 (5.144)

The probability distribution of ξ is

P (ξ = n) = lim
t→∞

π〈0/1/n〉(t) + π〈0/2/n〉(t) n < N (5.145)

P (ξ ≥ N) = lim
t→∞

π〈0/1/N〉(t) + π〈0/2/N〉(t) (5.146)

or

P (ξ ≥ n) =
N∑
i=n

lim
t→∞

π〈0/1/n〉(t) + π〈0/2/n〉(t) n ≤ N (5.147)

5.3.3. M/Hypo/1/S queueing system

The Markov chain for the calculation of the probability distribution of the number of
customers served during a busy period of an M/Hypo/1/S queueing system is shown in
Figure 5.30.

When the system is idle and a customer arrives, there is one customer in the system,
the service process is in its initial state and there have not yet been any services in the
current busy period. Therefore, the Markov chain is in state 〈1/1/0〉:

πi(0) =

{
1 i = 〈1/1/0〉
0 otherwise

(5.148)

Now we calculate the state probabilities with

π′(τ) = π(τ) · Q (5.149)
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5. Idle and busy period

Figure 5.29.: Hypo/M/1/S queueing system: calculation of the number of customers served
during a busy period. Meaning of the names of the states: number of customers
in the system / state of the arrival process / number of counted services.
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Figure 5.30.: M/Hypo/1/S queueing system: calculation of the number of customers served
during a busy period. Meaning of the names of the states: number of customers
in the system / state of the service process / number of counted services.
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5. Idle and busy period

until, for example,

1−
N∑
n=0

π〈0/−/n〉(τ) < 10−6 (5.150)

The probability distribution of ξ is

P (ξ = n) = lim
t→∞

π〈0/−/n〉(t) n < N (5.151)

P (ξ ≥ N) = lim
t→∞

π〈0/−/N〉(t) (5.152)

or

P (ξ ≥ n) =
N∑
i=n

lim
t→∞

π〈0/−/n〉(t) n ≤ N (5.153)
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6. Departure stream

This chapter deals with the departure stream of queueing systems. The departure
stream is the stream created by those customers who have been served in a queueing
system and leave it.

The interdeparture times of single-server queueing systems can be calculated easily if
we know the length of the idle period and the number of customers served during the
busy period. We show how to do this in Section 6.1.

In most cases, the interdeparture times of a queueing system are not independent. In
Section 6.2 we shall briefly discuss this topic.

Finally, we show how to model a small queueing network where the departure stream
of a queueing system constitutes the arrival stream of another queueing system. We first
model the queueing network by using one single Markov chain for both systems (Section
6.3), and then we show how the network can be analysed using network decomposition
(Section 6.4).

6.1. Interdeparture times

Under the assumption of state-independent service rates, the interdeparture times of
a single-server queueing system consist of two types of random variables: The first
interdeparture time D(1) in a busy cycle (that is, a cycle consisting of the idle period and
the busy period) is the sum of the length of the idle period I and the first service time
S. The remaining interdeparture times D(2) equal the service times (see Figure 6.1).

D(1) = I + S (6.1)

D(2) = S (6.2)

If we know the number of customers served during a busy period ξ, we can calculate
the average interdeparture time of the sequence

I + S, S, S︸ ︷︷ ︸
ξ departures

, I + S︸ ︷︷ ︸
ξ departures

, I + S, S, S, S, S, S︸ ︷︷ ︸
ξ departures

, I + S, S︸ ︷︷ ︸
ξ departures

, . . .

with

D =
(I + S) + (ξ − 1)S

ξ
(6.3)
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6. Departure stream

Figure 6.1.: Departures of a single-server queueing system during a cycle consisting of the idle
period and the busy period.

The probability density function of the interdeparture times is

fD(t) =
(fI(t) ∗ fS(t)) + (ξ − 1) fS(t)

ξ
(6.4)

Often I + S is expressible as a weighted sum of hypoexponential random variables:

I + S ∼ σIi1 HypoExp(· · · ) + σIi2 HypoExp(· · · ) + . . . (6.5)

If this is not possible, the distribution of I+S should not be calculated by first calculating
I and S and then convolving the probability density functions,

fI+S(t) =

∞∫
−∞

fS(τ)fI(t− τ)dτ (6.6)

It is more accurate to calculate the complementary cumulative distribution function of
I +S by means of the Markov chainMI we used for the calculation of the length of the
busy period: We add states and transitions that describe the first service of a customer
to all states in which the Markov chain can be when the busy period begins. Then we
calculate the time needed to go from the states in which the Markov chain is when the
idle period begins to reach the busy period and to traverse the added transitions that
describe the first service.

The mean of the interdeparture times can be calculated from fD(t) with

E(D) =

∞∫
0

t fD(t) dt (6.7)
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6.1. Interdeparture times

or from the service rate µ and the utilisation ρ with

E(D) =
1

µ ρ
(6.8)

Another method, which also can be used if the service rates are state-dependent, is to
calculate the departure rate from the stationary state probabilities and the rate at which
each state produces departures:

1

E(D)
=
∑
b∈B

∑
j 6=b

hbjπb (6.9)

where

hbj =

{
qbj if b→ j corresponds to a departure

0 otherwise
(6.10)

6.1.1. M/M/1/S queueing system

Figure 6.2.: M/M/1/S queueing system: Markov chain for the system state. Meaning of the
names of the states: number of customers in the system.

As can be seen from Figure 6.2, the length of the idle period of an M/M/1/S queueing
system is exponentially distributed with rate λ. The service times are exponentially
distributed with rate µ:

I ∼ Exp(λ) (6.11)
S ∼ Exp(µ) (6.12)

Therefore, we have

D =
(I + S) + (ξ − 1)S

ξ
∼

HypoExp(λ, µ) + (ξ − 1) Exp(µ)

ξ

(6.13)
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6. Departure stream

Using the closed-form solution for E (ξ) (Equation 5.132) we obtain

for λ 6= µ :

fD(t) =

λµ(e−λt−e−µt)
µ−λ + (ξ − 1)µe−µt

ξ
=

=

λµ(e−λt−e−µt)
µ−λ +

(
1−(λ/µ)S

1−λ/µ − 1
)
µe−µt

1−(λ/µ)S

1−λ/µ

=

= · · · =
e−µt

(
λ
µ

)S
µ− λe−λt(

λ
µ

)S
− 1

(6.14)

FD(t) = · · · =
1− e−λt −

(
λ
µ

)S
+ e−µt

(
λ
µ

)S
1−

(
λ
µ

)S (6.15)

E(D) =

∫ ∞
t=0

t fD(t) dt = · · · = λS+1 − µS+1

λµ(λS − µS)
(6.16)

Var(D) =

∫ ∞
t=0

(t− E(D))2 fD(t) dt = · · · =

=
µ2S+2 − 2λS+2µS − 2µS+2λS + 2λS+1µS+1 + λ2S+2

λ2µ2 (µ2S − 2µSλS + λ2S)

(6.17)

for λ = µ :

fD(t) =
−µ+ µ2t+ µS

eµ tS
(6.18)

FD(t) =
Seµt − S − µ t

Seµt
(6.19)

E(D) =
S + 1

µS
(6.20)

Var(D) =
S2 + 2S − 1

S2µ2
(6.21)

6.1.2. Hypo/M/1/S queueing system

Figure 6.3 shows the Markov chain for the system state of a Hypo/M/1/S queueing
system. We see that the idle period is hypoexponentially distributed (with parameters
λ1 and λ2 if the Markov chain is in state 〈0/1〉 when the idle period begins, and it
is exponentially distributed (with parameter λ2) if the Markov chain is in state 〈0/2〉
when the idle period begins. The service times are exponentially distributed with rate
µ. Therefore, the first interdeparture time is

D(1) ∼ σI〈0/1〉HypoExp(λ1, λ2, µ) + σI〈0/2〉HypoExp(λ2, µ) (6.22)
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6.1. Interdeparture times

Figure 6.3.: Hypo/M/1/S queueing system: Markov chain for the system state. Meaning of the
names of the states: number of customers in the system / state of the arrival pro-
cess.

The following interdeparture times are

D(2) ∼ Exp(µ) (6.23)

For the average interdeparture times, we obtain

D ∼
σI〈0/1〉HypoExp(λ1, λ2, µ) + σI〈0/2〉HypoExp(λ2, µ)

ξ
+

(ξ − 1) Exp(µ)

ξ
(6.24)

6.1.3. Hyper/M/1/S queueing system

Figure 6.4.: Hyper/M/1/S queueing system: Markov chain for the system state. Meaning of
the names of the states: number of customers in the system / state of the arrival
process.

Figure 6.4 shows the Markov chain for the system state of a Hyper/M/1/S queueing
system. If the Markov chain is in state 〈0/1〉 when the idle period begins, the idle period
is exponentially distributed with rate λ1 (because α1 + α2 = 1). If the Markov chain is
in state 〈0/2〉 when the idle period begins, the idle period is exponentially distributed
with rate λ2. Therefore, the first interdeparture time is

D(1) ∼ σI〈0/1〉HypoExp(λ1, µ) + σI〈0/2〉HypoExp(λ2, µ) (6.25)

The following interdeparture times are

D(2) ∼ Exp(µ) (6.26)
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6. Departure stream

For the average interdeparture times we obtain

D ∼
σI〈0/1〉HypoExp(λ1, µ) + σI〈0/2〉HypoExp(λ2, µ) + (ξ − 1) Exp(µ)

ξ
(6.27)

6.1.4. Other PH/PH/1/S queueing systems

M/Hypo/1/S queueing system

Figure 6.5.: M/Hypo/1/S queueing system: Markov chain for the system state. Meaning of the
names of the states: number of customers in the system / state of the service
process.

As can be seen from Figure 6.5, the length of the idle period of an M/Hypo/1/S queue-
ing system is exponentially distributed with rate λ. The service times are hypoexponen-
tially distributed with parameters µ1 and µ2:

I ∼ Exp(λ) (6.28)
S ∼ HypoExp(µ1, µ2) (6.29)

Therefore, we have

D ∼ HypoExp(λ, µ1, µ2) + (ξ − 1) HypoExp(µ1, µ2)

ξ
(6.30)

M/Hyper/1/S queueing system

Figure 6.6 shows the Markov chain for the system state of an M/Hyper/1/S queueing
system. The length of the idle period is exponentially distributed with rate λ. The
service times are hyperexponentially distributed with parameters µ1, α1, µ2, α2. That
is, the first service time is with probability α1 exponentially distributed with rate µ1,
and with probability α2 it is exponentially distributed with rate µ2. Therefore, the first
interdeparture time is

D(1) ∼ α1 HypoExp(λ, µ1) + α2 HypoExp(λ, µ2) (6.31)
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6.1. Interdeparture times

Figure 6.6.: M/Hyper/1/S queueing system: Markov chain for the system state. Meaning of
the names of the states: number of customers in the system / state of the service
process.

and the following interdeparture times are

D(2) ∼ HyperExp(µ1, α1, µ2, α2) (6.32)

For the average interdeparture times, we obtain

D ∼ α1 HypoExp(λ, µ1) + α2 HypoExp(λ, µ2)

ξ
+

(ξ − 1) HyperExp(µ1, α1, µ2, α2)

ξ

(6.33)

If we are only interested in the mean of the interdeparture times, we can calculate the
departure rate with

1

E(D)
=

3∑
n=1

π〈n/1〉µ1 +
3∑

n=1

π〈n/2〉µ2 (6.34)

Hyper/Hyper/1/S queueing system

Figure 6.7 shows the Markov chain for the system state of a Hyper/Hyper/1/S queueing
system.

If the Markov chain is in state 〈0/1/−〉 when the idle period begins, the length of the
idle period is exponentially distributed with rate λ1. If the Markov chain is in state
〈0/2/−〉 when the idle period begins, the length of the idle period is exponentially
distributed with rate λ2. The service times are hyperexponentially distributed with pa-
rameters µ1, β1, µ2, β2. That is, the first service time is with probability β1 exponentially
distributed with rate µ1, and with probability β2 it is exponentially distributed with rate
µ2. Therefore, the first interdeparture time is

D(1) ∼ σI〈0/1/−〉β1 HypoExp(λ1, µ1)+

σI〈0/1/−〉β2 HypoExp(λ1, µ2)+

σI〈0/2/−〉β1 HypoExp(λ2, µ1)+

σI〈0/2/−〉β2 HypoExp(λ2, µ2)

(6.35)
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6. Departure stream

Figure 6.7.: Hyper/Hyper/1/S queueing system: Markov chain for the system state. Meaning of
the names of the states: number of customers in the system / state of the arrival
process / state of the service process.

and the following interdeparture times are

D(2) ∼ HyperExp(µ1, β1, µ2, β2) (6.36)

The average interdeparture times are

D ∼ (σI〈0/1/−〉β1 HypoExp(λ1, µ1) + σI〈0/1/−〉β2 HypoExp(λ1, µ2)+

σI〈0/2/−〉β1 HypoExp(λ2, µ1) + σI〈0/2/−〉β2 HypoExp(λ2, µ2)+

(ξ − 1) HyperExp(µ1, β1, µ2, β2)) /ξ

(6.37)

Hyper/Hypo/1/S queueing system

Figure 6.8.: Hyper/Hypo/1/S queueing system: Markov chain for the system state. Meaning of
the names of the states: number of customers in the system / state of the arrival
process / state of the service process.

Figure 6.8 shows the Markov chain for the system state of a Hyper/Hypo/1/S queueing
system.
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6.1. Interdeparture times

If the Markov chain is in state 〈0/1/−〉when the idle period begins, the length of the idle
period is exponentially distributed with rate λ1. If the Markov chain is in state 〈0/2/−〉
when the idle period begins, the length of the idle period is exponentially distributed
with rate λ2. The service times are hypoexponentially distributed with parameters µ1

and µ2. Therefore, the first interdeparture time is

D(1) ∼ σI〈0/1/−〉HypoExp(λ1, µ1, µ2) + σI〈0/2/−〉HypoExp(λ2, µ1, µ2) (6.38)

and the following interdeparture times are

D(2) ∼ HypoExp(µ1, µ2) (6.39)

The average interdeparture times are

D ∼
σI〈0/1/−〉HypoExp(λ1, µ1, µ2) + σI〈0/2/−〉HypoExp(λ2, µ1, µ2)

ξ
+

(ξ − 1) HypoExp(µ1, µ2)

ξ

(6.40)

If we are only interested in the mean of the interdeparture times, we can calculate the
departure rate with

1

E(D)
=

3∑
n=1

(
π〈n/1/2〉 + π〈n/2/2〉

)
µ2 (6.41)

Hypo/Hyper/1/S queueing system

Figure 6.9.: Hypo/Hyper/1/S queueing system: Markov chain for the system state. Meaning of
the names of the states: number of customers in the system / state of the arrival
process / state of the service process.

Figure 6.9 shows the Markov chain for the system state of a Hypo/Hyper/1/S queue-
ing system. If the Markov chain is in state 〈0/1/−〉 when the idle period begins, the
length of the idle period is hypoexponentially distributed (with parameters λ1 and λ2).
If the Markov chain is in state 〈0/2/−〉 when the idle period begins, it is exponentially
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6. Departure stream

distributed (with parameter λ2). The service times are hyperexponentially distributed
with parameters µ1, α1, µ2, α2. That is, the first service time is with probability α1 expo-
nentially distributed with rate µ1, and with probability α2 it is exponentially distributed
with rate µ2. Therefore, the first interdeparture time is

D(1) ∼ σI〈0/1/−〉α1 HypoExp(λ1, λ2, µ1)+

σI〈0/1/−〉α2 HypoExp(λ1, λ2, µ2)+

σI〈0/2/−〉α1 HypoExp(λ2, µ1)+

σI〈0/2/−〉α2 HypoExp(λ2, µ2)

(6.42)

and the following interdeparture times are

D(2) ∼ HyperExp(µ1, α1, µ2, α2) (6.43)

The average interdeparture times are

D ∼ (σI〈0/1/−〉α1 HypoExp(λ1, λ2, µ1) + σI〈0/1/−〉α2 HypoExp(λ1, λ2, µ2)+

σI〈0/2/−〉α1 HypoExp(λ2, µ1) + σI〈0/2/−〉α2 HypoExp(λ2, µ2)+

(ξ − 1) HyperExp(µ1, α1, µ2, α2)) /ξ

(6.44)

Hypo/Hypo/1/S queueing system

Figure 6.10.: Hypo/Hypo/1/S queueing system: Markov chain for the system state. Meaning of
the names of the states: number of customers in the system / state of the arrival
process / state of the service process.

Figure 6.9 shows the Markov chain for the system state of a Hypo/Hypo/1/S queueing
system. If the Markov chain is in state 〈0/1/−〉 when the idle period begins, the length
of the idle period is hypoexponentially distributed (with parameters λ1 and λ2). If
the Markov chain is in state 〈0/2/−〉 when the idle period begins, it is exponentially
distributed (with parameter λ2). The service times are hypoexponentially distributed
with parameters µ1 and µ2. Therefore, the first interdeparture time is

D(1) ∼ σI〈0/1/−〉HypoExp(λ1, λ2, µ1, µ2) + σI〈0/2/−〉HypoExp(λ2, µ1, µ2) (6.45)

and the following interdeparture times are

D(2) ∼ HypoExp(µ1, µ2) (6.46)
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The average interdeparture times are

D ∼
σI〈0/1/−〉HypoExp(λ1, λ2, µ1, µ2) + σI〈0/2/−〉HypoExp(λ2, µ1, µ2)

ξ
+

(ξ − 1) HypoExp(µ1, µ2)

ξ

(6.47)

Figures 6.11, 6.12 and 6.13 show the first two moments of the departure streams of the
queueing systems discussed.

We see that when the arrival rate is low, the interdeparture times are mainly of the type
I + S, so the statistical characteristics of the arrival process dominate. As the arrival
rate increases, there are more and more interdeparture times of type S, therefore the
statistical characteristics of the service process dominate.

Figure 6.11.: Rate and coefficient of variation of the interdeparture times of PH/M/1/S queueing
systems with arrival rate λ, service rate µ = 1 and S = 3. (a) Hyper/M/1/S
queueing system (cA = 1.25), (b) M/M/1/S queueing system, (c) Hypo/M/1/S
queueing system (cA = 0.85).
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Figure 6.12.: Rate and coefficient of variation of the interdeparture times of M/PH/1/S queueing
systems with arrival rate λ, service rate µ = 1 and S = 3. (a) M/Hyper/1/S
queueing system (cS = 1.25), (b) M/M/1/S queueing system, (c) M/Hypo/1/S
queueing system (cS = 0.85).
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Figure 6.13.: Rate and coefficient of variation of the interdeparture times of PH/PH/1/S queue-
ing systems with arrival rate λ, service rate µ = 1 and S = 3. (a) Hyper/Hyper/1/S
queueing system (cA = 1.3, cS = 1.2), (b) Hyper/Hypo/1/S queueing system
(cA = 1.3, cS = 0.9), (c) Hypo/Hyper/1/S queueing system (cA = 0.8, cS = 1.2),
(d) Hypo/Hypo/1/S queueing system (cA = 0.8, cS = 0.9).
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6.2. Dependencies between the interdeparture times

Even if both the interarrival times and the service times of a queueing system are inde-
pendent and identically distributed, this does, in general, not hold for the interdeparture
times.1

The reasons are that the interdeparture times consist of two types of random variables
(in a busy cycle we have one interevent time of length I + S and ξ − 1 interevent times
of length S) and that the service times within a busy period are not independent, as was
discussed in Section 5.3.1: For example, the last service time in a busy period has rate
λ + µ, and the finite system size limits the number of consecutive short services within
a busy period.

An important measure for the interdependence in a sequence of random variables is
the autocorrelation, which is discussed in Section 8.2. In brief, the autocorrelation
of a sequence of random variables 〈X1, X2, . . . 〉 is a measure of the extent to which
Xi+d depends on Xi. The closer the autocorrelation is to 1 or -1, the stronger the
interdependence is. Figure 6.14 shows the autocorrelation of the interdeparture times
of an M/M/1/S queueing system for various system sizes.

Figure 6.14.: M/M/1/S queueing system: Autocorrelation of the interdeparture times. Arrival
rate λ, service rate µ = 1. Simulation study.

1An important case where the interdeparture times are i.i.d. is the M/M/1 queueing system. The
steady-state departure stream of an M/M/1 queueing system is a Poisson process whose rate equals
the arrival rate (see [Burke 1966]).
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6.2.1. Effect of the dependencies

For an estimation of the effect of the dependencies between the interdeparture times,
we consider two queueing systems in tandem and compare the number of customers
in the downstream system for two different arrival streams: The first stream is the
departure stream of the upstream queueing system (Figure 6.15a). The second stream
has the same interevent times as the first stream, but these interevent times have been
shuffled (Figure 6.15b), so that they are not interdependent any more.

(a)

(b)

Figure 6.15.: Estimation of the effect of the dependencies between the interdeparture times.
(a) The interarrival times at system 2 are the real interdeparture times of system
1 (including dependencies). (b) The interarrival times at system 2 are the interde-
parture times of system 1 without dependencies.

The results are shown in Figure 6.16. When the arrival rate of the upstream system is
very low or very high, there is little difference between the results. In the former case,
the interdeparture times are mainly of type I + S and are, therefore, independent. In
the latter case, the interdeparture times are mainly of type S. They are not completely
independent, but since we have long busy periods and a high probability that the system
is full, the interdependence is very weak.
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6. Departure stream

Figure 6.16.: Two queueing systems in tandem: number of customers in the downstream sys-
tem. Solid line: real interarrival times, dashed line: interarrival times without de-
pendencies.
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6.3. Modelling a tandem system

We consider the queueing network shown in Figure 6.17. The network consists of two
GI/M/1/S queueing systems. Customers arrive according to a Poisson process at system
1. When they have been served in system 1, they are forwarded to system 2. Such a
network is called a (two-station) tandem system. If system 2 is full when a customer
arrives, the customer is lost.

Figure 6.17.: Tandem system.

We are interested in the number of customers in system 2 and in the interdeparture
times D2 of system 2. (The number of customers in system 1 and the interdeparture
times of system 1 are independent of the fact that served customers are forwarded to
another system, so they are calculated as shown in Sections 3.1 and 6.1.)

The Markov chain for the system state of the network is shown in Figure 6.18.

Arrivals at system 1 (rate λ) increase the number of customers in system 1. Services
in system 1 (rate µ) decrease the number of customers in system 1 and increase the
number of customers in system 2. Services in system 2 (rate κ) decrease the number of
customers in system 2.

For the calculation of the number of customers in the queueing systems, we calculate
the stationary system state probabilities π by solving the system of linear equations

π · Q = 0 (6.48)∑
i

πi = 1 (6.49)

The number of customers in the first system X1 is

P {X1 = i} =
3∑

k=0

π〈i/k〉 (6.50)

E(X1) =
3∑
i=1

i
3∑

k=0

π〈i/k〉 (6.51)

The number of customers in the second system X2 is

P {X2 = i} =
3∑

k=0

π〈k/i〉 (6.52)

E(X2) =
3∑
i=1

i
3∑

k=0

π〈k/i〉 (6.53)
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The length of the idle period of the second system I2 is calculated with the Markov chain
shown in Figure 6.19.

The Markov chain can be in states 〈0/0〉, 〈1/0〉, 〈2/0〉 and 〈3/0〉 when the idle period
begins, depending on the state in which the network was before the last customer in
system 2 was served. The probabilities σIi that the Markov chain is in state i, i = 1 . . . 4,
when the idle period begins are

σI〈0/0〉 = σI1 = π〈0/1〉

(
3∑

k=0

π〈k/1〉

)−1

= π5

(
8∑

k=5

πk

)−1

(6.54)

σI〈1/0〉 = σI2 = π〈1/1〉

(
3∑

k=0

π〈k/1〉

)−1

= π6

(
8∑

k=5

πk

)−1

(6.55)

σI〈2/0〉 = σI3 = π〈2/1〉

(
3∑

k=0

π〈k/1〉

)−1

= π7

(
8∑

k=5

πk

)−1

(6.56)

σI〈3/0〉 = σI4 = π〈3/1〉

(
3∑

k=0

π〈k/1〉

)−1

= π8

(
8∑

k=5

πk

)−1

(6.57)

The idle period ends when a customer arrives at system 2, that is, if one of the states
〈0/1〉, 〈1/1〉 or 〈2/1〉 is reached.

The length of the idle period is

I2 ∼ σI〈0/0〉

( µ

λ+ µ
HypoExp(λ, µ) +

λ

λ+ µ

µ

λ+ µ
HypoExp(λ, λ, µ)+

λ

λ+ µ

λ

λ+ µ
HypoExp(λ, λ, λ, µ)

)
+

σI〈1/0〉

( µ

λ+ µ
Exp(µ) +

λ

λ+ µ

µ

λ+ µ
HypoExp(λ, µ)+

λ

λ+ µ

λ

λ+ µ
HypoExp(λ, λ, µ)

)
+

σI〈2/0〉

( µ

λ+ µ
Exp(µ) +

λ

λ+ µ
HypoExp(λ, µ)

)
+

σI〈3/0〉 Exp(µ)

(6.58)
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6.3. Modelling a tandem system

Figure 6.18.: Tandem system: Markov chain for the system state. Meaning of the names of the
states: number of customers in system 1 / number of customers in system 2.
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6. Departure stream

Figure 6.19.: Tandem system: Markov chain for the calculation of the length of the idle period.
Meaning of the names of the states: number of customers in system 1 / number
of customers in system 2.
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6.3. Modelling a tandem system

Figure 6.20.: Tandem system: Markov chain for the calculation of the length of the first inter-
departure time. Meaning of the names of the states: number of customers in
system 1 / number of customers in system 2.

169



6. Departure stream

The length of the first interdeparture time D(1)
2 is the sum of length of the idle period

and the first service,

D
(1)
2 ∼ σI〈0/0〉

( µ

λ+ µ
HypoExp(λ, µ, κ) +

λ

λ+ µ

µ

λ+ µ
HypoExp(λ, λ, µ, κ)+

λ

λ+ µ

λ

λ+ µ
HypoExp(λ, λ, λ, µ, κ)

)
+

σI〈1/0〉

( µ

λ+ µ
HypoExp(µ, κ) +

λ

λ+ µ

µ

λ+ µ
HypoExp(λ, µ, κ)+

λ

λ+ µ

λ

λ+ µ
HypoExp(λ, λ, µ, κ)

)
+

σI〈2/0〉

( µ

λ+ µ
HypoExp(µ, κ) +

λ

λ+ µ
HypoExp(λ, µ, κ)

)
+

σI〈3/0〉HypoExp(µ, κ)

(6.59)

Another way of determining D
(1)
2 is to calculate the time the Markov chain shown in

Figure 6.20 needs to go from states 1. . . 4 to state 17:

ϕk(0) =

{
1 1 ≤ k ≤ 7

0 otherwise
(6.60)

ϕ′(τ) = Q · ϕ(τ) (6.61)

P
{
D

(1)
2 > t

}
= σI〈0/0〉ϕ〈0/0〉(t) + σI〈1/0〉ϕ〈1/0〉(t)+

σI〈2/0〉ϕ〈2/0〉(t) + σI〈3/0〉ϕ〈3/0〉(t) (6.62)

The length of the busy period is calculated with the Markov chain shown in Figure
6.21.

The busy period begins when system 2 is empty (states 〈1/0〉, 〈2/0〉, 〈3/0〉) and in sys-
tem 1 a customer is served (states 〈0/1〉, 〈1/1〉, 〈2/1〉). The probability σBi that the
Markov chain is in state i when the busy period begins depends on the stationary system
state probabilities π〈1/0〉, π〈2/0〉 and π〈3/0〉:

σB〈0/1〉 = σB5 = π〈1/0〉

(
3∑

k=1

π〈k/0〉

)−1

= π2

(
4∑

k=2

πk

)−1

(6.63)

σB〈1/1〉 = σB6 = π〈2/0〉

(
3∑

k=1

π〈k/0〉

)−1

= π3

(
4∑

k=2

πk

)−1

(6.64)

σB〈2/1〉 = σB7 = π〈3/0〉

(
3∑

k=1

π〈k/0〉

)−1

= π4

(
4∑

k=2

πk

)−1

(6.65)

The busy period ends when system 2 becomes idle again (states 〈k/0〉, k = 1 . . . 4).
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6.3. Modelling a tandem system

Figure 6.21.: Tandem system: Markov chain for the calculation of the length of the busy period.
Meaning of the names of the states: number of customers in system 1 / number
of customers in system 2.
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6. Departure stream

Therefore, the length B2 of the busy period of system 2 is calculated as follows:

ϕ〈i/j〉(0) =

{
1 j ≥ 1

0 j = 0
(6.66)

ϕ′(τ) = Q · ϕ(τ) (6.67)

and

P {B2 > t} = FC
B2

(t) = σB〈0/1〉ϕ〈0/1〉(t) + σB〈1/1〉ϕ〈1/1〉(t) + σB〈2/1〉ϕ〈2/1〉(t) (6.68)

E(B2) =

∫ ∞
0

FC
B2

(t)dt (6.69)

The number of customers served during a busy period ξ is

ξ = κ · E(B2) (6.70)

Finally, the interdeparture time D2 of the system 2 is

D2 ∼
D

(1)
2 + (ξ − 1) Exp(κ)

ξ
(6.71)
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6.4. Modelling a tandem system using network decomposition

6.4. Modelling a tandem system using network
decomposition

Again, we consider the queueing network shown in Figure 6.17. But now we use net-
work decomposition for our analysis: we break up the network into subsystems, and
analyse these subsystems individually.

It should be noted that – due to the simplicity and the small size of the involved queue-
ing systems – in our example the Markov chain that describes the state of the network
is quite small. The Markov chains we need for doing network decomposition have a
similar size or are even bigger, so that the advantage of network decomposition might
not be seen easily. However, as the complexity and size of the involved queueing sys-
tems increases, the size of the Markov chain for the state of the network increases much
faster than the size of the Markov chains needed for the network decomposition (see
Figure 6.22).

Figure 6.22.: The number of states in a queueing network grows exponentially with the number
of queueing systems in the network. Here: M/M/1/S queueing systems with (a)
S = 10, (b) S = 20, (c) S = 10, two classes of customers, (d) S = 20, two classes
of customers.
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6. Departure stream

Our first approach (Figure 6.23) is to assume that the stream between system 1 and
system 2 has independent and identically distributed interevent times.

Figure 6.23.: Two GI/M/1/S queueing systems in tandem: network decomposition.

The first step is to determine the probability distribution of the interdeparture times D1

of the first queueing system. This system is an M/M/1/S queueing system, so we can
use the techniques shown in Section 6.1.

Now we approximate this distribution by a phase-type distribution (cf. Section 3.4). For
the approximation, we use a phase-type distribution whose first k moments match the
first k moments of the distribution of D1, where k = 1, 2, 3 and 5:

number of moments phase-type distribution
1 exponential
2 hypoexponential (c < 1)

exponential (c = 1)
hyperexponential (c > 1)

3 2- or 3-stage EC distribution (cf. page 71)
5 3-stage Coxian

For example, if we match 5 moments, we determine the parameters of a 3-stage Coxian
distribution such that its first 5 moments match the first 5 moments of the distribution
of the interdeparture times of system 1.
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6.4. Modelling a tandem system using network decomposition

Then we assume system 2 to be a PH/M/1/S queueing system, whereby the distribution
of the interarrival times is the previously determined phase-type distribution:

number of moments type of system 2
1 M/M/1/S
2 Hypo/M/1/S (c < 1)

M/M/1/S (c = 1)
Hyper/M/1/S (c > 1)

3 Cox*/M/1/S
5 Cox/M/1/S

The expected number of customers and the interdeparture times of these PH/M/1/S
queueing systems can be determined using the techniques shown in Sections 3.1 and
6.1.

Figure 6.24 shows the results. It should be noted that, since we ignore the interdepen-
dence between the interdeparture times, the best achievable result is indicated by the
dashed line.

Figure 6.24.: Two queueing systems in tandem: number of customers in the downstream sys-
tem. The arrival rate in the upstream system (system 1) is λ, the service rates are
µ = κ = 1. S = 3. Network decomposition: (a) 1 moment, (b) 2 moments, (c) 3
moments, (d) 5 moments. (e) Exact results, (f) the interarrival times of the second
system are the interdeparture times of the first system without interdependencies.
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6. Departure stream

For our second approach (Figure 6.25), we use our knowledge of the structure of the
departure stream: In a busy cycle the first interdeparture time is of type I + S, the
following ξ − 1 interdeparture times are of type S.

Figure 6.25.: Two GI/M/1/S queueing systems in tandem: network decomposition.

The Markov chain for the system state of system 2 is shown in Figure 6.27. (Figures
6.28 and 6.29 show two other Markov chains that could be used.)

If system 1 is empty (states 1,2,3 and 4) and a customer arrives (rate λ), we chose
the length of the following busy period in system 1 according to the distribution of ξ.
These transitions do not affect the number of customers in system 2. They are part of
the interdeparture times of type I + S. With each service in system 1, the number of
customers in system 2 increases and the number of remaining services during the busy
period of system 1 decreases. Depending on the chosen length of the busy period, we
have a certain number of arrivals at system 2. Then system 1 is assumed to be idle
again, and the next transition is the arrival of a customer at system 1.

One might expect this approach to achieve good results. However, as discussed in
Section 5.3.1, it is not possible to model the state of a queueing system by describing
the remaining number of customers to be served in the current busy period. Therefore,
the approach fails. The results, which are shown in Figure 6.26, are not better than
those we obtain when we approximate the arrival process of system 2 by a renewal
process whose interevent times match only the first moment of the interdeparture times
of system 1 (Figure 6.24 - line a).

Of course, we could use an even more complicated Markov chain in order to take the
interdependencies between the interdeparture times of system 1 into account. But with
each additional detail we describe in the Markov chain, the Markov chain becomes
bigger. If we construct a Markov chain that includes a complete description of the
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6.4. Modelling a tandem system using network decomposition

structure of the departure stream, this Markov chain is as big the Markov chain that
describes the system state for both systems (Figure 6.18). This means, when we use
network decomposition, we have to find a trade-off between the accuracy and the size
of the used Markov chains.

Figure 6.26.: Two queueing systems in tandem: number of customers in the downstream sys-
tem. The arrival rate in the upstream system (system 1) is λ, the service rates are
µ1 = µ2 = 1. S = 3. (a) network decomposition using the structure I+S,S,S,. . . (b)
exact results, (c) the interarrival times of the second system are the interdeparture
times of the first system without interdependencies.
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6. Departure stream

Figure 6.27.: Two GI/M/1/S queueing systems in tandem: Markov chain for the system state of
system 2. Meaning of the names of the states: number of customers in system 2
/ remaining number of customers which are served during the current busy period
of system 1 or 0, if system 1 is empty. λ. . . arrival rate at system 1, µ . . . service
rate of system 1, κ . . . service rate of system 2.
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6.4. Modelling a tandem system using network decomposition

Figure 6.28.: Two GI/M/1/S queueing systems in tandem: Markov chain for the system state of
system 2. Meaning of the names of the states: number of customers in system 2
/ remaining number of customers which are served during the current busy period
of system 1 or 0, if system 1 is empty. λ. . . arrival rate at system 1, µ . . . service
rate of system 1, κ . . . service rate of system 2.
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6. Departure stream

Figure 6.29.: Two GI/M/1/S queueing systems in tandem: Markov chain for the system state of
system 2. Meaning of the names of the states: number of customers in system 2
/ minimum number of customers which are served during the current busy period
of system 1 or 0, if system 1 is empty. λ. . . arrival rate at system 1, µ . . . service
rate of system 1, κ . . . service rate of system 2. θi = P(ξ > i | ξ ≥ i).
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7. Overflow traffic

Customers that are prevented from entering a queueing system (e.g., because the queue-
ing system is full) are either discarded or redirected to other queueing systems. In the
latter case, these customers constitute the so-called overflow traffic, with which we deal
in this chapter.

In Sections 7.1 and 7.3, we determine the interoverflow time and the number of suc-
cessful arrivals between two consecutive overflows. In Section 7.2, we calculate the
blocking probability of queueing systems. In Section 7.4, we show how a small network
containing an overflow stream can be modelled. In Section 7.5, we show how such a
network can by analysed using network decomposition.

7.1. Probability distribution of the interoverflow times

For the calculation of the probability distribution of the interoverflow times R we use
two Markov chains. The first one is the Markov chain for the system state, MS. The
second one, MR, is a modification of the Markov chain for the system state, which
contains an additional absorbing state 〈R〉 (“Customer has been rejected”). This state is
reached whenever a customer is blocked. That means we have to redirect all transi-
tions (including hidden transitions) that correspond to a blocking of a customer to state
〈R〉.

The first step is to determine (with the aid of the Markov chain for the system state) the
probabilities σRi that the queueing system is in state i immediately after a rejection has
occurred.

The second step is to calculate (in MR) for all states i with σRi > 0 the time Ri that
the Markov chain needs to go from state i to state 〈R〉. Let ϕi(·) be the complementary
cumulative distribution function of this time. According to Equations 2.54 and 2.55, we
have

ϕi(0) =

{
1 i 6= 〈R〉
0 i = 〈R〉

ϕ′(τ) = Q · ϕ(τ)

(7.1)

Now we know the length of the interval between two consecutive rejections of cus-
tomers given that the system is in state i after a rejection, and we know the probability
of this happening. We can calculate the cumulative distribution function FR(t) of the
interoverflow times with

FR(τ) = 1−
∑
i

σRi ϕi(τ) (7.2)
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7. Overflow traffic

The mean of the interblocking times can be calculated from FR(t) with

E(R) =

∞∫
0

(1− FR(τ)) dτ =

∞∫
0

∑
i

σRi ϕi(τ)dτ (7.3)

Another method is to calculate the overflow rate from the stationary state probabilities
ofMS and the rate at which each state produces overflows:

1

E(R)
=
∑
i

πi

(
gi +

∑
j 6=i

hij

)
(7.4)

where

hij =

{
qij if i→ j corresponds to an overflow

0 otherwise
(7.5)

and gi is the rate at which overflows are produced while the system remains in state i
(silent events). If we use the Markov chain MR, which we used for the calculation of
the distribution of the interoverflow time, we can write

1

E(R)
=
∑
i

πiqi,〈R〉 (7.6)

7.1.1. M/M/1/S queueing system

Figure 7.1a shows the Markov chain for the system state of an M/M/1/S queueing
system with S = 3. An overflow takes place when the system is full and a customer
arrives. The blocking of the customer does not change the state of the queueing system.
Therefore, immediately after the occurrence of an overflow the system is in state 〈3〉,
and we have σR〈3〉 = 1.

The second Markov chain needed,MR, is shown in Figure 7.1b. The hidden transition
that describes the arrival of customers that are blocked now leads from state 〈3〉 to the
new state 〈R〉.

(a)

(b)

Figure 7.1.: Overflow stream of an M/M/1/S queueing system. (a) Markov chain for the system
state, (b) Markov chain for the calculation of the time to the next rejection (MR).
Meaning of the names of the states: number of customers in the system.
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7.1. Probability distribution of the interoverflow times

Now we use Equation 7.1 to calculate the complementary cumulative distribution func-
tion of the time R〈3〉, which the Markov chain needs to go from state 〈3〉 to state 〈R〉.

ϕ′(τ) = Q · ϕ(τ) ϕi(0) =

{
1 i 6= 〈R〉
0 i = 〈R〉

(7.7)

Since state 〈3〉 is the only state in which the system can be after an overflow has oc-
curred, R〈3〉 is the interoverflow time of this queueing system.

FR(t) = 1− ϕ〈3〉(t) (7.8)

The mean of the interblocking times is

E(R) =

∞∫
0

ϕ〈3〉(t)dt (7.9)

or

E(R) =
1

π〈3〉 · λ
(7.10)

because when the system is in state 〈3〉, it produces overflows with the arrival rate λ.
Using the closed-form solution for the stationary system state probabilities (Equations
3.16 and 3.17),

π0 =


1−λ/µ

1−(λ/µ)S+1 for λ 6= µ

1
S+1

for λ = µ
(7.11)

πn = π0

(
λ

µ

)n
n = 1, . . . , S (7.12)

we obtain

E(R) =


1−(λ/µ)S+1

(1−λ/µ)(λ/µ)Sλ
for λ 6= µ

S+1
λ

for λ = µ

(7.13)
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7.1.2. M/M/1/S queueing system with RED

Random early detection (RED) is a queue management algorithm, where customers
that arrive at the queueing system are accepted with a probability that depends on the
queue length. If the system is empty, all customers are accepted. With increasing queue
length also the probability for rejecting a customer increases. If the system is full, all
customers are rejected.

The Markov chain for the system state of an M/M/1/S queueing system with RED is
shown in Figure 7.2a. When the system is in state 〈0〉, all arriving customers are ac-
cepted. When the system is in state 〈1〉, arriving customers are accepted with probabil-
ity 1 − d1, and with probability d1 they are rejected. When the system is in state 〈2〉,
arriving customers are accepted with probability 1−d2, and with probability d2 they are
rejected. When the system is in state 〈3〉, all arriving customers are rejected.

(a)

(b)

Figure 7.2.: Overflow stream of an M/M/1/S queueing system with RED. (a) Markov chain for the
system state, (b) Markov chain for the calculation of the time to the next rejection
(MR). Meaning of the names of the states: number of customers in the system.

Since the states 〈1〉 and 〈2〉 produce rejections at rate λπ〈1〉d1 and λπ〈2〉d2, respectively,
and state 〈3〉 produces rejections at rate λπ〈3〉, the total rate at which rejections are
produced is

∑2
i=1 λπ〈i〉di + λπ〈3〉. The probability that the system is in state 〈k〉 when a

customer is rejected (and therefore will be in that state immediately after the rejection),
is

σR〈k〉 =
π〈k〉dk

S−1∑
i=1

π〈i〉di + π〈S〉

for k = 1 . . . S − 1 (7.14)

σR〈S〉 =
π〈S〉

S−1∑
i=1

π〈i〉di + π〈S〉

(7.15)
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The Markov chain we use for the calculation of the time to the next rejection, MR, is
shown in Figure 7.2b. The hidden transitions that correspond to rejections now lead to
state 〈R〉. We calculate the complementary cumulative distribution function ϕ〈k〉(·), k =
1 . . . S, of the time that will pass until the next blocking occurs, given that the system is
in state 〈k〉 with

ϕ′(τ) = Q · ϕ(τ) ϕi(0) =

{
1 i 6= 〈R〉
0 i = 〈R〉

(7.16)

The cumulative distribution function of the interblocking time is

FR(τ) = 1−
∑
i

σRi ϕi(τ) (7.17)

A comparison of the overflow traffic of an M/M/1/S queueing system with and without
RED is shown in Figure 7.3.

Figure 7.3.: Overflow stream of an M/M/1/S queueing system (a) with (d0 = 0.05, d1 = 0.2,
d2 = 0.45) and (b) without RED. S = 3, arrival rate λ, service rate µ = 1.
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7.1.3. Hypo/M/1/S queueing system

Figure 7.4a shows the Markov chain for the system state of a Hypo/M/1/S queueing
system with S = 3.

(a)

(b)

Figure 7.4.: Overflow stream of a Hypo/M/1/S queueing system. (a) Markov chain for the sys-
tem state, (b) Markov chain for the calculation of the time to the next rejection.
Meaning of the names of the states: number of customers in the system / state of
the arrival process.

An overflow takes place when the system is full (states 〈3/·〉) and a customer arrives
(transitions 〈·/2〉 → 〈·/1〉). Therefore, transition 〈3/2〉 → 〈3/1〉 corresponds to a rejec-
tion. After the rejection, the system is in state 〈3/1〉, so we have

σR〈3/1〉 = 1 (7.18)

Figure 7.4b shows the extended Markov chain. The transition from state 〈3/2〉 to state
〈3/1〉 now leads to state 〈R〉

The cumulative distribution function of the interblocking times is calculated with

ϕ′(τ) = Q · ϕ(τ) ϕi(0) =

{
1 i 6= 〈R〉
0 i = 〈R〉

(7.19)

and

FR(τ) = 1− ϕ〈3/1〉(τ) (7.20)
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The mean of the interblocking times is

E(R) =

∞∫
0

ϕ〈3/1〉(t)dt (7.21)

or

E(R) =
1

π〈3/2〉 · λ2

(7.22)

because when the system is in state 〈3/2〉, it produces overflows at rate λ2. It should
be noted that the transition from state 〈3/1〉 to 〈3/2〉 does not produce an overflow,
because it does not correspond to the actual arrival of a customer, but only to a change
of the state of the arrival process.

7.1.4. Hyper/M/1/S queueing system

Figure 7.5a shows the Markov chain for the system state of a Hyper/M/1/S queueing
system with S = 3.

(a)

(b)

Figure 7.5.: Overflow stream of a Hyper/M/1/S queueing system. (a) Markov chain for the sys-
tem state, (b) Markov chain for the calculation of the time to the next rejection.
Meaning of the names of the states: number of customers in the system / state of
the arrival process.
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A rejection takes place when the system is full (states 〈3/1〉 and 〈3/2〉) and a customer
arrives. When the system is in state 〈3/1〉, customers arrive at rate λ1, when it is in state
〈3/2〉, customers arrive at rate λ2.

Independent of the state in which the Markov chain was before the rejection occurred,
after a blocking it is state 〈3/1〉 with probability α1 and in state 〈3/2〉 with probability
α2:

σR〈3/1〉 = α1 (7.23)

σR〈3/2〉 = α2 (7.24)

Therefore, the cumulative distribution function of the interblocking times is calculated
with

ϕ′(τ) = Q · ϕ(τ) ϕi(0) =

{
1 i 6= 〈R〉
0 i = 〈R〉

(7.25)

and

FR(τ) = 1− α1ϕ〈3/1〉(τ)− α2ϕ〈3/2〉(τ) (7.26)

The mean of the interblocking times is

E(R) =

∞∫
0

(
α1ϕ〈3/1〉(t) + α2ϕ〈3/2〉(t)

)
dt (7.27)

or

E(R) =
1

π〈3/1〉 · λ1 + π〈3/2〉 · λ2

(7.28)

7.1.5. Other PH/PH/1/S queueing systems

M/Hypo/1/S queueing system

Figure 7.6a shows the Markov chain for the system state of an M/Hypo/1/S queueing
system with S = 3. There is no transition that corresponds to the rejection of a customer,
so after a rejection, the Markov chain is in the same state as it was before the rejection
occurred. If it was in state 〈3/1〉 (probability π〈3/1〉/

(
π〈3/1〉 + π〈3/2〉

)
), it is in state 〈3/1〉,

if it was in state 〈3/2〉 (probability π〈3/2〉/
(
π〈3/1〉 + π〈3/2〉

)
), it is in state 〈3/2〉. So we

have

σR〈3/1〉 =
π〈3/1〉

π〈3/1〉 + π〈3/2〉
(7.29)

σR〈3/2〉 =
π〈3/2〉

π〈3/1〉 + π〈3/2〉
(7.30)
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(a)

(b)

Figure 7.6.: Overflow stream of an M/Hypo/1/S queueing system. (a) Markov chain for the
system state, (b) Markov chain for the calculation of the time to the next rejection.
Meaning of the names of the states: number of customers in the system / state of
the service process.

The second Markov chain needed,MR, is shown in Figure 7.6b. The hidden transitions
that correspond to the arrival of customers that are blocked now lead from states 〈3/1〉
and 〈3/2〉 to the new state 〈R〉.

Now the cumulative distribution function of the interblocking times is calculated with

ϕ′(τ) = Q · ϕ(τ) ϕi(0) =

{
1 i 6= 〈R〉
0 i = 〈R〉

(7.31)

and

FR(τ) = 1−
π〈3/1〉

π〈3/1〉 + π〈3/2〉
ϕ〈3/1〉(τ)−

π〈3/2〉
π〈3/1〉 + π〈3/2〉

ϕ〈3/2〉(τ) (7.32)

M/Hyper/1/S queueing system

The Markov chains for an M/Hyper/1/S queueing system with S = 3 are shown in
Figure 7.7.

After a rejection, the Markov chain is in the same state as it was before the blocking
occurred. This is state 〈3/1〉 (with probability π〈3/1〉/

(
π〈3/1〉 + π〈3/2〉

)
) or state 〈3/2〉
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7. Overflow traffic

(a)

(b)

Figure 7.7.: Overflow stream of an M/Hyper/1/S queueing system. (a) Markov chain for the
system state, (b) Markov chain for the calculation of the time to the next rejection.
Meaning of the names of the states: number of customers in the system / state of
the service process.

(with probability π〈3/2〉/
(
π〈3/1〉 + π〈3/2〉

)
). Therefore, we have

σR〈3/1〉 =
π〈3/1〉

π〈3/1〉 + π〈3/2〉
(7.33)

σR〈3/2〉 =
π〈3/2〉

π〈3/1〉 + π〈3/2〉
(7.34)

The cumulative distribution function of the interblocking times is calculated with

ϕ′(τ) = Q · ϕ(τ) ϕi(0) =

{
1 i 6= 〈R〉
0 i = 〈R〉

(7.35)

and

FR(τ) = 1−
π〈3/1〉

π〈3/1〉 + π〈3/2〉
ϕ〈3/1〉(τ)−

π〈3/2〉
π〈3/1〉 + π〈3/2〉

ϕ〈3/2〉(τ) (7.36)

Hypo/Hypo/1/S queueing system

The Markov chains for a Hypo/Hypo/1/S queueing system with S = 3 are shown in
Figure 7.8.
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7.1. Probability distribution of the interoverflow times

(a)

(b)

Figure 7.8.: Overflow stream of a Hypo/Hypo/1/S queueing system. (a) Markov chain for the
system state, (b) Markov chain for the calculation of the time to the next rejection.
Meaning of the names of the states: number of customers in the system / state of
the arrival process / state of the service process.
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7. Overflow traffic

In this system there are four states that represent a full system: 〈3/1/1〉, 〈3/1/2〉, 〈3/2/1〉
and 〈3/2/2〉. Transitions 〈·/2/·〉 → 〈·/1/·〉 correspond to arrivals of customers. There-
fore, the transitions 〈3/2/1〉 → 〈3/1/1〉 and 〈3/2/2〉 → 〈3/1/2〉 correspond to rejections
of customers.

Before a rejection occurred, the system must have been in state 〈3/2/1〉 or in state
〈3/2/2〉. If it was in state 〈3/2/1〉 (probability π〈3/2/1〉/

(
π〈3/2/1〉 + π〈3/2/2〉

)
), it is in state

〈3/1/1〉 afterwards. If it was in state 〈3/2/2〉 (probability π〈3/2/2〉/
(
π〈3/2/1〉 + π〈3/2/2〉

)
),

it is in state 〈3/1/2〉 afterwards. Therefore, we have

σR〈3/1/1〉 =
π〈3/2/1〉

π〈3/2/1〉 + π〈3/2/2〉
(7.37)

σR〈3/1/2〉 =
π〈3/2/2〉

π〈3/2/1〉 + π〈3/2/2〉
(7.38)

The cumulative distribution function of the interblocking times is calculated with

ϕ′(τ) = Q · ϕ(τ) ϕi(0) =

{
1 i 6= 〈R〉
0 i = 〈R〉

(7.39)

and

FR(τ) = 1−
π〈3/2/1〉

π〈3/2/1〉 + π〈3/2/2〉
ϕ〈3/1/1〉(τ)−

π〈3/2/2〉
π〈3/2/1〉 + π〈3/2/2〉

ϕ〈3/1/2〉(τ) (7.40)

Hypo/Hyper/1/S queueing system

The Markov chains for a Hypo/Hyper/1/S queueing system with S = 3 are shown in
Figure 7.9.

In this system, there are four states that represent a full system: 〈3/1/1〉, 〈3/1/2〉,
〈3/2/1〉 and 〈3/2/2〉. Transitions 〈·/2/·〉 → 〈·/1/·〉 correspond to arrivals of customers.
Therefore, the transitions 〈3/2/1〉 → 〈3/1/1〉 and 〈3/2/2〉 → 〈3/1/2〉 correspond to
rejections of customers.

Before a rejection occurred, the system was in state 〈3/2/1〉 or in state 〈3/2/2〉. If
it was in state 〈3/2/1〉 (probability π〈3/2/1〉/

(
π〈3/2/1〉 + π〈3/2/2〉

)
), it is in state 〈3/1/1〉

afterwards. If it was in state 〈3/2/2〉 (probability π〈3/2/2〉/
(
π〈3/2/1〉 + π〈3/2/2〉

)
), it is in

state 〈3/1/2〉 afterwards. Therefore, we have

σR〈3/1/1〉 =
π〈3/2/1〉

π〈3/2/1〉 + π〈3/2/2〉
(7.41)

σR〈3/1/2〉 =
π〈3/2/2〉

π〈3/2/1〉 + π〈3/2/2〉
(7.42)

The cumulative distribution function of the interblocking times is calculated with

ϕ′(τ) = Q · ϕ(τ) ϕi(0) =

{
1 i 6= 〈R〉
0 i = 〈R〉

(7.43)

and

FR(τ) = 1−
π〈3/2/1〉

π〈3/2/1〉 + π〈3/2/2〉
ϕ〈3/1/1〉(τ)−

π〈3/2/2〉
π〈3/2/1〉 + π〈3/2/2〉

ϕ〈3/1/2〉(τ) (7.44)
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7.1. Probability distribution of the interoverflow times

(a)

(b)

Figure 7.9.: Overflow stream of a Hypo/Hyper/1/S queueing system. (a) Markov chain for the
system state, (b) Markov chain for the calculation of the time to the next rejection.
Meaning of the names of the states: number of customers in the system / state of
the arrival process / state of the service process.
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7. Overflow traffic

Hyper/Hypo/1/S queueing system

The Markov chains for a Hyper/Hypo/1/S queueing system with S = 3 are shown in
Figure 7.10.

There are four states that represent a full system: 〈3/1/1〉, 〈3/1/2〉, 〈3/2/1〉 and 〈3/2/2〉.
In all of these states, rejections can take place.

After a rejection, the Markov chain is in state 〈3/1/1〉 or 〈3/1/2〉 with probability α1 and
in state 〈3/2/1〉 or 〈3/2/2〉 with probability α2.

If the system was in state 〈3/1/1〉 or 〈3/2/1〉 before the rejection (probability
(
λ1π〈3/1/1〉+

λ2π〈3/2/1〉
)
/
(
λ1π〈3/1/1〉 + λ1π〈3/1/2〉 + λ2π〈3/2/1〉 + λ2π〈3/2/2〉

)
), it is in state 〈3/1/1〉 or 〈3/2/1〉

afterwards. If it was in state 〈3/1/2〉 or 〈3/2/2〉 before the rejection (probability
(
λ1π〈3/1/2〉+

λ2π〈3/2/2〉
)
/
(
λ1π〈3/1/1〉 + λ1π〈3/1/2〉+ λ2π〈3/2/1〉 + λ2π〈3/2/2〉

)
), it is in states 〈3/1/2〉 or

〈3/2/2〉 afterwards. Therefore, we have

σR〈3/1/1〉 = α1

λ1π〈3/1/1〉 + λ2π〈3/2/1〉
λ1π〈3/1/1〉 + λ1π〈3/1/2〉 + λ2π〈3/2/1〉 + λ2π〈3/2/2〉

(7.45)

σR〈3/1/2〉 = α1

λ1π〈3/1/2〉 + λ2π〈3/2/2〉
λ1π〈3/1/1〉 + λ1π〈3/1/2〉 + λ2π〈3/2/1〉 + λ2π〈3/2/2〉

(7.46)

σR〈3/2/1〉 = α2

λ1π〈3/1/1〉 + λ2π〈3/2/1〉
λ1π〈3/1/1〉 + λ1π〈3/1/2〉 + λ2π〈3/2/1〉 + λ2π〈3/2/2〉

(7.47)

σR〈3/2/2〉 = α2

λ1π〈3/1/2〉 + λ2π〈3/2/2〉
λ1π〈3/1/1〉 + λ1π〈3/1/2〉 + λ2π〈3/2/1〉 + λ2π〈3/2/2〉

(7.48)

The cumulative distribution function of the interblocking times is calculated with

ϕ′(τ) = Q · ϕ(τ) ϕi(0) =

{
1 i 6= 〈R〉
0 i = 〈R〉

(7.49)

and

FR(τ) = 1−
∑
i

σRi ϕi(τ) (7.50)

Hyper/Hyper/1/S queueing system

The Markov chains for a Hyper/Hyper/1/S queueing system with S = 3 are shown in
Figure 7.11.

There are four states that represent a full system: 〈3/1/1〉, 〈3/1/2〉, 〈3/2/1〉 and 〈3/2/2〉.
In all of these states, rejections can take place.

After a rejection, the Markov chain is in state 〈3/1/1〉 or 〈3/1/2〉 with probability α1 and
in state 〈3/2/1〉 or 〈3/2/2〉 with probability α2.

If the system was in state 〈3/1/1〉 or 〈3/2/1〉 before the rejection (probability
(
λ1π〈3/1/1〉+

λ2π〈3/2/1〉
)
/
(
λ1π〈3/1/1〉 + λ1π〈3/1/2〉 + λ2π〈3/2/1〉 + λ2π〈3/2/2〉

)
), it is in state 〈3/1/1〉 or 〈3/2/1〉

afterwards. If it was in state 〈3/1/2〉 or 〈3/2/2〉 before the rejection (probability
(
λ1π〈3/1/2〉+
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7.1. Probability distribution of the interoverflow times

(a)

(b)

Figure 7.10.: Overflow stream of a Hyper/Hypo/1/S queueing system. (a) Markov chain for the
system state, (b) Markov chain for the calculation of the time to the next rejection.
Meaning of the names of the states: number of customers in the system / state of
the arrival process / state of the service process.
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7. Overflow traffic

(a)

(b)

Figure 7.11.: Overflow stream of a Hyper/Hyper/1/S queueing system. (a) Markov chain for the
system state, (b) Markov chain for the calculation of the time to the next rejection.
Meaning of the names of the states: number of customers in the system / state of
the arrival process / state of the service process.
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7.1. Probability distribution of the interoverflow times

λ2π〈3/2/2〉
)
/
(
λ1π〈3/1/1〉 + λ1π〈3/1/2〉+ λ2π〈3/2/1〉 + λ2π〈3/2/2〉

)
), it is in states 〈3/1/2〉 or

〈3/2/2〉 afterwards. Therefore, we have

σR〈3/1/1〉 = α1

λ1π〈3/1/1〉 + λ2π〈3/2/1〉
λ1π〈3/1/1〉 + λ1π〈3/1/2〉 + λ2π〈3/2/1〉 + λ2π〈3/2/2〉

(7.51)

σR〈3/1/2〉 = α1

λ1π〈3/1/2〉 + λ2π〈3/2/2〉
λ1π〈3/1/1〉 + λ1π〈3/1/2〉 + λ2π〈3/2/1〉 + λ2π〈3/2/2〉

(7.52)

σR〈3/2/1〉 = α2

λ1π〈3/1/1〉 + λ2π〈3/2/1〉
λ1π〈3/1/1〉 + λ1π〈3/1/2〉 + λ2π〈3/2/1〉 + λ2π〈3/2/2〉

(7.53)

σR〈3/2/2〉 = α2

λ1π〈3/1/2〉 + λ2π〈3/2/2〉
λ1π〈3/1/1〉 + λ1π〈3/1/2〉 + λ2π〈3/2/1〉 + λ2π〈3/2/2〉

(7.54)

The cumulative distribution function of the interblocking times is calculated with

ϕ′(τ) = Q · ϕ(τ) ϕi(0) =

{
1 i 6= 〈R〉
0 i = 〈R〉

(7.55)

and

FR(τ) = 1−
∑
i

σRi ϕi(τ) (7.56)

Figures 7.12, 7.13 and 7.14 show the first two moments of the interoverflow times of
the discussed queueing systems.

Figure 7.12.: Interoverflow times of PH/M/1/S queueing systems with arrival rate λ, service rate
1 and S = 3. (a) Hyper/M/1/S queueing system (cA = 1.25), (b) M/M/1/S queue-
ing system, (c) Hypo/M/1/S queueing system (cA = 0.85).
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7. Overflow traffic

Figure 7.13.: Interoverflow times of M/PH/1/S queueing systems with arrival rate λ, service rate
1 and S = 3. (a) M/Hyper/1/S queueing system (cS = 1.25), (b) M/M/1/S queue-
ing system, (c) M/Hypo/1/S queueing system (cS = 0.85).

Figure 7.14.: Interoverflow times of PH/PH/1/S queueing systems with arrival rate λ, service
rate 1 and S = 3. (a) Hyper/Hyper/1/S queueing system (cA = 1.3, cS = 1.2),
(b) Hyper/Hypo/1/S queueing system (cA = 1.3, cS = 0.9), (c) Hypo/Hyper/1/S
queueing system (cA = 0.8, cS = 1.2), (d) Hypo/Hypo/1/S queueing system
(cA = 0.8, cS = 0.9).

198



7.2. Blocking probability

7.2. Blocking probability

The blocking probability is the ratio of arriving customers that are rejected by the queue-
ing system to all arriving customers. This probability is not the probability that the sys-
tem rejects a customer that arrives at an arbitrary point in time, but the probability that
a customer of the actual arrival stream is rejected.

To determine the blocking probability, we first need to calculate the total arrival rate
λtotal:

λtotal =
∑
i

πi

(
gi +

∑
j 6=i

hij

)
(7.57)

where

hij =

{
qij if i→ j corresponds to an arrival

0 otherwise
(7.58)

and gi is the rate at which arrivals take place while the system remains in state i (silent
events).

If the arrival rate is not state-dependent, λtotal is the arrival rate.

The rate at which rejections occur was calculated in the previous section (Equation 7.4):

λrejected =
∑
i

πi

(
gi +

∑
j 6=i

hij

)
(7.59)

where

hij =

{
qij if i→ j corresponds to an overflow

0 otherwise
(7.60)

and gi is the rate at which overflows are produced while the system remains in state i.

Now we have

pblocking =
λrejected

λtotal
(7.61)
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7. Overflow traffic

7.2.1. M/M/1/S queueing system

In an M/M/1/S queueing system (Figure 7.15), the blocking probability equals the
probability that the system is full (Figure 7.16):

pblocking = pfull = π〈S〉 (7.62)

The reason is that when we have Poisson arrivals, the probability that a customer arrives
is the same for each point in time; therefore the probability that an arriving customer
finds a full system equals the steady-state probability that the system is full.

Figure 7.15.: M/M/1/S queueing system: Markov chain for the system state.

Figure 7.16.: M/M/1/S queueing system: the blocking probability equals the probability that the
system is full. S = 3, arrival rate λ, service rate µ = 1.
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7.2. Blocking probability

7.2.2. M/M/1/S queueing system with controlled arrival rate

Figure 7.17 shows the Markov chain for the system state of an M/M/1/S queueing
system with controlled arrival rate (cf. Section 3.1). When the system is in a state
〈·/n〉, customers arrive at the normal arrival rate λn. When the system is in a state 〈·/r〉,
customers arrive at the reduced arrival rate λr.

Figure 7.17.: M/M/1/S queueing system with controlled arrival rate: Markov chain for the system
state. S = 5, Sstop = 4, Sgo = 2. Meaning of the names of the states: number of
customers in the system / “n” for normal arrival rate or “r” for reduced arrival rate.

Therefore, the total arrival rate is

λtotal =
3∑

k=0

π〈k/n〉λn +
5∑

k=2

π〈k/r〉λr (7.63)

Rejections take place when the system is in state 〈5/r〉. The arrival rate in this state is
λr, so the rejection rate is

λrejected = π〈5/r〉λr (7.64)

The blocking probability is

pblocking =
π〈5/r〉λr

3∑
k=0

π〈k/n〉λn +
5∑

k=2

π〈k/r〉λr

(7.65)
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7. Overflow traffic

7.2.3. Hypo/M/1/S queueing system

Figure 7.18 shows the Markov chain for the system state of a Hypo/M/1/S queueing
system with S = 3. The total arrival rate in this queueing system is

λtotal = λ = λ2

3∑
k=0

π〈k/2〉 (7.66)

The rejection rate is

λrejected = λ2π〈3/2〉 (7.67)

Therefore, the blocking probability is

pblocking =
π〈3/2〉∑3
k=0 π〈k/2〉

(7.68)

whereas the probability that the system is full is

pfull = π〈3/1〉 + π〈3/2〉 (7.69)

Figure 7.18.: Hypo/M/1/S queueing system: Markov chain for the system state. Meaning of
the names of the states: number of customers in the system / state of the arrival
process.

As can be seen in Figure 7.20, the blocking probability in a Hypo/M/1/S queueing
system is lower than the probability that the system is full. The reason is that the prob-
ability that the interarrival time is small is lower than if we had Poisson arrivals, so that
it is more likely that the server finishes a service between two arrivals. In other words,
the customers tend to arrive at “advantageous” points in time, where the probability of
finding a full system is smaller than it would be if they arrived at arbitrary points in
time.
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7.2. Blocking probability

7.2.4. Hyper/M/1/S queueing system

Figure 7.19 shows the Markov chain for the system state of a Hyper/M/1/S queueing
system with S = 3. In this queueing system, the blocking probability is calculated as
follows: The total arrival rate is

λtotal = λ = λ1

3∑
k=0

π〈k/1〉 + λ2

3∑
k=0

π〈k/2〉 (7.70)

The rejection rate is

λrejected = λ1π〈3/1〉 + λ2π〈3/2〉 (7.71)

Therefore, the blocking probability is

pblocking =
λ1π〈3/1〉 + λ2π〈3/2〉

λ1

3∑
k=0

π〈k/1〉 + λ2

3∑
k=0

π〈k/2〉

(7.72)

whereas the probability that the system is full is

pfull = π〈3/1〉 + π〈3/2〉 (7.73)

Figure 7.19.: Hyper/M/1/S queueing system: Markov chain for the system state. Meaning of
the names of the states: number of customers in the system / state of the arrival
process.

As can be seen in Figure 7.21, the blocking probability in a Hyper/M/1/S queueing
system is higher than the probability that the system is full. The reason is that the
probability that the interarrival time is small is higher than if we had Poisson arrivals,
so that it is less likely that the server finishes a service between two arrivals. In other
words, the customers tend to arrive at “disadvantageous” points in time, where the
probability of finding a full system is higher than it would be if they arrived at arbitrary
points in time.

203



7. Overflow traffic

Figure 7.20.: Hypo/M/1/S queueing system: blocking probability (solid line) and probability that
the system is full (dashed line)

Figure 7.21.: Hyper/M/1/S queueing system: blocking probability (solid line) and probability that
the system is full (dashed line)
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7.3. Successful arrivals between two consecutive overflows

7.3. Successful arrivals between two consecutive
overflows

The probability distribution of the number of successful arrivals between two consec-
utive rejections ζ is determined by extending the Markov chain MR we used in the
previous section for the calculation of the time to the next rejection with a Markov
chainMC that counts successful arrivals.

We start the observation at the moment when a rejection has taken place. Since there
has not been a successful arrival yet, the new Markov chainMζ is in a state 〈i/0〉, where
〈i〉 is a state ofMR. The probabilities σζ〈i/0〉 that it is in state 〈i/0〉 are

σζ〈i/0〉 = σR〈i〉 (7.74)

As time goes by and Mζ evolves, the counting Markov chain MC increases its value
when there are successful arrivals, until eventually Mζ reaches an absorbing state
〈R/n〉, n ∈ N. This means that another rejection has taken place, and we are inter-
ested in the number of counted successful arrivals at this moment.

So we have

π〈i/0〉(0) = σR〈i〉 (7.75)

π′(τ) = π(τ) · Q (7.76)

If we had an infinite Markov chain MC , the probability that there are n successful
arrivals between two consecutive rejections would be

P (ζ = n) = lim
t→∞

π〈R/n〉(t) (7.77)

However, since we do not deal with infinite Markov chains, MC is finite. Assume it
counts from 0 to N . In this case, we have

P (ζ = n) = lim
t→∞

π〈R/n〉(t) n < N (7.78)

P (ζ ≥ N) = lim
t→∞

π〈R/N〉(t) (7.79)

In practice, the computation of π(t) can be stopped when the Markov chain is with very
high probability in a state 〈R/n〉, that is, when

∑N
n=0 π〈R/n〉(t) ≈ 1.

Unless N is very large, in many cases the probability P (ζ ≥ N) has a non-negligible
value (cf. Table 7.1). Therefore, we should avoid calculating the expected number of
successful arrivals based on the obtained probabilities.

If the arrival rate is constant, we should instead calculate the expected number of cus-
tomers that arrive during an interblocking time B and subtract 1 for the last (blocked)
arrival:

E (ζ) = Bλ− 1 (7.80)
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7. Overflow traffic

7.3.1. M/M/1/S queueing system

Figure 7.22 shows the construction of the Markov chain for the calculation of the num-
ber of successful arrivals between two overflows (Figure 7.22c) from the Markov chain
for the calculation of the time to the next rejection (Figure 7.22a) and a counting
Markov chain (Figure 7.22b).

After a rejection, the system is full and there have been no successful arrivals since the
last rejection, so the Markov chainMζ is in state 〈3/0〉:

πi(0) =

{
1 i = 〈3/0〉
0 otherwise

(7.81)

Now we calculate the state probabilities with

π′(τ) = π(τ) · Q (7.82)

until, for example,

1−
N∑
n=0

π〈R/n〉(τ) < 10−6 (7.83)

The probability distribution of ζ is

P (ζ = n) = lim
t→∞

π〈R/n〉(t) n < N (7.84)

P (ζ ≥ N) = lim
t→∞

π〈R/N〉(t) (7.85)

or

P (ζ ≥ n) =
N∑
i=n

lim
t→∞

π〈R/n〉(t) n ≤ N (7.86)

Figures 7.23 to 7.26 show some results.
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7.3. Successful arrivals between two consecutive overflows

(a) Markov chain for the calculation of the interblocking times (MR).

(b) Counting
Markov chain
(MC ).

(c) Markov chain for the calculation of the number of successful arrivals between two
consecutive overflows (Mζ ). Meaning of the names of the states: number of cus-
tomers in the system or “R” if the next rejection has taken place / number of counted
successful arrivals. Absorbing states are painted with double lines, states in which
the system is after an overflow are shaded grey.

Figure 7.22.: M/M/1/S queueing system: calculation of the number of successful arrivals be-
tween two consecutive overflows

207



7. Overflow traffic

λ = 1 λ = 0.5

N P(ζ > N) E(ζ)
10 0.0876 1.53
20 0.0180 2.52
50 1.55 · 10−4 2.99
100 5.67 · 10−8 3
500 ≈ 0 3
1000 ≈ 0 3
∞ 0 3

N P(ζ > N) E(ζ)
10 0.390 1.20
20 0.249 3.33
50 0.0650 9.27
100 0.00691 13.2
500 ≈ 0 14
1000 ≈ 0 14
∞ 0 14

λ = 0.2 λ = 0.1

N P(ζ > N) E(ζ)
10 0.770 0.251
20 0.731 0.860
50 0.624 4.60
100 0.480 15.3
500 0.0587 114
1000 0.00425 150
∞ 0 155

N P(ζ > N) E(ζ)
10 0.894 0.0480
20 0.887 0.160
50 0.866 0.918
100 0.831 3.51
500 0.601 70.4
1000 0.4 217
∞ 0 1110

Table 7.1.: Successful arrivals between two overflows in an M/M/1/S queueing system with
S = 3, arrival rate λ and service rate µ = 1. The calculation of the mean is done
based on the known probability distribution of ζ (which depends on N ).
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7.3. Successful arrivals between two consecutive overflows

Figure 7.23.: M/M/1/S queueing system: number of successful arrivals between two consecu-
tive overflows. S = 3, arrival rate λ = 0.7, service rate µ = 1.
Dots: calculation, circles: simulation.
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7. Overflow traffic

Figure 7.24.: M/M/1/S queueing system: number of successful arrivals between two consecu-
tive overflows. S = 3, arrival rate λ = 0.7, service rate µ = 1.
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7.3. Successful arrivals between two consecutive overflows

Figure 7.25.: M/M/1/S queueing system: number of successful arrivals between two consecu-
tive overflows for various arrival rates. S = 3, arrival rate λ, service rate µ = 1.

Figure 7.26.: Number of successful arrivals between two consecutive overflows in an M/M/1/S
queueing system, a Hypo/M/1/S queueing system (cA = 0.75) and an M/Hypo/1/S
queueing system (cS = 0.75). All: S = 3, arrival rate λ = 1, service rate µ = 1.

211



7. Overflow traffic

7.3.2. Hypo/M/1/S queueing system

Figure 7.27 shows the Markov chain for the calculation of the number of successful
arrivals between two rejections in a Hypo/M/1/S queueing system.

After a rejection, the system is full, there have been no successful arrivals since the last
rejection, and the arrival process is in its initial state. Therefore, the Markov chain is in
state 〈3/1/0〉:

πi(0) =

{
1 i = 〈3/1/0〉
0 otherwise

(7.87)

Now we calculate the state probabilities with

π′(τ) = π(τ) · Q (7.88)

until, for example,

1−
N∑
n=0

π〈R/n〉(τ) < 10−6 (7.89)

The probability distribution of ζ is

P (ζ = n) = lim
t→∞

π〈R/n〉(t) n < N (7.90)

P (ζ ≥ N) = lim
t→∞

π〈R/N〉(t) (7.91)

or

P (ζ ≥ n) =
N∑
i=n

lim
t→∞

π〈R/n〉(t) n ≤ N (7.92)
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7.3. Successful arrivals between two consecutive overflows

Figure 7.27.: Hypo/M/1/S queueing system: calculation of the number of successful arrivals be-
tween two consecutive overflows. Meaning of the names of the states: 〈i/j/k〉:
number of customers in the system / state of the arrival process / number of
counted successful arrivals; 〈R/k〉: the next overflow has taken place / number of
counted successful arrivals.
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7.3.3. M/Hypo/1/S queueing system

Figure 7.28 shows the Markov chain for the calculation of the number of successful
arrivals between two rejections in an M/Hypo/1/S queueing system.

After a rejection, the system is full and there have been no successful arrivals since the
last rejection. The service process is not affected by rejections, so after a rejection the
Markov chain is in state 〈3/1/0〉 or in state 〈3/2/0〉.

π〈3/1/0〉(0) = σR〈3/1〉 =
π〈3/2〉

π〈3/1〉 + π〈3/2〉
(7.93)

π〈3/2/0〉(0) = σR〈3/2〉 =
π〈3/2〉

π〈3/1〉 + π〈3/2〉
(7.94)

Now we calculate the state probabilities with

π′(τ) = π(τ) · Q (7.95)

until, for example,

1−
N∑
n=0

π〈R/n〉(τ) < 10−6 (7.96)

The probability distribution of ζ is

P (ζ = n) = lim
t→∞

π〈R/n〉(t) n < N (7.97)

P (ζ ≥ N) = lim
t→∞

π〈R/N〉(t) (7.98)

or

P (ζ ≥ n) =
N∑
i=n

lim
t→∞

π〈R/n〉(t) n ≤ N (7.99)
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Figure 7.28.: M/Hypo/1/S queueing system: calculation of the number of successful arrivals
between two consecutive overflows. Meaning of the names of the states: 〈i/j/k〉:
number of customers in the system / state of the service process / number of
counted successful arrivals; 〈R/k〉: the next overflow has taken place / number of
counted successful arrivals.
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7.4. Modelling an overflow tandem system

We consider the queueing network shown in Figure 7.29. The network consists of
two GI/M/1/S queueing systems. Customers arrive according to a Poisson process at
system 1. If system 1 is full, they are redirected to system 2. If system 2 is full when
such a customer arrives, the customer is discarded.

Figure 7.29.: Overflow tandem system.

We are interested in the number of customers X2 in system 2 and in the interdeparture
times D2 of system 2. (The number of customers in system 1 and the interdeparture
times of system 1 are independent of the fact that rejected customers are redirected to
another system, so they are calculated as shown in Sections 3.1 and 6.1.)

The Markov chain for the system state of the network is shown in Figure 7.30.

Arrivals at system 1 (rate λ) increase the number of customers in system 1. Services
in system 1 (rate µ) decrease the number of customers in system 1. If system 1 is full
when a customer arrives (states 〈3/·〉), the number of customers in system 2 is increased.
Services in system 2 (rate κ) decrease the number of customers in system 2.

For the calculation of the number of customers in the queueing systems, we calculate
the stationary system state probabilities π by solving the system of linear equations

π · Q = 0 (7.100)∑
i

πi = 1 (7.101)

The number of customers in the first system X1 is

P {X1 = i} =
3∑

k=0

π〈i/k〉 (7.102)

E(X1) =
3∑
i=1

i

3∑
k=0

π〈i/k〉 (7.103)
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7.4. Modelling an overflow tandem system

Figure 7.30.: Overflow tandem: Markov chain for the system state. Meaning of the names of
the states: number of customers in system 1 / number of customers in system 2.
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The number of customers in the second system X2 is

P {X2 = i} =
3∑

k=0

π〈k/i〉 (7.104)

E(X2) =
3∑
i=1

i

3∑
k=0

π〈k/i〉 (7.105)

As can be seen in Figure 7.31, we cannot express the length of the idle period of system 2
as a sum of hypoexponentially distributed random variables. Therefore, the length of
the first interdeparture time in a busy cycle in the second system D

(1)
2 is calculated with

the Markov chain shown in Figure 7.32. This Markov chain is constructed from the
Markov chain MI for the calculation of the length of the idle period (Figure 7.31) by
adding a transition with rate κ – that corresponds to the first service of a customer in
system 2 – originating in the state in which the Markov chain is when the busy period
begins (transition 〈3/1〉 → 〈S〉).

Now we calculate the time needed to go from the states in which the Markov chain can
be when the idle period begins to reach the busy period (state 〈3/1〉) and to traverse
the added transition 〈3/1〉 → 〈S〉.

The Markov chain can be in state 1, 2, 3 or 4, when the idle period begins, depending
on the state in which it was before the last customer in system 2 was served. The
probabilities σIi that the Markov chain is in state i, i = 1 . . . 4, when the idle period
begins are

σI〈0/0〉 = σI1 = π〈0/1〉

(
3∑

k=0

π〈k/1〉

)−1

= π5

(
8∑

k=5

πk

)−1

(7.106)

σI〈1/0〉 = σI2 = π〈1/1〉

(
3∑

k=0

π〈k/1〉

)−1

= π6

(
8∑

k=5

πk

)−1

(7.107)

σI〈2/0〉 = σI3 = π〈2/1〉

(
3∑

k=0

π〈k/1〉

)−1

= π7

(
8∑

k=5

πk

)−1

(7.108)

σI〈3/0〉 = σI4 = π〈3/1〉

(
3∑

k=0

π〈k/1〉

)−1

= π8

(
8∑

k=5

πk

)−1

(7.109)

The time the Markov chain needs to go from states 1 . . . 4 to state 〈S〉 is calculated with

ϕ′(τ) = Q · ϕ(τ) ϕk(0) =

{
0 k = 〈S〉
1 otherwise

(7.110)
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7.4. Modelling an overflow tandem system

Figure 7.31.: Overflow tandem system: Markov chain for the calculation of the length of the idle
period. Meaning of the names of the states: number of customers in system 1 /
number of customers in system 2.
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Figure 7.32.: Overflow tandem system: Markov chain for the calculation of the length of the first
interdeparture time in a busy cycle of system 2. Meaning of the names of the
states: number of customers in system 1 / number of customers in system 2.
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Now D
(1)
2 is

P
{
D

(1)
2 > t

}
= σI〈0/0〉ϕ〈0/0〉(t) + σI〈1/0〉ϕ〈1/0〉(t)+

σI〈2/0〉ϕ〈2/0〉(t) + σI〈3/0〉ϕ〈3/0〉(t) (7.111)

E(D
(1)
2 ) =

∞∫
0

P
{
D

(1)
2 > t

}
dt (7.112)

The length of the busy period of system 2 is calculated with the Markov chain shown in
Figure 7.33.

The busy period begins if system 2 is empty, system 1 is full (state 〈3/0〉) and a customer
arrives at system 1 (state 〈3/1〉). It ends when system 2 becomes idle again (states
〈·/0〉).

Therefore, the length B2 of the busy period of system 2 is calculated as follows:

ϕ′(τ) = Q · ϕ(τ) ϕ〈i/j〉(0) =

{
1 j ≥ 1

0 j = 0
(7.113)

and

P {B2 > t} = ϕ〈3/1〉(t) (7.114)

E(B2) =

∞∫
0

P {B2 > t} dt (7.115)

The number of customers served during a busy period is

ξ = κ · E(B2) (7.116)

Finally, the interdeparture time of system 2 is

D2 ∼
D

(1)
2 + (ξ − 1) Exp(κ)

ξ
(7.117)
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Figure 7.33.: Overflow tandem system: Markov chain for the calculation of the length of the busy
period. Meaning of the names of the states: number of customers in system 1 /
number of customers in system 2.
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7.5. Modelling an overflow tandem system using network
decomposition

As can be seen in Figure 7.34, the overflow stream of an M/M/1/S queueing system
consitutes an Interrupted Poisson Process1 (IPP): When the system is full, arriving cus-
tomers (which arrive according to a Poisson process) are rejected, so the IPP is in state
“on”. When the system is not full, arriving customers are not rejected, so the IPP is in
state “off”.

Figure 7.34.: The overflow stream of an M/M/1/S queueing system constitutes an IPP. When
the system is full (S = 3), the IPP is in state “on”, otherwise (shaded areas) it is
in state “off”.

Therefore, if we want to use network decomposition to analyse the network shown in
Figure 7.29, we could use the following approach (Figure 7.36):

We assume the overflow stream to be an IPP with exponentially distributed “on” and
“off” times. The state of such an IPP can be modelled with the Markov chain shown in
Figure 7.35.

Figure 7.35.: Markov chain for the state of an IPP.

1An IPP is a process that can be in two states: “off” and “on”. When the process is in state “off”, it does
not create any events. When the process is in state “on”, it behaves like a Poisson process.
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Figure 7.36.: Overflow tandem: network decomposition.

The rate δon at which the IPP goes from state “off” to state “on” equals the rate at which
system 1 goes from states 〈0〉, 〈1〉 and 〈2〉 (where customer are not redirected to system
2) to state 〈3〉 (where customers are redirected to system 2), given that it is in state 〈0〉,
state 〈1〉 or state 〈2〉 (see Figure 7.37):

δon =
π〈2〉

π〈0〉 + π〈1〉 + π〈2〉
λ (7.118)

The rate δoff at which the IPP goes from state “on” to state “off” equals the rate at which
system 1 goes from state 〈3〉 to states 〈0〉, 〈1〉 and 〈2〉, given that it is in state 〈3〉:

δoff = µ (7.119)

Now system 2 can be modelled with the Markov chain shown in Figure 7.38. When
the Markov chain is in a state 〈·/on〉, system 1 is full and customers are redirected to
system 2. In this case, the system behaves like an M/M/1/S queueing system. When
the Markov chain is in a state 〈·/off〉, system 1 is not full, therefore, there are no arrivals
at system 2, but only services.

Figure 7.39 shows some results.
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Figure 7.37.: Overflow tandem: Markov chain for the state of system 1. Meaning of the names
of the states: number of customers in the system. Dashed boxes: state of the IPP
of the overflow stream.

Figure 7.38.: Overflow tandem: Markov chain for the state of system 2 (IPP/M/1/S queueing
system). Meaning of the names of the states: number of customers in the system
/ state of the IPP.

Figure 7.39.: Overflow tandem: number of customers in system 2. (a) exact results, (b) network
decomposition (IPP). S = 3, the service rate of the system 1 is µ = 1, the service
rate of system 2 is κ = 0.5.
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8. Superposition of traffic streams

In this chapter, we deal with the problem of superposing traffic streams (Figure 8.1).

Figure 8.1.: Superposition of traffic streams.

Given n independent traffic streams Ti = 〈Ti1, Ti2, . . . 〉 with independent and (within
the same stream) identically distributed interevent times Xij (that is, they constitute
stationary renewal processes), the superposition TS of these streams is defined as the
union of the events of the component streams (Figure 8.2a),

TS =
n⋃
i=1

Ti (8.1)

If we consider the associated counting processes Ni(t) = max {0, j : Tij ≤ t}, the super-
position NS is the sum of the component counting processes (Figure 8.2b),

NS(t) =
n∑
i=1

Ni(t) (8.2)

We know the statistical characteristics of the component streams, and we are interested
in the statistical characteristics of the resulting stream.

In Section 8.1, we show how the interevent times XS of the superposition can be calcu-
lated.

Unless all component processes are Poisson processes, the superposition is not a re-
newal process any more. (This becomes obvious if we consider the superposition of two
deterministic processes (Figure 8.3). In this case, each interevent time depends on its
predecessor. If the current interevent time is δ, the next interevent time will be 1 − δ,
and vice versa.) Therefore, in Section 8.2 we take a brief look at the dependencies
between the interevent times.

In Section 8.3, we show how queueing systems with several input streams, which are
superposed in the system, can be modelled.
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(a)

(b)

Figure 8.2.: Superposition of 3 point processes. (a) Superposition as the union of the events of
the component processes, (b) superposition as the sum of the component counting
processes.
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Figure 8.3.: Superposition of two deterministic processes.

To simplify matters, we mostly consider the superposition of two traffic streams. All
techniques shown are extensible to an arbitrary number of streams. However, it is
sufficient to be able to superpose two traffic streams, because the superposition of more
than two streams can be achieved by combining several superpositions of two streams,
as shown in Figure 8.4.

Figure 8.4.: Superposition of more than two traffic streams.
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8.1. Interevent times

For the calculation of the probability distribution of the interevent times, we first com-
bine the Markov chains that describe the state of the component processes (cf. Section
3.5) into a new Markov chain MA, which describes the state of the component pro-
cesses as a whole. Transitions in the Markov chains for the state of the component
processes that correspond to events keep this property inMA. That is, whenever there
is an event in a component process, there is an event in the superposition, too.

Now we identify the probability σAi that the Markov chain MA is in state i after an
event has occurred. This probability depends on the stationary state probabilities π
immediately before the event and the probability that a certain stream has caused the
event.

The probability Pj that an observed event has been created by component stream j
equals the ratio of the rate of this stream to the total rate. If the rates of the component
streams are λ1, λ2, . . . , λn, we have

Pj =
λj
n∑
i=1

λi

(8.3)

When stream i created an event, its phase-type distribution is in the initial state, whereas
the states of the phase-type distributions of all other streams are unchanged.

Finally, we extend the Markov chainMA by a state 〈E〉, which is reached when an event
occurs. All transitions that correspond to events are redirected to this new state. We
calculate the complementary cumulative distribution function ϕi(·) of the time that the
Markov chain needs to go from state i to state 〈E〉 with

ϕi(0) =

{
1 i 6= 〈E〉
0 i = 〈E〉

(8.4)

ϕ′(τ) = Q · ϕ(τ) (8.5)

Now, the cumulative distribution function FA(·) of the interevent time is

FA(t) = 1−
∑
i

σAi ϕi(t) (8.6)
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In the following examples, we use the following notation:

λ . . . rate of the first process
µ . . . rate of the second process

For hypoexponentially distributed interevent times:
λi . . . rates of the distribution of the first process
µi . . . rates of the distribution of the second process

For hyperexponentially or Coxian distributed interevent times:
λi, αi . . . rates and probabilities of the distribution of the first process
µi, βi . . . rates and probabilities of the distribution of the second process

8.1.1. Superposition of two streams with hypoexponentially
distributed interevent times (Hypo+Hypo)

The construction of the Markov chain for the state of all streams (MA) is shown in
Figure 8.5.

(a)

(b) (c)

Figure 8.5.: Superposition of two streams with hypoexponentially distributed interevent times:
Markov chains for the state of the component streams. (a) Second stream, (b) first
stream, (c) both streams (MA).

The probability that an event in the superposition was caused by the first stream is
λ/ (λ+ µ). In this case, the Markov chain is in states 〈1/1〉 or 〈1/2〉 immediately af-
ter the event. If it was in state 〈2/1〉 before the event occurred (the probability for
this is π〈2/1〉/

(
π〈2/1〉 + π〈2/2〉

)
), it is in state 〈1/1〉, if it was in state 〈2/2〉 (probability

π〈2/2〉/
(
π〈2/1〉 + π〈2/2〉

)
, it is in state 〈1/2〉.

The probability that an event in the superposition was caused by the second stream
is µ/ (λ+ µ). In this case, the Markov chain is in states 〈1/1〉 or 〈2/1〉 immediately
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after the event. If it was in state 〈1/2〉 before the event occurred (the probability for
this is π〈1/2〉/

(
π〈1/2〉 + π〈2/2〉

)
), it is in state 〈1/1〉, if it was in state 〈2/2〉 (probability

π〈2/2〉/
(
π〈1/2〉 + π〈2/2〉

)
, it is in state 〈2/1〉.

Therefore, we have

σA〈1/1〉 =
λ

λ+ µ

π〈2/1〉
π〈2/1〉 + π〈2/2〉

+
µ

λ+ µ

π〈1/2〉
π〈1/2〉 + π〈2/2〉

σA〈2/1〉 =
µ

λ+ µ

π〈2/2〉
π〈1/2〉 + π〈2/2〉

σA〈1/2〉 =
λ

λ+ µ

π〈2/2〉
π〈2/1〉 + π〈2/2〉

σA〈2/2〉 = 0

(8.7)

Adding the new state 〈E〉 to the Markov chain for the state of all streams and redirecting
all transitions that correspond to events to this state leads to the Markov chain shown
in Figure 8.6.

Figure 8.6.: Superposition of two streams with hypoexponentially distributed interevent times:
Markov chain for the calculation of the time to the next event.

With this Markov chain, we calculate the complementary cumulative distribution func-
tion ϕi(·) of the time to the next event given that the Markov chain is in state i:

ϕi(0) =

{
1 i 6= 〈E〉
0 i = 〈E〉

(8.8)

ϕ′(τ) = Q · ϕ(τ) (8.9)

Now we calculate the complementary distribution function FA(·) of the interevent times
of the superposition with

FA(t) = 1−
∑
i

σAi ϕi(t) (8.10)
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8.1.2. Superposition of two streams with hyperexponentially
distributed interevent times (Hyper+Hyper)

The construction of the Markov chain for the state of all streams (MA) is shown in
Figure 8.7.

(a)

(b) (c)

Figure 8.7.: Superposition of two streams with hyperexponentially distributed interevent times:
Markov chain for the state of the component streams. (a) Second stream, (b) first
stream, (c) both streams (MA). Hidden transitions are indicated with dashed lines.

The probability that an event in the superposition was caused by the first stream is
λ/ (λ+ µ). In this case, immediately after the event the Markov chain is in states 〈1/1〉
or 〈1/2〉 with probability α1 or in states 〈2/1〉 or 〈2/2〉 with probability α2. If it was in
state 〈1/1〉 or 〈2/1〉 before the event, it is in state 〈1/1〉 or 〈2/1〉 afterwards. If it was in
state 〈1/2〉 or 〈2/2〉 before the event, it is in state 〈1/2〉 or 〈2/2〉 afterwards.

The probability that an event in the superposition was caused by the second stream is
µ/ (λ+ µ). In this case, immediately after the event the Markov chain is in states 〈1/1〉
or 〈2/1〉 with probability β1 or in states 〈1/2〉 or 〈2/2〉 with probability β2. If it was in
state 〈1/1〉 or 〈1/2〉 before the event, it is in state 〈1/1〉 or 〈1/2〉 afterwards. If it was in
state 〈2/1〉 or 〈2/2〉 before the event, it is in state 〈2/1〉 or 〈2/2〉 afterwards.
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Therefore, we have

σA〈1/1〉 =
λ

λ+ µ
(π〈1/1〉 + π〈2/1〉)α1 +

µ

λ+ µ
(π〈1/1〉 + π〈1/2〉)β1

σA〈2/1〉 =
λ

λ+ µ
(π〈1/1〉 + π〈2/1〉)α2 +

µ

λ+ µ
(π〈2/1〉 + π〈2/2〉)β1

σA〈1/2〉 =
λ

λ+ µ
(π〈1/2〉 + π〈2/2〉)α1 +

µ

λ+ µ
(π〈1/1〉 + π〈1/2〉)β2

σA〈2/2〉 =
λ

λ+ µ
(π〈1/2〉 + π〈2/2〉)α2 +

µ

λ+ µ
(π〈2/1〉 + π〈2/2〉)β2

(8.11)

Adding the new state 〈E〉 to the Markov chain MA and redirecting all transitions that
correspond to events to this state leads to the Markov chain shown in Figure 8.7.

Figure 8.8.: Superposition of two streams with hyperexponentially distributed interevent times:
Markov chain for the calculation of the time to the next event.

With this Markov chain, we calculate the complementary cumulative distribution func-
tion ϕi(·) of the time to the next event given that the Markov chain is in state i:

ϕi(0) =

{
1 i 6= 〈E〉
0 i = 〈E〉

(8.12)

ϕ′(τ) = Q · ϕ(τ) (8.13)

Now we calculate the complementary distribution function FA(·) of the interevent times
with

FA(t) = 1−
∑
i

σAi ϕi(t) (8.14)

Results can be seen in Figure 8.9.
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Figure 8.9.: Superposition of two traffic streams. (a) Hyper+Hyper: r1 = λ, c1 = 1.2, r2 = 1,
c2 = 1.3 (b) M+M: r1 = λ, c1 = 1, r2 = 1, c2 = 1 (c) Hypo+Hyper: r1 = λ,
c1 = 0.8, r2 = 1, c2 = 1.1 (d) Hypo+Hypo: r1 = λ, c1 = 0.8, r2 = 1, c2 = 0.9

8.1.3. Superposition of two streams with Coxian distributed
interevent times (Cox+Cox)

The Markov chain for the state of the streams is shown in Figure 8.10.

The probability that an event in the superposition was caused by the first stream is
λ/ (λ+ µ). In this case, immediately after the event the Markov chain is in state 〈1/1〉,
state 〈1/2〉 or state 〈1/3〉. It is in state 〈1/x〉 if it was in a state 〈·/x〉 before the event
occurred. The probability for this is

∑3
i=1 π〈i/x〉.

The probability that an event in the superposition was caused by the second stream is
µ/ (λ+ µ). In this case, immediately after the event the Markov chain is in state 〈1/1〉,
state 〈2/1〉 or state 〈3/1〉. It is in state 〈x/1〉 if it was in a state 〈x/·〉 before the event
occurred. The probability for this is

∑3
i=1 π〈x/i〉.
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8. Superposition of traffic streams

Therefore, we have

σA〈1/1〉 =
λ

λ+ µ
(π〈1/1〉 + π〈2/1〉 + π〈3/1〉) +

µ

λ+ µ
(π〈1/1〉 + π〈1/2〉 + π〈1/3〉)

σA〈1/2〉 =
λ

λ+ µ
(π〈1/2〉 + π〈2/2〉 + π〈3/2〉)

σA〈1/3〉 =
λ

λ+ µ
(π〈1/3〉 + π〈2/3〉 + π〈3/3〉)

σA〈2/1〉 =
µ

λ+ µ
(π〈2/1〉 + π〈2/2〉 + π〈2/3〉)

σA〈3/1〉 =
µ

λ+ µ
(π〈3/1〉 + π〈3/2〉 + π〈3/3〉)

(8.15)

Adding the new state 〈E〉 to the Markov chain MA and redirecting all transitions that
correspond to events to this state leads to the Markov chain shown in Figure 8.11.

With this Markov chain, we calculate the complementary cumulative distribution func-
tion ϕi(·) of the time to the next event given that the Markov chain is in state i:

ϕi(0) =

{
1 i 6= 〈E〉
0 i = 〈E〉

(8.16)

ϕ′(τ) = Q · ϕ(τ) (8.17)

Now we calculate the complementary distribution function FA(·) of the interevent times
with

FA(t) = 1−
∑
i,j

σA〈i/j〉 ϕ〈i/j〉(t) (8.18)

Coxian distribution with bypass (Cox*+Cox*)

Let 1 − p1 and 1 − p2 be the bypass probabilities of the two Coxian* distributions, that
is, the probabilities that the interevent times are zero.

The probability that in the superposition the interevent time is zero depends on the
probability that an event is caused by a certain process and on the bypass probability of
this process. If S is the interevent time of the superposition, we have

P {S = 0} =
λ

λ+ µ
(1− p1) +

µ

λ+ µ
(1− p2) (8.19)

The time between batches of events is calculated as described in the Cox+Cox case,
whereby we neglect the probability mass at 0 (that is, we use the pure Coxian part of
the Coxian* distribution). If FZ is the cumulative distribution function of the thereby
resulting interbatch time, we have

P {S ≤ t} = P {S = 0}+ FZ(t)

(
λ

λ+ µ
p1 +

µ

λ+ µ
p2

)
(8.20)
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8.1. Interevent times

Figure 8.10.: Superposition of two streams with Coxian distributed interevent times: Markov
chain for the state of the component streams. Hidden transitions are indicated
with dashed lines.

Figure 8.11.: Superposition of two streams with Coxian distributed interevent times: Markov
chain for the calculation of the time to the next event.

237



8. Superposition of traffic streams

8.1.4. Further examples for the superposition of two streams with
PH-distributed interevent times

M+M

The needed Markov chains are shown in Figure 8.12.

(a) (b)

Figure 8.12.: Superposition of two streams with exponentially distributed interevent times: (a)
Markov chainMA for the state of the streams, (b) Markov chain for the calculation
of the time to the next event.

Since both streams are memoryless, MA consists of only one state. No matter which
stream has caused an event, the Markov chain is always in this state:

σA〈1/1〉 = 1 (8.21)

The complementary cumulative distribution function of the time to the next event is
calculated with

ϕi(0) =

{
1 i 6= 〈E〉
0 i = 〈E〉

(8.22)

ϕ′(τ) = Q · ϕ(τ) (8.23)

which has the solution

ϕ〈1/1〉(t) = e−(λ+µ) (8.24)
ϕ〈E〉(t) = 0 (8.25)

The complementary distribution function of the interevent times is

FA(t) = 1− σA〈1/1〉 ϕ〈1/1〉(t) = 1− e−(λ+µ) (8.26)

which is the complementary distributon function of an exponentially distributed ran-
dom variable. This means a superposition of streams with exponentially distributed
interevent times has exponentially distributed interevent times, too.

In the following examples, we only show the needed Markov chains and the determina-
tion of σAi . The calculation of the interevent times is always done according to Equations
8.4 – 8.6.
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8.1. Interevent times

M+Hypo

The needed Markov chains are shown in Figure 8.13. If the first process (the process
with the exponentially distributed interevent times) causes an event, the state of the
Markov chain for the state of the streams does not change. If the second process (the
process with the hypoexponentially distributed interevent times) causes an event, the
Markov chain is in state 〈1/1〉 after the event. Therefore, we have

σA〈1/1〉 =
λ

λ+ µ
π〈1/1〉 +

µ

λ+ µ

σA〈1/2〉 =
λ

λ+ µ
π〈1/2〉

(8.27)

(a) (b)

Figure 8.13.: Superposition of a stream with exponentially distributed interevent times and a
stream with hypoexponentially distributed interevent times: (a) Markov chain for
the state of the streams, (b) Markov chain for the calculation of the time to the next
event.

M+Hyper

The needed Markov chains are shown in Figure 8.14. If the first process (the process
with the exponentially distributed interevent times) causes an event, the state of the
Markov chain for the state of the streams does not change. If the second process (the
process with the hyperexponentially distributed interevent times) causes an event, after
the event the Markov chain is in state 〈1/1〉 with probability β1 and in state 〈1/2〉 with
probability β2. Therefore, we have

σA〈1/1〉 =
λ

λ+ µ
π〈1/1〉 +

µ

λ+ µ
β1

σA〈1/2〉 =
λ

λ+ µ
π〈1/2〉 +

µ

λ+ µ
β2

(8.28)
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8. Superposition of traffic streams

(a) (b)

Figure 8.14.: Superposition of a stream with exponentially distributed interevent times and a
stream with hyperexponentially distributed interevent times: (a) Markov chain for
the state of the streams, (b) Markov chain for the calculation of the time to the next
event.

(a) (b)

Figure 8.15.: Superposition of a stream with hypoexponentially distributed interevent times and
a stream with hyperexponentially distributed interevent times: (a) Markov chain
for the state of the streams, (b) Markov chain for the calculation of the time to the
next event.
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8.1. Interevent times

Hypo+Hyper

The needed Markov chains are shown in Figure 8.15.

If the first process (the process with the hypoexponentially distributed interevent times)
causes an event, the Markov chain for the state of the streams is in state 〈1/1〉 or in state
〈1/2〉. If it was in state 〈2/1〉 before the event occurred, it is in state 〈1/1〉 afterwards,
otherwise it is in state 〈1/2〉. If the second process (the process with the hyperexpo-
nentially distributed interevent times) causes an event, the Markov chain is in a state
〈·/1〉 with probability β1 and in a state 〈·/2〉 with probability β2. If it was in a state 〈1/·〉
before the event occurred, it is in a state 〈1/·〉 afterwards; the same holds for states
〈2/·〉. Therefore, we have

σA〈1/1〉 =
λ

λ+ µ

π〈2/1〉
π〈2/1〉 + π〈2/2〉

+
µ

λ+ µ
(π〈1/1〉 + π〈1/2〉)β1

σA〈2/1〉 =
µ

λ+ µ
(π〈2/1〉 + π〈2/2〉)β1

σA〈1/2〉 =
λ

λ+ µ

π〈2/2〉
π〈2/1〉 + π〈2/2〉

+
µ

λ+ µ
(π〈1/1〉 + π〈1/2〉)β2

σA〈2/2〉 =
µ

λ+ µ
(π〈2/1〉 + π〈2/2〉)β2

(8.29)
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8. Superposition of traffic streams

8.1.5. Superposition of two overflow streams

Figure 8.16.: Superposition of two overflow streams.

Finally we present a more demanding example: We consider a network consisting of
two Hypo/M/1/1 queueing systems (i.e., queueing systems consisting only of a single
server) whose overflow streams are superposed (Figure 8.16). We are interested in the
probability distribution of the interevent times of the resulting stream.

First, we create the Markov chains for the system state for the two Hypo/M/1/1 queue-
ing systems (Figure 8.17) and the Markov chain for the system state of the network
by combining the Markov chains for the system state of the single queueing systems
(Figure 8.18).

Let π be the stationary system state probabilities of the Markov chain for the system
state of the queueing network. Then we can calculate the overflow rates ri for queueing
system i with

r1 = λ2

∑
π〈12··〉 = λ2 (π4 + π8 + π12 + π16) (8.30)

r2 = κ2

∑
π〈··12〉 = κ2 (π13 + π14 + π15 + π16) (8.31)

(See Chapter 7 for details.)

The probability that an overflow was produced by a certain system equals the ratio of
its overflow rate to the total overflow rate. Therefore, we have for the probabilities pi
that system i produced an overflow

p1 =
r1

r1 + r2

(8.32)

p2 =
r2

r1 + r2

(8.33)

Let σRi be the probabilities that the network is in state i after an overflow. After an
overflow occurred, the network is in a state 〈11 · ·〉 (if system 1 produced the overflow)
or in a state 〈· · 11〉 (if system 2 produced the overflow). If system 1 produced the
overflow, it is in state 〈11xy〉 if it was in state 〈12xy〉 before. If system 2 produced the
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8.1. Interevent times

Figure 8.17.: Superposition of two overflow streams: Markov chains for the system state of the
single queueing systems.

overflow, it is in state 〈xy11〉, if it was in state 〈xy12〉 before. Therefore, we have

σR〈1,1,0,1〉 = σR3 = p1
π4

π4 + π8 + π12 + π16

(8.34)

σR〈1,1,0,2〉 = σR7 = p1
π8

π4 + π8 + π12 + π16

(8.35)

σR〈1,1,1,2〉 = σR15 = p1
π16

π4 + π8 + π12 + π16

(8.36)

σR〈0,1,1,1〉 = σR9 = p2
π13

π13 + π14 + π15 + π16

(8.37)

σR〈0,2,1,1〉 = σR10 = p2
π14

π13 + π14 + π15 + π16

(8.38)

σR〈1,2,1,1〉 = σR12 = p2
π16

π13 + π14 + π15 + π16

(8.39)

σR〈1,1,1,1〉 = σR11 = p1
π12

π4 + π8 + π12 + π16

+ p2
π15

π13 + π14 + π15 + π16

(8.40)

Now we extend the Markov chain for the state of the network with a new state 〈E〉,
which represents the occurrence of an overflow (Figure 8.19). All transitions that cor-
respond to overflows now lead to this state.

With this Markov chain, we calculate the complementary cumulative distribution func-
tion ϕi of the time to the next overflow given that the network is in state i:

ϕ1(0) = · · · = ϕ16(0) = 1, ϕ〈E〉(0) = 0 (8.41)
ϕ′(t) = Q · ϕ(t) (8.42)

Finally, we calculate the complementary cumulative distribution function of the in-
terevent times FC

A (·) of the superposition with

FC
A (t) = σR3 ϕ3(t) + σR7 ϕ7(t) + σR9 ϕ9(t) + σR10ϕ10(t)+

σR11ϕ11(t) + σR12ϕ12(t) + σR15ϕ15(t) (8.43)

Some results are shown in Figure 8.20.
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(a)

(b) (c)

Figure 8.18.: Superposition of two overflow streams: Markov chains for the system state of (a)
the first queueing system, (b) the second queueing system and (c) the network.
Meaning of the names of the states: (a), (b) number of customers in the system
/ state of the arrival process, (c) number of customers in system 1 / state of the
first arrival process / number of customers in system 2 / state of the second arrival
process.
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8.1. Interevent times

Figure 8.19.: Superposition of two overflow streams: Markov chain for the calculation of the
time to the next event. Meaning of the names of the states: number of customers
in system 1 / state of the first arrival process / number of customers in system 2 /
state of the second arrival process.
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8. Superposition of traffic streams

Figure 8.20.: Superposition of two overflow streams: rate and coefficient of variation. cλ = 0.75,
cκ = 0.85, µ = 1.
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8.1. Interevent times

8.1.6. Closed-form solution

In [Kühn 1979], it is shown how a closed-form solution for the distribution of the in-
terevent times of a superposition of two point processes can be obtained:

The forward recurrence time TV j(t0) is the interval between an arbitrary instant t0 and
the next event of the component process Sj. If process Sj is stationary, TV j(t0) is inde-
pendent of t0, and its probability density function V ′j (t) is given by

V ′j (t) = λjF
C
j (t) (8.44)

where λj is the rate of process Sj and FC
j (t) is the complementary cumulative distribu-

tion function of the interevent times of process Sj.

From this follows

P {TV j > t} =

∞∫
u=t

λjF
C
j (u)du (8.45)

The time TV to the next event in the superposition is greater than t if it is in both
component processes greater than t:

V C(t) = P {TV > t} =

P {TV 1 > t}P {TV 2 > t} =

∞∫
u=t

λ1F
C
1 (u)du

∞∫
u=t

λ2F
C
2 (u)du (8.46)

Assuming the renewal property and using the relation

V ′(t) = λFC(t) (8.47)

leads to

FC(t) =
V ′(t)

λ
=

1

λ1 + λ2

d

dt

 ∞∫
u=t

λ1F
C
1 (u)du

∞∫
u=t

λ2F
C
2 (u)du

 (8.48)

F (t) = 1− λ1λ2

λ1 + λ2

FC
1 (t)

∞∫
u=t

FC
2 (u)du+ FC

2 (t)

∞∫
u=t

FC
1 (u)du

 (8.49)

It is not possible to give the moments of the interevent times T ,

E
(
T k
)

=

∞∫
0−

tkF ′(t)dt = −1

λ

∞∫
0−

tkV ′′(t)dt (8.50)

as a function of the moments of the component processes (except for k = 1). Therefore,
if only the moments and not the distribution of the interevent times of the component
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8. Superposition of traffic streams

processes are known, one has to approximate these distributions by distributions with
a known distribution function.

Kühn uses, for the approximation, distributions that match two moments of the given
distribution. For coefficients of variation greater than 1, he uses a 2-stage hyperex-
ponential distribution, for coefficients of variation smaller than 1, he uses the sum of
a deterministic and an exponential distribution. The sum of a deterministic and an
exponential distribution is more complicated to deal with than a hypoexponential dis-
tribution, but it has the advantage that all coefficients of variation c ∈ (0, 1) can be
obtained.

Some results are shown in Figure 8.21.

Figure 8.21.: Coefficient of variation of the superposition of two processes. For c > 1 hyperex-
ponentially distributed interevent times are assumed, for c < 1 hypoexponentially
distributed interevent times (solid line) and interevent times that are the sum of a
deterministic and an exponential distribution (dashed line) are assumed.
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8.2. Dependencies between the interevent times

There are many forms of dependencies within a sequence of random variables. As an
example, we look at the so-called autocorrelation.

8.2.1. Autocorrelation

The autocorrelation (or serial correlation) ACF(X, d) of a (finite) sequenceX = 〈Xi〉1≤i≤n
of identically distributed random variables is a measure of the extent to which Xi+d de-
pends on Xi. It is defined as

ACF(X, d) =
acov(X, d)

Var(X)
=

acov(X, d)

acov(X, 0)
(8.51)

with the autocovariance acov(X, d) defined as

acov(X, d) =
1

n− k

n−k∑
k=1

(Xk − E(X)) (Xk+d − E(X)) (8.52)

Sometimes, in addition, the random variables Xn−k+1, . . . , Xn are compared with
X1, . . . , Xk−1. Then we have

ACF(X, d) =

1
n

n∑
k=1

(Xk − E(X))
(
X(k+d) modn − E(X)

)
Var(X)

(8.53)

Formula 8.53 can also be written as

ACF(X, d) =
n
∑
XiYi −

∑
Xi

∑
Yi

n
∑
X2
i − (

∑
Xi)

2 (8.54)

where Yi = X(i+d) modn.

The parameter d is called delay or lag.

If the random variables Xi are independent, the autocorrelation ACF(X, d) is close
to 0.1 If there is a strong positive (negative) correlation, the autocorrelation is close
to 1 (−1).

1For details see [Knuth 1997].
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8.2.2. Autocorrelation of the interevent times

As can be seen in Figure 8.22, the autocorrelation of the interevent times has its max-
imum when traffic streams with the same intensity are superposed. As the ratio of the
intensities becomes smaller or greater than 1, one stream dominates the superposition,
and since the interevent times of the single streams are assumed to be independent, the
autocorrelation tends towards 0.

Figure 8.22.: Superposition of two traffic streams with Erlang-distributed interevent times (c =
0.1). The autocorrelation of the interevent times of the superposition reaches its
maximum when the streams have the same intensity.

Figure 8.23 shows the autocorrelation of the interevent times of the superposition de-
pending on the number of streams that are superposed. The superposition of streams
with hyperexponentially distributed interevent times (c > 1) has low autocorrelation.
The superposition of streams with hypoexponentially distributed interevent times (c <
1) has a higher autocorrelation. The smoother the stream is, the stronger the interevent
times are correlated. If two streams with deterministic interevent times are superposed,
the autocorrelation is 1 (for d odd) or -1 (for d even). The superposition of Poisson
processes is a Poisson process and therefore has no autocorrelation.

250



8.2. Dependencies between the interevent times

(a)

(b)

Figure 8.23.: Superposition of n traffic streams with (a) hypoexponentially and (b) hyperexpo-
nentially distributed interevent times: autocorrelation of the interevent times.
(Simulation study.)
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8.2.3. Effect of dependencies

For an estimation of the effect of the dependencies between the interevent times of
the superposition we compare the number of customers in a queueing system for two
different arrival streams: The first stream is the superposition of two streams (Figure
8.24a). The second stream has the same interevent times as the first stream, but these
interevent times have been shuffled (Figure 8.24b), so that they are not interdependent
any more.

(a)

(b)

Figure 8.24.: Estimation of the effect of the dependencies between the interevent times of a
superposition. (a) The interarrival times at the queueing system are the real (in-
terdependent) interevent times. (b) The interarrival times at the queueing system
are the interevent times without dependencies.

If the coefficient of variation of the streams is close to 1, there is little difference between
the results (Figure 8.25 and Figure 8.26). If the coefficient of variation of the streams
is close to zero, the difference is much higher (Figure 8.27).
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8.2. Dependencies between the interevent times

Figure 8.25.: Number of customers in a Hypo+Hypo/M/1/S queueing system. S = 3, c1 = 0.75,
c2 = 0.85. Solid line: real interarrival times, dashed line: interarrival times without
dependencies.

Figure 8.26.: Number of customers in a Hyper+Hyper/M/1/S queueing system. S = 3, c1 = 1.5,
c2 = 1.25. Solid line: real interarrival times, dashed line: interarrival times without
dependencies.

253



8. Superposition of traffic streams

Figure 8.27.: Number of customers in a Erlang+Erlang/M/1/S queueing system. S = 3, c1 =
c2 = 0.1. Solid line: real interarrival times, dashed line: interarrival times without
dependencies.
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8.3. Modelling PH+PH/M/1/S queueing systems

The superposition of traffic streams can also be included in the Markov chain for a
queueing system. The Markov chain for the system state of a PH+PH/M/1/S queueing
system can be constructed from the Markov chain for the system state of a PH/M/1/S
queueing system by adding the states and transitions needed to describe the second
arrival process.

8.3.1. Hypo+Hypo/M/1/S queueing system

The construction of the Markov chain for the system state of a Hypo+Hypo/M/1/S
queueing system is shown in Figure 8.28: We start with the Markov chain for the system
state of a Hypo/M/1/S queueing system (Figure 8.28a) and add the second arrival
process (Figure 8.28b). In the resulting Markov chain (Figure 8.28c), in each state
there can be a transition of either the first or the second arrival process.

8.3.2. Other PH+PH/M/1/S queueing systems

The Markov chain for the system state of an M+M/M/1/S queueing system is shown in
Figure 8.29. Since the second arrival process does not introduce additional states, the
arrival rates are simply added. (This matches the result that the sum of Poisson pro-
cesses is a Poisson process whose intensity is the sum of the intensities of the component
processes.)

The Markov chains for the system state of queueing systems of type M+Hypo/M/1/S,
M+Hyper/M/1/S, Hypo+Hyper/M/1/S and Hyper+Hyper/M/1/S are shown in Fig-
ures 8.30 to 8.33. They are constructed in the same manner as the Markov chain for
the system state of the Hypo+Hypo/M/1/S queueing system, therefore, we show them
without further explanation.
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8. Superposition of traffic streams

(a) Markov chain for the system state of a Hypo/M/1/S queueing system.
Meaning of the names of the states: number of customers in the system
/ state of the arrival process

(b) Markov chain for the state of a counting process with hypoexponentially
distributed interevent times. Meaning of the names of the states: value /
state of the hypoexponential distribution.

(c) Markov chain for the system state of a Hypo+Hypo/M/1/S queueing system. Meaning of the names
of the states: number of customers in the system / state of the first arrival process / state of the
second arrival process.

Figure 8.28.: Hypo+Hypo/M/1/S queueing system.
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Figure 8.29.: M+M/M/1/S queueing system: Markov chain for the system state. Meaning of the
names of the states: number of customers in the system.

Figure 8.30.: M+Hypo/M/1/S queueing system: Markov chain for the system state. Meaning of
the names of the states: number of customers in the system / state of the second
arrival process.

Figure 8.31.: M+Hyper/M/1/S queueing system: Markov chain for the system state. Meaning of
the names of the states: number of customers in the system / state of the second
arrival process.
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Figure 8.32.: Hypo+Hyper/M/1/S queueing system: Markov chain for the system state. Meaning
of the names of the states: number of customers in the system / state of the first
arrival process / state of the second arrival process.
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Figure 8.33.: Hyper+Hyper/M/1/S queueing system: Markov chain for the system state. Mean-
ing of the names of the states: number of customers in the system / state of the
first arrival process / state of the second arrival process.
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9. Decomposition of traffic streams

The dual problem with the superposition of traffic streams is the decomposition of one
traffic stream into several component streams (Figure 9.1).

Figure 9.1.: Decomposition of a point process into n component processes.

Given a traffic stream S = 〈T1, T2, . . . 〉 with independent and identically distributed
interevent times Xj (i.e., it constitutes a stationary renewal process), a decomposition
of this stream is defined as a partition of its events (customers) to n pairwise disjoint
component streams Si = 〈Ti,1, Ti,2, . . . 〉, i = 1 . . . n,

S =
⋃
i

Si =
⋃
i,j

Ti,j (9.1)

Si ∩ Sj = ∅ for i 6= j (9.2)

The decision how the customers are assigned to the component processes is made ac-
cording to the routing policy. We consider the routing policies probability based routing
and round-robin routing.

Probability based routing (Figure 9.2a) means that a customer is assigned to compo-
nent stream Si with probability θi, where the θi are independent of previous routing
decisions.

In the case of round-robin routing (Figure 9.2b), customers are alternatingly assigned
to the component streams:

Ti,j = T(j−1)n+i (9.3)

We know the statistical characteristics of the original stream, and we are interested in
the statistical characteristics of the component streams.

The component streams constitute renewal processes, so the only task is to determine
the interevent times. We do this in Section 9.1.

In Section 9.2, we show how to model queueing systems that receive only a portion of
a traffic stream.
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(a)

(b)

Figure 9.2.: Decomposition of a point process into two component processes. (a) Probability
based, (b) round-robin based.
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9.1. Interevent times

Probability based routing

The mean interevent time of component stream i is

E (Xi,j) = E (Xj) ·
1

θi
(9.4)

For the calculation of the probability distribution of the interevent times, we use the
Markov chain for the state of the source stream S (cf. Section 3.5).

First, we determine the probability σDk that the Markov chain is in state k after an event
in S.

The next step is to extend the Markov chain by a state 〈E〉, to which the Markov chain
goes when there is an event in the component stream under consideration (Si). For all
transitions k → j that correspond to events in S, we set

q(new)
k,j = q(old)

k,j · (1− θi) (9.5)

and we add a new transition k → 〈E〉 with rate

qk,〈E〉 = q(old)
k,j · θi (9.6)

Now we calculate the complementary cumulative distribution function ϕk(·) of the time
that the Markov chain needs to go from state k to state 〈E〉:

ϕk(0) =

{
1 k 6= 〈E〉
0 k = 〈E〉

(9.7)

ϕ′(τ) = Q · ϕ(τ) (9.8)

The cumulative distribution function Fi(·) of the interevent times of the component
stream Si is

Fi(t) = 1−
∑
k

σDk ϕk(t) (9.9)

Round-robin routing

If there are n component streams, the interevent times of all these component streams
Xi,j are the convolution of n interevent times of the source stream,

Xi,j = Xj +Xj + · · ·+Xj︸ ︷︷ ︸
n times

i = 1 . . . n (9.10)

The mean interevent time of the component streams is

E (Xi,j) = E (Xj) · n i = 1 . . . n (9.11)
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If we want to use Markov chains for the calculation of the probability distribution of the
interevent times, this is done as follows:

We start with n Markov chains M1 . . .Mn for the system state of the source stream. We
identify transitions k → j that correspond to events in the source stream. Beginning
with M1, we redirect these transitions to the next Markov chain: Mm : k → Mm : j
becomes Mm : k → Mm+1 : j. Transitions in the last Markov chain are redirected to
Markov chain M1: Mn : k → Mn : j becomes Mn : k → M1 : j. The resulting Markov
chain describes the state of the source stream and of the round-robin scheduler. With
each transition to the next partial Markov chain another component stream receives
a customer. We assume that transitions from Mn to M1 correspond to events in the
component stream under consideration.

Now we determine the probabilities σDk that the Markov chain is in state k after an event
has occurred in the component stream. Of course, all states k with σDk > 0 are states of
M1.

After redirecting all transitions from Mn to M1 to a new state 〈E〉, we calculate the
complementary cumulative distribution function ϕk(·) of the time that the Markov chain
needs to go from state k to state 〈E〉 as shown above.

Again, the cumulative distribution function Fi(·) of the interevent times of the compo-
nent streams is

Fi(t) = 1−
∑
k

σDk ϕk(t) (9.12)

In the following examples, we will always assume that we have round-robin based
routing with two component processes.

9.1.1. Decomposition of a stream with hypoexponentially distributed
interevent times

Probability based routing

Figure 9.3a shows the Markov chain for the system state of the source stream S. The
transition from state 〈2〉 to state 〈1〉 corresponds to events in the source stream.

(a) (b)

Figure 9.3.: Decomposition of a stream with hypoexponentially distributed interevent times
(probability based). (a) Markov chain for the state of the stream, (b) Markov chain
for the calculation of the time to the next event.
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After an event has occurred, the Markov chain is in state 〈1〉, therefore, we have

σD〈1〉 = 1 (9.13)

The extended Markov chain is shown in Figure 9.3b. When the Markov chain leaves
state 〈2〉, it goes to state 〈E〉 with probability θi or to state 〈1〉 with probability 1− θi. If
it goes to state 〈E〉, there is an event in the component stream under consideration Si;
otherwise there is an event in another component stream.

We calculate the complementary cumulative distribution function ϕk(·) of the time that
the Markov chain needs to go from state k to state 〈E〉:

ϕ〈1〉(0) = ϕ〈2〉(0) = 1 (9.14)
ϕ〈E〉(0) = 0 (9.15)
ϕ′(τ) = Q · ϕ(τ) (9.16)

The cumulative distribution function of the interevent times of the component stream
is

Fi(t) = 1− ϕ〈1〉(t) (9.17)

Round-robin routing

Figure 9.4a shows the Markov chain for the state of the source stream. The transition
from state 〈2〉 to state 〈1〉 corresponds to events in the source stream. Figure 9.4b shows
the Markov chain for the state of the source stream and the round-robin scheduler. In
this Markov chain, transitions from state 〈2/2〉 to state 〈1/1〉 correspond to events in the
component process under consideration, and transitions from state 〈2/1〉 to state 〈1/2〉
correspond to events in the other component process.

After an event in the component stream under consideration, the Markov chain is in
state 〈1/1〉, so we have

σD〈1/1〉 = 1 (9.18)

In Figure 9.4c, the Markov chain for the calculation of the time to the next event is
shown. The transition from state 〈2/2〉 to state 〈1/1〉 now leads to state 〈E〉. With this
Markov chain, we calculate the complementary cumulative distribution function ϕk(·)
of the time that the Markov chain needs to go from state k to state 〈E〉:

ϕk(0) =

{
1 k 6= 〈E〉
0 k = 〈E〉

(9.19)

ϕ′(τ) = Q · ϕ(τ) (9.20)

The cumulative distribution function of the interevent times of the component stream
is

Fi(t) = 1− ϕ〈1/1〉(t) (9.21)
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(a) (b)

(c)

Figure 9.4.: Decomposition of a stream with hypoexponentially distributed interevent times
(round-robin). (a) Markov chain for the state of the stream, (b) Markov chain for
the state of the stream and the round-robin scheduler, (c) Markov chain for the cal-
culation of the time to the next event. Meaning of the names of the states: (a) state
of the stream, (b,c) state of the stream / state of the round-robin scheduler.

9.1.2. Decomposition of a stream with hyperexponentially distributed
interevent times

Probability based routing

Figures 9.5a and 9.5b show the Markov chains for the system state of the source stream.
All transitions correspond to events in the source stream.

(a) (b)

(c)

Figure 9.5.: Decomposition of a stream with hyperexponentially distributed interevent times
(probability based). (a,b) Markov chains for the state of the stream, (c) Markov
chain for the calculation of the time to the next event.

After an event has occurred, the Markov chain is in state 〈1〉 with probability α1 and in
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9.1. Interevent times

state 〈2〉 with probability α2:

σD〈1〉 = α1 (9.22)

σD〈2〉 = α2 (9.23)

The extended Markov chain is shown in Figure 9.5c. When the Markov chain is in
state 〈1〉 and there is an event, it goes to state 〈E〉 with probability θi. With probability
(1 − θi) · α2 it goes to state 〈2〉, and with probability (1 − θi) · α1 it stays in state 〈1〉.
When the Markov chain is in state 〈2〉 and there is an event, it goes to state 〈E〉 with
probability θi. With probability (1 − θi) · α1 it goes to state 〈1〉, and with probability
(1− θi) · α2 it stays in state 〈2〉. If the Markov chain goes to state 〈E〉, there is an event
in the component stream.

We calculate the complementary cumulative distribution function ϕk(·) of the time that
the Markov chain needs to go from state k to state 〈E〉:

ϕ〈1〉(0) = ϕ〈2〉(0) = 1 (9.24)
ϕ〈E〉(0) = 0 (9.25)
ϕ′(τ) = Q · ϕ(τ) (9.26)

The cumulative distribution function of the interevent times of the component stream
is

Fi(t) = 1− α1ϕ〈1〉(t)− α2ϕ〈2〉(t) (9.27)

Round-robin routing

Figure 9.6a shows the Markov chain for the state of the source stream. All transitions
correspond to events in the source stream. Figure 9.6b shows the Markov chain for the
state of the source stream and the round-robin scheduler. In this Markov chain, tran-
sitions from states 〈·/2〉 to states 〈·/1〉 correspond to events in the component process
under consideration, transitions from states 〈·/1〉 to states 〈·/2〉 correspond to events in
the other component process.

After an event in the component stream, the Markov chain is in state 〈1/1〉 with proba-
bility α1 and in state 〈2/1〉 with probability α2, so we have

σD〈1/1〉 = α1 (9.28)

σD〈2/1〉 = α2 (9.29)

In Figure 9.6c, the Markov chain for the calculation of the time to the next event is
shown. The transitions from states 〈·/2〉 to states 〈·/1〉 now lead to state 〈E〉. With this
Markov chain, we calculate the complementary cumulative distribution function ϕk(·)
of the time that the Markov chain needs to go from state k to state 〈E〉:

ϕk(0) =

{
1 k 6= 〈E〉
0 k = 〈E〉

(9.30)

ϕ′(τ) = Q · ϕ(τ) (9.31)
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(a)

(b) (c)

Figure 9.6.: Decomposition of a stream with hyperexponentially distributed interevent times
(round-robin). (a) Markov chain for the state of the stream, (b) Markov chain for
the state of the stream and the round-robin scheduler, (c) Markov chain for the cal-
culation of the time to the next event. Meaning of the names of the states: (a) state
of the stream, (b,c) state of the stream / state of the round-robin scheduler.
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9.1. Interevent times

The cumulative distribution function of the interevent times of the component stream
is

Fi(t) = 1− α1ϕ〈1/1〉(t)− α2ϕ〈2/1〉(t) (9.32)

9.1.3. Decomposition of a stream with exponentially distributed
interevent times

Probability based routing

Figures 9.7a and 9.7b show the Markov chain for the system state of the source stream.
The hidden transition corresponds to events in the source stream.

(a) (b) (c)

Figure 9.7.: Decomposition of a stream with exponentially distributed interevent times (proba-
bility based). (a,b) Markov chains for the state of the stream, (c) Markov chain for
the calculation of the time to the next event.

After an event has occurred, the Markov chain is in state 〈1〉.

σD〈1〉 = 1 (9.33)

The extended Markov chain is shown in Figure 9.7c. When there is an event in the
source stream, the Markov chain goes to state 〈E〉 with probability θi or it stays in state
〈1〉 with probability 1− θi.

The complementary cumulative distribution function of the time to the next event given
that the Markov chain is in state k is calculated with

ϕk(0) =

{
1 k = 〈1〉
0 k = 〈E〉

(9.34)

ϕ′(τ) = Q · ϕ(τ) (9.35)

which has the solution

ϕ〈1〉(t) = e−θiλt (9.36)
ϕ〈E〉(t) = 0 (9.37)

The cumulative distribution function of the interevent times of the component stream
Si is

Fi(t) = 1− ϕ〈1〉(t) σD〈1〉 = 1− e−θiλt (9.38)
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9. Decomposition of traffic streams

This means a probability based decomposition of a stream with exponentially distributed
interevent times has exponentially distributed interevent times, too.

Some results are shown in Figure 9.8.

Figure 9.8.: Probability based decomposition of a traffic stream with (a) hyperexponentially (c =
1.2), (b) exponentially, (c) hypoexponentially (c = 0.8) distributed interevent times.

Round-robin routing

Figure 9.9a shows the Markov chain for the state of the source stream. The hidden
transition corresponds to events in the source stream. Figure 9.9b shows the Markov
chain for the state of the source stream and the round-robin scheduler. In this Markov
chain, transitions from state 〈2〉 to state 〈1〉 correspond to events in the component
process under consideration, and transitions from state 〈1〉 to state 〈2〉 correspond to
events in the other component process.

After an event in the component stream under consideration, the Markov chain is in
state 〈1〉:

σD〈1〉 = 1 (9.39)

In Figure 9.9c, the Markov chain for the calculation of the time to the next event is
shown. The transition from state 〈2〉 to state 〈1〉 now leads to state 〈E〉. With this
Markov chain we calculate the complementary cumulative distribution function ϕk(·) of
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(a) (b)

(c)

Figure 9.9.: Decomposition of a stream with exponentially distributed interevent times (round-
robin). (a) Markov chain for the state of the stream, (b) Markov chain for the state
of the stream and the round-robin scheduler, (c) Markov chain for the calculation
of the time to the next event. Meaning of the names of the states: (a) state of the
stream, (b,c) state of the round-robin scheduler.

the time that the Markov chain needs to go from state k to state 〈E〉 with

ϕ〈1〉(0) = ϕ〈2〉(0) = 1 (9.40)
ϕ〈E〉(0) = 0 (9.41)
ϕ′(τ) = Q · ϕ(τ) (9.42)

which has the solution

ϕ〈1〉(t) = (λt+ 1)e−λt (9.43)

ϕ〈2〉(t) = e−λt (9.44)
ϕ〈E〉(t) = 0 (9.45)

The cumulative distribution function of the interevent times of the component stream
is

Fi(t) = 1− ϕ〈1/1〉(t) = 1− (λt+ 1)e−λt (9.46)

which is, as expected, the cumulative distribution function of a 2-stage Erlang distribu-
tion.
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9.1.4. Decomposition of a stream with Coxian distributed interevent
times

Probability based routing

Figures 9.10a and 9.10b show the Markov chain for the system state of the source
stream. All transitions to state 〈1〉 correspond to events in the source stream.

(a)

(b)

(c)

Figure 9.10.: Decomposition of a stream with Coxian distributed interevent times (probability
based). (a,b) Markov chains for the state of the stream, (c) Markov chain for the
calculation of the time to the next event.

After an event has occurred, the Markov chain is in state 〈1〉:

σD〈1〉 = 1 (9.47)

The extended Markov chain is shown in Figure 9.10c. We calculate the complementary
cumulative distribution function ϕk(·) of the time that the Markov chain needs to go
from state k to state 〈E〉:

ϕ〈1〉(0) = ϕ〈2〉(0) = ϕ〈3〉(0) = 1 (9.48)
ϕ〈E〉(0) = 0 (9.49)
ϕ′(τ) = Q · ϕ(τ) (9.50)
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The cumulative distribution function of the interevent times of the component stream
Si is

Fi(t) = 1− ϕ〈1〉(t) (9.51)

Coxian* distribution

Probability based routing

The probability that a batch of n events occurs in the component stream under con-
sideration when a single event or a batch of events occurs in the source stream equals
the probability that there is a batch of size m ≥ n in the source stream (probability
(1 − p)m−1p) and that exactly n of these events are routed to the component stream
(probability θni (1− θi)m−n

(
m
n

)
):

P {batch of size n} =
∞∑
m=n

(1− p)m−1p θni (1− θi)m−n
(
m

n

)
(9.52)

The probability η that there is at least one event in the component stream after an event
occurs in the source stream is the sum over all n ≥ 1:

η = P {batch of size ≥ 1} =
∞∑
n=1

P {batch of size n} =

∞∑
n=1

∞∑
m=n

(1− p)m−1pθni (1− θi)m−n
(
m

n

)
=

θi
p− θi(p− 1)

(9.53)

If in the component stream a batch of events occurs, its expected size L is the expected
size of a batch in the component stream given that exactly one event has occurred in
the component stream:

L =
∞∑
n=1

n

∞∑
m=n

(1− p)m−1p θn−1
i (1− θi)m−n

(
m− 1

n− 1

)
=
p+ θi − pθi

p
(9.54)

The probability that the interevent time Xi,j is 0 is the reciprocal of the expected batch
size:

P {Xi,j = 0} =
p

p+ θi − pθi
(9.55)

The Markov chain for the calculation of the interbatch times of the component stream
Si is shown in Figure 9.11. Events in the source stream (transitions 〈1〉 → 〈1〉, 〈2〉 → 〈1〉
and 〈3〉 → 〈1〉 in Figure 9.10b) cause events in the component stream (transitions
〈1〉 → 〈E〉, 〈2〉 → 〈E〉 and 〈3〉 → 〈E〉) with probability η.
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Figure 9.11.: Decomposition of a stream with Coxian* distributed interevent times: Markov
chain for the calculation of the time to the next event.

The cumulative distribution function of the interbatch times Z is calculated with

ϕ〈1〉(0) = ϕ〈2〉(0) = ϕ〈3〉(0) = 1 (9.56)
ϕ〈E〉(0) = 0 (9.57)
ϕ′(τ) = Q · ϕ(τ) (9.58)

and

FZ(t) = 1− ϕ〈1〉(t) (9.59)

The cumulative distribution function of the interevent times is

P {Xi,j ≤ t} = P {Xi,j = 0}+ FZ(t)

(
1− p

p+ θi − pθi

)
(9.60)
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9.1.5. Closed-form solution

P. Kühn uses in [Kühn 1979] the following approach to determine a closed-form so-
lution for the first two moments of the interevent times of a component stream (with
probability based routing):

Figure 9.12.: Decomposition of a traffic stream. The interevent times of a component stream
consist of N interevent times of the source stream.

As shown in Figure 9.12, an interevent time Xi in the component stream Si consists of
N interevent times X of the source stream S,

Xi =
N∑
n=1

X (9.61)

The random variable N is geometrically distributed:

Pn = P {N = n} =

{
0 for n = 0

(1− θi)n−1θi for n ≥ 1
(9.62)

The sequence 〈Pn〉 has the generating function

G(z) =
∞∑
n=0

Pnz
n =

θiz

1− (1− θi)z
|z| < 1 (9.63)

Let

Φ(s) =

∞∫
0−

e−stdF (t) (9.64)

and

Φi(s) =

∞∫
0−

e−stdFi(t) (9.65)

be the Laplace-Stieltjes transforms of the distribution functions of the interevent times
of the source stream and the component streams, respectively.
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The distribution function Fi(t) can be expressed by a conditional cumulative distribution
function P {Xi < t | N = n}:

Fi(t) =
∞∑
n=0

Pn · P {Xi < t | N = n} (9.66)

The conditional cumulative distribution function P {Xi < t | N = n} is the distribution
function of the sum of n independent and identically distributed random variables X
that have the distribution function F (t). The Laplace-Stieltjes transform of the cumu-
lative distribution function of a sum of random variables is the product of the Laplace-
Stieltjes transforms of the single cumulative distribution functions, so we have

Φi(s) =
∞∑
n=0

Pn · (Φ(s))n (9.67)

By comparing Equations 9.63 and 9.67 we find

Φi(s) = G (Φ(s)) =
θiΦ(s)

1− (1− θi)Φ(s)
(9.68)

For mean and variance of Xi we have

E (Xi) = −dΦi(s)

ds

∣∣∣∣
s=0

= E(X) E(N) (9.69)

Var (Xi) =
d2Φi(s)

ds2

∣∣∣∣
s=0

− (E (Xi))
2 = (E(X))2 Var(N) + Var(X) E(N) (9.70)

With

E(N) =
1

θi
(9.71)

Var(N) =
1− θi
θ2
i

(9.72)

E(X) =
1

λ
(9.73)

Var(X) =
c2

λ2
(9.74)

we get the final result

λj = λ · θi (9.75)
c2
i = θic

2 + (1− θi) (9.76)
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9.2. Modelling splitted-PH/M/1/S queueing systems

The decomposition of traffic streams can also be included in the Markov chain for a
queueing system.

The Markov chain for the system state of a queueing system that receives only a por-
tion of a traffic stream with phase-type distributed interevent times (we denote such
queueing systems with %PH/. . . , e.g., %Hypo/M/1/S) can be constructed as follows:

Probability based

Let θ be the probability that a customer of the source stream is routed to the queueing
system under consideration. We start with the Markov chain for the system state of
the queueing system whereby we assume that the queueing system receives the whole
traffic stream. Now for all transitions i→ j that correspond to an arrival of a customer
we set

q(new)
i,j = q(old)

i,j · θ (9.77)

and we add a new transition from state i to a state k such that the arrival process is
“reset” but the number of customers in the system remains unchanged. This transition
corresponds to events in the source stream that are not routed to the queueing system
under consideration. The rate of this new transition is

qi,k = q(old)
i,j · (1− θ) (9.78)

Round-robin

Again, the starting point is the Markov chain for the system state of the queueing system
whereby we assume that the queueing system receives the whole traffic stream. Now we
combine this Markov chain with a Markov chain that describes the state of the round-
robin scheduler. If there are n component processes, this Markov chain has n states and
transitions 1→ 2, 2→ 3, . . . , n− 1→ n, n→ 1. A transition takes place whenever there
is an event in the source stream. Now we modify the new Markov chain such that only
when the scheduler is in state n, an event in the source stream increases the number of
customers in the system.

9.2.1. Splitted-Hypo/M/1/S queueing system

Probability based routing

The construction of the Markov chain for the system state of a %Hypo/M/1/S queueing
system with probability-based routing (routing probability θ) is shown in Figure 9.13.
Figure 9.13a shows the Markov chain for the system state of a Hypo/M/1/S queueing
system. The transitions 〈n/2〉 → 〈n+ 1/1〉 correspond to arrivals of customers. We mul-
tiply the rates of these transitions by the routing probability θ and add new transitions
〈n/2〉 → 〈n/1〉 with rate λ2 · (1− θ) (Figure 9.13b).
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9. Decomposition of traffic streams

(a) Markov chain for the system state of a Hypo/M/1/S queueing
system. Meaning of the names of the states: number of cus-
tomers in the system / state of the arrival process.

(b) Markov chain for the system state of a %Hypo/M/1/S queueing
system. Probability based routing (customers are received with
probability θ).

Figure 9.13.: %Hypo/M/1/S queueing system.

278



9.2. Modelling splitted-PH/M/1/S queueing systems

Round-robin routing

The Markov chain for the system state of a %Hypo/M/1/S queueing system with round-
robin routing (two component processes) is shown in Figure 9.14. Transitions that
correspond to events in the source stream (all transitions with rate λ2) change the state
of the round-robin scheduler. If the scheduler is in state n = 2 when there is an event
in the source stream, in addition the number of customers in the queueing system is
increased (transitions 〈n/2/2〉 → 〈n+ 1/1/1〉).

Figure 9.14.: %Hypo/M/1/S queueing system: Markov chain for the system state. Round-robin
based routing (two component processes): every second customer of the arrival
stream is received. Meaning of the names of the states: number of customers in
the system / state of the round-robin scheduler / state of the arrival process.

9.2.2. Splitted-Hyper/M/1/S queueing system

Probability based routing

The construction of the Markov chain for the system state of a %Hyper/M/1/S queueing
system with probability-based routing (routing probability θ) is shown in Figure 9.15.
Figure 9.15a shows the Markov chain for the system state of a Hyper/M/1/S queueing
system. The transitions 〈n/·〉 → 〈n+ 1/·〉 correspond to arrivals of customers. We mul-
tiply the rates of these transitions by the routing probability θ and add new transitions
〈n/1〉 → 〈n/2〉 with rate λ1 α2 (1− θ) and 〈n/2〉 → 〈n/1〉 with rate λ2 α1 (1− θ) (Figure
9.15b).
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(a) Markov chain for the system state of a Hyper/M/1/S queueing system. Meaning
of the names of the states: number of customers in the system / state of the
arrival process.

(b) Markov chain for the system state of a %Hyper/M/1/S queueing
system. Probability based routing (customers are received with
probability θ).

Figure 9.15.: %Hyper/M/1/S queueing system.
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9.2. Modelling splitted-PH/M/1/S queueing systems

Round-robin routing

The Markov chain for the system state of a %Hyper/M/1/S queueing system with round-
robin routing (two component processes) is shown in Figure 9.16. Transitions that
correspond to events in the source stream (all transitions containing λ1 or λ2) change
the state of the round-robin scheduler. If the scheduler is in state n = 2 when there is an
event in the source stream, in addition the number of customers in the queueing system
is increased.

Figure 9.16.: %Hyper/M/1/S queueing system: Markov chain for the system state. Round-robin
based routing (two component processes): every second customer of the arrival
stream is received. Meaning of the names of the states: number of customers in
the system / state of the round-robin scheduler / state of the arrival process.

Figure 9.17 shows a comparison between the expected number of customers in
%PH/M/1/S queueing systems when round-robin routing or probability based routing
is used.
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9. Decomposition of traffic streams

(a)

(b)

Figure 9.17.: Expected number of customers in a %PH/M/1/S queueing system (S = 3) which
receives 50% of the customers of a traffic stream with rate λ and (a) hypoexpo-
nentially (c = 0.85), (b) hyperexponentially (c = 1.5) distributed interevent times.
Service rate µ = 1. The routing policies are probability based routing (θ = 0.5)
and round-robin routing (two component streams).
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10. Summary

In this work, we show new techniques of modelling queueing systems with continuous-
time Markov chains.

The first part gives an introduction to modelling of queueing systems with Markov
chains. Chapter 2 reviews the theory of discrete-time and continuous-time Markov
chains. In Chapter 3, traditional techniques of modelling queueing systems with Markov
chains are presented: we show how to determine the system state, the flow time through
a queueing system, and the time until a certain state is reached. In Chapter 4, we briefly
discuss other performance evaluation techniques based on Markov chains (embedded
Markov chain method, matrix geometric method, and matrix analytic methods).

In the second part of this work, the new Markov chain techniques are presented. Where
possible, we give more than one method to determine the same quantity, so that one can
choose the best method for the actual problem. Moreover, the techniques are presented
in a form that makes it easy to implement them in a computer program.

Chapter 5 deals with the idle and the busy period of queueing systems. We show how
to calculate the length of the idle period, the length of the busy period, and the number
of customers served during a busy period. These quantities are used in Chapter 6,
where the interdeparture times of single-server queueing systems are determined. In
Chapter 7, we investigate overflow traffic, that is, traffic created by customers that are
prevented from entering a queueing system and are redirected to another destination.
We show how to calculate the interoverflow time and the number of successful arrivals
between two consecutive rejections. Most of the techniques shown in Chapters 5 – 7 can
be applied to every queueing system that can be modelled with continuous-time Markov
chains, that is, no assumptions on the structure of the queueing systems are made (e.g.,
that arrival and service rates have to be state-independent). Finally, Chapters 8 and 9
deal with the manipulation of traffic streams. We present techniques to calculate the
interevent times of both the superposition of traffic streams and the decomposition of
traffic streams.
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10. Summary
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A. Mathematical symbols

c coefficient of variation

fX(·) probability density function of the random variable X

pij transition probability from state i to state j (discrete-time Markov
chain)

qij transition rate from state i to state j (continuous-time Markov chain)

r rate

t time

A interarrival time (random variable)

B length of the busy period (random variable)

D interdeparture time (random variable)

D(1) first interdeparture time in a busy cycle (random variable)

D(2) following interdeparture times in a busy cycle (random variable)

FX(·) cumulative distribution function of the random variable X

FC
X (·) complementary cumulative distribution function of the random vari-

able X

I length of the idle period (random variable)

R interoverflow time (random variable)

S service time (random variable)

X number of customers in a queueing system (random variable)

I identity matrix

MA Markov chain for the state of the superposition of point processes

MB Markov chain for the calculation of the length of the busy period of
a queueing system

MC counting Markov chain
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A. Mathematical symbols

MD Markov chain for the state of a point process and a component pro-
cess (decomposition)

MI Markov chain for the calculation of the length of the idle period of a
queueing system

MR Markov chain for the calculation of the length of the interblocking
time of a queueing system

MS Markov chain for the state of a queueing system

Mζ Markov chain for the calculation of the number of successful arrivals
between two consecutive overflows

Mξ Markov chain for the calculation of the number of customers served
during a busy period

MΦ Markov chain for the calculation of the flow time

P transition probability matrix of a discrete-time Markov chain

Q transition rate matrix of a continuous-time Markov chain

αi parameters (probabilities) of hyperexponential and Coxian distribu-
tions

βi parameters (probabilities) of hyperexponential and Coxian distribu-
tions

ζ number of successful arrivals between two consecutive overflows

ζn probability that there are n successful arrivals between two consec-
utive overflows

θ routing probability

κ service rate

λ arrival rate

λi parameters (rates) of hypoexponential, hyperexponential, and Cox-
ian distributions

µ service rate

µi parameters (rates) of hypoexponential, hyperexponential, and Cox-
ian distributions

ξ number of customers served during the busy period (random vari-
able)

ξn probability that there are n customers served during the busy period

πi stationary state probability of state i

πi(t) state probability of state i at time t
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σAi probability that the Markov chainMA is in state i after an event has
occured

σBi probability that the Markov chain MB is in state i when the busy
period begins

σIi probability that the Markov chain MI is in state i when the idle
period begins

σRi probability that the Markov chainMR is in state i after an overflow
has occured

σΦ
i probability that the Markov chain MΦ is in state i when the flow

process begins

τ time

ϕi(·) complementary cumulative distribution function of the time the
Markov chain needs to reach an absorbing state given that it is in
state i

Φ flow time (random variable)

∼ “has the distribution”

N set of the natural numbers

R set of the real numbers

R+
0 set of the non-negative real numbers
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