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Kurzfassung

In dieser Arbeit wurde ein lineares Turbinengitter, gebildet aus sogenannten 3D Com-
pound Lean Turbinenschaufeln, optimiert. Ausgangspunkt war eine zylindrische Hoch-
druckdampfturbinenschaufel, deren 2D Profil aus der Arbeit von Perdichizzi und Dosse-
na [29] entnommen wurde.

Für die Kalibrierung des numerischen Berechnungsverfahrens (CFD) wurde ein Experi-
ment im Niedergeschwindigkeitswindkanal des Instituts für Thermodynamik und Energie-
wandlung der Technischen Universität Wien mit einem linearen Schaufelgitter mit zylin-
drischen Schaufeln durchgeführt. Stromabwärts des Schaufelgitters wurden Druckmes-
sungen mit pneumatischen Drei- und Fünflochsonden durchgeführt, zusätzlich wurden
Profildruckmessungen in halber Schaufelhöhe durchgeführt. Aus den gemessenen Daten
wurden weiters Druckkoeffizienten, Geschwindigkeiten und Strömungswinkel berechnet.

Die Optimierung des linearen Schaufelgitters wurde mittels der kommerziellen Programme
Fluent (CFD-Solver), Gambit (Geometrieerstellung und Netzgenerierung) sowie eines
eigens programmierten genetischen Algorithmus vorgenommen. Die Steuerung der drei
beteiligten Komponenten wurde ebenfalls programmiert. Die Randbedingungen für das
CFD Modell wurden aus dem Ergebnis des Experiments entnommen. Für die Turbulenz-
modellierung wurde ein Standard k/ε Turbulenzmodell verwendet. Die Staffelungslinie
der Compound Lean Schaufeln wurde aus zwei Parabelstücken an den Seitenwänden
und einem geraden Stück in der Schaufelmitte gebildet, das 2D Profil der zylindrischen
Schaufel wurde für alle Schaufeln nicht verändert. Zwei Parameter, nämlich der Winkel
zwischen der Parabeltangente an der Seitenwand und der Normalenrichtung zur Seit-
enwand, sowie die Länge des geraden Stücks der Staffelungslinie, wurden während der
Optimierung variiert. Als zu optimierende Zielfunktion wurde der globale Totaldruck-
verlustkoeffizient verwendet. Die Optimierung berechnete, einmal gestartet, ohne jeden
manuellen Eingriff selbständig über 1200 Konfigurationen.

Im Anschluß an die Optimierung wurden Rechnung und Messung für die zylindrische Kon-
figuration verglichen. Sehr gute Übereinstimmung zeigte sich in Bezug auf den Strömungs-
winkel in Teilungsrichtung und den statischen Druck hinter dem Schaufelgitter in quan-
titativer und qualitativer Hinsicht. Für die Geschwindigkeit und den Totaldruck strom-
abwärts des Schaufelgitters waren die Übereinstimmungen zwar sehr gut in qualitativer
Hinsicht, jedoch wurden die Verluste vom CFD Verfahren anscheinend als zu hoch berech-
net, weshalb es zu Abweichungen in quantitativer Hinsicht kam. Der Strömungswinkel in
Richtung der Schaufelhöhe zeigte weder in qualitativer noch in quantitativer Hinsicht
gute Übereinstimmung.

Weiters wurde im Anschluß an die Optimerung die zylindrische Ausgangskonfiguration
mit zwei optimierten Compound Lean Konfigurationen verglichen. In Bezug auf die
Zielfunktion wiesen diese beiden Konfigurationen einen um ca. 1.5% niedrigeren To-
taldruckverlustkoeffizienten auf. Insbesondere im Bereich der Seitenwandgrenzschicht-
en zeigten sich bei beiden Compound Lean Konfigurationen Verbesserungen hinsichtlich
der Verluste, die beste Konfiguration zeigte auch eine deutlich gleichmäßigere Verteilung

3



des teilungsgemittelten Abströmwinkels. Erhebliche Verringerungen der aerodynmischen
Schaufelbelastungen der Compound Lean Konfigurationen an den Seitenwänden kon-
nten mittels der Profildruckverteilungen beobachtet werden. In Schaufelmitte kam es
jedoch teilweise zu Zunahmen der aerodynamischen Schaufelbelastungen bei den Com-
pound Lean Konfigurationen. Verringerungen wurden auch in Bezug auf die Intensität
des Kanalwirbels bei den beiden optimierten Konfigurationen festgestellt.
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Abstract

In this work, an optimisation of a linear 3D compound lean turbine blade cascade was
performed. A cylindric high-pressure steam turbine blade was used as reference and
starting configuration. The 2D blade profile of this cylindric blade was taken from the
work of Perdichizzi and Dossena [29].

The numerical calculations were calibrated with an experiment in the low-pressure wind-
tunnel of the Institute for Thermodynamics and Energy Conversion of the Vienna Uni-
versity of Technology. This experiment was done with a linear cascade of cylindric
blades. Downstream of the cascade pressure measurements were done with three-hole
pressure probes and five-hole pressure probes. In addition, profile pressure measurements
at midspan were done. Pressure coefficients, velocities and flow angles were calculated
from the measured data.

The optimisation of the linear cascade was done by means of the commercial CFD-
solver Fluent, the commercial geometry- and grid-generation program Gambit, and a
self-programmed genetic algorithm. A program, which controlled all three involved com-
ponents was self-programmed as well. As boundary conditions for the CFD model the
same as observed in the experiment were used. Turbulence was modelled with a Stan-
dard k/ε model. The staggerline of the compound lean blades consisted of two parabolic
arcs at the endwalls and a straight part in between them. The 2D blade profile was
not altered for any of the configurations. Two parameters, viz. the angle between the
tangent of the parabolic arc and the spanwise direction at the intersection of the endwall
and the parabolic arc, and the length of the mentioned straight part of the staggerline,
were varied during the optimisation process. Global total pressure loss coefficient was
the objective function of choice. The optimisation process calculated, after initialisation,
more than 1200 configurations independently of any human interaction.

After the optimisation process, the experiment and the calculation for the cylindric con-
figuration were compared. Very good agreement could be reached for the pitchwise flow
angle and the static pressure downstream of the cascade in qualitative and quantitative
terms. The agreement for the velocity and the total pressure were quite good qualitatively,
but the losses were seemingly calculated too high by CFD, which resulted in quantitative
divergences. The spanwise flow angle, however, did not show good agreement, neither
qualitatively nor quantitatively.

Finally, two optimised compound lean configurations were compared with the cylindric
configuration. Both configurations had a lower value of global total pressure loss coef-
ficient of approximately 1.5%. Especially in the endwall regions both compound lean
configuration showed improvements in terms of loss, a remarkably more even distribu-
tion of the pitchwise mass-averaged flow angle could be observed for the best configura-
tion. A considerable decrease of aerodynamic bladeload was observed for both compound
lean configurations at the endwall by means of blade profile pressure distributions. At
midspan, however, to some extent an increase of aerodynmic bladeload could be observed
for the compound lean configurations. In addition, a decrease of the intensity of the pas-
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sage vortex could be determined for both optimised compound lean configurations.
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1 Introduction

Nothing has such power to

broaden the mind as the ability

to investigate systematically and

truly all that comes under thy

observation in life.

(Marcus Aurelius Antonius
Augustus,

Roman Emperor)

1.1 Motivation

Electric energy drives the economy of the entire world. As the economy grows, the thirst
for energy in general, and for electric energy in especially is rising too. Figure 1.1 shows
the growing demand for electric energy worldwide. It is important to note, that the
demand of Asia and Oceania has already surpassed those of Europe and North America
and, in addition, is growing more rapidly than the other ones. According to the Energy
Information Administration, the electric power generation of the world will allmost double
from 16424 TWh in the year 2004 to 30364 TWh in the year 2030 [2].

For the example of the EU-27 countries, it can be seen from Fig. 1.2 that, although
alternative concepts (termed ”Others” in Fig. 1.2) such as geothermal power, windpower,
biomass, etc., become more and more important, fossil fuelled thermal power plants still
form the backbone of today’s electric energy production with a share of roughly 50% of
the total production. They will probably continue to play that important role for the
next 50 years or so to come, in the author’s opinion 1. Burning fossil fuels generates
greenhouse gases, of which CO2 is probably the best known. They are widely accepted
to be the main source of global warming and climate change. To challenge the difficult
task of reducing the CO2 and other greenhouse gas emissions, the Kyoto protocol was
introduced in 1997 as an amendment to the United Nations Framework Convention on
Climate Change (UNFCCC). Its objective is to commit the individual countries to reduce
their greenhouse gas emissions. The EU for example has agreed on reducing its greenhouse
gas emissions by 8% compared to the reference value of 1990, leaving it up to the EU
institutions to allocate different burdens for different member states.

To get an idea how the greenhouse gas emissions are distributed among the different key
source categories Fig. 1.3 shows the shares of those key source categories for the EU-15

1A revival of nuclear power can be observed recently in Europe, but is not yet reflected in the data up
to 2006.
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countries for the year 2006 2.

The CO2 emissions of electricity production and heating account for nearly one third of
total emissions, therefore there exists an urgent need for action to reduce those emissions.
As mentioned above, CO2 is always produced, when fossil fuels are burned, and can not
be evaded, so technical concepts for CO2 sequestration were developed and tested in
small and medium sized experiments in the last years. These concepts are now awaiting
their final real sized tests and will then probably be available for full scale use in thermal
power plants. The swedish Vattenfall group is currently building a Zero-CO2-emission
hard-coal fired Demonstration Power Plant in Eastern Germany with a thermal output
of 30 MW 3. It is planned to start operation in mid-2008. CO2 emissions will be
reduced with an Oxyfuel-process by 90 %. The german RWE group is currently planning
and projecting an Integrated Gasification Combined Cycle (IGCC) power plant which
is going to be coal fired. It is planned to start operation in 2014 and will have a net
electric output of 360 MW (gross electric output: 450 MW) [12]. There is a certain
drawback to all those CO2 capture and storage (CCS) techniques, namely that they are
quite energy consuming themselves. According to Ploetz [30], the different process types
for CO2 sequestration result in a decrease of efficiency between 7 to 14 percentage points
for the whole power plant. The total output of the different types of power plant would
be significantly decreased with current technology, but even for technology, which will
only be available in the future 5, the reduction in power output is still an alarmingly high
number (compare Tab. 1.1), as these reductions raise the price of electricity considerably.

It is therefore of utmost importance to increase the efficiency of power plants as high

2Complete data for the EU-27 countries was not available, but it is assumed, that the EU-15 data is
closely comparable to the EU-27 data.

3http://www.vattenfall.de/www/vf/vf de/225583xberx/228227umwel/228407klima/
228587co2-f/index.jsp

4Land Use, Land Use Change and Forestry
5”Future” was not specified exactly in the cited work.
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Power Plant Type Power output decrease Power output decrease
Current Technology [%] ”Future” Technology [%]

Conventional Coal Fired 27 - 37 15
Power Plant
Gas Fired Power Plant 15 - 25 10 - 11
Advanced Coal Fired 13 - 17 9
Power Plant

Table 1.1: Reduction of Power Output due to CO2 Sequestration

as possible. Even very small improvements in efficiency result in high economic savings,
when considering the operation hours per year and the long operation times of power
plants and their huge consumption of primary energy. One of the key components of
fossil fuelled power plants is without doubt the turbomachine, be it a steam turbine or a
gas turbine. Amongst the most important components, that determine the performance
and efficiency of a turbine, are for sure the turbine blades. Therefore, increasing the
performance of the turbine blades is certainly an objective, that is very promising when
trying to increase the efficiency and performance of a turbine.

In this work, a linear high-pressure steamturbine stator blade cascade will be optimised
by making use of a genetic algorithm and CFD. Amongst the many methods that are
known to influence the performance and efficiency of turbine bladings, 3D compound
lean was the approach of choice. The CFD calculation will be calibrated by experimental
data, which will be derived from an experiment in the institute’s windtunnel.

1.2 Secondary Flow

Losses due to secondary flow are the major loss source in HP turbine (reaction) stages
(compare Fig. 1.7), so presumably the most promising field for increasing the efficiency of
a HP turbine stage is decreasing those losses. There are many model theories about the
origin and development of the various vortex systems and their importance for secondary
flow and the losses induced by secondary flow. Sieverding [35] and Langston [21] give
very broad overviews of the work done so far. However, when going through all those
theories it turns out, that despite all their differencies and the different interpretations
for all the phenomenons observed, five basic vortices are more or less equal to all of them,
viz.

• the horseshoe vortex,

• the passage vortex,

• the counter vortex,

• the corner vortex, and

• the trailing edge vortex.
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Figure 1.4: Horseshoe Vortex [16]

A model sketch of the passage vortex and the counter vortex is presented in Fig. 1.5, the
horseshoe vortex is presented in Fig. 1.4 6.

3D compound lean shape is known to have a positive influence on the reduction of losses
due to secondary flow in linear turbine blade cascades, which qualifies it as the method
of choice for this work.

1.2.1 Horseshoe Vortex, Counter Vortex

Whenever a wallbounded viscous flow meets an obstacle, such as the leading edge of a
turbine blade, a positive pressure gradient towards the endwall is being exerted. The
endwall boundary layer cannot withstand this adverse pressure and curls up into the
horseshoe vortex, which is further transported around the leading edge of the blade. The
pressure side leg of this horseshoe vortex is pushed towards the suction side of the blade
passage due to the pressure gradient between pressure and suction side and merges with
the passage vortex. The suction side leg, rotating in the opposite direction of the passage
vortex, becomes the counter vortex in the blade passage.

1.2.2 Passage Vortex

The passage vortex is mainly induced by the pitchwise pressure gradient inside the blade
passage. In the undisturbed flow region the pressure gradient due crossflow is balanced

6 called Stagnation Point Vortex there
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Figure 1.5: Secondary Flow Model of Langston [21]

out by the forces due to the turning of the flow. In the endwall regions, as the flow
velocity in the main direction decreases in the endwall boundary layer, the forces due to
the pitchwise pressure gradient exceed the acceleration forces, and crossflow occurs. This
crossflow continues on the blade profiles for reasons of mass conservation and develops
into the passage vortex. The higher the flow turning angle, the higher the bladeload and
the pitchwise pressure gradient, and the stronger gets the passage vortex.

1.2.3 Corner Vortex

The corner vortex, being much smaller than the passage vortex, is very difficult to verify
experimentally. It is situated in the corner of the endwall and the blade suction side. The
size of the corner vortex depends very much on the aerodynamic bladeload, the higher
the load, the larger the corner vortex. The corner vortex origins from the interference of
the passage crossflow and the near-wall flow in the blade passage. As a consequence, the
boundary layer of the near-wall flow curls up into what is defined as the corner vortex.

1.2.4 Trailing Edge Vortex

The trailing edge vortex is located behind the trailing edge of the blade. At this position,
the blade pressure side flow, flowing towards the endwall, and the blade suction side flow,
flowing towards midspan, come together in the wake of the blade. This causes the so-
called trailing edge vortex. As with all the other vortices described, again, the intensity
depends on the turning angle of the blade, the stronger the flow turning the stronger the
trailing edge vortex.
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1.3 Overview of published Results

In this chapter, the results of research done so far in the fields of

• secondary flow and endwall losses,

• numerical calculation of turbomachinery flow, and

• optimisation of turbomachinery flow

are presented, as far as they are in conjunction with this work. It is quasi impossible
to group those works into meaningful categories, as they all touch, in one way or the
other, more than one field of those mentioned above. Therefore, it was chosen to list
them chronologically.

In 1977 Langston et al. [22] performed investigations in a low speed linear cascade to find
out more about the origin, nature and development of three-dimensional flows in turbine
cascade passages. They used cylindrical blades with an aspect ratio of AR=0.9888,
a turning angle of 110.03◦ and a pitch/chord ratio t

c = 0.78. Velocity and pressure
measurements were performed before, within and behind the cascade passage, using a
five-hole pressure probe. Flow visualisations were made with ink and smoke traces on the
various surfaces and inside the passage respectively. In addition hot wire measurements
were taken in the endwall boundary layer within the cascade passage. The inlet Reynolds
number was 7.22 · 105, based on the blade chord length, the endwall boundary layer
thickness was measured to be 3.3 cm. The flow visualisations revealed the well-known
three-dimensional seperation and reattachement lines of the flow, underlining the strong
three-dimensional nature of the flow. The saddle point in front of the horseshoe vortex,
where the two seperation and reattachment lines intersect 7 could be observed quite
clearly as well. Static pressure taps in the blades at 50 percent, 25 percent, 12.5 percent
and 2.3 percent of span were used to determine the blade loading. Excellent agreement
between the measured and calculated values of static pressure could be reached on the
pressure surface of the blade. The calculations were the result of a two-dimensional
potential flow calculation. On the suction surface the agreement between measured and
calculated values was good at 50 percent span. At the other locations on the suction
surface towards the endwall, the effects of three-dimensional flow began to show up,
as the measured values began to deviate more and more from the potential solution.
At the endwall, the static pressure measurement values showed big differences from the
potential flow calculations. The minimum pressure in the cascade did no longer occur on
the suction side surface of the blade, as in the calculation, but had moved into the flow
channel between the blades. The flow field measurements, with the five-hole pressure
probe showed the curling up of the inlet boundary layer (13 percent axial chord) and the
formation of the passage vortex (57 percent axial chord) and finally the fully developed
passage vortex just before the blade exit. The formation of a new, very thin, endwall
boundary layer, just after suction separation line of the inlet boundary layer, was observed
with hot wire technology. Due to the extreme thinness of this new boundary layer, no

7compare [35] and [21]
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Figure 1.6: Blade Stacking in Harrison’s Experimental Work [10] (Front View in Down-
stream Direction)

further measurements could be made to find out more about the nature of this boundary
layer.

In 1992 Harrison [10] did some experimental research to find out more about the influence
that blade lean has on the losses of turbines. In a linear cascade he investigated three sets
of nozzle blades, an unleaned, cylindrical set (Set 1), a straight, simple, lean set (Set 2),
and a compound lean set (Set 3) with positive lean on both ends 8. The blade stacking
is shown in Fig. 1.6.

Measurements included surface static tappings on the blade and endwall surfaces, tra-
verses within and downstream of the blade rows with five-hole probes, a three-hole ”co-
bra” probe and a flattended Pitot probe. Harrison discovered a dramatic change of static
pressure on the leaned blades, especially at midchord, which, he argued, had consequences
for the thickness and the structure of the incoming boundary layers at the endwalls (thick-
ening and decelerating at the high pressure endwall, thinning and accelerating at the low
pressure endwall), as well as for the vortex systems that developed in the blade passage.
In addition he found out, that the spanwise variation of pitchwise average exit flow an-
gle was larger for Set 2 than for Set 1 and Set 3, which happened to have the smallest
variation of all (30% less than Set 1). Harrison identified five potential influences on the
general loss generation in a turbine cascade:

• Flow velocities 9

8Positive means the blades are leaned in the ”circumferential” direction, so they have a convex pressure
side.

9 Going out from the assumption of a constant boundary layer dissipation integral CD = Tξ/̺ U3 for
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• Blade Surface Boundary Layer Transition

• Endwall Boundary Layer Transition

• Mixing Loss

• Other Effects

Harrison conclued, that simple lean marginally increased the loss coefficient whereas
compound lean had no overall effect on loss. However, compound lean was found to
increase flow turning, to reduce downstream mixing losses and to substantially reduce
spanwise variations in mean flow angle, which would lead to an improvement in turbine
efficiency.

In 1994 Wanjin et al. [42] performed straight cascade experiments with four different
sets of blades with very low aspect ratios (AR = 0.917) and very high turning angles
(∆β = 128.5◦), namely with a straight, cylindrical, set, a straight lean set, a positively
curved compound lean set and a negatively curved compound lean set 10. They used
10 measuring planes in their cascade, two in front of the cascade entry, seven inside the
cascade and one behind the exit of the cascade. The measurements were done in a low
speed facility with Reynolds number and Mach number at midspan of the cascade exit
plane being Re = 6.4 · 105 and Ma = 0.26. In these experiments it was experienced,
that the intensity and scale of the horseshoe vortices were bigger in acute angles between
endwall and leaned blades and between endwall and positively curved blades than between
endwall and the corresponding obtuse angles of the blades. The opposite was true for
negatively curved blades. According to the authors, the suction side leg of the horseshoe
vortex, which, in other publications is often termed counter vortex, as it rotates in the
opposite direction of the passage vortex, was gradually dissolved by the shear forces when
getting in contact with the passage vortex. For the passage vortices, Wanjin et al. found
out, that they developed later in the blade passage, stayed nearer at the endwalls and were
weaker for negatively curved blades and in obtuse angle zones than for positively curved
blades and accute angle zones. In addition, the passage vortices from both endwalls did
not merge at midspan in the blade passage for the negatively curved blades, therefore they
did not produce that much loss as they did for the straight, leaned or positively curved
blades. For the cascades tested, Wanjin et al. indicated the mass flux-averaged total loss
coefficients to be 0.1948, 0.1883, 0.2255 and 0.1572 for straight, leaned, positively curved
and negatively curved blades. A favourable redistribution of the outflow angle was also
observed by the researchers, i.e. lower under- and overturning.
It shall be annotated, that to the author’s best knowledge, this is the only evidence where
a reduction of total pressure loss and a favourable impact on secondary flow was observed
with negative compound lean blades.

”typical” turbulent boundary layers, the relevant influence on boundary layer losses is the integral
R

U3dA only. It turned out, that the proportional effect of
R

U3dA was greater on endwalls than on
the blade surfaces, but as the suction surface accounted for nearly 2/3 of the overall

R

U3dA, the
effects of lean on overall loss were negligible.

10Negative here means, that the blades are leaned against the ”circumferential” direction, so they have
a concave pressure side.
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Figure 1.7: Origin and Importance of Aerodynamic Losses in Reaction Stages

Havakechian and Greim [11] gave an extensive overview of their work concerning the
reduction of aerodynamic losses in 50 percent reaction steam turbines in the last decade of
the 20th century. They cover all sorts of stages, HP, IP and LP with the respective aspect
ratios AR ranging from 1 < AR < 5, Reynolds number ranges from 0.5 · 106 < Re < 15 ·
106, and Mach numbers in the low and mid-to-high subsonic ranges (Ma ∼= 0.25..0.55) 11.
The origin and importance of the different losses, namely profile losses, secondary losses
and losses due to leakage are depicted for the different stages in Fig. 1.7.

All sorts of tools and techniques, such as

• advanced one-dimensional (1D) design tools

• quasi-three-dimensional (Q3D) design tools

• three-dimensional (3D) design tools

• cascade testing

• advanced three-dimensional turbine bladings

• Computational Fluid Dynamcis

• experimental validation in a five-stage model turbine

were investigated, and their results were combined in one vast blading development
project. The Q3D/3D-methods consisted of S2 12 calculations, S1 13 calculations, the
combination of both, and automation of combined 1D-, Q3D- and 3D-methods. It turned
out, that the combination of S1 potential code, coupled with a 2D finite difference bound-
ary layer program produced an excellent resolution of the flow field and had excellent

11This is true for HP and IP stages, for LP stages this is only valid for the first stages
12meridional flow
13blade-to-blade flow
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predictive capabilities with respect to exit angle and surface pressure distribution. Mak-
ing use of various types of 3D codes 14, while using Q3D results as boundary conditions,
superimposed by additional features such as inlet boundary layers enabled the designer to
view the 3D flow field in acceptable time scales. Advanced vortex design methods, which
means usage of alternative elaborated twist schemes of blades in order to decrease the
consequences of extreme values of reaction at hub and tip sections, were used to positively
influence design criteria, such as minimisation of the spanwise gradient of total pressure,
reduction of the velocity level at endwalls or reduction of flow turning at endwalls for
example.

Profile design and optimisation was done by Havakechian and Greim by employing a
Bézier - Bernstein curve/surface representation for describing the profile section as well
as the 3D airfoil geometry, as this method proved to be superior in terms of flexibil-
ity to the classical methods, where prescribed thickness distributions are superimposed
on circular or parabolic camberlines. Going a step further they implemented a com-
plete automated profile contour design system, which, while observing the desired precise
Q3D/3D aerodynamic and mechanical constraints, generated the whole 3D polynomial
surface at very short design cylce time.

Secondary loss generation in a turbine stage can be assumed to be a function of the
following parameters, according to Havakechian and Greim:

ξSec = f(H/c, t/c,∆β,w1/w0, L, θ0/H, δ0/H,

θ1/o, δ1/o,Re,Ma1, Tu, ε/c, LI)
(1.1)

To decrease secondary flow and its negative effects, e.g. increase of loss, several ap-
proaches namely Lean, Meridional endwall contouring (MEWC) and Tangential endwall
contouring (TEWC) were investigated by the two researchers. Experimental research,
done in a multistage environment with constant section compound leaned blading (pres-
sure side convexing), showed that a stage efficiency increase of ∆η(H/c=2) = 0.7 % could
be reached. The methods and results for MEWC and TEWC will not be treated further
here.

Lampart et al. [19] performed numerical studies of the effects of compound lean and com-
pound twist 15 of stator blades for HP turbine stages in 1999. The stage with cylindrical
blades was an impulse type stage with an average degree of reaction Rk = 0.2. The com-
pound lean stator blades consisted of straight part in the middle section of the blade, and
two parabolic parts at the endwalls, resulting in a convex pressure side of the blade. The
compound twist blade had a curved leading edge, as the compound lean blade 16, but the
trailing edge of the blade was strictly kept radial. Two configurations of the compound
twist blade were examinated, one with varying chord length, the other with fixed chord

14In-house 3D Euler and Navier Stokes codes but also commercially available codes such as Fluent
products

15This type of blade is often referred to as ”Controlled Flow Nozzle”.
16The leading edge curvature, contrary to the compound lean blade, consisted of a full parabolic arc.
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length. The second compound twist component resulted in a concaved curved leading
edge. The calculations were done with the CFD code FlowER, modelling turbulence
with an algebraic modified Baldwin Lomax model without wall functions. Tip leakage
and unsteady effects were not considered. The calculations of Lampart et al. showed an
increase of stage efficiency of up to 0.4%, expressed in a decrease of overall kinetic energy
loss. The increase of stage efficiency for the compound twist configuration was 0.4% for
the configuration with fixed chord length and 0.2% - 0.3% for the design, where the chord
length was enlarged towards the endwalls to maintain a straight stator leading edge. For
both configurations, compound lean and compound twist, a significant redistribution of
the mass flux inside the blade passages was observed. Lampart and Gardzilewicz [18]
published additional findings for the same, when speaking of the original cylindric config-
uration, HP turbine stage. Boundary conditions and operating data were equal to those
in [19]. Straight lean produced mutually opposing effects on the opposite endwalls, result-
ing in a redistribution of mass flux, reaction and kinetic energy loss. The improvement
for the stage did not exceed 0.2%. Lampart particularly pointed out, that for all four
configurations, the choice of the parameters, e.g. lean angle, circumferential displacement
of the stator blades at the endwalls compared to the mid-span sections, etc., is crucial
for the beneficial effects of 3D shaping. Bad choice of those parameters can also result in
unfavourable effects on the stage efficiency.

Some first approaches to employ a Genetic Algorithm (GA) for automatic 2D blade
profile generation were made in the late nineties of the past century by Trigg et al. [39].
The motivation was to significantly reduce the time for designing new and more efficient
blade profiles, as this was done manually by experienced designers until then. Only
the introduction of modern CFD programs and the availabilty of fast and inexpensive
computers had made this approach, automatic design and analysis instead of empirical
methods applied by experienced designers, possible. Trigg et al. optimised a 2D impulse
blade profile defined by 17 parameters, which were calculated with a refined method of
blade profile generation of Pritchard [32]. Profile loss coefficient 17 was the objective
function chosen to be optimised, the fluid-mechanical calculations were done with a CFD
code for steady viscous compressible fully turbulent flow created by Dawes [6]. The
robustness and the speed of the algorithm turned out to fulfill the expectations, as one
step of evolution of the GA took about 2 minutes and the GA worked flawlessly until
stopped manually. Starting from a blade profile design, which was used in the 1960s, it
took the GA roughly 250 steps of evolution to reach a profile with the same loss as that,
which would be satisfactory to an experienced designer without optimisation tools. It
took the GA about 1600 additional steps of evolution to reach an optimum design, which
then had 19% less profile loss than the original design and 5% less profile loss than the
manually improved design.

Van den Braembussche [40] from the Belgian Von Kármán Institute for Fluid Dynamics
made several approaches in what he calls ”Numerical Laboratories”, which means using
numerical design and analysing tools for turbomachinery bladings. He identified two
reasons for that: First, the difficulties when studying complex geometries, where mea-

17Profile loss coefficient = pt0−pt1

pt0
· 100
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surements might even not be possible at all, and second, the abundance of information.
For the second reason he pointed out, that even with the results of 3D Navier Stokes
calculations, which provide informations about a limited number of physical quantities
at a large number of grid points, informations about how to modify the geometry to
improve the performance cannot be given by those results. Not willing to use evolu-
tionary algorithms alone, as they seemed too time-consuming when using Navier Stokes
Solvers for each step of the evolutional path, Van den Braembussche developed a rapid
evaluation system, which allowed them to make fast approximative calculations for 2D
potential flow analysis, by taking into accout, that viscous effects could not be predicted
by their inviscid method. The results of this approximation were then evaluated by using
full Navier Stokes solvers. Storing all the results in a database gave them the tools to
develop an Artificial Neural Network (ANN), which was then used to predict the per-
formance of a new blade design. Van den Braembussche points out two advantages of
the ANN: First, the ANN does not need to have hypotheses about the relations between
input (new blade design) and output (performance of the new design), and, second, the
time for training the ANN is considerably lower than the time needed for a Navier Stokes
solver. Another advantage, Van den Braembussche saw for this method, is the ability, to
do multi-objective-optimisations in one run by defining a global objective function (OF),
which imposes penalties for all constraints, that are violated. A possible global objective
function would be for example:

OF = PMeca + PPerf + PGeom + Pξ + PMach (1.2)

The P-values denote the penalties, that would be imposed, when violating the constraints
for mechanical requirements (PMeca), for aerodynamical requirements (PPerf ), for geo-
metrical requirements (PGeom), for non optimum performance (Pξ) and for non-optimum
Mach number distribution (PMach).

Lampart and Yershov [20] peformed 3D shape optimisations for several turbomachine ap-
plications. They used a code called ”Optimus” to optimise stator-rotor stages. Total loss,
with the exit kinetic energy also considered as loss was used as objective function, which
was minimised. According to Lampart and Yershov, ”Optimus” provides the opportu-
nity to oppose constraints and penalties for leaving those constraints for the objective
function. The CFD calculations were done with a 3D RANS solver, which used the code
FlowER and a modified algebraic turbulence model of Baldwin and Lomax without wall
function.

First, a highly loaded gas turbine stage was optimised, with six geometrical parameters,
viz.

• stator and rotor blade stagger angle,

• stator and rotor linear twist angle, and

• stator blade linear lean and sweep angle,
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chosen for variation during the optimisation process. The optimisation resulted in a 0.7%
decrease of mass-averaged kinetic energy loss, reducing the average stage reaction from
40% to 34%. Favourable effects on the flow patterns in the rotor were observed, as an
oblique shock wave on the suction side was significantly reduced in intensity and the stag-
nation zone behind this shock wave was eliminated. In the stator, transsonic/supersonic
velocities at the root were reduced due to increased reaction there.

Second, a HP steam turbine impulse stage was optimised in a two-stage optimisation
process. In the first step, stator and rotor blade numbers and stator and rotor stagger
angles were optimised with a 1D-based procedure, yielding in an intermediate geometry.
In the second step, rotor blade linear twist angle and stator blade compound lean dis-
placements at hub and tip were optimised by means of 3D calculations. It should be
mentioned, that for the optimisation process, only coarse grids of 100000 cells were used.
Verifying calculations for the results were done at the end of the optimsation with a grid
of 800000 cells. Stage efficiency was improved by 0.4% in the first step, and by another
0.4% in the second step, yielding 0.8% in total.

Third, a LP exit stage of a steam turbine was optimised, using the same tools as above.
This time, 8 geometrical parameters were varied for optimisation, namely

• stator straight circumferential lean,

• stator compound lean at root (2 parameters),

• stator straight axial sweep,

• stator compound sweep at tip (2 parameters), and

• stator and rotor stagger angles.

The optimisation for the stage was done at nominal operating conditions, however, the
results of the optimisation were also checked for high-load mass flow rate and low-load
mass flow rate, as this kind of stage usually operates over a wide range of flow rates.
Again, the optimisation was carried out with a rather coarse grid, for verifying calcula-
tions a refined grid with 600000 cells was used. Overall stage losses were improved by
1.8% for nominal operating conditions, for low-load mass flow rates this improvement
reached 1.2%, whereas for high-load mass flow rates the improvement was only 0.9%.

To get some understanding of what results can be expected of the application of CFD,
and what cannot be expected to be solved by CFD, Horlock and Denton [14] in 2005
took a closer look on some early design practices using CFD. They compared the con-
cepts and results of empirical formulas of the 1950-1970 periods, i.e. those developed
by Lakshminarayana, and the results, that modern CFD delivers for selected problems.
The field of blade-to-blade flows, secondary flows, through-flow methods and clearance
flows, and the approaches made to better understand those phenomenons, were exam-
ined. For flow deviation it turned out, that the empirical formulas used were strikingly
simple, as they only seemed to be derived from pitchwise averaged equations of conti-
nuity and momentum. Nevertheless no convincing semi-analytical derivations for those
formulas could be found by Horlock and Denton. So they concluded, that no alternative
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to full numerical computations existed, if deviation was to be obtained accurately. In
addition, having compared the results of various CFD approaches to this problem, they
estimated the inclusion of viscous effects and fully turbulent flow as inevitable in order
to get reasonable results for cascades. The limits of CFD to predict secondary flows are,
according to Horlock and Denton, turbulence and boundary layer transition modelling
when trying to predict viscous effects. For this reason they concluded, that it is more
promising to use CFD for turbines rather than for compressors, as viscous effects are less
dominant there. However, to get accurate results from CFD, the inlet boundary layer
profiles on the endwalls must be known as exactly as possible. Usually, data about this
is available for cascades, but not for real turbines. Horlock and Denton backed up their
conclusion by comparing CFD results and experimental results for a cascade tested by
Harrison [9]. They made inviscid CFD calculations with the measured inlet boundary
layer, viscous calculations with no boundary layer and viscous calculations with inlet
boundary layer. It can be seen quite clearly, that the inclusion of both, viscous effects
and boundary layers, is necessary to obtain reasonable results. The final conclusion of
Horlock and Denton was, that CFD provides very good insight into flow details, which
cannot be measured experimentally at affordable costs, or, not at all. Still, they pointed
out, it is important that the results of CFD be interpreted by skilled engineers with good
physical understanding. According to Horlock and Denton, the end of experiments have
not yet come and good experimental data, also from models and low-speed machines will
be needed to further improve the current CFD methods.

Chen and Yuan [5] presented a numerical design tool for turbomachinery blade design in
2008. Facing the limits of Bézier curves and B-splines for the representation of turboma-
chine bladings, they used NURBS 18 as a design tool for geometries instead, which, in
contrary to both of the former ones, is capable of representing conics for the leading and
trailing edge shapes. NURBS was used for the stacking of the blade profiles as well as for
the profile shapes. In addition, Chen and Yuan used several optimisation techniques such
as genetic algorithms (GA), adaptive simulated annealing (ASA) and others, which were
provided by the commercial optimisation software ISIGHT c© in an integrated way, which
means, that their design system chose by itself the most promising optimisation strategy,
be it a robust exploratory algorithm or a highly efficent numerical method. To generate
the geometry and the CFD grid, MATLAB c© and an in-house code (AUTOGRID) were
used. The numerical calculations were done with an in-house code as well. Testing of the
aerodynamic optimization system was done numerically by optimising the following:

a) Subsonic Turbine Blade

b) Transsonic Turbine Blade

c) Subsonic Turbine Stage

For test case ”a” the optimised blade showed an increase of isentropic efficiency 19 of
0.58%. For test case ”b” an efficiency improvement of 0.84% was reached, whereas for
test case ”c” the isentropic efficiency was increased by 0.5%.

18Non-Uniform Rational B-Spline
19η′ = w1

2

w1s
2 , compare [26]
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2 Experimental Calibration of the initial

Configuration

No amount of experimentation

can ever prove me right; a single

experiment can prove me wrong.

(Albert Einstein,
German Physicist)

The experiment for calibrating the following CFD calculations were done in the linear
cascade wind tunnel of the Institute for Thermodynamics and Energy Conversion of the
Vienna University of Technology. Large parts of the description of the used equipment
and methods were taken from [46].

2.1 Wind Tunnel and Measurement Instrumentation

The wind tunnel used is a low speed wind tunnel. Air at ambient conditions is sucked
from the environment from outside the laboratory building into the windtunnel through
a filter. This is done by means of an axial fan with variable inlet guide vanes (VIGV).
The basic data of the fan is summarized in Tab. 2.1.

The air is directed through a diffuser and arrives at a flow straightener with a turbulence
grid. Following that, the air is accelerated as it flows from the circular channel into a
rectangular one of 150 mm x 566.9 mm cross-section, where the surface area decreases
by a ratio of about 13.3:1. This is important to secure a steady flow with thin endwall
boundary layers at the inlet of the blade cascade. Furthermore, the turbulent intensity,
Tu, is reduced by the large acceleration of the flow. The maximum Mach number reached
is about Ma ≈ 0.2, so in accordance with Fig. 2.1 from [4], where ̺0 is the density of
a gas at rest and ̺ represents the density of the gas at the Mach number considered,

Volume flux, V̇ 2.7 m3/s
Pressure rise, ∆p 15 mbar
Rotational speed, n 3000 min−1

Outer diameter 630 mm
Blade length at exit plane 60 mm

Table 2.1: Technical Data of Axial Fan of Windtunnel
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2 Experimental Calibration of the initial Configuration

incompressible conditions may be assumed 1, as the variation of the densities for Mach
numbers smaller than 0.2 is less than 2%.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

̺
̺0

Ma

Ma ≤ 0.2

Figure 2.1: Variation of Density Ratio with Mach number

Figure 2.2 shows a sketch of the windtunnel.

The measuring setup is sketched in Fig. 2.3.

The HP 3852A unit is used for collecting data from the sensors and controlling the
measuring process. It is equipped with a 24-channel highspeed-multiplexer-unit (HP
44711A), a 13-bit highspeed-voltmeter (HP 44702B), and a 16-channel digital output (HP
44724A). The voltages, delivered by the sensors Pt-100 (resistance thermometer) and the
piezo-resistive pressure sensors (Honeywell), are recorded with the highspeed-multiplexer-
unit and the highspeed-voltmeter-unit. The digital output controls the scanning box
(FURNESS CONTROLS), which is used to switch between the different channels for
measuring the different pressures of the setup. The DANTEC traversing unit was used
to move the pressure probes in a translatoric way parallel to the cascade exit plane.
The exact position of the probe is secured by a step motor, which itself is controlled
by the ISEL C10C-E/A controlling unit. All components are connected to a PC, which
controls the whole process by making use of the software LabView 5.0 c© from National
Instruments.

Nine blades were installed in a blade mounting box at the end of the windtunnel, which
can be rotated along its base in order to be able to adjust the right inlet flow angle,

1 ̺0

̺
=

`

1 + κ−1

2
M2

´ 1

κ−1 with air as ideal gas: κ = 1.4
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2 Experimental Calibration of the initial Configuration

Figure 2.2: Sketch of Windtunnel
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Figure 2.3: Sketch of Cascade Measuring Setup
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2 Experimental Calibration of the initial Configuration

here for incidence zero. The number of blades is limited by the maximum height of the
windtunnel, the aspect ratio AR of the blade and the pitch-to-chord ratio. It is imperative
to mount a sufficient number of blades to simulate periodic boundary conditions. To
get well defined flow conditions at the most upper and lower blade of the cascade, two
adjustable plates are positioned in a way, that there remain no gaps between the end of
the plates and the leading edges of the blades.

For measuring the blade profile pressure, a special blade with milled grooves was used.
The blade was made of aluminium. A sketch of the blade is presented in the appendix
in Fig. A.2. 38 thin plastic tubes with 1.9 mm outer and 0.8 mm inner diameter were
placed inside the grooves, then the grooves were filled up with a 2-component-adhesive
on methacrylat-basis. The excess adhesive was sanded off the blade, so that the blade got
the same outer contour as the other blades of the cascade. The thin plastic tubes were led
through the endwall of the cascade and connected with flexible silicon tubes to the scan-
ning box (FURNESS CONTROLS). The scanning box, which allows to switch between
the 38 input channels sequentially, was connected with its output to a piezo-resistive
pressure sensor. Finally, holes of 0.3 mm diameter were drilled through the filled grooves
from the surface of the blade into the thin plastic tubes at midspan (z = H

2 = 75 mm,
compare Fig. 3.4). The pressure on the surface of the blade could then be measured at
38 measuring points.

2.2 Calibration of the Pressure Probes

The measurement in the measuring plane downstream and parallel to the cascade exit
plane was done with pneumatic pressure probes. Before using such devices for measuring,
they have to be calibrated. For this work this was done with a so-called freestream wind
tunnel, which is also available at the laboratory of the institute.

2.2.1 Three-Hole Pressure Probe

A 2D measurement was undertaken downstream of the cascade with a so-called three-hole
pressure probe. Figure 2.4 shows a sketch of such a device. The probe is traversed at half
span along the exit of the cascade at x = 80 mm, which is about 1.293 times the axial
chord length b (compare Fig 2.11 and Tab. 2.2). The shaft of the probe has a diameter
of 6 mm, the inner diameters of holes 1, 2 and 3 are 0.5 mm each. The head of the probe
has a cross-sectional area of 0.8 mm x 2.4 mm, the front faces of holes 2 and 3 are inclined
at an angle of 60◦ towards the axis of hole 1. The probe is mounted with its shaft in a
special device, which allows to adjust the setup-angle of the probe accurately.

The probe was used in the so-called non nulling mode. This means, that the axis of hole 1
was not aligned in streamwise direction at every measuring point. The information about
the angle, at which the axis of hole 1 was inclined towards the streamwise direction at
every measuring point was determined by making use of the calibration information given
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2 Experimental Calibration of the initial Configuration

∆β

1

32

Figure 2.4: Sketch of Three-Hole Pressure Probe

in Fig. 2.5. In addition, the probe head was inclined at a well defined angle, the setup-
angle ∆ξ, away from the expected flow direction. The reason for that was, that the
pressure differences expected to occur at holes 2 and 3 were of such small magnitude if
the axis of hole 1 would have been aligned in streamwise direction, that it could possibly
not have been determined clearly, if those differences did occur due to accuracy errors
of the sensors used. This setup-angle has to be observed when evaluating the results of
the experiment by either adding or subtracting the setup-angle to the yaw angle, solely
depending on the coordinate system used for the evaluation.

The probe was calibrated at a Reynolds number of

Re =
w · l

ν
≈ 11250, (2.1)

as this was the Reynolds number expected to be reached in the experiment with the cas-
cade. The Reynolds number was calculated with the width of the probe head (l = 2.4 mm,
see Fig. 2.4 and explanation above) and the kinematic viscosity

ν =
µ

̺

where µ denotes the dynamic viscosity and was calculated with Sutherland’s law

µ

µ0
=

(

T

T0

)
3

2

·
T0 + S

T + S
(2.2)

according to [44]. The result of the calibration process of the probe are three calibration

34



2 Experimental Calibration of the initial Configuration

Re = 11250
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Figure 2.5: Calibration Data of the Three-Hole Pressure Probe: Yaw Angle Coefficient kβ,
Total Pressure Coefficient kt, Static Pressure Coefficient ks

coefficients, namely kβ , kt and ks. Treaster and Yocum [38] defined four calibration
coefficients for five-hole pressure probes (compare Chap. 2.2.2), adapted for the three-
hole pressure probe kβ , kt and ks read as follows:

kβ =
p2 − p3

p1 − p̄
(2.3)

kt =
p1 − pt

p1 − p̄
(2.4)

ks =
p̄− p

p1 − p̄
(2.5)

pi denominates the pressure, that can be measured at hole i, pt the total pressure, and p
the static pressure. The mean pressure p̄, is defined as

p̄ =
p2 + p3

2
. (2.6)

Then, kβ , the yaw angle coefficient, gives an unambigous relation between the yaw angle
∆β, shown in Fig. 2.4 and the pressure difference at holes 2 and 3. Having identified
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2 Experimental Calibration of the initial Configuration
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Figure 2.6: Sketch of Five-Hole Pressure Probe

the yaw angle, the total pressure and the static pressure can be found out by using the
calibration diagram given in Fig. 2.5. Assuming incompressible flow, which is acceptable,
as demonstrated above, the local velocity at the head of the pressure probe can be
determined.

2.2.2 Five-Hole Pressure Probe

To measure the 3D flow field downstream of the cascade, a five-hole pressure probe was
used. A sketch of this device is shown in Fig. 2.6. The shaft of the probe, which is not
shown here, has a diameter of 6 mm, the probe itself is conical with a cone angle of 60◦.
The diameter of the probe head is 3 mm, again the holes have an inner diameter of 0.5
mm. The yaw angle ∆β and the pitch angle ∆γ can also be seen in Fig. 2.6. The yaw
angle is the angle between the projection of a velocity vector of the flow in the plane of
holes 1, 2 and 3 and the direction of the axis of hole 1. The pitch angle ist the angle
between the projection of a velocity vector of the flow in the plane of holes 1, 4 and 5
and the direction of the axis of hole 1.

For the same reasons as mentioned above for the three-hole pressure probe, the Reynolds
number for the five-hole pressure probe was set to a value, that could be expected for
the experiment with the cascade. As the geometry of the probe is slightly different from
that of the three-hole probe, the Reynolds number also slightly differs, so here it was
set to Re = 13600, again calculated according to Eq. 2.1, with l = 3 mm now being
the diameter of the probe head (see Fig 2.6 and explanations above). The result of the
calibration of the five-hole pressure probe were three calibration diagrams, one for kβ vs.
kγ (Fig. 2.7), one for kt (Fig. 2.9), and one for ks (Fig. 2.10).

The different calibration coefficients are calculated as
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2 Experimental Calibration of the initial Configuration

Re = 13600
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Figure 2.7: Calibration Data of the Five-Hole Pressure Probe: Pitch Angle Coefficient kβ

vs. Yaw Angle Coefficient kγ

kβ =
p2 − p3

p1 − p̄
(2.7)

kγ =
p4 − p5

p1 − p̄
(2.8)

kt =
p1 − pt

p1 − p̄
(2.9)

ks =
p̄− p

p1 − p̄
(2.10)

with p̄ now being defined as

p̄ =
p2 + p3 + p4 + p5

4
. (2.11)

When measuring the 3D flow downstream of the cascade, again the probe was traversed
along the exit plane of the cascade at an axial position of x = 80 mm, which is equal
to 1.293 times the axial chord length b. Doing this, 5 different values of pressure were
measured for each point examined in the flow field, namely p1..5. For the same reasons
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Figure 2.8: Bilinear Interpolation: Element with 4 Nodes

as explained above for the three-hole probe, the five-hole probe is used in the non nulling
mode too. With the five determined pressures for each measuring point, kβ and kγ were
determined with Eq. 2.7 and Eq. 2.8 first. Figure 2.7 was then used to determine ∆β
and ∆γ. The trapezoid, where the intersection of the ∆β- and ∆γ-values was situated
(intersection point ”P”) was then transformed into a quadrat with side length 2 with a
so-called bilinear interpolation (Fig. 2.8).

To determine the exact position of ”P” in the relevant quadrilateral, the method of
bilinear interpolation for a 4-node element is used with the following ansatz:

~ϕ =













ϕ1(r, s)

ϕ2(r, s)

ϕ3(r, s)

ϕ4(r, s)













=















1
4(1 − r)(1 − s)

1
4(1 + r)(1 − s)

1
4(1 + r)(1 + s)

1
4(1 − r)(1 + s)















(2.12)

ϕ1..4 represent functions for the 4 corner nodes of the quadrilateral in the transformed
space. The coordinates of any arbitrary point ”P” can then be described by

xP =

4
∑

i=1

ϕi(r, s)xi and

yP =
4

∑

i=1

ϕi(r, s)yi .

(2.13)
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2 Experimental Calibration of the initial Configuration

Re = 13600
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Figure 2.9: Calibration Data of the Five-Hole Pressure Probe: Total Pressure Coeffi-
cient kt
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Figure 2.10: Calibration Data of the Five-hole Pressure Probe: Static Pressure Coeffi-
cient ks
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2 Experimental Calibration of the initial Configuration

Equation 2.13 can be solved for r and s with any suitable equation solving method.
Having determined r and s, the relevant quadrilateral in the calibration grid of kβ vs.
kγ , and therefore the parameters ∆β and ∆γ at the edges of the quadrilateral, the angles
∆β and ∆γ for ”P” can be determined. With Eq. 2.9 and Fig. 2.9 the total pressure of
the measuring point can be determined. Using Eq. 2.10 and Fig. 2.10 the static pressure
can be determined. Incompressible conditions assumed this allows to calculate the local
velocity at the probe head in addition to the local direction of the flow.

2.3 Inlet Conditions

The conditions upstream of the blade row were measured at x = -180 mm (static pressure)
and at x = -225 mm (total pressure, and temperature). This is equal to -2.91·b and -2.63·b
respectively, so it could be expected, that the flow was not influenced by the cascade,
which was situated downstream at x = 0. To measure the static pressure, a hole of 2
mm diameter in the sidewall of the windtunnel was used to connect a tube which was
further connected to a piezo-resistive differential pressure sensor. The total pressure was
measured with a Pitot tube with 3 mm outer and 1 mm inner diameter. The temperature
of the flow upstream of the cascade was measured with a Pt-100 temperature sensor. The
total and the static pressure were measured at z = H

2 (half span). The difference between
total and static pressure is the dynamic pressure, taking into account the assumption of
incompressible flow, the velocity of the flow could be calculated with

w0 =

√

2 · (pt0 − p0)

̺(T )
,

where ̺(T ) represents the temperature dependence of the density.

2.4 Blade and Operating Data of the Investigation

The blades used were made of aluminium. The 2D profile of the model blades used in
real size is depicted in A.1. The basic geometric data of the blades and the cascade is
figured in Tab. 2.2 and Fig. 2.11. The 2D profile coordinates were taken from Perdichizzi
and Dossena [29].

The main flow data is summarized in Tab.2.3.

The blade Reynolds number in this setup was fairly low to be compared with the condi-
tions in the high-pressure sections of a real steam turbine, where it is about Re ∼= 15 ·106

2The outlet blade angle is the angle between the tangent of the camber line at the trailing edge of the
blade and the blade exit plane.

3calculated with the chord length c of the blade and the cascade outlet velocity
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2 Experimental Calibration of the initial Configuration
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Figure 2.11: Sketch of Blade Cascade

Chord length, c 100 mm
Axial chord length, b 61.85 mm
Pitch length, t 73 mm

Aspect ratio, AR = H
c 1.5

Inlet blade angle, β0
′ 76.1 deg

Outlet blade angle 2, β1
′ 14.5 deg

Blade turning angle, ∆β′ 89.4 deg
Stagger angle, γ 39.9 deg

Table 2.2: Cascade Geometric Data
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2 Experimental Calibration of the initial Configuration

Freestream flow velocity at cascade inlet, w0
∼= 20 m/s

Boundary layer thickness at endwalls at inlet, δ 25 mm
Flow velocity at measuring plane, w1

∼= 75 m/s
Blade Reynolds number 3, Re ∼= 4.2·105

Freestream turbulence intensity, Tu ∼= 5 %

Table 2.3: Main Flow Data for the Experiment

(compare [11]). However, in good agreement with Denton [7], it should be high enough
for the losses in the cascade to be independent of the Reynolds number, as far as blades
with typical relative surface roughness are considered. As far as the exit Mach number,
Ma1 ≈ 0.21, is concerned, it can be said, that the conditions expected in high-pressure
sections were fully matched in these low speed experiments, according to Havakechian and
Greim [11]. The turbulence grid (see Fig. 2.2), which is located upstream in the windtun-
nel, produces a streamwise turbulence intensity Tu ∼= 5%. According to Mayle [24] the
turbulence intensity Tu = 5 − 10% in the free stream region of an axial turbomachinery
environment, so the value in this experiment was rather at the low end of the range. For
obvious reasons, the blade wakes of the upstream rotating blades, which have turbulence
intensities Tu = 15 − 20%, could not be modelled in a stationary linear cascade wind
tunnel.

2.5 2D Measurement

The 2D measurement downstream of the cascade was done with the three-hole pressure
probe described in Chap. 2.2.1. It was intended to get some information of the pressure
loss in the wake of the cascade, the velocity of the flow behind the cascade, and therefore
the potential of the blade to accelerate the flow. In addition it is important to get
informations about the flow directions behind the cascade, i.e. the angles at which the
flow exits the cascade. In an axial turbine the momentum of the accelerated flow from the
stator blades is used in the following rotor blades to turn the rotor. The flow directions
behind the stator row (and here the cascade) also determine the design of the following
rotor blades, so it is important to know the appropriate flow angles at the inlet of the rotor
blades to be able to determine the flow angles of the entering flow at design conditions
at different spanwise positions of the blade.

The head of the probe was positioned at z = H
2 , this means in the middle between the

endwalls. It was traversed parallel along the exit plane of the cascade with the DANTEC
traversing unit for one pitch length t = 73 mm. It was chosen to accept the nominal
outlet blade angle β′1 as the reference angle for the flow direction, so when the axis of
hole 1 of the three-hole pressure probe is aligned in this direction, the probe setup-angle
would be ∆ξ = 0◦. As mentioned above, the pressures at holes 2 and 3 are expected to
differ very little at a probe setup-angle of ∆ξ = 0◦, so the probe was used with a probe
setup-angle of ∆ξ = 15◦ (see Fig. 2.11). As already mentioned, the probe was used in the
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Figure 2.12: Pitchwise Exit Flow Angle β1 at Midspan with Three-Hole Pressure Probe
(Probe Setup-Angle ∆ξ = 15◦)

non nulling mode. 40 measuring points were recorded when traversing the pitch length,
this means that one point was recorded every 1.825 mm.

Periodic conditions were checked by traversing the probe downstream of the whole cascade
instead of just one pitch length. Evaluating and comparing the measurement values
at corresponding points downstream of different blades 4 revealed, that with the setup
chosen, periodic conditions were perfectly simulated.

Compared with the design outflow angle of 14.5◦(compare [29]), the blade tested under
the conditions mentioned above, shows slight overturning (∆β1

∼= −1◦, see Fig. 2.12) at
midspan. One reason may be, that Perdichizzi and Dossena [29] used a different testing
facility at different conditions for their investigation.

The acceleration of the flow behind the cascade can also be determined by using the
three-hole pressure probe with

w1 =

√

2 · (pt1 − p1)

̺
.

The flow is accelerated about 3.8 times of the inlet flow velocity in the region of undis-

4The evaluation of this measurement is not presented in this work.
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Figure 2.13: Cascade Exit Flow Velocity Ratio at Midspan with Three-Hole Pressure
Probe (Probe Setup-Angle ∆ξ = 15◦)

turbed flow (compare Fig. 2.13). In the neighbouring regions of the blade the effect of
the boundary layers, that are developed on the suction side and the pressure side of the
blade, can be seen. The flow velocity is lower there. The minimum outflow velocity is
reached in the wake of the blade, which can again be seen very clearly at y

t = 0.6.

The local total pressure coefficient Cp,t1,MS , defined as

Cp,t1,MS =
pt1 − pt0

1
2̺w0

2
(2.14)

is displayed in Fig. 2.14. It quantifies the loss of stagnation pressure, that is produced
by the cascade. The wake of the cascade can be determined quite well at y

t
∼= 0.6, where

the loss reaches a maximum. Theoretically, the total pressure coefficient should be zero
in the freestream region of the flow channel between the blades, as no losses occur. This
is the case for 0 ≤ y

t ≤ 0.3 on the pressure side and for 0.87 ≤ y
t ≤ 1 on the suction side,

where Cp,t1,MS is around zero, so it is assumed, that between those two regions, losses
are produced.
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Figure 2.14: Total Pressure Coefficient Cp,t1,MS at Midspan with Three-Hole Pressure
Probe (Probe Setup-Angle ∆ξ = 15◦)

2.6 3D Measurement

In order to get some more insight information about the flow downstream of the cascade,
measurements were executed with a five-hole pressure probe, described in Chap. 2.2.2.
Beginning from z = 5 mm, one pitch length t was scanned by traversing the probe
with the DANTEC traversing unit, recording 40 measuring points. Then the probe was
moved 5 mm in spanwise direction towards midspan and again one pitch length t was
scanned in 40 steps. This was done until midspan was reached, so in total 15 x 40 =
600 measuring points were recorded. Again the probe was inclined at a setup-angle of
∆ξ = 15◦ from the flow direction of the reference angle β1

′. The gridded data was used to
present contourplots of important flow characteristics downstream of the cascade. The
total pressure coefficient Cp,t1 shows the occurence and the size of losses, that occur
downstream the cascade. The two flow angles, β1 and γ1 give a good picture of the
occurence and the behaviour of secondary flow downstream of the cascade.

Figure 2.15 and Fig. 2.16 present the flow angles downstream of the cascade. The pitch-
wise flow angle β1 (Fig. 2.15) at midspan is comparable to the measurements with the
three-hole probe, although slightly lower. Towards the endwall regions, increasing over-
turning was observed, which is caused by the boundary layers and was to be expected.

The spanwise deviation of the flow direction from the pitchwise flow direction, the span-
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Figure 2.15: Pitchwise Exit Flow Angle β1 with Five-Hole Pressure Probe (Probe Setup-
Angle ∆ξ = 15◦)
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2 Experimental Calibration of the initial Configuration

wise flow angle γ1 , which is displayed in Fig. 2.16, has to evaluated together with the
diagram of the pitchwise flow angle β1 (Fig. 2.15): Combining both pictures leads to
the conclusion, that the passage vortex can be detected quite clearly, as the flow flows
in an upward direction (away from the endwall) when approaching the suction side of
blade from the free-stream-region, also in regions near the endwall. On the other side,
the pressure side of the blade, the flow flows in a downward direction towards the enwall.
Together with β1 the flow is curled clockwise, which is consistent with the model of the
passage vortex, which is very common and meanwhile widely undisputed in turboma-
chinery research.

In Fig. 2.17 the total pressure coefficient Cp,t1 is plotted as a contour plot for 0 ≤ z
H ≤ 0.5

and 0 ≤ y
t ≤ 1. The position of the loss core, which is the region where the highest losses

occur (presumably produced by secondary flows), is located at y
t = 0.6 and at around

15% of the blade height. This is consistent with current loss- and secondary-flow-models
(e.g. [21] and [35]). At midspan ( z

H = 0.5) the results with the five-hole probe can be
compared with the results of the three-hole probe. Again, the wake of the blade can
be seen in the same region of y

t
∼= 0.6, the level of Cp,t1

∼= −1 is about the same as
measured with the three-hole probe. Furthermore the influence of the endwall boundary
layers can be seen, as the losses grow in the flow regions near the endwall. Outside the
regions described above, the freestream experiences no disturbances, therefore no losses
are produced in those regions.

2.7 Profile Pressure Measurements

The result of the blade profile pressure measurement is presented in Fig. 2.18, where the
static pressure coefficient

Cp =
p− p0

pt0 − p0
=
p− p0
1
2̺w

2
0

(2.15)

is plotted along the normalized blade length x
b .

p denominates the pressure on the blade surface, the other values are the ones measured
at the inlet. At the stagnation point the value of Cp should therefore theoretically be 1,
which is not the case here. It is suspected, that this arises from the fact, that there is no
measuring point exactly at the stagnation point.

The distance between the measuring points on the suction and the pressure side represents
the blade loading at the respective position. It can be seen quite clearly, that the blade
is strongly aft-loaded, the minimum pressure is reachead at an axial position of x

b ≈ 0.77.
After that position, the flow is decelerated considerably on the suction side. According
to Weiss and Fottner [43], aft-loaded blade cascades tend to show different spanwise
distributions of loss coefficient and different flow angle distributions than front-loaded
blade cascades in the cascade exit planes, even with overall secondary loss coefficients of
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2 Experimental Calibration of the initial Configuration
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Figure 2.16: Spanwise Exit Flow Angle γ1 with Five-Hole Pressure Probe (Probe Setup-
Angle ∆ξ = 15◦)

48



2 Experimental Calibration of the initial Configuration

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0

0

0

0

0

0

-1

-1
-1

-1
-2

-2

-3

-0.5

-0.5

-1.5

-1.5

-2.5

-2.5

-3.5

y
t

z
H

PS SS

Figure 2.17: Total Pressure Coefficient Cp,t1 with Five-Hole Pressure Probe (Probe Setup-
Angle ∆ξ = 15◦)
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Figure 2.18: Static Profile Pressure Coefficient Cp at Midspan

equal magnitude. In their experiment, these different spanwise distributions dissappeared
due to mixing processes further downstream. However, in this experiment, the measuring
plane was at x

b = 1.3 (compare Figs 2.15, 2.16 and 2.17), whereas in their experiment it
was at x

b = 1.5.
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3 Optimisation

Never tell people how to do

things. Tell them what to do and

they will surprise you with their

ingenuity.

(George S. Patton,
U.S. Army General)

3.1 Comparison of four widely used Optimisation Techniques

Amongst the many algorithms that one can choose for optimisation problems, hillclimb-
ing methods, linear programming (e.g. the simplex algorithm) and simulated annealing
procedures are very common for finding solutions for today’s optimisation problems in
turbomachinery. For very good reasons, which will be obvious after a short introduction
of those techniques. However, a new class of optimisation methods is becoming more and
more popular for a wide variety of optimisation problems. One can find them under the
terminology of artificial intelligence techniques (AI) or evolutionary programming (EP).
One subclass of those is often named genetic algorithms (GA), a technique which tries to
simulate nature’s evolutional process.

The short introductions of the hillclimbing algorithm and the simulated annealing algo-
rithm are based on the textbook of Russel and Norvig about Artifical Intelligence [33].

3.1.1 Hillclimbing

Hillclimbing is a very popular method for various optimisation tasks, as it is

• easy and quick to use and to program,

• very quickly converging, and therefore

• costefficient in terms of CPU-time.

Mathematically spoken it is the task of maximising (or minimising) a function f(~x),
where ~x represents discrete states. Figure 3.1 shows an example for a search domain of
a typical hillclimbing problem. The discrete states are represented by z-values of the
intersections (vertices) of the x−y-grid. A hillclibming algorithm will follow the edges of
the grid from vertex to vertex, always increasing the value of f until a local maximum is
reached. A more rapid variant of hillclimbing algorithm would always detect the steepest
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Figure 3.1: Good qualified Search Domain (Global Optimum) for Hillclimbing Algorithm

path to the next vertex (“steepest ascent hillclimbing”).

Besides all these advantages of hillclimbing algorithms, there are also some drawbacks
for this class of algorithms, namely

• local maxima,

• ridges, and

• plateaus.

Figure 3.2 shows a good example for an optimisation problem, where a hillclimbing opti-
misation algorithm might not find the global, but a local optimum of the search domain,
depending on where the algorithm starts its search. The other problems mentioned es-
sentially result in the same difficulty, namely that the algorithm reaches a vertex, where
it cannot find a vertex with a higher value of f in the local environment. To summarize,
hillclimbing algorithms are very sensitve to the form of the search domain as well as to a
good and careful selection of the starting point.

To overcome these problems, variants and other local search algorithms were developed
such as stochastic hillclimbing, random walks, and simulated annealing, just to mention
a few. Hillclimbing can also operate on a continuous search domain, in that case it is
called gradient ascent (descent) method.
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Figure 3.2: Bad qualified Search Domain (Local Optimum) for Hillclimbing Algorithm

3.1.2 Simplex Algorithm

Wingelhofer [47] used an adapted form of a simplex algorithm namely the downhill
method of Nelder and Mead [27] to get some insight towards better design criteria for
axial turbine bladings. The Nelder-Mead method, as it is also called is a commonly used
nonlinear optimisation algorithm. It is a numerical method for minimising an objective
function in a many dimensional space. A simplex, which is a polytope of N + 1 vertices
in N dimensions, is used for this method.

3.1.3 Simulated Annealing

Simulated annealing (SA) is a generic probabilistic meta-algorithm for locating a good
approximation to the global optimum of a given function in a large search space and was
presented first in 1983 by Kirkpatrick, Gelatt and Vecchi [15]. They tried to simulate
the annealing process, where steel is heated and cooled down slowly and temperature-
controlled afterwards, in order to let the molecules of the microstructure reorder and
change into a state of lower energy level. After the annealing process some minimum of
the energy level is reached, the ductility of the steel has risen. The fundamental idea is to
allow moves resulting in solutions of worse quality than the current solution (uphill moves)
in order to escape local minima. The probability of doing such moves is decreased during
the search. Beside this advantage, there is the disadvantage, that a simulated annealing
algorithm is rather time consuming, and therefore costly in terms of computing time.
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Problem: Given the search domain D and the fitness function
f : D −→ R, find a global minimum from f in D,
viz. x ∈ D | f(x) ≤ f(y) for every y ∈ D

Initialisation: Choose an initial starting solution x ∈ D
Choose temperature T and cooling-constant α
Time t := 0

Local Change: Choose y ∈ D in the local environment of x

Selection: If f(y) ≤ f(x) put x := y

If f(y) > f(x) put x := y with probability exp(− f(y)−f(x)
αtT )

Breaking condition: If breaking condition is not met, start again with a
local change at t := t+ 1, else break

Figure 3.3: Pseudocode for Simulated Annealing Optimisation Algorithm

For a better understanding, some pseudocode for a simple SA-algorithm is presented in
Fig. 3.3.

3.1.4 Genetic Algorithm

As the genetic algorithm (GA) was the algorithm of choice in this work it shall be de-
scribed and explained more in detail than the other algorithms mentioned above. A
detailed presentation with the optimisation task treated in this work follows in one of the
next sections. This section is based on Michalewicz [25].

A GA can be used to find solutions for parameter optimisation problems. Without any
loss of generality, as will be clear later when the definitions and assumptions for the
given turbomachinery problem will be presented, maximization problems only are solved
by using a GA. If, as in this work, the problem given is to minimize a function f, which
will be called objective function from now on, a maximization problem can be made out
of it by simply maximizing the function g = −f , i.e.

min f(x) = max g(x) = max {−f(x)} . (3.1)

It is assumed, that the objective function f is positive on its domain. If this is not the
case, a positive constant C can be added, that is

max g(x) = max {g(x) + C}. (3.2)
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The function f consists of k variables, namely f = f(x1, x2, ..., xk) : Rk −→ R. Each
variable xi can take values from a domain Di = [ai, bi] ⊆ R and f(x1, x2, ..., xk) > 0 | xi ∈
Di. In order to achieve a desired precision for the variables’ values, for example n decimal
places, the domain Di[ai, bi] has to be cut into (bi − ai) · 10

n ranges of equal size. If mi

represents the smallest integer such that (bi − ai) · 10
n ≤ 2mi − 1, then a representation

having each variable xi coded as a binary string of length mi obviously satisfies the above
mentioned precision requirement. xi can be calculated as

xi = ai + decimal(string2(mi)) ·
bi − ai

2mi − 1
(3.3)

where decimal(string2(mi)) stands for the decimal value of a binary string of length mi.
Furtheron the following definitions will be used: An individual is represented by k genes.
As mi is the length of the binary representation of each gene, m =

∑k
i=1mi is the length

of the binary representation of the individual. Herein, the first m1 bits range from a1 to
b1, the second group ranges from a2 to b2, and so on. The last mk bits can take values
from Dk = [ak, bk]. The value of the function f = f(x1, x2, ..., xk) represents the fitness
value of each individual. A population is made out of pop size individuals.

Having defined the prerequisites and assupmptions for the GA, the actual process of
optimisation can be carried out now. After having fixed the constant pop size for the
given search, the initial population of individuals has to be determined. This can be done
by randomly choosing pop size binary strings of length m. Each string then represents an
individual of the initial population. Another, possibly more promising, method would be,
to choose the candidates (individuals) of the inital population according to some specific
knowledge about the distribution of some potential optima. The initial population is now
evaluated (the value of the function f represents the fitness value for each individual) and
a new population is selected, taking into accout the probability distribution based on the
fitness values. The individuals of the selected new population are altered via mutation
and crossover operations. Having done that, the process starts again with evaluation of
the fitness of the individual members. After some steps, when no further improvement
can be observed, an optimal solution, which might be the global optimum, is found.
Further techniques to enhance the speed of the algorithm or to influence the selection of
the search path, as well as other possible improvements for specific problems exist and
can be found in the literature, but will not be treated further here.

To select a new population of individuals, based on the probability distribution of the
fitness values, as described above, some kind of roulette wheel is used. The size of the
slots of the roulette wheel is defined according to the fitness of the individuals, which
means, the higher the fitness of an individual, the more likely this specific individual is
chosen for the next population. This can be achieved in the following way:

• Calcualtion of the fitness value eval(vi) for each individual vi (i = 1, ..., pop size)
by evaluating f(vi)

• Calculation of the fitness value for the whole population
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F =
∑pop size

i=1 eval(vi)

• Calculation of the probability pi of selection of each individual vi (i = 1, .., pop size)

pi = eval(vi)
F

• Calculation of the cumulative probability qi for each individual vi (i = 1, .., pop size)
qi =

∑i
j=1 pj

For each individual of the new population, the roulette wheel has to be spun once, which
means spinning the roulette wheel pop size times to generate the whole new population,
which undergoes the mutation and crossover process afterwards. The selection itself is
processed als follows:

• Generation of a random (float) number r in the range [0..1]

• Selection of the first individual v1 as a member of the new population if r < qi;
else, selection of the i−th individual vi (2 ≤ i ≤ pop size) such that qi−1 < r < qi

Having selected pop size indiviuals of the old population as members of the new (before
crossover and mutation) population, these individuals then undergo the process of recom-
bination (crossover) and mutation. In order to determine the candidates for undergoing
these alterations, two new variables, namely pc and pm are introduced. They determine
the probability of crossover and mutation respectively. pc and pm may vary from step to
step of the algorithm or be left unchanged.

The number of individuals, which are expected to undergo the process of crossover is
defined by the product pc · pop size. To select the candidates for crossover, the following
steps have to be carried out for each individual (pop size times):

• Generation of a random (float) number r in the range [0..1]

• Selection for crossover of the given individual if r < pc

In case the number of selected individuals for crossover is even, they can be paired easily,
in case the number is odd, either an extra individual is added for mating, or, one selected
individual is removed from the selection - this choice is done at random as well. For each
pair of selected individuals for crossover a random integer number pos in the range of
[1..m− 1] has to be generated, which indicates the position of the crossing point. Then,
the two individuals

(b1b2...bposbpos+1...bm) and
(c1c2...cposcpos+1...cm)

are replaced by their offspring:

(b1b2...bposcpos+1...bm) and
(c1c2...cposbpos+1...cm).

The second alteration, which is performed on the population, is called mutation. It is
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performed on a bit-by-bit basis for the whole population, so the below mentioned steps
have to be performed m · pop size-times. The expected number of bits which undergo
the process of mutation is calculated by pm ·m · pop size. Each bit has the same chance
to be mutated, i.e. change its value from 0 to 1 or vice versa. The selection of the bits,
which undergo mutation is similar to the selection for crossover:

• Generation of a random (float) number r in the range [0..1]

• Mutation of the bit if r < pm

After the mutation, the new population is now ready restart the algorithm by evalutating
the fitness values of the new population. Then, one step of the evolution is finished, the
rest is just cyclic repetition of the steps explained above.

3.2 Definition of the Genetic Algorithm for the given Problem

The initial configuration is a cylindric HP-steam turbine blade, as described in Chap. 2.4.
In this work it was decided to alter two parameters of the initial, cylindric, configuration,
while keeping the rest unaltered. The, originally straight, span of the cylindric blade is
replaced by two parabolic arcs at the sidewalls and a straight spanwise piece in between
them. This is sketched in Fig 3.4.

α denotes the angle between the spanwise direction, and the tangent of the parabolic arc,
where the arc intersects with the sidewall. h denotes half of the straight piece in spanwise
direction between the arcs. For practical reasons, namely manufacturing and installing
of the final configuration(s), it was decided to limit α in the range of [−45◦ ≤ α ≤ 45◦].
Positive values for α denote a convex pressure side of the blade, negative values denote
a convex suction side (Fig 3.4 shows a positive value of α). For reasons of computing
time, only half of the blade was modelled for being calculated in the subsequent CFD
calculations, therefore h was limited in the range of 0 mm ≤ h ≤ 75 mm. The precision
was set to be 1◦ for α and 1 mm minimum increment for h. Follwing the description of
the genetic algorithm from Chap. 3.1.4, two domains D1 and D2 for the parameters x1

(h) and x2 (α) have to be defined. The requirement

(bi − ai) · 10
n ≤ 2mi − 1 , (3.4)

has to be fulfilled, therefore m1, which stands for the length of the binary representation
of h, was set to be 7, because 26 ≤ 75 ≤ 27. The same considerations for m2, which is
the length of the binary representation of α, resulted in m2 = 7 as well, as 26 ≤ 90 ≤ 27.
So the binary representation of one blade configuration is m = m1 + m2 = 7 + 7 = 14
bits long.

To calculate the fitness of the individuals and of the whole population as well, an objective
function had to be chosen next. Wingelhofer and Haselbacher [48], for example, used flow
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Figure 3.4: The two altered Parameters of the 3D Configuration

homogeneity of the exit flow from the nozzle blades as objective function for optimizing
the stator row of a turbine stage. An optimisation algorithm proposed new compound
lean designs for the stator blades, following that, the stage efficiency for the whole stage
was evaluated.

According to Denton [7] the only rational measure of loss in an adiabatic machine is
entropy creation, as any irreversible flow process creates entropy and therefore reduces
isentropic efficiency. Entropy cannot be measured or seen directly, but has to be calcu-
lated with the rules of thermodynamics with any other two thermodynamic properties,
that can be measured, such as temperature and pressure. The relations for a perfect gas
read as
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s− sref = cp ln
T

Tref
−R ln

p

pref
(3.5)

and

s− sref = cv ln
T

Tref
−R ln

̺

̺ref
. (3.6)

All the thermodynamic properties used in these equations are either static or stagnation
values, as, by definition, the change from static to stagnation conditions is isentropic.
Denton further argues, that for adiabatic flow through a stationary blade row the change
in entropy is only dependent on the stagnation pressures, viz.

∆s = −R ln
pt1

pt0
. (3.7)

For small changes in stagnation pressure between inlet and outlet of a blade cascade,
which is the case here, Eq. 3.7 can be rewritten as

∆s = −R
∆pt

pt
. (3.8)

Hence, the loss of stagnation pressure can be used as equal to the increase of entropy of
the blade row. Therefore, the total pressure loss coefficient ω, defined in Eq. 3.9 was used
as the objective function of choice in this work. The index ”1” here stands for the outlet,
which was set to same axial position as in the experiment (see Chap. 2.4) that was used
for calibration of the CFD calculation. ”0” as an index indicates the inlet conditions.

ω =
pt0 − pt1

pt1 − p1

=
∆pt

1
2̺w1

2 =
∆pt

p1,dyn

. (3.9)

As described in Chap. 3.1.4, a very important part of a genetic algorithm is the ability
to generate random numbers in the range [0..1]. A computer is a strongly deterministic
machine, therefore it is indeed not easy to generate such random numbers, which pass
statistical test in order to be distributed really randomly. Here, the method ran1 from [31]
was chosen, as the authors claim, that, to their knowledge, no statistical test so far
is known, that would reveal, that the numbers generated by ran1 were not randomly
distributed. ran1 was used for the generation of all random numbers needed for running
the genetic algorithm.

After having set the population size pop size to consist of ten individuals, it was imper-
ative to define an initial population. This was done by randomly generating pop size ·m
bits. The resultant initial population is displayed in Tab. 3.1.
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Binary representation α,◦ h, mm

10000000000000 0 0
10001110100010 5 20
10010111111011 8 72
10100010001010 12 5
11100111000000 36 37
01011000000000 -14 0
00101100001010 -30 5
00011111011111 -35 56
11001001001110 25 46
11010101111111 30 75

Table 3.1: Initial Population of the Genetic Algorithm

Finally, the probability for mating was set to pc = 0.25, that is, on average, 25% of the
population were expected to undergo the process of crossover in every generation. The
probabilty of mutation was set to pm = 0.01. This means, that, on average, 1% of the
genes in every generation were expected to undergo mutation. These values were left
unchanged from generation to generation.

The Genetic Algorithm for the problem was then well-defined, as

• an objective function,

• the size of the population,

• the binary representations of the parameters plus their precisions,

• the probabilites for crossover and mutation, and

• an initial population

had been fixed. Next, the fitness values of the individuals had to be determined. This
was done by evalutating each configuration by means of CFD. In order to be able to do
that, the preparations that were necessary to start with the evaluations are presented
here.

3.3 Grid Generation and Boundary Condition Definition

The construction of the computational domain and the meshing was done by means of
ANSYS Gambit c© . A 2D sketch of the computational domain at the sidewall and the
blade profile is shown in Fig. 3.5.

The fluid flows from the left to the right, so the left boundary, where the fluid enters was
defined as a so-called ”Velocity Inlet”. This means, that on this boundary the bound-
ary condition informations consist of velocity informations mainly. The right boundary,
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Figure 3.5: 2D Sketch of Computational Domain

where the fluid leaves the domain was defined as ”Pressure Outlet”, so the boundary con-
ditions were defined via (static) pressure. The upper and lower boundaries of the domain
were defined as ”Periodic”, that is, an unlimited cascade of blades plus their respective
computational domains were defined in this way. To save computing time, only half of
the blade was calculated, so, at z = H

2 , a symmetric boundary was introduced. Similar
to the calibration experiment at z = 0 the boundary was defined as ”Wall”. In addition,
the so-called ”Measuring Plane”, that is the plane parallel to the y − z-plane, where the
heads of the pressure probes were traversed in a translational way in y-direction during
the experiment is outlined in Fig. 3.5. The mesh boundary is the boundary between the
structured and unstructured grid and will be explained in further detail later.

3.3.1 Meshing of the Computational Domain

The construction of the computational mesh was seperated in two main parts, that is, the
generation of the 2D mesh in the x-y-plane, which was left unchanged for all configura-
tions, and the mesh in the third dimension, which was constructed for each configuration
by so-called ”Coopering” of the 2D mesh along an edge of the computational domain.
The 2D mesh consists of a structured mesh from the Veloctiy Inlet to the Mesh Boundary
with quadrilateral cells, a so-called ”Boundary Layer” around the blade profile and an
unstructured mesh in the rest of the domain. The structured mesh in the inflow region
was chosen in order to get well-controlled inflow conditions upstream of the blade. The
boundary layer around the blade profile was chosen for two reasons: First, it is imperative
to have a well-defined mesh in Near-Wall-Regions, speaking in terms of mesh resolution,
as the flow near walls, and the blade is treated like a solid wall, has to be resolved correctly
with the chosen turbulence model. Second, leaving the algorithms, that Gambit c© uses
for its unstructured meshes, define a mesh for the whole computational domain either
results in meshes, that are not satisfactory for calculating the flow for this problem, or,
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it results in a mesh, which would be much too fine for the turbulence model chosen and
therefore, finally, use much too much CPU-time for the whole optimisation problem.

To construct the 3D domain and mesh it, a parabola was errected at the intersection of
the lower Periodic Boundary and the Veloctiy Inlet at x

c = −1. The coordinates of the
vertex of the parabola were calculated according to Fig. 3.6 and

y0 = tan(α) ·
z0
2

(3.10)

taken from [36].

This edge was then meshed and moved along the boundaries (periodic and blade), creating
the mesh of the periodic boundaries and the 3D mesh of the blade surface at the same
time. Finally, the 2D mesh of the x-y-plane was so-called ”coopered” along the now
existing meshes from z = 0 to z = H

2 . Further control possibilites of the meshing,
which were used during the process (e.g. number of mesh points along certain edges of
the model) are not described in further detail here. In order to ensure a satisfying quality
of all meshes possible during the optimisation process, the most extreme configurations
(α = ± 45◦, h = 0/75 mm) were meshed and the quality of the meshes was checked
manually before starting the optimisation. The number of cells of the whole mesh stayed
the same for all configurations and was equal to 239250, the number of mesh points,
or nodes, was equivalent to 261092. Hildebrandt and Fottner [13] concluded, that for a
typical CFD calculation of a turbine blade cascade, about 1 million mesh points halfspan
is the minimum for a solution to be independent of the type of mesh and of the mesh
resolution. Test calculations prior to the start of the optimisation process did not show
better results with finer meshes, so the above mentioned number of roughly 2.5 · 105

cells seemed sufficient for the given problem, and, as a consequence, was used for the
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optimisation. It is important to mention the fact, that, due to the specific modelling
and meshing method chosen, the quality of the mesh varied slightly from configuration
to configuration.

3.3.2 Modelling Turbulence

When speaking in terms of turbulence, one has to envision, that all sorts of flows occur
in typical turbomachinery flow, viz. laminar flow, transitional flow and turbulent flow.
Therefore, careful attention has to be layed on the modelling of turbulence when calcu-
lating flow through a turbomachine, but the same is valid when calculating flow through
a linear blade cascade. The many ways of modelling turbulence, that are provided today
can roughly be divided into algebraic models, one- and two-equation models and other
models.

The complexity and difficulty of the models also rises in this order, as only algebraic equa-
tions have to be solved for the first type, up to two additional partial differential equations
have to be solved 1 for the second type, and more than two additional differential equa-
tions have to be solved for the others. This complexity also increases the calculation time
for the CFD solver, which is an important parameter for an optimisation task, as it was
performed in this work. Algebraic models are, from their nature, so-called ”incomplete”
models, which means, that additional information about the scales of turbulence 2, that
occur in the flow under examination, have to be supplied by the investigator in order to
get reliable results. Although Wilcox [45] points out, that those models are in general
of little use when it is tried to apply them beyond the established data, for which they
were fine tuned and calibrated, Lampart et al. ([18], [19] and [20]) did extensively use a
modified algebraic turbulence model of Baldwin and Lomax for their numerical studies.
As several works of Lampart et al. were done with this model, it is assumed, that they
indeed did calibrate this model for their specific use. The models, that were termed
”others” here, are, generally speaking, more complex than the one- and two-equations
models, as substantially more partial differential equations are used to model the scales,
the nature and the processes, such as energy transport or dissipation between eddies,
of turbulence. Direct numerical simulation (DNS), large eddy simulation (LES) and de-
tached eddy simulation (DES) shall be mentioned here as prominent representatives of
this group. As those models are also very ”costly” in terms of computing time, they were
not considered as an option in this work.

The models of choice therefore had to be found in the group of one- and two-equation
models. Hildebrandt and Fottner [13] used three types of turbulence models during
their studies on grid refinement and turbulence modelling, namely a High-Reynolds-
Number k/ε model, a Low-Reynolds-Number k/ε model and a k/ω model. Compared
to the influence of the grid resolution, they identified the influence of the turbulence
model as rather insignificant. For obvious reasons, the Low-Reynolds-Number k/ε model

1simultaneously
2e.g. mixing length
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performed best in near-wall-regions, but it shall also be annotated, that this kind of
model requires a very fine grid in those regions (Wall-y+ ≤ 2), which, in turn, results in a
grid with a very high number of grid points for the whole computational domain. But, as
more grid points always involve an increase in computational effort, the Low-Reynolds-
Number k/ε model was not considered as a good option here. Wilcox [45] claims the
k/ω model to show a very good behaviour when dealing with wall-bounded and free
shear flow in one problem, in addition, he reports very good results for the model when
the flow is exposed to adverse pressure gradients. An often used variant of the k/ε model
is the so-called Renormalization Group (RNG) k/ε model. Orszag et al. [28] show the
applicability of this models in various example, where it turns out, that this modified
k/ε model delivers very good results for flows with unsteady effects such as seperation
bubbles. Being well aware, that every model has its advantages and disadvantages, it
was chosen to use the Standard k/ε model in this work.

The basic concept and assumptions of the Standard k/ε model shall be presented very
briefly for better understanding in the following paragraphs:

When speaking of turbulence, it means that the various flow properties fluctuate ran-
domly. In order to classify these fluctuations, a statistical approach was chosen, namely
to split up the flow property into an average part and a fluctuating part at any in-
stantanous moment. To determine the mean quantity, several averaging procedures can
be chosen (time-averaging, spatial-averaging and ensemble-averaging), here, only time-
averaging will further be considered, which, for a flow variable f(x, t) of stationary flow,
can be written as:

FT (x) = lim
T→∞

1

T

∫ t+T

t
f(x, t)dt . (3.11)

The instantanous velocity ui(x, t) can then be described for a stationary turbulent flow
as

ui(x, t) = Ui(x) + u′i(x, t) , (3.12)

where Ui(x) represents the mean part and u′i(x, t) the fluctuating part (compare Fig. 3.7).

The following rules, that the time-average 3 of a mean property is again the same time-
averaged value, i.e.

Ui(x) = lim
T→∞

1

T

∫ t+T

t
Ui(x)dt = Ui(x) , (3.13)

and that the time-average of the fluctuating part is zero, i.e.

3overbar is short for time-average
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ui(x, t)

Ui(x)

t

T

Figure 3.7: Time-Averaging for Stationary Turbulence

u′i = lim
T→∞

1

T

∫ t+T

t
[ui(x, t) − Ui(x)]dt = Ui(x) − Ui(x) = 0 , (3.14)

and that the average of the product of two quantities φ and ψ is

φψ = (Φ + φ′)(Ψ + ψ′) = ΦΨ + Φψ′ + Ψφ′ + φ′ψ′ = ΦΨ + φ′ψ′ , (3.15)

are used in the following deduction, where, for the sake of brevity, tensor notation will
be used:

For incompressible, constant-property flow, the equations for conservation of mass and
momentum are

∂ui

∂xi
= 0 (3.16)

̺
∂ui

∂t
+ ̺uj

∂ui

∂xj
= −

∂p

∂xj
+
∂tji
∂xj

(3.17)

tij is the viscous stress tensor defined by
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tij = 2µsij (3.18)

with the molecular viscosity µ and the strain-rate tensor

sij =
1

2

(

∂ui

∂xj
+
∂uj

∂xi

)

. (3.19)

Combining Eqs. 3.16 through 3.19 yields the Navier Stokes equation in conservation form,
nameley

̺
∂ui

∂t
+ ̺

∂

∂xj
(ujui) = −

∂p

∂xi
+

∂

∂xj
(2µsji) (3.20)

Time-averaging Eq. 3.16 and Eq. 3.20 results in the Reynolds-averaged equations of mo-
tion in conservation form, viz.

∂Ui

∂xi
= 0 (3.21)

̺
∂Ui

∂t
+ ̺

∂

∂xj

(

UjUi + u′ju
′
i

)

= −
∂P

∂xi
+

∂

∂xj
(2µSji) (3.22)

The new correlation u′iu
′
j is a time-averaged rate of momentum transfer due to turbu-

lence. Rewriting Eq. 3.22 leads to the so-called Reynolds-averaged Navier Stokes equation
(RANS):

̺
∂Ui

∂t
+ ̺Uj

∂Ui

∂xj
= −

∂P

∂xi
+

∂

∂xj

(

2µSji − ̺u′ju
′
i

)

(3.23)

−̺u′iu
′
j is called the Reynolds stress tensor, denoted by ̺τij , therefore τij is the specific

Reynolds stress tensor 4. By time-averaging the equations for conservation of mass and
conservation of momentum, six new unknow quantities, the Reynolds stress components,
were produced. Unfortunately, no additional equations were developed, so for ten un-
known flow properties (p, ui, u

′
iu

′
j) only four equations are available, so the system of

equations cannot be closed. Herein lies the fundamental problem of turbulence.

Introducing the Boussinesq approximation, which models, similar to the molecular vis-
cosity µ in Stoke’s Friction Law for laminar flow, a turbulent, or eddy, viscosity µt, the
Reynolds stress can be written as

4τij is symmetric, hence τij = τji
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− ̺u′iu
′
j = µt

(

∂Ui

∂xj
+
∂Uj

∂xi

)

−
2

3
̺ k δij , (3.24)

where the second term on the right-hand side of the equation represents the turbulent
pressure (with δij = 1 for i = j and δij = 0 for i 6= j), which is assumed to be proportional
to the turbulent kinetic energy per unit mass, viz.

k =
1

2
u′iu

′
i =

1

2

(

u′2 + v′2 + w′2
)

(3.25)

The turbulent intensity Tu is defined with the arithmetic average of the Reynolds-normal-
stresses divided by the local absolute value of velocity as

Tu =

√

u′2 + v′2 + w′2

3(u2 + v2 + w2)
. (3.26)

In the inlet region of the cascade under investigation, nearly isotropic turbulent fluctua-
tions of the velocity are assumed, resulting in

k =
u′2 + v′2 + w′2

2
=

3 u′2

2
. (3.27)

The turbulent intensity at the cascade inlet can therefore be described as

Tu =

√

2

3

k

U2
e

, (3.28)

with Ue being the freestream mean-flow velocity at the inlet region.

Having explained all the fundamentals of the k/ε model above, the equation for the
kinematic eddy viscosity νt

νt = Cµ
k2

ε
, (3.29)

the transport equation for the turbulent kinetic energy k

∂k

∂t
+ Uj

∂k

∂xj
= τij

∂Ui

∂xj
− ε+

∂

∂xj

[(

ν +
νt

σk

)

∂k

∂xj

]

, (3.30)

the transport equation for the turbulent dissipation rate ε
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∂ε

∂t
+ Uj

∂ε

∂xj
= Cε1

ε

k
τij

∂Ui

∂xj
− Cε2

ε2

k
+

∂

∂xj

[(

ν +
νt

σε

)

∂ε

∂xj

]

, (3.31)

and the closure coefficients

Cε1 = 1.44, Cε2 = 1.92, Cµ = 0.09, σk = 1.0, σε = 1.3 (3.32)

are given without further deduction. In Eq. 3.30 the first term on the left-hand side repre-
sents the unsteady term, the second term on the left-hand side stands for the convection.
Together they give the rate of change of k of a fluid particle of the flow. The first term
on the right-hand of Eq. 3.30 is the production term, the rate, at which kinetic energy
is transferred from the mean flow to the turbulence. ε, the turbulent dissipation rate,
which is the rate, at which turbulent kinetic energy is transformed into internal thermal
energy, is defined to be

ε = ν
∂u′i
∂xk

∂u′i
∂xk

. (3.33)

The term ν ∂k
∂xj

represents the molecular diffusion, and, finally, the term νt

σk

∂k
∂xj

describes

the turbulent transport and pressure diffusion.

The application of the Standard k/ε turbulence model demands certain prerequisites,
namely:

• It can only be applied for High-Reynolds-number flow.

• The near-wall regions in wall-bounded flows have to be calculated with wall-functions,
because the model cannot predict correct results for these regions.

• The nondimensional, sublayer scaled, wall-distance y+ has to be
≈ 30 ≤ y+ ≤ ≈ 100.

The Standard k/ε model, being a High-Reynolds-number model, cannot predict accurate
and correct results in near-wall-regions for wall-bounded flows, as the Reynolds numbers,
calculated with a significant cell dimension, in those regions are low. Viscous stresses
dominate over turbulent Reynolds stresses in these regions, therefore wall-functions were
developed to overcome these disadvantages. The idea was to supply empirical functions
u+ = f(y+), which define the flow velocity being dependent of the wall-distance. As
the Standard k/ε model cannot be integrated satisfactory through the viscous sublayer,
a linear relation between the nondimensional velocity u+ and the nondimensional wall-
distance y+ was modelled for this viscous sublayer, viz.

u+ = y+ . (3.34)
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The nondimensional wall-distance y+ and the nondimensional velocity u+ are being de-
fined as

y+ =
uτy

ν
and u+ =

U

uτ
(3.35)

with the friction velocity uτ being defined as

uτ =

√

τW
̺

. (3.36)

Schlichting and Gersten [34] and Wilcox [45] show, that a turbulent boundary layer
consists of a thin wall layer, or viscous sublayer, a fully turbulent outer layer, the log layer,
a so-called overlap region in between them, and a defect layer at the edge of the boundary
layer. In the viscous sublayer both, turbulent and molecular momentum transfer act. In
the fully turbulent outer layer molecular, or viscous, stress can be neglected compared to
the Reynolds stress. This region lies approximately in between y+ = 30 and y = 0.1 · δ,
with the value of y+ at the upper boundary depending upon the Reynolds number of
the flow. It should be mentioned, that the layer thickness of the log layer is serveral
orders of magnitude larger than the thickness of the viscous sublayer. In the defect layer,
reaching from the upper boundary of the log layer until the edge of the boundary layer,
the velocity of the flow asymptotically approaches the value of the freestream velocity.
The logarithmic law of wall is not valid in this region any more.

A sketch of a typical turbulent boundary layer with the viscous sublayer, the overlap
region and the log layer is depicted in Fig. 3.8.

In the region of the log layer, the logarithmic Law of Wall

u+ =
1

κ
ln y+ + C (3.37)

can be applied with κ being Kármán’s constant. κ ≈ 0.41 for smooth and rough surfaces
and C ≈ 5.0 for smooth surfaces were determined by correlations with experiments [17].

As was mentioned above and can be seen from Fig. 3.8, the logarithmic law of wall can
only model the dimensionless velocity u+ correctly, if the nondimensional wall-distance
y+ ≥ 30, in addition, y+ should not exceed 100 (1000) very much 5 for typcial tur-
bomachinery applications, as the region of the defect layer is beginning there, and the
logarithmic law of wall is not valid there any more. Equation 3.35 shows, that this results
in the condition, that the cells next to a wall must not be too small, so that they do not
fully lie inside the viscous sublayer. This condition was fully met by the mesh used for
the optimisation.

5Values for the upper limit of y+ ranging from 100 to 1000 can be found in the literature for variants of
the Standard k/ε model.
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Figure 3.8: Turbulent Boundary Layer: Viscous Sublayer, Overlap Region and Log Layer

3.3.3 Boundary Conditions, nondimensional Variables, numerical Schemes

It is a common practice in turbomachinery design to calculate the relevant variables
and equations in a nondimensional form. One reason for using this practice is that the
results of different investigations with different boundary conditions, blades, etc. can be
more easily compared, when the results are presented in a scaled, nondimensional form.
Another important reason is, that for a CFD calculation, the values calculated for the
different flow properties are of the same order of magnitude (around O1), which, in turn,
gives higher levels of accuracy, as roundoff errors are somehow reduced. This practice
was followed here, the variables were defined and verified in the relevant equations. For
practical reasons, the derivation is presented for two dimensional equations, that is for x
and y, only. The definitions

x∗ =
x

c

y∗ =
y

c

(3.38)

u∗ =
u

w0

v∗ =
v

w0

(3.39)

represent the nondimensional lengths and velocities. In the continuity equation for steady
state flow ( ∂

∂t = 0), which in its original form reads as
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∂u

∂x
+
∂v

∂y
= 0 (3.40)

u and v are replaced by their nondimensional representations. Therefore

w0 ∂u
∗

c ∂x∗
+
w0 ∂v

∗

c ∂y∗
= 0

is leading to

∂u∗

∂x∗
+
∂v∗

∂y∗
= 0 . (3.41)

With the nondimensional pressure and the Reynolds number (calculated with the chord
length of the blade and the inlet flow velocity)

p∗ =
p

̺ · w0
2

(3.42)

Re0 =
w0 · c

ν
(3.43)

the Navier Stokes equations for steady state flow with neglected gravity influence

u
∂u

∂x
+ v

∂u

∂y
= −

1

̺

∂p

∂x
+ ν

(

∂2u

∂x2
+
∂2u

∂y2

)

(3.44a)

u
∂v

∂x
+ v

∂v

∂y
= −

1

̺

∂p

∂y
+ ν

(

∂2v

∂x2
+
∂2v

∂y2

)

(3.44b)

lead to the nondimensional Navier Stokes equations, given as

u∗
∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
= −

1

̺

1

w0
2

∂p

∂x∗
+

ν

c w0

(

∂2u∗

∂x∗2 +
∂2u∗

∂y∗2

)

=

= −
∂p∗

∂x∗
+

1

Re0

(

∂2u∗

∂x∗2 +
∂2u∗

∂y∗2

)

,

(3.45a)

and

u∗
∂v∗

∂x∗
+ v∗

∂v∗

∂y∗
= −

1

̺

1

w0
2

∂p

∂y∗
+

ν

c w0

(

∂2v∗

∂x∗2 +
∂2v∗

∂y∗2

)

=

= −
∂p∗

∂y∗
+

1

Re0

(

∂2v∗

∂x∗2 +
∂2v∗

∂y∗2

)

.

(3.45b)
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The equations for the k/ε turbulence model had to be made nondimensional as well. Ac-
cording to Launder and Spalding in their original paper of the k/ε turbulence model [23],
the High-Reynolds number formulation of the model was used, neglecting the influence
of molecular diffusion, as it is several orders of magnitude smaller than the turbulent

transport and pressure diffusion. This means, that the term ∂
∂xj

[(

ν + νt

σk

)

∂k
∂xj

]

was re-

placed with ∂
∂xj

[

νt

σk

(

∂k
∂xj

)]

in the transport equation for the turbulent kinetic energy, k,

yielding

u
∂k

∂x
+ v

∂k

∂y
=

∂

∂x

[

νt

σk

(

∂k

∂x

)]

+
∂

∂y

[

νt

σk

(

∂k

∂y

)]

+ P − ε . (3.46)

The turbulent production term τij
∂Ui

∂xj
, as explained above and in Eq. 3.30, is denoted

short with P here. The variables for x, y, u and v are replaced according to Eqs. 3.38
and 3.39, the equation is then multiplied by c

w0
3 , leading to

u∗
∂k∗

∂x∗
+ v∗

∂k∗

∂y∗
=

∂

∂x∗

[

1

σkRe0,t

(

∂k∗

∂x∗

)]

+
∂

∂y∗

[

1

σkRe0,t

(

∂k∗

∂y∗

)]

+ P ∗ − ε∗ (3.47)

with

k∗ =
k

w0
2

(3.48) ε∗ =
ε c

w0
3

(3.49)

P ∗ =
Pc

w0
3

(3.50)
1

Re0,t
= Cµ

k∗2

ε∗
(3.51)

In the transport equation for the dissipation rate ε, the relevant variables are replaced
by their nondimensional forms as above. Again, the High-Reynolds number formulation
ist used. Going out from the dimensional form

u
∂ε

∂x
+ v

∂ε

∂y
=

∂

∂x

[

νt

σε

(

∂ε

∂x

)]

+
∂

∂y

[

νt

σε

(

∂ε

∂y

)]

+ C1
ε

k
P − C2

ε2

k
(3.52)

and dividing the nondimensional form by c2

w4
0

this leads to

u∗
∂ε∗

∂x∗
+ v∗

∂ε∗

∂y∗
=

∂

∂x∗

[

1

σεRet

(

∂ε∗

∂x∗

)]

+
∂

∂y∗

[

1

σεRet

(

∂ε∗

∂y∗

)]

+ C1
ε∗

k∗
P ∗ − C2

ε∗2

k∗
.

(3.53)
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Figure 3.9: Velocity Inlet: 1/7 Power Law

To simulate the boundary conditions for the velocity at the inlet, the flow inside the
boundary layer of the endwall was approximated by means of the 1/7 power law which,
in its dimensional form, reads as

w0

w0,MS
=

(z

δ

) 1

7

. (3.54)

Outside of the boundary layer, in the freestream region the velocity was set equal to the
velocity at the symmetric boundary, denoted as w0,MS . A sketch of these conditions is
given in Fig. 3.9

The flow angle at the blade inlet was set to β0 = β0
′ = 76.1◦, defined in [29], so the

velocities in the coordinate directions are

w0,x = w0 sin(β0) w0,y = w0 cos(β0) w0,z = 0

for zero incidence. This is sketched in Fig. 2.11.

To solve the equations for the computational domain, it was chosen to use the segregated
solver scheme of ANSYS c© Fluent due to its robustness. The segregated solver solves
the equations for continuity and momentum sequentially whereas its counterpart, the
so-called coupled solver 6, would solve these equations simultaneously. The equations for
scalars such as the turbulent kinetic energy k or the turbulent dissipation ε are solved
sequentially as well. Both schemes use the Finite Volume method to solve the relevant

6Test calculations were performed and evaluated with the coupled solver using the explicit and implicit
linearisation scheme. Convergence could not be reached reliably.

73



3 Optimisation

equations. Both discretisation schemes, viz. First-Order Upwind Scheme and Second-
Order Upwind Scheme were used during iteration. The First-Order Upwind Scheme gives
results of the deducted algebraic equations of first order accuracy, meaning that the values
of flow quantities in the cell centers are set equal to the values at the faces in the upwind
cells. In general, calculations done with the First-Order Upwind Scheme, tend to converge
quicker. The Second-Order Upwind Scheme is of higher order accuracy, meaning that the
value of a flow quantity at the face of an upwind cell is calculated with the value at cell
center of the upwind cell and a Taylor-series approximation of the gradient between the
cell center of the upwind cell and the face centroid. In this work, the First-Order Upwind
Scheme was used for the first 250 iterations, then the discretisation scheme was switched
to the Second-Order upwind scheme. The number of iterations was set to be constant at
750 for all calculations, as test calculations before starting the optimisation loop showed,
that the 3D CFD calculations were well converged after that number of iterations.

3.4 Optimisation Loop

The optimisation loop was programmed in C programming language. The basic operating
scheme of the loop is illustrated in Fig. 3.10.

The loop was initialized with the initial population from Tab. 3.1, after that, a mesh was
constructed in ANSYS Gambit c© for each configuration. Following that, the mesh was
loaded into ANSYS Fluent c© where the boundary conditions were defined, that is the
relevant equations, the relevant constants and functions at the boundaries were set. The
numeric calculations were done in nondimensional form, so the units for all variables are
equal to unity.

The solution space with the initial configurations is shown in Fig. 3.11. It is imperative to
do some CFD test calculations for extreme configurations 7 before starting the automatic
optimisation process, in order to secure, that convergence is reached for those extreme
configurations.

For this work, those initial test calculations were done for the configurations

• α = 45◦, h = 0 mm, and

• α = −45◦, h = 0 mm.

Those configurations prooved to converge in the CFD calculations.

7”Extreme” is used in the sense, that these configurations form the border of the solution space, and
therefore the behaviour of the calculations at these borders had to be checked for convergence.
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Figure 3.10: Flow Chart of Optimisation Loop
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Figure 3.11: CFD Solution Space

3.4.1 Convergence and Reliability Check of the Solutions

Convergence for a steady state calculation, as was performed here for every configuration
calculated, means, that the solution of the problem does not significantly change any more
as iterations progress forward. It is in general a difficult task to judge, whether a solution
is converged or not after a certain number of iterations (compare [1]). In this work, two
approaches were chosen to judge, wether a solution of a configuration is converged or
not. The first criterion for a solution to be converged was the level of scaled residuals.
This level was set to be lower than 1 · 10−5, which is two orders of magnitude lower than
generally accepted as criterion for convergence 8. This criterion was checked for a sample
of configurations during and after the optimsation. As mentioned above, to ensure the
convergence for ”extreme” configurations, test calculations of those configurations were
performed and evaluated before starting the optimisation process. The second criterion
used was the calculated lift force of the blade. The nondimensional lift force of the blade
was calculated at each iteration of the CFD calculation and each value was stored in a
file. The mean value of lift force was calculated out of the last 50 iteration values and
then compared to the value of lift force of the very last iteration. The difference had to

8A general rule is, that the level of the scaled residuals for a converged solution should be three orders
of magnitude lower than at the beginning of the iterations. Here, scaled residuals at the beginning of
iteration were about the order of magnitude 1 · 100.
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α,◦ h, mm

−20 ≤ α ≤ −10 66 ≤ h ≤ 74
20 ≤ α ≤ 38 50 ≤ h ≤ 67

Table 3.2: Approximate Regions of Local Optima

be below ± 1 · 10−4 9.

3.4.2 Result of Optimisation

The contour plot of the total pressure loss coefficient ω of all configurations calculated
during the optimisation process and their results, respectively, are presented in Fig. 3.12.

Each point represents one configuration. Nearly 1250 configurations were calculated
during the optimsation process. The initial configurations are not specially marked in this
plot. Contrary to Fig. 3.11 the cylindric configurations are marked with an empty instead
of a filled diamond symbol, as otherwise it would have been difficult to distinguish them
from the other calculated configurations. It can be observed quite clearly, that the genetic
algorithm concentrated its search in regions, where there seem to be local optima, as
substantially more configurations were calculated and evaluated in those regions. Those
regions are summarized in Tab. 3.2.

The region of the best solution is marked with the dashed isoline of ω, the value of the
isoline would be 0.067 there and was not plotted for the contour plot to stay consistent
in its labelling. There seems to be a region with low, positive values of α and low values
of h on one hand and high positive values of α and high values of h on the other hand,
where more efficient configurations than the cylindric ones lie within. This region can be
identified between the two isolines with a value of ω = 0.068. It is interesting to note,
that apparently curved-only compound lean nozzles and compound lean nozzles with an
explicit straight spanwise piece around midspan deliver similar efficiency gains for the
nozzle.

The vertices of the parabolic arcs for good solutions with efficiency gains, compared to
the cylindric blades, for the most instances lie in between the endwall and distance of the
inlet endwall boundary layer thickness. This is an interesting fact that could be observed.

Finally, it should be mentioned, that the optimisation algorithm worked flawlessly without
any mistake until interrupted manually after roughly 1250 configurations calculated.

9It shall be annotated, that this is in fact a very low value, as the whole calculation was performed on
a nondimensional basis
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4 Results

An expert is a man who has

made all the mistakes which can

be made in a very narrow field.

(Niels Bohr,
Danish Physicist)

4.1 Comparison of Experiment and CFD Calculation

The results of the experiment were presented and discussed in Chap. 2.5 for the three-
hole pressure probe (2D measurement), in Chap. 2.6 for the five-hole pressure probe (3D
measurement) and in Chap. 2.7 for the blade profile pressure measurement. Comparing
these results with the results of the CFD calculations, qualitatively and quantitatively,
should be helpful, when judging the results of the CFD optimisations.

4.1.1 Exit Flow Angles: Pitchwise Flow Angle β1 and Spanwise Flow

Angle γ1

It is of utmost importance for turbomachine designers, to know the flow angles between
the blade rows as exactly as possible. One of the most important tools for the design
process, the velocity triangle, could not be applied without knowledge of flow angles. The
comparison of the pitchwise flow angle, β1, for the 2D experiment with the three-hole
pressure probe and the CFD calculation at midspan is depicted in Fig. 4.1.

It can be observed very well, that, qualitatively the results are very good. Quantita-
tively, however, there seems to be some kind of ”offset” between the results. A possible
explanation is, that this offset origins of the experimental setup in the laboratory; four
coordinate systems are used (sketched in Fig. 4.2) in the setup, viz.

• the ”natural” coordinate system (CS 1),

• the coordinate system attached to the windtunnel (CS 2),

• the coordinate system attached to the mounting box (CS 3), and

• the coordinate system attached to the traversing unit (CS 4).

Unfortunately, not all the relations between those coordinate systems can be measured
exactly, neither can all those coordinate systems be setup independently of each other. So,
according to the rules of error propagation, the offset of about 1.3◦ has to be accepted
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Figure 4.1: Comparison of Experiment and CFD Calculation: Three-Hole Pressure
Probe, Pitchwise Exit Flow Angle β1 at Midspan

Figure 4.2: Four different Coordinate Systems for the Experiment

80



4 Results

as a systematic error, and can, at this point, not be decreased. Given the difficulties
explained above, this error seems to be rather small.

The comparison for the 3D measurement and the corresponding CFD calculation is pre-
sented in Fig. 4.3. Again, at midspan, the measurement with the five-hole pressure probe
shows very good agreement with the measurement with the three-hole pressure probe.
The same offset as described above can be observed. Qualitatively the pitchwise flow
angle β1 is predicted quite well with CFD, the phenomenons overturning at the endwall
and underturning in the region of the loss core can be identified quite clearly and at the
same positions as in the experiment. However, the offset for the measurement remains,
has even become higher, and cannot be overcome here. In addition, due to the class-
building process, that is necessary for preparation of the contour plot, a certain level of
inaccuracy has to be accepted 1.

The comparison of measured and calculated spanwise flow angle γ1 is depicted in Fig.4.4.

Even qualitatively the agreement between experiment and CFD calculation is rather poor
for the spanwise flow angle γ1. For both, γ1 taken together with the contour plot of the
pitchwise flow angle β1, the helical motion of the passage vortex (compare Chap. 2.6
for further explanation) can be detected. As both, the pitchwise flow angle β1 and the
absolute values of the spanwise flow angle γ1 are larger in the CFD calculation, the passage
vortex is identified to be weaker in the experiment and stronger in the CFD calculation.
This fact coiincides with the above mentioned fact, that the loss is overestimated in the
CFD calculation due to the used Standard k/ε turbulence model, as a stronger passage
vortex means higher secondary losses. The reasons for the bad agreement of the spanwise
flow angle between experiment and CFD calculation could not be determined.

4.1.2 Static Pressure Coefficient Cp,1

The static pressure coefficient Cp,1 in the context here cannot be used for any relevant
conclusion as far as turbomachinery applications are concerned, but it can serve as a
tool for judging the quality of agreement of the experiment and the CFD calculation. As
such, it shall be used, only the 2D measurement is evaluated here. The static pressure
coefficient is defined as

Cp,1 =
p1 − p0,MS

pt0,MS − p0,MS

. (4.1)

The comparison is depicted in Fig. 4.5.

As can be seen, the agreement is excellent qualitatively, quantitatively the deviation
between experiment and CFD calculation is less than 3%, which is considered to be a

1The term ”level of inaccuracy” relates to the graphical representation, the contour plot, not to the
actual data, which is as accurate as can be.
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Figure 4.3: Comparison of Experiment (a) and CFD Calculation (b): Five-Hole Pressure
Probe, Pitchwise Exit Flow Angle β1
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Figure 4.4: Comparison of Experiment (a) and CFD Calculation (b): Five-Hole Pressure
Probe, Spanwise Exit Flow Angle γ1
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Figure 4.5: Comparison of Experiment and CFD Calculation: Three-Hole Pressure
Probe, Static Pressure Coefficient Cp,1 at Midspan

very good agreement.

4.1.3 Exit Flow Velocity w1

The exit flow velocity w1 is depicted in normalized form, namely w1

w0
, for the exit plane

at midspan in Fig. 4.6. As was the case with the static pressure coefficient, no relevant
conclusion in terms of turbomachinery flow can be drawn from this flow property, but it is
again used to better judge the results of the CFD calculation compared to the experiment.

As can be seen, the agreement ist quite good in the blade passage in the region of
undisturbed flow, however, it is better for the flow near the suction side of the blade
than for the flow near the pressure side. Qualitatively, the velocity plot shows quite
good agreement, quantitatively this is not the case in the region around the wake of the
blade. This phenomenon could result from usage of the Standard k/ε turbulence model.
Durbin [8] points out, that the Standard k/ε turbulence model predicts an anomalously
large growth of turbulent kinetc energy k in stagnation point flows, and this behaviour
can also affect the whole flow computation, even if the flow around the stagnation point
region is not of particular interest per se. Flow around a turbine blade is such a flow. He
called this phenomenon the stagnation point anomaly.
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Figure 4.6: Comparison of Experiment and CFD Calculation: Three-Hole Pressure
Probe, Cascade Exit Flow Velocity Ratio at Midspan

4.1.4 Total Pressure Coefficient Cp,t1

Figure 4.7 shows the values of Cp,t1,MS for the 2D experiment and the values for the CFD
calculation, evaluated in the wake of the blade cascade at an axial position of 130% axial
chord length b, calculated from the coordinate origin, depicted in Fig. 3.5, at midspan.

As can be seen, CFD shows very good results when predicting the total pressure in regions
of undisturbed flow, viz. downstream of the middle of the blade passage. However, in the
region of approximately 0.45 ≤ y

t ≤ 0.8, where the wake of the blade can be seen clearly,
as Cp,t1,MS reaches its minimum value, the result of the CFD calculation clearly predicts
a much lower total pressure coefficent than the experiment. Qualitatively, the results are
quite good, but quantitatively, this is not the case. One possible reason for this might be
due to the usage of the Standard k/ε turbulence model, as assumed in Chap. 4.1.3. The
overestimation of total pressure loss seems to be caused by the influence the stagnation
point anomaly has on the velocities of the flow. The total pressure is the sum of the static
and dynamic pressure. The results for the static pressure of the calculation were excellent,
compared to the experiment, quantitatively and qualitatively (compare Fig. 4.5). The
agreement of results between experiment and calculation of the exit flow velocity ratio
was good qualitatively, but poor quantitatively, as the velocity was predicted to be much
too low in the region around the blade wake, therefore the portion of dynamic pressure for
the total pressure is too low as well. This results in a lower total pressure and therefore
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Figure 4.7: Comparison of Experiment and CFD Calculation: Three-Hole Pressure
Probe, Total Pressure Coefficient Cp,t1,MS

in a higher total pressure loss coefficient.

Walters and Leylek [41] examined the impact of film-cooling jets on turbine aerodynamic
losses by means of CFD, comparing their results to experimental data. Although this
specific result is not important here, their findings on the influence of turbulence modelling
on the losses produced inside a blade cascade can be used to support the assumption,
that the higher loss of the CFD calculation compared to the experiment in this work
originate, at least partly, from the application of the Standard k/ε model. For their low-
speed cascade (Rec = 2.3 · 105, exit Mach number Ma = 0.06), they found out, that for
a solid blade, without injection of cooling air, the Standard k/ε model overpredicted the
experimental results of the total pressure loss coefficient by nearly 54%. They achieved
results, that were somewhat closer to those of the experiment with the Renormalization
group k/ε model (RNG k/ε), the realizable k/εmodel (RKE) and the full Reynolds-Stress
model (RSM), viz. nearly 26%, nearly 2% and approximately -1% respectively.

The comparison of 3D results (130% axial chord length) for Cp,t1 is depicted in Fig. 4.8.

As can be seen, the results at midspan are comparable qualitatively and quantitatively
to those of the 2D measurement. The region of undisturbed flow can be identified very
clearly in both pictures, the agreement between measurement and CFD calculation is
very close. This region extends from z

H ≈ 0.15 to z
H = 0.5 in spanwise direction and from

0 ≤ y
t ≤ 0.25 and 0.8 ≤ y

t ≤ 1 in pitchwise direction. When approaching the endwall
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Figure 4.8: Comparison of Experiment (a) and CFD Calculation (b): Five-Hole Pressure
Probe, Total Pressure Coefficient Cp,t1
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region ( z
H → 0), the increasing of Cp,t1 shows the influence of the endwall boundary layer

in this region, which somehow extends further in spanwise direction in the experiment. It
should be mentioned, that, for practical reasons, the mounting box of the blade cascade
ended just in front of the traversing shaft of the five hole pressure probe, whereas in
the CFD calculation, the endwall continued beyond this point until the pressure outlet.
This might be a reason for different extension of the endwall boundary layer in that
region. The isobar lines in nearly spanwise direction from 0.2 ≤ z

H ≤ 0.5 with total
pressure coefficients lower than zero can be interpreted as profile loss of the blade. The
passage vortex with its loss core at y

t ≈ 0.6 and z
H ≈ 0.15 can also be clearly identified

in experiment and CFD calculation. As with the results of the 2D experiment, the
comparison of the results of 3D experiment and CFD calculation show a higher general
level of loss for the CFD calculation, which, as in the 2D case, can partly be explained
with the stagnation point anomaly of the Standard k/ε turbulence model.

4.1.5 Profile Static Pressure at Midspan

The comparison of experiment and CFD calculation of the static profile pressure at
midspan is presented in Fig. 4.9. The calculation for Cp for the experiment was introduced
in Chap. 2.7. For the calculation of the CFD values,

Cp =
p− p0,MS

pt0,MS − p0,MS

(4.2)

is used. Equation 4.2 is more or less equal to the definition used for the experiment,
but for the sake of exactness, the mass-averaging process used for the CFD evaluation is
expressed by the overbar symbols.

The agreement between the results of the experiment and the calculation is very good,
qualitatively and quantitatively. In the zone of diffusion on the suction side, the pressure
in the calculation was predicted to be lower, than could be observed in the experiment.
On the pressure side, in the zone where the fluid is accelerated again, the pressure was
predicted to be lower than the experiment showed. However, the bladeload, represented
by the area between the pressure side curve and the suction side curve stayed the same
more or less.

4.2 Results of the CFD Optimisation

At the end of the optimisation process, a huge number of 3D CFD solutions was calculated
(compare Fig. 3.12). Two of the best solutions, viz. the very best and the fourth-best
solution are evaluated and compared. The best solution has an angle α of 43◦, which
might be tough or impossible to manufacture due to reasons of mechanical strength.
Therefore, the second configuration was chosen to be as close as possible to the ”optimum”
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α,◦ h, mm h
H ω ω

ωSet1

Set 1 0 75 0.5 0.06864 1.0000
Set 2 15 1 ≈ 0 0.06760 0.9848
Set 3 43 59 0.4 0.06756 0.9842

Table 4.1: Geometry Parameters and Objective Functions of evaluated Configurations

solution, speaking in terms of total pressure loss coefficient, but to have a substantial
lower value of α. Table 4.1 shows the basic geometrical data of those compound lean
configurations and their absolute and relative total pressure loss coefficient in comparison
with the initial cylindric blade configuration.

It is interesting to note, that the best configuration, Set 3, is a classical compound lean
configuration, with an explicit straight part in the middle section of the blade, but the
second configuration, Set 2, is a configuration which is nearly a curved-only configuration.
Both, Set 2 and Set 3, show an improvement of total pressure coefficient of about 1.5%.
However, significant differences can be observed regarding the flow distribution and flow
angles.
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4.2.1 Local Total Pressure Coefficient Cp,t1

Figure 4.10, Fig. 4.11 and Fig. 4.12 show contour plots of the total pressure coefficent Cp,t1

of the three blade sets compared to one another at a streamwise position of 130% axial
chord length (”Measuring Plane” in Fig. 3.5). The dashed line represents the stacking
line of the blade profiles of the individual blades.

Profile losses, represented by the isobar lines with a local total pressure coefficient Cp,t1

lower than zero in the region of approximately 0.3 ≤ z
H ≤ 0.5, rise for Set 2 compared

to the cylindric blade which can be observed in Fig. 4.10. The contourlines of Cp,t1 also
adopt the shape of the stacking line of the blade profiles for Set 2. The loss core is
represented by the region of the lowest values of Cp,t1 on the suction side at a spanwise
position of approximately 0.13 ≤ z

H ≤ 0.16 for Set 1 and approximately 0.1 ≤ z
H ≤ 0.3

for Set 2. It is very pronounced for Set 1. For Set 2 it splits up into two parts with a
lower level of total pressure loss. Hildebrandt and Fottner [13] discovered this splitting-
up for cylindrical blades in their grid refinement studies, and attributed these seperate
loss cores to the different vortices, the horseshoe vortex and the passage vortex. Here,
it could only be observed for the compound lean blade. The level of loss of the endwall
boundary layer, represented by lower absolute values of local total pressure coefficient in
the endwall regions, is lower for Set 2 than for Set 1.

Comparing the contour plots of total pressure coefficient Cp,t1 of Set 1 and Set 3, Fig. 4.11
reveals, that the profile losses, represented by the isobar lines in spanwise direction,
evaluated at about 0.5 ≥ z

H ≥ 0.3 are roughly equal for Set 1 and Set 3. The blade
wake seems to change its shape according to the stacking line for Set 3, although this
behaviour cannot clearly be identified, due to the geometrical parameters of Set 3. For
Set 3 the loss core is situated at a spanwise position of about 0.11 ≤ z

H ≤ 0.26. Again,
as for Set 2, the loss core is split up into two seperate parts. The level of total pressure
around the loss core again seems lower for Set 3 compared to Set 1. At the endwall, losses
originating from the endwall boundary layer are also lower than for Set 1, very clearly
on the pressure side of the blade, but hard to spot on the suction side.

In Fig. 4.12 finally Set 2 and Set 3 are compared with respect to the total pressure
coefficient. It is evident from the observations made above, that now, the profile losses
of Set 3 are lower than those of Set 2. Furthermore, the loss cores are both split up,
but different in shape. Set 2 seems to have a lower level of loss in the loss core. At the
endwall, the loss of both configurations seems rather comparable to each other.

Summarizing the comparison of Set 1 to Set 3, the following statements can be made:

• The optimised compound lean configurations both tend to decrease loss originating
from endwall boundary layers.

• Both optimised configurations show a split up loss core, whereas for the cylindrical
blade, this is not the case.
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Figure 4.13: Pitchwise mass-averaged Total Pressure Coefficient Cp,t1

• Blade profile losses are higher for the compound lean configuration without 2

straight part of the blade profile stacking line around midspan, than for the cylin-
drical blade and the compound lean configuration with straight part of the stacking
line around midspan.

• The blade wake changes its appearance according to the stacking line of the blade.

4.2.2 Pitchwise mass-averaged Total Pressure Coefficient Cp,t1

The pitchwise mass-averaged total pressure coefficient is defined by

Cp,t1 =











t
∫

0

Cp,t u dy

t
∫

0

u dy











z

, (4.3)

incompressible conditions assumed. Cp,t1 for different spanwise positions z
H is depicted

vs. the nondimensional blade height z
H in Fig. 4.13.

The higher profile losses of Set 2 compared to Set 1 and Set 3 are confirmed here, as

2As presented in Tab. 4.1, h
H

is not exactly zero, but very close.
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can be seen by the value of Cp,t1 at about 0.3 ≤ z
H ≤ 0.5. For Set 1 and Set 3 the

profile losses are practically equal. The fact, that for 0.3 ≤ z
H ≤ 0.5 the value of Cp,t1

stays rather constant gives very strong evidence, that this region is not influenced by
three-dimensional flow effects, viz. secondary flow. Near the endwall, the pitchwise
mass-averaged total pressure coefficient is roughly equal and lower for both, Set 2 and
Set 3, than for Set 1. This means, that both compound lean configurations produce less
endwall loss due to endwall boundary layer than the cylindrical blade. In the region of
the loss core, the lowest absolute value for Cp,t1 can be observed for Set 2. Following
Tab. 4.1, both compound lean configurations have a lower total pressure loss coefficient ω
than Set 1. According to Fig. 4.13, Set 2 shows the best performance in the region of the
passage vortex (loss core) and in the endwall region. However, this is somewhat balanced
out by the increased profile losses. Comparing Fig.4.11 and Fig.4.13 gives a somehow
contradictory picture, if the region around the loss cores is evaluated, as one might get
to different conclusions when examining one of the figures alone. To get a full picture of
the behaviour of the flow, it is therefore important to evaluate both figures together.

The observations and explanations of Chap. 4.2.1 are in general supported by the evalu-
ation of the pitchwise mass-averaged total pressure coefficient.

4.2.3 Pitchwise mass-averaged Exit Flow Angle β1

The deviation of the pitchwise mass-averaged exit flow angle, β1 versus blade height is
presented in Fig. 4.14. The deviation of the pitchwise mass-averaged exit flow angle,
denoted with ∆β1, is measured compared to the blade exit angle β1

′ = 14.5◦. Therefore,
positive values of ∆β1 mean underturning of the flow, whereas negative values of ∆β1

mean overturning of the flow, respectively.

At midspan, flow turning of Set 1 and Set 3 is very close to each other. Since the inlet
flow angle is fixed and equal for all configurations, the flow turning is increased by about
1◦ by Set 2. In the endwall region, a significant decrease of overturning can be observed
for both compound lean configurations, Set 2 and Set 3. This is a strong indication, that
cross flow is decreased near the endwall. Set 3, in addition, experiences a lower level of
flow underturning in the region around the loss core due to three-dimensional effects than
Set 2 and the cylindric blade.

In general, a more uniformly distributed nozzle exit flow angle in spanwise direction is
expected to have favourable influence on the losses in the downstream rotor blade row
of an axial turbine. This favourable influence can be explained with decreased incidence
losses in the subsequent rotor blade row. From that point of view, Set 3 is to be preferred
to the other Sets. Nevertheless, in a real turbine, the subsequent rotor blade row may
be designed to cope with spanwise non-uniformly distributed nozzle exit flow, so this
non-uniformly distributed outflow of the stator is not necessarily a disadvantage.
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Figure 4.14: Pitchwise mass-averaged Exit Flow Angle Deviation ∆β1

4.2.4 Static Profile Pressure at Midspan and Endwall

The phenomenons and flow behaviour of the various blade designs, which were described
in the preceeding sections, can, at least in part, be explained when evaluating and com-
paring the profile static pressures at midspan and at the endwall of all three designs.
Again, the profile static pressure is quantified by means of the static pressure coefficient
Cp, defined in Eq. 4.2.

Figure 4.15 shows the distribution of the static profile pressure coefficient Cp at midspan
vs. the distance from the blade leading edge, normalized with the axial chord length.

Contrary to the experiment, the stagnation point , with Cp = 1, can clearly be identified
in the CFD calculation. The reason is, that the value of the static pressure coefficient can
be evaluated for every grid point on the blade at midspan, so there is at least a grid point
very close to the stagnation point, if not on the stagnation point itself. The values on
the pressure side are very close to each other, however slightly lower values of Cp can be
observed for Set 3 than for Set 1, as well as slightly lower values for Set 2 than for Set 3.
On the suction side, values of static pressure coefficient are nearly equal for Set 1 and
Set 3, for Set 2 they are lower. As the bladeloading is represented by the area between the
curves of Cp of the pressure and the suction side, Set 2 experiences a substantial higher
bladeload than the other two configurations. This explains the increased flow turning at
midspan, observed already in Fig. 4.14, as well as the increased blade profile loss depicted
in Fig. 4.13.
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Figure 4.15: Static Profile Pressure Coefficient Cp at Midspan
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Figure 4.16: Static Profile Pressure Coefficient Cp at Endwall

In Fig. 4.16 the static pressure coefficient Cp at the endwall ( z
H = 0) is presented.

On the pressure side, the static pressure coefficient is higher for both compound lean
configurations, Set 2 and Set 3. This increase of pressure at the endwall origins from the
blade force in spanwise direction, which is induced by the acute angle between the blade
pressure side and the endwall. The higher pressure at the endwall means lower velocities
there, which, as a consequence, lead to lower endwall losses. On the suction side Cp is
increased for both compound lean blades, compared to the cylindric blade, reasonably
more for Set 3 than for Set 2. Evaluating again the area between pressure and suction
side, a significant unloading of Set 2 and Set 3 can be observed.

Finally, the lower pressure difference between suction and pressure sides of the compound
lean configurations at the endwall decreases the crossflow there and hence reduces the
intensity of secondary flow.
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If you would be a real seeker

after truth, it is necessary, that at

least once in your life you doubt,

as far as possible, all things.

(René Descartes,
French Mathematician)

5.1 Experiment

A HP steam turbine blade cascade was chosen to be optimised numerically, calibrating
and verifying the results with experimental data.

Experimental calibration of the numerical optimisation process was done in a low speed
cascade windtunnel at a Mach number Ma ≈ 0.2, so, the assumption of incompressible
conditions was reasonable. The conditions in the experiment did not fully meet the con-
ditions, that can be observed in real turbines, however, it was shown, that the conditions
in the experiment were adequate enough for the results to be comparable to real turbine
applications. 2D and 3D pressure fields were measured in a plane parallel and down-
stream to the cascade exit plane, in addition the profile pressure was measured by means
of pressure taps at midspan.

In comparing the results of the experiment with the results of the optimsation, it could
be shown, that in the wake of the cascade experimental data and numerical results show
very good agreement in regions of undisturbed flow, qualitatively and quantiatively, as
well as in regions with mild secondary flow. In regions with strong secondary flow, the
results of the experiments could be verified by the numerical results only qualitatively
not quantitatively. One reason for this might be, that the current installation of the
windtunnel has geometric disadvantages that cannot easily be overcome. First of all,
four different coordinate systems are involved, when traversing probes behind a cascade,
so some systematic error has to be accepted in the results. Second, the possibilites
for adjusting the various components such as blade mounting box or traversing unit
geometrically are limited and do not meet highest standards of accuracy for aerodynamic
investigations. Third, the accuracy of the appliances for measuring the exact geometric
relations between the involved components of the windtunnel is improvable.

The measurements of the bladeload turned out to be of very good accuracy.

One very important issue when measuring linear blade cascades in a windtunnel is to
guarantee, that periodic conditions of the cascade are provided. This was perfectly sim-
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ulated and verifyed with the setup chosen for the experiment.

After some initial difficulties, it turned out, that aerodynamic measurements of turbine
blades require very high levels of accuracy of all components involved. Great importance
has to be attached to very careful calibration of the measuring devices. In this exper-
imental work for example, tremendous improvements of the results were achieved after
attentative recalibration of all pressure probes and pressure sensors involved.

It shall be mentioned, that in the author’s opinion, the probe size of the three-hole pres-
sure probe and of the five-hole pressure probe is rather large in comparison to the throat
width of the measured cascade. Further miniaturisation of the probes can eventually
improve the results.

Finally, the deployment of optical measurement methods, such as Laser Doppler anemom-
etry (LDA) could further help to get more insight in the nature and behaviour of sec-
ondary flow inside the blade passage and downstream of turbine blade cascades.

5.2 Optimisation and Numeric Flow Calculation

Starting with the cylindric steam turbine blade, a numerical optimisation process was
initiated with the objective to get an optimum blade with minimum aerodynamic loss.
The objective function chosen to be minimised was total pressure loss coefficient. A ge-
netic algorithm was programmed as optimisation algorithm, the 3D numeric calculations
were done with ANSYS Fluent c©. The whole process was designed to run fully automatic
without the need of any human intervention and it ran flawlessly, until aborted by the
user.

The optimisation process delievered an optimum compound lean configuration with a
1.5% lower total loss coefficient than that of the cylindrical blade. However, as it was
suspected, that this configuration could be difficult to manufacture, a second configura-
tion with a total pressure loss coefficient nearly as low as the optimum was evaluated as
well. Comparing all three sets of blades revealed all sorts of different flow phenomenons
that contribute to loss, e.g. profile loss or secondary loss. In addition, positive influence
on the homogenity of the flow angles could be observed.

Comparing the results of the experiment and the calculation suspicion rose, that the
choice of the turbulence model should be reconsidered for the flow situation investigated,
as losses were somehow overpredicted by the applied Standard k/ε model.

Deployment of a specially adapted k/ε model, a RNG k/ε model, a k/ω model or some
other model appear to be promising alternatives.

The advantages of a genetic algorithm, namely quasi-independence of chosen starting
point and unrivalled robustness, proved to be very useful. The comparatively high costs
in terms of computing time are surely a fact to be thought of, before applying such
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an algorithm. However, a lot of possibilities for fine-tuning genetic algorithms exist,
which can make the use of those algorithms an interesting alternative in commercial
environments as well. The possibility to alter an unlimited 1 number of variables during
optimisation builds a strong asset of this optimisation method.

Contrary to other works, which used commercial code programs for optimisation algo-
rithms, the genetic algorithm applied here was programmed by the author. This secures
full control and insight of the algorithm, which allows to adapt the optimisation method
to the original task and not vice versa.

For future optimisation tasks in turbomachinery, the following improvements could be
implemented:

• Integration of more geometric parameters to be altered during the optimisation

• Integration of the possibilities of parallel computing

• Possibilities of automatic grid check during optimisation and automatic alteration
of the mesh in order to meet specified quality parameters before being exported for
calculation in CFD

• Better self-checks for convergence of the CFD calculations during iteration and
algorithms for self-adapting iteration numbers

• Fully automated generation of reports and graphs during the optimisation (For this
work it was only partly automated.)

5.3 General Developments

Turbines form the backbone of today’s production of electric energy and will probably
continue to do so for the next decades to come. Economical and environmental concerns
demand, that these machines become more and more efficient, as even small efficiency
improvements have a huge impact on their economic and ecological efficiency, given their
average runtimes and their huge consumption of primary energy carriers. One possibility
to improve the efficiency of those machines is to improve their aerodynamic performance.

In general, increasing of efficiency is done in a multistage process:

1. Preliminary considerations

2. Thermodynamic process calculations

3. Blade profile design, 1D and 2D analytical calculations

4. 2D and 3D numerical calculations, Cascade Tests2, Optimisation

5. Elasto-mechanical calculations, thermodynamic calculations

1Limitation is dictated by the computing power available.
2Linear and Annular Cascades
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6. Experimental verification in model turbines

7. Deployment in real-world turbines

Normally, these steps have to be followed in the order listed here, although almost always,
looping processes will have to be performed, going through certain stages again and again
(e.g. elasto-mechanical constraints do not allow geometries, that were calculated in the
preceeding steps). It is interestig to note, that no prototyping at all is usually done for
large turbomachines, as it would simply be too expensive to produce a protoype steam
turbine of hundreds of megawatt output, and, testing facilities for those devices, i.e.
testing powerplants, simply do not exist.

In this work, investigations of step 4 were performed. It could be shown, that the tools
chosen, viz. experimental calibration of a 3D numerical optimisation process with a
genetic algorithm, can indeed qualify for further usage for the task of improving aerody-
namic performance of turbine blades. In a next step, which will probably still be done
at the Institute of Thermodynamics and Energy Conversion of the Vienna University of
Technology, the optimised compound lean configurations will be manufactured, tested
and compared with the results of CFD. Then, thorough recalculation with CFD will fol-
low. As a last research project at the institute, the compound lean stator configuration
could be calculated and evaluated together with a rotor as a whole stage by means of
CFD.

Finally, it should be mentioned, that this work is to be seen at the boundary between
basic and applied research, as basic physical laws were used, to find out more about
complex flow phenomenons in an engineering application. At most, the methods were
fine-tuned for the specific task to perform, but no fundamental new methods or laws were
developed.
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1cm

Figure A.1: Model Blade Profile (Original Size)
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Node No. x/c y/c

1 0.00000 0.00000
2 0.00229 0.02177
3 0.01029 0.04214
4 0.02342 0.05965
5 0.04073 0.07304
6 0.06098 0.08134
7 0.08310 0.08723
8 0.10505 0.09370
9 0.12668 0.10118
10 0.14798 0.10955
11 0.16901 0.11858
12 0.18980 0.12816
13 0.21026 0.13840
14 0.23027 0.14951
15 0.24971 0.16158
16 0.26855 0.17458
17 0.28676 0.18844
18 0.30434 0.20309
19 0.32127 0.21848
20 0.33757 0.23456
21 0.35322 0.25126
22 0.36823 0.26853
23 0.38263 0.28632
24 0.39643 0.30458
25 0.40965 0.32326
26 0.42232 0.34232
27 0.43447 0.36171
28 0.44614 0.38140
29 0.45715 0.40146
30 0.46816 0.42152
31 0.47861 0.44189
32 0.48872 0.46242
33 0.49855 0.48309
34 0.50811 0.50389
35 0.51759 0.52480
36 0.52649 0.54581
37 0.53536 0.56691
38 0.54405 0.58808
39 0.55258 0.60932
40 0.56094 0.63062
41 0.56915 0.65199
42 0.57704 0.67341
43 0.58511 0.69489
44 0.59286 0.71642
45 0.60049 0.73801
46 0.60798 0.75963
47 0.60870 0.76104
48 0.60980 0.76218
49 0.61118 0.76295
50 0.61272 0.76330
51 0.61430 0.76318
52 0.61578 0.76262
53 0.61703 0.76166
54 0.61795 0.76038
55 0.61847 0.75889
56 0.61856 0.75730

Node No. x/c y/c

57 0.61456 0.73547
58 0.61047 0.71366
59 0.60627 0.69186
60 0.60197 0.66994
61 0.59758 0.64833
62 0.59308 0.62659
63 0.58848 0.60488
64 0.58378 0.58319
65 0.57899 0.56152
66 0.57409 0.53987
67 0.56911 0.51824
68 0.56402 0.49664
69 0.55884 0.47505
70 0.55357 0.45349
71 0.54819 0.43220
72 0.54269 0.41046
73 0.53708 0.38898
74 0.53134 0.36754
75 0.52545 0.34614
76 0.51939 0.32479
77 0.51315 0.30349
78 0.50670 0.28226
79 0.50002 0.26109
80 0.49309 0.24000
81 0.48590 0.21900
82 0.47842 0.19811
83 0.47062 0.17733
84 0.46246 0.15668
85 0.45392 0.13620
86 0.44495 0.11590
87 0.43554 0.09580
88 0.42568 0.07591
89 0.41531 0.05629
90 0.40435 0.03699
91 0.39270 0.01810
92 0.38033 -0.00032
93 0.36719 -0.01821
94 0.35320 -0.03543
95 0.33823 -0.05182
96 0.32238 -0.06735
97 0.30570 -0.08199
98 0.28779 -0.09508
99 0.26866 -0.10633
100 0.24867 -0.11595
101 0.22775 -0.12334
102 0.20609 -0.12813
103 0.18401 -0.13013
104 0.16185 -0.12921
105 0.13999 -0.12540
106 0.11878 -0.11892
107 0.09840 -0.11014
108 0.07898 -0.09942
109 0.06058 -0.08702
110 0.04320 -0.07322
111 0.02691 -0.05816
112 0.01277 -0.04145
113 0.00358 -0.02159
114 0.00000 0.00000

Table A.1: Blade Profile Coordinates
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Figure A.2: Model Blade for Static Pressure Measurements
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B Used Software

In this work, commercially available and free software was used. The commercial pro-
grams were

• ANSYS Fluent, version 6.2.16

• ANSYS Gambit, verision 2.1.2.

The Free Software used was published under the Gnu Public License (GPL). The pro-
grams used were

• Shell scripts written in the Bourne Again Shell (Bash),

• GCC - The GNU Compiler Collection

• Octave - High Level language for numerical calculations,

• Gri - Scientific graphics language

• gnuplot - A plotting package which outputs to X11, PostScript, PNG, GIF, and
others

In addition, LATEX 2ε, published under the LaTeX Project Public License (LPLL) was
used for typesetting this work.
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