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Abstract
The transition rates of nuclear reactions at low energy of several 100 keV are a key
parameter for astrophysical models describing the evolution of stars. Particularly,
for charged particle reactions reliable experimental data cannot be obtained at
low energies due to the Coulomb barrier. Consequently one must take recourse
to nuclear model calculations in order to predict the required quantities.

This diploma thesis focuses on the calculation of the imaginary part of the
α-nucleus optical potential within the nuclear structure approach for magic nu-
clei. In particular we consider α-16O scattering. A Fortran computer code was
developed, based on the formulas given by F. Osterfeld, J.Wambach and V.A.
Madsen [3], to calculate the imaginary part of the optical potential. For the tar-
get excitation states the RPA calculations from R. Kogler [12] and S. Krewald
and J. Speth [20] where used.

The resulting imaginary part of the optical potential is given for α-16O scat-
tering and is compared with the potentials obtained for α-40Ca in [3]. The com-
parison shows that the overall shape of the imaginary potential is reproduced
quite well while the absolute values obtained for 16O are smaller than for 40Ca
due to the considerably smaller number of open channels in the α-16O system.

We attempt to compare the associated cross sections with experimental data.
It turns out that for the comparison with available reaction cross section data
more involved RPA calculations would be required. For the comparison with
differential elastic cross section data the real part of the potential should be
calculated in addition.

Further work will aim at the extension of the calculation to non-magic nuclei
and particles with spin. Optical potential formulae for spin 1/2 projection were
given by H. Dermawan, F. Osterfeld and V.A. Madsen [17]. Extensions of the
formulae to include QRPA-states are required for the treatment of non-magic
target nuclei.
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Motivation

In historic times numerous attempts where made to give an answer to the central
questions of mankind, where do we come from and where will we go. In former
time those questions were exclusively addressed from religions. All of them pro-
viding some kind of creation myth which tells us how everything began and how
the end will be. With the development of science a different approach to these
questions has become available.

Albeit the deep philosophical problems associated with those questions cannot
be tackled by science, the scientific method based on basic laws of nature pro-
vides detailed knowledge of the evolution of the universe. At present we have a
profound understanding of most observed phenomena like the creation and death
of stars. Even though big progress [1] has been made in the study of the uni-
verse and the models used to explain the phenomena, there are still deficiencies
and uncertainties in the models. Models in use describing the composition of
the universe are strongly based on nuclear reaction data. They can be extracted
from dedicated experiments and calculations which are then extrapolated to the
relevant conditions under which the processes take place in the universe.

When we build models for the birth of stars and for the production of all ele-
ments starting from hydrogen important input for the models are the cross section
data and transition rates for the relevant nuclear reactions. For the formation of
the great variety of elements stars have to evolve through many burning phases.
Elements up to iron can be generated in these burning phases via nuclear fusion
and subsequent reactions, whereas heavier elements are generated via a series of
neutron capture reactions and β-decays, which occur in different scenarios, e.g.
the r-process in supernova explosions. An important process during helium burn-
ing is the 12C(α, γ)16O reaction at energies of several 100keV. The measurement
of such reactions at low energies is very difficult because of the small cross section
due to the Coulomb barrier.

To obtain the required data for such low energies one usually takes recourse to
measurements at higher experimentally accessible energies and extrapolate them
to lower ones. Nuclear processes are highly non linear and such an extrapolation
leads to significant uncertainties. Hence for a proper extrapolation the availability
of reliable nuclear model calculations is important. In this diploma thesis we
deal with a microscopic approach for the imaginary part of the α-nucleus optical
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viii MOTIVATION

potential. Especially, we consider the so-called nuclear structure approach. In
this model a reasonable description of the target structure is crucial.

This diploma thesis is organized as follows. In chapter 1 we give a short
introduction to the nuclear shell model and the methods of Random Phase Ap-
proximation (RPA) that will be used in the consecutive chapters to model the
target nucleus. In chapter 2 we briefly review the essential concepts of scattering
theory and the optical potential. Especially, we consider the calculation of the
elastic scattering cross section. Based on the derivation of the optical potential
by Feshbach [2] the basic formula of the nuclear structure approach [33] are given.

The aim of this diploma thesis is the implementation of an algorithm to calcu-
late the (nonlocal) imaginary part of the optical potential. Similar work was done
in the late 1970s and early 1980s by Osterfeld et. al. [3] who performed extended
optical model calculations simulating the structure of the target nucleus by RPA
wave functions. Considering the high computational effort for calculations with
non-local potentials the results matched already quite well with the measure-
ments. Since the mid 1980s no further calculations where performed along this
line. Thus we redeveloped the methods and algorithms for the nuclear structure
approach from Osterfeld et. al. and implemented the methods on modern hard-
ware such that the results obtained by Osterfeld et. al. could be reproduced and
further extended.

In chapter 3 we give a description of the methods and algorithms used in the
software and the results that were achieved.

In chapter 4 we give a description of the source code, which will help to
understand the different modules and their functions along with the methods and
tests that where performed to evaluate their output. We also give a description
of the options of the source code available through the configuration files as well
as the syntax used in the input and output files.



Part I

Theory

1





Chapter 1

The Model Space

Since Rutherford first discovered 1911 the existence of the nucleus numerous ex-
periments were conducted to study its properties and inner structure. Nuclear
scattering experiments revealed very soon that the nucleus is composed of neu-
trons and protons which are bound together by the strong interaction. Even in
the simplest picture the nucleus represents a quantum mechanical many-body
problem. Hence ab-initio calculations starting from the nucleon-nucleon interac-
tion are limited to the lightest nuclei. Therefore, for a theoretical description of
the nucleus one has to take recourse to models, which provide a fair description
of the most important features.

Several nuclear models have been developed emphasizing different properties
of the nucleus. The liquid drop model focuses on the global features of nuclei. The
nuclear shell model is a more sophisticated model, which explains the internal
structure via an independent particle model. Going beyond the independent
particle model collective excitations can e.g. be described via the Random Phase
Approximation (RPA). Even though big advances have been made in nuclear
physics, the inner structure and origin of the forces acting inside the nucleus are
still not completely understood and give rise to a wide field of intense research.

1.1 The Shell Model

From nuclear scattering experiments we know that neutrons and protons in the
nucleus are bound in discrete energy states. This indicates that the nucleus has
a shell structure similar to the electron in the nuclear electric field.

The shell model assumes that the nucleons are moving independently in a
mean field generated by the other nucleons. At a first glance the validity of
independent particle motion is surprising because of the high nucleon density
in the nucleus which implies strong forces between nucleons and should lead to
correlations. However, such correlations are suppressed due to the Pauli principle
which allows essentially only elastic scattering processes between nucleons in the

3



4 CHAPTER 1. THE MODEL SPACE

nucleus.
The nuclear mean field is an attractive single-nucleon potential which contains

effectively all contributions from the other nucleons. Solving the corresponding
single-nucleon Schrödinger equation yields the single-nucleon bound state ener-
gies and corresponding bound state wave functions. Choosing the proper number
of energetically lowest bound states one can approximate the ground state of the
nucleus in form of an antisymmetrized product of these single nucleon bound
states. This assumption of the ground state in form of a so called Slater de-
terminant is the basis of the Hartree-Fock method [4, 5]. It is the aim of the
Hatree-Fock method to provide under this assumption the best mean field and
wave functions for the nucleus. The optimization to find a self consistent solution
is performed in several iterative steps.

Hartree-Fock calculations are numerically involved. Therefore, phenomeno-
logically determined mean fields are frequently used. They are based on the
following ideas. Their radial shape reflects the short range behavior of the strong
force. In the interior of a nucleus the nucleons are tightly packed and the effective
potential seen by a single nucleon will mainly stem from the neighboring nucleons.
Thus the nuclear mean field will be almost constant within the nucleus and will
quickly vanish beyond the surface. The nuclear potential is often approximated
by a parametrized Wood-Saxon potential which fulfills these requirements,

VN(r) =
V0

1 + e
r−R0

a

, (1.1)

where the mean radius of the nucleus is typically given by R0 = r0A
1/3 with A

being the number of nucleons. It turned out, that the Wood-Saxon parameter
r0 = 1.25 fm and a = 0.65 fm yield very good results for almost all nuclei.

In addition to the attractive strong force the charged nucleons are also affected
by the Coulomb force, which leads to a repulsive component VC in the total
potential. The repulsive Coulomb force weakens the potential and consequently
there are less proton than neutron bound states in heavy nuclei. This agrees with
the fact that in stable heavy nuclei the number of neutrons exceeds the number of
protons where in light nuclei they are equal. In Fig.1.1 the effect of the Coulomb
force on the mean field and the number of proton and neutron bound states is
shown.

The Schrödinger equation for the motion of the nucleons within the mean
field is (

− ~2

2µ
~∇2 +

∫
d3r′ V (~r, ~r′)

)
φ(~r) = Eφ(~r) , (1.2)

where µ is the reduced mass of the nucleon within the nucleus. In general the
nuclear mean field V (r, r′) is nonlocal due to the Pauli principle and the complex-
ity of the nucleon-nucleon interaction. However, it is assumed that the nonlocal
potential can be represented by an equivalent local potential that will result in
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Figure 1.1: Neutron and proton bound states in a Wood-Saxon potential with Coulomb
interaction.

the same bound state spectrum as the nonlocal one. Hence we can write(
− ~2

2µ
~∇2 + V (~r)

)
φ(~r) = Eφ(~r) . (1.3)

The approximated equivalent local potential

V (~r) = VN(~r) + VC(~r) (1.4)

is then given by its contributions from the Coulomb interaction VC and the nuclear
interaction VN.

Furthermore we assume spherical symmetry of the nucleus and its potentials
which is a good approximation for magic nuclei. Non closed-shell nuclei, especially
heavy ones, show significant deformations with either oblate or elongated shapes.

For the mathematical formulation the single-nucleon wave function φ(~r) is
expanded in spherical harmonics

φ(~r) =
∑
nl

1

r
unl(r)

m=l∑
m=−l

Ylm(Ω) . (1.5)

Inserting Eq. (1.5) into Eq. (1.3) one obtains for the radial part(
~2

2µ

d2

dr2
− l(l + 1)

r2
+ εnl − V (r)

)
unl(r) = 0 . (1.6)

We search for bound states, which are solutions to Eq. (1.6) with negative energy

εnl and fulfill also the boundary conditions unl(r)
r→0−−→ 0 and unl(r)

r→∞−−−→ 0. The
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solutions unl(r) are orthogonal and can be normalized∫ ∞

0

dr unl(r) un′l(r) = δn,n′ . (1.7)

Hence they represent a system of orthonormal functions.
For fixed quantum numbers n and l the potential V (r) can sustain no or

several bound states each with a characteristic single-particle energy εnl. The
wave function associated with this set of quantum numbers n and l can be cast
in the form

φnl(~r) =
1

r
unl(r)

ml=l∑
ml=−l

ms=1/2∑
ms=−1/2

aml,msYlml
(Ω)χsms , (1.8)

where Ylml
are the spherical harmonics and χsms are the spinor eigenfunctions.

The amplitudes aml,ms obey the relation

ml=l∑
ml=−l

ms=l/2∑
ms=−l/2

aml,msa
∗
ml,ms

= 1 . (1.9)

Considering all possible spin directionsms = ±1/2 we can construct 4l+2 linearly
independent wave functions for each εnl.

From experiments it is well established that some of the nucleon configurations
are more stable than others. The most stable configurations are those, where
either the number of neutrons or protons in the nucleus are magic numbers.
Those magic numbers are 2, 8, 20, 28, 50, 82 and 126 for neutrons and 114 for
protons. Nuclei where both the neutron and proton number are magic are even
more stable and are called double magic nuclei. Such an increased stability occurs
at the closure of a shell and is followed by an energy gap in the single nucleon
spectrum.

If we compare the energy eigenvalues εnl for a simple local potential, e.g. the
harmonic oscillator potential, and the number of nucleons that can occupy the
corresponding states we are able to reproduce the first three magic numbers,
while the simple picture fails to explain the higher ones. To predict the magic
numbers above 20 a spin-orbit coupling is required. Thus the total interaction is
given by

V (~r) = VN(~r) + VC(~r) + VSO(~r) , (1.10)

where the spin-orbit term is

VSO(~r) =

(
~
µπc

)2

VSO
1

r

d

dr
f(r)~l~s , (1.11)

f(r) =
1

1 + e
r−R0

a

. (1.12)
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Here ~s is the spin of the nucleon, ~l is the orbital angular momentum of the relative
motion, VS is the strength of the spin-orbit potential, and µπ = 139.5MeV is the
pion mass.

Because of the spin-orbit term the orbital angular momentum ~l and the spin
~s are not conserved and consequently ml and ms are not anymore good quantum
numbers. A proper set of eigenfunctions are generalized spherical harmonics
which are given in terms of Ylml

χsms ,

Yjlsm(Ω) =
∑

ml+ms=m

 l s j

ml ms m

Ylml
(Ω)χsms (1.13)

where the squared bracket is the Clebsch-Gordan coefficient given by a standard
3j symbol. These state vectors Yjlsm(Ω) are eigenfunctions to the operators

ĴzYjlsm(Ω) = m~Yjlsm(Ω) ,

Ĵ2Yjlsm(Ω) = j(j + 1)~2Yjlsm(Ω) ,

L̂2Yjlsm(Ω) = l(l + 1)~2Yjlsm(Ω) ,

Ŝ2Yjlsm(Ω) = s(s+ 1)~2Yjlsm(Ω) . (1.14)

The Yjlsm(Ω) are also eigenfunctions of the spin-orbit interaction L̂Ŝ because of

Ĵ2 =
(
L̂+ Ŝ

)2

= L̂2 + 2L̂Ŝ + Ŝ2 . (1.15)

Since Yjlsm(Ω) is eigenfunction to Ĵ2, L̂2 and Ŝ2 it is also eigenfunction to L̂Ŝ,

L̂ŜYjlsm(Ω) =
1

2
[j(j + 1)− l(l + 1)− s(s+ 1)] ~Yjlsm(Ω) . (1.16)

The spin-orbit interaction splits the states for a particular l into states with
j = l+ 1/2 which have a lower energy and j = l− 1/2 with a higher energy than
the original level without spin-orbit coupling. The corresponding energy splitting
from the spin-orbit coupling is displayed in Fig. 1.2. The variation of the energy
levels by the spin-orbit interaction is clearly seen and gives rise to different energy
gaps, thus explaining the magic numbers higher than 20.

Eq. (1.13) represents a transformation from the orthonormal set of Ylml
(Ω)χsms

states to the orthonormal set Yjlsm(Ω). All eigenfunctions belonging to the same
energy eigenvalue have the same n, l and j. Thus each eigenvalue of the Hamil-
tonian is 2j+1 fold degenerated. The convention for the notation of the states is
n + 1(l)j, where the angular momentum is given by a letter s (l = 0), p (l = 1),
d (l = 2), f (l = 3), g (l = 4), h (l = 5), . . . . Thus the spectroscopic notation of
a single-nucleon state n=1, l=1, j=3/2 is given by 2p3/2.
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Figure 1.2: Level scheme derived from harmonic oscillator potential and Wood-Saxon
potential with and without a spin-orbit term. The dashed lines show the energy gaps.
The total number of states below this energy is given in squared brakes (Magic Num-
bers).
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The ground state of a nucleus containing N nucleons is in first order approx-
imation the Slater determinant generated from the N energetically lowest lying
states. The energy of the highest occupied state defines the Fermi energy of
the nucleus. Hence all states below the Fermi energy are occupied while those
above are not. If we excite one nucleon from the ground state and leave all other
nucleons in their single nucleon states we speak from a particle-hole excitation.

The nuclear mean field used to calculate the single nucleon states is itself
generated by the other nucleons. Up to now the formalism employed does not
include this self-consistent nature of the problem but considers the nuclear field as
constant. This simple picture is certainly not true because the nucleons interact
via the strong force and not all aspects of these two-body interactions can be
accounted for by the mean field, which is a one-body operator. The non included
parts of the two-body interaction gives rise to the residual interaction. Thus
the realistic ground state is a mixture of Slater determinants of different single
particle-hole configurations.

Such a configuration mixing has been successfully applied for the description
of low-lying excited states of predominantly single-particle nature. For nuclear
states of increased collectivity, i.e. many nucleons are involved in the excitation,
this simple model is not suited.

In the next chapters we will discuss the random phase approximation (RPA)
which assumes a more general basis composed of particles and holes. Including
the residual interaction into the optimization process leads to a new ground and
new excited states, latter partly of high collectivity. Especially for nearly closed-
shell nuclei the RPA reproduces fairly well the low-energy spectra.

Before we give a short introduction to the RPA calculations we introduce
in the next chapter the formalism of occupation numbers which will be used
throughout the discussion of the RPA calculations.

1.2 Occupation Number Representation

We have seen in Sec. 1.1 that by solving the Schrödinger equation

Ĥφλ(~r) = ελφλ(~r) (1.17)

with the Hamiltonian

Ĥ =

(
− ~2

2µ
~∇2 + V (~r)

)
(1.18)

we obtain a set of orthonormal single-particle wave functions φλ(~r). Each of these
wave functions φλ(~r) is characterized by a complete set of quantum numbers
λ = { n, j, l, s, mj}.

We assume that each fermion is in a specific single-particle state described
by the single-particle wave function φλ(r) and characterized by the quantum
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numbers λ. For a system of many fermions the total wave function must be
antisymmetric with respect to the exchange of particles. A simple form of the
many fermion wave function is the antisymmetrized product of single-particle
states. For a two fermion system this wave function is given by

Ψ(~r1, ~r2) =
1

2
[φλ1(~r1)φλ2(~r2)− φλ1(~r2)φλ2(~r1)] , (1.19)

where φλ1 and φλ2 are the single particle wave functions of the states associated
with the quantum numbers λ1 and λ2. The spatial coordinates ~r1 and ~r2 are
referring to the positions of the two particles, but may include also other degrees
of freedom. For a set of N particles the antisymmetrized wave function is the
sum of N ! permutations of the particles which can conveniently be written in the
form of the Slater determinant [6]

Ψ(~r1, ~r2, . . . , ~rN) =
1√
N !

det

∣∣∣∣∣∣∣∣∣∣∣

φλ1(~r1) φλ1(~r2) . . . φλ1(~rN)

φλ2(~r1) φλ2(~r2) . . . φλ2(~rN)
...

...
. . .

...

φλN
(~r1) φλN

(~r2) . . . φλN
(~rN)

∣∣∣∣∣∣∣∣∣∣∣
. (1.20)

The antisymmetrization of the wave function guarantees that two particles cannot
occupy the same single-particle state. This can easily be deduced from the Slater
determinant where the occurrence of two particles in the same state, λi = λj

leads to linearly dependent rows. Consequently the Slater determinant vanishes.
In the following we use the Dirac Bra-Ket notation[7] for a compact formula-

tion. In the Bra-Ket notation the single particle wave functions φλ(~r) is denoted
by 〈~r | λ〉. Hence the single-particle state is characterized by |λ〉. Using this
notation the state of an N-fermion system is given by

|Ψa〉 = A
N∏

i=1

∣∣∣λ(a)
i

〉
, (1.21)

with the antisymmetrization operator A given by the Slater determinant of Eq.
(1.20). The superscript (a) denotes the decomposition of the state |Ψa〉 into
single-particle states |λi〉 in . The same state |Ψa〉 can be written in the occupa-
tion number representation

|Ψa〉 =
∣∣∣n(a)

1 , n
(a)
2 , n

(a)
3 , . . . , n

(a)
i , . . . , n(a)

∞

〉
, (1.22)

where the occupation number ni is the number of particles in the single particle
state |λi〉. For a fermionic system ni can either be 1 if the state is occupied or 0
if not.
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The sum over all occupation numbers has to be equal to the total number of
particles N , ∑

n
(a)
λi

= N , (1.23)

which is also know as the conservation of particle number. To make the repre-
sentation unambiguous the entries of the occupation number notation need to
be ordered. It is not important which system we choose to order the states but
the order has to be fixed and may not be changed later. Let us assume we order
the states according to their single particle energy ελi

in ascending order. The
single-particle state |λ3〉 reads then in this representation

|λi〉 ⇐⇒ |0, 0, 1, 0, 0, ..., 0〉 . (1.24)

The two-particle state constructed from the single-particle states |λ2〉 and |λ5〉
can be written in occupation number presentation as

|Ψ〉 =
1√
2

[
|λ3〉(~r1) |λ5〉(~r2) − |λ3〉(~r2) |λ5〉(~r1)

]
⇐⇒ |0, 0, 1, 0, 1, 0, 0, ..., 0〉 (1.25)

Formally the occupation number representation spans a Fock space over the
single-particle Hilbertspaces

F = F0 ⊕ F1 ⊕ F2 ⊕ . . . , (1.26)

where FN is the Hilbertspaces with N single-particle states

F0 = {|0, 0, 0, 0, . . .〉}
F1 = {|1, 0, 0, 0, . . .〉 , |0, 1, 0, 0, . . .〉 , |0, 0, 1, 0, . . .〉 , . . .}
F2 = {|1, 1, 0, 0, . . .〉 , |1, 0, 1, 0, . . .〉 , |0, 1, 1, 0, . . .〉 , . . .} . (1.27)

We have introduced the vacuum state |0, 0, 0, 0, . . .〉 with particle number N = 0
which is denoted simply by |0〉. The states in occupation number representation
obey the orthogonality relation

〈n′1, n′2, n′3, . . . | n1, n2, n3, . . .〉 = δn′1,n1
δn′2,n2

δn′3,n3
. . . (1.28)

which also is valid for the vacuum state

〈0 | 0〉 = 1 (1.29)

We have seen that the states in occupation number representation are orthonor-
mal. For the following it is essential to obtain a relationship between states with
different particle numbers N . We therefore define the one-particle creation c†i
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and destruction operators ci that will raise or lower the occupation number for
the state i.

c†i |n1, n2, . . . , ni, . . .〉 = (−1)si
√
ni + 1 |n1, n2, . . . , ni + 1, . . .〉 ,

ci |n1, n2, . . . , ni, . . .〉 = (−1)si
√
ni |n1, n2, . . . , ni − 1, . . .〉 . (1.30)

The phase factor si is given as the sum of the occupation numbers below the
index i

si =
i−1∑
k=1

nk . (1.31)

For a fermionic system the admissible occupation numbers are 0 and 1. There-
fore the application of the creation operator c†i on a particle state ni = 1, or
analogously of a destruction operator ci on an empty state ni = 0 vanishes,

c†i |n1, n2, . . . , ni−1, 1, ni+1, . . .〉 = 0 ,

ci |n1, n2, . . . , ni−1, 0, ni+1, . . .〉 = 0 . (1.32)

The application of the creation operator c†i on the vacuum state |0〉 generates
the single-particle state |λi〉. With the creation operators we can construct the
N -particle state by consecutive application of creation operators to the vacuum
state

|Ψa〉 =
N∏

i=1

c†
λ
(a)
i

|0〉 . (1.33)

The N -particle state |Ψa〉 is the product of the N ascending ordered single-
particle creation operators c†

λ
(a)
i

applied to the vacuum state |0〉. For the ground

state |Ψ0〉 of the N -body system the creation operators of the N energetically
lowest states have to be applied to the vacuum state |0〉. Thus the occupation
numbers of all single particle states below the Fermi energy are 1 while all other
occupation numbers vanish.

|Φ0〉 =
∏

ελ≤εF

c†λ |0〉

= |11, 12, 13, . . . , 1N , 0, 0, . . .〉 (1.34)

For fermions the creation and destruction operators obey the anticommutator
relations {a, b} = ab+ ba {

ci, c
†
j

}
= δi,j ,

{ci, cj} =
{
c†i , c

†
j

}
= 0 . (1.35)

The formalism allows the definition of the occupation number operator c†ici whose
eigenvalue is the occupation number ni

c†ici |n1, n2, . . . , ni, . . .〉 = ni |n1, n2, . . . , ni, . . .〉 . (1.36)
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This allows to define the particle number operator

N̂ =
∑

i

c†ici . (1.37)

In the following we mainly deal with single-particle and two-particle states
and use the reduced notation |s〉 and |st〉, respectively,

|s〉 = |0, 0, . . . , 0, ns, 0, . . .〉 = c†s |0〉 ,
|st〉 = |0, 0, . . . , 0, ns, 0, . . . , 0, nt, 0, . . .〉 = c†tc

†
s |0〉 . (1.38)

With this definition we can write a one particle operator as

O =
∑
r,s

〈r| Ô |s〉 c†rcs (1.39)

and a two-particle operator as

W =
1

2

∑
rstu

〈rs| Ŵ |tu〉 c†rc†scuct . (1.40)

We can now rewrite the Hamiltonian for the many body system

H = T + V + W

=
∑

i

~2

2µ
~∇2

i +
∑
r,s

〈r| V̂ |s〉 c†rcs +
1

2

∑
rstu

〈rs| Ŵ |tu〉 c†rc†scuct (1.41)

in the occupation number notation. The many-body Hamiltonian Eq. (1.41) can
be split into a one-particle interaction part that describes the movement of the
particle in the mean field

H0 =
∑
rs

〈r| (T̂ + V̂ ) |s〉 c†rcs (1.42)

and an effective two-body interaction representing the residual interaction be-
tween the particles.

H1 =
∑
rstu

〈rs| Ŵ |tu〉 c†rc†scuct . (1.43)

Thus the total Hamiltonian is

H = H0 + H1 . (1.44)

The ground state is eigenvalue of the Hamilton operator and satisfies the
eigenvalue equation

H0 |Ψ0〉 = E0 |Ψ0〉
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with the ground state energy E0,

E0 =
N∑

i=1

εi . (1.45)

Notice that the energy E0 is not related to the total binding energy of the nucleus
but it serves as a reference level for the excitation energies of the states |Ψa〉.

The nuclear shell model is based on a nuclear mean field which is obtained from
the nucleon-nucleon interaction via some type of averaging procedure. An optimal
choice of the nuclear mean field in H0 is obtained if the residual interaction acting
on the ground state vanishes,

H1 |Ψ0〉 = 0 . (1.46)

It is obvious that the relation will only be approximately satisfied for excited
states |Ψa〉. If the number of nucleons in the nucleus is sufficiently high, the
excitement of a single nucleon will have only a minor impact and we can assume
that the change of the many-particle wave function and the r.h.s. of Eq. (1.46)
is relatively small.

1.3 Hartree-Fock (HF) method

There exist several methods to determine the nuclear mean field from the nucleon-
nucleon interaction. Among these the Hartree-Fock method is frequently used.
The Hartree-Fock method starts from an initial single-particle potential and the
associated wave functions of the single-particle states and allows to calculate
the nuclear mean field from the nucleon-nucleon interaction in a self consistent
procedure.

In this section we give a brief introduction to the HF method in second quan-
tization and show the derivation of the nuclear mean field and the residual inter-
action from the two-particle interactions.

In the Hartree-Fock theory the ground state |Ψ0〉HF is identified with the vac-
uum state |0〉. Thus we split the Fock space into two subspaces. One containing
the states below the Fermi energy and one with the states above the Fermi energy

|Ψ0〉 = |1, 1, ..., 1〉<εF
⊕ |0, 0, ...〉>εF

= |0〉HF . (1.47)

We define the particle and hole creation operators that act on the two subspaces,

a†λi
= c†λi

εi > εF , (1.48)

b†−λi
= Sλi

cλi
εi < εF , (1.49)

with the phase factor Si,

Si = (−1)ji−mi+ti−mti . (1.50)
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The phase factor Si arises from the invariance against rotations of the particle-
hole space and was given by J. Bell [8].

The hole creation operator b†−λi
acting on the ground state |Ψ0〉 generates a

hole state in the Hartree-Fock ground state which is equivalent to the destruction
of a particle below the Fermi energy. The hole creation operator creates an an-
tiparticle state with third angular momentum and spin components inverted, i.e.
with negative quantum number −λi. The antiparticle state absorbs the particle
state and leaves behind a hole in the Hartree-Fock ground state. The nega-
tive value of the third components of the angular momentum and spin quantum
numbers ensure that the laws of conservation remain valid for the particle-hole
states.

When we apply the creation and destruction operators to the Hartree-Fock
ground state we see, that the Hartree-Fock ground state contains neither holes
nor particles

a†λi
|0〉HF = |λi〉HF ,

aλi
|0〉HF = 0 ,

b†−λi
|0〉HF = |−λi〉HF ,

b−λi
|0〉HF = 0 . (1.51)

With the equivalent destruction operators we redefine the creation and de-
struction operators

c†i = θ(εi − εF )a†i + θ(εF − εi)S−ib−i (1.52)

ci = θ(εi − εF )ai + θ(εF − εi)S−ib
†
−i , (1.53)

where we replaced λi by i.
To derive the nuclear mean field we rewrite the Hamilton Eq. (1.41) without

external field in the second quantization

H =
∑
rs

〈
r
∣∣∣T̂ ∣∣∣ s〉 c†rcs +

1

2

∑
rstu

〈
rs
∣∣∣Ŵ ∣∣∣ tu〉 c†rc†scuct . (1.54)

With Wick’s theorem [9] we can recast Eq. (1.54) in the form

H =
∑
rs

〈
r
∣∣∣T̂ ∣∣∣ s〉 [:c†rcs: + c†rcs

]
+

1

4

∑
rstu

〈
rs
∣∣∣Ŵ ∣∣∣ tu〉 [:c†rc†sctcu: + :c†rct: c

†
scu

− :c†rcu: c
†
sct + . . .+ c†rc

†
sctcu− c†rc†sctcu

]
, (1.55)

where the colons denote the normal ordered product and the brackets below the
creation and destruction operators represent a contraction. With the Hartree-
Fock ground state all contractions c†rcs vanish except those where r = s or r and
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s denote states below the Fermi energy. So we can rewrite the Hamiltonian

H = Ĥ0 + Ĥ1 + Ĥ2 ,

Ĥ0 =
∑
r<F

〈
r
∣∣∣T̂ ∣∣∣ r〉+

1

2

∑
r,s<F

(〈
rs
∣∣∣Ŵ ∣∣∣ rs〉− 〈rs ∣∣∣Ŵ ∣∣∣ sr〉) ,

Ĥ1 =
∑
r 6=s

[〈
r
∣∣∣T̂ ∣∣∣ s〉∑

t

(〈
rt
∣∣∣Ŵ ∣∣∣ st〉− 〈rt ∣∣∣Ŵ ∣∣∣ ts〉)] :c†rcs: ,

Ĥ2 =
1

2

∑
rstu

〈
rs
∣∣∣Ŵ ∣∣∣ tu〉 :c†rc

†
sctcu: . (1.56)

Thus the Hamilton splits into a scalar Ĥ0, a one-body interaction Ĥ1 and a two-
body interaction Ĥ2. It is possible to find a set of states |r〉 that diagonalizes

Ĥ0 + Ĥ1 and defines the energy eigenvalue equation of the Hartree-Fock theory〈
r
∣∣∣T̂ ∣∣∣ s〉+

∑
t

(〈
rt
∣∣∣Ŵ ∣∣∣ st〉− 〈rt ∣∣∣Ŵ ∣∣∣ ts〉) = εrδrs . (1.57)

With the single-particle states which diagonalize Ĥ1 we know the matrix elements
of the kinetic energy and of the mean field in Eq. (1.42), i.e.

H0 = T̂ + V̂ ,

T̂ =
∑

r

〈
r
∣∣∣T̂ ∣∣∣ r〉 c†rcr ,

V̂ =
∑

r

∑
s<F

(〈
rs
∣∣∣Ŵ ∣∣∣ sr〉− 〈rs ∣∣∣Ŵ ∣∣∣ rs〉) c†rcr . (1.58)

Eq. (1.58) defines the nuclear mean field in the Hartree-Fock approximation. It
is obtained by solving Eq. (1.57) usually starting from a first guess of the nuclear
mean field. The associated single-particle bound state wave functions are then
used to derive an improved nuclear mean field via Eq. (1.58), which can be used
in Eq. (1.57) for the next iteration. On convergence of this iterative process a
self-consistent mean field in Hartree-Fock approximation is obtained.

Within Hartree-Fock approximation the full many-particle Hamiltonian is
given by

H = E0 +
∑
r>F

εra
†
rar −

∑
s<F

εsb
†
sbs +

1

2

∑
rstu

〈
rs
∣∣∣Ŵ ∣∣∣ tu〉 :c†rc

†
sctcu: ,

(1.59)
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Figure 1.3: The left figure shows a single particle-hole excitation in the Hartree-Fock
theory where on the right side we see a collective excitation in the RPA theory

where E0 is the Hartree-Fock ground state energy,

E0 = 〈0 |H | 0〉HF

=
∑
r<F

〈
r
∣∣∣T̂ ∣∣∣ r〉+

1

2

∑
r,s<F

(〈
rs
∣∣∣Ŵ ∣∣∣ rs〉− 〈rs ∣∣∣Ŵ ∣∣∣ sr〉) . (1.60)

In the next section we will see how the Random Phase Approximation makes
use of the concepts developed for the Hartree-Fock theory to calculate the nuclear
excitation energies which include the contribution of the residual interaction Ĥ2.

1.4 Random Phase Approximation (RPA)

We have outlined the Hartree-Fock method to estimate the nuclear mean field and
ground state of the nucleus. The Hartree-Fock mean field is a good approximation
for the low lying excitations of predominantly single-particle character. For the
central scope of this diploma thesis, i.e. the calculation of microscopic optical
potentials, a fairly good knowledge of the nuclear excitations of the target nucleus
is needed. Hence a method is required which includes also the residual interaction
H2. The RPA is such a method and in general provides improved excitation
spectra compared to those obtained from the Hartree-Fock method.

The random phase approximation was first introduced by D. Bohm and D.
Pines[10, 11] in 1953 to describe the collective behavior of electrons. The method
is applicable to all kind of fermion systems. Especially it can be used to predict
collective nuclear states. We will not give a detailed derivation of the RPA
method but rather describe their concept and give the main results. A more
detailed introduction into the RPA can be found in [9, 12].
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In the framework of the RPA we start from a correlated ground state which
is assumed to be the vacuum state of a quasi-particle operator Q̂†

n. The latter is
a superposition of particle-hole creation and destruction operators, which will be
defined below. As a consequence the occupation numbers of the single-particle
states are no longer limited to the values 0 and 1. Further in the RPA the
occupation numbers of the ground state |Ψ0〉 are no longer 1 below the Fermi
energy and 0 above. Hence the RPA ground state contains small particle-hole
admixtures and the destruction operators applied to the RPA ground state no
longer vanish,

ai |Φ0〉 6= 0 ,

b−i |Φ0〉 6= 0 . (1.61)

Fig. 1.3 gives a schematic comparison of the generation of excited states in
the Hartree-Fock theory and in the RPA. We see that in the Hartree-Fock theory
each nucleon is represented by exactly one single-particle Hartree-Fock state. In
the RPA theory the single-particle states may be occupied partly. The total
number of nucleons is in both cases given by the sum of all occupation numbers
and is conserved.

In this section we use for the RPA state vectors the Bra-Ket notation |Φn〉
and for the single-particle states |n〉. The single particle state |n〉 can but do not
need to be the Hartree-Fock states. It is assumed that the exact excitation state
|Φn〉 can be expanded in the basis of |n〉. In the RPA the harmonic oscillator
(HO) wave functions are often used for the basis states |n〉. The HO functions
are known to form a complete set which allows us to represent any function as an
expansion of HO wave functions. The RPA ground state is required to contain
only small particle-hole admixtures. Hence the ground state of the harmonic
oscillator potential should approximate the RPA ground state quite well.

Fig. 1.4 shows the lowest lying neutron wave functions in 16O for a realistic
Wood-Saxon potential and for the harmonic oscillator potential. We see that the
radial wave functions of the corresponding 1s and 1p states differ only slightly so
that the 16O ground state which contains 8 Neutrons in the 1s and 1p states can
be approximated very well by the HO wave functions.

An exact calculation of the RPA states requires the inclusion of all basis
vectors which is numerically not feasible. Therefore, in actual calculation only
the first few states up to 3~ω are usually taken into account. This simplification
represents the main limitation to the accuracy of the method. The quality of the
calculations becomes better if the basis is extended.

For the RPA calculation we define the particle-hole creation and destruction
operators as

ξ†rs = a†rb
†
s

ξrs = arbs

(1.62)
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Figure 1.4: Comparison of 16O neutron wave functions derived from a realistic Wood-
Saxon potential (solid line) and from an harmonic oscillator potential (dashed line)

where ξ†rs creates a particle-hole pair and ξrs destroys one. The two operators
conserve the total number of particles. As the RPA states consist of particle-
hole admixtures the transition from the ground state |0〉 to the state |n〉 can no
longer be described by a single particle-hole creation operator but has to be an
admixture of the particle-hole creation and destruction operators

Q̂†
n =

∑
rs

X(n)∗
rs ξ†rs − Y (n)∗

rs ξrs . (1.63)

The X
(n)∗
rs and Y

(n)∗
rs are the RPA amplitudes calculated within the RPA frame-

work. In particular we can create the excited state |Ψn〉 from the ground state
by application of the quasi particle creation operator

|Ψn〉 = Q̂†
n |Ψ0〉 . (1.64)

The application of any quasi particle destruction operator to the ground state
vanishes

Q̂n |Ψ0〉 = 0 . (1.65)

To calculate the RPA amplitudes X
(n)∗
rs and Y

(n)∗
rs the commutator equations

with the full Hamilton operator have to be evaluated〈
n
∣∣[H , ξ†rs

]∣∣ 0〉 = (En − E0)X
(n)
rs (1.66)〈

n
∣∣[H , ξrs

]∣∣ 0〉 = (En − E0)Y
(n)
rs , (1.67)

where En is the energy of the RPA state

H |Ψn〉 = En |Ψn〉 . (1.68)
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Eq. (1.66) and Eq. (1.67) lead to the coupled system of equations for the RPA
amplitudes

([E0 + (εr − εs)]− En)X(n)
rs = −

∑
tu

(
vrs;tu X

(n)
tu + urs;tu Y

(n)
tu

)
(1.69)

([E0 − (εr − εs)]− En)Y (n)
rs =

∑
tu

(
v∗rs;tu X

(n)
tu + u∗rs;tu Y

(n)
tu

)
, (1.70)

with

vrs;tu = S−sS−u

(〈
t,−s

∣∣∣Ŵ ∣∣∣−u, r〉− 〈t,−s ∣∣∣Ŵ ∣∣∣ r,−u〉) (1.71)

urs;tu = S−sS−u

(〈
−s,−u

∣∣∣Ŵ ∣∣∣ r, t〉− 〈−s,−u ∣∣∣Ŵ ∣∣∣ t, r〉) , (1.72)

where S is the phase given by Eq. (1.50) and the states |−u, r〉 are the two
particle states where the negative quantum number represents a hole and the
positive quantum number represents a particle state.

Eq. (1.69) and Eq. (1.70) form a system of equations of dimension 2N
where N is the number of basis functions taken into account. Theoretically this
gives 2N possible solutions for the RPA vectors, where only half of the solutions
belong to positive excitation energies En. The solutions with negative energies
are considered unphysical and are discarded. The RPA states are normalized and
form a system of orthonormal state vectors,

〈Ψn | Ψm〉 =
∑
rs

[
X(n)

rs X
(m)∗
rs − Y (n)

rs Y (m)∗
rs

]
= δnm . (1.73)

The orthonormal RPA states allow us to microscopically evaluate nuclear states
starting from the nucleon-nucleon interaction. The results obtained from the
model are in fair agreement with the experimental spectra. The RPA model and
it’s states will be used in the following section to derive the imaginary part of the
α-16O optical potential.



Chapter 2

The Optical Potential

2.1 Elastic scattering

In the following we consider the elastic scattering of a projectile with mass m1

and incoming energy ELab of a target nucleus of mass m2 at rest. In the elastic
scattering process the collision of particles occur without change of the internal
structure of the collision partners, which is equivalent with the fact that there is
no exchange of energy between the colliding particles in the c.m. system. Due to
exchange of momentum a scattering angle between the incident and the scattered
projectile will be observed. The scattering problem is usually treated in the center
of mass frame which requires the separation of the center of mass motion from
the Hamiltonian. This leads to the Schrödinger equation of the relative motion
in the center of mass frame(

− ~2

2µ
~∇2 + V (r)

)
ψ(~r) = Eψ(~r) , (2.1)

with the reduced mass µ = m1m2/(m1 + m2), the nuclear interaction potential
V (r) and the energy of the relative motion in the c.m. frame

E = ELab
m2

m1 +m2

. (2.2)

For elastic scattering the length of the wave vector ~k of the incoming and outgoing
particle wave is conserved and is given by

k =

√
2µE

~2
. (2.3)

At positive energies E and with a spherical symmetric potential V (r) the
scattering solutions at asymptotic distances can be expressed as superposition of
plane and spherical waves

ψ(r, θ)
r→∞−−−→ eikr cos θ + f(θ)

eikr

r
. (2.4)

21
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Here the first term describes an incoming plan wave in z directions and the second
term describes an outgoing spherical wave with the complex scattering amplitude
f(θ), where θ is the angle between the incoming and outgoing wave.

In quantum mechanics the square of the wave functions |ψ(r)|2 is identified
with the probability density. In general the integral of the probability density
is normalized to 1 which is not possible for the wave functions of Eq. (2.4).
Scattering states are usually normalized to the delta function∫

d3r ψ(~k, ~r)ψ∗(~k′, ~r) = δ(~k − ~k′) . (2.5)

An alternative treatment of the scattering can be performed by the use of wave
packets, which provide a more realistic description of the actual process. In this
formulation the wave functions are square integrable and can be normalized to
1. However it requires the solution of the time dependent Schrödinger equation,
which leads to additional difficulties. We therefore use the formulation with
stationary states and refer for the wave packet formulation to standard text books
in quantum mechanics (e.g.[13, 14]).

The probability current of the wave function ψ(~r) is

~j = − i~
2µ

(
ψ∗~∇ψ − ψ~∇ψ∗

)
. (2.6)

With Eq. (2.4) we find for the incoming and outgoing waves the probability
current at asymptotic distances

jin =
~k
µ
, (2.7)

jout(θ) =
~k
µ

|f(θ)|2

r2
. (2.8)

From the incoming and outgoing probability current we can calculate the differ-
ential elastic cross section

dσ

dΩ
=
r2jout

jin
= |f(θ)|2 . (2.9)

The complex scattering amplitude f(θ) plays a central role in all cross section
calculations. It connects the experimental differential cross section data to the
nuclear model calculations.

To derive an expression for the complex scattering amplitude f(θ) from the
nuclear interaction potential, we start by expanding ψ(r) in terms of radial wave
functions ul(r) and the Legendre polynomials Pl(cos θ)

ψ(~r) =
1

kr

∞∑
l=0

(2l + 1)ilul(r)Pl(cos θ) . (2.10)
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Inserting Eq. (2.10) into the Schrödinger equation (2.1) yields the differential
equation for the radial wave functions ul(r).(

d2

dr2
− l(l + 1)

r2
− 2µ

~2
V (r) + k2

)
ul(r) = 0 . (2.11)

We consider the nuclear interaction potential V (r) to be short ranged so that
the potential vanishes faster than 1/r in the asymptotic limit. At asymptotic
distances the radial wave function ul(r) is then composed of spherical incoming
and outgoing waves

ul(r)
r→∞−−−→ ul sin(kr − π

2
l + δl)

= ul
i−leiδleikr − ile−iδle−ikr

2i
, (2.12)

where the phase factor πl/2 stems from the asymptotic forms of the spherical
Bessel- and Neumann-functions. The asymptotic form of Eq. (2.10) is then

ψ(r)
r→∞−−−→ 1

2ikr

∞∑
l=0

(2l + 1)
(
ule

iδleikr − (−1)lule
−iδle−ikr

)
Pl(cos θ) . (2.13)

To expand Eq. (2.4) in Legendre polynomials we use the relation

eikr cos θ =
∞∑
l=0

(2l + 1)iljl(kr)Pl(cos θ) (2.14)

with the spherical Bessel functions jl(kr) and their asymptotic limit

jl(kr)
r→∞−−−→

sin(kr − π
2
l)

kr

= i−l e
ikr − (−1)le−ikr

2ikr
. (2.15)

For the scattering amplitude f(θ) we use the expansion

f(θ) =
∞∑
l=0

(2l + 1)flPl(cos θ) . (2.16)

Thus we can rewrite Eq. (2.4) in partial wave expansion

ψ(~r)
r→∞−−−→ 1

2ikr

∞∑
l=0

(2l + 1)
(
(−1)l+1eikr + (1 + 2ikfl)e

−ikr
)
Pl(cos θ) . (2.17)
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The coefficients for exp(ikr) and exp(−ikr) can be extracted by comparing Eq.
(2.13) and Eq. (2.17)

(−1)l+1 = ule
iδl ,

(1 + 2ikfl) = −(−1)lule
−iδl . (2.18)

Solving this for the two variables ul and fl yields

ul = (−1)l+1e−iδl

fl =
1

2ik

(
ei2δl − 1

)
. (2.19)

The total complex scattering amplitude f(θ) is then given as the sum of contri-
butions for all angular momenta l

f(θ) =
1

2ik

∞∑
l=0

(2l + 1)
(
ei2δl − 1

)
Pl(cos θ) . (2.20)

With Eq. (2.20) the differential elastic cross section is obtained

dσ

dθ
= |f(Ω)|2 (2.21)

=
1

4k2

∞∑
l,l′=0

(2l + 1)(2l′ + 1)
(
ei2δl − 1

) (
ei2δl′ − 1

)
Pl(cos θ)Pl′(cos θ) .

The angular integral of the differential elastic cross section dσ/dΩ leads to the
total elastic cross section σel

σel = 2π

∫ 1

−1

d(cos θ)
dσ

dΩ
=

π

k2

∞∑
l=0

(2l + 1)
∣∣ei2δl − 1

∣∣2
=

4π

k2

∞∑
l=0

(2l + 1) sin2 δl . (2.22)

Eq. (2.21) relates the differential elastic cross section to the phase shift δl obtained
from nuclear model calculations. To derive the phase shift δl from the nuclear
interaction potential V (r) one has to solve the radial Schröedinger equation (2.11)
for a given l. The phase shift is then obtained from the asymptotic behavior of
the regular solution.

So far we only treated elastic scattering. Similar to classical scattering the
energy of the relative motion is not conserved if the structure of the colliding
partners changes in the scattering process. In Sec. 1.1 we saw that the nucleus
can be in different states each associated with a certain excitation energy. The
transition from one state into another one is thus associated with a characteristic
change of the relative motion energy. In the next chapter we show how a complex
potential V (r) can be used to account for the loss of probability current in the
elastic channel due to inelastic processes.
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Figure 2.1: Energy dependence of the differential elastic cross section for α-16O scat-
tering with a realistic Wood-Saxon interaction potential

2.2 The Optical Model

The nuclear interaction V (r) is a key input to all nuclear reaction calculations.
In principle it is a many-body operator for which exact solutions of the full many-
body problem are required, which in full rigorousity are not feasible today. A very
efficient approach to describe simple elastic scattering is provided by the so-called
Optical Potential which is an effective one-body operator describing the main
features of the collision process. The derivation of the interaction potential from
the basic NN interaction is rather complicated and is equivalent to the solution of
the many-body problem. A more pragmatic way is the use of a phenomenological
optical potential which describes the elastic scattering cross section fairly well.
The optical potential provides an energy averaged description, hence resonant
behaviors are not reproduced. This is also true for non-elastic reactions which
are included globally in the model.

The scattering observables reproduced by the optical potential are total and
differential elastic cross section. In Sec. 2.1 we outlined how the elastic cross
section can be extracted from the solution of the Schrödinger equation for a given
potential V (r). It is obvious from Eq. (2.1) that the solutions of the Schrödinger
equation and consequently also the elastic cross section vary with energy. In Fig.
2.1 the typical energy and scattering angle dependence of the differential elastic
cross section is show.

Beside the elastic scattering, inelastic scattering occurs when at least one of
the reaction partners gets excited or the composition is changed in the scattering
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process. The energy
∆εi,f = εf − εi (2.23)

which is necessary to excite the nucleus from its initial state to the final state
has to be compensated by the relative motion energy. Hence, the initial relative
motion wave vector ~ki is changed into ~kf with a different length.

The formation of an exited compound nucleus is only possible when the inci-
dent energy of the target is above the excitation energy ∆εi,f . All energetically
allowed transitions are denoted as open channels and the energetically forbidden
transitions as closed channels. The elastic scattering process proceeds in the elas-
tic channel and all other processes represent transitions to a non-elastic channel.
With rising incident energy E the number of open channels increases and the
contribution of non-elastic scattering to the overall scattering process becomes
more important.

The transition rates to other reaction channels is given by the non-elastic
cross section σnon. If one of the collision partners is electrically neutral, an angle
integrated elastic cross section exists

σf
el =

∫
dΩ

dσ

dΩ
. (2.24)

Here f denotes the form-elastic cross section which is obtained from the optical
potential. Thus one can define the total reaction cross section

σtot = σf
el + σnon (2.25)

which represents a measure for reactions of the target nucleus in the beam. Espe-
cially at low neutron energies, measurements of the elastic cross section σel differ
from the form-elastic cross section σf

el due to the occurrence of compound elastic
scattering σc

el

σel = σf
el + σc

el . (2.26)

Compound elastic scattering is essentially a non-elastic process which proceeds
via the formation of an excited compound nucleus and its subsequent decay into
the elastic channel. Thus it is useful to split the non-elastic cross section

σnon = σc
el + σr , (2.27)

where σr is the reaction-cross section for transitions into all non-elastic reaction
channels. The total cross section can then be given in terms of actually measured
observables

σtot = σel + σr . (2.28)

In case of charged particle collision the compound-elastic contribution is much
smaller and usually neglected. However, it must be remarked that for charged
particle scattering neither the angle integrated elastic nor the total-cross section
exist in terms of simple integration.
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The phenomenological optical model determines the elastic scattering am-
plitudes and elastic cross sections for a given interaction potential V (r). The
model does not explicitly take into account the non-elastic channels but allows
to calculate the total non-elastic cross section which accounts for all non-elastic
reactions. The non-elastic cross section thus describes the loss of probability flux
in the elastic channel due to non-elastic processes.

To account for this loss of probability flux the optical potential must be
complex-valued

V (r) = U(r) + iW (r) . (2.29)

The effect of a complex potential is seen when we write down the continuity
equation for the probability current

~∇~j(~r) =
~
i2µ

(
ψ∗(~r)~∇2ψ(~r)− ψ(~r)~∇2ψ∗(~r)

)
=

1

~
(ψ∗(~r)W (~r)ψ(~r) + ψ(~r)W (~r)ψ∗(r))

=
2

~
|ψ(~r)|2W (~r) , (2.30)

where we have used the two relations from the Schrödinger equation

~2

2µ
~∇2ψ(~r) = [U(~r)− E + iW (~r)]ψ(~r) ,

~2

2µ
~∇2ψ∗(~r) = [U(~r)− E − iW (~r)]ψ∗(~r) . (2.31)

Integrating the continuity equation (2.30) and making use of the Gauss theorem
yields ∮

A

d2~r ~j(~r) =
2

~

∫
V

d3~r ρ(~r)W (~r) . (2.32)

The left hand side of Eq. (2.32) gives the net probability current through the
closed surface A which we identify with the reaction cross section

σr ∝ −
2

~

∫
V

d3~r ρ(~r)W (~r) (2.33)

From Eq. (2.32) we see that the reaction cross section is proportional to the
negative convolution of the complex potential W (~r) with the density function
ρ(~r) = |ψ2(~r)|. As the reaction cross section is always positive the integral on
the right hand side of Eq. (2.32) has to be negative or 0. The probability
density function ρ(~r) is a positive valued function thus the imaginary part of the
optical potential W (~r) has to be predominantly negative. The imaginary part
may contain positive areas as long as the integral remains negative.
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Figure 2.2: Differential elastic cross section derived from a pure Coulomb potential,
a real Wood-Saxon and a complex Wood-Saxon potential at 18MeV incident energy.
The Wood-Saxon potential parameters are R0 = 3.14fm and a = 0.65fm.

Fig. 2.2 compares the differential elastic cross section dσ/dΩ for a real
Coulomb potential and two Wood-Saxon type potentials combined with the
Coulomb potential.

V (r) = VC(r) +
−52.88− [i3.00]

1 + e
r−R0

a

(2.34)

The differential elastic cross section of the Wood-Saxon type potential is shown
with and without the complex component. It shows the typical oscillations known
from differential elastic cross section measurements. For low incident energies the
complex part of the optical potential is small compared to the real part as only a
few open channels exist. A complex component in the order of 10% of the real part
reduces the elastic cross section without significantly changing the oscillations.

2.3 General Optical Potential

The general optical potential was first derived by Feshbach [2] in 1958 and has
been further developed by several authors [3, 15–18] in the past. We briefly recall
the original derivation of the so called general optical potential which allows us
to connect the optical model to the nuclear shell model from chapter 1.

In nonelastic scattering either the projectile A or the target B or both change
their states during the scattering process. To describe the process A+B → A′+
B′ we must include the target and projectile wave function into the calculations
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explicitly. For a compact formulation we again use Dirac Bra-Ket[7] notation in
the following

|Ψi〉 =
∣∣ψAB

i

〉
|ki〉 . (2.35)

The channel state |Ψi〉 is given as the product state of the projectile-target state∣∣ψAB
i

〉
and the relative motion state |ki〉. The projectile-target state

∣∣ψAB
i

〉
in-

cludes all internal degrees of freedom, i.e. all internal coordinates, total angular
momentum, spin and isospin.

The total scattering state |Ψ〉 is a superposition of all possible channel states

|Ψ〉 =
∑

i

|Ψi〉 =
∑

i

∣∣ψAB
i

〉
|ki〉 . (2.36)

The sum i runs here over all open channels where i = 0 denotes the elastic
channel. The total scattering state |Ψ〉 satisfies the Schrödinger equation of the
whole scattering system,

Ĥ |Ψ〉 = E |Ψ〉 (2.37)

Ĥ = ĤAB + T̂0 + V̂ , (2.38)

where the total Hamilton operator Ĥ splits into the projectile-target Hamilto-
nian ĤAB, the kinetic energy operator T̂0 and the interaction V̂ between the
projectile and the target. The projectile-target states

∣∣ψAB
i

〉
are eigenstates of

the projectile-target Hamiltonian

ĤAB
∣∣ψAB

i

〉
= εAB

i

∣∣ψAB
i

〉
(2.39)

and the relative motion vector |ki〉 is an eigenstate of the kinetic energy operator

T̂0 |ki〉 =
~2k2

i

2µi

|ki〉 . (2.40)

The projectile-target interaction V̂ couples the channel states |Ψi〉(
E − εAB

i − ~2k2
i

2µi

)
|Ψi〉 =

∑
j

Vji |Ψj〉 (2.41)

with

Vji = 〈Ψj| V̂ |Ψi〉 . (2.42)

The projectile-target state
∣∣ψAB

i

〉
incorporates all degrees of freedom of the

nuclear reaction except the relative motion. We know that this state belongs to
the composition AB where the projectile is in the state

∣∣ψA
i

〉
and the target is in

the state
∣∣ψB

i

〉
.
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Neglecting the antisymmetrization between projectile and target nucleons, the
projectile-target state

∣∣ψAB
i

〉
can be written in product form∣∣ψAB

i

〉
=
∣∣ψA

n

〉 ∣∣ψB
m

〉
. (2.43)

The state vector of each collision partner fulfills the respective Schrödinger equa-
tion

ĤA
∣∣ψA

n

〉
= εAn

∣∣ψA
n

〉
, (2.44)

ĤB
∣∣ψB

m

〉
= εBm

∣∣ψB
m

〉
, (2.45)

where each collision partner has it’s own set of eigenstates denoted by the sub-
scripts m and n. The product state

∣∣ψAB
i

〉
is constructed from the possible

eigenstate combinations where the index i runs over all possible combinations
n,m.

In this diploma thesis we consider only excited target states of the target
nucleus without stripping or pickup processes. The numbers of nucleons in A
and B are therefore fixed and we deal with a single composition i.e. AB. In
addition we assume that the projectile remains in it’s ground state

∣∣ψA
0

〉
. The

projectile-target state
∣∣ψAB

i

〉
is then the product of the projectile ground state

and the target excited states ∣∣ψAB
i

〉
=
∣∣ψA

0

〉 ∣∣ψB
i

〉
. (2.46)

Since the projectile remains in the ground state
∣∣ψA

0

〉
the possible projectile-target

states are uniquely identified by the target states
∣∣ψB

i

〉
. Hence we drop in the

following the reference to AB and use the notation |ψi〉 for the excited states of
the projectile-target system.

To derive the general optical potential we define the projection operator to the
elastic channel P = |Ψ0〉 〈Ψ0| and its complement Q = 1−P with the properties

P +Q = 1 , (2.47)

PP = P , (2.48)

QQ = Q , (2.49)

QP = PQ = 0 . (2.50)

Inserting 1 = P+Q into the Schrödinger equation (2.37) and multiplying it from
the left with the two projection operators yields(

E − PĤP
)
P |Ψ〉 = PĤQQ |Ψ〉 , (2.51)(

E −QĤQ
)
Q |Ψ〉 = QĤPP |Ψ〉 . (2.52)
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This is a coupled system of equations which couples the elastic channel to the
inelastic ones. From Eq. (2.52) we obtain

Q |Ψ〉 =
1

E −QĤQ
QĤPP |Ψ〉 , (2.53)

which inserted into Eq. (2.51) yields an effective Schrödinger equation for the
elastic scattering problem(

E − PĤP − PĤQ 1

E −QĤQ+ iη
QĤP

)
P |Ψ〉 = 0 . (2.54)

The first interaction term PĤP is the so called direct term which is essentially the
shell model contribution. The second interaction term describes the contributions
due to coupling to inelastic channels. The coupling term can be interpreted as a
three step process. First, due to the interaction there is a transition from |Ψ0〉
to |Ψi〉. Then the projectile-target system propagates in the state |Ψi〉, which
finally, couples back to |Ψ0〉 via the interaction. The intermediate propagation is
given by the Green function

G =
∑
i,j 6=0

|Ψi〉 〈Ψj|
E −QĤQ+ iη

. (2.55)

We assume a weak coupling between the excited states

〈Ψi|V |Ψi〉 �
∑
j 6=i

〈Ψi|V |Ψj〉 , (2.56)

so that we can in first order replace the termQĤQ by the expression E−εi−T̂0+iη
and the Green function becomes diagonal

G =
∑
i6=0

|Ψi〉 〈Ψi|
E − εi − ~2k2

i

2µi
+ iη

. (2.57)

We emphasize that the coupling between the channels is mutual for the whole
calculation. Without the coupling between the channels the term QV̂ P would
vanish and no intermediate channel excitation would take place. With the as-
sumption of Eq. (2.56) our results only represent the first order corrections to
the optical potential.

We replace the wave function in Eq. (2.54) by the product |Ψi〉 = |ψi〉 |ki〉
and make use of Eq. (2.41) to derive the general optical potential Vopt for the
relative motion in the elastic channel(

~2k2
0

2µi

+ Vopt

)
|k0〉 = E |k0〉 , (2.58)
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with

Vopt = 〈ψ0|V |ψ0〉+
∑
i6=0

〈ψ0|V
|ψi〉 〈ψi|

E − εi − ~2k2
i

2µi
+ iη

V |ψ0〉 . (2.59)

The sum i runs over all open channels except the elastic one. The optical potential
has an imaginary part that accounts for the inelastic scattering, which becomes
clear when we use the relation

1

x+ iη
=

P

x
− iπ δ(x) (2.60)

where P denotes the principal value. The imaginary part of the optical potential
is then

Im Vopt = Im
∑
i6=0

〈ψ0|V
|ψi〉 〈ψi|

E − εi − ~2k2
i

2µi
+ iη

V |ψ0〉 (2.61)

= iπ
∑
i6=0

〈ψ0|V δ(E − εi −
~2k2

i

2µi

) V |ψ0〉 (2.62)

This diploma thesis aims at the calculation of the imaginary part of the optical
potential given by Eq. (2.61) and Eq. (2.62). We will evaluate Eq. (2.61) by
explicitly calculating the transition densities for the intermediate states and their
propagation with the Green function. The total imaginary part of the optical
potential is then given as the sum of all open channel contributions.

2.4 The α-nucleus optical potential

Based on the general optical potential given by Eq. (2.61) Villars [19] derived
the exact optical potential in momentum space in second quantization

Vopt = VHF +
N∑

i6=0

S(i)(k′, k) , (2.63)

with

S(i)(k′, k) =
∑

s+t+u=i〈
0

∣∣∣∣∣
(

V

E0 −H0

)s

J(k′)
1

E −H0 + iη

(
V

1
E −H0 + iη

)t

J†(k)
(

V

E0 −H0

)u
∣∣∣∣∣ 0
〉

LC

−

〈
0

∣∣∣∣∣
(

V

E0 −H0

)s

J†(k)
−1

E −H0 + iη

(
V

−1
E −H0 + iη

)t

J(k′)
(

V

E0 −H0

)u
∣∣∣∣∣ 0
〉

LC

,

(2.64)
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where the subscript LC shall indicate that only linked cluster graphs are taken
into account. The energy E0 is the energy of the unperturbed Hartree-Fock
ground state |0〉 derived form the Hartree-Fock Hamiltonian H0. The interaction
operators are then

J(k) = [ck, V ] =
∑
β,γ,δ

c†β 〈kβ |V | γδ〉 cδcγ ,

J†(k) =
[
V, c†k

]
=
∑
λ,µ,ν

c†λc
†
µ 〈λµ |V | kν〉 cν . (2.65)

The independent sum over all powers s and u with the linked cluster restriction
will produce the exact target ground state and the independent sum over t re-
produces the Green function between the two interaction operators J†(k) and
J(k′).

Osterfeld, Wambach and Madsen [3] then derived a general second order ex-
pression for the imaginary part of the optical potential including direct and ex-
change parts of the potential. The derivation is rather lengthy and is not given
here. Dermawan, Osterfeld and Madsen[17] restricted the calculations from [3]
to spinless α-particles and gave the simplified expression for the imaginary part
of the optical potential in r space

W (~r, ~r′) = Im
N∑

i6=0

〈0 |V |Ψi〉~r gi(~r, ~r
′) 〈Ψi |V | 0〉~r , (2.66)

where 〈Ψi |V | 0〉~r gives the transition probability from the ground state |Ψ0〉 to the
intermediate state |Ψi〉 and gi(~r, ~r

′) is the Green function describing the motion
of the projectile in the intermediate state. The Green function is calculated
for the incident kinetic energy E reduced by the excitation energy ∆εi,f of the
intermediate state. For α-particles scattered by a spinless target nucleus (JA =
0+) the imaginary part of the optical potential than reads

W (~r, ~r′) = Im

 1
16π2

∑
l,lc,L
JN

δL,JN

l̂2 l̂2c

L̂2
(l0lc0|L0) , FD

JN ,L0L(r)glc(r, r
′)FD

JN ,L0L(r′)Pl(cos θ)

 ,

(2.67)
with l̂ =

√
2l + 1 and the Legendre polynomials Pl(cos θ).

The transition form factor FD
JN ,L0L(r) is given as the folding integral of the

multipole expanded effective central α-target interaction and the target nucleon
density function.

FD
JN ,L0L(r) =

∫
dr1r

2
1ρ

JN
L0L(r1)vL(r, r1) . (2.68)
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The nucleon density function reads

ρJN
LSJ(r) =

∑
n1l1j1
n2l2j2

[
XJN

j1,j2
+ Y JN

j1,j2

] 1√
4π

1̂

2
Ŝĵ1ĵ2L̂Ĵ l̂1

× (l10L0|l20)


l2

1
2

j2

l1
1
2

j1

L S J

Rn1l1j1(r)Rn2l2j2(r) , (2.69)

where XJN
j1,j2

and Y JN
j1,j2

are the RPA particle-hole amplitudes and Rniliji
are the

radial single particle wave functions.
The derivation of the multipole expansion for the central alpha-target inter-

action is given in the appendix in Sec. A.3 and we repeat here only the result

vl(r, r1) = 2π

∫ 1

−1

d(cos θ) V (r′)Pl(cos θ) , (2.70)

r′ =
√
r2 + r2

1 − 2r r1 cos θ . (2.71)

From Eq. (2.66)-(2.70) we can calculate the imaginary optical potential for
spin 0 nuclei and consequently the reaction cross section σr. For non magic nuclei
with unpaired spin the more general expression from [3] has to be evaluated.
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Chapter 3

Implementation

The aim of this work was to implement equations (2.66)-(2.70) as a computer code
and to obtain results comparable to those from Osterfeld et. al. [17]. For the
description of the excited states of the target, the particle-hole RPA amplitudes
from S. Krewald and J. Speth[20] and R. Kogler [12] are used.

The following sections give the details about the implementation of the imag-
inary α-16O optical potential.

3.1 The Intermediate Potential

For the real part of the α-16O optical potential the double folding potential of a
density dependent M3Y [21] interaction was chosen

U(~r) =

∫
d3~r1

∫
d3~r2 ρT (~r1) ρα(~r2) t(E, ρT , ρα, ~s) , (3.1)

with the nucleon density functions ρT and ρα for the target nucleus and the
α-particle. The effective M3Y nucleon-nucleon interaction t is a function of the
distance ~s = ~r+~r2−~r1 between nucleons in the α-particle and the target nucleus.

The effective density dependent M3Y nucleon-nucleon interaction is of the
form

t(E, ρT , ρα, ~s) = λ g(E,~s) f(E, ρ) , (3.2)

where g(E,~s) is the usual M3Y force modulated with a density dependent factor
f(E, ρ). The scaling factor λ = 1.32 is used to fit the total α-16O interaction to
the experimental cross section data and was chosen according Ref. [22] and [23].
The M3Y interaction is

g(E,~s) =

[
7999

e−4s

4s
− 2134

e−2.5s

2.5s

]
+ Ĵ00(E) δ(~s) , (3.3)

where Ĵ00 accounts for the single-nucleon knock-on exchange,

Ĵ00(E) = −276(1− 0.005
E

Aα

) , (3.4)

37
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Figure 3.1: M3Y nucleon-nucleon interaction for two delta distributed nucleons

E
Aα

(MeV) 7 10 15 20 25 29.5 35

Ĵ00 (MeV fm3) -265.6 -262.2 -255.2 -248.4 -241.5 -234.6 -227.7

C 0.444 0.420 0.405 0.380 0.354 0.336 0.279

α 4.10 4.24 4.21 4.25 4.37 4.39 5.14

β (fm3) 10.67 10.15 9.66 9.12 8.54 8.05 7.20

Table 3.1: Parameter for the density dependent M3Y interaction taken from [22]

with the projectile nucleon number Aα. Following [22] the density dependent
function f(E, ρ) is of exponential form

f(E, ρ) = C(E)
[
1 + α(E) e−β(E)ρ(~r1,~r2)

]
(3.5)

with the projetile-target density distribution

ρ(~r1, ~r2) = ρT (~r1) + ρα(~r2) . (3.6)

The parameter Ĵ00(E), C(E), α(E) and β(E) where taken from [22] and are
listed in Tab. 3.1. A spline interpolation was used to derive the M3Y potential
parameters for energies not given in Tab. 3.1. Fig. 3.1 shows the M3Y interaction
given by Eq. (3.2) for two delta distributed nucleons at 7 MeV/A. The attractive
potential has its minimum at 0.8 fm and shows a strong repulsive behavior below
0.5 fm.



3.1. THE INTERMEDIATE POTENTIAL 39

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5

r[fm]

4He
16O

Figure 3.2: 4He and 16O nucleon densities

The nucleon density distribution is assumed to be proportional to the charge
distribution [24]. The nucleon density is described by the sum of Gaussians

ρ(r) =
∑

i

Ai

[
e−( r−Ri

γ )
2

+ e−( r+Ri
γ )

2
]
, (3.7)

with the amplitudes

Ai =
N Qi

2π
3
2γ3
(
1 +

2R2
i

γ2

) . (3.8)

The parameters Ri, Qi and γ determine the amplitude and the width of the
ith Gaussian distribution and thus the radial shape of the nucleon density. In
addition a normalization applies to the parameters Qi∑

i

Qi = 1, (3.9)

so that the nucleon density is normalized to the nucleon number N ,∫ ∞

0

dr r2 4π ρ(r) = N . (3.10)

The charge density parameters for 4He and 16O from [24] are given in Tab. 3.1
and Fig. 3.2 shows the corresponding nucleon-densities.

The effective α-target interaction is the double folding integral from the nu-
cleon density distributions ρα, ρT and the effective density dependent nucleon-
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4He 16O

γ 0.8615 1.0614

i Ri Qi Ri Qi

1 0.2 0.034724 0.4 0.057056

2 0.6 0.430761 1.1 0.195701

3 0.9 0.203166 1.9 0.311188

4 1.4 0.192986 2.2 0.224321

5 1.9 0.083866 2.7 0.059946

6 2.3 0.033007 3.3 0.134714

7 2.6 0.014201 4.1 0.000024

8 3.1 0.000000 4.6 0.013961

9 3.5 0.006860 5.3 0.000007

10 4.2 0.000000 5.6 0.000002

11 4.9 0.000438 5.9 0.002096

12 5.2 0.000000 6.4 0.000002

Table 3.2: Parameter for the nucleon density distribution given by [24]
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nucleon interaction of Eq. (3.2),

U(~r) = λ C

[∫
d3~r1

∫
d3~r2 ρT (~r1) ρα(~r2) g(~s)

+ α

∫
d3~r1

∫
d3~r2 ρT (~r1)e

−βρT (~r2) ρα(~r2)e
−βρα(~r2) g(~s)

]
. (3.11)

The numerical evaluation of the double folding integral Eq. (3.11) is most effi-
ciently performed via Fourier transformation techniques.1

U(r) = λC(2π)3Ft
[
Ft[g]

(
Ft[ρT ]Ft[ρα] + αFt[ρT e

−βρT ]Ft[ραe
−βρα ]

) ]
(3.12)

with

Ft[f ] =
2

(2π)
1
2

∫ ∞

0

dr r2f(r)
sin(kr)

kr
, (3.13)

where Ft[f ] is the 3 dimensional Fourier transform of the function f(r). For the
M3Y interaction from Eq. (3.3) the Fourier transformation can be calculated in
closed form

Ft(g) =
2

(2π)
1
2

(
7999

4(42 + k2)
− 2134

2.5(2.52 + k2)

)
+

Ĵ00

(2π)
3
2

. (3.14)

3.2 The Green Function

The Green function for the propagation in the intermediate state is calculated
from the effective α-16O interaction potential shown in Fig. 3.3. The energy Eint

in the intermediate channel is the incident energy E reduced by the excitation
energy ∆εi,f of the single particle-hole state

Eint = E −∆εi,f . (3.15)

Therefore the Green function G(~r, ~r′) satisfies(
Ĥ(~r)− Eint

)
G(~r, ~r′) = δ3(~r, ~r′) (3.16)

with the Hamilton operator Ĥ(~r) for the α-16O interaction potential U(r)

Ĥ(~r) = − ~2

2µ

(
1

r

d2

dr2
r − L̂2

r2

)
+ U(r) . (3.17)

1The derivation of Eq. (3.12) is given in the appendix Sec. A.1
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Figure 3.3: α - 16O interaction potential

Here µ is the reduced mass of the α particle and L̂ is the angular momentum
operator. For a compact notation we have not explicitly written the energy depen-
dence of the α-16O interaction potential U(r). The Green function is calculated
with the actual potential for each intermediate channel separately.

The expansion of the Green function in spherical harmonics reads

G(~r, ~r′) =
∞∑
l=0

Gl(r, r
′)

l∑
m=−l

Ylm(r̂)Ylm(r̂′)

=
∞∑
l=0

Gl(r, r
′)

2l + 1

4π
Pl(cos θ) , (3.18)

where Gl(r, r
′) are the radial Green functions for the angular momentum l. For

the three dimensional delta function δ3(~r) we use the expression,

δ3(~r, ~r′) =
1

rr′
δ(r − r′)

∞∑
l=0

l∑
m=−l

Ylm(r̂)Ylm(r̂′)

=
1

rr′
δ(r − r′)

∞∑
l=0

2l + 1

4π
Pl(cos θ) . (3.19)

Inserting Eq. (3.18) and Eq. (3.19) into the Schrödinger equation (3.16) one
obtains the equation for the radial Green functions Gl(r, r

′)(
− ~2

2µ

[
1

r

d2

dr2
r − l(l + 1)

r2

]
+ V (r)− Eint

)
Gl(r, r

′) =
1

rr′
δ(r − r′) . (3.20)
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E V1 α V2 α

30 -310.1 0.422 319.2 0.505

100 -387.6 0.422 398.9 0.505

Table 3.3: Effective α-nucleon interaction parameter

The radial Green function Gl(r, r
′) is constructed as the product of the regular

φl(r) and the irregular ψl(r) solutions from the homogeneous Schrödinger equa-
tion (

− ~2

2µ

[
1

r

d2

dr2
r − l(l + 1)

r2

]
+ V (r)− Eint

)
φl(r) = 0 . (3.21)

The radial Green function is given by

Gl(r, r
′) = Nlgl(r, r

′) (3.22)

gl(r, r
′) = −1

k
φl(r<)ψl(r>) , (3.23)

where r< is the smaller and r> the bigger value of the two radii r and r′. The
wave vector k is evaluated for the intermediate state with k =

√
2µEint/~2 and

Nl is a complex constant2

Nl = −2µ

~2

k

r′2

(
φl(r

′)
d

dr
ψl(r)

∣∣∣∣
r′
− ψl(r

′)
d

dr
φl(r)

∣∣∣∣
r′

)−1

. (3.24)

Fig. 3.4 shows the Green function calculated from the α-16O nucleus-nucleus
interaction for cos θ = 1. We see that the Green function is peaked along the
diagonal r = r′ and shows oscillations perpendicular to the diagonal. With
rising energy the peak becomes more pronounced with shorter wave length of the
oscillations perpendicular to the diagonal. In addition the Green function in Fig.
3.4 shows a characteristic rise at small radii due to the α-16O interaction.

3.3 Transition form factor

For the α-nucleon interaction in the transition form factor we choose a phe-
nomenological potential of Gaussian shape

V (r) = V1 e
−αr2

+ V2 e
−βr2

. (3.25)

The parameters of the phenomenological α-nucleon potential are given in Tab. 3.3.
Fig. 3.5 shows the α-nucleon interaction for 30 MeV and 100 MeV. It is ob-

vious that the effective energy dependence of the potential is rather small. The

2The derivation of Eq. (3.24) is given in the appendix Sec. A.2.
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Figure 3.4: Imaginary part of the optical Green function at E = 21MeV for the α-16O
interaction potential of Fig. 3.3 and cos θ = 1
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Figure 3.6: Multipole expansion of the effective α-nucleon potential for the angular
momentum l=0 (top left), l=1 (top right) l=2 (bottom left) and l=3 (bottom right)

main scope of this diploma thesis is the α-16O optical potential at low energies.
Therefore we use in our calculations the parameters for 30 MeV. From the mul-
tipole expansion shown in Fig. 3.6 we see that for a given partial wave the radial
potentials vl(r, r

′) are peaked along the diagonal r = r′. For higher l values the
height of the peak decreases and is shifted towards higher r-values.

To obtain the transition form factor FD
JN ,L0L(r) the α-nucleon interaction was

folded with the nucleon density function which was calculated from the RPA
particle-hole amplitudes3[20]. Fig. 3.7 and Fig. 3.8 show the resulting nucleon
density functions and the transition form factors for the three lowest lying 3−

states in 16O.

Fig. 3.8 shows that the biggest contributions come from the states at 6.5
MeV and 47.0 MeV. The state with the excitation energy of 18.9 MeV has a very
small contribution as the RPA amplitudes for the T = 0 and T = 1 particle-hole
amplitudes almost compensate each other. We further see that the transition
form factor of the 6.5 MeV state is dominated by the 1p → 1d transition and
thus peaked at a slightly smaller radius than the 1p → 1g dominated 47.0 MeV
state.

3The RPA single particle-hole excitation amplitudes from [20] are given in the appendix in
Sec. B.1.
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Figure 3.9: Imaginary α-16O potential at 18 MeV (left) and at 30 MeV (right)

3.4 Results

According to Eq. (2.66) the imaginary α-16O optical potential arises from the
contributions of all open channels for the incident α-particle energy E.

When we compare the imaginary α-16O optical potential at 30 MeV, shown
in Fig. 3.9, with the results given by F. Osterfeld, J.Wambach and V.A. Madsen
[3] for the α-40Ca potential we see that we reproduce the overall form but not the
absolute size. This difference can be explained with the bigger number of open
channels in 40Ca than in 16O.

Fig. 3.10 shows that the main contribution to the optical potential at 30 MeV
comes from the 1− and 3− states. At 30 MeV the 3− contribution to the optical
potential is about 5 MeV according to Osterfeld et.al. while our calculations
show only a contribution of 0.2 MeV. When looking at the RPA calculations for
the 3− states we see that for 40Ca V. Gillet and E.A. Sanderson [25] obtained
18 states below 20 MeV while the 16O calculation from Speth and Krewald [20]
contain only 2 states. From the higher number of open channels in 40Ca it is
understandable that the absolute value of the imaginary optical potential is also
bigger in 40Ca.

We tried to compare our results with nuclear cross section measurements,
which turned out very difficult as no experimental data set for non-elastic cross
sections is available below 70 MeV. To calculate the imaginary optical potential
for energies above 70 MeV we would need much more involved RPA calculations
taking a bigger number of particle-hole excitations as well as the continuum
into account. Those calculations are not available and thus we tried a different
approach.

The imaginary part of the optical potential accounts for the loss of flux in the
elastic channel thus we tried to compare the absolute values of the differential
elastic cross section measurements with the values obtained from our potential.
The comparison turned out to be very difficult, as the real part of our α-16O
optical potential does not reproduce the angular distribution of the scattering
data and thus the comparison of the absolute values was not possible. Fig.
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Figure 3.10: Contributions to the α-16O optical potential from the 0+ (top left), the
1− (top right), the 2+ (bottom left) and 3− (bottom right) states at 30 MeV

3.11 shows the differential elastic cross section obtained from our results with the
experimental data from J.C. Corelli et al.[26] at 18 MeV. We used a scaling factor
λ for the imaginary part of the potential and plotted the results for λ = 0, 1 and
10.

For the real part the double folding potential was used. Unfortunately the
angular distribution of the differential elastic cross section is not reproduced
sufficiently well by the total optical potential. Nevertheless the almost negligible
effect of the imaginary part is clearly seen. For a better reproduction of the
experimental results it is therefore most important to determine a realistic real
part of the α-16O optical potential first.
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Part III

Program and Source Code
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Chapter 4

The source code

The software was implemented on a Linux system and the GNU g95 Fortran
compiler. Beside the standard g95 library options -lm and -lg2c the open source
libraries -lkernlib and -lmathlib from the cernlib1 are required to compile the
code.

The software itself is written in a modular way which allows to easily reuse
parts and to replace certain modules like e.g. the α-16O interaction potentials.
The layout of the software is depicted in Fig. 4.1. The software is controlled
through a configuration file which allows to change the calculation parameter
and to include easily different RPA amplitudes or potentials without recompiling
the software.

4.1 General Description

As shown in Fig. 4.1 the program consist of 3 global configuration and support
files which read the configuration data and provide general definitions of data
types, constants and functions that are used throughout all modules. Whereas
config.f95 reads the configuration file, nrtype.f95 is used to define constants
and data types and support.f95 supplies common routines like Simpson in-
tegration or the shooting method to calculate the solutions of the Schrödinger
equation.

alnucpot.f95 calculates the α-nucleon potential between the α-particle and
the RPA nucleon states. The RPA single particle-hole amplitudes are read by
rpaAmps.f95 and used to calculate the nuclear density function ρJN

LSJ in the mod-
ule rho.f95. The transition form factor FD

JN ,L0L(r) is calculated in formfact.f95

1The cernlib my be obtained from http://cernlib.web.cern.ch/cernlib/ or as a binary
packages from your Linux distribution. To compile the cernlib from source it might be nec-
essary to also install the LAPACK library which is available from http://www.netlib.org/
lapack/lug/lapack lug.html and the BLAS library available at http://www.netlib.org/
blas/index.html
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Figure 4.1: Module overview

and is combined to the optical potential in optPot.f95. The Green function
therefore is calculated in the module green.f95 from the regular and irregular
solution for the intermediate potential which is calculated by intermedPot.f95.

To speed up the calculation most modules are designed to receive a call to a
calc procedure that calculates the desired function values and stores the result
in an internal data structure. The results can than be obtained by consecutive
calls to the get function. The dimensions of the data structures in the memory
are fixed. The internal storage size and the sampling distance are chosen to
hold the data with sufficient accuracy up to a cutoff radius. Typically the cutoff
radius is 10 fm such that the contributions from values above the cutoff radius
are negligible.

nlimpot.f95 is the main program which includes the modules and has a main
loop to calculate the nonlocal imaginary potential. The program testit.f95

contains a set of test routines that can be used to printout intermediate results of
the modules for debugging purposes and was used to prepare the figures of this
thesis.

The routines itself are documented within the source code. To ease the debug-
ging and reuse of the code the following programming conventions where used.

• Variables names are chosen with self explaining names in lower case.

• Configuration variables and constants are UPPER case.



4.2. CONFIG.F95 55

• All modules use implicit variable declaration to ensure that all variables
have proper types.

• Global variables where avoided if possible.

• The function names are usually composed from several words where all
words start with a capital letter except the first. (e.g. readConfigFile)

The following section will give a short description of the modules, their ini-
tialization, dependencies, the file formats used and the available options to test
the modules.

4.2 config.f95

The configuration of the program is read from the configuration file. The name
of the configuration file is specified in the call of readConfigFile(filename).
The configuration file uses a name = value syntax. The # indicates a comment.
All characters following the # are discarded. The module defines default values
for all configuration options except the filename of the RPA amplitudes.

The main configuration options are given in Tab. 4.2 the remaining options
for the testing of the modules are given with the module description.

4.3 rpaAmps.f95

The module rpaAmps.f95 reads the RPA amplitudes XJN
j1,j2

and Y JN
j1,j2

. The rou-
tine allocates dynamically the memory required to store the amplitudes.

Initialization

To initialize the module call rpaInit(filename) with the filename that con-
tains the RPA amplitudes. To avoid error messages about improper memory
management the function rpaFree() should be called when the calculations are
finished.

Fileformat

The configuration of the module is managed by two configuration files. The name
of the main configuration file is given to rpaInit(filename) which contains aside
from the description of the particle hole states the filename of the second RPA
file .

The syntax of the configuration files is fixed. It is variable only to the extent
that the number of lines for the particle and hole states can change. The data
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Name Type Def. Description

DEBUG LEVEL int −1 Sets the debug level of the program. 0
and below indicates no debug informa-
tion. 1 prints moderate and 2 detailed
debug information to the screen while
executing the program.

RPA FILENAME char[40] specifies the filename from which the
RPA amplitudes should be read.

PROJECTILE N

TARGET N

int

int

4

16

Specifies the number of nucleons in the
target and the projectile

INCIDENT ENERGY real 30.0 Incident energy in the laboratory sys-
tem for which the optical potential will
be calculated.

GREEN POT int 0 Defines the intermediate potential for
the Green function. 0 gives the free
particle Green function and 1 uses a
Gaussian folding potential.

MAX L int 10 Maximum angular momentum that is
taken into account in the calculations.
The parameter effects the effective in-
teraction and the Green function.

COS THETA int 0 angle between r and r′ for which the
optical potential is calculated.

JN CONTRIBUTE int −1 Restricts the contributions of the RPA
amplitude to a certain total angular
momentum. When set to −1 all con-
tributions are taken into account.

Table 4.1: Main configuration file options
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in each line may be followed by an arbitrary comment that has to be separated
from the data by at least one blank character.

The first configuration file starts with the file name of the second configuration
file followed by the number of hole states in the second line. The following two
lines are a comment to make the configuration file better readable. Then for each
of the hole states one line has to be given that contains the quantum numbers n,
l, s, j and t. After a blank line the number of particle states is given and again
2 lines of comment followed by the table of particle state quantum numbers. A
typical main configuration file for 16O would read

------ Begin: states.dat ------

amplitudes.dat # RPA amplitudes filename

3 # nbr of holes

# hole states

# n l s j t

1. 0. 0.5 0.5 0.5 # 1s_1/2

1. 1. 0.5 1.5 0.5 # 1p_3/2

1. 1. 0.5 0.5 0.5 # 1p_1/2

7 # nbr of particles

# particle states

# n l s j t

1. 2. 0.5 2.5 0.5 # 1d_5/2

2. 0. 0.5 0.5 0.5 # 2s_1/2

1. 2. 0.5 1.5 0.5 # 1d_3/2

1. 3. 0.5 3.5 0.5 # 1f_7/2

2. 1. 0.5 1.5 0.5 # 2p_3/2

1. 3. 0.5 2.5 0.5 # 1f_5/2

2. 1. 0.5 0.5 0.5 # 2p_1/2

------- End: states.dat -------

The RPA amplitudes for the RPA states are read from the second file which
may contain an arbitrary number of data sets. Each data set is characterized
by a line starting with $ in the first column. The $ has to be followed by 4
real numbers for the channel parameter: total angular momentum (J), isospin
(T), parity (P) and the energy (E). The next line contains the RPA XJN

j1,j2
values

followed by one line for the Y JN
j1,j2

values. Each line of amplitudes contain np ∗ nh

data entries where nh is the number of holes and np the number of particles. The
order of the entries is: h1-p1 h1-p2 . . .h1-pnp h2-p1 . . .h2-pnp . . .hnh

-pnp .

Before and after each data set additional lines of comments may be inserted
as long as they do not contain the $ as their first character. A typical amplitude
file looks like the following example where due to limited space only the first few
data values are shown.
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------ Begin: amplitudes.dat ------

!!! RPA Amplitueds from S. Krewald and J. Speth

***** The used constants of this calculation are: ******

!!!

!!! S. Krewald and J. Speth. Phys. Lett. 52B. 295 (1974)

!!!

!!! J T P E

********************************************************

$ 3 1 0 6.52

0.000 0.000 0.000 -0.124 0.110 0.000 0.000 0.000 ...

0.003 0.001 0.000 0.007 0.000 0.000 0.000 0.000 ...

$ 3 1 0 18.91

0.000 0.000 0.000 0.000 -0.002 0.000 0.000 0.000 ...

0.003 0.001 0.000 0.019 0.000 0.000 0.000 0.000 ...

------- End: amplitudes.dat -------

Testing

With the configuration option WRITE RPA AMPS = 1 the RPA amplitudes will
be written to the file deb rpaAmps.txt which can be used to verify that the
amplitudes where read properly.

4.4 rho.f95

The module rho.f95 calculates the density function ρJN
LSJ(r) given by

ρJN
LSJ(r) =

∑
n1l1j1
n2l2j2

[
XJN

j1,j2
+ Y JN

j1,j2

] 1√
4π

1̂

2
Ŝĵ1ĵ2L̂Ĵ l̂1

(l10L0|l20)


l2

1
2

j2

l1
1
2

j1

L S J

Rn1l1j1(r)Rn2l2j2(r) . (4.1)

Initialization

The module requires that the RPA amplitudes from the module rpaAmps.f95

are read before the first call of calcRho(L,S,J,N) which calculates the density
function for the quantum numbersN , J , L and S. The density function values are
stored in an internal data structure and can be received through consecutive calls
to the function getRho(r) which returns the density function for the quantum
numbers given in the last call of calcRho(L,S,J,N)
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Parameter

The header of the module defines the parameters for the step size and the radial
range of the internal data structure.

RHO_R_STEP_SIZE = 0.05_dp ! fm

RHO_R_ARRAY_SIZE = 200 ! Samplepoints

Testing

With the configuration option TEST DENSITY = 1 the density function of all RPA
states will be written to the files deb rhoTest NNN J.txt where NNN indicates the
index of the state in the RPA file and J is the total angular momentum of the
state. The files contain the density function and the radial integral of the density
function ∫ r

0

dr′r′2ρJN
LSJ(r′)

4.5 alnucpot.f95

The module alnucpot.f95 calculates the α-nucleon potential in the multipole
expansion given by

vL(r1, r2) = 2π

∫ 1

−1

d(cos θ)PL(cos θ)V (
√
r2
1 + r2

2 − 2r1r2 cos θ) (4.2)

V (r) = V1e
−a1r2

+ V2e
−a2r2

(4.3)

Initialization

To calculate the α-nucleon interaction the function calcPotential() has to be
called. The interaction values are stored in an internal data structure and can
be received through consecutive calls to the function getPotential(l,r1,r2)

where l is the angular momentum.

Parameter

The header of the module defines the parameters for the step size, the radial
extent, the maximum angular momentum and the α-nucleon potential parameters
of Eq. (4.3)

ANPOT_R_STEP_SIZE = 0.05_dp ! fm

ANPOT_R_ARRAY_SIZE = 200 ! Samplepoints

ANPOT_MAX_L = 10 !
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Figure 4.2: Sum of the radial α-nucleon interaction for cos θ = 1 (left) and cos θ = −1
right

! Potential Parameter

V01 = -310.1_DP ! MeV

V02 = 319.2_DP ! MeV

alpha1 = 0.422_DP ! 1/fm2

alpha2 = 0.505_DP ! 1/fm2

Testing

With the configuration option TEST ALNUC POTENTIAL = 1 the α-nucleon po-
tential for the direction cos θ = 1 and cos θ = −1 will be written to the file
deb an potential sum.txt. The file contains the sum of the multipole contri-
bution up to l = ANPOT MAX L.

V (r1, r2) =
ANPOT MAX L∑

l=0

(2l + 1)

4π
vl(r1, r2)Pl(cos θ) (4.4)

Fig.(4.2) shows that the sum reveals the original α-nucleon potential of Eq. (4.3)
along the diagonal r1 = r2 for cos θ = 1 and in perpendicular direction for
cos θ = −1. Further, the test writes the first 4 multiple contributions for cos θ = 1
to deb an potential 0-3.txt as shown in Fig. 3.6.

4.6 formfact.f95

The module formfact.f95 calculates from the nuclear density and the α-nucleon
interaction the transition form factor given by

FD
JN ,L0L(r) =

∫
dr1r

2
1ρ

JN
L0L(r1)vL(r, r1) (4.5)

Initialization
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To calculate the transition form factor the function calcFormfact(N,L) has to
be called. The function calculates the form factor for the given index N of the
RPA states and the angular momentum L. The results are stored in an internal
data structure and can be received through consecutive calls to the function
getFormfact(r). Before the module can be used the RPA-amplitudes and the
α-nucleon interaction have to be initialized.

Parameter

The header of the module defines the parameters for the step size and the
radial extent of the internal data structure.

FORM_R_STEP_SIZE = 0.05_dp ! fm

FORM_R_ARRAY_SIZE = 200 ! Samplepoints

Testing

With the configuration option WRITE FORMFACTOR = 1 the transition form
factors will be written to the files deb formfact NNN J.txt where NNN indicates
the index of the state in the RPA configuration file and J is the total angular
momentum of the state.

4.7 intermedPot.f95

The module intermdePot.f95 calculates the potential for the propagation in
the intermediate states given as the double folding integral of the α and the 16O
nucleon density distributions Eq. (3.12).

Initialization

To calculate the potential for the propagation in the intermediate state the
function initImPot() has to be called. The results are stored in an internal
data structure and can be received through consecutive calls to the function
getImPotR(e,r). The potential is internally calculated in steps of 10MeV up to
40MeV. The intermediate values are linearly interpolated.

Parameter

The header of the module defines the parameters for the step size and the radial
extent of the internal data structure. The K-space parameters are for the internal
array that holds the Fourier transformed functions before they are transformed
back to the R-space.
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IMPOT_R_STEP_SIZE = 0.1 ! fm

IMPOT_R_ARRAY_SIZE = 100 ! SamplePoints

IMPOT_E_STEP_SIZE = 10.0 ! MeV

IMPOT_E_ARRAY_SIZE = 4 ! Samplepoints

! K-Space Parameter

IMPOT_K_STEP_SIZE = 0.005_dp ! 1/fm

IMPOT_K_ARRAY_SIZE = 400 ! Samplepoints

Testing

With the configuration option TEST INTERMEDPOT = 1 the potential will be
written to the file deb intermedpot.txt.

4.8 green.f95

The module green.f95 calculates the radial Green function for the potential as
described in Sec. 3.2.

Initialization

Prior the first usage of the module the function initGreen() has to be exe-
cuted. This function will initialize the intermediate potential used for the Green
function. To calculate the radial Green function for the angular momentum l the
function calcGreen(energy, l) has to be called. The results are then stored in
an internal data structure and can be received through consecutive calls to the
function getGreen(r1,r2).

Parameter

The header of the module defines the parameter for the step size and the
radial extend of the internal data structure.

GREEN_R_STEP_SIZE = 0.05_dp ! fm

GREEN_R_ARRAY_SIZE = 200 ! Samplepoints

Testing

With the configuration option TEST GREEN = 1 the partial green function up
to MAX L will be written to the files deb green EE LL.txt where EE will be re-
placed by the energy in the intermediate channel and LL will be the angular
momentum. Further the sum of the partial Green function

~2

2mk

∞∑
l=0

(2l + 1) Gl(r, r
′) Pl(cos γ) (4.6)

is written to the file deb green test.txt. For the free particle option GREEN POT

= 0 the sum has to reveal the form sin(ks)/ks and is shown in Fig. 4.3.
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Figure 4.3: Sum of the radial Green function Gl(r, r′) up to l=10 normalized with the
factor 2mk/~2

4.9 optPot.f95

The module optPot.f95 calculates the imaginary part of the optical potential
by summing up the contributions from all open channels of

W (~r, ~r′) = Im

 1
16π2

∑
l,lc,L
JN

δL,JN

l̂2 l̂2c

L̂2
(l0lc0|L0) , FD

JN ,L0L(r)glc(r, r
′)FD

JN ,L0L(r′)Pl(cos θ)

 ,

(4.7)

Initialization

Prior the first usage of the module the RPA amplitudes and the α-16O potential
have to be initialized. The optical potential is calculated with a call to the
function calcOptPot(energy,cosTheta) where energy is the α incident energy
in the center of mass system and cosTheta is the cos θ as used in Eq. (2.67).
The potential is stored in the internal data structure and can be received by
consecutive calls to getOptPot(r1, r2) which returns the real and the imaginary
part of the calculation where only the imaginary part can be used for the optical
potential.

Parameter
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The header of the module defines the parameter for the step size and the radial
extend of the internal data structure.

OPTP_R_STEP_SIZE = 0.05_dp ! fm

OPTP_R_ARRAY_SIZE = 200 ! Samplepoints

Testing

The results from the calculation where used for nuclear cross section calculations
and are discussed in Sec. 3.4.
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Appendix A

Derivations

A.1 Folding Potential

To calculate the double folding potential we insert Eq. (3.2) and Eq. (3.5) into
Eq. (3.1) and get two double folding integrals

U(~r) = λ C

[∫
d3~r1

∫
d3~r2 ρT (~r1) ρα(~r2) g(~r + ~r1 − ~r2)

+ α

∫
d3~r1

∫
d3~r2 ρT (~r1)e

−βρT (~r2) ρα(~r2)e
−βρα(~r2) g(~r + ~r1 − ~r2)

]
.(A.1)

The calculation of the double folding integral is very time consuming thus we
seek for a simpler way to calculate the integral for U(~r). From Eq. (A.1) we see
that both integrals have the form

F (~r) =

∫
d3~r1

∫
d3~r2 f1(~r1) f2(~r2) f3(~r + ~r1 − ~r2) . (A.2)

To simplify Eq. (A.2) we perform a Fourier transformation. We keep the
following derivation general in order not to imply restrictions on the functions f1,
f2 and f3 except that their Fourier transform must exist. Finally we restrict the
functions to spherical symmetric ones so that we get the results for our purposes.
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We rewrite Eq. (A.2) using Fourier transformed functions

F (~r) =
1

(2π)
9
2

∫
d3~r1

∫
d3~r2

∫
d3~k1

∫
d3~k2

∫
d3~k3

× f̃1(~k1) e
i~k1~r1 f̃2(~k2) e

i~k2~r2 f̃3(~k3)e
i~k3(~r+~r1−~r2)

= (2π)
3
2

∫
d3~k1

∫
d3~k2

∫
d3~k3

× f̃1(~k1) f̃2(~k2) f̃3(~k3)e
i~k3~rδ3(~k1 + ~k3)δ

3(~k2 − ~k3)

= (2π)
3
2

∫
d3~k f̃1(−~k) f̃2(~k) f̃3(~k)e

i~k~r

= (2π)3 1

(2π)
3
2

∫
d3~kF̃ (k)ei~k~r (A.3)

F̃ (~k) = f̃1(−~k) f̃2(~k) f̃3(~k) (A.4)

f̃(~k) =
1

(2π)
3
2

∫
d3~r f(~r) e−i~k~r . (A.5)

The functions f1, f2 and f3 are spherical symmetric and therefore we can drop
the angular dependence from Eq. (A.4) and simplify Eq. (A.5) to

F̃ (k) = f̃1(k) f̃2(k) f̃3(k) (A.6)

f̃(k) =
1

(2π)
3
2

∫
d3~r f(r) e−i~k~r

=
1

(2π)
1
2

∫ ∞

0

dr r2f(r)

∫ 1

−1

d(cos θ)e−ikr cos θ

=
2

(2π)
1
2

∫ ∞

0

dr r2f(r)
sin(kr)

kr
(A.7)

F (r) = (2π)3 2

(2π)
1
2

∫ ∞

0

dk k2F̃ (k)
sin(kr)

kr
. (A.8)

With Eq. (A.6)-(A.8) we can rewrite Eq. (A.1) so we finally get the equation for
the double folding integral

U(r) = λC(2π)3Ft
[
Ft[g]

(
Ft[ρT ]Ft[ρα] + αFt[ρT e

−βρT ]Ft[ραe
−βρα ]

) ]
(A.9)

Ft[f ] =
2

(2π)
1
2

∫ ∞

0

dr r2f(r)
sin(kr)

kr
(A.10)

where Ft[f ] is the 3 dimensional Fourier transform of the function f given by Eq.
(A.10). This expression is not a double folding integral but the Fourier transform
of the product of 3 functions which themselves are Fourier transformed functions.
For a function that is evaluated on a grid with N sampling points the calculation
effort reduces from N3 to 4N2.
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A.2 The Green Function

Before we start with the discussion of the Green function let us recall briefly how
the Green function was constructed,

G(~r, ~r′) =
∞∑
l=0

Gl(r, r
′)

2l + 1

4π
Pl(cos γ) (A.11)

Gl(r, r
′) = Nlgl(r, r

′) (A.12)

gl(r, r
′) = −1

k
φl(r<)ψl(r>) . (A.13)

Here Gl(r, r
′) is the radial Green function for the partial wave l and r< and r> are

the bigger and the smaller of the two radii r and r′. Nl is a complex scaling factor
and k =

√
2µEint/~2 is the wave vector for the energy Eint in the intermediate

channel. ψl and φl are two independent solutions of the homogeneous Schrödinger
equation

Ĥφl(r) = 0 ,

Ĥψl(r) = 0 , (A.14)

with the Hamiltonian

Ĥ = − ~2

2µ

[
1

r

d2

dr2
r − l(l + 1)

r2

]
+ V (r)− Eint . (A.15)

From the construction of the Green function it is clear that the application of the
Hamilton operator to the Green function yields 0 except for r = r′

0 = Ĥl(r) Gl(r, r
′) for r 6= r′ (A.16)

0 6= Ĥl(r) Gl(r, r
′) for r = r′ (A.17)

(A.18)

The two functions φ(r) and ψ(r) are independent continuous functions of r,
thus Gl(r, r

′) as well is a continuous function of r and r′. From Eq. (A.11 -
A.13) it is obvious that Gl(r, r

′) is symmetric with respect to the exchange of its
arguments Gl(r, r

′) = Gl(r
′, r). As φl(r) and ψl(r) are linearly independent the

first derivative of Gl(r, r
′) has a finite jump at r = r′ and the second derivative

goes to infinity.
The boundary conditions

r Gl(r, r
′)

r→∞−−−→ 0 , (A.19)

r Gl(r, r
′)

r→∞−−−→ eikr , (A.20)

imply that φl(r) and ψl(r) fulfill the same boundary conditions

r φl(r)
r→∞−−−→ 0 (A.21)

r ψl(r)
r→∞−−−→ eikr (A.22)
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We choose the regular solution for φl(r) and the irregular solutions for ψl(r). To
fix the scaling factor Nl we calculate the integral of Eq. (3.20).

1

r′2
=

∫ ∞

0

dr
1

rr′
δ(r − r′)

= Nl

∫ ∞

0

dr
(
Ĥl(r)− Eint

)
g(r, r′)

= Nl lim
ξ→0

∫ r′+ξ

r′−ξ

dr

(
~2

2µ

[
1

r

d2

dr2
r − l(l + 1)

r2

]
+ V (r)− Eint

)
g(r, r′)

= Nl
~2

2µ
lim
ξ→0

∫ r′+ξ

r′−ξ

dr
1

r

d2

dr2
rg(r, r′)

= Nl
~2

2µ
lim
ξ→0

∫ r′+ξ

r′−ξ

dr
d2

dr2
g(r, r′) +

2

r

d

dr
g(r, r′)

= Nl
~2

2µ
lim
ξ→0

∫ r′+ξ

r′−ξ

dr
d2

dr2
g(r, r′)

= Nl
~2

2µ
lim
ξ→0

(
d

dr
g(r, r′)

∣∣∣∣
r′+ξ

− d

dr
g(r, r′)

∣∣∣∣
r′−ξ

)

= −Nl
~2

2µ

1

k

(
φl(r

′)
d

dr
ψl(r)

∣∣∣∣
r′
− ψl(r

′)
d

dr
φl(r)

∣∣∣∣
r′

)
(A.23)

From Eq. (A.23) it seams that Nl is not a constant but a function of r′ which is
not the case. To show this we substitute rφl(r) = ul(r) in Eq. (A.14) so that we
get a new Schrödinger equation for ul(r).[

d2

dr2
− l(l + 1)

r2
+

2µ

~2
(Eint − U(r))

]
ul(r) = 0 . (A.24)

We do the same for rψl(r) = vl(r) and inset the result into Eq. (A.23)

2µ

~2

1

Nl

=

(
ul(r)

rv′l(r) + vl(r)

r
− vl(r)

ru′l(r) + ul(r)

r

)
= ul(r)v

′
l(r)− u′l(r)vl(r) . (A.25)

We have introduced the notation u′l(r) = d
dr
ul(r) and replaced r′ by r. To demon-

strate that Nl is independent from r we show that the derivative of the right hand
side of Eq. (A.25) vanishes for all r. Using Eq. (A.24) we can replace the second
derivatives u′′l (r) and v′′l (r) to get the desired result.

− 2µ

~2

d

dr

k

Nl

= (ul(r)v
′
l(r)− u′l(r)vl(r))

′

= ul(r)v
′′
l (r)− u′′l (r)vl(r)

=

[
l(l + 1)

r2
− 2µ

~2
(Eint − U(r))

]
(ul(r)vl(r)− ul(r)vl(r))

= 0 (A.26)
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We see from Eq. (A.26) that the scaling factor Nl is independent from the radius
r and can be evaluated at any distance via

Nl =
2µ

~2

k

r′2

(
φl(r

′)
d

dr
ψl(r)

∣∣∣∣
r′
− ψl(r

′)
d

dr
φl(r)

∣∣∣∣
r′

)−1

. (A.27)

A.3 Spherical Multipole Expansion of the Nu-

clear Interaction

The central α-target interaction vL(r1, r2) in Eq. (2.68) arises from the multipole
expansion

V (~r) =
∞∑
l=0

(2l + 1)

4π
vl(r1, r2)Pl(cos θ) , (A.28)

where Pl(cos θ) are the Legendre polynomials and θ is the angle between ~r1 and
~r2 and ~r = ~r2−~r1. We search for an expression for vl(r1, r2) as a function of V (r)
and start by expressing V (~r) by it’s spherical Fourier transform

Ṽ (~k) =
1

(2π)3

∫
d3~r V (r)ei~k~r . (A.29)

With the help of

ei~k~r = 4π
∞∑
l=0

iljl(kr)
l∑

m=−l

Ylm(r̂)Ylm(k̂) , (A.30)

where jl(kr) are the spherical Bessel functions, we get

Ṽ (k) =
1

2π2

∫ ∞

0

dr r2V (r)j0(kr) . (A.31)

The angular integral over the Ylm cancels all contributions from l 6= 0 and the
interaction in the k space is also spherical symmetric thus we drop the vector
sign from k. Performing the inverse Fourier transform on Eq. (A.31) yields

V (r) =

∫
d3~k Ṽ (k)e−i~k~r2ei~k~r1

= (4π)2

∫
d3~k Ṽ (k)

∑
l1m1

∑
l2m2

il1+l2 jl1(−kr2) jl2(kr1)

× Yl1m1(r̂2) Yl1m1(k̂) Yl2m2(r̂1) Yl2m2(k̂)

= (4π)2

∫ ∞

0

dk k2Ṽ (k)
∑
lm

(−1)ljl(−kr2) jl(kr1) Ylm(r̂2) Ylm(r̂1) ,

(A.32)
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where we replaced ~r = ~r2 − ~r1 and use the spherical wave expansion from Eq.
(A.30). With the addition theorem of the spherical harmonics

l∑
m=−l

Ylm(r1) Ylm(r2) =
2l + 1

4π
Pl(cos θ) , (A.33)

we get the expression

V (r) =
∑

l

(2l + 1)

4π
vl(r1, r2)Pl(cos θ) , (A.34)

with

vl(r1, r2) = (4π)2(−1)l

∫ ∞

0

dk k2Ṽ (k)jl(−kr2) jl(kr1) . (A.35)

We replace in Eq. (A.35) the k-space potential by its Fourier transformation Eq.
(A.31) and obtain

vl(r1, r2) = 8(−1)l

∫ ∞

0

dr r2V (r)

∫ ∞

0

dk k2j0(kr) jl(kr1) jl(−kr2) . (A.36)

The integral of 3 spherical Bessel function has the analytic solution[27]∫ ∞

0

dk k2j0(kr) jl(kr1) jl(kr2) = (−1)l π

4r r1r2
Pl(cos θ) (A.37)

where θ is the angle between ~r1 and ~r2. Substitution of Eq. (A.37) in Eq. (A.36)
yields

vl(r1, r2) = 2π

∫ ∞

0

dr r2V (r)
1

r r1r2
Pl(cos θ) (A.38)

The integral over the whole range of r can be evaluated when we take into account
that due to ~r = ~r2 − ~r1 the triangular relation |r1 − r2| ≤ r ≤ |r1 + r2| has to be
satisfied. Thus we substitute

r =
√
r2
1 + r2

2 − 2r1r2 cos θ (A.39)

with

cos θ =
r2
1 + r2

2 − r2

2r1r2
. (A.40)

Finally we get for the spherical multipole expansion of the nuclear interaction

vl(r1, r2) = 2π

∫ 1

−1

d(cos θ) V (r)Pl(cos θ) . (A.41)
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Tables

B.1 160 RPA Amplitudes

E= 6.52 MeV 18.91 MeV 46.99 MeV 54.65 MeV

T h p X Y X Y X Y X Y

0

1s 1
2

1f 7
2

-0.062 -0.059 0.030 0.002 0.065 0.022 0.393 -0.001

1f 5
2

0.053 0.032 -0.001 -0.011 -0.145 -0.000 -0.037 0.015

1p 3
2

1d 5
2

-0.293 -0.146 -0.723 0.013 -0.036 0.027 0.038 -0.010

1d 3
2

0.281 0.118 -0.008 -0.035 0.143 0.001 0.011 0.036

1g 9
2

0.123 0.111 -0.050 -0.004 -0.847 -0.042 -0.371 0.001

1p 1
2

1d 5
2

0.653 0.240 0.184 -0.001 -0.002 -0.054 -0.061 -0.005

1

1s 1
2

1f 7
2

-0.062 -0.062 -0.030 -0.002 0.224 0.020 -0.708 -0.004

1f 5
2

0.057 0.033 -0.001 0.012 -0.107 -0.010 0.090 -0.015

1p 3
2

1d 5
2

-0.311 -0.156 0.635 -0.013 0.063 0.032 -0.029 0.004

1d 3
2

0.246 0.101 -0.004 0.029 0.102 -0.021 -0.029 -0.028

1g 9
2

0.085 0.079 0.030 0.002 -0.410 0.027 0.436 0.005

1p 1
2

1d 5
2

0.661 0.258 -0.195 -0.001 0.047 -0.045 0.058 0.015

Table B.1: 16O RPA amplitudes 3− states from S. Krewald and J. Speth[20]
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E= 14.1 MeV 18.33 MeV 19.97 MeV 22.22 MeV

T h p X Y X Y X Y X Y

0

1s 1
2

2p 3
2

-0.030 -0.001 -0.016 -0.002 0.045 0.016 -0.026 -0.005

2p 1
2

-0.008 0.017 -0.000 0.001 -0.032 0.003 0.004 0.010

1p 3
2

1d 5
2

0.030 0.008 -0.028 0.010 0.022 0.006 -0.647 0.039

2s 1
2

0.008 -0.025 -0.266 -0.011 -0.568 0.003 0.076 0.012

1d 3
2

-0.015 -0.000 -0.059 0.004 -0.058 0.003 0.164 -0.034

1p 1
2

2s 1
2

-0.420 -0.012 -0.068 -0.005 -0.029 -0.030 0.037 -0.004

1d 3
2

-0.074 -0.004 0.152 -0.001 0.035 0.001 0.200 -0.053

1

1s 1
2

2p 3
2

0.036 -0.010 -0.018 0.010 0.004 -0.018 0.026 0.003

2p 1
2

0.027 -0.024 -0.024 0.012 0.036 -0.007 0.001 -0.011

1p 3
2

1d 5
2

0.136 0.009 -0.174 -0.042 -0.131 -0.013 0.655 -0.035

2s 1
2

-0.088 0.038 -0.374 -0.012 0.786 0.006 0.098 -0.013

1d 3
2

0.004 -0.007 0.202 -0.016 0.138 -0.010 -0.223 0.031

1p 1
2

2s 1
2

0.888 0.033 -0.075 -0.003 0.085 0.040 -0.042 0.006

1d 3
2

-0.050 -0.010 -0.826 -0.002 -0.109 -0.005 -0.166 0.044

Table B.2: 16O RPA amplitudes 1− states from S. Krewald and J. Speth[20]

E= 27.64 MeV 38.49 MeV 43.28 MeV

T h p X Y X Y X Y

0

1s 1
2

2s 1
2

0.126 0.020 0.012 -0.000 -0.510 0.034

1p 3
2

2p 3
2

-0.420 -0.055 0.444 -0.016 0.383 -0.036

1p 1
2

2p 1
2

0.558 0.040 -0.123 0.012 -0.174 0.026

1

1s 1
2

2s 1
2

0.104 0.018 -0.673 -0.004 0.628 -0.033

1p 3
2

2p 3
2

-0.426 -0.055 -0.560 0.020 -0.381 0.036

1p 1
2

2p 1
2

0.561 0.039 0.152 -0.014 0.169 -0.026

Table B.3: 16O RPA amplitudes 0+ states from S. Krewald and J. Speth[20]
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E= 23.04 MeV 29.94 MeV 41.14 MeV

T h p X Y X Y X Y

0

1s 1
2

1g 9
2

0.020 0.023 0.011 0.007 -0.064 0.004

1p 3
2

1f 7
2

0.136 0.033 0.790 0.010 0.104 -0.002

1f 5
2

-0.164 -0.016 -0.084 -0.007 0.879 0.029

1p 1
2

1f 7
2

-0.792 -0.055 0.077 -0.015 -0.126 -0.010

1

1s 1
2

1g 9
2

0.019 0.015 0.018 0.004 -0.034 -0.003

1p 3
2

1f 7
2

0.171 0.034 0.501 0.012 0.134 -0.010

1f 5
2

-0.149 -0.025 -0.060 -0.022 0.405 0.026

1p 1
2

1f 7
2

-0.525 -0.051 0.331 -0.011 -0.126 0.005

Table B.4: 16O RPA amplitudes 4+ states from S. Krewald and J. Speth[20]
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E= 22.97 MeV 34.72 MeV 36.22 MeV 41.26 MeV

T h p X Y X Y X Y X Y

0

1s 1
2

1d 5
2

-0.190 -0.053 0.083 -0.007 0.392 0.014 0.296 -0.006

1d 3
2

0.133 0.032 0.073 -0.004 -0.146 -0.003 0.179 0.013

1p 3
2

1f 7
2

0.606 0.098 0.079 0.001 0.128 -0.021 -0.078 0.017

1f 5
2

-0.129 -0.025 -0.111 0.006 0.182 0.001 0.636 -0.002

2p 3
2

0.051 0.011 -0.013 -0.000 0.061 0.003 0.038 -0.003

2p 1
2

-0.038 -0.010 0.008 -0.000 0.071 0.001 0.288 0.016

1p 1
2

1f 5
2

-0.343 -0.058 0.748 0.004 -0.457 0.007 0.120 -0.008

2p 3
2

-0.096 -0.012 -0.002 0.003 -0.013 -0.002 -0.115 -0.013

1

1s 1
2

1d 5
2

-0.186 -0.053 0.300 0.002 0.382 -0.001 -0.424 -0.003

1d 3
2

0.106 0.027 0.002 -0.010 0.021 -0.007 0.136 -0.013

1p 3
2

1f 7
2

0.539 0.010 0.545 -0.004 0.230 0.002 0.134 -0.005

1f 5
2

-0.126 -0.027 -0.040 0.013 -0.071 0.009 -0.165 0.009

2p 3
2

0.061 0.013 -0.031 -0.001 -0.188 0.001 -0.012 0.001

2p 1
2

-0.044 -0.011 -0.011 0.001 -0.060 0.009 -0.319 -0.015

1p 1
2

1f 5
2

-0.313 -0.061 0.143 0.016 0.562 0.010 -0.047 0.012

2p 3
2

-0.115 -0.015 -0.021 -0.001 0.007 -0.002 0.112 0.016

Table B.5: 16O RPA amplitudes 2+ states from S. Krewald and J. Speth[20]
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E= 13.36 MeV 22.79 MeV 24.73 MeV 25.32 MeV

T h p X Y X Y X Y X Y

0

1s 1
2

1f 5
2

0.006 0.004 -0.033 -0.015 0.021 0.009 -0.030 -0.012

2p 3
2

-0.020 -0.012 -0.020 -0.008 -0.017 -0.006 0.030 0.011

1p 3
2

1d 5
2

0.289 0.041 -0.532 0.045 -0.121 0.020 0.244 -0.042

2s 1
2

0.036 0.006 -0.173 0.019 -0.038 0.006 0.083 -0.013

1d 3
2

0.084 0.022 0.177 0.001 -0.573 0.021 0.724 -0.035

1p 1
2

1d 5
2

-0.841 0.063 -0.176 0.058 -0.104 0.038 0.190 -0.072

1d 3
2

-0.043 -0.005 -0.371 0.058 0.108 -0.021 -0.126 0.026

1

1s 1
2

1f 5
2

0.004 0.002 0.029 0.014 0.020 0.009 0.019 0.008

2p 3
2

-0.010 -0.010 0.014 0.006 -0.020 -0.008 -0.020 -0.008

1p 3
2

1d 5
2

0.146 0.020 0.517 -0.066 -0.210 -0.035 -0.213 0.038

2s 1
2

0.017 0.003 0.226 -0.023 -0.087 0.012 -0.090 0.014

1d 3
2

0.034 0.009 -0.246 -0.003 -0.747 0.021 -0.536 0.022

1p 1
2

1d 5
2

-0.429 0.031 0.186 -0.061 -0.156 0.057 -0.159 0.059

1d 3
2

-0.022 -0.002 0.306 -0.042 0.074 -0.013 0.060 -0.011

Table B.6: 16O RPA amplitudes 2− states from S. Krewald and J. Speth[20]
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