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Abstract

There are many sets of transformations, which generate geometric patterns of repeated
structures in 3D mesh-based models. Discovery of such patterns generated by commu-
tative one- and two parameter subgroups of the group of similarity transformations has
already been handled by other authors. We propose a method, which considers a more
general case of geometric patterns generated by one parameter rigid body motions. Our
method for the reconstruction of rigid body motions generating geometric patterns is
not fully automatic and requires some user interaction to select one of the repeated
structures in the model at the moment. Discovery of the others is made possible by
using known registration and interpolation algorithms. As an application of our method
we use the reconstructed rigid body motion to generate 3D geometric texture.
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Kurzfassung

Es gibt viele Mengen von Transformationen, die in 3D netzbasierten Modellen ge-
ometrische Muster von wiederholenden Strukturen generieren. Die Entdeckung von
solchen Mustern, die von kommutativen ein- und zweiparametrigen Untergruppen der
Gruppe der Ähnlichkeitsabbildungen generiert werden, wurde bereits von anderen Au-
thoren behandelt. Wir schlagen eine Methode vor, die einen allgemeineren Fall von
geometrischen Mustern, die von einparametrigen Starrkörpertransformationen generiert
werden, berücksichtigt. Unsere Methode zur Rekonstruktion von geometrische Muster
generierenden Starrkörperbewegungen ist zurzeit nicht vollautomatisch und be- nötigt
etwas Benutzerinteraktion zum Selektieren von einer der wiederholenden Strukturen
im Modell. Die Entdeckung von anderen wird durch die Verwendung von bekannten
Registrierungs- und Interpolationsalgorithmen möglich. Als eine Anwendung unserer
Methode verwenden wir die rekonstruierte Starrkörperbewegung zum Generieren von
3D geometrischen Texturen.
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1 Introduction

Given a 3D geometric model, one wants to detect repeated geometric structures in
the model, which have been extensively studied in [21]. Pauly et al. [21] introduce an
algorithm for discovering geometric patterns generated by commutative one- and two-
parameter subgroups of the group of similarity transformations and concludes that their
work is limited with the commutative case. In this thesis, we contribute to their work
by considering a more general case of geometric patterns generated by one parameter
rigid body motions. This thesis is structured as follows:

• Chapter 2 introduces some basic concepts from differential geometry, which will
be needed throughout our algorithm and the algorithm proposed in [21].

• Chapter 3 gives a short introduction to graph theory, focussing on what will be
needed in our method.

• Chapter 4 gives a short introduction to quaternions and describes how rotations
can be represented by unit quaternions. There are several notations that can be
used to represent rotations. This chapter also addresses the conversion between
different notations of rotations. Quaternion representation of rotations is used in
the method of Horn [15] for the registration of two point sets by given correspon-
dences.

• Chapter 5 describes some registration algorithms with known and unknown corre-
spondences, focussing on which are implemented in the accompanying software.

• Chapter 6 describes the algorithm for the discovery of geometric patterns gener-
ated by commutative one- and two-parameter subgroups of the group of similarity
transformations as proposed in [21].

• Chapter 7 presents our method for the reconstruction of rigid body motions gen-
erating patterns of repeated structures in 3D geometric models.

• Chapter 8 shows how to use the reconstructed rigid body motion to generate 3D
geometric texture and discusses some limitations of our method that were found
to be of interest for further investigation.
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2 Differential Geometry

We will give some basic definitons from differential geometry. Our goal is to introduce
the notion of principal curvatures k1,k2 and the principal directions e1, e2. Further
detail on differential geometry can be found in [18].

2.1 Regular Curves

Definition 2.1. A parametric differentiable curve is a differentiable function α : I → R3

of the open interval I = (a, b) ⊆ R in R3.

The differentiability in the above definition means that the function α maps each t ∈ I
onto a point α(t) = (x(t), y(t), z(t)) ∈ R3 such that the functions x(t), y(t), z(t) of the
real variable t are differentiable.

Definition 2.2. A parametric differentiable curve α : I → R3 is regular, if α′(t) 6= 0 for
all t ∈ I.

In the following we consider only regular curves.

2.1.1 Frenet Formulas

Let α : I = (a, b)→ R3 denote a curve1 parametrized by its arc length s.

Definition 2.3. The magnitude of α
′′
(s)

k(s) = |α′′(s)|

is called the curvature of α at the parameter value s.

Because of the arc length parametrization, the tangent vector α′(s) = t(s) has unit
length at each point:

|α′(s)| ≡ 1.

If we differentiate the identitiy
α′(s) · α′(s) ≡ 1

with respect to s, we get another identity

α
′′
(s) · α′(s) ≡ 0.

1In the following the phrase curve will always refer to a regular parametric differentiable curve.
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2 Differential Geometry

Therefore α
′′
(s) ≡ 0 (i.e. the curve is a straight line) or α

′′
(s) is normal to the tangent

vector. At every point of the curve for which k(s) 6= 0 there is a well-defined unit vector

n(s) = α
′′
(s)/k(s)

called the principal normal.
We consider only curves, which don’t have any singular point of order one (i.e. a point

with k(s) = 0).
The plane spanned by the unit tangent vector t(s) and the unit principal normal

vector n(s) is called the osculating plane at α(s).
The unit vector

b(s) = t(s)× n(s)

is perpendicular to the osculating plane at α(s) and is called the binormal vector. Dif-
ferentiating the identitiy

b(s) · b(s) ≡ 1

with respect to s gives us
b′(s) · b(s) ≡ 0,

which implies b′(s) = 0 (i.e. α is a plane curve) or b′(s) is normal to b(s). b′(s) is also
normal to t(s), since the following holds:

b′(s) = t′(s)× n(s) + t(s)× n′(s) = t(s)× n′(s).

Thus b′(s) must be parallel to n(s) and it can be written as:

b′(s) = τ(s)n(s)

with a function τ(s).

Definition 2.4. The number τ(s) defined by

b′(s) = τ(s)n(s)

is called the torsion of the curve α at the parameter value s.

In order to define the Frenet formulas, the vector n′(s) has to be computed. Since
n(s) = b(s)× t(s), we get

n′(s) = b′(s)× t(s) + b(s)× t′(s) =

τ(s)(n(s)× t(s)) + k(s)(b(s)× n(s)) =

−τ(s)b(s)− k(s)t(s).

The Frenet formulas are:

t′ = kn

n′ = −kt− τb
b′ = τn

3



2 Differential Geometry

Remark 2.5. In the special case of a plane curve α : I → R2 the curvature k(s) can also
be assigned a negative value. For this purpose the normal vector n(s), s ∈ I is defined
in such a way that the basis {t(s), n(s)} has the same orientation as the canonical basis
of R2. Then the curvature k(s) is defined as follows:

dt

ds
= kn

and can be both, positiv and negativ.

2.2 Regular Surfaces

In this section a regular surface shall be denoted by S. Each point p ∈ S of a regular
surface has a neighbourhood V̄ in R3 such that V = V̄ ∩ S ⊂ R3 has a parametric
representation as follows:

x : U ⊂ R2 → V ⊂ R3 : (u, v) ∈ U → x(u, v) ∈ S. (2.1)

For a definition of a regular surface we refer the reader to [18]. It can be shown that geo-
metric objects and properties like tangent space, normal vector, curvature, etc., which are
defined in terms of the parametrization (2.1) are independent of a specific parametriza-
tion of the regular surface S, but dependent only of the regular surface S itself.

2.2.1 Differentiable Functions on Regular Surfaces

Definition 2.6. Let f : V ⊂ S → R be a function defined on an open subset V
of the regular surface S. f is called differentiable at p ∈ V , if for a parametrization
x : U ⊂ R2 → S with p ∈ x(U) ⊂ V the concatenated function f ◦ x : U ⊂ R2 → R is
differentiable at x−1(p). f is called differentiable, if it is differentiable at all p ∈ V .

This definition of differentiability can easily be extended to functions mapping from
a regular surface S1 onto a regular surface S2. The function ψ : V1 ⊂ S1 → S2 from an
open subset V1 of the regular surface S1 onto the regular surface S2 is called differentiable
at p ∈ V1, if for the parametrizations

x1 : U1 ⊂ R2 → S1, x2 : U2 ⊂ R2 → S2,

with p ∈ x1(U1) and ψ(x1(U1)) ⊂ x2(U2) the function

x−1
2 ◦ ψ ◦ x1 : U1 → U2

is differentiable at q = x−1
1 (p).

4



2 Differential Geometry

2.2.2 Tangent Space

The partial derivatives of the parameterisation x shall be denoted by ∂x/∂u = xu and
∂x/∂v = xv, their evaluation at a surface point p = x(q), q ∈ U by xu(q), xv(q). The
vectors xu(q), xv(q) span the tangent space Tp(S) of the regular surface S at a given
surface point p. The choice of the parametrization x determines a basis {xu(q), xv(q)} of
Tp(S), which is called an associated basis to x. The regularity of the surface S ensures
the existence of the tangent space Tp(S) at every point p ∈ S.

Each tangent vector w ∈ Tp(S) is the tangent vector α′(0) of a curve α = x ◦β, where
β : (−ε, ε)→ Ū is defined by β(t) = (u(t), v(t)) with β(0) = q = x−1(p). It holds that

α′(0) =
d

dt
(x ◦ β)(0) =

d

dt
x(u(t), v(t))(0)

= xu(q)u
′(0) + xv(q)v

′(0) = w.

Thus the tangent vector w has the coordinates (u′(0), v′(0)) in the associated basis
{xu(q), xv(q)}.

2.2.3 First Fundamental Form

By restricting the Euclidean scalar product to each tangent space Tp(S), p ∈ S, a scalar
product can be defined on each of the tangent spaces, which will be denoted by 〈., .〉p.
The quadratic form given by

Ip(w) = 〈w,w〉p = |w|2 ≥ 0

is the first fundamental form of the regular surface S at p ∈ S.
Since the tangent vector w ∈ Tp(S) is the tangent vector α′(0) of the curve α(t) =

x(u(t), v(t)), t ∈ (−ε, ε) with α(0) = p, the following holds:

Ip(α
′(0)) = 〈α′(0), α′(0)〉p

= 〈xu(q)u′(0) + xv(q)v
′(0), xu(q)u

′(0) + xv(q)v
′(0)〉p

= E(u′(0))2 + 2Fu′(0)v′(0) +G(v′(0))2,

where

E = 〈xu(q), xu(q)〉p
F = 〈xu(q), xv(q)〉p
G = 〈xv(q), xv(q)〉p

are the coefficients of the first fundamental form in the associated basis {xu(q), xv(q)}
of the tangent space Tp(S).
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2 Differential Geometry

2.2.4 Unit Normal Vector Field and Orientation

Given a parametrization x : U ⊂ R2 → V ⊂ S of the open subset V of the regular
surface S, the unit normal vector at the surface point p = x(q), q ∈ U is defined by

Np =
xu(q)× xv(q)
|xu(q)× xv(q)|

.

The orientation of the associated basis {xu(q), xv(q)} determines the sign of the vector
Np. The differentiable mapping N : x(U) → R3 assigns each p ∈ x(U) a unit normal
vector Np. If the regular surface S cannot be covered with a single parametrization,
it might be that the mapping N (also called the unit normal vector field) cannot be
extended differentiably to all points of the surface S. A standard example for this case
is the Möbius strip.

A regular surface S is called orientable, if a globally differentiable unit normal vector
field can be defined on S. The choice of such a vector field is called the orientation of
the surface S. There are two possibilities to choose from. An orientable surface with a
chosen orientation is called oriented.

Definition 2.7. The Gaussian map N of the oriented regular surface S is defined by

N : S → S2 : p→ Np,

where S2 denotes the unit sphere.

2.3 Second Fundamental Form and Normal Curvature

The differential dNp of the Gaussian map at p ∈ S is a linear function that maps from
Tp(S) to TNp(S2). Since the planes Tp(S) and TNp(S2) are parallel, dNp can be considered
as a linear mapping of Tp(S) onto itself.

For a given curve α(t) on the regular surface S with α(0) = p, the linear mapping
dNp : Tp(S)→ Tp(S) is defined by

N ′(0) = dNp(α
′(0)),

where the curve N ◦ α(t) = N(t) on the unit sphere S2 is the restriction of the unit
normal vector field to the curve α(t).

Proposition 2.8. The differential dNp : Tp(S) → Tp(S) of the Gaussian map is a
self-adjoint linear mapping (see [?]).

A theorem in linear algebra tells us that, dNp being self-adjoint, has an orthonormal
basis of eigenvectors e1, e2 ∈ Tp(S) with corresponding eigenvalues −k1,−k2. Without
loss of generality we assume k1 ≤ k2.

Definition 2.9. (Second Fundamental Form) The quadratic form

Πp : Tp(S)→ R : Πp(v) = −〈dNp(v), v〉

is called the second fundamental form.

6



2 Differential Geometry

Definition 2.10. (Normal Curvature) Let α be a regular curve on S parametrized by
its arc length and passing through p(= α(0)). The curvature of α at p ∈ S is denoted
by kp and its unit normal vector by np. The normal curvature of α at p is defined by
kpn = kp〈np, Np〉.

Remark 2.11. The sign of the normal curvature kpn depends on the orientation of S.

Proposition 2.12. Let α be a regular curve as above. Then

kpn = Πp(α
′(0)).

Proof. We differentiate the equation

〈N(s), α′(s)〉 = 0

with respect to the arc length s and get

〈N(s), α
′′
(s)〉 = −〈N ′(s), α′(s)〉.

Thus it follows that

Πp(α
′(0)) = −〈dNp(α

′(0)), α′(0)〉
= −〈N ′(0), α′(0)〉
= 〈N(0), α

′′
(0)〉

= 〈Np, kpnp〉 = kpn.

It follows that the normal curvature depends only on the unit tangent vector, which
in turn implies the following proposition of Meusnier.

Proposition 2.13. (Meusnier) All curves on S passing through a given point p ∈ S and
having the same unit tangent vector at p also have the same normal curvature at p.

This allows us to speak of the normal curvature at p along a unit tangent vector
v ∈ Tp(S).

Theorem 2.14. (Euler’s Theorem) The normal curvature at p along the unit tangent
vector v ∈ Tp(S) has the form

kpn = k1 cos2 θ + k2 sin2 θ.

It follows that k1 and k2 are the extremal values of the normal curvature at p ∈ S.

7



2 Differential Geometry

Proof. Since e1, e2 form an orthonormal basis of the tangent space Tp(S), we may write

v = 〈v, e1〉e1 + 〈v, e2〉e2 = e1 cos θ + e2 sin θ.

The normal curvature along v is given by

kpn = Πp(v) = −〈dNp(v), v〉
= −〈dNp(e1 cos θ + e2 sin θ), e1 cos θ + e2 sin θ〉
= 〈e1k1 cos θ + e2k2 sin θ, e1 cos θ + e2 sin θ〉
= k1 cos2 θ + k2 sin2 θ.

Definition 2.15. (Principal Curvatures) k1 and k2 are called the principal curvatures
and the corresponding directions given by the vectors e1 and e2 are called principal
directions.

Definition 2.16. (Gaussian Curvature) The determinant of the differential dNp : Tp(S)→
Tp(S) of the Gaussian map at p ∈ S is the Gaussian curvature: K = det(dNp) =
(−k1)(−k2) = k1k2.

Definition 2.17. (Mean Curvature) The mean curvature at p ∈ S is the average of the
principal curvatures:

H =
k1 + k2

2
.

Definition 2.18. (Umbilical Point) A point p ∈ S with k1 = k2 is called umbilical point.

8



3 Graph Theory

3.1 Basics from Graph Theory

This section gives a brief summary of basic definitions from graph theory. The focus
will be on simple graphs. A simple graph is an undirected graph containing no loops or
multiple edges.

multiple edges

loops

Figure 3.1: Multiple edges and loops

A graph is a pair G = (V,E), V = {v1, v2, · · · , vn} denoting the set of vertices and
E ⊆ V 2 the set of edges (vi, vj). In the following, we shortly use the term graph for a
simple graph. A vertex v ∈ V is incident with an edge e ∈ E, if there exists a vertex
vi ∈ V with e = (v, vi) ∈ E. The degree, also called valence of a vertex v is the number
of edges incident to the vertex v. Two vertices vi, vj of G are adjacent, if e = (vi, vj) ∈ E.
If all vertices of the graph G are pairwise adjacent, then G is called complete (see Figure
3.2 for an example of a complete graph). A path between two vertices x0 and xk is a
non-empty1 graph GP = (VP , EP ) of the form

VP = {x0, x1, · · · , xk}, EP = {(x0, x1), (x1, x2), · · · , (xk−1, xk)},
1An empty graph is a pair G = (V,E) with empty sets V and E.

9



3 Graph Theory

Figure 3.2: Complete graph

where the vertices as well as the edges are pairwise different. The vertices x0 and xk are
called end vertices of the path. The vertices x1, x2, · · · , xk−1 are the inner vertices of
GP . The number of edges of a path is its length. If x0 = xk, the path is called a cycle.
The graph G = (V,E) is connected, if for any two vertices vi, vj with vi 6= vj there exists
a path connecting them. A graph G is called a forest, if G does not contain any cycles.
A connected forest is called a tree. Sometimes it’s convenient to consider one vertex of a
tree as the root of this tree. A tree with a fixed root r is called a rooted tree. The leaves2

of a tree are the vertices of degree one. The depth of a vertex v in a rooted tree with
root r is the length of the path from r to v. Two graphs G = (V,E) and G′ = (V ′, E ′)
are given. If V ′ ⊆ V and E ′ ⊆ E, then G′ is a subgraph of G, written as G′ ⊆ G. The
spanning tree T = (VT , ET ) of a connected graph G = (V,E) is a subgraph T ⊆ G with
VT = V and ET ⊆ E. A connected graph G can have different spanning trees. We can
assign a weight to each spanning tree by computing the sum of the weights3 of the edges
in that tree. The minimum spanning tree of a connected graph G has the minimum
weight among all spanning trees of G.

3

4

5
6

10

8

Figure 3.3: An example of the euclidean minimum spanning tree of a complete graph
with four vertices

2Even if the root of a tree has degree one, it’s never called a leaf.
3If we speak of a weighted edge e = (vi, vj), we mean the euclidean distance of its vertices.
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3 Graph Theory

3.2 Algorithms on Simple Graphs

This section introduces some basic algorithms on simple graphs, which are used in our
method.

Algorithm 3.1. (Kruskal’s Algorithm4) An algorithm that finds the minimum spanning
tree of a connected weighted graph G = (V,E).

• create a forest of size |V |, where each vertex v ∈ V is a separate tree

• define an empty set S = ∅

• Sort the edges e ∈ E according to their weights: we1 ≤ we2 ≤ · · · ≤ we|E|

• for i = 1, · · · , |E|
– if S∪{ei} does not contain any cycles, add that edge to the forest: S = S∪{ei}
– otherwise discard that edge

The proof of the correctness of the algorithm consists of two parts. In the first part
it’s proved that the algorithm produces a spanning tree. It is trivial to see that the
produced subgraph H cannot contain any cycles. H must also be connected, since the
first encountered edge that connects two components of H would have been added by
the algorithm. Secondly, it’s proved that the produced spanning tree has the minimum
weight among all spanning trees. For the proof of the minimality see [29].

Another algorithm that finds the minimum spanning tree of a connected weighted
graph G = (V,E) is the Prim’s algorithm.

Algorithm 3.2. (Prim’s Algorithm5)

• select an arbitrary vertex v ∈ V

• initialize Vnew = {v} and Enew = ∅

• while |Vnew| 6= |V |
– determine the edge e = (u, v) ∈ E with minimum weight such that u ∈
Vnew, v ∈ V \ Vnew

– add e to Enew: Enew = Enew ∪ {e}
– add v to Vnew: Vnew = Vnew ∪ {v}

4comp. [29]
5comp. [30]

11



3 Graph Theory

For the proof of the correctness of the algorithm we refer the reader to [30].
Finally we introduce an algorithm to compute the longest path6 in a tree. Given a

weighted tree, the longest path in the tree can be computed using a method of Edsger
W. Dijkstra, which is as follows.

Algorithm 3.3. An algorithm to compute the longest path in a given tree T .

• choose an arbitrary vertex v of the tree T as its root

• determine the deepest vertex u in the rooted tree T with the root v

• determine the deepest vertex w in the rooted tree T with the root u

The claim is that the path from u to w is the longest path in the given tree T (see [4]
for a formal proof of this claim.)

6The length of a path is not the number of edges of the path here, but the sum of the weights of edges
of the path.
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4 Quaternions

There are many ways for representing a rotation, including Euler angles, axis and an-
gle, orthogonal matrices and unit quaternions. This chapter gives a brief summary of
quaternions and then focusses on rotations represented by unit quaternions.

More detailed information about quaternions can be found in [15] and [11]. In [15]
Horn uses unit quaternions to find a closed-form solution to the registration problem
with known correspondences. In [11] quaternions are used to generate surfaces of fractal
objects.

4.1 Basics of Quaternions

There are different ways, how a quaternion can be thought of. One can see a quaternion
as a four dimensional vector or as composite of a scalar and a three dimensional vector
or as a complex number with three imaginary parts. Complex number notation of a
quaternion with a real part q0 and three imaginary parts qx, qy and qz has the following
form:

q̇ = q0 + iqx + jqy + kqz.

Parameters i, j, k are defined with the properties

i2 = j2 = k2 = −1, ij = −ji = k.

Using these properties, one can easily compute:

jk = −kj = i, ki = −ik = j.

Multiplication of quaternions is defined by the products of the components and is written
as

ṙq̇ = (r0q0 − rxqx − ryqy − rzqz)
+i(r0qx + rxq0 + ryqz − rzqy)
+j(r0qy − rxqz + ryq0 + rzqx)

+k(r0qz + rxqy − ryqx + rzq0).

As it can easily be computed, quaternion multiplication is not commutative. Quaternion
multiplication can be expressed in a more convenient way as a matrix-vector product as
follows:

ṙq̇ =


r0 −rx −ry −rz
rx r0 −rz ry
ry rz r0 −rx
rz −ry rx r0

 q̇ = Rq̇

13



4 Quaternions

or

q̇ṙ =


r0 −rx −ry −rz
rx r0 rz −ry
ry −rz r0 rx
rz ry −rx r0

 q̇ = R̄q̇.

If ṙ is a unit quaternion, the matrices R and R̄ associated with this quaternion are
orthogonal.

The dot product of two quaternions is defined by analogy with vector operations1,
using the following sum of products of corresponding components:

ṗ · q̇ = p0q0 + pxqx + pyqy + pzqz.

The magnitude squared of a quaternion is defined as the dot product of the quaternion
with itself. Unit quaternions have magnitude 1. Taking the conjugate of a quaternion
has the following form:

q̇∗ = q0 − iqx − jqy − kqz.

Since the matrices associated with q̇∗ are the transposes of the matrices associated with
q̇, it can easily be computed that the product of q̇ and q̇∗ is real and equals to q̇ · q̇. The
inverse of a nonzero quaternion is computed using the expression

q̇−1 =

(
1

q̇ · q̇

)
q̇∗.

We conclude this section by deriving a result,

(ṗq̇) · ṙ = (Q̄ṗ) · ṙ = (Q̄ṗ)T ṙ = ṗT (Q̄T ṙ) = ṗ · (ṙq̇∗), (4.1)

which will be used in the next chapter.

4.2 Unit Quaternion Representation of Rotations

In this section, we first find a way to represent a rotation using a unit quaternion q̇ and
then show the orthogonal rotation matrix corresponding to q̇.

Purely imaginary quaternions represent vectors. We need some way to map purely
imaginary quaternions to purely imaginary quaternions. Since the product of such a
quaternion with a unit quaternion can result in a quaternion with nonzero real part, we
define the composite product

˙̄r = q̇ṙq̇∗ = (Qṙ)q̇∗ = Q̄T (Qṙ) = (Q̄TQ)ṙ,

which is purely imaginary. Q and Q̄ are the matrices associated with the unit quaternion
q̇.

1The canonical inner product of two vectors x and y will also be denoted by the product x · y.

14



4 Quaternions

Note that

Q̄TQ =


q̇ · q̇ 0 0 0

0 (q2
0 + q2

x − q2
y − q2

z) 2(qxqy − q0qz) 2(qxqz + q0qy)
0 2(qyqx + q0qz) (q2

0 − q2
x + q2

y − q2
z) 2(qyqz − q0qz)

0 2(qzqx − q0qy) 2(qzqy + q0qx) (q2
0 − q2

x − q2
y + q2

z)

 . (4.2)

As you might know, rotations preserve dot- and cross products. Only rotations and
reflections preserve dot products, but reflections reverse the sense of a cross product.
The following equations reveal the fact that dot products are preserved by the composite
product defined above.

(q̇ṙq̇∗) · (q̇ṗq̇∗) =

((Q̄TQ)ṙ) · ((Q̄TQ)ṗ) =

((Q̄TQ)ṙ)T ((Q̄TQ)ṗ) =

ṙTQT Q̄Q̄TQṗ = ṙ · ṗ

The last equation is true due to the fact that the matrices Q and Q̄ corresponding to
the unit quaternion q̇ are orthogonal. In order to show that cross products are also
preserved by the composite product, we think of quaternions as composite of a scalar
and a three dimensional vector as follows:

q̇ = q + q.

Now we use this notation for each quaternion and give the product ṗ = ṙṡ in a more
compact form

p = rs− r · s, p = rs + sr + r × s.

The equations simplify, if the quaternions ṙ and ṡ have zero scalar part. In this case the
product ṗ = ṙṡ = p+ p is written as

p = −r · s, p = r × s.

We apply the composite product with a unit quaternion q̇ to purely imaginary quater-
nions ṙ, ṡ and to the quaternion ṗ and get

˙̄r = q̇ṙq̇∗, ˙̄s = q̇ṡq̇∗, ˙̄p = q̇ṗq̇∗.

Now consider

˙̄r ˙̄s = (q̇ṙq̇∗)(q̇ṡq̇∗) =

(q̇ṙ) (q̇∗q̇)︸ ︷︷ ︸
1

(ṡq̇∗) = q̇(ṙṡ)q̇∗ =

(Q̄TQ)ṙṡ = (Q̄TQ)ṗ =

q̇ṗq̇∗ = ˙̄p =

p̄+ p̄.
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4 Quaternions

From the matrix (4.2), it’s clear that r×s is mapped to r̄× s̄ by the composite product
with the unit quaternion q̇. Thus cross products are preserved and the composite product
with a unit quaternion can be used to represent rotations. Consequently, the lower-right-
hand 3× 3 submatrix of (4.2) is the orthogonal rotation matrix that corresponds to the
unit quaternion q̇.

4.3 Unit Quaternion from Orthogonal Matrix

In the preceding chapter, we have shown that the orthogonal rotation matrix R corre-
sponding to the unit quaternion q̇ is the lower-right-hand 3 × 3 submatrix of (4.2) and
looks as follows

R =

 (q2
0 + q2

x − q2
y − q2

z) 2(qxqy − q0qz) 2(qxqz + q0qy)
2(qyqx + q0qz) (q2

0 − q2
x + q2

y − q2
z) 2(qyqz − q0qz)

2(qzqx − q0qy) 2(qzqy + q0qx) (q2
0 − q2

x − q2
y + q2

z)

 .

Sometimes it could be necessary to convert from the orthogonal rotation matrix to the
unit quaternion. Consider following equations

1 + r11 + r22 + r33 = 4q2
0

1 + r11 − r22 − r33 = 4q2
x

1− r11 + r22 − r33 = 4q2
y

1− r11 − r22 + r33 = 4q2
z ,

which are obtained from the diagonal elements of the matrix R. We evaluate left-hand
side of these four equations and extract the largest component of the unit quaternion q̇
to guarantee numerical accuracy by evaluating remaining components in the next step.
Since q̇ and −q̇ represent the same rotation, we may choose either sign by taking the
square root. Then we consider the following equations, which are obtained from the
off-diagonal elements of the matrix R.

r32 − r23 = 4q0qx

r13 − r31 = 4q0qy

r21 − r12 = 4q0qz

r21 + r12 = 4qxqy

r32 + r23 = 4qyqz

r13 + r31 = 4qzqx

The remaining three components of the unit quaternion are evaluated by using three of
these equations.
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4 Quaternions

Figure 4.1: Rodrigues’s rotation formula follows from the diagramm.

4.4 Unit Quaternion from Axis and Angle

p1 is any vector to be rotated by an angle θ about an axis (through the origin) given by
the unit vector e = (ex, ey, ez)

T . On closer inspection of the Figure 4.12, we obtain the
formula of Rodrigues

p2 = cos θp1 + sin θe× p1 + (1− cos θ)(e · p1)e.

Now we would like to show that the composite product ṗ2 = q̇ṗ1q̇
∗ corresponds to the

same rotation described above, where the quaternions are

ṗ1 = 0 + p1, ṗ2 = 0 + p2, q̇ = q + q = cos(
θ

2
) + sin(

θ

2
)e.

Since ṗ1 is purely imaginary and purely imaginary quaternions are mapped to purely
imaginary quaternions by the composite product, ṗ2 has zero scalar part and vector part

p2 = (q2 − q · q)p1 + 2qq × p1 + 2(q · p1)q.

Now we use the following identities from trigonometry and obtain the formula of Ro-
drigues.

2 sin(
θ

2
) cos(

θ

2
) = sin θ

cos2(
θ

2
)− sin2(

θ

2
) = cos θ

2source: http://www.sas.org/E-Bulletin/2002-10-25/mot/body.html
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4 Quaternions

We conclude this chapter with a brief discussion of advantages of using unit quater-
nions to represent rotations. Composite rotations are formed by multiplication of quater-
nions and it takes fewer arithmetic operations to multiply two quaternions than to mul-
tiply two orthogonal rotation matrices. Since we calculate with finite precision, product
of many orthogonal matrices may no longer be orthogonal, as product of many unit
quaternions may no longer be unit. However, a quaternion is easy to normalize, but it
is difficult to find the nearest orthogonal matrix to one that is quite not orthogonal.
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5 Registration of two 3D Systems

5.1 Registration with Known Correspondences

We consider two point sets X = (x1,x2, · · · ,xn) and Y = (y1,y2, · · · ,yn), where points
with the same index correspond to each other. Our goal is to compute a similarity
transformation

α : x′ = a + sRx

that brings the transformed point set X ′ = α(X) as close as possible to the point set
Y , where R is the rotation matrix, s is the scale factor and a is the translation vector.
The objective function to be minimized is

F (a, s, R) =
n∑
i=1

‖x′i − yi‖2 =
n∑
i=1

(a + sRxi − yi)
2. (5.1)

First of all, we show that the optimal similarity transformation maps the centroids of
point sets X and Y onto each other [15].

Lemma 5.1. An optimal similarity transformation α, which minimizes (5.1) maps the
centroid

sx =
1

n

n∑
i=1

xi

of the point set X to the centroid of the point set Y ,

sy =
1

n

n∑
i=1

yi.

Proof. A necessary condition on a local minimizer (a∗, s∗, R∗) of (5.1) is vanishing of
the gradient. Thus we have

∂

∂a
F (a∗, s∗, R∗) = 2

n∑
i=1

(a∗ + s∗R∗xi − yi) = 0. (5.2)

We assume that α maps sx to sy. Now we put a∗ = sy− s∗R∗sx into equation (5.2) and
get

n∑
i=1

(sy − s∗R∗sx + s∗R∗xi − yi) =

n∑
i=1

(sy − yi) + s∗R∗
n∑
i=1

(xi − sx) = 0.

19



5 Registration of two 3D Systems

The last equation is satisfied, since

n∑
i=1

(sy − yi) = nsy −
n∑
i=1

yi = 0,
n∑
i=1

(xi − sx) = 0.

The translational part of the optimal similarity transformation, which minimizes (5.1)
is just the difference of the centroid of the point set Y and the rotated and scaled centroid
of the point set X.

Now we translate both point sets X and Y such that the centroids are aligned at the
origin. The new coordinates are denoted by

x̃i = xi − sx, ỹi = yi − sy.

The objective function to be minimized is just

F̄ (s, R) =
n∑
i=1

(sRx̃i − ỹi)
2. (5.3)

If α : x′ = sRx is an affine map, F̄ is quadratic in the unknown elements and its
minimization amounts to the solution of a linear system of equations. But in our case
the situation becomes harder, since the orthogonality condition R ·RT = I is a nonlinear
constraint on R. However, this problem can be solved explicitly. For a comparison of
four closed-form solutions to this problem, see [16]. We will present here the method of
Horn [15].

5.1.1 Explicit Solution using Method of Horn

We expand the objective function (5.3), use the identity

n∑
i=1

‖Rx̃i‖2 =
n∑
i=1

‖x̃i‖2

and get
n∑
i=1

‖ỹi‖2︸ ︷︷ ︸
Sy

−2s
n∑
i=1

ỹi · (Rx̃i)︸ ︷︷ ︸
D

+s2

n∑
i=1

‖x̃i‖2︸ ︷︷ ︸
Sx

. (5.4)

After completing the square in s, (5.4) can be written as(
s
√
Sx −

D√
Sx

)2

+
(SySx −D2)

Sx
,

which is minimized with respect to the scale factor s, if the first term is zero, that is

s =

∑n
i=1 ỹi · (Rx̃i)∑n
i=1 ‖x̃i‖2

.
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5 Registration of two 3D Systems

The optimal rotation R that minimizes (5.4), maximizes

n∑
i=1

ỹi · (Rx̃i),

which can be written in quaternion notation as

n∑
i=1

(q̇ ˙̃xiq̇
∗) · ˙̃yi, (5.5)

where the quaternions ˙̃xi and ˙̃yi are

˙̃xi = 0 + x̃i, ˙̃yi = 0 + ỹi.

Suppose that x̃i = (x̃l,i, ỹl,i, z̃l,i) while ỹi = (x̃r,i, ỹr,i, z̃r,i). Our goal is finding the optimal
unit quaternion q̇ corresponding to the optimal rotation R, which maximizes (5.5). Using
the result (4.1), we can rewrite (5.5) as

n∑
i=1

(q̇ ˙̃xi) · ( ˙̃yiq̇)

that is,
n∑
i=1

(R̄ ˙̃xi
q̇) · (R ˙̃yi

q̇)

with the matrices

R̄ ˙̃xi
=


0 −x̃l,i −ỹl,i −z̃l,i
x̃l,i 0 z̃l,i −ỹl,i
ỹl,i −z̃l,i 0 x̃l,i
z̃l,i ỹl,i −x̃l,i 0


and

R ˙̃yi
=


0 −x̃r,i −ỹr,i −z̃r,i
x̃r,i 0 −z̃r,i ỹr,i
ỹr,i z̃r,i 0 −x̃r,i
z̃r,i −ỹr,i x̃r,i 0

 .

The sum (5.5) that we have to maximize can now be written as

n∑
i=1

(q̇T R̄T
˙̃xi

)(R ˙̃yi
q̇)

or

q̇T

(
n∑
i=1

R̄T
˙̃xi
R ˙̃yi

)
q̇
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5 Registration of two 3D Systems

that is,

q̇T

(
n∑
i=1

Ni

)
q̇

or
q̇TNq̇.

Each Ni is symmetric, thus N is a 4× 4 symmetric matrix.

Lemma 5.2. The normalized eigenvector corresponding to the most positive eigenvalue
of the real symmetric matrix N is the unit quaternion q̇ that maximizes

q̇TNq̇.

Proof. The real symmetric matrix N has four real eigenvalues λ1, λ2, λ3 and λ4. The
corresponding set of orthonormal eigenvectors e1, e2, e3 and e4 span the four dimensional
space. Thus an arbitrary unit quaternion q̇ can be written as a linear combination of
these eigenvectors

q̇ = α1e1 + α2e2 + α3e3 + α4e4.

Note that
Nq̇ = α1λ1e1 + α2λ2e2 + α3λ3e3 + α4λ4e4,

since e1, e2, e3 and e4 are the eigenvectors of the symmetric matrix N . The term to
maximize can be written in the form

q̇TNq̇ = α1
2λ1 + α2

2λ2 + α3
2λ3 + α4

2λ4,

since the normalized eigenvectors are orthogonal to each other. Without loss of gener-
ality, we assume that the eigenvalues are arranged in descending order, so that

λ1 ≥ λ2 ≥ λ3 ≥ λ4.

Consider

q̇TNq̇ ≤ α1
2λ1 + α2

2λ1 + α3
2λ1 + α4

2λ1 =

λ1(α1
2 + α2

2 + α3
2 + α4

2) = λ1(q̇ · q̇) = λ1.

This maximum of the quadratic form is attained, if we choose α1 = 1 and α2 = α3 =
α4 = 0, that is

q̇ = e1.

The solution given above simplifies, if each point set is coplanar. This special case is
dealt more directly. For information about this special case and more detail about the
method of Horn, we refer to [15].
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5 Registration of two 3D Systems

There is also an iterative solution to the registration problem discussed above using
instantaneous kinematics. This solution computes a time independent velocity vector
field, which attaches to each point x a velocity vector

v(x) = c̄ + γx + c× x

such that the quadratic function

F (c, c̄, γ) =
∑
i

(xi + v(xi)− yi)
2 =

∑
i

(xi + c̄ + γxi + c× xi − yi)
2

is minimized. This approach of registration using instantaneous kinematics will be dis-
cussed in more detail in the next section. We will introduce the method proposed in [25],
since we use it in our implementation.

The time independent velocity vector field

v(x) = c̄ + γx + c× x

given by the triple (c, c̄, γ) ∈ R7 determines a unique uniform equiform motion that
maps points x ∈ R3 according to y(t) = α(t)A(t)x + a(t), with a rotation matrix A(t),
a translation vector a(t) and a scaling factor α(t) (cf. [12]).

Instantaneous kinematics has been furthermore used for simultaneously registration
of more than two systems (see [23]).

5.2 Registration with Unknown Correspondences

In the preceding section we discussed about the registration problem of two point sets
X = (x1,x2, · · · ,xn) and Y = (y1,y2, · · · ,yn) by given correspondences. In appli-
cations, however, it could occur that the number of points in both point sets are not
equal and point-to-point correspondences are not given. A well known application of
registration without correspondences is the alignment of a 3D point set to a CAD model
(see Figure 5.11). This application makes it clear that the geometric data is not neces-
sarily represented by a point set. In this section, we introduce two algorithms how to
move a source model S to be in best alignment with a target model T , where following
representations are allowed for the 3D models:

1. Point set

2. Triangulated surface

In [3] more allowable representations are considered.

1source: [25]
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5 Registration of two 3D Systems

Figure 5.1: Registration of a point cloud to a CAD model represented as a triangulated
surface

5.2.1 Registration using ICP

Iterative closest point (ICP) algorithm of P.Besl and N.D. McKay [3] is the most widely
used algorithm for the solution of the problem discussed above.

Algorithm 5.3. Iterative closest point (ICP) algorithm is an iterative algorithm and
involves the following steps

1. If the source model S is not given as a point set, but as a triangulated surface,
it must be decomposed into a point set X = (x1,x2, · · · ). It is trivial, since the
vertices of the triangles can be used as the point set.

2. It is important that the ICP starts with an acceptable initial position of the source
model S.

3. In the first step of each iteration, for every source point xi ∈ X the closest point
on the target model T is computed. Denote the resulting set of closest points on
the target model T as Y = (y1,y2, · · · ). Each point xi corresponds to the point yi
with the same index.

4. Compute the similarity transformation α such that the following objective function
is minimized ∑

i

(α(xi)− yi)
2, (5.6)

as described in the last section.

5. Update the positions of the source points via Xnew = α(Xold).
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6. Repeat the steps 3 to 5, until the change in the mean-square error falls below a
preset threshold τ > 0 or a maximum number of iterations is reached.

Since the value of the objective function (5.6) reduces in each iteration step, the
algorithm converges monotonically to a local minimum. In the following, steps 2 and 3
will be discussed in more detail.

Initial Position for ICP

A rough initial alignment of the models can be obtained using principal component
analysis (PCA). Compute the covariance matrices of the point sets X and Y , which are
sampled from the surfaces of the models. The covariance matrix is given by

JX :=
∑
i

xi · xiT ,

where xi are considered as column vectors. Then, compute the normalized eigenvectors
ex1 , ex2 , ex3 and eigenvalues λx1 , λx2 and λx3 of the matrix JX such that the eigenvalues
are arranged in descending order:

λx1 ≥ λx2 ≥ λx3 .

Now do the same for the matrix JY . For an initial alignment of the models, we align
centroids of the point sets X and Y at the origin and then rotate the source model such
that the eigenvectors ex1 , ex2 , ex3 of JX are aligned with the eigenvectors ey1 , ey2 , ey3 of
JY . Note that there are four possibilities for the rotation: take the one which gives the
least sum of squared distances of xi ∈ X to the closest points yi ∈ Y .

Computation of Closest Points

In the first step of the ICP algorithm, we decomposed the source model S into a point
set X = (x1,x2, · · · ). Our goal is for each xi finding the closest point on the target
model T given as a point set Y = (y1,y2, · · · ) or as a triangulated surface. It is the
most computationally expensive step in the ICP algorithm and has to be implemented
efficiently. We give an overview of the methods used for finding closest points.

1. The closest point in the point set Y or the closest vertex of the triangulated surface
is found efficiently using a kd-tree [2].

2. For a better approximation of the closest point of a triangulated surface to a given
source point p, computation of an additional step is required. Given v as the closest
vertex to the source point p, the closest point will lie within or on the boundary
of one of the triangles 41, · · · ,4n to which the vertex v belongs. In order to
find the closest point, we project the source point p into the planes defined by
each of the triangles. If the projected point lies within the triangle 4j, pj denotes
this projected point. If the projected point does not lie within the corresponding
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triangle 4j, pj denotes the point on the boundary of the triangle 4j, which is
closest to the projected point. The closest point is found among the points pj,
which is closest to p.

This method does not guarantee to find the true closest point, since the true closest
point may lie in a totally different triangle (see Figure 5.2). The presented method
is introduced in the thesis [28].

P

V

true closest point

closest vertex

computed closest point
lies within yellow triangles

Figure 5.2: Closest point computation fails, since true closest point lies in a different
triangle.

3. The closest point on the triangulated surface is the intersection point of the straight
line going through the source point in the direction of the source point’s normal
with the triangulated surface. This method, denoted as normal shooting in [6],
yields bad results for complex and noisy meshes (see Figure 5.3).

true corresponding point computed
corresponding
point

Figure 5.3: Normal shooting yields bad results for complex and noisy meshes.

4. Maier et al. [17] build a data structure that classifies many of the triangles as irrel-
evant for closest point search. The source point is projected onto every remaining
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triangle and the projected point with the minimum distance is found as the closest
point.

Now we present a variant of the ICP algorithm, where appropriate weights are assigned
to corresponding point pairs to downweight outliers. The weights are choosen such that
pairs with greater point-to-point distances are assigned lower weights. We run the ICP
algorithm for a few steps with constant weights and then enter a weight iteration, where
the objective function in the fourth step of the ICP algorithm looks as follows∑

i

wi(α(xi)− yi)
2. (5.7)

The minimization of the objective function (5.7) is slightly different from the minimiza-
tion of (5.6) and is also performed using the method of Horn [15]. The centroids become
weighted centroids

sx =

∑
iwixi∑
iwi

, sy =

∑
iwiyi∑
iwi

.

The translation vector a is computed using these centroid, as before. The only change
in the method for finding the unit quaternion corresponding to the optimal rotation is
that the following sum is weighted ∑

i

wiNi.

We show some weighting schemes, which have also been used in our implementation.

1. Compute for each corresponding point pair (x,y) the euclidean distance d, then
use the following weighting function

w(d) =
1

1 + αdβ
.

The constants α and β are choosen such that the pair with the lowest distance is
assigned a weight close to 1 and the pair with the greatest distance is assigned a
weight close to 0.

2. We use the following linear function to assign a weight w to the point pair (x,y)

w = 1− d− dmin
dmax − dmin

,

where d is the euclidean distance of this pair, dmin and dmax are the lowest and
greatest distances among all point pairs (comp. [10]).

There are many other variants of the ICP algorithm. We refer the reader to [26] for
more detail about these variants.

Now we describe how to compute the second order Taylor approximant of the squared
distance function of the target model at a source point x. Our goal is to show that the
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distances to the closest points, which are used in the ICP algorithm, are not good in
the vicinity of the target model. We consider the oriented surface represented by the
target model. For any surface point, we assume that the unit normal n along with the
principal curvature directions e1, e2 are given. These three unit vectors form a local
right-handed Cartesian system, which is called the principal frame. At umbilical points,
where the principal directions are not defined uniquely, we take any of two orthogonal
tangent vectors e1, e2. The principal radius of curvature in the direction of ei is denoted
by ρi. Furthermore y denotes the closest point on the surface from the source point x.
The coordinates of x in the principal frame at y is denoted by x1, x2, x3. The signed
distance from x to its closest point y is represented by d. The local quadratic Taylor
approximant of the squared distance function of a surface at a point x is expressed in
the principal frame at the closest point via

Fd(x1, x2, x3) =
d

d− ρ1

x2
1 +

d

d− ρ2

x2
2 + x2

3. (5.8)

For more detail about the squared distance function of surfaces and the derived result,
we refer the reader to [22].

We look at two special cases of the function (5.8)

• Consider the case
F0(x1, x2, x3) = x2

3,

where d = 0. This means, that the squared distance function to the tangent plane
at the closest point, is a good approximant in the vicinity of the surface.

• For d =∞, we obtain

F∞(x1, x2, x3) = x2
1 + x2

2 + x2
3.

This means, that the squared distance function to the closest point, which is used
in the ICP algorithm, is a good approximant, if we are in greater distance to the
surface.

In the following, we present a registration algorithm, where sum of squared distances to
the tangent planes is minimized. We use instantaneous kinematics for the solution.

5.2.2 Registration using Instantaneous Kinematics

Our goal is to apply a rigid body transformation m to the point set X = (x1,x2, · · · ,xN)
such that the following sum of squared distances d2 to the tangent planes is minimized

F =
N∑
i=1

d2(m(xi),Φ), (5.9)

where Φ is the triangulated surface representing the target model. In the first step of
the algorithm, we compute for each source point xi the closest point yi of the surface Φ
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5 Registration of two 3D Systems

and determine the unit normal vector ni there. For a triangulated surface, xi will not lie
exactly on the surface normal ni of its closest point yi and we have xi = yi + dini + ti,
where di is the signed distance of xi to the tangent plane in yi and ti is a vector
orthogonal to the unit normal vector ni. In the following, we ignore the tangential
component ti, since we are interested in the minimization of the squared distances to
the tangent planes. The following step of the algorithm concerns the minimization of
the objective function (5.9) using instantaneous kinematics, as proposed in [25].

We aim to compute a velocity vector field determined by the tuple (c, c̄), which
attaches to each point xi a velocity vector

v(xi) = c̄ + c× xi

such that the sum of squared distances of the points xi + v(xi) to the tangent planes
at yi is minimized. The distance of xi + v(xi) to the tangent plane in the point yi is
given by

di + ni · v(xi). (5.10)

The objective function to be minimized can be written as

F (c, c̄) =
N∑
i=1

(di + ni · (c̄ + c× xi))
2.

F (c, c̄) is quadratic in the unknowns c and c̄ and its minimization leads to the solution
of a system of linear equations. To derive the system of linear equations, we rewrite
(5.10) as

di + ni · c̄ + (xi × ni) · c = di + (xi × ni,ni)

(
c
c̄

)
= di + AiC.

Using that we rewrite the objective function F (c, c̄) as

F (c, c̄) =
N∑
i=1

(di + AiC)2

=
N∑
i=1

d2
i + 2

N∑
i=1

diAiC +
N∑
i=1

CTATi AiC

= D + 2BTC + CTACT ,

where D is a scalar, B is a six dimensional column vector and A is a symmetric six-by-six
matrix. It is well known that a local minimizer C∗ solves the linear system

AC +B = 0.

If A is positive definit, the system is regular and its solution is the unique global mini-
mizer of F (c, c̄). Moving each point xi to the position xi+v(xi) would not yield a rigid
body transformation, but an affine one. Therefore we use the helical motion determined
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5 Registration of two 3D Systems

by the pair (c, c̄) to update the position of the point set X. From the pair (c, c̄), the
Plücker coordinates of the axis G, the pitch p and the angular velocity ω of the helical
motion are computed as

g =
c

||c||
, ḡ =

c̄− pc
||c||

, p =
c · c̄
c2

, ω = ||c||. (5.11)

The Plücker coordinates (g, ḡ) of a line G consist of the direction vector g and the
moment vector ḡ = p×g, where p is an arbitrary point on the line G. Detail information
about Plücker coordinates of a line, helical motions and the equations (5.11) can be found
in [24]. To update the positions of the source points via Xnew = m(Xold), we apply a
rotation about the axis G by an angle α = arctan(ω) and a translation parallel to G
by the distance p · α. We iterate, always using the updated point set Xnew, until the
change in the mean-square error falls below a preset threshold or a maximum number of
iterations is reached. The presented algorithm can be extended with a minor change to
consider similarity transformations, since the velocity vector is still linear and has one
more parameter γ.

For a solution of the registration problem, where the general second order Taylor
approximant (5.8) of the squared distance function of a surface is used, see [19].
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6 Discovering Structural Regularity

This chapter concerns the detection of regular structures in 3D mesh based models as
proposed in [21]. They define a regular structure of size n as a tuple (P ,G), where
P = {P0, · · · , Pn−1} is a collection of n patches Pk ⊂ S of a given surface S and G is
a k-parameter transformation group acting on P with generating similarity transforma-
tion(s) T1, T2, · · · , Tk.

The geometry of a regular structure (P ,G), where G is a k-parameter group, can be
represented by a single representative patch P0, group generator(s) T1, T2, · · · , Tk and
integer dimension(s) n1, n2, · · · , nk with n1 · · ·nk = n. They call (P0, {Ti}, {ni}) the
generative model of the regular structure.

As an example, consider that G is a two-parameter group with group generators T1 and
T2. Then each element Pi,j ∈ P = {P0,0, · · · , Pn1−1,0, P0,1, · · · , Pn1−1,1, · · · , Pn1−1,n2−1}
can be represented by Pi,j = T i1T

j
2P0, where P0 ∈ P is the representative element and

|P| = n1·n2 = n. The generative model of this regular structure is (P0, {T1, T2}, {n1, n2}).
This example is illustrated in the figure shown below.

P0 n1 = 5

n 2
 =
 5

P3,2

Figure 6.1: The group generators T1 and T2 are two independent translations. Let P0 be
the representative element of the regular structure. It can be transformed
into any other element Pi,j by the transformation T i1T

j
2 , e.g. P3,2 = T 3

1 T
2
2P0.

The objective of the algorithm is to find a generative model (P0, {Ti}, {ni}) such that
as much as possible of the given input surface S can be represented by the union of
repetitive patches P0, · · · , Pn−1, while the number of repetitions n is maximized.

Pauly et al. [21] consider the detection of regular structures (P ,G), where G is a
commutative one- or two-parameter subgroup of the group of similarity transformations.
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6 Discovering Structural Regularity

They describe their approach for two-parameter subgroups and consider one-parameter
subgroups as a special case.

They show that there are only the following three types of commutative two-parameter
groups, which can be seen in Figure 6.2

• Case Trans × Trans : Two independent translations.

• Case Rot × Trans : Rotation and translation parallel to the rotation axis.

• Case Rot × Scale: Rotation and scaling with center of scaling on the rotation axis.

Rotate x Scale Translate x Translate Rotate x Translate

Figure 6.2: Commutative two-parameter subgroups of the group of similarity transfor-
mations.

One-parameter groups are shown on the next page in Figure 6.3
Before describing the main three steps of the algorithm in detail, we give an overview

of these steps.
The first step of the algorithm decomposes the input surface S into small local sur-

face patches, estimates similarity transformations between these patches and defines a
suitable mapping from the space of similarity transformations to an auxiliary 2D space.

In the second step of the algorithm, they search this 2D space for characteristic lattice
patterns, which is equivalent to estimate the parameters of the generative model of a
regular structure.

In the final step, they aggregate spatially adjacent local surface patches with com-
patible group structure to build large-scale repetitive elements and optimize generating
transformations estimated from small-scale surface patches using simultaneous registra-
tion in the spatial domain.
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6 Discovering Structural Regularity

Translate Scale

Rotate + Scale Rotate + TranslateRotate

Figure 6.3: Commutative one-parameter subgroups of the group of similarity transfor-
mations.

6.1 Transformation Analysis

6.1.1 Similarity Sets

They compute a uniform random sampling of the input surface S by following the
sampling approach proposed in [20]. Each sample point represents a local surface patch
of the surface S. Their goal is to find evidence for a regular structure by analyzing the
similarity transformations between these patches. They avoid the quadratic complexity
of considering all pairwise matches by grouping the local surface patches into similarity
sets Ωl using a local shape descriptor, which is invariant under similarity transformations.
Only sample points with similar descriptor values are considered as a candidate for a
regular structure. They estimate for each sample point mean and Gaussian curvatures H
and K based on the method proposed in [5] and use H2/K as the shape descriptor value,
which is invariant under similarity transformations. If scaling is not considered, they use
the tupel (H,K) as the local shape descriptor, since this tupel is invariant under rotation
and translation. Sample points with similar descriptor values are grouped together.

6.1.2 Local Alignment

The similarity sets are processed in descending order of number of sample points. Let
Ω denote the current processed similarity set. They estimate for each sample point
pair (pi,pj) ∈ Ω2 the similarity transformation Tij that maps the corresponding local
surface patches onto each other. The translational and rotational part of Tij is computed
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6 Discovering Structural Regularity

by aligning the local principal frames. Umbilical points are not considered, since the
principal directions are not defined uniquely. The uniform scaling factor is calculated
from the ratio of the mean curvatures Hi/Hj. They refine the estimated initial similarity
transformation using the non-rigid registration algorithm [25]. The sample pair (pi,pj) is
discarded, if the alignment error of the registration algorithm is above a given threshold.
They define T as the set of the remaining similarity transformations.

6.1.3 Transformation Mapping

As we said before, they introduce a suitable mapping that exposes a uniform lattice
structure for the set T of similarity transformations. They first determine if a rotational
regular structure could be present by considering the rotation angle of the transfor-
mations. If only an insignificant part of the transformations has a non-zero rotation
angle, the model contains regular structures of type Trans × Trans. In this case, they
search for 2D planes through the origin in the space of 3D translation vectors. They use
RANSAC (Random Sample Consensus) method by Fischler and Bolles [8] to estimate
the parameters of the planes. After projecting the translation vectors onto the retrieved
planes, they apply the mapping T → (t1, t2), where t1 and t2 denote the 2D coordinates
of the projected translation vectors.

If a significant part of the transformations has non-zero rotation angle, they group
the transformations into sets with similar direction of the rotation axis. Then for each
such set they determine if a regular structure of type Rot × Scale could be present by
checking if there is a significant variation in the scaling factors. If such a variation is
found, the model contains regular structures of type Rot × Scale and they define the
mapping T → (θ, log s).

If a great variation in scaling factors is not found, the model contains regular structures
of type Rot × Trans and they apply the mapping T → (θ, t), where t = t ·a is computed
as the projection of the translation vector t onto the unit direction vector a of the
rotation axis.

Each of the defined mappings T → (t1, t2), T → (θ, log s) and T → (θ, t) has the
common property that composition of similarity transformations corresponds to the sum
of vectors in the auxiliary 2D space. Consider the composition of the transformations T
and T ′, where the second transformation T ′ is mapped to (t′1, t

′
2) or (θ′, log s′) or (θ′, t′),

respectively. Then the composite product T ′T is mapped to

• Case Trans × Trans : T ′T → (t′1 + t1, t
′
2 + t2)

• Case Rot × Scale: T ′T → (θ′ + θ, log (s′s)) = (θ′ + θ, log s′ + log s)

• Case Rot × Trans : T ′T → (θ′ + θ, t′ + t)

The identity transformation is always mapped to the origin (0, 0). The inverse trans-
formation T−1 is mapped to (−t1,−t2) or (−θ,− log s) or (−θ,−t), respectively. The
sum of angles are computed modulo 2π. It follows that the commutative two-parameter
group of transformations {T iT ′j} is mapped to a regular lattice in the auxiliary 2D
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6 Discovering Structural Regularity

space, where the lattice passes through the origin, since the identity transformation is
always part of a transformation group.

6.2 Model Estimation

The goal of this step is to estimate the parameters of the generative model of a regular
structure. In other words, one searches for regular lattices of clusters in a 2D distribution
of points. The following issues make this task difficult:

• The similarity set Ω contains local surface patches, which are not part of the regular
structure. The similarity transformations between these patches add clutter to the
2D transformation space such that lattice patterns are hidden.

• Some clusters that should be present are less pronounced, since noise in the model
and local variations of sample positions can lead to inaccuracies in the estimation
of the pairwise similarity transformations. Also missing geometry and thus missing
transformations result in less pronounced clusters.

Their grid fitting approach, which is robust to outliers and missing geometry, operates on
the set of cluster centers C = {ck}, which are obtained using the mean-shift clustering
algorithm [7]. They describe their approach for a regular grid of size n1 × n2. One-
parameter groups are considered as a special case with n1 = 1. In the following, we
introduce their optimization method for grid fitting, where two vectors g1,g2 ∈ R2 are
sufficient to represent the grid locations X = {xij}, since the grid must pass through
the origin.

6.2.1 Energy Minimization

The objective function to be minimized is a combination of different energy terms. The
first term minimizes the sum of squared distances of the grid locations to the closest
cluster centers and looks as follows:

EX→C =
∑
i

∑
j

α2
ij‖xij − c(i, j)‖2,

where c(i, j) is the cluster center closest to the grid location xij. The second term in the
objective function is similar to the first term and minimizes the sum of squared distances
of cluster centers to the closest grid locations using the energy

EC→X =

|C|∑
i=1

β2
i ‖ci − x(i)‖2,

where x(i) ∈ X is the grid location closest to the cluster center ci. The variables αij
and βi are weights that measure how reliably a grid position xij ∈ X can be mapped
to its closest cluster center c(i, j) and vice versa. Values of the weights αij, βi close to
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6 Discovering Structural Regularity

one indicate a reliable correspondence of the grid locations and cluster centers. On the
other hand, values close to zero indicate outliers or missing geometry. There are two
additional terms in the objective function, which aim to maximize the number of valid
corresponding grid locations and cluster centers:

Eα =
∑
i

∑
j

(1− α2
ij)

2, Eβ =
∑
i

(1− β2
i )

2.

Finally, the fitting terms EX→C , EC→X and correspondence terms Eα, Eβ are combined
in the following objective function

E = γ(EX→C + EC→X) + (1− γ)(Eα + Eβ),

which is minimized with respect to the grid generators g1,g2 ∈ R2 and the weights
αij, βi. The parameter γ balances the fitting and correspondence terms. An iterative
Gauss-Newton solver is used to minimize the objective function E. They initialize the
value of the weights to one, since they assume no prior knowledge of the geometry. In
order to initialize the grid generators g1,g2 ∈ R2, they compute the two most dominant
lines through the origin using the RANSAC method and determine the initial generator
values as clusters with ‖gi‖ minimal on these lines. The grid size is estimated from the
furthest clusters on these lines.

6.3 Aggregation

The output of the last step is a set of regular structures at the scale of local surface
patches. The goal of this final step is to aggregate spatially adjacent local surface patches
with compatible group structure to build large-scale repetitive elements and improve the
accuracy of estimated generating transformations using simultaneous registration, while
growing the regions being matched. Simultaneous registration in the spatial domain is
essential, since the similarity transformations estimated from small surface patches can
be inaccurate.

6.3.1 Simultaneous Registration

They first describe the case of a one-parameter regular structure. Using homogeneous
coordinates, a similarity transformation T can be represented using the matrix H

H =

(
sR t
0 1

)
,

where s is the uniform scale factor, R is a rotation matrix and t is a translation vector.
During registration they apply small changes to the generating transformation T using
linearization. An image point y = T (x) is modified using the velocity vector v(y)

T+(x) ≈ T (x) + ε(v(y)) = T (x) + ε(d× T (x) + δT (x) + d̄),
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where d = (d1, d2, d3), d̄ = (d̄1, d̄2, d̄3) and ε is a small number. This is equivalent to
applying small changes to the matrix H of the original generating transformation T

H+ ≈ H + εDH,

where the matrix D has the following form

D =


δ −d3 d2 d̄1

d3 δ −d1 d̄2

−d2 d1 δ d̄3

0 0 0 0

 .

To show this equivalence, we rewrite DH as(
D33sR D33t

0 0

)
+

(
0 d̄
0 0

)
where D33 is the upper-left-hand submatrix of D. Let xh = (x1, x2, x3, 1)T denote the
homogeneous coordinates of x. Consider the product H+xh

(H + εDH)xh = Hxh + ε

((
D33sRx + D33t

0

)
+

(
d̄
0

))
= Hxh + ε

((
D33y

0

)
+

(
d̄
0

))
= Hxh + ε

(
d× y + δy + d̄

0

)
with y = T(x). The equivalence is shown, since H+xh is the homogeneous coordinates
of the point T+(x). They linearize iterated transformations by omitting terms of order
higher than 2 in the expression Hk

+ ≈ (H + εDH)k and obtain

Hk
+ ≈ Hk + ε(DHk + HDHk−1 + · · ·Hk−1DH) +O(ε2).

Assume that the previous step of the algorithm has related patch Pi to the patch Pj by
the transformation T k. Each such pair (Pi, Pj) contributes the following term Qij to the
objective function to be minimized

Qij =
∑
l

(
[(Tk

+(xl)− yl) · nl]
2 + µ[Tk

+(xl)− yl]
2
)
,

where the patch Pi is represented by the sample points xl and yl is that point in Pj
that is closest to T(xl). Moreover, nl denotes the unit normal vector of Pj at yl. The
function Qij is a combination of point-to-point and point-to-plane distances. The final
quadratic function to be minimized is the sum over all patch pairs (Pi, Pj) that the
previous step has related by the transformation T k, that is

F (ε,D) =
∑
i,j

Qij.
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After solving the resulting linear system of equations, the modified generating transfor-
mation T+ is replaced by a true similarity transformation using the method of Horn [15].
The simultaneous registration algorithm iterates between the minimization of the ob-
jection function F (ε,D) and the projection to the seven dimensional space of similarity
transformations. We have introduced one-parameter structures. For the case of a two-
parameter regular structure, we refer to [21].
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7 Detection of Patches Generated by
Rigid Body Motions

In this chapter, we describe our implementation to detect geometric patterns of patches
generated by one-parameter rigid body motions. A one-parameter rigid body motion
m(u) maps points x ∈ R3 according to

y(u) = R(u)x + a(u) = m(u)(x),

with a rotation matrix R(u) and a translation vector a(u). From the images shown
below, the reader may get a better idea on what kind of patterns we consider with our
method.

Figure 7.1: Examples of geometric patterns generated by one-parameter rigid body
motions.
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7 Detection of Patches Generated by Rigid Body Motions

Before going into detail, we give an overview of our algorithm. As we mentioned in
the abstract, our algorithm requires some user interaction to select one of the repeti-
tive patches1. Let S denote the selected patch. Discovery of the set of other repetitive
patches P = {P0, P1, · · · , Pn−1} is equivalent to estimate a set of rigid body transforma-
tions T = {T0, T1, · · · , Tn−1} such that for every i ∈ {0, 1, · · · , n − 1} the transformed
patch Ti(S) is in best alignment with the patch Pi. Due to noise in the model and the
sampling based approach of our method, it’s rarely the case that we obtain the complete
set of patches P and the corresponding set of transformations T by applying registra-
tions. In order to detect the missing repetitive patches, we compute a smooth rigid
body motion m(u) that interpolates the N positions2 Si := S(ui) of the patch S ⊂ R3

at parameter instances ui (comp. [14]). The challenging part of our method is to com-
pute appropriate parameter values ui. After computing the rigid body motion m(u) we
uniformly sample the parameter interval of m(u) and apply for each sampled parameter
value uj registration of the patch S to the input mesh with the initial transformation
m(uj). Thus we detect another M ≥ 0 patches, which couldn’t be obtained before. We
recompute the rigid body motion that interpolates the N +M ≤ n+ 1 positions of the
patch S and use the reconstructed motion to generate 3D geometric texture.

Our implementation to detect geometric patterns of patches generated by one-parameter
rigid body motions involves the following steps:

1. Selection of an arbitrary repetitive patch

2. Sampling of the objects and pruning of the umbilical points

3. Pairing of the sample points

4. Pruning of the sample point pairs

5. Detection of the repetitive patches

Before describing these steps in detail, we begin by presenting the data structure that
we used to represent the 3D triangular input meshes.

7.1 Data Structure used in Algorithm

There are several data structures that can be used to represent 3D triangular meshes
on a computer. A well-known data structure stores a table of vertices along with their
coordinates and for each face pointers to its vertices. This representation of 3D meshes
requires little memory, but most operations such as collecting all adjacent faces for a
vertex or finding the adjacent faces to an edge are inefficient. In order to perform these
operations, one needs to search the whole face table.

1In our notation there are altogether n + 1 repetitive patches.
2N input positions of the interpolation algorithm are the detected patches and the patch S itself.
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7 Detection of Patches Generated by Rigid Body Motions

Vertex Coordinates

v1 x1 y1 z1
v2 x2 y2 z2
v3 x3 y3 z3
v4 x4 y4 z4

Face Vertex

f1 v1 v2 v3
f2 v1 v3 v4

Figure 7.2: Vertex and face tables

The half-edge data stucture efficiently solves these problems by splitting each edge into
two half-edges, where each half-edge points to its opposite half-edge. The data structure
consists of vertex, face and half-edge records, which are described in the following:

v

f

Figure 7.3: Illustration of the half-edge data structure

Vertex v

• Coordinates

• Pointer to one incident half-edge, which points to that vertex
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Face f

• Pointer to one of the incident half-edges h, next(h) or prev(h)

Half-edge h

• Pointer to the vertex v

• Pointer to the incident face f

• Pointer to the half-edge next(h) on the boundary of its incident face f

• Pointer to the half-edge prev(h) on the boundary of its incident face f

• Pointer to its opposite half-edge opposite(h)

With this data structure used, operations concerning topological relations between prim-
itives (vertices, edges, faces) are performed efficiently at the expense of a higher memory
requirement. Collecting all adjacent faces for a vertex is now equivalent to iterating over
the circular sequence of half-edges pointing to that vertex and collecting the incident
faces of the half-edges. We use the Computational Geometry Algorithm Library, CGAL3

based on half-edge data structure, to manage and organize the geometric primitives of
the 3D triangular input meshes of our software. Our triangular input meshes can contain
only regular and boundary edges. Regular edges are adjacent to exactly two faces, while
boundary edges are adjacent to exactly one face. We don’t consider meshes containing
singular edges, which are adjacent to more than two faces.

7.2 Selection of an Arbitrary Repetitive Patch

Our implementation for the discovery of geometric patterns of repetitive patches gen-
erated by rigid body motions is at the moment not fully automatic and requires some
user interaction to select one of the repetitive patches. The selection is performed using
OpenGL’s4 picking routine. To do the selection, OpenGL [27] creates a projection ma-
trix that restricts drawing to a rectangular region of the viewport. This region of the
viewport is determined by the user’s mouse press and release events. With this special
projection matrix used, OpenGL finds out, which triangles of the 3D triangular input
mesh are drawn in this region. In our implementation, we give the user more flexibil-
ity by allowing repeated selection and unselection of the already selected triangles. In
Figure 7.4, two screenshots of our software are shown, where the selection step of our
implementation can be seen.

After selecting one of the repetitive patches of the geometric pattern, we separate the
selected patch from the input mesh and obtain two meshes. From now on we denote the
selected patch as the source model and the complement as the target model (see Figure
7.5).

3www.cgal.org
4www.opengl.org
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Figure 7.4: On the right image, the repetitive patch has been selected more carefully.

Figure 7.5: Source and target model

7.3 Sampling of the Models

We compute a uniform random sampling of the source and the target model by following
the sampling approach proposed in [20]. Since the number of sample points is essential
for the accuracy of the algorithm, it’s given interactively by the user. By specifying the
number of sample points, the user can trade accuracy for computational efficiency.

For each sample point si we estimate principal curvatures ki,1 ≤ ki,2 and principal
directions ei,1 and ei,2 by applying the algorithm proposed in [1]. The three unit vectors
ei,1, ei,2 and ni = ei,1 × ei,2 form a local right-handed frame. We can obtain four
different right-handed local frames depending on the signs of the unit vectors ei,1, ei,2.
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We consider two of these frames for which the inequality ni · nsi
≥ 0 holds, with the

outward pointing unit surface normal nsi
at the sample point si.

Similar to Mitra [21], we do not consider umbilical points, since at these points the
principal directions are not defined uniquely. We prune sample points si with

ki,1
ki,2

> τ,

where the parameter τ < 1 is given interactively by the user.

Figure 7.6: Sample points before and after pruning of the umbilical points

7.4 Pairing of the Sample Points

In this step of our method, sample points of the source model are paired with the sample
points of the target model. To obtain an efficient pairing algorithm, we map all sample
points si to the two dimensional space Ω of principal curvatures via σ(si) = (ki,1,ki,2)
and determine for each sample point of the source model all partners in the target model
by performing a range query in Ω, where a user-defined parameter determines the range
query radius. Since principal curvatures are invariant under rigid body transformations,
sample point pairs that are close in Ω are considered as potential candidates for a triple
(S, P, T ), where S is the source model, P is another repetitive patch and T is a rigid
body transformation such that the transformed patch T (S) is in best alignment with
the patch P . The alignment error is defined as the weighted sum of squared distances
of the points xj ∈ T (S) to the closest points in P . Pairing is performed efficiently using
a kd-tree [2], which is a standard spatial proximity data structure.
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7.5 Pruning of the Sample Pairs

As we mentioned in the preceding section each determined sample pair is a potential
candidate for the existence of a repetitive patch P and a rigid body transformation T
such that the transformed patch T (S) is in best alignment with the patch P . In the
next section we will compute for each sample pair global registration of the source model
to the target model in order to detect repetitive patches and corresponding rigid body
transformations. This would be much time consuming, if one obtains many sample pairs
in the pairing step of our method. To improve the computational efficiency and prune
out incorrect matches of sample pairs, we perform pruning of sample pairs based on
alignment error of local surface patches. A user-defined parameter h defines the size of
local surface patches of sample points. This is illustrated in the figure shown below.

s
h = 1

s
h = 2

Figure 7.7: The local surface patch of the sample point s (yellow) is easily determined by
using circulators in the CGAL. Circulators are used for accessing the circular
sequence of half-edges around a vertex or around a face.

Let Psi
denote the local surface patch of the sample point si. For each sample pair (si, sj)

we estimate the transformation Tij that maps Psi
onto Psj

. The rotational component
Rij of Tij is obtained by aligning the principal frames of the sample points. We adjoin
the column vectors to form the orthogonal matrices Rsi

and Rsj
as follows:

Rsi
= |ei,1ei,2ni|, Rsj

= |ej,1ej,2nj|.

It’s easy to show (comp. [15]) that the rotation matrix that maps ei,1 into ej,1, ei,2 into
ej,2 and ni into nj is given by

Rij = Rsj
RT
si
.

The matrix Rij is orthogonal, since the matrices Rsi
and Rsj

are orthogonal. The
translational component is computed by aligning the rotated sample point si with the
sample point sj:

tij = sj −Rijsi.
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7 Detection of Patches Generated by Rigid Body Motions

We refine this initial transformation using geometric registration. We employ point-to-
point ICP algorithm of P.Besl and N.D. McKay [3]. Since we consider two different
local frames for each sample point, there are several possibilities for the estimation of
the transformation Tij that maps the local surface patches onto each other. We take the
one, which gives the least weighted sum of squared distances of the points xl ∈ Tij(Psi

)
to the closest points yi ∈ Psj

. We prune the sample pair (si, sj), if the alignment error
of the registration is above a user-defined threshold.

7.6 Detection of the Repetitive Patches

As we mentioned before we compute for each remaining sample point pair (si, sj) reg-
istration of the source model to the target model. We implemented both point-to-plane
ICP using instantaneous kinematics as proposed in [25] and point-to-point ICP algo-
rithm of P.Besl and N.D. McKay [3]. The initial transformation of each registration
algorithm is estimated as in the pruning step by aligning the principal frames of the
sample points. The closest points on the target model are computed efficiently using
a kd-tree [2]. We also implemented the weighting schemes described in chapter 5 to
downweight outliers in noisy models. The figure below shows some results of our imple-
mentation of the registration algorithm.

Figure 7.8: Registration of the patches to distorted copies of themselves.

As a result of applying registrations of the source model to the target model we get a
set T̃ of rigid body transformations. We discard a transformation T̃i ∈ T̃ , if T̃i(S) does
not produce a good alignment with the target model. The alignment error is defined as
the weighted sum of squared distances of the points xj ∈ T̃i(S) to the closest points in
the target model. The resulting set T̄ of rigid body transformations is not necessarily
unique. In other words, the squared distance of some T̄i, T̄j ∈ T̄ can be very small.
We group the transformations according to their squared distances from each other and
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7 Detection of Patches Generated by Rigid Body Motions

take only one transformation from each group. The squared distance between two affine
maps α and β that are applied to a moving body S, which is represented by feature
points f1, · · · , fK , is defined as sum of squared distances of feature point positions after
application of α and β, respectively (comp. [13]),

d2(α(S), β(S)) :=
K∑
i=1

‖α(f i)− β(f i)‖2. (7.1)

We describe the source model S by the four feature points described in the following. Let
T ′ = {Ti1 , · · · , TiN−1

} ⊆ T denote the resulting unique set of rigid body transformations
and P ′ = {Pi1 , · · · , PiN−1

} ⊆ P the corresponding set of repetitive patches such that for
every ij ∈ {i1, · · · , iN−1} the weighted sum of squared distances of the points xk ∈ Tij (S)
to the closest points in the repetitive patch Pij is below the user-defined threshold. Due
to noise in the model and variations in the sample point positions we can rarely detect
all repetitive patches, which are present in the model, by applying registrations.

In the following our goal is to detect the missing n + 1 − N ≥ 0 repetitive patches,
which couldn’t be obtained by applying registrations. In order to do that, we want to
compute a rigid body motion m(u) which interpolates the N positions S(ui) of the patch
S ⊂ R3 such that chosen feature points of the patch S run on smooth paths. We start
by choosing an arbitrary orthonormal right-handed frame fS = (xS,yS, zS) originating
at the centroid cS of the source model and determine four feature points f1, · · · , f4 of
the source model S as follows:

f1 = cS, f2 = cS + xS, f3 = cS + yS, f4 = cS + zS.

We transform the local frame fS for every ij ∈ {i1, · · · , iN−1} by the transformation
Tij ∈ T ′ and obtain the different positions of the feature points fk, k = 1, · · · , 4. The N

different positions5 fk0, · · · , fkN−1 of the same feature point fk are called as homologous
points6 (see Figure 7.9). To each of the 4 sequences of homologous points we will apply
the same interpolating curve design algorithm. Assume that parameter values are given,
we want to find B-Spline curves fk(u) with

fk(ui) = fki , i = 0, · · · , N − 1, k = 1, · · · , 4.

The most challenging part of our method is the computation of appropriate parameter
values ui, which is described in the following. We aim to approximate the first sequence
f1
0, · · · , f1

N−1 of homologous points by a B-Spline curve that reflects the form of the curve
on which the centroids of all available repetitive patches lie. A B-Spline curve is defined
by the formula

P (t) =
m∑
i=0

Bn
i (t)di,

5N − 1 transformed and the original position of the feature point
6comp. [14]
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Figure 7.9: Homologous points

where Bn
i (t) describes the basis B-Spline functions of degree n and di the control points.

We use cubic basis B-Spline functions for the approximation. Additionally, the knot
sequence and the number of control points are not subject to the optimization. We use
the following algorithm to approximate the sequence of homologous points by a B-Spline
curve.

Algorithm 7.1. An algorithm for the approximation of a point cloud X by a B-Spline
curve P (t) (comp. [9]).

1. Define a suitable start position of the approximating B-Spline curve.

2. Assign each point xk ∈ X a parameter value tk such that P (tk) is the foot point of
xk on the approximating B-Spline curve.

3. Find a displacement c = (ci)i=0,··· ,m of the control points di

Pc(t) =
m∑
i=0

Bn
i (t)(di + ci)

such that the following quadratic objective function is minimized

g(c) =
n∑
k=0

d2(Pc(tk),xk) + Fr(c),

where d2(Pc(tk),xk) is a local approximation of the squared distance function and
Fr(c) is a regularization term ensuring a smooth solution.

4. Update the control points of the approximating B-Spline curve: di → (di + ci). If
the updated B-Spline curve is a good approximation of the given point cloud X,
stop.
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7 Detection of Patches Generated by Rigid Body Motions

5. Otherwise, continue with step 2.

In [9] the steps 2 and 3 are discussed in detail. To define a suitable start position of
the approximating B-Spline curve, we first compute the euclidean minimum spanning
tree (EMST) of the complete graph with the vertices f1

0, · · · , f1
N−1 (see Figure below).

f1
0

f1
1

f1
2

f1
3

f1
4

f1
0

f1
1

f1
2

f1
3

f1
4

Figure 7.10: In most cases the euclidean minimum spanning tree can be used as the
control polygon of the initial B-Spline curve.

Since the computed EMST can contain vertices with degree higher than two, we find
the longest path f1

i0
, · · · , f1

il
with f1

i0
6= f1

il
in this tree (see Figure below) and choose the

vertices of this path as the control points of the initial B-Spline curve.

Figure 7.11: In cases where consecutive repetitive patches couldn’t be detected, some
vertex might have a degree higher than two. The blue points represent
the centroids of the detected patches, while the yellow points represent the
centroids of two undetected consecutive patches.
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7 Detection of Patches Generated by Rigid Body Motions

The sequence f1
0, · · · , f1

N−1 of homologous points are approximated with the constraint
that the end-points f1

i0
, f1
il

of the computed longest path be interpolated. Let s(t), t ∈
[tstart, tend] denote the final approximating B-Spline curve. For every i ∈ {0, · · · , N −1},
we assign the length of the curve segment s([tstart, ti]) to the points fki , k = 1, · · · , 4,
where s(ti) is the closest point of f1

i on the approximating B-Spline curve (see figure
below).

f   = s (t      )1
i f1

i

f1
j

s (t )j
0 lstart

Figure 7.12: B-Spline approximation for sorting of the homologous points

We sort all four sequences fk0, · · · , fkN−1, k = 1, · · · , 4 of homologous points by ascending

order of the assigned length values and get the ordered sequences fkj0 , · · · , f
k
jN−1

, k =

1, · · · , 4. For some i ∈ {0, · · · , N − 1}, fkji , k = 1, · · · , 4 denote the feature points of the
source model S. For the computation of parameter values, we use the squared distance
(7.1) between two affine maps. We assign the parameter value uji = 0 to the feature
points of the source model. The parameter values of the points

fkjt , k = 1, · · · , 4, t > i

are iteratively computed as follows:

ujt = ujt−1 +
4∑

k=1

‖α(fkji)− β(fkji)‖
2, t = i+ 1, · · · , N − 1,

where α and β are two rigid body transformations that map the feature points fkji onto

the points fkjt−1
and fkjt , k = 1, · · · , 4, respectively. The parameter values of the points

fkjt , k = 1, · · · , 4, t < i

are computed analogously as follows:

ujt = ujt+1 −
4∑

k=1

‖α(fkji)− β(fkji)‖
2, t = i− 1, · · · , 0,
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7 Detection of Patches Generated by Rigid Body Motions

where transformations α and β map the feature points fkji onto the points fkjt+1
and

fkjt , k = 1, · · · , 4, respectively.
After applying the same interpolating curve design algorithm to all sequences of homol-

ogous points, we get 4 curves f1(u), · · · , f4(u), u ∈ [ustart, uend]. For each ū ∈ [ustart, uend]
the points f1(ū), · · · , f4(ū) may be considered as affine image points of f1, · · · , f4. Let
α(ū) denote this affine transformation. The curves f1(u), · · · , f4(u) determine a param-
eter dependent family of affine copies S ′(u) = α(u)(S) of the source model S, a so-called
affine motion (comp. [14]). Since we are interested in a rigid body motion of the source
model S, we compute for each parameter value ū a rigid body transformation m(ū),
which brings the source model S as close as possible to its affine copy S ′(ū) = α(ū)(S)
using the method of Horn [15]. The objective function to be minimized looks as follows:∑

i

‖m(ū)(vi)− α(ū)(vi)‖2,

with the vertices vi of the source model S. In this way we approximate the affine
motion α(u) by a rigid body motion m(u). In [14] they prove that the rigid body
motion generated in this way is of the same smoothness as the interpolating curve design
algorithm employed. A geometric interpretation of the approximation of an affine motion
by a rigid body motion is illustrated in Figure 7.137.

M6

A12

c'(t)

c(t)

s1

s2

s3

s4

s5

Figure 7.13: To each affine image of the source model a point in 12-dimensional affine
space A12 is associated. The images of the source model S under rigid body
motions form a 6-dimensional submanifold M6 ⊂ A12. The N positions of
the source model S correspond to points si on M6. An affine motion of the
source model S interpolating the given positions si corresponds to a curve
c′(t) in A12 and the approximation of the affine motion by a rigid body
motion to the orthogonal projection of the curve c′(t) to a curve c(t) in M6.

7source: [14]
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7 Detection of Patches Generated by Rigid Body Motions

In order to detect the missing repetitive patches, we uniformly sample the parameter
interval [ustart, uend] of the computed rigid body motionm(u), obtain the set of parameter
values {u0, · · · , ud−1} with

ustart = u0 < u1 < · · · < ud−1 = uend

and compute for every j ∈ {0, · · · , d−1} registration of the source model S to the target
model with the initial transformation m(uj). Thus we obtain another M ≥ 0 repetitive
patches, which couldn’t be detected before. The parameter d is essential for the accuracy
of our method. The more the magnitude of d is, the more accurate the algorithm will
be. Finally we recompute the rigid body motion that interpolates the N + M ≤ n + 1
different positions of the source model S. The user can iterate the computation of the
rigid body motion until no more improvements can be achieved.
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Figure 7.14: Reconstructed rigid body motion generates 3D geometric texture on the
target model.
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1 2
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5 6

Figure 7.15: Reconstructed rigid body motion generates 3D geometric texture on the
target model.
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8 Conclusion

We have shown how to detect repetitive structures generated by rigid body motions in 3D
mesh-based models. The user provides a 3D triangular mesh as input, selects an arbitrary
repetitive structure and specifies the number of sample points. Additional parameters
include a range query radius for pairing and thresholds for point pruning and registration.
The output of our method is the set of repetitive patches P = {P0, P1, · · · , Pn−1}∪S, i.e.,
the selected patch S, the reconstructed rigid body motion m(u) and the set of parameter
values U = {u0, u1, · · · , un−1} such that for every j ∈ {0, · · · , n − 1} the transformed
patch m(uj)(S) is in best alignment with the patch Pj.

8.1 Texture Generation

Applications of our method include generation of 3D geometric texture. The images
shown on the last two pages illustrate how to generate 3D geometic texture using the
reconstructed rigid body motion.

8.2 Limitations

Our method does not ensure to detect all repetitive patches, which are present in the
given 3D triangular mesh. An example of such a situation is illustrated below in Figure
8.1.

Figure 8.1: Illustration of a limitation of our method
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8 Conclusion

In Figure 8.1 the blue points represent detected positions of the source model S and the
yellow point a repetitive patch, which couldn’t be detected by applying registrations.
The solid line stands for the rigid body motion interpolating all repetitive patches,
which are present in the model. The dashed line depicts the motion that interpolates
the detected positions of the source model. If an undetected patch (yellow) would be
too far from the rigid body motion interpolating the detected positions of the source
model, it won’t be possible to detect this patch by applying registration with an initial
transformation computed with our method.

We don’t consider similarity transformations, but our method can be extended with a
minor change of the implemented registration algorithms to consider patterns of repet-
itive patches generated by equiform motions. A one-parameter equiform motion e(u)
maps points x ∈ R3 according to

y(u) = α(u)R(u)x + a(u) = e(u)(x),

with a rotation matrix R(u), a translation vector a(u) and a scaling factor α(u). If
α(u) = const = 1, we obtain a rigid body motion.
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