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Kurzfassung

Thema dieser Diplomarbeit war die Erweiterung einer Programmbibliothek zur

Rekonstruktion von Teilchenreaktionen wie sie bei Hochenergiephysikexperimen-

ten untersucht werden. Ziel war es, eine M�oglichkeit zu scha�en, kinematische

Zwangsbedingungen in diese Rekonstruktion mit einzubeziehen. Au�erdem soll-

te die Bibliothek in eine vorhandenen Softwareumgebung integriert werden, wel-

che zum Einsatz in einem zuk�unftigen Linearbeschleuniger-Experiment entwickelt

wird. Den Abschlu� bildete ein Test anhand der Rekonstruktion von W -Boson

Zerf�allen und die realistische Fragestellung nach der notwendigen integrierten

Luminosit�at zur Verbesserung der bekannten Messungen der W -Masse.

Die Programmbibliothek Rave entstand aus dem Wunsch heraus, eine immer

neue Entwicklung derselben Programmteile in typischen Softwarepaketen zur Re-

konstruktion von Teilchenreaktionen zu vermeiden. Von dieser Problematik sind

jene Teile betro�en, die experimentunabh�angig formuliert werden k�onnen. Da-

bei handelt es sich insbesondere um die Rekonstruktion von Interaktionspunkten

(Vertices), z.B. von Teilchenzerf�allen.

Um die zentrale Idee von Rave von Anfang an hervorzuheben, dient als Kern

der Bibliothek jene Implementierung der Algorithmen, welche f�ur das Compact

Muon Solenoid (CMS) Experiment erstellt wurde. Rave liefert dazu eine einfache

und stabile Schnittstelle. Derselbe Ansatz wurde w�ahrend dieser Diplomarbeit

weiterverfolgt, als jene Teile die es erlauben, die Vertices unter Ber�ucksichtigung

von kinematischen Zwangsbedingungen zu rekonstruieren, aus der CMS-Software

herausgel�ost und in Rave implementiert wurden.

Als n�achstes wurde die Integration von Rave in die Rekonstruktions- und

Analyse-Software des International Large Detector (ILD) Experiments, welches

f�ur den International Linear Collider entwickelt wird, vorgenommen. Dazu war

eine entsprechende Erweiterung erforderlich, die s�amtliche Funktionen von Rave

f�ur die Benutzer dieser Software zug�anglich macht.

Zum Abschlu� der Arbeit wurde die neue Software anhand einer beispielhaf-

ten Rekonstruktion getestet. Die gew�ahlte Reaktion war die Paarproduktion von

W -Bosonen durch e+e� Kollisionen bei 500 GeV, welche in insgesamt vier so

genannte Jets zerfallen. Ziel dieser Analyse war es, die Genauigkeit zu ermitteln,

mit der unter Anwendung von kinematischen Zwangsbedingungen die Masse der

W -Bosonen rekonstruiert werden kann. Die Jets wurden mit einem weit verbrei-
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teten Reaktionsgenerator simuliert und anschlie�end mit den erwarteten Rekon-

struktionsfehlern versehen. Das Ergebnis zeigt die hohe Genauigkeit, mit der die

W -Masse im ILD-Experiment bestimmt werden k�onnen wird.
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Abstract

The topic of this diploma thesis is the extension of a program library for event

reconstruction at high energy physics experiments. The extension should enable

the use of kinematic constraints during the reconstruction. Moreover the library

should be integrated into an existing software environment used for event recon-

struction at a future linear collider experiment. A test with the reconstruction

of W -boson decays closes this work together with the realistic question for the

integrated luminosity necessary to improve on currently known measurements of

the W mass.

The Rave library was created to avoid the repeated re-implementation of similar

algorithms in every new reconstruction software package, because certain parts

can be formulated in an experiment-independent manner. These are in particular

the parts doing the reconstruction of interaction vertices, e.g. of particle decays.

To emphasize the central idea of Rave right from the start, the core of the

library is the implementation of the algorithms which was designed for the Com-

pact Muon Solenoid (CMS) experiment at the Large Hadron Collider. Rave

provides an additional simple and stable interface. The same approach was pur-

sued during this diploma thesis when the parts doing vertex reconstruction with

consideration of kinematic constraints were extracted from the CMS software and

implemented in Rave.

The next step was the integration into the reconstruction and analysis frame-

work of the International Large Detector (ILD) experiment, which is developed

for the International Linear Collider. This required an appropriate extension for

making all related functions accessible to the user of the framework.

Finally, the new software was tested with an exemplary reconstruction. The

chosen reaction was the pair-production of W bosons by e+e� collisions at

500 GeV decaying purely into hadrons and thus forming four jets in the �nal

state. The goal of this analysis was to determine the precision at which the mass

of the W boson can be reconstructed when considering kinematic constraints.

The jets were simulated by a popular physics generator, thereafter the errors ex-

pected for jet reconstruction at that speci�c experiment were applied. The result

shows the high precision which the ILD experiment will provide to determine the

W mass.
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1 Introduction

Progress on high energy physics experiments is often expressed by two paradigms:

energy and resolution. The steady increase of the energies at which experiments

are performed is of course more obvious and is thus eponymous for the domain.

The exploitation of technical and �nancial limits along this path is profoundly

stimulated by theoretical predictions awaiting veri�cation. Letting aside the �-

nancial questions, the technical limits are subject to continuous change, but there

are a few principles which tend to change only when certain physical limits are

met. Today we are at the doorstep of the change of two of those principles.

One thing that will certainly not change in the future is the necessity to favor

experiments of colliding beams over those shooting particles at �xed targets.

This is because in �xed target experiments the center-of-mass energy (available

for the generation of new particles) increases only with the square root of the

beam energy in contrast to a linear increase with two times the beam energy at

colliders. Nevertheless �xed target experiments are needed to carry out secondary

beam experiments, which is not possible at colliders.

For the last decades the accelerators producing and storing particles of the

highest energy have been synchrotrons. Those circular accelerators have two

major advantages compared to linear accelerators: First, one particle uses the

same accelerating devices several times and second, the same group (bunch) of

stored particles can be brought to collision many times and far less beam particles

are lost missing each other.

On the other hand, circular colliders have one critical disadvantage: When-

ever charged particles are bent they generate radiation. Thus the dipole magnets

keeping the particles on their circular path cause an energy loss per orbit pro-

portional to 4 (synchrotron radiation). Therefore the Large Hadron Collider

(LHC) resorted to using the heavier protons instead of electrons which lowers

 = E=m by a factor of 1836 for the same particle energy. This bene�t does
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1 Introduction

not come without a downside, however. Because protons are not fundamental

particles but are composed of quarks and gluons and the energy is not equally

distributed between those constituents, the exact kinematic con�guration of each

collision and its center-of-mass energy is in principle unknown. This not only

reduces the actual center-of-mass energy of the collision by an order of magni-

tude compared to the beam energy but is also source of an immense amount of

background produced by fragmentation reactions within a wide energy range.

The lack of control over the center-of-mass energy of the reactions arises the

need of a large number of e�ectively random reactions to trigger on or later pick

out the signal. The measurement of the properties of rarely produced particles

quickly resembles the proverbial look for a needle in a haystack. Those di�culties

and the recent improvements on the performance, more precisely the electric �eld

gradient, of accelerating radio-frequency (RF) cavities have brought back the

concept of a linear accelerator/collider. The inherent bunch-crossing ine�ciencies

of \one-shot" linear colliders, however, make extreme demands on the bunch

density and the beam pro�les in order to gain luminosity.

Of course such a machine would mean a tremendous improvement along the

second paradigm of progress mentioned in the �rst paragraph: the resolution.

The precisely known collision con�guration and low background result in higher

detection and reconstruction e�ciencies; a high luminosity (and thus event rate)

results in smaller statistical errors. Both will contribute to the resolution of the

predictions we can make. Desirably at all times energy, luminosity and resolution

are pushed to the highest possible level. But while the peak energy and luminosity

of an experiment are rather hard facts once the accelerator is built, resolution

will increase in time: not only because of the growing number of measurements

taken, but also by optimal extraction of information improved through proper

understanding. It is this last source of improvement, which will be the topic of

this diploma thesis.

The term \event reconstruction" refers to the process of converting electronic

signals to observable quantities, and the latter to abstract quantities closer to our

physical models. This involves several steps: to convert the shapes and patterns

of certain electronic signals to points in space; to associate sets of these points

to particle trajectories (\pattern recognition"); to parametrize these trajectories

according to a \track model" of the ight path in the detector's magnetic �eld.
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Furthermore to �nd one or more common points (vertices) where the found paths

supposedly originated from. Until this step, the process of event reconstruction

is purely based on geometrical and statistical knowledge and methods, although

an appropriate choice of the track and vertex parameters already requires some

knowledge of the physical processes involved.

This is where the \kinematic" part comes into play. It refers to an improve-

ment of the �tting process which allows for the direct application of physical

understanding of the reconstructed event. While both geometrical and kinematic

reconstruction are �tting a set of parameters which are believed to govern the

investigated event, the kinematic �tting limits the \search space" of these pa-

rameters to con�gurations constrained by known physical laws and conserved

quantities. The motivation for the use of sophisticated reconstruction methods

like kinematic �tting is not only to improve the yielded resolution, but it also

helps with separating signal an background of the data samples under investiga-

tion.

During this diploma thesis the vertex reconstruction toolkit Rave (co-developed

by the author) was extended for kinematic �tting tools by adopting the respective

parts from the framework of software tools used for event reconstruction in the

Compact Muon Solenoid (CMS) experiment at the LHC at CERN, and designing

a framework-independent programming interface in consistency with the existing

Rave programming interface. This extension is shown to improve resolution in

one exemplary reconstruction of pair production of W bosons decaying into four

jets in the International Large Detector (ILD) experiment at the International

Linear Collider (ILC).
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2 Fundamentals

2.1 Physics motivation

\What do we consist of? And what does the world around us consist of?" An-

swering these fundamental questions is one of the longest-standing motivations

of science and scientists. There is one concept which most of the answers given

to these questions have in common. It is revealed, when we rewrite the questions

to: \What is everything composed of?"

Almost as old as the idea that everything can be separated into its components

is the idea of a limit of this separation; something indivisible; some fundamental

building blocks of everything.

It is the search for those fundamental building blocks that led us to the dis-

covery of the atoms. But they soon turned out to consist of smaller objects: the

electron, the proton and the neutron. And the analysis of protons and neutrons

showed that they again are composed of smaller objects called quarks and the

force carriers called gluons.

The so-called Standard Model of particle physics is a theory which includes all

fundamental particles found so far (electron, its neutrino and two quarks of the

�rst family, and their duplicates of the second and third family). It also includes

three of the four known fundamental forces (the uni�ed electromagnetic and weak

interactions with the carrier particles photon, W � and Z 0 bosons, and the strong

interaction with eight carrier particles, the gluons), but disregards gravity. The

Standard Model predicts only one particle that has not yet been found: the Higgs

boson giving all particles their mass.

Naturally one of the central interests in particle physics research concerns the

search for the Higgs boson being the most obvious missing piece of the Standard

Model puzzle. Another is the search for evidence of \new physics" beyond the

Standard Model, as proposed by more general theories (Grand Uni�ed Theory,
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2 Fundamentals

Supersymmetry, or further dimensions of space-time). And the search for the

origin of \dark matter" and \dark energy", those two mysterious ingredients of

what we currently believe the universe predominantly consists of.

2.2 Future accelerators

All particle physics experiments, aiming at the tasks de�ned above, have one

thing in common: the requirement of high center-of-mass energies. On the one

hand high energies are required to produce the fundamental particles we want

to analyze, on the other hand they are required to explore structures as tiny as

fundamental particles. One way to concentrate high amounts of energies in a

controllable manner is to accelerate particles to velocities near the speed of light

and collide them at a distinct point. This is exactly what is done by the two

accelerators described later in this section.

Particles can only be accelerated to higher energies by an electric �eld and

therefore have to be charged. Because the Coulomb force in the electric �eld is

proportional to the charge times the �eld strength, the energy a particle (with

given charge) gains when travelling in such a �eld is proportional to the �eld

strength times the distance travelled. Consequently when building a linear ac-

celerator one will want to use strong �elds over large distances. Alternatively, a

circular accelerator forces the particles to follow a circle and reuse the accelera-

tor multiple times: this is achieved by dipole magnets applying a perpendicular

Lorentz force proportional to the speed of the particle times the strength of the

magnetic �eld. If the path of the particle should stay the same over many revolu-

tions, obviously the magnetic �eld has to be variable in order to account for the

increased speed of the particle. This kind of accelerator is called synchrotron.

The performance of a particle accelerator/collider is not only de�ned by the

maximum collision energy it is able to achieve, but also by the number of collisions

produced over time. This parameter, normalized by the cross-section of the two

beam particles' interaction, is called the luminosity of the accelerator. A high

luminosity increases the absolute number of events recorded over a certain period

and therefore on the one hand increases the probability to record even very rare

events, and on the other hand improves the con�dence level of more frequent

events. Table 2.1 shows some historic, current and future colliders, together with

12



2 Fundamentals

Max. beam Peak
Laboratory Particles energy luminosity Remarks

[GeV] [cm�2s�1]

Tevatron II FermiLab p�p 980 1:7� 1032 running
LHC CERN pp 7000 1034 start 2008
BELLE KEK e�e+ 8 + 3:5 1:6� 1034 running
LEP II CERN e�e+ 104 1032 shutdown 2000
HERA DESY e�p 27:5e + 920p 7:5� 1031 shutdown 2007
ILC t.b.d. e�e+ 250 : : : 500 2� 1034 start � 2018

Table 2.1: Some colliders [23]

Figure 2.1: Overall view of LHC experiments

their respective maximum beam energy and luminosity [23].

2.2.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is a synchrotron accelerator/collider with a

circumference of 27 km, built by the European Organization for Nuclear Research

(CERN) in Geneva and extending across the border of France and Switzerland

(�gure 2.1). It is designed to accelerate protons to an energy of 7 TeV, resulting

in a center-of-mass energy at the collision point of 14 TeV. Alternatively heavy

ion collisions using Pb82+ ions yield center-of-mass energies of 1148 TeV.

Since the particles colliding have the same charge, each beam needs its own

13



2 Fundamentals

Figure 2.2: Layout of the LHC tunnel including infrastructures

accelerator ring with dipole magnetic �elds of opposite polarity. At LHC those

�elds are required to go up to 8:33 T, and can only be generated by supercon-

ducting magnets.

The tunnel together with other local construction has been inherited from the

Large Electron-Positron (LEP) collider previously hosted therein. In addition

new experimental halls, cooling towers and beam transfer tunnels have been

constructed. An overview of the underground layout highlighting new structures

is given by �gure 2.2.

The protons accelerated in the ring are grouped into 2808 bunches and thus

the time between two bunch interactions is at minimum 25 ns. The average event

rate R depends on two factors

R = L� � (2.1)

where � is the cross section of the reaction in question, and L is the luminosity

of the collider used. For proton-proton collisions the LHC is designed to achieve

a maximum luminosity of 2� 1033 cm�2s�1 during the running, and 1034 cm�2s�1

when achieving the peak design value. Table 2.2 summarizes the technical char-

acteristics of the LHC at peak design luminosity.

As can be seen from �gures 2.1 and 2.2, there are four experiments prepared

for operation at the LHC. The two general-purpose detectors ATLAS and CMS

14



2 Fundamentals

Proton energy at collision 7 TeV
Number of bunches 2808
Number of particles per bunch 1:15� 1011

Bunch spacing 25 ns
Average number of events per bunch crossing 19
Average total pp event rate 0:76� 109s�1

Table 2.2: Technical characteristics of the Large Hadron Collider working at peak
design luminosity

are both designed for the proton-proton collision mode up to the peak luminosity,

as well as for the heavy-ion collision mode. The LHC-b experiment is a dedicated

b-physics experiment and will work at L = 1032 cm�2s�1. On the other hand the

ALICE experiment is specialized on the study of heavy-ion collisions.

Because of the relation of the software developed during this diploma thesis to

the reconstruction software of the CMS experiment, only this experiment will be

covered in detail in section 2.3.1.

2.2.2 The International Linear Collider

The International Linear Collider (ILC) is a linear electron-positron collider. It is

designed to be the immediate \consequence" of the LHC. The two follow clearly

and explicitly complementary approaches which can be roughly outlined by call-

ing one (LHC) the \discovery machine", and the other (ILC) the \precision ma-

chine". The discoveries expected at LHC will point the way ILC will go, and for

each discovery the LHC will make, it is up to the ILC to provide comprehensive

and precise information upon whatever will have been discovered [4].

The design of ILC is elaborated since 2005 by the international \Global Design

E�ort" (GDE) under the auspices of the International Committee for Future

Accelerators (ICFA). The currently proposed design of the accelerator/collider is

illustrated in �gure 2.3.

The three most important requirements of the ILC are [17]:

� An initial center-of-mass energy of 500 GeV, with the ability to upgrade to

1 TeV,

� An integrated luminosity of 500 fb�1 at 500 GeV or equivalent at lower

energies in the �rst four years,
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2 Fundamentals

Figure 2.3: A schematic layout of the International Linear Collider. [Graphic
courtesy of ILC / form one visual communication]

Parameter Value Units

Center-of-mass energy 500 GeV
Peak luminosity 2� 1034 cm�2s�1

Availability 75 %
Repetition rate 5 Hz
Duty cycle 0:5 %
Main Linacs:

Average accelerating gradient in cavities 31:5 MVm
Length of each Main Linac 11 km
Beam pulse length 1 ms
Average beam current in pulse 9:0 mA

Damping rings:
Beam energy 5 GeV
Circumference 6:7 km

Length of the Beam Delivery section (2 beams) 4:5 km
Total site length 31 km
Total site power consumption 230 MW

Table 2.3: Global Accelerator Parameters of the International Linear Collider at
500GeV center-of-mass energy [17].
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2 Fundamentals

� The ability to scan in energy between 200 and 500 GeV.

In 2004 an international review panel has decided the main linear accelerator

(linac) to be based on 1:3 GHz superconducting radio-frequency (SCRF) accel-

erating cavities. These cavities are reported to be the most energy e�cient way

to achieve the 31:5 MV=m baseline average operational accelerating gradient re-

quired. The designed peak luminosity is 2 � 1034 cm�2s�1, but the maximum

luminosity is not needed at the maximum energy. Together with an assumed col-

lider availability of 75% and a realistic operation scenario (maintenance months

and luminosity ramping included), this luminosity delivers the required 500 fb�1

in the �rst four years.

Apart from these values, the designed baseline performance goals of the ILC

are the following [2] (table 2.3 summarizes the global parameters of the ILC):

� Beam energy stability and precision should be below the tenth of percent

level at any energy.

� A polarisation of 80% of the electron beam within the full energy range

must be possible.

� The interaction region should either allow for two simultaneous experiments

or, if necessary for design and cost considerations, two experiments should

be able to share one interaction region (\push-pull").

� Calibration runs at 91:2 GeV (Z0 resonance) should be possible. For cali-

bration low luminosity is tolerable.

� The accelerator should be run at modes with low beamstrahlung to make

the background manageable, however, quantitative studies are required to

work this out.

The site for building the ILC is yet to be chosen and there are several proposed

candidates. Cost estimates of the Reference Design Report [9] are based on three

sample sites:

� in Northern Illinois near the Fermi National Accelerator Laboratory,

� in Japan (region not disclosed),
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Figure 2.4: Artist's impression of the ILC tunnels. [Graphic courtesy of FermiL-
ab/Sandbox Studio]

� in the Geneva region near the CERN laboratory.

All three use deep underground tunnels. In addition, two shallow tunnel sites are

under investigation: one at the former TESLA site near DESY, and the other in

the Moscow region near Dubna. Note that the �nal choice will not necessarily be

made from among these sample sites.

Figure 2.4 gives a cutaway view of the deep underground tunnels housing the

main linacs. These tunnels usually lie 100 � 150 m underground and have an

interior diameter of 4:5 m. They are separated by 5:0�7:5 m which permits access

to the equipment in the service tunnel. The two tunnels need three connections

per RF unit: one for the waveguide, one for the signal cable and one for the

power and high voltage cables.

2.3 Experiments

2.3.1 The Compact Muon Solenoid experiment

The Compact Muon Solenoid (CMS) experiment is one of four experiments at

the LHC. CMS is a multipurpose experiment, which means it has been optimized

with a couple of simultaneous goals in mind:
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Figure 2.5: Drawing of the complete CMS detector showing scale and complexity.

� The search for the Higgs boson in proton-proton collisions with high lumi-

nosity. Even this one goal implies several requirements due to the di�erent

decay channels and thus di�erent �nal states of the the Higgs boson de-

pending on its mass.

� The search for evidence of physics beyond the Standard Model i.e. Super-

symmetry or extra dimensions. This requires studies of �nal states with

numerous jets and hard leptons.

� Studies in the �eld of b-physics, i.e. the oscillations of the neutral B0� �B0

mesons.

� Study of top-quark physics, i.e. a precise measurement of the top mass.

The situations (\signatures") listed require the detector to do precise measure-

ments of photons, muons and electrons over a large energy range. Also precise

reconstruction of the tracks of charged particles over a large range of transverse

momenta is needed. The importance of muon reconstruction is emphasized by

the name of the experiment. Finally, the high event rates at LHC impose strong

requirements on the granularity and readout speed of the detector.
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Figure 2.6: The components of the CMS detector and their role in detecting dif-
ferent types of particles.

The general layout of the CMS detector is shown in �gure 2.5. The words

\Compact" and \Solenoid" in the experiment name are somewhat related, and

they outline the starting point of the detector design: the superconducting so-

lenoid of 13 m in length and an inner diameter of 5:9 m generating a uniform

magnetic �eld of 4 T. The tracker (for position and momentum measurement)

and the calorimetry (for energy measurement) are compact enough to completely

�t inside the solenoid. The only parts outside of the solenoid are the return yoke

(returning the magnetic ux) and the muons chambers.

The di�erent components of the detector together with their respective pur-

poses are shown in �gure 2.6. The central tracker is itself composed of the pixel

detector and the silicon micro-strip tracker.

2.3.2 Experiments at the ILC

The physics studied at ILC will present real challenges to the detectors. The

most important ones foreseeable by now being a high-resolution jet mass re-

construction, a high charged-track momentum resolution, and high-performance

avor and quark charge tagging, all well beyond the current state of the art. The
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Measured quantity Critical Critical detector Required
(examples) system characteristics performance

Triple Higgs coupling Tracker Jet energy

3 to 4%
Higgs mass and resolution,
BR(H !WW �) Calorimeter �E=E
�(e+e� ! ���W+W�)

Higgs recoil mass
Tracker

Charged particle
5� 10�5Luminosity weighted Ecm momentum resolution

BR(H ! �+��) �pt=p
2
t

Higgs branching ratios Vertex Impact parameter 5�m
L

10�m

p[GeV=c] sin3=2 �b quark charge asymmetry detector resolution, �b

�� mass (SUSY)
Tracker, Momentum resolution,

Calorimeter hermeticity

Table 2.4: Sub-detector performance needed for key ILC physics measurements
[5].

sub-detector performances needed for key ILC measurements are summarized in

table 2.4.

Taking the current baseline design of the ILC, it foresees one interaction region

equipped with two detectors. It is not yet clear whether the two detectors will be

operated in a push-pull mode moving them in and out of the interaction region,

or if there will be two beam delivery systems.

The International Large Detector

The International Large Detector (ILD) detector has recently been merged from

the two previous Large Detector Concept (LDC) and the GLD concept. Figure 2.7

shows the latest LDC design. There is currently no distinguished ILD concept,

but the two previous concepts are under convergence.

The key design motivations of the ILD concept are precision, high reliability

and high redundancy. The detector tries to be prepared for the unexpected.

The disadvantageous inuence of detector material especially on tracking is an

important issue, therefore the main tracker is based on a time projection chamber

(TPC) minimizing the material budget.

The most obvious di�erence between the two preceding concepts (LDC and

GLD) was their size and magnetic �eld. While the LDC favored a 4 T magnetic

�eld and a TPC with an outer radius of 1.58 m, the GLD concept suggested a
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Figure 2.7: Schematic view of the LDC detector showing one quarter of the pro-
posed design. Dimensions in the drawing are in mm. [6]

3.5 T �eld and a TPC with an outer radius of 2 m.

The cornerstones of the ILD design are a reliable and redundant tracking sys-

tem, high-precision calorimetry based on Particle Flow Analysis (for best jet en-

ergy reconstruction and excellent particle identi�cation) and hermeticity. These

goals are met by a high-precision vertex detector, a large-volume TPC, supported

by complete silicon tracking, particle ow calorimeters, excellent hermeticity, a

3 : : : 4 T solenoidal �eld, and an iron return yoke with muon instrumentation.

The magnet is based on the CMS design.

A vertex detector and a silicon inner tracker are planned inside the TPC. The

inner tracker of the LDC is shown in �gure 2.8; in the following this system will

be shortly described. Although the number of layers of both, the barrel and the

forward region, is di�erent at the GLD inner tracker, the overall system design

is rather similar and will not be described separately here.

The tracking system of the LDC tries to optimize pattern recognition per-
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Figure 2.8: Enlarged view of the inner (Si) tracking and the forward detectors of
the LDC detector. [6]

formance, momentum resolution and particle identi�cation also in the forward

region while minimizing material budget to minimize interference with electron

and photon measurements in the calorimeter. The pixel vertex detector starts at

an inner radius of 1.55 cm and with its �ve layers is optimized for excellent point

resolution to provide very good bottom and charm tagging capabilities. The

silicon tracker is equipped with two layers in the barrel region and six disks in

the forward region, the �rst two of which are implemented as pixel detectors. It

provides excellent linkage between the vertex detector and the TPC and extends

the coverage of the tracking system to very forward angles.

The ILD collaboration inherited the participants from the LDC (mainly Euro-

pean) and GLD (mainly Asian) concepts. Almost 50 % of them are from Europe,

and another third is from Asia, but there are also participants from North Amer-

ica. Overall some 170 groups from 28 countries work for the ILD collaboration.

The Silicon Detector

The Silicon Detector (SiD) concept incorporates silicon-tungsten based electronic

calorimetry and all-silicon tracking. It attempts to optimize physics performance

while constraining cost, and to be robust against physics and machine back-

ground. This last goal is assisted by the high readout speed of silicon detectors,

thus most SiD systems will only record background from a single bunch crossing.

Similar to the ILD, the SiD design is guided by the idea to achieve the required

jet energy resolution through Particle Flow Analysis. This leads to the choice of

a highly pixellated electronic calorimetry and multi-layer and highly segmented

hadronic calorimetry. In order to achieve the required resolution, both calorime-

ters need to be located within the solenoid. To be able to maintain the cost

constraints, the solenoid and thus the calorimeters need to be designed as com-
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Figure 2.9: Illustration of a quadrant of SiD. The scale shown is in meters. The
numbers are indicating the di�erent parts of the detector: the beam
pipe (1), the vertex detector (2), the all-silicon tracker (3), the elec-
tronic calorimeter (4), the hadronic calorimeter (5), the solenoid (6)
and the return yoke instrumented as a muon system (7).
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Figure 2.10: Cut-away view of the 4th detector concept. The colors identify the
di�erent parts of the detector: the vertex detector is blue, the TPC
is green, the calorimeter is yellow and the dual solenoids are red.

pact as possible. A high magnetic �eld of 5 T should help maintaining separation

performance of charged and neutral particles in the calorimeters. The solenoid

begins at a radius of 2:50 m and is based on the CMS design. The high �eld it

produces aids in the separation of particles in the calorimeters and provides high

momentum resolution in the tracker.

The Fourth Concept

The name of the youngest detector concept originates from times when the LDC

and GLD concepts were not yet merged into the current ILD concept. The Fourth

(4th) concept is di�erent from the other two in that it does not rely on particle

ow reconstruction. Instead it utilizes a novel implementation of compensating

calorimetry which is based on a dual read-out of both scintillation light from all

charged particles and, separately, Cerenkov light predominately from the elec-

tromagnetic particles. A second big di�erence from the other detectors is the

iron-free muon spectrometer inside a dual solenoid ux return.

The calorimeter design of the 4th concept is based on what is called the
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DREAM (Dual-REAdout Module). These modules are assembled as towers

pointing out of the interaction region. They have good transverse segmenta-

tion, no longitudinal segmentation and the read-outs with the photo detectors

are located at the outer radius. The transverse segmentation is based on �ne

spatial sampling of two kinds of �bres. Spatial uctuations are measured by scin-

tillating �bres while Cerenkov �bres detect predominately the ultra-relativistic

electrons. The two separate measurements allow the calorimeter alone to dis-

tinguish between particle types. To improve the hadronic energy resolution, the

measurement of MeV neutrons liberated in each shower, e.g. by inclusion of a

third �bre type, is planned.

The idea behind the dual-solenoid muon system is to return the ux while, at

the same time, provide a moderately uniform �eld for a second muon bending

improving the momentum measurement. The low mass of an iron-free system

allows for easier detector exchange and also simpli�es installation and future

modi�cations of the detector.
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3 Vertex reconstruction

The acquisition and analysis of the data produced by the experiments introduced

above is a process with a lot of di�erent steps each with its own challenges. For

the topic of this writing it is of minor importance to understand all of them,

but one should certainly understand the immediate input used for kinematic

reconstruction. This is why this section starts with the explanation of how the

vertex reconstruction is done. Track reconstruction and the track data used for

the vertex reconstruction are explained in appendix A.1.

3.1 Vertex reconstruction

The tracks, reconstructed following the methods presented in appendix A.1, al-

ready hold physical data at a level of abstraction that lets us compare it to the

decay models at test. Unfortunately the by far biggest part of the particles cre-

ated in the primary collision is too unstable to traverse the detector layers and

let us nicely reconstruct its parameters. The only hints we get from that big

group of particles are their decay products, or worse, the decay products of their

decay products. That by itself would not impose any major di�culties. The

di�culties come from the fact that there is always more than one decay in each

event. So before we start thinking about what kind of decay produced the tracks

we measured, we have to associate the large amount of tracks usually found in

one event to a small sample of decay vertices. And to enable lifetime studies

of unstable decay products it would be interesting to know their ight distance;

thus we have to reconstruct the vertices with the best precision possible from the

tracks associated to them. Those two steps are in fact separate problems.
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3 Vertex reconstruction

Fit one vertex with all tracks
Discard the least compatible track, move track
to the \discarded" set
Fit a new vertex with the remaining set of tracks

Repeat until no incompatible track is left

Repeat with \discarded" tracks until this set contains
less than two tracks

Figure 3.1: The algorithm of the principal vertex reconstructor.

3.1.1 Vertex �nding

In the general case of multiple vertices in one event, it is necessary to sort the

tracks found in that event into subsets which each share one common point of

origin. This task is called vertex �nding and the possible strategies to complete it

shall be shortly introduced below. The most straightforward of those algorithms,

the principal vertex reconstructor will be described in more detail.

The currently known vertex �nding algorithms can be divided into hierarchic

and non-hierarchic approaches [21]. The hierarchic approach not only sorts the

tracks into subsets, but it builds a hierarchy of subsets where the bottom of

the hierarchy are the single tracks and the top of it is the set of all tracks.

The direction of construction of this hierarchy again subdivides the hierarchic

algorithms into those which start from the top and follow a divisive approach

and those which start from the bottom and follow an agglomerative approach.

Non-hierarchic approaches avoid a strict clustering hierarchy and instead in-

volve all tracks in an iterative algorithm. Most of them use the notion of vertex

prototypes which are attracted by the track data and over the iterations move

to a stable point. The last positions of these prototypes are then the vertex

candidates.

The principal vertex reconstructor is a hierarchic and divisive vertex �nder.

The algorithm is de�ned by the Nassi-Shneiderman diagram shown in �gure 3.1.

It has one explicit parameter: the cut on the track compatibility. This parameter

quanti�es whether a track is incompatible or not and is used in the inner loop

condition. As the compatibility measure, the output of the vertex �t is the most

obvious choice.
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For this algorithm to �nd a secondary vertex, at least two tracks must be

incompatible with the primary vertex and they must be compatible with one

another.

3.1.2 Vertex �tting

The task of a vertex �tter is to calculate the position of the most probable common

origin of a given set of tracks together with its error estimate. The track sets

coming from the vertex �nder therefore serve as input for a number of independent

vertex �tter runs, one for each found vertex.

Linearization point �nding

One thing all vertex �tters mentioned herein have in common is the requirement

of a rough vertex estimate, a linearization point. Usually the vertex �tters are

able to relinearize the input data in case the discrepancy between the linearization

point and the vertex candidate gets too large. The quality of the linearization

point estimation should therefore not play a crucial role. It is only when it comes

to robust �tters that this initial guess plays a much greater role because those

�tters are but solving a local optimization problem [21].

Because of their negligible inuence on the �nal result for non-robust �tters,

algorithms to estimate the linearization point should be fast. Usual implementa-

tions involve simple mode �nding techniques like

LMS The one-dimensional Least Median of Squares estimator is the midpoint of

the smallest interval that covers at least 50% of all data points

HSM The Half Sample Mode estimator is the result of a recursive application of

the LMS estimator.

FSMW The Fraction-of Sample Mode with Weights estimator is a generalization

of the HSM estimator to a coverage of � 50% and additionally taking into

account the weights associated with each interval where the weight of an

interval is de�ned as the length of the interval divided by the sum of all

weights of the contained data points.

which are applied in a coordinate-wise manner to the set of the crossing points

of all track pairs.
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Global vertex �t

Once the linearization point is chosen, the most straightforward way to �t the

vertex position is the application of a least squares �tting method similar to those

introduced in section A.1.1. Only the parameters and the derivatives have to be

rewritten. The track model is replaced by the vertex model which writes:

f(x;q) � f(x0;q0) +Ai � (x� x0) +Bi � (q� q0) (3.1)

A � @f(x;q)

@x

����
x=x0;q=q0

B � @f(x;q)

@q

����
x=x0;q=q0

(3.2)

Here x is the estimated vertex position and q holds the momentum information

of the tracks at the vertex. In the case of n tracks, f has the dimension 5n, x

has three dimensions and q has the dimension 3n.

If there is previous knowledge of the vertex position, e.g. the known beam spot

for primary vertices, it can be included at this point by incorporating it into the

vertex model as an additional three dimensional virtual measurement v along

with the track parameters ~p found during the track �t. The objective function is

M (x;q) =

" 
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(3.3)

where the weight matrix W includes the covariance matrix resulting from the

track �t ~C and the errors of the prior vertex knowledge Cv:

W =

 
Cv 0

0 ~C

!�1

(3.4)

The objective function is structurally identical with the one in the track �tting

case (A.10), thus the same holds for the solution of the minimization: 
~x

~q

!
=

 
x0

q0

!
+
�
KTWK

��1
KTW �

" 
v

~p

!
�
 

x0

f(x0;q0)

!#
(3.5)
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with the abbreviation

K �
 
I 0

A B

!
(3.6)

The covariance matrix of the �tted parameters is again in analogy to the one

in the track �tting case (A.14)

cov

" 
~x

~q

!#
=
�
KTWK

��1
(3.7)

The Kalman Vertex Filter

The global vertex �tter presented above obviously has the same drawbacks as the

global track �tter in section A.1.1: the cost of the inversion needed in equation

(3.5) rises with the third power of the number of tracks included in the vertex �t.

If used for track association, the performance is even worse, implying an inversion

of a full (3n 0 + 3)� (3n 0 + 3) matrix for each potential association. Luckily, the

Kalman �lter eliminates these problems providing the possibility to associate the

tracks iteratively and to reconstruct the vertex in a progressive manner. In fact,

the Kalman Vertex Filter has completely displaced the Global Vertex Fitter in

current vertex reconstruction software environments such as Rave [22].

The measurement equation is similar to the vertex model in equation (3.1),

but in contrast to the global vertex model, the parameters here are only those of

the one track used during the iteration step k :

~pk = fk(x̂k ; q̂k) + �k h�ki = 0 cov(�k) = ~Ck (3.8)

To yield a linear problem, the function f is approximated by the �rst order

Taylor expansion:

fk(xk ;qk) � fk(xk ;0;qk ;0) +A � (xk � xk ;0) +B � (qk � qk ;0) (3.9)

= tk ;0 +A � xk +B � qk (3.10)

The system equation is particularly simple in this case:

x̂k = x̂k�1 (3.11)
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The objective function of the iteration k can therefore be written immediately:

M (xk ;qk) =

[tk ;0 +Axk +Bqk � ~pk ]
T ~C�1

k [tk ;0 +Axk +Bqk � ~pk ] +

[xk � ~xk�1]
T ~R�1

k�1 [xk � ~xk�1] (3.12)

Each iteration k adds the information of one track with parameters ~pk and

corresponding covariance cov (~pk) = ~Ck to the vertex estimate of the previous it-

eration ~xk�1 with corresponding covariance cov (~xk�1) = ~Vk�1. The re-estimated

track momentum is ~qk with cov (~qk) = ~Uk .

The minimization has to be done with respect to both, xk and qk . To write

the result, some abbreviations are helpful to maintain clearness:

Wk = ~C�1
k (3.13)

Pk =
�
BT

k WkBk

��1
(3.14)

WB
k =Wk �WkBkPkB

T
k Wk (3.15)

~xk = ~Vk

h
~V�1
k�1~xk�1 +AkW

B
k (~pk � tk ;0)

i
(3.16)

~qk = PkB
T
k Wk [~pk � tk ;0 �Ak ~xk ] (3.17)

~Vk =
�
~V�1
k�1 +A

T
k W

B
k Ak

��1
(3.18)

~Uk = Pk +T
T
k
~V�1
k Tk (3.19)

Tk = cov(~xk ; ~qk) = � ~VkA
T
k WkBkPk (3.20)

(3.21)

Robusti�cations

Although the least squares methods are the ideal choice for perfect data, their

performance su�ers strongly from real-world problems like misassigned tracks.

These problems are addressed by what is called robusti�cation, which summarizes

the task of lowering the sensitivity of the vertex �tter with respect to misassigned

tracks or, more generally spoken, outlying observations. There are two main

approaches to accomplish this task:
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� Allow the �tter to fully or partially ignore certain tracks during the �t.

� Change the target of the �tter from minimizing the mean of the residuals to

minimizing a statistical measure less sensitive to outliers, e.g. the median

of the residuals.

Trimmed vertex �t

The most obvious robusti�cation follows the �rst approach and uses only a subset

of the tracks initially associated with a vertex to actually �t the vertex. This kind

of �tter does the following optimization:

�̂LS = argmin
�

h<nX
i=1

r 2i (�) (3.22)

The global minimization of this function would imply the separate minimiza-

tion of all possible combinations of picked tracks, which is not realistically feasible.

Alternatively one can use the linearization point as initial guess and recursively

select those tracks which are most compatible with the current recursion steps'

estimation. This is a version of P. Rousseuw's Fast-LTS algorithm [11].

Weighted vertex �t

The next step in robusti�cation is done by re�ning the previous approach of

\hard" in/out association to \soft" association by weights. The objective function

then rewrites to

�̂LS = argmin
�

nX
i=1

wi � r 2i (�) (3.23)

where the weights wi are de�ned by

wi(�
2
i ) =

�(�2i )

�(�2cuto�) + �(�2i )
=

exp (
��2i
2T

)

exp (
��2

cuto�

2T
) + exp (

��2i
2T

)
(3.24)

This method is again applied in an iterative manner lowering the temperature

parameter T for each step to steepen the weight function thus providing an

annealing schedule for the association. The �2i in equation (3.24) are calculated
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from the vertex displacement at iteration k :

�2i = (xk � xk�1)TV�1
k (xk � xk�1) (3.25)

The more general objective function (3.23) can be incorporated into a more

general linear method relatively simple. But there are two issues one might be

tempted to overlook:

� The number of degrees of freedom of the �t and thus the parameter of the

expected �2 distribution is no longer integral. The number of observations

has to be multiplied with their respective weight before adding them up.

� Also the covariance of each observation has to be multiplied with the corre-

sponding weight on every occurrence except upon calculation of the weight

parameter in equation (3.25).

The Least Median of Squares

The second approach of robusti�cation mentioned above is that of optimizing a

di�erent statistical measure. This is what the Least Median of Squares (LMS)

method does. Its objective function minimizes the median of the squared residuals

instead of their sum:

�̂LMS = argmin
�

medni=1 r
2
i (�) (3.26)

Unfortunately this method has several drawbacks:

� There is neither a simple analytical solution nor fast numerical algorithm

to �nd that minimum.

� There is no proper way to calculate the error of this method.

� The results obtained are not very exact and the algorithm is (statistically)

not very e�cient.

Nevertheless, the LMS is very robust and it is faster than the linear �tters.

3.1.3 Multivertex reconstruction

A multivertex �tter is di�erent from the algorithms presented above in that the

task of assigning tracks to vertices on the one hand and �tting those vertices
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from the associated tracks on the other hand can no longer be strictly separated.

A multivertex �tter still needs what is called a seeding, which is very similar to

what is done by the vertex �nders described above, but it takes the full output

of such a vertex �nder that is a group of track bundles each associated with one

vertex candidate. Unlike the vertex �tters mentioned above, a multivertex �tter

does not strictly stick with the track association done by the seeding, but it is

able to reassign tracks to the vertices found throughout its �tting procedure.

Furthermore the Multi-Vertex Fitter (MVF) implemented in Rave uses what is

called soft assignment, which allows one track to be assigned to multiple vertices

at the same time. The association between tracks and vertices is not done in a

discrete manner but rather by fractional weights which are adjusted during the

�tting procedure.

The algorithm is very similar to the weighted vertex �tter presented in sec-

tion 3.1.2. Only the weights (3.24) are generalized to the multivertex situation:

wi ;j =
exp (

��2i;j
2T

)

exp (
��2

cuto�

2T
) +

Pn

k=1 exp (
��2

i;k

2T
)

(3.27)

Here j is the index of the vertex candidate. Like the weighted vertex �tter,

this algorithm works iteratively and the �2i ;j at iteration k are naturally de�ned

to be

�2i ;j ;k = (xi ;j ;k � xi ;j ;k�1)TC�1
i ;k (xi ;j ;k � xi ;j ;k�1) (3.28)

3.2 Kinematic vertex reconstruction

The intent of kinematic vertex reconstruction is to incorporate prior knowledge

or assumptions about the physics happening into the process of event reconstruc-

tion and thus possibly improve the results thereof. The type of this additional

information may vary from conservation rules a�ecting momentum or energy re-

construction to assumptions on properties of involved particles like their masses.

To allow for di�erent con�gurations of constraints, it is useful to develop a

possibility to apply them in a sequential manner. This strategy will be discussed

later. For now the most intuitive extension to the above methods is a global

strategy.
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3 Vertex reconstruction

3.2.1 Global strategy

To make the task of applying constraints to a set of (virtual) measurements

accessible in an algorithmic manner, it has to be formulated in solvable equations.

This is accomplished using the method of Lagrange multipliers by, rather counter-

intuitively, introducing more variables into the �t. For compactness and clearness,

the parameters of the vertex �t previously named x and q are now combined in

the tuple � and accordingly, the virtual measurements v and ~p are combined in

the tuple �. The objective function of the Global Vertex Fitter (3.3), using this

convention, writes

M (�; �) = [f(�0) +K� � �]T W [f(�0) +K� � �] (3.29)

Let the constraint equation be written as H(�) = 0, where the dimension of H

is r , the number of constraints. Then after the Taylor expansion about �0, the

constraint equation becomes

@H(�0)

@�
(�� �0) +H(�0) � D� + d = 0 (3.30)

where D � @H(�0)

@�
, d � H(�0) and � � �� �0 (3.31)

The method of Lagrange multipliers now employs a new objective function

M (�; �) which is an extension of equation (3.29) whose minimization with respect

to both parameters will give the LMS estimate obeying the constraints implied

by the function H(�):

M (�; �) = [f(�0) +K� � �]T W [f(�0) +K� � �] + 2�T (D� + d) (3.32)

The minimization with respect to � yields the constraint equation. The solution

of the global minimization gives the following expression:

�c = �VuD
TVDd�

�
I�VuD

TVDD
�
VuK

TW [f(�0)� �] (3.33)
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with the abbreviations

Vu �
�
KTWK

��1
VD �

�
DVuD

T
��1

(3.34)

Comparing these results with equations (3.7) and (3.5) shows that Vu resem-

bles the covariance resulting for the unconstrained vertex �t and that the last

part of equation (3.33) resembles the result of the unconstrained �t �u as pre-

sented in equation (3.5). The above result can thus be rewritten to separate the

unconstrained and the constrained �t:

�c = �u �VuD
TVD (D�u + d) (3.35)

Then the corresponding covariance matrix becomes

Vc = Vu �VuD
TVDDVu (3.36)

Using this separation to replace the overall � in equation (3.32) with its con-

stituents and factorizing the product around the weight matrix W into those

parts containing only �c and those which do not yields

M (�u ; �c; �) = [f(�0) +K�u � �]T W [f(�0) +K�u � �] +

[�c � �u ]
T
V�1

u [�c � �u ] + 2�T (D�c + d) (3.37)

The unconstrained �t minimizes only the �rst term and �xes �u while the

remaining terms are minimized by the constrained �t. The new objective function

and the �2 resulting from the minimization when substituting equation (3.35) are

M (�c; �) = [�c � �u ]
T
V�1

u [�c � �u ] + 2�T (D�c + d) (3.38)

) �2c = (D�u + d)
T
VD (D�u + d) (3.39)

These equations form the basis of the kinematic �tting done in Rave as dis-

cussed in the next chapter. An extension of these results is to allow the constraint

equation to include unknown parameters which will be optimized simultaneously

[3] [12], but this method is currently not explicitly available within Rave and will

not be discussed here.
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3.2.2 Sequential strategy

In the previous section it has been shown, that the unconstrained and the con-

strained �t can be separated into two distinct steps. But for a general purpose

kinematic �tter, which should be able to apply any combination of constraints

to the given parameters, it would be useful to be able to split up the application

of those constraints also. It will be shown here, that this is perfectly possible.

For this purpose the elements of the second term of the objective function (3.38),

which were contributed by the constraints, are split into two:

D =

 
D1

D2

!
; d =

 
d1

d2

!
and � =

 
�1

�2

!
(3.40)

Using this convention, the result of the global �t writes

�c = �u �Vu

�
DT

1 DT
2

� D1VuD
T
1 D1VuD

T
2

D2VuD
T
1 D2VuD

T
2

!�1 
D1�u + d1

D2�u + d2

!
(3.41)

Now in a �rst step, only the constraint D1�1+d1 = 0 is applied. The objective

function is

M (�1; �1) = [�1 � �u ]
T
V�1

u [�1 � �u ] + 2�T1 (D1�1 + d1) (3.42)

and the solution is like for the global constraint �t

VD1
� �D1VuD

T
1

��1
(3.43)

�1 = �u �VuD
T
1 VD1

(D1�u + d1) (3.44)

V1 = Vu �VuD
T
1 VD1

D1Vu (3.45)

�21 = (D1�u + d1)
T
VD1

(D1�u + d1) (3.46)

The results of this �rst constrained �t are then used as input for the second

step and replace the unconstrained parameters and errors. The solution is again
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similar to the one known from the global �t

VD2
� �D2V1D

T
2

��1
(3.47)

�2 = �1 �V1D
T
2 VD2

(D2�1 + d2) (3.48)

V2 = V1 �V1D
T
2 VD2

D2V1 (3.49)

�22 = (D2�1 + d2)
T
VD2

(D2�1 + d2) (3.50)

To show that the two separate steps are equivalent to the global �t, the results

of the �rst step are expanded within the results of the second step. This yields

�2 = �u �VuD
T
1 VD1

(D1�u + d1)�
V1D

T
2 VD2

�
D2

�
�u �VuD

T
1 VD1

(D1�u + d1)
�
+ d2

�
(3.51)

by switching to the pseudo-vectorized form de�ned by equation (3.40) one

yields

�2 = �u �Vu

�
DT

1 DT
2

�
� 

VD1
+VD1

D1VuD
T
2 VD2

D2VuD
T
1 VD1

�VD1
D1VuD

T
2 VD2

�VD2
D2VuD

T
1 VD1

VD2

!
� 

D1�u + d1

D2�u + d2

!
(3.52)

Comparison of the inverse in equation (3.41) with the large matrix in equation

(3.52) shows their equality. Thus the sequential application of constraints is equal

to a global application of all constraints at once.
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4 Implementation of kinematic

�tting in Rave

The previous sections really serve as an introduction to the following two sections

which treat the speci�c approach on kinematic �tting implemented by the Rave

toolkit. As was already mentioned in the introduction, most of the kinematic

reconstruction code found in Rave is adopted from the corresponding part of the

CMSSW framework [18].

4.1 Interface

As the idea behind the creation of the Rave toolkit [20] always has been to be

experiment independent [22], it was of particular importance to design the kine-

matic reconstruction facilities in a general yet not too complicated manner. For

the task of kinematic reconstruction this claim is more challenging than for pure

geometrical vertex reconstruction because the con�guration of an algorithm for

kinematic reconstruction has to be exible not only in the number of its param-

eters but in its whole structure. A toolkit for kinematic reconstruction claiming

experiment independence must allow the user to incorporate di�erent types of

hypotheses or knowledge together with an arbitrarily shaped decay model into

the �t. The text-string based con�guration used by the vertex �tting algorithms

provided by Rave could theoretically have been extended to allow that type of

con�guration also, but that approach would have stretched that concept (which

was originally chosen to keep the Rave programming interface as stable as possi-

ble) to a complexity neither helpful nor desirable.

Rave is completely implemented in the C++ programming language and pur-

sues a purely object orient approach. One main principle ruling the design of

Rave in general and the design of the kinematic �tter in particular is the sepa-
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4 Implementation of kinematic �tting in Rave

ration of data-classes and algorithmic classes. The classes implemented by Rave

can be grouped into these two categories discussed below.

4.1.1 Data classes

The major choice during the design of the kinematic �tting programming interface

was to not arti�cially complicate the implicitly necessary complex interface, but

to favour interface simplicity over interface stability. The result is an interface

de�ned by a small number of easily identi�ed classes. To emphasize the role of

kinematic �tting as an information-re�ning rather than information-transforming

process, the basic input data class, named KinematicParticle (�gure 4.1(a)), is

also the basic output data class.

To distinguish between KinematicParticle instances created by the user from

the reconstructed tracks together with a mass hypothesis and those instances

created by the kinematic reconstruction code, there is a separate sub-class for

each of those cases. The KinematicParticle class itself serves as the abstract base

class and is thus not instantiable. To generate the input objects for the kinematic

�t, instances of the TransientTrackKinematicParticle class have to be created.

To make this task as simple as possible, there are �ve available constructors

allowing the user to either use existing Track instances, easily initialized Vector7D

instances or even instances of the PerigeeParameters6D class which is initialized

using a common perigee parametrization (see section B.2).

The other sub-class of the KinematicParticle class is the VirtualKinematic-

Particle class whose name denotes that no direct measurement has been used to

reconstruct it. Instances of this class cannot be created by the user but only by

the kinematic reconstruction code.

The second output data class besides the KinematicParticle class is called

KinematicTree (�gure 4.1(c)) and is actually a structured container allowing for

graph-like browsing of the reconstructed decay tree. As with KinematicParticle

instances, also KinematicTree instances serve as input for some kinematic �tting

methods, but unlike the �rst, they can not be instantiated manually, but only by

invocation of the algorithmic class KinematicTreeFactory introduced in the next

section.

Inside the KinematicTree instance the �nal states are instances of the Tran-

sientTrackKinematicParticle class initialized by the user while the other edges of
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rave::KinematicParticle

# KinematicParticle( : const rave::BasicKinematicParticle&)

+ KinematicParticle()

+ fullstate() : const rave::Vector7D&

+ fullerror() : const rave::Covariance7D&

+ state() : const rave::Vector6D&

+ error() : const rave::Covariance6D&

+ charge() : Charge

+ perigeeParameters() : const rave::PerigeeParameters5D&

+ perigeeCovariance() : const rave::PerigeeCovariance5D&

+ fullPerigeeParameters() : const rave::PerigeeParameters6D&

+ fullPerigeeCovariance() : const rave::PerigeeCovariance6D&

+ chi2() : float

+ ndof() : float

+ magneticField() : boost::shared_ptr< rave :: MagneticField >

+ lastConstraint() : boost::shared_ptr< rave :: KinematicConstraint >

+ id() : int

+ link() : boost::any

+ tag() : string

+ isValid() : bool

+ operator <( : const rave::KinematicParticle&) : bool

(a) KinematicParticle

rave::KinematicVertex

+ KinematicVertex( : const rave::BasicKinematicVertex&)

+ KinematicVertex()

+ position() : const rave::Point3D&

+ error() : const rave::Covariance3D&

+ correspondingTree() : boost::weak_ptr< rave :: BasicKinematicTree >

+ ndf() : float

+ chiSquared() : float

+ id() : int

+ isValid() : bool

(b) KinematicVertex

rave::KinematicTree

+ KinematicTree( : const rave::BasicKinematicTree&)

+ KinematicTree()

+ isEmpty() : bool

+ isConsistent() : bool

+ isValid() : bool

+ finalStateParticles() : std::vector< rave :: KinematicParticle >

+ topParticle() : KinematicParticle

+ currentDecayVertex() : KinematicVertex

+ currentProductionVertex() : KinematicVertex

+ currentParticle() : KinematicParticle

+ motherParticle() : std::pair< bool, rave :: KinematicParticle >

+ daughterParticles() : std::vector< rave :: KinematicParticle >

+ movePointerToTheTop()

+ movePointerToTheMother() : bool

+ movePointerToTheFirstChild() : bool

+ movePointerToTheNextChild() : bool

+ findParticle(part : KinematicParticle) : bool

+ findDecayVertex(vert : KinematicVertex) : bool

(c) KinematicTree

Figure 4.1: The Rave data classes
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rave::KinematicConstraintBuilder

+ KinematicConstraintBuilder()

+ ~ KinematicConstraintBuilder()

+ createBackToBackKinematicConstraint()

+ createEqualMassKinematicConstraint()

+ createFourMomentumKinematicConstraint()

+ createMomentumKinematicConstraint()

+ createPointingKinematicConstraint()

+ createSimplePointingConstraint()

+ createSmartPointingConstraint()

+ createMassKinematicConstraint()

+ createMultipleKinematicConstraint()

+ createVertexKinematicConstraint()

+ createTwoTrackMassKinematicConstraint()

Figure 4.2: The KinematicConstraintBuilder class. The signatures (parameters
and return values) of the methods are not shown.

the graph are instances of the VirtualKinematicParticle class initialized by the

kinematic reconstruction code.

Those familiar with basic graph ideas will probably have recognized the Kine-

maticParticle instances as being the edges of the graph-like KinematicTree struc-

ture, but they are still missing the other major component of graphs: the nodes.

This is where the KinematicVertex (�gure 4.1(b)) class �ts in.

The last input class, which is the only pure input class, is the Kinematic-

Constraint class. Instances of this class can be created by invocation of the dif-

ferent methods of the KinematicConstraintBuilder class (�gure 4.2). The �tting

methods supplied by the KinematicTreeFactory class have one parameter taking

an instance of the KinematicConstraint class. If multiple constraints should be

applied during the same �tting step, the user has to take the detour of creating an

instance of the MultipleKinematicConstraint class with the KinematicConstraint-

Builder and then adding the desired constraints using its addConstraint method.

Internally, the instances of the KinematicConstraint class of course di�er if

they have been created by di�erent methods of the KinematicConstraintBuilder,

but currently there is no possibility to �nd out which constraint a given instance

is actually representing.

4.1.2 Algorithmic classes

The required exibility of the kinematic �tter with respect to the decay model

is only achievable because each speci�c �t can be sub-divided into a �xed set

of basic �tting steps as has been shown in section 3.2.2. The user then con-

43



4 Implementation of kinematic �tting in Rave

Figure 4.3: The construction of a speci�c topology from basic topologies.

�gures the desired decay topology by composing a decay model from a set of

basic sub-models. Both the construction of the basic sub-models as well as their

composition to the �nal model are tasks of the KinematicTreeFactory class.

Figure 4.3 illustrates the process of the construction of a multivertex decay

tree. Step (1) shows the input for the kinematic �tting. There are four �nal states

reconstructed by the previous particle reconstruction. They are represented by

four instances of the TransientTrackKinematicParticle class created during this

�rst step.

The second step (2) chooses two out of four �nal states and applies the hypoth-

esis that these two �nal states originated from a single particle at an unknown

position. The two additional shapes represent the output of the kinematic �t-

ting: an instance of the KinematicVertex class represented by the big dot and an

instance of the VirtualKinematicParticle class represented by the additional line.

For this example, only the constraint of a common vertex of the two �nal states

is applied.

The third step (3) is very similar to the previous one. Again two new objects

have been created: another instance of the KinematicVertex and of the Virtu-

alKinematicParticle class.

The fourth and last step (4) uses the two virtual particles reconstructed in the

two previous steps and applies the hypothesis that they both originate from one

original particle themselves. The output of the �t is again a reconstructed vertex

and a reconstructed particle. If the hypothesis is more detailed e.g. saying that

the two secondary particles are the same, this can by included into the �t by

applying a mass constraint. The resulting �2 can then be used to resolve the

combinatorial problem of the �rst step, to do the correct association of two out

of four �nal state particles in the �rst two steps.
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To use the kinematic �tting facilities of Rave, an instance of the Kinematic-

TreeFactory class has to be created. The available constructors take optional

arguments. If no arguments are given, an arti�cial scenario with a homogeneous

4 T magnetic �eld and no matter (only vacuum) will be assumed. The arguments

allow the user to specify an arbitrary magnetic �eld by implementing a sub-class

of the abstract MagneticField class. Furthermore an arbitrary matter con�gura-

tion is possible thanks to the Propagator concept. By implementing a sub-class

of the abstract Propagator class, the user can inject an arbitrary propagation

algorithm into the Rave reconstruction process. The default (the VacuumProp-

agator class) is adequate if the �nal states are already reached inside the beam

pipe. The verbosity argument controls the level of detail of the produced output.

This serves debugging and tracing purposes and usually can be left at the default.

The second constructor takes additional beam spot information.

An instance of the KinematicTreeFactory class provides two methods for the

actual kinematic �tting. The useVertexFitter method takes a set of particles and

reconstructs an original particle assuming that the input particles were the decay

products of the reconstructed particle. It uses the global kinematic �t described

in section 3.2.1. The constraints parameter is optional. If it is not given, an

unconstrained vertex �t is done. The result is an instance of the KinematicTree

class containing the newly created virtual particle and the given input particles.

The useParticleFitter method implements the sequential strategy described in

section 3.2.2. It takes a set of trees or particles as the input and performs a re�t

obeying the constraints given as the second argument. If the input is a set of

trees, only their top particles are considered in the �t.

4.1.3 General remarks

All Rave interface classes are implemented as reference counting proxy classes.

This means, that the data classes themselves are not carrying any data, but rather

reference-counted pointers to the internal base classes. Copying of these classes is

therefore no memory overhead because only the internal pointer is copied. Since

alteration of data objects by the user after their initialization is generally not

supported, duplication of the data would be unnecessary in either case. Thus

memory management di�culties are generally avoided as long as no pointer to

these classes are used. The use of pointers in connection with Rave classes would
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KinematicConstraint

+ KinematicConstraint()

+ ~ KinematicConstraint()

+ value(exPoint : const AlgebraicVector&) : pair< AlgebraicVector, AlgebraicVector >

+ derivative(exPoint : const AlgebraicVector&) : pair< AlgebraicMatrix, AlgebraicVector >

+ value(par : const vector< RefCountedKinematicParticle >) : pair< AlgebraicVector, AlgebraicVector >

+ derivative(par : const vector< RefCountedKinematicParticle >) : pair< AlgebraicMatrix, AlgebraicVector >

+ deviations(nStates : int) : AlgebraicVector

+ numberOfEquations() : int

+ clone() : KinematicConstraint*

Figure 4.4: The abstract KinematicConstraint base class used internally.

annul the internal reference counting and is therefore strongly discouraged.

4.2 Implementation

The implementation of the kinematic �tting is designed to be modular and ex-

tensible. The modularity is achieved by using common abstract base classes for

the algorithmic classes possibly receiving extension. This concerns mainly those

parts of the algorithm involving constraints as new types of constraints need to

be easily added, namely those classes involved in the sequential constraint �t and

accessed through the useParticleFitter interface method.

4.2.1 Constraints

The constraints involved in the kinematic �t are internally represented by sub-

classes of the abstract KinematicConstraint class. The KinematicConstraint-

Builder interface class hides this structure by providing construction methods for

each constraint type.

The methods implemented by each constraint provide the �tter with the d

tuple and the D matrix as they are de�ned in equation (3.30) along with a

method returning the number of constraints and thus the expected impact on

the �2 distribution and a method for duplication of the class instance.

4.2.2 Particle �tter

The constraint re�t via the useParticleFitter method of the KinematicTreeFac-

tory class is split into two parts treated by di�erent algorithmic classes. The

ParentParticleFitter class does the actual constrained re�t involving only the
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top particles of the given trees while the task of the ChildUpdator class is to

propagate the additional information gained from the constraints to any decay

products referenced by the given trees. The latter is currently not implemented.

At the time of this writing there are two ParentParticleFitter sub-classes. One

uses the mass as the seventh parameter of each particle (in addition to three

position and three momentum parameters) while the other uses its energy. The

constraints have to be chosen such as to account for this di�erence if they involve

mass or energy information. The Rave user can select between the two by invoking

useParticleFitter with the optional parameters string set to either \ppf:lppf" for

the mass-oriented �tter and \ppf:leppf" for the energy-oriented �tter. There are

currently no constraints available for the second.

4.2.3 Algebra

During this diploma thesis the CMSSW framework was undergoing a change

of the primary algebra interface. This change also a�ected the code included

in Rave. The previously used matrix-multiplication algorithms provided by the

CLHEP library were replaced by those provided by the ROOT SMatrix class and

its relatives. Since that evolution had to be done in a smooth manner, by the

time of this writing Rave depends on both, CLHEP and ROOT classes.

4.3 Debugging facilities

The debugging facilities of the kinematic �tting code in Rave are based on struc-

tured logging. Dependent on the required detail of debugging information, Rave

is able to stream arbitrary debugging data to the standard output. This debug-

ging information is tagged with location information down to a source-line level

for the full-detail con�guration. Together with input data reproducibility this

provides the possibility to trace errors also without run-time debugging.

To ease the implementation of data logging, all data classes come with stream-

ing operators and thus provide an intuitive streaming interface for logging and

debugging purposes.
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4.4 Validation in Vertigo

As already mentioned in the introduction of this chapter, Rave is a toolkit, which

means, it is not directly usable by itself. Instead it ought to be included in a

reconstruction framework. Modern reconstruction frameworks, like Marlin [13],

allow for easy inclusion of tools like Rave. This modularity decouples the di�erent

parts of the reconstruction chain and simpli�es decentralized development of those

parts.

To be independent of any experiment-speci�c reconstruction frameworks and

to be able to fully test the interface under development and changes to it, a mini-

framework called Vertigo has been developed. Vertigo serves two roles: First it

is a fully functional but pure vertex reconstruction framework. The Vertigo user

provides the reconstructed track data in one of the accepted formats and Vertigo

reads that data, uses Rave to do the reconstruction and outputs the results in one

of the provided formats. As a console-based application, Vertigo is con�gurable

purely by command line parameters.

4.4.1 Python bindings

The second role of Vertigo is that of a helper-class and language interface provider

for the Python scripting language. That interface allows access to the complete

Rave programming interface without the need to compile anything. The possibil-

ity to use Rave from a Python script is especially useful for testing and debugging

because even complex test cases are implemented quickly with Python. For the

kinematic �tting interface that advantage is even bigger because it relies on con-

�guration through iterative method calls and a sophisticated class tree. The

use of Rave for kinematic reconstruction through Vertigo is only possible using

the scripting interface for the same reason it is not con�gurable through a text

string-based interface.

4.4.2 Event generation

Another feature of Vertigo is its ability to generate appropriate input for recon-

struction testing. It thus removes the hassle of looking for and managing input

data �les if a rudimentary event generation su�ces. The event generators pro-

vided by Vertigo are called guns and there is one gun generating Z ! �� type
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events with full kinematic information attached. The example 4.1 is a Python

script using this Vertigo gun for event generation and then using the Rave kine-

matic reconstruction with a constraint on the Z mass to reconstruct the original

Z boson.

Listing 4.1: Kinematic reconstruction using python

1 import v e r t i g o
2 even t f a c to ry = ve r t i g o . EventFactory ( "gun : k inemat i c s " )
3 t r e e f a c t o r y = ve r t i g o . RaveKTreeFactory ( )
4 bu i l d e r = ve r t i g o . RaveKConstraintBuilder ( )
5 event = even t f a c to ry . next ( )
6 zmass = 91.187
7 c on s t r a i n t = bu i l d e r . createTwoTrackMassKinematicConstraint ( zmass )
8 t r e e = t r e e f a c t o r y . u s eVer t exF i t t e r ( event . p a r t i c l e s ( ) , c on s t r a i n t )
9 print t r e e . t opPa r t i c l e ( ) . f u l l s t a t e ( )

4.5 Application of Rave within the ILC framework

It has been an explicit goal of this diploma thesis not only to implement the

kinematic reconstruction facilities in Rave but also to demonstrate their usability

for the International Linear Collider (ILC) event reconstruction process. Because

the di�erent experiments have come to develop di�erent software frameworks for

their needs, only one of them (ILD) has been chosen to be extended to use

the Rave library. Thanks to the common data interface of all ILC software

frameworks, a subsequent inclusion with other experiments should be easy. This

chapter �rst gives an overview of the most important components of the ILD

software framework and will then show how Rave has been embedded with this

framework.

4.5.1 The ILD software framework

At the heart of the ILD software framework are two distinct components: The

event simulation is done by Mokka and the reconstruction by Marlin. Between

these two components the data is transferred in database �les. Because they are

completely separate and Rave is a pure reconstruction library, Mokka will not be

discussed herein. However as it is the common data format shared by all ILC

experiments, �rst the LCIO persistency framework will be introduced.
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LCIO

The Linear Collider Input/Output (LCIO) persistency system has been designed

to provide a common data model for detector studies. All groups have come

to use LCIO as their simulation output and analysis input format, which was

probably also due to its native support for both C++ and Java bindings. Having

a common input format for data analysis is especially useful to compare the

performance and share results between detector concepts.

The LCIO data model is based on the typical structure of high-energy physics

data-sets. The �rst level of structure is the �le-system level. LCIO databases are

saved and deployed in �les with the slcio extension. The second level of structure

is the event level. Each �le contains a number of events which can be read from

the �le in a sequential manner. The events are structured into so-called collections

where each collection contains an arbitrary number of data objects but all of the

same type.

Directly after the simulation, the events typically contain collections for the

simulated detector hits and the particle information from the physics genera-

tor. During reconstruction, more and more collections are added to the events

containing the results of the tracking, the vertexing or other reconstruction steps.

The collection types used for the purposes of Rave are

� EVENT::Track

� EVENT::Vertex and

� EVENT::ReconstructedParticle.

They contain parameters and errors but also information about previous �t re-

sults and references to the data objects used during previous �ts. Detailed docu-

mentation to the whole LCIO programming interface can be found at the LCIO

website [1]. The track parametrization used in LCIO is described in [15]. The

conversion matrices for conversion between LCIO and Rave conventions are de-

rived in appendix B.

Marlin

The Marlin framework is the analysis framework used with the ILD collabora-

tion. It is based on the LCIO data model and de�nes itself as general processing
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framework for LCIO data. The idea behind Marlin is, that each reconstruction or

analysis task can be applied to the data separately and sequentially and can thus

be encapsulated in a module called a Processor. Furthermore, the events stored

in a LCIO �le are independent. Marlin allows to con�gure a stack of processors

and operates them on the events read form a given LCIO �le one by one.

Each processor de�nes a set of collections he needs for input and another set

of collections he will append to each processed event. The Marlin con�gura-

tion accommodates the modularity gained by the processor concept by using a

hierarchical XML structure. Marlin allows each processor to register a set of

parameters that will be read from the con�guration �le and handed over back to

him at the beginning of the reconstruction run. This per-processor con�guration

is encapsulated in an XML block of the tag \processor". It usually holds the

names of the collections to be read and written together with some parameters

con�guring details of the processor's behaviour.

4.5.2 Rave processors

This section documents the implementation of a Marlin plug-in providing Marlin

users with the vertex and kinematic reconstruction possibilities of Rave. The

plug-in developed is called MarlinRave and it provides two new processors to

the Marlin framework: the RaveVertexing processor and the RaveKinematics

processor.

The RaveVertexing processor

The vertexing capabilities of Rave are accessed from Marlin through the RaveVer-

texing processor. The con�guration of the processor requires an input collection

containing EVENT::Track objects. It takes a text string con�guring the vertexing

algorithm to be used together with its parameters. Further the names of the

two output collections, one containing the reconstructed vertices and the other

containing the re�tted tracks. The last two parameters called HistFile and Ver-

bose, serve debugging purposes and are not needed for usual operation. Below is

an example of how the steer �le section con�guring the RaveVertexing processor

may look like:
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Listing 4.2: Marlin steer �le section for vertex reconstruction

1 <proc e s s o r name="MyRaveVertexing" type="RaveVertexing">
2 <parameter name="H i s tF i l e " type=" s t r i n g "> </parameter>
3 <parameter name="Method" type=" s t r i n g ">de f au l t </parameter>
4 <parameter name="Ref i t t edTracks " type=" s t r i n g "> </parameter>
5 <parameter name="Tracks" type=" s t r i n g ">Tracks </parameter>
6 <parameter name="Verbose" type=" in t ">0 </parameter>
7 <parameter name="Ver t i c e s " type=" s t r i n g ">Ver t i c e s </parameter>
8 </ p roc e s s o r>

The RaveKinematics processor

Because the con�guration interface of Marlin does not allow for arbitrary nesting,

the RaveKinematics processor has been designed to include a exible number of

prede�ned kinematic decay topologies. It facilitates the inclusion of new topolo-

gies as needed by the user. From the Marlin con�guration �le only the topology is

chosen and a text string allows the passing of parameters from the con�guration

�le to the selected topology.

A new topology To facilitate comparison, the same topology reconstructed by

the Python example in section 4.4 shall now be reconstructed using Marlin. First,

the RaveKinematics plug-in has to be extended for the new topology. To do so,

a topology �le including the following source code has to be dropped inside the

topology directory of MarlinRave and MarlinRave has to be recompiled.

Listing 4.3: Topology �le for MarlinRave

1 #include "KinematicTopology . h"
2 #include <rave /KinematicTreeFactory . h>
3 #include <rave /Kinemat icConstra intBui lder . h>
4

5 class TopologyTwoTrackMass :
6 public KinematicTopology
7 f
8 public :
9 void setup ( const std : : s t r i n g & parameters ) f

10 return ;
11 g ;
12 rave : : KinematicTree bu i ld (
13 const rave : : KinematicTreeFactory & factory ,
14 const std : : vector< rave : : K inemat i cPar t i c l e > & pa r t i c l e s ,
15 const int verbose = 0) const

16 f
17 rave : : Kinemat icConstra intBui lder bu i l d e r ;
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18 rave : : KinematicConstra int cs =
19 bu i l d e r . createTwoTrackMassKinematicConstraint ( 9 1 . 1 8 7 ) ;
20 return f a c t o ry . u s eVer t exF i t t e r ( p a r t i c l e s , c s ) ;
21 g ;
22 bool va l i d ( ) const f return true ; g ;
23 g ;
24

25 #include "TopologyBuilder . h"
26 namespace f
27 TopologyBuilder< TopologyTwoTrackMass > t (
28 "TwoTrackMass" ,
29 "Appl ie s Z�mass c on s t r a i n t . " ) ;
30 g

The �rst line is needed in every topology �le because topologies are de�ned

by inheritance of the KinematicTopology class as shown in line 6. The second

and third lines make the Rave interface accessible to the topology. The class

name of each topology can be freely chosen but should be unique. The processor

learns about the new topology from the TopologyBuilder which is a template

accepting any topology class as shown in line 27. Each working topology has to

implement at least the build method (line 12). It is this method where the actual

reconstruction happens. The setup method (line 9) is optional. It takes a text

string and may initialize private variables with parameters read from that string.

The valid method is checked before every use of a topology and has to return true

if the topology is to be used.

As mentioned above, the TopologyBuider registers the topology with the Rave-

Kinematics processor. It takes two arguments: The name in line 28 is used in

the Marlin steer �le to identify the topology to be used for reconstruction. The

description in line 29 should summarize the hypothesis on which the topology

relies to do the kinematic reconstruction.

Con�guration All source �les inside the topology directory will be included

into the RaveKinematics processor. The choice of the topology actually used for

reconstruction is done by the Marlin steer �le. The section in the Marlin steer

�le con�guring the kinematic reconstruction could look like the following:

Listing 4.4: Marlin steer �le section for kinematic reconstruction

1 <proc e s s o r name="MyRaveKinematics" type="RaveKinematics ">
2 <parameter name=" Pa r t i c l e s " type=" s t r i n g ">
3 Pa r t i c l e s
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4 </parameter>
5 <parameter name="Topology" type=" s t r i n g ">
6 TwoTrackMass
7 </parameter>
8 <parameter name="Parameters " type=" s t r i n g "> </parameter>
9 <parameter name="Verbose" type=" in t ">0 </parameter>

10 <parameter name="Kinemat i cPar t i c l e s " type=" s t r i n g ">
11 Kinemat i cPar t i c l e s
12 </parameter>
13 <parameter name="Kinemat icVert i ces " type=" s t r i n g ">
14 Kinemat icVert i ces
15 </parameter>
16 </ p roc e s s o r>

The topology used for reconstruction is selected in line 6. The name given

here must be the name of one of the topologies RaveKinematics provides. Line

3 must hold the name of the input collection. The type of the collection has to

be LCIO::ReconstructedParticle. The content of line 8 is passed to the setup method

of the selected topology and can be used to allow recon�guration of the topology

without recompilation. Lines 11 and 14 hold the names of the output collections

of the kinematic �t. All reconstructed particles form a new collection named by

line 11 while the vertices found form another collection named by line 14.
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5.1 Preamble

In this �nal chapter, the kinematic �tting with Rave is demonstrated for an ex-

emplary reconstruction. The background present in every realistic data sample

will not be simulated, however, to eliminate related issues. In practice, back-

ground reduction will be of major importance and will happen at an early stage.

Due to the huge primary data rate it is done in progressive stages with increasing

computing time, where the �rst few stages are done online and thus can not use

computationally intensive algorithms (\multi-level trigger"). The �rst �ltering

stages usually apply very basic cuts e.g. on the phase-space population. Then

constraints are used for di�use empirical cuts and later also well-de�ned statisti-

cal tests with empirical cuts can be applied. The whole process e�ectively de�nes

event masks using Monte-Carlo simulated data samples and applies them on the

real data samples. Of course statistical equivalence of simulated and real data is

required for this to work. It is common practice to always produce two indepen-

dent Monte-Carlo samples where one is used for the cut determination and the

other is used to test the statistical inuence of the cuts on the analysis.

The two aims of the reconstruction presented below are the correct association

of the �nal states with the expected W bosons and the optimal extraction of

information from the selected con�guration. The strategy to achieve these goals

can be split into two separate steps: jet association and kinematic reconstruction.
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Figure 5.1: Tree-level Feynman diagrams of the decay channel selected for the
exemplary reconstruction (q = u or c, q 0 = d or s or b).

5.2 Physics

5.2.1 General

The channel treated here will be one of the channels possibly analyzed at the

ILC experiments (see section 2.3.2). It is de�ned by a pair of W bosons decaying

into four jets in the �nal state. The tree-level (�rst order) Feynman diagrams of

the process are shown in �gure 5.1. The quantity of interest is the mass of the

W boson.

The �rst thing to do is of course to think about what the expected outcome of

this analysis will be and thus to justify the feasibility of this analysis. To be able

to reference the particles involved in the decay in the following, they are labeled

in an unambiguous manner and the decay writes

e1e2 !WAWB ! j1j2j3j4

The law of momentum conservation then claims that

p1 + p2 = q = kA + kB = k1 + k2| {z }
kA

+ k3 + k4| {z }
kB

(5.1)

Even though in our case both electrons have the same energy (q = 0) and

hence the momenta of the W s must be diametrical, in general their energies need
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not be equal:

kA = �kB EA 6= EB , mA 6= mB (5.2)

5.2.2 Correlation of W masses

It follows immediately that also the masses of the W bosons need not be equal.

Their expected distribution is given by the following cross section [10]:

�(s) =

sZ
0

dsA

s�sAZ
0

dsB�
�(s ; s2A; s

2
B)�(sA)�(sB) (5.3)

where �(si) =
1

�

�W (si)
p
si

(si �M 2
W )

2
+ si (�W (si))

2
(5.4)

and ��(s ; s2A; s
2
B) / �1=2(s ; s2A; s

2
B) (5.5)

The contributions to equation (5.3) closely resemble the relativistic Breit-

Wigner distribution. For high energies s , �� depends only weakly on sA and

sB due to the de�nition of � (5.6) hence little or no correlation between the

found W masses is expected at the 500 GeV operating energy of the ILC.

�(a; b; c) =

q
(a � b � c)2 � 4bc (5.6)

The probability of pair-produced W bosons to fully hadronize, i.e. to result in

four jets in the �nal state, is the square of the branching ratio of a single W to

hadronize, which can be found in [23], and thus

p (W +W � ! 4 jets)

p (W +W � ! anything)
=

�
�(hadrons)

�total

�2

� 46% (5.7)

5.2.3 The jet \mass" parameter

Special care has to be taken when using jet parameters in conjunction with kine-

matic conservation constraints. It must be accounted for the fact that a jet is

not a physical object and thus does not have a physical mass1. However the jet's

1The  factor of a jet does not de�ne a Lorentz transformation because the jet is actually a
mixture of constituent with di�erent values for . Strictly spoken, a jet does not have a 
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energy and momentum both being simply the sum of the energies and momenta

of its constituents, are to this extent physical quantities.

If the construct of a \jet mass" is interpreted as a parameter of its Lorentz

boost, it reects the mass of the quark initiating the jet. Due to the small

values in this picture and the non-linearity of the energy conservation in terms

of masses, using mass parameters for kinematic constraint reconstruction of jets

should generally be avoided.

5.3 Input

5.3.1 The relativistic Breit-Wigner distribution

At the limit of high total energy a �rst approximation of the mass distribution of

short-lived particles like theW boson is the relativistic Breit-Wigner distribution.

The two parameters of this distribution are the location M and the scale �:

p(E ) / 1

(E 2 �M 2)2 +M 2�2
(5.8)

Since this distribution is a special case of the Cauchy distribution, its expecta-

tion is unde�ned and all other moments diverge [14]. It only becomes manageable

by truncation. To be treated as a probability density function, this distribution

has to be normalized for a �xed value range because the global integral diverges.

Due to its asymmetry it is sensitive not only to the chosen value range but es-

pecially to the location parameter M . To illustrate the tails and the asymmetry

of the relativistic Breit-Wigner distribution, it is plotted in �gure 5.2 on a linear

and a logarithmic scale.

5.3.2 The generated W masses

The masses generated by the Pythia [19] event generator however draw a di�erent

picture of the W mass distribution than the expected Breit-Wigner distribution

shown above. The found mass distribution is plotted as a histogram in �gure 5.3

and it can be seen, that the tails on both sides behave di�erent from what one

would expect.

factor and thus it has nothing like a mass.
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Figure 5.2: The normalized relativistic Breit-Wigner distribution
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Figure 5.3: The W masses generated by Pythia are plotted as a histogram on a
logarithmic scale
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Figure 5.4: All generated W masses. Each cross represents one event. The axis
are the masses of the two generated W particles.

It is instructive to compare the relative number of masses found above a certain

limit for both, Breit-Wigner distributed masses and Pythia generated masses. It

turns out, that about 1 % of the masses would be expected to be above 100 GeV

but about 7% of the Pythia generated masses are in that region. To check if this

behaviour is due to an accident during Pythia con�guration, the Pythia generator

was invoked directly to produce another set of W masses from electron-positron

collisions. The result was similar to the earlier distribution and a con�guration

error seems highly improbable.

However the approximation of negligible correlation of the masses of two W

particles generated during one collision is supported by the output of Pythia as

can be seen in �gure 5.4. The correlation computed from this scatter plot is

� � 0:04.

Because detailed study of the event generating mechanism would have been out

of the scope of this diploma thesis, it was decided to sacri�ce a smaller number

of events and drop those events found in the tails of the mass distribution.

60



5 An exemplary reconstruction

Entries  2016
Mean    80.58
RMS     1.877
Underflow       0
Overflow        0
Integral    2016
Skewness  -0.03807
Kurtosis   1.458

 / ndf 2χ  195.3 / 96
p0        52781± 2.252e+06 

74 76 78 80 82 84 860

20

40

60

80

100

Entries  2016
Mean    80.58
RMS     1.877
Underflow       0
Overflow        0
Integral    2016
Skewness  -0.03807
Kurtosis   1.458

 / ndf 2χ  195.3 / 96
p0        52781± 2.252e+06 

Figure 5.5: The generated W masses contained in all events selected for recon-
struction with the expected Breit-Wigner distribution drawn over the
histogram.

5.3.3 Statistics and event selection

The event selection of the �nally used events was done using the generator infor-

mation about the W masses. The selected range was chosen such as to include

90 % of the masses expected from a Breit-Wigner shape. All events containing

masses outside 80:32� 6:50 GeV were dropped because they originated from dif-

ferent physical processes. This cut is not possible under real-world conditions,

but helped to limit the scope of this work to regions where the generated masses

were understood and seemed realistically distributed. The resulting mass distri-

bution is shown in �gure 5.5 together with the shape of the expected Breit-Wigner

distribution and they show pretty good agreement.

Thanks to the event selection also the mean and standard deviation of the

found distribution found in the upper right corner of all shown histograms get

comparable to the expected values of 80:26 for the mean and 1:92 for the standard

deviation when normalizing the Breit-Wigner distribution to the same range.

5.3.4 Error model

To model the projected performance of the jet reconstruction done at ILC exper-

iments, the errors presented in table 5.1 have been applied to all four generated
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Energy resolution �E=E = 30%=
p
E

Direction resolution �� = sin(�)�� = 10 mrad

Table 5.1: Projected performance for jet reconstruction at the ILD experiment.

jets using a Gaussian random function. The direction resolution a�ects the � and

� measurements and the azimuth error is scaled to the polar angle �.

The total momenta of the jets are unknown because physically the jet has no

mass (see section 5.2.3). The implicitly de�ned masses used later for calculation

of the W masses are virtual quantities obtained from momentum and energy

conservation. If jet reconstruction later is able to reconstruct and assign the

energies and masses of all (heavy) jet constituents, there will be a measurement

for this virtual quantity as well and the outcome of this example will have to be

reevaluated. To initialize the values of the total momenta, the energy seemed to

be a sensible choice because the implicit jet mass is expected to be small compared

to the jet energy. The errors on the total momentum is given nine times the error

of the energy measurement to suppress the inuence of the initialization during

the �t. An alternative approach would have been to assign complete correlation

between energy and total momentum, but this has not been used.

5.4 Kinematics

5.4.1 The unconstrained data

During the previous section, any position information within the input data has

been left unmentioned. That is because it is not available. Although the jets

could be assumed to start at the interaction point due to the negligible lifetime

and thus ight path of the W bosons, these assumptions will not be included

in the kinematic reconstruction. However if Rave is to be used for kinematic

reconstruction, its interface will expect position parameters and errors within the

input data. To solve this problem, two steps are necessary: First, any kinematic

constraints involving position parameters must be decoupled from those involving

momentum or energy parameters and can be dropped. Second, to avoid any

inuence of position parameters on the �t, they are assigned huge errors. Due to

the weighting of parameters with their inverse error, all position information is
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Figure 5.6: The �2 probability distribution of the input parameters calculated
with 12 degrees of freedom.

thus deleted from the �t and has no inuence on the resulting �2.

To analyze the e�ect constraints have on the data, �rst the unconstrained data

is inspected. Figure 5.6 shows the �2 probability distribution of the unconstrained

(input) data calculated assuming 12 degrees of freedom because of the unknown

total momentum parameters.

5.4.2 Application of constraints

The constraints applied to the input parameters are those of energy and momen-

tum conservation. They are explicitly written as:

E1 + E2 + E3 + E4 = 500 GeV (5.9)

p1 + p2 + p3 + p4 = 0 (5.10)

where the subscripts identify the four jets.

Taking these 1+3 = 4 constraint equations and the error model from table 5.1

it is obvious, that the energy parameters and the momentum parameters do

not interfere during the kinematic reconstruction. This means that the energy

reconstruction and the momentum reconstruction can be safely assumed to be

independent. The number of degrees of freedom of the �ts can be calculated from

the number of measurements nm , the number of constraints nc and the number
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Figure 5.7: The distribution of the �2 resulting from the kinematic �t and its
probability distribution for one degree of freedom.

of �t parameters np as ndof = nm + nc � np . From the above assumption it is

clear that the energy reconstruction is a �t with no unknowns and one constraint

and thus has nm + nc � np = 4 + 1� 4 = 1 degrees of freedom. The momentum

reconstruction on the other hand has 2 � 4 + 3 � 12 = �1 degrees of freedom

and is thus under-determined. The total �2 of the kinematic �t is then expected

to resemble a distribution with 1 degree of freedom. It has to be noted, that

due to the under-determined �t of the momenta, there is still a hyper-surface of

possible outcomes. However the chosen initialization of the total momenta has

proven to allow for sensible �t results. The �t can be understood to reduce the

under-determination of the parameters from 4 to 1 dimension thus increasing the

level of information. Figure 5.7 shows the �2 distribution and the corresponding

probability distribution for the assumed degree of freedom.

The number of iterations has been designed to be exible and is determined by

comparison of the returned �2 between two iterations. The maximum number of

iterations as well as the break condition can be con�gured. It turns out that two

iterations generally su�ce for reasonable break condition values.

5.4.3 The inuence of unknowns

The obvious inuence of the unknown total jet momenta is that these four free

parameters consume the information gain of the momentum conservation con-

straints. However their e�ect cannot be clearly separated because the total

momenta themselves are no parameters in this �t but rather are participating

the three direction momentum parameters. Nevertheless the covariance matrices
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preserve the momentum direction information which is actually assumed to be

measured.

5.4.4 Validation

The whole kinematic reconstruction has been reimplemented for this speci�c sce-

nario in the Python programming language. This independent implementation

of the kinematic �tting algorithms in a di�erent language allowed for compara-

tive checks between the Rave C++ source code and the Python source code and

speeded up the debugging process. That speedup was primarily due to a much

faster turnaround cycle for changes in the reconstruction and more exible data

handling within Python.

5.5 Association

Up until this point, no di�erence was made between the four jets. The applied

kinematic constraints acted on all �nal states equally and did not take into ac-

count what particles they could have originated from. But because it is the goal

of this reconstruction to provide a measurement of the W mass, the jets now

will be grouped into two pairs, each of which will be assumed to have decayed

from a W boson. This task of associating two out of four jets with one of two

W bosons is not obvious because there are of course three di�erent possibilities

to do this association. It is the topic of this section to illustrate how the most

likely of those three possibilities is chosen.

As with every statistical decision process, there are two types of errors. One

is the error of rejecting a correct association, which is called a type 1 error. The

other is the error of not rejecting an incorrect association, which is called a type

2 error. The measures described in the following will be characterized by showing

the values of both of those error types in the �nal subsection 5.5.5.

5.5.1 Filtering

It is common practice to drop data which does not match certain criteria often

formulated by a statistical test quantity. This is called �ltering and in the context

of jet association it denotes the process of rejecting (dropping) a set of possible
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jet combinations. The advantage of a �lter is, that it allows for potential data

reduction while being cheap by means of processor time. Sensible �ltering thus

can make a reconstruction signi�cantly more e�cient.

There are di�erent conditions upon which the dropped data-set can be selected.

Without any measure distinguishing the possible combinations, every �lter will be

able to drop only whole events. This may be advantageous if the event has been

incorrectly reconstructed and the correct association would have been confused

with incorrect ones by later association steps. Such a condition could be based

on the �2 values of the kinematic �t. It is common practice to accept a certain

percentage of reconstructed events based on an empirical �2 cut calculated from

the expected number of degrees of freedom and drop the rest.

During this reconstruction, a �2 cut has been applied on the output of the

kinematic �tter.

5.5.2 Equal mass hypothesis

One possibility to distinguish the associations is to assume that each of them is

valid and to calculate the W masses resulting from this assumption. Figure 5.8

shows a scatter plot of all resulting events. Each cross represents one event and

the two W masses of the event are indicated by its position.

In a second step, a constrained �t could be run requiring the two resulting

masses to be equal because they are both masses of W bosons. Such a require-

ment would favor the combinations along a diagonal line over those along the

borders which does not agree with the true distribution of the W masses shown

in �gure 5.4. For this reason, the equal mass hypothesis was not used during this

reconstruction.

5.5.3 Similar mass hypothesis

The most obvious improvement of the equal mass hypothesis would be to model

a selection requirement from the uncorrelated Breit-Wigner distribution. That is

of course not possible in real-world scenarios because the position parameter of

the expected distribution is exactly what this reconstruction should deliver and

any previous knowledge of it must not be used during the reconstruction.

There is however a compromise between the equal mass requirement and the
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Figure 5.8: The W masses resulting from all possible jet associations. Each cross
represents one event, i.e. one W pair and the masses of the two W
bosons are indicated by the position of the cross.

above. The two W masses are known to not be equal so the requirement of equal

masses is withdrawn. But they are still picked from the same distribution. This

means that the condition selecting the jet association could involve a distribu-

tion shared by the two W masses. Then a maximum likelihood �t is derived to

include the new requirement. The combination being most probable by means of

likelihood is chosen. Of course in this case, the scale of the distribution has to

be prede�ned because otherwise it would diverge to maximize the likelihood of

any combination. The position of the distribution on the other hand is estimated

during the optimization leaving one (fractional) degree of freedom. For the fol-

lowing �t is is useful to approximate the assumed Breit-Wigner distribution of

the masses by a Gaussian with the same �rst momentum and an unknown mean.

The likelihood of a con�guration is written as

L(�cj�m ; �m) = L(�cj�m) � L(m1(�m);m2(�m)j �m) (5.11)

The �rst term holds the results of the kinematic �t. It models a multivari-

ate Gaussian distribution according to the parameters (�c) and covariances (Vc)

obtained from the kinematic reconstruction. The second term holds the new
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similar-mass hypothesis. It models the distribution of the two masses depen-

dent on the position parameter �m. It can be split into two symmetric terms if

the masses are approximated to be uncorrelated. Taking the logarithm of equa-

tion (5.11) and multiplying with �2 results in a modi�ed Least Squares method:

� 2 lnL(�cj�m ; �m) = [�m � �c]
T
V�1

c [�m � �c]

� 2 ln p (m1 (�m) j �m)� 2 ln p (m2 (�m) j �m) + const (5.12)

Although any probability density function can be used for p, the Gaussian

distribution is certainly the easiest choice. The new objective function then is

M (�m ; �m) = [�m � �c]
T
V�1

c [�m � �c] +
X
i=1;2

(mi (�m)� �m)2

�2t
(5.13)

where �t is the prede�ned scale.

The objective function M is minimized with respect to �m and �m and yields

a pseudo-�2 which was used as selection criterion. Using this method to select

the best jet association out of all possible ones shown in �gure 5.8 results in the

distribution shown in �gure 5.9.

Although the approximation of Gaussian distributed masses is not correct, the

presented selection mechanism using the pseudo-�2 has shown to be reliable and

introduces only small errors of both �rst and second kind as will be discussed in

section 5.5.5.

5.5.4 Low correlation hypothesis

Already from comparison of �gures 5.8 and 5.4 it is clear that a �lter dropping

the combinations where both masses exceed a certain limit would signi�cantly

improve the performance of the association. Such an upper limit could be derived

from theoretical predictions or previous measurements. For this reconstruction

this cut was made setting the limit to a value of 130 GeV. At this value only two

events of the full data sample would be dropped and no events of the preselected

data sample because the preselection cuts are much stronger (see section 5.3.3).

Figure 5.10 shows the distribution of the masses before and �gure 5.12 shows

the same distribution after the association. The distribution used for the associ-
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Figure 5.9: Association by probability of similar-mass-constrained �t. The den-
sity of empty markers (false positives and negatives) around the di-
agonal illustrate the weakness of the method in this region.
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Figure 5.10: The distribution of all possible W masses with a cut on the max-
imum mass only one of the W bosons may exceed at 130 GeV,
motivated by the low correlation hypothesis.
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Figure 5.11: Association by probability of similar-mass-constrained �t which has
been applied to the reduced set of all possible combination shown in
�gure 5.10

ation is shown in �gure 5.11.

5.5.5 Performance analysis

Table 5.2 illustrates the performance of the association for the treated data sam-

ple. The two columns show the values for the same association process without

and with the initial event selection discussed in section 5.3.3.

5.6 Global evaluation

All theW masses reconstructed during the single-event reconstruction are used to

calculate an overall value for the position parameter of the W mass distribution.

5.6.1 The central limit theorem

The central limit theorem states that for a sequence of independent random

variables Xi , each from a distribution with mean �i and variance �i , then the
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Figure 5.12: The distribution of all possible W masses after application of kine-
matic constraints to the �nal states. The results from the similar-
mass hypothesis are removed from the parameters. They are only
used for association purposes. The association indicated by the dif-
ferent markers is done using an additional similar-mass-constrained
�t. The negatives (true and false) are used for the �nal �t.

Association step error type full sample selected events

Similar Mass hypothesis only
type 1 13:5 % 6:0 %
type 2 7:0 % 3:2 %

Low Correlation hypothesis only
type 1 0:1 % 0:1 %
type 2 55:8 % 55:6 %

Both combined
type 1 6:2 % 1:6 %
type 2 3:2 % 0:9 %

Table 5.2: The false positive (error type 1) and false negative (error type 2) rate of
the association steps introduced above. The bold numbers indicate the
error introduced upon the data-set for the following global evaluation.
All ratios are also calculated for the full data sample without initial
event selection to demonstrate the practical usability of the presented
association method.
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Figure 5.13: The distribution of the reconstructed W masses.

distribution of the sum S =
P

Xi will have the mean
P
�i and the varianceP

�2i . Even stronger, it says that as N !1:

S �
NP
i=1

�is
NP
i=1

�2i

! N (0; 1) (5.14)

With that said, that the �nal result obtained from a reconstruction like the

one done here will be normally distributed and the variance of that result will

decrease with the number of reconstructed events like 1=N .

5.6.2 Final result

The histogram of the reconstructedW masses is shown in �gure 5.13. It contains

all W masses obtained by the previous association step. The �nal result of this

reconstruction of the position parameters of the W mass distribution has to be

taken from the histogram:

�mW = 80:42 GeV=c � �mW
=
�mWp
N

= 0:32 GeV=c (5.15)

The mean for the position is close to the expected value of 80:32 used for simu-

lation (the vertical line in �gure 5.3) and its o�set is quite small compared with
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the associated �.

The deconvolution of the found distribution with a Breit-Wigner distribution

succeeds in decreasing the mean value but has not been pursued because of an

unsatisfactory �2 result.

For an ultimate evaluation of the possible precision, the constituents of the jets

have to be reconstructed. This would allow for independent measurements of the

associated jet momenta. According work is on the way. For now, the histogram

mentioned above is the �nal conclusion.

5.6.3 The stability of the results

Because of the reduced data sample used for this reconstruction, the result is

relatively insensitive to energy cuts applied on the �nal states. On the other

hand it is obvious from the mass distribution shown in �gure 5.3 that in the case

of the reconstruction of the full sample, maximum energy cuts would a�ect the

results. In that case the limit in equation (5.14) does not converge for the sample

size used herein and other estimators have to be used for the �nal parameter

estimation.

5.7 Discussion

5.7.1 Current status and physical limits

The current status of knowledge on the position parameter of the W mass dis-

tribution as summarized by the Particle Data Group [23] is

mW = 80:398 GeV=c �mW
= 0:025 GeV=c (5.16)

which is the result of a �t including data from six di�erent experiments and

an overall of approximately 260000 events. Some of the experiments report the

systematic error separately and approximate it at the order of 0.03 GeV=c.

There is however a physical limit to the precision of measurements of this kind

and the measurements at the ILC are likely to be dominated by this inevitable

systematic error. Sources of the systematic limit are correlations between the

two W bosons, like Colory Connection e�ects or Bose-Einstein correlations [16].
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5.7.2 The impact of the ILC

The reconstruction demonstrated in this chapter gives a realistic precision for real

measurements at the ILC. Together with the operation parameters presented in

section 2.2.2 it is possible to foresee the precision the ILC will deliver for similar

W mass reconstruction scenarios dependent on the actual luminosity.

Although the integrated luminosity of the ILC in the �rst four years is an

explicit design goal at 500 fb�1, this value will not be used in the following calcu-

lation. Instead the actual operation luminosity will be left as an open parameter

for the number of events of the same type as used in the above reconstruction.

NWW = L � � �
�
�hadrons
�total

�2

� � with L =

Z
Ldt (5.17)

Here � is the cross section of the e+e� !WW process at 500 GeV center-of-

mass energy. The value for this cross section has been calculated by Pythia to be

7238:0 fb. �hadrons=�total is the probability of oneW boson to decay into hadrons.

From the decay modes of the W particle given in [23] that ratio is given to be

0:676 and its square is thus 0:457. Finally � is the detector and jet reconstruction

e�ciency for four-jet events which is approximated with 40 %. This is the value

with the biggest uncertainty in this calculation. Since there is no common value

for this e�ciency, it is derived from some assumptions.

The resulting precision is therefore:

�mW
� 14:52pL � 7238:0 � 0:457 � 0:4 �

14:52pL � 1328:1 � 0:4 � L�1=2 fb1=2GeV=c (5.18)

which would signi�cantly improve the current total precision of the known W

mass shown in section 5.7.1 during the �rst four year of operation if the designed

value of L4y = 500 fb�1 is realized. If the reconstruction would have been done

without kinematic constraints, the resulting precision can be approximated to be

�mW
= 0:0273 GeV=c, which would not beat the current precision.
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6.1 Conclusion

The Rave library, an e�ort to decouple the detector-independent parts of the

CMS reconstruction framework and make them reusable by other experiments,

has been extended for kinematic �tting facilities. As with the existing vertex

reconstruction code, it was a major goal to maintain source code compatibility

with the CMS code. This was accomplished by wrapping the CMS code into in-

terface classes designed speci�cally for that purpose. Those new interface classes

had to integrate into the existing set of Rave interface classes while providing full

support for the possibilities of the underlying kinematic reconstruction code.

To demonstrate its usability in a real-world environment, Rave has been inte-

grated into the existing reconstruction framework of the ILD detector concept.

The vertex and kinematic reconstruction facilities of Rave are fully exposed to

the user of that system allowing extensive testing and performance comparison

with other solutions.

An exemplary reconstruction has been done to demonstrate the status of kine-

matic �tting in Rave. Events generated by the Pythia software have been used in

conjunction with a Gaussian error model of the projected jet reconstruction pre-

cision of the ILD detector to produce an event sample. The simulated jets were

then re�tted with kinematic constraints and associated in pairs to their original

W particles. The masses of the reconstructed W particles were then plotted as

a histogram and the yielded mass resolution was used to calculate the W mass

resolution the ILC probably will provide.
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6.2 Perspective

Improvements of the presented kinematic reconstruction are possible and feasible

at several levels:

� The kinematic reconstruction formalism may be extended to include second

order terms of constraint equations. This could be especially useful for the

behaviour of energy or mass constraints at small energies or masses.

� The algorithmic class to propagate the constraint information applied at

lower levels in the decay tree up to the �nal states (LagrangeChildUpdator)

needs implementation. This could be contributed back to the CMS software

as well.

� Test cases for all existing constraints should be developed and included in

routine testing.

� ILC-typical decay channels should be analyzed for the need of additional

constraints, which in consequence should be implemented. Comparison

with alternative solutions [8] would be interesting,

� A representative number of frequently used topologies should be imple-

mented for MarlinRave.

� The integration into the Marlin default setup should be pursued. As a �rst

step, MarlinRave needs to be adopted to the installation requirements of

Marlins AFS setup.

� Kinematic reconstruction done in the context of ILC should be reproduced

and the performance should be compared with the Rave performance.

It is planned that especially the last three points will get the attention of the

author in the time after this diploma thesis because a successful integration of

Rave into the default setup of the ILD reconstruction chain will probably result

in more attention for the remaining points as an immediate consequence.
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A.1 Track reconstruction

The data recorded by the detector, at least of the tracking detectors, usually

consists of what is called \hits". A hit is the representation of the signal the

detector received when a particle traversed it. Together with the knowledge about

the detector resolution, it is a measurement of the position of such a traversal.

The path the traversing particle followed is called a track and it can be recon-

structed by connecting the hits the particle caused in the detector. As for current

experiments of course the task of track reconstruction is much more complicated

than that. Due to the high collision energies today's high energy physics experi-

ments operate at high multiplicities meaning that often 20 to 100 tracks per event

need to be separated and reconstructed. Together with large background from

beamstrahlung and from secondary activities of the particles, this complicates the

task of associating measured hits to tracks. This problem is commonly targeted

by sophisticated pattern recognition algorithms. For the purpose of this section,

correct associations are assumed with exception of few remaining ambiguities.

Apart from the correctly associated hits containing also the resolution infor-

mation of each measured coordinate, what is needed for successful track recon-

struction is a theoretical model of the path the particle may have followed given

the magnetic �eld it was moving in. This model, which will be referred to as the

track model from now on, de�nes a track as a function of a few parameters such

as a reference point and the particle momentum. More formally, the track model

is a function mapping from �ve parameters to n measurements:

f : p! fi(p); i = 1; : : : ; n (A.1)

The actually measured coordinates then include a randomly distributed exper-

imental error:
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c = f(p̂) + � (A.2)

where p̂ are the true parameters. It is then the task of the track reconstruction

to �nd a mapping

F : c! F(c) � ~p (A.3)

which has no bias (A.4) and minimum variance (A.5).

h~pi = p̂ (A.4)

(~p� p̂)2� � �2(~p)! Minimum (A.5)

A.1.1 Global track �t

The Least Squares Method (LSM), being commonly familiar, is a natural choice

for the task (A.3) and if the track model is to a good approximation linear,

the LSM turns out to have minimum variance among the linear and unbiased

estimates. The linear expansion of the track model around the expansion point

p0 is

f(p) = f(p0) +A � (p� p0) +O((p� p0)2) A � @f(p)

@p

����
p=p0

(A.6)

Then with the general weight matrix notation

Wx � V�1
x where Vx �

D
(x� hxi) (x� hxi)T

E
(A.7)

the LSM minimizes the objective function

M (p) = [f(p)�m]T Wm [f(p)�m] (A.8)

where m is a realization of the random quantity c de�ned in equation (A.2).

Using the linearized track model (A.6) together with the abbreviations
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� � p� p0 and f0 � f(p0) (A.9)

the target function (A.8) gets

M (p) = [f0 +A� �m]T Wm [f0 +A� �m] (A.10)

Minimization by demanding @M (p)=@p = @M (p)=@� = 0 yields

@M (p)

@�

����
�=~�

= AT
�
Wm +WT

m

�
[f0 +A~� �m] = 0 (A.11)

) ~� =
�
ATWmA

��1
ATWm (m� f0) (A.12)

~p = p0 + ~� (A.13)

The covariance of the �tted parameters is [12]:

cov (~p) =
�
ATWmA

��1
(A.14)

Of course for this to work and to reveal the desired properties, several assump-

tions must hold:

� The track model must be correct i.e. the magnetic �eld must be known,

the traversed material must be known and the equation of motion must be

solved accurately (all with su�cient precision).

� The association of hits to tracks has to be correct, otherwise the track model

can certainly not be correct.

� The covariance V =


��T
�
must be known (i.e. the detector resolution has

to be understood) and it must be non-singular.

� The measurement (A.2) must itself be unbiased i.e. h�i = 0

A.1.2 Multiple scattering

At the precision of today's experiments and considering that tracked particles may

traverse signi�cant amounts of matter especially for low angles or muon tracking
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in calorimeters one has to account for the e�ects of multiple scattering. As will

be shown in this section, any scattering which has to a good approximation only

linear e�ects on the track model with respect to an arbitrary scattering parameter

can be incorporated into the weight matrix and the algorithm introduced above

will work without modi�cation.

First the track model (A.1) is revisited such as to account for the scattering

parameters s:

f : p; s! fi(p; s) i = 1 : : :N (A.15)

The characteristics of the scattering material are subsumed in the diagonal

weight matrix for the scattering parameters:

(Ws)l ;l =
1

�(sl)
�(sl) � 15

p�

p
L=LRAD l = 1 : : :M (A.16)

Here p is the momentum of the particle, � is as usual the velocity of the particle

relative to the speed of light and the term below the square root is the thickness

of the material layer in unit of the radiation length. M is the number of layers

the particle is traversing.

Using this additional information, the target function (A.8) is rewritten to

M (p; s) = [f(p; s)�m]T Wm [f(p; s)�m] + sTWss (A.17)

Linear expansion of the new track model (A.15) with respect to the scattering

parameters around s = 0 gives

f(p; s) = f(p;0) +Bs+O(s2) B � @f(p; s)

@s

����
s=0

(A.18)

and with the abbreviation fp = f(p;0) equation (A.17) becomes
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M (p; s) = [fp +Bs�m]T Wm [fp +Bs�m] + sTWss

= [fp �m]T Wm [fp �m] + 2sTBTWm [fp �m]

+ sT
�
BTWmB+Ws

�
s

(A.19)

or

M (p; s) = M (p;0) + 2sTd+ sTDs (A.20)

with

d = BTWm [fp �m] D = BTWmB+Ws (A.21)

Minimizing M with respect to s yields

@M (p; s)

@s

����
s=0

= 2d+ 2Ds = 0 (A.22)

) Ds = �d) s = �D�1d (A.23)

Substituting this solution in equation (A.20) and expanding for d gives

M (p; s)j
s=const = M (p;0)� dTD�1d (A.24)

= [fp �m]T
�
Wm �WmBD

�1BTWm

�
[fp �m] (A.25)

The middle term then is the new weight matrix W0 and it can be shown that

W0 �Wm �WmBD
�1BTWm =

�
W�1

m +BW�1
s B

T
��1

(A.26)

Using this new weight matrix equation (A.17) can be rewritten to

M (p; s)j
s=const = [f(p;0)�m]T W0 [f(p;0)�m] (A.27)

which resembles equation (A.8) from the previous section and the minimization

procedure is therefore the same.
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A.1.3 The Kalman �lter

While the error matrix V and thus also the weight matrixW in equation (A.14)

were diagonal because the detector errors are usually uncorrelated, the weight

matrixW0 in equation (A.26) is in general no longer diagonal. However the LSM

requires the inversion of the weight matrix. Unfortunately the computing time for

this inversion grows with the third power of the number of measurements which

itself can get as large as 100 in complex detectors. Moreover outlier detection

would require fast in- or exclusion of single measurements which in the case of

the LSM triggers an entire recalculation of the weight matrix inversion.

An alternative to the LSM and the de-facto baseline in track �tting is the

Kalman �lter (i.e. a special case of it). This method follows the track from one

measurement to the next updating the track parameters including the additional

information. Being a recursive method, the whole �lter is de�ned in a step-wise

manner accounting for the measurements one by one.

What has been one global track model is replaced by one \measurement equa-

tion" per detector:

ck = fk(p̂k) + �k h�ki = 0 cov(�k) = Vk =W�1
k (A.28)

Furthermore the \system equation" (A.29) de�nes the prediction of the track

parameters measured by detector k based on the �t including the measurements

by all previous detectors up until k � 1 and using the propagation function hk

between detector k � 1 and detector k .

p̂k = gk(p̂k�1) + Sk�k h�ki = 0; cov(�k) = Rk (A.29)

�k together with its covariance matrix Rk describes expected random e�ects

along the trajectory which are mainly due to multiple scattering. And Sk accounts

for the di�erent sensitivity of the parameters to that noise.

The Kalman �lter in its basic form assumes both the measurement equation

(A.28) and the system equation (A.29) to be linear. Otherwise they are approx-

imated by their �rst-order Taylor expansion in the following:

82



A Additional remarks

gk(pk�1) = Gkpk�1 + gk(0) (A.30)

fk(pk) = Akpk + fk(0) (A.31)

For convenience, the constant terms are dropped in the following. Correspond-

ing to those two equations, the Kalman �lter is a two-step recursive method.

On each iteration the �rst step generates a predicted estimate based on the

information included during previous iterations. The second step merges that

prediction with the information of the current iteration. To distinguish between

the estimates representing di�erent amounts of information, they are denoted by

~pk jj where k identi�es the �lter iteration and j is the number of measurements

fm1; : : : ;mjg used for this estimation. Heremk are realizations of ck in equation

(A.28).

Using this notation, the �rst step uses the system equation and does linear

error propagation to include the preceding covariance matrix together with the

process noise into the prediction of the current covariance matrix:

~pk jk�1 = Gk ~pk�1jk�1 (A.32)

~Ck jk�1 = Gk
~Ck�1jk�1G

T
k + SkRkS

T
k (A.33)

The second step uses least-squares estimation to include the measurement mk

into the estimate of pk . Thus it minimizes the objective function

M (pk) = (Akpk �mk)
T
Wk (Akpk �mk)

+
�
pk � ~pk jk�1

�T ~C�1
k jk�1

�
pk � ~pk jk�1

�
(A.34)

The result of the minimization of M with respect to pk solved for pk = ~pk jk is

~pk jk = ~Ck jk

h
~C�1
k jk�1~pk jk�1 +A

T
k Wkmk

i
(A.35)

~Ck jk =
h
~C�1
k jk�1 +A

T
k WkAk

i�1
(A.36)
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which, after some matrix algebra, can be written in the more common form

~pk jk = ~pk jk�1 +Kk

�
mk �Ak ~pk jk�1

�
(A.37)

Kk = ~Ck jk�1H
T
k

�
Vk +Ak

~Ck jk�1A
T
k

��1
(A.38)

~Ck jk = (1�KkAk) ~Ck jk�1 (A.39)

To initiate the recursion, a choice for the initial estimate p1j1 and its covariance

matrix C1j1 has to be made. If the �rst observation provides su�cient informa-

tion, it can be used as starting point. Otherwise unmeasured components are

given arbitrary but large errors in order to minimize their inuence on the sub-

sequent steps.

Of course there are several assumptions made on the way to equation (A.37),

most of them in the �rst few steps of linearization. It is therefore legitimate to

ask for indications, that the result obtained is actually meaningful. This is where

the test for goodness of �t are introduced. This test consists of two separate

parts: analysis of pull quantities and evaluation of the resulting �2.

The pull quantities (or reduced residuals) (A.40) provide evidence that covari-

ance matrix of the measurement errors are correct, that the track model is correct

and that the reconstruction program work properly. If the variance of the pulls

quantities di�ers signi�cantly from 1, at least one of these conditions is not met.

pi =
mi � ~ci

[�2(ci)� �2(~ci)]
1

2

(A.40)

Testing the �2 resulting from the �t is a more global check. In the case of

Gaussian errors, the whole �2 distribution can be observed, while in other cases

only its mean value may be of use. The parameter of the expected �2 distribution,

which at the same time is its mean value, is usually called the number of degrees

of freedom of the �t. In the case of �ve �tted parameters, this number is the

total number of measured coordinates minus �ve. In section 3.2 the inuence of

constraints on the resulting �2 distribution will be discussed. Given the expected

parameter it is convenient to plot the value of the cumulative distribution function

instead of the �2 values themselves. In the ideal case, this plot shows a uniform

distribution.
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In the case of the Kalman �lter, the residuals rk jk along with the �2 can be

continuously evaluated in the following way:

rk jk =mk �Hkpk jk (A.41)

Qk jk = C(rk jk) = Vk �HkCk jkH
T
k (A.42)

�2k ;F = rTk jkQ
�1
k jkrk jk (A.43)

(A.44)

Here �2k ;F is �2-distributed with the parameter being the dimension ofmk . The

total �2 of the �t, �2k , is the sum of those of the individual �lter steps:

�2k = �2k�1 + �2k ;F (A.45)

where the distribution of �2k is, as before, dependent on the total number of

measurements and the number of �tted parameters.

A.1.4 Robust �ltering

The conditions under which the algorithms discussed so far have optimal prop-

erties are:

� The linear track model is at least a good approximation of the actual track.

� The measurement errors and also the process noise follow a Gaussian dis-

tribution.

While the �rst condition can be met by adjusting the track model accordingly,

the second condition is hardly ever met in real detectors. In those situations

nonlinear estimators, i.e. estimators not based on the linear least-squares method,

may perform better.

There are several possible choices for such an estimator, the M-estimator and

the Gaussian-sum �lter being among the most common ones. Both introduce

means to respond to a signi�cant number of so called outliers, observations lying

beyond the core Gauss distribution.
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B Parameter conversions

B.1 Units

When talking about di�erent sets of parameters and their (mutual) conversion,

one has to de�ne the units they are stored in. Luckily, in the area this document

is treating, there has been the consent of a speci�c set of units which is presented

in table B.1.

Energy [GeV]
Momentum [GeV=c]
Mass [GeV=c2]
Distance and position [cm]
Time [ns]
Magnetic �eld [T]
Electric charge [e]

Table B.1: Common units, used with CMSSW

Nevertheless there are slight deviations from this consent in some cases. For full

transparency, the units used with the respective perigee parameters mentioned

below are indicated in each case. The Cartesian coordinates in this document

always use the units de�ned in table B.1.

The two parameters for the charge q and the mass m are not explicitly men-

tioned, but since the charge is sometimes embedded with perigee parameters, it

will be used with some of the conversions.

B.2 CMSSW perigee parametrization

This section is based on [7] and can be understood as an extract of that document.

The naming convention will be preserved an is presented in table B.2. The
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order of the parameters in the table corresponds to their storage position in the

AlgebraicVector.

� [cm�1]
transverse curvature for charged particles
inverse magnitude of transverse momentum otherwise

� 2 [0; �] polar angle of the trajectory with respect to the z -axis
�p 2 (��; �] azimuthal angle of the momentum in the xy-plane
� [cm] signed transverse impact parameter
zp [cm] signed longitudinal impact parameter

Table B.2: CMSSW perigee parameters commented

B.2.1 Conversion to Cartesian coordinates

Parameters

The CMSSW perigee parameters are converted to Cartesian coordinates (~r , ~p)

in the following way if ~R is the reference point (given in units of [cm]):

rx = Rx + � sin (�p) (B.1)

ry = Ry � � cos (�p) (B.2)

rz = Rz + zp (B.3)

px = pt cos (�p) (B.4)

py = pt sin (�p) (B.5)

pz = pt cot (�) (B.6)

where

pt =

(
aj qBz

�
j 8q 6= 0

1
�

8q = 0
(B.7)

a = c � 10�15 � 3� 10�3 (B.8)

See section B.5 for the derivation of the factor a.
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Covariance

The Jacobian in this case is

J =
@(rx ; ry ; rz ; px ; py ; pz )

@(�; �; �p ; �; zp)
(B.9)

=

0
BBBBBBBBB@

0 0 � cos (�p) sin (�p) 0

0 0 � sin (�p) � cos (�p) 0

0 0 0 0 1

cos (�p)
@pt
@�

0 �pt sin (�p) 0 0

sin (�p)
@pt
@�

0 pt cos (�p) 0 0

cot (�)@pt
@�

pt [�1� cot2 (�)] 0 0 0

1
CCCCCCCCCA
(B.10)

where

@pt
@�

=

8><
>:
�aj qBz

�2
j 8q 6= 0; � > 0

aj qBz

�2
j 8q 6= 0; � < 0

� 1
�2

8q = 0

(B.11)

Then the Cartesian error CCartesian calculated form the perigee error Cperigee is

CCartesian = JTCperigeeJ (B.12)

B.2.2 Conversion from Cartesian coordinates

Parameters

The CMSSW perigee parameters can be calculated from Cartesian coordinates

in the following way if ~R is the reference point (given in units of [cm]):
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� =

(
sgn (�q)a qBz

pt
8q 6= 0

1
pt

8q = 0;
(B.13)

=
1

pt
f1� sgn (q) [aqBz + sgn (q)]g = �

pt
(B.14)

� = arctan

�
pt
pz

�
(B.15)

�p = arctan

�
py
px

�
(B.16)

� = dt sgn (� � ��) (B.17)

zp = dz (B.18)

where q is the charge of the particle and

� = 1� sgn (q) [aqBz + sgn (q)] (B.19)

pt =
q
p2x + p2y (B.20)

~d = ~r � ~R (B.21)

dt =
q
d2x + d2y (B.22)

�d = arctan

�
dy
dx

�
(B.23)

�� = [(�p + 2�) mod 2�]� [(�d + 2�) mod 2�] (B.24)

Covariance

The Jacobian in this case is

J =
@(�; �; �p ; �; zp)

@(rx ; ry ; rz ; px ; py ; pz )
(B.25)

=

0
BBBBBBB@

0 0 0 �� px
p3t

�� py

p3t
0

0 0 0 � px
ptpz

� py
ptpz

�� pt
p2z

0 0 0 � py
p2x

 1
px

0

� dx
dt

� dy
dt

0 0 0 0

0 0 1 0 0 0

1
CCCCCCCA

(B.26)
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where

� =

"
1 +

�
pt
pz

�2
#�1

(B.27)

 =

"
1 +

�
py
px

�2
#�1

(B.28)

� = sgn (� � ��) (B.29)

Then the perigee error Cperigee calculated form the Cartesian error CCartesian is

Cperigee = JTCCartesianJ (B.30)

B.3 LCIO perigee parametrization

This section is based on [15]. The naming conventions are preserved and the order

of presentation in table B.3 is such as to correspond with the order proposed in

the cited document, which is also used within the current version of the LCIO

implementation.

d0 [mm] signed transverse impact parameter
�0 2 [0; �] azimuthal angle of the momentum in the xy-plane


 [mm�1]
transverse curvature for charged particles
inverse magnitude of transverse momentum otherwise

z0 [mm] signed longitudinal impact parameter
tan� 2 (�1;1) slope dz

ds
where s is the path integral in the xy-plane

Table B.3: LCIO perigee parameters commented

B.3.1 Conversion to Cartesian coordinates

Parameters

The LCIO perigee parameters are converted to Cartesian coordinates (~r , ~p) in

the following way if ~R is the reference point (given in units of [cm]):
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rx = Rx + d0 sin (�0)� 10�1 (B.31)

ry = Ry � d0 cos (�0)� 10�1 (B.32)

rz = Rz + z0 � 10�1 (B.33)

px = pt cos (�0) (B.34)

py = pt sin (�0) (B.35)

pz = pt tan (�) (B.36)

where

pt =

(
aj qBz



j � 10�1 8q 6= 0

1


� 10�1 8q = 0

(B.37)

(B.38)

The factor a is de�ned in equation (B.8).

Covariance

The Jacobian in this case is

J =
@(rx ; ry ; rz ; px ; py ; pz )

@(d0; �0;
; tan�)
(B.39)

=

0
BBBBBBBBB@

10�1 sin (�0) d010
�1 cos (�0) 0 0 0

�10�1 cos (�0) d010
�1 sin (�0) 0 0 0

0 0 0 10�1 0

0 �pt sin�0 cos�0
@pt
@


0 0

0 pt cos�0 sin�0
@pt
@


0 0

0 0 tan�@pt
@


0 pt

1
CCCCCCCCCA

(B.40)

where
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@pt
@


=

8><
>:
�aj qBz


2 j � 10�2 8q 6= 0; � > 0

aj qBz


2 j � 10�2 8q 6= 0; � < 0

� 1

2 � 10�2 8q = 0

(B.41)

Then the Cartesian error CCartesian calculated form the perigee error Cperigee is

CCartesian = JTCperigeeJ (B.42)

B.3.2 Parameter conversion from Cartesian coordinates

The LCIO perigee parameters can be calculated from Cartesian coordinates in

the following way if ~R is the reference point (given in units of [cm]):

d0 = [dx sin (�0)� dy cos (�0)]� 10 (B.43)

�0 = arctan

�
py
px

�
(B.44)


 =

(
sgn (�q)a qBz

pt
8q 6= 0

1
pt

8q = 0
(B.45)

z0 = dz � 10 (B.46)

tan� =
pz
pt

(B.47)

where

pt =
q
p2x + p2y (B.48)

~d = ~r � ~R (B.49)

B.4 Conversion between the two parameter sets

This section summarizes the conversion rules between the two perigee parametri-

zations discussed above. First, the conversion from the LCIO convention to the

CMSSW convention:
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� = 
� 10 (B.50)

� =
�

2
� arctan (tan�) (B.51)

�p = �0 (B.52)

� = d0 � 10�1 (B.53)

zp = z0 � 10�1 (B.54)

and second, the conversion from CMSSW to LCIO :

d0 = �� 10 (B.55)

�0 = �p (B.56)


 = �� 10�1 (B.57)

z0 = zp � 10 (B.58)

tan� = cot (�) (B.59)

B.5 The factor \a" or the conversion from

[e T cm] to [GeV / c]

To derive the factor a shown in equation (B.8), one can take the detour for the

basic SI units. We obtain

[e � T � cm] = 1:6� 10�19[A � s][kg � s�2 � A�1]10�2[m] (B.60)

= 1:6� 10�21[m � kg � s�1] (B.61)

[GeV=c] =
109 � 1:6� 10�19[m2 � kg � s�2]

3� 108[m � s�1] (B.62)

=
1:6

3
� 10�18[m � kg � s�1] (B.63)

dividing the two we get a as follows:

a =
[e � T � cm]
[GeV=c]

=
1:6� 10�21

1:6
3
� 10�18

= 3� 10�3 (B.64)
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