

Escape analysis and stack allocation

of Java objects in the CACAO VM

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Peter Molnár
Matrikelnummer 0226327

an der

Fakultät für Informatik der Technischen Universität Wien

Betreuer: Ao.Univ.Prof Dipl.-Ing. Dr.techn. Andreas Krall

Wien, 09.02.2009 _______________________ ______________________
 (Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43/(0)1/58801-0 http://www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Eidesstattliche Erklärung

Peter Molnár
SK-Tranvská 188, 90027 Bernolákovo

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass
ich die verwendeten Quellen und Hilfsmittel vollständig angegeben habe
und dass ich die Stellen der Arbeit – einschließlich Tabellen, Karten und
Abbildungen –, die anderen Werken oder dem Internet im Wortlaut oder
dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle
als Entlehnung kenntlich gemacht habe.

Wien, am 09.02.2009

Abstract

Escape analysis is a static code analysis that determines, whether the
lifetime of objects exceeds the lifetime of their creation site. The additional
knowledge gained through escape analysis can be used to optimize mem-
ory management and synchronization in a virtual machine.

In the context of this thesis, escape analysis has been implemented for
the CACAO virtual machine. The analysis proceeds in two stages: in-
traprocedural analysis computes escape information for allocation sites within
a single method and call-context agnostic summary information, that is
used for interprocedural analysis. Escape information is used to allocate
a subset of thread-local Java objects on the call stack. The implementation
and the modifications of the virtual machine are described in detail.

Finally, the implementation is evaluated by benchmarking using the
Spec JVM98 and the Dacapo benchmark suites. In selected Spec bench-
marks, 50% to 90% of all objects get allocated on the call stack leading to an
execution time reduction of up to 40%.

Kurzfassung

Escapeanalyse ist eine statische Analyse, welche feststellt, ob Objekte länger
leben als deren Erzeuger. Die durch Escapeanalyse zusätzlich gewonnenen
Informationen können zur Optimierung der Speicherverwaltung und Syn-
chronisation in einer virtuellen Maschine genutzt werden.

Im Kontext dieser Arbeit wurde Escapeanalyse für die freie virtuelle
Maschine CACAO implementiert. Die Analyse arbeitet in zwei Schritten.
Die intraprozedurale Analyse berechnet Escapeinformation für einzelne
Allokationspunkte in einer Methode und Information für die gesamte Meth-
ode, welche im Rahmen von einer interprozeduralen Analyse in verschiede-
nen Aufrufkontexten wiederverwendet werden kann. Die berechnete Es-
capeinformation wird verwendet um einen Teil von threadlokalen Java Ob-
jekten auf dem Stack zu allozieren. Die Implementierung und die notwendi-
gen Änderungen der virtuellen Maschine werden im Detail beschrieben.

Anschließend wird die Implementierung durch Benchmarken evaluiert.
In einigen Spec-Benchmarks werden 50% bis 90% von Java Objekten auf
dem Stack alloziert, was zu einer Verbesserung der Laufzeit von bis zu 40%
führt.

Contents

1 Introduction 3
1.1 The Java programming language 3
1.2 Java bytecode . 4
1.3 The CACAO virtual machine 4
1.4 Static single assignment form 5
1.5 Escape analysis . 7
1.6 Goals . 7
1.7 Overview . 7

2 Optimization opportunities 8
2.1 Memory management . 8
2.2 Costs of garbage collection . 10
2.3 Thread-local allocation . 11
2.4 Stack allocation . 12
2.5 Object elimination . 13
2.6 Synchronization . 14
2.7 Costs of synchronization . 15
2.8 Synchronization elimination 15

3 Escape behavior 16
3.1 The algorithm . 16
3.2 Number of thread local objects 20
3.3 Passing objects upwards the call chain 25
3.4 Passing objects downwards the call chain 26
3.5 Region properties . 27

4 Implementation 30
4.1 Control flow graph . 30

4.1.1 Implementation . 32
4.2 Static single assignment form 33

4.2.1 IR variables . 35
4.2.2 Translating into SSA form 36
4.2.3 Loop headers . 36

1

4.2.4 State array . 37
4.2.5 CFG traversal . 37
4.2.6 Merging state arrays 39
4.2.7 IR properties . 39
4.2.8 Leaving SSA form . 41
4.2.9 Example . 42

4.3 Escape analysis . 42
4.3.1 Intraprocedural analysis 47
4.3.2 Interprocedural analysis 50
4.3.3 Implementational notes 51
4.3.4 Example . 52

4.4 Stack allocation . 54
4.4.1 Allocation in loops . 57

4.5 Loop analysis . 57
4.5.1 Dominator tree . 58
4.5.2 Loop detection . 58
4.5.3 Loop hierarchy . 58

4.6 Optimization framework . 61

5 Evaluation 62
5.1 Stack allocated objects . 62
5.2 Stack allocated classes . 63
5.3 Execution times . 68
5.4 Comparison with dynamic algorithm 68
5.5 Discussion . 71

6 Related work 73
6.1 Static single-assignment form 73
6.2 Escape analysis . 76
6.3 Memory management . 78

7 Summary 81

2

Chapter 1

Introduction

1.1 The Java programming language

Java is a programming language developed by SUN microsystems [11].
The language has several design goals: object-orientation, simplicity, se-
curity, high performance and portability as expressed in its tagline write
once, run everywhere!.

To achieve the portability goal, Java programs are not directly compiled
to machine code, but to an architecture-neutral intermediate representation
called byte-code targeting the Java virtual Machine (JVM) [22].

The interpreted nature of the first virtual machines caused Java pro-
grams to run significantly slower then their equivalents written in lan-
guages targeting machine code. One option to address this problem would
have been to translate the byte-code representation into machine code ahead-
of-time, like in conventional C or C++ compilers, but the dynamic nature of
the Java language poses several difficulties: for example the JVM specifica-
tion mandates the possibility to generate or load additional program code
at run-time, what makes complete ahead-of-time compilation challengig.

So translation to machine code has been moved to run-time. Java meth-
ods were translated to machine code immediately prior to execution by the
virtual machine, leading to the notion of a just-in-time compiler. Although
conventional compiler construction was a well researched area at that time,
just-in-time compilers brought a set of new challenges, the main being ex-
tremely low compile times, as these account to the overall run-time of the
program.

It was soon discovered, that placing the compiler into the run-time envi-
ronment opened a high potential for new optimization that are impossible
to realize ahead-of-time. First, it is feasible to compile only methods that get
executed frequently enough to amortize the compilation time, the so called
hot methods. This leads to a mixed-mode where code is both interpreted and
compiled. Second, the run-time environment provides valuable profiling

3

iload_0

iload_1

iadd

istore_0

5

5

5

5

4

4

4

4

49

5

5 4

9

Instructions Operand stack Local variables

Figure 1.1: Java bytecode example

data and information that can be continuously used to improve the quality
of the generated machine code.

1.2 Java bytecode

The binary, portable format to store Java byte code is the .class file. It con-
tains a constant pool and executable code for all methods of a single Java
class. The executable code targets a stack-oriented instruction set: instead
of explicit operands, bytecode instructions operate on an operand stack. The
operand stack is untyped and consists of 32-bit slots. A method has ac-
cess to a fixed-size array of 32-bit local variables. Instructions are provided
for arithmetic operations, local variable access, type conversions, object
creation and manipulation, operand stack management, control transfer,
method invocation and return, exception throwing and synchronization via
monitors.

To illustrate Java byte code, a simple example is shown in figure 1.1:
two local variables contain the values 5 and 4 respectively. These values
are loaded on the operand stack, then added and stored into local variable
0.

A detailed specification of Java byte code can by found in [22].

1.3 The CACAO virtual machine

CACAO [18] is a virtual machine executing Java bytecode licenced under
the terms of the GNU GPL. Its development started as a research project at
the Vienna University of Technology. CACAO follows a compile-only ap-
proach: all byte code gets compiled just-in-time. CACAO initially targeted
DEC’s Alpha architecture, but was soon ported to MIPS and PowerPC and
later to the IA32, x86_64, ARM, SUN Sparc, PowerPC64, IBM S390 and
Coldfire architectures.

4

The CACAO just-in-time compiler is triggered by the first execution of
a Java method. In the long term CACAO will provide two compilers: the
baseline compiler is designed for very short compile times and consists of
a parse pass that translates the bytecode into an IR, a stack analysis pass,
optional code verification, fast register allocation and machine code genera-
tion. An optimizing compiler and an optimization framework are currently
in development. The goal is to recompile hot methods with aggressive op-
timizations, which include inlining and linear scan register allocation.

A very simplified view of the core data structures of the JIT compiler
for the purpose of this thesis can be seen in figure 1.2: the state of the JIT
compiler for one method is represented by a jitdata structure. It contains
a pointer to a methodinfo structure, which is the VMs run-time represen-
tation of a Java method. This in turn contains a pointer to a classinfo
structure - the run-time representation of a Java class. The intermediate
representation (IR) consists of a linked list of basic blocks, each pointing to
an array of IR instructions. The IR instructions are quadruple code with
an opcode and explicit typed operands - numbered IR variables. Source
operands are named s1, s2, s3, the destination operand dst. Each
variable number is an index into the var array of variable descriptors of
the JIT state. Symbolic names for IR opcodes are by convention prefixed
with ICMD_. A codegendata structure holds the state of the machine
code generation. For more details on the CACAO IR refer to [26].

The JVM specification does not mandate any particular object layout.
In CACAO, the memory representation of a Java object as seen in figure 1.3
consists of an object header, represented by a java_object_t followed by
the object’s instance fields, meeting the target architectures alignment re-
quirements. The object header itself consists of 3 machine words: a virtual
function table pointer pointing to the object’s virtual function table and run-
time type information, a lock word for the purpose of synchronization and a
word for storage of various flags.

1.4 Static single assignment form

Static single assignment form (SSA) [6] is an intermediate program represen-
tation where every variable is assigned a value exactly once. Such a rep-
resentation is usually linear to the size of the original program and thus
efficiently represents the relation between uses and definitions of a vari-
able. If makes data flow explicit and thus simplifies data flow analyses.
SSA can be used in combination with flow-insensitive analyzes to obtain
results comparable to the more expensive flow-sensitive analyses.

5

classinfo

iinstr

icount

next

basicblock

basicblock

type

flags

varinfo varinfo

instruction

opcode

s1

s2

dst

instruction

methodinfo

clazz

jcode

jitdata

var

basicblocks

m

cd

codegendata

mcodeptr machine code

bytecode

Figure 1.2: CACAO JIT compiler data structures

vftbl

lockword

flags

java_object_t

instance fields

O
b
je

ct
 h

ea
d
er

interface table

method table

struct _vftbl

clazz

...

classinfo

Figure 1.3: CACAO object layout

6

1.5 Escape analysis

Escape analysis in object oriented languages studies the lifetime of objects,
more precisely whether the lifetime of an object is bounded by the lifetime
of its creating site, be it the creating method or the creating thread. The in-
formation gained through escape analysis can be used to implement several
optimizations in the domain of synchronization and memory management.

1.6 Goals

The goal of this thesis is to implement escape analysis for the CACAO vir-
tual machine. Next, optimization possibilities given by escape analysis are
to be considered and one optimization is chosen for implementation. Fi-
nally the selected optimization is to be evaluated.

1.7 Overview

The reminder of this work is structured as follows: Chapter 2 introduces
the opportunities given by escape analysis and motivates the possible op-
timizations. In chapter 3, real-world Java programs are studied in order
to understand the escape behavior of typical programs. In chapter 4 the
implementation of escape analysis and the chosen optimization - stack al-
location of objects is explained in detail. Finally, chapter 5 gives an empiric
evaluation of the implementation.

7

Chapter 2

Optimization opportunities

Escape analysis is no optimization on its own, but only provides informa-
tion about the scope in which objects are accessed [16]. The additional
knowledge gained through escape analysis can be further used to optimize
services provided by some subsystems of the virtual machine and to gen-
erate better code in the JIT compiler. In this chapter, first the subsystems
of interest for escape analysis and their run-time costs are introduced and
described, then the potential for optimization using escape analysis is dis-
cussed.

2.1 Memory management

Languages like C [15] or C++ [27] offer the programmer the possibility of
allocating memory for objects in a dynamically sized region called heap. To
allocate a block of memory, the programmer uses a new() primitive and
passes it either the size of the memory requested or the type of the object
to be allocated, which implies the size. The call returns a typed or untyped
pointer to the block of memory. The memory is live until the programmer
deallocates it explicitly using a delete() primitive. This feature, although
necessary and useful, often introduced some families of programming er-
rors:

Memory leak The programmer forgets to delete() a block of memory
previously allocated with new(). Memory leaks in long running pro-
grams or in loops cause the maximum available memory to the pro-
gram to be exhausted which leads to an abortion of the program.

Double free By mistake, the programmer calls delete() more than once
on a block of memory he allocated previously. Allocated blocks usu-
ally include some metadata, that is used later when they are recycled.
If the block of memory has already been recycled and reused, invalid

8

metadata will be read by delete() and its usage will lead to mem-
ory corruption.

Dangling pointer The programmer delete()s a block of memory, but
keeps a pointer to it. By using the pointer later, recycled and poten-
tially reused memory will be used which can lead to memory corrup-
tion.

To decrease the likehood of these programming errors, some memory
management strategies have been developed for these languages:

Avoiding dynamic memory Some programming languages offer alternate
memory management schemes. In C++ objects can be allocated on
the stack and are then automatically freed. Classes can define a de-
structor with well defined semantics. When using an appropriate
programming style, it is possible to greatly reduce usage of heap ob-
jects or to isolate it into few well engineered classes. This strategy
addresses memory leaks and double frees, but dangling pointers are
still possible, as the programmer can create pointers to stack objects
which can outlive the respective objects.

Region based memory management Instead of performing manual mem-
ory management on the granularity of objects, a coarser granularity
is chosen. If the program performs a well defined task, during which
it dynamically allocates objects, and it is known that none of these
objects will outlive the task, a region is associated with this task. All
objects allocated are implicitly allocated in the region. They are freed
all at once as soon as the given task is finished. Such a strategy de-
creases the likehood of memory leaks and dangling pointers. It im-
proves performance as well, as less time is spent in freeing objects.

These strategies however are not satisfying, as they only decrease the
likehood of the errors above, but they do not eliminate them completely.

To address these issues, some programming languages, including Java,
introduced fully automatic memory management schemes, where the pro-
grammer only allocates objects, and freeing them is the responsibility of the
runtime system. Widely used schemes include:

Reference counting There is a counter associated with every allocated ob-
ject. Whenever a reference to the object is created, the counter is incre-
mented. Whenever a reference to the object is disposed, the counter
is decremented. If after decrementing the counter becomes zero, the
object can be freed, as there are no more references to it. There are
two fundamental problems with reference counting:

9

1. If copying references is a frequent operation, then maintaining
the reference counters can require much resources.

2. If there is a chain of objects referencing each other in a cyclic
manner, they can never be freed using the basic algorithm, as
their reference count will never become zero.

Garbage collection Objects are allocated on a heap, until the heap gets ex-
hausted, or some run-time system defined condition occurs. The run-
time system then starts identifying the set of reachable objects on the
heap, in order to reclaim memory. It does this by starting with the
set of so called root pointers: pointers to heap objects located at well
defined locations like CPU registers, the call stack and global vari-
ables. By recursively following references from these objects, the set
of all reachable objects is determined. The space of the objects left
is reclaimed for reuse. Garbage collection avoids double delete()s
and dangling pointers: as long as there exists a (reachable) pointer to
an object, the object will conservatively be kept. Contrary to popular
belief, memory leaks are possible when using garbage collection [20].
If the programmer by mistake accumulates references to objects in
the root set, the respective objects won’t get reclaimed because of the
conservative nature of garbage collection.

Most Java virtual machines use garbage collection for memory man-
agement. A notable exception are virtual machines adhering to the real
time Java specification [10]. In real-time applications, garbage collection is
inadequate because of its temporal indeterminism. Instead region based
memory management is used. At the time of this writing, CACAO uses
the conservative Boehm-Demers-Weiser garbage collector, but a new pre-
cise garbage collector is being implemented.

2.2 Costs of garbage collection

In the Java language, an object allocation is represented by a single state-
ment of the form T o = new T();. A Java compiler translates such a
statement into 2 bytecode instructions. First a new T instruction, which
is responsible for allocation and initialization of a memory block of ade-
quate size. Second, an invokespecial T.<init> instruction is used to
invoke the statically bound constructor of the class T.

In CACAO, a new bytecode instruction is transformed to a BUILTIN
intermediate instruction, which in turn is translated into the invocation of
a builtin function builtin_new provided by the virtual machine written
in C language. This function performs several steps:

1. If not already done, the class is initialized and linked.

10

2. heap_alloc is used to get an initialized block of heap memory:

(a) It calls the allocation routine GC_MALLOC provided by the garbage
collector to get a block of heap memory.

(b) It overwrites the memory with zeros to satisfy the requirement
of default initialization of instance variables to zero.

3. The virtual function table pointer of the object is initialized to point
to the class’ virtual function table.

4. The lock word in the object header is initialized to 0, meaning that the
object is unlocked.

The garbage collector provides it’s own 2-level memory allocator [12].
Free lists for several large objects sizes are maintained and an approximate
best-fit algorithm is used to find a free block of appropriate size. Small ob-
jects are allocated in chunks sized in the order of magnitude of the page
size: the chunk is split and then used exclusively for allocation of same-
sized objects. Free lists are maintained for different object sizes. In a multi-
threaded environment, the data structures of the allocator must be accessed
in a mutually exclusive way.

In the current implementation, the costs of object allocation are mostly
determined by:

1. The call overhead into a builtin C function.

2. Mutual exclusion on the allocators data structures.

3. The call overhead into the garbage collector’s allocation routine.

4. Searching for free space in free lists.

5. Overwriting the allocated memory with zeros.

2.3 Thread-local allocation

Long-running massively multithreaded server applications tend to require
very large heaps. Most garbage collection techniques require a stop-the-
world phase: all application threads must be suspended and their state - the
stack and CPU registers - is captured and scanned for root pointers. Unless
a conservative garbage collector is used, the machine code is annotated
with stack maps, which for a particular program position describe the lo-
cations holding pointers to heap objects. Usually, stack maps are not avail-
able for every program point, but only for discrete GC points. So during
the stop-the-world phase all application threads first must reach a GC point
before collection can be started. The costs of this synchronization prior to

11

void foo() {
int a, b;
bar(a, b);

}
void bar(int a1, int a2) {

int c, d, e;
baz(c, d);

}
void baz(int a1, int a2) {

int f, g;
}

(a) Source code

return address

b

a

return address

e

d

c

return address

f

g

foo

bar

baz

ri
si

n
g
 m

em
o
ry

 a
d
d
re

ss
es

stack
 g

ro
w

in
g

st
ac

k
 p

o
in

te
r

in
 b

az

d
o
w

n
w

ard
s th

e call ch
ain

u
p
w

ar
d
s

th
e

ca
ll

 c
h
ai

n

(b) Call stack

Figure 2.1: Call stack

garbage collection are proportional to the number of threads and can take
considerable time: in the VolanoMark client benchmark up to 23% of the
total garbage collection time is spent in this synchronization [14].

In presence of escape information, objects, that are referenced exclu-
sively by their creating thread can be identified. These objects can be allo-
cated in a thread specific region of the heap. If a thread runs out of memory,
its heap region can be collected independently of other threads. This means,
that no global rendezvous of all application threads, no synchronization
and no locking are required.

2.4 Stack allocation

The call stack is a data structure which holds local data of the active meth-
ods in a program. Figure 2.1 shows an example call stack at the point where
method baz() was called. There exists one call stack for every thread of
execution. When a method is invoked, a new stack frame for this method
is pushed onto the call stack, when it returns, the stack frame is poped. In
CACAO, the size of a stack frame is of a fixed size determined for every
method at compile time. Every architecture that CACAO supports pro-
vides a stack pointer register that always points to the start of the current
stackframe. Local variables are accessed relative to the stack pointer.

In the current CACAO VM implementation, only primitive types can
be allocated in the stack frame: integral types and reference types. Objects
and arrays are always allocated on the heap. The stack frame of the caller
always outlives the stack frame of its callees. So if escape analysis deter-
mines, that an object does not escape the creating thread and it does not

12

escape the creating method towards the caller, the object can be safely al-
located in the stack frame of the creating method. Stack allocated objects
bring some benefits for the generated code and for the run-time system:

1. A stack frame is very likely created for every method. The costs of
stack frame creation are that of one instruction, which decrements the
stack pointer by a fixed offset. Memory for a stack object is reserved
at compile time and affects only the size of the stack frame. The allo-
cation of memory for a stack object therefore comes at no cost.

2. Disposal of a stack object comes at no cost. It is disposed implicitly
when the stack frame of the creating method is poped. The costs of
poping a stack frame are independent of the size of a stack frame too
and correspond to the costs of an instruction that increments the stack
pointer.

3. For heap objects, a word of storage has to be reserved to hold the
address of the object. In the creating method, the address of a stack
object is always known to be the address of the stack pointer plus a
fixed offset.

4. Fields of stack objects can be accessed relative to the stack pointer.
They are located at a fixed offset from the stack pointer.

5. Stack allocation is much more cache friendly than heap allocation.
The top of the stack in contrast to the top of the heap will usually be
cached.

6. Heap allocation has has an especially bad cache behavior. When-
ever an heap object gets allocated, the memory will initially be filled
with random values and likely not be cached. The memory must be
brought into the cache in order to be zero filled causing even more
memory activity.

Stack allocated objects bring an indirect benefit for garbage collection.
The run time of garbage collection is a function of the heap size. The less
objects are allocated on the heap, the less time is spent in garbage collec-
tion. Massively multithreaded applications also benefit from stack objects,
because of the stop-the-world phase occurs less frequently.

2.5 Object elimination

If escape analysis determines that an object does not escape the allocating
method at all, further optimization is possible. In unoptimized code, this
can apply only to arrays. Because of the two-step object allocation in the

13

JVM - allocation of a block of memory followed by a call into the class’ con-
structor, every object escapes at least into its constructor. However, if the
call of the class’ constructor can be inlined into the creating method, the ob-
ject stays method local. In this case the object’s allocation can be eliminated
completely and its fields can be replaced by properly initialized scalar vari-
ables. This brings all benefits of stack objects: i.e. zero cost allocation and
disposal, improved garbage collection times. On architectures featuring
large register files, the object’s fields can be allocated to registers. Addi-
tionally, if an object gets completely eliminated, because of the eliminated
memory dependence, more traditional optimizations are possible.

2.6 Synchronization

Multithreaded programs consist of multiple threads of execution sharing
resources. By concurrent use of the shared resources without proper syn-
chronization, the resources might get corrupted. To prevent an inconsis-
tent program state, the programing environment usually provides some
kind of synchronization primitives. The Java programming language was
designed from the ground up to support multithreaded programming, so
synchronization primitives are part of the core language.

The Java programing language supports monitors [13] to synchronize
two threads accessing a shared resource via the synchronized statement.
A monitor can be entered on every object, in one of two ways:

1. Putting a portion of source code into a synchronized block causes
the executing thread to enter a monitor during execution of the code
block. A Java compiler translates the block into a pair of monitorenter
and monitorexit bytecode instructions on the block entry and exit
point respectively.

2. Calling a method that is declared synchronized causes the moni-
tor of the receiver of the call to be entered during the execution of the
method by the executing thread. On bytecode level, a synchronized
method has the ACC_SYNCHRONIZED flag set. When entering or leav-
ing such method, the virtual machine must carry out the appropriate
implicit monitor operations.

Synchronization is pervasive in Java system libraries, to ensure a correct
behavior if objects are shared between threads. As these classes are used
quite frequently, an efficient monitor implementation is crucial for good
overall performance.

14

2.7 Costs of synchronization

To implement monitors, the virtual machine associates an intrinsic lock
with every object. Entering and leaving a monitor corresponds to acquiring
and releasing that lock respectively.

In CACAO, the VM reserves a machine word in the header of every
Java object, called the lock-word for implementation of this intrinsic lock.

Empiric evidence shows, that if a thread tries to acquire a lock on an
object, it will often find the object unlocked. This scenario is called uncon-
tested locking. The locking algorithm implemented in CACAO is a variation
of the tasuki lock [24]. It is very fast at uncontested locking, requiring only
one atomic compare and swap instruction on the lock word. In the case of
contested locking, the algorithm falls back to a slow builtin function of the
VM. Inlining of the fast path into JIT code is currently being implemented
to make the fast path even faster.

2.8 Synchronization elimination

If escape analysis is available, objects that are local to their creating thread
can be identified. Synchronization on such objects can be safely eliminated,
as it can be proven that no other thread will ever access these objects.

Even if uncontested locking of objects is fast, it still requires an expen-
sive atomic instruction. Especially in the advent of multi-core machines,
atomic instructions become more expensive. The benefit of synchronization
elimination lies in the elimination of these expensive atomic primitives.

15

Chapter 3

Escape behavior

Static escape analysis algorithms are inherently conservative: they are not
able to determine the exact escape behavior of objects, but they approxi-
mate the behavior in a way that guarantees that no escaping object will be
falsely identified as non-escaping. Traditionally, escape analysis algorithms
are evaluated through the ratio of the number of objects it identifies as non-
escaping to the number of total objects allocated in the program. This ratio
can be calculated from two different sets of numbers. Static numbers exam-
ine the number of sites allocating objects while dynamic numbers examine
the number of objects allocated at run-time by the program. If the aim of
an escape analysis algorithm is to gain a speedup in a compiled program,
then static numbers have rather limited use for an evaluation: eliminating
a lot of allocation or synchronization sites does not result in a significant
speedup, if these sites get not executed frequently enough, or even never at
all. As every eliminated allocation brings a defined speedup, the dynamic
numbers can be used to express the gain in execution time.

Because of its conservative nature an escape analysis usually takes the
most pessimistic assumptions possible. During intraprocedural analysis,
it is assumed that every branch will be taken and during interprocedural
analysis, it assumes a pessimistic call context. These pessimistic assump-
tions which in practice occur rather rare, increase significantly the gap be-
tween the results of the analysis and the real escape behavior. In order
to evaluate the accuracy of the analysis and to get a better understanding
of the interprocedural escape behavior, more accurate and realistic escape
data is desirable.

3.1 The algorithm

A simple code instrumentation is used to trace and determine reachability
of objects and to determine whether they escape and where they escape to.
Objects are grouped into non-overlapping regions based on reachability in-

16

Per stack frame

regions

foo()

baz()

Stack

bar()

−3

−2

−1

oo

Lifetime
Heap region

Figure 3.1: Escape behaviour algorithm

LT=−1 LT=−2 LT=−1 LT=−2

foo.f = bar
foo

bar

Figure 3.2: An object being moved into a region with a longer lifetime

17

formation. A region for every stack frame and an additional global region
(also called heap region) are created as seen in figure 3.1. With every region,
a lifetime is associated: the heap region has an infinite lifetime. Regions as-
sociated with stack frames have a shorter lifetime the deeper they are in the
call chain, so their lifetime is defined as the negated stack depth. When a
new object is allocated, it is put into the region of the current stack frame.
When an object becomes reachable from an object contained in a different
region, it might be moved into that region, as seen in figure 3.2. Whether
the move will be performed depends on the lifetime of the destination re-
gion: an object is always moved into a region with a longer lifetime. The
move operation is performed recursively: all objects referenced via fields
or array elements of the moved object are moved too.

At the end, the heap region contains objects that are considered glob-
ally escaping. Objects that are left in regions associated with a stack frame
at the time of its destruction are considered thread-local, as they become
unreachable after the destruction.

During JIT compilation of a Java method, the following IR constructs
are instrumented. The instrumentation is performed by generating a call
into C functions implemented in the VM.

Method entry: a region is allocated and pushed on the region stack. As
native methods can’t be further analyzed, upon entry into a native
method, all arguments are moved into the global region.

Method exit: if the method returns an object reference, the return value
is first moved into region of the caller. The return value of a na-
tive method must be handled separately: it is always moved into the
global region because references to the returned object might have
been kept at unknown locations. Then all objects left in the region
associated with the stack frame are identified as not escaping the cur-
rent method and not escaping the current thread. The region is then
destroyed.

Exception throwing: if an object is thrown as exception, it is conserva-
tively moved into the heap region. Exception handling is consid-
ered to be an exceptional situation and the thrown object is not op-
timized. If the exception leaves the method, the same processing as
upon method exit is done.

Object allocation: if an object is newly allocated, it is moved into the re-
gion associated with the activation record of the allocating method.
For the purpose of statistics, it is further tagged with the current stack
depth and a pointer to the currently active method’s descriptor. Pre-
caution is necessary for objects that have finalizers: they are moved
into the heap region, as their finalizers will be called asynchronously
at an undefined time.

18

for (int i = 0; i < 1000000; ++i) {
T o = new T();
if (i == fortyTwo()) {

T.staticVar = o;
}

}

Listing 3.1: Example program for static vs. dynamic algorithm comparison

Field assignment: when an object bar is assigned to a field of an object foo,
then bar is moved into the region of foo. The rationale is that if foo is
reachable from a region, then bar is reachable from that region too.

Array store: the store of an object into an array is handled the same way as
if the object was assigned to a field.

Global variable assignment: if an object is assigned to a global (static) vari-
able, it is reachable from any location in the program. It is therefore
moved into the heap region.

When compared to a static escape analysis algorithm, this algorithm de-
termines the root set of escaping objects in an analogous conservative way:
objects reachable from global variables, thrown as exceptions and passed
to native methods are globaly escaping. The difference is, that a static es-
cape analysis identifies all objects that might get reachable from this root
set as globally escaping, while this algorithm identifies only objects, that
are reachable from this root set. A static analysis assumes, that every possi-
ble control flow path of a program will be taken, while the dynamic algo-
rithms takes into account only paths, that are really taken. The difference
can be seen in the example program in listing 3.1: a static algorithm would
identify all instances of T as escaping, while this algorithm identifies only
a single instance as escaping.

An example for the algorithm is shown in listing 3.2 namely method
foo() being invoked. First, a region is created for foo(), with a lifetime
set to 0. Inside this region, 2 objects are allocated: o1 and o2. Then o2 is
assigned to a field of o1. As both o1 and o2 are located in the same region,
no change occurs. Next, o1 is the receiver of a call of bar() which causes a
region to be created for bar(), with a lifetime set to −1. Inside this region,
o3 is first allocated and later assigned to a field of the receiver, which cor-
responds to o1. As o1’s region has a longer lifetime than o3’s, o3 is moved
into this region, which is the one of foo(). Then, o1 is the receiver of a call
to baz(), which causes the creation of a region with a lifetime of−2, where
several objects o4 · · · o8 are allocated. o4 is assigned to a global variable,
which causes it to be moved into the heap region. o5 is passed to a native

19

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

sm
all_antlr

sm
all_lusearch

sm
all_jython

sm
all_luindex

sm
all_bloat

default_eclipse

default_antlr

sm
all_pm

d

sm
all_fop

sm
all_xalan

default_luindex

default_jython

default_bloat

default_fop

sm
all_hsqldb

sm
all_eclipse

Total

R
at

io

Global
Local

Figure 3.3: Number of thread local objects

method nat() and is therefore moved into the heap region too. The return
value of nat() is moved to the heap region as well, because it comes from
a native method. o8 is moved to the heap region as soon as it is allocated,
because it implements the Runnable interface and is therefore conserva-
tively treated as a thread object. o6 is returned from baz() and therefore
moved into the region of the caller: bar(). Upon return from bar(), its re-
gion is destroyed. At this time, it contains only o7, which is now identified
as unreachable. Back in bar(), o6, the return value of baz() is assigned
to a field of o1. This causes it to be moved into the region of foo() with a
longer lifetime. Upon return from bar(), its region is empty so there are
no thread-local objects identified. Back in foo(), the region contains the
objects o1, o2, o3, o6. These become unreachable after foo() returns and
its region is destroyed.

The modified VM is used to run benchmarks of the dacapo benchmark
suite with benchmark sizes default and small.

3.2 Number of thread local objects

In the first series of measurements, the total number of available thread lo-
cal objects was determined. Figures 3.3 and 3.4 display the ratio of thread
local objects to global objects: figure 3.3 examines the number of objects,

20

class T {
Object field1, field2, field3;
static Object global;

static void foo() {
T o1 = new T();
Object o2 = new Object;
o1.field1 = o2;
o1.bar();

}

void bar() {
Object o3 = new Object();
this.field2 = o3;
this.field3 = this.baz();

}

Object baz() {
Object o4 = new Object();
Object o5 = new Object();
Object o6 = new Object();
Object o7 = new Object();
Thread o8 = new Thread();
T.global = o4;
nat(o5);
o8.start();
return o6;

}

static native Object nat(Object o);
}

Listing 3.2: Example program for escape behavior evaluation

21

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

sm
all_antlr

sm
all_lusearch

sm
all_jython

sm
all_luindex

sm
all_bloat

default_eclipse

default_antlr

sm
all_pm

d

sm
all_fop

sm
all_xalan

default_luindex

default_jython

default_bloat

default_fop

sm
all_hsqldb

sm
all_eclipse

Total

R
at

io

Global
Local

Figure 3.4: Size of thread local objects

while figure 3.4 examines the total sizes of the two object families. The
numbers were counted as follows: upon method exit, after the return value
has been moved into the callers region, all objects that remained in the
method’s region were counted as thread local.

It is interesting to examine the distribution of the classes of thread local
objects. Table 3.1 shows for every benchmark the 5 most frequent classes of
thread local objects. The results were rather surprising: in all benchmarks,
a great fraction of all thread local objects are instances of rather few classes.
Popular classes include:

• character and byte arrays

• String

• StringBuffer

22

Class Instances Percent
small_antlr

char[] 57027 48 %
java/lang/String 19493 16 %
java/lang/StringBuffer 11684 10 %
antlr/Lookahead 4839 4 %
long[] 4322 3 %
others 19327 16 %

small_lusearch
char[] 281898 15 %
java/lang/String 176629 9 %
int[] 165380 9 %
java/lang/Object[] 103199 5 %
gnu/java/util/WeakIdentityHashMap$WeakBucket$WeakEntry 98238 5 %
others 981979 54 %

small_jython
byte[] 2952821 58 %
gnu/java/util/WeakIdentityHashMap$WeakBucket$WeakEntry 986344 19 %
java/lang/Class$MethodKey 296152 5 %
java/util/HashMap$HashEntry 288183 5 %
char[] 108055 2 %
others 389522 7 %

small_luindex
char[] 63067 20 %
java/lang/String 57436 18 %
org/apache/lucene/analysis/Token 43856 14 %
org/apache/lucene/analysis/standard/Token 43455 14 %
int[] 28688 9 %
others 69539 22 %

small_bloat
char[] 1127478 34 %
java/lang/String 706977 21 %
java/lang/StringBuffer 474120 14 %
java/util/HashMap$HashIterator 138448 4 %
EDU/purdue/cs/bloat/util/Graph$1 129310 3 %
others 684152 20 %

default_eclipse
java/util/Hashtable$HashEntry 6363162 28 %
char[] 5869379 26 %
char[][] 2018369 9 %
int[] 1969670 8 %
java/lang/String 942384 4 %
others 4919336 22 %

default_antlr
char[] 1582900 54 %
java/lang/String 438540 15 %
java/lang/StringBuffer 314166 10 %
antlr/Lookahead 184504 6 %
long[] 92850 3 %
others 299364 10 %

23

Class Instances Percent
small_pmd

char[] 7796 9 %
org/jaxen/expr/IdentitySet$IdentityWrapper 7285 9 %
net/sourceforge/pmd/jaxen/DocumentNavigator$1 7258 9 %
java/lang/String 7095 9 %
int[] 5700 7 %
others 43004 55 %

small_fop
char[] 140260 46 %
java/lang/String 50847 16 %
java/lang/StringBuffer 25860 8 %
byte[] 11641 3 %
java/util/LinkedList$LinkedListItr 9173 3 %
others 61532 20 %

small_xalan
char[] 3898803 87 %
java/util/LinkedList$LinkedListItr 209836 4 %
java/lang/String 107354 2 %
javax/xml/namespace/QName 67404 1 %
java/util/AbstractList$1 59318 1 %
others 106824 2 %

default_luindex
char[] 2145469 20 %
java/lang/String 1893023 18 %
org/apache/lucene/analysis/Token 1386335 13 %
org/apache/lucene/analysis/standard/Token 1382143 13 %
int[] 770638 7 %
others 2786108 26 %

default_jython
gnu/java/util/WeakIdentityHashMap$WeakBucket$WeakEntry 7721679 50 %
byte[] 3083831 20 %
org/python/core/PyObject[] 1534532 10 %
char[] 665510 4 %
java/lang/String 347820 2 %
others 1904191 12 %

default_bloat
char[] 10237021 33 %
java/lang/String 6719925 21 %
java/lang/StringBuffer 4380955 14 %
EDU/purdue/cs/bloat/util/Graph$1 1684948 5 %
java/util/HashMap$HashIterator 1394831 4 %
others 6520880 21 %

default_fop
char[] 805374 45 %
java/lang/String 332844 18 %
java/lang/StringBuffer 182403 10 %
byte[] 68334 3 %
java/nio/ByteBufferImpl 66029 3 %
others 317162 17 %

24

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

sm
all_antlr

sm
all_lusearch

sm
all_jython

sm
all_luindex

sm
all_bloat

default_eclipse

default_antlr

sm
all_pm

d

sm
all_fop

sm
all_xalan

default_luindex

default_jython

default_bloat

default_fop

sm
all_hsqldb

sm
all_eclipse

Total

R
at

io

0
1
2
3
4

5+

Figure 3.5: Number of stack frames objects are passed upwards the call
chain

Class Instances Percent
small_hsqldb

char[] 12022 25 %
java/lang/String 9439 19 %
int[] 3255 6 %
java/lang/StringBuffer 2865 6 %
java/lang/Object[] 2612 5 %
others 17180 36 %

small_eclipse
char[] 1939387 40 %
java/lang/String 724099 15 %
int[] 230790 4 %
java/lang/String[] 196324 4 %
org/eclipse/core/runtime/Path 180506 3 %
others 1526372 31 %

Table 3.1: Distribution of classes among thread-local objects

3.3 Passing objects upwards the call chain

The next question of interest is the interprocedural escape behavior of ob-
jects. Namely, to determine what is the chance of thread local objects to

25

move upwards or downwards the call stack. For this purpose, upon allo-
cation, every object is annotated with the current stack depth.

When an object becomes unreachable the difference of the stack depth
at creation time and the current stack depth is used to calculate how far
the object has been returned. There are two possible ways for objects to be
returned: as return value or through assignment to a field of an argument.
These numbers are displayed in figure 3.5.

It can be seen, that a minority of thread local objects, around 10 - 20 %,
does not move upwards the call chain at all. The rest of thread local objects
however does. But for most benchmarks, most thread local objects are not
returned farther than 3 stack frames upwards the call chain.

When designing an intraprocedural analysis with stack allocation or
regions in mind, there are basically 3 attempts on handling thread-local
objects that are returned upwards the call chain:

1. An object that is returned from a method is considered always glob-
ally escaping.

2. If a method can return an object up to 1 stack frame upwards, the
caller allocates memory in his stack frame. A specialized version of
the callee is compiled, which accepts a pointer to the reserved mem-
ory as an additional parameter.

3. If possible and feasible, the method is inlined into the caller. This
way the returned object gets trapped in the caller and is not returned
upward the call chain.

The results determined in this section play an important role on how
efficient these attempts can become in the best case:

1. If objects returned from a method escape globally, only 20% of thread
local objects can be kept non-escaping.

2. If thread-local objects returned to a caller and not further escaping
that caller can be handled, 26% objects can be saved from escaping.

3. Good inlining decisions to a depth up to 3 levels can save a lot of
objects from escaping.

3.4 Passing objects downwards the call chain

The visualization in figure 3.6 shows, how deep objects are passed through
method invocation. For this purpose, every object is annotated with a field
maxdepth which is the depth of the deepest stack frame, the object was

26

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

sm
all_antlr

sm
all_lusearch

sm
all_jython

sm
all_luindex

sm
all_bloat

default_eclipse

default_antlr

sm
all_pm

d

sm
all_fop

sm
all_xalan

default_luindex

default_jython

default_bloat

default_fop

sm
all_hsqldb

sm
all_eclipse

Total

R
at

io

0
1
2
3
4

5+

Figure 3.6: Number of frames objects are passed downwards the call chain

reachable from. maxdepth is initialized to the current stack depth upon
object creation. Upon a method entry, all parameters of a reference type
are inspected and their maxdepth field is adjusted to the maximum of its
current value and the current stackdepth. The figure shows, that in most
benchmarks, the majority of thread local objects is not passed deeper than
4 stack frames down the call chain.

This information can be used to determine, till what depth it is feasible
to recurse into callees when doing interprocedural escape analysis.

Because of Java’s two step object creation process: allocation of a block
of memory followed by a call to the class’ constructor, every Java object
is passed as argument to the constructor and is thus passed at least one
stack frame downwards. Arrays constitute an exception to this rule, as they
have no constructor and are initialized directly by the VM. So the fraction
of objects passed 0 frames downwards in figure 3.6 consists exclusively of
arrays.

3.5 Region properties

Because the lifetime of a thread local object is bounded by the lifetime of
the last region in which it is contained, in a region based memory man-
agement scheme, the object could be allocated in the corresponding region.

27

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

P
ro

b
ab

il
it

y

Number of objects in region

small_antlr
small_lusearch

small_jython
small_luindex

small_bloat
default_eclipse

default_antlr
small_pmd

small_fop
small_xalan

default_luindex
default_jython

default_bloat
default_fop

small_hsqldb
small_eclipse

Figure 3.7: Distribution of region sizes of non-empty regions

The question of interest in such a scheme is: what is the expected size of a
region? For this purpose, the distribution of region sizes is examined. Fig-
ure 3.7 visualizes the distribution of thread local objects among regions of
a given size, up to the size of 100 objects. The distribution shows, that most
thread local object could be allocated in rather small regions: in average
59% of all thread local objects would reside in a region that would contain
less than 10 objects. On the other hand, a significant amount of thread lo-
cal objects resides in rather large regions: in average 27% of thread locals
objects reside in regions of a size greater than 99 objects.

This means that a lot of thread local objects reside in rather small re-
gions, while quite some ones reside in huge regions. The implications of
this observation to a potential memory management schema are

1. Objects located inside rather small regions are well suited for either
stack allocation or for a region based memory management scheme.

2. Objects located in rather huge regions are well suited for allocation
on a thread local heap. Region management would bring a rather
small benefit, because these objects are clustered in rather few and
large regions.

The implementation of some compilers requires stack frames to have

28

a statically known size. Under this restriction, allocation sites located in
loops can’t be considered for stack allocation. This rises the question, how
much thread local objects become non-stack-allocable under this restric-
tion. In the methods producing the high number of small regions, thread-
local objects are probably not created inside loops.

Another very important observation is that 99.2023% of all regions are
empty upon destruction. This constitutes an implication for a possible
memory management scheme: in a region based memory management
scheme, there should be no overhead for the management of empty re-
gions, because there are so many of them.

29

Chapter 4

Implementation

The just-in-time compiler of CACAO is organized in passes. In the context
of this thesis, several passes were designed, implemented and adapted as
described in this chapter.

First a control flow graph representing regular and exceptional control
flow is created for the compiled method. Then the intermediate represen-
tation of the method is transformed into static single assignment form for the
purpose of performing escape analysis of the method. This pass produces
escape information for static allocation sites, used for stack allocation. Es-
cape information for arguments and the return value is computed for the
purpose of interprocedural analysis. Stack allocation in loops must be han-
dled separately, so loops are detected and analyzed in methods allocating
objects on the stack. Finally, requirements on the run-time system and the
VM for the implemented optimizations are discussed.

4.1 Control flow graph

To model interprocedural control flow in a compiled method, the JIT com-
piler constructs a control flow graph (CFG): a directed graph with nodes con-
sisting of basic blocks and edges representing control flow transitions be-
tween them. Basic blocks are represented using a struct basicblock
and are created early during compilation: during the parse pass. A basic
block contains a sequence of intermediate instructions with the property,
that only the last effective1 one may cause a regular control flow transition.
The JIT compiler stores basic blocks in a linked list via the next member.

Interprocedural control flow of a Java method can be categorized into
two classes:

Regular control flow originates from execution of a conditional or uncon-
ditional branch instruction and transfers control to a different basic

1A non-NOP instruction

30

try {
o.func();
arr[0] = 0;
o.func();
arr[1] = 0;

} catch (NullPointerException e) {
handleNull();

} catch (IndexOutOfBoundsException) {
handleOutOfBounds();

}
(a) Source code

o.func();

arr[0] = 0;

handleNull();

o.func();

handleOutOfBounds();

arr[1] = 0;

(b) Control flow graph

o.func();
arr[0] = 0;
o.func();

arr[1] = 0;

handleNull();

NullPointerException

handleOutOfBounds();

IndexOutOfBoundsException

(c) Factored control flow graph

Figure 4.1: Exceptional control flow

block.

Exception control flow originates from a potential exception-throwing instruc-
tion (PEI) throwing in response to an exceptional condition and trans-
fers control to an exception handler.

To augment the regular CFG with exception control flow, basic blocks
need to be split at every PEI, and an edge from the basicblock fragment
to every potential exception handler needs to be added. This would pose
no problem if PEIs were rare, but unfortunately, they are quite frequent in
Java [5]: field accesses, array accesses, method calls and object allocation
can all throw exceptions and thus cause control flow transfers. Splitting
basicblocks at every PEI leads to CFGs of a much greater size. An example
CFG with basicblocks split at PEIs is shown in figure 4.1(b).

A more space-efficient representation of exceptional control flow can be
achieved using the factored control flow graph (FCFG) [5]. In addition to reg-

ular CFG edges it contains factored edges. A factored edge BB T−→ EH from

31

a basic block BB to an exception handler EH annotated with an exception
type T represents all control flow transitions from a PEI throwing an ex-
ception of type T to the respective exception handler. An example FCFG is
shown in figure 4.1(c).

In CACAO, a variation of the FCFG has been implemented: exceptional
control flow is represented using factored edges, but they are not anno-
tated with an exception type. A factored edge is connecting a basic block
containing at least one PEI to every exception handler for that basic block.
This leads to a less precise, but still valid CFG.

The reason for this simplification is that for a correct match of PEIs to
exception handlers a subtype check is required, which in turn requires the
two classes in question to be linked, i.e. fully initialized in the run-time
system. This is not necessarily the case at compile time, even not at re-
compilation time, as classes are linked lazily, the first time they are used at
run-time.

To facilitate analyses based on the CFG, the root basic block is required
to have no predecessors.

4.1.1 Implementation

Root basic block

The requirement of the root basic block having no predecessors is not al-
ways fulfilled by a Java method, consider a method where the first basic
block is a loop header. Therefore an artificial root basic block is always
added, containing no instructions and an implicit fall through branch to the
actual root basic block. This is implemented in the function cfg_add_root.

Regular control flow

The nodes of the regular CFG are represented by the struct basicblock.
The edges of the CFG are represented using the following members:

• successors - an array of pointers to successor nodes in the CFG.

• predecessors - an array of pointers to predecessor nodes in the
CFG.

The regular CFG is built in the function cfg_build in two traversals:
the first one counts the number of predecessors and successors of every
basic block, the second one allocates and fills in the respective arrays. In
theory, a single traversal would be sufficient to build the CFG. The second
traversal is an implementational detail and is needed for a time and space
efficient allocation of the arrays. In every traversal all basic blocks must be
considered, a depth first search is not sufficient. The reason is that because

32

of exceptional control flow, the regular control flow graph can consist of
disconnected components. For every block, NOPs at the end of the basic
block are skipped in order to to find the last effective instruction, which
falls into one of the following categories:

Unconditional branch : the target basic block is considered as successor.

Conditional branch : both the target basic block (conditional path), and
the next basic block (fall through path) are considered as successors.

Switch statement : the basicblocks that are targets of the branches are con-
sidered as successors.

Exceptional control flow

The exceptional part of the CFG is represented in analogy to the regular
part: by double linking basic blocks via the exhandlers and expredecessors
members of struct basicblock.

It is built in the function cfg_add_exceptional_edges. In one pass,
the number of PEIs is counted in every basicblock and stored in the exouts
member of struct basicblock as it determines the number of excep-
tional exits from that block. The compiler represents the relation of try to
catch blocks in a linked list of exception_entry. Each entry contains:

• A start and end basicblock. The sequence of basic blocks [start,
end) contains all blocks of the try block.

• A handler block which is the exception handler.

• catchtype is the type of the exception to handle.

The list of exception entries is traversed twice: first the predecessor
count for every exception handler and the number of successors for every
guarded block is calculated. In the case that a guarded block does not con-
tain any PEIs, no edge is connected to its handler blocks, as no control flow
transition is possible. In the second pass the blocks are double linked via
the exhandlers and expredecessors fields. The arrays are allocated
and filled in.

4.2 Static single assignment form

Static single assignment form (SSA) is an intermediate representation of a
program where every variable is assigned exactly once [6] used for static
program analysis. The term static refers to the fact that although there is
only one definition of a variable in the IR, the portion of the IR might be
executed more than once at run-time.

33

i = 0;
i += 1;
if (cond) {

i += 2;
} else {

i += 3;
}
j = i;
(a) Original pro-
gram

i_0 = 0;
i_1 = i_0 + 1;
if (cond) {

i_2 = i_1 + 2;
} else {

i_3 = i_1 + 3;
}
j_0 = phi(i_2, i_3);

(b) Program in SSA form

Figure 4.2: Example program transformed into SSA form

A usual imperative program won’t be in SSA form and has to be trans-
formed into it. This is done by subscripting every program variable v, cre-
ating new variable instances in a way satisfying the above requirement.

Within a basic block, the rules for subscripting are quite straight for-
ward.

1. Every definition of a variable v defines a new variable vi, with a new
unique subscript.

2. Every use of a variable v is replaced with its most recent definition vi.

However, in the presence of branches, a basic block can have several
predecessors, each defining a different instance of a variable. At such join
points it is not clear which definition is the most recent one. This problem
is solved by introducing a notational fiction called φ function. A φ function
for a variable v is placed at the beginning of a basic block B where control
flow joins and is considered to be executed prior to any other statement in
B. The number of arguments corresponds to the number of predecessor
blocks and argument j is the definition of v reaching B from its jth prede-
cessor. The φ function itself is a definition of v, namely it evaluates to the
definition of v reaching the basic block.

Figure 4.2 shows an example Java program transformed into SSA form.
When translating a program in SSA form into machine code the φ func-

tions are implemented as follows: for a function vk = φ(vi, vj) in a basic
block B with predecessors P1 and P2 a move vk ← vi is emitted at the con-
trol flow edge P1 → B and a move vk ← vj at the control flow edge P2 → B.
The resulting code is not in SSA form any more, therefore this pass is com-
monly called leaving SSA form. The example program from figure 4.2 is
shown in figure 4.3 after leaving SSA form.

34

i_0 = 0;
i_1 = i_0 + 1;
if (cond) {

i_2 = i_1 + 2;
j_0 = i_2; // from j_0 = phi(i_2, i_3);

} else {
i_3 = i_1 + 3;
j_0 = i_3; // from j_0 = phi(i_2, i_3);

}

Figure 4.3: Program after leaving SSA form

4.2.1 IR variables

In the bytecode representation of a Java method there are two kinds of vari-
ables:

Local variables are untyped of the size 4 bytes and are live during the life-
time of the method.

Operand stack Bytecode instructions operate on an operand stack. An in-
struction pops source operands from the operand stack and pushes
the result on the operand stack.

The stack analysis pass of CACAO transforms the stack-oriented repre-
sentation with implicit operands to quadruple code with explicit operands.
The operands are typed, numbered IR variables of one of the following cat-
egories:

Local variables correspond to Java local variables and are live during the
whole method.

Temporary variables correspond to Java operand stack slots. Their live-
ness is limited to the basic block they are defined in. Temporary vari-
ables are not reused, every temporary is defined only once.

Preallocated variables have the same properties as temporary variables
and are used for passing arguments and returning values from method
calls. They are allocated before register allocation to match the calling
conventions.

In-Variables and Out-Variables (inout variables) correspond to Java operand
stack slots that are live across basic block boundaries.

35

The first IR variable indices are reserved for local variables. Thus a lo-
cal variable can be recognized by falling into the range [0, maxlocals),
maxlocals being a member of the jitdata state.

Temporary and preallocated variables are already in SSA form, only
locals and inouts must be transformed. They however need to be renamed:
if the SSA transformation produces new instances of local variables, they
require reserved indexes that can be already allocated to temporaries.

4.2.2 Translating into SSA form

A naive approach of translating a program into SSA form is to split every
variable at every basic block boundary and to put a φ function for every
variable into every basic block. Although this produces a program in valid
SSA form, a representation with the minimal number of φ functions is de-
sired: redundant φ functions are wasteful and unnecessary [1] and some
optimizations perform well only operating on a minimal SSA form [3].

An often cited algorithm for transforming into SSA form is [6]. For
CACAO a simpler algorithm based on abstract interpretation of the IR pro-
posed by [23] was chosen. According to the author, the algorithm is better
applicable when compiling from bytecode instead of source code.

The algorithm traverses the IR once, basicblock by basicblock, maintain-
ing a per-basicblock state array. The state array contains for every variable
the definition flowing out of the basic block. At join points, state arrays are
merged producing φ functions.

In presence of loops, definitions flow back from the loop body into the
loop header via backward branches and the state array has to be recom-
puted. To prevent this, φ functions for every variable are created in loop
headers in advance, and are eliminated later if they turn out to be redun-
dant.

The algorithm first determines loop headers, then traverses the CFG
once to create φ functions and to rename variables, producing the SSA
form. In the SSA form, variables are not numbered sequentially as man-
dated by the CACAO IR, so in an additional step they are renumbered and
the IR is normalized. After performing optimizations on the IR, it is ready
for register allocation and code generation.

4.2.3 Loop headers

The first pass of the SSA transformation determines loop headers. Loop
headers are blocks which have incoming backward branches. To find loop
headers, the CFG is traversed in a depth-first search. As soon as a block,
which was already visited, but which is still active on the stack is visited by
traversing an edge, that edge is a backward branch and the block is marked
as loop header. The pseudo code can be seen in algorithm 1.

36

Algorithm 1 mark_loops
Input: basicblock b, num_branches (defaults to 1)

1: if not b.visited then
2: b.visited← true
3: b.active← true
4: for all successors s of b do
5: // there is 1 CF edge b→ s
6: mark_loops(s, 1)
7: end for
8: for all exception handlers e of b do
9: // there is an CF edge b→ e for every PEI in b

10: mark_loops(e, number of PEIs in b)
11: end for
12: b.active← false
13: else if b.active then
14: b.backward_branches += num_branches
15: end if

4.2.4 State array

The aim of processing a basic block is to rename local and inout variables so
that they adhere to the requirements of the SSA. To keep track of the most
recent value assigned to a variable a per basic block mapping called state
array is used. It maps a category dependent variable number (which is the
IR index for locals and the stack depth for inout variables) to the instruction
that most recently defined that variable. The destination operand of the
instruction implies the IR variable holding that definition.

At the time a basic block gets processed, it already has an input state
array, created during processing of its predecessors. The block is then pro-
cessed instruction by instruction. On each definition of a variable a fresh
variable is created and the state array is updated. Each use of a variable
is replaced by the most recent definition recorded in the state array. The
procedure is illustrated in figure 4.4.

4.2.5 CFG traversal

Basic blocks are traversed in an order such that a basic block is processed
after all predecessor blocks from which there is a forward branch to that
block were already processed. The pseudo code of the traversal is shown
in algorithm 2.

37

ins10: L0 = L0 + L1

ins11: L1 = L0 + L2

ins12: L2 = 3

ins10: var8 = var2 + var5

ins11: var9 = var8 + var7

ins12: var10 = 3

Local index

Last definition ins0(var2) ins1(var5)

10

ins4(var7)

2

Local index

Last definition ins10(var8)

10 2

ins11(var9) ins12(var10)

Input

Output

Rename

Figure 4.4: State array

Algorithm 2 traverse
Input: basicblock b

1: process(b)
2: for all successors s of b do
3: merge b into s
4: s.complete_predecessors += 1
5: if s.complete_predecessors == s.incoming_forward_branches then
6: traverse(s)
7: end if
8: end for
9: for all exception handlers e of b do

10: merge b into e
11: e.complete_predecessors += b.num_peis
12: if e.complete_predecessors == s.incoming_forward_branches then
13: traverse(e)
14: end if
15: end for

38

4.2.6 Merging state arrays

The fundamental operation during the traversal of the CFG is the merge
operation, implemented in ssa_enter_merge, which merges an output
state array of a basic block into its successors. This operation is responsible
for the creation of φ functions, as illustrated in figure 4.5. As merging al-
ways occurs along a control flow graph edge, in the direction of that edge,
the two participating basicblocks will be called predecessor and successor.

A special IR opcode has been introduced to CACAO, ICMD_PHI to rep-
resent a φ function uniformly with other IR instructions using a struct
instruction.

When merge is called for the first time for a successor block, no state array
exists yet for the successor, so a new one is allocated. If the successor is not
a loop header, the state array is initialized to a copy of the predecessor’s
one and the merge operation terminates. For loop headers, an empty state
array is created and populated entirely with φ functions, i.e. a φ function is
created for every variable. The φ arguments are left undefined and merging
continues as if a state array was found.

When a merge finds an already existing state array in the successor basic
block, the state array is processed element by element. For every variable,
one of the following cases occurs:

• The state arrays of the predecessor and successor map the variable to
the same definition. In this case no action is necessary.

• The state arrays of the predecessor and successor map the variable to
different definitions.

– If the definition in the successor block is a φ function, the ar-
gument flowing in from the predecessor is set to the definition
found in its state array.

– If the definition in the successor block is no φ function, it is re-
placed by a newly created φ function. All arguments are first
initialized to the old definition, as that value might have already
flown into the successor from several predecessors. The argu-
ment flowing in from the predecessor is then set to the definition
found in its state array.

4.2.7 IR properties

For the purpose of simplified processing with few corner cases in compiler
passes it is desirable for the IR to adhere to some invariants. One of these
invariants is, that every value is created by an IR instruction, thus no values
are produced by means of side effects. This invariant is especially useful

39

Local index

Last definition ins0 ins1 phi(ins2, ins3)

0 1 2

Local index

Last definition ins0 ins1 ins3

0 1 2Local index

Last definition ins0 ins1 ins2

0 1 2

Figure 4.5: Merge of state arrays creating a φ function

for an IR in SSA form, as a program in SSA form directly corresponds to a
functional program [2]. If every value is produced by an IR instruction, the
IR instruction can be used to represent that value.

In the current CACAO implementation this invariant is violated be-
cause of the following constructs:

1. Arguments passed to a method are not produced by any IR instruc-
tion. They are located in special IR variables. Identifying these spe-
cial variables is cumbersome as the mapping of positional argument
numbers to IR variables is non-trivial.

2. In an exception handler block, the passed exception object is not pro-
duced by any IR instruction. It is implicitly contained in a special IR
variable, namely invar 0, corresponding to the single operand stack
slot.

The first violation could be solved by introducing an ICMD_GETARGUMENT
IR generator instruction that would explicitly associate the positional argu-
ment with an IR variable. Such an instruction would even make the code
generator backends simpler. Currently every backend implements the logic
of loading arguments into the IR variables they were allocated to in the
method prologue, leading to a lot of duplicated code. In presence of an
ICMD_GETARGUMENT IR instruction, a backend only needs to implement
this IR instruction as a copy. In the context of this thesis, this instruction
was not implemented and instead the special variables containing argu-
ments were handled specially in the root basic block.

The second violation has more severe consequences: although rare in
bytecode generated from Java source, it is legal to reach an exception han-
dler through both regular and exceptional control flow. If the semantics of
an exception handler block dictate, that it always implicitly loads the cur-
rent exception object into a special variable, such mixed control flow can’t
be represented at all. The ramifications of this violation are even more se-
vere: the backend generates invalid machine code constituting a security
vulnerability, for which a highly reliable exploit has been proposed in [21].

40

To workaround this problem, a generator IR instruction ICMD_GETEXCEPTION
was introduced to represent a load of the current exception object explicitly.
In a separate pass prior to computation of the CFG all exception handlers
in the exception table are replaced by a special prologue block which con-
sists of an ICMD_GETEXCEPTION instruction loading the current exception
object into outvar 1 followed by a jump to the actual exception handler.
This solves both problems: the creation of the exception object is made ex-
plicit and a direct jump to the exception handler does not result in the value
contained in invar 1 to be killed.

4.2.8 Leaving SSA form

The SSA transformation was written for the purpose of performing escape
analysis. Prior to performing code generation, it is necessary for the SSA
form to be left. As escape analysis does not modify the IR at all, leaving SSA
form is rather straight forward: the original IR is simply reconstructed.

Although a real leave SSA pass is not needed in the scope of escape anal-
ysis, there are several motivations for implementing it. First, in the context
of future work it is supposed that optimizations will be implemented that
modify the IR. The second, most important one is that transforming the
generated SSA form to executable machine code can be used to validate
the enter SSA pass.

The SSA transformation has the property of generating a lot of interme-
diate variables. To generate reasonable machine code, at a copy coalesca-
tion and elimination pass is required [1]. As the motivation for the leave
SSA pass was validation of the algorithm, not performance of the gener-
ated machine code, the pass is implemented with the goal to transform the
IR into a form that is valid input for the following passes: register allocation
and code generation. Copy elimination and coalescing is not desirable for
validation of the SSA form, because it causes some instances of variables to
be eliminated and thus never to be tested.

The current simplereg register allocator relies on the javac compiler
to coalesce uses of Java local variables and thus does not coalesce them fur-
ther. So all IR variables are transformed to local variables prior to register
allocation. This guarantees that every single variable instance will be allo-
cated to a different physical location and provides a better test coverage.

φ functions at the beginning of a block must be translated into copy
instructions placed at incoming control flow edges into that block. This is
done separately for regular and for exceptional control flow.

For regular control flow, the list of all basic blocks is traversed. In ev-
ery block the last effective instruction is determined in an analogous way
than in CFG construction (see section 4.1). If this instruction is a jump or
switch statement, every target block is replaced with a newly generated
transition block filled with copy instructions and terminated with a jump to

41

the real destination block. Copy instructions for the fall through path of a
conditional jump are appended at the end of the basic block.

For exceptional control, leaving SSA form is more complicated as ev-
ery PEI has the potential for a control flow transition. In a traversal of the
exception table, every guarded block is split at every PEI. For the guarded
block fragment a new exception table entry and a new exception handler
prologue are created. The generated prologue block has a single outvar for
the purpose of passing the exception object to the actual exception han-
dler, which expects the exception object to be passed via its invar 1. The
prologue block starts with an ICMD_GETEXCEPTION instruction into the
single outvar followed by copy instructions for the control flow edge from
the PEI to the corresponding exception handler and is terminated with a
jump to the actual exception handler.

4.2.9 Example

The passes of the SSA transformation are presented in a complete example.
Consider the method foo in the source code listing 4.1. The single impor-
tant variable in this example is the local variable i, corresponding to the
IR variable 0. It gets different values on different control flow paths and
is finally returned. The method gets compiled by the javac compiler into
the IR shown in listing 4.2. After the SSA transformation, φ functions are
created and the resulting IR is presented in listing 4.3. This form is suitable
for optimization passes. Finally, φ functions get eliminated leading to the
IR shown in listing 4.4.

For clarity, NOPs and information of no relevance for the SSA transfor-
mation have been removed from the IR representation.

4.3 Escape analysis

The aim of escape analysis is to determine whether an object escapes its
creating site. As a result of the analysis, static object allocation sites and
reference variables are annotated with an escape state which can have one
of the following values:

ESCAPE_NONE: the object is accessible only from its creating method.
Such an object can be eliminated and replaced with scalars.

ESCAPE_METHOD: the object escapes its creating method, but does not
escape the creating thread. This happens if the object is passed to
a callee, which doesn’t let it escape further. Such an object can be
allocated on the stack and no synchronization needs to be performed
on it.

42

1 class Test {
2
3 static int foo(int i, boolean doLoop) {
4 try {
5 while (doLoop) {
6 i = 10;
7 mayThrow();
8 i = 20;
9 mayThrow();

10 i = 30;
11 }
12 } catch (Exception e) {
13 }
14 return i;
15 }
16
17 static void mayThrow() throws Exception {
18 }
19
20 };

Listing 4.1: Java source code of SSA example

43

1 Exceptions:
2 L001 ... L003 = L006 (catchtype: java/lang/Exception)
3
4 ======== L000 ======== (type: STD)
5 ======== L001 ======== (type: STD)
6 5: 1: ILOAD L1 => Li1
7 5: 2: IFEQ Li1 0 (0x00000000) --> L003
8 ======== L002 ======== (type: STD)
9 6: 4: ICONST 10 (0x0000000a) => Li0

10 6: 5: ISTORE Li0 => L0
11 7: 6: INVOKESTATIC Test.mayThrow()V
12 8: 7: ICONST 20 (0x00000014) => Li0
13 8: 8: ISTORE Li0 => L0
14 9: 9: INVOKESTATIC Test.mayThrow()V
15 10: 10: ICONST 30 (0x0000001e) => Li0
16 10: 11: ISTORE Li0 => L0
17 10: 12: GOTO --> L001
18 ======== L003 ======== (type: STD)
19 13: 14: GOTO --> L005
20 ======== L004 ======== (type: STD)
21 IN: [Ia6]
22 12: 16: ASTORE Ia6 => L2
23 ======== L005 ======== (type: STD)
24 14: 18: ILOAD L0 => Li0
25 14: 19: IRETURN Li0
26 ======== L006 ======== (type: EXH)
27 0: 0: GETEXCEPTION => Ia10
28 0: 0: GOTO --> L004
29 OUT: [Ia10]

Listing 4.2: IR of SSA example prior to SSA transformation

44

1 Exceptions:
2 L001 ... L003 = L006 (catchtype: java/lang/Exception)
3
4 ======== L000 ======== (type: STD)
5 ======== L001 ======== (type: STD)
6 0: 0: PHI [Li13 Li0] => Li3 used
7 0: 0: PHI [Li6 Li1] => Li4 used
8 0: 0: PHI [La5 La2] => La5
9 5: 1: ILOAD L4 => Li6

10 5: 2: IFEQ Li6 0 (0x00000000) --> L003
11 ======== L002 ======== (type: STD)
12 6: 4: ICONST 10 (0x0000000a) => Li7
13 6: 5: ISTORE Li7 => L8 (javaindex 0)
14 7: 6: INVOKESTATIC Test.mayThrow()V
15 8: 7: ICONST 20 (0x00000014) => Li9
16 8: 8: ISTORE Li9 => L10 (javaindex 0)
17 9: 9: INVOKESTATIC Test.mayThrow()V
18 10: 10: ICONST 30 (0x0000001e) => Li12
19 10: 11: ISTORE Li12 => L13 (javaindex 0)
20 10: 12: GOTO --> L001
21 ======== L003 ======== (type: STD)
22 13: 14: GOTO --> L005
23 ======== L004 ======== (type: STD)
24 12: 16: ASTORE La18 => L14 (javaindex 2)
25 ======== L005 ======== (type: STD)
26 0: 0: PHI [Li3 Li11] => Li15 used
27 0: 0: PHI [La5 La14] => La16
28 14: 18: ILOAD L15 => Li17
29 14: 19: IRETURN Li17
30 ======== L006 ======== (type: EXH)
31 0: 0: PHI [Li8 Li10] => Li11 used
32 0: 0: GETEXCEPTION => La18
33 0: 0: GOTO --> L004

Listing 4.3: IR of SSA example after SSA transformation

45

1 Exceptions:
2 L002.a ... L002.b = L011 (catchtype: java/lang/Exception)
3 L002.b ... L002.c = L012 (catchtype: java/lang/Exception)
4
5 ======== L000 ======== (type: STD)
6 0: 0: COPY Li0 => Li3
7 0: 0: COPY Li1 => Li4
8 0: 0: COPY La2 => La5
9 ======== L001 ======== (type: STD)

10 5: 1: ILOAD L4 => Li6
11 5: 2: IFEQ Li6 0 (0x00000000) --> L007
12 ======== L002.a ====== (type: STD)
13 6: 4: ICONST 10 (0x0000000a) => Li7
14 6: 5: ISTORE Li7 => L8
15 7: 6: INVOKESTATIC Test.mayThrow()V
16 ======== L002.b ====== (type: STD)
17 8: 7: ICONST 20 (0x00000014) => Li9
18 8: 8: ISTORE Li9 => L10
19 9: 9: INVOKESTATIC Test.mayThrow()V STATIC
20 ======== L002.c ====== (type: STD)
21 10: 10: ICONST 30 (0x0000001e) => Li12
22 10: 11: ISTORE Li12 => L13
23 10: 12: GOTO --> L008
24 ======== L003 ======== (type: STD)
25 13: 14: GOTO --> L009
26 ======== L004 ======== (type: STD)
27 12: 16: ASTORE La18 => L14
28 0: 0: COPY Li11 => Li15
29 0: 0: COPY La14 => La16
30 ======== L005 ======== (type: STD)
31 14: 18: ILOAD L15 => Li17
32 14: 19: IRETURN Li17
33 ======== L007 ======== (type: STD)
34 0: 0: GOTO --> L003
35 ======== L008 ======== (type: STD)
36 0: 0: COPY Li13 => Li3
37 0: 0: COPY Li6 => Li4
38 0: 0: GOTO --> L001
39 ======== L009 ======== (type: STD)
40 0: 0: COPY Li3 => Li15
41 0: 0: COPY La5 => La16
42 0: 0: GOTO --> L005
43 ======== L010 ======== (type: STD)
44 0: 0: GOTO --> L004
45 ======== L011 ======== (type: EXH)
46 0: 0: GETEXCEPTION => La18
47 0: 0: COPY Li8 => Li11
48 0: 0: GOTO --> L010
49 ======== L012 ======== (type: EXH)
50 0: 0: GETEXCEPTION => La18
51 0: 0: COPY Li10 => Li11
52 0: 0: GOTO --> L010

Listing 4.4: IR of SSA example after φ function elimination

46

ESCAPE_METHOD_RETURN: the object escapes its creating method by
being returned to the caller. Such objects are not further optimized.

ESCAPE_GLOBAL: the object escapes its creating method and even its
creating thread. This happens if the object becomes accessible via a
static variable or if it is passed to native or unanalyzed code. No
optimization are possible on such an object.

An ordering on the escape state values is defined with ESCAPE_NONE
and ESCAPE_GLOBAL being the lowest and highest values respectively.

The algorithm that was implemented for CACAO is based on the algo-
rithm presented in [16].

4.3.1 Intraprocedural analysis

Intermediate instructions in CACAO have the form of quadruple code of
the form dst = OP (s1, ..., sn) where dst and si are intermediate variable
indexes. At the point where escape analysis is performed they are in SSA
form. During intraprocedural analysis IR instructions are processed one at
a time.

References to run time objects are stored in intermediate variables. These
variables are annotated with an escape state which expresses the escape
state of the objects they reference.

During escape analysis, the escape state of a variable can only take a
higher value. Thus adjusting the escape state to some value corresponds to
setting it to the maximum of its current value and of the new value. This is
implemented in the function escape_analysis_ensure_state.

Variables are merged into equi-escape sets (EES) where all members share
the same escape state. Variables get merged upon a copy operation dst =
src or upon a phi function dst = φ(s1, ..., sn), the analysis is thus a Steens-
gaard, flow-insensitive analysis. For brevity, “merging” two variables de-
notes merging the two EESs the two variables are part of. Merging is im-
plemented in the function escape_analysis_merge.

If an object s2 is assigned to a field of an object s1, and s1 escapes later,
s2 escapes as well. If however s2 escapes at a later point, s1 won’t, as it is
not necessary accessible via s1. This dependency can’t be modelled using
an EES, as it is unidirectional. For this purpose, every variable maintains
a list of (variable, field identifier) pairs it possibly references via fields -
the dependency list. If two variables are merged, their dependency lists are
merged as well as the merged set of variables may reference any object
from the union of the two dependency lists. If the escape state of a variable
changes, the escape state of all elements of the dependency list must be
adjusted as well.

The IR is traversed once to construct the EESs. The following IR con-
structs are considered:

47

Method prologue The IR variables containing arguments are initialized as
not escaping.

ICMD_NEW, ICMD_...NEWARRAY An object is newly allocated. The source
operand for the instruction is a variable, containing a classinfo *
previously loaded with an ICMD_ACONST instruction. This instruc-
tion is looked up to determine the class of the allocated object. If the
class has a finalizer method, the object escapes globally, because its
finalizer might be called at an undefined time. Otherwise, the desti-
nation is marked as ESCAPE_NONE. The ICMD_ACONST might be un-
resolved: in that case it is unknown, whether the class has a finalizer
and it must be conservatively assumed that it has one.

ICMD_PUTSTATIC If an object is stored into a static (global) variable, it
becomes accessible from different threads and is thus marked as glob-
ally escaping.

ICMD_GETSTATIC If an object is loaded from a static variable, there is
no information available about its allocation site and must thus be
marked as globally escaping.

ICMD_PUTFIELD (s1.f = s2) If s2 is assigned to an instance field of s1,
it inherits the escape state of s1: if s1 is reachable from a different
thread, s2 will be reachable as well. s2 is further added to the depen-
dency list of s1. This is necessary, because if s1 escapes at a later point,
the escape state of s2 needs to be adjusted as well. If s1 contains an
argument, s2 always escapes globally, because it will get accessible
from the caller method and thus escapes the method.

ICMD_GETFIELD (dst = s1.f) If s1 contains an argument, dst is marked
as being a globally escaping object, as there is nothing known about
its allocation site. Otherwise dst is initially marked as not escaping
and the instruction is added to a list of getfield instructions for later
processing.

ICMD_AASTORE Is handled in analogy to ICMD_PUTFIELD.

ICMD_AALOAD Is handled in analogy to ICMD_GETFIELD.

ICMD_IF_ACMP... If an object reference is compared against a different
object reference, the object must not have been eliminated and must
exist at least on the stack. The compared objects are thus marked as
escaping the method.

ICMD_IF...NULL, ICMD_CHECKNULL If an object reference is compared
against the null constant, the same applies as for ICMD_IF_ACMP....
Although not done in CACAO, some comparisons agains null could

48

be evaluated statically. In that case, adjustment of the escape state is
not necessary.

ICMD_CHECKCAST, ICMD_INSTANCEOF A checked cast must not be
eliminated, unless the compiler can statically determine whether it
always succeeds. To perform the cast, the object must exist at least on
the stack and is thus marked as escaping the method.

ICMD_INVOKESTATIC, ICMD_INVOKESPECIAL In a method invoca-
tion that can be statically bound, i.e. the callee method is statically
known the results of interprocedural analysis are used to adjust the
escape state of the arguments and the return value. Interprocedural
analysis also yields, which arguments can be returned from the callee.
They are all merged with the return value. If results of interprocedu-
ral analysis are not available for the callee, the arguments and the
return value must conservatively be marked as globally escaping.

If the callee is unresolved and the caller has been already executed of-
ten, it is assumed that it won’t be resolved at all, and the instruction is
ignored. The assumption must be recorded with the deoptimization
framework, and the generated code must be invalidated once this as-
sumption gets violated.

If the callee is a native method, it can’t be further analyzed. The argu-
ments and the return value must conservatively be treated as globally
escaping.

ICMD_INVOKEVIRTUAL, ICMD_INVOKEINTERFACE The instruction
is processed in analogy to a statically bound method call, but all pos-
sible target methods must be considered. Class hierarchy analysis is
used to determine all possible target methods and the escape state of
the arguments and return value is adjusted. If the results are missing
for a single possible target, it must be conservatively assumed that all
arguments and the return value escape globally.

Also, the assumption about the possible targets of the given invoca-
tion must be registered with the deoptimization framework. In case
the assumption does not hold anymore, the method’s code must be
invalidated.

ICMD_ARETURN The escape state of the source operand is adjusted to
ESCAPE_METHOD_RETURN. The instruction is further added to a list
of all return instructions for post-processing.

ICMD_ATHROW, ICMD_GETEXCEPTION Objects that are thrown as ex-
ception are not further tracked and are always marked as globally
escaping.

49

1 void foo() {
2 T o1 = new T();
3 o1.f = new NullPointerException();
4 throw o1.f;
5 }

Listing 4.5: Object field as alias to object

ICMD_COPY A copy of a reference variable of the form dst = src is
treated by merging the two variables.

ICMD_PHI As a phi function of the form dst = φ(s1, s2) corresponds to
one of the following copy operations dst = s1 or dst = s2, it is han-
dled as these copy operations.

Postprocessing getfield instructions

Object fields pose an problem to escape analysis, because they introduce
additional aliases. Consider the source code in listing 4.5. An object is first
stored in the field of a method local object, and thus does not escape. At a
later point it is loaded from the same field and thrown as exception. The
algorithm must be able to mark it correctly as globally escaping.

To determine such objects, all ICMD_GETFIELD instructions of the form
dst = s1.f are processed once again, after the EESs have been constructed,
and thus aliases are known. The variable dst has been initially marked as
non-escaping. The dependency list of s1 is traversed, considering each item
of the form (f, dep) and the escape state of dep is adjusted to the one of dst.

Further, it might have become evident, that the EES of s1 can contain
an argument and thus dst was loaded from an argument. In this case, the
escape state of dst is adjusted to ESCAPE_GLOBAL.

4.3.2 Interprocedural analysis

As escape analysis computes an escape state for every variable of reference
type, and thus for arguments as well, this information is used to construct
summary information for a method, that can be used in caller contexts to
adjust the escape state of actual arguments. The summary information is
represented using a class ParamEscape and stored with the method
descriptor (methodinfo) via the paramescape member. The summary
information contains:

• The escape state for every argument of a reference type. This is com-
puted as the escape state of the EES of the variable the argument is
passed in.

50

• For every argument of a reference type, whether this argument can be
returned from the method. This is true if its escape state is ESCAPE_METHOD_RETURN.
However, the escape state ESCAPE_METHOD_RETURN is transformed
to ESCAPE_METHOD in the summary information, to reflect the view
of a caller: if an argument is passed to a callee and gets returned back,
it escapes only the method from the perspective of the caller.

• The escape state of the return value. This is computed as the maxi-
mum escape state of the source operands of all return statements in
the method. If this is ESCAPE_METHOD_RETURN, ESCAPE_METHOD
is set in the summary information, to reflect the view of a caller.

4.3.3 Implementational notes

Native methods

Objects passed to native methods are marked as escaping globally. Empiric
evidence however has shown, that many objects are passed to native meth-
ods, so applying this rule consequently leads to a lot of objects escaping
unnecessarily.

This evidence is confirmed by tables 4.1 and 4.2, which show the dy-
namic ratio of method-local objects for selected SpecJVM98 and Dacapo
benchmarks. The results in the first column were obtained using the pes-
simistic assumption that objects passed to native methods escape globally.
The results in the second column were obtained using the optimistic as-
sumption, that objects passed to native methods never escape globally.

As the escape behavior of some methods of the Java runtime library
that call into native methods is known, hardcoded method summaries can
be used for these methods. A good choice of methods is:

• java.lang.System.identityHashCode

• java.lang.Object.getClass

• java.lang.Object.clone

• java.lang.System.arraycopy

Inlining

Thread-local objects returned from a method escape globally and thus can’t
be considered for optimization. However, if the method in question gets in-
lined, the return value does not escape the caller. Thus inlining can improve
the impact of escape analysis a lot. The canonical example for this scenario
is the iterator() method of container classes which is usually imple-
mented as an one liner returning a temporary iterator object that almost

51

Benchmark Pessimistic Optimistic
_200_check 7.06% 7.32%
_202_jess 0.07% 26.54%
_228_jack 48.16% 69.18%

Table 4.1: Dynamic ratio of method-local objects for different assumptions
about native methods (SpecJVM98)

Benchmark Pessimistic Optimistic
eclipse 3.37% 3.62%
pmd 0.21% 11.87%
xalan 2.47% 3.73%

Table 4.2: Dynamic ratio of method-local objects for different assumptions
about native methods (Dacapo)

never escapes the calling method. Inlining such methods leads in practice
to high dynamic numbers of non-escaping objects.

The more methods are inlined, the greater the chance to keep objects
non-escaping. [16] even suggest inlining more aggressively, if there is a
chance to capture more objects.

4.3.4 Example

The implemented algorithm will now be applied to an example method
and examined in detail. Consider the Java function foo in listing 4.6. The
function allocates 3 objects of type T and conditionally links them via the f
field. The object allocated at line 12 is assigned to the field of the argument
arg and thus escapes the method. The two other objects allocated at lines
10 and 11 obviously don’t escape their creating method.

At compilation time for the sample method it is supposed, that the con-
structor T.<init> and the method T.test have already been analyzed,
and thus interprocedural escape information is available. The trivial im-
plicit constructor obviously does not let the this argument escape, and
the T.test method does not even use the implicit this argument.

The representation of the method in a simplified CACAO IR is shown
in listing 4.7. Each statement is followed by a representation of the relevant
data structure it affects: an eqi-escape set. The following notational conven-
tion is used to represent an eqi-escape set:

{ESCAPE_STATE : v1, . . . , vn, [(d1, f1), . . . , (dn, fn)]}

Where ESCAPE_STATE denotes the escape state of the set, vi are IR vari-
ables contained in that set and (di, fi) are elements of the dependency list:

52

di being an IR variable, and fi the identifier of the field. The escape state
might be followed by the flag ARG denoting that the set contains an argu-
ment.

Analysis phase

In the method header, all variables corresponding to arguments are marked
as containing an argument. This can be observed at line 2.

At line 4, the instruction sequence for object allocation is shown, con-
sisting of a ACONST and a BUILTIN new. The newly allocated object, stored
in variable a18 starts as non-escaping and constitutes a single element EES.
The COPY instruction at line 8 causes a19 to be added into the EES of a18.
At line 10, the newly allocated object is passed to the class’ constructor. At
this position, the escape state of the variable must be adjusted to at least
ESCAPE_METHOD. The method summary for the constructor yields, that
the constructor does not let the object escape further, the escape state is not
further changed.

The instruction sequence is then repeated for every of the three initial
allocations.

At line 34, an object is stored in a field of an argument. This is evident
because the EES containing the reference a6 bears the ARG flag. In this
special case, the escape state of the stored object is adjusted to global. The
stored object is then added to the dependency list of a6.

At line 38, the reference variable a7 is passed to the virtual method
T.test and its escape state must be adjusted to ESCAPE_METHOD. Class
hierarchy analysis is used to determine, that no other class overrides the
method, and thus the method summary of only T.test is used to adjust
the escape state of a7, which is left unchanged, as the implicit this refer-
ence does not escape T.test.

Basic blocks 2 and 3 contain only copy instructions and cause the escape
sets to grow.

At line 56, 3 φ functions are processed: the arguments are merged with
the destination operand and the respective EESs grow. The source code
level variable o1 flows into block 2 as a7 and o2 into block 3 as a5 re-
spectively. The φ function at line 56 corresponds to the source code level
variable o, setting it to either o1 or o2 depending on the incoming path.

At line 66, the field f of a15 is set to a16. As the EES of a15 contains
only method local objects, a16 does not escape at this point, but is added
to the dependency list of a15, for the case it would escape later.

Determining the results

After the analysis phase has been completed, the question of interest is,
what the escape state of objects allocated inside the analyzed method is.

53

1 class T {
2 T f;
3
4 boolean test() {
5 return false;
6 }
7
8 static void foo(T arg) {
9 T o;

10 T o1 = new T();
11 T o2 = new T();
12 arg.f = new T();
13
14 if (o1.test()) {
15 o = o1;
16 } else {
17 o = o2;
18 }
19
20 o.f = o1;
21 }
22 }

Listing 4.6: Example method for escape analysis

For this, we consider all BUILTIN new instructions and examine the escape
state of the EESs their destination operands are contained in.

For the first two allocation sites, at line 10 and 11 at source code level,
the allocated objects escape the method, for the allocation site at line 12, the
object escapes globally.

4.4 Stack allocation

Results of escape analysis are used to allocate method-local objects on the
call stack, as described in section 2.4.

Once escape analysis has identified method-local allocation sites, i.e.
allocation sites with an escape state less than or equal to ESCAPE_METHOD,
these sites are chosen for allocation on the call stack. Requirements for
stack space are calculated right after escape analysis. Although stack space
could be reused for stack objects with non-overlapping lifetimes, we don’t
perform such an optimization, because in chapter 3 it was determined, that
the number of stack local objects in a method tends to be rather low.

For every method-local allocation site, space is reserved in an area for
object allocation on the stack. This space is identified by an offset into this
area. For efficient inline zeroing of the space from JIT code, the space re-
served for an object is always rounded to the machine word size. The total

54

1 === BB 0 ===
2 {NONE, ARG: a0}
3 === BB 1 ===
4 10: ACONST class T => a17
5 {NONE: a17}
6 10: BUILTIN new (a17) => a18
7 {NONE: a18}
8 10: COPY a18 => a19
9 {NONE: a18, a19}

10 10: INVOKESPECIAL T.<init> (a19)
11 {METHOD: a18, a19}
12 10: ASTORE a18 => a4
13 {METHOD: a4, a18, a19}
14 11: ACONST class T => a20
15 {NONE: a20}
16 11: BUILTIN new (a20) => a21
17 {NONE: a20}, {NONE: a21}
18 11: COPY a21 => a22
19 {NONE: a21, a22}
20 11: INVOKESPECIAL T.<init> (a22)
21 {METHOD: a21, a22}
22 11: ASTORE a21 => a5
23 {METHOD: a5, a21, a22}
24 12: ALOAD a0 => a6
25 {NONE, ARG: a0, a6}
26 12: ACONST class T => a23
27 {NONE: a23}
28 12: BUILTIN new (a23) => a24
29 {NONE: a23}, {NONE: a24}
30 12: COPY a24 => a25
31 {NONE: a24, a25}
32 12: INVOKESPECIAL T.<init> (a25)
33 {METHOD: a24, a25}
34 12: PUTFIELD T.f a6 a24
35 {GLOBAL: a24, a25}, {NONE, ARG: a0, a6, [(T.f, a24)]}
36 14: ALOAD a4 => a7
37 {METHOD: a4, a7, a18, a19}
38 14: INVOKEVIRTUAL T.test (a7) => i26
39 {METHOD: a4, a7, a18, a19}
40 14: IFEQ i26 0x0 --> L003
41 15: NOP
42 === BB 2 ===
43 15: ALOAD a7 => a10
44 {METHOD: a4, a7, a10, a18, a19}
45 15: ASTORE a10 => a11
46 {METHOD: a4, a7, a10, a11, a18, a19}
47 15: GOTO --> L004
48 17: NOP
49 === BB 3 ===
50 17: ALOAD a5 => a8
51 {METHOD: a5, a8, a21, a22}
52 17: ASTORE a8 => a9
53 {METHOD: a5, a8, a9, a21, a22}
54 20: NOP
55 === BB 4 ===
56 0: PHI [a11 a9] => a12
57 {METHOD: a4, a5, a7, a8, a9, a10, a11, a12, a18, a19, a21, a22}
58 0: PHI [a10 a7] => a13
59 {METHOD: a4, a5, a7, a8, a9, a10, a11, a12, a13, a18, a19, a21, a22}
60 0: PHI [a5 a8] => a14 (unused)
61 {METHOD: a4, a5, a7, a8, a9, a10, a11, a12, a13, a14, a18, a19, a21, a22}
62 20: ALOAD a12 => a15
63 {METHOD: a4, a5, a7, a8, a9, a10, a11, a12, a13, a14, a15, a18, a19, a21, a22}
64 20: ALOAD a13 => a16
65 {METHOD: a4, a5, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a18, a19, a21, a22}
66 20: PUTFIELD T.f a15 a16
67 {METHOD: a4, a5, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a18, a19, a21, a22, [(T.f, a16)]}
68 21: RETURN
69 === BB 5 ==

Listing 4.7: Escape analysis performed on the CACAO IR

55

Callee saved registers

Arguments passed to callee

Local variables

1 slot for synchronization

Stack allocated objects

Return address

Stack pointer of method

Stack pointer of caller

R
is

in
g

 m
em

o
ry

 a
d

d
re

ss
es

Figure 4.6: Layout of stack frame with highlighted area for stack allocation

size of the reserved space is stored in the jitdata state in the member
stackobjectsize.

Allocation sites represented by a BUILTIN new IR instruction are trans-
formed to a newly introduced STACK_NEW instruction which contains the
offset into the space for stack allocation in the s1 operand field and the
classinfo * of the allocated class.

Allocation of stack objects has been implemented on the x86 architec-
ture. When the code generator generates the method prologue, it lays out
the fixed-size stack frame. If it finds the stackobjectsize member of
the jitdata state non-zero, it reserves space in the stack frame, at an off-
set stackobjstart. The layout of the stack frame and the location of this
area in the stack frame can be seen in figure 4.4.

The generated machine code for the STACK_NEW instruction is rather
trivial: the address of the stack object is calculated by adding an offset to the
stack pointer. Then the object header of the object is initialized by setting
its virtual function table pointer and initializing the lockword to 0. Then all
data fields of the object are zeroed as required by the JVM specification.

An example of code generated on x86 for stack allocation of a StringBuilder
object with a destination operand %esi is show in listing 4.8.

1 lea 0x80(%esp),%esi ; store object pointer into %esi
2 movl $0x854186c,(%esi) ; set VFTBL pointer
3 movl $0x0,0x4(%esi) ; set lockword to 0
4 ; zero data fields
5 mov $0x4,%ecx ; initialize loop counter
6 loop:
7 movl $0x0,0x14(%esi,%ecx,1) ; zero 1 data word
8 sub $0x4,%ecx ; decrement counter
9 jge loop ; loop

Listing 4.8: Machine code generated for a STACK_NEW IR instruction

56

4.4.1 Allocation in loops

Although it is possible to dynamically grow the stack frame of an active
method, like in the C language via the alloca function, this mechanism
introduces additionnal run-time overhead. For example the maintanance
of a frame pointer register or additionnal overhad for subroutine calls.
For this reason CACAO uses stack frames of a static size. Thus space in the
stack frame can be reserved only for a fixed number of objects at compile
time. This poses a problem if non-escaping objects are allocated in a loop.

In such a situation, the objects can be allocated on the stack, only if the
space for the object can be reused on every loop iteration [16]. This condi-
tion is considered holding, if the allocated object is not live-in in the loop
header, i.e. if its definition does not flow back into the loop via backward
branches.

To achieve this, if an allocation site is considered for stack allocation,
loop analysis (see section 4.5) is peformed to detect loops. If the allocation
site is located inside a loop, the alias set of the allocated object obtained by
following forward branches but not leaving the loop is constructed. The
only way for the object to reenter the loop is via φ functions of the loop
header. If any element of the alias set is an argument of a live φ function
of the loop header, the object must not be allocated on the stack. Memory
dependencies are not tracked: if the object in question is stored into an
static field, instance field or an array in the loop, it is heap allocated. This
algorithm is implemented in the class LoopEscapeAnalysis.

4.5 Loop analysis

The stack allocation optimization requires to determine, whether an allo-
cation site is located inside a loop. If so, it needs to traverse the container
loop. In case of nested loops, the container loop and its nested loops need
to be traversed.

To fulfill this requirement, the algorithms described in [1] are used to
first detect all loops, then determine their nesting level and organize them
in a loop hierarchy and finally store the information in a way that supports
efficient testing for loop membership and efficient traversal of a loop and
its nested loops.

The algorithm described in this section detects loops only in reducible
control flow graphs. Java compiler generated code consists almost exclu-
sively of such control flow graphs, so the approach taken is to test, whether
the CFG in question is reducible and if not, give up optimization of the
particular function.

The code is implemented in the class LoopHierararchy.

57

4.5.1 Dominator tree

The algorithm to detect loops makes use of the dominator to identify back-
ward branches, which in turn identify a loop header and are used to induce
the loop body.

A nodeD in the CFG dominates a nodeN , if every directed path of edges
from the root node toN leads throughD. In a connected CFG, if two nodes
D1 and D2 both dominate a node N , then it can be proved [1] that either
D1 dominates D2 or vice versa. This in turn leads to the theorem, that for
every nodeN , except the root node there is an immediate dominator idom(N)
different from N such that idom(N) dominates N , but does not dominate
any other dominator of N .

The dominator tree contains all nodes of the CFG and edges idom(N)→
N , linking every CFG node to its immediate dominator.

The algorithm used to construct the dominator tree is the algorithm
of Lengauer-Tarjan [19] and it was originally implemented as a perquisite
for Cytrons algorithm [6] of constructing the SSA form, which was imple-
mented as part of this thesis but discontinued in favor of the algorithm
presented in 4.2.

When taking into account exceptional control flow, exceptional sum-
mary edges are treated as ordinal CFG edges to successor nodes. Consider
the CFG in figure 4.7(a) with a summary exceptional edge BB1 → EXH .
Splitting BB1 at PEIs and expanding the summary edge results in the CFG
in figure 4.7(b). The single-entry, multiple-exit extended basic block BB_1
is treated as opaque and not further structured by the analysis, but its in-
ternal structure must be considered if making use of the analysis results.

4.5.2 Loop detection

In a reducible control flow graph there is only a single entry point into a loop,
the loop header. It has the property that it dominates all nodes in the loop. A
backward edge is an CFG edge N → H from a node N to a node H such that
H dominates N . Every backward edge identifies a loop, more precisely a
loop header, which is H .

This property is used to test every CFG edge N → H whether it is
a backward edge. If so, a loop header was found. All reverse CFG paths
starting at N are then followed, terminating when H is reached. The nodes
collected underway are added to the loop identified by its header H .

4.5.3 Loop hierarchy

Let Houter and Hinner be two headers identifying loops. The loop induced
by Hinner is a loop nested inside the loop induced by Houter if Hinner is
contained withing the loop induced by Houter.

58

BB1

BB2 EHX

(a) With summary excep-
tional edge

BB1

BB1_a

BB1_b

EXH

BB1_c

BB2

(b) With expanded sum-
mary edge

Figure 4.7: Example CFG

After detecting loops, every loop header is tested whether it is con-
tained in the set of nodes induced by some different loop header. If so,
all nodes of the inner loop are removed from the outer loop, including the
header and the header is inserted into the set of child loops of the outer
loop.

To efficiently store loop membership and loop nesting of the CFG, tree
numbering is used [29], which was also used for representing the class hi-
erarchy in earlier releases of CACAO. Every basicblock is annotated with a
LoopInfo class showed in listing 4.9. The tree of loop headers is traversed
in a depth first search and a counter is incremented each time some loop
header is processed. The value of the counter at the point a loop header
was entered and left is stored in the _nr and _to fields respectively of the
LoopInfo of all member nodes of the loop.

This representation enables quick testing, whether two nodes are inside
the same loop. This is true, if the _nr values of their loop infos are the same,
as seen in the containsStrict method. To test, whether some node
Ninner is contained in the same or inside some nested loop of a nodeNouter,
it must be tested, whether _nr of Ninner is in the range [_nr, _to] of the
loop info of Nouter. This test is implemented in the contains method.

An example of the loop hierarchy encoding is shown in figure 4.8. It
contains a loop H1 with two inner loops H2 and H3 and two more inner
loops H4 and H5 of H3. Unlabeled nodes correspond to basic blocks con-
tained immediately in a loop. The two numbers in the nodes correspond to
the _nr and _to values.

59

1 class LoopInfo {
2 public:
3 bool containsStrict(const LoopInfo& other) const {
4 return _nr == other._nr;
5 }
6 bool contains(const LoopInfo& other) const {
7 return _nr <= other._nr && other._nr <= _to;
8 }
9 private:

10 unsigned _nr;
11 unsigned _to;
12 basicblock *_header;
13 };

Listing 4.9: Loop information associated with every basic block

H1
(1, 5)

H2
(2, 2)

H3
(3, 5)

(1, 5)

(2, 2)
H4

(4, 4)
H5

(5, 5)
(3, 5)

(4, 4) (5, 5)

(1, 5)

(2, 2) (3, 5)

(4, 4) (5, 5)

Figure 4.8: Loop hierarchy represented using tree numbering

60

4.6 Optimization framework

The optimizations implemented in this thesis target CACAOs second-level
compiler and optimization framework which are currently in development.
As this framework is not available at the time of this writing, the optimiza-
tions have been integrated into CACAO using an ad-hoc recompilation
framework.

All code gets compiled with the baseline compiler. Once enough classes
are loaded and thus enough information for optimization is available, re-
compilation of all methods with single-static assignment form, escape anal-
ysis and stack allocation enabled is triggered interactively. Finally, when all
methods were recompiled, gathering of statistics is triggered interactively.

Because all methods get compiled at once, a recompilation order that
is favorable for interprocedural escape analysis can be chosen. This is one
where every callee gets recompiled before the caller. This is determined by
constructing a program call graph. A virtual method call is modelled as
sequential calls to all possible targets of the call. The program call graph is
then traversed in a depth-first traversal. Every time a method is left, it is
queued for recompilation.

Escape analysis and stack allocation require the optimization frame-
work to provide support for deoptimization.

In interprocedural analysis, it is assumed that a virtual call targets only
those implementations of the method that are loaded into the VM. If an
additional implementation gets loaded, the optimized code relying on that
assumption must be invalidated and recompiled.

An invalidated method might already have allocated objects on the
stack, which as a result of the invalidation suddenly become escaping and
thus should have never been allocated in the stack frame. In such a situ-
ation, the deoptimization framework must be able to move the objects in
question to the heap and rewrite all references pointing to it. Fortunately,
such references reside at well known locations only, namely in registers and
in the stack frame downwards the call chain.

The current ad-hoc implementation does not support these requirements
and assumes, that once recompilation with stack allocation gets triggered,
no further classes will be loaded, and thus no methods invalidated.

In a realistic optimization framework, methods won’t get recompiled
in an order favorable for escape analysis and the quality of interprocedu-
ral analysis will thus significantly degrade, because of missing information
in intraprocedural analysis. Further research is necessary here to support
interprocedural analysis well.

61

Chapter 5

Evaluation

To evaluate the implemented escape analysis algorithm and the related
stack allocation optimization, the SPECjvm98 and dacapo benchmark suites
were used.

All benchmarks were executed on a Lenovo Thinkpad X60s system equipped
with an Intel Core Duo L2400 CPU running at 1.66GHz, 512 MB of RAM
and a Debian GNU/Linux operating system with a kernel version 2.6.24-
1-686, a libc6 version 2.7-5 and a gcc version version 4.1.3 20070718 (prere-
lease) (Debian 4.1.2-14).

The CACAO version used for the benchmarks is a development version
that will be submitted with slight changes into the mercurial repository,
in the branch pm-escape targeting the i386 architecture. The Java run-time
library is a GNU Classpath development snapshot1 from CVS updated on
2008-02-29 12:06 CET.

The benchmarks are always run several times, at least 3 times. The
first run is performed without optimization, in order for enough classes
to be loaded. Then, in the second run, it is assumed that all classes the
benchmark will ever use are loaded and recompilation with escape analysis
and stack allocation is triggered. The third run executes already optimized
code and can be used to collect results.

5.1 Stack allocated objects

In the first run of benchmarks, the number of stack allocated objects is con-
sidered. This evaluates in the first place the quality of the escape analysis.
Table 5.1, table 5.2, figure 5.1 and figure 5.2 show the number of objects
that escape analysis identified as not escaping their creating method. Static
numbers refer to the number of method-local allocation sites, while dy-

1At the time of development the CACAO development branch did not work with any
classpath release

62

Static Dynamic
Benchmark Stack Heap Ratio Stack Heap Ratio
_200_check 172 325 34.61 % 141 1784 7.32 %
_201_compress 52 375 12.18 % 165 1763 8.56 %
_202_jess 80 651 10.94 % 1412924 3910570 26.54 %
_205_raytrace 65 472 12.10 % 2943812 2161302 57.66 %
_209_db 71 399 15.11 % 2907508 163267 94.68 %
_213_javac 121 955 11.25 % 353919 3608786 8.93 %
_222_mpegaudio 51 470 9.79 % 45 3329 1.33 %
_227_mtrt 65 471 12.13 % 2956974 2358143 55.63 %
_228_jack 144 550 20.75 % 4410417 1964647 69.18 %

Table 5.1: Number of stack allocated objects (SPECjvm98)

Static Dynamic
Benchmark Stack Heap Ratio Stack Heap Ratio
antlr 854 2080 29.11 % 220661 1265972 14.84 %
bloat 142 2571 5.23 % 303141 19931783 1.50 %
fop 226 1845 10.91 % 160563 711345 18.42 %
hsqldb 132 1394 8.65 % 509 231406 0.22 %
jython 195 3801 4.88 % 80823 20337599 0.40 %
luindex 121 1421 7.85 % 114201 9213760 1.22 %
lusearch 217 997 17.87 % 703365 10550607 6.25 %
pmd 197 1709 10.34 % 3449114 25608569 11.87 %
xalan 163 2150 7.05 % 69621 2757033 2.46 %

Table 5.2: Number of stack allocated objects (Dacapo)

namic numbers refer to the number of method-local objects allocated at
run-time.

5.2 Stack allocated classes

In the next set of benchmark runs, the distribution of the dynamic number
of stack allocated objects among Java classes is considered. In tables 5.3
and 5.4, the 5 most frequent classes of stack objects for every benchmark
are shown.

63

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

_200_check

_201_com
press

_202_jess

_205_raytrace

_209_db

_213_javac

_222_m
pegaudio

_227_m
trt

_228_jack

R
at

io

Heap
Stack

(a) Static

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

_200_check

_201_com
press

_202_jess

_205_raytrace

_209_db

_213_javac

_222_m
pegaudio

_227_m
trt

_228_jack

R
at

io

Heap
Stack

(b) Dynamic

Figure 5.1: Number of stack allocated objects (SPECjvm98)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

antlr
bloat

fop
hsqldb

jython

luindex

lusearch

pm
d

xalan

R
at

io

Heap
Stack

(a) Static

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

antlr
bloat

fop
hsqldb

jython

luindex

lusearch

pm
d

xalan

R
at

io

Heap
Stack

(b) Dynamic

Figure 5.2: Number of stack allocated objects (Dacapo)

64

Class Instances Percent
_200_check

java/lang/StringBuffer 82 57.75 %
java/lang/String 45 31.69 %
java/lang/Double 2 1.41 %
spec/benchmarks/_200_check/superClass 2 1.41 %
java/lang/Integer 1 0.70 %
others 9 6.34 %

_201_compress
java/lang/String 59 35.54 %
java/lang/StringBuffer 53 31.93 %
java/io/File 26 15.66 %
spec/io/File 26 15.66 %
java/util/Vector$1 1 0.60 %
others 0 0.00 %

_202_jess
java/lang/Integer 1409151 99.73 %
java/lang/StringBuffer 3642 0.26 %
java/lang/String 111 0.01 %
spec/benchmarks/_202_jess/jess/Deftemplate 9 0.00 %
java/io/File 2 0.00 %
others 9 0.00 %

_205_raytrace
spec/benchmarks/_205_raytrace/Vector 2739890 93.07 %
spec/benchmarks/_205_raytrace/Color 102417 3.48 %
spec/benchmarks/_205_raytrace/IntersectPt 62417 2.12 %
spec/benchmarks/_205_raytrace/Ray 25474 0.87 %
java/lang/StringBuilder 12810 0.44 %
others 804 0.03 %

_209_db
java/util/Vector$1 2904257 99.89 %
java/lang/StringBuilder 2855 0.10 %
java/lang/String 255 0.01 %
spec/benchmarks/_209_db/Entry 80 0.00 %
java/lang/StringBuffer 52 0.00 %
others 9 0.00 %

_213_javac
java/lang/StringBuffer 229436 64.83 %
spec/benchmarks/_213_javac/Context 48592 13.73 %
java/util/Vector$1 46593 13.16 %
java/lang/StringBuilder 10832 3.06 %
spec/benchmarks/_213_javac/Environment 8868 2.51 %
others 9598 2.71 %

_222_mpegaudio
java/lang/StringBuffer 28 60.87 %
java/lang/String 14 30.43 %
spec/io/File 1 2.17 %
java/io/File 1 2.17 %
java/util/Vector$1 1 2.17 %
others 0 0.00 %

65

Class Instances Percent
_227_mtrt

spec/benchmarks/_205_raytrace/Vector 2739890 92.65 %
spec/benchmarks/_205_raytrace/Color 102417 3.46 %
spec/benchmarks/_205_raytrace/IntersectPt 62417 2.11 %
java/lang/StringBuilder 25620 0.87 %
spec/benchmarks/_205_raytrace/Ray 25475 0.86 %
others 1338 0.05 %

_228_jack
java/lang/String 1409614 31.96 %
java/util/Hashtable$EntryEnumerator 1321869 29.97 %
java/util/Hashtable$KeyEnumerator 1321869 29.97 %
java/lang/StringBuffer 347236 7.87 %
java/util/Vector$1 6104 0.14 %
others 3725 0.08 %

Table 5.3: Distribution of classes among stack objects (dynamic)

66

Class Instances Percent
antlr

java/lang/StringBuffer 216645 98.18 %
java/io/BufferedReader 1596 0.72 %
java/io/File 1150 0.52 %
java/lang/String 409 0.19 %
java/util/Hashtable$EntryEnumerator 252 0.11 %
others 609 0.28 %

bloat
EDU/purdue/cs/bloat/trans/NodeComparator$1 260112 85.81 %
EDU/purdue/cs/bloat/ssa/SSAGraph$6 14931 4.93 %
EDU/purdue/cs/bloat/trans/SSAPRE$13 9408 3.10 %
EDU/purdue/cs/bloat/trans/NodeComparator$2 6247 2.06 %
EDU/purdue/cs/bloat/diva/InductionVarAnalyzer$2 5046 1.66 %
others 7397 2.44 %

fop
java/lang/StringBuffer 136734 85.16 %
java/util/StringTokenizer 13143 8.19 %
java/lang/Double 9976 6.21 %
java/util/ArrayList 419 0.26 %
java/lang/Character 256 0.16 %
others 35 0.02 %

hsqldb
java/lang/StringBuffer 205 40.20 %
org/hsqldb/GroupedResult 200 39.22 %
java/util/Hashtable$EntryEnumerator 41 8.04 %
java/util/Hashtable$KeyEnumerator 41 8.04 %
java/lang/String 18 3.53 %
others 4 0.78 %

jython
org/python/core/ArgParser 55322 68.45 %
java/util/ArrayList 22504 27.84 %
org/python/core/ReflectedCallData 1974 2.44 %
java/io/DataOutputStream 306 0.38 %
java/lang/StringBuffer 227 0.28 %
others 490 0.61 %

luindex
java/util/ArrayList 33318 29.17 %
gnu/java/util/regex/RE$CharUnit 33318 29.17 %
java/lang/StringBuffer 27062 23.70 %
java/io/File 4995 4.37 %
java/util/Hashtable$EntryEnumerator 2606 2.28 %
others 12902 11.30 %

lusearch
java/lang/StringBuffer 428089 60.86 %
java/util/Vector 262144 37.27 %
java/lang/StringBuilder 12663 1.80 %
java/io/File 424 0.06 %
org/apache/lucene/index/IndexReader$1 32 0.00 %
others 75 0.01 %

67

Benchmark With EA Without EA Speedup
_200_check 0.05 s 0.03 s -67.86 %
_201_compress 8.51 s 8.50 s -0.19 %
_202_jess 46.01 s 55.81 s 17.56 %
_205_raytrace 20.32 s 34.32 s 40.80 %
_209_db 28.52 s 42.71 s 33.23 %
_213_javac 50.91 s 53.56 s 4.94 %
_222_mpegaudio 13.02 s 13.12 s 0.75 %
_227_mtrt 20.82 s 35.23 s 40.91 %
_228_jack 43.69 s 64.06 s 31.80 %

Table 5.5: Execution times with and without escape analysis (SPECjvm98)

Class Instances Percent
pmd

org/jaxen/expr/IdentitySet$IdentityWrapper 3386708 98.19 %
net/sourceforge/pmd/symboltable/ImageFinderFunction 40464 1.17 %
java/lang/StringBuffer 19714 0.57 %
java/lang/StringBuilder 958 0.03 %
java/util/ArrayList 400 0.01 %
others 870 0.03 %

xalan
java/util/StringTokenizer 27800 39.93 %
org/apache/xalan/templates/ElemNumber$NumberFormatStringTokenizer 16100 23.12 %
java/lang/StringBuffer 3605 5.18 %
java/util/Vector$1 3400 4.88 %
org/apache/xerces/parsers/SecuritySupport$4 3400 4.88 %
others 15318 22.00 %

Table 5.4: Distribution of classes among stack objects (dynamic)

5.3 Execution times

In the last set of benchmark runs, the impact of escape analysis and stack
allocation on the run-times of the benchmarks is measured. For this pur-
pose, the execution scheme was extended to run every benchmark 5 times
without escape analysis and 5 times with escape analysis. All runs were
performed after recompilation with the ad-hoc optimization framework.
The run with the shortest execution time was taken into account. The re-
sults are listed in table 5.5, table 5.6, figure 5.3 and figure 5.4.

5.4 Comparison with dynamic algorithm

The dynamic nubers of stack allocated objects are compared with numbers
obtained with the escape behaviour algorithm from chapter 3. The purpose

68

 0

 10

 20

 30

 40

 50

 60

 70

_200_check

_201_com
press

_202_jess

_205_raytrace

_209_db

_213_javac

_222_m
pegaudio

_227_m
trt

_228_jack

E
x

ec
u

ti
o

n
 t

im
e

in
 s

ec
o

n
d

s

With EA
Without EA

Figure 5.3: Execution times with and without escape analysis (SPECjvm98)

Benchmark With EA Without EA Speedup
antlr 34.16 s 37.52 s 8.97 %
bloat 219.34 s 216.95 s -1.10 %
fop 11.95 s 12.64 s 5.50 %
hsqldb 2.77 s 2.90 s 4.62 %
jython 274.30 s 274.54 s 0.09 %
luindex 96.78 s 96.80 s 0.02 %
lusearch 247.07 s 261.70 s 5.59 %
pmd 178.63 s 197.12 s 9.38 %
xalan 73.19 s 73.24 s 0.07 %

Table 5.6: Execution times with and without escape analysis (Dacapo)

69

 0

 50

 100

 150

 200

 250

 300

antlr
bloat

fop
hsqldb

jython

luindex

lusearch

pm
d

xalan

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

With EA
Without EA

Figure 5.4: Execution times with and without escape analysis (Dacapo)

Benchmark Inlining 1 Inlining 2 Stack allocated
_200_check 28.97 % 44.27 % 7.32 %
_201_compress 30.87 % 44.84 % 8.56 %
_202_jess 64.27 % 70.09 % 26.54 %
_205_raytrace 96.46 % 96.94 % 57.66 %
_209_db 94.73 % 99.32 % 94.68 %
_213_javac 40.13 % 41.45 % 8.93 %
_222_mpegaudio 16.87 % 24.44 % 1.33 %
_227_mtrt 93.30 % 94.18 % 55.63 %
_228_jack 64.88 % 90.59 % 69.18 %

Table 5.7: Number of stack allocated objects compared to number of objects
eligible for stack allocation (SpecJVM98)

of this comparison is to approximate, what the ratio of the number of stack-
allocated objects is compared to the number of objects eligible for stack
allocation. This comparison also expresses the loss of stack allocated objects
caused by the conservative nature of static escape analysis.

The algorithm was adapted to gather statistics about objects only. Ar-
rays are not counted, as in this implementation they are never allocated
on the stack. Objects considered eligible for stack allocation are passed at
most 1 or 2 frames upwards the stack. This very rougly simulates effects of
inlining, where objects passed upwards the stack from inlined methods are
captured by the caller.

The comparison can be seen in table 5.4 and table 5.4 for the SPECjvm98
and Dacapo benchmark suites respectively.

70

Benchmark Inlining 1 Inlining 2 Stack allocated
antlr 60.53 % 78.58 % 14.84 %
bloat 61.05 % 78.05 % 1.50 %
fop 59.77 % 79.96 % 18.42 %
hsqldb 21.48 % 31.80 % 0.22 %
jython 7.59 % 60.09 % 0.40 %
luindex 16.23 % 18.33 % 1.22 %
lusearch 36.34 % 66.74 % 6.25 %
pmd 56.21 % 74.79 % 11.87 %
xalan 32.21 % 63.56 % 2.46 %

Table 5.8: Number of stack allocated objects compared to number of objects
eligible for stack allocation (Dacapo)

5.5 Discussion

The static count of stack allocations is not a metric of much interest. In the
empiric evaluation, it was determined that there are much StringBuilder
objects constructed at code paths, where error messages are composed. In
practice these code paths get executed rather infrequently.

The expected dynamic number of stack allocated objects was around
10% in the context of chapter 3 and in the context of related work. In
some SPECjvm98 benchmarks (jess, raytrayce, db, mrtr) the number
of stack allocated objects is extremely high, coupled to a single class and
leads to an extreme speedup. These extreme allocation sites were already
observed in [16]: in mrtr, temporary Vector objects are allocated in a
loop, in db, 2 temporary Enumeration objects are used to compare a pair
of database records.

Much benchmarks profit of stack allocation of StringBuffer and StringBuilder
objects. These objects are used to implement Java string concatenation.
They almost never escape the creating method and can thus be stack al-
located.

Another family of popular stack objects consist of Enumeration and
Iterator objects used in conjunction with container classes. They usually
get allocated when iterating over a container class and never escape the
creating method. These objects significantly contribute to the number of
stack objects in the benchmarks db (almost all) and jack.

Finally, extremely short-lived objects are chosen for stack allocation:
this is especially visible in the dacapo pmd and bloat benchmarks.

In the SPECjvm98 benchmarks that allocate a huge ratio of stack ob-
jects, the execution time gains are significant. This is not only due to the
benefits of stack allocation, but because the current memory management
implementation in CACAO performs rather poorly: CACAO uses a conser-

71

vative garbage collector, the new instruction is not inlined but rather imple-
mented in a C function which in turn is wrapped in a builtin stub. Another
explanation for the extreme speedup is the simple nature of the SPECjvm98
benchmarks. In the more complex dacapo benchmarks, the speedups are
more moderate, even with significant numbers of stack-allocated objects.

The more complex dacapo benchmarks show the limits of the current
whole-program interprocedural analysis. The greater the program call graph
becomes, the more difficult it becomes to find a favorable traversal, that
visits every callee before its caller. Investigation reveals, that in the da-
capo benchmarks with very low numbers of stack allocated objects, even
StringBuffers get heap allocated, exactly because of that problem.

72

Chapter 6

Related work

6.1 Static single-assignment form

The mainstream algorithm for computing SSA form was proposed by Cytron
in [6]. It places the minimal number of φ functions exactly into basic blocks
requiring them. It is based on the observation that SSA form is related to
dominance: in an SSA form a definition always dominates its use. If at a
program point a use of a variable is dominated by a single definition, the
use can be linked to that definition. A point, where a definition stops dom-
inating, may be reached by a different definition and thus exactly at that
point a φ function is needed. This location is thus called dominance frontier.

The algorithm starts by computing a CFG and then builds a dominator
tree. The dominator tree links the immediate dominator idom(n) of a CFG
node n to the node n. idom(n) is the single dominator of n that does not
dominate any other dominator of n. The dominator tree is used to deter-
mine for every node n its dominance frontier DF [n]. It is defined as the set
of nodes w such that n dominates a predecessor of w, but does not strictly
dominate w. Next, for every variable a φ functions are placed in a worklist
algorithm. The worklist is initially populated by all nodes containing a def-
inition of a. The worklist is iterated, in every step a node n is picked and
all nodes Y in DF [n] get a φ function for a, if they don’t have already one.
As the φ function is itself a definition, Y must be added to the worklist.

Once φ functions are placed, the variables can be renamed. The domi-
nator tree is traversed node by node. In every node n, all instructions are
processed: every use of some variable v is replaced by the most recent def-
inition - the closest definition vi that is above n in the dominator tree. If a
definition of v is encountered it is renamed to vj with j being a newly allo-
cated variable index. To keep track of the most recent definition of a vari-
able v a separate stack is maintained during the traversal: when visiting a
node, every definition vj of v is pushed onto the stack. After the node has
been processed and the algorithm has recursed into children of the domina-

73

tor tree, the definitions are popped. The top of stack thus always contains
the most recent definition of v. φ functions are treated separately: once
processing of a node n is complete, the argument of every φ function corre-
sponding to n in every successor following the CFG is adjusted to the most
recent definition found in n: the one on the top of the stack.

Aycock and Horspool propose another algorithm [3] which places the
minimal set of φ functions for reducible control flow graphs and a correct
set of φ functions for non-reducible ones. It operates in two phases. In a RC
phase every variable is split at every basic block boundary and a φ function
for every variable is placed at every basic block. In a minimization phase,
redundant φ functions are eliminated. They can be recognized by having
one of the following forms:

1. vi = φ(vi, vi, . . . , vi)

2. vi = φ(vx1 , vx2 , . . . , vxk
) where x1, . . . , xk ∈ {i, j}

The first form can be safely removed because it corresponds to the as-
signment vi ← vi on all incoming edges which does not change program
state in any way. The second form corresponds to the assignment vi ← vi

with no effect on some incoming edges and to the assignment vi ← vj on
other incoming edges. vi can thus be safely replaced by vj .

In order for the algorithm to perform well, some improvements are pro-
posed. In the RC phase, when placing φ functions in a basic block, all its
predecessor blocks must have already been processed. Information flow-
ing into a block through back edges requires back patching. If however the
variables are numbered in a way, that the last definition of v in a block Bi

is numbered vi, all definitions flowing into a block are known regardless
of the order the blocks are traversed. In the minimization phase, literally
replacing variable instances would be inefficient. The replacement relation
is encoded in a mapping table through which every access to a variable in-
stance is filtered through. A third improvement proposes to omit creation
of φ functions at blocks with no predecessors, as they don’t constitute join
points.

The authors claim that their algorithm is significantly simpler than Cytron’s
algorithm. They have implemented it in a Modula compiler as a drop-in
replacement. The algorithm was competitive with Cytron’s one. They fur-
ther argue, that entering SSA form takes such insignificant fraction of the
total compile time, that a simpler algorithm is justified even if performing
slightly worse.

Brandis and Mössenböck propose an algorithm [4] for generating SSA
for structured languages. In contrast to the previous algorithms, their algo-
rithm does not transform an IR into SSA form, but it generates an IR which
is already in SSA form ready for optimization. The benefits are obvious: an
intermediate step, time and memory are saved.

74

A structured language does not consist of arbitrary control flow, but the
control flow is dictated by the patterns given by the control statements (if-
then-else, repeat-while, for) of the compiled language. For every control
statement the join node for that statement is known in advance. As control
statements can be nested, they define the notion of the current join node - the
one in the innermost statement. An assignment statement leading to a new
definition for a variable causes a φ function to be created for that variable
in the current join node.

Sreedhar and Gao [25] propose a linear time algorithm for placing φ
functions which is based on a novel program representation called DJ-
Graph. It consists of all nodes of the CFG and two classes of edges: D edges
are all edges from the dominator tree, while J edges are edges from the orig-
inal CFG which lead to potential join nodes where data flow information is
merged. Thanks to the properties of the DJ-Graph, the iterated dominance
frontier of a set of sparse nodes - nodes containing definitions of some vari-
able - can be computed in time linear in the size of the input CFG, and this
can in turn be used to place φ functions.

In [2], Appel shows a direct correspondence between SSA and a func-
tional language. He shows, that a program in SSA form can be transformed
into a set of mutually recursive functions. He then transforms the program
in SSA form into a simpler form, using the concept of nested scopes found
in languages like Scheme, ML and Haskell. This form corresponds directly
to the SSA form with the minimal number of φ functions. He then argues,
that the benefit of functional programming consists of equational reasoning,
which a compiler can make good use of.

SSA can be found in current state of the art compilers.
The GNU Compiler Collection (GCC) as of version 4 makes use of SSA.

The frontends generate GENERIC code, which is translated into the SSA
based GIMPLE representation and processed by language independent op-
timizations. The back-end translates the GIMPLE representation into a low
level RTL representation and finally into assembly code.

The Low level virtual machine (LLVM) is an infrastructure for building
compilers and virtual machines. It features its own language-independent
instruction set and its own type system. The instructions are in SSA form:
every typed register can be assigned only once. SSA form is left only late in
the compilation process.

The Java HotSpotTMclient compiler for Java 6 [17] includes a Just-In-Time
compiler to compile Java bytecode into native code. The compilation by
translating bytecode into an high-level intermediate representation (HIR)
via abstract interpretation. In the HIR, every value is represented by the
instruction generating that value. A use of the value is represented by a
pointer to the corresponding HIR instruction. Such a representation elim-
inates the need for an additional level of indirection via variable numbers
and makes elimination of dead instructions especially easy: a dead instruc-

75

tion is transformed into a link to the instruction replacing it. The HIR
is optimized, for example using constant folding, local value numbering,
method inclining, null check elimination, conditional expression elimina-
tion. Next, the HIR is transformed into a low-level intermediate representa-
tion which is not in SSA form anymore. LIR operations use explicit virtual
registers as operands in contrast to references to prior instruction. The vir-
tual registers in the LIR are allocated using a linear scan register allocator
and machine code is generated.

6.2 Escape analysis

[14] categories escape analysis algorithm into two groups: a Steensgaard
analysis merges both sides of an assignment, computing the same solu-
tion for each side. An Anderson analysis in contrast passes a value from
the right-hand side of an assignment to the left-hand side offering greater
precision at the cost of a higher computational effort.

The algorithms can be further categorized by their sensitiveness. A flow-
sensitive analysis in contrast to a flow-insensitive analysis takes into account
the order of statements in a program. A context-sensitive analysis takes into
account the calling context when analyzing a callee site.

A prominent algorithm for escape analysis in Java, which is imple-
mented in Java HotSpotTMserver compiler for Java is the one proposed by Choi
et. al in [7]. With the algorithm a novel program representation, the connec-
tion graph (CG) is introduced.

The algorithm is context-sensitive and exists in both a flow-sensitive
and a flow-insensitive variant. In an intraprocedural analysis the CG for a
method is computed. The connection graph is used to calculate the escape
state of objects created in the method. It is then collapsed into summary
information that can be used in interprocedural analysis at call sites to that
method.

The nodes of the CG represent objects and reference variables (locals,
formals, class fields, instance fields). Special phantom nodes are used to rep-
resent objects that flow into the method from outside, like arguments, and
are used as hooks for interprocedural analysis.

Nodes are annotated with an escape state which is one of GlobalEscape
(globally escaping), Local Escape (not escaping the method) and ArgEscape
(escaping the method via arguments, but not escaping the thread). The
initial escape state for nodes is LocalEscape. For reference nodes representing
static variables, it is initialized to GlobalEscape and for nodes representing
arguments to ArgEscape.

To connect nodes of the CG, several classes of edges are used:

A points-to edge p
P−→ O connects a reference variable to an object and

76

indicates that p might point to O.

A deferred edge p
D−→ q connects two reference variables and corresponds

to a copy of a reference variable. It indicates that p might point to any
object that q points to. It defers computation and thus graph updates.

A deferred edge p D−→ q
P−→ O can always be eliminated by bypassing q

and creating a direct points-to edge p P−→ O.

A field edge O
F−→ f connects an object node with its instance field node f .

The CG can be computed separately for control flow paths. A CG at a
join point results from the merge of the incoming CGs, which is simply de-
fined as the union of the two CGs. The following statements are evaluated
to update the CG:

S: p = new T(): An object node for the statement S representing the
newly created object and a reference node for p are created and con-

nected using a points-to edge p P−→ S.

S: p = q: p and q are connected using a deferred edge p D−→ q.

S: p.f = q: The set U = PointsTo(p) of all object nodes O that p might

point to is determined. It is found by following paths p +P−−→ O con-
sisting of deferred edges and one points-to edge at the end. For every

node O ∈ U a field node f , a field edge O F−→ f and a deferred edge
f

F−→ q are created.

S: p = q.f: Again, U = PointsTo(P) is determined and all field nodes

f such that there is a path O +F−−→ f for O ∈ U are found. For every f

a deferred edge p D−→ f is added to the graph.

In the flow-sensitive variant whenever a statement of the form p = q
is encountered, p is bypassed in the CG prior to creating the deferred edge

p
D−→ q: p’s incoming deferred edges are redirected to its successor nodes.

At the method exit point, escape analysis is reduced to reachability anal-
ysis over the CG. Nodes reachable only from NoEscape nodes constitute the
LocalGraph and are eligible for stack allocation. All nodes reachable from
a GlobalEscape node are marked GlobalEscape and collapsed to a single bot-
tom node. This is combined with the subgraph of nodes reachable from
ArgEscape nodes to form the NonLocalGraph which will serve as summary
information for the method in interprocedural analysis.

In interprocedural analysis, at a call site the callees summary informa-
tion is mapped into the caller. The callees summary information contains

77

phantom nodes for the formal arguments and the return value. Argument
passing is modeled as consisting of assignments of the actual arguments to
the formal arguments of the callee and vice versa for the return value. The
callees summary information is then mapped into the callers CG.

Gay and Steensgaard have implemented a whole program interproce-
dural escape analysis for Java programs [9] in an SSA based IR. An object is
considered to escape if it is returned from a method, thrown as exception or
assigned to a class or instance field. These rules are encoded as constraints
on a type system, which can be solved linear time and space linear in the
number of constraints for example by Rapid Type Analysis. They define a
fresh method as one that returns a newly allocated object and a fresh variable
as one that holds a directly (new) or indirectly (fresh method) newly created
object. For each fresh variable it must be determined whether that assigned
value may escape.

For every local variable v, two boolean properties are calculated: escaped(v)
determines whether v holds potentially escaping references, returned(v)
determines whether v hold references that potentially escape from the cre-
ating method by being returned. The property vfresh(v) of a variable is
a Java class C if v has assigned a fresh variable and references an object of
exactly the type C, it is > if the variable is definitely not fresh and ⊥ if
the freshness is unknown. The property mfresh(m) is a Java class C if the
method is fresh and returns an object of exactly the type C, otherwise it is
> or ⊥.

Java statements may impose constraints on these properties, which usu-
ally have the form of an implication. For example:

• v = new T () imposes that T ≤ vfresh(v)

• throw v imposes true⇒ escaped(v)

• v0 = φ(v1 . . . vn) imposes T ≤ vfresh(v0) and for every i > 0 escaped(v0)⇒
escaped(vi), returned(v0)⇒ returned(vi)

At a method invocation site all possible target methods are considered
and constraints are added. If a parameter can be returned from the callee,
it is handled as an assignment of the parameter to the left-hand side of the
variable. The value escaped property of actual arguments is adjusted to the
value of the respective formal arguments of the callee.

6.3 Memory management

In [8] a memory allocator supporting thread local heaps is developed. The
aim is to partition the global heap into threads. A thread can then allo-
cate in its own partition without synchronization and its partition can be

78

collected independently of other threads. For this purpose, objects need to
be categorized into thread-local and global objects, which is traditionally
achieved by static escape analysis.

The authors preferred dynamically monitoring heap objects to a static
analysis for determining this categorization. They explain several draw-
backs of escape analysis:

1. Conservative nature. An object es treating as globally escaping if it
escapes on any path.

2. Objects are considered only by their allocation site. If an allocation
sites produces mostly local objects, they are all identified as global.

3. If an object becomes global after a long lifetime, it is considered being
global from the point of its creation.

To monitor objects, a global bit is associated with every object. Most
objects start as local and thus their global bit is cleared initially. Some Java
specific objects are global by nature, for example classes and threads. They
are created with the global bit set.

Every time a new value is written into a field of reference type, a write
barrier causes the global bit of the two objects participating on the write to
be examined. If the write causes a local object to become reachable from a
global one, the global bit is set in the local object and all its descendants us-
ing a depth-first search. For this procedure, no synchronization is required,
as all the objects having the global bit cleared are reachable only from the
current thread.

In [28], Tomsich evaluated scalability of Java memory management on
high-performance multiprocessor systems. He gives a motivating exam-
ple of a typical transaction processing system which spawns a separate
thread for every transaction to be processed. In every transaction, tem-
porary short-lived objects are allocated frequently to hold transaction state.
In an example real-life application running on a very large multiproces-
sor machine he observed a degradation in response time starting with 50
clients and a sudden jump in response time for 70 and more clients. An
investigation showed, that one third of execution time was spent trying to
acquire the shared heap lock during object allocation.

To solve this scalability problem, he proposes two approaches:
First, to reserve a fragment of the heap for exclusive allocation for every

thread, a thread-local allocation buffer, where the thread can allocate without
the need for the global heap lock. This simple idea however causes ad-
ditional fragmentation of the heap and may cause the VM to run out of
memory, even if there is enough space in the areas exclusively reserved for
thread local allocation.

79

Second, in an append-only heap implementation, allocation is imple-
mented as an atomic read-increment-store sequence of the top-of-heap pointer.
He examines the implementation of this sequence on the MIPS architecture
in details and determines, that under heavy load a phenomenon he calls
cache line contention can be observed: several processors acquire concur-
rently the cache-line containing the top of heap in a shared state during the
read and then all but one loose it once a write to the cache line is performed,
generating a lot of cache invalidations. He then fine-tunes the operation to
force the cache logic to mark the cache line in a dirty-exclusive state prior to
any atomic operation and let the cache coherency logic resolve the conflict,
leading to much better scalability.

80

Chapter 7

Summary

In this thesis, the potential for optimizations using escape analysis has been
explored. The subsystems targeted by escape analysis are memory man-
agement and synchronization. Once objects, that don’t escape their creat-
ing thread are identified, they can be allocated in a thread specific heap,
which does not require synchronization for allocation and which does not
require a global stop-the-world for collection. If objects are bounded by the
lifetime of a method, they can be allocated in a region associated with the
given method or even in its stack frame, with very low allocation costs and
zero collection costs. If objects stay method local they can be eliminated
and their fields can be replaced with scalars.

Escape behavior in complex real-life Java programs has been studied
and it was determined, that in fact much objects stay thread-local. Once
objects are allocated, they are not passed much around stack frames: most
thread-local objects are not returned farther than 3 stack frames upwards
the call chain, and most thread-local objects are not passed deeper than 4
stack frames down the call chain. Only a minority of 10% - 20% of thread
local objects is not passed at all upwards the call chain. This implies the
best possible performance of an escape analysis algorithm which does not
optimize objects returned from a method and justifies the benefit of inlining
for escape analysis. It was further determined, that the size of regions asso-
ciated with activation records tends to be rather small and has a bounded
size, what favors stack allocation and a memory management scheme with
stacked fixed sized regions.

Static-single assignment form has been added to CACAO for the pur-
pose of implementing a flow-insensitive Steensgaard-style escape analysis.
The analysis produces escape information for object allocation sites and
summary escape information for method arguments and the return value
which is reusable in interprocedural analysis in different call contexts. An
experimental optimization framework to support escape analysis has been
implemented. Escape information is used to implement allocation of ob-

81

jects in stack frames. As the size of a stack frame is statically determined,
objects allocated in loops can be optimized only if the space they occupy
can be reused in every loop iteration. To check this condition a loop analy-
sis algorithm has been implemented.

The analysis and optimization are finally evaluated using the SPECjvm98
benchmark suite. The analysis identifies around 10% of method local ob-
jects in some benchmarks, and numbers as high as > 90% in some special
benchmarks, which are chosen for stack allocation. The objects in question
are mainly of the classes String, StringBuilder, iterator classes and
extremely short-lived domain specific objects. A high speed-up is gained
in the benchmarks that allocate an extremely high number of stack objects,
which can be explained by the rather suboptimal implementation of the
new primitive in the current CACAO codebase. An evaluation using the
more complex dacapo benchmark suite leads to more realistic numbers:
6% to 18% of method-local objects coupled with speedups of of 5% to 9%
in some benchmarks.

82

Bibliography

[1] APPEL, A. W. Modern Compiler Implementation in C: Basic Techniques.
Cambridge University Press, New York, NY, USA, 1997.

[2] APPEL, A. W. SSA is functional programming. SIGPLAN Not. 33, 4
(1998), 17–20.

[3] AYCOCK, J., AND HORSPOOL, R. N. Simple generation of static single-
assignment form. In CC ’00: Proceedings of the 9th International Con-
ference on Compiler Construction (London, UK, 2000), Springer-Verlag,
pp. 110–124.

[4] BRANDIS, M. M., AND MÖSSENBÖCK, H. Single-pass generation of
static single-assignment form for structured languages. ACM Trans.
Program. Lang. Syst. 16, 6 (1994), 1684–1698.

[5] CHOI, J.-D., GROVE, D., HIND, M., AND SARKAR, V. Efficient and
precise modeling of exceptions for the analysis of Java programs. SIG-
SOFT Softw. Eng. Notes 24, 5 (1999), 21–31.

[6] CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N., AND

ZADECK, F. K. Efficiently computing static single assignment form
and the control dependence graph. ACM Trans. Program. Lang. Syst.
13, 4 (1991), 451–490.

[7] DEOK CHOI, J., GUPTA, M., SERRANO, M., SREEDHAR, V. C., AND

MIDKIFF, S. Escape analysis for Java. In In Proceedings of the 14th
Annual Conference on Object-Oriented Programming Systems, Languages
and Applications (1999), ACM Press, pp. 1–19.

[8] DOMANI, T., GOLDSHTEIN, G., KOLODNER, E. K., LEWIS, E., PE-
TRANK, E., AND SHEINWALD, D. Thread-local heaps for Java. SIG-
PLAN Not. 38, 2 supplement (2003), 76–87.

[9] GAY, D., AND STEENSGAARD, B. Fast escape analysis and stack al-
location for object-based programs. In CC ’00: Proceedings of the 9th
International Conference on Compiler Construction (London, UK, 2000),
Springer-Verlag, pp. 82–93.

83

[10] GOSLING, J., AND BOLLELLA, G. The Real-Time Specification for Java.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2000.

[11] GOSLING, J., JOY, B., STEELE, G., AND BRACHA, G. JavaTM Language
Specification, The (3rd Edition) (Java (Addison-Wesley)). Addison-Wesley
Professional, 2005.

[12] HANS BOEHM. A garbage collector for C and C++, 2008. [Online;
accessed 2008-10-23].

[13] HOARE, C. A. R. Monitors: an operating system structuring concept.
Commun. ACM 17, 10 (1974), 549–557.

[14] JONES, R., AND KING, A. C. A fast analysis for thread-local garbage
collection with dynamic class loading. In SCAM ’05: Proceedings of the
Fifth IEEE International Workshop on Source Code Analysis and Manipu-
lation (Washington, DC, USA, 2005), IEEE Computer Society, pp. 129–
138.

[15] KERNIGHAN, B. W., RITCHIE, D., AND RITCHIE, D. M. C Program-
ming Language (2nd Edition). Prentice Hall PTR, March 1988.

[16] KOTZMANN, T. Escape Analysis in the Context of Dynamic Compilation
and Deoptimization. PhD thesis, Johannes Kepler University Linz, 2005.

[17] KOTZMANN, T., WIMMER, C., MÖSSENBÖCK, H., RODRIGUEZ, T.,
RUSSELL, K., AND COX, D. Design of the Java HotSpotTM client com-
piler for Java 6. ACM Trans. Archit. Code Optim. 5, 1 (2008), 1–32.

[18] KRALL, A., AND GRAFL, R. CACAO – a 64 bit JavaVM just-in-time
compiler. In Workshop on Java for Science and Engineering Computation
(Las Vegas, June 1997), G. C. Fox and W. Li, Eds., ACM.

[19] LENGAUER, T., AND TARJAN, R. E. A fast algorithm for finding dom-
inators in a flowgraph. ACM Trans. Program. Lang. Syst. 1, 1 (1979),
121–141.

[20] LEZUO, R. R. Porting the CACAO virtual machine to POWERPC64
and Coldfire. Master’s thesis, Technische Universität Wien, 2007.

[21] LEZUO, R. R., AND MOLNAR, P. Just in time compilers - breaking a
VM. In 24C3 Tagungsband. Volldampf vorraus! (2007), pp. 97–111.

[22] LINDHOLM, T., AND YELLIN, F. The Java Virtual Machine Specification,
Second Edition. Addison-Wesley, 1999.

84

[23] MÖSSENBÖCK, H. Adding static single assignment form and a graph
coloring register allocator to the Java HotSpotTM client compiler. Tech.
rep., Johannes Kepler University Linz, 2000.

[24] ONODERA, T., AND KAWACHIYA, K. A study of locking objects with
bimodal fields. SIGPLAN Not. 34, 10 (1999), 223–237.

[25] SREEDHAR, V. C., AND GAO, G. R. A linear time algorithm for placing
φ-nodes. In POPL ’95: Proceedings of the 22nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (New York, NY, USA,
1995), ACM, pp. 62–73.

[26] STEINER, E. Adaptive inlining via on-stack replacement. Master’s
thesis, Technische Universität Wien, 2007.

[27] STROUSTRUP, B. The C++ Programming Language, third ed. Addison-
Wesley Professional, February 2000.

[28] TOMSICH, P. R. Implementation of Java virtual machines for high-
performance multi-processor systems using cache-coherent non-uniform
memory architectures. PhD thesis, Technische Universität Wien, 2002.

[29] VITEK, J., HORSPOOL, R. N., AND KRALL, A. Efficient type inclusion
tests. In OOPSLA ’97: Proceedings of the 12th ACM SIGPLAN confer-
ence on Object-oriented programming, systems, languages, and applications
(New York, NY, USA, 1997), ACM, pp. 142–157.

85

	Introduction
	The Java programming language
	Java bytecode
	The CACAO virtual machine
	Static single assignment form
	Escape analysis
	Goals
	Overview

	Optimization opportunities
	Memory management
	Costs of garbage collection
	Thread-local allocation
	Stack allocation
	Object elimination
	Synchronization
	Costs of synchronization
	Synchronization elimination

	Escape behavior
	The algorithm
	Number of thread local objects
	Passing objects upwards the call chain
	Passing objects downwards the call chain
	Region properties

	Implementation
	Control flow graph
	Implementation

	Static single assignment form
	IR variables
	Translating into SSA form
	Loop headers
	State array
	CFG traversal
	Merging state arrays
	IR properties
	Leaving SSA form
	Example

	Escape analysis
	Intraprocedural analysis
	Interprocedural analysis
	Implementational notes
	Example

	Stack allocation
	Allocation in loops

	Loop analysis
	Dominator tree
	Loop detection
	Loop hierarchy

	Optimization framework

	Evaluation
	Stack allocated objects
	Stack allocated classes
	Execution times
	Comparison with dynamic algorithm
	Discussion

	Related work
	Static single-assignment form
	Escape analysis
	Memory management

	Summary

