

Dissertation

Application of Semantic Web Material Libraries

in AEC Context

ausgeführt zum Zwecke der Erlangung des akademischen
Grades eines Doktors der technischen Wissenschaften

unter der Leitung von

Univ. Prof. Dipl.-Ing. Dr. techn. Ardeshir Mahdavi

E259/3

Institute für Architekturwissenschaften

Abteilung Bauphysik und Bauökologie

Eingereicht an der technischen Universität Wien

Fakultät für Architektur und Raumplanung

von

Ferial Shayeganfar

Martikelnummer: 0327826

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

rau
Diss

i

Zusammenfassung

Die Architektur-, Bauingenieur- und Konstruktions- Industrie (AEC-Industrie)

umfaßt viele Wissensgebiete, welche auf verschiedene Fachkenntnisse und

Arbeitsbereiche basieren. Informationsaustausch und gemeinsame Nutzung von

Wissen sind die entscheidenden Faktoren, um in solch einer kollaborativen AEC-

Industrie erfolgreich zu sein. Jedoch verursacht das verteilte AEC Wissen

Wissensbrüche innerhalb der AEC Domänen. Denn jede Domäne hat ihre eigenen

Werkzeuge und Anwendungen, was den Datenaustausch zwischen den

Anwendungsgebieten erschwert. Darüber hinaus sollten Normen, Standards und

Richtlinien im Bausektor kontinuierlich während des gesamten Gebäudeentwurfs

und der Gesamtdauer der Konstruktion überprüft und verifiziert werden. D.h. obwohl

alle Modelle eines Gebäudes dasselbe Objekt behandeln, basiert die Kommunikation

zwischen den Modellen über Experten im Gebäudekonstruktionsbereich nur auf

Grund ihres Wissens.

Ein weiteres wichtiges Thema im AEC-Bereich ist die richtige Auswahl von

Bauprodukten und Materialien - eine Fragstellung, welche von mehreren

Standpunkten aus beleuchtet werden soll. Einerseits haben die Eigenschaften von

Bauprodukten einen großen Einfluss auf die Performanz von Gebäuden und den

Komfort ihrer Bewohner, andererseits müssen sie relevante Normen, Richtlinien und

Standards erfüllen. Anders formuliert, der Auswahlprozess für spezielle Produkte

verläuft quer über die Grenzen einzelner Wissensdomänen. Domäne-Expertise wird

daher benötigt, um die Eignung der ausgewählten Produkte festzustellen. Darüber

hinaus müssen die Kriterien und Bedingungen für geschäftliche und wirtschaftliche

Abläufe berücksichtigt werden.

Um eine lückenlose Verbindung der AEC-Werkzeuge mit Normen, Standards und

Richtlinien samt Bauproduktinformationen des AEC-Bereiches zu gewährleisten,

bedarf es eines effizienten und formal basierten Mediums, wie z.B. des Semantischen

Webs und von Ontologien.

ii

Das Semantische Web stellt eine kollaborative Arbeitsumgebung für den

Informationsaustausch zu Verfügung, welche eine Interpretierbarkeit durch

Maschinen ermöglicht. Ontologien, die Domänen-Konzepte und deren Beziehungen

untereinander beschreiben, spielen eine wichtige Rolle bei der Realisierung der

Vision des Semantischen Webs. Sie tragen zur Lösung von Problemen der

Interoperabilität und der Kompatibilität zwischen Software-Anwendungen

verschiedener Domänen bei. Dies bedeutet, dass in einer AEC-Umgebung, welche

auf dem Semantischen Web basiert, das Konstruktionsmodell der beteiligten Partner

miteinander interagieren kann, wo Ontologien hierbei als Kommunikationsbasis

dienen.

Trotz aller potentiellen Vorteile der Semantischen Web-Anwendungen im AEC

Bereich sind nur sehr wenige Forschungsarbeiten und nur eine geringe Anzahl an

Prototypen verfügbar. Die AEC-Gemeinschaft zeigt sich bis jetzt als sehr

zurückhaltend gegenüber der Einführung dieser neuen Technologien. Der bester

Beweis für diese Aussage ist die bislang noch nicht abgeschlossene Übergangsphase

von CAD-Zeichnungen zu intelligenten Gebäude-Modellen. CAD Zeichnungen

werden in vielen Ländern noch immer als der de-facto Standard für den AEC-

Datenaustausch eingesetzt und als solcher auch akzeptiert. Der Übergang von

bestehenden zu intelligenteren Gebäude-Modellen, welche zwischen verschiedenen

Domänen leicht ausgetauscht und bearbeitet werden können, stellt die nächste große

Herausforderung der AEC-Industrie dar.

Im Rahmen dieser Dissertation wird die Rolle des Semantischen Webs in der AEC-

Industrie genauer untersucht und eine solide Basis für eine Arbeitsumgebung, die auf

einem semantischen bzw. ontologischen Ansatz basiert, geschaffen. Die

vorgeschlagene Herangehensweise kann dazu dienen, die zuvor behandelten

Probleme effizient zu beseitigen. Die semantische Anreicherung des Domäne-

Wissens mit semantischen Web-Services ermöglicht eine Verbindung der

verschiedenen AEC-relevanten Wissensbereichen. Als „Proof-of-Concept“ wird ein

Prototyp für den speziellen Fall eines Dachfensters vorgestellt.

iii

ABSTRACT

The Architecture, Engineering and Construction (AEC) industry is composed of

multiple knowledge domains that are formed corresponding to the needed skills and

professions. Sharing and exchanging knowledge is the key factor to success in such a

collaborative environment; however, the distributed nature of AEC information has

lead to knowledge gaps between AEC related domains. Each domain has its own

tools and applications and the data exchange between domain applications is not

straightforward. In the other words, although all the models of a building are talking

about the same object, the inter-model communication is done only by the

knowledge of expert building constructors. Moreover, the building code standards

and regulations should be continuously tested and verified throughout the building

design and construction life cycles.

Another important concern in building construction is the proper selection of

building’s products and materials which is a critical issue and should be seen from

multiple perspectives. On one hand, product attributes will have a great effect on

building performance and comfort of inhabitants, and on the other hand, its

conformance with building codes and regulations should be considered. In other

words, the selection process of a specific product crosses the discrete knowledge

domain borders and the domain expertise is needed to confirm the fitness of selected

product. Moreover, the criteria and conditions of business and economic processes

need to be addressed.

In order to bridge the communication gap between AEC tools, building regulations

and building products, we would need an efficient and formal communication

medium such as Semantic Web and ontologies.

The design principle of the Semantic Web is to provide collaborative working

environment and knowledge exchange in a way that is understandable by machine.

Ontologies which describe the domain concepts and the relationships among them

will play a prominent role in the Semantic Web vision. Ontologies contribute to

solve the problem of interoperability and common understanding between software

applications of different domains. So in a Semantic Web based AEC environment,

iv

the building models of two project partners can interact with each other using the

ontologies as common understanding.

Despite all potential benefits and advantages of Semantic Web applications in the

AEC field, there are very few research works and prototypes available. As a matter

of fact, the AEC community is behaving conservatively about new technologies. The

best proof for this statement is the transition phase from CAD drawings to smart

building models, which is not completed yet. The CAD drawings are still being used

in many countries and accepted as de facto standard for AEC data exchange. The

transition from existing building models to smarter building models that can be

easily shared and processed between different domains is the next challenge that the

AEC industry will be confronted soon.

In this research the role of Semantic Web in AEC industry is exploited and a

framework as solid basis for semantically-enabled working environment is proposed.

The proposed framework can be used to overcome the problems stated above. The

rich semantics associated with the domain knowledge together with the Semantic

Web Services allow bridging the gap between discrete knowledge domains. As a

proof of concept a prototype for specific case of skylight product is presented.

v

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and appreciation to my supervisor Prof.

Dr. Ardeshir Mahdavi for having accepted me as a doctorate student. Without his

inspiration, advices, guidelines and continuous support this thesis would not have

been possible.

I'm grateful to Prof. Dr. A Min Tjoa, whose support has been irreplaceable to me in

the past few years.

My sincerest thanks to my best friend and my husband, Amin Anjomshoaa, for being

on my side, giving me courage to step forward in this field and helped me immensely

in all steps.

I warmly thank Ms. Elizabeth Finz and Ms. Maria Schweikert for all their help and

support and also Ms. Gabriela Nowotny and Mr. Christoph Grün for translation of

the abstract.

I want to acknowledge also the jury member for accepting to be on my examination

board and for their support and guidance and their excellent feedback throughout the

process.

Last but not least, I owe my deepest gratitude to my parents and my siblings for

giving me so much love and encouragement.

vii

Table of Contents

CHAPTER 1 INTRODUCTION ... 1

1.1 MOTIVATION .. 3
1.2 RESEARCH QUESTION.. 5
1.3 THESIS ORGANIZATION .. 6
1.3.1 CHAPTER SUMMARY .. 6
1.3.2 CONTRIBUTIONS ... 7

CHAPTER 2 INTEROPERABILITY .. 8

2.1 ISO‐STEP .. 12
2.2 EXPRESS .. 16
2.3 IAI IFC SCHEMA .. 19
2.3.1 IFC ARCHITECTURE ... 22
2.3.2 IFC CERTIFICATES ... 25
2.3.3 IFC VIEW DEFINITION .. 26
2.3.4 BUILDINGSMART .. 28
2.3.5 IFD: INTERNATIONAL FRAMEWORK FOR DICTIONARIES .. 30
2.3.6 IDM: THE INFORMATION DELIVERY MANUAL .. 31
2.3.7 IFC CURRENT STATUS .. 32

CHAPTER 3 ONTOLOGIES AND SEMANTIC WEB .. 34

3.1 ONTOLOGY FUNDAMENTALS .. 34
3.2 ONTOLOGY LANGUAGES .. 37
3.2.1 RDF ... 38
3.2.2 RDF SCHEMA .. 40
3.2.3 OWL ... 41
3.2.4 ONTOLOGY QUERY LANGUAGES .. 43
3.3 SEMANTIC WEB VISION ... 44
3.4 SEMANTIC REASONING .. 49
3.5 SEMANTIC WEB SERVICES .. 50
3.6 SEMANTIC WEB TOOLS ... 52
3.6.1 PROTÉGÉ ONTOLOGY EDITOR .. 52
3.6.2 JENA SEMANTIC WEB API .. 52
3.6.3 JOSEKI .. 52
3.7 APPLICATIONS OF ONTOLOGY IN AEC/FM FIELD .. 53

CHAPTER 4 SKYDREAMER PROTOTYPE .. 58

4.1 USE CASE SCENARIO .. 59

viii

4.2 PROPOSED SOLUTION .. 65
4.2.1 ONTOLOGY COMPONENT .. 67
4.2.2 WEB EXTRACTOR COMPONENT .. 72
4.2.3 BUILDING PARSER AND BUILDING NAVIGATOR .. 78
4.2.4 SKYLIGHT ENERGY CALCULATOR ... 79
4.2.5 SKYCALC TOOL ... 81
4.2.6 SKYDREAMER CALCULATOR .. 84
4.2.7 USER INTERFACE ... 92

CHAPTER 5 RESULTS ... 95

5.1 USE CASE CONFIGURATION .. 96
5.1.1 BUILDING CONFIGURATION ... 96
5.1.2 WEATHER CONFIGURATION ... 97
5.1.3 HVAC AND LIGHTING CONFIGURATIONS .. 98
5.1.4 SKYLIGHT CONFIGURATION .. 99
5.2 SIMULATION PROCESS ... 99
5.2.1 SELECTION OF SKYLIGHT COMPONENT ... 101

CHAPTER 6 OUTLOOK ... 103

6.1 SUMMARY AND DISCUSSION ... 104
6.2 FUTURE WORK AND CONCLUSION ... 107

APPENDIXES .. 109

ABBREVIATIONS: ... 115

BIBLIOGRAPHY ... 117

ix

List of Figures

Figure 1.1: Interoperability requirements of a skylight component 5
Figure 2.1: The complexity of interactions between building’s stakeholders 9
Figure 2.2: Lost of information between building construction phases 10
Figure 2.3: Distribution of project information in multiple forms (Grant & Ceton,
2008) .. 11
Figure 2.4: EXPRESS-G representation of a sample data model 19
Figure 2.5: Number of IFC classes in different releases (Isermeyer, 2008) 21
Figure 2.6: Coverage of IFC releases in different AEC/FM domains (Isermeyer,
2008) .. 22
Figure 2.7: IFC architectural layers (IFC2x3, 2008) ... 24
Figure 2.8: property definition in IFC model (IFC Guide, 2000) 25
Figure 2.9: First and second level IFC certification logos (IFC Certification, 2008) 26
Figure 2.10: Deployment steps of an IFC based solutions (Hietanen, 2003) 27
Figure 2.11: information sharing between AEC stakeholders (Junge, 2008) 29
Figure 2.12: A window concept and its properties in IFD (IFD, 2008) 30
Figure 2.13: model inconsistencies among IFC-enabled tools 33
Figure 3.1: An AEC/FM related ontology ... 36
Figure 3.2: Graph visualization of a triple ... 38
Figure 3.3: Skylight example with a blank node.. 39
Figure 3.4: Data structure in traditional web ... 46
Figure 3.5: Semantic Web Cake Layer .. 47
Figure 3.6: simple reasoning scenario .. 50
Figure 3.7: Aligning the web service parameters with an IFC-based ontology 51
Figure 3.8: Building ontology model ... 56
Figure 3.9: graph view of ontology model ... 57
Figure 4.1: skylight system components .. 60
Figure 4.2: Process Diagram: Roof Design ... 64
Figure 4.3: System Components .. 66
Figure 4.4: Sequence diagram of SkyDreamer prototype .. 67
Figure 4.5: Semantic inference for simplifying access to skylight attributes 68
Figure 4.6: architecture of ontology component .. 71
Figure 4.7: Joseki skylight query interface .. 72
Figure 4.8: NFRC energy performance label ... 74
Figure 4.9: NFRC skylight production lines (left) and product details (right) 75
Figure 4.10: IFC tree view and spaces in ArchiCAD .. 79
Figure 4.11: SkyCalc basic inputs .. 81
Figure 4.12: Annual energy saving graph calculated by SkyCalc 82
Figure 4.13: SkyCalc table results ... 83
Figure 4.14: SkyDreamer screenshot ... 93
Figure 5.1: Building navigator ... 97
Figure 5.2: Selection of weather file .. 98
Figure 5.3: Selection of HVAC options ... 98
Figure 5.4: Selection of light options ... 99
Figure 5.5: Generic skylight configuration .. 99
Figure 5.6: Simulation results .. 101
Figure 5.7: Skylight product query results ... 102
Figure 6.1: Bridging the AEC gaps using Semantic Web technology 104

x

List of Tables

Table 2.1: STEP design Application Protocols .. 13
Table 2.2: List of IFC2x3 Step 2 certified software ... 26
Table 2.3: Model View Definition proposals ... 28
Table 4.1: Window U-Values for some glazing and frame materials 62
Table 4.2: SHGC and VT for different glazing types, layers, and colors 63

List of Listings

Listing 2.1: a simple data model in EXPRESS language ... 17
Listing 3.1: Skylight example with various namespaces ... 40
Listing 3.2: Skylight using DRFS extensions .. 41
Listing 3.3: Sample SPARQL query .. 43
Listing 3.4: Simple XML snippet ... 48
Listing 3.5: Simple XML snippet ... 50
Listing 4.1: adding inferred data for skylight’s SHGC .. 70
Listing 4.2: Parsing product details by web extractor .. 76
Listing 4.3: Creating product instances by web extractor .. 77
Listing 4.4: Calculation of Effective Aperture of skylights 87
Listing 4.5: method to calculate Coefficient of Utilization .. 89
Listing 4.6: Room Cavity Ratio (identical to the well cavity ratio) 89
Listing 4.7: Form factor for two equal sized parallel rectangles 90
Listing 4.8: Use case configuration programmatically .. 92

List of Appendixes

Appendix 1: Part of the “IFCXML to OWL” XSL style sheet 109
Appendix 2: IFCXML Model Parser ... 110

Introduction 1

Chapter 1

INTRODUCTION

Information technology (IT) tools and methods have been in use in building industry

for over three decades. Utilization of IT tools such as computer-aided design

applications in the building design phases is already pervasive. However CAD

drawings do not suffice the requirements regarding effective building models and are

not adequate for integration in business processes that are massively used in building

industry today. Nowadays the Architecture, Engineering and Construction (AEC)

industry requires more intelligent building models that can on one hand, capture and

represent the building information efficiently, and on the other hand, get integrated

into business processes cohesively. The traditional method of system integration in

heterogeneous information environments starts with the standardization of data

exchange methods. In AEC, the data exchange standardization efforts have lead to

Industry Foundation Classes (IFC, 2008) which is a data model, developed by the

International Alliance for Interoperability (IAI, 2008) to facilitate interoperability

between the software used by all participants in AEC and Facilities Management

(FM) industries.

The building industry is embedded in a complex web of relationships that affect

building design. The building design process relies on large databases that are often

managed by human knowledge and interactions. Moreover, the building processes

and their related information are usually designed for a specific building construction

project and many context parameters such as country-specific standards and policies

should be considered during the lifetime of project. Effective mapping of relevant

Introduction 2

contextual attributes onto available building industry information has a formidable

potential to improve the design process. For instance the design options and

alternative materials could be more readily assessed and compared by providing

semantically enriched building models to evaluation applications (e.g. performance

simulation programs) (Shayeganfar et al., 2008).

At the time this research was started, a new concept called Semantic Web (Berners-

Lee et al., 2001) has evolved into a powerful resource for well defined information.

The Semantic Web is a web of data that will enable machines to comprehend the

data. Up to now the data available on World Wide Web has been solely human

understandable but by utilizing Semantic Web, it will be changed to a rich resource

of information. It is important to note that despite this classical definition of semantic

web, which is coupled with Internet and World Wide Web, the technology has been

widely accepted and used to capture and document context information in many

fields. It plays a significant role in information sharing scenarios and interoperability

across applications and organizations. This added-value opens the way to integrate

huge amount of data and becomes extremely useful when used by many applications

that comprehend this information and bring them into play without human

interaction. The shared knowledge of Semantic Web based project is captured in

domain ontologies which are formal definition of concepts within a domain and the

relationships between those concepts. Ontologies are generally following two

patterns: first is the schema pattern where ontology describes only the data structure

and second is the taxonomy pattern that captures the domain semantic. In the first

pattern the knowledge is in the data and not the ontology whereas in the second

pattern domain knowledge is in the ontology itself (Berners-Lee, 2006).

In AEC domain the need to a common language has lead to the development of

Industry Foundation Classes (IFC, 2008) that to a great extent can be seen as

ontology of AEC field. By making use of suitable ontological commitments the

ontologies can successfully be integrated in AEC concerned domain using Semantic

IFC. In an ontological sense the IFC presents a hybrid approach that on one hand,

provides the schema pattern by formal definition of data structures, and on the other

hand, provides the taxonomy pattern by capturing the domain entities and their

relationships. In addition, it makes the building model available for integration in

Introduction 3

processes through specific web services to the outside world. Furthermore, the

semantic web provides a uniform view of information, which is independent of its

encoded language and its medium type (Internet, CD, catalogue, etc). A pre-

requirement to the existence of such a library is of course a coherent and consistent

ontology which can be understood and used by all processes and applications. The

ontology that has been used for this thesis is created based on IFC. The use of IFC as

the common template for information sharing and the application of semantic Web

Services as the communication method can benefit the building industry to realize

building processes and information sharing scenarios.

1.1 Motivation

One of the challenging issues during the design phase of a building is selection of the

appropriate materials and components from existing products that are flooding the

market. As a matter of fact, the material selection is a multidimensional problem that

should be done with precise evaluation of environmental and building characteristics;

among them we can mention the followings:

• Environmental impacts of different materials through building’s life-cycles

are not fully known to building designers. As a result it is not an easy task to

find out the better material from an environmental standpoint.

• Building’s operating energy is highly influenced by selected components and

materials. The proper selection of components and building materials will

lead to lower energy consumption.

• Building’s embodied energy (the energy used in production and distribution

of a product or material) of the materials that compose buildings is an

important consideration to homeowners. Presently the embodied energy of

building materials contributes anywhere from 15 to 20% of the energy used

by a building over a 50 year period. Homeowners have tremendous influence

as to what material are used and can specify those materials with low

embodied energy, thus reducing the amount of fossil-fuel energy used during

production (Architecture 2030, 2008)

Introduction 4

• Selected building materials influence the work of different groups of building

construction engineers. The selected material by any of these groups should

be carefully examined by other groups for the potential side effects.

• Last but not the least is the financial aspects of a building construction project

that should be considered in material selection processes. The better and more

efficient material cannot be accepted unless the material’s price meets the

financial criteria. Additionally the price should be reasonable for the amount

of energy that will be saved during the lifecycle of a building.

Provision of computational support for this decision making process would benefit

the AEC stakeholders in view of cost reduction, energy efficiency, and occupants'

comfort and productivity. Nowadays, there are many different media (catalogues,

CDs, Internet, etc), which entail information on building products and their relevant

technical information (Mahdavi et al., 2004). However, most of this information is

neither in a standard format nor machine processable (in a semantic way). The

comparison of products, their properties and study of their effects in the building’s

lifecycle is a time consuming process (Shayeganfar et al., 2008).

AEC Objects’ data span several domains (e.g. design, specification, cost, etc.) and

involve the structural, functional, and behavioural characteristics of the object

(Halfawy & Froese, 2002). Every project collaborator usually considers on different

views of the same object. Also, most of the building construction decisions can not

be made by a single engineering role, without considering the side effect of this

decision in other domains. In other words a decision making needs knowledge and

expertise that is distributed among project partners and the side effects of design

decisions should be considered by other relevant participants in order to achieve the

building goals and required performances. The changes in the building component

and products should be checked with simulation programs to make sure that the

applied changes are not in conflict with building's requirements and criteria. None of

these processes is possible without human interaction which cost time and money.

For instance, selection of building element such as window by a partner will affect

the work of others groups such as building’s performance analyst and interior

designer and the plan should be adopted respectively.

Introduction 5

Figure 1.1: Interoperability requirements of a skylight component

In order to improve the interoperability between building model and material

libraries, new methods are required that facilitate the selection of appropriate

building components within the context of specific projects. These new methods

should provide an automated tool support for comparing their technical

characteristics and energy performance parameters, using the building simulation

programs. Achieving this goal could be supported by a kind of computer-

understandable data that is flexible enough to bridge the knowledge gap between

building domains and material libraries.

This research presents a novel approach that uses Semantic Web technologies to

enrich the building products libraries by adding ontologies and semantic meanings

and this will open the door to integrate large amount of data on the web (catalogues)

with simulation programs via proper product library services.

1.2 Research Question

There are several specific questions regarding the feasibility, theoretical and

technical aspects of applying Semantic Web Technologies and to close the gap

between building material knowledge and AEC business processes. Some of the

questions that are the main focus of this research are:

Introduction 6

• How can the semantics of building material and their associations be

modelled accurately for open world interactions?

• How to define material libraries that can interact with global AEC services

and share useful information about a specific material in an effective way?

• How Semantic Web Technologies can improve the quality of built

environment from energy efficiency standpoint?

• How a modern Building Information Model can interact with simulation

programs and material libraries in an effective way and improve the

performance in interoperability between applications?

• How can building requirements and preferences be represented and how

should they be taken into account in tailoring AEC services for a specific

building?

• How can business processes of a building project handle the partners’

interaction in a semi-automated manner?

• How can building material knowledge be extracted from existing material

catalogues and prepared for usage by AEC applications such as simulation

tools?

1.3 Thesis Organization

1.3.1 Chapter Summary

This thesis is comprised of three major parts: Interoperability (Chapter 2), Ontologies

and Semantic Web (Chapter 3) and SkyDreamer prototype (Chapter 4). In the first

part the interoperability in AEC field is discussed. The second part explores the

Semantic Web technologies and their potential applications in AEC field. The last

part presents the SkyDreamer prototype as a proof of concepts for the proposed

approach of this thesis. The chapters are described in more detail below:

• Chapter 2: provides theoretical background and summarizes relevant research

work in the area of IFC model interoperability.

Introduction 7

• Chapter 3: gives an overview of Semantic Web technologies with a specific

focus on AEC/FM application and use cases.

• Chapter 4: presents the prototype architecture and explores the different part

of its architecture in detail.

• Chapter 5: presents the SkyDreamer prototype results and different use cases

that can be addressed using it.

• Chapter 6: summarizes the research work presented in this thesis and presents

the main results that have been concluded from the work. It also provides the

future research steps.

1.3.2 Contributions

The work presented in this thesis provides some contributions to AEC building

design process; the major contributions are summarized as follows:

• IFC Ontology

• SkyDreamer calculator

• Skylight Semantic Library

• IFC based web services

• A simple skylight simulation web service

Interoperability 8

Chapter 2

Interoperability

Although all AEC industries have benefited from the advantage of IT, the data

structure and information models, which are used by one stakeholder are not directly

usable by others, unless some common standard exists that defines the interaction

protocols and common understanding of the relevant information. As a matter of

fact, the need to share the information and increase the interoperability is the result of

current industrialization obligation. The National Institute of Standards has estimated

that data incompatibility is a 90 billion dollar problem for the manufacturing industry

(Brunnermeier & Martin, 1999).

The building industry today, forces the business processes to be faster, more energy

efficient, and more cost-effective. These goals cannot be achieved without increasing

the interoperability between building construction domains that are at the moment

mainly ill-structured and suffering from the limitations of information exchange and

data sharing standards.

AEC field is a highly interdisciplinary network of knowledge and proficiencies. The

expertise and knowledge required by a typical building project ranges from social-

psychological to economical-technical know-hows and information that is obviously

scattered among many domains. Several organizations and partners use different

computer systems providing the data for design, manufacture, use, maintenance and

disposal of a product. A large portion of the building construction costs are caused

by splitting up of processes and flawed communication among knowledge domains.

Following the traditional methods in AEC, the same information is entered many

times in different systems before the building is handed over to owners and in

between there are communication errors and loss of project information. The

Interoperability 9

following figure shows the traditional approach of information flow between

stakeholders with excessive data exchange and multiple formats.

Figure 2.1: The complexity of interactions between building’s stakeholders

Despite recent advances in building science and penetration of IT-based tools in the

building industry to date, there is a common agreement (Augenbroe, 2001; Egan,

1998; Kieran et al., 2003) that the industry is not as efficient as expected and current

practices and methods are causing major losses in productivity, material

resources and liability. The following lists some of the challenges in AEC that are

directly caused due to the flawed communication between knowledge domains:

• Diverse software and programs that are used to sketch, design, and document

a building during its lifecycle, use dissimilar schemas to describe the building

information model.

• The common part of building information model that is being used by

multiple partners should be re-entered and repeated in different programs,

which costs money and time.

• The re-entered building models might be slightly different and this will cause

model inconsistency problems.

Interoperability 10

• The building information which is prepared by a specific software might not

be usable by the other. As a result, the information should be transformed to

target standard and not all transformations are able to deliver the building

information entirely accurate, and without loss of information. Each system

uses its own data formats and as a result the same information needs to be

entered several times into various systems, which lead to data redundancy

and errors. So the lack of communication or miscommunication not only

increases the construction costs but also some of information may get lost.

• Even using the same program but different versions may cause some

difficulties for usage of the information.

• In some cases even the hosting operating system of AEC applications may

make the data unusable. For example, weather data file that is created on a

German windows might not be directly usable by an English based

application due to the difference in decimal point notation (in German

positional numeral system unlike nations of British Empire who use dot

symbol, comma symbol is used to separate integral and fractional parts of a

decimal number. So for example 123.456 will be ambiguous if the notational

system is not known)

Figure 2.2 depicts typical building construction phases and the information lost

between phases, caused by any of above mentioned bottlenecks.

Figure 2.2: Lost of information between building construction phases

Among the major causes of the above mentioned problems, we can highlight the lack

of a standard format for sharing building information, which in turn reduces the

productivity and process integration. As a matter of fact we need a formal standard

Interoperability 11

model that can be used for exchanging information of products during the life cycle

of the built environment between systems, where the systems may be separated

organizationally, geographically, or temporally (Eastman, 2008). Figure 2.3 shows

the distribution of information in multiple forms during the building’s lifecycle.

Using a common product model by all partners, increase the quality of information

and decrease the cost of preparation.

Figure 2.3: Distribution of project information in multiple forms (Grant & Ceton, 2008)

Several approaches have been proposed to overcome this situation and increase the

level of support provided by the computer industry to manufacturing. At the very

beginning it started with some national data exchange standards like VDAFS

(Verband der Automobilindustrie - Flächenschnittstelle) in Germany (VDAFS, 2008)

and Initial Graphic Exchange Specification (IGES) in the USA (IGES, 2008).

Later on the efforts were focused at international level to develop new standards for

data exchange. In this chapter the international data exchange formats will be

introduced briefly and afterwards the Industry Foundation Classes (IFC, 2008) which

is generally accepted as the best existing data exchange standard will be explored in

more details.

Interoperability 12

2.1 ISO-STEP

The “Industrial automation systems and integration - Product data representation and

exchange” which is also known as STEP (the Standard for the Exchange of Product

Model Data) was created in 1994/1995, under the supervision of the International

Organization for Standardization (ISO) as an international product data standard

(ISO 10303) for exchanging digital information between different CAD/CAM and

Product Data Management systems (ISO, 1994).

STEP provides a computer-interpretable definition of the product data throughout its

life cycle which is independent from any particular system and this makes it very

suitable for implementing and sharing product libraries.

This standard is divided into many parts which are categorized under Environment,

Integrated data models and Top parts. The Environment group contains the

description methods such as EXPRESS and EXPRESS-X and also implementation

methods such as STEP-FILE, STEP-XML etc. The second part of standard, which is

integrated data model, contains Integrated Resources (IR), Application Integrated

Constructs (AIC) and Application Modules (AM). The last part of STEP standard,

which is Top Parts, consists of several hundred parts and Application Protocols (AP).

Every year new parts are being added or revisions of existing parts are being released

and this makes STEP the biggest standard within ISO (STEP, 2008). Table 2.1

provides a listing of design Application Protocols that are roughly categorized under

Mechanical, Building Design, Manufacturing and Life cycle groups.

Mechanical Design
Part 201 Simple 2D drawing geometry related to a product. No

association, no assembly hierarchy
Part 203 Configuration controlled 3D designs of mechanical parts and

assemblies.
Part 204 Mechanical design using boundary representation
Part 207 Sheet metal die planning and design
Part 209 Composite and metallic structural analysis and related design
Part 214 Core data for automotive mechanical design processes
Part 235 Materials information for the design and verification of

products
Part 236 Furniture product data and project data
Building Design

Interoperability 13

Part 202 2D/3D drawing with association, but no product structure.
Part 225 Building elements using explicit shape representation
Connectivity oriented electric, electronic and piping/ventilation
Part 210 Electronic assembly, interconnect and packaging design.
Part 212 Electro-technical design and installation.
Part 227 Plant spatial configuration
Manufacturing APs
Part 219 Dimensional inspection information exchange
Part 223 Exchange of design and manufacturing product information for

cast parts, currently on CD level
Part 224 Mechanical product definition for process plans using

machining features
Part 238 Application interpreted model for computer numeric

controllers
Part 240 Process plans for machined products
Life cycle support APs
Part 239 Product life cycle support
Part 221 Functional data and schematic representation of process plants

Table 2.1: STEP design Application Protocols

Every Application Protocol defines the meaning of STEP’s generic concepts

(Conformance Classes) in a specific context of application or data exchange

scenario. Each Application Protocol contains a scope that describes its purpose and

the activity diagrams of the tasks that are performed by engineers within specified

scope. It also includes an Application Requirement Model that describes the

information requirements of those activities. The information requirements are then

mapped into the common set of Integrated Resources (IR) and the result is a data

exchange standard for the activities within the scope.

Nearly all major CAD/CAM system now contains a module to read and write data

defined by one of the STEP Application Protocols. In the USA the most commonly

implemented protocol is called AP-203. This protocol is used to exchange data

describing designs represented as solid models and assemblies of solid models. In

Europe a very similar protocol called AP-214 performs the same function.

The ability to support many protocols within one framework is one of the key

strengths of STEP. All the protocols are built on the same set of Integrated Resources

(IR's) so they all use the same definitions for the same information. For example,

AP-203 and AP-214 use the same definitions for three dimensional geometry,

Interoperability 14

assembly data and basic product information. Therefore CAD vendors can support

both with one piece of code.

The ultimate goal of STEP was to cover the entire product life cycle, from

conceptual design to final disposal. Despite the many successes of STEP, its

development and deployment is not growing fast enough. Many critics point out

correctly that the XML standards for e-commerce are being developed much more

quickly. The real issue that stops faster STEP deployment is the commitment of

those with the resources necessary to define the standards. The government does not

like to pick solutions for industry, and industry does not like to fund the development

of solutions that can also be used by their competitors. Consequently, much work

only gets funded in situations of clear and desperate need such as when the high cost

of manufacturing is causing excessive job losses (STEP development, 2008).

The Internet and the World Wide Web broke through this cycle when "killer"

applications made the benefits of the new infrastructure clear and compelling for all

users. AP-203 made STEP useful by allowing solid models to be exchanged between

design systems. AP-238 will make STEP compelling for some users by allowing

them to machine parts more efficiently. However, like the early Internet there will be

alternatives that are considered more reliable by other users. The killer application

that makes STEP ubiquitous has yet to be identified (STEP development, 2008).

Another challenging issue about product model data is that it is different from other

kinds of e-commerce data such as invoices, receipts, etc. The traditional method for

communicating product model information is to make a drawing and the traditional

method to communicate an invoice is to make a form. In order to equip a drawing or

3D model with required information, many detailed and complex interrelated data

structures relationships are required and this makes the STEP data exchange problem

more difficult.

An XML data format is being developed for STEP but the STEP architecture

requires the information requirements of an Application Protocol to be mapped into

the common set of Integrated Resources. This allows all of the protocols to share the

same information and is essential if all application STEP interfaces are going to share

and reuse the same set of data. However, the sharing necessarily divides the original

data into multiple entities that are not so easy to understand in XML or any other

Interoperability 15

format. This is disappointing because one of the attractions of XML is that it is self-

documenting (at least for programmers and domain experts). Therefore, a new level

of documentation is required in the STEP data to show how the information

requirements have been mapped. The required structures have lead to a self-

documenting XML format for STEP which is called STEP-XML (ISO 10303-28,

1994).

Perhaps a more fundamental approach to achieving smooth mappings between

components is offered through the definition of ontologies (Kemmerer, 1999). ISO

10303 has been developed based upon the combined expertise of hundreds of

engineers throughout the world, codifying terms familiar to them. These definitions,

however, are not stated formally in logically provable forms. Thus, the possibility of

ambiguity and misinterpretation exists at all levels of the standard. An ontological

foundation will be needed ultimately to address rigorously issues of redundancy and

misuse within the standard. A formal ontology will also address another missing

piece of STEP: the vocabulary of terms used to populate the defined STEP entities.

This problem is not as apparent in the traditional CAD applications of STEP where

terms and values have been widely accepted for years (such as Cartesian coordinates

for spatial locations). In other areas, the terms are much less certain.

Currently, a major driver for architectural change in STEP is interoperability

between APs. The issue of interoperability brings up an additional point, which is the

tradeoff between extensibility of the specification and guaranteed interoperability of

applications using the specification. On the one hand, it would be naive to think

STEP developers would have the foresight to anticipate all data elements of

importance for any significant time span. Therefore, there is definitely a need to be

able to expand the current STEP data structures. On the other hand, interoperability

between APs is definitely threatened if expanded data structures are added outside

the standard.

Interoperability 16

2.2 EXPRESS

EXPRESS (ISO 10303-11) is the data modelling language that has been developed

as part of STEP standard but is used widely in other standardization, research and

integration projects. The strong point of this modelling language is its

implementation-independent data model. EXPRESS is a conceptual schema language

that describes the specification of classes belonging to a defined domain, the

information or attributes belonging to those classes (color, size, shape, etc.), the

constraints on those classes (unique, exclusive, etc.) and also the relations between

classes (Express-IFC, 2008). For example the EXPRESS language can be used to

define an exchange model in some target domain, such as steel structures, building

geometry, piping systems, and so forth.

The EXPRESS data model can be presented in two ways, textually and graphically.

The graphical representation of EXPRESS data models is called EXPRESS-G and is

more suitable for human use for better understanding of the underlying domain

entities and their relationships. On the other hand, the textual form is used for formal

verification of models and also as input for tools that accept EXPRESS data model.

The EXPRESS data model has facilitated the data modelling and data exchange

scenarios. Although EXPRESS syntax is similar to a programming language, it

defines only the data on which programs should operate and it cannot be used to

create executable programs. A major advantage of EXPRESS language is the

emergence of many software toolkits for parsing, formal syntax validation, mapping

and exchange of the data models that are described in EXPRESS language. Using

these tools, users are able to transform the EXPRESS model to software objects of

programming languages such as C, C++ and Java. This will make it easy to integrate

data models in software tools and instantiate, update, or read data in the language-

implemented object model. Moreover, the EXPRESS model can be serialized in

different formats such as text file, XML, and diagram. The latter serialization form

makes the EXPRESS models more expressive and understandable to human users.

The basic unit of data definition in EXPRESS language is called an entity. Like

modern programming object oriented programming languages, EXPRESS supports

Interoperability 17

generalization and specialization of entity types. The relationships between entities is

also similar to UML (Unified Modelling Language) where the relation is defined by

the role played by one entity type in the definition of another.

Listing 2.1 illustrates a data model in EXPRESS language where two simple entities

are related to each other through the roles they play in their relationship. The given

model describes an entity called IfcProduct that is extending (inheriting from)

IfcObject. Additionally the defined entity is related with an IfcObjectPlacement

entity with its objectPlacement attribute.

ENTITY IfcProduct
 ABSTRACT SUPERTYPE OF (IfcProxy)
SUBTYPE OF (IfcObject);
 ObjectPlacement : OPTIONAL IfcObjectPlacement;
Representation : OPTIONAL IfcProductRepresentation;

INVERSE
 ReferencedBy : SET OF IfcRelAssignsToProduct FOR RelatingProduct;

WHERE
 WR1 : (EXISTS(Representation) AND EXISTS(ObjectPlacement)) OR

(EXISTS(Representation) AND
(NOT('IFCREPRESENTATIONRESOURCE.IFCPRODUCTDEFINITIONSHAPE' IN
TYPEOF(Representation)))) OR (NOT(EXISTS(Representation))) ;

END_ENTITY;

ENTITY IfcObjectPlacement
 ABSTRACT SUPERTYPE OF (ONEOF(IfcGridPlacement, IfcLocalPlacement));
INVERSE
 PlacesObject : SET [1:1] OF IfcProduct FOR ObjectPlacement;
ReferencedByPlacements : SET OF IfcLocalPlacement FOR PlacementRelTo;

END_ENTITY;

ENTITY IfcProductRepresentation
 SUPERTYPE OF (ONEOF(IfcProductDefinitionShape,

IfcMaterialDefinitionRepresentation));
 Name : OPTIONAL IfcLabel;
Description : OPTIONAL IfcText;
Representations : LIST [1:?] OF IfcRepresentation;

END_ENTITY;

Listing 2.1: a simple data model in EXPRESS language

The listing 2.1 also shows some other interesting features of EXPRESS language to

capture the constraints. For example the EXPRESS INVERSE attribute can add

constraints to relationships by making the implicit reverse relations (which are

automatically resulted by relationships between two entities) explicit. This does not

create a new relationship, but makes the relationship visible under a given name, and

therefore allows it to be constrained. So for instance the PlacesObject reverse

relation in IfcObjectPlacement simply says that there is only one

IfcObjectPlacement instance of for each IfcProduct.

Interoperability 18

Another capability of EXPRESS to be considered is the concept of local constraints

which are applied to every instance of a type. The constraints are called local because

they are specified within definition of the type to which the constraint applies. The

local constraints follow the basic pattern of a WHERE clause consisting of one or

more rules, that evaluates to true, false, or unknown. In listing 2.1, IfcProduct

product entity contains a rather complex rule that checks the existence of optional

attributes and applies a constraint on product representation.

EXPRESS language has many other features and constructs that make the language

powerful and flexible. In this short survey, the in-depth coverage of all EXPRESS

language features is not possible, but it is worthy to mention that the language

includes the support for definition of functions, procedures and rules as well as a rich

set of standard constants, functions and procedures.

As mentioned before the EXPRESS language has also a graphical representation

called EXPRESS-G that is more suitable for human communication. Originally the

graphical representation was designed for documentation purposes and for an easier

understanding of the data models by model developers and reviewers. However, it

has been proved to have significant applications in model development. Moreover

there is a handful of software tools that support the translation between textual and

graphical representation of EXPRESS language.

To demonstrate the usefulness of the EXPRESS-G, the graphical representation of

the data model of listing 2.1 has been shown in figure 2.4.

Interoperability 19

Figure 2.4: EXPRESS-G representation of a sample data model

2.3 IAI IFC Schema

STEP is used in various industries such as aerospace, automotive, shipbuilding, oil

and gas, electronics architecture and building construction, and so on, but it has been

clarified that the STEP standard is not specific enough to fully describe the

requirements of architecture, engineering, construction and facility management

(AEC/FM) field and a more domain-specific model is needed for representing

building data. The need for more efficient information exchange methods has been

Interoperability 20

widely recognized in AEC/FM which has lead to a large-scale international

endeavour for defining a specific building information model that can be used to

fully capture the building lifecycles and manage the relevant information efficiently.

In this context, the International Alliance for Interoperability (IAI) which is a global

coalition of industry practitioners, software vendors, and researchers (over 600

companies around the world) has introduced the Industry Foundation Classes (IFC)

with the goal to provide a better interoperability throughout the AEC/FM

community. This high-level, object-oriented building information model schema is

closely related to the STEP standard and uses several resource definitions of STEP.

Not surprisingly, it is defined in the same modelling language as STEP which is

EXPRESS. The IFC classes provide support for (IFC, 2008):

• data exchange among software applications within the AEC/FM industry

sector

• model-based description of spatial elements, building elements, MEP

(Mechanical/Electrical/Plumbing) elements and other components that

constitutes a building or facility

• shape representation of such components

• relationships of such components between each other and to the spatial and

system structure

• attachment of properties, classifications, external library access, etc. to such

components

The IFCs model all types of AEC/FM project information such as parts of a building,

the geometry and material properties of building products, project costs, schedules,

and organizations, etc. The information from almost any type of computer

application that works with structured data about AEC building projects can be

mapped into IFC data files. In this way, IFC data files provide a neutral file format

that enable AEC/FM computer applications to efficiently share and exchange project

information.

The IFCs which was initiated in 1994 have now undergone some major releases, and

is being supported many commercial and open source tools. The latest official IFC

release is IFC 2x Edition 3 (short IFC2x3) and is recommended for implementation.

Interoperability 21

It has been published in February 2006 and contains several improvements over the

previous editions. The IFC2x3 has been the first IFC release that follows the new

IFC release methodology and has been already used in some prototype

implementations. The next release of IFC, IFC 2x edition 4 (IFC2x4), is also

published as alpha edition and has provided a number of feature increases with some

major rework and improvements of the existing IFC specification. It has been

developed as the next basis for IFC enabled interoperability of Building Information

Models. It is also intended that the IFC2x4 release will be submitted to the

International Organization for Standardization (ISO) for approval as a full

International Standard ISO16739 (IFC2x4, 2008). Each release of IFC schema

introduces new classes that are needed for AEC/FM use cases. Figure 2.5 shows the

growing number of IFC classes from IFC1.0 to IFC2x2.

Figure 2.5: Number of IFC classes in different releases (Isermeyer, 2008)

The new IFC Classes are responsible for covering the diverse requirements of

AEC/FM professions. Figure 2.6 depicts the estimated coverage of different releases

of IFC (IFC1.0 to IFC2x2) in AEC/FM domains.

Interoperability 22

Figure 2.6: Coverage of IFC releases in different AEC/FM domains (Isermeyer, 2008)

2.3.1 IFC Architecture

Since the IFC schema should cover the interoperability of various applications in

AEC/FM field, it should be able to model all relevant information. The smart way of

defining such a schema is to make a “generic and compact model” rather than a

“huge model” with highly complex structures. The drawback of the latter approach is

that the models would be difficult to understand and virtually impossible to

implement. So instead of creating a class for every type of physical objects that can

be encountered, concepts of physical and other object types are generalized to

provide relatively high level descriptions. For instance the IFC schema defines the

abstract class of IfcDoor for description of building’s door components and all real

world instances of door fall under this IFC “leaf node”. The detail product

specification of each door will be then defined, by specialization of schema elements

and adding appropriate property sets.

The IFC model schema provides an abstract modular structure for development of

model components. The IFC schema architecture is broken down into four

conceptual layers that provide a strict referencing principle. Each conceptual layer in

Interoperability 23

turn contains a set of model schemas. The conceptual layers are organized as

follows:

• The first conceptual layer contains Resource classes that are used by classes

in the higher levels.

• The second conceptual layer provides a Core project model that contains the

Kernel and several Core Extensions

• The third conceptual layer which is also known as interoperability layer

provides several modules that contain definition of common concepts and

objects. These concepts and objects are used across multiple application types

or AEC industry domains.

• Finally, the Domain layer which is the highest layer in the IFC Model

provides a set of modules which are tailored for the specific AEC industry

domain or application type.

The layers are interrelated and higher layers are dependent on the lower. The

architecture operates on a 'gravity principle'. At any layer, a class may reference a

class at the same or lower layer but may not reference a class from a higher layer.

References within the same layer must be designed very carefully in order to

maintain modularity in the model design. Inter-domain references at the Domain

Models layer must be resolved through 'common concepts' defined in the

Interoperability layer (layer 3). If possible, references between modules at the

Resource layer should be avoided in order to support the goal that each resource

module is self-contained. However, there are some low level, general purpose

resources, such as measurement and identification that are referenced by many other

resources (IFC Guide, 2000).

Figure 2.7 shows the conceptual layers of IFC schema of the IFC2x3 final version.

Interoperability 24

Figure 2.7: IFC architectural layers (IFC2x3, 2008)

Although the IFC information structures have provide a rich formal specification of

attributes for IFC entities, but there are always some required attributes that are not

currently included within IFC model. For instance, the various types of window with

differing numbers of glazing panes, opening types, framing arrangements, etc.

additional attributes might be required that are already specified in IfcWindow entity.

The IFC Model facilitates the definition of new attributes via the Property Definition

mechanism. Property Definition is a generic mechanism that allows model-users and

Interoperability 25

developers to define, connect and use data-driven, expandable properties with objects

(IFC Guide, 2000). Property Definitions can be either:

• type defined and shared among multiple instances of a class, or

• type defined but specific for a single instance of a class, or

• extended definitions that are added by the end users.

Figure 2.8 shows how very highly detailed sets of properties, can be added to the

model to extend the description of leaf nodes such as IfcWindow.

Figure 2.8: property definition in IFC model (IFC Guide, 2000)

2.3.2 IFC Certificates

The IFC specification has been widely accepted in AEC/FM community and many

tools support the development of IFC compliant applications (IFC tools, 2008).

The IAI facilitates a certification process where software companies can establish a

group to test the IFC interfaces. This group is facilitated by the IAI, but the

responsibility for the quality of interfaces remains with the software company. The

certification process is split into two phases, in step 1 the IFC interfaces are tested

against an agreed set of unit test cases, whereas in step 2 the IFC interfaces are tested

against selected project files coming from beta customers (IFC Certified, 2008). In

this context, several prominent CAD vendors such as Autodesk, Graphisoft and

Interoperability 26

Nemetschek have participated in IFC certification program and their software is able

to understand IFC and interoperate with other IFC tools. Table 2.2 lists the products

that have received the IFC2x3 Step 2 certification (IFC Certified, 2008).

Product Company Date
ACTIVe3d ARCHIMEN

Group
13-03-07

ALLPLAN 2006.2 Nemetschek 13-03-07
ArchiCAD 11 Graphisoft 13-03-07
AutoCAD Architecture 2008
SP1

Autodesk 13-03-07

Bentley Architecture 8.9.3 Bentley Systems 13-03-07
DDS­CAD 6.4 DDS 13-03-07
Facility Online Vizelia 22-05-07
MagiCAD Progman 22-05-07
ESA­PT SCIA 25-02-08
Revit Building 2008 SP1 Autodesk 13-03-07
Solibri Model Checker Solibri 13-03-07
TEKLA Structures TEKLA

Corporation
13-03-07

Table 2.2: List of IFC2x3 Step 2 certified software

The software implementers who successfully pass the certification process can use

the certification logos on their websites, printed publications and shipping-boxes.

Figure 2.9 shows the first level and second level certification logos for IFC2x3.

Figure 2.9: First and second level IFC certification logos (IFC Certification, 2008)

2.3.3 IFC View Definition

The latest official release of IFC2x3 includes 117 defined elements, 164

enumerations, 46 select types, and 653 entities. Number of classes in IFC2x4 alpha

has increased and many new classes are added.

Interoperability 27

Since IFC classes should cover a broad range of applications, the number of classes

is increasing. To keep the IFC simple for targeted fields, IFC View Definition, or

Model View Definition (MVD) has been defined. An IFC View Definition is a

subset of the IFC schema that is needed to satisfy the exchange requirements of the

AEC industry for specific application types. It represents the software requirement

specification for the implementation of an IFC interface. Whereas the general

exchange requirement is independent of a particular IFC release, the realization (or

binding) is specific to a release.

Figure 2.10: Deployment steps of an IFC based solutions (Hietanen, 2003)

The figure above shows the different steps that are needed for creating IFC based

interoperable solutions that are successfully deployed in AEC/FM projects. It is like

a ‘task list’ for all the things that must be taken care of. The picture is shaped like a

pyramid, because the shortcomings of any level limit the possibilities of the levels

above it (Hietanen, 2006).

• IFC Model Specification is the IFC schema and its documentation

• IFC Model View Definitions document how the IFC Model Specification is

applied in the data exchange between different application types.

• IFC Implementations are the IFC import and export capabilities of software

applications

• Exchange Requirements document the information that must be passed from

one business process to enable another to happen.

Interoperability 28

• Process Map gives an overview of the end user process, describing its

objective and describes the stages in a project at which the process is

expected to be relevant.

It is important to identify some general trends related to the larger picture. In general

lower levels are creating new possibilities for the levels above them. Table 2.3 lists

the current MVDs that have been proposed as ideas or proposal for different

interoperability goals (MVDs, 2008):

Name Reference
Architectural design to landscape design CRC_CI-003
Architectural design to quantity take-off - level 1 VBL-004
Architectural design to quantity take-off - level 2 GSC-002
Architectural design to quantity take-off - level 3 VBL-006
Architectural design to structural design VBL-002
Architectural design to thermal simulation VBL-007
Extended coordination view ISG-001
Extensibility VBL-003
Facility management inventory data take-over GSC-001
GSA concept design spatial program validation GSA-001
Indoor climate simulation to HVAC design HUT_HVAC-001
Landscape design to road design CRC_CI-002
Road design to landscape design CRC_CI-001
Structural design to structural analysis VBL-001

Table 2.3: Model View Definition proposals

2.3.4 BuildingSMART

BuildingSMART is an alliance of organisations within the construction and facilities

management industries dedicated to improving processes within the industry through

defining the use and sharing of information. The International Alliance for

Interoperability (IAI) defines the buildingSMART as “integrated project working and

value-based life cycle management using Building Information Modeling and IFCs”

(IFCWIKI, 2008).

The ultimate goal of buildingSMART initiative is to share the Building Information

Model (BIM) in an efficient way with AEC/FM stakeholders including architects,

engineers, contractors, building owners, facility managers, manufacturers, software

vendors, information providers, government agencies and more. Every BIM user on

the other hand will view the BIM information from its specific point of view and

Interoperability 29

integrate this specific view with internal processes. Figure 2.11 shows the specific

use of shared BIM by various stakeholders.

Figure 2.11: information sharing between AEC stakeholders (Junge, 2008)

The focus of buildingSMART is to guarantee lowest overall cost, optimum

sustainability, energy conservation and environmental stewardship to protect the

earth's ecosystem (BSA, 2008).

Building Information Models (BIMs) that conform to IFC model, build the core of

this vision. BIM conveys all required information for the whole lifecycle of the

building. The buildingSMART vision will be realized when the following three

pillars are in place:

• IFC standard as the exchange format for sharing the information

• IFD as the reference library to define what information are being shared

• Information Delivery Manual / Model View Definition (IDM/MVD)

specification to de-fine which information is being shared and when

The IFC pillar and the Model View Definition are already addressed in previous

sections. In the following sections the IFD and IDM will be briefly introduced.

Interoperability 30

2.3.5 IFD: International Framework for Dictionaries

International Framework for Dictionaries (IFD) is an open library, where concepts

and terms are semantically described and given a unique identification number (Bell,

& Bjørkhaug, 2006). More explicitly the IFD is an ISO standard (ISO 12006-3) that

is described using an EXPRESS model with a short explanation of its purpose and

use. IFD libraries are more than a simple mapping of words among various

languages and provide an abstraction layer that contains the conceptualization of

entities. This abstraction layer will then facilitate connecting the entities via shared

library concepts. For instance the word “Tür” in German is mapped to the same

library concept as the English word “door”. So manufacturers may introduce their

products in the international market without being hampered due to language issues.

The IFD library will handle the representation of products in other languages by

aligning the product specifications to the IFC reference model. Moreover an entity

might be interpreted differently in different countries and again an IFD can address

this issue by providing an abstract reference library. An important role of IFD library

is the separation of a concept from its local names and descriptions that define that

concept. In IFD this is achieved by separating the concepts from the names and

descriptions that are used to name and describe it. As a matter of fact, the IFD library

let the concept be both described by multiple name and descriptions and also its

relation to other concepts. Figure 2.12 shows the conceptual definition of a window

entity and the system that are referencing this concept and its properties.

Figure 2.12: A window concept and its properties in IFD (IFD, 2008)

Interoperability 31

Several countries have started building dictionaries based of IFD. The most

important libraries for building smart are BARBi (Bell et al., 2004) and LexiCon

(Woestenenk, 2002), which are defined for a better communication between

construction partners and for better information handling by computers. Some

research has tried to harmonize IFC with IFD structure (Jansen & Wix, 2003). By

using globally Unique ID (GUID), all the information in the IFC format can be

tagged and the concepts may be defined in any language and can be processed by

computers. It means that these GUID are used by machines to process the data and

textual descriptions by humans.

Several research and projects have been done over the years on IFC model in order to

develop modelling and implementation of AEC objects and to provide more

integrated, interoperable and intelligent AEC objects (Halfawy & Froese, 2002).

Some of them have tried to provide online product libraries for AEC industries based

on IFC and present the architecture for implementation with aim to support industry

practices in the production and consumption of product information (Owolabi et al.,

2003). This research aims at developing a Semantic based approach to efficiently

gather comprehensive knowledge of AEC domains and bridge the gap between

products, building model, and AEC tools.

2.3.6 IDM: The Information Delivery Manual

In order to use Building Information Model efficiently, the communication between

different stakeholders of building process should improve significantly. The quality

of communication is dependent on many factors such as the on-time availability of

information and also the quality of information. To achieve this goal, there should be

a common understanding of the building processes, their occurrence order and also

the exchanged information.

The Information Delivery Manual (IDM) is used to capture the building’s business

process and to document the exact specification of the required information for a

specific role at a particular time within a project.

Interoperability 32

2.3.7 IFC current status

Today, IFC model has been widely accepted in AEC/FM community and can be used

in smart ways to combine the two dimensional and three dimensional geometry of a

building within more complex processes. In this context, the physical information of

building geometry would be coupled with building products, costs, and building

processes which turns the IFC model to an excellent candidate for share and

exchange of building information among IFC-Compliant application software

throughout all phases of the building life-cycle. So the errors and losses of data

during model transformations would be eliminated and many challenges of

collaborative design are avoided.

Despite several research projects on evolution of IFC, this data model and its

applications are still being developed and improved continually. For instance the

interoperability of IFC models between the IFC-enabled tools is not perfect yet and

by data exchange among well-known tools such as ArchiCAD, AutoCAD

Architecture, and Allplan, data conflicts and incompatibilities may arise.

To clarify the issue, imagine a simple building plan with two spaces and some doors

and windows is created in one of these tools and then it is exported as an IFC model.

With an ideal interoperable model, the other tools are expected to interpret and

render the model exactly as it was appearing in the first tool and without loss of

information. However the experience has shown that in some cases this assumption

is not true and the exported model might result in distortions. Figure 2.13 shows an

IFC-exported model that has been opened in AutoCAD Architecture. As it is

depicted in the picture, the door opening’s relation has lost its relation with door

element itself. As a result resizing the door opening will not resize the door element.

The same phenomenon happens to windows and window openings.

Interoperability 33

Figure 2.13: model inconsistencies among IFC-enabled tools

As mentioned above, IFC is an effort to provide a commonly accepted standard for

support of information sharing between diverse applications in AEC context. In the

recent years, it has been supported by many commercial and free software tools and

it is clear that it will be the way ahead for more effective and structured

interpretability in AEC/FM processes.

Ontologies and Semantic Web 34

Chapter 3

ONTOLOGIES AND SEMANTIC WEB

As mentioned in the previous chapters, the goal of this research is to exploit the

Semantic Web technology to bridge the knowledge gap among AEC/FM domains.

Since Ontologies and Semantic Web play significant roles in the presented approach

of this research, the first part of this chapter is dedicated to introduce these

technologies and at the end, the specific application of Semantic Web and Ontologies

in AEC/FM will be explored.

3.1 Ontology Fundamentals

The term Ontology has its origin in ancient Greek philosophy and is defined as the

study of the nature of being, existence or reality and of the categories of being and

their relations. Inspired by this philosophical definition, computer scientists have

used this term as a formal representation of concepts within a specific domain and

the relationship between those concepts. A comparison of these two definitions

shows that in both philosophy and computer science, ontology is a means for the

representation of entities, ideas, and events together with properties and relations in a

categorized context. Despite this basic similarity, philosophers are less concerned

about precise definition of the vocabularies. The computer scientists, on the other

hand, started to formalize large and robust ontologies that are being exploited in

many fields and used as the common understanding of domain concepts. Nowadays

ontologies are playing a central role in capture of domain knowledge and joining the

discrete information over organizational borders.

Ontologies and Semantic Web 35

The basic components of ontologies are instances (individuals), concepts (classes),

attributes, axioms, and relations. In the rest of this section we will introduce these

concepts briefly.

Instances or individuals are representation of concrete objects such as cities,

countries, and people, as well as literal values such as words and numbers. It is

important to note that ontology does not have to include instances and provide a

classification for them; instead ontology may define only the classification of the

abstract concepts. For instance ontology can categorize people to “male” and

“female” categories and do not include instances such as “Adam” and “Eve”

however the provided categories can be applied to those individuals, even if those

individuals are not explicitly part of the ontology.

Unlike the instance, classes or concepts provide an abstract classification for real

world entities. In the previous example “male” and “female” represent the classes for

two groups of objects in real world who are men and women. More formally a class

can be defined as an extension or an intension. For the extension perspective, classes

are abstract groups, sets or collection of objects whereas the intension definition

describes them as abstract objects that are defined by values of aspects that are

constraints for being member of the class. As a result a class may classify instances,

other classes, or a combination of both.

An important relationship between classes is subclass or subtype which is used to

create a hierarchy of classes. A subtype classes will inherit all attribute of their

parents. It is important to note that in most ontologies, classes are allowed to have

any number of parents which is called multi inheritance and as a result the child class

will inherit all attributes of its parents. A common hierarchy building strategy is

disjoint partitioning where the partition rule guarantees that a single instance cannot

be in both subclasses. For instance the “human” class can be subsumed by “male”

and “female” subclasses which form a disjoint partition; i.e. every human should fall

only under one of these subclasses with an agreed definition of each subclass.

Ontology classes can also be described by their relation to other entities. The related

entities in ontology definition are referred as attributes. An attribute can be a separate

class or individual and express a specific fact about the concept that owns the

Ontologies and Semantic Web 36

attribute. For instance a “human” concept may have literal attributes such as name,

age, etc and also some class attributes such as father, children, and country.

In ontology, relationships specify how object are related to other object. The

relationship themselves can be seen as particular classes that clarify the relationship

between concepts. Sometimes the relations are also categorized by the type of the

entities that they connect to each other. For example some relationships may relate a

class to other classes whereas some others relationships connect individuals.

To clarify the introduced ontology concepts and align them with AEC/FM concepts,

a simple ontology has been shown in figure 3.1.

Figure 3.1: An AEC/FM related ontology

Graph visualization is a common method for illustrating ontologies. Figure 3.1 shows

the graph visualization of an ontology for classes such as IFCBuildingElement,

IfcWindow and Skylight. Please note that, some of class names are preceded by

“ifc:” which specifies the namespace in which the class has been defined. The

namespaces will be explained in more details in upcoming sections and classes are

simply being referred without mentioning their namespaces. The IfcWall and

IfcWindow are disjoint subclasses of IfcBuildingElement (the disjoint

characteristic is not depicted in the figure). Also the Skylight class is defined as

subclass of IfcWindow; i.e. any instance of class Skylight will inherit the

attributes of an IfcWindow. The “is-a” relationship is a common relationship

that connects the subclasses to parent classes. The only ontology elements that have

Ontologies and Semantic Web 37

not appeared in this figure are instances of specified classes which is a common

approach in ontology creation. This kind of ontology is formally known as taxonomy

pattern and ontology captures the data structures and relationships between concepts.

As a result the domain knowledge is in the ontology itself. The other ontology

pattern which is called schema pattern usually has a simple ontology with lots of

instances. In this group of ontologies the domain knowledge is in the data and not

ontology. An example of schema pattern is a library of different skylight types which

have a small ontology for describing skylights and their physical attributes such as

height, width, U-value, etc and thousands of skylight products that follow that

schema. The schema ontology is a best practice for addressing the requirements of

enterprise and information exchange use cases.

Besides the internal structure of ontologies, the scope of an ontology is also an

important factor. From this perspective, ontologies are divided into domain

ontologies and upper ontologies. Domain ontologies describe a specific domain and

all concepts apply to the specific domain only. For instance the concept “Window” in

an AEC ontology is interpreted as a window component, however the same concept

in a user interface ontology is interpreted as a graphical presentation entity.

Depending on the specific domain ontology any of these interpretations would be

possible. An upper ontology or foundation ontology, on the other hand, deals with

the common model of objects that is applicable to large number of domain

ontologies. A well-known upper ontology is Dublin Core (Dublin Core, 2008)

ontology that describes a standard for cross-domain resource description by means of

simple concepts such as resource title, resource creator, publisher, format, etc. The

upper ontologies facilitate the information join between multiple domains and play a

significant role in information sharing.

3.2 Ontology Languages

In order to construct ontologies and encode the knowledge of a specific domain,

some formal languages have been invented which are referred to as the “ontology

languages”. These languages often facilitate definition of rules for knowledge

processing purposes too, and are commonly built upon generalization of first-order

Ontologies and Semantic Web 38

logic (FOL, 2008) or description logic (DL, 2008). The comprehensive description of

these logical frameworks is out of scope of this dissertation and in this section just

some well-known ontology languages such as OWL and RDF will be introduced in

more detail.

3.2.1 RDF

The Resource Description Framework (RDF) is a metadata model specification that

has been designed by the World Wide Web Consortium (W3C). The first release of

RDF was introduced in February 2004 as a W3C recommendation (RDF, 2004). The

basic principle of RDF language is the usage of subject-predicate-object model to

capture knowledge about web resources and share it for different usages. It is worthy

of note that the RDF language can be used to capture knowledge of any domain and

its application is not limited to web resources. In RDF terminology the model

elements (subject-predicate-objects) are called triples.

For example the fact that a specific skylight component has Solar Heat Gain

Coefficient (SHGC) of 0.33 will be modelled as follows:

• Subject (resource) : skylight name (for instance Velux-74 glazing)

• Predicate (property) : has SHGC

• Object (value) : 0.33

RDF triples are also visualized as a directed label graph, where subjects and objects

are shown as a vertex and the predicates are depicted as an arc directed from subject

to object which is labelled by predicate. Figure 3.2 depicts the previous example in

graph form.

Figure 3.2: Graph visualization of a triple

An RDF document contains a number of triples and creates precise relationships

between vocabulary items or resources. The RDF documents and their internal

structure can be reused in other domains and this established a powerful mechanism

Ontologies and Semantic Web 39

to join the information of resource from different domains. As a result the resources

can be combined and processed as if they come from a single domain. To manage the

complexity of inter-domain references, all triple items should be identified by

qualified names which are known as QName. A QName contains a prefix that has

been assigned to a specific domain, followed by a colon, and then the local resource

name. This QName’s prefix which is also known as namespace is a unique identifier

for a specific domain and usually refers to a Uniform Resource Identifier (URI).

URIs will be explained in more details in the forthcoming sections. As a result,

resources such as building, location, architect, skylight, etc and the RDF properties

such as shape, color, city, title, etc are uniquely identified by a URI. The value or

object part can also be identified by a URI or contain simple literal values such as

0.33, “Vienna”, etc. It is important to note that some value (object) nodes have no

URI or literal value; but they will add extra triples to the parent resource. This kind

of node is known as blank nodes. Figure 3.3 is an improved version of skylight triple

with an extra blank node for skylight producer.

Figure 3.3: Skylight example with a blank node

As mentioned above and depicted in Figure 3.3, any of the subject, predicate, or

object can be originated from various domains or equivalently from different

namespaces. The textual convention for presenting the triples and name spaces is

shown in listing 3.1.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
@prefix product: <http://product.info/skylights/>
@prefix skydreamer: <http://buildingsmart.at/skydreamer/>

Ontologies and Semantic Web 40

<product:Velux-74_glazing> <rdf:type> <skydreamer:skylight>;
<product:Velux-74_glazing> <skydreamer:hasSHGC> “0.33”

Listing 3.1: Skylight example with various namespaces

The first three lines of listing 3.1, define namespaces for RDF, skylight products and

SkyDreamer. At the end there are two triples with items that are coming from various

namespaces. The triples express that the Velux-74_glazing resource which is a

skylight component has the SHGC value of “0.33”.

The RDF language introduces a flexible and expressive data model. Compared to the

relational knowledge representation and also traditional ontology models, RDF is

simpler to comprehend both for computers and human users. In practice, RDF data is

often persisted in relational database or native representations also called triple

stores.

3.2.2 RDF Schema

The RDF Schema or RDFS is an extension of RDF vocabulary for building

taxonomies and describing light-weight ontologies. RDFS defines the recursive

concept of “rdfs:class” to declare a resource as a type for other resources. Moreover

classes can be related to other classes by “rdfs:subClassOf” that declares the

inheritance between parent and child classes. Another advantage of RDFS is

definition of domain and range for RDF predicates via rdfs:domain and rdfs:range

properties. The rdf:domain property describes the resources that can be used as

subject of the selected predicate. Likewise, the rdf:range defines the object resources

that can be used in triples that contain a specific predicate.

For instance, the Skylight concept from the previous example inherits the Window

class and may extend the triples as shown in the listing 3.2. Please note that the

notation used in the listing 3.2 is slightly different and is a shorthand substitution of

the full triple notation. In this notation the triples with the same entity as subject are

summarized into a single statement (for instance skydreamer:hasSHGC).

Ontologies and Semantic Web 41

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>
@prefix ifc: <http://www.buildingsmart.at/ifc-schema#>
@prefix skydreamer: <http://buildingsmart.at/skydreamer/>

skydreamer:Skylight rdf:type rdfs:Class ;
 rdfs:subClassOf ifc:Window .

skydreamer:hasSHGC rdf:type rdf:Property ;
 rdfs:domain skydreamer:Skylight ;
 rdfs:range xsd:decimal ;
 rdfs:comment “Solar Heat Gain Coefficient” .

skydreamer:Velux-74_glazing rdf:type skydreamer:Skylight ;
 skydreamer:hasSHGC “0.33”^^xsd:decimal .

Listing 3.2: Skylight using DRFS extensions

The expressive power of Resource Description Framework (RDF) and RDF Schema

(RDFS) is very limited. RDF is roughly limited to binary ground predicates and RDF

Schema is roughly limited to a subclass hierarchy and a property hierarchy with

domain and range definitions (Berners-Lee et al., 2006).

The main modelling primitives of both RDF and RDFS are concerned with the

creation of taxonomies and forming the class hierarchies. However, additional

features such as disjoint classes, equivalent classes, and specific type of restrictions

are needed to facilitate the knowledge capture of ontology domains. These additional

requirements are addressed by OWL which will be explored in next section.

3.2.3 OWL

The semantic of RDF and RDF Schema is not enough to achieve useful reasoning

task on web documents and there is still the need for a more expressive language.

Web Ontology Language (OWL, 2004) is another ontology language that has been

developed by W3C for defining and instantiating domain ontologies. An OWL

ontology (an ontology that has been defined in OWL language) may include

descriptions of classes, properties and their instances. Given such an ontology, the

OWL formal semantics specifies how to derive its logical consequences, i.e. facts not

literally present in the ontology, but entailed by the semantics (OWL guide, 2004).

Ontologies and Semantic Web 42

Using OWL, the meaning of terms and their relationships can be represented

explicitly. As explained before, such a representation of terms and their

interrelationships is called ontology. Compared to RDF, OWL provides additional

vocabulary for describing properties, classes, and instances among others, relations

between classes: (e.g. disjoint classes), cardinality (e.g. "exactly one"), equality,

richer typing of properties, characteristics of properties (e.g. symmetry), and

enumerated classes. Therefore provides a better machine interpretability than RDF.

OWL has three increasingly-expressive sublanguages (OWL guide, 2004):

• OWL Lite that provides a classification hierarchy and simple constraint

features. For example, an “Opening” entity can be classified to “Window”,

“Door” and “Skylight”. Moreover it permits the cardinality constraints and

can restrict the cardinality to 0 or 1.

• OWL DL (Description Logic) as the superset of OWL Lite, provides more

expressiveness without losing computational completeness (all entailments

are guaranteed to be computed) and decidability (all computations will finish

in finite time) of reasoning systems. OWL DL is so named due to its

correspondence with description logics, a field of research that has studied a

particular decidable fragment of first order logic. OWL DL was designed to

support the existing Description Logic business segment and has desirable

computational properties for reasoning systems.

• OWL Full is the super set of OWL DL and provides the maximum

expressiveness and the syntactic freedom of RDF with no computational

guarantees. For example, in OWL Full a class can be treated simultaneously

as a collection of individuals and as an individual in its own right. OWL Full

allows an ontology to augment the meaning of the pre-defined (RDF or

OWL) vocabulary. It is unlikely that any reasoning software will be able to

support every feature of OWL Full.

Ontologies and Semantic Web 43

3.2.4 Ontology Query Languages

In addition to modelling languages, Ontologies also need a query language to utilize

the information represented by ontology languages for various applications. There

are a couple of such query languages. In this section we will briefly introduce the

SPARQL query language (SPARQL, 2008) that has been widely used in the

proposed solution of this dissertation. SPARQL term is an acronym that stands for

Simple Protocol and RDF Query Language. The language can be used to describe

queries across RDF data sources. The SPARQL query syntax is very similar to RDF

notation and the SPARQL query processor will parse the given triple pattern of query

and returns the sets of triples that match that pattern.

Listing 3.3 shows a SPARQL query for extracting product name of all skylight

components that has the specified values for SHGC, VT (visual transmittance) and

U-Value (these attributes and their meaning will be discussed in the forthcoming

sections).

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ifc: <http://www.buildingsmart.at/IFC2X3.owl#>
PREFIX sl: <http://www.buildingsmart.at/Skylight.owl#>

SELECT ?sl ?name ?vt ?shgc ?ufact WHERE {

 ?sl rdf:type sl:Skylight .
 ?sl sl:hasShgc ?shgc .
 ?sl sl:hasVt ?vt .
 ?sl sl:hasUfactor ?ufact .
 ?sl ifc:IfcRoot_Name ?name .

 FILTER(?shgc <= 0.3 && ?ufact <= 0.7 && ?vt >= 0.5)
}

Listing 3.3: Sample SPARQL query

The given query in listing 3.3, lists the skylight and its relevant attributes such as

SHGC, VT, and U-Value that fall in the provided range of values. The basic query

part here is the triple patterns that combine variables (names with ‘?’ prefix) with

ontology entities. These patterns will chain together and run on RDF graph to result

the set of matching triples.

Ontologies and Semantic Web 44

3.3 Semantic Web Vision

In the previous sections Ontology concepts and relevant ontology description and

ontology query languages were discussed. In this section, the Semantic Web will be

introduced which has boosted many improvements in the ontology world. The

Semantic Web is an evolving extension of existing World Wide Web. In contrast to

the traditional web of hypertext documents, the Semantic Web is considered as a web

of data, in which information is given well-defined meaning to make them

interpretable and processable by machines. The Semantic Web promises to bring

structure to the Web through common formats for integration and interchange of data

drawn from diverse sources (Berners-Lee et al., 2005).

Semantic Web also intends to improve knowledge sharing which is the key factor to

success in collaborative environments. Thanks to the development of technology, it’s

now easy to have access to lots of information which are available on the internet.

The Internet has eliminated distances as a barrier to sharing information at a

worldwide level and enables better communication. Although invention and

development of internet facilitated sharing and reusing of information for the people

but all this information are only human comprehensible, and they cannot be

processed without human intervention. In other words, the mechanical actions of

commuters will result in some results that should be interpreted by human to extract

the required information.

The traditional Web is based on HTML (Hypertext Mark-up Language) which

describes the way that data (web content) should be rendered on browsers, but it does

not contain any means of interpretation for the semantics of web contents. As a

result, the computers are unable to process the meanings and perform more complex

tasks as human user does. For instance, consider the case that an architect runs a

search for words “architecture” and “ontology” on a search engine. Since the

computers are unable to understand the meaning of query terms and bind them to the

architecture knowledge domain, the result will include many irrelevant items about

ontology software components and architecture. Semantic Web tries to overcome this

issue by annotating the web resources with relevant ontologies which means the

resources are aligned with a known concept in an ontology that can be interpreted by

Ontologies and Semantic Web 45

computers. By adding such information one will be able to search for that specific

concept and find the exact required information.

The more computers understand the meaning of data and the relationship between

them, the more successful is the interoperability between applications. Imagine how

humans can comprehend sentences, how the meaning of a single word differs in

sentences or in a set of sentences. We learn lots of word over the years and for each

of them we store a meaning in our mind. Each word has some properties and through

these properties they are related to other words and meanings in our mind. For

example, we hear about an opening in a wall, it is already clear that the opening will

be related to a door or window with the same dimensions.

There are many languages, which are spoken around the world. Though all people

have stored the same image for a specific concept in their mind, they would not

understand words or sentences in a foreign language if they have not learned it

before. The people should know a common language to communicate with each

other. The same is true with software and applications on computers. The more

complete is the definition of this language and the property of each object and the

relationship between them, the more powerful and successful the communication

between the applications and the exchange of information. By structuring

information with such a language, not only users are able to make sense of it, but

also it would be processable by machines.

Another shortcoming of the current web is the integration of data that are spread over

several web pages. The only means of traditional web that connects the information

together is the HTML hyperlinks and URLs. Hyperlinks are a powerful method for

connecting the web pages; however it lacks the capacity for description of the

resources that are being connected on World Wide Web.

Ontologies and Semantic Web 46

Figure 3.4: Data structure in traditional web

The objective of the Semantic Web is to provide the best framework for adding logic,

inference, and rule systems to the web. If an engine of the future combines a

reasoning engine with a search engine, it may actually be able to produce useful

results. Achieving powerful reasoning with reasonable complexity is the ultimate

goal for the Semantic Web because it will lead to machine processing and services

automation on a global scale. The challenge is finding the best layering of ontology,

logic, and rule mark-up languages for the Semantic Web that will offer solutions to

the most useful web information processing. (Berners-Lee et al., 2006)

Then Semantic Web vision is based on multiple technologies that make realization of

this vision possible. These technologies are captured in the famous Semantic Web

layer cake of Tim Berners-Lee (the inventor of the World Wide Web) as shown in

figure 3.5 which illustrates how Semantic Web languages are built upon XML and

climbs up the mark-up language pyramid to RDF and OWL. Brief descriptions of

technologies in these layers are mentioned below.

Ontologies and Semantic Web 47

Figure 3.5: Semantic Web Cake Layer

Unicode and URI are the lowest building block of Semantic Web. Unicode is the

universal standard encoding system and provides a unified system for representing

textual data. The Uniform Resource Identifier (URIs), provide a standard way (using

a specific protocol) for identifying any resource in the World Wide Web and is the

basis of data interchange in the Semantic Web. In the previous section we have seen

many examples of URIs for identifying ontology elements. Each URI belongs to a

namespace (second layer of Semantic Web cake) and it’s possible to have resources

with the similar names but in different namespace. For instance, the “Window” is

interpreted differently in a building ontology where it depicts the real work window

components and in the user interface ontology where it represents the software frame

in a graphical operating system.

In the second layer of Semantic Web cake, XML appears. XML is the acronym for

the eXtensible Markup Language and describes a simple and flexible text format for

information exchange. XML is the W3C recommendation and allows data to be

exchanged between different applications. Using XML lets people to use their own

tags (not predefined) and to add their arbitrary structure to their document (tree

structure). It is worthy of note that, although the computer can parse and extract

different parts of an XML document, it has no idea about semantic meaning of

concepts and their relations. For instance, if a human user reads the XML snippet in

listing 3.4, he/she will infer that “The window’s frame is made of wood”, but

machine is unable to make this inferences due to lack of semantics. The only thing

Ontologies and Semantic Web 48

that machine will learn out of this XML snippet is that the Window element has a

sub-element which is named frame_material and its value is the string “wood”.

...
<window>

<frame_material>wood</frame_material>
</window>
...

Listing 3.4: Simple XML snippet

The limitations of XML documents, for comprehensive data exchange between

systems are as follows:

• Pre-arranged agreement on vocabulary is needed; i.e. a human user should

configure both systems to interpret the XML document properly. As a result

XML documents are reasonable for closed collaborations between partners

and not for global share of resources.

• Lacks the capability to capture the semantic relation between entities. For

instance the fact that “Window is-a Building element” cannot be formulated

in an XML document.

Even though computers are not able to interpret semantics of XML documents, the

well-defined information structure facilitates the complex data conversion and data

processes. For this purpose the eXtesible StyleSheet Language (XSL, 2008) is used

to describe how XML data should be transformed to other XML formats. For

example an XSL document can be applied to an XML document to transform it to an

HTML page (which is also an XML format) for representing the data on the web.

The Next layer of Semantic Web cake is XML Schema and XML Query. The XML

Schema (XML Schema, 2008) which is also a W3C recommendation provides a

means for defining the structure and data type of XML elements. The XML Query

component facilitates the search mechanism on XML documents. This includes

definition of query languages such as XML Path Language (XPath, 2008) and also

database-like solutions for storage of XML documents and execution of XML

queries.

Ontologies and Semantic Web 49

The next two layers of Semantic Web, namely RDF model and ontology and also

semantic query of the next layer have been already discussed in previous sections

and as described before they heavily use the lower layers to build, capture and query

the domain ontologies.

From the remaining layers, only the rules and logic layers will be explained and the

higher layers that are not the main concern of this dissertation are bypassed.

Basically the semantic rules are statements in the form of an if-then (antecedent-

consequent) sentence that describes the logical inferences that can be drawn from an

assertion in a particular form (ontology, 2008).

Rules are one of the main concerns in Semantic Web world and in the last few years

there has been a significant progress in that area. This includes standards proposals

and efforts for creating rule description languages such as RuleML, SWRL, and

recently W3C Rule Interchange Format. Moreover there are a handful of open source

and commercial rule engines that can apply the rules to underlying ontologies and

deduce new facts. This process is also known as semantic reasoning and will be

explained by means of an AEC use case in the following section.

3.4 Semantic Reasoning

Semantic reasoning is the inference of logical consequences from a set of asserted

facts or axioms. To demonstrate the usage of reasoning in AEC/FM field, consider a

building map with a two rooms as shown in figure 3.6. By looking at this map a

human can easily interpret that these two rooms are directly accessible to each other.

In order to clarify the situation for a computer and enable it to interpret the same

results as human, it is needed to capture the domain knowledge and then exploit a

logical framework. For the first task a building ontology may be used that contains

the building entities and their relations (the process of building this ontology will be

explored in the forthcoming sections).

Ontologies and Semantic Web 50

Figure 3.6: simple reasoning scenario

In order to fulfil the reasoning requirement, some rules should be defined on top of

the domain ontology as shown in listing 3.5.

Rule 1 : [
 hasDirectAccess: (?s1 ifc:hasDoor ?d1)
 (?s2 ifc:hasDoor ?d1)
 notEqual(?s1,?s2)
 -> (?s1 ifc:hasDirectAccess ?s2)
]

Listing 3.5: Simple XML snippet

The above mentioned rule, simply describes the fact that two rooms are directly

accessible to each other, if they are sharing a door. Moreover the rule explicitly

avoids the direct access of a room to itself by applying the “not equal” rule for any

two given spaces. After applying this rule some new triples for the adjacent rooms

with direct access to each other will be added to ontology.

3.5 Semantic Web Services

In Information Technology world, the problem of linking applications from

heterogeneous environments, which is more or less similar to AEC knowledge

domain problems, is addressed using Service Oriented Architecture (SOA) and Web

Services. In AEC field also there are some research works toward realizing SOA

environments where, there is no need to install and upgrade several tools (e.g.

energy, acoustic, structural, cost analysis) on desktop computers. Instead, all

applications are available on the web as web services and they would communicate

Ontologies and Semantic Web 51

freely with each other and project participants would access to a much broader

network of technical resources than is possible today (AECBytes, 2008). A

complementary standard to Web Services is Web Service Description language

(WSDL) which is an XML format for describing network services as a set of

endpoints operating on messages containing either document-oriented or procedure-

oriented information (WSDL, 2008). End-user / system can use the service

description to communicate the service correctly, however selecting suitable services

needs the human interaction, i.e. a person should explore the description of web

services and make the decision about services that would best suit the requirements

of each single use case. The missing element in this scenario is again the semantic

information about services and the fact that the WSDLs describe the web services

syntactically and not semantically.

In order to overcome this deficiency, web services are additionally equipped with

semantic definitions that are shared among the participants of defined domain by

means of Semantic Web technologies. Semantic Web Services on the simplest case

may define the service’s input and output parameters by mapping them to a known

shared ontology. Figure 3.7 depicts a simple service that makes the costs calculations

for lighting and the service profile is annotated by an IFC ontology.

Figure 3.7: Aligning the web service parameters with an IFC-based ontology

Ontologies and Semantic Web 52

3.6 Semantic Web Tools

Several tools are in use for creation of ontologies and metadata. In this section, the

tools that have been used for the proposed solution of this dissertation will be

introduced briefly.

3.6.1 Protégé Ontology Editor

Protégé (Protégé, 2008), is a free open source ontology editor and a knowledge-base

framework based on Java. Ontologies can be modelled in two main ways i.e.

protégé-frames and protégé-OWL editors. Protégé ontologies can be exported into a

variety of formats including RDF(S), OWL, and XML Schema. Plug-ins can be used

to change and extend the behaviour of Protégé. In this research, protégé has been

used for creating and editing the required ontologies.

3.6.2 Jena Semantic Web API

Jena (Jena, 2008) is an open source Java framework for building Semantic Web

applications. It provides a programmatic environment for RDF, RDFS and OWL,

SPARQL and includes a rule-based inference engine. Jena is grown out of work with

the HP Labs Semantic Web Programme. The Jena framework includes:

• An RDF API

• Reading and writing RDF in RDF/XML, N3 and N-Triples

• An OWL API

• In-memory and persistent storage

• SPARQL query engine

3.6.3 Joseki

Joseki (Joseki, 2008) is a WebAPI for the remote query and update of RDF models

and comprises of the following components:

Ontologies and Semantic Web 53

• A client API providing convenient access to the update and query operations

of the RDF WebAPI protocol.

• An RDF server, which can run embedded in an application, as a standalone

program, or as a web application inside a suitable application server. It

provides the operations of query and update on models it hosts.

Joseki supports the SPARQL Protocol and the SPARQL RDF Query language

(SPARQL, 2008).

3.7 Applications of Ontology in AEC/FM field

In order to provide interoperability, it is needed to provide a common syntax for

machine understandable statement, creating common vocabularies agreeing on a

logical language using the language for exchanging proofs (Studer et al., 2003). This

requires formal and explicit specifications of domain models, which in the semantic

web terminology are called ontologies. Ontologies will present the domain concepts

and the relationships between those concepts, by providing a controlled vocabulary

of concepts. As the first step toward using Semantic Web technologies, there should

be a unified ontology that reflects the requirements of AEC/FM domain and

empower the computers to interpret domain concepts in a formal way.

At the time this dissertation started, there was no significant research that practically

deals with application of Semantic Web in the AEC/FM context. As Semantic Web

technologies gets elaborated steadily and attracts more attention in scientific

community, the AEC/FM industries have also slowly started to take advantage of

these technologies and recently, many research activities are trying to exploit

ontology applications and utilize its potentials to address the interoperability issues.

One of the recent research works in this context is the European Semantic Web-

based Open Engineering Platform project (SWOP, 2008). The project introduces a

Product Modeling Ontology (PMO) that aims to be a fully generic, freely reusable,

“upper ontology” specified in the OWL language (Böhms et al., 2008). PMO is

supposed to contain, in a necessary and sufficient way, all constructs to define any

end-user product ontology, modelling all relevant end-user’s product classes,

Ontologies and Semantic Web 54

properties and interrelationships (in particular specialization and decomposition)

together with cardinalities, data types, units and default values. Another interesting

point in the SWOP project is that the product configurations are optimized by

applying Genetic Algorithm so that the resulting product is not just a valid solution,

but even near an optimal solution.

Generally, the Semantic Web approaches in AEC/FM are generally aiming to:

• facilitate machine understanding of domain knowledge as well as their

complex interdependencies

• bridge the gap between knowledge domain and across heterogeneous

construction documents

• ease the integration tasks and reuse of knowledge with loss of information

• providing customised views for project partners without altering the shared

model (ontology mapping)

In this section the potential semantic resources to establish AEC/FM ontologies will

be discussed and at the end the ontology creation process of this dissertation will be

explored. While in the other knowledge domains the ontologies should be created

from scratch, the AEC/FM owns some potential resources such as domain

dictionaries, schemas and taxonomies that can be transformed to a formal ontology

structure. The advantage of this approach is that the created ontology remains

compatible with all existing domain models that have been built on top of these

domain dictionaries. The most notable efforts include the following (Rezgui, 2006):

• The BS6100 Glossary of Building and Civil Engineering terms, produced by

the British Standards Institution (BSI), the independent national body

responsible for preparing British Standards. This is a rich and complete

glossary that provides a comprehensive number of synonyms per term that

can contribute towards any ontology development effort in the sector;

• The bcXML (eConstruct, 2001) is an XML vocabulary developed by the

eConstruct IST project for the construction industry. The bcXML provides

the foundation for the development of the bcBuildingDefinitions taxonomy,

which can be instantiated to create catalogue contents. Through bcXML,

Ontologies and Semantic Web 55

eConstruct has enabled the creation of “requirements messages” that can be

interpreted by computer applications and then find suitable products and

services that meet those requirements;

• The ISO 12006-2 (1999) is concerned with current classification needs and

builds on the experience of developing and using conventional classification

systems;

• The IFC model, developed by the IAI, has produced a specification of data

structures supporting an electronic project model enabling data sharing

across software applications; and

• The OmniClass Construction Classification System (OCCS) developed in

Canada by the Construction Specifications Institute, addresses the

Construction industry’s information management needs through a

coordinated classification system.

Among these semantic resources, IFC deserves a particular attention due to the wide

acceptance in AEC/FM domains. In this dissertation the IFC has been used as the

basis for establishing the required domain ontologies. There are similar research

works that have explored the challenges of converting IFC to web ontology

languages (Schevers & Drogemuller, 2005), however these approaches are missing

the proper integration with the real world building model and providing a mechanism

to add class instances (building components) to abstract ontology model. The process

of creating this ontology and mapping the building model to ontology schema is as

follows:

Step 1: The IAI distributes the IFC specifications as EXPRESS (ISO 10303-11)

files. This files are transformed it to OWL by a translator called e2ont (e2ont, 2008).

The resulting OWL file (IFC OWL Schema) that contains some errors and logical

inconsistencies needed to be refined and corrected to be usable in the proposed

prototype.

Step 2: To combine the OWL schema of previous step with real world building

models, the schema classes should be instantiated accordingly. The OWL schema

together with instances and their relationships constitute the ontology of the

corresponding building model. In order to obtain instances, the IFC model of the

Ontologies and Semantic Web 56

building is required. This model can be generated using the handful of tools that

support IFC format. In the case of this dissertation, the ArchiCAD design tool has

been used that supports the IFC via its IFCXML Add-in. The building model is

exported as IFCXML (ISO 10303-28) which facilitates the data processing and

model translations.

Step 3: In order to translate the building model to OWL compliant instances, an XSL

transformation is used that reads the IFCXML file and convert it to OWL instances.

This transformation needs the appropriate XSL style sheet that explicitly defines the

mapping for each building element. In the use case of this dissertation, a small

portion of building model namely the space dimensions and skylights are required

and the transformation is done via specific building model parser that has been

implemented as java classes.

Step 4: finally the instances will be added to IFC OWL Schema and use case specific

requirements can be implemented using the Semantic Web Rules. The resulting

model can be put to work by a Semantic Web reasoning engine such as Jena

Reasoner for further queries and inferences.

Figure 3.8 depicts the above mentioned steps and how a building ontology model is

formed.

Figure 3.8: Building ontology model

Ontologies and Semantic Web 57

The details of the described method is not explained here, however the interested

reader may follow these steps and explore the corresponding file formats in

appendices.

Figure 3.9 shows a simplified building ontology model to demonstrated different

parts of this ontology. Please that for sake of simplicity, this ontology is not IFC-

complaint, however from the conceptual point of view there is no difference between

this ontology and an IFC-compliant one. The black boxes in this figure show the

classes that are being translated from EXPRESS distribution (STEP 1). The red

boxes depict the instances that are added to ontology model by applying the XSL

transformation to IFCXML format of corresponding building (STEP 2 and 3). The

arrows between instances and classes are tagged with “io” tag which stands for “is

of” type and show the instantiation of corresponding classes. Finally the blue arrows

show the inferences that are added to the model via semantic rules.

Figure 3.9: graph view of ontology model

SkyDreamer Prototype 58

Chapter 4

SKYDREAMER PROTOTYPE

The ultimate goal of this research as stated before is to envision, design and

prototypically implement a versatile information retrieval and management

environment to bridge the gap between disperse knowledge domains of Architecture,

Engineering and Construction by using Ontologies and Semantic Web technology.

The AEC knowledge domains are formed corresponding to the needed skills and

professions. Despite several efforts, there is still no efficient information

communication between domain applications. The building design process relies on

large databases that are often managed by human knowledge and interactions.

However, information from such databases can only be utilized in specific projects if

contextual parameters such as country-specific standards and policies are considered.

Effective mapping of relevant contextual attributes onto available building industry

information has a formidable potential to improve the design process and design

options and alternatives could be more readily assessed and compared by providing

semantically enriched building models to evaluation applications (e.g. performance

simulation programs).

During the design phase, architects and engineers must make some critical decisions

about building components and materials to be used. Provision of computational

support for this decision making process would benefit the AEC stakeholders in view

of cost reduction, energy efficiency, and occupants' comfort and productivity.

To illustrate such a multidimensional decision making problem, this research will

focus on the example of a specific decision making scenario, namely the selection of

skylight product. According to this scenario, the selection of a proper skylight

SkyDreamer Prototype 59

product is dependent on multiple factors such as client requirements, space functions,

visual and thermal requirements, structural constraints, design concepts, and budget.

Any decision toward selecting a specific skylight product must not only comply with

the applicable requirements and criteria, but also be evaluated in view of resulting

performance (energy, daylight, etc.). Note that the specific application in this case

(skylights) and the associated computational tools (energy calculator) serve here as

illustrative instances. As such, similar processes can be implemented for other – and

more realistic – application scenarios in building design and construction domain.

Today, there are many different media (catalogues, CDs, internet), which entail

information on building products and their relevant technical information (Mahdavi

et al., 2004). However, most of this information is neither in a standard format nor

machine processable (in a semantic way). The use of IFC as the common template

for information sharing (Halfawy et al., 2002) and the application of Semantic Web

Services as the communication method can address this problem.

4.1 Use case scenario

One of the most important aspects of a building design is lighting, which is a

combination of electric lighting and daylighting. Achieving efficient daylighting in a

building depends on many factors such as climatic condition, solar orientation, sky

conditions, the orientation and location of fenestration and the size and material of

windows and transparent media. An efficient daylighting affects light quality and

illumination levels of indoor spaces. Moreover it is a significant architectural feature

in interior design that on one hand, enhances the appearance of building's spaces and

on the other hand, provides a comfortable and pleasant environment that guarantees

the satisfaction of occupants.

There are variety of daylight-related devices such as windows, skylights, light wells,

light shelves, etc that may be used to support effective internal illumination and also

saving energy for cooling/heating of building’s spaces. For instance, a correct design

of side-lighting and/or top-lighting will lead to energy saving by providing adequate

daylight illumination in buildings so that electric lighting can be dimmed or switched

off by means of an integrated lighting control. The daylighting does not have a big

impact on the saved cooling energy explicitly; however it helps to avoid the

SkyDreamer Prototype 60

unnecessary heat that would be caused by electrical lighting. In other words, to

achieve the same level of illumination, daylighting would need less energy compared

to electric lighting. Also in the mild or warm season the airflow through windows

can provide natural ventilation, cool the rooms and reduce the need for air

conditioning which means the costs of air conditioning system can be reduced.

But on the other side, the improper selection of daylighting solution can increase the

energy consumption. For instance, due to an improper configuration (material,

position size, etc) of windows/skylights the building may face increased heat loss in

the cold season and high gain in the warm season and consequently the HVAC

system must work excessively and consume more energy to keep the indoor climate

within the comfort range. In other words the selection of fenestration is a very

sensitive issue. On the one hand the solar heat flow through the fenestration can

provide heating in the cold season, however in the warm seasons the undesired solar

heat will raise the temperature of spaces and cause discomfort. In this case, the

annual cooling requirement and its costs, which may be higher than heating costs,

will defeat the benefits of the heat gained in the cold season.

For the use case of this dissertation, a top-lighting solution has been selected and the

skylight design challenges will be addressed. Figure 4.1 depicts the basic parts of a

skylight component.

Figure 4.1: skylight system components

Selection of the appropriate fenestration (skylight in the case of this dissertation) in

today’s market with so many available choices of products and manufacturers is a

challenging task. There are wide variety of skylights with different sizes, shapes

SkyDreamer Prototype 61

(range from simple rectangles to complex polygons, etc), frame materials and glazing

materials in variety of shapes (e.g. dome, flat), colors (from clear and white to bronze

and gray colors), thickness and number of layers. All these factors significantly

affect the amount of light coming through the skylight and the efficiency of saving

energy. In addition to skylight physical attributes that were mentioned above, the

available illumination for daylighting depends also on the climate condition of

building location. As a result the skylight component of a building will not have the

same effect in another building with different climate condition and the climate

considerations should be considered to select the skylight’s physical attributes such

as glazing and frame material and also choice of electrical lighting control. For

instance, a transparent glazing material may be acceptable in a cloudy climate,

whereas a diffusing material is necessary for sunny weather with on-off electrical

control whereas for a location with low daylight availability may be more satisfied

with dimming control.

Glazing properties have highly impacts on the efficiency of skylight systems. To

select an energy efficient skylight product, some important factors should be

considered that are explained blow.

U-Value: defines how well a product prevents heat from entering the building. The

U-value ranges generally between 0.20 and 1.20. The lower the U-value, the better a

product is at keeping heat in and also provides a better thermal isolation. This factor

allows designers to compare the insulating properties of different skylights. To

increase the insulating value of skylights many manufacturers offer products with

double or triple glazing layers including gas fills or low-emittance (low-E) coatings.

It is worthy to note that manufacturers provide the U-factor of a skylight either for

just the glazing material part or for entire skylight component including glazing,

frame and the spacer material. Table 4.1 lists the U-Value for some sample glazing

and frame materials (ASHRAE Handbook, 1993).

SkyDreamer Prototype 62

Glazing material / frame material

Alum. no

thermal

break

Alum. with

thermal

break

Wood or

Vinyl

Single Glass 1.30 1.07 n/a

Double Glass, ½" air space 0.81 0.62 0.48

Double glass, low-e, (E*=0.2), ½" air space 0.70 0.52 0.39

Double glass, low-e, (E*=0.1), ½" air space 0.67 0.49 0.37

Double glass, low-e, (E*=0.2), ½" space with argon 0.64 0.46 0.34

Triple glass, low-e, on two panes, ½" paces with argon 0.53 0.36 0.23

Quadruple glass, low-e (E=.01) on two panes, ¼"

spaces with krypton

n/a n/a 0.22

Table 4.1: Window U-Values for some glazing and frame materials

Solar Heat Gain Coefficient (SHGC): defines how much of the solar spectrum is

transmitted through the glazing material. The SHGC range between 0 and 1 and the

lower the SHGC, the better a product is at blocking unwanted heat gain. Additional

glazing layers, or tinted glazing or using reflective coatings reject more solar heat

radiation and reduce SHGC.

Visual Transmittance (VT or Tvis): defines how much light is transmitted through

the glazing. The VT ranges between 0 and 1 and the higher the VT, the higher the

potential for daylighting.

Table 4.2 shows the VT and SHGC values for different glazing type, material and

colour (Skylighting Guidelines, 2008).

SkyDreamer Prototype 63

Glazing Type Glazing Layers Color VT SHGC

Acrylic/fiberglass Single-glazed Clear 0.92 0.77

Med White 0.42 0.33

Bronze 0.27 0.46

Double-glazed Clear 0.86 0.77

Med White 0.39 0.30

Bronze 0.25 0.37

Fiberglass Insulated Crystal 0.30 0.30

translucent White 0.20 0.23

U-0.24 Bronze 0.10 0.16

Polycarbonate Single-glazed Clear 0.85 0.89

Bronze 0.50 0.69

Med White 0.37 0.50

Double-glazed Clear 0.73 0.75

Bronze 0.43 0.58

Med White 0.32 0.43

Glass Single-glazed Clear 0.89 0.82

Bronze 0.55 0.64

Green 0.74 0.59

Double-glazed Clear 0.78 0.70

Bronze 0.48 0.51

Green 0.66 0.47

Double-glazed, low-e Clear 0.72 0.57

Bronze 0.45 0.39

Green 0.61 0.39

Triple-glazed, low-e Clear 0.70 0.53

Bronze 0.42 0.37

Green 0.61 0.38

Table 4.2: SHGC and VT for different glazing types, layers, and colors

The above mentioned parameters are commonly available on the skylight

components in the market and standard organizations together with manufacturers

assess the parameter values and make product certifications for a fixed

environmental condition.

SkyDreamer Prototype 64

Once daylight has passed through the skylight glazing, it can be controlled and

diffused by the shape and reflective properties of light wells, shading devices, and

the characteristics of rooms’ surfaces.

Light wells are used to distribute and reflect the light and bring it to the rooms. They

can be designed in different shapes and in wide variety of surface and colours. For

instance a white matt surface provides uniform light distribution while coloured

wells will distribute the light evenly but reduce its intensity. Other vertical surfaces

like horizontal shading under the skylight in the light well would control the amount

of daylight reaching the room. Also the surfaces of room itself have an impact on

distribution of lights. The light coloured surfaces help to distribute the brightness but

the matte surfaces diffuse the light further. In addition to the described factors

integration with electric lighting and heating system plays also an important role in

design of an efficient skylight system.

A balance of all these parameters is essential to supply the visual and thermal

comfort of the building occupants. The skylight is a good use case where many

different skills and professions (energy analyst, interior designer, etc) should

collaborate to make the best fitting selection. Figure 4.2 shows some of the important

factors and processes that should be considered during the skylighting process.

Figure 4.2: Process Diagram: Roof Design

SkyDreamer Prototype 65

The selected scenario is the multi dimensional problem of finding the best matching

skylight component with optimum glazing areas for a specific space in a building,

which provides uniform, low glare interior illumination, and achieves better

heating/cooling and lighting performance.

4.2 Proposed solution

To address the skylight design requirements, the SkyDreamer prototype has been

designed and implemented. SkyDreamer is a modern web 2.0 application that bridges

the gap between BIM, energy simulation services and product libraries using

semantic technologies in order to find the most efficient skylight components from

the energy consumption point of view. The SkyDreamer has the following five basic

parts:

• Semantic repository stores the skylight product information in a semantic

way. The Skylight ontology extends the core IFC2X3. The semantic

repository can then be queried via Joseki Servlet (Joseki Servlet, 2008).

• Web extraction component parses the product information pages from the

available sources on the web and stores them according to the skylight

ontology. In the present case study, a plug-in for “Certified Product

Directory” (CPD, 2008) has been implemented that lists the certified

products categorized by type and producer.

• Building's navigator facilitates the selection of desired space from the

building’s hierarchy of zones and spaces.

• Calculator receives the building model in IFCXML format and calculates the

energy use implications of the selected skylight component (extracted from

Semantic-based IFD library) for lighting, heating, and cooling.

• User interface that mediates between the end user and other system

components such as calculator and semantic repository.

Figure 4.3 shows the SkyDreamer system components and how different components

are plugged together to realize the proposed scenario. In the rest of this chapter the

SkyDreamer components will be introduced in more details.

SkyDreamer Prototype 66

Figure 4.3: System Components

In order to calculate the energy efficiency of a building with a specific skylight

element, some basic configuration is required. This configuration includes the

following items:

• The building model in IFCXML format

• The weather file of the building location

• Building properties such as building type (residential, office, etc)

• HVAC options

• Generic skylight features such as glazing type and glazing layers, etc.

The details of this configuration will be explained in the forthcoming sections; here

the bird view of task sequences will be briefly explained. The SkyDreamer

configuration is provided via the user friendly web interface and the required

geometry information such as space dimensions and also number of skylights and

their dimensions are automatically extracted from the building model. Based on the

given skylight specification such as glazing characteristics, the user will run the

simulation process for a producer-neutral configuration. In the next step the user will

be able to look for real products from the semantic repository and repeat the

simulation for the specific skylight component.

SkyDreamer Prototype 67

Figure 4.4: Sequence diagram of SkyDreamer prototype

4.2.1 Ontology component

To establish a Semantic IFD Repository, two basic parts are needed, namely: An

ontology schema that describes the required elements and the instances. In the

previous chapters it was explained how IAI’s IFC have been used to establish the

schema of the upper ontology. Ontology component library is considered to share the

skylight product information in a comprehensive and processable way to other IFC

compliant applications. This idea is fully compatible with Semantic Web concepts,

where ontologies represent the shared knowledge of a specific domain.

A challenging issue in creating the ontologies based on IFC ontology is that the IFC

standard does not explicitly define all building elements. Basically, the IFC model is

a generic object oriented model that can be extended to define new elements. For

example, an ifcWindow needs to be extended for creating a skylight with required

collection of properties. Thanks to the dynamic mechanisms of Semantic Web, a new

skylight ontology has been created that uses the IFC upper ontology concepts and

extend it to define new classes such as skylight.

SkyDreamer Prototype 68

Moreover, some new property sets was required that are specific to skylight

products. Definition of these property sets has also followed the IFC ontology

schema by instantiating the ifcPropertySet. However the organization of property

sets were not suitable for the required queries. A disadvantage of IFC's generic

model is the fact that the IFC-based elements are not semantically well-organized

and the format is more appropriate for object oriented computer processes. As a

result, the human user who needs to query the model needs to build complex queries

to extract the required information. Again, the Semantic Web methods have been

used to address this issue by semantic inference. In other words, the Semantic Web

rules have been used to make a shortcut and attach the properties directly to skylight

component via a new predicate (attribute). In this way the implicit property values

that where previously connected through a long chain of classes, are summarized in

terms of explicit attributes that are connected directly to skylight instances. Figure

4.5 shows the initial situation where for example SHGC attribute value needs to be

queried for a specific skylight and the new inferred predicate hasSHGC, which

simplifies the access to attribute values. Accordingly, to query all the skylights that

have a specific SHGC value, the user should trace the tree from skylight (right hand

side) up to the root and then the property sets (on the left hand side) and finally the

specific property value pairs. However by means of the inferred predicate the

formulation and execution of queries will improve significantly.

Figure 4.5: Semantic inference for simplifying access to skylight attributes

SkyDreamer Prototype 69

Basically the inference process in Semantic Web is implemented by loading the raw

model (IFC ontology in the present case) and applying the inference rules by means

of a Semantic Inference Engine. The inference result which is called the inferred

model will be then used for further queries. Semantic inference is a heavy and time-

consuming process and in case of huge ontologies such as IFC ontology, some

techniques are used to perform the inference efficiently. For instance instead of

running the inference and creating the in-memory inferred model for each query, the

result model can be persisted and used for further queries. Furthermore the ontology

models can be also stored in a relational database and accessed via an appropriate

semantic driver that translates the semantic queries to relational queries and returns

the resulting records as semantic information.

An alternative method to inference is to create the inferred data explicitly for the

newly added instances. This is especially helpful for highly structured ontologies

such as skylight ontology, that the inferred data can be generated and added to the

persistent model together with every new skylight instance. Listing 4.1 shows how

the new inferred data will make the shortcut for SHGC.

<Skylight rdf:ID="skylight_3001">
 <ifc:IfcRoot_Name rdf:datatype="&xsd;string">
 PEL-N-68-00005
 </ifc:IfcRoot_Name>
 <ifc:IfcRoot_OwnerHistory rdf:resource="#dummyOwnerHistory"/>
 <ifc:IfcRoot_GlobalId rdf:resource="#dummyUniqueId"/>
 <hasUfactor rdf:datatype="&xsd;float">0.56</hasUfactor>
 <hasVt rdf:datatype="&xsd;float">0.65</hasVt>

 <hasShgc rdf:datatype="&xsd;float">0.32</hasShgc>
</Skylight>

<ifc:IfcRelDefinesByProperties rdf:ID="rel_3035">
 <ifc:IfcRelDefinesByProperties_RelatingPropertyDefinition
 rdf:resource="#pset_wc_3004"/>
 <ifc:IfcRelDefinesByProperties_RelatingPropertyDefinition

 rdf:resource="#pset_gt_3015"/>
 <ifc:IfcRelDefinesByProperties_RelatingPropertyDefinition
 rdf:resource="#pset_cpd_3034"/>

 <ifc:IfcRelDefines_RelatedObjects rdf:resource="#skylight_3001"/>
 <ifc:IfcRoot_OwnerHistory rdf:resource="#dummyOwnerHistory"/>
 <ifc:IfcRoot_GlobalId rdf:resource="#dummyUniqueId"/>
</ifc:IfcRelDefinesByProperties>

<ifc:IfcPropertySet rdf:ID="pset_gt_3015">
 <ifc:IfcRoot_Name rdf:datatype="&xsd;string">
 Pset_DoorWindowGlazingType
 </ifc:IfcRoot_Name>
 <ifc:IfcPropertySet_HasProperties rdf:resource="#val_3006"/>
 <ifc:IfcPropertySet_HasProperties rdf:resource="#val_3008"/>
 <ifc:IfcPropertySet_HasProperties rdf:resource="#val_3010"/>
 <ifc:IfcPropertySet_HasProperties rdf:resource="#val_3012"/>

SkyDreamer Prototype 70

 <ifc:IfcPropertySet_HasProperties rdf:resource="#val_3014"/>
 <ifc:IfcRoot_OwnerHistory rdf:resource="#dummyOwnerHistory"/>
 <ifc:IfcRoot_GlobalId rdf:resource="#dummyUniqueId"/>
</ifc:IfcPropertySet>

<ifc:IfcPropertySingleValue rdf:ID="val_3014">
 <ifc:IfcProperty_Name rdf:resource="#SolarHeatGainTransmittance"/>
 <ifc:IfcPropertySingleValue_NominalValue rdf:resource="#nval_3013"/>
</ifc:IfcPropertySingleValue>

<ifc:Ifc_NominalValue rdf:ID="nval_3013">
 <ifc:Ifc_PositiveRatioMeasure rdf:datatype="&xsd;float">
 0.32
 </ifc:Ifc_PositiveRatioMeasure>
</ifc:Ifc_NominalValue>

Listing 4.1: adding inferred data for skylight’s SHGC

The content of this listing has been created automatically by web extractor

component for each skylight and depicts the textual serialization of the structure

shown in figure 4.5. The web extractor component will be introduced in the next

section; here only the explicit semantic inference method will be explored. As it is

obvious from this listing, most of elements are defined in ifc namespace which is

connecting the resources to IFC upper ontology. The listing defines a skylight

instance, with unique identifier skylight_3001 (at point 1). As mentioned before IFC

2x3 does not have a specific class for Skylight, and the Skylight class has been added

in Skylight ontology by extending the ifcWindow class. As the above listing shows

the Skylight class is not prefixed with ifc namespace, which means it is a new class

defined in ontology’s default namespace (skylight). To connect an entity to its

properties in IFC world, the IfcRelDefinesByProperties should be used (point 3)

that in present case connects the skylight (point 5) instance to a specific IFC property

set called Pset_DoorWindowGlazingType (points 4 and 6). This property set referes

to a property value (point 7) which is called SolarHeatGainTransmittance (point

8) with the Ifc_PositiveRatioMeasure value of 0.32 (point 9). This long chain of

references has been simplified by adding the hasShgc attribute directly to skylight

(point 2).

Since the IFC does not contain all required properties for skylights, the extra

properties can be added by user-customized property sets and defining the desired

attributes to this property sets. The drawback of this approach is that the new IFC

product and the models that are using this product might not be understood by other

stakeholders that do not use skylight ontology. In skylight case a new property set

SkyDreamer Prototype 71

namely Pset_CertifiedProductsDirectory has been defined that contains all

required attributes for skylight components and a reference to this property set is

added to each skylight in familiar way (line after point 4, #pset_cpd_3034).

Especially, it would be interesting if the new product and its specifications are

machine processable without human interaction. This is the point where Semantic

Web technology and ontologies might be helpful. It means, IFC plays its traditional

role as a standard information sharing model, while the Semantic Web extends and

enriches the IFC model in a machine-processable way.

As a matter of fact, Semantic Web and ontology engineering issues are the

challenging field of this thesis and are expected to bridge the gaps between

specifications, regulations and AEC applications

Finally, the inferred skylight ontology will be stored in an intermediate OWL file

that will be imported in the backend relational database to facilitate the semantic

queries. In this ontology, IFC plays its traditional role as a standard information

sharing model, while the Semantic Web extends and enriches the IFC model in a

machine-processable way. For the use case in this dissertation, the Jena2 Database

Interface and MySQL database have been used. The defined ontology (including

instances) has been shared with other SkyDreamer components as a web service.

This feature is provided by Joseki Servlet that accepts the semantic queries in

SPARQL syntax and returns the result in different formats such as RDF and JSON.

Figure 4.6 shows the basic architecture of ontology component.

Figure 4.6: architecture of ontology component

SkyDreamer Prototype 72

Joseki Web Service can be also called via a web interface to answer the semantic

queries directly. A customized version of Joseki query interface has been created for

semantic repository. Figure 4.7 shows the SPARQL query interface for skylight

semantic repository (IFC Ontology + Skylight Ontology + Skylight instances).

Figure 4.7: Joseki skylight query interface

4.2.2 Web extractor component

As explained before, the huge amount of information available on the web today, is

an important resource for AEC/FM businesses. There are thousands of online

catalogues and directories for all building components. In the first generation of

World Wide Web, information is merely formatted for presentation purposes and to

extract required information, human user should read and analyze the relevant

information resources. The primary goal of Semantic Web is to change this situation

and make this content readable and processable by computers in a way that extracted

information can be integrated into relevant business processes. In future web, the

SkyDreamer Prototype 73

web pages will include descriptive information that are open to software agents and

client applications that request the data. An example of such descriptive language is

RDFa (RDFa Primer, 2008) specification that embeds the semantic information into

HTML page. This aspect of Semantic Web vision has not been widely implemented

yet and still there are large amount of web data that are presented in traditional web

pages. One of the approaches that facilitate the transition from traditional web to

Semantic Web is the use of targeted page parsers (adaptors) that read the traditional

web pages and programmatically add the semantics to raw data. Examples of such

adapters are Web-Harvest (Web-Harvest, 2008) and Lixto Solutions (Lixto

Solutions, 2008). Both are general configurable parsers for web pages. The result of

these adaptors can be then stored semantically for further usage. It is also important

to note that these adapters are dependent on the structure and style of the web pages,

and the website changes will invalidate the information extraction configurations and

as a result the adapter should be configured to cope with website changes.

For the use case of SkyDreamer prototype, a customized adapter has been developed

that adds skylight products (instances) to the semantic repository. The web extractor

component is a simple Java application that runs periodically and synchronizes the

repository contents with the website's information. The information resource that has

been used for establishing the semantic material repository is the National

Fenestration Rating Council’s website (NFRC, 2008) based in United States. NFRC

is a non-profit organization that was formed in response to energy crisis of 1970s and

administers a uniform, independent rating and labeling system for the energy

performance of windows, doors, skylights, and attachment products. The most

important artifact of NFRC is a Certified Product Directory (CPD) that affords query

of certified products by providing its manufacturer and performance criteria. This

product directory will benefit both designers and manufacturers:

• Designers could adopt the appropriate building components and evaluate their

designs while considering alternative products. This would result in more

efficient buildings. An interesting use case of this kind is the selection of

energy efficient components for building envelope elements.

• Building product manufacturers could introduce the technical specifications

of their products that will be queried by consumers and building designers

SkyDreamer Prototype 74

In the specific case of skylights, CPD includes information such as U-value, SHGC,

VT, frame type, sash type, glazing layers and gas fill. The CPD manufacturers may

use the NFRC energy performance label that reflects the energy performance

characteristics of a product. The NFRC label can be used to determine how well a

product will perform in conjunction with cooling systems in summer and heating

systems in winter to keep building convenient for inhabitants. Moreover it gives

additional information about how effective is a product keep out wind and resist

condensation. This information can reliably be used by builders and consumers to

compare products and find the best fitting door, window, or skylight for buildings.

Figure 4.8 shows a typical NFRC energy performance label of a window with the

specified U-value, SHGC, and VT values. These values, which play a significant role

in behavior of window and skylight products are also used by SkyDreamer prototype

for calculation of energy performance of the zones that are benefiting from skylight

products.

Figure 4.8: NFRC energy performance label

The SkyDreamer’s web extraction component parses the relevant web pages of

NFRC website and generates the intermediate RDF files that will be later on added to

skylight repository. The web extractor starts with the manufacturer page and then

drills down to the product lines and individual products. At the product level, web

extractor captures the detailed physical and energy performance characteristics of

products. Figure 4.9 shows the typical production lines of a specific manufacturer

and also the product details of a selected production line.

SkyDreamer Prototype 75

Figure 4.9: NFRC skylight production lines (left) and product details (right)

SkyDreamer Prototype 76

The complete listing of web extractor component is not included here, but the snippet

of the code that extracts skylight characteristics from the web page cells is given in

listing 4.2.

public void getProductInfo(Vector<String> cell){

 for(int i =4 ; i < cell.size(); i+=16){

 SkylightProduct skyproduct = new SkylightProduct();

 skyproduct.setModelNumber(cell.elementAt(0));
 skyproduct.setProductLine(cell.elementAt(1));
 skyproduct.setFrameCategory(cell.elementAt(2));
 skyproduct.setSashType(cell.elementAt(3));
 skyproduct.setCPDNumber(cell.elementAt(i));
 skyproduct.setManufacturerProductCode(cell.elementAt(i+1));
 skyproduct.setFrameAndSashType(cell.elementAt(i+2));
 skyproduct.setRatedOrientation(cell.elementAt(i+3));
 skyproduct.setUFactor(cell.elementAt(i+4));
 skyproduct.setShgc(cell.elementAt(i+5));
 skyproduct.setVt(cell.elementAt(i+6));
 skyproduct.setCondensationResistance(cell.elementAt(i+7));
 skyproduct.setGlazingLayers(cell.elementAt(i+8));
 skyproduct.setLowE(cell.elementAt(i+9));
 skyproduct.setGapWidth(cell.elementAt(i+10));
 skyproduct.setSpacer(cell.elementAt(i+11));
 skyproduct.setFill(cell.elementAt(i+12));
 skyproduct.setGrids(cell.elementAt(i+13));
 skyproduct.setDividers(cell.elementAt(i+14));
 skyproduct.setTint(cell.elementAt(i+15));

 saveRDF(skyproduct.toRDF());

 }

}

Listing 4.2: Parsing product details by web extractor

As mentioned in the previous section, IFC does not include all the required

properties of skylights but the data structure of IFC model can be extended to define

additional properties. For this purpose a new property set,

Pset_CertifiedProductsDirectory, has been defined that contains all

additional skylight properties. This property set will be later on added to relevant

objects through an objectified relationship called

IfcRelDefinedByProperties. Listing 4.3 shows how properties such as gap-

width, spacer, grids and dividers are added to skylight instance in IFC-friendly style.

if (gapWidth > 0) {
 long id = addSingleValue("GapWidth", ""+gapWidth, "Ifc_Real");
 props.append(
 "\n\t<ifc:IfcPropertySet_HasProperties rdf:resource=\"#val_"+id+"\"/>");
}

if (spacer.length() > 0) {
 long id = addSingleValue("Spacer", spacer, "Ifc_Label");
 props.append(
 "\n\t<ifc:IfcPropertySet_HasProperties rdf:resource=\"#val_"+id+"\"/>");

SkyDreamer Prototype 77

}

if (grids.length() > 0) {
 long id = addSingleValue("Grids", grids, "Ifc_Label");
 props.append(
 "\n\t<ifc:IfcPropertySet_HasProperties rdf:resource=\"#val_"+id+"\"/>");
}

if (dividers.length() > 0) {
 long id = addSingleValue("Dividers", dividers, "Ifc_Label");
 props.append(
 "\n\t<ifc:IfcPropertySet_HasProperties rdf:resource=\"#val_"+id+"\"/>");
}

// PropertySet: Pset_CertifiedProductsDirectory
long pset_cpd = getNextGlobalId();
sb.append("\n<ifc:IfcPropertySet rdf:ID=\"pset_cpd_"+pset_cpd+"\">");
sb.append("\n\t<ifc:IfcRoot_Name
rdf:datatype=\"&xsd;string\">Pset_CertifiedProductsDirectory</ifc:IfcRoot_Name>");

sb.append(props);

sb.append("\n\t<ifc:IfcRoot_OwnerHistory rdf:resource=\"#dummyOwnerHistory\"/>");
sb.append("\n\t<ifc:IfcRoot_GlobalId rdf:resource=\"#dummyUniqueId\"/>");
sb.append("\n</ifc:IfcPropertySet>\n");

//RelDefineByProperties
sb.append("\n<ifc:IfcRelDefinesByProperties rdf:ID=\"rel_"+getNextGlobalId()+"\">");
sb.append("\n\t<ifc:IfcRelDefinesByProperties_RelatingPropertyDefinition
rdf:resource=\"#pset_wc_"+pset_wc+"\"/>");
sb.append("\n\t<ifc:IfcRelDefinesByProperties_RelatingPropertyDefinition
rdf:resource=\"#pset_gt_"+pset_gt+"\"/>");
sb.append("\n\t<ifc:IfcRelDefinesByProperties_RelatingPropertyDefinition
rdf:resource=\"#pset_cpd_"+pset_cpd+"\"/>");
sb.append("\n\t<ifc:IfcRelDefines_RelatedObjects
rdf:resource=\"#skylight_"+skylightId+"\"/>");
sb.append("\n\t<ifc:IfcRoot_OwnerHistory rdf:resource=\"#dummyOwnerHistory\"/>");
sb.append("\n\t<ifc:IfcRoot_GlobalId rdf:resource=\"#dummyUniqueId\"/>");
sb.append("\n</ifc:IfcRelDefinesByProperties>\n");

Listing 4.3: Creating product instances by web extractor

The web extractor component is also able to keep the repository information up-to-

date by parsing the relevant web pages and incorporate the new added information.

However there are some concerns in altering the skylight repository items. Since the

skylight repository is being used for energy performance analysis the change of

sensitive data such as SHGC, VT, and U-value will invalidate the energy analysis

results. One of the mechanisms to avoid this situation is to apply versioning

information to product repository and by each update assign a new version number to

the modified object while keeping the outdated versions. So the previous analysis

remains valid regarding to an older version of the product information. In Semantic

Web world this issue is addressed under ontology versioning title, which is more

relevant for the ontology schema. For the SkyDreamer case, we have ignored the

ontology versioning because it does not a primary challenge of this dissertation. As a

SkyDreamer Prototype 78

result, updates simply overwrite the existing information and all energy simulations

will be done based on the current stand of repository.

4.2.3 Building Parser and Building Navigator

In the building energy simulation programs, building is usually divided into some

logical or spatial divisions that are known as zones. Each zone might be a single

space or a grouping of similar spaces that are dedicated to a particular activity and/or

usage. Due to different occupancy and comfort requirements, each zone has a

equipped with different HVAC procedures to afford the inhabitant’s comfort

standards. For instance, an apartment may be divided into living and sleeping zones

and the temperature of each zone should be selected accordingly for different

occupancy models and also different times of the day.

The IAI defines a zone (IfcZone) as an aggregation of spaces, partial spaces or other

zones. Zone structures may not be hierarchical, i.e. one individual space (IfcSpace)

may be associated with zero, one, or several IfcZone's.

Zones play an important role in building energy calculation and in case of

SkyDreamer prototype; the building model should deliver the zone information and

corresponding spaces. Additionally, the energy calculation component needs to know

the space area, number of skylights, and also the total skylight area. This information

will be used to calculate skylight to floor ratio which is an important factor for

building energy calculation.

The IFC building information model contains all the required information. Some of

this information such as zones, spaces, and areas are explicitly defined in the model,

but others such as skylight to floor ratio should be assessed by building navigator

component. In order to make model parsing easier, SkyDreamer uses the IFCXML

form of building model which can be easily parsed and queried by XML libraries

such as dom4j (dom4j, 2008). This model may be created by any of IFC-enabled

design tools such as ArchiCAD, where IFC add-on will help to define IfcSpaces and

associate them to corresponding IfcZones. In case the uploaded model contains no

IfcZone, building navigator component will add a default zone and list all spaces

under this zone. Figure 4.10 depicts the tree view of an IFC model with some

IfcSpaces, which may be later on grouped together and form zones. After parsing the

SkyDreamer Prototype 79

model, the tree structure of building model will be created starting with zones and

corresponding spaces and then the available skylights in each space will be added to

space nodes.

Figure 4.10: IFC tree view and spaces in ArchiCAD

At runtime, user uploads the IFCXML file and the model parser component will

assess the building structure tree. Furthermore, the parser will automatically detect

the length and area units of any given model (by reading the model’s IfcSIUnit

for length and area) and convert them to metric system for further usages in energy

calculator component. When parsing is finished, user will be able to navigate through

the resulting tree and select the required space for energy calculations. In the next

step, building navigator will calculate the corresponding skylight to floor ratio for the

selected space. Some important parts of the model parser and model navigator source

code are available as an appendix (see Appendix 2).

4.2.4 Skylight Energy Calculator

As explained above, skylights can provide sufficient uniform illumination and save a

great deal of energy when they are designed and selected carefully. Oversized

skylighting system may increase the cooling loads in summer and waste of heating in

SkyDreamer Prototype 80

winter adding to energy consumption of building, also the cost for installation and

maintenance of undersized skylight system my be higher than its energy saving cost.

There are many large single-story buildings such as retail spaces, grocery stores,

restaurants, schools and offices that can benefit from skylighting to gain more

daylighting and reduce the need for electric lighting. The earlier daylighting is

considered in design process, the greater is the success in integration with other

architectural, electrical, and mechanical components and in providing most

daylighting with highest potential for energy saving.

To analyse the efficiency of the selected skylight and improve the energy

performance of the buildings, a skylight calculator is needed. This skylight calculator

should receive the information from different resources such as building model,

skylight characteristics and location information and make the necessary calculations

for each selected configuration. The result will assist designers and consumers to

select better skylight from the energy consumption point of view.

The SkyDreamer’s calculator is based on the logic of SkyCalc (SkyCalc, 2008)

spreadsheet that calculates the energy loads of different skylights with respect to

climate zone and helps to find the optimal sizing of skylights to maximize energy or

cost savings. SkyCalc uses simple data inputs (either common defaults or user-

supplied data) to describe a building and analyze possible skylighting strategies. It

calculates the lighting and whole-building energy impacts of each design, and

produces graphs and charts that describe annual energy-use patterns. SkyCalc runs

on older versions of Microsoft Excel and the core calculations are either distributed

among spreadsheet cells, or coded in VBA (Visual Basic for Applications). This

imposes some limitation toward extending and reuse of skylight calculations. The

SkyDreamer calculator component on the other hand is a modern Java based web

service with a well-defined interface that can be used in heterogeneous

environments. Moreover, the calculation is able to receive the required input data

from IFC BIM and semantic skylight repository. More precisely, this web service

can be seen as a semantic web service that is documentable by skylight ontology. As

a result such web services can then be located, selected, employed, composed, and

monitored automatically by the processes that need those services.

SkyDreamer Prototype 81

In the next section, SkyCalc tool and its basic inputs and outputs are explored and at

the end the SkyDreamer calculator is introduced in more details.

4.2.5 SkyCalc Tool

As explained before, SkyCalc is a free and simple computer tool that calculates the

energy loads of single storey buildings for different skylights configurations by

considering the corresponding climate zone. It helps building designers determine the

optimum skylighting strategy that provides the highest HVAC and lighting energy

saving for a given building. The SkyCalc is implemented as a Microsoft Excel

spreadsheet that runs on a personal computer. The program input is divided into

basic and optional inputs whose values should be provided in corresponding input

worksheets. Figure 4.11 depicts some of the basic inputs of ScyCalc tool such as

climate data, building type, and skylight characteristics.

Figure 4.11: SkyCalc basic inputs

The SkyCalc spreadsheet contains also some default tables for different skylighting

systems and building operation types. Moreover the climate data of some US cities

SkyDreamer Prototype 82

are already available with the program. If the desired location is not in the pull-down

menu, the weather data can be uploaded. This data tells the calculator the amount of

daylight and the heating and cooling conditions in the location of building and how

much cooling and heating is needed to keep the comfort requirements. SkyCalc is

using a specific weather file format that can be created using eQuest 3.61 (eQuest,

2008) simulation program. So theoretically it is possible to create the weather file for

any location in the world, provided that the DOE2 compatible weather file is

available.

Depending on the skylight characteristics such as glazing type, glazing layers and

glazing colour, the SkyCalc considers predefined values for VT, SHGC and U-value

from the skylight default tables and uses these values for energy calculations.

SkyCalc does hour by hour analysis, using the DOE 2.1 simulation program as a pre-

processor, and Typical Meteorological Year (TMY) weather data.

The output of SkyCalc is both in tabular and in graph forms and provide the lighting

and estimates the annual energy (kWh/year) and cost savings for lighting, heating,

and cooling compared to no-skylight status. The amount of energy saving of a given

skylighting is also presented over a range of skylight-to-floor area ratios. This has

been shown in figure 4.12, where current design’s energy efficiency is compared for

different skylight-to-floor ratios.

Figure 4.12: Annual energy saving graph calculated by SkyCalc
Please note that figure 4.12 clearly shows the importance of correct selection of

skylight sizes. For bigger skylight-to-floor ratios the amount of energy that is used to

keep the building cool in warm seasons is getting more and more and cuts the

lighting and heat advantages in colder seasons. Another important factor that plays a

SkyDreamer Prototype 83

significant role in the skylight selection is the climate condition. So for example a

skylight that is ideal for a specific climate condition will not deliver the same energy

efficiency level in other climates.

Figure 4.13 shows the tabular output of SkyCalc results. Please also note that the

calculated annual cost saving are calculated based on a default energy price and user

can customize the given prices.

Figure 4.13: SkyCalc table results

The SkyCalc results provide a good estimation for selection of better skylights,

however the tool is not being updated by software maintainers and also lacks the

integration possibilities with BIM and real world product libraries.

SkyDreamer Prototype 84

4.2.6 SkyDreamer Calculator

The SkyDreamer’s calculation web service is supported by a Java library that has

been implemented based on the SkyCalc energy calculator spreadsheet. In this

section this energy calculation methodology will be explored in more details.

As mentioned before the skylights will affect the building energy consumption in

many ways. First of all the skylights will reduce the need to electric lighting and

consequently prevent the heat gains of electric lighting when daylighting controls are

used. Skylights also increase the solar gain and also the thermal transmittance of

roofs. Other factors such as climate information, building occupancy and operating

process equipments will also play an important role in building energy simulation

and should be considered in calculations of the heating or cooling load of the

selected building.

The required information of SkyDreamer’s calculation web service is derived from

the following resources:

• The building information that are provided by end-user either by direct input

in web interface or extracted from the provided building model

• Default occupancy schedules, comfort ranges, and producer-neutral skylight

performance characteristics which are included in calculation web service

statically

• The hourly climate data of selected building location which has been

generated by any DOE-2 building energy simulation program for a reference

building

• And finally the java methods that provide the required data for energy

calculation algorithm

The DOE-2 reference building has the following characteristics (SkyCalc Guide,

2008):

• 100X100 square foot building with a 20 foot ceiling, task height is 2.5 feet

above the floor

• 4% skylight to floor ratio (SFR), shading coefficient = 1.0, effective aperture

= 2 % (overall Tvis = 0.5)

SkyDreamer Prototype 85

• Roof U-Value = 0.057, Skylight overall U-Value = 1.0 Btu/hr•°F•ft2,

adiabatic walls

• Both lighting and equipment power density are 1.5 W/ft2

• Occupant density is 1 person per 100 square foot

• Set points: Cooling = 72 degrees Fahrenheit (22.22 degrees Celsius) and ,

Heating = 68 degrees Fahrenheit (20 degrees Celsius)

• All schedules (lighting, occupancy, process loads) are set at 100% for 24

hours per day and 7 days per week

• Daylighting controls are disabled

The SkyDreamer calculator uses these values internally and converts them to metric

system for sake of consistency with other information resources such as building

model. SkyDreamer calculator uses the lumen method algorithm (IES, 1993) to

calculate the coefficient of utilization for skylights. The key assumptions of this

method are (SkyCalc Guide, 2008):

• The skylights are completely diffusing (Lambertian distribution) and

uniformly spaced

• Each surface in the room is diffusely reflecting

• Each major surface of the room is uniformly illuminated

An important factor in daylighting using skylights is the Effective Aperture (EA) of a

skylight. Effective Aperture that describes the fraction of daylight is transmitted

through the roof and is calculated as follows:

EA = SFR * Overall Visible Light Transmittance * Well Efficiency

Where,

• SFR: is the Skylight to Floor Ratio for the given space

• Well Efficiency: is the fraction of light entering the well that leaves the light

well. Well efficiency is calculating using the lumen method (IES, 1993) from

the skylight dimensions, well depth and well reflectance. Skylight well is

modelled as a space having the same geometric relationships as the light well

SkyDreamer Prototype 86

with a 99% reflective ceiling, a 0% reflective floor, and wall reflectance

matching that of the reflectance of the light well walls.

• Overall Visible Light Transmission: this accounts for overall visible

transmittance of skylight glazing and diffusers or lenses in the light well.

Also the dirt build-up on the skylight and in the light well should be

considered. The SkyDreamer calculator used a 70% dirt factor as

recommended in the IESNA handbook (IES, 1993) for horizontal glazing in

clean areas.

Listing 4.4 shows the Java method that is responsible for calculation of the Effective

Apertures of a skylight. As the first step (point 1), this method will look for the

Visible Light Transmittance (Tvis) which is a property of the glass or plastic glazing

material. The Visible Light Transmittance is the fraction of the light that is

transmitted through the glazing. This value is usually found in the manufacturer’s

catalog for the skylight products. It is important to note that the provided Tvis might

only be given for the glazing material and does not include the effects of the framing.

In case of NFRC (NFRC energy performance labels as described in 4.2.2), ratings

also include the effects of the framing. As mentioned before the other factor that

affects the Overall Visible Transmission is the Dirt Factor (DF) that has been applied

by applying the recommended dirt light loss factor value in IESNA handbook (IES,

1993) for horizontal glazing in clean areas which is 70% of the screen or safety grate

factor (point 3).

In order to calculate the Well Efficiency, the getEffectiveAperture method

calls another method called CU that performs the Lumen method calculation for the

light well (point 2). The CU method considers the light well as a space having a 99%

reflective ceiling (parameter 5) and a 0% reflective floor (parameter 7).

SkyDreamer Prototype 87

public double getEffectiveAperture() {

 double vt = getSkylightTvis();

 double we = InputData.CU(0,width,length,lightWellHeight,

 0.99,Light.getColorReflectance(wellColor),0);

 double dirtFactor = 0.70 * getGrateFactor();

 return getSFR() * vt * we * dirtFactor;

}

Listing 4.4: Calculation of Effective Aperture of skylights

Listing 4.5 shows the CU method that displays an important role in SkyDreamer

calculator. The method basically calculated the Coefficient of Utilization for any

given space and different luminaries as light source (first parameter). SkyDreamer

calculator uses the user selected lighting option and the internal default tables to get

the corresponding luminaries intensities. In the previous case (calculation of Well

Efficiency) it was applied on skylight well to calculate the fraction of light that will

leave the light well.

public static double CU(int L_ints_index, double w, double l, double h,

 double ceilRefl, double wallRefl, double floorRefl) {

 double[] kGN = new double[10];

 double PhiD = 0;

 double PhiU = 0;

 double DG = 0;

 double G = RCR(w, l, h);

 // Index = 0 -> Lambertian Distribution

 if (L_ints_index > 0) {

 double PhiN;

 double FluxD = 0;

 double FluxU = 0;

 // Zonal Multiplier Equation Constants Fig 9-27 IESNA handbook 8th Ed.

 kGN[1] = 1;

 kGN[2] = Math.exp(-0.041 * Math.pow(G , 0.98));

 kGN[3] = Math.exp(-0.07 * Math.pow(G , 1.05));

 kGN[4] = Math.exp(-0.1 * Math.pow(G , 1.12));

 kGN[5] = Math.exp(-0.136 * Math.pow(G , 1.16));

 kGN[6] = Math.exp(-0.19 * Math.pow(G , 1.25));

 kGN[7] = Math.exp(-0.315 * Math.pow(G , 1.25));

 kGN[8] = Math.exp(-0.64 * Math.pow(G , 1.25));

 kGN[9] = Math.exp(-2.1 * Math.pow(G , 0.8));

SkyDreamer Prototype 88

 double[] intens_range = Light.getLuminaireIntensity(L_ints_index);

 for (int theta = 1; theta < 10; theta++){

 PhiN = intens_range[theta-1] * (Math.cos((theta - 1) * Math.PI / 18) –

 Math.cos(theta * Math.PI / 18));

 FluxD += PhiN;

 DG += kGN[theta] * PhiN;

 }

 FluxD = FluxD * 2 * Math.PI;

 DG *= 2 * Math.PI / FluxD;

 // This is equivalent to dividing the summation of kGN*PhiN by total lumens

 // and fraction downward (eq 9-68)

 for (int theta = 10; theta <= 18; theta++){

 FluxU = FluxU + intens_range[theta-1] * (Math.cos((theta - 1) *

 Math.PI / 18) - Math.cos(theta * Math.PI / 18));

 }

 FluxU = FluxU * 2 * Math.PI;

 //FluxT = FluxD + FluxU;

 // Phi = Fraction of flux in Down and Up directions

 // IES has normalized intensities to 1000 lamp lumens

 // FluxT is total flux leaving the fixture

 PhiD = FluxD / 1000;

 PhiU = FluxU / 1000;

 } else {

 //Lambertian Distribution - perfect diffuser

 PhiD = 1;

 PhiU = 0;

 }

 double result = 0;

 if (G < 0.01){

 result = (PhiD + ceilRefl * PhiU) / (1 - ceilRefl * floorRefl);

 } else {

 double F = Fexch(w, l, h);

 //Lambertian Distribution

 if (L_ints_index == 0) {

 DG = F;

 }

 double C1 = (1 - wallRefl) * (1 - Math.pow(F , 2)) * G / (2.5 * wallRefl *

 (1 - Math.pow(F , 2)) + G * F * (1 - wallRefl));

 double C2 = (1 - ceilRefl) * (1 + F) / (1 + ceilRefl * F);

 double C3 = (1 - floorRefl) * (1 + F) / (1 + floorRefl * F);

 double C0 = C1 + C2 + C3;

 double CU1 = 2.5 * wallRefl * C1 * C3 * (1 - DG) * PhiD /

 (G * (1 - wallRefl) * (1 - floorRefl) * C0);

 double CU2 = ceilRefl * C2 * C3 * PhiU / ((1 - ceilRefl) *

 (1 - floorRefl) * C0);

SkyDreamer Prototype 89

 double CU3 = (1 - floorRefl * C3 * (C1 + C2) / ((1 - floorRefl) * C0)) *

 DG * PhiD / (1 - floorRefl);

 result = CU1 + CU2 + CU3;

 }

 return result;

}

Listing 4.5: method to calculate Coefficient of Utilization

The CU method makes some method calls to fulfill the calculation tasks. Some of

these methods will be explored in more details.

First of all, the CU method needs the Cavity Ratio of the given space. The Cavity

Ratio is a single value that describes the proportions of the given space and is usually

referred to as Room Cavity Ration (RCR) for a room space, or Well Cavity Ration

(WCR) for the skylight well space. Listing 4.6 shows the method that calculates the

Cavity Ratio of the given space.

public static double RCR(double W, double l, double d) {

 return 5 * d * (W + l) / (W * l);

}

Listing 4.6: Room Cavity Ratio (identical to the well cavity ratio)

Another required value for calculation of Well Efficiency is the Form Factor for two

equal sized parallel rectangles. Listing 4.7 shows the implementation of Form Factor

as presented in IESNA handbook (IES, 1993).

public static double Fexch(double width, double length, double depth){

 double x = length / depth;

 double y = width / depth;

 double F1 = 2 / (Math.PI * x * y) * Math.log(Math.pow((1 + Math.pow(x , 2)) *

 (1 + Math.pow(y , 2)) / (1 +Math.pow(x , 2) + Math.pow(y , 2)) , 0.5));

 double F2 = 2 / (Math.PI * x) * Math.pow(1 + Math.pow(x , 2) , 0.5) *

 Math.atan2(y, Math.pow(1 + Math.pow(x , 2) , 0.5));

 double F3 = 2 / (Math.PI * y) * Math.pow((1 + Math.pow(y , 2)) , 0.5) *

 Math.atan2(x, Math.pow((1 + Math.pow(y , 2)) , 0.5));

 double F4 = -2 / (Math.PI * x) * Math.atan2(y, 1) - 2 / (Math.PI * y) *

 Math.atan2(x,1);

SkyDreamer Prototype 90

 return F1 + F2 + F3 + F4;

}

Listing 4.7: Form factor for two equal sized parallel rectangles

The illuminance of the building with skylights is related to illuminance of the

reference building (included in DOE-2 weather file) by means of simple ratios by

comparing the Effective Apertures and Coefficient of Utilization that describes what

fraction of light exiting from the bottom of the light well reaches the work surface.

Thermal losses due to skylights are modeled using a simple UA (conductance area

product) equation. This steady-state heat transfer method does not consider thermal

storage of heat in the mass of the building. In contrast, the solar heat gain model,

which scales the hourly solar loads from the DOE-2 reference building by the

relative area of the skylights and their solar heat gain coefficient, does reflect the

thermal capacitance of the reference building. The other thermal loads of occupancy

and equipment are also added in to arrive at the total zone heating or cooling load for

that hour.

At this point, the zone loads for each hour and the sum of electricity consumption for

electric lighting for both the base case building without skylights and the area under

skylight, designed building have been stored. The maximum cooling load is also

stored for sizing of the heating and air conditioning systems.

A HVAC system model then evaluates the energy consumption required by the

hourly building loads. This model allows the user to specify an outside air

economizer that can displace some or the entire cooling load when the outside air is

sufficiently cool. This model also varies the heat pump efficiency depending upon

outside temperature. (As the outside temperature drops, the heat pump needs more

electricity per Btu of heat generated.) (SkyCalc Guide, 2008).

The SkyDreamer calculator extends the SkyCalc in many directions. First of all the

new calculator is designed as a java implemented library that facilitates the use of

energy calculation services both as a published web service for internet computing

and also as a standalone java library for local java applications. Moreover the

maintenance of the calculator web service is much easier compared to SkyCalc’s

legacy code where energy calculation logic is distributed among cell calculations and

VBA calculation modules. So for instance the calculation results can be tested

SkyDreamer Prototype 91

automatically by means of automated test methods such as JUnit testing framework

(JUnit, 2008) for java applications.

From the AEC/FM perspective, the new energy calculator service is fully integrated

with modern BIM concepts and also can repeat the energy calculation for the product

alternatives that are semantically described in a product repository. The BIM

integration facilitates the data entry process greatly and the required information is

directly extracted from building model by building parser component. As a result, the

calculation component can be fed on the fly from building model and no extra user

interaction is needed. Some other advantages of SkyDreamer calculator over ScyCalc

tool are as follows:

• SkyCalc uses United States customary units but SkyDreamer uses metric

System.

• SkyCalc calculates the energy saving compared to the no-skylight status but

SkyDreamer calculates the annually required energy consumption

(KWh/year) for the selected skylight product.

• SkyCalc provides only the generic skylight component but SkyDreamer is

dealing with real world products that are semantically stored in a product

repository.

• SkyDreamer is equipped with a Web 2.0, elaborated user interface that make

the user interaction much easier. The Web 2.0 interface will be explored in

the next section.

The SkyDreamer calculator is a rather complex component with multiple packages

and java classes, however it provides a simple API for the end-users to configure and

call the calculation service. In order to use this service, first a use case configuration

with the following items is provided:

• The weather file of the building location

• The building geometry

• Building properties such as building type (residential, office, etc)

• Lighting type and corresponding control types

SkyDreamer Prototype 92

• HVAC system types for cooling and heating

• Generic skylight characteristics

Listing 4.8 shows a typical use case configuration which is done programmatically

by a java client.

// weather configuration
Weather wea = new Weather("Frankfurt.wea3");

// building configuration
Building bldg = new Building(Building.CLASSROOM_K12_12MON,
 10,20,200, Light.PAINT_CONCRETE);

// light configuration
Light light = new Light(Light.HIGHT_BAY_METAL_HALIDE,
Light.CNTRL_TWO_LEVEL,Light.SHELVING_NONE_OPEN);
light.setLightHeight(20);

// HVAC configuration
Hvac hvac = new Hvac(Hvac.COOLING_MECHANICAL, Hvac.HEAT_GAS_OIL_FURNACE);

// skylight configuration
Skylight skylight = new Skylight(
 Skylight.DOME_SHAPE,
 Skylight.ACRYLIC,
 Skylight.SINGLE_GLAZED,
 Skylight.CURB_WOOD,
 Skylight.FRAME_METAL,
 Skylight.COLOR_OPTION1);

// (theLength, theWidth, theWellHeight, skyNum)
skylight.setDimensions(2, 2, 1, 4);
skylight.setWellColor(Light.PAINT_BRIGHT_COLORS);
skylight.setLight(light);
skylight.setDiffuser(true);

// evaluating the overall configuration
SkycalcBean result = Calculator.evaluate(bldg, skylight, wea,hvac);

// printing out the results
System.out.println("Required cooling : " + result.getCool());
System.out.println("Required heating : " + result.getHeat());
System.out.println("Required lighting : " + result.getLightPower());

Listing 4.8: Use case configuration programmatically

4.2.7 User Interface

The SkyDreamer system is implemented as a web based system that accepts the user

input and accesses the backend services for fulfilling the user requests. In order to

simplify the user interaction, the front end has been implemented using a modern

Web 2.0 concept that recently has set a new trend in Rich Internet Application (RIA)

world. It makes better use of the client machine’s processing power and at the same

time pushes the SOA paradigm to its limits. At the moment most SOAs are

SkyDreamer Prototype 93

conceptually trapped inside an organizations’ intranet and Web 2.0 envisions

building collective intelligence and mashed up functionality based on web services.

In this environment, Internet will play the role of a global operating system that hosts

the web services. In other words the Web 2.0 is a step toward the global cloud

computing idea where business services are presented on Internet and developers

should select and weave them together to create new compound services.

Thus Web 2.0 is much more than adding a nice facade to old web applications rather

it is a new way of thinking about software architecture of RIAs. In comparison to

traditional web applications, the application logic of modern Web 2.0 applications

tends to push the interactive user interface tasks to the client side. The client

components on the other hand negotiate with remote services that deal with user

events. Figure 4.14 shows a screenshot of the SkyDreamer user interface.

Figure 4.14: SkyDreamer screenshot

The Web 2.0 processes generally use Ajax (Asynchronous JavaScript and XML)

development technique for creating interactive web applications. The main intent is

to make web pages feel more responsive by exchanging small amounts of data with

the server behind the scenes so that the entire web page does not have to be reloaded

SkyDreamer Prototype 94

each time the user requests a change. This is intended to increase the web page's

interactivity, speed, functionality, and usability. In AEC/FM context where use cases

should be configured with huge amount of input information and the longtime

wizards and processes are required, the Ajax technology may provide significant

advantages. For instance, Ajax allows every element within a web interface to be

individually and quickly updated without affecting the rest of the interface. At the

time of writing this dissertation, the SkyDreamer is the only available Web 2.0

application in AEC field on Internet but due to the great advantages of Web 2.0 it is

very viable that new applications arrive very soon.

To implement Ajax based applications, multiple development frameworks is

available. For case of SkyDreamer, the Google Web Toolkit (GWT, 2008) has been

used which is an open source Java software development framework that allows web

developers to develop Ajax applications in Java and benefit the Java best practices at

implementation phase. However at runtime, the GWT compiler will translate the

Java code to browser-compliant JavaScript and HTML that only needs a web server

for launching the application pages and as a result no java-enabled server

components will be needed at runtime.

Results 95

Chapter 5

RESULTS

In the previous chapters, it was explained how different components interact with

each other and fit into the SkyDreamer architecture to address the dissertation goals.

In this chapter different use cases of SkyDreamer prototype will be explored and the

project results will be discussed. The SkyDreamer prototype has been fully

implemented based on Open Source Software and open standards and the web

application is available as a free service at http://www.pixdeal.com/skydreamer.

Interested readers are invited to test it and explore the use cases online.

As explained before, the SkyDreamer prototype aims to bridge the gap between

BIM, product library and simulation services. So the system will need the relevant

information about building, building context and also the thermal attributes of

skylight products to run energy calculations. The required configuration information

should be provided first via SkyDreamer’s web interface. This configuration consists

of the following items:

• Building envelope including the size and number of skylights for a selected

space

• Weather data for building’s location

• Heating, cooling, and lighting systems

• Common skylight options such as glazing type, layers and colour

After assessing the use case configuration, users will be able to:

• make energy calculations for a producer-neutral configuration and present the

results graphically

Results 96

• repeat the calculation for alternative use case configurations (different

skylight glazing options, different weather data, different HVAC options, etc)

and compare the energy consumption results

• configure the building model with real world skylight products that are

coming from Semantic Skylight Repository and benchmark the energy

consumption results of different use case configurations.

5.1 Use Case Configuration

In this section, different use case configuration options and user interactions with the

system will be explored in more details and then the prototype results and also the

optimum skylight strategy options will be discussed.

5.1.1 Building configuration

 In order to calculate the energy efficiency of a building some basic building

information such as building function, building geometry, and material is required. In

the present scenario, the user first provides the building model, which is used to

extract spaces and skylights information. The SkyDreamer prototype facilitates

building’s data entry by extraction of the relevant data from building model, which

should be provided as an IFCXML file. So the end user can easily design the

building using any IFC-enabled CAD Software and export the building design in

IFCXML format. This file will be then submitted to the SkyDreamer system, for

further processing. Alternatively, user may choose a default building model

incorporated in the system. This will help the users to test the skylight without

having to provide the building model in IFCXML format that might be difficult for

some users.

Subsequently, the uploaded building model is parsed and user will be able to

navigate through zones and spaces to choose the target space. After selection of the

target space, SkyDreamer will also calculate the “skylight to floor area ratio” (SFR)

which will be used for energy calculation in the following steps. The energy

calculation algorithm will later on calculate the energy consumption for the selected

building space. Figure 5.1 shows the building configuration section where the

Results 97

“Office 1” space of the built-in sample map has been selected for further

calculations. The building navigator also depicts the skylight to space assignments

and for the given case of figure 5.1, the ”Office 1” space has four skylights. The

other building calculation options are building type, wall colour and shelving option

that will affect the energy calculation algorithm. For instance, the selected building

type option will determine the building’s lighting, occupancy, and process load

schedules as well as the thermal and visual comfort ranges, which are available as

part of the SkyDreamer calculator component.

Figure 5.1: Building navigator

5.1.2 Weather configuration

The weather information is another required configuration that affects the building

energy calculations. The weather information specifies the available daylight, the

solar heat intensity, and needed amount of heating and cooling. SkyDreamer uses

SkyCalc weather files (.wea3) that can be generated using eQuest 3.61 (eQuest,

2008). So the end-user will be able to create his/her own weather files by feeding the

eQuest with the DOE2 compatible weather files that are available for many locations.

Alternatively SkyDreamer provides a list of pre-processed weather files for selected

locations that can be simply selected by the end-user without dealing with

complexity of weather file formats. Figure 5.2 shows the weather information panel

that accepts either a pre-processed weather file from the given list or a weather file

that should be uploaded to the system.

Results 98

Figure 5.2: Selection of weather file

5.1.3 HVAC and lighting configurations

In addition to the building model information mentioned above, SkyDreamer needs

to know the properties of building’s lighting and HVAC systems.

For heating and cooling systems, SkyDreamer provides a list of options that contains

the most common heating and cooling systems. The selected option will be used to

estimate the amount of energy needed to keep the building comfort ranges for

inhabitants for each day based on the given weather file. Figure 5.3 shows the HVAC

panel in SkyDreamer prototype.

Figure 5.3: Selection of HVAC options

For lighting calculation, the SkyDreamer calculator assumes a default lighting power

density based on building characteristics and building type. Moreover the lighting

system and lighting control options in combination with weather data are used to

estimate the required energy for lighting. Setting the Lighting Control option to "No

Daylight", means the user wants to evaluate only the skylights' energy-related

implications without daylighting controls. Figure 5.4 shows the light panel in

SkyDreamer prototype where an “open cell fluorescent” with “2/3 controlled on/off”

has been selected.

Results 99

Figure 5.4: Selection of light options

5.1.4 Skylight configuration

Next, the user needs to provide the physical characteristics of the skylights and light

wells by choosing a generic product from the list. Based on this selection, initial

skylight's thermal and optical properties are assigned to the use case. These values

can later be interactively modified by the user. The system identifies a real product

with the corresponding user-desired property, and re-computes the performance

indicators. Figure 5.5 shows the required properties that should be set for a generic

skylight component.

Figure 5.5: Generic skylight configuration

5.2 Simulation process

After providing the building configuration, SkyDreamer calculates energy demand

for heating and cooling. The result of simulation is also presented in graphic form

that is suitable for benchmarking. After running the simulation for the first time, the

user will be able to change the building configuration and run the simulation again

Results 100

(see Figure 5.6). As a result, this online simulation tool helps the designers to easily

evaluate the effect of their design decisions.

It is important to note that the currently implemented SkyDreamer’s energy

calculator is a simple one (single-storey building, rectangular floor plan) and serves

for demonstration of system’s capabilities. Also the applied calculation method will

not accurately model clear skylights, non-uniform spacing, or high partitions and in

such cases a more sophisticated simulation program would be required.

Figure 5.6 shows the energy calculation results which consist of two parts:

• Benchmark part (upper part) that can be easily used to compare different use

case configurations. This part depicts the yearly required heating, cooling and

lighting energy for each use case.

• Dataset part (lower part) that includes the numerical form of the benchmark

part plus the thermal attributes of the selected skylight component (SHGC,

VT, and U-value). The thermal attributes for the producer-neutral run, are

selected from SkyDreamer defaults and after the selection of a skylight

component, the real product values are selected. The dataset part is also used

to formulate the product query (semantic query) that will return the set of

similar products in sense of energy performance from semantic product

repository. The next section explores the selection of skylight components in

more details.

Results 101

Figure 5.6: Simulation results

The skylight benchmarking results can be interpreted differently based on the

different building requirements. For instance, figure 5.6 shows the results for two

different use case configurations. From the heating and cooling perspective, the

second use case is a better choice because:

• U-value is smaller so keep more heat inside the home and reduce excess work

for heating systems

• SHGC is smaller so it reduces summer cooling and overheating

And from the lighting perspective, use case one provides a better performance

because the skylight’s Visual transmittance is large and consequently the benefit of

natural day lighting is maximized.

By comparison of results and also considering the local energy prices for heating,

cooling and lighting, architect will select the better choice.

5.2.1 Selection of Skylight component

After running the simulation with generic skylight components, it is finally possible

to select actual skylight products from the semantic repository and re-run the

simulation. The selection criteria are the SHGC, VT and U-value of the skylights.

User can select his/her choice by altering the selection condition (larger, smaller) for

Results 102

each of these three parameter and the system will translate user’s query into ontology

query language SPARQL (SPARQL, 2008) that runs against the semantic repository.

As soon as the result is displayed, user can navigate through the results set and select

the appropriate skylight component and repeat the simulation process.

Figure 5.7 shows a sample query result that is rendered as HTML (the original

query results are RDF triples). The query result panel consists of a list of

products on the left hand side and the product details for the selected item on the

right hand side. As explained above, the product data are translated from

resulting RDF triples which might also include the definition of some items. For

instance the “FillGas” and “GlassColor” attribute values have an additional

description that will be rendered as a help tool-tip (this value will be displayed

when the mouse is over the help button in front of these attributes). After

selection of the desired item, user may click on the calculation button (top right

corner of

figure 5.7) to re-run the simulation.

Figure 5.7: Skylight product query results

Outlook 103

Chapter 6

Outlook

The vital need for integration in Architecture, Engineering and Construction domains

has forced the emergence of smart building information models that can efficiently

capture the building information and, at the same time, be uniformly integrated in

business processes. The smart BIM initiatives have been already started and many

researchers are now focusing on new concepts such as IFC, IFD, and

BuildingSMART to improve the information exchange in AEC/FM domains and

address different requirements of building industry.

In this context, Semantic Web technologies can also be used as an enabler resource

to increase the interactivity among different domains and professions of building

industry. This new approach can cross the AEC domain borders by effective

mapping of relevant contextual attributes onto available building industry

information.

At the time this research was started, very few applications of Semantic Web in AEC

field were known, however this situation has changed recently and a handful of

national and international projects have employed the Semantic Web technologies

for AEC/FM purposes. Nevertheless, since both BIM and Semantic Web technology

are rather new research fields, more research work is required to mature the

technology for real world applications.

Outlook 104

6.1 Summary and Discussion

The research presented in this thesis is aiming at demonstrating the uniform

integration of different resources in AEC/FM fields. More specifically, it shows how

elaborate semantic technologies can be used to bridge the knowledge gap among

manufacturers' data, building information models, and simulation web services (see

Figure 6.1). A semantically enriched process helps the designer to find the desired

product through automatic access to the building product libraries.

Figure 6.1: Bridging the AEC gaps using Semantic Web technology

In this section the research questions that were raised at the beginning of this thesis

will be revisited to show how the proposed solution will address the challenging

issues.

How can the semantics of building material and their associations be accurately

modelled for open world interactions?

To establish a Semantic repository of building material, two basic parts are needed,

namely: An ontology schema that describes the required elements and the product

Outlook 105

instances. In the proposed approach the IAI’s IFC have been used to establish the

schema of the upper ontology which keeps the solution compatible with the current

advances in AEC industry. Moreover, the generated upper ontology is empowered by

best practices of the Semantic Web world and its added values such as semantic

storage, semantic extension, semantic reasoning. The second part of the semantic

repository, concerning product instances are extracted from the relevant websites and

added to the ontology schema using a modular approach. The Semantic product

repository can then interact with relevant AEC services and BIM via its IFC-

compliant ontology.

How to define material libraries that can interact with global AEC services and

share useful information about a specific material in an effective way?

As explained in the previous answer, both semantic product repository and AEC

services use the same upper ontology that has been derived from IAI’s IFC. In other

words, the rich semantics associated with the domain knowledge together with the

Semantic Web Services allow bridging the gap between services of discrete

knowledge domains.

How Semantic Web Technologies can improve the quality of built environment

from energy efficiency standpoint?

The SkyDreamer prototype has specifically targeted the building’s energy efficiency.

It shows how Semantic Web technology can be used to bridge the gaps between

product libraries, BIM, and simulation services. As a result the building designers

will be able to improve the quality of their building models by comparing the

performance of alternative products and choosing the better options.

How a modern Building Information Model can interact with simulation programs

and material libraries in an effective way and improve the performance in

interoperability between applications?

Outlook 106

The building information model of the proposed solution, which is also IFC-

complaint, can be directly integrated with product library and also AEC services. In

the SkyDreamer scenario much information has been directly or indirectly extracted

from the model’s IFCXML file format. Some of this information such as zones,

spaces and areas are explicitly defined in model, but others such as skylight to floor

ratio should be assessed by building navigator component. The IFC upper ontology

will again play a significant role to connect the BIM elements to product library and

AEC services.

How can building requirements and preferences be represented and how should

they be taken into account in tailoring AEC services for a specific building?

In the proposed solution all elements are mapped to an IFC-complaint upper

ontology where Semantic Web technologies support precise definition of

requirements and preferences. As a matter of fact, the dynamic and extendable nature

of Semantic Web will facilitate the information exchange with relevant AEC

services. Moreover, the semantic reasoning approaches can be applied to building

model and secondary IFC-complaint ontologies that describe the building

requirements (such as building codes, national standards, etc) to check the design

integrity during the lifetime of a building construction project.

How can business processes of a building project handle the partners’ interaction

in a semi-automated manner?

The semantic-enabled AEC services of each project partner, would allow the

automatic discovery and composition of relevant services. Creating the semantic

profile of these services based on IFC upper ontology can be seen as the first step

toward integration of the business services across the AEC domains.

How can building material knowledge be extracted from existing material

catalogues and prepared for usage by AEC applications such as simulation tools?

Outlook 107

Different approaches of automatic information extraction in AEC context has been

investigated in this research work. For the specific case of the SkyDreamer prototype

a web extractor component extracts the skylight information from specific websites

and stores them in a semantic repository. The SkyDreamer prototype also shows how

a simulation service such as skylight calculator can interact with a semantic

repository to retrieve the required product information that are used in energy

simulation web service.

6.2 Future Work and Conclusion

While the difficulties in sharing and processing of the required information in AEC

domain are generally known, effective solutions have not been found. Partial

progress has been made in the area of building modeling to address the knowledge

sharing challenges by advances such as development of IFCs (industry-foundation

classes), IFDs, and the BuildingSMART initiative. The emerging area of semantic

web promises a developmental potential that is, as of now, almost entirely untapped.

The combined adaptation of these technologies in the context of this research work

has shown the effectiveness of the presented approach to bridge the knowledge gap

between BIMs (Building Information Models), product information resources and

AEC tools and services. The proposed approach is specifically promotes the building

energy efficiency use cases by providing a robust and uniform environment that links

the material information to building simulation tools and do energy benchmarking

for alternative materials.

In future the proposed solution of this research work can be extended and improved

as follows:

• The Semantic Repository used in the SkyDreamer prototype would be

extended to cover a more representative set of building components. Future

research in this area should address the following issues:

o Extending the base building ontology and instantiation of the base

classes

Outlook 108

o Development of the semantic library to contain all building products

and components to provide an effective searchable building products

library.

o Providing an easy to use mechanism for manipulation of product

library and also the automatic update of product library (for

producers)

o Providing appropriate Web Services to query the product repository

o Presenting the product data via a multi-lingual portal

• The current energy simulation web service is implemented based on a simple

method. In future more elaborated AEC tools and services can be

communicated to cover a brighter range of building construction use cases.

• Likewise, it would be interesting to explore in more detail how powerful

analysis and evaluation tools can be offered as web services to semantically

enrich building models.

Appendixes 109

Appendixes

Appendix 1: Part of the “IFCXML to OWL” XSL style sheet

<?xml version="1.0"?>
<xsl:stylesheet
 xmlns:ifc="http://www.iai-international.org/ifcXML2/RC2/IFC2X2_FINAL"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:ex="urn:iso.org:standard:10303:part(28):version(2):xmlschema:common"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:j.0="http://sample.org#"
 version="1.0">

<xsl:output method="xml" indent="yes"
 media-type="text/plain" encoding="ISO-8859-1"/>

<xsl:template match="ex:iso_10303_28">
 <xsl:apply-templates />
</xsl:template>

<xsl:template match="ex:uos">
 <rdf:RDF><xsl:apply-templates /></rdf:RDF>
</xsl:template>

<xsl:template match="ifc:IfcOrganization">
<j.0:IfcOrganization>
 <xsl:attribute name="rdf:ID"><xsl:value-of select="@id"/></xsl:attribute>

 <j.0:IfcOrganization_Id>
 <j.0:IfcIdentifier>
 <xsl:attribute name="rdf:ID">
 IfcOrganization_<xsl:value-of select="ifc:Id"/>
 </xsl:attribute>
 </j.0:IfcIdentifier>
 </j.0:IfcOrganization_Id>

 <j.0:IfcOrganization_Name>
 <j.0:IfcLabel>
 <xsl:attribute name="rdf:ID">
 IfcOrganization_<xsl:value-of select="@id"/>
 </xsl:attribute>
 <rdfs:comment
 rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
 <xsl:value-of select="ifc:Name"/>
 </rdfs:comment>
 </j.0:IfcLabel>

 </j.0:IfcOrganization_Name>

 <j.0:IfcOrganization_Description>
 <j.0:IfcText>
 <xsl:attribute name="rdf:resource">
 IfcOrganization_<xsl:value-of select="ifc:Description"/>
 </xsl:attribute>
 </j.0:IfcText>
 </j.0:IfcOrganization_Description>

</j.0:IfcOrganization>
</xsl:template>

Appendixes 110

<xsl:template match="ifc:IfcApplication">
<j.0:IfcApplication>
 <xsl:attribute name="rdf:ID"><xsl:value-of select="@id"/></xsl:attribute>

 <j.0:IfcApplication_ApplicationDeveloper>
 <xsl:attribute name="rdf:resource">#<xsl:value-of
select="ifc:ApplicationDeveloper/@ref"/></xsl:attribute>
 </j.0:IfcApplication_ApplicationDeveloper>

 <j.0:IfcApplication_Version>
 <j.0:IfcLabel>
 <xsl:attribute name="rdf:ID">
 Version_<xsl:value-of select="@id"/>
 </xsl:attribute>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
 <xsl:value-of select="ifc:Version"/>
 </rdfs:comment>

 </j.0:IfcLabel>
 </j.0:IfcApplication_Version>

 <j.0:IfcApplication_ApplicationFullName>
 <j.0:IfcLabel>
 <xsl:attribute name="rdf:ID">
 ApplicationFullName_<xsl:value-of select="@id"/>
 </xsl:attribute>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
 <xsl:value-of select="ifc:Description"/>
 </rdfs:comment>
 </j.0:IfcLabel>
 </j.0:IfcApplication_ApplicationFullName>

 <j.0:IfcApplication_ApplicationIdentifier>
 <j.0:IfcIdentifier>
 <xsl:attribute name="rdf:ID">
 <xsl:value-of select="ifc:ApplicationIdentifier"/>
 </xsl:attribute>
 </j.0:IfcIdentifier>
 </j.0:IfcApplication_ApplicationIdentifier>

</j.0:IfcApplication>
</xsl:template>
.
.
.

</xsl:stylesheet>

Appendix 2: IFCXML Model Parser
package org.ferial.model;

import java.io.FileInputStream;
import java.io.FileNotFoundException;

import java.util.HashMap;
import java.util.Iterator;
import java.util.List;

import org.dom4j.Attribute;
import org.dom4j.Document;
import org.dom4j.DocumentException;
import org.dom4j.Element;
import org.dom4j.Namespace;
import org.dom4j.Node;
import org.dom4j.QName;
import org.dom4j.io.SAXReader;

public class IfcXMLParser {

Appendixes 111

 private Document doc = null;

 private static double lengthCoefficient = 1;
 private static double areaCoefficient;

 private static final String ROOT = "//iso_10303_28/uos/";

 private double skylightArea = -1;
 private double floorArea = -1;

 private HashMap<String, Window> skylights = new HashMap<String, Window>();
 private HashMap<String, Space> ifcSpaces = new HashMap<String, Space>();
 private HashMap<String, Zone> ifcZones = new HashMap<String, Zone>();

 /**
 * @param fileName
 * @throws FileNotFoundException
 */
 public IfcXMLParser(String fileName) {

 SAXReader reader = new SAXReader();

 try {
 doc = reader.read(new FileInputStream(fileName));
 } catch (DocumentException e) {
 e.printStackTrace();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 }

 removeNamespaces(doc.getRootElement());
 setLengthCoefficient();
 setAreaCoefficient();
 parseSpaces();
 attachSpaceWindows();
 parseZone();
 }

 /**
 * removes name space for ifcXML model to ease XPATH queries
 * @param elem
 */
 private void removeNamespaces(Element elem) {
 setNamespaces(elem, Namespace.NO_NAMESPACE);
 }

 private void setNamespaces(Element elem, Namespace ns) {
 setNamespace(elem, ns);
 setNamespaces(elem.content(), ns);
 }

 private void setNamespace(Element elem, Namespace ns) {
 elem.setQName(QName.get(elem.getName(), ns, elem.getQualifiedName()));
 }

 private void setNamespaces(List l, Namespace ns) {
 Node n = null;
 for (int i = 0; i < l.size(); i++) {
 n = (Node) l.get(i);
 if (n.getNodeType() == Node.ATTRIBUTE_NODE)
 ((Attribute) n).setNamespace(ns);
 if (n.getNodeType() == Node.ELEMENT_NODE)
 setNamespaces((Element) n, ns);
 }
 }

 /**
 * parse all zones in the model
 */
 private void parseZone(){
 List<Element> zones = doc.selectNodes(ROOT+"IfcZone");
 for (Iterator<Element> iter = zones.iterator(); iter.hasNext();) {
 Element zone = iter.next();

Appendixes 112

 String zoneID = zone.attributeValue("id");
 String name = zone.element("Name").getText();
 Zone ifcZone = new Zone(zoneID, name);
 ifcZones.put(zoneID,ifcZone);
 }
 addZoneSpaces();
 }

 /**
 * parse all spaces in a zone
 */
 private void addZoneSpaces(){
 List<Element> elms =
 doc.selectNodes(ROOT+"IfcRelAssignsToGroup[RelatingGroup/IfcZone]");

 for (Iterator<Element> iter0 = elms.iterator(); iter0.hasNext();) {
 Element elm = iter0.next();
 Element zone = elm.element("RelatingGroup").element("IfcZone");
 String zoneID = zone.attributeValue("ref");
 List<Element> spaceList = elm.element("RelatedObjects").elements();

 for (Iterator<Element> iter1 = spaceList.iterator(); iter1.hasNext();) {
 Element space = iter1.next();
 String spaceID = space.attributeValue("ref");
 ifcZones.get(zoneID).addSpace(spaceID);

 }
 }
 }

 private void parseSpaces(){
 List<Element> spaces = doc.selectNodes(ROOT+"IfcSpace");

 for (Iterator<Element> iter = spaces.iterator(); iter.hasNext();) {
 Element space = iter.next();
 String spaceID = space.attributeValue("id");
 String name = space.element("Name").getText();
 ifcSpaces.put(spaceID, new Space(spaceID,name));
 }
 }

 /**
 * parse all windows in a space
 */
 private void attachSpaceWindows(){
 findSkylights();
 List<Element> boundries = doc.selectNodes(ROOT+
 "IfcRelSpaceBoundary[RelatedBuildingElement/IfcWindow]");
 for (Iterator<Element> iter = boundries.iterator(); iter.hasNext();) {
 Element elm = iter.next();
 String boundryID = elm.attributeValue("id");
 Element space = elm.element("RelatingSpace").element("IfcSpace");
 Element window = elm.element("RelatedBuildingElement").
 element("IfcWindow");

 if (skylights.containsKey(window.attributeValue("ref")))
 ifcSpaces.get(space.attributeValue("ref")).
 addWindow(skylights.get(window.attributeValue("ref")));
 }
 }

 private double calculateFloorArea(String spaceID) {
 Element elm = (Element) doc.selectSingleNode(
 ROOT+"IfcRelDefinesByProperties[RelatedObjects/IfcSpace/@ref='"+
 spaceID + "']");

 String id = elm.element("RelatingPropertyDefinition").
 element("IfcElementQuantity").attributeValue("ref");
 Element elm1 = (Element) doc.selectSingleNode(
 ROOT+"IfcElementQuantity[@id= '"+ id + "']");
 String id1 = elm1.element("Quantities").element("IfcQuantityArea").
 attributeValue("ref");

 Element elm2 = (Element) doc.selectSingleNode(
 ROOT+"IfcQuantityArea[@id= '"+ id1 + "']");

Appendixes 113

 Element sub2 = elm2.element("AreaValue");

 return Double.parseDouble(sub2.getText()) * areaCoefficient;
 }

 public void findSkylights(){
 List list = doc.selectNodes(ROOT+"IfcWindow");
 for (Iterator<Element> iter = list.iterator(); iter.hasNext();) {
 Element win = iter.next();
 String id = win.attributeValue("id");

 Element elm = (Element) doc.selectSingleNode(ROOT +
 "IfcRelFillsElement[RelatedBuildingElement/IfcWindow/@ref = '"+
 id + "']");

 if (null == elm) {
 String name = win.element("Name").getStringValue();

 Element sub1 = win.element("OverallHeight");
 double height = Double.parseDouble(sub1.getStringValue()) *
 lengthCoefficient;

 Element sub2 = win.element("OverallWidth");
 double width = Double.parseDouble(sub2.getStringValue()) *
 lengthCoefficient;

 Window skylight = new Window(id, name, height, width);
 skylights.put(id, skylight);
 }
 }
 }

 /**
 * set length unit conversion coefficient
 */
 private void setLengthCoefficient() {
 lengthCoefficient = 1;
 Element elm = (Element) doc.selectSingleNode(
 ROOT+"IfcSIUnit[UnitType ='lengthunit']");

 Element sub = elm.element("Prefix");
 String id = elm.attributeValue("id");

 // it is millimeter
 if (null != sub) {
 lengthCoefficient = 0.001;
 }

 Element elm1 = (Element) doc.selectSingleNode(
 ROOT+"IfcMeasureWithUnit[UnitComponent/IfcSIUnit/@ref = '"+ id + "']");

 if (null != elm1) {
 lengthCoefficient = 0.0254;
 }
 }

 /**
 * set area unit conversion coefficient
 */
 private void setAreaCoefficient() {
 areaCoefficient = 1;
 Element elm = (Element) doc.selectSingleNode(
 ROOT+"IfcSIUnit[UnitType ='areaunit']");
 String id = elm.attributeValue("id");

 // it is SQUARE_FOOT
 Element elm1 = (Element) doc.selectSingleNode(
 ROOT+"IfcMeasureWithUnit[UnitComponent/IfcSIUnit/@ref = '"+ id + "']");

 if (null != elm1) {
 areaCoefficient = 0.09290304;
 }

 }

Appendixes 114

 /**
 * @return skylight to floor ratio
 */
 public double getSkylightToFloorRatio() {
 return (skylightArea / floorArea);
 }

 /*
 * return the building structure as a JSON tree
 */
 public String getStructureTree() {
 StringBuffer sb = new StringBuffer();
 sb.append("{\"areaCoefficient\":" +
 areaCoefficient+ ",\"lenghtCoefficient\":" +
 lengthCoefficient+ ",\"zones\":[");

 for (Iterator<String> iter0 = ifcZones.keySet().iterator();
 iter0.hasNext();) {
 String key = iter0.next();
 Zone z = ifcZones.get(key);

 sb.append(z.toStrig());

 for (Iterator<String> iter1 = z.getSpaceIterator(); iter1.hasNext();) {
 String st1 = iter1.next();
 sb.append("{\"area\":"+
 calculateFloorArea(ifcSpaces.get(st1).getSpaceID()) +",");
 sb.append(ifcSpaces.get(st1).toStrig()+",");
 ifcSpaces.remove(st1);
 }
 sb.deleteCharAt(sb.length()-1);
 sb.append("]},");
 }

 if(!ifcSpaces.isEmpty()){
 sb.append("{\"ID\":\"i00000\",\"name\":\"Default Zone\",\"spaces\":[");
 for(Iterator<String> iter0 = ifcSpaces.keySet().iterator();
 iter0.hasNext();) {
 String key = iter0.next();
 Space s = ifcSpaces.get(key);
 sb.append("{\"area\":"+ calculateFloorArea(s.getSpaceID()) +",");
 sb.append(s.toStrig()+",");
 }
 sb.deleteCharAt(sb.length()-1);

 }else
 sb.deleteCharAt(sb.length()-1);
 sb.append("]}");
 return sb.toString();
 }

 /*
 * Testing the parser locally
 */
 public static void main(String[] args) {
 IfcXMLParser parser = null;
 parser = new IfcXMLParser("test_building.ifcxml");
 System.out.println(""+parser.getStructureTree());
 }
}

Abbreviations 115

Abbreviations:

AEC: Architecture, Engineering, and Construction

AIC: Application Integrated Constructs

Ajax: Asynchronous JavaScript and XML

AM: Application Modules

AP: Application Protocols

BIM: Building Information Model

BSI: British Standards Institution

CAD / CAM: Computer-Aided Design / Computer-Aided Manufacturing

CPD: Certified Product Directory

FM: Facilities Management

GUID: Globally Unique ID

GWT: Google Web Toolkit

HTML: Hypertext Mark-up Language

HVAC: Heating, Ventilating and Air Conditioning

IAI: International Alliance for Interoperability

IDM: Information Delivery Manual

IFC: Industry Foundation Classes

IGES: Initial Graphic Exchange Specification

IR: Integrated Resources

ISO: International Organization for Standardization

IT: Information Technology

Abbreviations 116

JSON: JavaScript Object Notation

MEP: Mechanical / Electrical / Plumbing

MVD: Model View Definition

NFRC: National Fenestration Rating Council

OWL: Web Ontology Language

PMO: Product Modelling Ontology

RDF: Resource Description Framework

RIA: Rich Internet Application

SFR: Skylight to Floor Ratio

SHGC: Solar Heat Gain Coefficient

SOA: Service Oriented Architecture

SPARQL: Simple Protocol and RDF Query Language

STEP: Standard for the Exchange of Product Model Data

SWOP: Semantic Web-based Open Engineering platform

TMY: Typical Meteorological Year

UML: Unified Modeling Language

URI: Uniform Resource Identifier

VBA: Visual Basic for Applications

VDAFS: Verband der Automobilindustrie – Flächenschnittstelle

VT: Visual Transmittance

W3C: World Wide Web Consortium

WSDL: Web Service Description Language

WWW: World Wide Web

XML: eXtensible Mark-up Language

XSL: eXtensible Stylesheet Language

Bibliography 117

Bibliography

AECBytes (2008). AECBytes newsletter.
http://www.aecbytes.com/newsletter/issue_8.htm, last visited December 2008.

Architecture 2030 (2008). Material selection and embodied energy.
http://www.architecture2030.org/regional_solutions/materials.html, last visited
December 2008.

ASHRAE Handbook (1993). Fundamentals, American Society of Heating,
Refrigerating, and Air Conditioning Engineers, Inc., Atlanta, GA.

Augenbroe, G. (2001). Building simulation trends going into the new millennium.
Proceedings of the seventh international IBPSA conference, Rio de Janeiro,
Brazil, pp. 15 – 28.

Bell, H., Bjørkhaug, L., Rønning, J. (2004). ICT-Platform for Object Oriented
Knowledge in the Building and Construction Industry. B4E Conference
Maastricht, the Netherlands.

Bell, H., Bjørkhaug, L. (2006). A buildingSMART ontology. Proceedings of the
European Conference on Product and Process Modeling, ECPPM-2006,
Valencia, Spain, pp. 185-190.

Berners-Lee, T., Hendler, J., Lassila, O. (2001). The Semantic Web. Scientific
American, May, 284(5):34-43, http://www.sciam.com/article.cfm?id=the-
semantic-web&print=true.

Berners-Lee, T. (2006). Artificial Intelligence and the Semantic Web.
http://www.w3.org/2006/Talks/0718-aaai-tbl/, AAAI, 18 July 2006.

Berners-Lee, T., Gödel, K., Turing, A. (2006). Thinking on the Web. ISBN-13: 978-
0471768142, Publisher: Wiley-Interscience (September).

Böhms, H.M., Bonsma, P., Bourdeau, M., Josefiak, F. (2008). Semantic Product
modelling with SWOP’s PMO., ECPPM 2008, eWork and eBusiness in
Architecture, Engineering and Construction, pp. 95-104.

Brunnermeier, S. B., Martin, S. A. (1999). Interoperability Cost Analysis of the U.S.
Automotive Supply Chain. Research Triangle Institute Project Number 7007-
03.

Bibliography 118

BSA (2008). BuildingSMART Alliance. http://www.buildingsmartalliance.org/, last
visited December 2008.

CPD (2008). Certified Products Directory. http://cpd.nfrc.org/login.asp, last visited.

DL (2008). Description Logic. http://en.wikipedia.org/wiki/Description_logic, last
visited December 2008.

Design skylights (2008). Design skylights with suspended ceilings.
http://www.energydesignresources.com/docs/db-04-skysuspceil.pdf, last visited
December 2008.

dom4j (2008). Dom4j XML library. http://www.dom4j.org/, last visited December
2008.

Dublin Core (2008). Dublin Core Metadata Initiative.
http://dublincore.org/documents/usageguide/, last visited december 2008.

e-COGNOS (2008). e-COGNOS project - IST-2000-28671. http://e-cognos.cstb.fr/,
last visited December 2008.

Eastman, C., Teicholz, P., Sacks, R. and Liston, K. (2008). BIM Handbook: A Guide
to Building Information Modeling for Owners, Managers, Designers, Engineers
and Contractors. John Wiley & Sons, Inc., New Jersey.

eConstruct (2008). Final edition of the bcXML Specifications.
http://www.econstruct.org/6-public/bcxml_cd/publicdeliverables/d103_v2.pdf ,
last visited December 2008.

Egan, J. (1998). Rethinking Construction, Department of the Environment. London,
UK.

Express-IFC (2008). The EXPRESS Definition Language for IFC Development.
http://www.iai-international.org/Model/documentation/The_EXPRESS_
Definition_Language_for_IFC_Development.pdf, last visited December 2008.

FOL (2008). First-Order logic. http://en.wikipedia.org/wiki/First-order_logic , last
visited December 2008.

Fowler, J. (2008). STEP for Data Management, Exchange and Sharing.
http://www.pdtsolutions.co.uk/book/STEPbook.pdf, last visited December
2008.

Grant, R., Ceton, G. (2008). OmniClass and IFD Library. http://www.omniclass.org/
CSI_OmniClass-IFD_2008.pdf, last visited December 2008.

Gruber, T.R. (1993). Towards principles for the design of ontologies used for
knowledge sharing. In N. Gaurino and R. Poli, editors, Formal Ontology in
conceptual analysis and knowledge representation, Deventer, the Netherlands.

Bibliography 119

Gu, T., Wang, X. H., Pung, H. K., Zhang, D. Q. (2004). An Ontology-based Context
Model in Intelligent Environments. Proceedings of Communication Networks
and Distributed Systems Modeling and Simulation Conference.

GWT (2008). Google Web Toolkit. http://code.google.com/webtoolkit/, last visited
December 2008.

Halfawy, M.R., Froese, T. (2002). Modeling and implementation of smart AEC
objects: an IFC perspective, Proceedings of the international council for
research and innovation in building and construction. Aarhus School of
Architecture, Aarhus, Denmark, vol. 1, pp. 45–52.

Harrison, D., Donn, M., Skates, H. (2003). Applying web services within the AEC
industry: enabling semantic searching and information exchange through the
digital linking of the knowledge base. Proceedings of the CIB W78's 20th
International Conference on Construction IT, Construction IT Bridging the
Distance, CIB Report 284, ISBN 0-908689-71-3, New Zealand, 23-25 April,
pp. 145-153. http://itc.scix.net/cgi-bin/works/Show?w78-2003-145.

Hietanen, J. (2003). The Interoperability Pyramid. http://www.iai-international.org/
software/MVD_060424/IAI_ IFCModelViewDefinitionFormat.pdf, last visited
December 2008.

Hietanen, J. (2006). IFC Model View Definition Format, Version 1.0, International
Alliance for Interoperability.

IAI (2008). International Alliance for Interoperability.
http://www.iai-international.org/, last visited December 2008.

IES (1993). IES Lighting Handbook, 8th Edition, IES of North America, 1993.

IFC (2006). Industry Foundation classes, Release 2x3, International Alliance for
Interoperability. http://www.iai-international.org/Model/R2x3_final/index.htm.

IFC (2008). Industry Foundation Classes. http://www.iai-tech.org/, last visited
December 2008.

IFC Certified (2008). IFC Certified Software. http://www.ifcwiki.org/index.php/
IFC_Certified_Software, last visited December 2008.

IFC Certification (2008). IFC Certification Logos. http://www.iai.hm.edu/
how-to-implement-ifc/certification, last visited December 2008.

IFC Guide (2000). IFC Technical Guide. International Alliance for Interoperability,
October 2000.

IFC model (2008). Industry Foundation Classes release 2x technical guide.
http://www.iai-nternational.org/Model/documentation/IFC_2x_Technical
_Guide.pdf.

Bibliography 120

IFC Property Set (2008). http://www.iai-international.org/Model/documentation/
R151/Online_Documents/documents/IfcPropertyTypeResource-151.html, last
visited December 2008.

IFC tools (2008). IFC tools for developers. http://www.iai-international.org/software/
Tools%20for%20IFC%20developers.html, last visited December 2008.

IFC2x3 (2008). IFC/ifcXML Specifications, http://www.iai-international.org/Model/
IFC(ifcXML)Specs.html, last visited December 2008.

IFC2x4 (2008). IFC/ifcXML Specifications. http://www.iai-international.org/Model/
IFC(ifcXML)Specs.html, last visited December 2008.

IFCWIKI (2008). Basic Information. http://www.ifcwiki.org/index.php/
Basic_Informations, last visited December 2008.

IFD (2008). International Framework for Dictionaries.
http://dev.ifd-library.org/index.php/Ifd:IFD_in_a_Nutshell.

IGES (2008). Initial Graphic Exchange Specification in the USA. US Product Data
Association (USPRO), IGES 5.3 (ANSI-1996).
http://www.uspro.org/documents/IGES5-3_forDownload.pdf

Isermeyer, U. (2008). Datenaustausch auf neuem Niveau.
http://www.ingware.ch/download/IFC2-AxisVM8.pdf, last visited December
2008.

ISO 10303-1 (1994). Industrial automation systems and integration Product data
representation and exchange - Overview and Fundamental Principles,
International Standard. ISO TC184/SC4.

ISO 10303-28 (1994), Industrial automation systems and integration, Product data
representation and exchange, Part 28: Implementation methods: XML
representations of EXPRESS schema and data.

Jansen, P., Wix, J. (2003). Harmonization IFC and IFD. IAI industry day,
Washington, 14 May.

Jena (2008). Jena Framework. http://jena.sourceforge.net/, last visited December
2008.

Joseki (2008). Joseki WebAPI. http://www.joseki.org/, last visited December 2008.

Junge, R. (2008). Semantic Product Modeling. As presented in
http://www.ingware.ch/download/IFC2-AxisVM8.pdf, last visited December
2008.

JUnit (2008). JUnit testing framework. http://www.junit.org , last visited December
2008.

Bibliography 121

Lima, C., Fies, B., Zarli, A., Bourdeau, M., Wetherill, M. & Rezgui, Y. (2002).
Towards an IFC-Enabled Ontology for the Building and Construction Industry:
The e-COGNOS Approach'. Proceedings of the European Conference on
Information and Communication Technology Advances and Innovation in the
Knowledge Society eSM@RT 2002 in collaboration with CISEMIC 2002
Conference, Salford (UK), vol. 1, pp 254-264.

Lixto Solutions (2008). http://www.lixto.com, last visited December 2008.

Lixto Trasformation Server (2008).
http://www.lixto.com/lixto_transformation_server, last visited December 2008.

Kemmerer, S. J. (1999). STEP, the Grand Experience, NIST Special Publication 939.
National Institute of Standards and Technology, Gaithersburg, MD.

Kieran, S. and Timberlake, J. (2003). Refabricating Architecture. How manufactur-
ing methodologies are poised to transform building construction. McGraw-Hill,
ISBN-13: 978-0071433211.

Mahdavi, A., Suter, G., Häusler, S., Kernstock, S. (2004). An inquiry into building
product acquisition und processing. "eWork and eBusiness in Architecture,
Engineering and Construction: Proceedings of the 5th ECPPM conference"
(Eds: Dkbas, A. – Scherer, R.). A.A. Balkema Publishers. ISBN 04 1535 938 4.
pp. 363 – 370.

MVDs (2008). Model View Definitions. http://www.blis-project.org/IAI-MVD, last
visited December 2008.

NFRC (2008). National Fenestration Rating Council. http://www.nfrc.org, last
visited December 2008.

Ontology (2008). Ontology in information science. http://en.wikipedia.org/wiki/
Ontology_(computer_science), last visited December 2008

OWL (2004). Web Ontology Language. http://www.w3.org/2004/OWL, last visited
December 2008.

OWL guide (February 2004). Web Ontology Language guide. W3C
Recommendation, http://www.w3.org/TR/owl-ref/, last visited December 2008.

Owolabi, A., Anumba, C.J., El-Hamalawi, A. (2003). Architecture for implementing
IFC-based online construction product libraries. ITcon Vol. 8, Special Issue
IFC - Product models for the AEC arena, pg. 201-218,
http://www.itcon.org/2003/15

Protégé (2008). Stanford's Protégé Ontology Editor Tool. http://protege.stanford.edu
, last visited December 2008.

Bibliography 122

RDF (2004). Resource description framework, Concepts and Abstract Syntax. W3C
Recommendation. http://www.w3.org/TR/rdf-concepts, last visited December
2008.

RDFa Primer (2008). Bridging the Human and Data Webs.
http://www.w3.org/TR/xhtml-rdfa-primer, last visited December 2008.

Rezgui, Y. (2006). Ontology-Centered Knowledge Management Using Information
Retrieval Techniques. Journal of Computing in Civil Engineering, Vol. 20, No.
4, July/August 2006, pp. 261-270, (doi 10.1061/(ASCE)0887-
3801(2006)20:4(261)).

Schevers, H., Drogemuller, R. (2005). Converting the Industry Foundation Classes to
the Web Ontology Language. In Proceedings of the First international
Conference on Semantics, Knowledge and Grid. SKG. IEEE Computer
Society, Washington, DC, 73. DOI= http://dx.doi.org/10.1109/SKG.2005.59.

Shayeganfar, F., Mahdavi, A., Suter, G., Anjomshoaa, A. (2008). Implementation of
an IFD library using semenatic web technologies: A case study. ECPPM 2008
eWork and eBusiness in Architecture, Engineering and Construction, pp. 539 –
544.

SkyCalc (2008). A Microsoft Excel® based skylight design tool. Heschong Mahone
Group, Inc. (HMG): http://www.h-m-g.com/projects/skylighting/skycalc.htm
or http://www.energydesignresources.com, last visited December 2008.

SkyCalc Guide (2008), SkyCalc user's Guide.
http://www.energydesignresources.com/Portals/0/documents/Manuals/sg-6-
skycalc.pdf, last visited December 2008.

Skylighting Guidelines (2008). A detailed guide for skylight design.
http://www.energydesignresources.com, last visited December 2008.

SPARQL (2008). SPARQL Query Language for RDF. http://www.w3.org/TR/rdf-
sparql-query/, last visited December 2008.

STEP (2008). Standard for the Exchange of Product model Data.
http://en.wikipedia.org/wiki/STEP_(ISO_10303) , last visited December 2008.

STEP development (2008). http://www.steptools.com/library/standard/step_5.html,
last visited December 2008.

Studer, R., Volz, R., Stumme, G., Hotho, A. (2003). Semantic Web - State of the art
and future directions. In journal Special Issue on the Semantic Web,Vol. 3, pp.
5-9.

SWOP (2008). Semantic Web-based Open Engineering Platform. http://www.swop-
project.eu, last visited December 2008.

Bibliography 123

Turk, Ž., Dolenc, M., Nabrzyski, J., Katranuschkov, P., Balaton, E. , Balder, R.,
Hannus, M. (2004). Towards Engineering on the Grid. eWork and eBusiness in
Architecture, Engineering and Construction Taylor & Francis Group, London,
pp. 179-186.

Van Rees, R. (2003). Clarity in the usage of the terms ontology, taxonomy and
classification. Proceedings of CIB W78 conference, Auckland.
http://itc.scix.net/data/works/att/w78-2003-432.content.pdf, last visited
December 2008.

VDAFS (2008). Verband der Automobilindustrie – Flächenschnittstelle.
http://www.alias.com/eng/support/studiotools/documentation/DataTransfer/app
endix5.html, last visited December 2008.

Web-Harvest (2008). Web Data Extraction Tool. http://web-harvest.sourceforge.net/,
last visited December 2008.

Woestenenk, K. (2002). The LexiCon: structuring semantics. Proceedings of CIB
W78 conference on Distributing Knowledge in Building, Aarhus, Denmark,
Vol 2, p. 241-247.

WSDL (2008). Web Services Description Language 1.1.
http://www.w3.org/TR/wsdl, last visited December 2008.

XML Schema (2008). XML Schema. http://www.w3.org/XML/Schema, last visited
December 2008.

XPath (2008). XML Path Language. http://www.w3.org/TR/xpath, last visited
December 2008.

Yang, Q. Z., Zhang, Y. (2006). Semantic Interoperability in Building Design:
Methods and Tools, Computer-Aided Design. vol. 38(10), pp. 1099-1112,
October.

Curriculum Vitae 125

Curriculum Vitae

Personal Information

Name Ferial Shayeganfar

Address Kammelweg 10/212, A-1210 Vienna, Austria

E-mail addresses ferial@ifs.tuwien.ac.at ,

 shayeganfar@gmail.com

Date of birth 16.07.1975

Education

2004 - Present Doctoral study at the department of Building Physics and

Building Ecology, faculty of Architecture, Vienna

University of Technology

1994 - 2001 Master of Science from Azad University of Architecture,

Tehran

Work Experience

2004 - Now Institute of Software Technology & Interactive Systems,

Vienna University of Technology; Project Assistant

2002 - 2003 Tarhsazan Inc. (Tehran); Architect

2000 - 2002 Hatra Inc. (Tehran); Architect

1995 - 1999 Artabin Consultant Engineers (Tehran); Designer

Publications

Shayeganfar, F., Anjomshoaa, A. (2009). Exploitation of Semantic Building Model
in Indoor Navigation Systems, EGU 2009, to be presented in European
Geosciences Union General Assembly, April 2009.

Curriculum Vitae 126

Shayeganfar, F., Mahdavi, A., Suter, G., Anjomshoaa, A. (2008). Implementation of
an IFD library using semantic web technologies: A case study, ECPPM 2008
eWork and eBusiness in Architecture, Engineering and Construction, pp. 539 –
544.

Shayeganfar, F., Anjomshoaa, A., Tjoa, A. (2008). A Smart Indoor Navigation
Solution based on Building Information Model and Google Android,
Computers Helping People with Special Needs, Springer, pp. 1050 – 1056.

Nguyen, M., Tjoa, A., Anjomshoaa, A., Shayeganfar, F. (2006). Utilising Web
Service Based Business Processes Automation by Semantic Personal
Information Management Systems - The SemanticLife Case, 6th International
Conference Practical Aspects of Knowledge Management (PAKM2006), pp. 1
– 10.

Tjoa, A., Anjomshoaa, A., Nguyen, M., Shayeganfar, F. (2006). Using Semantic
Personal Information Management Systems - The Semantic Life Case, Practical
Aspects of Knowledge Management, Springer, pp. 1 – 12.

Tjoa, A., Anjomshoaa, A., Karim, S., Shayeganfar, F. (2006). Exploitation of
Semantic Web Technology in ERP Systems, Research and practical issues of
enterprise information systems, Springer, pp. 417 – 427.

Tjoa, A., Wagner, R., Andjomshoaa, A., Shayeganfar, F. (2005). Semantic Web:
Challenges and New Requirements, DEXA Workshop, IEEE Computer Society
Press,Copenhagen, Denmark, pp. 1160 – 1163.

