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beantworten. Seine wertvollen Anregungen und seine Bereitschaft zu Diskussionen haben

entscheidend zum Gelingen dieser Diplomarbeit beigetragen. Zusätzlich möchte ich mich

für die Durchführung der mühevollen Korrekturarbeiten bedanken, die die Qualität der
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Kurzfassung

Ziel der vorliegenden Arbeit ist die Implementierung einer Methode, die den numerischen

Aufwand für die Suche nach Gleichgewichtsverzweigungspunkten für unter Druck belastete

periodische Strukturen stark reduziert. Die durchgeführten Berechnungen basieren auf der

sogenannten Bloch-Wellen-Methode. Diese Methode nutzt die Periodizität der Struktur

und erlaubt die Bestimmung des Verzweigungspunktes und der dazugehörigen Versagens-

form für eine Struktur bestehend aus zahlreichen Zellen anhand einer einzigen Einheit-

szelle. Im Rahmen dieser Arbeit wird die Methode für die Analyse eines periodischen

offenporigen Schaumes, eines periodischen zweidimensionalen Gitters und eines periodis-

chen geschlossenporigen Schaumes verwendet.

Zur Beschreibung der Skelettlinien des offenporigen Schaumes wird eine Kelvin Zellgeome-

trie herangezogen. Die geometrischen Eigenschaften werden aus der Literatur übernommen.

Die Suche nach dem kritischen Zustand erfolgt für ein- und mehrachsige Spannungszustände.

Die Wellenlänge des kritischen Beulmodes ist abhängig vom Belastungszustand und von

der Anzahl der Zellen der periodischen Struktur. Die Ergebnisse sind vergleichbar mit den

Ergebnissen aus der Referenzliteratur und werden zusätzlich durch begleitende Eigenwer-

tanalysen an Strukturen, bestehend aus mehreren Einheitszellen, bestätigt.

Für die Modellierung eines zweidimensionalen periodischen Gitters werden vier verschiedene

Einheitszellen verwendet um sicherzustellen, dass die Implementierung unsensibel bezüglich

Phasenverschiebungen der periodischen Geometriefunktion reagiert. Die Ermittlung des

kritische Zustandes efolgt für einachsigen Druck und für ebene Spannungszustände. Der

kritische Beulmode eines Gitters mit (theoretisch) unendlicher Ausdehnung entspricht,

unabhängig vom Belastungszustand, einem Beulmode mit unendlicher Wellenlänge. Alle

vier Einheitszellen liefern vergleichbare Ergebnisse, die auch durch Ergebnisse aus der

Literatur bestätigt werden.

Das Modell des geschlossenporigen Schaumes basiert auf einer Weaire-Phelan Zellge-

ometrie. Unter Druckbelastung zeigt die Weaire-Phelan Zelle eine hohe Empfindlichkeit

gegenüber kleinen geometrischen Imperfektionen. Die Bestimmung des kritischen Zus-

tandes erfolgt für einachsigen Druck und hydrostatischen Druck. In beiden Fällen ist der

kritische Spannungszustand und die Wellenlänge des zugehörige Beulmodes unabhängig

von der Größe der periodischen Struktur. Der kritische Beulmode ist ein lokaler und weißt

die gleiche Periodizität wie die Einheitszelle auf.
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Abstract

The aim of the present thesis is the implementation of an efficient method for detecting

the onset of buckling in spatially periodic structures loaded under compression. The

calculations made are based on the Bloch Wave method. This method searches for the

critical state of a (theoretically) infinite periodic structure using a single unit cell which

can be as small as the smallest periodic building block of the structure, and therefore,

reduces the required numerical effort for predicting buckling modes that involve multiple

cells significantly. In the present thesis the Bloch Wave Analysis (BWA) is applied to

three different periodic structures, namely: an open cell foam, a periodic two-dimensional

lattice, and a closed cell foam.

The open cell foam is modeled on the basis of a space-filling Kelvin Cell. The struts of

the Kelvin Cell are assigned several geometric properties reported in the literature. The

results received for the Kelvin Cell are verified against published results. The Kelvin Cell

is subjected to uniaxial loading and a set of triaxial loading cases. The wave length of the

critical buckling modes depends on the triaxiality of the loading case. The results agree

with those reported in the literature and with the results delivered by an accompanying

eigenvalue analysis of Finite Element models containing multiple base cells.

The periodic 2D lattice is modeled using four different unit cells in order to investigate

the influence of different realizations of periodic boundary conditions on the predicted

behavior. These four cells are subjected to uniaxial and bi-axial compressive loads. The

results received with all four cells are in good agreement. The wavelength of the critical

buckling mode is independent of the multiaxiality of the loading case and corresponds to a

mode with infinite wavelength. The results of the BWA are confirmed by an accompanying

eigenvalue analysis and verified against results reported in the literature.

The closed cell foam model is based on the space-filling Weaire-Phelan Cell. The cell is

subjected to uniaxial compressive loading and to pure hydrostatic pressure. For both cases

the critical buckling mode is local to a single unit cell, even if the number of base cells

that build up the investigated sturcture is far larger than one.

iii



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Literature Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.4 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Finite Element Unit Cell Models 4

2.1 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Forces on the Unit Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Accompanying Linear Eigenvalue Analysis 12

3.1 Eigenvalue Buckling Prediction of ABAQUS . . . . . . . . . . . . . . . . . . 12

3.2 Accompanying Linear Eigenvalue Analysis Using ABAQUS . . . . . . . . . 13

4 Microscopic Onset-of-Failure 15

4.1 General Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 Total Lagrangian Formulation . . . . . . . . . . . . . . . . . . . . . . 15

4.1.2 The Incremental Tangent Moduli Tensor . . . . . . . . . . . . . . . . 18

4.1.3 Hill’s Stability Criterion . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.4 Solution Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.5 Eigenmodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 F.E.M. Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.1 Wave Matrix of a 2D Unit Cell . . . . . . . . . . . . . . . . . . . . . 26

4.2.2 Wave Matrix of a 3D Unit Cell . . . . . . . . . . . . . . . . . . . . . 29

5 Macroscopic Onset-of-Failure 33

5.1 General Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 F.E.M. Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 The Kelvin Cell 41

6.1 Characteristic Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1.1 Cell Dimesions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1.2 Material Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.1.3 Ligament Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.1.4 Effect of Shear Deformation . . . . . . . . . . . . . . . . . . . . . . . 43

6.1.5 Relative Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.1.6 F.E.M. Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

iv



6.2 Prediction of the Elastic Moduli . . . . . . . . . . . . . . . . . . . . . . . . 47

6.3 Uniaxial Compression in Rise Direction . . . . . . . . . . . . . . . . . . . . 48

6.4 Uniaxial Compression in Transverse Direction . . . . . . . . . . . . . . . . . 50

6.5 Triaxial Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Periodic 2D Lattices 57

7.1 Characteristic Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2 F.E.M. Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.3 Uniaxial Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.4 Bi-axial Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8 The Weaire-Phelan Cell 71

8.1 Characteristic Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.2 F.E.M. Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8.3 Determination of the Elastic Modulus . . . . . . . . . . . . . . . . . . . . . 75

8.4 Uniaxial Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.5 Pure Hydrostatic Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

9 Conclusions 79

A Bloch Wave Program 81

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.2 Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.3 Main Parts of the Program . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.4 Input Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.4.1 The Command File . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.4.2 ABAQUS Input File . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.5 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.5.1 Search for the Strictly Periodic Mode . . . . . . . . . . . . . . . . . 88

A.5.2 Standard Bloch Wave Analysis . . . . . . . . . . . . . . . . . . . . . 88

A.5.3 Macroscopic Onset-of-Failure . . . . . . . . . . . . . . . . . . . . . . 89

B Special Treatment of 2D and 1D Problems 90

B.1 Tangent Stiffness Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

B.2 Strictly Periodic Mode Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 91

B.3 All Other Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

C Weaire-Phelan Cell - Effect of Geometric Imperfections 93

C.1 F.E.M. Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

v



C.2 Results of the Strictly Periodic Mode Analysis . . . . . . . . . . . . . . . . 94

C.3 Results of the Accompanying Eigenvalue Analysis . . . . . . . . . . . . . . . 94

vi



1 Introduction

1.1 Motivation

Ductile solids having a periodic microstructure, like composite materials or cellular solids,

are widely used in engineering tasks. Loaded under compression the ultimate failure of

these solids can be related to a buckling type instability. The onset of instability can

correspond to the bifurcation point of the fundamental solution. For large structures the

evaluation of the critical load and the prediction of the corresponding buckling mode can

be a numerically expensive task. Exploiting the periodicity of the microstructure can

reduce the numerical effort significantly.

1.2 Problem Statement

The calculations made in the present thesis are based on the so-called Bloch Wave method.

Instead of dealing with the whole periodic structure this method uses a single unit cell for

detecting the critical state and for predicting buckling modes that involve multiple cells.

The detected buckling modes using the Bloch Wave method involve a finite number of cells.

For detecting buckling modes with wavelengths that are much larger than the unit cell

dimensions, a macroscopic onset-of-failure concept is used. To facilitate the search for the

critical state a program using both, the Bloch Wave method and the macroscopic onset-of-

failure concept, is implemented using PYTHON. The program is applied to different solids

with a periodic microstructure, namely: an open cell foam, a periodic two-dimensional

lattice and a closed cell foam. The results received with the implemented method are

verified against the results reported in the literature and against the results obtained by

an accompanying eigenvalue analysis of Finite Element models containing multiple cells.

1.3 Literature Overview

The stability criteria for rate-independent elasto-plastic solids was first formulated by [18].

The basic mathematical theory of the Bloch Wave method (microscopic onset-of-failure)

and the macroscopic onset-of-failure concept is presented in [27]. In the same paper a

Finite Element representation is given and both methods are applied to periodic two-

phase solids (composites) subjected to general in-plane loading. The completeness of the

Bloch Wave representation of the buckling eigenmode is proven in [13] and a nonlinear
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homogenization method for nonlinear elastic composites is developed in the same work. It

is shown that the macroscopic onset of failure is related to the loss of rank-one convexity

of the homogenized moduli tensor of the periodic microstructure.

In [17] both the macroscopic and the microscopic onset-of-failure concept are applied to

open-cell foams idealized using a space filling Kelvin Cell. The Finite Element formulation

of the onset-of-failure concept is presented and a condensation algorithm is used to reduce

the size of the stiffness matrix (see also [27]). The Kelvin Cell used in [17] is assigned

the geometric properties of open cell foams tested in [16] and [14]. In [14] and [16] open

cell polyurethane foams with different cell sizes are tested to characterize the properties

of the base material and the geometric properties of the microstructure. Different models

for predicting the elastic constants and the compressive response are developed and the

results are verified against the experiments. [16] deals with the prediction of the elastic

properties of the open-cell foams, and [14] deals with the compressive response and the

crushing behavior of such foams.

In [20] long wave length buckling of elastic square honeycombs under in-plane bi-axial

compression is investigated. The bifurcation behavior and the post-bifurcation behavior

of the square honeycombs is analyzed and the dependence of the critical stress and the

corresponding buckling mode of the periodic length is discussed. Based on the two-scale

analysis (see [21]) a simple formula for estimating the critical stress corresponding to a

long-wave-length mode is developed.

Bitsche [6] deals with the simulation of the mechanical behavior of closed cell dry foam

structures. The foams are idealized using space-filling Kelvin Cells and space-filling

Weaire-Phelan Cells. The dependence of the elastic properties on the density is discussed.

1.4 Chapter Overview

The structures investigated in the present work have periodic microgeometries. These

periodic microgeometries can be described with unit cells subjected to periodic boundary

conditions. Chapter 2 gives a short introduction to the unit cell method. The coupling

equations for maintaining geometric periodicity of the displacement field of arbitrary pe-

riodic unit cells are presented and the forces acting on a unit cell subjected to a periodic

displacement field are discussed.

The microscopic and macroscopic onset-of-failure concept are presented in Chapter 4 and

Chapter 5, respectively. Chapter 4 gives a brief introduction to the general mathematical

2



theory of the microscopic onset of failure concept, and the Finite element representation

of this method is presented. In Chapter 5 the general theory of the macroscopic onset-of

failure concept is presented and the Finite element representation of this method given in

[17] is extended to more general unit cell topologies.

Both the microscopic and macroscopic onset-of-failure concept are subsequently applied

to different periodic structures see Chapter 6 to Chapter 8. In Chapter 6 an open cell

foam is modeled using space filling Kelvin Cells. The Kelvin unit cell model is subjected

to uniaxial compressive loading and a set of triaxial loading cases. In Chapter 7 the

influence of different realizations of the periodic structure on the results obtained by the

microscopic and macroscopic onset of failure concept are investigated for the case of a 2D

periodic lattice. A closed cell foam modeled with the space filling Weaire-Phelan Cell and

subjected to uniaxial loading and pure hydrostatic pressure is investigated in Chapter 8. To

verify the results obtained with the microscopic and macroscopic onset-of-failure concept

an accompanying linear eigenvalue analysis based on the eigenvalue buckling prediction of

ABAQUS is used (see Chapter 3) in each case. The findings obtained for the respective

topologies are summarized and discussed in Chapter 9.

Remark: If not otherwise stated positive values of stress correspond to compressive stresses

in this thesis.
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2 Finite Element Unit Cell Models

2.1 Boundary Conditions

This section gives a short overview about the periodic micro field approach also referred to

as the unit cell method. A more detailed description of the finite element unit cell method

can be found, e.g. in [10] in the context of modeling metallic foams.

Three possible types of boundary conditions (BC) used in the periodic micro field approach

are: periodicity, symmetric and antisymmetric boundary conditions. Symmetry and an-

tisymmetry BC can only handle deformation states that do not break symmetry (see [8])

whereas periodic BC can handle any spatially periodic deformation state. Therefore, the

latter are the most general of these three types of boundary conditions.

For generating the stiffness matrices used in the Bloch Wave algorithm without being

restricted to load cases that do not break symmetries, periodic boundary conditions are

applied to all unit cells used in the present work. Examples for load cases that may break

symmetry are shear load cases. Note, that this statement refers primarily to the prebuck-

ling deformations applied in the Finite Element analysis. The spatially periodic buckling

modes are implicitly contained in the Bloch Wave formulation (see Section 4). In the

following the formulation of periodic displacement boundary conditions is demonstrated

for the 2D case.

Figure 2.1 shows the periodicity boundary conditions applied to a 2D unit cell with the

four edges being denoted as N (North), S (South), W (West), E (East) and the four

corners being denoted as SW (South West), SE (South East), NE (North East), NW

(North West). To restrict rigid body movements some of the displacement degrees of

freedom of the corner nodes SW and SE are constrained (u
∼

SW = {0, 0}, u
∼

SE = {uSE, 0}).
Geometric periodicity of the displacement field is maintained by coupling the degrees of

freedom of opposite sides of the unit cell. The degrees of freedom of one side of such a pair

remain unconstrained . This side is referred to as “master” side. The displacements of the

opposite “slave” side are constrained to be identical to those on the master side except

for an additional constant offset vector. Choosing W and S as unconstrained master sides

and the unconstrained degrees of freedom (DOFs) of the corner nodes SW, SE and NW

as macroscopic master DOFs the additional offset vectors (see Figure 2.1) can be written

as u
∼

SE = {uSE, 0} and u
∼

NW = {uNW, vNW}. For the displacements on the slave sides E

4



and N one receives:

u
∼

E = u
∼

W + u
∼

SE (2.1)

u
∼

N = u
∼

S + u
∼

NW (2.2)

The displacement of the slave corner node NE is a linear combination of the displacement

vectors of the two master nodes NW and SE:

u
∼

NE = u
∼

NW + u
∼

SE (2.3)

For small strains and displacements the macroscopic strain state ǫ
∼

= {εxx, εyy , γxy} is

related to the components of the additional offset vectors u
∼

SE and u
∼

NW by:

εxx =
uSE

lx
, εyy =

vNW

ly
, γxy =

uNW

ly
(2.4)

If rotational DOFs θ are active in the Finite Element model, additional coupling equations

have to be provided. In the case of a rectangular unit cell the rotations of all corner nodes

have to be identical:

θSW = θSE = θNE = θNW (2.5)

The rotational degrees of freedom on opposite sides must be coupled accordingly:

θE(y) = θW(y), θN(x) = θS(x) (2.6)

It was shown by [24] that unit cell models react to concentrated loads on master nodes

like the infinite structure would react to homogenized applied stresses. For this reason all

loads are applied on the master nodes. Using horizontal and vertical forces H and V the

homogenized stress state σ
∼

= {σxx, σyy, σxy} can, similar to Equation (2.4), be written as:

σxx =
HSE

ly
, σyy =

VNW

lx
, σxy =

HNW

lx
(2.7)

The scheme presented for the rectangular 2D unit cell can be adopted for cuboid-shaped

5
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3D unit cells. Figure 2.2 (left) shows the naming convention for face, edge and corner

node sets of such a cell. To restrict the unit cell against rigid body movements some

of the displacement degrees of freedom of the corner nodes SWB, SEB and NWB are

constrained. The remaining six degrees of freedom of these master nodes correspond to

the six macroscopic deformation modes of the cell (three normal and three shear modes).

A general macroscopic deformation state with three normal and three shear deformation

degrees of freedom being active is shown in Figure 2.2 (right). In this figure the local

periodic deformations are omitted. Table 2.2 in [10] gives a complete description of the

necessary boundary conditions and coupling equations for 3D unit cells.

2.2 Forces on the Unit Cell

The aim of this section is to find a relation for the reaction forces, due to a periodic

deformation field, on opposite sides of a unit cell. This relation is used for deriving

Equation (5.28) in Section 5 from which the strain functions, needed for calculating the

homogenized tangent moduli tensor, are estimated.

Figure 2.3 shows an array of unit cells in the undeformed (dashed lines) and the deformed

state (solid lines). To maintain periodicity of the deformed structure, the following con-

dition for forces acting on opposite sides of the unit cell must be fullfilled:

F
∼

N = −F
∼

S

F
∼

E = −F
∼

W (2.8)

For the forces acting in the corner nodes, which are artefacts from the FE discretization,

one finds:

F
∼

SW + F
∼

SE + F
∼

NE + F
∼

NW ≈ 0
∼
. (2.9)

To verify the statements given in Equations (2.8) and (2.9) a rectangular unit cell, meshed

with 4-noded bi-linear stress elements, is subjected to different periodic displacement fields.

In Figure 2.4 the meshed unit cell is depicted. The displacement fields are described using
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Figure 2.3: 2D unit cells in deformed and undeformed state.

the following equations:

uij = Aux sin(0.2 + 2πxij,rel) +Auy sin(0.2 + 2πyij,rel) + εxxxij +
εxy

2
yij

vij = Avx sin(0.1 + 2πxij,rel) +Avy sin(0.9 + 2πyij,rel) + εyyyij +
εxy

2
xij (2.10)

All nodes in the rectangular unit cell depicted in Figure 2.4 are treated like elements in

a matrix, therefore, the position of each node can be defined using its row number i and

its column number j. For the relative coordinates xij,rel and yij,rel of a node with index ij

one finds:

xij,rel =
j

Nx − 1
, j = 0, 1, 2, . . . Nx − 1

yij,rel =
i

Ny − 1
, i = 0, 1, 2, . . . Ny − 1 (2.11)

where Nx is the number of nodes in x direction and Ny is the number of nodes in the

y direction. The SE master node, therefore, has the relative coordinates (1,0). For the

absolute coordinates of the node ij one receives:

xij = xij,rellx

yij = yij,relly (2.12)

The unit cell depicted in Figure 2.4 with lx being 20 mm and ly being 10 mm is subjected
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Table 2.1: Deformation fields applied to a 2D unit cell.

εxx εyy εxy Aux Auy Avx Avy

DF1 1.00 0.00 0.00 0.00 0.00 0.00 0.00

DF2 0.00 1.00 0.00 0.00 0.00 0.00 0.00

DF3 0.00 0.00 1.00 0.00 0.00 0.00 0.00

DF4 0.50 0.00 0.20 0.00 0.00 0.00 0.00

DF5 0.00 0.00 0.00 0.20 0.20 0.20 0.20

DF6 0.00 0.00 0.30 0.20 0.20 0.20 0.20

Figure 2.4: 2D unit cell meshed with 4-node bi-linear plane stress elements.

to the displacement fields (DF) listed in Table 2.1. For DF1 to DF4, 4-noded bi-linear

plane stress elements (CPS4 in ABAQUS) with an edge length of 1mm are used and for

DF5 and DF6 the edge length of the elements (CPS4) is reduced to 0.25 mm

The results for DF1 to DF6 are depicted in Figure 2.5. The applied periodic deformation

field results in a periodic stress state in the 2D unit cell. The boundary S of the unit cell

consists of the four sides W,S,E, and N. With the normal vector n
∼

of an infinitesimally

small element ds on the boundary the corresponding stress vector σ
∼

n acting on ds can

be calculated. As a result of the periodicity of the displacement field the stress vectors of

corresponding elements ds on opposite sides of the unit cell must cancel each other. In the

discretized model, the nodal reaction forces at the boundary side nodes can be interpreted

as being approximately proportional to the stress vectors. At the corner nodes of the unit

cell, reaction forces appear that correspond to the stress fields within the corner elements.

These reaction forces do not have an immediate physical meaning. However, they can

be interpreted as being proportional to the superposition of the stress vectors acting on

the two free sides of the corner elements. Thus, the forces acting in the corner nodes are

artefacts from the F.E. discretization. For the nodal reaction forces and the forces acting

9



Figure 2.5: Deformed unit cell subjected to DF1 to DF6.
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on opposite sides of the cell of the Finite Element model one finds:

F
∼

SW + F
∼

SE + F
∼

NE + F
∼

NW ≈ 0
∼

(2.13)

F
∼

N ≈ −F
∼

S (2.14)

F
∼

E ≈ −F
∼

W (2.15)

Equation (2.13) is the result of the periodicity of the stress vectors in the vicinity of

the corner nodes. The results given in Equations (2.13) to (2.15) are comparable with

Equations (2.8) to (2.9). The difference between the nodal forces on opposite sides is

small and depends on the discretization used for the unit cell.
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3 Accompanying Linear Eigenvalue Analysis

The present work deals with buckling type instabilities of periodic structures. Subjected

to compressive loading thin or slender structural members can become unstable at a crit-

ical point on the load-displacement path. This point can represent a bifurcation of the

equilibrium path, which corresponds to buckling of beams and shells, for example. There

are various methods for predicting the critical point at which the structure becomes un-

stable. A description of these methods can be found in [11]. This chapter gives a brief

outline of one of these methods, namely the accompanying linear eigenvalue analysis.

3.1 Eigenvalue Buckling Prediction of ABAQUS

The eigenvalue buckling prediction implemented in ABAQUS is typically used for struc-

tures with an almost linear prebuckling response. The critical load for which buckling

occurs is estimated as a multiplier of a set of perturbation loads. These perturbation

loads are added to the base state loads. The initial material stiffness is used in the deriva-

tion of the stiffness matrices.

At the critical state one finds, by using the static stability criterion:

K
≈
δu
∼

= 0
∼
, (3.1)

where K
≈

is the tangent stiffness matrix corresponding to the current loading pattern of the

structure and δu
∼

is the nontrivial displacement solution of the discretized Finite Element

model. The loading pattern for the critical state F
∼

crit can consist of concentrated nodal

forces, prescribed non-zero displacements, thermal loadings and/or distributed loads.

As mentioned above ABAQUS calculates the critical buckling load F
∼

crit relative to a base

state [1]. The base state can result from any type of loading history and is the response of

the structure to the base state loading pattern F
∼

pre (pre-loading pattern). In the eigen-

value buckling prediction step a perturbation loading pattern F
∼

pert is defined. F
∼

pre and

F
∼

pert can, like F
∼

crit, consist of concentrated nodal forces, prescribed nonzero displace-

ments, thermal loadings, and/or distributed loads. The aim of the buckling prediction is

to find a multiplier λ for scaling F
∼

pert in order to receive the critical buckling load:

F
∼

crit = F
∼

pre + λF
∼

pert (3.2)
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This leads to the following eigenvalue problem (for a more detailed description see [1]) :

(K
≈

0 + λiK
≈

∆)δu
∼

i = 0
∼

(3.3)

with K
≈

0 being the base state stiffness matrix due to the applied pre-loading pattern

F
∼

pre and K
≈

∆ being the incremental stiffness matrix due to the applied perturbation

loading pattern F
∼

pert of the ABAQUS buckle step. λi are the eigenvalues and δu
∼

i are

the corresponding eigenvectors where i refers to the number of the buckling mode. For

calculating the critical load only the lowest eigenvalue λ1 is of interest. Therefore, one can

write:

F
∼

crit = F
∼

pre + λ1F
∼

pert (3.4)

3.2 Accompanying Linear Eigenvalue Analysis Using ABAQUS

If the structure exhibits strong geometrically nonlinear behavior and the base state is far

from the critical state, the critical buckling load and the corresponding buckling mode may

be estimated incorrectly by the eigenvalue buckling prediction implemented in ABAQUS.

To overcome this problem an incremental procedure is developed, in which the current

base state loading pattern i+1F
∼

pre of the structure is calculated as a function of the base

state loading pattern iF
∼

pre of the previous increment and the applied perturbation loading

pattern F
∼

pert. This incremental procedure is referred to as accompanying linear eigenvalue

analysis.

The accompanying linear eigenvalue analysis with ABAQUS is implemented using Python.

The flow diagram of the accompanying linear eigenvalue analysis is shown in Figure 3.1.

The program reads the geometric data (nodes, elements, boundary conditions) from a

user provided .txt file. The geometry file must have the same structure as an ABAQUS

input file. To generate the actual ABAQUS input file the Python script attaches two load

steps at the end of the .txt file and stores the new file as an .inp file. The first step is

a pre-loading step, in which the structure is subjected to a pre-load calculated using the

following equation:

i+1F
∼

pre = iF
∼

pre + kr
iλ1F

∼
pert (3.5)

with kr as reduction factor and λ1 as lowest eigenvalue of the buckling analysis. kr is

needed due to the fact that the critical load may be overestimated if the structure exhibits

strongly nonlinear behavior . For all accompanying eigenvalue analysis used in the present
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Figure 3.1: Accompanying linear eigenvalue analysis for a buckling type instability problem.

work, kr is set to 0.7. For the first eigenvalue analysis step 1F
∼

pre = 0.0. The second step is

an ABAQUS buckle step with F
∼

pert as the corresponding perturbation load of the buckle

step. F
∼

pert is kept constant during the accompanying eigenvalue analysis and has to be

specified by the user. If the eigenvalue of the current analysis step is greater than a user

defined limit of λtol, then λ1 is used to calculate i+1F
∼

pre, and another preload/buckling

analysis is started. The accompanying eigenvalue analysis proceeds until λ1 ≤ λtol. If

λ1 ≤ λtol and λtol is small enough one finds for the critical buckling load :

F
∼

crit ≈ iF
∼

pre. (3.6)

.
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4 Microscopic Onset-of-Failure

The ultimate failure mechanism of a ductile solid with a periodic microstructure can

be related to a buckling type instability, see [27]. Therefore, the critical point on the

loading path can be related to the occurrence of a bifurcation in the fundamental solution.

The microscopic onset-of-failure concept presented in this chapter uses the Bloch Wave

representation of the buckling eigenmode. By applying the Bloch Wave representation of

the buckling eigenmode to periodic structures, the numerical effort for detecting the critical

point on the loading path can be reduced significantly . The general mathematical theory

of the microscopic onset-of-failure concept for periodic microstructures, presented in [27],

is briefly described in Section 4.1, and the corresponding Finite element representation is

presented in Section 4.2. In [27] the onset-of-failure concept and the corresponding Finite

element discretization is presented for the case of a 2D unit cell, and in [17] this concept

is applied to an open cell foam represented by a space-filling Kelvin Cell. In this chapter

the microscopic onset-of-failure concept is given for a 2D unit cell. The 3D case emerges

from the 2D case by extending the ranges of the used indices from (1 ÷ 2) to (1 ÷ 3).

4.1 General Theory

4.1.1 Total Lagrangian Formulation

For the problem description the total Lagrangian formulation is used. Therefore, the

undeformed, stress free state is used as the reference state. Figure 4.1 shows a perfectly

periodic micro structure on a domain V with boundary δV in its undeformed state. D is

the characteristic cell (the fundamental building block) of this micro structure.

In the total Lagrangian formulation the initial position of a material point (p) is defined by

the initial position vector X
∼

whereas the current position (p′) of the same material point

in the deformed configuration is identified by the current position vector x
∼

(see Figure

4.2).

The position vector of the current deformation state is a function of the initial position

vector, namely:

x
∼

= ϕ
∼

(X
∼

) (4.1)
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Figure 4.1: Infinite solid with a perfectly periodic micro structure and its fundamental building block
(unit cell). Based on [27].

Figure 4.2: Position vectors of a material point in the undeformed and in the deformed state.
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Figure 4.3: Line element in undeformed and deformed configuration. Based on [11]

With Equation (4.1) the displacement vector for the material point p can be written as:

u
∼

= x
∼
− X

∼
= ϕ

∼

(X
∼

) − X
∼

(4.2)

In the initial configuration a small line element is defined by the vector dX
∼

with the

starting point X
∼

and the ending point X
∼

+dX
∼

. For the same line element in the deformed

configuration one can write (see Figure 4.3):

dx
∼

= ϕ
∼

(X
∼

+ dX
∼

) − ϕ
∼

(X
∼

) (4.3)

By expanding ϕ
∼

(X
∼

+ dX
∼

) in Equation (4.3) in a Taylor series one receives for dx
∼
:

dx
∼
≈

∂ϕ
∼

∂X
∼

dX
∼

= F
≈
dX
∼

(4.4)

where F
≈

is the so called deformation gradient and defined as:

Fij =
∂xi

∂Xj
or F

≈
=

∂ϕ
∼

∂X
∼

=
∂x
∼

∂X
∼

(4.5)

For the 2D case one finds for F
≈

:

F
≈

=





∂x
∂X

∂x
∂Y

∂y
∂X

∂y
∂Y



 (4.6)

The deformation gradient F
≈

defined at X
∼

describes the deformation field in the neighbor-

hood of each point in a linearized sense.
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4.1.2 The Incremental Tangent Moduli Tensor

In [27] the incrementally linear constitutive law for rate-independent materials is used. In

index notation it can be written as:

Ṗij(Λ,X
∼

) = Lijkl(Λ,X∼ )Ḟkl (4.7)

with

Ḟkl = u̇k,l (4.8)

where Ṗ is the rate of the first Piola-Kirchhoff stress tensor and Ḟ is the rate of the

deformation gradient. The incrementally linear constitutive law depends on the loading

state, which is expressed by a scalar quantity Λ called the load parameter. Ḟ is a function

of the displacement rate u̇
∼
. For the assumed quasi-static loading conditions all derivatives

are taken with respect to any time-like parameter which increases monotonically with the

loading process.

L is the incremental tangent moduli tensor. It depends on the material properties and the

current equilibrium state described by a set of internal variables. L describes the material

response in the neighborhood of X
∼

and is a periodic function with the same periodicity

as the micro structure.

L(Λ,X, Y ) = L(Λ,X + n1h1, Y + n2h2) (4.9)

where ni are arbitrary integers and hi are the unit cell dimensions. Many rate-independent

materials satisfy the major symmetry condition for the incremental moduli tensor L:

Lijkl(Λ,X∼ ) = Lklij(Λ,X∼ ) (4.10)

We assume that the loading process produces a unique response. This loading path will

be referred to as “principle equilibrium path”. Any of these principle equilibrium loading

paths can be parametrized with the load parameter Λ. All internal variables and stresses

in the neighborhood of X
∼

are depending on Λ. For that reason the incremental moduli

tensor L is only a function of the load parameter Λ and the initial position vector X
∼

. This

was already implicitly assumed in Equation (4.9) and (4.10).
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4.1.3 Hill’s Stability Criterion

Hill [18] was the first to deal with stability criteria for elasto-plastic solids on a mathemati-

cal foundation. Hill’s stability criterion is based on the positive definiteness of a functional

FV, which, defined on a domain V , is quadratic in the virtual displacement rate field δu̇
∼

(from [27]),

FV =

∫

V
δ ˙̄ui,jLijkl(Λ,X

∼
)δu̇k,ldV (4.11)

where δ ˙̄u
∼

is the complex conjugate of δu̇
∼
. The minimum eigenvalue λ(Λ) of this functional

is defined as:

λ(Λ) = min(FV(Λ, δu̇
∼
)/‖δu̇

∼
‖2

V ) (4.12)

with

‖δu̇
∼
‖2

V =

∫

V
δ ˙̄um,nδu̇m,ndV (4.13)

As long as the minimum eigenvalue λ(Λ) is positive, the deformed state, which depends

on Λ, is stable. δu̇
∼

must be continuous in V and vanish on those points of δV (see Figure

4.1) where the kinematic boundary conditions are applied. The major symmetry of the

incremental moduli tensor L guarantees that all eigenvalues of FV are real. Equations

(4.11) to (4.13) are valid for solids of finite size. The corresponding equation for solids of

infinite extent in ℜ2 is given by (from [27]):

(Lijkl(Λ,X∼ )δu̇k,l − λ(Λ)δu̇i,j),j = 0 (4.14)

The extension to an infinite sized solid can be established by using only locally integrable,

bounded functions δu̇
∼

and increasing the size of the domain V to ℜ2.

It was shown by [13] that the eigenmodes δu̇
∼
(Λ) of Equation (4.14) can be expressed as:

δu̇
∼

= p
∼

exp[i(
m1

h1
X +

m2

h2
Y )] (4.15)

with p
∼

as an arbitrary periodic function defined on the domain D, and p
∼

exp[i(m1

h1
X+m2

h2
Y )]

as the Bloch Wave representation of the buckling eigenmodes. Because of the periodicity,

the search for the minimum eigenvalue λ of FV for all bounded functions δu̇
∼

is reduced

to the search of the minimum eigenvalue of the functional, FD defined on D. For the
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minimum eigenvalue corresponding to this functional one receives with m
∼

= {m1,m2}T

as vector of the wave numbers:

λ(Λ) = inf
m
∼

[γ(Λ,m
∼

)] (4.16)

with (see [27])

γ(Λ,m
∼

) = min
p
∼

[FD(Λ, p
∼

exp[i(
m1

h1
X +

m2

h2
Y )])/‖p

∼

exp[i(
m1

h1
X +

m2

h2
Y )]‖2

D]. (4.17)

inf(A) is the infimum (greatest lower bound) of a subset A containing real numbers and

is defined as the biggest real number that is smaller than, or equal to, all numbers of the

subset A. If A has no lower bound then inf(A) = −∞, or if A is empty than inf(A) = ∞
(by definition). If A has a smallest element, e.g., inf{3, 7, 9} = 3 then the smallest element

is the infimum of the subset A. The infimum of a set of real numbers A does not have to

belong to the set, e.g., inf{y ∈ ℜ : 0.2 < y < 1} = 0.2.

Integration in Equations (4.11) and (4.13) is now performed over the domain D instead

of the larger domain V . To find the minimum eigenvalue one has to scan over all possible

periodic functions p
∼

on the domain D and over all combinations of m1 and m2. For

∀mi = 0, γ may have a singular point. For that reason the inf-symbol was used for the

minimization over m
∼

.

4.1.4 Solution Procedure

The solution procedure starts with the undeformed solid in a stress free state. At this point

of the loading path λ(Λ) > 0. The load parameter Λ is now increased monotonically. While

increasing Λ one can see that λ(Λ) decreases. If λ(Λc) = 0 the critical state is established.

Λc is the critical load parameter corresponding to this state. At this point of the loading

path a bifurcation of the fundamental solution occurs. At the critical state the following

conditions must be satisfied (see also [27]):

λ(Λc) = 0, Λc = inf
m
∼

[Λm(m
∼

)]

γ(Λm(m
∼

),m
∼

) = 0, γ(Λ,m
∼

) > 0 for 0 ≤ Λ < Λm (4.18)
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with Λm being the lowest value for which γ(Λ(m
∼

),m
∼

) = 0 is possible for fixed m
∼

. The

search for Λc is equal to the search of the lowest point on the surface Λm(m
∼

) in a Λm versus

m1, m2 graph. The onset-of-failure surface is now defined as the locus of all macroscopic

stresses or strains corresponding to Λc on all possible loading paths emerging from the

undeformed basis state.

With Equation (4.15) one can see that in the neighborhood of ∀mi = 0 two different modes

coexist: the strictly periodic mode for ∀mi = 0, δu̇
∼

= p
∼

and the long wave length mode for

one mi → 0, δu̇
∼
6= p

∼

. This is the physical reason for the singularity in the neighborhood

of ∀mi = 0 on the surface Λm(m
∼

).

4.1.5 Eigenmodes

As mentioned above Λc is the lowest point of the surface Λm(m
∼

):

Λc = Λm(m
∼

c) (4.19)

For ∀mic 6= 0 the corresponding eigenmodes are local and show a periodicity that involves

multiple base cells. If one mic → 0 is a regular point on the surface Λm(mi) the existing

mode is still local, but if the limit of one mic → 0 has a singularity on this surface the

corresponding mode is global in nature. If there exists a global buckling mode it can be

detected by a computationally less expensive procedure which will be described in Chapter

5.

For ∀mic = 0 the eigenmode is strictly periodic to the cell. For this case the Bloch Wave

analysis program has to be adapted in a way that this singularity can be handled without

problems (see Appendix A.3).

4.2 F.E.M. Discretization

This section deals with the most general case of 3D unit cells. The used unit cells are

discretized using displacement finite elements. One may use structural or continuum

elements for discretization. With the present implementation of the Bloch Wave Analysis

Program these two element types must not be mixed within one unit cell.

Appropriate periodic boundary conditions (see Section 2.1) must be applied to the cell.

The calculation of the principal load path is done by using a standard incremental Newton-
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Raphson algorithm. For each equilibrium state along the loading path ABAQUS provides

the stiffness matrices1 of all elements in the unit cell. The unconstrained, incremental

tangent stiffness matrix of the unit cell K
≈

(Λ) can be assembled in a straight forward

manner.

As shown in Section 4.1 the critical state is established when the quadratic stability func-

tional FD(Λ, δu
∼
) looses its positive definiteness, i.e., its minimum eigenvalue λ(Λc) = 0.

Λc is the lowest value of the load parameter Λ for which a critical state is found to occur.

Along the loading path one finds:

λ(Λ) > 0 for 0 ≤ Λ < Λc (4.20)

In [27] the quadratic form FD corresponding to FD is used for the finite element discretiza-

tion. The critical load parameter is reached, if FD(Λ, δu
∼
) has a zero eigenvalue, where

FD(Λ, δu
∼
) = δū

∼

TK
≈

(Λ)δu
∼

(4.21)

with δu
∼

as the nodal displacement perturbation vector corresponding to the critical eigen-

mode of the structure and K
≈

(Λ) as the unconstrained, incremental tangent stiffness matrix

corresponding to the discretization of the unit cell. K
≈

(Λ) depends only on the dimension-

less load parameter Λ. δū
∼

is the conjugate complex of δu
∼
. Using the Bloch Wave repre-

sentation of the buckling eigenmode the critical eigenmode (see Section 4.1) of a periodic

micro structure can be expressed as

δu
∼
(X
∼

) = U
∼

(X
∼

)exp[i(
m1

h1
X +

m2

h2
Y +

m3

h3
Z)] (4.22)

Where U
∼

(X
∼

) is a periodic function with the same periodicity as the unit cell:

U
∼

(X + n1h1, Y + n2h2, Z + n3h3) = U
∼

(X,Y,Z) (4.23)

where hi are the cell dimensions and ni are arbitrary integers.

Therefore, the search for the critical state requires the consideration of all possible dimen-

1ABAQUS-Syntax (Version 6.7.4):
*STEP
*STATIC
...
*ELEMENT MATRIX OUTPUT, ELSET= myelementset ,STIFFNESS=YES, OUTPUT FILE=USER
DEFINED, FILE NAME=mymtxfile , FREQUENCY = 1,
*END STEP
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sionless wave numbers mi. For large stiffness matrices and a reasonably fine scanning grid

for the wave numbers this procedure can be daunting. An algorithm to reduce the size of

the stiffness matrix is presented in [27] and [17], and will be outlined in the following.

The components of the nodal displacement perturbation vector δu
∼

are not independent of

each other. They must satisfy the relationship given in Equation (4.23). It was observed

that only the deformations of the boundary nodes need to be coupled in the Bloch Wave

calculations, therefore the internal nodes can be condensed out. The index notation of

the matrices is taken according to the indices used in [17], where •1 denotes independent

(master) nodal quantities, •2 describes dependent (slave) nodal quantities on the unit cell

boundary and •I characterizes dependent nodal quantities assigned to interior nodes.

With δu
∼

= {δu
∼

1, δu
∼

2, δu
∼

I} and with δF
∼

= {δF
∼

1, δF
∼

2, δF
∼

I} as corresponding force vector

the incremental equilibrium condition

K
≈

(Λ)δu
∼

= δF
∼

(4.24)

can be written as











K
≈

11 K
≈

12 K
≈

1I

K
≈

21 K
≈

22 K
≈

2I

K
≈

I1 K
≈

I2 K
≈

II





















δu
∼

1

δu
∼

2

δu
∼

I











=











δF
∼

1

δF
∼

2

δF
∼

I











.

(4.25)

The partition of the tangent stiffness matrix K
≈

(Λ) is implied by the partition of the nodal

displacement vector δu
∼
. δu

∼
1 is the displacement perturbation vector of the master nodes

for the Bloch Wave method (BW master) and δu
∼

2 is the corresponding displacement

perturbation vector for the slaved nodes (BW slave). These BW master and BW slave

nodes can be different from those defined for the periodic boundary conditions. The

displacement perturbation vector of the internal nodes is represented by the vector δu
∼

I.

With δF
∼

I = 0
∼

the internal displacement vector can be evaluated from (4.25) as

δu
∼

I = −K
≈

−1
II [K

≈
I1δu

∼
1 + K

≈
I2δu

∼
2] (4.26)

Substituting (4.26) in (4.25) one receives:





K̂
≈

11 K̂
≈

12

K̂
≈

21 K̂
≈

22









δu
∼

1

δu
∼

2



 =





δF
∼

1

δF
∼

2



 (4.27)
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with

K̂
≈

11 = K
≈

11 − K
≈

1IK
≈

−1
II K

≈
I1 (4.28)

K̂
≈

12 = K
≈

12 − K
≈

1IK
≈

−1
II K

≈
I2 (4.29)

K̂
≈

21 = K
≈

21 − K
≈

2IK
≈

−1
II K

≈
I1 (4.30)

K̂
≈

22 = K
≈

22 − K
≈

2IK
≈

−1
II K

≈
I2 . (4.31)

The displacements of the master vector δu
∼

1 and the slave vector δu
∼

2 are coupled via

Equation (4.22). Therefore, δu
∼

2 can be written as:

δu
∼

2 = ν
≈
δu
∼

1 . (4.32)

The matrix ν
≈

couples the displacements of the master and slave nodes in the Bloch Wave

analysis. The non zero entries of this matrix are functions of the wave numbers mi. The

matrix will be referred to as “wave matrix”. In the following subsections the wave matrix

and the coupling equations will be given for a 2D and a 3D unit cell, respectively.

With Equation (4.32) and

δū
∼

T
2 = δū

∼

T
1 ν̄

≈

T (4.33)

one can show that, at the loss of positive definiteness of the quadratic form, FD can be

equivalently expressed involving only δu
∼

1:

FD(Λ,m
∼

) = δū
∼

T
1 K̊

≈
δu
∼

1 (4.34)

where

K̊
≈

= K̂
≈

11 + K̂
≈

12ν
≈

+ ν̄
≈

TK̂
≈

21 + ν̄
≈

TK̂
≈

22ν
≈
. (4.35)

For the special case of ∀mi = 0, Equation (4.34) must be constrained against rigid body

translation (see Appendix A.3). FD loses its positive definiteness when the Hermitian

matrix K̊
≈

becomes positive semi definite (its lowest eigenvalue is equal to zero).

The algorithm for detecting the critical state proceeds the following way: For each in-

crement, K̊
≈

is constructed for all combinations of the wave numbers m1, m2, and m3

on a reasonably fine grid. If there exists a critical combination of these wave numbers
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Figure 4.4: Determinant and lowest eigenvalue of the reduced stiffness matrix plotted against the wave
number.

(m1c,m2c,m3c) for which the lowest eigenvalue of K̊
≈

is zero, the critical state is estab-

lished. The critical load parameter Λc is the lowest value of Λ for which this criterion is

fulfilled.

In [17] the stability criterion is formulated using det|K̊
≈
| = 0. Similar to the method

described above the reduced stiffness matrix K̊
≈

is constructed for all possible combinations

of the wave numbers m1, m2 and m3 for each increment. If the critical state is established

then a critical combination of these wave numbers exists (m1c,m2c,m3c) and det|K̊
≈
| = 0

is fulfilled. In practice this method appears to work only for reduced stiffness matrices for

which the determinant changes its sign at (m1c,m2c,m3c) when the critical state (Λ = Λc)

is reached.

Figure 4.4 shows the progression of the determinant det|K̊
≈
| and the lowest eigenvalue λ

of the reduced stiffness matrix over the wave number m1 for a Kelvin Cell (see Section 6)

subjected to compressive loading in rise direction. The values of the determinant are rather

high. Due to the imperfect numerical resolution of the scan of the m1 range, det|K̊
≈
| = 0

(no change in sign of det|K̊
≈
|) is not reached within the whole analysis, although the

determinant has a significant drop around the critical wave number. The apex in the

determinant progression is found to occur for a vanishing lowest eigenvalue of the reduced

stiffness matrix, λ1 = 0 (see Section 4.4). The reason for this behavior can be found

in the structural symmetry of the Kelvin Cell. The two principal directions normal to
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the rise direction are equivalent in their mechanical behavior. Therefore, the first two

eigenvalues change their signs simultaneously. For this reason det|K̊
≈
| always remains

positive. Thus, the search for the critical state is implemented based on the criterion of

the lowest eigenvalue being zero (changing its sign).

4.2.1 Wave Matrix of a 2D Unit Cell

In Figure 4.5 a 2D unit cell is shown. The naming convention for the side and corner

node sets is taken from [10]. W (West), E (East) and SW (South West) are the master

node sets for the Bloch Wave analysis (BWA). The arrows show which node sets (BWA

slaved node sets) are coupled to these BWA master node sets . In the following sections

the variables, listed below will be used:

Figure 4.5: 2D Unit Cell.
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ndof . . . Nodal degrees of freedom, ndof = 6, ndof = 5,

ndof = 3, or ndof = 2 depending on the element

type and the dimensionality of the problem.

nW . . . Number of nodes on the west side of the cell

nE . . . Number of nodes on the east side of the cell

nS . . . Number of nodes on the south side of the cell

nN . . . Number of nodes on the north side of the cell

ncm . . . Number of master corner nodes (1 or 0)

ncs . . . Number of slaved corner nodes

mW . . . Number of master degrees of freedom on the

west side

mS . . . Number of master DOFs on the south side

mSW . . . Number of master DOFs in the south west cor-

ner

sE . . . Number of slaved DOFs on the east side

sN . . . Number of slaved DOFs on the north side

sc . . . Number of slaved corner DOFs

m . . . Number of master DOFs of the cell

s . . . Number of slaved DOFs of the cell

Note, that with the current implementation of the program structural and continuum

elements must not be mixed. Each node on the slaved side must have a master node on

the opposite side of the cell whereas it is not necessary that each node on the master side

has a corresponding slave node. An example for this case will be given in Section 4.2.2.

This leads to the following relations for the 2D cell:

nW ≥ nE (4.36)

nS ≥ nN (4.37)

The same scheme can be applied for the corner nodes. If the cell has a master node in the

SW corner (ncm = 1) at least two of the other three corner nodes (SE, NE, NW) must
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exist. For the number of slaved corner nodes therefore, one can write:

ncs = 2, or ncs = 3. (4.38)

If SW exists, other values for ncs are not possible in the 2D case. If SW does not exist

(ncm = 0), then the other corner nodes in the cell must not (!) exist. Therefore, ncs = 0.

The number of master DOFs m and slaved DOFs s in the unit cell can be evaluated as:

m = mW +mS +mSW (4.39)

s = sE + sN + sc (4.40)

where

mW = sE = nEndof

mS = sN = nNndof

mSW = ncmndof

sc = ncsndof (4.41)

Those nodes on the master sides, that do not have a corresponding slave node, are counted

as internal nodes.

With δu
∼

1 = {δu
∼

W, δu
∼

S, δu
∼

SW}T as the displacement perturbation vector of the master

nodes and δu
∼

2 = {δu
∼

E, δu
∼

N, δu
∼

SE, δu
∼

NW, δu
∼

NE}T as the displacement perturbation vector

of the slaved nodes, the Bloch Wave relations between the boundary nodes can be written

as:

δu
∼

E = exp[im1]δu
∼

W

δu
∼

N = exp[im2]δu
∼

S

δu
∼

SE = exp[im1]δu
∼

SW

δu
∼

NW = exp[im2]δu
∼

SW

δu
∼

NE = exp[i(m1 +m2)]δu
∼

SW (4.42)
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With (4.42) and (4.32) one finds for the wave matrix ν
≈
:

ν
≈

=























I
≈

1exp[im1] 0
≈

0
≈

0
≈

I
≈

2exp[im2] 0
≈

0
≈

0
≈

I
≈

3exp[im1]

0
≈

0
≈

I
≈

3exp[im2]

0
≈

0
≈

I
≈

3exp[i(m1 +m2)]























(4.43)

where

dim(ν
≈
) = (s×m)

dim(I
≈

1) = (sE ×mW), sE = mW

dim(I
≈

2) = (sN ×mS), sN = mS

dim(I
≈

3) = (mSW ×mSW) (4.44)

with I
≈

i as identity matrices with the given dimensions.

4.2.2 Wave Matrix of a 3D Unit Cell

The naming convention for the node sets of the 3D unit cell is taken from [10]. Figure

4.6 shows a 3D unit cell. W (West), S (South), B(Bottom), SW (South West), SB (South

Bottom), WB (West Bottom) and SWB (South West Bottom) are the master node sets

for the Bloch Wave analysis. For clarity, only the coupling conditions between the corner

nodes are marked with arrows.

With δu
∼

1 = {δu
∼

W, δu
∼

S, δu
∼

B, δu
∼

SB, δu
∼

WB, δu
∼

SW, δu
∼

SWB}T as the displacement perturba-

tion vector of the master nodes and

δu
∼

2 = {δu
∼

E, δu
∼

N, δu
∼

T, δu
∼

NB, δu
∼

ST, δu
∼

NT, δu
∼

EB, δu
∼

WT, δu
∼

ET, δu
∼

SE, δu
∼

NW,

δu
∼

NE, δu
∼

SEB, δu
∼

NEB, δu
∼

NWB, δu
∼

SWT, δu
∼

SET, δu
∼

NET, δu
∼

NWT}T (4.45)

as the displacement perturbation vector of the slaved nodes, the Bloch Wave relations
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Figure 4.6: 3D Unit Cell. Coupling conditions between corner nodes marked with arrows.
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Figure 4.7: Weaire-Phelan unit cell showing different numbers of edge nodes. From Bitsche 2005
[6](modified).

between the boundary nodes can be written as:

δu
∼

E = exp[im1]δu
∼

W, δu
∼

N = exp[im2]δu
∼

S, δu
∼

T = exp[im3]δu
∼

B

δu
∼

NB = exp[im2]δu
∼

SB, δu
∼

ST = exp[im3]δu
∼

SB, δu
∼

NT = exp[i(m2 +m3)]δu
∼

SB

δu
∼

EB = exp[im1]δu
∼

WB, δu
∼

WT = exp[im3]δu
∼

WB, δu
∼

ET = exp[i(m1 +m3)]δu
∼

WB

δu
∼

SE = exp[im1]δu
∼

SW, δu
∼

NW = exp[im2]δu
∼

SW, δu
∼

NE = exp[i(m1 +m2)]δu
∼

SW

δu
∼

SEB = exp[im1]δu
∼

SWB, δu
∼

NEB = exp[i(m1 +m2)]δu
∼

SWB

δu
∼

NWB = exp[im2]δu
∼

SWB, δu
∼

SWT = exp[im3]δu
∼

SWB,

δu
∼

SET = exp[i(m1 +m3)]δu
∼

SWB, δu
∼

NET = exp[i(m1 +m2 +m3)]δu
∼

SWB

δu
∼

NWT = exp[i(m2 +m3)]δu
∼

SWB

(4.46)

These relations are only valid if the displacement vectors of the slaved node sets have the

same length as the displacement vectors of the master node sets. For the face and corner

node sets this is always true. But for the edges the three slave node sets belonging to one

master node set can have different length. As an example for this problem a Weaire-Phelan

Cell is shown in Figure 4.7.

The length of the master node set SB is given as

mSB = min[max(nNB, nST, nNT), nSB]ndof , (4.47)

with nNB, nST, and nNT as the number of nodes on the slaved edges and nSB as the

31



number of nodes on the master edge.

From Figure 4.7 one can find the following relations

mSB > nNB,

mSB = nST,

mSB > nNT. (4.48)

The Bloch Wave relations between, for example, SB and NT of the Weaire-Phelan Cell

(nodes marked in Figure 4.7) can be rewritten as:





δu
∼

NT1

δu
∼

NT2



 = exp[i(m2 +m3)]





I
≈

0
≈

0
≈

0
≈

0
≈

0
≈

0
≈

0
≈

0
≈

I
≈



























δu
∼

SB1

δu
∼

SB2

δu
∼

SB3

δu
∼

SB4

δu
∼

SB5























(4.49)

with

dim(I
≈
) = (ndof × ndof) (4.50)

With the Bloch Wave relations (Equations (4.46)) and the concept for the edge node sets,

presented with Equations (4.47) and (4.49), the construction of ν
≈

is straight forward.

Because of its size the Wave Matrix ν
≈

is not given explicitly in this section.
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5 Macroscopic Onset-of-Failure

5.1 General Theory

The general theory for the macroscopic onset-of-failure surface is presented in [27] and will

be briefly summarized in the following. According to Equation (4.7) the “homogenized”

constitutive material law can be written as:

〈Ṗij〉 = LH
ijkl(Λ)〈Ḟkl〉, 〈f〉 ≡ 1

volD

∫

D

fdV (5.1)

The homogenized tangent moduli tensor LH
ijkl relates the volume averaged first Piola-

Kirchhoff stress rate tensor 〈Ṗij〉 to the volume averaged rate of the deformation gradient

〈Ḟkl〉. For solids with a periodic micro structure, Equation (5.1) is unambiguous and

consistent. For this class of solids the homogenized moduli tensor is given by:

〈Ḟij〉LH
ijkl(Λ)〈Ḟkl〉 = min

p

(

1

volD

∫

D

(〈Ḟij〉 + pi,j)Lijkl(Λ,X
∼

)(〈Ḟkl〉 + pk,l)dV

)

. (5.2)

p is any periodic function with the same periodicity as the unit cell, and 〈Ḟ 〉 is an ar-

bitrary rank two tensor. Similar to the microscopic stability criterion one can define the

macroscopic stability criterion as (from [27]):

B(Λ) = min
a
∼

,n
∼

Γ(Λ, a
∼
,n
∼
) (5.3)

with

Γ(Λ, a
∼
,n
∼
) ≡ ainjL

H
ijkl(Λ)aknl, ‖a

∼
‖ = ‖n

∼
‖ = 1 (5.4)

The macroscopic critical load parameter can therefore be defined as lowest root of B(Λ):

B(Λh) = 0, Λh = min
a
∼

,n
∼

Λm(a
∼
,n
∼
) (5.5)

where

Γ(Λm(a
∼
,n
∼
), a

∼
,n
∼
) = 0, Γ(Λ, a

∼
,n
∼
) > 0 for 0 ≤ Λ < Λm (5.6)

Λm is the lowest value for which Γ(Λ, a
∼
,n
∼
) = 0 is possible for fixed a

∼
,n
∼
. LH only exists

if the boundary value problem of the loaded unit cell has a unique solution, thus the first

buckling mode found to occur must not be equal to the strictly periodic mode (∀mi = 0).
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Figure 5.1: Kelvin Cell.

The macroscopic onset of failure surface always lies within its microscopic counterpart

([27]). In the case of a unique solution (LH exists) the critical loads found by this two

different concepts are coupled through the following equation (see [27]):

Λh = inf
m
∼

→0
Λm(m

∼
) (5.7)

5.2 F.E.M. Discretization

Section 2.2.1 in [17] describes the method for obtaining the homogenized tangent moduli

LH for the Kelvin Cell model of an open cell foam. This method will be described in this

section and expanded to arbitrary unit cells.

In [17] special functions
ij
χ
∼

are constructed for all degrees of freedom (six in the case of

the Kelvin Cell, see Figure 5.1) of all nodes in the unit cell. These functions are related

to the unit normal (εii, no sum) and shear (εij , i 6= j) strains and will be referred to as

“strain functions”.

ij
χ
∼

= {ij
χ
∼1
,

ij
χ
∼2
,

ij
χ
∼I
}T (5.8)

with (i, j) = 1, 2, 3 in the 3D case or (i, j) = 1, 2 in the 2D case.
ij
χ
∼1

are the strain functions

defined for those master nodes of the unit cell which correspond to the master nodes used

in the Bloch Wave analysis.
ij
χ
∼2

belong to the slaved nodes (BW slave) and
ij
χ
∼I

are the

special functions belonging to the remaining internal nodes of the cell. For each node with
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the node number n one can write:

ij
χ
∼

(n) =





ij
χk

ij
χr



 , k = 1, 2, 3 and r = 4, 5, 6 (5.9)

for the 3D case and

ij
χ
∼

(n) =





ij
χk

ij
χr



 , k = 1, 2 and r = 3 (5.10)

for the 2D case, with
ij
χ
∼k

representing the displacements and
ij
χ
∼r

the rotations. The exis-

tence of the strain functions for the rotational DOFs
ij
χ
∼r

depends on the finite elements

used in the unit cell model. For the displacement degrees of freedom one can write (see

also [17])

ij
χk= δikXj+

ij
vk, δik =







1 if i = k

0 if i 6= k
(5.11)

where X
∼

is the position vector of the nodes corresponding to the undeformed state, δik is

the Kronecker delta and
ij
vk are periodic functions with the same periodicity as the unit

cell, leading to

ij
vk |2 =

ij
vk |1. (5.12)

In [17] •|1 and •|2 refer to opposite sides of the unit cell. In the present work •|1 is used

for the BW master and •|2 for the BW slave. The special functions of the master and

slave nodes are coupled with the following equations:

ij
χk |2 =

ij
χk |1 + δikhj (5.13)

ij
χr |2 =

ij
χr |1 (5.14)

where hj is the unit cell dimension in j-direction.

In the case of [17] the master and slave vector for the strain functions has the same length.

For arbitrary cells this has not to be the case. Figure 5.2 shows a 2D unit cell. One can

see, that the master vector of the strain functions
ij
χ
∼1

= {ij
χ
∼W

,
ij
χ
∼S
,

ij
χ
∼SW

}T is shorter than
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Figure 5.2: Master and slave node sets and edge normals on a 2D unit cell.

the corresponding vector of the slaved nodes
ij
χ
∼1

= {ij
χ
∼E
,

ij
χ
∼N
,

ij
χ
∼SE

,
ij
χ
∼NW

,
ij
χ
∼NE

}T. The second

term δikhj in Equation (5.13) is only active for surfaces (edges) with normals acting in

j-direction. For the 2D unit cell the edge normals n
∼

W, n
∼

S, n
∼

E, and n
∼

N are displayed in

Figure 5.2.

For the unit cell displayed in Figure 5.2 the relations between the BW master and BW

slave strain functions for the displacements will be given explicitly:

East coupled with West, normal acting in x-direction

11
χ1 |E =

11
χ1 |W + h1,

21
χ1 |E =

21
χ1 |W

11
χ2 |E =

11
χ2 |W,

21
χ2 |E =

21
χ2 |W + h1

12
χ1 |E =

12
χ1 |W,

22
χ1 |E =

22
χ1 |W

12
χ2 |E =

12
χ2 |W,

22
χ2 |E =

22
χ2 |W

(5.15)

North coupled with South, normal acting in y-direction

11
χ1 |N =

11
χ1 |S,

21
χ1 |N =

21
χ1 |S

11
χ2 |N =

11
χ2 |S,

21
χ2 |N =

21
χ2 |S

12
χ1 |N =

12
χ1 |S + h2,

22
χ1 |N =

22
χ1 |S

12
χ2 |N =

12
χ2 |S,

22
χ2 |N =

22
χ2 |S + h2

(5.16)
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SE coupled with SW, normals acting in x and −y-direction

11
χ1 |SE =

11
χ1 |SW + h1,

21
χ1 |SE =

21
χ1 |SW

11
χ2 |SE =

11
χ2 |SW,

21
χ2 |SE =

21
χ2 |SW + h1

12
χ1 |SE =

12
χ1 |SW,

22
χ1 |SE =

22
χ1 |SW

12
χ2 |SE =

12
χ2 |SW,

22
χ2 |SE =

22
χ2 |SW

(5.17)

NW coupled with SW, normals acting in −x and y-direction

11
χ1 |NW =

11
χ1 |SW,

21
χ1 |NW =

21
χ1 |SW

11
χ2 |NW =

11
χ2 |SW,

21
χ2 |NW =

21
χ2 |SW

12
χ1 |NW =

12
χ1 |SW + h2,

22
χ1 |NW =

22
χ1 |SW

12
χ2 |NW =

12
χ2 |SW,

22
χ2 |NW =

22
χ2 |SW + h2

(5.18)

NE coupled with SW, normals acting in x and y-direction

11
χ1 |NE =

11
χ1 |SW + h1,

21
χ1 |NE =

21
χ1 |SW

11
χ2 |NE =

11
χ2 |SW,

21
χ2 |NE =

21
χ2 |SW + h1

12
χ1 |NE =

12
χ1 |SW + h2,

22
χ1 |NE =

22
χ1 |SW

12
χ2 |NE =

12
χ2 |SW,

22
χ2 |NE =

22
χ2 |SW + h2

(5.19)

This method can easily be adapted to 3D unit cells. By comparing Equations (5.15) to

(5.19) with Equation (4.32) one can see that there exists an relation between the second

term in Equation (5.13) and the ν
≈
-Matrix in Equation (4.32), namely:

The normal is acting in the j-direction of a slaved node k if mj of this node k

is active in the wave matrix ν
≈
.

Therefore, the same information used to generate the ν
≈
-Matrix can be used to evaluate

the second term in (5.13). Equation (5.13) can be written in matrix notation:

ij
χ
∼2

=
ij
χ
∼1,elong.

+
ij

H
∼

(5.20)
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with

ij
χ
∼1,elong.

= ω
≈

ij
χ
∼1

(5.21)

Thus, we can write for
ij
χ
∼2

:

ij
χ
∼2

= ω
≈

ij
χ
∼1

+
ij

H
∼

(5.22)

For the 2D case one finds with
ij
χ
∼1,elong.

= {ij
χ
∼W

,
ij
χ
∼S
,

ij
χ
∼SW

,
ij
χ
∼SW

,
ij
χ
∼SW

}T and
ij
χ
∼1

= {ij
χ
∼W

,
ij
χ
∼S

,
ij
χ
∼SW

}T for the elongation matrix ω
≈
:

ω
≈

=























I
≈

0
≈

0
≈

0
≈

I
≈

0
≈

0
≈

0
≈

I
≈

0
≈

0
≈

I
≈

0
≈

0
≈

I
≈























with dim(I
≈
) = (ndof × ndof) (5.23)

and I
∼

being the identity matrix.

Applying Equation (5.8) to the unit cell with the internal degrees of freedom condensed

out like in Equation (4.26) yields:





K̂
≈

11 K̂
≈

12

K̂
≈

21 K̂
≈

22









ij
χ
∼1
ij
χ
∼2



 =







ij

F
∼ 1
ij

F
∼ 2






(5.24)

Expressing
ij
χ
∼2

with Equation (5.22) gives:





K̂
≈

11 K̂
≈

12

K̂
≈

21 K̂
≈

22









I
≈

0
≈

0
≈

ω
≈









ij
χ
∼1
ij
χ
∼1



 +





K̂
≈

11 K̂
≈

12

K̂
≈

21 K̂
≈

22









0
∼

ij

H
∼



 =







ij

F
∼ 1
ij

F
∼ 2






(5.25)
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Multiplying both sides with [I
≈
,ω
≈

T] produces:

[I
≈
,ω
≈

T]











K̂
≈

11 K̂
≈

12

K̂
≈

21 K̂
≈

22









I
≈

0
≈

0
≈

ω
≈









ij
χ
∼1
ij
χ
∼1



 +





K̂
≈

11 K̂
≈

12

K̂
≈

21 K̂
≈

22









0
∼

ij

H
∼











= I
≈

ij

F
∼ 1

+ω
≈

T
ij

F
∼ 2

(5.26)

All forces and moments acting on the unit cell fulfill the equilibrium conditions for peridoic

unit cells given in Section 2.2, thus the right side of Equation (5.26) vanishes.

I
≈

ij

F
∼ 1

+ω
≈

T
ij

F
∼ 2

= 0
∼

(5.27)

Equation (5.26) therefore has the solution:

ij
χ
∼1

= −
(

K̂11
≈

+ K̂12
≈

ω
≈

+ ω
≈

TK̂21
≈

+ ω
≈

TK̂22
≈

ω
≈

)

−1 (

K̂12
≈

+ ω
≈

TK̂22
≈

) ij

H
∼

(5.28)

For the strain functions of the internal degrees of freedom one receives with Equation

(4.26) (replace δu
∼

with
ij
χ
∼

):

ij
χ
∼I

= −K
≈

−1
II [K

≈
I1

ij
χ
∼1

+K
≈

I2

ij
χ
∼2

] (5.29)

According to [27] the homogenized tangent moduli of the unit cell can be calculated with:

LH
ijkl =

ij

χ
∼

T K
≈

(Λ)
kl
χ
∼

V
(5.30)

with V being the volume of the unit cell. In [13] it was shown that the occurrence of a

long wave instability corresponds to the loss of rank one convexity of the homogenized

moduli.

(LH
ijkl(Λ)njnl)gk = 0 or det|LH

ijkl(Λ)njnl| = 0 (5.31)

with

n
∼

= {cos(ϕ), sin(ϕ) cos(ψ), sin(ϕ) sin(ψ)}T 0 ≤ ϕ ≤ π 0 ≤ ψ ≤ 2π (5.32)

for the 3D case and

n
∼

= {cos(ϕ), sin(ϕ))}T 0 ≤ ϕ ≤ π (5.33)
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for the 2D case.

One has to vary ϕ and ψ on a reasonably fine grid for each load parameter Λ. The

unconstrained, incremental tangent stiffness matrix K
≈

of the unit cell is provided by

ABAQUS. The critical load parameter for the macroscopic onset-of-failure Λh is the lowest

Λ for which Equation (5.31) is fulfilled. The direction of the band of the corresponding

buckling mode (see [23]) is determined by the corresponding n
∼
.
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Figure 6.1: Kelvin Cell, elongated in rise direction (x-direction).

6 The Kelvin Cell

In [16] different models for the prediction of the nonlinear response of open cell foams

under compressive loading were developed. In this work the foam was idealized as being

perfectly periodic. The fundamental building block of the periodic micro structure was

modeled as a regular, 14-sided polyhedron [26] with the ligaments being modeled as beams.

This generic unit cell geometry will be referred to as Kelvin Cell (see Figure 6.1). In [16],

the principal geometric properties of tested open cell foams were transferred to an idealized

Kelvin Cell model. This model has the following features:

• straight ligaments with Plateau border cross-sections and nonuniform area distribu-

tion along the longitudinal axis,

• anisotropic cell geometry, cells elongated in rise direction,

• giving a reasonable representation of the material in the nodes,

• considering the effect of shear deformation in the beam model.

All foams tested in [16] and [14] were polyester urethane foams manufactured by the

company FOAMEX. Average cell sizes were of 3, 10, 20, 45 and 100 ppi (pores per inch),

respectively. The relative densities of the tested foams varied from 2.2% to 2.8%. The

results of the measurements of the geometric properties and the material constants can be

found in Table 1 in [16].
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The Kelvin Cell used in this thesis is similar to those used in [14], [16] and [17]. In the

latter one the Bloch Wave method was used for the search of the critical state of a foam

under uniaxial and triaxial compressive loading. To verify the Bloch Wave program written

during the present thesis the results obtained for the Kelvin Cell model are compared to

those reported in [17].

6.1 Characteristic Cell

6.1.1 Cell Dimesions

As already mentioned the open cell foam is idealized as being perfectly periodic with the

Kelvin Cell as its fundamental building block. The measurements in [16] showed, that the

foam exhibits anisotropy. Thus the cell is elongated in x-direction (rise direction). The

Kelvin Cell is a space filling 14-sided polyhedron consisting of 6 squares and 8 hexagons

with the edges being of length l. In the case of an open cell foam all edges of the Kelvin

Cell are treated as beams. For the isotropic cell one receives for the cell dimension h =

2
√

2l. To model the anisotropy reported in [16], [14] and [17] all ligaments with a non-

vanishing projection in the x-direction are elongated to l/
√

2 cosα with the angle between

the longitudinal beam axis and the y-z-plane being α ≥ π/4 (see Figure 6.1). The length

of the ligaments in the directions normal to x (transverse direction) remains unchanged.

The height of the elongated cell can be given as:

h1 = 2
√

2l tanα (6.1)

The width of the cell remains unchanged:

h2 = 2
√

2l (6.2)

For the parameter of anisotropy µ one receives:

µ =
h1

h2

= tanα, α ≥ π

4
(6.3)

To reproduce the results in [17] the anisotropy factor was set to µ = 1.3.
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6.1.2 Material Behavior

For modeling the material behavior the rate-dependence of the base material (polyester

urethane) is neglected (see [16]). The material is assumed to be linearly elastic with the

values of the material constants E, ν taken from Table 1 in [16]:

E = 69 MPa Young’s Modulus

ν = 0.49 Poissons Ratio

6.1.3 Ligament Geometry

In [16] measurements of the area and the length of the ligaments of the polyester urethane

foams were performed. The ligaments have a three-cusp hypocycloid cross section known

as Plateau borders (see Figure 6.2) and a nonuniform area distribution along their longi-

tudinal axis. In [16] the measured data of the area distribution over the normalized length

of the ligaments were fitted with the following symmetric function:

A(ξ) = A0f(ξ) = A0(aξ
4 + bξ2 + 1), ξ =

x

l
(6.4)

with a = 86 and b = 1. For the three-cusp hypocycloid cross section area one receives

for the section properties (area A, moment of inertia about the y- and the z-axis Iy, Iz,

respectively, and torsional rigidity J) (from [16]):

A =
(√

3 − π

2

)

r2, Iy = Iz =
1

24

(

20
√

3 − 11π
)

r4, J = 0.0021r4 (6.5)

with r as radius of the cross section for fixed ξ (see Figure 6.2). All results received in [16]

are applied to the Kelvin Cell used in the present work.

6.1.4 Effect of Shear Deformation

The ligaments in the foams examined in [16] are not very slender. Thus, a Timoshenko

type correction (ligaments treated as shear-deformable beams) was used to describe the

deformation introduced by the shear stresses. The calculations made in [16] are energy
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Figure 6.2: Geometry definition of foam ligaments.

based. The correction was introduced to the strain energy with V as shear force by:

Us =

∫ l/2

−l/2

β
V 2(ξ)

2GA
ldξ, with β =

A

I2
y

∫

z

Q2(z)

bz
dz (6.6)

Q(z) is the first moment of area about the y-axis (see Figure 6.2) and b(z) is the width of

the cross section at a distance z from the y-axis. The integral to determine β is over the

whole cross section of the ligament. For the Plateau border cross section shown in Figure

6.2, β = 1.24 (see [16])

6.1.5 Relative Density

In [16] a power law relationship fitted to the measured data for the relative density is

found to have the following form:

ρ∗

ρ
= k

(r0
l

)n
(6.7)

With r0 as the radius at midspan and l as ligament length. The constants k and n depend

on the anisotropy parameter. They are listed in Table 6.1 (from [16]).
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Table 6.1: Parameters for the power law relationship of the corrected relative density. From [16].

µ n k

1 1.7392 0.1803

1.1 1.7426 0.1791

1.2 1.7433 0.1637

1.3 1.7449 0.1580

1.4 1.7474 0.1350

Uniform cross-section. 1.8968 0.1395

The Kelvin Cell used in the present work has a height of 7.42 mm. This value is taken

from Table 1 in [16] for an anisotropy factor of µ = 1.3. With Equation (6.1) and with

the parameter of anisotropy µ = 1.3 one receives for the ligament length l = 2.018 mm.

The relative density was chosen similar to [17] as ρ∗/ρ = 0.025. With the corresponding

constants from Table 6.1 one receives with Equation (6.7) for r0: r0 = 0.7015 mm.

6.1.6 F.E.M. Model

The characteristic cell (Kelvin Cell) is shown in Figure 6.1. Similar to [17] the ligaments

are discretized using three-noded, quadratic beam elements (ABAQUS element type B32).

For each ligament eight elements with individually uniform cross-sectional area are used.

The area of each element can be evaluated from the symmetric function given in Equation

(6.4). Thus one receives for the discretized cross-sectional area function f(ξ) (see [16]):

f(ξ) =































1.0, 0.0 ≤ |ξ| ≤ 0.2

1.482, 0.2 < |ξ| ≤ 0.3

2.574, 0.3 < |ξ| ≤ 0.4

4.993, 0.4 < |ξ| ≤ 0.5

(6.8)

For the definition of the cross-section properties the beam general section feature of

ABAQUS is used. Iy (Iz = Iy) and J are calculated in a way that they correspond

to the area of the element by using Equation (6.5).

To take the additional shear deformation into account the shear correction factor β = 1.24
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(see Equation (6.6)) is included in the Finite element model.2

Appropriate periodic boundary conditions have to be applied to the unit cell. To generate

the required coupling equations, which link the master and slave degrees of freedom, the

CBC-program by Daxner and Pahr is used in the present work. For the manual input of

these equations for the single unit cell one can build pairs of nodes located on opposite

sides of the cell.

The Kelvin Cell has three pairs of opposite boundary faces (index i = 1, 2, 3). •1 and •2

stand for the master and slave side (not BW master and BW slave although they are the

same for the Kelvin Cell). For the coupling equations of the displacement and rotational

degrees of freedom between master and slave boundary faces one finds:

ui1 − ui2 = uref
i1 − uref

i2 (6.9)

θi1 − θi2 = 0 (6.10)

with •ref
ij as displacements of corresponding points on opposite faces defined as reference

displacements, with for example A1 and A2 as reference points (see Figure 6.1).

As mentioned in Section 6.1.2 the material is assumed to be linearly elastic with Young’s

Modulus E = 69 MPa and Poisson’s Ratio ν = 0.49.

The whole unit cell consists of 24 ligaments each discretized with 8 beam elements. Thus

we receive for the model of the unit cell 192 elements, 378 nodes and a total number of

2268 degrees of freedom.

As already mentioned the CBC-program by Daxner and Pahr was used to generate the

coupling equations. The program generates additional nodes (point masses) in the corners

of the unit cell (see Figure 6.3).

According to the 3D unit cell model in Section 2.1, SWB, SEB, NWB and SWT are used

as master nodes (not BW master nodes). Note, that the added point masses are only used

for the boundary conditions and load application in the F.E.M model. They don’t affect

the Bloch Wave method, because these nodes are ignored by the implemented algorithm.

2*TRANSVERSE SHEAR STIFFNESS is used to define the shear stiffess of the beam elements in the
ABAQUS input file. The shear stiffness of a beam element is estimated by multiplying the shear stiffness
GA obtained for the cross section of the beam with 1/β.
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Figure 6.3: Point masses in the corners of the unit cell generated by the CBC-program.

To avoid rigid body movements some of the displacements of the master nodes,

u
∼

SWB = {0, 0, 0},
u
∼

SEB = {uSEB, 0, 0},
u
∼

NWB = {uNWB, vNWB, 0}, (6.11)

and one internal node of the Kelvin Cell are constrained.

6.2 Prediction of the Elastic Moduli

For the prediction of the elastic moduli of the Kelvin Cell foam two different methods

are used. The first method uses the equations given in Table 4, Panel B in [16]. This

equations take the non-uniform area distribution and the deformation due to shear into

account. Secondly, the Finite Element model is used to get a prediction of the elastic

constants.

With the Equations from Table 4 and the constants given in Table 5 of [16] one receives

for the relative elastic modulus in rise and transverse direction (r̄ = r0

l ):

E∗

1

E
= 0.001702

E∗

2

E
= 0.000807 (6.12)
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The initial elastic modulus in rise direction is about twice the initial elastic modulus in

transverse direction (
E∗

2

E∗

1

= 0.474).

To get the initial elastic moduli from the Finite Element model the unit cell is loaded in

rise/transverse direction with compressive loads applied to the master nodes. Loading the

master nodes ensures that the unit cell reacts to these concentrated loads like the infinite

structure would react to homogenized applied stresses ([24]). The loads are applied in a

linear perturbation analysis. In rise direction, SEB is loaded in x-direction, and for the

transverse direction NWB is loaded in y-direction. For the relative elastic moduli in rise

and transverse direction, respectively one receives:

E∗

1

E
= 0.001731

E∗

2

E
= 0.000821 (6.13)

The elastic moduli obtained with the Finite Element model are about 1.7% higher than

those received with the equations given in [16]. For the normalization of stress results in

the following, the elastic moduli calculated with the Finite Element model are used.

6.3 Uniaxial Compression in Rise Direction

To receive the nonlinear compressive response in rise direction (x-direction) a compressive

load is applied to a single undeformed Kelvin Cell (N1 = 1) at the SEB master node

(see Figure 6.3). The standard Newton Raphson method with a constant step size of

∆Λ = 10−3 is used in the solution procedure. The reference load corresponding to Λ = 1.0

has a value of 405N. For each increment along the loading path ABAQUS provides the

stiffness matrices of the deformed Kelvin Cell. The element stiffness matrices are assembled

to form the tangent stiffness matrix of the structure. The tangent stiffness matrix is

processed using the Bloch Wave program (see Appendix A) and a check is made whether

or not the critical state is established. For small increment sizes ABAQUS normally aborts

the analysis due to convergence problems before this critical state is achieved. To reach

the critical state or postcritical states the stabilization method provided by ABAQUS is

used. It will be shown in Section 6.4 that the stabilization algorithm does not significantly

influence the solution achieved with the Bloch Wave analysis for this particular unit cell.

The search for the strictly periodic mode is treated separately from the standard Bloch
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Figure 6.4: Lowest eigenvalue depending on the applied load for the search of the strictly periodic mode;
rise direction.

Wave analysis. In this case the reduced stiffness matrix K̊
≈

has to be constrained against

rigid body movements (see Appendix A.3). In Figure 6.4 the lowest eigenvalue λSP
1 of

the constrained matrix K̊
≈

is plotted against the stress in rise direction normalized by the

elastic modulus in rise direction
σSP
1

E∗

1

. If λSP
1 = 0 the critical state corresponding to a mode

local to one unit cell, referred to as strictly periodic mode, is established. If the critical

state if found to occur between two increments, linear interpolation is used to get closer

to the critical state. For the Kelvin Cell loaded in rise direction one finds for the relative

critical stress corresponding to the strictly periodic mode:

σSP
1c

E∗

1

= 0.10365 (6.14)

The macroscopic onset of failure, for which the wavelength of the eigenmode is infinite in

rise direction (N1 = ∞), is found to occur for a relative critical stress of:

σH
1c

E∗

1

= 0.08985 (6.15)

The critical stress corresponding to the macroscopic onset of failure is significantly lower
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Figure 6.5: Results of the Bloch Wave Analysis in rise direction.

than the one corresponding to the strictly periodic mode. In Figure 6.5 the critical stresses

corresponding to the macroscopic onset of failure and the strictly periodic mode are in-

cluded as horizontal dashed lines. For finding the critical stresses for a finite number of

cells forming a column in rise direction (1 < N1 < ∞) the Bloch Wave method is used.

The critical stress for the strictly periodic mode forms the upper limit with regard to the

usefulness of results obtained by of the Bloch Wave Analysis (BWA). Although the BWA

delivers results in the postcritical domain (see Figure 6.5), no buckling stresses higher

than those corresponding to the strictly periodic mode are physically meaningful. There-

fore, a column consisting of two unit cells (N = 2) exhibits the strictly periodic mode.

For a higher number of cells the critical stress drops and the mode wavelength increases.

The critical stress remains almost constant for columns consisting of more than 20 cells

(N1 > 20). For N → ∞ the Bloch Wave results for the critical stress approach asymp-

totically the critical stress corresponding to the macroscopic onset of failure. Thus, the

(theoretically) infinite periodic foam loaded in rise direction exhibits a long wave length

mode. This results are in agreement with those reported in [17].

6.4 Uniaxial Compression in Transverse Direction

To receive the compressive response in transverse direction a single Kelvin Cell is loaded

under compression, with the compressive load (reference load F2 = 380N) being applied
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to the SWT master node. The standard Newton Raphson algorithm with a step size of

∆Λ = 10−3 is used for the incremental solution. To establish the critical state and to reach

postcritical states during the ABAQUS analysis the automatic stabilization mechanism

provided by ABAQUS is used.

Figure 6.6 shows the lowest eigenvalue of the strictly periodic mode plotted against the

relative stress in transverse direction. The search for the strictly periodic mode and the

macroscopic onset of failure show that the strictly periodic mode and the long wave length

mode are separated by a small intermediate domain (see Figure 6.7). For the critical

stresses corresponding to the strictly periodic mode
σSP
2c

E∗

2

and the long wave length mode

σH
2c

E∗

2

normalized by the elastic modulus in transverse direction E∗

2 one finds:

σSP
2c

E∗

2

= 0.149706,

σH
2c

E∗

2

= 0.149484. (6.16)

The values received for σSP
2c and σH

2c are lower than the corresponding values σSP
1c and σH

1c

for the rise direction and separated only by a small intermediate domain. To get more

Bloch Wave points within the intermediate domain the step size of the Newton Raphson

algorithm within this domain is further reduced. Figure 6.7 shows the results for the

Bloch Wave Analysis (BWA) of the loading in transverse direction. The predicted critical

modes are strictly periodic and independent of the number of cells in transverse direction

for columns consisting of up to about 60 cells. For configurations with more than 60 cells

in transverse direction the critical stress drops and the wavelength of the critical mode

approaches asymptotically towards infinity.

For columns consisting of 40 and 125 cells an accompanying eigenvalue analysis using

ABAQUS is performed. For the eigenvalue analysis the automatic stabilization mechanism

is omitted. The calculated critical loads corresponding to these cell columns are lower than

those calculated by the Bloch Wave Analysis (see Figure 6.7). The column consisting of

40 cells exhibits a strictly periodic mode whereas for the 125 cell column a long wave

length mode is predicted (see Figure 6.7). Although the values for the critical loads of

these two configurations are slightly lower than those of the BWA the results confirm the

observations made by the BWA.

The eigenvalue analysis for both configurations is repeated using the stabilization mecha-
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Figure 6.6: Lowest eigenvalue depending on the applied load for the search of the strictly periodic mode;
transverse direction.

nism provided by ABAQUS. For this case the critical loads are closer to the BWA results

than those found by the eigenvalue analysis without the stabilization mechanism being

active (see Figure 6.7). The critical mode for the 40 cell cluster is still strictly periodic

and the 125 cell column still exhibits long wave length buckling.

The used stabilization mechanism influences the entries of the element stiffness matrices,

and the critical state is established at a higher load level. Thus the critical loads found

by the BWA are slightly shifted to higher values, but the mode wave lengths are not

influenced by the stabilization algorithm.

6.5 Triaxial Loading

To investigate the behavior of the anisotropic Kelvin foam (µ = 1.3) under triaxial loading

conditions the foam is loaded along a radial path in stress space defined by

{σ1, σ2, σ3} = Σ{1, κ, κ} (6.17)
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Figure 6.7: Results of the Bloch Wave analysis in transverse direction.

with

0 ≤ κ ≤ 1

Σ = σ1c(µ)Λ with 0 ≤ Λ ≤ 1 (6.18)

where σ1c(µ) is the critical stress corresponding to the strictly periodic mode for uniaxial

loading in rise direction and Λ is the load parameter. Therefore, κ = 0 represents uniaxial

loading in rise direction and κ = 1 represents pure hydrostatic pressure. The material

of the examined Kelvin Cell is assumed to be linearly elastic. Thus, the failure surfaces

are independent of the load path followed. Therefore, the above described method is a

practical way to construct the failure surface in the

√
3J2

σc
versus

I1
3σc

plane. I1 is the first

invariant of the stress tensor, J2 is the second invariant of the deviatoric stress tensor, and

σc is the critical stress of an isotropic foam (µ = 1) of infinite extent, having the same

density as the anisotropic foam, loaded under uniaxial compression. For I1 and
√

3J2 one

defines:

I1 = σii
√

3J2 = σMISES (6.19)
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To construct the failure surface κ is varied from 0 to 1. For each triaxial loading case

the standard Newton Raphson algorithm with a step size of ∆Λ = 0.002 is used. To

reach the critical state for all triaxial loading cases during the ABAQUS analysis the

stabilization algorithm provided by ABAQUS is used. It was shown in Section 6.4 that

the stabilization method does not significantly influence the solution. To achieve the

triaxial loading conditions the following master nodes of a single undeformed Kelvin Cell

are assigned to compressive loads:

SEB compressive load F1 (corresponding to σ1) in x direction

NWB compressive load F2 (corresponding to σ2) in y direction

SWT compressive load F3 (corresponding to σ3) in z direction

Like for the uniaxial compression in rise direction (see Section 6.3) F1 is set to 405N.

According to Equation (6.17) one findes for σ2 and σ3:

σ3 = σ2 =
F1

A1
κ (6.20)

with A1 = (2
√

2l)2 as the undeformed unit cell surface in the y-z plane (see Figure 6.1).

For σ2 and σ3 one can write:

σ2 =
F2

A2
, σ3 =

F3

A2
(6.21)

where A2 = µ(2
√

2l)2 is the undeformed unit cell surface in the x-y and the x-z plane (see

Figure 6.1). Using Equations (6.20) and (6.21) one finds for F2 and F3:

F3 = F2 = µκF1 (6.22)

The usage of undeformed, initial surface areas implies that the stresses are given in terms

of nominal and not of true stresses.

Figure 6.8 shows the deformation in rise direction uSEB
1 of the SEB master node plotted

against the load parameter Λ in the case of pure hydrostatic pressure. Although the

stabilization algorithm is used, the ABAQUS analysis is aborted before Λ = 1 is reached.

At Λstop = 0.43 the solution branches from the trivial loading path. No increments

with Λ > Λstop can be treated with the Bloch Wave program, because the program does

not deliver any physically meaningful results on the non-trivial loading path. A similar

diagram can be drawn for all triaxial loading cases. Λstop depends on κ and can be

evaluated for each triaxial loading case. All increments of the ABAQUS analysis with

Λ > Λstop are ignored in the following analysis. This was no restriction to the analysis
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Figure 6.8: Deformation of the SEB master node plotted against the load parameter for hydrostatic
loading.

made, because it turned out that the critical state for each triaxial loading case is found

to occur before Λstop is reached.

To determine the critical stresses for all investigated values of κ and the nature of the

corresponding mode all three parts of the Bloch Wave Program (see Appendix A) are

applied to each triaxial loading case. The results are summarized in Figure 6.9. I1 and√
3J2 are normalized by the critical stress σc under uniaxial compressive loading for an

isotropic foam (µ = 1) with infinite extent. The critical mode for uniaxial loading in

rise direction (κ = 0) corresponds to a long wave length mode (see Section 6.3). The

critical mode remains global in nature as long κ / 0.6. For intermediate values of κ

the corresponding mode involves only a few cells. For triaxial loading cases close to

pure hydrostatic pressure (κ ' 0.675) the critical mode becomes local to a single unit

cell (strictly periodic mode). The failure envelope calculated in this section is in good

agreement with the one reported in [17].
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Figure 6.9: Anisotropic foam failure envelope in

√
3J2

σc

versus
I1

3σc

plane.
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Figure 7.1: Periodic lattice with infinite extent in x- and y-direction.

7 Periodic 2D Lattices

For testing the Bloch Wave analysis Program for 2D unit cells a two dimensional square

periodic lattice is assumed (see Figure 7.1). The lattice has infinite extent in x- and y-

direction. In order to obtain a two dimensional problem, only deformations in the x-y

plane are allowed.

7.1 Characteristic Cell

The smallest geometrically periodic unit of the lattice can be modeled in two different, but

mechanically equivalent ways (see Figure 7.2). Both unit cells (Unit Cell 1 and Unit Cell

2) are not able to reproduce the buckling mode of the periodic lattice depicted in Figure

7.4. This buckling mode occurs for square lattices which are braced against lateral sway

and are loaded under compression [5]. Unit Cell 3 and Unit Cell 4, depicted in Figure 7.3,

are able to reproduce the buckling mode shown in Figure 7.4. Both UC3 and UC4 are also

geometrically periodic units of the infinite square lattice. UC3 is mechanically equivalent

to UC4. Because of the fact that UC1, UC2, UC3, and UC4 are different possibilities

to represent the same infinite periodic lattice the Bloch Wave Analysis (BWA) program

must deliver the same results for the critical stress corresponding to a buckling mode with

infinite wavelength (macroscopic onset-of-failure) for all four unit cells. The Bloch Wave

Analysis part of the BWA program should deliver the same results for UC1 and UC2 and

for UC3 and UC4. The critical load corresponding to a buckling mode local to one unit

cell (strictly periodic mode) should be the same for UC1 and UC2 and for UC3 and UC4.
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Figure 7.2: Smallest geometrically periodic units of an infinite square periodic lattice.

Figure 7.3: Unit cells of an infinite square periodic lattice; able to handle the buckling mode shown in
Figure 7.4.

Figure 7.4: Buckling mode of a square lattice braced against lateral sway.
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7.2 F.E.M. Model

The material of the periodic lattice is assumed to be linearly elastic with the following

values for the elastic modulus E and the Poisson’s ration ν:

E = 70000MPa

ν = 0.3

All four unit cells (UC1, UC2, UC3, and UC4) are used to model the square periodic

lattice with the lattice parameter a being 10mm. The ligaments of all four unit cells

are modeled using quadratic beam elements in space (B32 in ABAQUS) with an element

length of 1mm and square cross-sectional area. The beam section orientation for the

vertical and horizontal beams is shown in Figure 7.5. The cross section has a width w of

1mm and a height h of 0.5mm. One receives a total number of 20 elements and 41 nodes

with 123 active degrees of freedom (DOFs) for UC1 and UC2 and a total number of 80

elements and 160 nodes with 480 active DOFs for UC3 and UC4. The periodic boundary

conditions are defined manually using Equations 2.1 and 2.3 given in Section 2.1. To use

these equations, additional point masses are added where no Finite Element node exists

in the corners of the unit cell (see Figures 7.2 and 7.3). To avoid rigid body movements

some of the displacements of the SW and SE master nodes are constrained:

u
∼

SW = {0, 0},
u
∼

SE = {uSE, 0}.

For UC1 and UC 3 the master nodes in the corners of the unit cell are not connected to the

other nodes of the unit cell model by any elements (see Figures 7.2 and 7.3). Therefore, the

displacements in x- and y- direction of an internal node have to be constrained additionally

to avoid rigid body movements.

Note, that for a 2D problem the displacements in z- direction and the rotations about the

x- and the y- axis have to be constrained for all nodes in the unit cell.

As already mentioned quadratic beam elements in space (B32) are used instead of quadratic

beam elements for 2D problems (B22) to model the ligaments of the periodic lattice. This

is done for testing the program against the usage of elements with the wrong dimensional-
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Figure 7.5: Beam section orientation of vertical and horizontal beams.

Figure 7.6: Bloch Wave master and Bloch Wave slave nodes for UC1 to UC4.

ity. To have a pure 2D problem the displacements in z- direction and the rotations about

the x- and y- axis of all nodes in the unit cell UC1 to UC4 are constrained during the

ABAQUS analysis. The Bloch Wave analysis program uses the unconstrained (!!) tangent

stiffness matrix, therefore, the problem that acctually is a 2D problem is treated as 3D

problem by the BWA program. This fact would lead to wrong results delivered by the

BWA program. In Appendix B a workaround for this problem is presented.

The Bloch Wave (BW) master nodes and the Bloch Wave slave nodes are not necessarily

equal to the master nodes and the slave nodes defined for the periodic boundary conditions.

The BW master and slave nodes for all four unit cells are shown in Figure 7.6. For example

SEB of UC4 is a master node for the definition of the periodic boundary conditions,
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whereas it is a BW slave node. UC1 has two BW master nodes (one on the West side

and one on the South side of the unit cell) and two BW slave nodes (one on the East

side and one on the North side of the unit cell) whereas UC2 has only one BW master

node in the South West corner of the unit cell and two BW slave nodes (one in the South

East corner and one in the North West corner of the unit cell). UC3 has four BW master

nodes (two on the West side and on the South side of the cell) and four BW slave nodes

(two on the East side and two on the North side of the cell). For UC4 one finds one BW

master node in the South West corner of the cell and one BW master node on the West

and on the South side of the unit cell, respectively. UC4 has four BW slave nodes (one

in the South East corner, one in the North West corner, one on the East side and one

on the West side of the unit cell). The size of the matrices used in the BWA program

depends strongly on the number of the master and slave nodes of the unit cells and has an

influence on the computational time required for the analysis. Therefore, one can see that

UC2 should give the shortest computational time needed followed by UC1. UC4 should

need less computational time than UC3 but more than UC1.

7.3 Uniaxial Compression

To test the Bloch Wave analysis (BWA) program UC1 to UC4 are subjected to a compres-

sive load in x-direction. For all unit cells the compressive load (reference load F1 = 290N

for UC1 and UC2 and F1=145 N for UC3 and UC4) is applied to the SE master node (see

Figures 7.2 and 7.3). The standard Newton Raphson method with a constant step size

of the load parameter ∆Λ = 0.001 is used for the ABAQUS analysis. The stabilization

algorithm provided by ABAQUS is omitted during the analysis for all four unit cells.

For UC1 and UC2, Figure 7.7 depicts the lowest eigenvalue λSP
1 of the constrained matrix

K̊
≈

plotted against the stress in x-direction σ1. If λSP
1 = 0 the critical state corresponding to

the strictly periodic mode is established. If the critical state is found to occur between two

increments linear interpolation is used to get closer to the critical state. The eigenvalues

received for UC2 are much higher than those received for UC1 and the critical state for

UC2 is established at a higher critical load than for UC1.

σSP
1c,UC1 = 570.838

N

mm2
(7.1)

σSP
1c,UC2 = 796.425

N

mm2
(7.2)
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Figure 7.7: Lowest eigenvalue depending on the applied load for the search of the strictly periodic mode
of Unit Cell 1 and Unit Cell 2; x-direction.

For the strictly periodic mode analysis K̊
≈

must be constrained against rigid body trans-

lations. For UC2 the master vector of all nodal DOFs can be written as:

u
∼

1 = {uSW, vSW, θSW}T (7.3)

For the constrained master vector therefore, one finds:

u
∼

1 = {0, 0, θSW}T (7.4)

The DOFs of the master vector influence the corresponding degrees of freedom of the

slaved nodes and the internal nodes of the unit cell (see Equations 4.22 and 4.28). For

UC2 only one rotational DOF of the master vector remains unconstrained. Thus, all

other nodes have only the rotational degree of freedom remaining unconstrained. It is not

possible to reproduce a strictly periodic mode with only the rotational degrees of freedom

being active. Therefore, the results of the strictly periodic mode (SPM) analysis for UC2

are not physically meaningful and must be ignored. To receive meaningful results with

the SPM analysis at least two BW master nodes are necessary.

The SPM analysis results for UC3 and UC4 are shown in Figure 7.8.The lowest eigenvalue

λSP
1 of the constrained matrix K̊

≈
is plotted against the stress in x-direction σ1. At the
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Figure 7.8: Lowest eigenvalue depending on the applied load for the search of the strictly periodic mode
of Unit Cell 3 and Unit Cell 4; x-direction.

beginning of the Strictly Periodic Mode analysis the λSP
1 corresponding to the constrained

matrix K̊
≈

of Unit Cell 3 is higher than the eigenvalue received for Unit Cell 4. For Unit

Cell 3 and Unit Cell 4 the critical state is established at the same stress in x-direction :

σSP
1c,UC3 = σSP

1c,UC4 = 143.620N/mm2 (7.5)

For the relative critical stress in x-direction σH
1c corresponding to a buckling mode with

infinite wavelength (macroscopic onset-of-failure (MOF), N1 = ∞) one finds for UC1 to

UC4:

σH
1c,UC1 = σH

1c,UC2 = σH
1c,UC3 = σH

1c,UC4 = 82.518N/mm2 (7.6)

The results of the SPM and the MOF analysis of UC1 to UC 4 are drawn into Figures

7.10 to 7.13 as dashed lines. The results delivered by the BWA program for UC1 to UC4

are depicted in Figures 7.10 to 7.13.

To verify the results achieved with the BWA program, accompanying eigenvalue analyses

are performed for columns consisting of a variable number (N1 = 1, 2, 10, 26) of unit cells

63



Figure 7.9: Added point mass in the corners of a column consisting of 10 unit cells.

Figure 7.10: Results of the Bloch Wave analysis for Unit Cell 1.

stacked in x-direction using either UC1, UC2, UC3 or UC4. The columns are loaded

under compression in x-direction. For all columns the periodic boundary conditions are

generated manually. To use the equations given in Section 2.1 additional point masses

are added in all column corners where no Finite Element node can be found. Figure 7.9

displays the added point masses in the corners of a column consisting of ten unit cells of

type UC 3. The results evaluated for the accompanying eigenvalue analysis for UC1 to

UC4 are added in Figure 7.10 to 7.13.

The results received with the BWA program for UC1 are displayed in Figure 7.10 where σ1

is the stress in the horizontal ligaments. It is remarkable that the critical load for a column

made of two unit cells stacked in x-direction is significantly lower than the critical load

corresponding to the strictly periodic mode. Further increasing the number of unit cells

decreases the critical load while the wave length of the corresponding buckling mode in-
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Figure 7.11: Results of the Bloch Wave analysis for Unit Cell 2.

creases. For an increasing number of unit cells the critical load approaches asymptotically

to the critical load corresponding to a buckling mode involving an infinite number of unit

cells. The results found by the accompanying eigenvalue analysis are in good agreement

with the results received by the BWA program.

Figure 7.11 depicts the BWA results received for UC2. As already mentioned the results

of the SPM analysis for UC2 are not physically meaningful. Therefore, the critical load

received for the accompanying eigenvalue analysis of a single unit cell is different from

the critical load received by the SPM analysis. All other results received with the BWA

program are in good agreement with the results of the accompanying eigenvalue analysis

and the results received for UC1.

The results received with the BWA program for UC3 and UC4 are displayed in Figure

7.12 (UC 3) and in Figure 7.13 (UC 4), respectively. The results found for UC 3 are

equal to those found for UC 4. In both cases the strictly periodic mode is shown by a

column consisting of a single unit cell. The critical load drops significantly for a column

made of two unit cells stacked in x - direction. For an increasing number of unit cells the

critical load approaches asymptotically to the critical load corresponding to a buckling

mode involving an infinite number of unit cells.

Figure 7.14 depicts the comparison of the results received for UC1 and UC2 and Figure
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Figure 7.12: Results of the Bloch Wave analysis for Unit Cell 3.

Figure 7.13: Results of the Bloch Wave analysis for Unit Cell 4.
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Figure 7.14: Comparison of the results of UC1 and UC3.

7.15 shows the comparison of the results received for UC2 and UC4. The critical stress

in x-direction for a column consisting of two UC1 is equal to the critical stress for the

strictly periodic mode received for UC3. This is reasonable because a column consisting

of two UC1 is equal to a single unit cell of type UC2 (in x-direction). For an inreasing

number of unit cells the differences between the critical loads received for UC1 and UC3

are negligible. The statements given for UC1 and UC3 are also true for UC2 and UC4

(see Figure 7.15).

7.4 Bi-axial Loading

The behavior of the periodic lattice is investigated under bi-axial loading conditions. Like

for the uniaxial case UC1, UC2, UC3 and UC4 are used to model the periodic lattice. All

unit cells are loaded under a radial loading path defined by:

{σ1, σ2} = Σ{1, κ1} (7.7)
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Figure 7.15: Comparison of the results of UC2 and UC4.

with

0 ≤ κ1 ≤ 1

Σ = σ1cΛ with 0 ≤ Λ ≤ 1 (7.8)

and

{σ1, σ2} = Σ{κ2, 1} (7.9)

with

0 ≤ κ2 ≤ 1

Σ = σ1cΛ with 0 ≤ Λ ≤ 1 (7.10)

with Λ as the load parameter and σ1c as the critical stress in the horizontal ligaments

corresponding to the strictly periodic mode of the lattice loaded in x-direction. κ1 = 0.0

represents uniaxial loading in x-direction and κ2 = 0.0 represents uniaxial loading in

y-direction. κ1 = 1.0 and κ2 = 1.0 represent pure hydrostatic pressure. Because the
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mechanical properties of all unit cells are equal in x- and y-direction, one can write:

σ1c = σ2c (7.11)

where σ2c is the critical stress in the vertical ligaments corresponding to the strictly peri-

odic mode of the lattice loaded in y-direction.

For each value of κ1 and κ2 an ABAQUS analysis is performed using the Standard Newton

Raphson algorithm with a step size of ∆Λ = 0.002. To achieve the bi-axial loading

conditions the following master nodes are assigned to compressive loads:

SE compressive load F1 (corresponding to σ1) in x-direction

NW compressive load F2 (corresponding to σ2) in y-direction

The reference loads of F1 and F2 are set to 290N for UC1 and UC2 and to 145N for UC3

and UC4. For σ1 and σ2 one finds:

σ1 =
F1

A1

, σ2 =
F2

A2

(7.12)

with A1 as the sum of the cross-sectional areas of all horizontal ligaments in the unit cell

(A1 = wh for UC1 and UC2, A1 = 2wh for UC3 and UC4) and A2 as the sum of the

cross-sectional areas of all vertical ligaments in the unit cell (A2 = wh for UC1 and UC2,

A2 = 2wh for UC3 and UC4). Because A2 = A1 one finds for F2:

F2 = κ1F1 (7.13)

F1 can also be expressed in terms of F2. With Equations (7.12), (7.9) and A2 = A1 one

receives for F1:

F1 = κ2F2 (7.14)

For the evaluation of the wavelength of the critical buckling mode and the corresponding

critical load for each value of κ1 and κ2 all three parts of the BWA program are executed

for each bi-axial loading case. The BWA program delivers the same results for all four

unit cells.

For UC1, UC2, UC3 and UC4 the critical mode of a periodic lattice with infinite extent

assigned to a compressive load in x-direction corresponds to a long wave length mode

(see also Figures 7.10 to 7.13). For all bi-axial loading cases the critical stresses found by

the macroscopic onset-of-failure analysis are much lower then those found for the strictly

periodic mode or the Bloch Wave analysis. Therefore, the critical buckling mode remains
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Figure 7.16: Results for all bi-axial loading cases; evaluated using UC1, UC2, UC3 and UC4.

global in nature for all bi-axial loading cases. In Figure 7.16, the critical normal stresses in

the vertical ligaments σ2 are plotted against the critical normal stresses in the horizontal

ligaments σ1. To verify the results delivered by the BWA program an accompanying

eigenvalue analysis is performed. In Figures 7.10 to 7.13 one can see, that the critical

load for a column consisting of 25 cells is close to the critical load corresponding to a

buckling mode with infinite wavelength. Therefore, a periodic lattice consisting of 25× 25

cells is used to verify the MOF results of the bi-axial loading cases. The periodic lattice

is assigned to the radial loading conditions given in Equations (7.7). Periodic boundary

conditions are applied to the periodic lattice consisting of 25×25 cells. The results received

by the accompanying eigenvalue analysis are in perfect agreement with the results received

with the BWA program (see Figure 7.16). Ohno et al. [20] analyzes 2D periodic lattices

subjected to bi-axial in-plane loadings. Figure 3. in [20] displayes the critical buckling

stresses corresponding to periodic lattices consisting of different numbers of base cells. For

the long wavelength mode the results received in [20] are comparable to those received in

the present work.
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Figure 8.1: Space filling unit cell of the Weaire-Phelan foam. From [6]

8 The Weaire-Phelan Cell

The Kelvin problem was formulated in 1887 by Lord Kelvin (see [26]). The aim of the

Kelvin problem is to find a periodic structure which fills a given fraction of space with

equal sized cells and minimum surface area. The Weaire-Phelan foam found in 1994 by

Denis Weaire und Robert Phelan (of Trinity College Dublin) is like the Kelvin cell (see

Section 6) a solution of the Kelvin problem and beats the Kelvin cell by about 0.3% in

surface area.

8.1 Characteristic Cell

Figure 8.1 shows the unit cell of a Weaire-Phelan foam which fills space when replicated

in a cubic lattice. This unit cell consists of eight cells of two different types: two irregular

pentagonal dodecahedron and six 14-hedra. To use the BWA program on the Weaire-

Phelan foam a cubic unit cell is required (see Figure 8.2). The cell dimension of the

Weaire-Phelan unit cell used in the present work is 2 × 2 × 2 mm.

As already mentioned the Weaire-Phelan foam consists of two different cell types. The

pressure in the different cell types is not the same, therefore, all faces shared by an do-

decahedron and a 14-hedron cell are curved. In the present work this surface curvature is

ignored for all Weaire-Phelan Cells used.
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Figure 8.2: Cubic unit cell of the Weaire-Phelan foam. From [6].

8.2 F.E.M. Model

The geometry of the cubic unit cell shown in Figure 8.2 is provided by Dipl. Ing. Robert

Bitsche. The faces of the unit cell are meshed using linear shell elements of ABAQUS type

S4. The size of the tangent matrix of a structure is limited by Python’s Numeric module

to about 16000×16000. Thus, the number of elements to be used for meshing the Weaire-

Phelan unit cell is limited. The F.E. model has a total number of 1632 elements, 1604

nodes and 9624 degrees of freedom. The meshed Weaire-Phelan Cell is depicted in Figure

8.4. It turned out that the Weaire-Phelan Cell is sensitive to small geometric imperfections.

For a detailed description see Appendix C. To avoid the geometric imperfections only one

eighth of the unit cell is meshed (see Figure 8.3). The node which lie on (or close to) a

surface of the reduced unit cell are forced to have exactly the surface coordinates. The

edges of the unit cell are added with dashed lines in Figure 8.3. The full unit cell can be

constructed by mirroring the reduced cell about the mirror planes shown in Figure 8.3.

The elements in the mirror planes and the elements on the opposite unit cell surfaces must

not be reflected.

The shell thickness is calculated using (from [6]):

t = ρrel
Vuc

ASE

(8.1)

with Vuc as the total volume of the cubic unit cell, ASE as the surface area of all faces in
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Figure 8.3: One eighth of the Weaire-Phelan Cell meshed with elements of ABAQUS type S3R. For the
actual analysis quadliteral elements of ABAQUS type S4 are used.

Figure 8.4: Meshed unit cell of the Weaire-Phelan foam.
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a unit cell and ρrel as the relative density of the foam. For the relative density one finds

ρrel =
Vs

Vus

(8.2)

where Vs is the volume of the solid material of the unit cell. To ensure elastic buckling the

shell thickness must be rather small. This results in a small relative density ρrel. Thus

the relative density is assumed to be 1% (ρrel = 0.01). With the appropriate values for

Vuc and ASE (from [6]):

Vuc = 8mm3 ASE = 21.1539mm2 (8.3)

one receives for the shell tickness:

t = 0.0037818. (8.4)

The bulk material is assumed to be isotropic and linear elastic with the following values

for the elastic modulus Es and Poissons ratio νs:

Es = 70000MPa

νs = 0.3 (8.5)

The periodic boundary conditions are specified using the CBC-program. The CBC-

program generates additional point masses in the corners of the cubic unit cell (Figure

8.4). This point masses do not influence the solution of the F.E.M. analysis or the results

of the BWA program. To avoid rigid body movements some of the displacement degrees

of freedom of the master nodes in the corners of the cell must be constrained:

u
∼

SWB = {0, 0, 0}
u
∼

SEB = {uSEB, 0, 0}
u
∼

NWB = {uNWB, vNWB, 0} (8.6)

The master nodes in the corners of the unit cell are not linked by any elements to the

other nodes of the unit cell model therefore, all displacement and rotational degrees of

freedom of an internal node must additionally be constrained.
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8.3 Determination of the Elastic Modulus

For the determination of the elastic modulus the Weaire-Phelan unit cell is subjected to a

compressive load in x-direction. The load is applied in a linear pertubation analysis to the

SEB master node (see Figure 8.4). The deformation of the loaded unit cell is read from

the ABAQUS results file. For the relativ elastic modulus E∗

Es
, normalized by the elastic

modulus of the bulk material one finds:

E∗

Es
= 0.003458 (8.7)

8.4 Uniaxial Compression

The compressive load in x-direction is applied to the SEB master node of a single cubic

unit cell of the Weaire-Phelan foam and has a reference value of 0.5N. The standard

Newton Raphson method with a constant step size ∆Λ = 0.01 of the load parameter Λ.

In comparison to the step sizes used for the Kelvin cell (∆Λ = 0.001) and the periodic

lattices (∆Λ = 0.002) the step size used for the Weaire-Phelan Cell is rather large. Because

of the larger number of elements used in the Weaire-Phelan model the computational time

for a single analysis step of the BWA program is much higher than the computational time

needed for the Kelvin cell or the periodic lattices. To keep the required computational time

within equitable bounds, it is reasonable to increase the step size of the F.E.M. Analysis.

The results are verified using the accompanying eigenvalue analysis on columns consisting

of different numbers of unit cells (N1 = 1, 40, 80).

Figure 8.5 displays the result received by the SPM analysis and the accompanying eigen-

value analysis (ALEA) applied to a single unit cell of the uniaxial case. The critical

state corresponding to the strictly periodic mode is established for a critical stress in rise

direction of:

σ1c = 0.09913N/mm2 (8.8)

The macroscopic onset of failure analysis delivers no result for the Weaire-Phelan Cell

loaded in x-direction and the standard Bloch Wave analysis does not deliver any results

for all m1 for N1 > 1. For loads higher than the critical load found by the SPM analysis

all lowest eigenvalues of the reduced stiffness matrix K̊
≈

are negative independent of the

wave number m1. For N1 = 40 and N1 = 80 the accompanying eigenvalue analysis

is time consuming, therefore, these structrues are pre-loaded close to the critical state
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Figure 8.5: Comparison between the results of the SPM analysis and the accomanying linear eigenvalue
analysis of a single unit cell for the uniaxial loading case.

found by the SPM analysis, and then the eigenvalue buckling prediction of ABAQUS is

used to determine the eigenvalue and the corresponding buckling mode of the structure.

For N1 = 40 and N1 = 80 no critical buckling modes involving multiple cells or an

infinite number of cells are found to occur. The critical stress found by the accompanying

eigenvalue analysis is equal to the critical stress found by the SPM analysis, and the

corresponding buckling mode is local to a single unit cell.

8.5 Pure Hydrostatic Pressure

The Weaire-Phelan Cell is also subjectd to compressive loading defined by:

{σ1, σ2, σ3} = Σ{1, 1, 1} (8.9)

with

Σ = σ1cΛ with 0 ≤ Λ ≤ 1 (8.10)

with Λ being the load parameter and σ1c being the critical stress corresponding to the

strictly periodic mode for uniaxial loading in x-direction. For the triaxial loading the

following master nodes of a single Weaire-Phelan Cell are assigned with compressive loads:
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SEB compressive load F1 (corresponding to σ1) in x direction

NWB compressive load F2 (corresponding to σ2) in y direction

SWT compressive load F3 (corresponding to σ3) in z direction

The reference loads F1, F2 and F3 are set to 0.4N. The standard Newton Raphson method

with a constant step size of the load parameter of ∆Λ = 0.01 is used. All parts of the BWA

program are used for identifying the critical loads and the wave length of the corresponding

buckling modes.

Only the SPM analysis part of the program delivers any meaningful results. Figure 8.6 dis-

plays the lowest eigenvalue of the reduced stiffness matrix plotted against the mean stress

σm = σii

3
. The critical state corresponding to the strictly periodic mode is established at:

σmc = 0.04524N/mm2 (8.11)

After the critical state is established all lowest eigenvalues of the reduced stiffness matrix

K̊
≈

are negative independent of the wave numbers mi. To verify the results of the BWA

program the eigenvalue buckling prediction of ABAQUS is used on arrays consisting of

2× 2× 2, and 4× 4× 4 cells 3. The microsections are pre-loaded close to the critical state

found by the SPM analysis and then the eigenvalue buckling prediction of ABAQUS is

used to determine the eigenvalue and the corresponding buckling mode of the models. For

the tested models the critical stress corresponds to the critical stress found by the SPM

analysis. Figure 8.6 depicts the critical buckling mode for a array consisting of 4 × 4 × 4

cells.

3The buckling eigenvalue prediction for 6 × 6 × 6 cells was not possible due to the huge numerical
requirements.
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Figure 8.6: Results of the SPM analysis for the case of pure hydrostatic pressure.

Figure 8.7: Predicted buckling mode of a microsection consisting of 4x4x4 unit cells. Structure cut at
z = 0.1 mm.
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9 Conclusions

In the present thesis the microscopic and macroscopic onset-of-failure concepts were used

to detect the onset of buckling in periodic structures loaded under compression. The

Finite Element representation of the macroscopic onset-of-failure concept, presented in

[17], was extended to arbitrary unit cells, and both, the microscopic and macroscopic

onset-of-failure concepts were applied to different periodic structures.

One of these periodic structures was an open cell foam, represented by space-filling Kelvin

Cells. A Kelvin unit cell model was subjected to uniaxial and a set of triaxial loads.

The results obtained with the microscopic and macroscopic onset-of-failure concept were

in good agreement with the results reported in the literature. It turned out that the

detection of the critical stresses and the corresponding buckling modes strongly depend

on the step size of the load parameter ∆Λ used in the ABAQUS analysis. For the Kelvin

Cell loaded in transverse direction the critical stress corresponding to a buckling mode

with infinite wavelength and the critical stress corresponding to the strictly periodic mode

are only separated by a small interval. This small interval can only be detected if ∆Λ is

small enough. Reducing ∆Λ, however, increases the required numerical effort significantly.

In the analysis of the 2D periodic lattice it was shown that the results for the critical stress

and the corresponding buckling mode are independent of the cell count of the periodic unit

used for the analysis. The 2D periodic lattice was modeled using four different unit cells

the smallest of which corresponds to the smallest periodic building block of the structure.

All four cells were subjected to uniaxial and bi-axial compressive loads. The results for

all unit cells were in perfect agreement. Nevertheless, the minimum size of the unit cell is

restricted to at least two active Bloch Wave master nodes, because otherwise the results

for the strictly periodic mode are not physically meaningful. This is due to the fact that

for the strictly periodic mode analysis the displacement degrees of freedom of a Bloch

Wave master node must be subjected to additional constraints.

The investigated Weaire-Phelan Cell had a large number of active degrees of freedom and,

therefore, was close to the limitations of the Numeric module of the programming language

“Python”. The cell was subjected to pure hydrostatic pressure and a uniaxial compressive

load. For both load case the critical buckling mode is local to a single unit cell and, like

the corresponding critical stress, independent of the number of basis cells that form the

periodic structure. The verification of the results obtained for the Weaire-Phelan Cell

by an accompanying linear eigenvalue analysis of fully resolved multi-cells failed even for

arrays consisting of a low number of unit cells due to excessive numerical requirements.
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In the present work it was shown that both, the microscopic and macroscopic onset-of-

failure concept are powerful tools for the search of the critical stress and the corresponding

buckling mode of periodic structures loaded under compression.
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A Bloch Wave Program

A.1 Introduction

The Bloch Wave analysis (BWA) program facilitates the search for the critical state of pe-

riodic structures loaded under compression. All analysis steps are performed on one funda-

mental building block of the microstructure, the so-called unit cell, instead of dealing with

the whole, potentially infinite structure. The program only works for rate-independent

materials.

For the implementation of the program, the PYTHON language was chosen. PYTHON

runs on all major operating systems and is an easy to learn and stable programming

language. One negative aspect of this language is, that the size of the matrices that can

be handled with the Numeric module of Python is limited. Therefore, the number of nodes

(or degrees of freedom) in a unit cell is currently restricted.

This chapter gives an short overview over the input files required for running an analysis

and the output files written by the BWA program. The three main parts of the BWA

program will be described briefly.

A.2 Flow Diagram

Figure A.1 gives an overview of all steps needed to perform a Bloch Wave analysis. The

Bloch Wave Program itself consists of three different parts, which can be executed inde-

pendently and which process four different types of input files.

All information about the unit cell is given in the ABAQUS input file containing nodal,

element, material and section definitions. The equations defining the periodic boundary

conditions can either be put in manually, or, alternatively, the CBC-program (Cube-

periodic Boundary Conditions) by Daxner and Pahr can be used for their automatic

generation.

The ABAQUS/Standard analysis (load controlled Newton-Raphson) delivers two different

files: the .dat file from which the increment time information is read and the .mtx file

containing the element stiffness matrices of all elements in the unit cell for each increment.

The fourth input file for the BWA program is the command file. It is an user written .txt
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file defining all program settings.

Each part of the program writes a number of output files by default. For the BWA part

an optional output file can be generated containing the displacement fields of the critical

modes found in the analysis.

In the next subsections all input and output files will be described in greater detail.

A.3 Main Parts of the Program

The Bloch Wave analysis Program consists of three parts which can be executed indepen-

dently.

In the neighborhood of m
∼

= 0 two different modes coexist. For ∀mi = 0 the critical mode

is strictly periodic to the unit cell, whereas for one mi → 0 the buckling mode is global in

nature.

The case of ∀mi = 0 should be treated by the Strictly Periodic Mode Part of the program.

In this part of the program, Equation (4.34) must be restricted against rigid body transla-

tion, so the displacement degrees of freedom of one master node (BW master, see Chapter

3) of the unit cell are constrained. The reduced stiffness matrix K̊
≈

can be partitioned in

the following way:

ū
∼

T
1 K̊

≈
u
∼

1 =
(

ū
∼

T
1U, 0∼

T

)





K̊
≈

UU K̊
≈

UB

K̊
≈

BU K̊
≈

BB









u
∼

1U

0
∼



 (A.1)

with

dim(0
∼
) = (3 × 1) (A.2)

dim(K̊
≈

UU) = (len(u
∼

1) × len(u
∼

1)) (A.3)

The vector 0
∼

represents the zero-valued displacements of the constrained master node

and u
∼

1U represents the unknown displacements and rotations of the unconstrained master

nodes as well as the rotations of the constrained master node, with ū
∼

1U being its conjugate

complex. The reduced stiffness matrix K̊
≈

has to be sorted and split accordingly. For the

calculation of the lowest eigenvalue of the reduced stiffness matrix only K
≈

UU is used.
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ABAQUS Standard Input File
myanalysis.inp

CBC - Program
Periodic Boundary Conditions

ABAQUS Standard Analysis
Load Controlled Newton Raphson

Command File
mycommands.txt

ABAQUS Result Files
myanalysis.dat
myanalysis.mtx

Bloch Wave Analysis Program

Strictly Periodic Modes
(SPM)

Standard Bloch Wave Analysis
(BWA)

Macroscopic Onset of Failure
(MOF)

Default Output
Standard Output Files

Optional Output
Mode Output for BWA

?

?

-

? ?

? ?

-

Figure A.1: Flow diagram of a Bloch Wave analysis for periodic structures.
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For mi → 0 one should use the macroscopic onset-of-failure part of the program. In all

other cases (0 < mi < 2π) the search for the critical state can be performed by using the

Standard Bloch Wave analysis part. This part is the computationally most expensive one,

because all possible combinations of the wave numbers m1, m2, m3 have to be investigated

on a reasonably fine grid.

A.4 Input Files

The user has no influence on the data read from the .dat file and the .mtx file, therefore,

only the command file and the ABAQUS input file will be described in detail.

A.4.1 The Command File

The command file is a standard .txt file allowing the user to define all necessary parameters

for executing the Bloch Wave analysis Program. In the following the available commands

will be explained briefly.

*INPUT

First line: name of the input file without file extension .inp

Last line: **

With *INPUT the ABAQUS input files are defined. Repeat the first line as often as

necessary. The command has to finish with ** in the last line. If more than one input file

is given, the program loops over all given input files. The corresponding .dat and .mtx

files must be given in the same order as the input files.

*RESULT

First line: name of the .dat files of the ABAQUS analysis

including file extension .dat

Last line: **

*RESULT gives a list of all .dat files received from ABAQUS standard analysis. Repeat

the first line as often as necessary to read all .dat files. The order of the .dat files has to

be the same as the order of the ABAQUS input files. The command has to finish with **

in the last line.
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*MATRIX

First line: name of the .mtx file of the ABAQUS analysis

including file extension .mtx

Last line: **

*MATRIX gives a list of all .mtx files received from the ABAQUS standard analysis.

Repeat the first line as often as necessary to define all .mtx files. The order of the .mtx

files has to be the same as the order of the ABAQUS input files. the command has to

finish with ** in the last line.

*INDIR

First and only line: Path of the directory where all input files for the

Bloch Wave Program can be found.

For the current implementation of the program only one input and one output directory

can be defined.

*OUTDIR

First and only line: Path of the directory where all output files

should be written to.

*STRICTLY PERIODIC MODE

First and only line: Number of the first and last increment of the

SPM analysis, separated by commas

If the keyword *STRICTLY PERIODIC MODE is set then the program part for the search

of a strictly periodic mode (SPM) will be executed. For the SPM analysis the output file

myinput SPMallincrements.dat is written. For example:

*STRICTLY PERIODIC MODE

42, 52

In this case the SPM-analysis is performed for increments from number 42 to number 52.

*BLOCH WAVE ANALYSIS

First line: Number of the first and last increment of the

Standard Bloch Wave analysis (BWA)

Second line: m1start, m1end, m1step

Third line: m2start, m2end, m2step

Fourth line: m3start, m3end, m3step
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If *BLOCH WAVE ANALYSIS is set, the BWA-part of the Bloch Wave analysis program

is executed. To exclude strictly periodic modes (∀mi = 0) at least one mistart must be

greater than zero. Only if one wave number is not of interest (in the 2D case, for example,

this would be m3) the corresponding values are set to mistart = miend = 0. The parameter

mistep can be given any value greater than zero. All values must be separated by commas.

As an example, an input for the 2D-case is given:

*BLOCH WAVE ANALYSIS

34, 69

10, 1, 360

10, 1, 360

0.0, 0.0, 1

mistart, miend and mistep are given in fractions of π:

10 ⇒ π

10
1 ⇒ π

0.5 ⇒ 2π

*MACROSCOPIC ONSET OF FAILURE

First line: Number of the first and last increment for the

Macroscopic Onset-of-Failure analysis

Second line: ϕstart, ϕend, ϕstep

Third line: θstart, θend, θstep

If the command *MACROSCOPIC ONSET OF FAILURE is set, the macroscopic onset-

of-failure part of the Bloch Wave analysis program is executed. ϕstart and θstart can be

given any value lower than π or 2π, respectively. φstep and θstep must be set to a value

greater than zero. Like in the Bloch Wave analysis input ϕstart, ϕend, ϕstep and θstart, θend,

θstep are given in fractions of π

*CRITICAL MODE OUTPUT

First and only line: inc start, inc end, No.X, No.Y, No.Z

If the *CRITICAL MODE OUTPUT keyword is given, the nodal displacements describing

the critical mode found in a standard Bloch Wave analysis will be written to an output
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file for all increments from inc start to inc end. No.X, No.Y and No.Z are the unit cell

counts in x-, y- and z-direction, respectively, for displaying the critical mode. If no mode

output should be written then this command has to be omitted.

*DOF PER NODE

First and only line: Number of the nodal degrees of freedom depend-

ing on the element type used in the model

Set this value equal to the nodal degrees of freedom of the elements used.

*2D CASE

If the *2D CASE keyword is set then the modeled structure (all elements must be in the

x-y plane) is treated as a 2D problem. Therefore, the displacement in z-direction and

the rotations about the x- and y-axis are constrained. For example, all elements used to

model a structure are in the x-y plane and the used elements have more nodal degrees

of freedom than actually being active in a 2D problem. If the *2D CASE keyword is set

then the problem is treated as a 2D problem, else the problem is treated as a 3D problem.

*LOAD

First and only line: F1, F2, F3

F1 Concentrated reference load on the master node in x-direction

F2 Concentrated reference load on the master node in y-direction

F3 Concentrated reference load on the master node in z-direction

Set the values for the force components equal to the values definded under *CLOAD in

the ABAQUS input file.

A.4.2 ABAQUS Input File

The Bloch Wave analysis Program reads the nodal and element information from the

ABAQUS input file. The nodal data is required to determine the size of the unit cell and

to find all master nodes and their corresponding slave nodes. For the assembly of the

tangent stiffness matrix of the unit cell one needs the coincidence table of each element.

Therefore, the element information is also read from the input file. Nodal and element data

of the unit cell are also used for generating a number of cells in each direction to display

the critical mode if the *CRITICAL MODE OTUPUT key word is set in the command
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file. To simplify the reading procedure some restrictions are made for the ABAQUS input

file:

• All nodes must be defined within one *NODE command. Otherwise, the nodal data

is not read correctly.

• 2D unit cells must be defined in the x-y-plane.

• All unit cells must be rectangular (2D) or cuboid-shaped (3D).

• The edges of the unit cell must be parallel to the axes of the global coordinate

system.

A.5 Output

A.5.1 Search for the Strictly Periodic Mode

The output for the search for the strictly periodic mode is written to a file named

“ myinput SSPMallincrements.dat”. This file has five columns with the increment number

i being written to column one. In column two one can find the eigenvalue of the reduced

matrix for increment i. In columns three to five the corresponding load values for F1 to

F3 are displayed.

The eigenvalue, displayed in column two, changes its sign as soon as the critical state is

achieved.

A.5.2 Standard Bloch Wave Analysis

For each increment of the standard Bloch Wave analysis a separate output file is written

by default. myanalysis incBWA.dat (with inc as increment number) has four columns

with the first one displaying the eigenvalue of the reduced stiffness matrix of the unit cell

(see Section 4.2). If the eigenvalue becomes zero then the critical state along the loading

path is reached. The values of the dimensionless wave numbers m1 to m3 are written to

columns two to four.

If the critical state is established in one increment i then the lowest eigenvalue and the

corresponding wave numbers of the eigenmode for this state are written to a separate file
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myanalysis BWAallincrements.dat. The columns from left to right are: increment number

i, m1, m2, m3, eigenvalue increment i, eigenvalue increment i− 1, F1, F2, F3.

If the CRITICAL MODE OTUPUT keyword is set in the command file an additional

output file myanalysis BWAmodeoutput.inp is written for the given increments. This file

is structured like an ABAQUS input file. The critical mode is applied as a displacement

field perturbing the undeformed structure. To display the critical mode one has to run a

ABAQUS standard analysis using this file as the input file. The BWA program does not

read any section properties of the elements from the old ABAQUS input file myanalysis.inp

(see Figure A.1). Therefore, these properties have to be definded manually by the user in

the new input file myanalysis BWAmodeoutput.inp.

A.5.3 Macroscopic Onset-of-Failure

As mentioned in Chapter 5 the macroscopic onset-of-failure is indicated by the loss of rank

one convexity of the homgenized tangent moduli. If this critical state is established, the

critical load and the direction of the band of the corresponding buckling mode is written

to a file myanalysis MOF.dat.
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B Special Treatment of 2D and 1D Problems

As already mentioned in Section 7 two dimensional and one dimensional unit cells can

be modeled with elements that have more nodal degrees of freedom than actually being

active in a 2D F.E.M. analysis. For this case the *2D CASE keyword is introduced in

the BWA program input file (see Section A). The Bloch Wave analysis (BWA) program

normally uses the complete element stiffness matrices to assemble the tangent stiffness

matrix of the unit cell. The size of the coupling matrix used for the Bloch Wave analysis

also depends on the nodal degrees of freedom of the element. For that reasons the BWA

program delivers wrong results for these specific 2D (1D) problems.

To avoid this problem the following workarounds are included in the BWA program. The

workarounds are valid both for 2D and 1D problems, although only the 2D case is men-

tioned.

B.1 Tangent Stiffness Matrix

To keep the reading procedure of the element stiffness matrices as simple as possible the

whole element stiffness matrices are read. The size of the tangent stiffness matrix K
≈

can

be evaluated as

dim(K
≈

) = (nN ∗ ndof) × (nN ∗ ndof) (B.1)

with nN being the total number of nodes in the unit cell model and ndof being the number

of nodal degrees of freedom. For the size of the 2D stiffness matrix K
≈

2D on receives

dim(K
≈

2D) = (nN ∗ nact) × (nN ∗ nact) (B.2)

with nact being the number of active nodal degrees of freedom. For the assembly of the 2D

tangent stiffness matrix only the entries in the element stiffness matrix corresponding to

active degrees of freedom are taken into account. Therefore, the coincidence tables used

to assemble the tangent stiffness matrix have to be modified. The following example will

describe the procedure used for adapting the coincidence tables.

Figure B.1 shows an example of a coincidence table for a shear deformable linear beam

element in space with six nodal degrees of freedom. The first row contains the local degrees

of freedom and the second row shows the corresponding global degrees of freedom of all
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Figure B.1: Coincidence table of a shear deformable beam element with six nodal degrees of freedom.

entries in the element stiffness matrix. The node numbers of the beam element can also

be found in Figure B.1. The nodal displacement vector u
∼

n of node n of the beam element

can be written as:

u
∼

n = {u, v,w, θx, θy, θz}T (B.3)

with u, v and w being the nodal displacements in x-, y-, and z-direction and θx, θy, and

θz being the rotations about the x-, y-, and z-axis.

In the 2D case the displacement in x-direction and the rotations about the x- and y-axis

are not active and therefore, the nodal displacement vector of node n of the beam element

is reduced to:

u
∼

n = {u, v, θz}T (B.4)

The corresponding coincidence table of the same element as above is shown in Figure

B.2. The coincidence table has the same length as the table of the general case. For the

unused degrees of freedom (DOF) of the element nodes the global DOF entries are set

to 999999. Because the size of the tangent stiffness matrix is limited to approximately

16000 × 16000 by the Python module Numeric, 999999 is never used for an active DOF.

For the calculation of the global DOF numbers only the active degrees of freedom are

taken into account. The assembly of the tangent stiffness matrix proceeds the normal

way, except for the fact that the entries of the element stiffness matrix, which have a

99999 entry for their global DOF, are ignored.

B.2 Strictly Periodic Mode Analysis

The strictly periodic mode analysis is treated separately by the BWA program. The

reduced tangent stiffness matrix K̊
≈

must be constrained against rigid body movements
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Figure B.2: Reduced coincidence table of a shear deformable beam element with three active nodal
degrees of freedom.

(see Section A.3). For the 2D and the 1D case Equation (A.1) is still valid if Equation

(A.2) is changed to the following equation:

dim(0
∼
) = (2 × 1) (B.5)

This change is reasonable because the translation in z-direction was already constrained

in the assembly of the tangent stiffness matrix of the 2D problem. Therefore, K̊
≈

must

only be constrained against the translations in x- and y- direction.

B.3 All Other Procedures

For all other procedures of the BWA program the number of nodal DOF is simply set

to the number of active DOF. Thus, e.g., for the coupling matrix ν
≈

used during a Bloch

Wave analysis procedure and for the special functions
ij
χ
∼

and the elongation matrix ω
≈

used

in the macroscopic onset-of-failure procedure only the active degrees of freedom are taken

into account.
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Figure C.1: Meshed Weaire-Phelan Cell using linea tria elements.

C Weaire-Phelan Cell - Effect of Geometric Imperfections

C.1 F.E.M. Model

To reduce the computational time required by the Bloch Wave Analysis program a coarser

mesh than in Section 8 is used.

The cubic unit cell is meshed using linear shell elements of ABAQUS type S3R. The

meshed structure is depicted in Figure C.1. The meshed unit cell has a total number of

1140 elements and 588 nodes with 3528 degrees of freedom.

The shell thickness and the bulk material properties are the same as in Section 8:

t = 0.0037818mm

Es = 70000MPa

νs = 0.3 (C.1)

The periodic boundary conditions are specified using the CBC-program. To avoid rigid

body movements all degrees of freedom of an internal node of the unit cell and some of
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the displacement degrees of freedom of the master nodes (see Figure C.1) are constrained:

u
∼

SWB = {0, 0, 0}
u
∼

SEB = {uSEB, 0, 0}
u
∼

NWB = {uNWB, vNWB, 0} (C.2)

C.2 Results of the Strictly Periodic Mode Analysis

The standard Newton Raphson method is used as the solution procedure. The loading

path is evaluated using two different step sizes ∆Λ for the load parameter Λ: case 1

(C1) has a constant step size of ∆Λ = 0.01 and case 2 (C2) has a constant step size of

∆Λ = 0.0025. For both cases the compressive reference load applied to the SEB master

node has a value of 2.5N for Λ = 1.0.

The results of the Strictly Periodic Mode analysis for the cases C1 and C2 are depicted

in Figure C.2. The lowest eigenvalues found by the SPM analysis are plotted against the

stress in x-direction σ1 of the unit cell. For C1 the lowest eigenvalue becomes negative

at σ1 ≈ 0.475N/mm2 whereas the lowest eigenvalue of C2 remains positive. For higher

values of σ1 the eigenvalues for C1 become positive again. For σ1 = 0.5N/mm2 the lowest

eigenvalue of C1 becomes negative and the analysis for C2 terminates.

C.3 Results of the Accompanying Eigenvalue Analysis

Additionally to the strictly periodic mode analysis a accompanying linear eigenvalue anal-

ysis (ALEA) is performed. The results of the ALEA are depicted in Figure C.2. The

lowest eigenvalue of the ALEA is plotted against σ1. The critical load is not established

during the ALEA because while, the lowest eigenvalue approaches zero, it has a minimum

at σ1 ≈ 0.475N/mm2 and then increases again. This minimum matches the occurrence

of the first negative eigenvalue in the SPM analysis for C1. The analysis terminates at

σ1 ≈ 0.5N/mm2 because ABAQUS encounters an error during the analysis. The defor-

mation plot of the Weaire-Phelan unit cell shows the occurrence of local cell wall buckling

(see Figure C.2). For a geometrically perfect structure the buckling of the affected cell

faces should not be possible during a static analysis. The reason for this behavior can be

found in small geometric imperfections of the nodes on the affected faces. Results for a
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Figure C.2: Results of the SPM analysis for the Weaire-Phelan Cell.

cell with perfect geometry can be found in Section 8.
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