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Deutsche Kurzfassung

Diese Dissertation befasst sich mit der Modellierung von multivariaten Zeitreihen, bei denen
die Querschnittsdimension im Verhältnis zur Anzahl der Beobachtungen relativ hoch ist. Dieses
Problem ist vorallem in den letzten Jahren verstärkt ins Zentrum der Aufmerksamkeit gerückt,
da in vielen Anwendungsgebieten, wie zum Beispiel in der Modellierung von Finanzzeitreihen,
in der Makroökonomie oder in der Bioinformatik, vermehrt Datensätze verfügbar sind, die aus
vielen unterschiedlichen Variablen bestehen. In dieser Situation sind traditionelle multivariate
Zeitreihenanalysemethoden, z.B. autoregressive Modelle, ungeeignet, da die Parameterräume
verglichen mit der Beobachtungszahl zu große Dimensionen aufweisen. Es werden daher Mo-
delle benötigt, die die, sowohl im Querschnitt als auch über die Zeit, vorhandene Information
komprimieren und dadurch die Komplexität reduzieren. Hierfür können Faktormodelle, die auf
der Idee weniger gemeinsamer latenter Faktoren basieren, verwendet werden. In dieser Disser-
tation liegt der Schwerpunkt auf dem verallgemeinerten dynamischen Faktormodell (generalized
dynamic factor model, GDFM), das von Forni et al. (2000), Forni and Lippi (2001) und Stock
and Watson (1998) vorgeschlagen und analysiert worden ist.

Die Dissertation gliedert sich in folgende Teile.

In Kap. 1 werden die allgemeinen Annahmen für Faktormodelle, die in dieser Arbeit verwendet
werden, eingeführt. Außerdem werden zwei klassische Modelle zur Dimensionsreduktion, das
Hauptkomponenentenmodell und das Faktormodell mit idiosynkratischen Fehlern diskutiert.

In Kap. 2 wird das GDFM vorgestellt. Das GDFM verallgemeinert das (dynamische) Faktor-
modell mit idiosynkratischen Fehlern, bei dem angenommen wird, dass die Fehlerkomponenten
unkorreliert sind, insofern als die Fehlerkompenenten hier ,,schwach korreliert“ sein dürfen.

Kap. 3 beschäftigt sich mit einer Strukturtheorie für GDFMs. Als erstes werden die Resultate
von Forni and Lippi (2001), die eine Beziehung zwischen Eigenschaften der spektralen Dichte
der Beobachtungen und der GDFM-Darstellung herstellen, zitiert. Zweitens wird die Beziehung
zwischen dem Faktormodell mit idiosynkratischen Fehlern, dem Hauptkomponenentenmodell
und dem GDFM analysiert. Drittens, werden die latenten Variablen (das ist jener Teil der
Beobachtungen, der von den Faktoren bestimmt wird) unter der Annahme, dass diese stationär
sind und ein singuläres, rationales Spektrum besitzen, näher analyisiert. Die besondere Betrach-
tungsweise dieser Dissertation beruht hier auf der Verwendung systemtheoretischer Methoden,
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0. Deutsche Kurzfassung

in Analogie zur Entwicklung von Strukturtheorien für ARMA- und Zustandsraumsystemen. Es
wird eine minimale Zustandsraumdarstellung der latenten Variablen entwickelt und analysiert.
Darauf aufbauend, wird eine minimale (quasi-)statische Darstellung des GDFM hergeleitet,
wobei der statische Faktor i.A. ein ARMA-Prozess mit singulärem Spektrum ist. Für diesen
ARMA-Prozess wird dann eine eindeutig identifizierbare Darstellung angegeben.

Kap. 4 handelt von der Prognose im GDFM. Es wird gezeigt, dass die Prognose der latenten
Variablen auf die Prognose der statischen Faktoren zurückgeführt werden kann. Letztere wird
dann mithilfe der ARMA-Darstellung aus dem vorherigen Kapitel berechnet.

Die Schätzung eines GDFM wird in den Kap. 5 bis 7 behandelt. In Kap. 5 werden mehrere, in
der Literatur beschriebene Methoden zur Schätzung der latenten Variablen bzw. der Faktoren
und Faktorladungen präsentiert und ihre asymptotischen Eigenschaften diskutiert. Beispiele
für Schätzmethoden sind die dynamische bzw. die statische Hauptkomponentenanalyse, siehe
Forni et al. (2000) bzw. Stock and Watson (1998). In Kap. 6 schlagen wir vor, das ARMA-
Modell des statischen Faktors mittels eines ,,Autoregression-Regression“-Ansatzes zu schätzen
und leiten für diesen Schätzer Konsistenzresultate her. In Kap. 7 geht es um die Selektion eines
bestimmten GDFM. Insbesondere geht es also um die Schätzung der Faktorenanzahl, für die es
eine Reihe von Methoden gibt (siehe z.B. Bai and Ng (2002) und Bai and Ng (2007)) und die
Schätzung der strukturellen Parameter, durch die die ARMA-Darstellung des statischen Faktors
eindeutig festgelegt wird.

In Kap. 8 präsentieren wir dann eine Monte-Carlo-Simulationsstudie. In dieser Studie wird die
Prognosequalität von Prädiktoren, basierend auf den hier vorgeschlagenen Schätzern, mit den
,,üblichen” GDFM-Prädiktoren, basierend auf einer AR(1)-Darstellung der statischen Faktoren,
verglichen.

Diese Arbeit wurde teilweise finanziert durch den österreichischen Fonds zur Förderung der
wissenschaftlichen Forschung, FWF, Projektnummern P17065 und P17378.
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Abstract

This thesis is concerned with the modeling of multivariate time series, when the cross-sectional
dimension is relatively large compared to sample size. This problem has recently attracted
substantial interest, since in many areas of application, such as finance, macroeconomics or
bioinformatics, data sets consisting of a large number of variables have become increasingly
available. In this context, traditional multivariate time series modeling, e.g. by autoregressive
models, would result in parameter spaces of excessively high dimension compared to sample
size. Therefore models compressing the information contained in both, the time and the cross-
sectional dimension and thus reducing the complexity, are needed. For this purpose, factor
models, exploiting the idea of a few underlying latent factors, may be used. In this thesis, the
focus is on generalized dynamic factor models (GDFMs) as proposed and analyzed by Forni
et al. (2000), Forni and Lippi (2001) and Stock and Watson (1998).

The thesis is organized as follows.

In Chapter 1 the general factor model framework used throughout this thesis is introduced.
Besides, two classical model types used for dimension reduction, the principal component model
and the factor model with idiosyncratic noise, respectively, are discussed.

Subsequently in Chapter 2, the GDFM is introduced and important concepts are presented . The
GDFM generalizes the factor model with idiosyncratic noise, where the noise components are
assumed to be uncorrelated, in that the noise components are allowed to be “weakly correlated”.

In Chapter 3 we are concerned with a structure theory for GDFMs. First, main results of Forni
and Lippi (2001) relating properties of the spectral density of the observations to the GDFM
representation are reported. Second, the relation between the factor model with idiosyncratic
noise, the principal component model and the GDFM is analyzed. Third we develop a structure
theory for the latent variables (i.e. the part of the observations driven by the factors) under the
assumption that the latent variables are stationary with singular, rational spectral density. The
particular point of view in this thesis is the use of system theoretic methods in analogy to to the
structure theory for state space and ARMA systems. Here we develop and analyze a minimal
state space representation of the latent variables, and based on that a minimal (quasi-)static
representation of the GDFM, where the static factor is in general given as an ARMA process
with possibly singular spectral density. For this ARMA process, a uniquely identifiable ARMA
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0. Abstract

representation is then derived.

Chapter 4 deals with prediction in the GDFM. It is shown that the prediction of the latent vari-
able reduces to the prediction of the minimal static factor. The latter can then be accomplished
using its ARMA representation educed in the previous chapter.

Estimation of the GDFM is dealt with in Chapters 5 to 7. In Chapter 5 a number of methods
proposed in the literature for the estimation of the latent variables, and the factors and factor
loadings, respectively, are presented and their asymptotic properties are discussed. Examples
are estimators based on dynamic PCA or static PCA, see Forni et al. (2000) and Stock and
Watson (1998), respectively. In Chapter 6, we propose to estimate the ARMA representation of
the static factor using an ”autoregression-regression“ approach, and derive consistency results
for these estimates. In Chapter 7 we are concerned with the estimation of several integer-valued
structural parameters specifying a GDFM (model selection problem). In particular these are
the numbers of dynamic and static factors, for which a number of estimation methods exist (see
e.g. Bai and Ng (2002) and Bai and Ng (2007)), and the structural indices specifying the unique
ARMA representation of the static factors.

In Chapter 8 we then present a Monte Carlo simulation study, comparing the forecasting qual-
ity using predictors based on the estimators proposed in this thesis with the standard GDFM-
predictors, that base on an AR(1)-representation of the static factors.

This work was partly funded by the Austrian science fund, FWF, project numbers P17065 and
P17378.
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Chapter 1

Introduction

Three rules of work: Out of clutter find simplicity, from discord find harmony, in the
middle of difficulty lies opportunity. (Albert Einstein)

Reliable models explaining the behaviour of some observed time series are needed for many
purposes, e.g. for identifying relevant impact factors and understanding underlying processes in
an economy or for prediction. During the last decades, data sets consisting of a large number
of time series have become increasingly available. Examples are macroeconomic time series,
which are observed for many different countries or financial time series, which are available for
merely innumerable assets. The variables in these data sets are typically highly correlated, such
that univariate modeling would seem to be a waste of information (see Tiao (2001)). However,
traditional multivariate time series modeling, for instance by autoregressive (AR) models, is
plagued by the so called curse of dimensionality : the complexity of the model class (i.e. the
dimension of the parameter space) shows quadratic dependence on the number of variables, n
say, whereas the number of observed data points, for fixed sample size, T say, is linear in n. A
standard alternative is to choose a few variables of the data set as target variables or outputs,
select among the others the most relevant subset of inputs and set up a small model, e.g. an
autoregressive model with exogenous inputs (ARX). But in the context of large data sets the
so called data snooping problem (see White (2000)) arises. A large number (relative to sample
size) of potential inputs and input combinations induces the risk of overfitting, apart from the
computational burden of finding an optimal input set. Moreover, as stated in Heij et al. (1997),
the ARX setting, where the inputs are not modeled, is genuinely inappropriate if the inputs are
themselves noisy or if there is uncertainty about the classification of the data into inputs and
outputs. Either case requires a more symmetric way of modeling. For all of these reasons multi-
variate time series models that can exploit the information contained in large data sets, but are
still parsimonious, are needed. This is why (dynamic) factor models have been brought into play.

In general, factor models are used to explain the variability of high dimensional data consisting
of many variables in terms of a few unobserved common factors. Based on the idea that the
observations are driven by a few common factors, factor models are compressing the information
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1.1. General framework

contained in high-dimensional data and thus reducing the complexity. Factor models allow of a
sparse parametrization even when the number of variables is large. Since they are symmetric, in
that there is no distinction between observed inputs and outputs, the problems related to input
selection and the modeling of noisy inputs are (at least partly) avoided. Hence, factor models
may be used to mitigate all of the described problems and have therefore attracted substantial
interest during the past couple of years.

Certainly factor models are not new, indeed factor analysis has been first devised in the field of
psychology in the beginning of the twentieth century. Particularly, Burt (1909) and Spearman
(1904) observing that in mental ability tests the scores on seemingly unrelated subjects were
positively correlated, postulated the hypothesis of a common latent factor, called general intel-
ligence. Later this idea was extended, allowing for more than one factor, representing different
mental abilities, see Thurstone (1932). Around the same time, another dimension reduction
method, principal component analysis, has been introduced by Pearson (1901) and Hotelling
(1933), with first applications in the field of biology, leading to principal component models.

Whereas the initial factor models were oriented to data originating from independent, identi-
cally distributed random variables (static factor models), the idea has been generalized to the
modeling of multivariate time series (dynamic factor models). This development took place
independently in different areas, such as signal processing (Brillinger (1981)), and econometrics
(Geweke (1977), Sargent and Sims (1977) and Engle and Watson (1981)).

Besides in the 1980’s, Chamberlain and Rothschild (1983) and Chamberlain (1983) introduced
the generalized static factor model (then called approximate factor model) by weakening the
original assumption of uncorrelatedness (idiosyncrasy) of the noise components. Today, the
state of the art is the generalized dynamic factor model (GDFM) as proposed and analyzed by
Forni et al. (2000), Forni and Lippi (2001) and Stock and Watson (1998). This model, that
constitutes the main area of this thesis, generalizes and combines the dynamic factor model
(with idiosyncratic noise) and the generalized static factor model.

In Section 1.1 below we are going to present the general factor model framework used throughout
this thesis. In the remainder of this introductory chapter we will then present the two classical
models mentioned above, i.e. the principal component model (Section 1.2) and the factor model
with idiosyncratic noise (Section 1.3).

1.1 General framework

We consider an n-dimensional vector valued process of observations (yt), t ∈ Z, that is driven
by two sources of variation that are in general unobserved: a q-dimensional factor process
(ξt), t ∈ Z, (q << n), that is common to all n components of (yt) and an n-dimensional noise

2



1.1. General framework

process (ut), t ∈ Z. Then yt can be represented by a factor model equation of the form

yt = Λ(z)ξt + ut, t ∈ Z, (1.1.1)

where the transfer function Λ(z) =
∑∞

j=−∞ Λjzj , Λj ∈ Rn×q is called the factor loading matrix
and z is used (throughout this thesis) both for a complex variable and for the backward shift
operator on Z, i.e. zjξt = ξt−j . Throughout Λ(z)ξt =: χt will be called the latent variable. The
factor model (1.1.1) considered here is thus linear, dynamic and time invariant, but in general
need not be causal.

Throughout we assume that

Assumption 1.1 (General Assumptions).

a) The processes (ξt) and (ut) are wide sense stationary with real valued entries, E ξt = 0,
Eut = 0 for all t ∈ Z and with covariances1 Γξ(s) = E ξtξ′t−s and Γu(s) = Eutu′t−s
satisfying the summability conditions

∞∑
s=−∞

‖Γξ(s)‖ <∞,

∞∑
s=−∞

‖Γu(s)‖ <∞, (1.1.2)

where ‖ ‖ denotes a matrix norm.

b) The factor process (ξt) and the noise process (ut) are mutually orthogonal at any leads and
lags, i.e. E ξtu′t−k = 0 for all t, k ∈ Z.

c) The coefficients Λj are absolutely summable,
∑∞

j=−∞ ‖Λj‖ <∞.

d) The spectral density fχ of (χt) is rational in e−iλ and of rank q for λ a.e. in [−π, π].

e) The covariance Γχ(0) of (χt) is of rank s ≥ q.

f) Each of the spectral densities fy, fχ and fu of (yt), (χt) and (ut) respectively, has distinct
eigenvalues.

Assumptions 1.1 a) and 1.1 c) imply that the spectral densities of (χt) and (ut) exist and that (yt)
is a zero-mean stationary process with spectral density fy. Hence the focus here is on stationary
processes and in case of trend or difference stationary time series occurring in applications the
trend will have to be eliminated in a prior step. Assumption 1.1 b) is standard in factor analysis
and needed for identification of the latent variables and the noise. Then Assumption 1.1 b)
implies that fy can be written as2

fy(λ) = Λ(e−iλ)fξ(λ)Λ(e−iλ)∗ + fu(λ)

= fχ(λ) + fu(λ), (1.1.3)
1Throughout this thesis A′ will denote the transpose of a matrix A.
2Throughout this thesis the asterisk will denote the conjugate transpose, i.e. Λ(e−iλ)∗ = Λ(eiλ)′.
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1.2. The principal component model

where by Assumption 1.1 d) the first term on the right hand side, i.e. fχ, is rational in e−iλ and
of reduced rank q. Note that since every minor of fχ is rational, each minor is either equal to
zero or it only vanishes at finitely many points, and hence the rank of fχ is constantly equal to
q a.e. in [−π, π]. The assumption that fχ is rational is a proper restriction of generality. The
main reasons for its imposition are, as will be discussed in detail in Section 3.3, that it allows
of a causal representation of (χt) and parametric modeling. Notice still that fu is not restricted
to be rational and that so far, the noise (ut) may be any stationary process including correlated
(over the cross-sectional dimension) and auto-correlated processes. Assumption 1.1 e) may be
seen as the static analogue of Assumption 1.1 d), since both refer to the possible dimension
reduction in the cross-sectional dimension. Assumption 1.1 f) is again a standard assumption
imposed to avoid unnecessary complications related to eigenspaces of higher dimension than 1.

A special case often considered occurs when Λ(z) = Λ is constant and (ξt) and (ut) and thus (yt)
are white noise. In this case (1.1.1) is called static and the variance matrix of yt, Γy = Γy(0), is
of the form:

Γy = ΛΓξΛ′ + Γu (1.1.4)

= Γχ + Γu. (1.1.5)

If Λ(z) = Λ is constant, but (ξt) and (ut) are not necessarily white noise, the model is sometimes
called quasi-static.

Assumption 1.1 is not sufficient to determine a reasonable model class, in the sense that for
given fy, or Γy respectively, too many decompositions into latent variables and noise would be
possible, see for instance Heij et al. (1997). Thus, in order to obtain reasonable model classes,
further assumptions have to be imposed. This leads to principal component models, linear fac-
tor models with idiosyncratic noise and generalized linear factor models considered in this thesis.

1.2 The principal component model

The aim of principal component analysis (PCA) is to approximate the n-dimensional observed
process (yt) by a filtered version of itself, whose spectral density is of reduced rank q, such
that the filtered version retains most of the original variance or, in other words, such that the
variance of the residuals is minimized (see Brillinger (1981)). Geometrically, the n-dimensional
observations yt are projected onto a lower dimensional space spanned by the so called principal
components of (yt), defined such that the variance of the perpendiculars is minimized. It is
emphasized that the focus in PCA is hence data compression or dimension reduction and there
does not need to be an underlying factor structure.

Commencing from the n-dimensional observed process (yt) with spectral density fy (or co-
variance Γy in the static case) we want to find a (q × n) filter B(z) =

∑
j Bjz

j , defining a

4



1.2. The principal component model

q-dimensional linear transformation of yt,

ψt = B(z)yt,

and an (n× q) filter C(z) =
∑

j Cjz
j , such that yt can be expressed as

yt = C(z)ψt + ũt

= χ̃t + ũt (1.2.1)

and such that
tr
(
E(ũtũ′t)

)
= tr (E(yt − C(z)ψt)(yt − C(z)ψt)∗) (1.2.2)

is minimal with respect to B(z), C(z) for fixed q, where throughout tr will denote the trace
of a matrix. The q-dimensional process (ψt) (formed by the principal components of (yt)) may
however be interpreted as a factor process in the principal component (PC) model (1.2.1).

1.2.1 Static or quasi-static PCA

Let us first consider the static (or quasi-static) case, where B(z) = B and C(z) = C are constant
matrices.

Since the trace of a matrix equals the sum of its eigenvalues, minimization of (1.2.2) is equivalent
to the simultaneous minimization of all eigenvalues of E ũtũ′t. The solution of this minimization
problem is then obtained via the canonical representation (see (A.1.1)) of Γy, decomposed as

Γy = O1Ω1O
′
1 +O2Ω2O

′
2, (1.2.3)

where Ω1 and Ω2 denote the diagonal matrices containing the q largest and (n − q) smallest
eigenvalues of Γy, respectively, arranged in descending order of magnitude and O1 = (o1 . . . oq)
and O2 = (oq+1 . . . on) are the (n× q)- and n× (n− q)-dimensional orthogonal matrices, respec-
tively, of corresponding normalized eigenvectors. Minimizers B and C of (1.2.2) are, as will be
shown below, given by

B = O′1, C = O1. (1.2.4)

With (1.2.4) and since by orthogonality of the eigenvectors we have O1O
′
1 + O2O

′
2 = In, the

static PC model is defined as

ψt = O′1yt,

χ̃t = O1ψt = O1O
′
1yt,

ũt = yt −O1O
′
1yt = O2O

′
2yt,

Γ̃χ = O1Ω1O
′
1, Γ̃u = O2Ω2O

′
2. (1.2.5)

The q orthogonal scalar processes forming the q-dimensional process (ψt), are called the princi-
pal components of (yt).

5



1.2. The principal component model

In the sequel we are going to show, that (1.2.4) are indeed minimizers. First observe that in the
static case the objective function (1.2.2) can be written as

tr(In − CB)Γy(In − CB)′ = tr(Γ1/2
y − CBΓ1/2

y )(Γ1/2
y − CBΓ1/2

y )′. (1.2.6)

Second, Lemma A.1.2 implies, that the minimum of (1.2.6) is achieved, if

CBΓy1/2 = O1Ω1
1/2O′1 (1.2.7)

holds. Hence post multiplying both sides of the last expression by Γy−1/2 we obtain, that in the
minimum

CB = O1Ω1
1/2O′1Γy

−1/2 = O1Ω1
1/2O′1(O1Ω1

−1/2O′1 +O2Ω2
−1/2O2) = O1O

′
1 (1.2.8)

holds. Concluding we see that by choosing B and C as in (1.2.4) the eigenvalues of (Γ1/2
y −

CBΓ1/2
y )(Γ1/2

y − CBΓ1/2
y )′ are minimized and hence a minimum of (1.2.6) is achieved.

Calling χ̃t = O1ψt and ũt the latent variables and the noise respectively, in the PC model, we
see that since O′1O2 = 0, ũt⊥ψt and ũt⊥χ̃t, hence the decomposition into latent variables and
noise corresponds to an orthogonal projection. Since the orthogonal projection is unique, the
latent variables and the noise respectively are uniquely identifiable. Furthermore decomposition
(1.2.3) is unique and corresponds to the decomposition of the variance into the part explained by
the principal components and the noise respectively. In contrast, the matrices B and C are only
identifiable up to pre multiplying B by any non-singular (q× q) matrix P and post multiplying
C by P−1, which has no impact on Γ̃χ and χ̃t. By choosing B and C as in (1.2.4) we have
adopted the normalization condition C ′C = Iq.

1.2.2 Dynamic PCA

In the dynamic case, where B(z) and C(z) are in general two-sided filters, we may write (1.2.2)
as

1
2π

∫ π

−π
tr(I − C(e−iλ)B(e−iλ)fy(λ)(I − C(e−iλ)B(e−iλ)∗dλ, (1.2.9)

which is minimized if tr(I − C(e−iλ)B(e−iλ)fy(λ)(I − C(e−iλ)B(e−iλ)∗ is minimized for each
λ. Proceeding analogously to the static case, the minimization of (1.2.2) is now based on the
eigenvalue decomposition of the spectral density matrix fy(λ), for λ ∈ [−π, π]:

fy(λ) = O1(λ)Ω1(λ)O1(λ)∗ +O2(λ)Ω2(λ)O2(λ)∗ (1.2.10)

where the matrices Ω1(λ), Ω2(λ), O1(λ) and O2(λ) are defined analogously to the static case.
Minimizers of (1.2.9) are then given by

B(e−iλ) = O1(e−iλ)∗, C(e−iλ) = O1(e−iλ), (1.2.11)
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where the (n×q)-dimensional matrix function in e−iλ, O1(e−iλ), is defined via the Fourier series
expansion of O1(λ),

O1(λ) =
∑
j

O1je
−iλj = O1(e−iλ), (1.2.12)

where the Fourier coefficients O1j are determined as

O1j =
1
2π

∫ π

−π
O1(λ)eiλjdλ. (1.2.13)

With the minimizers (1.2.11), and since by orthogonality of the eigenvectors O1(e−iλ)O1(e−iλ)
∗+

O2(e−iλ)O2(e−iλ)
∗ = In, where O2(e−iλ) is defined in an analogous way, the variables in the

dynamic PC model are:

ψt = O1(z)∗yt,

χ̃t = O1(z)ψt = O1(z)O1(z)∗yt,

ũt = yt −O1(z)O1(z)∗yt = O2(z)O2(z)∗yt,

f̃χ(λ) = O1(λ)Ω1(λ)O1(λ)∗, f̃u(λ) = O2(λ)Ω2(λ)O2(λ)∗. (1.2.14)

The q orthogonal scalar processes forming the q-dimensional process (ψt), are now called the
dynamic principal components of (yt).

Concerning identifiability the results from the static PC model may be taken over to the dynamic
case: the decomposition of yt into latent PC variables χ̃t and PC noise ũt (and of fy into f̃χ
and f̃u respectively) is uniquely identifiable, whereas B(z) and C(z) are only identifiable up to
regular transformations. By choosing B(z) and C(z) as in (1.2.11) we adopted the normalization
condition C(z)∗C(z) = Iq.

To ensure that the expressions in (1.2.14) are meaningful in the sense that all infinite sums
converge and hence the PC variables exist as stationary limits, we need the following results
due to Brillinger (1981) and Forni and Lippi (2001), that show that O1(e−iλ) and O2(e−iλ) in
(1.2.14) are indeed transfer functions with absolutely summable corresponding filters.

Lemma 1.2.1. Under Assumption (1.1) the eigenvalues of fy, ωj : [−π, π] → R, j = 1, . . . , n,
are Lebesgue-measurable and integrable in [−π, π].

Proof. First, recall that under Assumption (1.1) fy is uniformly continuous and bounded (see
Brillinger (1981), page 23) and therefore Lebesgue-measurable. Since

∫ −π
π fy(λ)dλ = Γy(0) and

yt is stationary, it is also integrable. Eigenvalues are continuous functions of the matrix elements
(which is equivalent to the statement that the roots of a polynomial are continuous functions
of the coefficients, see e.g. Tyrtyshnikov (1997)) and therefore continuous with respect to λ.
Since continuous functions of a measurable function are themselves measurable, see e.g. Royden
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(1988), eigenvalues are measurable functions. They are integrable since for 1 ≤ j ≤ n

0 ≤ ωj(λ) ≤
n∑
k=1

ωk(λ) = tr(fy(λ))

and ∫ −π

π
tr(fy(λ))dλ = tr(Γy(0))

hold. �

Lemma 1.2.2. Under Assumption (1.1) the normalized eigenvectors of fy, oj : [−π, π] → Rn×1,
j = 1, . . . , n, are Lebesgue-measurable in [−π, π].

Proof. Given the eigenvalues ωj(λ), j = 1, . . . , n, of fy(λ), λ ∈ [−π, π], the corresponding
normalized eigenvectors oj(λ), j = 1, . . . , n, solve the following equations:

(fy(λ)− ωj(λ)In) oj(λ) = 0

oj(λ)∗ok(λ) = 0, k = 1, . . . , j − 1, j > 1 (1.2.15)

s.t. oj(λ)∗oj(λ) = 1

Since fy and ω1 are measurable, for j = 1 the coefficients of (1.2.15) are measurable. Hence, for
j = 1 the solution of (1.2.15) is measurable since it is a continuous function of the coefficients. By
recursion, for j = 2, . . . , n the coefficients and thus the solutions of (1.2.15) are measurable. �

As a consequence of Lemma 1.2.2 and since O1(λ)∗O1(λ) = Iq, the integral on the right hand
side of (1.2.13) converges and hence the filter coefficients corresponding to the eigenvectors of
fy are well defined. Finally, the next lemma ensures that the filter coefficients are absolutely
summable.

Lemma 1.2.3. Under Assumption (1.1),∑
j

‖O1j‖ < ∞,

∑
j

‖O2j‖ < ∞, (1.2.16)

where O1j, j ∈ Z is defined as in (1.2.13) and O2j, j ∈ Z is defined analogously with O2(λ) in
place of O1(λ).

Proof. See Brillinger (1981), Theorem 9.3.3. (for P = 0). �

1.2.3 Estimation

For estimation of the PC model analog estimators are employed: The population second mo-
ments, Γy and fy in (1.2.3) and (1.2.10) respectively, are replaced by their estimators - typically
the sample covariance and a non-parametric estimator of the spectral density. As can be shown
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under general assumptions, consistency of these estimators yields consistent estimators of Λ, ψt,
χ̃t and Γũ from (1.2.5) and Λ(z), ψt, χ̃t and fũ from (1.2.14), respectively.

Choice of the number of principal components

In the PC model an underlying factor structure is not necessarily assumed. Consequently, the
number of principal components q is not intrinsic in the sense, that it is not a property of Γy
or fy. By the choice of q, the degree of dimension reduction and, as a trade-off, the quality of
approximation are determined. In dynamic PCA dimension reduction in the time dimension is
performed by introducing a finite dimensional parametrization. Note, however, that even for a
rational spectral density fy, the matrices on the right hand side of (1.2.10) are not necessarily
rational.

1.3 The factor model with idiosyncratic noise

Here, in addition to Assumption 1.1, it is assumed that the noise components are uncorrelated,
i.e. that fu (or in the static and quasi-static case Γu) is diagonal. In other words, it is assumed
that the noise process (ut) does not influence the correlation structure of the observed process
(yt) and is therefore called idiosyncratic. The main idea in classical factor analysis is thus to
separate the latent variable described by the factors from the idiosyncratic noise. The factors
here have a splitting property: For given factors, the components of (yt) are conditionally
uncorrelated.

1.3.1 Static or quasi-static factor model with idiosyncratic noise

Commencing from given Γy and number of factors q, we see from equation (1.1.4), i.e. Γy =
ΛΓξΛ′ + Γu, that there are two identifiability problems. The first is to identify pairs of matrices
(Γχ,Γu), where Γχ is of rank q, positive semidefinite and symmetric, Γu is diagonal and positive
semidefinite, and where (1.1.4) holds. The second is to identify matrices Λ and Γξ corresponding
to Γχ. Here we will assume that Γξ = Iq, such that Λ is identifiable up to right multiplication
by orthogonal matrices, i.e. up to (factor) rotations.

As far as the first problem is concerned, an inspection of both sides of (1.1.4) reveals that
1
2n(n+ 1) single equations (due to the symmetry of Γy) are used to determine n+ nq − 1

2q(q −
1) functionally independent parameters, where n is the number of free parameters in Γu and
nq − 1

2q(q − 1) is the number of free parameters in Γχ, which results from the fact that the
orthogonality of any post multiplication of Λ already entails 1

2q(q− 1) restrictions. For given n,
the solution of

1
2
n(n+ 1)− n+ nq − 1

2
q(q − 1) = 0

is called the Lederman bound and is explicitly given as qmax = 2n+1
2 −

√
(2n+1)2

4 − n2 + n. Hence
in general, it follows that if q > qmax, then Γχ and Γu will not be uniquely identifiable. But it
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has been shown that Γχ and Γu are generically identifiable if q ≤ qmax (see Scherrer and Deistler
(1998)).

Prior to estimation, a normalization condition for Λ has to be defined. Therefore consider a
rescaling of the observations such that the noise variance becomes In, hence

Γ̄y = Γ−1/2
u ΓyΓ−1/2

u Γy = Γ−1/2
u ΛΛ′Γ−1/2

u + In.

Then the matrix Γ̄y − In is symmetric and of rank q, and may therefore be expressed by means
of its canonical decomposition, i.e.

Γ̄y − In = V̄∆V̄ ′,

where ∆ is the diagonal matrix whose diagonal entries are the q non-zero eigenvalues of Γ̄y − In
and V̄ is the matrix of corresponding normalized eigenvectors. Hence we may uniquely (apart
from possible sign changes of its columns) define Λ by

Λ = Γ1/2
u V̄∆1/2.

Or in other words we may choose Λ such that it satisfies the normalization condition

Λ′Γ−1
u Λ = ∆, (1.3.1)

where ∆ is a diagonal matrix whose positive, distinct elements are arranged in descending order
of magnitude.

Estimation

In the case that q ≤ qmax, estimators of Λ and Γu may be obtained from (iteratively) maximizing
the Gaussian log-likelihood function, i.e. omitting a constant

LT (Λ,Γu|Γ̂y) =
T

2
log det(ΛΛ′ + Γu)−

T

2
tr((ΛΛ′ + Γu)−1Γ̂y)

subject to Λ ∈ Rn×q, rkΛ = q, Γu > 0 and a suitable normalization condition on Λ (e.g. (1.3.1))
guaranteeing uniqueness , see Lawley and Maxwell (1971), Chapter 4 for a detailed description.
In the static case the ML-estimators can be shown to be consistent under general assumptions,
see Anderson (1984). In the quasi static case LT (Λ,Γu|Γ̂y) is no longer the log-likelihood func-
tion - hence we may rather speak of a quasi-ML estimation - but nevertheless yields consistent
estimators.

In contrast to the PC model, here the factors ξt are in general not functions of the observa-
tions, but have to be approximated by some (linear) function of yt. This can be affected by
applying the regression method (see Thomson (1951)), where the factors are approximated by a
static transformation of yt that minimizes the sum of squared errors, or Bartlett’s method (see
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Bartlett (1937)), where also the sum of squared errors is minimized, but the errors are rescaled
by multiplication by Γ−1/2

u .

Another difference to the PC model is that here q (i.e. the minimal q) is intrinsic, in the sense
that it is a property of Γy. Tests for determining q have been proposed for instance by Anderson
and Rubin (1956).

1.3.2 Dynamic factor model with idiosyncratic noise

The answer to the dynamic analogue of the first identifiability question above is, that, for given
spectral density fy, the spectra fχ = Λ(e−iλ)fξ(λ)Λ(e−iλ)∗ and fu are generically identifiable
for q ≤ n−

√
n (see Scherrer and Deistler (1998)).

If q ≤ n−
√
n then Λ(z) and fu can be estimated under a suitable normalization condition and

some additional structural assumptions by maximum likelihood estimation using the Kalman
filter and the factors ξt can be estimated using the Kalman smoother (see Engle and Watson
(1981) and Watson and Engle (1983)).

Tests for determining q in the dynamic case have been proposed by Geweke (1977) and Sargent
and Sims (1977).
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Chapter 2

The generalized dynamic factor

model

For many applications the classical assumption of uncorrelatedness of the noise components, or
to be more precise that fu (or in the static case Γu) is diagonal, turns out to be too restrictive.
“Local” dependency between the noise components (e.g. between asset prices of the same indus-
trial sector or macroeconomic data from related countries) may occur, which makes it unlikely
that a classical factor structure with a reasonably small number of common factors exists.

Moreover, in a number of applications, e.g. in cross-country business cycle analysis or asset
pricing, the cross-sectional dimension (i.e. the number of observed time series) may be high,
possibly exceeding sample size, obstructing the use of traditional time series methods and in
turn increasing the probability of local dependence between noise components.

These two issues have lead to the development of generalized factor models, where the uncor-
relatedness of the noise component is replaced by some weaker assumption. In the static case,
generalized factor models (then called approximate factor models) were first introduced and an-
alyzed by Chamberlain and Rothschild (1983) and Chamberlain (1983) in the context of asset
pricing. The further generalization to the dynamic case and hence to time series modeling has
been made by Forni and Lippi (2001), Forni et al. (2000) and Stock and Watson (1998). Weak-
ening the assumption of uncorrelatedness, however, implies that the generalized factor model,
in contrast to the factor model with idiosyncratic noise, is only identifiable asymptotically, i.e.
for infinite cross-sectional dimension. At the same time, because of this genuine asymptotic
framework, the model is especially applicable to large data sets and most remarkable, even for
small sample sizes additional information can be gained from adding more time series.

In the subsequent section we will give a precise formulation of the generalized dynamic factor
model following to a great extent Forni and Lippi (2001).
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2.1 Definition of the generalized dynamic factor model and prop-

erties of weakly correlated noise

We consider a double sequence
(yit|i ∈ N, t ∈ Z),

where the general Assumptions 1.1 hold true for every n-dimensional vector process (ynt ) =
((y1t, y2t, . . . , ynt)′| t ∈ Z), if n is sufficiently large. In order to render explicit the dependence
on n, the previously defined symbols may be provided with a superscript n, e.g. fny denotes the
spectral density of (ynt ). Hence, we obtain a sequence of factor model equations

ynt = Λn(z)ξt + unt ,

= χnt + unt , t ∈ Z, n = n0, n0+1, . . . , (2.1.1)

where the q-dimensional factor ξt is independent of n, where the latent variable χnt , the noise
vector unt and the transfer functions Λn(z) are nested, in the sense that e.g. for m ≤ n the
coefficient matrices Λmj are the (m× q) top submatrices of Λnj for all j ∈ Z and where n0 is the
smallest integer such that the Assumptions 1.1 d)-e) are satisfied.

As long as not stated otherwise, we will assume that the factor process (ξt) is orthogonal white
noise with spectral density matrix fξ = Iq. This is no further restriction on the spectral densities
fnχ of the latent variables, since our general Assumptions (1.1) always allow of this transforma-
tion. Given fnχ the factors ξt are then identifiable up to unitary transformations, i.e. transfor-
mations of the form U(z)ξt, where U(e−iλ)U(e−iλ)∗ = Iq holds.

Remark 2.1.1. Notice, that there is no symmetry in the two indices i, used for the cross-sectional
dimension, and t, used for the time dimension: while the time dimension is strictly ordered, such
that terms such as past, present and future are meaningful, the cross-sectional dimension is not
and may be permuted without any consequences.

Instead of requiring fnu to be diagonal, we assume that its largest eigenvalue, ωnu,1 : [−π, π] → R
say, remains bounded as n increases, whereas the first q eigenvalues of fnχ , ωnχ,j : [−π, π] →
R, j = 1, . . . , q say, increase without bound as n increases. Let L denote the Lebesgue measure
on R and recall that a real function ω : [−π, π] → R is essentially bounded if there exists an
ω̄ ∈ R and a subset M ⊂ [−π, π] such that L(M) = 0 and ω(λ) ≤ ω̄ for any λ in [−π, π] \M .

Assumption 2.1 (Generalized dynamic factor model).

a) supn ωnu,1 is essentially bounded.

b) supn ωnχ,j(λ) = ∞, a.e. in [−π, π] for j = 1, . . . , q.

The sequence of nested equations (2.1.1) together with the set of Assumptions 1.1 and 2.1 de-
fine the generalized dynamic q-factor model (q-GDFM, henceforth). In other words if a double
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sequence (yit|i ∈ N, t ∈ Z) can be written as (2.1.1), where Assumption 1.1 holds for every (ynt ),
n ≥ n0, and where in addition the spectral densities of the latent variables and of the noise
respectively satisfy Assumption 2.1, it is said to allow for a q-GDFM representation.

Informally speaking, a sequence of time series (unt ), n ∈ N, will be said to be weakly correlated
if by averaging an increasing number of time series (over cross-section and time) its variance
can be caused to vanish. Then, as will be shown below, Assumption 2.1a) is a necessary and
sufficient condition for weak correlation.

Example 2.1.1. As a simple example, consider a double sequence (uit) of mutually uncorrelated
independent and identically distributed (i.i.d.) variables with var(uit) = σ2, for which Assump-
tion 2.1a) is clearly satisfied (since all eigenvalues of fnu are equal, constant and independent of
n). Taking a sequence of averages, e.g. the arithmetic means ūnt = 1

n

∑n
i=1 uit, the variances

var(ūnt ) = 1
nσ

2 tend to 0 as n increases. �

On the other hand, Assumption 2.1b) ensures that every factor has a minimum amount of in-
fluence on infinitely many observations, which is needed to provide identifiability. Notice that
we neither require uniform boundedness nor ”uniform divergence“. As we will see, essential
boundedness of ωnu,1 is sufficient for weak correlation. And cases where ωnχ,j , j = 1, . . . , q does
not diverge for every λ ∈ [−π, π] may arise in very common situations.

Example 2.1.2. Consider the 1-factor model given in Forni and Lippi (2001), i.e.

yit = (1− z)ξt + uit, (2.1.2)

where

fnχ (λ) =


1− e−iλ

1− e−iλ

...

 (1− eiλ, 1− eiλ, . . .) = (2− 2 cos(λ))1n,

with 1n = (1, 1, . . . 1, )′(1, 1, . . . 1), vanishes for λ = 0 and ωnχ,1 = (2− 2 cos(λ))n diverges for all
λ ∈ [−π, π] \ {0}. Furthermore, since under Assumption 1.1 fnχ is continuous, divergence of ωnχ,1
is arbitrarily slow in a neighbourhood of 0. �

Summarizing, Assumption 2.1 captures a basic idea of the generalized factor model: by adding
time series one may increase the amount of information by averaging out the noise term and
concentrating the latent variables.

In the sequel we are going to specify the terms averaging and weak correlation used above.
Therefore let us first recall the following definitions. We denote by Ln2 ([−π, π] ,C, fny ) the fre-
quency domain of the stationary process (ynt ), i.e. the complex linear space of n-dimensional
row vectors kn = (k1, . . . , kn), such that

(i) ki is a measurable complex function on [−π, π] and
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(ii)
∫ π
−π k

n(e−iλ)fny (λ)kn(e−iλ)∗dλ <∞.

Then two elements kn and ln in Ln2 ([−π, π] ,C, fny ) are considered equal if∫ π

−π
(kn(e−iλ)− ln(e−iλ))fny (λ)(kn(e−iλ)− ln(e−iλ))∗dλ = 0.

Hence strictly speaking the elements of Ln2 ([−π, π] ,C, fny ) are equivalence classes of functions,
not functions. Defining the inner product as 〈kn, ln〉fn

y
=
∫ π
−π k

n(e−iλ)fny (λ)ln(e−iλ)∗dλ and the

norm as ‖kn‖fn
y

=
√
〈kn, kn〉fn

y
, then Ln2 ([−π, π] ,C, fny ) is a Hilbert space. In the sequel the

notation Ln2 ([−π, π] ,C) will be used for Ln2 ([−π, π] ,C, In) and ‖kn‖ = ‖kn‖In .

Definition 2.1.1. Let kn ∈ Ln2 ([−π, π],C) ∩ Ln2 ([−π, π],C, fny ), n ∈ N. The sequence (kn|n ∈
N) is a dynamic averaging sequence (a DAS henceforth), if limn ‖kn‖ = 0.

Example 2.1.3. Clearly,

kn =
1
n

(1, 1, · · · , 1︸ ︷︷ ︸
n times

),

corresponding to a sequence of arithmetic means, is a DAS (albeit static). �

Definition 2.1.2. The double sequence (uit|i ∈ N, t ∈ Z) is weakly correlated if kn(z)unt → 0 in
mean square as n→∞ for any DAS (kn|n ∈ N).

The next theorem (see Forni and Lippi (2001), Theorem 1) shows, that in general averaging-out
the noise term is possible, if and only if Assumption 2.1 a) is satisfied.

Theorem 2.1.1. Let the double sequence (uit|i ∈ N, t ∈ Z) be such that for every n ∈ N
the process (unt ), t ∈ Z, is stationary with Eunt = 0 and absolutely summable autocovariances
(Assumption 1.1a)). Then the following statements are equivalent:

1. (uit|i ∈ N, t ∈ Z) is weakly correlated.

2. supn ωnu,1 is essentially bounded.

Proof. Define ωu,1(λ) = supn ωnu,1(λ). Recall the definition of the essential supremum: ess supωu,1 =
inf{ω̄ : L(λ : ωu,1(λ) > ω̄) = 0}, if ωu,1 is essentially bounded ess supωu,1 <∞.

First, we will show that if ωu,1 is not essentially bounded, (uit|i ∈ N, t ∈ Z) will not be weakly
correlated.

In general, let α < ess sup ωu,1. Then there exist an s ∈ N and a ks ∈ Ls2([−π, π],C) ∩
Ls2([−π, π],C, f sy ) such that ‖ks‖ = 1, ‖ks(z)ust‖2 ≥ α and thus L(

{
λ : ωsu,1(λ) ≥ α

}
) > 0.

Now suppose that ωu,1 is not essentially bounded. Then there exists a sequence αs with
αs → ∞ and a corresponding sequence kms ∈ Lms

2 ([−π, π],C) ∩ Lms
2 ([−π, π],C, fms

y ) such
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that ‖kms‖ = 1, ‖kms(z)ums
t ‖2 ≥ αs for every s. Therefore lms = kms/‖kms(z)ums

t ‖ is a DAS
and ‖lms(z)ums

t ‖2 = 1. Thus, (1) implies (2).

For the opposite direction we have

var(kn(z)unt ) =
∫ −π

π
kn(e−iλ)fnu (λ)kn(e−iλ)∗dλ ≤

∫ −π

π
ωnu,1(λ)kn(e−iλ)kn(e−iλ)∗dλ

≤ ess supωu,1
∫ −π

π
kn(e−iλ)(λ)kn(e−iλ)∗dλ,

which converges to 0 as n→∞ if kn is a DAS. �
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Chapter 3

A structure theory for GDFMs

Structure theory in general deals with the analysis of relations between observed processes and
internal model parameters (see Deistler (2001b)). In Section 3.1 we will be concerned with the
relation between the spectral density of the observations and the GDFM representation (2.1.1).
Second, in Section 3.3 we will be concerned with the relation between the spectral density of the
latent variables and realizations of the latent variables in terms of autoregressive moving average
(ARMA) or state space models. Structure theory thus may be seen as a somewhat idealized
problem, since the starting point of the analysis consists of the population second moments
rather than of data. However, structure theory provides important insight into the properties of
the model class under consideration and is thus an indispensable step towards model selection
and estimation from data.

Additionally, in Section 3.2, the relations between the factor model with idiosyncratic noise, the
principal component model and the GDFM will be analyzed.

3.1 A characterization of the GDFM in terms of the spectral

density of the observations

In the sequel we are interested in the question, under which circumstances a sequence of obser-
vations (ynt ) allows for a q-GDFM representation. We are hence looking for conditions on the
spectral densities fny of the observations, that imply an underlying q-GDFM.

As we will see, the relevant condition is, that exactly q of the eigenvalues of fny are unbounded
as n increases. Here we will directly consider the more general dynamic case and we will largely
quote the proofs of Forni and Lippi (2001). For the special case that fny is constant with re-
spect to λ for all n ∈ N (static case), analogous statements in terms of the covariance matrices
Γny (0) have been first made by Chamberlain (1983) and Chamberlain and Rothschild (1983). A
by-product of this analysis is the remarkable result, that asymptotically (as n tends to infinity),
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3.1. A characterization of the GDFM in terms of the spectral density of the observations

in a certain sense, the dynamic PC model and the GDFM coincide.

The following theorem (see Forni and Lippi (2001), Theorem 2) represents the main result of
this section.

Theorem 3.1.1. Let the double sequence (yit|i ∈ N, t ∈ Z) be such that for every n ∈ N
the process (ynt ), is stationary with E ynt = 0, spectral density fny and absolutely summable
autocovariances Γny (s), and let ωnj : [−π, π] → R, j = 1, . . . , n, denote the eigenvalues of fny in
descending order of magnitude. Then (yit|i ∈ N, t ∈ Z) allows for a q-GDFM representation if
and only if

1. supn ωnq+1 is essentially bounded.

2. supn ωnq (λ) = ∞, a.e. in [−π, π].

First it will be shown that the conditions stated in Theorem 3.1.1 are necessary for the existence
of a q-GDFM, hence it will be shown that if (ynt ), n ∈ N, has a q-GDFM representation then the
conditions 1. and 2. are satisfied.

Proof. (if-part)

Since (ynt ) has a q-GDFM representation, fny can be decomposed as

fny (λ) = fnχ (λ) + fnu (λ),

where all matrices are Hermitian, non-negative definite. Applying corollary A.1.1 we have for
j = 1, . . . , n:

a) ωnj (λ) ≥ ωnχ,j(λ),

b) ωnj (λ) ≤ ωnχ,j(λ) + ωnu,1(λ). (3.1.1)

Hence Assumption 2.1b) together with a) implies statement 2. Assumption 2.1a) together with
b) and the fact that rk fnχ ≤ q for all n ∈ N sufficiently large and for all λ ∈ [−π, π] and therefore
ωnχ,q+1(λ) = 0 for all λ ∈ [−π, π] imply statement 1. �

The proof that the conditions of Theorem 3.1.1 are also sufficient, is much more complicated
and will be performed in several steps. Let us first introduce some new definitions. Let Hy =
span(yit|i ∈ N, t ∈ Z), i.e. the Hilbert space spanned by the scalar random variables yit, i ∈
N, t ∈ Z.

Definition 3.1.1. An element zt ∈ Hy is called an aggregate, if there exists a DAS (kn), n ∈ N,
such that zt = limn k

n(z)ynt . The set of all aggregates will be denoted by A (y).

Lemma 3.1.1. A (y) is a closed subspace of Hy.

For a proof, see Forni and Lippi (2001).
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Remark 3.1.1. Obviously, if (ynt ), n ∈ N, is weakly correlated, then A (y) = {0}. Furthermore if
ynt has a q-GDFM representation, for any aggregate zt we have

zt = lim
n
kn(z)χnt + lim

n
kn(z)unt ,

and since the second term on the right hand side vanishes as n tends to infinity, we obtain that
A (y) ⊆ Hχ (where Hχ = span(χit|i ∈ N, t ∈ Z) ).

Outline of the proof

The proof will be organized as follows: first it will be shown, that if the conditions of The-
orem 3.1.1 are satisfied A (y) contains a q-dimensional orthogonal white noise, (zt) say, with
spectral density equal to Iq, and that A (y) is actually equal to the space spanned by the scalar
components of this orthogonal white noise, i.e.

A (y) = span(zjt|j = 1, . . . , q, t ∈ Z).

Then, consider the projection equations

ynt = proj(ynt |A (y)) + ent ,

= Cn(z)zt︸ ︷︷ ︸
γn

t

+ent , n ∈ N, t ∈ Z, (3.1.2)

where obviously the matrices Cn(z) and the perpendiculars ent are nested, with corresponding
(nested) spectral densities

fny (λ) = Cn(e−iλ)Cn(e−iλ)
∗
+ fne = fnγ + fne , n ∈ N. (3.1.3)

Let ωnγ,j(λ) and ωne,j(λ), j = 1, . . . , n denote the eigenvalues of fnγ and fne respectively, in de-
scending order of magnitude. Applying corollary A.1.1 we have for λ ∈ [−π, π]

ωnγ,q(λ) ≥ ωnq (λ)− ωne,1(λ).

Hence, in order to prove that (3.1.2) is a q-GDFM representation and thus to complete the
proof, it then remains to show that the perpendiculars (ent ), n ∈ N, are weakly correlated.

To construct the q-dimensional orthogonal white noise (zt) belonging to A (y), we will consider
the (dynamic) principal components of (ynt ) and rescale them to have unit spectrum, hence for
n ≥ n0 we will consider the q-dimensional process

ψnt = Ωn
1 (z)−1/2On1 (z)∗ynt , t ∈ Z, (3.1.4)

where the matrices Ωn
1 (z) and On1 (z) have been defined in (1.2.10); and call it the n-th order

principal components of (yit|i ∈ N, t ∈ Z).
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3.1. A characterization of the GDFM in terms of the spectral density of the observations

To ensure meaningfulness of (3.1.4) and to avoid unnecessary complications, we impose the
additional assumption, that the first q eigenvalues of fny are strictly positive,

ωnj (λ) > 0, for n ∈ N sufficiently large, j = 1, . . . , q and λ ∈ [−π, π] .

Notice, that this new assumption does not mean any loss of generality, since under the assump-
tions imposed so far, there always exists a double sequence (φit|i ∈ N, t ∈ Z) such that φit is
uncorrelated with all leads and lags of ξt and ut and for all n ∈ N (φnt ) is white noise with spec-
tral density equal to In. Defining ŭnt = unt + φnt and y̆nt = χnt + ŭnt , for n ∈ N and t ∈ Z, y̆nt still
satisfies the assumptions of the theorem and since fny̆ = fny + In, it follows that all eigenvalues
of fny are greater or equal to 1 and that conditions (1) and (2) hold for (yit) if and only if they
hold for y̆it.

Further recall, that by Lemmas 1.2.1 - 1.2.3, if (ynt ) is stationary with absolutely summable
autocovariances for all n ∈ N, then (ψnt ) from (3.1.4) is well defined for all n ≥ n0.

Since divergence of the first q eigenvalues of fny is not required for all λ in [−π, π] (recall e.g.
model (2.1.2)), the proof must be done piecewise on [−π, π], for which we will use the following
set of functions:

Definition 3.1.2. Let M ⊆ [−π, π]. Then KM denotes the subset of Lq×q2 ([−π, π] ,C) whose
elements C are such that C(λ) = 0 for λ /∈M and C(λ)∗C(λ) = Iq for λ ∈M .

We can now begin to prove that the conditions of Theorem 3.1.1 are sufficient for the existence of
a q-GDFM. First, as mentioned above, we will show that A (y) contains a q-dimensional orthog-
onal white noise with spectral density equal to Iq. Therefore we start with the (rescaled) m-th
order principal components (ψmt ) and project them onto the space spanned by the n-th order
principal components (ψnt ), n > m. We will show that, when n and m increase, the residuals
of this projection vanish and we will end up with a sequence converging to an orthogonal white
noise that belongs to A (y). However, since these considerations have to be done piecewise over
[−π, π], instead of ψnt , we will consider transformations of the form C(z)ψmt .

In order to avoid heavy notation, in the sequel we will use matrix products like Om1
∗On1 , where

Om1
∗ has m columns and On1 has n > m rows, assuming that the missing columns of Om1

∗ have
been filled with zeros.

Lemma 3.1.2. Suppose that the conditions of Theorem 3.1.1 hold. Let M ⊆ [−π, π], C ∈ KM
and n > m. Consider the projection equation

C(z)ψmt = proj(C(z)ψmt |ψnτ , τ ∈ Z) + δmnt .

Then the largest eigenvalue of the spectral density matrix of (δmnt ), µ(λ) say, is bounded from
above,

µ(λ) ≤
ωnq+1(λ)
ωmq (λ)

.
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3.1. A characterization of the GDFM in terms of the spectral density of the observations

Proof. Consider the decomposition of ynt corresponding to a dynamic PCA,

ynt = On1 (z)On1 (z)∗ynt +On2 (z)On2 (z)∗ynt .

= On1 (z)Ωn
1 (z)1/2ψnt +On2 (z)On2 (z)∗ynt . (3.1.5)

The terms on the right hand side are orthogonal, since On1
∗On2 = 0. Since Ωm

1 (z)−1/2Om1 (z)∗ynt =
ψmt , pre multiplying both sides by C(z)Ωm

1 (z)−1/2Om1 (z)∗ yields the desired projection equation:

C(z)ψmt = C(z)Ωm
1 (z)−1/2Om1 (z)∗On1 (z)Ωn

1 (z)1/2︸ ︷︷ ︸
D(z)

ψnt + C(z)Ωm
1 (z)−1/2Om1 (z)∗On2 (z)On2 (z)∗︸ ︷︷ ︸

R(z)

ynt .

(3.1.6)

For the sequel we need two preliminary considerations, first from On1O
n
1
∗ +On2O

n
2
∗ = In, we get

that In −On2O
n
2
∗ ≥ 0 (where ≥ 0 is short for non-negative definite), hence

ωnq+1In − ωnq+1O
n
2O

n
2
∗ ≥ 0, (3.1.7)

and second, from the definition of Ωn
2 we have

ωnq+1O
n
2O

n
2
∗ −On2 Ωn

2O
n
2
∗ ≥ 0. (3.1.8)

Summing up (3.1.7) and (3.1.8) yields

ωnq+1In −On2 Ωn
2O

n
2
∗ ≥ 0. (3.1.9)

Pre multiplying (3.1.9) by CΩm−1/2

1 Om1
∗ and post multiplying (3.1.9) by Om1 Ωm−1/2

1 C∗ and ob-
serving that CΩm−1/2

1 Om1
∗On2 Ωn

2O
n
2
∗Om1 Ωm−1/2

1 C∗ is equal to Rfny R
∗ yields

ωnq+1CΩm−1

1 C∗ −Rfny R
∗ ≥ 0 (3.1.10)

Applying corollary A.1.1 and observing that the largest eigenvalue of CΩm−1

1 C∗ is bounded from
above by 1

ωm
q

and that Rfny R
∗ is the spectral density of (δmnt ), we obtain

ωnq+1(λ)
ωmq (λ)

≥ µ(λ). (3.1.11)

�

The next step will be the construction of a convergent sequence. Therefore we will need the
following results providing that the spectral densities of a convergent sequence of processes will
converge too. Lemma 3.1.3 recalls the well-known fact that L1- or L2- convergence of a sequence
of functions is equivalent to almost sure convergence of a subsequence. And Lemma 3.1.4 is an
application of Lemma 3.1.3.

Lemma 3.1.3. Let (gn), n ∈ N, be a convergent sequence of functions gn ∈ Lk([−π, π] ,C),
k ∈ {1, 2}, i.e. (gn) converges in the norm of Lk([−π, π] ,C), k ∈ {1, 2}. Then there exists a
subsequence (gni) such that limi g

ni(λ) = g(λ) a.e. in [−π, π].
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3.1. A characterization of the GDFM in terms of the spectral density of the observations

Proof. For a proof see e.g. Apostol (1974). �

In the following lemma S(x, z) will denote the cross spectrum of two processes (xt) and (zt),
t ∈ Z, belonging to Hy.

Lemma 3.1.4. Let (xnt ), (znt ), t ∈ Z, n ∈ N, be two sequences of scalar processes belonging to
Hy and costationary with (ynt ) for any n ∈ N, with xt = limn x

n
t and zt = limn z

n
t . Then there

exist subsequences (xni
t ), (zni

t ), such that a.e. in [−π, π]

S(x, z, λ) = lim
i
S(xni

t , z
ni
t , λ).

Proof. Recall that the cross spectrum is related to the inner product in Hy through 〈xnt , znt 〉 =∫ π
−π S(xnt , z

n
t , λ)dλ. Since the inner product is continuous, convergence of (xnt ) and (znt ) implies

that 〈xnt , znt 〉 − 〈xt, zt〉 → 0, and hence
∫ π
−π |S(xnt , z

n
t , λ)− S(xt, zt, λ)|dλ→ 0, i.e. S(xnt , z

n
t , λ) is

L1-convergent. The result follows from Lemma 3.1.3. �

Before proceeding, let us consider two further points.

First, recall, that under the conditions of Theorem 3.1.1 there exist a subset Π of [−π, π] and a
positive real ω̄, such that L([−π, π] \Π) = 0 and

(i) ωnq+1(λ) ≤ ω̄ for any n ∈ N and any λ ∈ Π and

(ii) supn ωnj (λ) = ∞ for any λ ∈ Π.

Hence in the sequel we will restrict ourselves to the set Π, since if any statement holds a.e. in
Π, it holds a.e. in [−π, π]. However, we still cannot assume that ωnq (λ) ≥ αn for some non-
decreasing and diverging sequence (αn) for all λ in Π, since, as mentioned above, divergence
may be arbitrarily slow in the neighbourhood of points of non-divergence, so that we still have
to work on subsets of Π.

Then suppose M ⊆ Π with L(M) > 0 and let (αn), n ∈ N, αn ∈ R+, denote a non-decreasing,
diverging sequence, such that for any λ ∈ M , ωnq (λ) ≥ αn holds. Notice, that the proof that
such subsets M exist will be given below in Lemma 3.1.6 by specifying a construction. However,
applying Lemma 3.1.2 to such a subset M , we have for any λ ∈M ,

µ(λ) ≤ ω̄

αm
.

Second, normalized eigenvectors are not unique − eigenvectors belonging to eigenvalues of the
same size may still be rotated and even if all eigenvalues are distinct they may still be multiplied
by eiλ − and hence the rescaled principal components are not unique either. Consequently in
order to construct a converging sequence we have to choose a certain transformation. For any
λ ∈M , where M is defined as above, the spectral densities of the projection equation,

C(z)ψmt = D(z)ψnt +R(z)ynt , (3.1.12)
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equal
Iq = D(e−iλ)D(e−iλ)∗ +R(e−iλ)fny (λ)R(e−iλ)∗. (3.1.13)

Consider the eigenvalue decomposition

D(e−iλ)D(e−iλ)∗ = H(e−iλ)∆(e−iλ)H(e−iλ)∗,

calling δq the smallest eigenvalue of DD∗, then from (3.1.13) and corollary A.1.1, we see that

1 ≥ δq ≥ 1− µ ≥ 1− ω̄

αm
. (3.1.14)

Hence, taking m∗ large enough, such that ω̄
αm

< 1 for m ≥ m∗, then δq(λ) > 0 for λ ∈ M and
m ≥ m∗, and the following definition is meaningful:

F (e−iλ) =

{
H(e−iλ)∆(e−iλ)−

1
2H(e−iλ)∗D(e−iλ) λ ∈M

0 λ /∈M
(3.1.15)

Note that, since on M ,
FF ∗ = H∆− 1

2 H∗DD∗H︸ ︷︷ ︸
∆

∆− 1
2H∗ = Iq,

F ∈ KM .

The next lemma shows how to construct the converging sequence on such subsets M of Π.

Lemma 3.1.5. Suppose that the conditions of Theorem 3.1.1 hold. Let Π ⊆ [−π, π] be defined
as above and M ⊆ Π with L(M) > 0 and let (αn), n ∈ N, αn ∈ R+, denote a non-decreasing, di-
verging sequence, such that for any λ ∈M , ωnq (λ) ≥ αn holds. Then there exists a q-dimensional
process (vt), t ∈ Z, such that vjt ∈ A (y) for any j ∈ 1, . . . , q and t ∈ Z and the spectral density
of (vt) equals Iq for λ a.e. in M and 0 elsewhere.

Proof. We will need the following preliminary result: let C ∈ KM and let F ∈ KM be defined
as in (3.1.15). For τ : 0 ≤ τ ≤ 2 given, there exists an mτ ∈ N, such that

ω̄

αmτ

<
τ

2
(3.1.16)

and the largest eigenvalue of the spectral density of

(C(z)ψmt − F (z)ψnt ), t ∈ Z (3.1.17)

is less or equal to τ for any λ ∈ Π and n > m ≥ mτ .
Let n > m ≥ mτ . From the projection equation (3.1.6) we see that

C(z)ψmt − F (z)ψnt = R(z)ynt + (D(z)− F (z))ψnt . (3.1.18)

Hence for λ ∈M the spectral density of (3.1.17), S say, is equal to

S = Rfny R
∗ +DD∗ − FD∗ −DF ∗ + FF ∗

= Iq −DD∗ +DD∗ − FD∗ −DF ∗ + Iq

= 2Iq − FD∗ −DF ∗,
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where we used equation (3.1.13) and the fact that on M , FF ∗ = Iq. Observing, that FD∗ =
H∆− 1

2H∗DD∗ = H∆
1
2H∗ = DF ∗, yields (for λ ∈M)

S = 2H(Iq −∆
1
2 )H∗,

Hence for any λ ∈ Π the largest eigenvalue of S is less or equal to 2(1− δ1/2q ) ≤ 2(1− δq), which
by (3.1.14) is less or equal to 2(1− (1− ω̄

αmτ
)) < τ . (And τ < 2 since otherwise δq ≤ 0 and the

definition of F would make no sense.)

We will use this result to construct a sequence (vnt ), n ∈ N that converges to (vt).

First, set τ = 1
22 , s1 = mτ (such that (3.1.16) is satisfied), F 1 ∈ KM and v1

t = F 1ψs1t . Obviously,
the spectral density matrix of (v1

t ) is Iq for λ ∈M and 0 for λ /∈M .

Second, set τ = 1
24 , s2 = mτ (such that (3.1.16) is satisfied), determine D as in (3.1.6) with

F 1 instead of C, s1 instead of m and s2 instead of n, determine F 2 as defined in (3.1.15) and
set v2

t = F 2ψs2t . Again, the spectral density matrix of (v2
t ) is Iq for λ ∈ M and 0 for λ /∈ M .

Moreover by the result derived above, the largest eigenvalue of the spectral density of (v1
t − v2

t )
is bounded from above by 1

22 for any λ ∈ Π. Considering

‖v1
jt − v2

jt‖2 = var(v1
jt − v2

jt) ≤
∫ π

−π

1
22
dλ =

2π
22
,

we see that 1√
2π
‖v1
jt − v2

jt‖ ≤ 1
2 , for j = 1, . . . , q.

By recursion, set τ = 1

22k , sk = mτ (such that (3.1.16) is satisfied) and proceed as described for

(v2
t ). The spectral density of (vkt ) is then Iq for λ ∈M and 0 for λ /∈M and 1√

2π
‖vk−1
jt − vkjt‖ ≤

1
2k−1 . And since

1√
2π
‖vkjt − vk+hjt ‖ ≤ 1√

2π
‖vkjt − vk+1

jt ‖︸ ︷︷ ︸
≤ 1

2k

+
1√
2π
‖vk+1
jt − vk+2

jt ‖︸ ︷︷ ︸
≤ 1

2k+1

+ . . .+
1√
2π
‖vk+h−1
jt − vk+hjt ‖︸ ︷︷ ︸
≤ 1

2k+h−1

≤
h−1∑
j=0

1
2k+j

=
1
2k

(2− 1
2h−1

) <
1

2k−1
(3.1.19)

holds, every component of (vnt ), n ∈ N, is a Cauchy-sequence; (vt) is then the vector of limits.

Since (vnt ) = Fnψsn
t = FΩs

−1/2
n

1 Osn
1
∗ynt , in order to show that vjt ∈ A (y) for any j ∈ 1, . . . , q,

we need that every row of Gn := FnΩs
−1/2
n

1 Osn
1
∗ is a DAS. Since

GnGn∗ = FnΩs
−1/2
n

1 Osn
1
∗Osn

1 Ωs
−1/2
n

1 Fn∗

= FnΩs−1
n

1 Fn∗ (3.1.20)
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we have

lim
n

∫ π

−π
Gn(λ)Gn(λ)∗dλ = lim

n

∫ π

−π
Fn(λ)Ωsn

1 (λ)−1Fn(λ)∗dλ

≤ lim
n

∫ π

−π

1
ωsn
q

(λ)dλ = 0, (3.1.21)

where the last equality follows from the Lebesgue Convergence Theorem, that may be applied
since 1

ωsn
q

is by assumption bounded from above and converges to 0.

Finally, Lemma 3.1.4 and the construction of (vt) imply that the spectral density of (vt) equals
Iq for λ a.e. in M and 0 elsewhere. �

The next lemma shows how to explicitly construct the subsets M of Π and how to piece them to-
gether, such that eventually we will obtain a q-dimensional orthogonal white noise, that belongs
to A (y).

Lemma 3.1.6. Suppose that the conditions of Theorem 3.1.1 hold. Then there exists a q-
dimensional white noise (zt), t ∈ Z, with spectral density matrix equal to Iq a.e. in [−π, π] and
such that every component zjt, j = 1, . . . , q, t ∈ Z, is an aggregate.

Proof. We start with S0 = Π, set k = 1, choose m1 as the smallest m ∈ N, such that

L(λ ∈ S0 : ωmq (λ) > 1) > π

and define
S1 = {λ ∈ S0 : ωm1

q (λ) > 1}.

We continue by setting k = 2, choose m2 as the smallest m ∈ N, such that

L(λ ∈ S1 : ωmq (λ) > 2) > π

and define
S2 = {λ ∈ S1 : ωm2

q (λ) > 2}.

By recursion, for k ∈ N, choose mk as the smallest m ∈ N, such that

L(λ ∈ Sk−1 : ωmq (λ) > k) > π

and define
Sk = {λ ∈ Sk−1 : ωmk

q (λ) > k}.

Then we set
M1 = S0 ∩ S1 ∩ . . . ∩ Sk ∩ . . .

By construction L(M1) ≥ π.
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We continue with the definition of M2, where we proceed just as for M1, but now we start
with S0 = Π \ M1 in place of Π and take L(Π \ M1)/2 in place of π. By recursion we de-
fine Mk just as we defined M1, but starting with S0 = Π \ (M1 ∪ M2 ∪ . . .Mk−1) and with
L(Π \ (M1 ∪M2 ∪ . . .Mk−1))/2 in place of π. Defining M =

⋃
kMk, we have that Mk ∩Mj = ∅,

if k 6= j and L(M) =
∑

k L(Mk) = 2π.

By construction, for every subset Mk defined as above, there exists a non-decreasing diverging
sequence (αkn), n ∈ N, αkn ∈ N, such that for any λ ∈ Mk, ωnq (λ) ≥ αkn holds. Therefore by
Lemma 3.1.5 for any k ∈ N there exists a q-dimensional vector process (vkt ), t ∈ Z, such that
vkjt ∈ A (y) for any j ∈ 1, . . . , q and t ∈ Z and the spectral density of (vkt ) equals Iq for λ a.e. in
Mk and 0 elsewhere. Defining zt =

∑
k v

k
t , the result follows. �

Next we will show, that the space spanned by (zjt|j = 1, . . . , q, t ∈ Z) is actually equal to A (y).

Lemma 3.1.7. Suppose that the conditions of Theorem 3.1.1 hold and let (zt), t ∈ Z, be defined
as in lemma 3.1.6. Then the closure of the space spanned by (zjt|j = 1, . . . , q, t ∈ Z) is equal to
A (y).

Proof. Let Hz = span(zjt|j = 1, . . . , q, t ∈ Z), xt in A (y) and consider the projection

xt = proj(xt|Hz) + rt.

We want to show that the residuals rt are 0. Therefore we consider the (q + 1)-dimensional
process (z′t, rt)

′ with spectral density, S(λ) say:

S(λ) =

(
Iq 0
0 fr(λ)

)
,

such that det S(λ) = fr(λ) and show that the latter equals 0.
Since zjt is an aggregate and xt is an aggregate, rt is also an aggregate and there exist DAS’s
(knj |n ∈ N), j = 1, . . . , q + 1, such that

lim
n
knj y

n
t = zjt, j = 1, . . . , q

lim
n
knq+1y

n
t = rt.

From the definition of a DAS, we know that limn

∫ π
π |k

n
j (λ)|2dλ = 0 for j = 1, . . . , q + 1, hence

(knj ) converges in L2-sense for j = 1, . . . , q+1. Applying Lemma 3.1.3, there exist subsequences
of (knj ) that converge to 0 pointwise a.e. in [−π, π]. Moreover, calling Zn(λ) the spectral density
of (kn1 y

n
t , . . . , k

n
q+1y

n
t ), applying Lemma 3.1.4, there exists a subsequence of Zn(λ) that converges

to S(λ) a.e. in [−π, π]. Thus, with no loss of generality we can assume that (knj ) converges to 0
for j = 1, . . . , q + 1 and Zn(λ) converges to S(λ) a.e. in [−π, π].

Now, for j = 1, . . . , q + 1, set pnj = knj O
n
1 and qnj = knj − pnjO

n
1
∗. Then knj = pnjO

n
1
∗ + qnj and

since pnjO
n
1
∗ and qnj are orthogonal

|knj (λ)|2 = |pnj (λ)|2 + |qnj (λ)|2,
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implying that (pnj ) and (qnj ) converge to 0 a.e. in [−π, π], and

knj y
n
t = pnjO

n
1
∗ynt + qnj y

n
t

is the orthogonal projection of knj y
n
t onto the n-th order principal component of ynt . Therefore

Zn(λ) may be written as the sum of the spectral density of the first parts, Zn1 (λ) say, and the
spectral density of the second parts, Zn2 (λ) say. Since rkZn1 (λ) = q, Zn1 is singular for any λ in
[−π, π]. Moreover, since qnj (λ) is orthogonal to On1 (λ) we have

qnj f
n
y q

n
j ≤ ωnq+1|qnj (λ)|2,

which together with the essential boundedness of ωnq+1 for any n ∈ N and the fact that (qnj )
converges to 0 a.e. in [−π, π] implies that det Zn(λ) converges to 0 a.e. in [−π, π] and hence
det S(λ) = 0 a.e. in [−π, π]. �

Up to now, it has been shown that under the conditions of Theorem 3.1.1, A (y) is spanned by
the scalar components of q-dimensional white noise. Recall the sequence of nested projection
equations (3.1.2), i.e. ynt = proj(ynt |A (y)) + ent = γnt + ent . What remains to be shown is, that
the residuals (ent ), n ∈ N, are weakly correlated. Since in the sequel we are only interested in the
perpendiculars of (3.1.2), we will disregard the q-dimensional basis (zt), t ∈ Z, of A (y), defined
as the limit of linear transformations of principal components, but we will base on the following
weaker concept of convergence.

Definition 3.1.3. Let (vnt |n ∈ N, t ∈ Z) be a sequence of q-dimensional processes belonging to
Hy, costationary with (ynt ) for any n ∈ N and consider the orthogonal projection

vmt = proj(vmt |vnτ , τ ∈ Z) + ρmnt

= Amn(z)vnt + ρmnt . (3.1.22)

Let fmnρ denote the spectral density of the perpendiculars (ρmnt ). Then (vnt |n ∈ N, t ∈ Z) is said
to create a Cauchy sequence of spaces if, for any ε > 0 and for λ a.e. in [−π, π], there exists an
n∗(ε, λ), such that for all n,m ≥ n∗(ε, λ),

tr(fmnρ (λ)) < ε.

Remark 3.1.2. Definition 3.1.3 is weaker than convergence in the Hilbert space. To see this,
consider a q-dimensional sequence (vnt ) that converges in Hy and let εmnt = vnt − vmt : for ev-
ery component εnjt, j = 1, . . . , q, ‖εmnjt ‖2 = var(εmnjt ) =

∫ π
−π f

nm
εj

(λ)dλ → 0, which implies,
tr(fnmε (λ)) → 0 for n,m → ∞ and λ a.e. in [−π, π]. Since (3.1.22) is a projection, we have
tr(fnmρ (λ)) ≤ tr(fnmε (λ)), and hence (vnt ) creates a Cauchy sequence of spaces. By contrast, a
sequence that creates a Cauchy sequence of spaces does not necessarily converge in the Hilbert
space. Consider for example the rescaled principal components (ψnt ), which, as will be shown
in the Lemma below, create a Cauchy sequence of spaces. Suppose for a moment, that (ψnt )
converges to some (ψt). As we have said above (−1)n(ψnt ) also defines a sequence of rescaled
principal components, but this time it does not converge.

29
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The first part of the proof was especially complicated because of the construction of a convergent
sequence. Now, since we can base on the weaker concept of Cauchy sequences of spaces and do
not need a convergent basis, all we need are the principal components, as the next lemmas will
show.

Lemma 3.1.8. Suppose that the conditions of Theorem 3.1.1 hold. Then the sequence of rescaled
principal components (ψnt |n ∈ N, t ∈ Z) creates a Cauchy sequence of spaces.

Proof. For n > m, consider the projection

ψmt = proj(ψmt |ψnτ , τ ∈ Z) + ρmnt

= Dmn(z)ψnt + ρmnt . (3.1.23)

From Lemma 3.1.2 we know that the largest eigenvalue of fmnρ is not larger than
ωn

q+1

ωm
q

and thus
converges to 0 a.e. in [−π, π], which implies that tr(fmnρ (λ)) converges to 0 a.e. in [−π, π] (since
the trace of a matrix equals the sum of its eigenvalues).

To cover the case m > n, we consider the reverse projection, i.e.

ψnt = Dmn(z)∗ψmt + ρnmt . (3.1.24)

Taking the spectral densities of (3.1.23) and (3.1.24), we get

Iq = DD∗ + fmnρ = D∗D + fnmρ (3.1.25)

and since tr(DD∗) = tr(D∗D), tr(fmnρ ) = tr(fnmρ ), which completes the proof. �

The next lemma shows that a sequence of projections onto a sequence that creates a Cauchy
sequence of spaces is convergent and hence explains why definition 3.1.3 is sufficient for our
purposes.

Lemma 3.1.9. Let the sequence (vnt |n ∈ N, t ∈ Z) fulfill definition 3.1.3 with spectral den-
sity equal to Iq for any n ∈ N and let (xt|t ∈ Z) be a scalar process belonging to Hy and
costationary with (ynt ) for any n ∈ N. Further let xnt denote the orthogonal projection xnt =
proj(xt|span(vnjτ , j = 1, . . . , q, τ ∈ Z)). Then xnt converges in Hy.

Proof. Consider the two projections

xt = xnt + rnt = bn(z)vnt + rnt

xt = xmt + rmt = bm(z)vmt + rmt . (3.1.26)

Subtracting the second line from the first yields

xnt − xmt = bn(z)vnt − bm(z)vmt = rmt − rnt . (3.1.27)
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In the sequel, let S(x, y, λ) denote the cross spectrum of (xt) and (yt) at λ ∈ [−π, π]. Using the
middle expression of (3.1.27), the spectral density of (xnt −xmt ), Snm say, can then be written as

Snm(λ) = bn(e−iλ)bn(e−iλ)
∗ − 2S(bn(z)vnt , b

m(z)vmt , λ) + bm(e−iλ)bm(e−iλ)
∗
. (3.1.28)

Using equation (3.1.27) the middle term on the right hand side, can be written as

S((rmt − rnt ) + bm(z)vmt , b
m(z)vmt , λ) + S(bn(z)vnt , b

n(z)vnt − (rmt − rnt ), λ)

= bm(e−iλ)bm(e−iλ)
∗
+

+S((rmt − rnt ), bm(z)vmt , λ)− S((rmt − rnt ), bn(z)vnt ), λ) +

+bn(e−iλ)bn(e−iλ)
∗
, (3.1.29)

which yields

Snm(λ) = −S((rmt − rnt ), bm(z)vmt , λ) + S((rmt − rnt ), bn(z)vnt ), λ), (3.1.30)

which due to orthogonality of rkt and bk(z)vkt can be simplified to

Snm(λ) = S(rnt , b
m(z)vmt , λ) + S(rmt , b

n(z)vnt ), λ). (3.1.31)

Consider the projection equation of bm(z)vmt onto (vnt ):

bm(z)vmt = bm(z)Amn(z)vnt + bm(z)ρmnt , (3.1.32)

hence S(rnt , b
m(z)vmt , λ) reduces to S(rnt , b

m(z)ρmnt , λ). Next, observing that bmbm∗ and fr are
bounded from above by fx together with the fact that (vnt ) creates a Cauchy sequence of spaces
and hence tr(fmnρ ) → 0 for λ a.e. in [−π, π], implies that S(rnt , b

m(z)ρmnt , λ) converges to 0 for
λ a.e. in [−π, π] as m,n→∞. Obviously, the same arguments hold true for S(rmt , b

n(z)vnt ), λ),
such that altogether Snm converges to 0 for λ a.e. in [−π, π] as m,n → ∞. Applying the
Lebesgue Convergence Theorem (since both spectral densities of (xnt ) and (xmt ) are dominated
by fx), we see that var(xnt − xmt ) =

∫ π
−π S

nm(λ)dλ → 0 as m,n → ∞, implying that (xnt ) is a
Cauchy sequence and hence convergent in Hy. �

Let us recall the n-th order dynamic PC model. For n ∈ N, the projection equation corresponding
to the dynamic PC model for ynt is of the form

ynt = On1 (z)Ωn
1 (z)1/2ψnt +On2 (z)On2 (z)∗ynt

= On1 (z)On1 (z)∗ynt +On2 (z)On2 (z)∗ynt . (3.1.33)

Hence let i ≤ n and denote by onki(z), k ∈ {1, 2}, the i-th row of Onk (z), then we have for yit

yit = on1i(z)O
n
1 (z)∗ynt + on2i(z)O

n
2 (z)∗ynt

= χ̃nit + ũnit, (3.1.34)

where χ̃nit and ũnit denote the i-th component of the n-th order PC latent variable and the n-th
order PC noise respectively. In addition we have already introduced the projection of ynt onto
A (y) (see also (3.1.2)), then for i ∈ N,

yit = proj(yit|A (y)) + eit

= γit + eit, (3.1.35)
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where as distinct from the PC model γit and eit do not depend on n, since A (y) does not depend
on n. The next lemma reveals that as n→∞, the two representations (3.1.34) and (3.1.35) are
equivalent.

Lemma 3.1.10. Suppose that the conditions of Theorem 3.1.1 hold. Then the sequence of n-th
order PC latent variables χ̃nit, n ∈ N, i ≤ n converges to γit = proj(yit|A (y)) in mean square as
n→∞.

Proof. By Lemma 3.1.8 (ψnt ) creates a Cauchy sequence of spaces, hence by Lemma 3.1.9 the
projections of ynit onto (ψnt ), i.e. χ̃nit, i ≤ n converge in Hy as n → ∞. What remains to be
shown is, that the limit belongs to A (y) and is a projection.

Since χ̃nit = on1i(z)O
n
1 (z)∗ynt , for the first part we need to show that (on1i(λ))On1 (λ)∗), n ∈ N, is a

DAS, hence we need to show that∫ π

−π
on1i(e

−iλ)On1 (e−iλ)
∗
On1 (e−iλ)on1i(e

−iλ)
∗
dλ =

∫ π

−π
on1i(e

−iλ)on1i(e
−iλ)

∗
dλ (3.1.36)

converges to 0. Therefore, consider the spectral density of χ̃nit, i.e. on1i(e
−iλ)Ωn

1 (λ)on1i(e
−iλ)∗, for

which the following inequalities hold:

ωnq o
n
1io

n
1i
∗ ≤ on1iΩ

n
1o
n
1i
∗ ≤ fyi , (3.1.37)

implying

on1io
n
1i
∗ ≤ fyi

ωnq
, (3.1.38)

where the latter converges to 0 a.e. in [−π, π] and is bounded from above by assumption, so
that by application of the Lebesgue Convergence Theorem the integral on the right hand side
of (3.1.36) converges to 0 too.

For the second part, observe that by construction ũnit is orthogonal to ψnt−k for any n ∈ N, k ∈ Z.
Recall that A (y) = span(zjt|j = 1, . . . , q, t ∈ Z) and that zt has been defined as the limit of
linear transformations of ψnt . Continuity of the inner product implies that ũit = limn ũ

n
it is

orthogonal to A (y) and since the orthogonal projection is unique, the result follows. �

To conclude the proof of Theorem 3.1.1, we finally have to show that the double sequence (eit),
i ∈ N, t ∈ Z, from (3.1.2) is indeed weakly correlated.

Lemma 3.1.11. Suppose that the conditions of Theorem 3.1.1 hold and let eit be defined as in
(3.1.35). Then (eit|i ∈ N, t ∈ Z) is weakly correlated.

Proof. From Lemma 3.1.10 we know, that eit = limn ũ
n
it = on2i(z)O

n
2 (z)∗ynt . Let fne denote the

(n×n) spectral density matrix of ent = (e1t, . . . , ent)′, then with Lemma 3.1.4 and Lemma 3.1.10,
fne can be written as the (n× n) top-left submatrix of the limit of corresponding PCA spectral
densities, i.e. for m ≥ n

fne = lim
m→∞

Om2[1,...,n]Ω
m
2 O

m
2[1,...,n]

∗, (3.1.39)
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where the numbers in square brackets denote the relevant rows of the matrix. Hence the first
eigenvalue of fne is certainly not larger than supm ωmq+1 for any λ in [−π, π] and since this holds
true for any n ∈ N the result follows. �

Remark 3.1.3. The last results draw a direct connection between the (dynamic) PC model and
the GDFM: under the conditions of Theorem 3.1.1 these two models coincide asymptotically. We
will get back to that point in the course of estimation of the underlying variables (see Chapter 5).

In the sequel we will summarize some important remarks and conclusions concerning the last
results. Indeed, the following corollaries are (nearly) immediate consequences of Theorem 3.1.1
or of parts of the proof.

Corollary 3.1.1. If the double sequence (yit|i ∈ N, t ∈ Z) allows for a q-GDFM representation,
then A (y) = Hχ = Hξ.

Proof. It has already been shown, that if (yit|i ∈ N, t ∈ Z) has a q-GDFM representation,
A (y) ⊆ Hχ (see remark 3.1.1) and since χit = λi(z)ξt, for all i ∈ N, we have, that A (y) ⊆ Hχ ⊆
Hξ.

On the other hand, it has been shown that if (yit|i ∈ N, t ∈ Z) has a q-GDFM representation,
A (y) = Hz, hence Hz ⊆ Hξ, where both (zt) and (ξt) are q-dimensional orthogonal white noise
processes, which in turn implies equality: Hz = Hξ. �

Corollary 3.1.2. If the double sequence (yit|i ∈ N, t ∈ Z) allows for a q-GDFM representation,
then the latent variables χit are the projections of yit onto the aggregate space A (y),

χit = proj(yit|A (y)).

Proof. Since by corollary 3.1.1 χit ∈ A (y) and since χjt−k⊥uit and therefore uit⊥A (y), χit =
proj(yit|A (y)). �

Remark 3.1.4. In particular, it follows that if (ynt ), n ∈ N, has a q-GDFM representation γnt and
ent defined through the projection equations (3.1.2) are equivalent to χnt and unt in (2.1.1).

As an immediate consequence of the uniqueness of the orthogonal projection, the decomposition
of the observed process into latent variables and noise respectively, is unique. The following
theorem precises this statement.

Theorem 3.1.2. Suppose the double sequence (yit|i ∈ N, t ∈ Z) allows for a q-GDFM repre-
sentation (2.1.1). And suppose that there exists a p-dimensional white noise process (ζt), such
that

ynt = Cn(z)ζt + ent

= γnt + ent
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where Cn(z) =
∑

j C
n
j z

j ,
∑

j ‖Cnj ‖ <∞, and such that the q-th largest eigenvalue of fnγ and the
largest eigenvalue of fne fulfill assumption 2.1. Then, p = q, γnt = χnt and ent = unt .

Remark 3.1.5. Corollaries 3.1.1 and 3.1.2 imply that both the latent variables as well as the
noise, respectively, belong to Hy. Furthermore, since by Theorem 3.1.2, these variables are
uniquely identified, there exists no representation where they do not belong to Hy.

Remark 3.1.6. Notice however, that only the latent variables (χnt ), but neither the factor loadings
Λn(z) nor the factors (ξt) are uniquely identifiable. As mentioned above, since we assumed the
factors to be orthogonal white noise the factors are identifiable up to unitary transformations,
i.e. transformations of the form U(z)ξt, where U ∈ Lq×q2 ([−π, π] ,C) and U(e−iλ)U(e−iλ)∗ = Iq

holds and Λn(z) may then be transformed accordingly as Λn(z)U(z)∗ without changing the la-
tent variables.

Remark 3.1.7. We have defined the q-GDFM such that the factor loadings Λn(z) may correspond
to a two-sided filter. For many purposes, such as structural modeling or forecasting, a causal
representation is required and as will be shown in Section 3.3, Assumption 1.1d) is sufficient for
the existence a causal representation.

3.2 The relation to factor models with idiosyncratic noise

In the sequel, we want to examine the relation between the classical factor analytic model with
idiosyncratic noise (see Section 1.3) and the GDFM. Since we have introduced the GDFM as
a generalization of the classical factor model, we first want to show, that indeed under weak
assumptions on the factor loadings a factor structure with idiosyncratic noise implies a general-
ized factor structure, hence, that the conditions of Theorem 3.1.1 are satisfied.

Recall, that the factor model with idiosyncratic noise is specified through

fny (λ) = Λn(e−iλ)Λn(e−iλ)∗ + fnu (λ), (3.2.1)

where Λn(e−iλ) =
∑

j Λnj e
−iλj , Λnj ∈ Rn×q, fnu is diagonal for all λ in [−π, π] and where we

implicitly assumed that the spectral density matrix of the factors equals Iq.

Under our general assumptions all diagonal entries, fu,i, i = 1, . . . , n, say, of fnu are bounded
from above for all n ∈ N and let µ(λ) = supi∈N fu,i(λ). Then, applying corollary A.1.1 yields
ωnq+1 ≤ µ(λ) for all n ∈ N and λ ∈ [−π, π]. For the second condition of Theorem 3.1.1, consider

Λn(e−iλ)∗fny (λ)Λn(e−iλ) ≥ (Λn(e−iλ)
∗
Λn(e−iλ))2,

implying that if all eigenvalues of Λn∗Λn diverge a.e. in [−π, π], so do the first q eigenvalues of fny .
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Summarizing, if for n ∈ N, (ynt ) allows for a factor model with orthogonal noise and if all eigen-
values of Λn∗Λn diverge a.e. in [−π, π], then the conditions of Theorem 3.1.1 are satisfied and
hence there exists a q-GDFM representation (2.1.1). Since by Theorem 3.1.2 this representation
is unique, it follows, that the two models have to coincide. Moreover, since by Lemma 3.1.10,
asymptotically the q-GDFM representation is equivalent to the dynamic q-PC model, if there
exists a factor structure with orthogonal noise, dynamic PCA and factor analysis are asymptot-
ically equivalent.

Let us analyze the relation between PCA and factor analysis in more detail. In PCA the
factor loadings are obtained from the eigenvalue decomposition of fny . However, in the factor
analytic approach the factor loadings are related to another eigenvalue problem (see Lawley
and Maxwell (1971)). From equation (3.2.1) we get that ΛΛ∗ = fny − fnu . Now, consider the
following transformation of fny , that rescales the variates, such that the spectral density of the
noise becomes In (recall that we used the same derivation to obtain a normalization condition
for Λ in the static case, see (1.3.1)):

f̄ny (λ) = fnu (λ)−1/2fny (λ)fnu (λ)−1/2

= fnu (λ)−1/2Λn(e−iλ)Λn(e−iλ)∗fnu (λ)−1/2 + In. (3.2.2)

f̄ny (λ)− In is Hermitian and of rank q for almost all λ in [−π, π], hence it can be written as

f̄ny (λ)− In = V̄ n
1 (e−iλ)∆n(λ)V̄ n

1 (e−iλ)
∗
, (3.2.3)

where ∆n(λ) is the diagonal (q × q) matrix having the non-zero eigenvalues of f̄ny (λ)− In in its
diagonal and V̄ n

1 (e−iλ) is the (n × q) matrix of corresponding eigenvectors. Hence the factor
loadings Λn can be expressed as

Λn(e−iλ) = fnu (e−iλ)
1/2
V̄ n

1 (e−iλ)∆n(e−iλ)
1/2
. (3.2.4)

Since f̄ny (λ) has the same eigenvectors as f̄ny (λ)− In, and since by equations (A.2.1) to (A.2.3),
we know, that V n

1 (e−iλ) = fnu (λ)−1/2V̄ n
1 (e−iλ) are the first q generalized eigenvectors of the

couple of matrices (fny (λ), fnu (λ)), we can write (3.2.4) as

Λn(e−iλ) = fnu (e−iλ)V n
1 (e−iλ)∆n(e−iλ)

1/2
. (3.2.5)

Hence, apart from rescaling, the difference between the factor loadings occurring in PCA and
factor analysis is, that in PCA the factor loadings are the first eigenvectors of fny with respect
to the identity matrix and in factor analysis they are the first generalized eigenvectors of fny
with respect to fnu . Above we have argued that if there is a classical factor structure with
idiosyncratic noise, these two procedures will asymptotically yield the same decomposition into
latent variables and noise. Actually it can be shown, that even if there only exists a q-GDFM
representation, then under weak conditions on a sequence of matrices Σn, the generalized PCA
of (fny ,Σ

n) will asymptotically yield the same decomposition into latent variables and noise
as conventional dynamic PCA. For the static case this has been shown in Chamberlain and
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Rothschild (1983), the extension to the dynamic case is immediate given the results from the
last section. In classical factor analysis with idiosyncratic noise, one of the main difficulties in
ML-estimation is the estimation of fnu . Hence the last statement provides a justification (at
least from an asymptotic point of view) of PCA, which is computationally much simpler than
factor analysis.
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3.3 Latent variables with rational spectral density: a system

theoretic analysis

In this section we will only consider the latent variables (χnt ) and disregard the noise part (unt ).
The aim of this section is a deeper analysis of the latent part using system theoretic methods,
i.e. methods related to autoregressive moving-average (ARMA) and state space realizations of
transfer functions.

Recall that by Assumptions 1.1 a) and 1.1 c) (χnt ) is stationary with Eχnt = 0 and (n × n)-
dimensional spectral density fnχ (λ) = Λn(e−iλ)fξ(λ)Λn(e−iλ)∗. By Assumption 1.1 d) fnχ is
rational in e−iλ and of normal rank1 q < n for n sufficiently large. In Section 3.3.1 below we
will see that any rational (n × n) spectral density fnχ of normal rank q may be factorized as
fnχ (λ) = (2π)−1wn(e−iλ)wn(e−iλ)∗, where the (n × q) transfer function wn(z) is itself rational
in z, analytic for all |z| ≤ 1 and of full column rank q for all |z| ≤ 1 and thus corresponds to a
causal GDFM representation. As a consequence, this factorization gives rise to realizations of
wn in terms of (causal) ARMA or state space systems (see Section 3.3.2). To ensure that these
realizations are parsimonious, in that the dimension of the parameter space only grows linearly
in n, we will impose the following additional assumption.

Assumption 3.1 (McMillan degree).
Let r be the state dimension of a minimal state space realization of wn, i.e. the McMillan degree
of wn. Then for n sufficiently large, r does not depend on n.

Roughly speaking Assumption 1.1 d) is a measure for the complexity reduction that is possible
in the cross-sectional dimension and Assumption 3.1 is a measure for the complexity reduction
that is possible in the time dimension.

Moreover as will be shown in Section 3.3.3, under Assumptions 1.1 and 3.1 there always exists
a quasi-static representation of χnt (and thus of ynt ), that in general can be achieved at the
cost of a higher dimensional quasi-static factor. We will see that two distinct cases may oc-
cur: (1) the minimal static factor coincides with the minimal state of a state space realization
and hence follows an AR(1) process or (2) the minimal state is of larger dimension than the
minimal static factor. In Section 3.3.4 we will then show that in either case the minimal static
factor is generated by an ARMA(P,Q) system (where P = 1 and Q = 0 in case (1)) and a
uniquely identifiable and parsimonious ARMA representation will be given. In Section 3.3.5 we
will summarize the properties of the quasi-static GDFM representation as derived above. And in
Section 3.3.6 the pure autoregressive representation of the static factors will be further analyzed.

It is emphasized that the assumptions imposed here are more general than the assumptions
usually imposed in the context of causal modeling (see for instance Stock and Watson (2002b),

1The normal rank of a rational matrix f(λ) defined on C is defined as maxλ rk f(λ), and equals the rank of

f(λ) with the possible exception of finitely many points.

37



3.3. A system theoretic analysis of the latent variables

Forni et al. (2005a) and Forni et al. (2005b)), since usually case (2) is ruled out by requiring
for instance that Λn(z) is polynomial of degree S and that ξt follows an AR(s) process with
s ≤ S + 1 (see also Example 3.3.2 below).

3.3.1 Factorization of spectral densities and causal GDFM representations

The following theorem is a well-known result about the factorization of (singular) rational spec-
tral densities and may be found in Rozanov (1967) or Hannan (1970).

Theorem 3.3.1. An (n × n)-dimensional rational spectral density matrix fnχ of normal rank
q ≤ n can be factorized as

fnχ (λ) =
1
2π
wn(e−iλ)wn(e−iλ)∗, (3.3.1)

where the (n × q)-dimensional matrix function wn(z) is rational in z, analytic for |z| ≤ 1 and
has rank q for all |z| ≤ 1.

Proof. See Rozanov (1967) or Hannan (1970). �

As a consequence, (χnt ) can be expressed as a causal linear transformation of a q-dimensional
white noise process (εt):

χnt = wn(z)εt =
∞∑
j=0

Wn
j εt−j , (3.3.2)

with Wn
j ∈ Rn×q, j = 0, 1, . . .,

∑∞
j=0 ‖Wn

j ‖2 <∞ and Γε = E εtε′t = Iq.

Let Hn
χ(t

−) and Hε(t−) denote the Hilbert spaces spanned by {χiτ |i = 1, . . . , n; τ ≤ t} and
{εiτ |i = 1, . . . , q; τ ≤ t} respectively, then obviously (3.3.2) implies Hn

χ(t
−) ⊆ Hε(t−). Further,

recall that wn may be written as
wn = ulv, (3.3.3)

where the (n×n) and (q×q) polynomial matrices u and v are unimodular2 and where the (n×q)
rational matrix l, i.e. the Smith-McMillan form of wn, is diagonal and displays the poles and
zeros of wn (see Hannan and Deistler (1988), Lemma 2.4.3). Defining a (q×n) matrix function,

wn− = v−1(l′l)−1l′u−1, (3.3.4)

it is easily seen, that, since wn has no poles and zeros for |z| ≤ 1, the same holds for l and thus
by its diagonality for l′l, wn− is rational and has no poles and zeros for |z| ≤ 1. Hence wn− can
be extended in a power series that is convergent in an open disc containing the unit disc and is
thus a one-sided (causal) left inverse of wn. As a consequence (εt) may also be represented as a
causal linear transformation of (χnt ) implying that Hn

χ(t
−) = Hε(t−) holds. Hence (3.3.2) is the

Wold representation of (χnt ) and the q-dimensional white noise (εt) forms a basis of the linear
innovations of (χnt ), i.e. (εt) is fundamental.

2A polynomial matrix u is called unimodular if detu is constant, not equal to 0. A polynomial matrix u is

unimodular iff its inverse u−1 exists and is a polynomial matrix.
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Remark 3.3.1. If wn is zeroless, i.e. if wn has full column rank q for all z ∈ C, it follows that
the numerators of the Smith-McMillan form l in (3.3.3) are all equal to 1, implying that (l′l)−1

and thus wn− is polynomial. Hence in this case, εt depends only on a finite number of past and
present χnt .

Clearly, for given fnχ , the spectral factor wn is not uniquely identifiable, which may be seen
by the argument that post multiplying wn by a constant orthogonal (q × q) matrix P with
P ′P = PP ′ = Iq yields another feasible factorization of the form (3.3.1). The next theorem
ensures, that post multiplication by a constant orthogonal (q × q) matrix is indeed the only
indeterminacy.

Theorem 3.3.2. Let fn(λ) satisfy the conditions of Theorem 3.3.1, then the factorization in
(3.3.1) is unique up to post multiplication by a constant orthogonal matrix P with P ′P = PP ′ =
Iq.

Proof. Let (χnt ) be an n-dimensional process with spectral density fn(λ). By what was said
above due to its full rank for |z| ≤ 1, the spectral factor wn(z) corresponds to the Wold repre-
sentation χnt = wn(z)εt and (εt) is fundamental. It is well known that a fundamental process is
defined up to multiplication by a unitary matrix P (see Rozanov (1967), Sec. II.3. and II.4.).
Since we only consider real processes, the result follows. �

Furthermore, for a sequence of nested spectral densities fnχ , n ∈ N, it is immediately clear, that
the spectral factors wn, n ∈ N, are again nested. Consequently (εt) in representation (3.3.2) is a
q-dimensional factor process, sometimes also called a q-dimensional fundamental shock, and wn

are the corresponding rational and causal factor loadings, where (εt) and wn are identifiable up
to right multiplication of wn by a constant orthogonal matrix and left multiplication of εt by its
transpose, i.e. up to static factor rotations. Thus, assuming that fnχ is rational, is a sufficient
condition for the existence of a causal GDFM representation.

The tall (n× q) transfer function wn may then be realized as

- ARMA system
wn(z) = an(z)−1bn(z),

where the (n×n) and (n×q) matrices an(z) and bn(z) are relatively left prime polynomials
in z and where det an(z) 6= 0 for |z| ≤ 1 (stability assumption) and rk bn(z) = q for |z| ≤ 1
(miniphase assumption) hold.

- Right matrix fraction description (right MFD)

wn(z) = cn(z)d(z)−1,

where cn(z) and d(z) are (n × q) and (q × q) polynomial matrices respectively, that are
relatively left prime and where det dn(z) 6= 0 for |z| ≤ 1 and rk cn(z) = q for |z| ≤ 1 hold.
This is the general form of the realization considered by Forni et al. (2005a).
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- State space system (A,B,Cn),

xt = Axt−1 +Bεt (3.3.5)

χnt = Cnxt, (3.3.6)

with r-dimensional state vector xt (r ≥ q) and parameter matrices A ∈ Rr×r, B ∈ Rr×q,
Cn ∈ Rn×r and hence wn(z) = Cn(I − Az)−1B, where the stability assumption det(I −
Az) 6= 0 for |z| ≤ 1 (or equivalently denoting the largest eigenvalue of A by ω1(A),
|ω1(A)| < 1) and the conjugated miniphase assumption rkCnB = q and

rk

(
1
z I −A −B
Cn 0

)
= r + q for|z| ≤ 1, z 6= 0

hold. Notice that, since only the matrix Cn, but neither of the matrices A and B depend on
n, the dimension of the parameter space is proportional to n and that the parametrization
of the system is thus quite sparse. This realization will be discussed below in more detail.

Before proceeding, let us examine two commonly used examples of latent variables with rational
spectral density.

Example 3.3.1. Let the factor loading matrix Λn(z) be polynomial of degree s, i.e.

Λn(z) =
s∑
j=0

Λnj z
j ,Λnj ∈ Rn×q

and let the factors (ξt) be a q-dimensional orthonormal white noise process, i.e. ξt = εt with
E εtε′t = Iq, E εtε′t−j = 0q, j 6= 0. Then wn(z) = Λn(z) and by defining the state as the sq-
dimensional vector of stacked factors xt = (ξ′t, ξ

′
t−1, . . . , ξ

′
t−s)

′ we get a state space realization

xt =


0 0 . . . 0
Iq 0 . . . 0

0
. . . 0

0 Iq 0


︸ ︷︷ ︸

A∈R(sq×sq)

xt−1 +


Iq

0
...
0


︸ ︷︷ ︸
B∈R(sq×q)

εt (3.3.7)

χnt = (Λn0 ,Λ
n
1 , . . . ,Λ

n
s )︸ ︷︷ ︸

Cn∈R(n×sq)

xt (3.3.8)

If we further assume that rk(Eχnt χn
′
t ) = rk(Λn0 ,Λ

n
1 , . . . ,Λ

n
s ) = sq holds, then xt may be seen as

a minimal quasi-static factor and (3.3.8) as the quasi-static representation of χnt that has been
made possible at the cost of a higher dimensional factor. �

Example 3.3.2. Let Λn(z) be of the same form as in the example above and let the factor (ξt)
be a stationary AR(p)-process: a(z)ξt = εt, where a(z) = A0−A1z− . . . Apzp, Aj ∈ R(q×q) with
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rkA0 = q, det a(z) 6= 0 for |z| ≤ 1 and where (εt) is a q-dimensional orthonormal white noise
process. Then wn(z) = Λn(z)a−1(z). For s ≤ p+ 1, this is the model considered for instance by
Forni et al. (2005a). Setting S = max(p, s− 1) and defining xt as the Sq-dimensional vector of
stacked factors xt = (ξ′t, ξ

′
t−1, . . . , ξ

′
t−S)′ we have a state space realization

xt =


A−1

0 A1 A−1
0 A2 . . . A−1

0 Ap 0
Iq 0 . . . 0

0
. . . 0

0 Iq 0


︸ ︷︷ ︸

A∈R(Sq×Sq)

xt−1 +


A−1

0

0
...
0


︸ ︷︷ ︸
B∈R(Sq×Sq)

εt (3.3.9)

χnt = (Λ0,Λ1, . . . ,Λs, 0n×q(S−p))︸ ︷︷ ︸
Cn∈R(n×Sq)

xt. (3.3.10)

Consider the case p ≤ (s−1), then obviously the last q(S−p) columns of Cn contain only zeros,
and thus rkC < Sq, implying that the minimal static factor does not coincide with the state
vector xt. Notice however, that the state space realizations given in these examples might be
inconvenient in that the state vectors might be of higher dimension than necessary. �

3.3.2 A state space representation of (χnt )

Here we are going to show that any transfer function wn(z) corresponding to the Wold represen-
tation (3.3.2) and thus satisfying the conditions of Theorem (3.3.1) may indeed be realized as a
state space realization of the form (3.3.5)- (3.3.6) by specifying a construction. This state space
realization will be minimal, i.e. no other state space realization with lower dimensional state
exists. For general aspects of the construction of state space realizations, we refer to Hannan
and Deistler (1988) or Deistler (2001a).

Using equation (3.3.2) we may write
χnt
χnt+1

χnt+2
...

 =


Wn

0 Wn
1 Wn

2 . . .

Wn
1 Wn

2 Wn
3 . . .

Wn
2 Wn

3 . . . . . .

. . . . . . . . . . . .


︸ ︷︷ ︸

H n
∞


εt

εt−1

εt−2

...


︸ ︷︷ ︸

ε−t

+


0

Wn
0 εt+1

Wn
0 εt+2 +Wn

1 εt+1

...

 . (3.3.11)

The matrix H n
∞ is in block Hankel form (i.e. the (i, j) block only depends on the sum i + j)

and is called the Hankel matrix of the transfer function wn(z). In the sequel hn(i, j) will denote
the j-th row in the i-th block row of H n

∞.

It can be shown that if wn(z) is rational then H n
∞ is of finite rank, r say (for a proof see Hannan

and Deistler (1988), Theorem 2.4.1.), and since rkwn(z) = q for |z| ≤ 1 implies that rkWn
0 = q,

then r ≥ q. Hence there must be r linearly independent rows of H n
∞ that form a basis for the
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row space of H n
∞. From the block Hankel form of H n

∞ one immediately sees, that if hn(i, j) ∈
span{hn(i1, j1), . . . , hn(ik, jk)}, then hn(i+ 1, j) ∈ span{hn(i1 + 1, j1), . . . , hn(ik + 1, jk)}. As a
consequence, we may consider a basis with the property that, if hn(i+ 1, j) is in the basis, so is
hn(i, j). Such a basis can be described by a structure index α = (r1, r2, . . . , rn) indicating that
the r = r1 + . . . + rn basis rows are hn(1, 1), . . . , hn(r1, 1), . . . , hn(1, n), . . . , hn(rn, n), i.e. the
i-th row of a block row is a basis row up to block row ri. Let Snα be the (r ×∞)-dimensional
selector matrix (i.e. a matrix where each row contains only zeros except for a one in the column
that corresponds to the selected row) that selects this row basis and write H n

α = SnαH n
∞. Then

we may define the r-dimensional state vector xnt , following the approach described in Kalman
(1963), as

xnt = H n
α ε

−
t . (3.3.12)

Notice, that Assumption 3.1 is equivalent to assuming that rkH n
∞ = r for n sufficiently large,

where we are already anticipating the fact that the state vector xnt in 3.3.12 is of minimal possi-
ble dimension, which will be shown below. Moreover, as we will also see below, Assumption 3.1
implies that xnt , as well as the coefficient matrices A and B in (3.3.5) can be chosen indepen-
dently of n. Now, let n0 be the smallest cross-sectional dimension for which rk H n0

∞ = r holds.
Obviously the rows of H n0

∞ are contained in any Hankel matrix H n
∞ for n ≥ n0. Hence if H n0

α

are r linearly independent rows of H n0
∞ and thus form a basis they are also a basis of H n

∞ for
n ≥ n0. Consequently the structure index α can be chosen independently of n and so can the
(r ×∞) matrix of basis rows Hα = H n0

α , hence we may rewrite (3.3.12) as

xt = Hαε
−
t . (3.3.13)

Proceeding to xt+1 we have

xt+1 = SnαH n
∞ε

−
t+1

= Snα


Wn

1 Wn
2 Wn

3 . . .

Wn
2 Wn

3 Wn
4 . . .

Wn
3 Wn

4 . . . . . .

. . . . . . . . . . . .




εt

εt−1

εt−2

...

+ Snα


Wn

0

Wn
1

Wn
2
...

 εt+1, (3.3.14)

where the Hankel matrix in the first term on the right hand side is a submatrix of H n
∞ and thus

can be expressed as a linear transformation of the row basis Hα:

Snα


Wn

1 Wn
2 Wn

3 . . .

Wn
2 Wn

3 Wn
4 . . .

Wn
3 Wn

4 . . . . . .

. . . . . . . . . . . .

 = SnαÃ
nHα = AHα. (3.3.15)

Again, the matrix A can be chosen independently of n, since the structure index α is indepen-
dent of n and Snα will always select the same rows of Ãn.
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Now, by setting
B = Snα(Wn

0 ,W
n
1 ,W

n
2 , . . .)

′, (3.3.16)

which is independent of n by the same argument we get

xt+1 = AHαε
−
t +Bεt+1

= Axt +Bεt+1.

Furthermore χnt = (Wn
0 ,W

n
1 ,W

n
2 , . . .)ε

−
t and since (Wn

0 ,W
n
1 ,W

n
2 , . . .) is the first block row of

H n
∞ we may express it as

(Wn
0 ,W

n
1 ,W

n
2 , . . .) = CnHα, (3.3.17)

and thus
χnt = Cnxt,

where Cn is nested by construction (i.e. for m > n the first n rows of Cn and Cm are identical),
which concludes the construction of the state space system.

We are now going to introduce some important concepts for dealing with state space systems
(see Hannan and Deistler (1988) for a more detailed presentation).

A state space realization (A,B,Cn) of a transfer function wn(z) = Cn(I −Az)−1B is said to be
minimal if A is of minimal possible dimension among all realizations (Ã, B̃, C̃n) of wn(z).

A state space system (A,B,Cn) (or the pair (A,B)) is called controllable if the matrix

Cr = (B,AB, . . . , Ar−1B) ∈ Rr×rq (3.3.18)

is of full row rank r. Cr is called controllability matrix. If a system (A,B,Cn) is controllable
and if εt, εt−1, . . . , ε1 were under our control, then for t ≥ r the equation system

xt = Axt−1 +Bεt

=
t−1∑
j=0

AjBεt−j +Atx0

= (B,AB, . . . , At−1B)(ε′t, ε
′
t−1, . . . , ε

′
1)
′ +Atx0 (3.3.19)

is solvable for any xt and any initial state x0. Hence controllability means that if the innovations
were manipulable, given an arbitrary initial state x0, any state xt could be reached.

A state space system (A,B,Cn) (or the pair (A,Cn)) is called observable if the matrix

Or =


Cn

CnA
...

CnAr−1

 ∈ Rrn×r (3.3.20)
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is of full column rank r. Or is called observability matrix. Assume that there were no innovations
εt, then χnt = Cnxt = CnAtx0 for some initial state x0. If (A,Cn) is observable and if there are
no innovations εt, then the initial state x0 will be uniquely determined (observed) from

χn0
...

χnr−1

 = Orx0. (3.3.21)

Notice that the rank of neither Cr nor Or can be increased further by adding terms of the form
AjB and CAj , respectively, j ≥ r (Caley-Hamilton Theorem). Hence the infinite controllability
and observability matrices

C = (B,AB,A2B, . . .) (3.3.22)

O = (Cn′, A′Cn′, A′2Cn′, . . .)′ (3.3.23)

have the same rank as Cr and Or respectively.

For a state space realization (A,B,Cn) of wn(z) = Cn(I − Az)−1B = CnB + CnABz +
CnA2Bz2 + . . . the Hankel matrix H n

∞ is equal to the product of the infinite observability
and controllability matrices:

H n
∞ = OC =

 CnB CnAB CnA2B . . .

CnAB CnA2B CnA3B . . .

. . . . . . . . . . . .

 . (3.3.24)

It can be shown that a state space system (A,B,Cn) is minimal if and only if it is controllable
and observable (see Hannan and Deistler (1988), proof of Theorem 2.3.3.). Consequently, the
system (A,B,Cn) with r-dimensional state vector xt defined as in (3.3.12) and parameter ma-
trices A,B,Cn as in (3.3.15) - (3.3.17) is by construction minimal since r = rk H n

∞.

A minimal state space system (A,B,Cn) (or the matrix A) fulfills the stability assumption if
the largest eigenvalue of A is strictly smaller than 1 in modulus,

|ω1(A)| < 1.

Clearly, wn(z) = Cn(I − Az)−1B has a pole at z0 ∈ C if and only if det(I − Az0) = 0 which
holds if and only if 1

z0
is an eigenvalue of A. Thus, if wn has no poles for |z| ≤ 1, then A will

satisfy the stability assumption.

A minimal state space system (A,B,Cn) fulfills the miniphase assumption if rk(CnB) = q and
if

rk

(
1
z I −A −B
Cn 0

)
= r + q for|z| ≤ 1, z 6= 0.
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The first condition is equivalent to rkwn(0) = q. The second condition is satisfied if rkwn(z) = q

for |z| ≤ 1, z 6= 0. To see this, suppose for a moment that the second condition failed. Then
there exists an (r + q)-dimensional vector t = (t′1, t

′
2)
′, t1 and t2 not both equal to 0, such that

for some |z0| < 1, z0 6= 0,

0 = (I −Az0)t1 − z0Bt2

0 = Cnt1.

Indeed if we assume rkB = q, both t1 and t2 must be nonzero, and

0 = Cn(I −Az0)−1z0Bt2,

implying that wn(z0) = Cn(I −Az0)−1B does not have full column rank. Hence, if either of the
two conditions failed, wn(z) would not be of full rank for all |z| < 1.

Summarizing, we have proved the following theorem.

Theorem 3.3.3. Let (wn(z)), n ∈ N, be a sequence of nested rational (n × q)−dimensional
transfer functions, such that for each n sufficiently large wn(z) is analytic for |z| ≤ 1 and of
constant rank q for |z| ≤ 1 and suppose that Assumption 3.1 holds. Then for n sufficiently large,
wn(z) may be expressed as Cn(I−Az)−1B, where (Cn) is a sequence of nested matrices, (A,B)
is controllable, (A,Cn) is observable and where (A,B,Cn) satisfies the stability and miniphase
assumptions.

3.3.3 Two distinct cases of state space realizations (A, B, Cn)

In the sequel we will assume that (A,B,Cn) is a minimal state space realization of wn(z) and
we are going to examine the two distinct cases rkCn = r (subsequently referred to as the generic
case) and rkCn < r (subsequently referred to as the non-generic case) in more detail. Notice
already, that since Γnχ = Cn Extx′tCn

′
and since Extx′t has full rank r, we have rkCn = rk Γnχ,

where the latter is equal to s ≥ q independently of n by Assumption 1.1 e). Hence in the generic
case r = s holds, whereas in the non-generic case r > s.

Let us first get back to equation (3.3.11): since (3.3.11) corresponds to the Wold representation,
the infinite vector on the right hand side contains the prediction errors of the best linear predic-
tions given information up to time t. Hence, denoting the best linear prediction of χnt+h given
χnτ , τ ≤ t by χnt+h|t, we obtain 

χnt
χnt+1|t
χnt+2|t

...

 = H n
∞ε

−
t . (3.3.25)

Since the linear dependence structure has to be the same on both sides of (3.3.25), a structure
index α indicating basis rows of H n

∞ also indicates (scalar) components of (χnt , χ
n
t+1|t, χ

n
t+2|t, . . .)

′
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that form a basis for the Hilbert space span(χi,t+h|t|i = 1, . . . , n, h ≥ 0). Hence the minimal
state xt defined as in (3.3.13) is itself a basis for span(χi,t+h|t|i = 1, . . . , n, h ≥ 0) and thus every
information needed to predict future values of χnt given the past of χnt up to time t is contained
in the state vector xt. In other words, for given state xt the future and the past of the process
(χnt ) are conditionally uncorrelated (splitting property of the state).

Let us now consider a special selection of basis rows of H n
∞, namely the first (in natural order)

linear independent rows of H n
∞. This selection clearly has the property, that if h(i+1, j) is in the

basis so is h(i, j) and the corresponding structure index α = (r1, . . . , rn) is called the Kronecker
indices of H n

∞. For a given Hankel matrix (or transfer function respectively) Kronecker indices
are unique by construction. Furthermore, under Assumption 3.1 the non-zero Kronecker indices
are independent of n.

Then we see, that in the generic case, since Cn is of full rank r, there must be r linearly inde-
pendent scalar components of χnt , hence all basis rows of H n

∞ corresponding to the Kronecker
indices are to be found in the first block row of H n

∞ and there are exactly r Kronecker indices
equal to 1 (and the rest are equal to 0). Therefore in the generic case the minimal state xt is
contained in the space spanned only by present (scalar) variables χit, i = 1, . . . , n and may be
seen as a minimal (quasi-) static factor with (3.3.6) being a minimal static factor representation,
and where the static factor process xt follows the AR(1)-process (3.3.5).

Conversely, in the non-generic case, since rkCn = s, where q ≤ s < r, there are less then
r linearly independent scalar components of χnt , hence only s of the basis rows of H n

∞ corre-
sponding to the Kronecker indices are to be found in the first block row of H n

∞, and (some
of) the s non-zero Kronecker indices are greater than 1. Consequently in the non-generic case
the minimal state xt is not contained in the space only spanned by present (scalar) variables
χit, i = 1, . . . , n and is no minimal (quasi-) static factor. Nevertheless, as we are going to show
below, in the non-generic case there also exists a quasi-static factor model representation, where
now the static factor follows an ARMA(P,Q)-process with orders P and Q depending on the
maximum Kronecker index.

In the sequel we will assume that Cn is of the form Cn = (Cn1 , 0n×(r−s)). This does not mean
any loss of generality, since given a (minimal) state space system (Ã, B̃, C̃n) where Ã ∈ Rs×s,
B̃ ∈ Rs×q and C̃n ∈ Rn×s with rk C̃n = s < r for all n sufficiently large, corresponding
to wn(z), then there always exists a regular (r × r) matrix T independent of n, such that
C̃nT−1 = Cn = (Cn1 , 0), where Cn1 is n× s and of full column rank s. Partitioning accordingly
as

T x̃t = xt =

(
ft

x
(2)
t

)
, T ÃT−1 = A =

(
A11 A12

A21 A22

)
, T B̃ = B =

(
B1

B2

)
, (3.3.26)
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we can rewrite the state space representation of χnt as

ft = A11ft−1 +A12x
(2)
t−1 +B1εt (3.3.27)

x
(2)
t = A21ft−1 +A22x

(2)
t−1 +B2εt (3.3.28)

χnt = Cn1 ft. (3.3.29)

Furthermore, as can be easily seen, we may assume throughout w.l.o.g. that Γf = E ftf ′t = Is.
Then ft is identifiable up to static rotations.

Now, since Cn1 is of full column rank s, we may express ft as

ft = Cn1
+χnt (3.3.30)

where Cn1
+ = (Cn1

′Cn1 )−1Cn1
′ is the pseudoinverse of Cn1 , hence the s-dimensional vector ft is

contained in the space spanned by present (scalar) variables χit, i = 1, . . . , n and is thus a
minimal static factor and (3.3.29) a static representation. Furthermore rkCn1

+ = s and (3.3.29)
and (3.3.30) imply that for any t ∈ Z, Hχ(t−) = Hf (t−), hence the prediction of χnt+h given
values χnτ , τ ≤ t only depends on the prediction of the static factor:

χnt+h|t = Cn1 ft+h|t. (3.3.31)

However, since due to observability of (A,Cn), A12 in (3.3.27) cannot be 0 (for otherwise the
system would not be minimal), the dynamics of ft and thus its prediction do still depend on
x

(2)
t . Or, in other words, if s < r the static factor does not allow for an AR(1)-representation.

Eventually, observe that (3.3.30) implies that ft can be written as

ft = Cn+
1 wn(z)εt = k(z)εt =

∞∑
j=0

Kjεt−j , (3.3.32)

where
Kj = (Is, 0s×(r−s))A

jB ∈ Rs×q. (3.3.33)

And it follows immediately that k(z) preserves the properties of wn(z) given in Theorem 3.3.1,
i.e. the (s× q) matrix k(z) is rational in z, analytic for |z| ≤ 1 and has rank q for |z| ≤ 1.

3.3.4 A canonical singular ARMA realization

Here we are going to derive an ARMA representation for the static factor ft. The difficulty here
is indeed not to show that ft has an ARMA representation, which is quite obvious, but to find
a good ARMA representation. First recall, that in general ARMA realizations are highly non
unique, that is for any given rational transfer function k many different matrix fraction descrip-
tions (MFDs) k = a−1b, where a and b are polynomial matrices respectively, corresponding to
different observationally equivalent ARMA realizations, exist. Second, many of these realiza-
tions are not convenient, in that for example the number of real parameters involved is too high.
Of course, both these aspects are of great importance for estimation (see for instance Lütkepohl
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(2005), Section 7.1 or Hannan and Deistler (1988), Section 2.3 for detailed discussions of these
problems). Thus, here we want to find an ARMA representation that is identifiable, in that
for any given transfer function k a unique parametrization can be specified, and parsimonious,
in that the dimension of the parameter space is small. Recall further, that the situation here
differs from the standard ARMA case since (ft) may be dynamically singular, i.e. (ft) may have
a singular spectral density, or in other words the static factors ft may be of higher dimension
than the fundamental shocks εt, resulting in a transfer function k that is non-square (or tall).
In the standard ARMA case, a number of identifiable realizations have been analyzed, e.g. the
final equations form or the reversed echelon form (see the references cited above for detailed
descriptions) where the latter is usually preferable because it often yields parameter spaces of
lower dimension. The realization and its derivation we are going to present here is thus similar
to the reversed echelon ARMA form, but adapted to the singular case.

Denote the Hankel matrix of k(z) by H∞(k) and the submatrix consisting of the first r block
rows of H∞(k) by Hr(k). Then with (3.3.31) we may write

χnt
χnt+1|t

...
χnt+r−1|t

 = diag(Cn1 , . . . , C
n
1 )︸ ︷︷ ︸

(rn×rs)

Hr(k)ε−t , (3.3.34)

where, denoting the first r block rows of H n
∞ by H n

r , the right hand side is equal to H n
r ε

−
t .

Since rkH n
r = rk H n

∞ = r and diag(Cn1 , . . . , C
n
1 ) has full column rank sr, it follows that

rkHr(k) = rk H∞(k) = r. Moreover, applying the same argument to the first j = 1, . . . , r
block rows of (3.3.34), 

χnt
...

χnt+j−1|t

 = diag(Cn1 , . . . , C
n
1 )︸ ︷︷ ︸

(jn×jr)

Hj(k)ε−t , (3.3.35)

for j = 1, . . . , r, the rank of Hj(k) is the same as of H n
j , implying that up to permutations

the Kronecker indices of H∞(k) are the same as the s non-zero Kronecker indices of H n
∞; in

particular all Kronecker indices of H∞(k) are strictly greater than zero.

Next we are going to show how to obtain a certain matrix fraction description (MFD) k(z) =
a−1(z)b(z), where a(z) and b(z) are (s× s) and (s× q) polynomial matrices respectively. There-
fore, let us first define a transfer function k̃(z) in the forward shift z−1 as

k̃(z) = z−1k(z−1) =
∞∑
j=0

Kjz
−(j+1). (3.3.36)

Then clearly k̃(z) is also rational and k̃(z) is strictly proper, that is lim|z|→∞ k̃(z) = 0 (the
denominator degrees are strictly higher than the numerator degrees). Note, that k̃(z) is strictly
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proper if and only if k(z) is causal. Consider any MFD of k̃(z),

k̃(z) = ã−1(z)b̃(z) (3.3.37)

of k̃(z), where ã(z) and b̃(z) are polynomial matrices in z:

ã(z) =
p̃∑
j=0

Ãjz
j , Ãj ∈ Rs×s, b̃(z) =

q̃∑
j=0

B̃jz
j , B̃j ∈ Rs×q.

Notice that MFDs always exist, since every rational matrix k̃ can be written as k̃ = c−1N , where
c is least common denominator polynomial of the entries of k̃ and where N is a polynomial, and
hence the existence of (3.3.37) is guaranteed. It then follows, since z−1k(z−1) = ã−1(z)b̃(z), that

k(z) = ã−1(z−1)
(
b̃(z−1)z−1

)
(3.3.38)

is an MFD of k(z) in the forward shift z−1. To obtain an MFD of k(z) in the backward shift z,
we may set

k(z) = (diag(zr1 , . . . , zrs)ã(z−1)︸ ︷︷ ︸
a(z)

)−1 (diag(zr1 , . . . , zrs)b̃(z−1)z−1)︸ ︷︷ ︸
b(z)

, (3.3.39)

where ri denotes the (maximum) degree of the i-th row of ã(z)3.The fact that k̃(z) is strictly
proper implies that the degree of the i-th row of b̃(z) is strictly less than ri. Hence a(z) and
b(z) in 3.3.39 are indeed polynomial matrices.

To construct an MFD ã−1b̃ of k̃, we write (using (3.3.36) and (3.3.37))

ã(z)

 ∞∑
j=0

Kjz
−(j+1)

 = b̃(z). (3.3.40)

From a comparison of coefficients in (3.3.40) corresponding to all negative powers of z we obtain(
Ã0, Ã1, . . . , Ãp̃, 0, . . .

)
H∞(k) = 0s×∞, (3.3.41)

and from a comparison of coefficients in (3.3.40) corresponding to all non-negative powers of z,
we have

(
Ã0, Ã1, . . . , Ãp̃, 0, . . .

)


0 0 . . .

K0 0 . . .

K1 K0 0 . . .

K2 K1 K0 . . .
...

...
...

. . .

 =
(
B̃0, B̃1, . . .

)
. (3.3.42)

Consequently, given k̃(z), every ã(z) satisfying (3.3.41) and such that det ã(z) 6≡ 0 and deter-
mining b̃(z) from (3.3.42) gives an MFD of k̃(z). Next we will specify one particular MFD of

3As will be seen below, it is not coincidental that we use the same notation for the maximum degrees of ã(z)

and the Kronecker indices.
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k̃(z) making use of the uniquely defined Kronecker indices corresponding to k(z).

Hence, let α = (r1, . . . , rs) be the Kronecker indices of H∞(k) and h(1, 1), . . . , h(r1, 1),. . . , h(s, 1),
. . . , h(rs, s) the corresponding basis rows. Then by expressing the rows h(ri + 1, i), i = 1, . . . , s
as linear combinations of all preceding basis rows

− h(ri + 1, i) =
s∑
j=1

rij∑
u=1

ãij,u−1h(u, j), i = 1, . . . , s (3.3.43)

where

rij =

{
min(ri + 1, rj) for j < i

min(ri, rj) for j ≥ i,
(3.3.44)

a special relation of the form (3.3.41) has been chosen, where the unique coefficients ãij,u are
the (i, j) element of Ãu, the (i, i) element of Ãri is ãii,ri = 1 and all other elements are equal to
zero. Then p̃ = max(r1, . . . , rs).

Since for k(z) given, the Kronecker indices are unique, we have uniquely defined ã(z). Next,
b̃(z) is obtained from (3.3.42) and is thus unique too. Notice that, (3.3.42) implies B̃j = 0,
j > p̃− 1. Moreover, the corresponding MFD of k̃(z) has the following properties (see Hannan
and Deistler (1988), section 2.5. for details).

(i) ãii are monic polynomials4. This is an immediate consequence of (3.3.43).

(ii) Denoting the order of a polynomial p by v(p),

v(ãij) ≤ v(ãii) = ri j ≤ i;

v(ãij) < v(ãii) j > i;

v(ãji) < v(ãii) j 6= i;

v(b̃ij) < v(ãii).

Again, these are straight forward consequences of (3.3.43). Moreover, it follows that ã(z)
is both row reduced and column reduced5 and hence r = v(det ã(z)), which can be shown
to imply that

(iii) (ã, b̃) is left prime, i.e. the only left divisors of (ã, b̃) are unimodular matrices or in other
words ã and b̃ have no common factors, except for unimodular ones and are thus chosen
in the least redundant way.

Consequently, we obtain a unique ARMA realization of k(z) in the forward shift z−1 as

k(z) = ã−1(z−1)
(
b̃(z−1)z−1

)
, (3.3.45)

4A monic polynomial is a polynomial whose term of highest degree has a coefficient of 1.
5Let ai =

∑v(ai)
u=0 ai(u)z

u denote the i-th row of a s × s matrix a. Then the matrix [a]r =

(a1(v(a1))
′, . . . , as(v(as))

′)′ is called row end matrix of a and a is called row reduced, if rk [a]r = s. Column

reducedness is defined analogously.
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where (ã(z), b̃(z)) has the properties discussed above. This realization will be called the (singu-
lar) echelon ARMA realization of k(z), for its obvious similarity to echelon ARMA realizations
and where the term singular refers to the singular spectral density of the corresponding station-
ary process and the singular one-step prediction errors K0εt. From (3.3.39) we then obtain a
unique ARMA realization in the backward shift z that has similar properties and will be called
the reversed (singular) echelon ARMA realization of k(z).

The following simple example will illustrate the construction of a canonical ARMA realization.

Example 3.3.3. Consider the following non-generic minimal state space system:

A =

 0 0 1
0 0 0
0 1 0

 , B =

 0
1
0

 , Cn =


1 0 0
0 1 0
1 0 0

...

 , (3.3.46)

where q = 1, s = rkCn = 2 and r = 3, since

C3 =

 0 0 1
1 0 0
0 1 0

 (3.3.47)

is of full (row) rank and

O3 =

 1 0 1 . . . 0 0 0 . . . 0 0 0 . . .

0 1 0 . . . 0 0 0 . . . 1 0 1 . . .

0 0 0 . . . 1 0 1 . . . 0 0 0 . . .


′

(3.3.48)

is of full column rank and from O3 we obtain that the non-zero Kronecker indices are r1 =
1, r2 = 2.

The transfer function k(z) corresponding to the static factor is

k(z) = (I2, 0)(I3 −Az)−1B =

(
0
1

)
+

(
0
0

)
z +

(
1
0

)
z2 =

(
z2

1

)
, (3.3.49)

with Hankel matrix

H3(k) =



0 0 1
1 0 0
0 1 0
0 0 0
1 0 0
0 0 0


, (3.3.50)

of rank 3 and where the first basis rows are h(1, 1), h(2, 1), h(1, 2) implying that the correspond-
ing Kronecker indices are r1 = 2, r2 = 1.
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The corresponding strictly proper transfer function (3.3.36) is then

k̃(z) = z−1k(z−1) =

(
0
1

)
z−1 +

(
0
0

)
z−2 +

(
1
0

)
z−3 =

(
z−3

z−1

)
. (3.3.51)

To obtain an MFD ã−1b̃ of (3.3.51) we may use (3.3.43) to determine ã, hence

− h(3, 1) = ã11,0h(1, 1) + ã12,0h(1, 2) + ã11,1h(2, 1) (3.3.52)

−h(2, 2) = ã21,0h(1, 1) + ã22,0h(1, 2) + ã21,1h(2, 1), (3.3.53)

from which we get that ã11,0 = ã11,1 = ã21,0 = ã22,0 = ã21,1 = 0, ã12,0 = −1 and ã11,2 = ã22,1 = 1,
hence

Ã0 =

(
0 −1
0 0

)
, Ã1 =

(
0 0
0 1

)
, Ã2 =

(
1 0
0 0

)
. (3.3.54)

Determining b̃ from (3.3.42) yields

B̃0 =

(
0
1

)
, B̃1 =

(
0
0

)
. (3.3.55)

Finally from (3.3.39) we obtain

a(z) =

(
z2 0
0 z

)(
z−2 −1
0 z−1

)
=

(
1 −z2

0 1

)
and (3.3.56)

b(z) =

(
z2 0
0 z

)(
0
1

)
z−1 =

(
0
1

)
. (3.3.57)

�

The next theorem summarizes the properties of the reversed (singular) echelon realization.

Theorem 3.3.4. Let k(z) be a rational (s × q) transfer function (s ≥ q), analytic for |z| ≤ 1
and with rk k(z) = q for |z| ≤ 1. Let the corresponding Kronecker indices be α = (r1, . . . , rs)
with

∑
i ri = r ≥ s and ri ≥ 1, i = 1 . . . , s. Then a unique ARMA realization in the backward

shift z of the form
k(z) = a−1(z)b(z) (3.3.58)

is defined, where

a(z) = A0 −
P∑
j=1

Ajz
j , Aj ∈ Rs×s, b(z) =

Q∑
j=0

Bjz
j , Bj ∈ Rs×q,

are determined by (3.3.43), (3.3.42) and (3.3.39). This MFD has the following properties

(i)

aii(z) = 1−
ri∑
u=1

aii,uz
u, i = 1, . . . , s

aij(z) = −
ri∑

u=ri−rij+1

aij,uz
u, i, j = 1, . . . , s, i 6= j,
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where rij has been defined in (3.3.44). (A0 is lower triangular and all its diagonal elements
are equal to 1.)

(ii)

bij(z) =
ri−1∑
u=0

bij,uz
u, i = 1, . . . , s, j = 1, . . . , q

(iii) (a, b) is left prime.

Proof. Properties (i) - (ii) are immediate consequences of (3.3.43), (3.3.42) and (3.3.39) and the
properties of (ã(z), b̃(z)) discussed above. Property (iii) follows from the fact that (ã, b̃) is left
prime and A0 has full rank s (see Hannan and Deistler (1988), proof of Lemma 2.4.2). �

Hence, in general the degree of the i-th row of a(z) is equal to ri: v(aij) ≤ ri, i, j = 1, . . . , s and
the degree of the i-th row of b(z) is equal to ri − 1: v(bij) = ri − 1, i = 1, . . . , s, j = 1, . . . , q.
Then, in general for the ARMA orders we have P = max(r1, . . . , rs) and Q = max(r1, . . . , rs)−1.
Indeed some of the free parameters may be zero and hence either P or Q may actually be smaller
than the above values (see the example above). The number of free parameters in the (reversed)
singular echelon realization, dα say, is determined by the Kronecker indices α and equals

dα = r(1 + q) +
∑
i6=j

rij

as can be seen from Theorem 3.3.4 (i)-(ii). Further, also the positioning of the free parameters
is determined by the Kronecker indices. The following example will illustrate the role of the
Kronecker indices.

Example 3.3.4. For dimensions q = 1, s = 2 and Kronecker indices α = (3, 1) given, we get r = 4,
r12 = 1, r21 = 2 and thus there are 11 free parameters (= dα) to appear in the singular echelon
ARMA form (3.3.59) and the reversed singular echelon ARMA form (3.3.60), respectively, and
the ARMA orders are P = 3, Q = 2:

ã(z) =

(
ã11,0 ã12,0

ã21,0 ã22,0

)
+

(
ã11,1 0
ã21,1 1

)
z +

(
ã11,2 0

0 0

)
z2 +

(
1 0
0 0

)
z3

b̃(z) =

(
b̃1,0

b̃2,0

)
+

(
b̃1,1

0

)
z +

(
b̃1,2

0

)
z2 (3.3.59)

a(z) =

(
z3 0
0 z

)
ã(z−1)

=

(
1 0

ã21,1 1

)
+

(
ã11,2 0
ã21,0 ã22,0

)
z +

(
ã11,1 0

0 0

)
z2 +

(
ã11,0 ã12,0

0 0

)
z3

b(z) =

(
z3 0
0 z

)
b̃(z−1)z−1 =

(
b̃1,2

b̃2,0

)
+

(
b̃1,1

0

)
z +

(
b̃1,0

0

)
z2, (3.3.60)
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whereas the corresponding unrestricted standard ARMA(3,1)-realization (see below for a defi-
nition) involves 18 free parameters.

For α = (2, 2) leaving q and s unchanged, we get that r = 4 as before, and since r12 = r21 = 2
there are 12 free parameters to appear in the singular echelon ARMA form (3.3.61) and the
reversed singular echelon ARMA form (3.3.62), respectively, and for the ARMA orders we have
P = 2, Q = 1:

ã(z) =

(
ã11,0 ã12,0

ã21,0 ã22,0

)
+

(
ã11,1 ã12,1

ã21,1 ã22,1

)
z +

(
1 0
0 1

)
z2

b̃(z) =

(
b̃1,0

b̃2,0

)
+

(
b̃1,1

b̃2,1

)
z (3.3.61)

a(z) =

(
z2 0
0 z2

)
ã(z−1)

=

(
1 0
0 1

)
+

(
ã11,1 ã12,1

ã21,1 ã22,1

)
z +

(
ã11,0 ã12,0

ã21,0 ã22,0

)
z2

b(z) =

(
z2 0
0 z2

)
b̃(z−1)z−1 =

(
b̃1,1

b̃2,1

)
+

(
b̃1,0

b̃2,0

)
z, (3.3.62)

thus here the unrestricted standard ARMA(2,1)-realization and the reversed singular echelon
realization coincide (which is a consequence of all Kronecker indices being equal). �

In an analogous way to standard echelon realizations, it can be shown that the reversed singular
echelon form is identifiable, i.e. if an ARMA realization is in reversed singular echelon form the
realization is unique within the class of reversed singular echelon forms (which follows mainly
from the fact that the singular echelon form makes use of the uniquely defined Kronecker in-
dices). Notice that if actually s = q, that is if k is square, then the reversed singular echelon
form and the reversed echelon form coincide (although in the standard ARMA context Kro-
necker indices as well as Hankel matrices are usually defined in a different way).

Remark 3.3.2. If s = r, i.e. if the minimum state dimension equals the minimum static factor
dimension, all Kronecker indices are equal to 1, implying that the canonical MFD a−1b from
(3.3.43), (3.3.42) and (3.3.39) reduces to an AR(1) realization implying further that the singular
reversed echelon ARMA realization coincides with the transition equation of a minimum state
space realization.

It is immediate, that any MFD k(z) = a−1(z)b(z), where (a, b) is left prime, and thus the
canonical MFD given in (3.3.43), (3.3.42) and (3.3.39) has to satisfy

- The stability condition: det a(z) 6= 0 for |z| ≤ 1, since otherwise k(z) would not be analytic
on |z| ≤ 1.

- The miniphase (or invertibility) condition: rk b(z) = q for |z| ≤ 1, since otherwise k(z)
would not be of rank q on |z| ≤ 1.
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Left multiplying (a(z), b(z)) from Theorem 3.3.4 by A−1
0 , we get an ARMA realization of k(z)

that is in standard form, i.e. the new AR coefficient at lag 0, Ā0 say, equals Is. Further, if the
realization is in standard form, the MA coefficient at lag 0, B̄0 say, equals K0. Clearly, this
realization preserves the left-primeness and the ARMA orders (P,Q) of the echelon parametriza-
tion. However requiring only, that Ā0 = Is is in general not enough to describe a unique set of
parameters. An important special case in which the unrestricted standard form is equal to the
reversed echelon form and is thus identifiable, occurs if all Kronecker indices are equal, as can
be easily seen from 3.3.4 (i)-(ii). In any case, for some purposes (e.g. for prediction) it is more
convenient to use the standard form.

3.3.5 The quasi-static representation of the GDFM

Summarizing, we have shown that under Assumptions 1.1 and 3.1 there always exists a (quasi)-
static representation of (2.1.1) of the form

ynt = Λ̄nft + unt , (3.3.63)

where Λ̄n is an (n × s) dimensional static factor loading matrix6 and ft is an s-dimensional
static factor (s ≥ q), where for sufficiently large n, rk Λ̄n = s holds and where ft solves an
ARMA(P,Q) system,

a(z)ft = b(z)εt, (3.3.64)

with the following properties:

- a(z) = Is − A1z − . . . − AP z
P and b(z) = B0 + Bz + . . . + BQz

Q are (s × s) and (s × q)
dimensional polynomial matrices and (a, b) is left prime, and where

- The stability condition (det a(z) 6= 0 for |z| ≤ 1) and the miniphase condition (rk b(z) = q

for |z| ≤ 1) hold.

- The q-dimensional white noise (εt) are the linear innovations of (χnt ) and ft, and Γε = Iq,
and may be seen as the q-dimensional dynamic factor process corresponding to the Wold
representation of χnt (fundamental shocks).

- Denoting the transfer function corresponding to the Wold representation of ft by k = a−1b

and its Kronecker indices by α = (r1, . . . , rs), then the order P of a(z) is less or equal to
max(r1, . . . , rs) and the order Q of b(z) is strictly less than max(r1, . . . , rs).

Concerning identifiability resuming the main results, we have that

- Under the assumption that Γf = Is and for given Γnχ, Λ̄n and ft in (3.3.63) are identifiable
up to static rotations. Hence identification consists in choosing a specific rotation (see
below).

6To avoid confusion, notice, that in the context of state space realizations Λ̄n was denoted by Cn
1 . The

renaming shall emphasize that it is a static factor loading matrix.
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3.3. A system theoretic analysis of the latent variables

- For given (ft), then ft = k(z)εt and k(z) and εt are identifiable up to static rotations.
Again identification consists in choosing a specific rotation. One possibility to do this is
to impose q(q − 1)/2 zero restrictions on K0 since orthonormality of εt already implicates
q(q + 1)/2 restrictions, for instance by requiring the upper triangular part of K0 to be 0.
Then k(z) is identifiable up to sign changes of its columns.

- For given k(z), the ARMA realization (3.3.64) in standard form is in general not identifi-
able. One possibility to reach identifiability is the derivation via the singular echelon form
as described above, but of course other identification conditions are also conceivable (see
for instance Hannan and Deistler (1988) for a discussion of structural identifiability).

3.3.6 AR-representation of the static factor and zeroless transfer function

case

In the sequel we are going to analyze the autoregressive representation of the static factors with
special emphasis on the case in which the spectral factor wn in (3.3.2) is zeroless, i.e. rkwn = q

for all z ∈ C (see also Anderson and Deistler (2008)). Recall that a regular ARMA system (in
the sense that b is square) that satisfies the miniphase assumption det b(z) 6= 0 for |z| ≤ 1 can be
expressed as an AR system of in general infinite order. Quite obviously, this AR system is finite
if and only if b is unimodular. In the singular ARMA case the requirement for the existence of
a finite AR realization then translates to the condition that b is zeroless. It is easy to see that b
is zeroless if wn is zeroless, which is, as we will see, a generic property in the GDFM framework,
where n >> q. Therefore consider the intuitive example of a polynomial wn with q = 1. Then
rkwn(z0) = 0 for some z0 ∈ C if and only if z0 is a common root of all n polynomial entries of
wn. A zero of wn thus requires the coefficients to satisfy n − 1 constraints − being zeroless is
therefore a generic property.

Let us however start with the general case, where we only require rkwn(z) = q for |z| ≤ 1, which
as stated above implies that k(z) in (3.3.32) and thus also b(z) in (3.3.64) have full column rank
q for |z| ≤ 1 (miniphase assumption). Recalling that b(z) can be written as

b = ulv, (3.3.65)

where the (s×s) and (q×q) polynomial matrices u and v are unimodular, and where the (s×q)
polynomial matrix l, i.e. the Smith form of b, is diagonal and displays the zeros of b (see e.g.
Hannan and Deistler (1988), Lemma 2.2.3) - hence l does not have any zeros for |z| ≤ 1. Thus
defining b− as

b− = v−1(l′l)−1l′u−1, (3.3.66)

wee see, that, because l does not have any zeros for |z| ≤ 1, by its diagonality the same holds for
l′l, b− is analytic in an open disc containing the unit disc and can be extended in a convergent
power series in the same region. Thus, b− is a one-sided (causal) left inverse of b, implying that
(εt) can be expressed as a causal linear transformation of (ft),

εt = b−(z)a(z)ft. (3.3.67)
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3.3. A system theoretic analysis of the latent variables

Writing equation (3.3.64) as

a(z)ft = (b(z)− b(0))εt + b(0)εt (3.3.68)

and substituting (3.3.67), we obtain that ft solves the possibly infinite AR system[
Is − (b(z)− b(0))b−(z)

]
a(z)︸ ︷︷ ︸

φ(z)

ft = b(0)εt (3.3.69)

where Φ0 = φ(0) = Is, φ(z) = Is −
∑∞

k=1 Φkz
k with

∑∞
k=0 ‖Φk‖2 <∞ and b(0) = B0 = K0.

Getting back to the zeroless case, it follows immediately that if wn(z) is zeroless, then k(z) in
(3.3.32) and thus also b(z) in (3.3.64) are zeroless. Hence the Smith-form l of b in (3.3.65) is
equal to l = (Iq, 0)′ and b− reduces to

b− = v−1l′u−1, (3.3.70)

which is polynomial, implying that φ(z) in (3.3.69) is polynomial. Consequently, in the zeroless
case the quasi-static factor ft always allows of a finite-order AR representation.

In any case, denoting the Hilbert space spanned by all past and present values fiτ , i =
1, . . . , s, τ ≤ t by Hf (t−) and in an analogous way the Hilbert space spanned by all past and
present values εiτ , i = 1, . . . , q, τ ≤ t by Hε(t−), then

Hf (t−) = Hε(t−).

Writing the AR representation of ft, (3.3.69) as

ft =
∞∑
k=1

Φkft−k +B0εt,

it follows that the two terms on the right hand side are orthogonal. In fact, the first term
on the right is the projection of ft onto Hf ((t − 1)−) and is thus the best linear least squares
one-step ahead predictor of ft given information up to time t − 1 and the second term is the
corresponding prediction error (see Chapter 4). By the projection theorem we know that this
projection exists and is unique. On the other hand we get from equation (3.3.65) that, if q < s,
the (s − q) bottom rows of u−1(z)b(z) only consist of zeros, and since u−1 is polynomial and
of full rank, this implies that there exist s-dimensional polynomial vectors p(z), p(z) 6= 0, such
that p′(z)b(z) = 0 and hence p′(z)a(z)ft = 0. Consequently, there exist a vector a and some
integer R, such that

a′


ft

ft−1

...
ft−R

 = 0.

Hence, if q < s, the random variables fiτ , i = 1, . . . , s, t − R − 1 ≤ τ ≤ t − 1 are linearly
dependent and thus fiτ , i = 1, . . . , s, τ ≤ t − 1 form no basis of Hf ((t − 1)−), such that in
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3.3. A system theoretic analysis of the latent variables

general the coefficients Φk, k = 1, 2 . . ., in (3.3.69) are not unique.

In the zeroless case and if q < s, the finite AR representation is in general not unique in two
respects: first, the AR order is not unique, since left multiplying (φ,B0) by any polynomial p(z),
satisfying p(0) = Is and p(z)B0 = B0 yields another standard AR representation with possibly
different and arbitrarily high order, and second even for fixed AR order, the coefficients Φj are
in general not uniquely identifiable by the arguments pointed out above. The following lemma
provides a criterion for uniqueness of the AR coefficients in the zeroless case.

Lemma 3.3.1. Let φ(z) = Is − Φ1z − . . . − Φpz
p and (φ,B0) be left prime. For p fixed, the

coefficients Φj, j = 1, . . . , p are unique if and only if rk(Φp, B0) = s. In this case, p is minimal,
i.e. there does not exist any observationally equivalent AR representation (φ̃, B̃0) with lower
order than p.

Proof. Since (φ,B0) is left prime, all observationally equivalent AR representations (φ̃, B̃0) with
φ̃(0) = Is have to satisfy (φ̃, B̃0 = B0) = u(φ,B0), where the (s × s) polynomial matrix u, is
such that u(0) = Is and u(z)B0 = B0. Hence u = Is + ũ, where ũ(0) = 0 and ũ(z)B0 = 0. Let u
be of order m, then for fixed p a comparison of coefficients yields ŨmΦp = 0, thus combining the
zero requirements Ũm has to solve Ũm(Φp, B0) = 0. If rk(Φp, B0) = s, it follows that Ũm = 0,
implying that u(z) = Is.

Conversely, if rk(Φp, B0) < s, let ũ(z) = Ũ1z. From a comparison of coefficients we get that
Ũ1Φp = 0 and there exist non trivial Ũ1 satisfying Ũ1(Φp, B0) = 0.

Finally, the proof that p is minimal if rk(Φp, B0) = s holds, follows from exactly the same
arguments as used in the first part of this proof. �

An important case in which the conditions of Lemma 3.3.1 are satisfied occurs if r = s, i.e. if the
minimum state dimension coincides with the minimum static factor dimension. In this case, the
non-zero Kronecker indices corresponding to wn and hence all Kronecker indices corresponding
to k are equal to 1, and the reversed echelon ARMA realization of k, k = a−1b reduces to an
AR(1) realization in standard form,

ft = A1ft−1 +B0εt, (3.3.71)

where (a,B0) is left prime. Furthermore, (3.3.71) coincides with the transition equation of a
minimal state space realization of wn, thus in particular the pair (A1, B0) is controllable, i.e.
rkCr = rk(B0, A1B0, . . . , A

r−1
1 B0) = r. Now, let us assume that rk(A1, B0) < r, then there

exists a regular (r × r) matrix T , such that the bottom rows of T (A1, B0) only contain zeros,
implying that the bottom rows of TCr only contain zeros too, which is in contradiction to
controllability.
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Chapter 4

Prediction in the GDFM

Prediction is one of the the main objectives in dealing with factor models (see for instance
Deistler and Hamann (2005), Stock and Watson (2005) and Forni et al. (2005a)). If the objec-
tive is the prediction of a high-dimensional time series (e.g. in forecasting the asset returns of a
large portfolio), then as stated in Tiao (2001) multivariate modeling may improve the forecast
accuracy when there is information on one component contained in the historical data of another
one. Then a factor model approach may be advantageous compared to traditional multivariate
time series models, since it allows of a sparse parametrization even if the cross-sectional dimen-
sion is large relative to sample size. If the objective is the prediction of only a single or a few
time series, relevant information on these series may be comprised in a huge number of poten-
tial ”inputs“ (e.g. in macroeconomic forecasting, see Stock and Watson (1998)). Then again,
modeling inputs and outputs jointly by using a factor model approach might be advantageous
compared to traditional modeling, in that it (partly) avoids the input selection problem without
disregarding potentially useful information, while at the same time the parametrization remains
quite sparse. Thus here we will be concerned with the prediction of future values of observations
ynt that allow for a dynamic factor model representation (2.1.1) and satisfy Assumptions 1.1, 2.1
and 3.1.

In general, the problem of prediction is to find an ”optimal“ approximation of the future value
ynt+h, h > 0, by a (measurable) function of present and past values ynτ , τ ≤ t. Here we will only
consider linear approximation functions and optimality of the prediction will be understood in
least-squares sense. Then it follows by the projection theorem, that the best linear predictor
of ynt+h, given information up to t, ynt+h|t say, is the projection of ynt+h onto the Hilbert space
spanned by present and past values of ynt , i.e.

ynt+h|t = proj(ynt+h|span(yiτ |i = 1, . . . , n, τ ≤ t)). (4.0.1)

Notice that in general (i.e. when the approximation function may be any measurable function)
the best least squares approximation of ynt+h is the conditional expectation,

ỹnt+h|t = E(ynt+h|ynτ , τ ≤ t).
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4.1. Prediction from an infinite past in the singular ARMA case

In general the determination of the conditional expectation is of rather complex nature and
requires further assumptions on the underlying distributions, whereas the projections onto
Hy(t−) = span(yiτ |i = 1, . . . , n, τ ≤ t) only depend on the second moments of the variables,
which is the main reason for restricting the approximation functions to be linear. See for in-
stance Brockwell and Davis (1987) for a more detailed description of the prediction of stationary
processes.

Since by Assumption 1.1 b) the latent variable and the noise are mutually orthogonal and since
they are both contained in H(y) (see Remark 3.1.5), we may split the prediction of ynt+h into
two separate prediction problems, i.e. the prediction of χnt+h and unt+h, respectively, and obtain
the forecast of ynt+h as the sum of the two separate predictions (see Forni et al. (2005a)). Since
by Assumption 2.1 the noise process (unt ) is only weakly correlated, it is well justified to predict
the components of unt+h by means of univariate or low-dimensional time series models, such as
e.g. univariate or low dimensional AR models. Thus here we will focus on the prediction of the
latent variable.

From representation (3.3.63) (i.e. ynt = Λ̄nft + unt ) and since rk Λ̄n = s for n sufficiently large
implies equality of the Hilbert spaces Hn

χ(t
−) = span(χiτ |i = 1, . . . , n, τ ≤ t) and Hf (t−) =

span(fiτ |i = 1, . . . , s, τ ≤ t), respectively, we obtain

χnt+h|t = Λ̄nft+h|t, (4.0.2)

implying further that we may even focus on the prediction of the static factor ft, which will be
performed using its ARMA representation (3.3.64).

It is emphasized that throughout this chapter ft, t ∈ Z, is treated as if it was observed, and
it is assumed that its ARMA representation is fully known. Of course, in practice ft and
the corresponding ARMA model have to be estimated. However the framework and methods
presented below serve as an important step towards prediction commencing from data.

4.1 Prediction from an infinite past in the singular ARMA case

We commence from the standard ARMA representation of ft,

a(z)ft = b(z)εt,

where a(z) = Is −A1z − . . .−AP z
P and b(z) = B0 +B1z + . . .+BQz

Q are (s× s) and (s× q)
dimensional polynomial matrices (s ≥ q) and where det a(z) 6= 0 for |z| ≤ 1 and rk b(z) = q for
|z| ≤ 1.

Then, as shown in Section 3.3.6 the stability and miniphase assumptions imply that the Hilbert
space spanned by all past and present values fiτ , i = 1, . . . , s, τ ≤ t, denoted by Hf (t−), and the
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4.2. Prediction from a finite past in the singular ARMA case

Hilbert space spanned by all past and present values εiτ , i = 1, . . . , q, τ ≤ t, denoted by Hε(t−),
are equal, and that further ft may be expressed by a possibly infinite autoregression, i.e.

φ(z)ft = B0εt, (4.1.1)

where φ(z) = Is −
∑∞

k=1 Φkz
k and the coefficients Φk are determined using a(z) and b(z) as

in (3.3.69). Notice, that (3.3.69) is only one particular choice for defining an autoregressive
relation of ft. However, this formulation has the convenient property, that φ(z) is polynomial
in the generic case of a zeroless transfer function k (see Section 3.3.6). We thus have

ft+1 =
∞∑
k=1

Φkft+1−k +B0εt+1 (4.1.2)

and the best linear least-squares one-step ahead predictor for ft+1, i.e. ft+1|t = proj(ft+1|Hf (t−))
by what was said in the introduction of this chapter, can be expressed as

ft+1|t =
∞∑
k=1

Φkft+1−k, (4.1.3)

since ft+1|t ∈ Hf (t−) and since the prediction error ft+1 − ft+1|t = B0εt+1 is orthogonal to
Hf (t−) because of the equivalence of the latter to Hε(t−).

The two-step ahead predictor is given by

ft+2|t = Φ1ft+1|t +
∞∑
k=2

Φkft+2−k, (4.1.4)

since ft+2|t ∈ Hf (t−) and since the prediction error ft+2 − ft+2|t = B0εt+2 + Φ1B0εt+2 is or-
thogonal to Hf (t−) by the same argument as above. In a completely analogous way, any h-step,
h ≥ 1 predictor may be determined.

Eventually, two remarks seem to be indicated. First, as analyzed in Section 3.3.6, the AR
coefficients Φk, k = 1, 2, . . . are in general not unique. However, the predictor ft+h|t, h ≥ 1 is
unique since it is a projection. Second, also as analyzed in Section 3.3.6, in the zeroless transfer
function case the AR-representation of (ft) is finite, implying of course that the predictor ft+h|t,
h ≥ 1 only depends on a finite number of past and present ft’s. In the general non-zeroless
case, since in practice ft is not available for t < 1, the last expressions are of rather theoretical
interest but cannot be computed. Of course a feasible solution is to truncate the infinite sums at
k = t+h, which yields an approximation of ft+h|t that quite obviously converges as t→∞, but
this is still not the best linear prediction from a finite past. With the latter we will be concerned
in the next section.

4.2 Prediction from a finite past in the singular ARMA case

In this section we will develop a recursive algorithm for the one-step predictors for ft+1 given a
finite number of past and present realizations, fτ , τ = 1, . . . , t,

f̂t+1 = proj(ft+1|span(fiτ |i = 1, . . . , s, τ = 1, . . . , t)), t ≥ 1. (4.2.1)
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4.2. Prediction from a finite past in the singular ARMA case

Notice, that the hat in f̂t+1 is used to distinguish this predictor from the previously defined
quantity ft+1|t, which depends on the infinite past, fτ , τ ≤ t. Furthermore, as far as one-step
predictors are concerned, for sake of simplicity we omit the term |t in the subscript of f̂t+1.
Then, as t→∞, quite evidently

f̂t+1 → ft+1|t, (4.2.2)

and thus f̂t+1 is an approximation for the (theoretical) quantity ft+1|t. Clearly, in the zeroless
case, where ft allows of a finite AR representation of order P̄ say, for t ≥ P̄ , f̂t+1 = ft+1|t =∑P̄

k=1 Φkft−k+1 and there is no need for a recursive approximation. Hence the subsequent algo-
rithms have been developed rather for the non-zeroless case, but will hold in general.

The reason for considering recursive algorithms is that for large t the direct determination of f̂t+1

from (4.2.1) requires the solution of a large system of linear equations, which can be avoided us-
ing the recursive algorithm going to be discussed below. Furthermore the latter has the property
that the predictor based on t+1 realizations uses the predictors based on t realizations, implying
that if the sample size is increased the procedure does not have to be repeated, but may sim-
ply be continued. Hence here the term ”recursive“ could be replaced by ”real-time“ or ”on-line“.

First we will present a generalization of the multivariate innovations algorithm (see Brockwell
and Davis (1987), Proposition 11.4.2), in that it allows for singular processes (zt) (in the sense
that the variance matrix of the linear innovations, (zt+1 − ẑt+1), may be singular), and second
we will show how to apply this algorithm to a possibly singular ARMA process (ft).

4.2.1 The multivariate innovations algorithm for singular innovations

Let us consider an s-dimensional process (zt), zt ∈ L2(Ω,F , P ) for t ∈ Z, where (Ω,F , P ) is the
underlying probability space and let us define the Hilbert space spanned by present and past
realizations of (zt), starting with t = 1, as Kz(t) = span(zjτ |j = 1, . . . , s, τ = 1, . . . , t). Then

ẑt+1 = proj(zt+1|Kz(t)) ∈ Kz(t)

and thus it is clear that,
(zt+1 − ẑt+1) ∈ Kz(t+ 1) \Kz(t),

implying that
Kz(t) = span(zjτ − ẑjτ |j = 1, . . . , s, τ = 1, . . . , t),

such that we may express ẑt+1 as a linear combination of its linear innovations,

ẑt+1 =
t∑

j=1

Θtj(zt+1−j − ẑt+1−j), (4.2.3)

where Θtj ∈ Rs×s, j = 1, . . . , t. The (s × s)-dimensional prediction error covariance matrices
will be denoted as

Vt = E(zt+1 − ẑt+1)(zt+1 − ẑt+1)′. (4.2.4)
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4.2. Prediction from a finite past in the singular ARMA case

If rkVt = q, q ≤ s, we may express Vt by means of its canonical decomposition as

Vt = OtΩtO
′
t,

where Ωt denotes the diagonal matrix containing the q non-zero eigenvalues of Vt in its diagonal
and Ot is the matrix of corresponding (normalized) eigenvectors. Then ẑt+1 may as well be
expressed as a linear combination of the first q principal components of its linear innovations,

ẑt+1 =
t∑

j=1

Θ̃tjO
′
t−j(zt+1−j − ẑt+1−j), (4.2.5)

where Θ̃tj ∈ Rs×q.

The next theorem will show how to recursively compute the coefficient matrices Θtj and the
prediction error covariance matrices Vt, respectively. Notice that we do not require stationarity
of (zt), but only the existence of its second moments.

Theorem 4.2.1. Let (zt), t ∈ Z, be an s-dimensional process with E zt = 0 for all t and with
covariance function K(i, j) = E(ziz′j). If for every t ≥ 1, the prediction error covariance matrix
Vt from (4.2.4) is of rank q ≤ s then the one-step predictors ẑt+1, t ≥ 0 and Vt, t ≥ 1 are given
as

ẑt+1 =

{
0 if t = 0∑t

j=1 Θtj(zt+1−j − ẑt+1−j) if t > 0
(4.2.6)

and

V0 = K(1, 1)

Vk = Ok Ωk︸︷︷︸
q×q

O′k + 0, (eigenvalue decomposition)

Θ̃t,t−k =

K(t+ 1, k + 1)−
k−1∑
j=0

Θt,t−jVjΘ′
k,k−j

OkΩ−1
k

Θt,t−k = Θ̃t,t−kO
′
k, k = 0, . . . , t− 1

Vt = K(t+ 1, t+ 1)−
t−1∑
j=0

Θt,t−jVjΘ′
t,t−j (4.2.7)

and the recursions are solved in the order V0; Θ̃1,1, Θ1,1, V1; Θ̃2,2, Θ2,2, Θ̃2,1, Θ2,1, V2; . . .

Proof. Let i < j, then zi − ẑi ∈ Kz(i) ⊆ Kz(j − 1) and since zj − ẑj is orthogonal to Kz(j − 1),
we have

(zi − ẑi)⊥(zj − ẑj), if i 6= j. (4.2.8)
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4.2. Prediction from a finite past in the singular ARMA case

Hence post multiplication of (4.2.6) by (zk+1− ẑk+1)′ for k = 0, 1, . . . , t, and taking expectations,
yields

E ẑt+1(zk+1 − ẑk+1)′ =
t∑

j=1

Θtj E(zt+1−j − ẑt+1−j)(zk+1 − ẑk+1)′

= Θt,t−kVk (4.2.9)

and since E(zt+1 − ẑt+1)(zk+1 − ẑk+1)′ = 0 implies E zt+1(zk+1 − ẑk+1)′ = E ẑt+1(zk+1 − ẑk+1)′,
we also have

E zt+1(zk+1 − ẑk+1)′ = Θt,t−kVk (4.2.10)

and hence
Θt,t−kVk = K(t+ 1, k + 1)− E zt+1ẑ

′
k+1. (4.2.11)

Replacing ẑk+1 in (4.2.11) by the representation from (4.2.6), we obtain with (4.2.10)

Θt,t−kVk = K(t+ 1, k + 1)−
k−1∑
j=0

E zt+1(zj+1 − ẑj+1)′Θ′
k,k−j

= K(t+ 1, k + 1)−
k−1∑
j=0

Θt,t−jVjΘ′
k,k−j . (4.2.12)

Since Vk = OkΩkO
′
k and since with (4.2.7) Θt,t−kOk = Θ̃t,t−k, post multiplying (4.2.12) by

OkΩ−1
k , yields

Θt,t−kOk = Θ̃t,t−k =

K(t+ 1, k + 1)−
k−1∑
j=0

Θt,t−jVjΘ′
k,k−j

OkΩ−1
k . (4.2.13)

Then we may write

zt+1 = zt+1 − ẑt+1 +
t−1∑
j=0

Θt,t−j(zj+1 − ẑj+1), (4.2.14)

and since the set (zj − ẑj), j = 1, . . . , t + 1, is orthogonal, taking the covariances of both sides
of (4.2.14) finally yields

K(t+ 1, t+ 1) = Vt +
t−1∑
j=0

Θt,t−jVjΘ′
t,t−j . (4.2.15)

�

4.2.2 The multivariate innovations algorithm in the singular ARMA case

Next we will consider the case of the (singular) causal ARMA(P,Q) process (3.3.64), i.e.

a(z)ft = b(z)εt,
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4.2. Prediction from a finite past in the singular ARMA case

where a(z) = I − A1z − . . . − AP z
P , Aj ∈ Rs×s, b(z) = B0 + B1z + . . . BQz

Q, Bj ∈ Rs×q and
(εt) is a q-dimensional white noise with Γε = Iq, and show how to apply the algorithm given in
Theorem 4.2.1, see also Brockwell and Davis (1987), Section 11.4. To facilitate computations,
instead of applying the algorithm to (ft), we will first apply it to the transformed process

wt =

{
ft 1 ≤ t ≤ max(P,Q)
a(z)ft t > max(P,Q),

(4.2.16)

that has the advantage that its covariance function K(t, u) = E(wtw′u) vanishes for |t− u| > q,
t, u > max(P,Q). Precisely, let Γf (h) = E(ftf ′t−h) be the covariance function of (ft), then
K(t, u) is given as

K(t, u) =



Γ(t− u) if 1 ≤ t ≤ u ≤ max(P,Q),
Γ(t− u)−

∑P
j=1AjΓ(t− u+ j) if 1 ≤ t ≤ max(P,Q) < u ≤ 2 max(P,Q),∑Q

j=0BjB
′
j+u−1 if max(P,Q) < t ≤ u ≤ t+Q,

0 if max(P,Q) < t and u > t+Q,

K(t, u)′ if u > t,

(4.2.17)
where we used Bj = 0 for j > Q. Moreover, since (3.3.64) satisfies the causality assumption the
Hilbert spaces spanned by present and past values of ft and wt are identical, Kf (t) = Kw(t).
Now applying Theorem 4.2.1 to (wt), we get

ŵt+1 =

{ ∑t
j=1 Θtj(wt+1−j − ŵt+1−j) if 1 ≤ t < max(P,Q)∑Q
j=1 Θtj(wt+1−j − ŵt+1−j) if t > max(P,Q),

(4.2.18)

where the coefficients Θtj and the prediction error covariances Vt are determined as in (4.2.7)
with covariance function K as in (4.2.17) and it is easily verified that when both t > max(P,Q)
and j > Q, Θtj vanishes.

To obtain the predictor f̂t+1 from (4.2.18), we project both sides of (4.2.16) onto Kf (t − 1) =
Kw(t− 1), i.e.

ŵt =

{
f̂t 1 ≤ t ≤ max(P,Q)
f̂t −A1ft−1 − . . .−AP ft−P t > max(P,Q).

(4.2.19)

Further we observe by combining (4.2.16) and (4.2.19), that the linear innovations of ft and wt
are identical, i.e.

(wt − ŵt) = (ft − f̂t), (4.2.20)

such that we obtain for f̂t+1,

f̂t+1 =

{ ∑t
j=1 Θtj(ft+1−j − f̂t+1−j) if 1 ≤ t < max(P,Q)

A1ft + . . .+AP ft+1−P +
∑Q

j=1 Θtj(ft+1−j − f̂t+1−j) if t > max(P,Q).
(4.2.21)

and
E(ft+1 − f̂t+1)(ft+1 − f̂t+1)′ = Vt. (4.2.22)
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Example 4.2.1. Consider the case of a (singular) AR(P) process ft = A1ft−1+. . . AP ft−P +B0εt.
Then all coefficients Θtj , j = 1, 2, . . ., are 0 and with (4.2.21) we obtain for t ≥ P ,

f̂t+1 = A1ft + . . .+AP ft+1−P ,

and from (4.2.22),
E(ft+1 − f̂t+1)(ft+1 − f̂t+1)′ = B0B

′
0.

�

Remark 4.2.1. It can be shown, that, since (3.3.64) satisfies the miniphase assumption, asymp-
totically for t → ∞ the Hilbert spaces spanned by εt and the first q principal components of
(ft+1 − f̂t+1), respectively, coincide, and that Vt → B0B

′
0 for t→∞.

4.2.3 h-step prediction of a singular ARMA process

Let (zt) be a process satisfying the conditions of Theorem 4.2.1. Then the best linear predictor
of zt+h, h ≥ 1, given values zτ , τ = 1, . . . , t, is defined as

ẑt+h|t = proj(zt+h|Kz(t)), (4.2.23)

which, since for h ≥ 1, Kz(t) ⊆ Kz(t+ h− 1), equals

ẑt+h|t = proj (proj(zt+h|Kz(t+ h− 1))|Kz(t))

= proj (ẑt+h|Kz(t)) . (4.2.24)

Replacing ẑt+h in the last expression with its representation in (4.2.6), we thus obtain

ẑt+h|t = proj

t+h−1∑
j=1

Θt+h−1,j(zt+h−j − ẑt+h−j)|Kz(t)

 , (4.2.25)

which, since (zt+h−j − ẑt+h−j)⊥Kz(t) for j < h, yields

ẑt+h|t =
t+h−1∑
j=h

Θt+h−1,j(zt+h−j − ẑt+h−j). (4.2.26)

For the ARMA(P,Q) process (ft) given in (3.3.64) it then follows with (4.2.21), that

f̂t+h|t =

{ ∑t+h−1
j=h Θt+h−1,j(ft+h−j − f̂t+h−j) 1 ≤ h ≤ (max(P,Q)− t)∑P
i=1Aif̂t+h−i|t +

∑Q
j=h Θt+h−1,j(ft+h−j − f̂t+h−j), h > (max(P,Q)− t),

(4.2.27)

which can be solved recursively for fixed t for f̂t+1, f̂t+2|t, . . .
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Chapter 5

Estimation of the latent variables

and the factor space

In the sequel we will be concerned with the estimation of the GDFM variables, that is in the
first place the latent variables and (a certain rotation of) the factors and the factor loadings. In
some sense, our purpose here is thus to extract the signal and to average-out the noise.

In view of Section 3.1 (see remark 3.1.3) it seems most natural to consider the dynamic PC
model to estimate the GDFM, since, as has been shown above, asymptotically these two models
coincide. The dynamic PC estimators that have been first proposed and analyzed by Forni et al.
(2000) will be discussed in detail in Section 5.1. We will see, that these estimators, albeit consis-
tent, possess a severe disadvantage, that is the involvement of two-sided and hence non-causal
filters, which obstructs their use in e.g. forecasting. For this reason, estimators based on the
quasi-static representation of the GDFM (i.e. equations (3.3.63) and (3.3.64)) that use static PC
estimators (Stock and Watson (1998)) or generalized static PC estimators (Bai and Ng (2002),
Forni et al. (2005a)) have been proposed. Since the corresponding transformations are static,
these estimators overcome the problem of two-sidedness occurring in dynamic PCA and may be
used for forecasting purposes. We will discuss these estimators and their asymptotic properties
in Section 5.2.

As distinct from the previous chapters, where we dealt with the observed process (i.e. infinitely
many observations) or the population second moments respectively, the data will now comprise
a finite number of observations, (ynt ), t = 1, . . . , T , n ∈ N fixed. Notice, that in the sequel
quantities based on a finite number of observations, hence estimators, will be provided with a
hat ˆ, e.g. if µnj denotes the j-th largest eigenvalue of Γny , then the corresponding estimate, i.e.
the j-th largest eigenvalue of the sample covariance Γ̂ny will be denoted by µ̂nj . Notice further,
that throughout this chapter the factor dimensions q and s, respectively, are assumed to be
known.
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5.1. Estimation by dynamic PCA

5.1 Estimation by dynamic PCA

Let us recall the dynamic PC model that has been introduced in section 1.2. Commencing from
the eigenvalue decomposition of the spectral density fny (1.2.10), i.e.

fny (λ) = On1 (e−iλ)Ωn
1 (λ)On1 (e−iλ)∗ +On2 (e−iλ)Ωn

2 (λ)On2 (e−iλ)∗, (5.1.1)

we have defined the n-th order PC model as ynt = χ̃nt + ũnt , where

χ̃nt = On1 (z)ψnt , ψnt = On1 (z)∗ynt , ũnt = On2 (z)On2 (z)∗ynt . (5.1.2)

Lemmas 3.1.10 and 3.1.11, that were parts of the proof of Theorem 3.1.1, have shown that the
n-th order PC variables χ̃nt and ũnt converge to the GDFM variables χnt and unt as n goes to
infinity, precisely for every i ∈ N we have that

lim
n→∞

χ̃nit = χit and lim
n→∞

ũnit = uit

in mean square.

To gain some intuition about this result consider the following simple example.

Example 5.1.1. Let us assume a one-factor model, where one half of the observations is loading
contemporaneously and the other half is loading with lag one. Precisely, let ξt be white noise
with var(ξt) = 1, unt be orthogonal white noise with covariance matrix equal to In and let
ynt = χnt + unt with

χit =

{
ξt for i = 1, 3, 5, . . . , n− 1
ξt−1 for i = 2, 4, 6, . . . , n.

,

and for simplicity assume that the cross-sectional dimension n is even and that it is always
increased by an even number.

Then the spectral density of (ynt ) can be written as

fny (λ) =
1
2π

(
(1, e−iλ, 1, e−iλ, . . .)′(1, eiλ, 1, eiλ, . . .) + In

)
,

and one easily verifies that the normalized eigenvector corresponding to the largest eigenvalue
of fny (λ), on1 (e−iλ) say, equals

on1 (e−iλ) =
1√
n

(1, e−iλ, 1, e−iλ, . . .)′,

(corresponding to the eigenvalue ωn1 (λ) = n+1
2π ). The corresponding latent PC-variables, χ̃nt =

on1 (z)on1 (z)∗ynt are thus given as

χ̃nit =

{
1
n(y1,t + y2,t+1 + y3,t + . . .)
1
n(y1,t−1 + y2,t + y3,t−1 + . . .)

=

{
ξt + 1

n(u1,t + u2,t+1 + u3,t + . . .) for i = 1, 3, . . . , n− 1
ξt−1 + 1

n(u1,t−1 + u2,t + u3,t−1 + . . .) for i = 2, 4, . . . , n,
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5.1. Estimation by dynamic PCA

where the latter terms in the last expression converge to 0 in mean square as n goes to infinity,
since var( 1

n(u1,t + u2,t+1 + u3,t + . . .+ un,t−1)) = 1
n and hence the latent PC-variables do indeed

converge to the true GDFM variables. �

This example also demonstrates that the filters involved in dynamic PCA (i.e. O1(z)O1(z)∗ and
O2(z)O2(z)∗) may be two-sided and that the definition of χ̃nt and ũnt may thus require values
ynτ , τ > t. Indeed, since the PCA filters are always of the form O(z)O(z)∗, they can only be
two-sided or static. Also, if O(z)O(z)∗ is not static, any transformation that causes the princi-
pal components to be a causal transformation of the data (see Molenaar (1987) for this type of
transformations), has to result in purely non-causal loadings and vice versa, and is thus futile if
the purpose is prediction.

Getting back to estimation, the population spectral density fny (λ) in (5.1.1) has to be replaced
by an estimator. To prove consistency of the PC estimates we will strengthen Assumption 1.1
a) in that the autocovariances of ynt decay fast enough to satisfy

Assumption 5.1 (Consistency of the spectral estimate.).
For all n ∈ N,

∞∑
s=−∞

|s|‖Γny (s)‖ <∞.

The spectral estimates we consider here are lag window estimates (also known as covariogram
smoothing estimates) and are of the form

f̂ny (λ) =
1
2π

∑
|k|≤mT

w(
k

mT
)Γ̂ny (k)e

−iλk, (5.1.3)

where Γ̂ny (k) is the sample autocovariance, w(x) is a positive even, piecewise continuous weight
function, satisfying w(0) = 1, |w(x)| ≤ 1 for all x and w(x) = 0 for |x| > 1 and mT is the
truncation parameter defining the lag window size and depending on the sample size T .

Remark 5.1.1. In practice, f̂ny cannot be evaluated at λ ∈ [−π, π], but only at discrete frequencies
λj and (5.1.3) becomes

f̂ny (λj) =
1
2π

∑
k≤mT

wk,T Γ̂ny (k)e
−iλjk,

where, choosing an equally spaced grid of frequencies

λj =
2πj

2mT + 1
, j = 0,±1, . . . ,±mT .

Under Assumption 5.1 any lag-window estimator f̂ny (λ) with appropriate smoothing weights can
be shown to satisfy

lim
T→∞

P

(
sup

λ∈[−π,π]
|f̂ij(λ)− fij(λ)| > ε

)
= 0, (5.1.4)
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for any ε > 0, where f̂ij(λ) and fij(λ) denote the (i, j) element of f̂ny (λ) and fny (λ) respectively
(for a reference see e.g. Brockwell and Davis (1987)).

Recall that eigenvalues and normalized eigenvectors are continuous functions of the correspond-
ing matrix elements (see proof of Lemma 1.2.1) and that fny is uniformly continuous in λ (see
Brillinger (1981), page 23), implying that the eigenvalues and normalized eigenvectors of fny are
themselves uniformly continuous in λ. Denote the eigenvalues and corresponding eigenvectors
of f̂ny (λ) by ω̂nj (λ) and ônj (λ) respectively, j = 1, . . . , n, then Slutsky’s Theorem together with
the uniform continuity imply that for j = 1, . . . , n and ε > 0,

lim
T→∞

P

(
sup

λ∈[−π,π]
|ω̂nj (λ)− ωnj (λ)| > ε

)
= 0 and (5.1.5)

lim
T→∞

P

(
sup

λ∈[−π,π]
‖ônj (λ)− onj (λ)‖ > ε

)
= 0. (5.1.6)

The last result indicates convergence of χ̂nt = Ô1(z)Ô1(z)∗ynt to the n-th order PC variable χ̃nt
as T →∞ and hence with Lemma 3.1.10 to the GDFM-variable χnt as n→∞. However, since
the filters involved may be two-sided and of infinite length whereas for t < 1 and t > T there
are no observations available, the filters may have to be truncated. As a consequence of the
truncation of Ô1(z)Ô1(z)∗ convergence can only be granted for a “central” part of the sample,
whereas for fixed t the estimators may never be consistent. Let the central part of an increasing
sample consist of observations ynt∗(T ), where the t∗(T ) are such that there exist real numbers a
and b and

0 < a ≤ lim infT→∞
t∗(T )
T

≤ lim supT→∞
t∗(T )
T

≤ b < 1. (5.1.7)

We may then state the following result (see Forni et al. (2000)):

Theorem 5.1.1. Under Assumptions 1.1, 2.1 and 5.1, let ε > 0, η > 0, then there exist n∗ =
n∗(ε, η) ∈ N and T ∗ = T ∗(ε, η) , such that

P (|χ̂nit − χit| > ε) ≤ η,

for all T ≥ T ∗, n ≥ n∗ and t satisfying (5.1.7).

Proof. For a proof see Forni et al. (2000), Proposition 3. �

Consequently the resulting estimates may get worse when approaching the ends of the sample
(since then truncation of the filters may have more severe effects). Since for forecasting purposes
obviously the most recent data points are of great relevance, the dynamic PC estimators may
not be optimal. Estimators that overcome the shortcomings of the dynamic PC estimates will
be discussed in the next section.
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5.2. Estimation by static or generalized static PCA

5.2 Estimation by static or generalized static PCA

First recall, that under Assumptions 1.1 and 3.1, as it has been shown in Section 3.3 there always
exists a quasi-static representation of the GDFM (2.1.1), which in general can be achieved at the
cost of a higher dimensional quasi-static factor. This representation has been given in (3.3.63)
and (3.3.64).

Our purpose here, is the estimation of the (quasi-) static factors or to be more precise the static
factor space and the estimation of the latent variable as a projection onto that space. Once
again the essential idea is to average out the noise term, but now averaging will be based on
representation (3.3.63) and the corresponding variance decomposition,

Γny = Λ̄nΛ̄n
′
+ Γnu, (5.2.1)

and will be restricted to static transformations of ynt .

To obtain asymptotic identifiability of (5.2.1) we need to assume that the s-largest eigenvalue
of Γnχ = Λ̄nΛ̄n

′
, µnχ,s say1, diverges as n → ∞ (see Chamberlain and Rothschild (1983)), which

rules out the case in which some of the elements of ft are only loaded by a finite number of
observations. This is indeed a restriction of generality, since as it is easily seen it is not implied
by Assumption 2.1 b). Consider for instance the example given in Forni et al. (2005a), i.e. the
GDFM, where χ1t = εt−1 and χjt = εt, j > 1, hence q = 1 and s = 2 and Assumption 2.1
b) is clearly satisfied. However µnχ,2 = 1 and thus bounded. Notice that on the other hand,
Assumption 2.1 a) does imply that the eigenvalues of Γnu, µ

n
u,j say, are bounded from above as

n→∞, since

Γnu =
∫ π

−π
fnu (λ)dλ ≤

∫ π

−π
ωnu,1(λ)Indλ ≤ 2π ω̄u1 In,

where ω̄u1 = ess supn(ωnu,1).

Furthermore we will assume that the eigenvalues of Γnχ, grow linearly in n and that they are
distinct.

Assumption 5.2 (Eigenvalues of Γnχ).
For j = 1, . . . , s there exist positive real constants c̄j, cj such that

0 ≤ cs ≤ lim inf
n→∞

n−1µnχ,s ≤ c̄s < . . . < c1 ≤ lim inf
n→∞

n−1µnχ,1 ≤ c̄1 <∞.

Indeed linear growth does not mean much loss of generality and is of rather technical nature,
since there is no ordering in the cross-sectional dimension and hence there is no obvious reason
why the divergence should decelerate or accelerate as n gets larger.

In the following we will consider estimates based on:
1Notice that in the sequel we will denote eigenvalues corresponding to covariance matrices by the letter µ to

distinguish them from eigenvalues corresponding to spectral densities that have been denoted by ω.
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- The static PC model as proposed and analyzed by Stock and Watson (1998).

- A generalized (or weighted) static PC model as considered by Boivin and Ng (2006).

- A generalized static PCA based on the covariance matrices resulting from the dynamic
PC model as proposed and analyzed by Forni et al. (2005a).

Let us first present these three methods. Subsequently we will then discuss their asymptotic
properties.

5.2.1 The static PC estimates

The static (or quasi-static) PC model has been discussed in detail in section 1.2. Recall however,
that commencing from the objective function

min
Bn∈Rs×n

Cn∈Rn×s

tr E(ynt − CnBnynt )(ynt − CnBnynt )′, (5.2.2)

which is minimized (for fixed s) via the canonical representation of Γny (1.2.3), i.e.

Γny = On1 Ωn
1O

n
1
′ +On2 Ωn

2O
n
2
′, (5.2.3)

if Bn = On1
′, Cn = On1 . Hence we defined the static PC variables as

χ̃n,PCAt = On1 Ωn1/2

1 ψn,PCAt , ψn,PCAt = Ωn−1/2

1 On1
′ynt , ũ

n,PCA
t = On2O

n
2
′ynt , t ∈ Z, (5.2.4)

where here we have rescaled the principal components ψn,PCAt to have unit variance. Notice,
that due to orthogonality of On1 and On2 , the latent PC variables χ̃n,PCAt are the projections of
ynt onto span(ψn,PCAit |i = 1, . . . , s).

Remark 5.2.1. Notice, that rescaling of the principal components is not necessary for estimation
(since it does not change the latent PC variables) but will simplify the proof of consistency,
since, as will be shown below, each row of Ωn−1/2

1 On1
′ is a DAS implying that ψn,PCAt converges

to the factor space as n increases.

Let us continue example 5.1.1 to gain some intuition about the static PC method.

Example 5.2.1. The one-factor GDFM may be written in static form with 2-dimensional stacked
factor ft = (ξt, ξt−1)′ and corresponding factor loading matrix

Λ̄n =


1 0
0 1
1 0
...

...

 .

The covariance matrix of ynt is equal to

Γny = Λ̄nΛ̄n
′
+ In =


1 0 1 0 . . .

0 1 0 1 . . .
...

...
...

...
. . .

+ In,
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and one may easily check that the 2 largest eigenvalues equal n
2 + 1, where

on1 =

√
2
n

(1, 0, 1, 0, . . .)′ and

on2 =

√
2
n

(0, 1, 0, 1, . . .)′

are corresponding normalized eigenvectors. The latent static PC variables are thus given as

χ̃n,PCAit =

{
2
n(y1,t + y3,t + . . .+ yn−1,t)
2
n(y2,t + y4,t + . . .+ yn,t)

=

{
ξt + 2

n(u1,t + u3,t + . . .+ un−1,t) for i = 1, 3, . . . , n− 1
ξt−1 + 2

n(u2,t + u4,t + . . .+ un,t) for i = 2, 4, . . . , n.

Again the latter terms in the last expressions vanish in mean square as n goes to infinity, since
var( 2

n(u1,t + u3,t + . . . + un−1,t)) = 2
n and hence the latent static PC variables do converge to

the true GDFM variables. However the rate of convergence is two times slower than it is for
the dynamic PC variables, which is explained by the fact that here only half of the variables are
exploited to average out the noise term. �

For estimation Γny in (5.2.3) is replaced by the sample covariance

Γ̂ny =
1
T

T∑
t=1

ynt y
n′
t , (5.2.5)

and the static PC estimates are then using an obvious notation given as

χ̂n,PCAt = Ôn1 Ω̂n1/2

1 ψ̂n,PCAt , ψ̂n,PCAt = Ω̂n−1/2

1 Ôn
′

1 y
n
t , û

n,PCA
t = Ôn2 Ô

n′
2 y

n
t , t = 1, . . . , T. (5.2.6)

Remark 5.2.2. Notice that, since by Lemma A.1.1, on1 , . . . , o
n
s are the solution of

oni = arg maxb∈Rn×1 b′Γny b

s.t. b′b = 1, b′onj = 0, j = 1, . . . , i− 1,

(where for i = 1 only the first constraint applies), the principal components, are (apart from
rescaling) those static, orthogonal transformations of the data, that have maximum variance.

5.2.2 The generalized static PC estimates

The generalized (or weighted) static PC model is related to classical PCA in an analogous way
as generalized least squares (GLS) is related to ordinary least squares in the regression context.
Recall, that instead of equally weighting all residuals GLS weights the residuals proportional
to the inverse of the square root of their variance matrix resulting in an estimator (for the
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5.2. Estimation by static or generalized static PCA

conditional mean) that puts lower weight on observations with higher residual variance and is
such (linearly) efficient. In the multivariate, case a similar principle may be applied to the
cross-sectional dimension. Thus instead of the least squares objective function (5.2.2) we may
consider the generalized least squares problem

min
B∈Rs×n

C∈Rn×s

tr E(ynt − CnBnynt )′Γn
−1

u (ynt − CnBnynt ). (5.2.7)

Roughly speaking, here lower weight is put on observations with higher noise variance that are
therefore less reliable. Observing that (5.2.7) is equal to

min
B∈Rs×n

C∈Rn×s

tr
(
(Γn

−1/2

u Γn
1/2

y − Γn
−1/2

u CnBnΓn
1/2

y )(Γn
−1/2

u Γn
1/2

y − Γn
−1/2

u CnBnΓn
1/2

y )′
)
, (5.2.8)

and Lemma A.1.2 imply that a minimum is achieved if

Γn
−1/2

u CnBnΓn
1/2

y = V̄ n
1 ∆n1/2

1 V̄ n′
1 . (5.2.9)

Here ∆n
1 is the (s × s) diagonal matrix containing the s largest eigenvalues of Γn

−1/2

u ΓnyΓn
−1/2

u

(i.e. the s largest generalized eigenvalues of the couple of matrices(Γny ,Γ
n
u), see section A.2) in

its diagonal, and V̄ n
1 is the matrix of corresponding eigenvectors. Minimizers Bn, Cn of (5.2.7)

thus have to satisfy
CnBn = Γn

1/2

u V̄ n
1 ∆n1/2

1 V̄ n′
1 Γn

−1/2

y . (5.2.10)

And since a little algebra shows, that

Γn
−1/2

y = V̄ n∆n−1/2

1 V̄ n′Γn
−1/2

u , (5.2.11)

we obtain, that in the minimum,

CnBn = Γn
1/2

u V̄ n
1 V̄

n′
1 Γn

−1/2

u , (5.2.12)

such that we can choose Bn = V̄ n′
1 Γn

−1/2

u , Cn = Γn
1/2

u V̄ n
1 .

In view of section A.2, denoting the matrix of generalized eigenvectors of (Γny ,Γ
n
u) corresponding

to the s largest generalized eigenvalues by V n
1 , we have V n

1 = Γn
−1/2

u V̄ n′
1 and hence we may

alternatively write Bn = V n′
1 , Cn = ΓnuV

n
1 . We then may define the generalized principal

components ψ̃n,GPCAt as ψ̃n,GPCAt = V n
1
′ynt with covariance matrix equal to ∆n

1 . Hence rescaling
the generalized principal components to have unit variance, we define the generalized static PC
variables as

χ̃n,GPCAt = ΓnuV
n
1 ∆n1/2

1 ψn,GPCAt , ψn,GPCAt = ∆n−1/2

1 V n
1
′ynt , ũn,GPCAt = ΓnuV

n
2 V

n′
2 ynt , t ∈ Z.

(5.2.13)

Again, since
E(ynt ψ

n,GPCA′

t ) = ΓnyV
n
1 ∆n−1/2

1 = ΓnuV
n
1 ∆n1/2

1 ,
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the latent generalized PC variable χ̃n,GPCAt is equal to the projection of ynt onto the space
spanned by the scalar components of ψn,GPCAt .

For estimation, Γny and Γnu in (5.2.8) have to be replaced by estimators: again Γny will be replaced
by the sample covariance, however the estimation of Γnu is more delicate, since the estimate has
to be invertible. Taking e.g. the sample error covariance matrix from the corresponding un-
weighted PC model is infeasible, since it is by construction singular (with rank n−s). A feasible
alternative is the diagonal matrix containing the diagonal elements of the sample covariance of
the unweighted PC residuals in its diagonal as proposed in Boivin and Ng (2006). Clearly this
estimator disregards a potential correlation structure among the noise part. Another estimator
is the estimate based on dynamic PCA that has been proposed in Forni et al. (2005a) and
that will be discussed below. Assuming that Γ̂nu is a full rank estimator for Γnu, the estimators
corresponding to the generalized static PC model are, using an obvious notation, given as

χ̂n,GPCAt = Γ̂nuV̂
n
1 V̂

n′
1 ynt , ψ̂

n,GPCA
t = ∆̂n−1/2

1 V̂ n′
1 ynt , û

n,GPCA
t = Γ̂nuV̂

n
2 V̂

n′
2 ynt , t = 1, . . . , T.

(5.2.14)

Remark 5.2.3. Notice, that as discussed in section 3.2 under the assumption that Γnu is diagonal,
the generalized static PC estimators are equal to the maximum likelihood estimators in the
classical factor analytic model with orthogonal noise (see Lawley and Maxwell (1971), Chapter
4).

Remark 5.2.4. In correspondence to remark 5.2.2 notice, that by Lemma A.2.1, the generalized
eigenvectors vn1 , . . . , v

n
s are the solution of

vnj = arg max
b∈Rn

b′Γny b

s.t. b′Γub = 1, b′Γnuv
n
i = 0, i = 1, . . . , j − 1. (5.2.15)

(where for j = 1 only the first constraint applies). And hence the generalized principal com-
ponents are those static, orthogonal transformations of the data, that have maximal variance
under the constraint that the contributing residual variance is restricted.

5.2.3 Generalized static PC estimates of FHLR

Another estimator based on a generalized eigenvalue problem has been proposed in Forni et al.
(2005a), FHLR henceforth. It differs from the generalized PC estimators discussed above mainly
in that the covariance matrices involved are Γ̂nχ and Γ̂nu (instead of Γ̂ny and Γ̂nu) resulting from
a first-step frequency domain PCA. Hence roughly speaking, compared to the last section the
idea is, not only to put lower weight on observations with higher noise variance, but also to put
higher weight on observations with high signal variance.

In the first step, the spectral density matrix fny (λ) of ynt is decomposed into f̃nχ (λ) and f̃nu (λ)
according to the dynamic PC model (5.1.2), hence f̃nχ (λ) and f̃nu (λ) respectively are the matrices
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on the right hand side of equation (5.1.1). Then the covariance matrices of the n-th order
dynamic PC variables are given as

Γ̃nχ =
∫ π

−π
f̃nχ (λ)dλ and Γ̃nu =

∫ π

−π
f̃nu (λ)dλ. (5.2.16)

Convergence of the n-th order dynamic PC variables (5.1.2) to the corresponding GDFM vari-
ables in mean square as n→∞ (as shown in Lemma 3.1.10) implies that every element of f̃nχ (λ)
and f̃nu (λ) respectively converges to the corresponding element of the GDFM spectral densities
fnχ (λ) and fnu (λ) λ-a.e. in [−π, π] as n → ∞ (see Lemma 3.1.4). Since furthermore each of
the elements of f̃nχ (λ) and f̃nu (λ) are bounded from above by the corresponding elements of
fny (λ) and since the latter are bounded from above by Assumption 1.1, it follows by Lebesgue’s
dominated convergence theorem, that the elements of Γ̃nχ and Γ̃nu converge to the corresponding
GDFM quantities as n → ∞. Replacing fny (λ) with a consistent lag-window estimator f̂ny (λ)
(5.1.3), yields, since as argued before, eigenvectors and eigenvalues are uniformly continuous,
consistent estimates f̂nχ (λ) and f̂nu (λ) of f̃nχ (λ) and f̃nu (λ) respectively as T →∞. Concluding,

Γ̂nχ =
∫ π

−π
f̂nχ (λ)dλ and Γ̂nu =

∫ π

−π
f̂nu (λ)dλ (5.2.17)

are consistent estimates for Γ̃nχ and Γ̃nu respectively, as T →∞.

The second step consists of the estimation of the factor space and the latent variables as pro-
jections onto that space.

For the estimation of the factor space, consider the generalized eigenvalue decomposition of
Γ̃nχ with respect to Γ̃nu. Then let Dn

1 and Dn
2 denote the diagonal matrices containing the s

largest and n − s smallest generalized eigenvalues respectively in their diagonals, and let Wn
1

and Wn
2 denote the corresponding matrices of generalized eigenvectors, normalized such that

Wn
j
′Γ̃nuW

n
j = In, j = 1, 2.

The aggregates2, ψn,FHLRt say, normalized to have unit variance, are then of the form

ψn,FHLRt = (Is +Dn1/2

1 )−1Wn′
1 ynt , (5.2.18)

where the normalizing factor (Is +Dn1/2

1 )−1 results from the fact that

Wn′
1 ΓnyW

n
1 = Wn′

1(Γ̃
n
χ + Γ̃nu)W

n
1 = Dn

1 + Is.

Hence the aggregates ψn,FHLRt differ from ψn,GPCAt in that in the first case the weight matrix
consists of the generalized eigenvectors of (Γ̃nχ, Γ̃

n
u), whereas in the latter case it consists of the

generalized eigenvectors of (Γny , Γ̃
n
u). Notice, that as distinct to the methods discussed above,

2Notice, that we will show below that the components of ψn,.
t are indeed aggregates in the sense of Definition

3.1.1, however for the moment the term may as well be understood in its colloquial sense.
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the estimates here are neither the solution of a least squares problem (5.2.2) nor a generalized
least squares problem (5.2.7). However, applying Lemma A.2.1, the generalized eigenvectors
wn1 , . . . , w

n
s solve the following maximization problem

wnj = arg max
b∈Rn

b′Γnχb

s.t. b′Γub = 1, b′Γnuw
n
i = 0, i = 1, . . . , j − 1, (5.2.19)

(where the second constraint only applies for j > 1). Hence in correspondence to remark 5.2.4,
we may argue that the aggregates ψn,FHLRt , are such that the part of their variance that is
affiliated to the latent variable is maximized under the constraint that the part of their variance
that is affiliated to the noise is restricted.

The latent variables are then defined as the projections onto the space spanned by ψn,FHLRt .
Notice, that trivially,

χnt = proj(ynt |span(fit|i = 1, . . . , s))

= proj(χnt |span(fit|i = 1, . . . , s)) + proj(unt |span(fit|i = 1, . . . , s))

= proj(χnt |span(fit|i = 1, . . . , s)),

where
proj(ynt |span(fit|i = 1, . . . , s)) = E(ynt f

′
t)(E(ftf ′t))

−1ft (5.2.20)

and
proj(χnt |span(fit|i = 1, . . . , s)) = E(χnt f

′
t)(E(ftf ′t))

−1ft. (5.2.21)

Hence replacing ft by the aggregates ψn,FHLRt , the projections (5.2.20) and (5.2.21) are approx-
imated corresponding to (5.2.20) as

χ̃nt = ΓnyW
n
1 (Is + D̂n1/2

1 )−1ψn,FHLRt (5.2.22)

or, as proposed in Forni et al. (2005a), corresponding to (5.2.21), as

χ̃n,FHLRt = Γnχ(Is + D̂n1/2

1 )−1ψn,FHLRt . (5.2.23)

Lastly, for estimation, Γ̃nχ and Γ̃nu are replaced by their estimators (5.2.17).

Comparing the PCA and GPCA method on the one hand and the FHLR method on the other
hand, one may argue that since Γ̂nχ is based on the dynamic PC model it exploits the dynamic
correlation structure and may thus yield more efficient estimates. However general statements
about efficiency gains are difficult and depend largely on the underlying model structure. At
least from a theoretical point of view, the question of (asymptotic) efficiency gain is not yet an-
swered. In Forni et al. (2005a) and Boivin and Ng (2006) Monte Carlo experiments are described
showing that the FHLR and GPCA estimators are better than the PCA estimators in certain
cases, whereas the results of an empirical study in the context of macroeconomic forecasting
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(see Stock and Watson (2005)) do not show much difference. For the moment, let us get back
to our simple example (see examples 5.1.1 and 5.2.1) at least to gain some intuition about the
method.

Example 5.2.2. From the dynamic PCA of ynt (see example 5.1.1) we conclude that the spectral
density of the latent PC variable, f̃nχ (λ) = on1 (λ)ωn1 (λ)on1 (λ)∗, is of the form

f̃nχ (λ) =
1
2π

n+ 1
n


1 eiλ 1 eiλ . . .

e−iλ 1 e−iλ 1 . . .

1 eiλ 1 eiλ . . .
...

...
...

...
. . .

 ,

and hence we have for the respective covariance matrix

Γ̃nχ =
∫ −π

π
f̃nχ (λ)dλ

=
(

1 +
1
n

)
1 0 1 0 . . .

0 1 0 1 . . .

1 0 1 0 . . .
...

...
...

...
. . .

 .

Comparing Γ̃nχ to the covariance matrix of the static PC variables (see example 5.2.1) , i.e.

Γ̃n,PCAχ =
(

1 +
2
n

)
1 0 1 0 . . .

0 1 0 1 . . .

1 0 1 0 . . .
...

...
...

...
. . .

 ,

we see that its convergence to Γχ is faster as n increases which is due to the fact, that roughly
speaking, in this example, the static PCA disregards half of the variables, whereas the dynamic
PCA by aggregating lead and lagged variables exploits the whole panel.

Then, since Γ̃nχ + Γ̃nu = Γy, we have

Γ̃nu =
1
n


n− 1 0 −1 0 . . .

0 n− 1 0 −1 . . .

−1 0 n− 1 0 . . .
...

...
...

...
. . .

 .

The largest generalized eigenvalues of the pair (Γ̃nχ, Γ̃
n
u) are νn1 = νn2 = n+ 1 and

wn1 =
2√
n

(1, 0, 1, 0, . . .)′
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and
wn2 =

2√
n

(0, 1, 0, 1, . . .)′

are corresponding generalized eigenvectors (that have been normalized to satisfy wn′jΓ̃
n
uw

n
j = 1).

Determining χ̃n,FHLRt according to (5.2.23) we have, with Wn
1 = (wn1 , w

n
2 )

ψn,FHLRt = Wn′
1yt =

2√
n

(
1 0 1 0 . . .

0 1 0 1 . . .

)
yt,

(Wn′
1ΓyW

n
1 ) =

(
n+ 2 0

0 n+ 2

)
,

and

Γ̃nχW
n′
1 =


n+1√
n

0

0 n+1√
n

n+1√
n

0

. . . . . .

 .

Summarizing we then have,

χ̃n,FHLRit =

{
2
n
n+1
n+2(y1,t + y3,t + . . .+ yn−1,t)

2
n
n+1
n+2(y2,t + y4,t + . . .+ yn,t)

=

{
n+1
n+2ξt + 2

n
n+1
n+2(u1,t + u3,t + . . .+ un−1,t) for i = 1, 3, . . . , n− 1

n+1
n+2ξt−1 + 2

n
n+1
n+2(u2,t + u4,t + . . .+ un,t) for i = 2, 4, . . . , n.

We observe, that χ̃n,FHLRit albeit consistent (for n→∞) it is biased, while at the same time the
error term vanishes slightly faster than in conventional PCA. �

5.2.4 Asymptotic properties

In this subsection we will be concerned with consistency results for the three estimates presented
above. Here we will largely follow the proofs given in Forni et al. (2005a) for the FHLR-estimates
and adapt them for the PCA- and GPCA-estimates, respectively. First we will show that, as n
increases, the spaces spanned by the three aggregates ψn,.t presented above converge to the static
factor space, where convergence of spaces is understood in the sense that the perpendiculars of a
projection from one space to the other converge to 0 in mean square. Second we will show, that
the projections χ̃n,.t onto these aggregates converge to the latent GDFM variable. Notice that
these two issues still concern population results. And third, we will see, that as the sample size
T goes to infinity, the three estimates χ̂n,.t converge in probability to their population counter
parts and are thus consistent estimates for the GDFM variable χnt . Besides we will show that,
as n and T go to infinity, the (static) factor space can be consistently estimated by ψ̂n,.t

Notice that throughout this section, we will always assume w.l.o.g. that the smallest eigenvalue
of Γnu, µ

n
u,n say, is bounded away from 0 for all n ∈ N (see the the discussion below (3.1.4) for
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details) and that Γf = Is. Furthermore we will assume that the latent variables (χnt ) as well as
the noise processes (unt ) satisfy the following conditions in addition to Assumption 1.1.

Assumption 5.3.
The latent variable process (χnt ) and the noise processes (unt ), n ∈ N, are such that

• For all i, j ∈ N the processes (uitujt) are stationary with absolutely summable autocovari-
ances.

• For all i, j ∈ N the processes (χitχjt) are stationary with absolutely summable autocovari-
ances.

Assumption 5.3 implies that an analogous statement holds true for the processes (yityjt) and en-
sures that all covariance matrices involved may be consistently estimated for fixed n as T →∞
(see e.g. Brockwell and Davis (1987), 7.2).

To proof consistency in case of the GPCA and FHLR estimates, we will need the following lemma
(see Forni et al. (2005a), Lemma 7.1) providing some asymptotic properties of the generalized
eigenvalues of a couple of matrices.

Lemma 5.2.1. Given an integer s > 0, consider sequences Γn and Σn of real, symmetric positive
semi-definite (n× n)-matrices, n = s, s+ 1, . . . and assume that

- The s-th largest eigenvalue of Γn, µns say, diverges as n → ∞, whereas supn µns+1 is
bounded.

- Σn’s smallest eigenvalue, σnn say, is bounded away from 0, i.e. σinf = infn σnn > 0 and its
largest eigenvalue is bounded from above, i.e. σsup = supn σn1 <∞.

and denote by νnj , j = 1, . . . , n, the generalized eigenvalues of (Γn,Σn) in descending order of
magnitude. Then the s-th largest generalized eigenvalue diverges as n → ∞, i.e. supn νns = ∞
and νns+1 is bounded for all n ∈ N.

Proof. Since the generalized eigenvalues of (Γn,Σn) are the eigenvalues of Σn−1/2ΓnΣn−1/2,
applying the Courant-Fisher Theorem (Lemma A.1.1) yields for a given (n × (j − 1)) complex
matrix Dj of full column rank and for v such that D′

jv = 0

νnj = max
v′v=1

v′Σn−1/2
ΓnΣn−1/2

v

≤ µnj v
′Σn−1

v ≤
µnj
σinf

, (5.2.24)

where for j ≥ s+ 1 the last expression is bounded.

Let vn1 , . . . , v
n
s−1 denote the (normalized) generalized eigenvectors of (Γn,Σn) corresponding to

νn1 , . . . , ν
n
s−1. Further let On1 = (on1 , . . . , o

n
s ) denote the matrix consisting of the normalized eigen-

vectors of Γn corresponding to the s largest eigenvalues and Ωn
1 the diagonal matrix containing
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the s largest eigenvalues in its diagonal. Consider the s−1 linear equations in the s-dimensional
unknown x:

vn
′
j ΣnOn1x = 0, j = 1, . . . , s− 1. (5.2.25)

Let x0 denote a solution of (5.2.25) and define qn = On1x0, hence vn
′
j Σnqn = 0. And since Σn

is positive definite with smallest eigenvalue bounded away from 0, we can rescale x0 such that
qn

′
Σnqn = 1. From

qn
′
qn = x′0O

n′
1 O

n
1x0 = x′0x0 =: α2 (5.2.26)

and
qn

′

α
Σn q

n

α
=

1
α2

≤ σsup (5.2.27)

we get, that

x′0x0 = α2 ≥ 1
σsup

> 0. (5.2.28)

Hence

νns ≥ qn
′
Γnqn = x′0O

n′
1 ΓnOn1x0 =

= x′0Ω
n
1x0 ≥ µnsx

′
0x0 ≥

µns
σsup

, (5.2.29)

where the last expression diverges as n→∞. �

Now we can show that the space spanned by the population aggregates ψn,.t converges to the
factor space (see also Stock and Watson (1998) and Forni et al. (2005a)).

Theorem 5.2.1. Suppose Assumptions 1.1, 2.1 and 5.2 hold. Considering the projection equa-
tions,

ψn,.t = proj(ψn,.t |f1t, . . . , fst) + γn,.t (5.2.30)

and
ft = proj(ft|ψn,.1t , . . . , ψ

n,.
st ) + ηn,.t , (5.2.31)

where . replaces PCA and GPCA, then γn,.t and ηn,.t converge to 0 in mean square as n→∞.
If furthermore Assumption 5.1 holds and if the smallest eigenvalue of Γ̃nu is bounded away from
0, then the same holds true for . replaced by FHLR.

Proof. To start with, we will show that the aggregates ψn,.t converge to the space spanned by
the factors ft as n tends to infinity. All aggregates ψn,.t are of the form

ψn,.t = Bn,.ynt = Bn,.χnt +Bn,.unt (5.2.32)

where the terms on the right hand side are orthogonal, since χnt ⊥unt and where obviously
Bn,.χnt ∈ span(ft). Hence Bn,.unt are the perpendiculars of the orthogonal projection of ψn,.t
onto the static factor space and we will have to show that Bn,.unt converges to 0 in mean square
as n→∞ for either weight matrix Bn,. presented above. Since by Assumption 2.1 (unt ) is weakly
correlated, we thus have to show that the rows of either weight matrix Bn,. are DAS (albeit
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static), since then the second term on the right hand side of (5.2.32) vanishes as n→∞.

Static PCA
We have

ψn,PCAjt =
1√
µnj
onj
′ynt ,

j = 1, . . . , s, where µnj is the j-th largest eigenvalue of Γny and onj is a corresponding normalized
eigenvector. From Corollary A.1.1 we know that µnj ≥ µnχ,j and by Assumption 5.2, µnχ,j →∞,
j = 1, . . . , s, implying that µnj →∞, j = 1, . . . , s. Since furthermore onj

′onj = 1 holds, we obtain
that 1

µn
j
onj
′onj = 1

µn
j

converges to 0 for j = 1, . . . , s as n→∞ and hence 1√
µn

j

onj
′, j = 1, . . . , s, is

a DAS.

Generalized Static PCA
We have

ψn,GPCAjt =
1√
νnj
vnj
′ynt ,

j = 1, . . . , s, where νnj is the j-th largest generalized eigenvalue of (Γny ,Γ
n
u) and vnj is a cor-

responding generalized eigenvector. First recall, that the eigenvalues of Γnu are bounded from
above as n→∞, since

Γnu =
∫ π

−π
fnu (λ)dλ ≤

∫ π

−π
ωnu,1(λ)Indλ

≤ 2π ess sup
n

(ωnu,1)︸ ︷︷ ︸
ω̄u1

In,

and that the eigenvalues of Γnu are bounded away from 0. Hence we can apply Lemma 5.2.1
implying that νnj , j = 1, . . . , s diverges as n → ∞ whereas νnj , j = s + 1, . . . , n is bounded.
Furthermore vnj , j = 1, . . . , n is bounded in modulus, since 1 = vnj

′Γnuv
n
j ≥ µnu,nv

n
j
′vnj and µnu,n is

bounded away from 0. Hence 1√
νn

j

vnj
′, j = 1, . . . , s, is a DAS.

Generalized Static PCA based on dynamic PCA second moments - FHLR
We have

ψn,FHLRjt =
1√
ν̃nj + 1

wnj
′ynt ,

j = 1, . . . , s, where ν̃nj is the j-th largest generalized eigenvalue of (Γ̃nχ, Γ̃
n
u) and wnj is a corre-

sponding generalized eigenvector. First observe that the eigenvalues of Γ̃nu are bounded from
above as n→∞, since for any (n× 1) unit vector v

v′Γ̃nuv = v′
(∫ π

−π
f̃nu (λ)dλ

)
v =

∫ π

−π
v′f̃nu (λ)vdλ

≤
∫ π

−π
ωnu1(λ)dλ ≤ 2πω̄u1,

and that the eigenvalues of Γ̃nu are bounded away from 0 by assumption. Second, observing that

A = Γnu − Γ̃nu = Γ̃nχ − Γnχ
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and that for any (n× 1) unit vector v, since 0 < v′Γ̃nuv ≤ 2πω̄u1 and 0 < v′Γnuv ≤ 2πω̄u1,

|v′Av| = |v′Γnuv − v′Γ̃nuv| ≤ 2πω̄u1

implies that
Γ̃nχ + 2πω̄u1In = Γnχ + (A+ 2πω̄u1In),

where the matrix in brackets is positive semi-definite. Applying corollary A.1.1 implies that
the eigenvalues of the left hand side are larger than the eigenvalues of Γnχ, hence the s largest
eigenvalues of Γ̃nχ diverge as n → ∞. We can thus apply Lemma 5.2.1, implying that the s
largest generalized eigenvalues of (Γ̃nχ, Γ̃

n
u), i.e. ν̃nj , j = 1, . . . , s, diverge as n→∞. Furthermore

wnj , j = 1, . . . , n is bounded in modulus, since 1 = vnj
′Γ̃nuw

n
j and since the eigenvalues of Γ̃nu are

bounded away from 0. Hence 1√
ν̃n

j +1
wnj

′, j = 1, . . . , s, is a DAS.

For the orthogonal projections of ft onto the spaces spanned by ψn,.t , we have that, if

ψn,.t = proj(ψn,.t |f1t, . . . , fst) + γn,.t

= An,.ft + γn,.t (5.2.33)

then

ft = proj(ft|ψn,.1t , . . . , ψ
n,.
st ) + ηn,.t

= An,.′ψn,.t + ηn,.t . (5.2.34)

Taking the covariances of (5.2.33) and (5.2.34) we obtain

Is = An,.An,.′ + Γn,.γ = An,.′An,. + Γn,.η , (5.2.35)

where Γn,.γ and Γn,.η are the covariances of γn,.t and ηn,.t respectively. By taking the trace on both
sides we get

tr(Γn,.γ ) = tr(Γn,.η ), (5.2.36)

and since the left hand side vanishes as n→∞, the result follows. �

Hence for each t ∈ Z, the Hilbert space spanned by the scalar elements of ψn,.t ”converges“ to
the static factor space span(fjt|j = 1, . . . , s). Moreover since all ψn,.t result from static trans-
formations of ynt and have covariance equal to Is, the last result may be restated in that, there
exist orthogonal (s × s)-dimensional matrices Rn,. with Rn,.

′
Rn,. = Rn,.Rn,.

′
= Is, independent

of t, such that
‖ψn,.t −Rn,.ft‖2

converges to zero as n→∞.

The next lemma shows that any projections onto the space spanned by ψn,.t will converge to
the corresponding projections onto the static factor space. Notice the correspondence to the
definition of Cauchy sequences of spaces (see definition 3.1.3, where we introduced a similar
principle), but as distinct to definition 3.1.3 here we do not consider spaces spanned by a whole
process (t ∈ Z) but spaces spanned by single observations.
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Lemma 5.2.2. Let H denote the Hilbert space of 0-mean, square integrable random variables,
v = (v1, . . . , vs) denote an s-tuple of independent elements of H and let K = span(v1, . . . , vs).
Assume that (vn) = (vnj |j = 1, . . . , s, n ∈ N) is a sequence of s-tuples of orthonormal elements
of H, such that vnj − proj(vnj |K) converges to 0 in mean square for j = 1, . . . , s as n → ∞ and
let Kn = span(vn1 , . . . , v

n
s ). Then for any x ∈ H, proj(x|Kn) → proj(x|K) in mean square as

n→∞.

Proof. For a proof see Forni et al. (2005a). �

As a consequence we have the following lemma (see Stock and Watson (1998) and Forni et al.
(2005a)):

Lemma 5.2.3. Suppose Assumptions 1.1, 2.1 and 5.2 hold. Then every component of χ̃n,PCAt

and χ̃n,GPCAt respectively converges to the corresponding component of χnt in mean square as
n → ∞. If furthermore Assumption 5.1 holds and if the smallest eigenvalue of Γ̃nu is bounded
away from 0, then every component of χ̃n,FHLRt converges to the corresponding component of χnt
in mean square as n→∞.

Proof. The result follows immediately from Lemma 5.2.2, since χ̃n,PCAt and χ̃n,GPCAt are the
projections of ynt onto the space spanned by ψn,PCAt and ψn,GPCAt respectively and since χ̃n,FHLRt

is the projection of χnt onto ψn,FHLRt . �

So far, we have shown consistency for the population counter parts of the estimates as n→∞.
Next, we are going to show, that the estimators themselves converge to their population counter-
parts as T →∞ and hence to the GDFM variables as both n and T go to infinity. Notice, that
in the theorem and the corollaries below, T is not chosen independently of n. This is because
for n fixed and T going to infinity under the assumptions imposed Γ̂ny converges to Γny in prob-
ability (and analogous statements hold true for Γ̂nχ and Γ̂nu respectively). Here the asymptotics
considered are sequential: first T goes to infinity for fixed n and then n goes to infinity. The
proof follows the proof of Proposition 4.1 in Forni et al. (2005a).

Theorem 5.2.2. Suppose Assumptions 1.1, 2.1, 5.3 and 5.2 hold. Then, for any i ∈ N, ε > 0
and η > 0, there exist N0 = N0(ε, η) ∈ N, N0 ≥ i and T0 = T0(n, ε, η), such that for all n ≥ N0

and all T ≥ T0,

P (|χ̂n,PCAit − χit| > ε) ≤ η. (5.2.37)

If furthermore Assumption 5.1 holds and if the smallest eigenvalue of Γ̃nu is bounded away from
0, then analogously for for all n ≥ N0 and all T ≥ T0,

P (|χ̂n,PCAit − χit| > ε) ≤ η, and (5.2.38)

P (|χ̂n,PCAit − χit| > ε) ≤ η. (5.2.39)
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Proof. First for ease of notation, notice that each χ̂n,.t considered is of the form χ̂n,.t = K̂n,.ynt (e.g.
K̂n,PCA = Ôn1 Ô

n′
1 ), denote the population analogues by χ̃n,.t = K̃n,.ynt . Each K̂n,. is a product

of eigenvectors (PCA) or of eigenvectors and covariance matrices (GPCA, FHLR). Recall, that
the sample covariance Γ̂ny from (5.2.5) and the matrices Γ̂nχ and Γ̂nu from (5.2.17) converge in
probability to Γny , Γ̃nχ and Γ̃nu, respectively as T → ∞. Furthermore, since eigenvectors are
continuous functions of the matrix elements, applying Slutsky’s Theorem we have that given
n ∈ N, ε > 0 and η > 0, there exists T1 = T1(n, ε, η), such that for T ≥ T1,

P

 n∑
j=1

|K̂n
ij − K̃n

ij | > ε

 < η. (5.2.40)

Next, given n and η > 0, let M(n, η) > 0 such that

P

(
max

j=1,...,n
|yjt| ≥M(n, η)

)
< η.

Then we may write

P

 n∑
j=1

|(K̂n
ij − K̃n

ij)yjt| > ε

 ≤

P

 n∑
j=1

|(K̂n
ij − K̃n

ij)M(n, η/2)| > ε and max
j=1,...,n

|yjt| < M(n, η/2)


+ P

(
max

j=1,...,n
|yjt| ≥M(n, η/2)

)
.

Hence given n ∈ N, ε > 0 and η > 0, there exists T2 = T1(n, ε/M(n, η/2), η/2), such that for
T ≥ T2,

P (|χ̂n,.it − χ̃n,.it | > ε) = P

 n∑
j=1

|(K̂n
ij − K̃n

ij)yjt| > ε

 < η. (5.2.41)

Finally, Lemma 5.2.3 implies that given ε > 0 and η > 0, there exists N1(ε, η), such that for
n ≥ N1(ε, η),

P (|χit − χ̃n,.it | > ε) < η. (5.2.42)

Hence, defining N0(ε, η) = N1(ε/2, η/2) and T0(n, ε, η) = T2(n, ε/2, η/2), we have

P (|χit − χ̂n,.it | > ε) ≤ P (|χit − χ̃n,.it | > ε/2) + P (|χ̂n,.it − χ̃n,.it | > ε/2) < η. (5.2.43)

�

Quite obviously, also the static factor estimates ψ̂n,.t converge in probability to their population
counter parts ψn,.t as T →∞.

Lemma 5.2.4. Suppose Assumptions 1.1, 2.1, 5.3 and 5.2 hold. Then ψ̂n,PCAt converges in
probability to ψn,PCAt as T → ∞. If furthermore Assumption 5.1 holds and if the smallest
eigenvalue of Γ̃nu is bounded away from 0, then analogously ψ̂n,GPCAt and ψ̂n,FHLRt converge in
probability to ψn,GPCAt and ψn,FHLRt respectively, as T →∞.
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Proof. The result follows immediately, since Γ̂ny from (5.2.5) and the matrices Γ̂nχ and Γ̂nu from
(5.2.17) converge in probability to Γny , Γ̃nχ and Γ̃nu, respectively as T →∞ and since eigenvalues
and suitably normalized eigenvectors are continuous functions of the matrix elements. �

Summing up the results of the last lemma and Theorem 5.2.1, we may state the following
corollary, that claims that the static factors can be consistently estimated up to an orthogonal
static transformation. This is of particular importance regarding the prediction problem, since
as we have seen before, the prediction of the latent variable part can be reduced to the prediction
of the static factors (see Section 4).

Corollary 5.2.1. Suppose Assumptions 1.1, 2.1, 5.3 and 5.2 hold. Then, for any i ∈ N, ε > 0
and η > 0, there exist N0 = N0(ε, η) ∈ N, N0 ≥ i and T0 = T0(n, ε, η), such that for all n ≥ N0

and all T ≥ T0, there exist orthogonal (s× s) matrices Rn1 such that

P (|ψ̂n,PCAt −Rn
′

1 ft| > ε) ≤ η. (5.2.44)

If furthermore Assumption 5.1 holds and if the smallest eigenvalue of Γ̃nu is bounded away from
0, then analogously there exist regular (s× s) matrices Rn2 and Rn3 such that

P (|ψ̂n,GPCAt −Rn
′

2 ft| > ε) ≤ η, (5.2.45)

P (|ψ̂n,FHLRt −Rn
′

3 ft| > ε) ≤ η. (5.2.46)

Proof. As can be easily verified, the proof is essentially the same as the proof of Theorem 5.2.1
with Rn

′
j ft in place of χt, ψ

n,
t in place of χ̃n,.t and ψ̂n,.t in place of χ̂n,.t . �

Turning to the static factor loading matrix Λ̄n, the next corollary is an immediate consequence
of Theorem 5.2.1 and Corollary 5.2.1. Here let Λ̂n,. denote the factor loadings estimate corre-
sponding to ψn,.t (e.g. Λ̂n,PCA = Ôn1 Ω̂n1/2

1 ), and let Λ̄ni and Λ̂n,.i , i = 1, . . . , n denote the i-th row
of the respective matrices.

Corollary 5.2.2. Suppose Assumptions 1.1, 2.1, 5.3 and 5.2 hold. Then, for any i ∈ N, ε > 0
and η > 0, there exist N0 = N0(ε, η) ∈ N, N0 ≥ i and T0 = T0(n, ε, η), such that for all n ≥ N0

and all T ≥ T0, there exist orthogonal (s× s) matrices Rn1 such that

P (‖Λ̂n,PCAi − Λ̄ni R
n
1‖ > ε) ≤ η. (5.2.47)

If furthermore Assumption 5.1 holds and if the smallest eigenvalue of Γ̃nu is bounded away from
0, then analogously there exist orthogonal (s× s) matrices Rn2 and Rn3 such that for any i ∈ N,

P (‖Λ̂n,GPCAi − Λ̄ni R
n
2‖ > ε) ≤ η, (5.2.48)

P (‖Λ̂n,FHLRi − Λ̄ni R
n
3‖ > ε) ≤ η. (5.2.49)
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In the sequel we are going to show that indeed consistency of the static factors can be achieved
along any path (n, T ) with both n and T tending to infinity (as has been done under different
assumptions in Stock and Watson (1998) and Bai and Ng (2002)). Here, we will largely follow
the proofs given in Doz et al. (2007) and present the results exemplarily for the PCA estimates.

In order to simplify the derivations, we will fix particular rotations Rn of the factors and the
factor loadings in correspondence to the PCA estimates. Hence consider the canonical represen-
tation of Γnχ = Λ̄nΛ̄n

′
,

Γnχ = OnχΩn
χO

n′
χ ,

where Ωn
χ is the diagonal matrix whose diagonal entries are the s non-zero eigenvalues of Γnχ and

Onχ is the matrix of corresponding normalized eigenvectors. Then Λ̄n can be written as

Λ̄n = OnχΩn1/2

χ Rn
′
,

where Rn is the orthogonal (s × s) matrix of right-singular vectors of Λ̄n (or equivalently the
matrix of normalized eigenvalues of Λ̄n

′
Λ̄n) and is uniquely determined up to a sign change of

its columns3. Hence defining
Λ̃n = Λ̄nRn, f̃nt = Rn

′
ft,

we have identified Λ̃n and f̃nt up to a sign change of the columns of Λ̃n and the entries of f̃nt
respectively. Notice, that χ̃nt = Λ̃nf̃nt = χnt , but that since Rn is depending on n, Λ̃n is not
stacked anymore and f̃nt is a function of n. Hence, Λ̃n and f̃nt do not satisfy the conditions
of the factor model representation (3.3.63), however they may serve as facilities to derive the
desired results.

We will need the following preliminary results (see Doz et al. (2007), Lemma 2 and Lemma 3).
Let ω1(A) denote the largest eigenvalue of a square matrix A and ‖C‖ = (ω1(C ′C))1/2 denote
the spectral norm of an arbitrary matrix C. We use O(.) to indicate that the order relation
holds a.s., whereas Op(.) means that the order relation only holds in probability.

Lemma 5.2.5. Under Assumptions 1.1, 2.1, 3.1, 5.2 and 5.3, the following properties hold as
n, T →∞:

(i) ‖Γ̂ny − Γnχ‖ = O(1) +Op

(
n√
T

)
(ii) ‖Ω̂n

1 − Ωn
χ‖ = O(1) +Op

(
n√
T

)
Proof. (i) We may write

‖Γ̂ny − Γnχ‖ ≤ ‖Γ̂ny − Γny‖+ ‖Γny − Γnχ‖,

then the second term on the right equals ‖Γnu‖ = µnu,1 and is thus bounded for all n ∈ N, i.e.
O(1). For the first term consider

‖Γ̂ny − Γny‖2 ≤ tr(Γ̂ny − Γny )
2 =

n∑
i=1

n∑
j=1

(γ̂y,ij − γy,ij)2.

3Rn is unique (up to sign changes) since the eigenvalues of Γn
χ are supposed to be distinct.
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Taking expectations,

E ‖Γ̂ny − Γny‖2 ≤
n∑
i=1

n∑
j=1

E(γ̂y,ij − γy,ij)2 =
n∑
i=1

n∑
j=1

V (γ̂y,ij).

Under Assumption 5.3 (i), V (γ̂y,ij) = Op(1/T ), thus E ‖Γ̂ny − Γny‖2 = Op(n2/T ) and the result
follows from Markov’s inequality.

(ii) We will employ an inequality that is due Weil: let A and E denote symmetric (n × n)
matrices and let ωj(.) denote the eigenvalues in descending order of magnitude, then

|ωj(A+ E)− ωj(A)| ≤
√
ω1(E2) ≤

√
tr(E2).

Hence we obtain that
|µ̂nj − µnχ,j | ≤ ‖Γ̂ny − Γnχ‖,

which yields the result with (i). �

Lemma 5.2.6. Under Assumptions 1.1, 2.1, 3.1, 5.2 and 5.3, then there exist orthogonal (s×s)
matrices Rn such that as n, T →∞,

Ω̂n−1/2

1 Ôn
′

1 ΛnRn = Is +Op

(
1
n

)
+Op

(
1√
T

)
.

Proof. Define Ân = Ω̂n−1/2

1 Ôn
′

1 Λ̃n. First we are going to show that the off-diagonal elements of
Ân go to zero.

Observing that
Ôn1 = Γ̂ny Ô

n
1 Ω̂n−1

1 ,

we may write
Ân = Ω̂n−3/2

1 Ôn
′

1 (Γ̂ny − Γnχ)Λ̃
n + Ω̂n−3/2

1 Ôn
′

1 ΓnχΛ̃
n. (5.2.50)

Since
Λ̃n = OnχΩn1/2

χ ,

the first term on the right of (5.2.50) is

Ω̂n−3/2

1 Ôn
′

1 (Γ̂ny − Γnχ)O
n
χΩn1/2

χ ,

and since Ôn
′

1 Ô
n
1 = Is and On

′
χ O

n
χ = Is,

‖Ω̂n−3/2

1 Ôn
′

1 (Γ̂ny − Γnχ)O
n
χΩn1/2

χ ‖ ≤ µn
1/2

χ,1 µ̂n
−3/2

1 ‖Γ̂ny − Γnχ‖.

Now, µn
1/2

χ,1 µ̂n
−3/2

1 is Op( 1
n), hence it follows with Lemma 5.2.5(i) that the last expression is

Op( 1
n) +Op( 1√

T
).
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For the second term on the right of (5.2.50), notice that

ΓnχΛ̃
n = ΓnχO

n
χΩn1/2

χ = OnχΩn3/2

χ ,

such that the second term on the right of (5.2.50) is equal to

Ω̂n−3/2

1 Ôn
′

1 O
n
χΩn3/2

χ .

Furthermore, Ân is equal to
Ω̂n−1/2

1 Ôn
′

1 O
n
χΩn1/2

χ ,

hence it then follows, that

Ân = Op(
1
n

) +Op(
1√
T

) + Ω̂n−1

1 ÂnΩn
χ

and using Lemma 5.2.5(ii)

Ân = Op(
1
n

) +Op(
1√
T

) + Ωn−1

χ ÂnΩn
χ.

Hence denoting the i, j element of Ân by ânij , we have for i 6= j,

ânij =
µnχ,j
µnχ,i

ânij +Op(
1
n

) +Op(
1√
T

),

and since we assumed that all eigenvalues are distinct, it follows that

ânij = Op(
1
n

) +Op(
1√
T

).

Next we want to show that the diagonal entries of Ân converge to 1. Therefore consider,

Ω̂n
1 = Ôn

′
1 Γ̂ny Ô

n
1 = Ôn

′
1 ΓnχÔ

n
1 +Op(1) +Op(

n√
T

)

= Ôn
′

1 Λ̃nΛ̃n
′
Ôn1 +Op(1) +Op(

n√
T

),

where we used Lemma 5.2.5 together with the fact that Ôn
′

1 Ô
n
1 = Is. Hence pre and post

multiplying both sides of the last expression by Ω̂n−1/2

1 yields

Is = ÂnÂn
′
+Op(

1
n

) +Op(
1√
T

)

and thus for i = 1, . . . , n

1 =
n∑
j=1

ân
2

ij Op(
1
n

) +Op(
1√
T

)

and since ânij = Op( 1
n) +Op( 1√

T
) it follows, that

ân
2

ii = 1 +Op(
1
n

) +Op(
1√
T

).

Finally, since Rn has been defined up to a sign change of its columns, there always exists Rn,
such that

ânii = 1 +Op(
1
n

) +Op(
1√
T

).

�
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We can now turn to the main result (for a reference, see Doz et al. (2007), Proposition 2).

Theorem 5.2.3. Under Assumptions 1.1, 2.1, 3.1, 5.2 and 5.3, then there exist orthogonal
(s× s) matrices Rn such that,

(i) plim(n,T )→∞ ψ̂n,PCAt −Rn
′
ft = 0,

(ii) plim(n,T )→∞ Λ̂n,PCAi − Λ̄ni R
n = 0 for any i ∈ N.

Proof. In the following it will be assumed that Rn is defined as described above.
(i) We may write

ψ̂n,PCAt − f̃nt = Ω̂n−1/2

1 Ôn
′

1 y
n
t − f̃nt

= (Ω̂n−1/2

1 Ôn
′

1 Λ̃n − Is)f̃nt + Ω̂n−1/2

1 Ôn
′

1 u
n
t . (5.2.51)

For the first term of (5.2.51), we know from Lemma (5.2.6) that (Ω̂n−1/2

1 Ôn
′

1 Λ̃n − Is)=Op( 1
n) +

Op( 1√
T

), and since ft = O(1) then the first term is Op( 1
n) +Op( 1√

T
).

Turning to the second term of (5.2.51), we have

Ω̂n−1/2

1 Ôn
′

1 u
n
t u

n′
t Ô

n
1 Ω̂n−1/2

1 ≤ 1
µ̂ns
Ôn

′
1 u

n
t u

n′
t Ô

n
1 ,

hence taking expectations,
1
µ̂ns
Ôn

′
1 ΓnuÔ

n
1 ≤

µnu,1
µ̂ns

= Op

(
1
n

)
.

Thus it follows from Markov’s inequality that

Ω̂n−1/2

1 Ôn
′

1 u
n
t = Op

(
1√
n

)
and thus we have

ψ̂n,PCAt − f̃nt = Op

(
1√
n

)
+Op

(
1√
T

)
.

(ii) Let ei denote the i-th vector of the canonical basis of Rn, hence e.g. Λ̂n,PCAi = e′iΛ̂
n,PCA.

Then using the equalities Λ̂n,PCA = Ôn1 Ω̂n1/2

1 = Γ̂ny Ô
n
1 Ω̂n−1/2

1 and Λ̃n) = ΓnχO
n
χΩn−1/2

χ , we may
write

e′i(Λ̂
n,PCA − Λ̃n) = e′i

(
Γ̂ny − Γnχ

)
Ôn1 Ω̂n−1/2

1 + e′iΓ
n
χ

(
Ôn1 Ω̂n−1/2

1 −OnχΩn1/2

χ

)
. (5.2.52)

For the first term Lemma 5.2.5 implies

e′i

(
Γ̂ny − Γnχ

)
= Op

(√
n√
T

)
,

hence we obtain that

‖e′i
(
Γ̂ny − Γnχ

)
Ôn1 Ω̂n−1/2

1 ‖ ≤ µ̂n
−1/2

s ‖e′i
(
Γ̂ny − Γnχ

)
‖‖Ôn1 ‖
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is Op
(

1√
T

)
.

The second term of (5.2.52) may be written as

e′iΛ̃
n
(
Λ̃n

′
Ôn1 Ω̂n−1/2

1 − Λ̃n
′
OnχΩn

χ

)
= e′iΛ̃

n
(
Λ̃n

′
Ôn1 Ω̂n−1/2

1 − I
)
,

which is using Lemma 5.2.6 Op
(

1
n

)
+Op

(
1√
T

)
. Hence the result follows. �
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Chapter 6

Estimation of the ARMA model for

the static factor

So far it has been shown that under the assumptions imposed the static factors (ft) allow of an
ARMA representation and that they can be consistently estimated (up to static rotations) by
one of the methods described in the last section. The obvious next step is thus the estimation
of the ARMA model for the static factors. Throughout this chapter we will assume that all
relevant integer valued parameters, i.e. the Kronecker indices α = (r1, . . . , rs) specifying the
echelon ARMA representation of (ft), and thus the ARMA orders P and Q, as well as the
dynamic factor dimension q, are known. Hence estimation effects the coefficient matrices of the
ARMA model under consideration.

The problem of multivariate ARMA estimation has been extensively studied and a variety of
different methods is available. Important approaches are among others the (quasi-) maximum
likelihood (ML) method (see e.g. Hannan and Deistler (1988), Reinsel (1993) or Lütkepohl
(2005)), that is asymptotically efficient (see Hillmer and Tiao (1979)), the prediction error (PE)
method (see e.g. Ljung (1987) or Findley et al. (2004)) and various (iterative) regression meth-
ods (see e.g. Hannan and Rissanen (1982) or Koreisha and Pukkila (1989)). However, in general
multivariate ARMA estimation is still considered difficult compared to AR or ARX1 estimation.
Reasons for that are the comparatively more difficult specification of ARMA models and the
fact that the (most widely used) ML and PE methods require numerical optimization, which is
especially troublesome if the true model is nearly not-identifiable and in the presence of multiple
local optima. Apart from these known problems, here we will have to deal with two additional
difficulties: first, ft may be dynamically singular (i.e. its (s × s) spectral density is of rank q

and q may be smaller than s), and second ft is not observed but has to be estimated in a prior
step.

In the GDFM context, efficiency of the ARMA estimation may be subordinate considering that
ft is not observed and that the ARMA estimation will thus be applied to a (probably not

1Autoregressive with exogenous variables
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efficient) estimate ψ̂n,.t . Therefore, here we will not consider ML-estimation, but the computa-
tionally simpler and consistent autoregression-regression approach (see for instance Mayne et al.
(1984), Koreisha and Pukkila (1989) or Poskitt (1992)). First we will give a presentation of this
estimation method adapted to the general case q ≤ s and report consistency results (as T →∞)
when ft, t = 1, . . . , T , is treated as if it was observed. Second we will analyze the asymptotic
properties of the estimated ARMA model when ft is replaced by the estimates ψ̂n,.t from Section
5.2 as both n and T tend to infinity.

6.1 Autoregression-regression approach

The autoregression-regression (or two-stages least squares) approach is probably the computa-
tionally simplest method for multivariate ARMA estimation. The idea is to derive estimates
for the innovations series (εt) associated with the ARMA process through a long autoregression
fit in the first place, and then to regress ft onto lagged values of these estimates together with
lagged values of ft in order to estimate the ARMA coefficients. In the context of estimation the
non-uniqueness of the ARMA realization becomes of importance. Thus here we will make use
of the (singular) echelon ARMA realization introduced in Section 3.3.4 that provides a unique
parametrization.

Let the (singular) reversed echelon ARMA representation of ft be

A0ft = A1ft−1 + . . .+AP ft−P +B0εt +B1εt−1 + . . .+BQεt−Q, (6.1.1)

where the coefficients satisfy the conditions of Theorem 3.3.4. A unique representation in stan-
dard form thus results from left multiplying (6.1.1) by A−1

0 ,

ft = A−1
0 A1ft−1 + . . .+A−1

0 AP ft−P +A−1
0 B0εt +A−1

0 B1εt−1 . . .+A−1
0 BQεt−Q, (6.1.2)

where for the MA coefficient at lag 0 we have A−1
0 B0 = K0 (recalling that k(z) =

∑
jKjz

j

is the transfer function corresponding to the Wold representation of (ft)). Then, as shown in
Section 3.3.6, if the miniphase assumption is satisfied, ft may be expressed by a possibly infinite
autoregression, i.e.

ft =
∞∑
j=1

Φjft−j +K0εt. (6.1.3)

Recall, that generically (that is in the zeroless transfer function case) (ft) may always be repre-
sented by a finite order AR-system. Hence in general, approximating (6.1.3) by a finite autore-
gression2 of order h say, where h is greater than P (and thus Q), yields estimates for K0εt. Let
us consider an approximating model of order h,

ft =
h∑
j=1

Φh,jft−j + eh,t, (6.1.4)

2Notice that here the term autoregression is slightly misused since the innovations of an approximating finite

model are not necessarily white noise as they should be in case of an AR process.
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6.1. Autoregression-regression approach

where the first term on the right is defined as the projection of ft onto the Hilbert space spanned
by fiτ , i = 1, . . . , s, τ = t − h, . . . , t − 1. Then the coefficients Φh,j , j = 1, . . . , h solve the Yule-
Walker equations, i.e.

Γf (k) =
h∑
j=1

Φh,jΓf (k − j), for k = 1, . . . , h. (6.1.5)

Defining Gf (h) as the (hs× hs) block Toeplitz matrix, where the (i, j) block is Γf (j − i), i.e.

Gf (h) =


Γf (0) Γf (1) . . . Γf (h− 1)

Γf (−1) Γf (0) . . . Γf (h− 2)
...

...
. . .

Γf (−h+ 1) Γf (−h+ 2) . . . Γf (0)

 , (6.1.6)

then (6.1.5) can be written as

(Φh,1, . . . ,Φh,h)Gf (h) = (Γf (1), . . . ,Γf (h)). (6.1.7)

From the projection theorem we know that for any h ∈ N the projection
∑h

j=1 Φh,jft−j exist
and is unique. From the discussion in Section 3.3.6 we know that if q < s and if h exceeds some
minimum value, the random variables fiτ , i = 1, . . . , s, τ = t− h, . . . , t− 1 are linear dependent
implying that Gf (h) will be singular. If Gf (h) is singular, then in principle two situations could
arise. First, equation (6.1.7) has no solution, but this is ruled out by the projection theorem.
Second, there are infinitely many solutions for Φh,j , j = 1, . . . , h, but although the coefficients
are not unique, the projection is. Of course, in the zeroless case truncating (6.1.3) at h larger
than some minimum lag length does not mean an approximation, but a true model representa-
tion.

Now, let the fitted model be

ft =
h∑
j=1

Φ̂h,jft−j + êh,t, (6.1.8)

where Φ̂h,j , j = 1, . . . , h solve the Yule-Walker equations using the sample autocovariances

Γ̂f (s) =
1
T

T∑
t=s+1

ftf
′
t−s.

and

êh,t = ft −
h∑
j=1

Φ̂h,jft−j . (6.1.9)

Then we propose to estimate εt (or to be correct a static rotation of the true εt, i.e. H ′εt

where H ′H = HH ′ = Iq) as the first q sample principal components of êh,t. Let Γ̂e,h =
1/T

∑T
t=1 êh,tê

′
h,t be the sample covariance of êh,t, then

ε̂h,t = D̂−1/2P̂ ′êh,t, (6.1.10)
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6.1. Autoregression-regression approach

where D̂ denotes the diagonal matrix containing the q largest eigenvalues of Γ̂e,h in its diago-
nal and P̂ denotes the matrix of corresponding normalized eigenvectors. Correspondingly, the
estimate for the coefficient matrix K0 (or indeed for K0H) is given as

K̂h,0 = P̂ D̂1/2. (6.1.11)

Notice, that if k is post multiplied by an orthogonal matrix, the linear dependence structure of
the rows of the resulting transfer function will be the same as of k. Hence the Kronecker indices
as well as the AR polynomial a of the reversed echelon form will remain unchanged, and only
the MA polynomial b will be rotated.

In the next step, the estimates ε̂h,t and their lagged values will be substituted into the ARMA(P,Q)
model to set up a multivariate regression structure. Rearranging (6.1.1) we get,

ft = (Is −A0)(ft −K0εt) +A1ft−1 + . . .+AP ft−P +B1εt−1 + . . .+BQεt−Q +K0εt, (6.1.12)

where we used the fact that A0K0 = B0. Substituting the estimates êh,t and ε̂h,t−j , j = 1, . . . , Q,
respectively, yields,

ft = (Is −A0)(ft − êh,t) +A1ft−1 + . . .+AP ft−P +B1ε̂h,t−1 + . . .+BQε̂h,t−Q + vh,t, (6.1.13)

where vh,t denotes the residual. Then we set up the regression model

f = (Is −A0, A1, . . . , AP , B1, . . . , BQ)Xh + Vh (6.1.14)

where f = (fP+1, . . . , fT ), Xh = (xh,P+1, . . . , xh,T ) with

xh,t =



ft − êh,t

ft−1

...
ft−P

ε̂h,t−1

...
ε̂h,t−Q


and Vh = (vh,P+1, . . . , vh,T ) are the regression residuals. Since (6.1.1) is in reversed singular
echelon form, the coefficients satisfy a number of linear identifying restrictions (see Theorem
3.3.4). Concretely, let τ be the vector containing the elements of (Is −A0, . . . , AP , B1, . . . , BQ)
arranged in a certain order, i.e. using the vec operator, that transforms an (m × n) matrix A

into an mn vector by stacking its columns,

τ = vec(Is −A0, . . . , AP , B1, . . . , BQ).

Then there exist a restriction matrix Rα and a vector τα containing the free parameters of
(Is − A0, . . . , AP , B1, . . . , BQ) and depending on the Kronecker indices α, such that τ can be
expressed as

τ = Rατα. (6.1.15)
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6.1. Autoregression-regression approach

Vectorizing (6.1.14) yields
vec(f) = (X ′

h ⊗ Is)τ + vec(Vh), (6.1.16)

where ⊗ denotes the Kronecker product (see for instance the appendix of Lütkepohl (2005) for
a definition and basic rules) and thus

vec(f) = (X ′
h ⊗ Is)Rατα + vec(Vh). (6.1.17)

Then the least-squares estimator of τα becomes

τ̂h,α = (R′α(XhX
′
h ⊗ Is)Rα)−1R′α(Xh ⊗ Is)vec(f), (6.1.18)

from which one may easily compute the estimated coefficients Âh,j , j = 0, . . . , P and B̂h,j , j =
0, . . . , Q respectively, of the echelon form (6.1.1), where B̂h,0 = Âh,0K̂h,0.

The following example will illustrate the construction of τα and Rα.

Example 6.1.1. Consider the reversed echelon form from Example 3.3.4 given in (3.3.60), where
q = 1, s = 2 and α = (3, 1). Then

τ =



0
a21,0

0
0

a11,1

a21,1

0
a22,1

a11,2

0
0
0

a11,3

0
a12,3

0
b1,1

0
b1,2

0



, τα =



a21,0

a11,1

a21,1

a22,1

a11,2

a11,3

a12,3

b1,1

b1,2


, and Rα =



0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0



.

6.1.1 Asymptotic properties for ft known

Here, we will report consistency results for the estimation procedure described above (see for
instance Poskitt (1992) for a reference treating the standard ARMA case). Quite evidently it
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6.1. Autoregression-regression approach

is most crucial in this method, that the innovations series is consistently estimated through the
autoregression fit (6.1.8). Therefore we will need the following strengthened assumption on the
innovations process (εt).

Assumption 6.1 (Consistency of ARMA estimates).
The white noise process (εt) is an ergodic martingale difference process. Thus if (Ft) denotes
the filtration generated by (ετ ), τ ≤ t, then

E(εt|Ft−1) = 0.

Moreover,

E(εtε′t|Ft−1) = Iq and E ε4it <∞ for i = 1, . . . , q.

Notice, that the first part of Assumption 6.1 is equivalent to the statement that the best linear
predictor of ft equals the best predictor and hence is justified if linear prediction is reasonably
accurate. The second part of Assumption 6.1 is a stronger restriction of generality and not as
easy to be verified.

Theorem 6.1.1. Let (ft) have the ARMA representation (6.1.1), that is in reversed echelon
form and satisfies the stability and the miniphase assumptions and where (εt) satisfies Assump-
tion 6.1. Further let hT be such that limT→∞ hT = ∞ and limT→∞(log(T )/T )1/2hT = 0. Then

plim
T→∞

ÂhT ,j = Aj , j = 0, . . . , P

plim
T→∞

B̂hT ,j = BjH, j = 0, . . . , Q

hold, where H is a constant orthogonal (q × q) matrix.

The proof of Theorem 6.1.1 depends largely on the following result, that has been shown in
Hannan and Kavalieris (1986), admittedly for the case that q = s, however since the proofs are
not affected from possibly singular prediction errors, it still holds if q < s.

Lemma 6.1.1. Under the assumptions of Theorem 6.1.1, then

lim
T→∞

1
T

T∑
t=1

(êhT ,t −K0εt)(êhT ,t −K0εt)′ = 0 a.s., (6.1.19)

and

lim
T→∞

1
T

T∑
t=1

(K0εt)(êhT ,t −K0εt)′ = 0 a.s.. (6.1.20)

Proof. See Hannan and Kavalieris (1986). �
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6.1. Autoregression-regression approach

Obviously, the adequacy of the finite AR fit (6.1.8) depends on the choice of the lag length h.
Notice, that for given T unlike in the case of exogenous regressors the fit does not necessarily
improve by increasing h, because since lagged values of ft are required, it has to be taken into
account that the effective sample size becomes T −h. Hence by selecting a lag length that tends
to infinity as T → ∞ but not faster than (log(T )/T )−1/2 (for instance log(T )) the regression
errors êhT ,t are strongly consistent estimates. The following corollary is a nearly immediate
consequence.

Corollary 6.1.1. Under the assumptions of Theorem 6.1.1 with ε̂hT ,t as in (6.1.10) and K̂hT ,0

defined as in (6.1.11), then
plim
T→∞

ε̂hT ,t = H ′εt

and
plim
T→∞

K̂hT ,0 = K0H,

hold, where H is a constant orthogonal (q × q) matrix.

Proof. Let us first consider the singular value decomposition of K0,

K0 = PD1/2Q′.

Then we may set H = Q, hence K0H = PD1/2, K0K
′
0 = PDP ′ and H ′εt = P ′D−1/2K0εt.

Second, it follows from (6.1.19) and (6.1.20) that

lim
T→∞

Γ̂e,h =
1
T

T∑
t=1

K0εtε
′
tK

′
0 a.s.

Since the latter converges to K0K
′
0 in probability, we also have

plim
T→∞

Γ̂e,h = K0K
′
0.

Continuity of eigenvalues and normalized eigenvectors with respect to the matrix elements thus
implies (for a suitable normalization condition) plimT P̂ = P and plimT D̂ = D, the result
follows. �

Now let us define the following population quantities corresponding to M̂h,α = R′α(XhX
′
h⊗Is)Rα

and m̂h,α = R′α(Xh ⊗ Is)vec(f). Hence, the matrix

Mα =
1
2π

∫ π

−π
Xα(e−iλ)Xα(e−iλ)∗dλ, (6.1.21)

where

Xα(z) = R′α

 k(z)−K0

(z1, . . . , zP )′ ⊗ k(z)
(z1, . . . , zQ)′ ⊗H ′

⊗ Is, (6.1.22)
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6.1. Autoregression-regression approach

and the vector

mα =
1
2π

∫ π

−π
R′α

 vec(k(e−iλ)(k(e−iλ)−K0)∗)
(z1, . . . , zP )′ ⊗ vec(k(e−iλ)k(e−iλ)∗)

(z1, . . . , zQ)′ ⊗ vec(k(e−iλ)H)

 dλ. (6.1.23)

Then we have the following result.

Lemma 6.1.2. Under the assumptions of Theorem 6.1.1,

plim
T→∞

M̂hT ,α = Mα

and
plim
T→∞

m̂hT ,α = mα.

Proof. See Poskitt (1992). �

Proof. (Proof of Theorem 6.1.1)
By definition, τ̂hT ,α is obtained as the solution of the normal equations M̂hT ,αθ = m̂hT ,α. Now
let τ = vec(Is − A0, . . . , AP , B1H, . . . , BQH) and τα be the vector of free parameters in τ

corresponding to α. From its definition we get that, τα = M−1
α mα (see Poskitt (1992)). Thus it

follows from Lemma 6.1.2, that plimT τ̂hT ,α = τα. �

6.1.2 Asymptotic properties for ft estimated

Here we will assume that the GDFM is estimated using the static principal components method3,
and let ψ̂nt = ψ̂n,PCAt . Then we know from Theorem 5.2.3 that ψ̂nt −Rn

′
ft → 0 in probability as

min(n, T ) →∞, where Rn
′
Rn = RnRn

′
= Is. Let f̃nt = Rn

′
ft denote the rotated factors where

f̃nt = Rn
′
k(z)εt = k̃n(z)εt and let the reversed echelon ARMA representation of f̃nt be

Ãn0 f̃
n
t = Ãn1 f̃

n
t−1 + . . .+ ÃnP f̃

n
t−P + B̃n

0 εt + . . .+ B̃n
Qεt−Q. (6.1.24)

Then we propose to estimate the ARMA parameters Ãnj , j = 0, . . . , P , B̃n
j , j = 0, . . . , Q using

the autoregression-regression method described above with ψ̂nt in place of ft.

Consistency of these estimates follows from consistency of the ARMA estimates if f̃nt was known
together with the fact that ψ̂nt − f̃nt converges to 0 in probability as (n, T ) →∞. Let us provide
the previously defined estimators with a superscript n to indicate that they are based on ψ̂nt .
Then we have the following result.

Theorem 6.1.2. If Assumptions 1.1, 2.1, 3.1, 5.2, 5.3 and 6.1 hold, and if hT is such that
limT→∞ hT = ∞ and limT→∞(log(T )/T )1/2hT = 0, then

3Of course, similar results as those to follow can also be obtained for the other two methods presented, since

they all yield consistent estimates for the static factor space.
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(i)
plim

(n,T )→∞
Γ̂ne,hT

− K̃n
0 K̃

n′
0 = 0,

(ii)
plim

(n,T )→∞
ε̂ne,hT

−H ′εt = 0,

(iii)
plim

(n,T )→∞
ÂnhT ,j

− Ãnj = 0, plim
(n,T )→∞

B̂n
hT ,j

− B̃n
j H = 0,

where H is an orthogonal (q × q) matrix.

Proof. We will need the following preliminary results, that are due to Doz et al. (2007). Again
‖C‖ will denote the spectral norm of a matrix C.

(A) Under the assumptions imposed

‖Γ̂ny (h)− Γnχ(h)‖ = O(1) +Op

(
n√
T

)
as n, T →∞. For h = 0 this has been shown in Lemma 5.2.5(i), the proof for arbitrary h works
with the same arguments.

(B) Under the assumptions imposed

plim
(n,T )→∞

Γ̂nψ(h)− Γ̃f (h) = 0,

where Γ̃f (h) = Rn
′
Γf (h)Rn is the autocovariance function of (f̃nt ). We may write

Γ̂ψ(h) =
1
T

T∑
t=h+1

ψ̂nt ψ̂
n′
t−h = Ω̂n−1/2

1 Ôn
′

1 Γ̂ny (h)Ô
n
1 Ω̂n−1/2

1

= Ω̂n−1/2

1 Ôn
′

1 (Γ̂ny (h)− Γnχ(h))Ô
n
1 Ω̂n−1/2

1 + Ω̂n−1/2

1 Ôn
′

1 Γnχ(h)Ô
n
1 Ω̂n−1/2

1 . (6.1.25)

Then the first term converges to 0 in probability as n, T →∞ with (A) and under Assumption
5.2, since

‖Ω̂n−1/2

1 Ôn
′

1 (Γ̂ny (h)− Γnχ(h))Ô
n
1 Ω̂n−1/2

1 ‖ ≤ 1
µ̂ns
‖Ôn′1 (Γ̂ny (h)− Γnχ(h))Ô

n
1 ‖ ≤

1
µ̂ns
‖(Γ̂ny (h)− Γnχ(h))‖

is Op(1/n) +Op(1/
√
T ).

The second term of (6.1.25) equals

Ω̂n−1/2

1 Ôn
′

1 Λ̃nΓ̃f (h)Λ̃n
′
Ôn1 Ω̂n−1/2

1 ,

hence

Γ̂nψ(h)− Γ̃f (h) =
(
Ω̂n−1/2

1 Ôn
′

1 Λ̃n − Is

)
Γ̃f (h)

(
Λ̃n

′
Ôn1 Ω̂n−1/2

1

)
+Op

(
1
n

)
+Op

(
1√
T

)
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and we know from Lemma 5.2.6 that Ω̂n−1/2

1 Ôn
′

1 Λ̃n converges to Is in probability as (n, T ) →∞,
which yields (B).

Next consider the autoregression fit

ψ̂nt =
hT∑
j=1

Φ̂n
hT ,j

ψ̂nt−j + ênhT ,t
, (6.1.26)

where Φ̂n
hT ,j

, j = 1, . . . , hT , are solutions to the Yule-Walker equations using the sample auto-
covariances Γ̂nψ(h). Then it follows from (B) that plimn,T→∞ ênhT ,t

− ẽnhT ,t
= 0 implying further

that plimn,T→∞ Γ̂ne,hT
− Γ̃ne,hT

= 0, where we have from Lemma 6.1.1, that the latter converges
to K̃n

0 K̃
n′
0 = Rn

′
K0K

′
0R

n as T →∞, which yields (i).

Defining ε̂nhT ,t
as in (6.1.10) and observing that the singular value decomposition of K̃n

0 is
K̃n

0 = (Rn
′
P )D1/2Q′, we may set H = Q independent of n, and continuity of the eigenval-

ues and suitably normalized eigenvectors with respect to the matrix elements together with (i)
and Corollary 6.1.1 imply (ii) .

Let us define Xn
h = (xnh,P+1, . . . , x

n
h,T ) with

xnh,t =



ψ̂nt − ênh,t
ψ̂nt−1

...
ψ̂nt−P
ε̂nh,t−1

...
ε̂nh,t−Q


,

M̂n
h,α(n) = R′α(n)(X

n
hX

n′
h ⊗ Is)Rα(n) and m̂n

h,α(n) = R′α(n)(X
n
h ⊗ Is)vec(ψ̂n), where α(n) denotes

the Kronecker indices corresponding to k̃n. These indices retain the same magnitude as the
Kronecker indices α of k, but possibly in a different order. Thus combining (i), (ii), (B) and
Lemma 6.1.2, it follows that

plim
n,T→∞

M̂n
hT ,α(n) − M̃α(n) = 0

and
plim
n,T→∞

m̂n
hT ,α(n) − m̃α(n) = 0,

where M̃α(n) and m̃α(n) are defined as in (6.1.21) - (6.1.23) with k̃n and K̃0 respectively, in place
of k and K0.

Then τ̂nhT ,α(n) is obtained as the solution of the normal equations M̂n
hT ,α(n)θ = m̂n

hT ,α(n). Now

let τn = vec(Is − Ãn0 , . . . , Ã
n
P , B̃

n
1H, . . . , B̃

n
QH) and τnα(n) be the vector of free parameters in τn
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corresponding to α(n). Thus τnα(n) = M−1
α(n)mα(n) and it follows from what was said above, that

plimn,T τ̂
n
hT ,α(n) − τnα(n) = 0. �
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Chapter 7

Model selection in the GDFM

According to the results of Section 3.3 model selection in the GDFM comprises the determina-
tion of the numbers of dynamic and static factors, i.e. q and s, and the specification of an ARMA
model for the static factor. As far as the first problem is concerned, a number of estimation
methods has been proposed for the number of static factors (see Bai and Ng (2002)) as well as
for the number of dynamic factors (see Bai and Ng (2007), Amengual and Watson (2007) and
Hallin and Liska (2007)). These methods will be discussed in Sections 7.1 and 7.2 below.

The second problem, ARMA model selection, has been extensively studied in the literature and
many different approaches exist (see for instance Hannan and Deistler (1988), Lütkepohl (2005),
Reinsel (1993) or Tiao and Tsay (1989)). Practical procedures for estimating the Kronecker in-
dices have been proposed and analyzed for instance by Poskitt (1992), Lütkepohl and Poskitt
(1996) and Nsiri and Roy (1992). Although none of these approaches takes into account the
particular situation occurring in the GDFM framework, where the output variable ft is itself
unobserved and may be dynamically singular, in Section 7.3 we will propose to estimate the
Kronecker indices using the algorithm of Lütkepohl and Poskitt (1996), which seems justified
by the subsequent simulation results (see Chapter 8).

Notice that as in the previous chapter, the methods will be presented exemplarily for GDFM
estimation based on the static principal components method.

7.1 Estimation of the number of static factors

For the estimation of the number of static factors, i.e. s, a number of procedures have been
proposed. For instance, Lewbel (1991) and Donald (1997) use the rank of a matrix to test
for the numbers of factors. Here we will consider the information criterion (IC) approach, as
proposed by Bai and Ng (2002). The information criteria considered here, in general consist of
the sum of two quantities, the first being a measure of the goodness of fit and the second being a
measure of the corresponding model complexity. More specifically, let the measure of goodness
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7.1. Estimation of the number of static factors

of fit corresponding to k static factors be the trace of the estimated noise variance divided by
n, i.e.

V n
T (k) =

1
n

tr Γ̂n,ku ,

which, when the static PC estimates are used, equals the sum of the n− k smallest eigenvalues
of Γ̂ny divided by n, i.e.

V n
T (k) =

1
n

n∑
j=k+1

µ̂nj .

Further let the measure of corresponding model complexity be kp(n, T ), where p(n, T ) is a
deterministic penalty function defining a certain trade-off between goodness of fit and complexity.
Then a class of IC is defined as

ICnT (k) =
1
n

n∑
j=k+1

µ̂nj + kp(n, T ) (7.1.1)

and estimation of s consists of selecting the minimizing argument of ICnT (k), i.e.

ŝn = arg min
0≤k≤smax

ICnT (k), (7.1.2)

where smax denotes some predefined upper bound for the actual s. In the sequel we are going
to show (as has been done in Bai and Ng (2002) under slightly different assumptions) that this
IC approach yields consistent estimates, if p(n, T ) is adequately chosen, hence if p(n, T ) satisfies
certain limit conditions as n and T tend to infinity. Here we will give our own proofs, that largely
lean on the proofs given in Hallin and Liska (2007) (in the course of estimating the number of
dynamic factors q).

Theorem 7.1.1. Suppose that Assumptions 1.1, 2.1, 3.1, 5.2 and 5.3 hold and let p(n, T ) be
such that as min(n, T ) →∞,

(i) p(n, T ) → 0 and (ii) min(n, T 1/2)p(n, T ) →∞.

Then

plim
min(n,T )→∞

ŝn = s.

Proof. We will need some preliminary results.

(A) Under the assumptions imposed, there exists a positive real M , such that

sup
n

max
1≤i,j≤n

E
(
|Γ̂ny − Γny |2i,j

)
≤MT−1,

where the underscript i, j means that the quantities considered are the (i, j) elements of the
respective matrices. The statement has been shown in Lemma 5.2.5(i).
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7.1. Estimation of the number of static factors

(B) Under the assumptions imposed, for every ε > 0 there exist Tε and Bε such that for smax
fixed, n ∈ N and T ≥ Tε,

max
1≤k≤smax

P
(
T 1/2n−1|µ̂nk − µnk | > Bε) ≤ ε

)
.

This follows with the same arguments as in the proof of Lemma 5.2.5(ii).

For the result of the theorem we will have to show that P (ICnT (s) < ICnT (k)) → 1 for k 6= s,
k ≤ smax as (n, T ) →∞.

Let us first consider the case k < s. Then

ICnT (k) > ICnT (s) (7.1.3)

if and only if
1
n

s∑
j=k+1

µ̂nj > (s− k)p(n, T ),

that is with (B) if and only if
s∑

j=k+1

(
µnj
n

+Kn
1,T

)
> (s− k)p(n, T ),

where Kn
1,T = Op(T−1/2) uniformly in n. By Assumption 5.2 µnχ,j , j = 1, . . . , s diverge linearly

in n, implying that µnj , j = 1, . . . , s also diverge linearly in n (using Corollary A.1.1a)), hence

s∑
j=k+1

(
µnj
n

)
≥ cj > 0.

SinceKn
1,T converges to 0, a sufficient condition for (7.1.3) to hold with probability 1 as n, T →∞

is that p(n, T ) → 0.

Let us now consider the case s < k. Then

ICnT (k) > ICnT (s) (7.1.4)

if and only if

(s− k)p(n, T ) >
1
n

k∑
j=s+1

µ̂nj ,

that is with (B) if and only if

(s− k)p(n, T ) >
1
n

k∑
j=s+1

(
µnj +Kn

2,T

)
,

where Kn
2,T = Op(T−1/2) uniformly in n. Further we know from Assumption 5.2 and Corollary

A.1.1b) that n−1µnj , j = s+ 1, . . . , n is O(n−1). Hence a sufficient condition for (7.1.4) to hold
with probability 1 as n, T →∞ is that min(n, T 1/2)p(n, T ) →∞. �
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7.2. Estimation of the number of dynamic factors

An alternative class of information criteria is defined as the logarithmic form of ICnT (k) (see Bai
and Ng (2002)), precisely as

ICn∗T (k) = log(V n
T ) + kp(n, T ).

Then it can be shown using essentially the same arguments as in the last proof that the loga-
rithmic IC has the same asymptotic properties as the original one.

Corollary 7.1.1. Under the assumptions of Theorem 7.1.1, the class of criteria defined by

ICn∗T (k) = log(V n
T ) + kp(n, T )

will also consistently estimate s.

In regard of Theorem 7.1.1 an obvious choice for p(n, T ) is

p(n, T ) =
log(min(n, T 1/2))

min(n, T 1/2)
, (7.1.5)

but of course there are infinitely many other possibilities (see Bai and Ng (2002) for more exam-
ples). Notice that in general, if p(n, T ) is an adequate penalty function in the sense of Theorem
7.1.1, then cp(n, T ), where c is an arbitrary positive real, also is. Bai and Ng (2002) propose to
take c = V n

T (smax) in correspondence to Mallows’s Cp criterion. Although asymptotically the
estimated number of static factors will be the same for all corresponding information criteria,
the results may differ in finite samples.

7.2 Estimation of the number of dynamic factors

Recently a number of different approaches for estimating the number q of dynamic factors have
been suggested. Hallin and Liska (2007) propose the use of information criteria based on the
dynamic PC model. This approach is analogous to the IC approaches of Bai and Ng (2002)
discussed in the previous section, but is complicated by the fact that it requires a consistent
estimate of the spectral density involving a number of additional parameters (i.e. the smoothing
window and the window length). Amengual and Watson (2007) use an information criterion
approach based on the static representation of the GDFM avoiding the estimation of the spectral
density. More precisely, they suggest to substitute the AR-representation of the static factors
(3.3.69) into the quasi-static representation (3.3.63), and obtain

ynt − Λ̄n
∞∑
j=1

Φjft−j︸ ︷︷ ︸
ȳn

t

= Λ̄nK0εt + unt .

Hence, (ȳnt ), has a static generalized factor model representation with q-dimensional static factor
εt. Therefore, q may be estimated by means of the IC approach of Bai and Ng (2002) applied to
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7.2. Estimation of the number of dynamic factors

(ȳnt ). Here we will follow Bai and Ng (2007), who propose to test the rank of the prediction error
covariance in the AR representation of (ft), since this approach matches especially well with
the autoregression-regression method proposed to estimate the ARMA model. We will extend
their results to the case where the AR representation of (ft) is of infinite order (see Section 3.3.6).

Recall that under the Assumptions imposed ft has a (possibly infinite) AR representation
(3.3.69), where the one-step prediction errors et = K0εt have an (s × s) covariance matrix
Γe = K0K

′
0 of rank q ≤ s. Recall further, that ft can be consistently estimated up to rotations

as n, T →∞ by the first s sample principal components of ynt , ψ̂n,PCAt . Then the idea is to fit an
appropriately truncated long AR model for ψ̂n,PCAt and test the rank of the sample covariance
of the corresponding prediction errors.

To determine the rank of a positive semidefinite (s × s) matrix A with eigenvalues ωj(A),
j = 1, . . . , s, in descending order of magnitude, consider the following quantities:

D1(k) =

(
ω2
k+1(A)∑s
j=1 ω

2
j (A)

) 1
2

, D2(k) =

(∑s
l=k+1 ω

2
l (A)∑s

j=1 ω
2
j (A)

) 1
2

. (7.2.1)

Obviously, if rkA = q, then D1(k) = D2(k) = 0 for k ≥ q.

As an intermediate step consider the finite autoregression fit of ft (6.1.8), and recall that
Γ̂e,h = 1/T

∑
t êh,tê

′
h,t is the sample covariance of êh,t. Then by an appropriate choice of the

truncation order h, we have T 1/2(Γ̂e,h − Γe) = Op(1). Defining Di(k) and D̂i(k), i = 1, 2, as in
(7.2.1) with Γe and Γ̂e,h respectively in place of A, then continuity of the eigenvalues implies
that D̂i(k) = Dik+Op(T−1/2). Hence for k ≥ q, D̂i(k) = Op(T−1/2) or equivalently for k ≥ q as
T →∞, D̂i(k) < m/T 1/2−δ for some positive real m and 0 < δ < 1/2 with probability tending
to 1. Defining Ki = {k : D̂i(k) < m/T 1/2−δ}, i = 1, 2, then q ∈ Ki for large T . On the other
hand q − 1 does not belong to Ki, since D̂i(q − 1) > c > 0. Here, the threshold m/T 1/2−δ can
be interpreted as the tolerated error induced by sampling variability from estimation of Γe.

We can now turn to the main result. Therefore consider the finite autoregression fit of ψ̂n,PCAt

(6.1.26), let Γ̂ne,h = 1/T
∑

t ê
n
h,tê

n′
h,t be the sample covariance of the residuals and let Rn be the

orthogonal rotation of ft corresponding to ψ̂n,PCAt . Lastly, let us define D̂n
i (k), i = 1, 2, as in

(7.2.1) with Γ̂ne,h in place of A.

Theorem 7.2.1. Suppose that Assumptions 1.1, 2.1, 3.1, 5.2, 5.3 and 6.1 hold and define for
i = 1, 2,

Kni = {k : D̂n
i (k) < m/min(n1/2−δ, T 1/2−δ)},

where 0 < m < ∞ and 0 < δ < 1/2. Then for i = 1, 2, q̂ni = min(k ∈ Kni ) converges to q in
probability as n, T →∞.

Proof. With an appropriate choice of the truncation lag h, we have that ‖Γ̂ne,h − Rn
′
ΓeRn‖ =
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7.3. Specification of the reversed echelon ARMA representation

Op(n−1/2) + Op(T−1/2). Then the result follows with the same arguments as used above when
ft was treated as observed. �

Clearly, in applications values for m and δ have to be chosen. As mentioned before m/T 1/2−δ

defines the level of tolerated error, hence by choosing m and δ too large, in a finite sample it
is likely that too many eigenvalues fall below the threshold and thus q̂ will be smaller than q.
Conversely by choosing m and δ too small, q̂ is likely to be larger than q. Still, there exist no
theoretic results that provide ”good“ choices for m and δ, however Bai and Ng (2007) propose
m = 1 and δ = 0.1, that yield good results in a simulation study.

7.3 Specification of the reversed echelon ARMA representation

As mentioned above ARMA model specification has been studied a lot in econometric litera-
ture and many methods have been proposed, ranging from graphical inspection or tests of the
sample (partial) autocorrelation matrices to procedures that exploit a canonical structure like
the echelon form and estimate the structural parameters by means of information criteria (see
the references cited above for detailed discussions). Here we will consider the latter approach,
more specifically we want to estimate the Kronecker indices α = (r1, . . . , rs) that specify the
reversed echelon ARMA representation of (ft). Taking into account that the overall number
of possible model specifications ranging from α = (1, . . . , 1) to α = (Pmax, . . . , Pmax), where
Pmax denotes some predefined upper bound for the AR order, is equal to (Pmax)s, an exhaus-
tive search will often be prohibitive. Therefore we will consider the efficient search algorithm
proposed by Lütkepohl and Poskitt (1996) marginally adapted to the reversed singular echelon
representation, which is itself a modified version of the procedure originally proposed by Poskitt
(1992). This algorithm exploits the property of reversed echelon forms that the restrictions of
the i-th equation imposed by a set of Kronecker indices α = (r1, . . . , rs) depend only on the
Kronecker indices rj ≤ ri, but not on indices greater than ri (see equations (3.3.43), (3.3.44)).
Using this property, the Kronecker indices are estimated sequentially from smallest to largest
using an information criterion. In the context of the GDFM where ft is unobserved and where
the one-step prediction error covariances may be singular, this is admittedly rather an ”ad-hoc“
approach.

The starting point of the algorithm is the long AR fit (6.1.8), from which the estimates for
the one-step prediction errors and the innovations, êt := êhT ,t and ε̂t := ε̂hT ,t respectively, are
obtained (see (6.1.9) and (6.1.10)). Then one proceeds in the following steps.

(i) For p = 1, . . . , Pmax and i = 1, . . . , s, regress fit on (fjt− êjt), j = 1, . . . , s, j 6= i, and ft−h,
ε̂t−h, h = 1, . . . , p − 1 and determine the residual sum of square T σ̂2

i (p). For i = 1, . . . , s
evaluate an information criterion of the form

ICTi (p) = log σ̂2
i (p) + di(p)CT /T, for p = 1, . . . , Pmax, (7.3.1)
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7.3. Specification of the reversed echelon ARMA representation

where di(p) denotes the number of regression coefficients to be estimated and CT will be
specified below.

(ii) For i = 1, . . . , s set
r̂′i = arg min

1≤p≤Pmax

ICTi (p).

(iii) Set the estimate of the smallest Kronecker index to

r̂i(1) = min
j

(r̂′j)

with i(1) = arg minj(r̂′j).

(iv) For some u ≥ 2, assume r̂i(1) ≤ . . . ≤ r̂i(u−1) are given. For p = r̂i(u−1), . . . , Pmax

and i /∈ {i(1), . . . , i(u− 1)} regress fit on (fjt − êjt), j < i, j /∈ {i(1), . . . , i(u− 1)}
and fj,t−h, j /∈ {i(1), . . . , i(u− 1)}, h = 1, . . . , p and ε̂t−h, h = 1, . . . , p − 1 and fj,t−h,
j ∈ {i(1), . . . , i(u− 1)}, h = p− r̂i(j) + 1, . . . , p and determine the residual sum of square
T σ̂2

i (p). Then evaluate the information criterion

ICTi (p) = log σ̂2
i (p) + di(p)CT /T,

for p = r̂i(u−1), . . . , Pmax and those i /∈ {i(1), . . . , i(u− 1)}.

(v) Set the estimate of the u-th smallest Kronecker index to

r̂i(u) = min
i

(arg min
p

ICTi (p)),

with
i(u) = arg min

i
(arg min

p
ICTi (p)).

(vi) Repeat steps (iv) and (v) for u = 2, . . . , s.

In practice, values for CT and Pmax have to be chosen. For Pmax Lütkepohl and Poskitt (1996)
propose to choose Pmax = 1

2hT . CT may be chosen such that the resulting information criterion
becomes the AIC or BIC, hence CT = 2 in the case of AIC and CT = log T in the case of
BIC. As has been shown in Lütkepohl and Poskitt (1996), in the standard ARMA case and for
appropriate choices of CT , this procedure yields consistent estimates for the Kronecker indices.
In the GDFM framework of course, in practice the algorithm will not be applied to ft but to
an estimate ψ̂nt , but providing a theoretical justification of the proposed selection criteria or a
theoretically justified adaption goes beyond the scope of this thesis. However, the simulations
performed in the next Chapter, provide empirical evidence, that at least from a forecasting
perspective both AIC and BIC produce good results.
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Chapter 8

Simulation study

In order to evaluate the performance of the estimators proposed, we run a Monte Carlo simula-
tions study. Here we want to compare the predictions based on an ARMA model for the static
factors, where the ARMA model is specified using the algorithm of Lütkepohl and Poskitt (1996)
described in Section 7.3 and where the ARMA coefficients are estimated using the autoregression-
regression method presented in Section 6.1, with the predictions based on the standard AR(1)-
model. The simulated data will be generated by models satisfying the standard assumption
that the minimal static factor is generated by an AR(1)-model as well as models where this
assumption is violated.

The models from which we simulate are similar to those used in the literature (see e.g. Forni
et al. (2005a) or Stock and Watson (2002a)). Indeed they only differ from standard models
in that they allow for the case where ft is not equivalent to the minimal state vector xt (see
Sections 3.3.2 and 3.3.3). Let us define them below.

Commencing from the static representation (3.3.63), i.e.

ynt = Λ̄nft + unt = χnt + unt ,

we define ft as the vector containing the first s ≤ r components of an r-dimensional state vector
xt, i.e. xt = (f ′t, x

(2)′

t )′, and let xt evolve as

xt = Axt−1 +Bεt,

where εit, i = 1, . . . , q is drawn from a standard Normal distribution and where the elements of
A and B are drawn from a uniform distribution with mean 0 and standard deviation 1, i.e.

Ai,j ∼ U(−
√

3,
√

3), i, j = 1, . . . , r

Bi,j ∼ U(−
√

3,
√

3), i = 1, . . . , r, j = 1, . . . , q.

Analogously the elements of the factor loading matrix Λ̄n are generated as

Λ̄i,j ∼ U(−
√

3,
√

3), i = 1, . . . , n, j = 1, . . . , s.
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Notice that we only consider stable systems, hence if ωmax(A) ≥ 1, then A will be divided by
some multiple of ωmax(A).

For the noise unt we consider a quite general framework that allows for both a limited amount
of serial and cross-sectional correlation, i.e. uit is modeled as a stable AR(1)-process,

(1− αz)uit = vit,

where α ∼ U(−0.99, 0.99) and vit is allowed to be ”groupwise“ correlated. Hence let Gi denote
the indices of the group vit belongs to, then

vit =

{
cṽit + 1−c

|Gi|−1

∑
j∈Gi\i ṽjt if |Gi| > 1

ṽit if |Gi| = 1,

where ṽit i.i.d. N (0, 1). Hence the group size |Gi| determines the amount of cross-correlation
between noise components. If all |Gi| = 1, i.e. if each group only consists of one variable, then
the noise components will be mutually uncorrelated.

In the models used for simulations, we fixed the number of dynamic factors as q = 2, the state
dimension as r = 6 and the group size as |Gi| = 5 for all i = 1, . . . , n. We generate data for
different cross-sectional dimensions, n = 20, 50, 100, sample sizes, T = 100, 200 and minimal
static factor dimensions s = 6, 5, 4, 3, 2 resulting in a total number of 30 experiments. For each
experiment we indeed generate T +100 data points, and use a rolling window of size T to calcu-
late 100 out-of-sample one-step predictions each based on the preceding T observations, which
corresponds to 100 Monte Carlo repetitions per generated model. Then we replicate each exper-
iment 50 times, resulting in a total number of 5000 Monte Carlo repetitions for each experiment.

At each repetition all model parameters are estimated from the sample second moments of the
preceding T observations. The static factors and factor loadings are estimated using the static
PC method described in Section 5.2.1. The number of dynamic factors q is determined using
the Bai-Ng procedure (see Section 7.2) with m = 1 and δ = 0.1 and where the order of the
long AR fit of the static factor estimates has been set to hT = blog(T )c. The echelon ARMA
form is specified (i.e. the Kronecker indices are estimated) using the algorithm described in
Section 7.3 with Pmax = hT and with AIC and BIC as selection criteria and estimated using
the autoregression-regression method presented in Section 6.1. With these estimators we then
calculate one-step ahead predictors for the static factors and subsequently for the latent variable.
Additionally, at each repetition an AR(1) model for the static factor estimates is fitted and the
corresponding predictions are calculated.

To measure the forecast quality, we consider the out-of-sample coefficient of determination R2,
i.e. for i = 1, . . . , n we have

R2(i) = 1−
∑

t(χit − χ̂it)2∑
t χ

2
it

,
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which is averaged over i. For each experiment, average R2-values across replications and their
empirical standard deviations (in brackets) are reported in Tables 8.1 - 8.5.

The prediction results can be summarized as follows.

(1) For all values of s, and all methods considered, the forecasting quality improves as n and
T increase.

(2) In the case s = r, for all n and T , ARMA models specified by means of both AIC and BIC
yield a similar forecasting performance as the correctly specified AR(1)-method. Hence,
allowing for an ARMA model for the static factors and specifying the structure by means
of AIC or BIC does not seem to induce a risk of deteriorating the forecast quality compared
to the standard AR(1) model in the case that the AR(1) model is the correctly specified
one.

(3) In the case s < r, for all n and T , the more general ARMA approach constantly out-
performs the standard AR(1) method. This is especially relevant, confirming intuition,
the larger the difference between r and s. Comparing AIC and BIC selection, AIC often
yields slightly better results, but the difference seems to be negligible. Indeed, the R2

levels based on ARMA predictions highly depend on n and T , but decrease only slightly
as s decreases.

In Tables 8.6 to 8.10 we report the average values across replications and their empirical standard
deviations (in brackets) of the estimated AR orders (P̂ = max(r̂1, . . . , r̂s)) according to AIC and
BIC selection, respectively (the estimated MA orders are not reported, since by construction of
the echelon form they equal the AR order minus 1) for each experiment. Not surprisingly, the
orders estimated by means of AIC tend to be larger than the orders estimated by means of BIC.
Further the estimated orders are relatively stable for different cross-sectional dimensions n, but
they increase as T and the difference between r and s increase.

Finally, concerning the estimation of the dynamic factor dimension q we can affirm the results of
Bai and Ng (2007), in that their testing procedure with m = 1 and δ = 0.1 yields fairly accurate
results. In our simulation, where q has been set to 2, the average value of q̂ (across 150.000
experiments) was 2.03. The quality of the estimation shows low dependence on s, and improves
as n, T increase. Tables 8.11 to 8.15 show the empirical distributions of the estimated values for
each experiment.
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T = 100 T = 200
AR(1) AIC BIC AR(1) AIC BIC

0.4233 0.4394 0.4400 0.4760 0.5133 0.5083
n = 20 (0.0533) (0.0502) (0.0517) (0.0531) (0.0657) (0.0586)

0.5734 0.5477 0.5722 0.6171 0.6147 0.6180
n = 50 (0.0558) (0.0565) (0.0570) (0.0452) (0.0483) (0.0445)

0.6365 0.6240 0.6408 0.6556 0.6493 0.6574
n = 100 (0.0510) (0.0529) (0.0501) (0.0542) (0.0564) (0.0546)

Table 8.1: Average (and standard deviation) of out-of-sample R2 for s = r = 6.

T = 100 T = 200
AR(1) AIC BIC AR(1) AIC BIC

0.3872 0.4727 0.4580 0.4096 0.5179 0.5138
n = 20 (0.0747) (0.0711) (0.0775) (0.0679) (0.0715) (0.0782)

0.5064 0.5729 0.5604 0.5017 0.6034 0.5929
n = 50 (0.0773) (0.0773) (0.0854) (0.0582) (0.0657) (0.0661)

0.5357 0.6120 0.5875 0.5385 0.6335 0.6010
n = 100 (0.0656) (0.0520) (0.0617) (0.0550) (0.0527) (0.0714)

Table 8.2: Average (and standard deviation) of out-of-sample R2 for s = 5.

T = 100 T = 200
AR(1) AIC BIC AR(1) AIC BIC

0.3482 0.4835 0.4702 0.3435 0.5227 0.5154
n = 20 (0.0962) (0.0859) (0.0885 0.1181) (0.0689) (0.0597)

0.4034 0.5374 0.5239 0.4345 0.6072 0.5939
n = 50 (0.0721) (0.0652) (0.0623) (0.0793) (0.0683) (0.0747)

0.3714 0.6024 0.5694 0.4200 0.6243 0.6002
n = 100 (0.0633) (0.0729) (0.0776) (0.0904) (0.0654) (0.0733)

Table 8.3: Average (and standard deviation) of out-of-sample R2 for s = 4.
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T = 100 T = 200
AR(1) AIC BIC AR(1) AIC BIC

0.2645 0.4107 0.3938 0.2910 0.5137 0.4857
n = 20 (0.0860) (0.0811) (0.0802) (0.0970) (0.0861) (0.0857)

0.3301 0.5572 0.5390 0.3314 0.5657 0.5574
n = 50 (0.0970) (0.0724) (0.0761) (0.1153) (0.0874) (0.0903)

0.3091 0.5946 0.5779 0.3579 0.5982 0.5842
n = 100 (0.0866) (0.0750) (0.0692) (0.1160) (0.0964) (0.1080)

Table 8.4: Average (and standard deviation) of out-of-sample R2 for s = 3.

T = 100 T = 200
AR(1) AIC BIC AR(1) AIC BIC

0.1876 0.3969 0.3733 0.2191 0.4371 0.4149
n = 20 (0.1049) (0.1183) (0.1327) (0.1131) (0.1412) (0.1412)

0.2078 0.4582 0.4324 0.2605 0.4903 0.4672
n = 50 (0.0945) (0.0777) (0.0950) (0.1312) (0.1311) (0.1387)

0.2628 0.5315 0.4938 0.2874 0.5528 0.5353
n = 100 (0.1714) (0.1643) (0.1818) (0.1218) (0.1322) (0.1420)

Table 8.5: Average (and standard deviation) of out-of-sample R2 for s = 2.

T = 100 T = 200
P̂AIC P̂BIC P̂AIC P̂BIC

2.63 1.56 3.34 1.85
n = 20 (0.53) (0.54) (0.73) (0.44)

2.38 1.21 2.68 1.53
n = 50 (0.61) (0.41) (0.68) (0.51)

2.04 1.12 2.4 1.37
n = 100 (0.67) (0.33) (0.65) (0.49)

Table 8.6: Average (and standard deviation) of estimated AR orders for s = r = 6.
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T = 100 T = 200
P̂AIC P̂BIC P̂AIC P̂BIC

2.81 1.73 3.32 2.03
n = 20 (0.54) (0.55) (0.74) (0.46)

2.57 1.57 3.12 1.94
n = 50 (0.61) (0.58) (0.71) (0.58)

2.31 1.49 2.7 1.66
n = 100 (0.65) (0.54) (0.66) (0.58)

Table 8.7: Average (and standard deviation) of estimated AR orders for s = 5.

T = 100 T = 200
P̂AIC P̂BIC P̂AIC P̂BIC

2.84 1.91 3.42 2.25
n = 20 (0.6) (0.51) (0.72) (0.5)

2.69 1.92 3.15 2.06
n = 50 (0.59) (0.46) (0.74) (0.48)

2.69 2.02 3.02 1.99
n = 100 (0.57) (0.55) (0.8) (0.57)

Table 8.8: Average (and standard deviation) of estimated AR orders for s = 4.

T = 100 T = 200
P̂AIC P̂BIC P̂AIC P̂BIC

2.95 2.17 3.59 2.27
n = 20 (0.62) (0.61) (0.71) (0.6)

2.8 2.04 3.62 2.51
n = 50 (0.68) (0.59) (0.73) (0.61)

2.98 2.37 3.29 2.21
n = 100 (0.57) (0.56) (0.9) (0.62)

Table 8.9: Average (and standard deviation) of estimated AR orders for s = 3.
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T = 100 T = 200
P̂AIC P̂BIC P̂AIC P̂BIC

3.05 2.34 3.60 2.35
n = 20 (0.67) (0.69) (0.95) (0.74)

3.23 2.41 3.58 2.58
n = 50 (0.63) (0.59) (0.79) (0.72)

3.27 2.37 3.63 2.63
n = 100 (0.66) (0.75) (0.76) (0.67)

Table 8.10: Average (and standard deviation) of estimated AR orders for s = q = 2.

T = 100 T = 200
q̂ = 1 q̂ = 2 q̂ = 3 q̂ = 4 q̂ = 1 q̂ = 2 q̂ = 3 q̂ = 4

n = 20 2.7 51.4 44.5 1.3 2.8 51.8 45.3 0.1
n = 50 − 90.2 9.8 − − 100.0 − −
n = 100 1.9 98.1 − − − 100.0 − −

Table 8.11: Percentages of q̂ equal to the indicated values for s = r = 6.

T = 100 T = 200
q̂ = 1 q̂ = 2 q̂ = 3 q̂ = 4 q̂ = 1 q̂ = 2 q̂ = 3 q̂ = 4

n = 20 8.9 71.0 20.1 − 8.2 75.0 16.8 −
n = 50 − 99.4 0.6 − − 95.1 4.7 0.2
n = 100 5.2 94.7 0.1 − − 99.8 0.2 −

Table 8.12: Percentages of q̂ equal to the indicated values for s = 5.

T = 100 T = 200
q̂ = 1 q̂ = 2 q̂ = 3 q̂ = 4 q̂ = 1 q̂ = 2 q̂ = 3 q̂ = 4

n = 20 3.1 57.6 37.6 1.6 5.0 74.5 20.5 −
n = 50 7.6 87.4 5.0 − 5.3 88.0 6.7 −
n = 100 4.0 88.6 7.3 − 4.9 94.5 0.6 −

Table 8.13: Percentages of q̂ equal to the indicated values for s = 4.

T = 100 T = 200
q̂ = 1 q̂ = 2 q̂ = 3 q̂ = 4 q̂ = 1 q̂ = 2 q̂ = 3 q̂ = 4

n = 20 7.3 79.3 13.3 − 19.2 79.8 0.9 −
n = 50 − 95.3 4.7 − 5.0 95.0 − −
n = 100 10.0 74.8 15.3 − − 100.0 − −

Table 8.14: Percentages of q̂ equal to the indicated values for s = 3.
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T = 100 T = 200
q̂ = 1 q̂ = 2 q̂ = 3 q̂ = 4 q̂ = 1 q̂ = 2 q̂ = 3 q̂ = 4

n = 20 26.2 73.9 − − 16.2 83.9 − −
n = 50 7.4 92.5 − − 6.3 93.7 − −
n = 100 10.0 90.0 − − 0.4 99.6 − −

Table 8.15: Percentages of q̂ equal to the indicated values for s = 2.
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Chapter 9

Conclusion and future research

The main parts of this thesis are devoted to the modeling of high dimensional time series by
means of generalized dynamic factor models. Thus here for the sake of clarity we want to briefly
summarize the model building steps presented in this thesis. Below we will then give an outlook
on potential future work concerning some open questions raised throughout this thesis.

Given an n-dimensional time series of observations, ynt , t = 1, . . . , T , assumed to be generated
by a GDFM, the model building steps proposed here are the following.

(i) Remove the noise part. Therefore, estimate the static factor dimension by means of an
information criterion proposed by Bai and Ng (2002) and described in Section 7.1. Then
estimate the latent variables, factor loadings and static factors by one of the methods
presented in Section 5.2, e.g. by static PCA.

(ii) Estimate the fundamental shocks. On that account, fit a long autoregression to the static
factor estimates in order to obtain estimates for the one-step prediction errors, see (6.1.8)
in Section 6.1. Then use these estimates and their empirical covariance to determine the
dynamic factor dimension by means of the criterion proposed by Bai and Ng (2007), that
has been presented in Section 7.2. Extract the fundamental shocks (or the innovations)
from the one-step prediction errors applying a static PCA, see (6.1.10) in Section 6.1.

(iii) Specify and estimate an ARMA model for the static factor estimates. First, use the static
factor estimates and the innovation estimates to determine the Kronecker indices by means
of the algorithm of Lütkepohl and Poskitt (1996) as described in Section 7.3. Second, set
up a regression structure with the static factor estimates and the innovation estimates
to identify the coefficients of the echelon ARMA form corresponding to the estimated
Kronecker indices, see (6.1.17) in Section 6.1.

Subsequently to these model building steps, the estimated ARMA model may be used to gen-
erate predictions for the static factors, which in turn yield predictions for the latent variable,
see Chapter 4. Alternatively and dependently on the purpose of the modeling, the estimated
ARMA model may also be used for structural modeling, e.g. by means of an impulse response
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analysis, describing how the fundamental shocks propagate to the observations, see for instance
Forni et al. (2005b), which has not been explicitly treated in this thesis.

The model building process considered here is data driven and may be implemented as a fully
automatic procedure, which simplifies its practical application. Furthermore it is more flexible
than comparable procedures proposed in the literature, in that it does not require the static
factor to follow an AR(1) process (see for instance Forni et al. (2005a) or Stock and Watson
(1998)) or a higher order regular1 AR process (see Doz et al. (2007)), but allows for general,
possibly singular ARMA processes. Even when the factors have a finite order AR representation
(see Section 3.3.6), estimating the echelon ARMA form may be advantageous compared to AR
estimation in that it involves a smaller number of parameters to be estimated and may thus
yield more precise forecasts (see for instance Lütkepohl and Poskitt (1996)). Therefore and as
suggested by the simulation results, the proposed model building process may provide a sub-
stantial improvement in prediction accuracy when the static factors cannot be represented by
an AR(1) process.

However regarding the framework presented in this thesis, there is still a number of open prob-
lems, some of which we want to point out in the sequel.

• We have proposed to estimate the ARMA model for the static factors using an autoregressive-
regression approach. This approach is known to be inefficient, so one open problem is to
find an efficient method, for instance using a ML-approach.

• The Kronecker indices specifying the ARMA model have been estimated using the algo-
rithm of Lütkepohl and Poskitt (1996), for which so far no theoretical justification exists
taking into account that the output variable is unobserved and may have singular one-step
prediction errors.

• An alternative to the model building process described above, would be to directly estimate
the state space representation of the latent variables, hence finding consistent (and efficient)
estimates for (A,B,Cn) is another open problem.

• Finally, one could think about weakening Assumptions 1.1 e) and 3.1, in that the minimal
static factor dimension and the minimal state dimension, respectively, are allowed to grow
as the cross-sectional dimension increases.

1In the sense that the transfer function is square, i.e. q = s.
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Appendix A

Some useful results on (generalized)

eigenvalue problems

A.1 Eigenvalues and eigenvectors of complex matrices and re-

lated results

Let Γ denote a complex (n× n)-dimensional square matrix. A complex number ωj is called an
eigenvalue, if there exists an n-dimensional vector oj 6= 0, such that

Γoj = ωjoj .

The vector oj is then called an eigenvector of Γ. The eigenvalues of Γ are obtained as the (com-
plex) roots of the polynomial in ω, det(Γ−ωIn). This is because, if ωj is a root of det(Γ−ωIn),
the columns of (Γ − ωjIn) are linearly dependent and there exists an (n × 1) vector oj , such
that (Γ − ωjIn)oj = 0, hence Γoj = ωjoj . Obviously eigenvectors are not unique, since any
non-zero scalar multiples are also eigenvectors. However, normalized eigenvectors, i.e. eigenvec-
tors of length 1, corresponding to distinct eigenvalues are unique up to multiplication by eiλ,
λ ∈ [−π, π].

Throughout this thesis the following ”facts“ about eigenvalues are frequently used (see for in-
stance Lütkepohl (2005)).

a) det(Γ) =
∏n
j=1 ωj .

b) tr(Γ) =
∑n

j=1 ωj .

c) If Γ is Hermitian, then its eigenvalues are real numbers. If Γ is Hermitian and non-negative
definite, then its eigenvalues are real and ≥ 0.

d) If ωi and ωj are distinct eigenvalues of Γ, then the corresponding eigenvectors oi and oj

are orthogonal, i.e. o∗i oj = 0.
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e) Canonical decomposition of a Hermitian matrix. If Γ is Hermitian, it can be decomposed
as

Γ = OΩO∗ = O


ω1 0

. . .
0 ωn

O∗, (A.1.1)

where ωj are the eigenvalues of Γ and the columns of O are the corresponding normalized
eigenvalues, hence O∗O = OO∗ = In and

O∗ΓO = Ω.

f) Square root of a non-negative definite Hermitian matrix. If Γ is a non-negative definite
Hermitian matrix, then we can define Γ1/2 as

Γ1/2 = OΩ1/2O∗ = O


√
ω1 0

. . .
0

√
ωn

O∗, (A.1.2)

and Γ1/2Γ1/2 = Γ.

Next we are going to assemble some useful results. The following lemma, known as the Courant-
Fisher Theorem (see Brillinger (1981), exercise 3.10.16), relates the eigenvalues of a matrix to
an objective function.

Lemma A.1.1. Let Γ be an (n×n) Hermitian matrix and let ωj , j = 1, . . . , n, be its eigenvalues
in descending order of magnitude. Then the eigenvalue ωj is the solution of

min
Dj

max
o
o∗Γo

s.t. o∗o = 1, D∗
j o = 0, (A.1.3)

where Dj is an (n× (j− 1)) complex matrix of full column rank for j = 2, . . . , n and the (n× 1)
null matrix for j = 1 and o is an n vector.

The next corollary summarizes some important consequences of the Courant-Fisher Theorem,
that are useful in dealing with the eigenvalues of sums of matrices.

Corollary A.1.1. Let E and F be (n × n) Hermitian non-negative definite matrices and Γ =
E + F , and let ωΓj, ωEj and ωFj, j = 1, . . . , n, be their eigenvalues in descending order of
magnitude. Then for any j = 1, . . . , n

a) ωΓj ≥ ωEj , ωΓj ≥ ωFj

b) ωΓj ≤ ωEj + ωF1, ωΓj ≤ ωE1 + ωFj .
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Proof. Let an (n× (j − 1)) complex matrix Dj of full column rank be given, then for D∗
j o = 0

and o∗o = 1, applying the Courant-Fisher theorem we have

max
o
o∗Γo = max

o
o∗(E + F )o ≥ max

o
o∗Eo, and

max
o
o∗Γo = max

o
o∗(E + F )o ≥ max

o
o∗Fo,

which proves statement a).

Furthermore we have

max
o
o∗Γo ≤ max

o
o∗Eo+ max

o
o∗Fo ≤ max

o
o∗Eo+ ωF1, and

max
o
o∗Γo ≤ max

o
o∗Eo+ max

o
o∗Fo ≤ ωE1 + max

o
o∗Fo,

which proves b). �

The following result (see Brillinger (1981), Theorem 3.7.4) shows how to approximate a matrix
Γ by another matrix A of lower rank in order to minimize the eigenvalues of the squared residual
matrix.

Lemma A.1.2. Let Γ be an (n × n) Hermitian matrix with eigenvalues ωj, j = 1, . . . , n. The
(n× n) matrix A that minimizes the j-th largest eigenvalue of

(Γ−A)(Γ−A)∗

among all (n× n) matrices A with rk(A) = q is given by

A = O1Ω1O
∗
1,

where Ω1 denotes the diagonal matrix containing the q largest eigenvalues of Γ in its diagonal
and O1 denotes the n× q matrix of corresponding normalized eigenvectors. Then the minimum
achieved is ω2

q+j.

Proof. Let B = Γ − A and let ωj(BB∗) denote the j-th largest eigenvalue of BB∗. Applying
the Courant-Fisher theorem, we get that

ωj(BB∗) = min
D

max
D∗x=0

x∗BB∗x. (A.1.4)

Hence for a fixed (n× (j− 1)) complex matrix D of full column rank (for j = 1, D is the (n× 1)
null vector), we have

ωj(BB∗) ≥ max
D∗x=0

x∗BB∗x

≥ max
D∗x=0,A∗x=0

x∗BB∗x

= max
D∗x=0,A∗x=0

x∗ΓΓ∗x

≥ ω2
q+j , (A.1.5)

since we have at most q+j−1 zero restrictions. Setting A = O1Ω1O
∗
1 and denoting by Ω1 and Ω2

the diagonal matrices containing the q largest and (n−q) smallest eigenvalues of Γ, respectively,
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arranged in descending order of magnitude and O1 = (o1 . . . oq) and O2 = (oq+1 . . . on) are
the (n × q)- and n × (n − q)-dimensional orthogonal matrices, respectively, of corresponding
normalized eigenvectors, we get that

(Γ−A)(Γ−A)∗ = ΓΓ∗ −O1Ω2
1O

∗
1 = O2Ω2

2O
∗
2, (A.1.6)

and hence equality in (A.1.5) is indeed achieved. �

A.2 Generalized eigenvalues and eigenvectors

Let Γ and Σ denote complex (n × n)-dimensional square matrices. A complex number νj is
called a generalized eigenvalue of Γ with respect to Σ, if there exists an n-dimensional vector
vj 6= 0, such that

Γvj = νjΣvj .

The vector vj is then called a generalized eigenvector of the couple of matrices (Γ,Σ). The
generalized eigenvalues of (Γ,Σ) are obtained as the (complex) roots of the polynomial in ν,
det(Γ−νΣ); since if νj is a root of det(Γ−ωΣ), the columns of (Γ−νjΣ) are linearly dependent
and there exists an (n× 1) vector vj , such that (Γ− νjΣ)vj = 0 and hence Γvj = νjΣvj . Again
generalized eigenvectors are not unique, but usually they are rescaled, such that v∗jΣvj = 1, and
hence, if the corresponding generalized eigenvalues are distinct, vj is uniquely determined up to
multiplication by eiλ, λ ∈ [−π, π]. Obviously, if Σ = In, then the generalized eigenvalues and
eigenvectors are equal to the eigenvalues and eigenvectors of Γ.

Generalized eigenvalue decomposition of Hermitian (semi)-positive definite matrices

Suppose Γ and Σ are Hermitian semi-positive definite and positive definite (n× n)-dimensional
matrices and let ∆ denote the (n×n) diagonal matrix containing the generalized eigenvalues of
(Γ,Σ) in its diagonal and V = (v1, . . . , vn) the matrix of corresponding normalized generalized
eigenvectors. Then V ∗ΣV = I and

ΓV = ΣV∆,

ΓV = Σ1/2Σ1/2V∆, (A.2.1)

and hence
Σ−1/2ΓΣ−1/2Σ1/2V = Σ1/2V∆. (A.2.2)

Defining V̄ = Σ1/2V , we get that V̄ ∗V̄ = In and

Σ−1/2ΓΣ−1/2V̄ = V̄∆. (A.2.3)

Hence the generalized eigenvalues of (Γ,Σ) are the eigenvalues of Γ̄ := Σ−1/2ΓΣ−1/2 and the
(normalized) generalized eigenvectors of (Γ,Σ) are the (normalized) eigenvectors of Γ̄ left mul-
tiplied by Σ−1/2. From the canonical decomposition of Γ̄ we derive the following decomposition
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of Γ:

Γ = Σ1/2V̄∆V̄ ∗Σ1/2

= ΣV∆V ∗Σ. (A.2.4)

As a consequence of the relation between the generalized eigenvalue problem of (Γ,Σ) and the
eigenvalue problem of Σ−1/2ΓΣ−1/2, Lemma A.1.1 can be extended to the following result.

Lemma A.2.1. Let Γ and Σ be Hermitian semi-positive definite and positive definite (n ×
n)-dimensional matrices, and denote the generalized eigenvalues and eigenvectors of (Γ,Σ) by
δ1, . . . , δn and v1, . . . , vn respectively. Then the j-th generalized eigenvector vj, j = 1, . . . , n, is
the solution of

arg maxb∈Cn b∗Γb

s.t. b∗Σb = 1 and for j ≥ 2, b∗Σbi = 0, i = 1, . . . , j − 1 (A.2.5)

and the maxima achieved are v∗jΓvj = δj.
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Appendix B

Frequently used notation and

acronyms

This section summarizes frequently used notation.

Acronyms

AIC: Akaike information criterion
AR: Autoregressive
ARMA: Autoregressive moving average
ARX: Autoregressive with exogenous variables
BIC: Bayesian information criterion
DAS: Dynamic averaging sequence
FHLR: Generalized principal component analysis as proposed by Forni et al. (2005a)
GDFM: Generalized dynamic factor model
GLS: Generalized least squares
GPCA: Generalized principal component analysis
IC: Information criterion
MA: Moving average
MFD: Matrix fraction description
ML: Maximum likelihood
OLS: Ordinary least squares
PC: Principal component
PCA: Principal component analysis
PE: Prediction error

The subsequent list only contains symbols that are regularly used throughout this thesis.

Dimensions
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n: cross-sectional dimension of the observable process.
q: dynamic factor dimension, i.e. normal rank of fny .
r: minimal state dimension of an (A,B,Cn) state space representation of the latent variables.
s: static factor dimension, i.e. rank of Γny .
T : number of observations.

Other integer valued variables

P,Q: orders of the reversed echelon ARMA representation of the static factors.
α = (r1, . . . , rs): Kronecker indices corresponding to k(z).

Random variables

εt: fundamental shocks, innovations of the latent variables, (see (3.3.2)).
ent : residuals of the projection of ynt onto the set of all aggregates, (see (3.1.2)).
eh,t: residuals of the regression of ft onto ft−1, . . . , ft−h, (see (6.1.4)).
ft: minimal static factor.
γnt : projection of ynt onto the set of all aggregates (see (3.1.2)).
ψt, ψnt : vector containing the principal components of y(n)

t .
ut, unt : noise in the factor model representation.
ũt, ũnt : noise in the PC model.
xt: minimal state vector (see (3.3.13).
ξt: dynamic factor.
χt, χnt : latent variable.
χ̃t, χ̃nt : latent variable in the PC model.
yt, ynt : observations.

Factor loadings and transfer functions

k(z) =
∑∞

j=0Kjz
j : transfer function from εt to ft (see 3.3.32).

k̃(z): strictly proper transfer function corresponding to k(z) (see 3.3.36).
Λ(z) =

∑∞
j=−∞ Λjzj ,Λn(z) =

∑∞
j=−∞ Λnj z

j : factor loadings corresponding to ξt.
Λ̄: static factor loading matrix in the quasi-static representation (3.3.63).
wn(z) =

∑∞
j=0W

n
j z

j : factor loadings corresponding to εt (see 3.3.2).

State space, ARMA and AR-realizations

(A,B,Cn): system matrices of a state space realization of wn(z) (see Section 3.3.2).
(a, b): ARMA realization of k(z) with a(z) = A0 −

∑P
j=1Ajz

j , b(z) =
∑Q

j=0Bjz
j .
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(ã, b̃): ARMA realization of k̃(z) (see Section 3.3.4).
Cr = (B,AB, . . . , Ar−1B): controllability matrix.
H n
∞,H∞(k): Hankel matrices of wn and k, respectively.

hn(i, j), h(i, j): j-th row in the i-th block row of H n
∞ and H∞(k), respectively.

Or = (Cn
′
, A′Cn

′
, . . . , Ar−1′Cn

′
)′: observability matrix.

φ(z) = Is −
∑∞

k=1 Φkz
k: AR representation of ft (see (3.3.69)).

τ = vec(Is −A0, . . . , AP , B1, . . . , BQ): vector of stacked ARMA coefficients.
τα: vector containing the free parameters in τ corresponding to the Kronecker indices α.

Vector spaces

A (y): set of all aggregates corresponding to (ynt ), n ∈ N (see Definition 3.1.1).
Hξ: Hilbert space spanned by ξit, i = 1, . . . , q, t ∈ Z.
Hy,Hχ: Hilbert space spanned by yit, i ∈ N, t ∈ Z and χit, i ∈ N, t ∈ Z, respectively.
Hε(t−): Hilbert space spanned by εiτ , i = 1, . . . , q, τ ≤ t.
Hn
y (t

−),Hn
χ(t

−): Hilbert space spanned by yiτ , i ∈ N, τ ≤ t and χiτ , i ∈ N, τ ≤ t, respectively.
Kf (t): Hilbert space spanned by fiτ , i = 1, . . . , s, τ = 1, . . . , t.
Ln2 ([−π, π] ,C, fny ): frequency domain of (ynt ) (see Section 2.1).

Spectral densities and covariances

fu, f
n
u : spectral density of (ut), (unt ).

fξ: spectral density of (ξt).
fχ, f

n
χ : spectral density of (χt), (χnt ).

fy, f
n
y : spectral density of (yt), (ynt ).

f̃u, f̃
n
u : spectral density of the PC noise (ũt), (ũnt ).

f̃χ, f̃
n
χ : spectral density of the PC latent variable (χ̃t), (χ̃nt ).

Γf : covariance matrix of (ft). Γu,Γnu: covariance matrix of (ut), (unt ).
Γξ: covariance matrix of (ξt).
Γχ,Γnχ: covariance matrix of (χt), (χnt ).
Γy,Γny : covariance matrix of (yt), (ynt ).
Γ̃u, Γ̃nu: covariance matrix of the PC noise (ũt), (ũnt ).
Γ̃χ, Γ̃nχ: covariance matrix of the PC latent variable (χ̃t), (χ̃nt ).

Eigenvalues and eigenvectors for (dynamic) PCA estimation

µni , µ
n
χ,i, µ

n
u,i: eigenvalues of Γny , Γnχ and Γnu.

ωni , ω
n
χ,i, ω

n
u,i: eigenvalues of fny , fnχ and fnu .

Ωn
1 ,Ω

n
2 : diagonal matrices containing the s largest and n− s smallest eigenvalues of Γny in their

diagonal, arranged in descending order of magnitude.
Ωn

1 (λ),Ωn
2 (λ): diagonal matrices containing the q largest and n− q smallest eigenvalues of fny (λ)
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B. Frequently used notation and acronyms

in their diagonal, arranged in descending order of magnitude.
On1 , O

n
2 : matrices of eigenvectors corresponding to Ωn

1 and Ωn
2 , respectively.

On1 (e−iλ), On2 (e−iλ): matrices of eigenvectors corresponding to Ωn
1 (λ) and Ωn

2 (λ), respectively.

Generalized eigenvalues and eigenvectors for GPCA estimation

∆n
1 ,∆

n
2 : diagonal matrices containing the s largest and n− s smallest generalized eigenvalues of

(Γny ,Γ
n
u) in their diagonal, arranged in descending order of magnitude.

νni : generalized eigenvalues of (Γny ,Γ
n
u).

V n
1 , V

n
2 : matrices of eigenvectors corresponding to ∆n

1 and ∆n
2 , respectively.

Generalized eigenvalues and eigenvectors for FHLR estimation

Dn
1 , D

n
2 : diagonal matrices containing the s largest and n − s smallest generalized eigenvalues

of (Γ̃nχ, Γ̃
n
u) in their diagonal, arranged in descending order of magnitude.

ν̃ni : generalized eigenvalues of (Γ̃nχ, Γ̃
n
u).

Wn
1 ,W

n
2 : matrices of eigenvectors corresponding to Dn

1 and Dn
2 , respectively.
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