
DISSERTATION

Heuristic Optimisation Methods for System
Partitioning in HW/SW Co-Design

Conducted for the purpose of receiving the academic title
’Doktor der technischen Wissenschaften’

Submitted at
Vienna University of Technology
Faculty of Electrical Engineering and Information Technology

by

Dipl.-Ing. Bastian Knerr
Talgasse 8/13, 1150 Vienna, Austria
born in Püttlingen, Germany, September 3, 1976
Matriculation number: 0327662

Vienna, July 2008 ...

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Advisor

Univ.Prof. Dipl.-Ing. Dr.techn. Markus Rupp
Technische Universität Wien
Institut für Nachrichtentechnik und Hochfrequenztechnik

Examiner

Univ.Prof. Dr.habil. Christoph Grimm
Technische Universität Wien
Institut für Computertechnik

ABSTRACT

Nowadays, the design of embedded systems is confronted with the combination of complex
signal processing algorithms on the one hand and a variety of computational intensive mul-
timedia applications on the other hand, while time to product launch has been extremely
reduced. Especially in the wireless domain those challenges are stacked with tough re-
quirements on power consumption and chip size. Unfortunately, design productivity did not
undergo a similar progression and therefore fails to cope with the heterogeneity of modern
hardware architectures. Until now, electronic design automation do not provide for complete
coverage of the design flow. In particular crucial design tasks as high level characterisation of
algorithms, floating-point to fixed-point conversion, automated hardware/software partition-
ing, and automated virtual prototyping are not sufficiently supported or completely absent.
In recent years a consistent design framework named Open Tool Integration Environment
(OTIE) has been established to address the most crucial shortcomings of the wide spread
design problems in this field. As integral part of the OTIE framework powerful tool chains
exist that support high level estimation techniques for algorithm characteristics, static code
analysis, automatic generation of virtual prototypes, floating-point to fixed-point conversion,
and so forth. A very substantial ingredient of OTIE was missing until now: a rich library
for architecture modelling of embedded system and algorithms for their precise partitioning
and scheduling. Therefore, this thesis examines the research field of system partitioning of
embedded systems in the wireless design domain.

This field started to find strong advertence of scientists about fifteen years ago. Since a
multitude of formulations for the partitioning problem exist, the same multitude could be
found in the number of strategies that address this problem. Their feasibility is highly
dependent on the platform abstraction and the degree of realism that it features. This thesis
identifies the most mature and powerful approaches for system partitioning and to some
degree task scheduling in order to integrate them into the OTIE framework. The contribution
of this work involves a detailed platform abstraction that combines a high degree of realism
with the flexibility to compose arbitrary multi-core multi-bus structures and the theoretical
underpinning of the system partitioning in wireless embedded system design as combinatorial
optimisation problem. Furthermore, a thorough analysis of the properties of typical system
graphs is undertaken. Eventually, the implementation and improvement of the most popular
strategies, and the introduction of entirely new algorithms for the system partitioning and
scheduling problem is accomplished.

ZUSAMMENFASSUNG

Der Entwurf von eingebetteten Systemen ist heutzutage konfrontiert mit einer Kombination
aus hochkomplexen Signalverarbeitungsalgorithmen und einer Vielzahl von rechenintensiven
multimedialen Anwendungen. Erschwerend kommt hinzu, dass die Entwicklungszeit bis zum
fertigen Produkt dramatisch verkürzt wurde. Besonders innerhalb der mobilen Sparte, die
Mobiltelefone, PDAs, und Kameras umfasst, werden diese grundsätzlichen Widrigkeiten noch
erschwert durch beträchtliche Anforderungen bezüglich Leistungsaufnahme und Baugröße.
Leider konnte die Entwurfsproduktivität nicht mit den ansteigenden Anforderungen Schritt
halten, und kämpft bis heute mit der Heterogenität moderner Hardwarearchitektur. Werk-
zeuge für die Entwurfsautomatisierung offenbaren breite Lücken in ihrer Abdeckung der Ent-
wurfsabfolge, insbesondere wurden bisher folgende Aufgaben nicht zufriedenstellend gelöst:
Algorithmencharakterisierung auf höchster Abstraktionsebene, Konvertierung von Fließkom-
ma- zu Fixpunktdarstellung, Systempartitionierung, und Virtual Prototyping. In den letzten
Jahren wurde im Christian Doppler Labor für Designmethodik von Signalverarbeitungsalgo-
rithmen eine Entwurfsumgebung, OTIE, entwickelt, die in konsistenter Weise die kritischsten
Mängel des Entwurfsprozesses in diesem Bereich zu beheben versucht. Bis auf eines wurden
die zuvor genannten Aufgaben mit OTIE in bemerkenswerter Weise gelöst. Der fehlende Ent-
wurfsschritt Systempartitionierung vereint mit einer flexiblen Architekturmodellierung stellt
das Thema dieser Dissertation dar.

Systempartitionierung ist ein Forschungsgegenstand, der in den letzten 15 Jahren beträchtliche
Aufmerksamkeit von Forschungsgruppen im elektronischen Systementwurf erhielt. Aus diesem
Grund existiert eine ebenso große Anzahl spezifischer Problemformulierungen wie jeweiliger
Lösungsstrategien. Ihre Anwendbarkeit variiert stark mit dem gewählten Abstraktionsgrad
des Plattformmodells und dessen Wirklichkeitstreue. In dieser Arbeit werden die tauglichsten
Ansätze für die Partitionierung von Prozessgraphen und in kleinerem Ausmaß jene für deren
Ablaufplanung identifiziert, um diese dann in OTIE zu integrieren. Ein detailliertes Architek-
turmodell wird vorgestellt, das außergewöhnliche Wirklichkeitstreue mit großer Flexibilität
vereint. Mit diesem ist es nun möglich beliebige heterogene Plattformstrukturen zu model-
lieren, in denen z.B. mehrere Prozessoren, FPGAs, und ASICs mittels mehrerer Busse oder
anderer Datenkanäle verbunden werden. Basierend auf diesem Fundament wird das Parti-
tionierungsproblem analysiert und als kombinatorische Mehrzieloptimierung definiert. Wei-
tergehend werden jene Graphen, die für eingebettete Systeme typisch sind, analysiert und
deren Eigenschaften herausgearbeitet. Mit Hilfe der erlangten Erkenntnisse werden in dieser
Arbeit neue spezialisierte Algorithmen für Partitionierung und Ablaufplanung entwickelt und
bestehende Konzepte und Techniken verbessert.

ACKNOWLEDGEMENTS

I would like to express my gratitude to my advisor Professor Markus Rupp for his persistent
encouragement, support, and understanding of my research. I also would like to thank
Professor Christoph Grimm for accepting to act as the examiner and, of course, for his
valuable comments that greatly improved the quality of this thesis.

Whenever you start thinking about doing research, writing theses, or discuss decent music
and the passage of being, you will tremendously benefit from sharing your office with Dr
Martin Holzer. Great friend, great colleague!

This work has been funded by the Christian Doppler Laboratory for Design Methodology of
Signal Processing Algorithms.

CONTENTS

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 5

1.3 Outline . 9

2 State of the Art in HW/SW Co-Design 11

2.1 Target Architectures in Embedded Systems 13

2.1.1 Platform Composition . 13

2.2 Embedded Systems Design Flow . 15

3 System Partitioning 19

3.1 Typical Graphs in Embedded System Design 20

3.1.1 Process Graphs . 21

3.1.2 Synchronous Data Flow Graphs . 23

3.2 Classical Platform Model for Hardware/Software Partitioning 25

3.3 Flexible Platform Model for Heterogeneous Embedded Systems 26

3.4 System Graph Enrichments . 30

3.5 Problem Formulation . 32

3.5.1 The Classical Graph Partitioning Problem 33

3.5.2 The System Partitioning Problem . 34

3.5.3 Embedded Scheduling Problem . 39

4 Algorithms for Scheduling and Partitioning 41

4.1 Specific Properties of Typical Process Graphs 42

4.2 Algorithms for Scheduling . 46

4.2.1 Classical Scheduling Techniques . 47

4.2.2 Local Exploitation of Parallelism . 48

4.3 Algorithms for System Partitioning . 54

4.3.1 Exhaustive Search . 54

4.3.2 Gradient Search . 56

4.3.3 Global Criticality/Local Phase (GCLP) Algorithm 58

4.3.4 Simulated Annealing . 67

4.3.5 Tabu Search . 68

4.3.6 Genetic Algorithm . 71

x Contents

4.3.7 Restricted Range Exhaustive Search 81
4.3.8 Kernighan-Lin Min-Cut . 87
4.3.9 Discussion . 92

4.4 Criticism . 97

5 Conclusions 99

Appendices 103

A The Open Tool Integration Environment 105

B Typical Examples of Architectural Components 109

B.1 General-Purpose Processors . 109

B.2 Digital Signal Processors . 109

B.3 Microcontrollers . 111

B.4 Application Specific Instruction Set Processors 112

B.5 Field Programmable Gate Arrays . 113

B.6 Application Specific Integrated Circuits . 114

B.7 Communication Infrastructure . 114

B.8 Academic and Commercial Co-Design Frameworks 116
B.8.1 Design Languages . 116
B.8.2 Co-design Frameworks . 118

C Graphs in Embedded System Design 121

C.1 Typical Graph Structures in Embedded Systems 121

C.2 Generation of System Graph Sets . 128

C.3 Parameterisable SDF Graphs . 131

D NP-complete Algorithms and Optimality 135

D.1 Multi-processor Scheduling . 135

D.2 Precedence Constrained Scheduling . 136

D.3 Pareto Optimality . 136

E Notation, Variables, and Acronyms 139

E.1 Notation . 139

E.2 List of Variables . 140

E.3 List of Acronyms . 142

LIST OF FIGURES

1.1 Algorithmic complexity gap and design productivity gap. 2

1.2 Evolution of the cost span over the development time [8]. 3

1.3 Partitioning: Map functionality to platforms. 4

2.1 Concept of System Level Design. 12

2.2 Architectural components and their affiliation to hardware and software. . . . 13

2.3 Block structure of an System-on-Chip based design for a video phone [136]. . 14

2.4 Common abstraction levels and co-design flow for embedded systems. 16

3.1 System decomposed into hierarchical graph structures. 21

3.2 Code fragment representation as parse and expression tree. 23

3.3 Example of a synchronous data flow graph and its decomposition into a single
activation graph. 24

3.4 Common implementation architecture. 25

3.5 UMTS+GSM baseband transceiver chip [53] and its platform abstraction. . . 27

3.6 Rapid prototyping board for MIMO OFDM channel emulation [103] and its
platform abstraction. 28

3.7 Example of a heterogeneous architecture model. 30

3.8 Classical partitioning subject to constraints : Wlim ≤ 20 and Llim ≤ 10. . . . 33

3.9 Mapping between task graph and architecture model. 34

3.10 Multi-resource schedule for a simple process graph. 40

4.1 Density of graph structures. 43

4.2 Parallel vertices seen by vertex v5. 44

4.3 The k-locality graph property with kloc = 3 shown as vector. 45

4.4 Examples for the rank-locality of two different graphs according to (4.4). . . 46

xii List of Figures

4.5 Linear dependency between γTrloc and kloc. 46

4.6 Computation of Hu priority levels based on critical path analysis. 47

4.7 LEP algorithm: two tentative schedules for the decision B first or C first. . . 49

4.8 Averaged global schedule lengths normalised to the global lower bound sched-
ule lengths over different mappings and graph sizes. 52

4.9 Averaged global schedule lengths normalised to the global lower bound sched-
ule length over degree of parallelism γT. 53

4.10 A first impression of the multi-modality of the search space. 55

4.11 (a) Process graph, annotated with characteristic values. (b) Typical platform
model. 59

4.12 (a) Process graph at a distinct stage of the GCLP algorithm. (b) Pseudo
code for a single GCLP iteration. 60

4.13 Modification 2 (M2): Constructing the initial solution. 62

4.14 Modification 3(M3): Precocious breaks. 64

4.15 Wiangtong’s scheduling compared to a ETF. 69

4.16 3-operator genetic algorithm. 71

4.17 Chromosome coding for the system partitioning problem. 72

4.18 Examples for bad (1) and good (2) chromosome codings. 73

4.19 Example graph with annotated ranks, asap and alap schedule. 74

4.20 Convergence behaviour for GAs with different genome codings. 75

4.21 Averaged cost Ω for different genome codings on all graph sizes |V| =
20, 50, 100. 76

4.22 Result for different selection schemes over varying mutation probabilities. . . 77

4.23 Recombination via 2-point crossover with cut points c1, c2. 78

4.24 Result for different recombination schemes for two genome orderings. 78

4.25 Partial system graph and schedule: one-gene versus swap mutation. 79

4.26 Result for different mutation schemes M1g,Mswap, and Mbb on three different
platforms. 80

4.27 Global optimality by locally optimal solutions. 81

4.28 Moving window for the RRES on an ordered vertex vector. 82

4.29 Validity Ψ, and cost Ω for RRES and ES plotted over the window length W . 85

4.30 Dependency between graph locality kloc (or γTrloc) and performance for RRES. 86

List of Figures xiii

4.31 Quality and run time of RRES and GA over window length for graphs with
|V| = 100. 88

4.32 Cut problem for a two-way partitioned graph. 89

4.33 Quality of all algorithms for different graph sizes for binary partitioning. . . . 93

4.34 Run time of all algorithms for different graph sizes for binary partitioning. . . 94

4.35 Quality of all algorithms for different graph sizes for a heterogeneous platform. 95

A.1 The meandering of the electronic design process. 106

A.2 The concept of the Open Tool Integration Environment (OTIE). 107

B.1 Block diagram of a state-of-the-art NXP 80C51 microcontroller [115]. 111

B.2 ASIP with Harvard architecture. 112

B.3 Structure of an FPGA. 113

B.4 Core logic of an Viterbi decoder ASIC [128]. 115

C.1 Part of the signal processing for an UMTS receiver. 121

C.2 Part of a data flow graph of an xDSL Modem. 123

C.3 A realistic robot control process graph [79]. 125

C.4 Seven task graph categories for signal processing defined in the literature [94,
142]. 126

C.5 Acyclic k-locality graph with kloc = 5, |V| = 25, ρ = 3 129

C.6 Pareto-optimal implementation alternatives of a process for a single resource r.131

C.7 SDF graph extensions. 132

D.1 Pareto front for implementation alternatives with area-time trade-off. 137

LIST OF TABLES

4.1 Results obtained for exhaustive searches. 56

4.2 Results obtained for neighbourhood searches. 58

4.3 Impact of proposed modifications M1a and M1b compared with the original
GCLP algorithm. 62

4.4 Impact on cost and validity percentage of M2. 63

4.5 Effect of modification M3 on the run time. 65

4.6 Impact of combined modifications M1a+M3 and M1b+M2 GCLP performance. 66

4.7 Results obtained for simulated annealing. 68

4.8 Results obtained for tabu search, original and with LEP scheduling. 70

4.9 Averaged cost Ω obtained for RRES starting from different initial solutions. . 84

4.10 Results obtained for the RRES. 87

4.11 Results obtained for Kernighan-Lin. 92

C.1 Some characteristic values for the Cell Searcher. 122

C.2 Some characteristic values for the Delay Profile Estimator. 122

C.3 Typical cycle counts for filter code segments on a DSP. 124

C.4 Possible ranges for process properties utilised in the graph generation engine. 130

1 INTRODUCTION

On average every human being living in the industrialised world is almost permanently in-

teracting with electronic systems and - usually - totally unaware of this fact. The last two

decades of the past millennium witnessed an irresistible flood of electronics covering every

aspect of modern life. Devices with a high visibility for the end user like notebooks, mobile

phones, and PDAs mark only a small fraction of those electronic equipment the average

person comes in touch with. Their overwhelming portion is represented by special purpose

processors being embedded into larger devices, hence unifying omnipresence with invisibility.

For example, the modern household is pervaded by processors controlling the dishwasher, the

washing machine, the toaster, the vacuum cleaner, television, radio, etc. The proliferation

of microelectronics in general, and embedded systems in particular, has percolated not only

the personal but all commercial and industrial sectors, including logistics, communications,

energy, transportation, security, mass media and others. As a result a multitude of design

obstacles for embedded systems especially in the wireless domain popped up, persistently

deeming their timely production an ordeal. The notion of the ubiquity of these devices shall

facilitate the reader to comprehend the relevance of the design hurdles manufacturers usually

encounter in the design process of embedded systems. This thesis deals with one of these

obstacles, the system partitioning problem, and discusses how it can be overcome.

1.1 Motivation

When scrutinising the evolution of modern electronic systems, it becomes apparent, that not

only their circulation but also their complexity has undergone a tremendous growth and is still

not losing steam. The next generation of mobile devices for 3G UMTS systems is expected

to be based on processors containing more than 40 million transistors [55]. Hence, during a

relatively short period of time of about 10 years, a staggering increase in complexity of more

than six orders of magnitude has taken place [130].

In comparison to this extremely fast-paced growth in algorithmic complexity, the concurrent

increase in the complexity of silicon integrated circuits proceeds according to the well-known

Moore’s Law [109], famously predicting the doubling of the number of transistors integrated

onto a single integrated circuit every 18 months. Hence, it can be concluded that the

2 1 Introduction

growth in silicon complexity lags behind the extreme growth in the algorithmic complexity

of wireless communication systems. This is also known as the algorithmic complexity gap

depicted in Figure 1.1 on the left. The regularly published International Technology Roadmap

Fig. 1.1: Algorithmic complexity gap and design productivity gap.

for Semiconductors [74, 75] reported a growth in design productivity, expressed in terms of

designed transistors per staff-month, of approximately 21% compounded annual growth rate,

which lags behind the growth in silicon complexity. This is known as the design gap or

productivity gap depicted in Figure 1.1 on the right. Thus, the abilities of underlying silicon

platforms on which wireless communication systems are built have to be exploited with

increasing efficiency, i.e. more functionality has to be gained from each individual transistor.

In other words, the quality of the design process, i.e. effective functionality per unit of raw

silicon achieved through both hardware and software parts of the system, needs to increase.

From this it follows that it is increasingly difficult to design entire integrated circuits - although

ever more transistors can be designed over some period of time, over the same period of time

the total number of transistors in the circuit increases by an even higher factor. Hence, the

speed of the design process has to increase significantly.

The existence of both the algorithmic and the productivity gap points to inefficiencies in

the design process. At various stages in the process, these inefficiencies form bottlenecks,

impeding increased productivity which is needed to keep up with the mentioned algorithmic

demand. When putting the focus on the wireless systems domain, additionally the time-to-

market for a new product dropped from about three years for the first GSM phones below 18

months for smart phones of the latest UMTS generations [10]. And in this domain launching

a product six months early triples profits, whereas being six months late results in breaking

even [11].

Naturally, the identification of inefficiencies and novel design strategies have been subject

1.1. Motivation 3

to extensive research of the electronic design automation (EDA) industry in general and the

Christian Doppler Laboratory for Design Methodology of Signal Processing Algorithms in

particular. The major problems are the severe fragmentation of the design process [123],

which is briefly surveyed in Appendix A, and the existence of hard design tasks, i.e. the hot

spots of the design process [63, Knerr et al.]1, for which a feasible solution has not yet been

integrated into any commercial EDA tool.

As a direct consequence of the steep requirements on the design cycle, the investigation

of synthesised implementation alternatives is disqualified. A trial synthesis even for a small

subset of the design would be far too time consuming, thus causing a strong bias in the

importance of the design tasks towards those located in the early stages. Their relevance

is even more emphasised by the impact on the final system performances. About 90% of

the overall costs are determined in the first design stages [111]. Figure 1.2 illustrates the

potential of the design decision to influence the cost while the development proceeds. The

Fig. 1.2: Evolution of the cost span over the development time [8].

most important design tasks located in the early region of the design process are system

level analysis, system partitioning, floating-point to fixed-point conversion, high level synthe-

sis, and virtual prototyping [16, 63, Knerr et al.].

Since system level analysis is a necessary prerequisite of system partitioning, it shall be briefly

concretised. Ideally, crucial decisions are based on a profound knowledge about the intrica-

cies of the design. As soon as the core algorithms, that make up a system’s functionality,

have been assembled, their internal structure has to be quantised and reliably extrapolated

regarding the probable set of future implementation alternatives. For any part of the design a

multi-dimensional design space is spanned, in which estimations of crucial design parameters

1 Cited work which I authored or co-authored is indicated as such by [],Knerr et al.]

4 1 Introduction

like timing, area, consumed power, throughput, latency, cost, signal-to-quantisation noise

ratio, etc., are incorporated. System level analysis typically comprises a set of different tasks

like static code analysis [1, 42], profiling [21], compiler optimisation [9], complexity analysis

for verification [102], cost predictions [10], etc. These values serve as system graph enrich-

ments with respect to the targeted platform abstraction, which will be explained in detail in

Section 3.4.

System partitioning can be considered as first constructive design task beyond pure ana-

lyis and characterisation. It consists in the component selection of the underlying platform

carrying out the desired applications and the following binding of functional parts to these

components. Hence, it constitutes the very core of hardware/software codesign. Its purpose is

the identification of the optimal architecture out of many platform alternatives based on com-

putation models for processing elements as general-purpose processors, DSPs, µControllers,

application specific instruction set processors (ASIPs), application specific integrated circuits

(ASICs), networks, busses, memories, etc. In Figure 1.3 a small cut out from a data flow

Fig. 1.3: Partitioning: Map functionality to platforms.

oriented system graph from the cell searcher component of an UMTS receiver is depicted.

It consists of matched filters (MF), energy accumulation (En Acc), peak detection (Peak

Det), and the group code table (Group Code). On the right side some platform models are

sketched. The decision which part of the functionality of the system graph is implemented

on which resource is not straightforward. Although this graph seems rather simple, some

constraints on available silicon area may exist that do not allow for a complete ASIC imple-

mentation, and some others e.g. on latency may hinder a complete software implementation

on a DSP. The trade-off between competing objectives in larger scenarios with hundreds of

communicating functional blocks represents the core of the partitioning problem. Hence,

system partitioning is concerned with the formulation of such a multi-objective optimisation

scenario, typically with many different objective functions that may comprise complex inter-

1.2. Contributions 5

nal problems such as multi-resource scheduling with precedence constraints.

The next section highlights the contributions that have been achieved in this field and that

are demonstrated in this thesis.

1.2 Contributions

The research work in the Christian Doppler Laboratory for Design Methodology of Signal

Processing Algorithms addresses both recipes to overcome the fragmentation of the design

process as well as the development of powerful integrated solutions for the aforementioned

design tasks. Concretely, the work covered in this thesis is focused on the research area of

system partitioning with respect to the wireless embedded system domain and is designed

as integral part of the Open Tool Integration Environment (OTIE). For a brief overview of

this environment refer to Appendix A. Although not mainly in the focus of this thesis, it

has to be exposed, that significant efforts regarding floating-point to fixed-point conversion,

automatic virtual prototyping, automatic verification, system level analysis, and scheduling

of SDF graphs with multi-frequency domains have been undertaken in the context of OTIE:

• B. Knerr, P. Belanović, M. Holzer, G. Sauzon, and M. Rupp, ”Design Flow Improve-

ments for Embedded Wireless Receivers”, in Proc. of the 12th European Signal Pro-

cessing Conference (EUSIPCO), pages 2015 - 2018, Vienna, Austria, 2004.

• B. Knerr, P. Belanović, M. Holzer, G. Sauzon, and M. Rupp, ”Advanced UMTS Re-

ceiver Chip Design Using Virtual Prototyping”, in Proc. of the 2004 International

Symposium on Signals, Systems and Electronics (ISSSE), Linz, Austria, 2004.

• P. Belanović, B. Knerr, M. Holzer, G. Sauzon, and M. Rupp, ”A Consistent Design

Methodology for Wireless Embedded Systems”, EURASIP Journal on Applied Signal

Processing, Vol. 2005(16) , pages 2598 - 2612, 2005.

• B. Knerr, M. Holzer, and M. Rupp, ”Task Scheduling for Power Optimisation of Multi

Frequency Synchronous Data Flow Graphs”, in Proc. of the 18th Annual Symposium on

Integrated Circuits and System Design, pages 50 - 55, Florianapolis, Brazil, September,

2005.

• M. Holzer, B. Knerr, P. Belanović, and M. Rupp, Efficient Design Methods for Em-

bedded Communication Systems, EURASIP Journal on Embedded Systems, vol. 2006,

Article ID 64913, 18 pages, 2006. doi:10.1155/ES/2006/64913.

6 1 Introduction

• P. Belanović, B. Knerr, M. Holzer, and M. Rupp, A Fully Automated Environment

for Verification of Virtual Prototypes, EURASIP Journal on Applied Signal Processing,

vol. 2006, Article ID 32408, 12 pages, 2006. doi:10.1155/ASP/2006/32408.

The goal of this thesis is to present a set of strategies for the system partitioning problem as

they typically appear in wireless embedded systems. This goal necessitates a solid base for

the problem formulation that on the one hand accommodates a high degree of flexibility to be

utilised in realistic scenarios and that on the other hand exhibits sufficient mathematical rigour

to enable the applicability of powerful algorithmic concepts. The predominant contributions

of this thesis in the research field of embedded system design can be grouped into three

scientific claims as they are listed in the following enumeration:

• Claim 1: Analysis of the properties of typical system graphs in embedded systems.

The variety of existing graph representations in the field is illuminated and the in-

fluencing factors, when a certain graph representation is considered to be beneficial,

are distinguished. Common terms and definitions of general and applied graph theory

are introduced. In this thesis a thorough revision of properties which are very typical

for graphs describing signal-processing systems is undertaken. This deeper knowledge

finally leads to improvements of existing optimisation methods and eventually to the

development of entirely new strategies. The characteristics of these graph properties

have been discussed (alongside new algorithms for system partitioning) in the following

publications:

– B. Knerr, M. Holzer, and M. Rupp, RRES: A Novel Approach to the Partitioning

Problem for a Typical Subset of System Graphs, EURASIP Journal on Embedded

Systems, vol. 2008, Article ID 259686, 13 pages, 2008. doi:10.1155/2008/259686.

– B. Knerr, M. Holzer, and M. Rupp, ”Novel Genome Coding of Genetic Algorithms

for the System Partitioning Problem”, Proc. of IEEE 2nd Int. Symposium on

Industrial Embedded Systems (SIES), pages 134 - 141, Lisbon, Portugal, July,

2007.

• Claim 2: A flexible platform abstraction matching the heterogeneity of embedded sys-

tems.

The architecture model constitutes the first of the two necessary parts to assemble a

system partitioning scenario. The thesis reviews classical and modern platform concepts

and develops a flexible description that offers the designer a large degree of freedom in

the number and type of architectural components. In opposite to existing partitioning

approaches, an architecture library has been developed in this work that permits arbi-

trary platform compositions and a very detailed communication and processing model.

1.2. Contributions 7

Such a flexibility is obligatory in the field of wireless embedded systems, since herein

the heterogeneity and variety of architectures is protruding. The formulation of the

platform abstraction allows for a non-ambiguous and distinct mapping of system graphs

to the architecture models. The features and advantages of this very flexible framework

have been discussed (alongside the automatic virtual prototyping framework and new

algorithms for partitioning) in the following publications:

– B. Knerr, M. Holzer, and M. Rupp, ”Extending the GCLP Algorithm for HW/SW

Partitioning: A Detailed Platform Model and Performance Improvements”, in

Proc. IEEE Austrochip, pages 89 - 95, Vienna, Austria, 2006.

– M. Holzer, B. Knerr, P. Belanović, and M. Rupp, ”Efficient Design Methods for

Embedded Communication Systems”, EURASIP Journal on Embedded Systems,

2006.

• Claim 3: Analysis and development of classical and new heuristic methods for the

system partitioning problem.

The process of mapping the functional objects to the composed platform model consti-

tutes the second part of the system partitioning problem and occupies the major portion

of this thesis. Having analysed typical system graphs in this field and exploiting the high

degree of detail of the newly developed platform abstraction, the partitioning problem

can now be formulated in a very distinct manner that offers a higher degree of repre-

sentativeness for wireless embedded systems than any approach before. On this level

system partitioning is defined as combinatorial multi-objective optimisation problem

and a variety of algorithmic strategies is evaluated with respect to their applicability.

The thesis discusses, analyses, and tests deterministic and randomised algorithms based

on classical and entirely new approaches that are outlined in the following list:

– exhaustive search,

– gradient search [68],

– global criticality/local phase algorithm [77] and a modified version with substantial

improvements published in:

B. Knerr, M. Holzer, and M. Rupp, ”Improvements of the GCLP Algorithm for

HW/SW Partitioning of Task Graphs”, in Proc. of the 4th IASTED Int. Conf.

on Circuits, Signals, and Systems (CSS), pages 107 - 113, San Francisco, CA,

USA, November, 2006.

– simulated annealing [7, 82]

– penalty reward tabu search [142]

8 1 Introduction

– genetic algorithm [35, 147] with a novel genome coding published in:

B. Knerr, M. Holzer, and M. Rupp, ”Novel Genome Coding of Genetic Algorithms

for the System Partitioning Problem”, Proc. of IEEE 2nd Int. Symposium on

Industrial Embedded Systems (SIES), pages 134 - 141, Lisbon, Portugal, July,

2007.

– Kernighan-Lin min-cut [81, 140] and a modified version to be applicable for

embedded system partitioning of which an early version has been published in:

B. Knerr, M. Holzer, and M. Rupp, ”HW/SW Partitioning Using High Level

Metrics”, in Proc. of the Int. Conf. on Computing, Communications and Control

Technologies (CCCT), pages 33 - 38, Austin, Texas, August, 2004.

– an entirely new heuristic: restricted range exhaustive search (RRES):

B. Knerr, M. Holzer, and M. Rupp, RRES: A Novel Approach to the Partitioning

Problem for a Typical Subset of System Graphs, EURASIP Journal on Embedded

Systems, vol. 2008, Article ID 259686, 13 pages, 2008. doi:10.1155/2008/259686.

B. Knerr, M. Holzer, and M. Rupp, ”Restricted Range Exhaustive Search: A New

Heuristic for HW/SW Partitioning of Task Graphs”, in Proc. of XXII Conf. on

Design of Circuits and Integrated Systems (DCIS), Sevilla, Spain, 2007.

– and a fast scheduling algorithm in comparison with two classical list scheduling

techniques published in:

B. Knerr, M. Holzer, and M. Rupp, ”A Fast Rescheduling Heuristic of SDF Graphs

for HW/SW Partitioning Algorithms”, in Proc. of COMSWARE, New Delhi, India,

January, 2006.

1.3. Outline 9

1.3 Outline

The thesis is structured as follows:

Chapter 2 reviews the evolution and state-of-the-art in hardware/software codesign. General

concepts and terms are introduced and a survey of the technological advances in this area

is presented. The variety of existing tool sets is listed and the most significant commercial

and academic approaches are outlined. Examples of industry-designed target platforms for

modern signal-processing/multimedia systems in the wireless domain are discussed.

Chapter 3 formulates the system partitioning problem as combinatorial multi-objective opti-

misation problem. The graph representations that are common in signal processing systems

are reviewed and the general synchronous data flow graph calculus is highlighted. The archi-

tecture library to assemble arbitrary platform models, and the precise communication model

is introduced. Then, the mapping problem between system graph and architecture subject

to a set of objectives is formulated and cost functions and performance metrics to assess the

quality for a feasible mappings are defined. Finally, the embedded multi-resource scheduling

problem is briefly outlined.

Chapter 4 deals initially with system graphs for wireless embedded systems with typical

properties concerning sparsity, locality, parallelism, etc. It then describes the algorithms that

address the system partitioning problem. A smaller part concerns itself with the inherent

scheduling problem and two classical and a new technique to solve this problem efficiently.

The major part comprises detailed descriptions of a variety of partitioning techniques, partly

taken from the related literature and partly representing beneficial modifications and entirely

novel approaches. Based on the task graph set the results obtained from extensive test

runs of the implemented techniques are demonstrated. Their performance, robustness, and

computation time is discussed. Judgements of the applicability of the specific approaches

according to system graph properties are given.

Chapter 5 concludes the thesis commenting on the probable impact of the obtained results,

the evolution of underlying models of computation with respect to system representations as

graphs, and gives perspectives to research fields still open to be investigated.

2 STATE OF THE ART IN HW/SW CO-DESIGN

This chapter reviews the evolution and current state of the embedded system design relating

to typical target architectures. Recalling the technological developments mentioned in the

introductory chapter, the design flow is compartmentalised and dedicated descriptions of the

single components are given. Systems assembled by a technological mixture of hardware

and software parts exist for more than 15 years. These scenarios occur in the context of

general-purpose systems (PCs, workstations), in which the joint development of processor,

compiler, and operating system is addressed. The instruction set selection, the exploitation

of parallelism by pipelining and scalar units, and the implementation of different caching

strategies are typical topics for these systems. A slightly different context is opened by

embedded systems, which contains a similar component, namely the joint development of one

ore more special-purpose processors and their respective compilers, whereas the other major

component in co-design for embedded systems arises from the naturally strong dependency

on its specific purpose that is captured in the system description. This description of the

system’s functionality drives the design process, hence the term system level design is often

utilised in this field [118]. Focusing on the latter scenario a proper definition of the term

embedded systems is mandatory. Although being around for more than 20 years, a unique,

commonly accepted definition is very hard to find. Still recently, Henzinger and Sifakis felt

hustled to publish a work about the ’embedded systems design challenge’ [58], in which this

term has been tried to be captured without losing generality:

”An embedded system is an engineering artifact involving computation that is subject to

physical constraints. The physical constraints arise through two kinds of interactions of

computational processes with the physical world: (1) reaction to a physical environment,

and (2) execution on a physical platform.”

This definition does not necessarily entail a better palpability of the matter, since it embraces

any built thing that computes. Besides, this definition completely embezzles the very part of

the term, which makes it distinguishable in the first place: embedded. Therefore, we adhere

to the following definition.

Definition 1 (Embedded System). An embedded system is a computing device in general

subject to a specific purpose and its implementation is predominantly determined by this

12 2 State of the Art in HW/SW Co-Design

purpose, usually entailing a complete encapsulation into the environment where this purpose

is located at.

Unfortunately, even this description becomes blurry, as we explicitly included for instance

PDAs and modern mobile phones in the aforementioned examples. To be precise these prod-

ucts are rather general-purpose devices, but on a smaller scale compared to desktop PCs.

The design methodology for embedded systems is intended to offer efficient and comprehen-

sive mechanisms to explore a variety of implementation alternatives. An executable descrip-

tion of the system’s functionality is inherently capable to be simulated and to be formally

verified. The description has to be complete, i.e. all relevant design traits have to be present

at any stage of the design process.

As illustrated by Figure 2.1 the concept of system level design consists of strongly inter-

Fig. 2.1: Concept of System Level Design.

connected tasks. The allocation phase comprises the component selection being appropriate

for the execution of the system, e.g. processors, memory units, ASICs, etc. Any of those

is characterised by a multitude of parameters, e.g. consumed power, number of operations

per second, size of the silicon, read and write access times for memory units, etc. Processor

structures comprise DSPs, RISCs (reduced instruction set computer), ASIPs, or microcon-

trollers (µC). According to the simulated, measured, or estimated system characteristics the

behavioural components are partitioned onto the chosen architectural components.

These tasks are strongly interleaved. As every specific allocation and partitioning solution

generates a new implementation alternative of the system with a new set of mostly estimated

characteristics featuring a higher degree of detail, the preceding assumptions have frequently

to be reconsidered. Once the design decisions have reached a mature state, the synthesis of

the hardware parts, of the software parts, and of the interfaces eventually begins.

The following section gives a more detailed view on a typical platform composition in em-

bedded systems.

2.1. Target Architectures in Embedded Systems 13

2.1 Target Architectures in Embedded Systems

The most typical architectural structures for embedded systems concentrate essentially onto

a range of processing units: relevant for software implementations are µCs and DSPs, or even

more specific ASIPs, typical candidates for hardware implementation are programmable logic

and dedicated data-paths. A mixture of these components is either assembled onto a single

chip for which the term System-on-Chip (SoC) has prevailed, or is composed by several chips

onto a board system.

Figure 2.2 visualises the common notion of the trade-off between hardware and software

Fig. 2.2: Architectural components and their affiliation to hardware and software.

architectural components. From the left to the right the complexity of the underlying com-

ponent is decreasing in terms of instruction set, sophisticated memory access, and pipelining

strategies. This is counterbalanced by the increase of the computational speed towards

ASICs, mostly measured in throughput or number of operations per time unit. The grouping

of these processor classes into hardware and software systems has not been clearly defined but

is generally understood [31, 118]. More detailed descriptions of the individual components

are given in Appendix B.

2.1.1 Platform Composition

The assembly of state-of-the-art systems from the range of available processing elements can

be in general be separated in two categories: system-on-a-chip (SoC) and board-level (or

multi-chip) system. Typical board-level systems are for instance desktop computers and laser

printers. To be precise, SoCs do not comprise every single peripheral on one die, but nearly

any portable wireless system encapsulates vital parts on a single silicon substrate, since then

the advantages of minor size and low power consumption can be combined. Moreover, the

reliability of the circuit benefits well from the assembly on a single chip, such that in many

cases even analogue parts (sensor, actuator, power amplifier) are put onto the same chip.

Again a commonly acknowledged definition for SoC is hard to obtain. We adhere to the

14 2 State of the Art in HW/SW Co-Design

Fig. 2.3: Block structure of an System-on-Chip based design for a video phone [136].

notion of very typical components, of which a selection is assembled on an SoC:

• At least one µP (µController, DSP, RISC, etc.).

• A selection of memory units (RAM, EEPROM, ROM, etc.)

• Serial and parallel ports and interfaces (UART, JTAG, USB, etc.)

• Analogue circuitry (phase locked loops, sensors, oscillators, etc.)

• Analogue interfaces as analogue-digital or digital-analogue converters.

• Power management circuitry (clock gating, voltage/frequency regulation).

• Internal busses (CAN, AMBA, etc.).

• Direct memory access (DMA) to disburden the µProcessor.

In Figure 2.3 a block based structure of a state-of-the-art board level system containing a

large SoC is depicted, which is comprised of a selection of components very typical for a

modern video phone. The multiplicity of components integrated onto the same die is an

immediate consequence from the dramatic advances in microelectronics. In consequence,

2.2. Embedded Systems Design Flow 15

the non-recurring engineering costs for SoCs are much higher than for multi-chip (board-

level) systems, whereas the production cost for SoCs is lower, once the floor planning is

finalised. The overwhelming part of embedded systems in the wireless domain is built around

System-on-Chips and in the following section the traditional design flow for such systems is

described.

2.2 Embedded Systems Design Flow

The flow of the overall embedded design process, starting with the initial conceptual idea

of the system and finishing in the final product, is traditionally divided into a number of

abstraction levels. Of the many design methodologies in existence, each prescribes a different

set of abstraction levels to make up the design process. As a result, there is no clear and

universally accepted division of the design process into a well-defined set of abstraction

levels. Rather, there exists a great number of overlapping or even synonymous definitions

of abstraction levels, some of which are broad in scope, while others cover small and very

specific parts of the design flow, and again some of which enjoy wide recognition in academic

and industrial circles, while others are referred to less commonly [45, 50, 75].

The right side of Figure 2.4 shows a collection of some of the most commonly used abstraction

levels in academic literature and/or industrial practice, given in their relative order within

the overall design process (from high to low level of abstraction). On the left side a co-

design flow is depicted accordingly, as it is commonly described in embedded systems. On

highest abstraction level an informal specification of the product is put together that does

not contain any information regarding its realisation but only a rough sketch of the desired

behaviour. Consequently, first refinements intend to identify algorithmic solutions for this

functionality, for instance whether a complex computation could be performed and not how

much resources the computation required. Exploration of different algorithmic variants with

respect to precision, computational effort, and robustness is located here indicated by the

cycle item in the co-design flow.

The next lower transaction/architecture level is typically occupied by platform modelling,

the allocation of architectural components and the partitioning into hardware and software

domains. Static code analysis, profiling and co-simulation deliver estimations of timing,

silicon area, latency, throughput, regarding the chosen platform composition. Communication

models for intra-platform data transfers are applied to simulate the behaviour of memory units

and bus structures. According to the platform setup, interface functions are provided that

handle the data transfers and transactions between architectural components. Within a single

component usually untimed code, e.g. plain C is deployed, whereas the interface functions

16 2 State of the Art in HW/SW Co-Design

modelling bus and memory accesses feature a more sophisticated, so called bus-cycle true

behaviour. Performance estimations are fed back in the co-design flow to alter the platform

setup, the partitioning or even fundamental parts in the executable system specification.

Fig. 2.4: Common abstraction levels and co-design flow for embedded systems.

The hardware assembly of ASICs, ASIPs and FPGA blocks is performed on register transfer

level, for which hardware description languages (HDL) like VHDL [33] and Verilog [34] are

vicarious. Exact, so-called bit/cycle true simulations are possible at this stage, hence is

verification of the hardware behaviour. The software assembly onto chosen CISC, DSP, or

RISC cores belongs to the same level of abstraction. Once assembly code for these cores exist,

the software part does not undergo a further refinement in terms of abstraction levels, whereas

the hardware described by VHDL or Verilog does so on its way to final synthesis (via the

wire and the geometry level). The integration and verification of both hardware and software

components is the final step towards manufacturing the product. In embedded systems it

is in general not possible to revise upper levels in the design flow once the integration and

verification stage below register transfer level has been reached, due to the harsh time-to-

market requirements. Therefore, the performance analysis and verification step may only

affect the immediate preceding implementation of the actual function block.

Such an iterative reduction of the abstraction level narrows the design space and increases

the accuracy of the model. To avoid the introduction of malfunctions due to the perma-

2.2. Embedded Systems Design Flow 17

nent transformation of the system description while decreasing the level of abstraction, the

correct-by-construction paradigm [37, 125] is of major importance. Formal methods and

automated synthesis have to be incorporated whenever possible. For the hardware synthesis

from register transfer down to geometry, this goal has already been accomplished. Power-

ful synthesis tools exist, which enable the designer to automate the implementation process

for VHDL/Verilog specified hardware blocks to a very large degree, e.g. Design Compiler

from Synopsys [131], HDL coder toolbox from Matlab/Simulink [137], or proprietary tools of

FPGA providers like Xilinx [145] and Altera [3]. This success in raising the lowest abstraction

level to register transfer level by automation of the subsequent refinements is considered to

be exemplarily for the future path of electronic system design [32].

With respect to the platform setup and partitioning stage a similar success has not yet been

achieved. Paragraphs dedicated to related work in platform abstraction, problem formula-

tion, and partitioning algorithms reside in their respective chapters. In Appendix B.8 a review

of commercial and academic co-design frameworks and their respective design languages is

given.

3 SYSTEM PARTITIONING

In embedded system design the term system partitioning usually comprises the compound of

two synthesis tasks: allocation and mapping. The selection of architectural components is

meant by allocation, whereas the binding of the functional code of the system to these compo-

nents is performed during the mapping. Note, that often mapping and (system) partitioning

are used synonymously, when the architectural traits of the platform are fixed beforehand

and are therefore not part of the optimisation. Usually a variety of constraints exists that

aggravate the process of finding a suitable solution. Amongst others there are quantifi-

able properties for timing, power consumption, compiled code size, silicon area, throughput,

latency, implementation cost, etc. and unquantifiable properties as flexibility, humble main-

tenance effort, testability, reusability, and many more. In general it can be stated that most

formulations of this optimisation problem are marked by a huge solution space and analyti-

cally intractable relations between the characteristic values that influence the feasibility of a

candidate solution.

The following chapter introduces classical graph concepts and fundamental terms. Specific

graph structures that are commonly used to describe signal processing systems are surveyed

with respect to hierarchy and granularity in Section 3.1. The classical platform model pre-

dominantly used for partitioning scenarios is surveyed in Section 3.2. How the underlying

architecture for the allocation phase can be modelled to give consideration to modern hetero-

geneous architectures is described in Section 3.3. Herein, a detailed and flexible component

library is introduced, which allows for arbitrary architecture composition, as they are typically

found in embedded systems. Section 3.5 sketches the origin of the system partitioning prob-

lem in an NP-complete problem known from graph theory. Based upon these classical terms

the problem is formulated to map the system graph to components from the new architecture

library as a combinatorial multi-objective optimisation problem. Eventually, it is shown that

this formulation accommodates an enclosed NP-complete problem in Section 3.5.3, namely

the multi-resource scheduling problem.

20 3 System Partitioning

3.1 Typical Graphs in Embedded System Design

System partitioning of a system relies on its representation in various graph forms. The

following basic definitions prepare the ground for the further discussion of these forms.

Definition 2 (Graph). A graph G (V, E) is defined as an ordered pair of a set V =
{v1, v2, . . . , v|V|} of vertices and a set E = {e1, e2, . . . , e|E|} of edges. The elements of

the set E correspond to unordered pairs of vertices. The vertices belonging to an edge are

called endpoint or end vertex of the edge.

Definition 3 (Directed Graph). A directed graph G (V, E) is defined as an ordered pair of

a set V = {v1, v2, . . . , v|V|} of vertices and a set E = {e1, e2, . . . , e|E|} of edges. Here, E is

defined as set of 2-tuples of vertices E = {(v, w) | v, w ∈ V}. The operation beg returns

the source (tail) vertex, and the operation end returns the sink (head) vertex of an edge

e as follows: ∀ e = (v, w) ∈ E : beg(e) = v, end(e) = w. The vertex v is called a direct

predecessor of w and w is a direct successor of the vertex v.

Definition 4 (Path/Simple Path/Cycle). A path p from a vertex v to a vertex w in a

directed graph is a sequence of vertices v = s1, s2, . . . , sn = w that satisfies: ∀ i, i =
2 . . . n∃ (si−1, si) ∈ E . The vertex s1 is the initial vertex of that path and sn is the terminal

vertex of the path. A simple path ps additionally fulfills the condition: ∀ si, sj ∈ p, i 6= j :
si 6= sj . If the initial and the terminal vertices of a path are the same, that is, s0 = sn, then

the path is called a cycle.

Definition 5 (Directed Acyclic Graph). A directed acyclic graph (DAG) is a directed graph

that does not contain any cycles. (Or equivalently, all possible paths of a DAG are simple

paths.)

Definition 6 (Indegree/Outdegree). The operation indegree(v) returns the number of in-

coming edges to the vertex v ∈ V of a directed graph. The operation outdegree(v) returns

the number of outgoing edges from the vertex v ∈ V of a directed graph.

Definition 7 (Rank). The operation rank(v) of a vertex v ∈ V in a directed graph G (V, E)
is defined as:

∀ v ∈ V : rank(v) ,

{
0 , indegree(v) = 0

1 + max
u

rank(u) , indegree(v) > 0
, (3.1)

with u ∈ V, e ∈ E : u = beg(e) ∧ v = end(e).

3.1. Typical Graphs in Embedded System Design 21

3.1.1 Process Graphs

A common approach for reaching a high perceivability of the functionality within a large and

complex system is to use a hierarchical decomposition together with graphical representation.

Hierarchical decomposition into subsystems provides a structured view to the system for a

group of different designers. In Figure 3.1 a common graphical representation for a system

(e.g. in communications) is shown. This starts on the left with a process or task graph

describing a modern signal processing system in dependence on its nature as data flow

oriented system on a macroscopic level, in which vertices represent processes or functions

and edges represent data transfers between them. Nearly every signal processing work suite

offers a graphical block-based design environment, which mirrors the movement of data,

streamed or blockwise, while it is being processed [12, 98, 133, 137].

Definition 8 (Process or Task Graph). A process or task graph is a directed graph, in

which the vertices represent functional elements performing data processing and in which

the edges represent data transfers between those processing elements. The term process (or

function) is used synonymously for the vertices of a process graph throughout the thesis.

Furthermore, a detailed view of one vertex may reveal several function calls, which can be as-

sembled to a single larger process (or may be represented as access or call graph if necessary).

By zooming in one of the processing vertices, a control flow graph is dismantled as shown

in the middle of Figure 3.1, which is in turn assembled by so called basic blocks (Def. 10).

And finally, within these basic blocks algebraic expressions are represented with a data flow

graph on operational level, a so called expression tree on the right. Beside its purpose of

Fig. 3.1: System decomposed into hierarchical graph structures.

a structured view to a system, these graphs and subgraphs allow for automatic analysis in

22 3 System Partitioning

order to derive characteristic properties and successively for automated partitioning as well.

The definition of those graph structures is presented in the following paragraphs.

Definition 9 (Control Flow Graph). A control flow graph (CFG) is a directed graph

G (V, E , root, exit). It represents a notation of all paths that can be traversed through-

out a process during its execution. The control flow of a process enters only at one

vertex (root vertex) and leaves the process only at one vertex (exit vertex). The root

vertex does not have any incoming and the exit vertex does not have any outgoing edge

(indegree(root) = outdegree(exit) = 0).

Definition 10 (Basic Block). A basic block (BB) is a vertex of a CFG and contains a

sequence of data operations ended by a control flow statement as last instruction.

The statements implementing the control flow are for instance for C based languages if,

case, goto, for, while, do, continue, and break. These statements divide the program

flow into separable basic blocks and establish the control dependencies between them. Due

to programming constructs like loops a CFG is in general not cycle-free. The middle part of

Figure 3.1 depicts the resulting CFG structure from the three for-loops in process D.

Control flow graph analysis contains many more characteristic values like reducibility of loops,

dominance trees [2], and loop cascading [102], feasibility of paths and linear independent

paths [119], etc. Partitioning techniques working on these fine-grain graphs are less common,

since basic blocks contain normally only a few operations, so that the superposed communi-

cation overhead to interconnect different partitions is very high. Still, some approaches exist

that partition on CFG level [57].

The sequence of data operations inside of one BB forms itself a data flow graph (DFG) or

equivalently one or more expression trees (Figure 3.2 on the right). To briefly sketch how

source code is transformed into these graph representations, consider the following example

of a C-like expression: factor = offset + period * 60;.

After lexical analysis, which generates a sequence of symbols and analyses their classification

as identifier, operator, constant, expression, etc., a parse tree is assembled as in Figure 3.2 on

the left. This parse tree corresponds to the more comprehensive expression tree in the same

figure on the right. Usually within a BB more than one expression exists that reads from and

writes to the variables. The assembly of all expression trees within a BB then forms a data

flow graph on operational level. In such a DFG edges correspond to variables or constants

holding information and vertices correspond to operations performed on these variables. For

more detailed information on compiler techniques refer to the literature [2].

3.1. Typical Graphs in Embedded System Design 23

Fig. 3.2: Code fragment representation as parse and expression tree.

3.1.2 Synchronous Data Flow Graphs

To be in accordance with most of the partitioning approaches in the field, a graph represen-

tation to be in the form of synchronous data flow (SDF) graphs can be assumed. This model

of computation has been firstly introduced in 1987 by Lee and Messerschmitt [99] at UC

Berkeley. This model established the backbone of renowned signal processing work suites,

e.g. Ptolemy [98] or SPW [29]. SDF captures precisely multiple invocations of processes and

their data dependencies and thus is very suitable to serve as a system model for data stream

oriented signal processing systems. An indicator for the persistent relevance of the SDF graph

representation is provided by the fact that SystemC and its most recent extensions natively

support the SDF domain. For instance, the official analog mixed signal (AMS) extension of

SystemC [135] just introduced a computation model now providing SDF computation models

for all AMS modules.

Definition 11 (Synchronous Data Flow Graph). A synchronous data flow (SDF) graph is

a directed graph G (V, E). Any edge ei ∈ E is annotated with two numbers pi, ci ∈ Z+, of

which pi is assigned to the tail of ei, and ci to the head of ei. The numbers pi represent the

number of samples produced per invocation of the vertex at the edge’s tail, out(ei). The

numbers ci indicate the number of samples consumed per invocation of the vertex at the

edge’s head, in(ei).

In Figure 3.3a, an example of an SDF graph G (V, E) is depicted, composed of a set of

vertices V = {a, .., e} and a set of edges E = {e1, .., e5}. According to the data rates at

the edges such a graph can be uniquely transformed into a single activation graph (SAG)

in Figure 3.3b. Every vertex in a SAG stands for exactly one invocation of the process,

24 3 System Partitioning

Fig. 3.3: Example of a synchronous data flow graph and its decomposition into a single
activation graph.

thus the complete parallelism in the design becomes now visible. Here vertex b and d occur

twice in the SAG to ensure a valid graph execution, i.e. every produced data sample is also

consumed.

An SDF graph can be formally described by a topology matrix Γ, in which any vertex is

assigned to a column and any edge is assigned to a row:

Γ =

2 −1 0 0 0
4 0 −4 0 0
0 1 0 −1 0
0 0 2 0 −2
0 0 0 1 −2

 . (3.2)

This matrix represents the topology matrix for the SDF graph in Figure 3.3 with the columns

corresponding to the vertices in order a to e and the rows corresponding to edges in order e1

to e5. This formalism allows for instance for the detection of inconsistent sample rates, when

rank(Γ) 6= |V| − 1, and for periodic scheduling analysis [99]. Many partitioning approaches

premise the homogeneous form of SDF graphs.

Definition 12 (Homogeneous SDF Graph). A homogeneous SDF graph is an SDF graph, if

∀ei ∈ E : out(ei) = in(ei), or equivalently, if the SDF graph and the single activation graph

exhibit an isomorphic graph structure.

In this homogeneous form the connection to process or task graphs can be easily established,

as a single activation graph is commonly considered as general process graph.

Although widely accepted for signal processing systems, SDF graphs are restricted to static

dataflow behaviour. Therefore, modern SoC applications are often not completely amenable

to SDF. Parameterised or cyclo-static dataflow provides for dynamic behaviour by means

of structured, dynamic parameter changes in the base model that it is applied to. These

modern approaches have not yet made their way into any academic or commercial EDA tool

3.2. Classical Platform Model for Hardware/Software Partitioning 25

and their integration into OTIE remains an open issue. A brief survey of these graphs can

be found in Appendix C.3.

In this thesis the partitioning backbone supports both general process graph structures as well

as general SDF graph representations. According to Lee’s work [99], a calculus is provided

that validates SDF graphs with respect to their consistency, that resolves feedback edges

and multiple invocations and that performs the transformation into single activation graphs,

which can be treated equivalently to process graphs. The granularity of the vertices adheres

to the common notion of a partitionable size that covers the encapsulated functionality of

FIRs, DCTs, quicksort, Walsh-Hadamard transform, or similar procedures in consideration of

comparable work by other authors in this field [25, 35, 78, 142].

3.2 Classical Platform Model for Hardware/Software Partitioning

When the hardware/software partitioning problem came to be recognised as a hard optimi-

sation problem being encountered in system design at the beginning of the last decade, the

perception of such a hardware/software platform has been rather uniform throughout the

following ten years.

In 1993 Ernst and Henkel published an early work on the partitioning problem within the

COSYMA system [39]. The underlying architecture model has been composed of a pro-

grammable processor core, memory, and customised hardware (Figure 3.4). Its composition

Fig. 3.4: Common implementation architecture.

entailed from the fundamental notion of the existence of two different processing elements: a

programmable software processor that executes functional code sequentially and in a rather

slow manner and a non-programmable hardware processor that allows for different function

blocks to be carried out concurrently in a rather fast manner. In the beginning this setup

was appropriate to excogitate fundamental strategies to cope with problems like minimising

26 3 System Partitioning

execution time with limited silicon area. The distinction between local and shared memory re-

sources with different access times according to the number of data being transferred offered

a flavour of realism but completely neglected the occurrence of collisions on the system bus

and the difference between on-chip and off-chip memory access. Still, this platform model

was widely adapted by research groups around the world as it can be found by Kalavade et

al. [77,78], Eles et al. [38], Vahid et al. [140], Chatha et al. [25], and Srinivasan [129]. How-

ever, the crudeness of the model prevented its deployment to any realistic scenario, since too

many details affecting execution time and area through communication and control overhead

had been neglected.

In the late nineties the first approaches were developed that spent more effort to model

communication between processes and different resources more accurately. In 1997 Hardt

and Rosenstiel modelled a Sparc CPU based architecture featuring a direct memory access

(DMA) controller, cache structures and different execution times for load and store accesses

on all communication links [54]. However, in their codesign approach the performance of

a system executed on this architecture was crudely estimated, i.e. completely unaware of a

possible concurrent process execution on different resources and unaware of colliding data

transfers on communication links accessed simultaneously by different resources. In 2002

Wiangtong et al. [142] were one of the first authors that improved this model with a proper

scheduling technique avoiding any packet collisions on the bus structures, but neglecting

complexity in the variety of communication links, the bus arbitration schemes and the number

of available resources.

Realistic communication includes a multitude of connections from direct I/O especially suited

for high data rate connections, point-to-point communication via dual-port RAM (DPRAM)

or FIFOs , to complex bus structures (CAN, AMBA) with single or pipelined data transfers

with optional data protection (parity or cyclic redundancy checks). In 2000 Renner et al.

published an in-depth analysis of the mentioned communication resources and how they can

be effectively modelled [122]. This work delivered the underpinning of the communication

model applied in this thesis, whose intricacies are described in the next section.

3.3 Flexible Platform Model for Heterogeneous Embedded Systems

Until now, publications addressing partitioning for embedded systems base their considera-

tions on the very basic platform described in the preceding section. This model does not have

much resemblance with modern heterogeneous architectures as they are used in embedded

systems especially in the wireless domain. Therefore, a lot of effort has been undertaken

to develop a sustainable fundament for an arbitrary composition of heterogeneous platforms

3.3. Flexible Platform Model for Heterogeneous Embedded Systems 27

including DSPs, ASIPs, FPGAs, ASICs, busses, memories, etc.

Consider the following examples of platform architectures taken from industrial designs. The

Fig. 3.5: UMTS+GSM baseband transceiver chip [53] and its platform abstraction.

first example originates from our experience with an industry-designed dual-mode UMTS+-

GSM baseband transceiver chip [53]. The real reference chip is composed of a DSP core

and a microcontroller for the signalling subsystem (the multimedia subsystem has not yet

been integrated on the same die in the first version). Even without the multimedia compo-

nents, i.e. video processing, camera management, etc., the chip features, apart from both

microprocessors, several hardware accelerating units (ASICs), for the more data oriented and

computation intensive signal processing, two system busses connected by a bridge, a shared

RAM for mixed resource communication, direct memory access controllers (DMA) and a di-

rect I/O frontend to peripheral subsystems (the antenna) to disburden the bus. In Figure 3.5

the chip and its abstraction are depicted.

Another industrial example consists in a rapid prototyping board for real-time MIMO OFDM

channel emulation [103]. This platform basically consists of a Xilinx Virtex 2 FPGA, a TI

C6416 DSP, and a Motorola Coldfire µP. Figure 3.6 depicts a block diagram of the board

and its abstracted model. The FPGA provides digital baseband interfaces for input and

output signals, as well as for communication over the backplane. The baseband signals are

implemented by means of LVDS (Low Voltage Differential Signalling) and using standard

Channel Link connectors. The Motorola Coldfire µP is used for configuration of the board

and communication with a PC. Although the classical concept of ’one DSP and one FPGA’ is

adhered to in this example, a realistic platform abstraction necessitates a much more sophis-

ticated approach compared to the classical model, especially with respect to mixed resource

communication.

The generalisation of both the baseband receiver chip and the rapid prototyping board com-

28 3 System Partitioning

Fig. 3.6: Rapid prototyping board for MIMO OFDM channel emulation [103] and its platform
abstraction.

bined with the detailed communication model proposed by Renner [122] resulted in the

development of a C++ based architecture library for the models of processing elements DSP,

µC, DMA, ASIC, FPGA, bus, FIFO, and direct interconnect. Their individual characteristics

and how tasks and data transfers express themselves on those are described in the remaining

section.

Four base classes build the backbone of the architecture library: platform, processing element,

channel, and memory.

• Platform

This class constitutes the managing object for all following resource classes. It handles

lists, vectors and tables for the residing Processor, Channel and Memory objects, as

well as the link characteristics about the available connections between those.

• Processor

Processing elements are further subdivided into sequential types (µPs executing com-

piled code) and concurrent types (FPGAs or ASIC blocks). Processors occupy chip

area measured in gates and consume power according to their processing load.

– Sequential

A sequential processor model manages a schedule of its processes and is restricted

in the size of available memory for compiled code. The processor model deter-

mines a static schedule avoiding any collisions.

– Concurrent

A concurrent processor, as an FPGA, has a specific capacity measured in gates

of being able to accommodate functional blocks that may run concurrently. Run-

time reconfigurability of the FPGA is not yet supported, but currently worked

on [65, Knerr et al.].

3.3. Flexible Platform Model for Heterogeneous Embedded Systems 29

The architecture supports internal memory structures for both processor types with

customisable access times, to allow for e.g. levelled caches with a fast one-cycle

read/write accesses or SDRAM components.

• Channel

Processing elements and memory units possess ports to connect to channels over which

the data are transferred. The channels subdivide into three types:

– Direct

A direct channel is an unmanaged resource that introduces area overhead, but

avoids additional data overhead and features a high throughput (≈ 100Mbits/s

. . . 10GBits/s). But in this model direct data transfers are not buffered, hence

two directly connected processes have to be executed in immediate succession.

– FIFO

FIFO channels introduce a larger area overhead depending on the offered FIFO

depth and FIFO access logic (busy/idle), and medium available read and write

access times (≈ 1 . . . 100MBits/s).

– Bus

A bus channel offers customisable data overhead for framing, identifier, routing,

and error checksums (≈ 4bytes/packet, packet of 0 . . . 8bytes) and adjustable ar-

bitration schemes (priority scheduling). Busses are modelled with direct memory

access (DMA) controller to decouple process execution and process communica-

tion. A typical throughput is 1Mbits/s. A static schedule is created that allows

for sequential or concurrent read and write accesses via the bus.

• Memory

A memory block features a number of ports that can be connected to busses or directly

to DSPs. It serves typically as shared memory, when data are transferred between

processes that run on different resources, or when, while running on the same resource,

the internal memory is exceeded. A memory block has customisable access times,

silicon area, and power consumption, so that it is also possible to model e.g. off-chip

memory.

Any of the characteristic values for a distinct resource is parameterisable, such that a designer

has the possibility to specify his component library according to his needs and the available

resources in his design flow. A platform example with all the components contained is

depicted in Figure 3.7.

To the best of our knowledge, there is no other partitioning framework, which permits arbi-

trary platform assembly with comparable precision and flexibility. In Chapter 4 this flexibility

30 3 System Partitioning

Fig. 3.7: Example of a heterogeneous architecture model.

is applied to evaluate the partitioning algorithms on different platform models and thus to

obtain a clearer picture of their performance.

Moreover, although such a mechanism has not yet been deployed for this thesis, the im-

plemented class library allows for the run time modification of the platform traits during

a partitioning process, hence enabling a further extension towards automated architecture

exploration.

3.4 System Graph Enrichments

With the knowledge about the platform abstraction described in the last section, the system

graph is enriched with additional information about execution time, silicon area, amount

of data to be transferred between processes, power consumption, etc. The majority of the

approaches assigns a set of characteristic values to every vertex representing a process. Most

common are execution time et for any available resource, silicon area measured in gates gc
both for ASICs and FPGA and compiled code size cs for µPs. To a minor degree power

consumption pc is incorporated as well.

Those values are mostly obtained by two different techniques: Static code analysis is based

on CFGs and expression trees [67, Knerr et al.], [1,127] and investigates longest and shortest

paths, value lifetimes, memory accesses, tree depths, etc. This technique abstains from time

consuming compilation or synthesis steps, but yields usually the least reliable values.

The second technique is dynamic profiling [22, 120], which necessitates representative test

data for the application on the one hand and a code compilation step for a µP target or a

3.4. System Graph Enrichments 31

VHDL/Verilog description for an ASIC or FPGA target on the other hand. For these dy-

namic techniques supportive EDA tools exist as e.g. VisualDSP++ from Analog Devices

for µPs, that supports profiling and, for some cores, profile guided optimisation with an

code size-execution time trade-off. In general, sets of implementation alternatives can be

created by varying the compiler options. For instance the minimisation of DSP stall cycles is

traded off against the code size for a lower execution time, loops are unrolled, or dedicated

memory maps are created. Profiling for FPGA or ASIC implementations is supported by

ModelSim [105] from Mentor Graphics. High level synthesis from C functions to VHDL is

supported by CatapultC [104] from the same vendor, an EDA tool that allows additionally

for a fast and reliable analysis by a manual variation of parameters, e.g. the unfolding factor,

pipelining, or register usage. It is possible to generate a set of implementation alternatives

of every single process for a specific resource such as e.g. a Virtex IV FPGA from Xilinx or

any dedicated ASIC library that a chip manufacturer provides.

In this thesis a set of available implementation alternatives I(vi) for any process visualised

by a vertex vi of the design graph is assumed that characterises how the process expresses

itself on a distinct resource r ∈ R. For instance, for a design assembled by an Virtex FPGA

(VX), an ARM processor and a StarCore (SC), the elements Air,j of the implementation set

can be listed as follows:

∀ vi ∈ V ∃I(vi) = { AiVX,1, A
i
VX,2, . . . , A

i
VX,k,

AiARM,1, A
i
ARM,2, . . . , A

i
ARM,l,

AiSC,1, A
i
SC,2, . . . , A

i
SC,m }.

(3.3)

In case of the usual deployed values for execution time, code size, gate count, and power

consumption, the jth implementation alternative on resource r would yield a four-tuple:

Air,j = (et , cs, gc, pc).

In a similar fashion the transfer times tt for the data transfer, visualised by edges ei, are

considered, because several communication channels exist in the design: the bus access to

shared memory or another processor (bus), the direct connect (dir), the FIFO connect (ff),

or the access to the local memory of resource r ∈ R if present:

∀ ei ∈ E ∃ I(ei) = { tt ibus, tt
i
dir, tt

i
ff , tt

i
r1 , . . . , tt

i
r|R|
}. (3.4)

The next section finally surveys the origin of the partitioning problem and introduces the

formulation for the given system graph and the platform model under consideration of a set

of constraints.

32 3 System Partitioning

3.5 Problem Formulation

With respect to solution strategies for combinatorial optimisation problems, the term heuristic

is frequently used, and in particular in this thesis. In a very general sense a heuristic algorithm

is a consistent algorithm for an optimisation problem that is based on some transparent

strategy of searching in the set of feasible solutions, and that does not guarantee finding any

optimal solution. In a stricter form this term can be defined as follows [68]:

Definition 13 (Heuristic). A heuristic is a robust1 technique for the design of (randomised)

algorithms for optimisation problems, and it provides (randomised) algorithms for which one

is not able to guarantee at once the efficiency and the quality of the computed feasible

solutions, even not with any bounded constant probability P > 0.

Frequently, the term randomised is omitted, hence e.g. local searches or the Kernighan-Lin

min-cut can be viewed as heuristics as well. In the following, randomisation is not explicitly

demanded, when an algorithmic technique is denoted as heuristic.

Combinatorial optimisation problems that are difficult to solve are said to be NP-hard. It

is generally assumed that algorithms do not exist having their run times bounded by a

polynomial in the size of the input. For a detailed survey of algorithmic complexity categorised

in the classes P, NP, NP-complete etc. consider the work of Garey and Johnson [46]. Herein,

only brief definitions of these complexity classes are given:

Definition 14 (Algorithmic Complexity Classes). A decision problem Pd takes an input I

(an instance of the problem) and yields as output yes or no. If an algorithm exists, which is

capable to produce the correct answer for any input of length nI in a polynomially bounded

number of steps, Pd is said to be solvable in polynomial time. P denotes the class of all

decision problems for which such a polynomial-time algorithm exists. The class of problems

for which given answers to this problem can be verified by an algorithm, with a run time

that is polynomial in the size of the input, is denoted NP. A decision problem Pd ∈ NP is

said to be NP-complete, if it is possible to transform every other decision problem Qd ∈ NP
to Pd in polynomial time. A decision problem is called NP-hard, if it is at least as hard as

every problem in NP. An optimisation problem is therefore already NP-hard if its underlying

decision problem (i.e. deciding whether a solution exists with the optimisation objective being

better than a given constant K) is NP-complete.

1 Robust is loosely defined to be ’applicable to a large class of optimisation problems with possibly very
different combinatorial structures’ [68].

3.5. Problem Formulation 33

3.5.1 The Classical Graph Partitioning Problem

This section briefly introduces the fundamental problem formulation from which all following

considerations are derived. The problem instance is represented by a graph G (V, E) with

vertices’ weights w(v) ∈ Z+ ∀ v ∈ V and edges’ lengths l(e) ∈ Z+ ∀ e ∈ E , and two positive

integers Wlim and Llim, as depicted in Figure 3.8 on the left.

The problem is to find a partition of V into m disjoint sets V1,V2, . . . ,Vm such that the sum

Fig. 3.8: Classical partitioning subject to constraints : Wlim ≤ 20 and Llim ≤ 10.

over the weights of each set’s vertices
∑

v∈Vi
w(v) ≤Wlim and such that, if Ecross ⊆ E is the

set of edges that have their endpoints in two different sets Vi,Vj with i, j = 1 . . .m, i 6= j,

then the sum over the lengths of the crossing edges is
∑

e∈Ecross l(e) ≤ Llim.

On the right side in Figure 3.8 such a partition into three disjoint sets has been established

such that the constraints are fulfilled. This problem has been proven to be NP-complete by

Hyafil and Rivest in 1973 [71] by a transformation from the partition into triangles problem,

which has also been discussed by Garey and Johnson [46].

For further discussions it is important to note that the origin of the system partitioning

problem is in essential aspects identical to this classical problem. In system partitioning the

assignment of vertices to disjoint partitions corresponds to the implementation of function-

ality onto disjoint processing elements (e.g. a set of DSPs), the weights correspond to the

resource consumption (e.g. code size or power) of a vertex, and the partition-crossing edges

correspond to the data transfers, that may not exceed a certain limit measured in bus utili-

sation or throughput. Certainly, some objectives, for instance the bus utilisation, cannot be

evaluated with simple sums, but necessitate a more elaborate computation model for schedul-

ing and collision arbitration. Still, it is very important to perceive that the hardness of the

system partitioning problem does not ensue from this superposed complexity of the objective

functions or of the computation model, but rather is an immanent trait of its nature. The

34 3 System Partitioning

exact details are going to be discussed in the next section of this chapter.

3.5.2 The System Partitioning Problem

In Figure 3.9 the mapping problem of a process graph is depicted. The left side shows

the system graph, the right side shows an exemplary platform model. With the connecting

arcs in the middle, the system graph and the architecture graph compose the mapping

specification. All possible realisations of a mapping span the design space S = {x1, . . . ,xm},

Fig. 3.9: Mapping between task graph and architecture model.

where x = (x1, . . . , xn)T , n = |V| + |E|, represents the decision (variable) vector with

x1 . . . x|V| identifying the relations vi → Air,j , i = 1 . . . |V| and x|V|+1 . . . xn the relations

ei → tt ij , i = |V|+ 1 . . . n. The mapping rules for a feasible solution are defined as follows:

Definition 15 (Feasible Mapping). A mapping x ∈ Sf(I) for a problem instance I with

Sf(I) ⊆ S(I) is named feasible, if

• all vertices of the system graph are mapped to a Processor resource r of the archi-

tecture graph for which they possess at least one implementation alternative: vi →
Air,j ∈ I(vi),

• and all edges of the system graph are mapped to a channel resource that is accessible

by both processing resources to which the edge’s head and tail vertex are mapped to:

ei → tt ij ∈ I(ei).

3.5. Problem Formulation 35

The structure of the space of feasible solutions Sf (I) ⊆ S(I) has to be organised in terms of a

neighbourhood to be accessible by optimisation algorithms as local or gradient searches [68].

Definition 16 (Neighbourhood on Sf(I)). For every problem instance I, the neighbourhood

on Sf(I) is defined by an operation2 nI : Sf(I)→ Pot(Sf(I)) such that

• ∀xα ∈ Sf(I) : xα ∈ nI(xα),

• if xβ ∈ nI(xα) for any xα ∈ Sf(I), then xα ∈ nI(xβ), and

• ∀xα,xβ ∈ Sf(I) ∃ k > 0, χ1, . . . , χk ∈ Sf(I) : χ1 ∈ nI(xα), χi+1 ∈ nI(χi) for

i = 1 . . . k − 1, and xβ ∈ nI(χk).

If xα ∈ nI(xβ) for any xα,xβ ∈ Sf(I), then xα and xβ are called neighbours in Sf(I).

In other words, nI is a local transformation on a feasible solution xα that generates a new

feasible solution xβ by some local changes of the specification of xα. As a consequence,

a condition for the platform assembly arises with the necessary existence of at least one

communication channel between any two processing resources. Then it is ensured that a

transformation nI(xα), which changes exactly one vector element xj , j = 0 . . . |V| to obtain

a new solution xβ adheres to the aforementioned conditions. In further discussions the ex-

plicit reference to the problem instance I is omitted, when the solution spaces are considered.

Feasibility does not ensure validity. Among all feasible solutions Sf a subspace of the valid

solutions Sv ⊆ Sf exists that is determined by a set of constraints bi like for instance maximum

area, maximum response time, and limited memory capacity of the resources given by the

requirements of the system. With those constraints, which can be grouped into a vector

b = (b1, . . . , bk)T and corresponding objectives functions f = (f1, . . . , fk)T , the term validity

can be defined.

Definition 17 (Valid Mapping). A mapping x is named valid, if it is a feasible mapping that

fulfills a number of constraints b for a number of objective functions f(x) given by a set of

inequalities:

f(x) ≤ b. (3.5)

These constraints can be described in a formal manner to establish a multi-objective optimi-

sation (MOO) problem [28]:

xopt = argmin
x∈ S

{f(x)} (3.6)

2 Pot is the powerset operator.

36 3 System Partitioning

where f(x) defines a vector involving k (≥ 2) conflicting objective functions fi : S→ R, i =
1..k.

More concretely, in our case these functions fi can be obtained as follows:

• For the silicon area constraint bA ≡ Alimit it is:

fA(x) =
n∑
i=1

g(xi) +
∑
r∈R

g(r), (3.7)

where g(xi) 6= 0 is the gate count identified by the relation xi (in case of an ASIC

implementation) and g(r) yields the gate count of any resource present (DSP, bus,

FPGA, etc.).

• Similarly, any resource r may possess a limited capacity bA,r ≡ Alimit,r measured in

gates (e.g. FPGAs):

fA,r(x) =
n∑
i=1

g(xi). (3.8)

• Any resource r may possess a limited memory capacity bC,r ≡ Climit,r measured in

bytes (e.g. DSPs):

fC,r(x) =
n∑
i=1

c(xi), (3.9)

where c(xi) 6= 0 is the code size identified by the relation xi.

• The objective function fT(x) for the makespan (the time required for a complete system

execution) of the system subject to bT ≡ Tlimit cannot be written down in a similar

manner, since for any mapping a precedence and resource constrained multi-resource

scheduling problem has to be solved. This objective has to be distinguished, since

the computation of fT(x) results in solving an embedded NP-complete problem. This

special case is therefore discussed in a dedicated section at the end of this chapter

(Section 3.5.3).

As stated before it is in general not possible to find a solution that optimises all the objectives

simultaneously. A very common description of optimality for a multi-objective optimisation

is given by Vilfredo Pareto [117].

Definition 18 (Pareto-optimality). A vector x1 is Pareto-optimal if there does not exist

another vector x2 such that x2 dominates x1. A vector x2 dominates another vector x1,

x2 � x1, iff ∀ i = 1 . . . k fi(x2) < fi(x1).

3.5. Problem Formulation 37

The subspace of Pareto optimal points xp is called Pareto optimal subspace Sp ⊆ Sf or shortly

Pareto front. More definitions and terms on Pareto-optimality are given in Appendix D.3.

Initial work to represent solution spaces with respect to the area and timing trade-off has been

formulated in terms of Pareto fronts [62, Knerr et al.]. However, in this thesis a different

approach has been chosen to offer a more striking comparison in form of a single value

between the optimisation algorithms.

Without further specification any member of Sp is an equally preferable solution for the

optimisation problem. To resolve the ambiguity between those Pareto optimal solutions xp

and in order to calculate a palpable value for their solution quality, the designer formulates

his design preferences with the means of weight factors for the k objective functions fi,

represented by the weight vector w = (w1, . . . , wk)T with
∑k

i=1wi = 1. As the objective

functions usually return values subject to their specific dimension (cycle counts, number of

gates, number of bytes, etc.) a normalisation has to take place. In our case of existing upper

bounds, the respective constraint bi, and natural lower bounds, i.e. the minimum possible

value for a specific objective function min fi, the normalisation is: fi,norm(x) = fi(x)−min fi

bi−min fi
.

The scalar product of the normalised objective functions with the weight vector yields a scalar

value Ωp for the solution quality as in (3.10):

Ωp(x) = fnorm(x) ·w. (3.10)

This weighted sum of normalised metrics is a classical approach to transform a MOO into

an single objective optimisation [36]. The minimisation of this weighted sum of normalised

objectives Ωp(x) is then the ultimate goal of the algorithm:

min
x∈ Sp

Ωp(x). (3.11)

Please notify, that for those algorithms that comprise a randomised structure in Chapter 4,

the outcome naturally varies for different runs of the same algorithm. For those a set of

problem instances of at least 30 different runs over any graph is performed, returning 30
cost values, Ω1(G) . . .Ω30(G) as defined in (3.10), a mean cost value Ω(G), and standard

deviation σ(G) for any graph G. However, since many different graphs are analysed, these

values are averaged again over the respective graph set G = {G1, G2, ..., G|G|}, yielding

globally averaged values for cost Ω(G) and for standard deviation σ(G). Henceforth, if not

stated otherwise, these globally averaged values are referred to when Ω and σ are listed

omitting (G) for brevity.

In case one of the objective functions fi exceeds its limit bi, a penalty function can be applied

38 3 System Partitioning

to enforce solutions within the limits:

f̃i,norm =

{
fi,norm , fi ≤ bi

(fi,norm)η , fi > bi
, (3.12)

with η > 1.0. Certainly, there are a lot more approaches to apply penalties to invalid so-

lutions with constant, linear, and exponential progression. Two aspects are important for

the penalty function: first, the penalties shall allow for a proper comparison of two invalid

solutions, hence a continuous differentiable function is preferable; second, the applied penalty

shall generate a strong pressure to favour valid solutions to avoid convergence to a solution

that erroneously accepts a few slightly invalid objectives as long as there are enough ob-

jectives with very low valid objectives. In this thesis η has been typically set in the range

2..4. Additionally, in all algorithms the found valid solutions are managed separately from

the invalid ones during the optimisation process. That will be explained in detail in Chapter 4.

For objective functions that are additive in nature, the computation of min fi (or max fi if

required) is a trivial task. More difficult is the generation of a reasonable lower bound for the

system’s execution time, which depends heavily on the underlying scheduling technique and

is hence not analytically ascertainable. To find the exact achievable minimum is equivalent

to solving a hard optimisation problem. In the last section of this chapter the scheduling

problem is briefly introduced and the consequences for the objective function will become

evident.

Since the evaluation of algorithms includes the amount of found valid mappings as substantial

metric, a meaningful validity ratio has to be defined:

Definition 19 (Validity Ratio). The validity ratio ΨA of an algorithm A is defined as the

number of valid mappings |SAvalid| found by A divided by the overall number of mappings

|SA| found by A: ΨA , |SAvalid|/|SA|.

Typically, algorithms are tested over graph sets containing a large number of different graphs,

and when the algorithm comprises a randomised element, additionally many instances for

every single graph are analysed.

Definition 20 (Run Time). The computational run time ΘA of an algorithm A is evaluated

by the number of clock cycles consumed by A until termination measured with the high-

precision timer QueryPerformanceCounter on an AMD ATHLON 64 3000+ Dual Core

1.8GHz PC.

Analogue to the globally averaged cost values, an globally averaged run time Θ is computed,

whenever randomised algorithms are applied to many instances of many graphs.

3.5. Problem Formulation 39

The individual constraints of a mapping scenario can further be specified by the ratios Ci in

(21) to give a better understanding of their strictness with respect to the present resources

in a mapping scenario.

Definition 21 (Constraint Ratio). A constraint ratio Ci ∈ [0, 1] is defined by the following

equation:

Ci ,
bi −min fi

max fi −min fi
. (3.13)

Small values for Ci < 0.5 correspond to rather strict constraints, as the objective gets closer

to its minimum, and accordingly larger values Ci > 0.5 correspond to rather loose constraints.

3.5.3 Embedded Scheduling Problem

The objective function fT(x) for the makespan of a solution x necessitates a more elaborate

description, since it is not educible with a closed formula as the objective functions for area

fA(x) and code size fC(x).

Due to the presence of architectural components with sequential character, the mapping prob-

lem includes another hard optimisation challenge: the generation of (near-)optimal schedules

for every mapping instance. For example, for any two processes mapped to a DSP or data

transfers mapped to a bus that overlap in time, a collision has to be resolved. Assume a

schedule for the mapping example in Figure 3.9 has to be generated. In Figure 3.10 a time

table is depicted, in which the processing times and the read and write accesses are visible.

Herein, concurrent devices (FPGA) are indicated by a wide track accommodating parallel

tasks, whereas sequential devices (all others) feature a narrow track accommodating tasks

in a distinct consecution. Typically, for a single mapping instance many different schedules

exist. This graph structure allows for the concurrent execution of the processes v2 and v3.

But as the current mapping instance assigns both processes to the DSP, a collision has to

be arbitrated. The processing order of v2 and v3 could as well be vice versa, affecting the

succeeding timing of processes and data transfers, and thus in general the schedule length.

Similar situations arise for any sequential device on many occasions in a mapping instance of

a realistic size.

Basically, such a mapping scenario, for which a schedule has to be produced, includes the

problem characteristics of two classical NP-complete scheduling problems, multiprocessor

scheduling [46] and precedence constrained scheduling [139]. In Appendix D these problems

are shortly described, as well as how the terms used in their formulation can be comprehended

regarding the scheduling scenario encountered in this thesis.

Our main interest in this aspect is focused on very fast scheduling techniques accepting sub-

optimal results with a reasonable quality for two reasons: this problem has to be evaluated in

40 3 System Partitioning

Fig. 3.10: Multi-resource schedule for a simple process graph.

the very core of a partitioning algorithm that naturally visits a huge number of solutions, and

the system execution time is, although typically important, just one constraint among others.

In this thesis two very common list scheduling techniques are utilised: Hu’s Highest Level

First (HLF) scheduling [69] and Hwang’s Earliest Task First (ETF) scheduling [70]. Consid-

ering partitioning problems, in which the system time has outstanding significance, a new

scheduling algorithm is introduced that is more complex but achieves a better performance

in Section 4.2.2.

The objective function fT(x) that contributes to the quality of the solution naturally depends

on the chosen scheduling technique: fHLF
T (x) 6= fETF

T (x). With respect to the minimum (or

maximum) values that could be returned by this function, only a lower (or upper) bound can

be calculated. The global lower bound on the system’s execution time min fT,global is then the

length of the critical path through the process graph, with every process featuring its minimum

possible execution time and assuming full parallelism (i.e. neglecting any collisions). The

data transfer times are analogously assumed to be handled by the resource with the highest

throughput, again neglecting any collisions.

4. ALGORITHMS FOR SCHEDULING AND

PARTITIONING

This chapter is subject to the range of algorithms developed and implemented in the course of

this thesis and hence constitutes its main goal: the enrichment of the Open Tool Integration

Environment with powerful partitioning techniques. The gained insights over the implemented

approaches with respect to their applicability and performance will be presented. The first

part highlights important system graph properties that shed some light on beneficial traits

of typical system graphs in the embedded design domain. These will be of relevance for the

discussion of the new approaches with respect to partitioning as well as to scheduling. The

second part then addresses the deployed scheduling techniques in detail. Two of these are

renowned algorithms, a third one represents a new approach developed for this thesis. The

last part of this chapter is concerned with a range of algorithms for the system partitioning

problem, their advantages, drawbacks and several new aspects about how these algorithms

can be applied in a beneficial manner. Several techniques will simply serve as benchmarks

and are merely adapted to the given problem formulation, other existing techniques are

substantially improved with dedicated operators and codings, and finally completely new

approaches will be introduced and judged by their performance compared to each other.

In this chapter the algorithmic complexity of optimisation techniques is mentioned several

times. In these cases we measure this complexity as asymptotic efficiency of the algorithms

in relation to the input size for a given problem instance [68]. The standard notation in

algorithmics for this form of complexity is defined as follows:

Definition 22 (Asymptotic Efficiency). Let f : N→ R≥0 be a function. We define

O(f(n)) = {t : N→ R≥0| ∃ c, n0 ∈ N, such that ∀n ∈ N, n ≥ n0 : t(n) ≤ c · f(n)}. (4.1)

If t(n) ∈ O(f(n)), we say that t does not grow asymptotically faster than f.

In that sense f(n) serves as upper bound for the notion of algorithmic efficiency of an

optimisation technique for a problem instance of input size n.

42 4 Algorithms for Scheduling and Partitioning

4.1 Specific Properties of Typical Process Graphs

The very first step to analyse an existing or to design a new algorithm for partitioning lies

in the acquisition of a profound knowledge about the problem formulation. Here, it consists

of two components: the target architecture and the system graph. Both have already been

discussed in the last chapter, but for the latter a few more considerations shall be made.

General random graphs, if not further specified, can differ dramatically from the specific

properties found in a distinct application domain. Graphs in electronic system design, in

which programmers capture their understanding of the functionality and of the data flow,

can be isolated by their value ranges for specific graph properties, which will be illustrated in

this section.

A review of the literature in the field of partitioning and electronic system design in general,

regarding realistic and generated system graphs has been performed. The value ranges of

the properties discussed below have been extracted from the following sources:

• a UMTS baseband receiver system from Infineon Technologies [53],

• an xDSL transceiver modem for combined classical and wide band telecommunication

form Infineon Technologies,

• the realistic examples taken from the benchmark library for multiprocessor scheduling

algorithms of the Kasahara Laboratory [79], also called the standard task graph set,

• the graph structures analysed by Kwok et al. [94] and Wiangtong et al. [142].

These examples are described in detail in Appendix C.1.

Depending on the granularity of the graph representation, the vertices may stand for a sin-

gle operational unit (MAC, Add, Shift) [39] or have the rich complexity of an MPEG or

H.264 decoder. In the considered partitioning scenario the majority of the published algo-

rithms [26, 35, 78, 142] decide for medium sized vertices that cover the functionality of FIRs,

IDCTs, Walsh-Hadamard transforms, FFTs, sorting algorithms or similar procedures. This

size is commonly considered as partitionable, i.e. the trade-off between introduced data

transfer overhead and the gain in performance may yield an overall improvement. Quantised,

the partitionable size represents 20 to 50 lines of hand written code of ≈ 5 . . . 15kbyte com-

piled C-code.

4.1. Specific Properties of Typical Process Graphs 43

The following graph properties are related to system graphs with such a granularity.

Definition 23 (Density/Sparsity). The density or sparsity ρ of a graph is the ratio of

number of edges divided by the number of vertices: ρ , |E|
|V| .

Fig. 4.1: Density of graph structures.

A directed graph is considered as dense, if |E| ∼ |V|2, and as sparse, if |E| ∼ |V|, see

Figure 4.1. Here, an edge corresponds to a directed data transfer, which is either exist-

ing between two vertices or not. The possible values for the number of edges calculate to

0 ≤ |E| ≤ (|V| − 1)|V|, and for directed acyclic graphs to 0 ≤ |E| ≤ (|V|−1)|V|
2 [126]. The

considered system graphs are biased towards sparse graphs with a density ratio of about

ρ = |E|
|V| = 0 . . . c|V|, with c� |V|.

Definition 24 (Degree of Parallelism). The degree of parallelism γ is defined as γ , |V|
|VCP| ,

with |VCP| being the number of vertices on the critical path [110].

In a weighted graph scenario this definition can easily be modified towards the fraction of

the overall sum of the vertices’ (and edges’) weights divided by the sum of the weights of

the vertices (and edges) encountered on the critical path. Apparently, this modification fails

when the vertices and edges feature a set of varying weights, as it is in our case for the

execution times et and transfer times tt .

Hence, for every vertex and every edge an average is built over their possible execution and

transfer times, etavg and ttavg. These averaged values then serve as unique weights for the

time weighted degree of parallelism γT:

Definition 25 (Time Weighted Degree of Parallelism). The time weighted degree of

44 4 Algorithms for Scheduling and Partitioning

parallelism γT is defined as follows:

γT ,

∑
vi∈V

et iavg +
∑
ej∈E

tt javg∑
vi∈VCP

et iavg +
∑

ej∈ECP

tt javg

. (4.2)

This property may vary to a higher degree, since many chain-like signal processing sys-

tems exist as well as graphs with a medium, although rarely high, inherent parallelism,

γT = 1 . . .
√
|V|.

However, when respecting precedence graphs to be sequenced or scheduled on a set of

resources, the aforementioned property for parallelism does not sufficiently reflect the graph’s

capability to rearrange its vertices. Consider the two graphs in Figure 4.2. Both feature the

very same γ (and ρ), however the left graph is ’less parallel’ in such a way, that e.g. the

number of parallel vertices is much lower, as indicated by the highlighted vertex v5 with its

parallel counterparts accentuated in blue. A structural metric to cover this property is here

Fig. 4.2: Parallel vertices seen by vertex v5.

introduced.

Definition 26 (Average Number of Parallel Nodes). The average number of parallel nodes

γ̂ is defined as

γ̂ ,

∑
vi∈V par(vi)
|V|

, (4.3)

where par(v) yields the number of vertices that are neither successors nor predecessors of

vertex v.

The value range of γ̂ lies between 0 for chain-like graphs with a single valid sequence and

|V|−1 for completely disconnected graphs (|E| = 0). This structural feature affects dramat-

ically the size of the search space when trying to schedule these precedence graphs on one

4.1. Specific Properties of Typical Process Graphs 45

or more resources.

Definition 27 (k-Locality). The k-locality 0 < kloc ≤ |V| − 1 is defined as follows: when

all vertices of a graph are written as elements of a vector with indices i = 1 . . . |V|, then

for a graph with kloc = j edges may only exist between vertices whose indices do not differ

by more than j. The arrangement of the vertices is such that kloc is always the smallest

possible [126].

Fig. 4.3: The k-locality graph property with kloc = 3 shown as vector.

For a better understanding this property is depicted in Figure 4.3. The k-locality affects the

density in such a way that is serves as an upper bound for ρ, since the maximum number of

edges in a directed k-locality graph is ρ ≤ kloc|V|/|V| = kloc.

Human made graphs in electronic system design reveal a strong affinity to this locality prop-

erty for rather small kloc values compared to its number of vertices |V|. The generation of a

k-locality graph is simple, but the computation of the k-locality for a given graph is a hard

optimisation problem itself [126]. Hence, we introduce a related property to describe the

locality of a given graph:

Definition 28 (rank-Locality). The rank-locality rloc is defined as

rloc ,
1
|E|
∑
ei∈E

rank(end(ei))− rank(beg(ei)). (4.4)

For a better understanding this property is depicted in Figure 4.4. At the bottom of this

figure the rank levels are annotated.

For sparse graphs ρ = c|V|, with c � |V|, there is a nearly linear dependency between the

product γTrloc and kloc, here plotted for graph sizes |V| = 50 averaged over 50 graphs for

any given kloc: The rank-locality can be calculated very easily for a given graph. Very low

values, rloc ∈ [1.0 . . . 3.0], are reliable indicators for system graphs in signal processing. It is

hence possible to assess the locality property of a sparse graph by this product without being

46 4 Algorithms for Scheduling and Partitioning

Fig. 4.4: Examples for the rank-locality of two different graphs according to (4.4).

Fig. 4.5: Linear dependency between γTrloc and kloc.

forced to solve a hard optimisation problem to derive the minimum kloc.

All of the aforementioned properties can be efficiently computed before any scheduling or

partitioning algorithm starts: rloc, ρ, γT can be obtained with linear efficiency O(|V| + |E|)
for directed graphs with no (or at least reducible [56]) loops. The property γ̂ can be obtained

via the transitive closure in O(|V|3) [126].

A large number of graphs of different sizes and characteristics have been generated to provide

a fundament for a reliable performance analysis and comparison between different techniques.

In Appendix C.2 the generation of these graphs is described in more detail.

4.2 Algorithms for Scheduling

Although the discussion of existing partitioning algorithms occupies the major portion of this

thesis, the scheduling problem has to be addressed as well, since it is integral part of any

of those partitioning algorithms. Therefore, a comparably brief discussion of two renowned

scheduling techniques is given, as these are applied in the core of the partitioning algorithms.

Moreover, fundamental ideas resulting from the consideration of typical graph properties in

4.2. Algorithms for Scheduling 47

embedded systems and how these affect the workings of partitioning algorithms also lead to

novel ideas for the applied scheduling techniques. Eventually, a new scheduling technique is

presented in this thesis that exploits specific properties of typical system graphs.

4.2.1 Classical Scheduling Techniques

A very common strategy to solve occurring collisions in a fast and easy-to-implement manner

is the deployment of a priority list. In the Highest Level First (HLF) approach every process

is annotated with a priority value, such that, in case of a collision, that process is scheduled

earlier, which features the higher priority value. The computation of the priority levels is

performed according to the processes’ critical path as proposed by Hu [69], that is the largest

sum of execution times along any directed path from vertex vi to an exit vertex, over all exit

vertices of the graph.

In Figure 4.6 an example graph is depicted, which illustrates how the priority values, or Hu

levels, are calculated before the mapping algorithm starts. The execution times of vertices

and edges are summed along the critical path (the dashed arrows) from any vertex to the

exit vertex. As in our case the execution and transfer times vary depending on their current

Fig. 4.6: Computation of Hu priority levels based on critical path analysis.

mapping, it is either possible to obtain a single execution time by averaging over all possible

implementation alternatives of a vertex and calculate the vertex’ priority level before the

partitioning starts, or to calculate the priority levels anew for any distinct mapping solution

that is visited during the partitioning algorithm proceeds. Let’s name the first case HLF

scheduling with static priorities and the latter HLF scheduling with dynamic priorities.

In Figure 4.6 the underlying execution and transfer times, etavg and ttavg, are averaged over

all implementation alternatives for any vertex and data transfer for a static HLF scheduling.

In this case the priority list has to be generated just once and is not altered during the

mapping algorithm, hence collision arbitration is a constant time look-up. The dynamic

priorities have to updated for every alteration of the mapping, but the inaccuracies imported

by the averaging can be avoided. The asymptotic efficiency of this update is O(|V|+ |E|)

48 4 Algorithms for Scheduling and Partitioning

for a directed graph, being acyclic or with reducible loops. The scheduling process can then

be implemented by a breadth first search, in which the queue is filled with ready vertices

ordered according to their priorities. When the queue has a maximum length LQ ≤ |V|, then

the asymptotic efficiency of HLF for a given mapping is O((|V|+ |E|)LQ log(LQ)).

Another simple but powerful approach is the Earliest Task First (ETF) algorithm that uses

static priorities and assumes also a bounded number of processors [70]. However, a vertex with

a higher priority may not necessarily get scheduled before the vertices with lower priorities.

This is because at each scheduling step, the ETF algorithm first computes the earliest start

times for all the ready vertices and then selects the one with the smallest value of the earliest

start time. A vertex is ready if all its direct predecessors have been scheduled. The earliest

start time of a vertex is computed by examining the start time of the vertex on all possible

processing elements exhaustively. When two vertices have the same value of the earliest start

times, the ETF algorithm breaks the tie by scheduling the one with a higher Hu priority. The

efficiency of the ETF algorithm is described to be O((|V|+ |E|) |R| |LQ|), where |R| is the

number of processors given. Note, that ETF alters the mapping of the processes to resources,

and is in that sense a partitioning algorithm instead of a pure collision arbiter. Since this

alteration is only subject to execution time and ignores all other objectives, ETF has to be

redefined for this thesis to be applied to a given mapping. Whenever two processes collide,

that process is scheduled first, which features the lower start time. ETF can be implemented

analogically to HLF with a breadth first search queue that is ordered by increasing start times,

thus featuring the same asymptotic efficiency. When colliding processes possess the same

start time, the current Hu priority levels can serve as fallback mechanism.

As many more scheduling techniques exist in the literature, a complete discussion is far

beyond the scope of this thesis. A good overview of a large number of popular scheduling

techniques is given by Kwok et al. [94]. Therein six scheduling algorithms are discussed of

which the ETF reveals a good performance, a very good asymptotic efficiency, and which is

easily applicable in our scenario. Although HLF itself is not explicitly discussed in Kwok’s

work, it constitutes the core of four out of the six discussed algorithms, and its dynamic

version reveals a better performance than the dynamic ETF algorithm. This will be shown

in the following sections. For these reasons ETF and HLF have been chosen to serve as

benchmarks for the newly developed scheduling algorithm.

4.2.2 Local Exploitation of Parallelism

The main idea of this new approach can be sketched as the optimisation of the exploitation

of parallelism in the system graph for a limited part of the schedule. The idea has emerged

in order to develop a scheduling algorithm that takes the parallelism offered by the system

4.2. Algorithms for Scheduling 49

graph and the platform into account, while preserving a fast collision arbitration.

In Figure 4.7 a typical situation is demonstrated, in which the scheduler is responsible whether

the returned value for the system’s execution time of the considered partitioning solution is

better or worse depending on the collision arbitration ’C before B’ (Schedule 1) or ’B before

C’ (Schedule 2). The vertices are annotated with their execution times and the resulting Hu

priority levels are depicted in the vector on the right side of the figure. In this example both

the HLF and ETF scheduling would come to the wrong decision, as it does not consider the

parallelism in the design. A first intuitive notion is that the schedule decision should ensure

that the inherent parallelism is exploited. Based on this concept, a new strategy has been

developed, whose feasibility for a partitioning algorithms with an incremental search space

traversal, such as simulated annealing and tabu search, could already be demonstrated [90,

Knerr et al.]. In this thesis a completely revised version of the LEP algorithm is presented

that does not require an incremental search space traversal of the partitioning algorithm. It

is generally applicable within e.g. genetic algorithms, which typically create new solutions

being very dissimilar from older ones.

Fig. 4.7: LEP algorithm: two tentative schedules for the decision B first or C first.

The fundamental idea can be characterised by a divide and conquer principle. It is assumed

that for specific graph structures a concatenation of locally optimal solutions is likely to

compose globally a near-optimal solution. The basic mechanism of the LEP is a priority

ordered breadth first search (BFS), i.e. vertices ready to be scheduled are inserted in a BFS

queue with descending priority levels. Then, LEP tries to schedule the first vertex in this

queue, appending its successors, in case they are ready, and finally this vertex is popped

50 4 Algorithms for Scheduling and Partitioning

from the queue. But whenever such a scheduling attempt produces a collision, the following

sophisticated arbitration is invoked.

In Figure 4.7 a process graph with a current mapping to a 2-DSP plus FPGA platform is

depicted. On the right side a vertex vector is given, ordered according to the priority levels for

the current execution times. Process A owns the first position and is scheduled on resource

DSP1, thereafter process B and C are ready to be scheduled. Process C is assigned to

its resource. But then process B causes the first collision during this scheduling process.

According to HLF, C features the highest priority, but as it can be seen from the left side

of this figure, this decision would lead to a worse schedule (upper schedule). Instead, LEP

computes tentative local schedules for both ready vertices C,B to be scheduled first. The

local range is defined by the current region of interest RoI = [40, 170], which is chosen to

be the maximum time range covered by the involved vertices for both local schedules. The

region marked as ’Not yet scheduled’ is not explored at this stage of the LEP and is here

only depicted for clarity.

For both tentative schedules the exploitation of the inherent parallelism is measured by sum-

ming the execution times of all processes that lie within the RoI. The arbiter decides then

for the vertex with the maximum enabled parallelism to be scheduled first. In the illustrated

example it decides B to be scheduled first and marks it as locked, then C is removed from its

schedule position and inserted again in the BFS queue. The vertices D,E, F are now ready

and also inserted in the queue according to their priority. Since none of C,D,E, F causes a

collision henceforth, the LEP scheduling proceeds unimpeded down to the exit vertex G.

However, the programmer of the LEP has to deliberate on several implementation details.

The HLF ordered vertex vector establishes the backbone of the LEP in more than one aspect.

Whenever situations eventuate, in which more than two vertices are ready to be scheduled

and would collide on a resource, not all permutations are tentatively scheduled, but only

those resulting from the two vertices with the highest priority. Whenever such a collision has

been arbitrated, the ’winning’ vertex is locked on the schedule, whereas the ’losing’ vertex

(and all its successors in case they have already been scheduled) is added again to the BFS

queue. It is the typical case that only a subset of vertices ever wins a collision and thus

receives the locked status. All vertices forced to be reinserted into the BFS queue because

their predecessor lost a collision arbitration naturally lose a possible locked status, they might

have achieved in a prior competition. This status does only prevent the algorithm to enter

infinite loops, in which three or more vertices cause an alternating winning-losing arbitration.

Therefore, a strong and desired affinity to the fast and very efficient HLF scheduling is

maintained. The introduced run time overhead can be estimated quite accurately.

4.2. Algorithms for Scheduling 51

Listing 4.1: Pseudocode for the LEP scheduling algorithm

0 LEP() {

1 createPriorityVector (); // Critical path search to get

2 // current priorities.

3 pushToBFSQueue(startVertices); // Add start vertices to

4 // BFS queue.

5 while (Queue is not empty) { // Start BFS.

6

7 if (detectCollision(curV) == true) // COLLISION.

8 winV = tentativeSchedules(V1 ,V2); // Try both schedules.

9 lockVertex(winV); // Lock winning vertex.

10 prependToBFS(loseV); // Prepend losing

11 // vertex to BFS.

12 appendReadySuccsToBFS(winV); // Push ready success -

13 } // ors of winV in BFS.

14 else {

15 schedule(curV); // NO COLLISION.

16 appendReadySuccsToBFS(curV); // Push ready success -

17 } // ors to BFS.

18 popFromBFSQueue ();

19 } // end while (...)

20 } // end LEP()

If we set the RoI to be limited to the maximum range spanned by both tentative schedules and

assume that the execution times of the involved vertices do not differ by more than one order

of magnitude from the average vertex execution time, then both tentative schedules cover

at most two ranks of successors of the two involved vertices. In the simple example shown

in Figure 4.7 even only one level of successors (D,E, F after process B) causes a tentative

local schedule. As we already specified the graphs to have a rather low density ρ = 1 . . . c|V|,
with c � |V|, we see ρ

2 successor edges per vertex. Then, when descending at most two

ranks downwards the graph, we introduce computational overhead of scheduling ρ
2 +

(ρ
2

)2
vertices in every local schedule at most. The asymptotic efficiency can hence be approximated

to be O((2(ρ2 +
(ρ

2

)2))Cavg) = O(c2Cavg) = O(Cavg), with Cavg being the average number

of collisions per scheduling. Since sparse precedence graphs are considered and typically

mapping solutions distribute their vertices beneficially among the available resources, the

number of collisions is in general much lower than the number of processes Cavg � |V|, and

for the worst case Cavg = |V|. Hence, the approximate efficiency eventuates to be basically

linear O(c2(|E|+ |V|)) = O(|E|+ |V|).

To compare the behaviour and performance of the scheduling algorithms, they are applied to

a large number of system graphs. For any specific graph a huge number of different mappings

52 4 Algorithms for Scheduling and Partitioning

exist, which can be scheduled with the presented techniques. Hence, we simulate the search

space traversal of partitioning algorithms in such a way, that a lot of different mappings per

graph are randomly generated and scheduled with the three candidates. Thus, we obtain

for any new partitioning solution x the three schedule lengths fHLF
T (x), fETF

T (x), fLEP
T (x).

Furthermore, we calculate the lower bound min fT(x) for the schedule length of each visited

x. This lower bound is determined by the sum of the process execution times et and data

transfer times tt along the critical path. For all visited partitioning solutions Svis ⊆ Sf , the

specific schedule lengths fT(x) of one partitioning solution x ∈ Svis are summed up, as well

as the specific lower bounds, fLB
T (x) = min fT(x). Thus, we obtain for all three algorithms

and the lower bound a global sum over all considered schedule lengths, e.g. for LEP:

FLEP
T (Svis) =

∑
x∈Svis

fLEP
T (x) (4.5)

Fig. 4.8: Averaged global schedule lengths normalised to the global lower bound schedule
lengths over different mappings and graph sizes.

Figure 4.8 shows a bar chart, in which the x-axis shows different graph sizes for two different

platforms described by their main resources. The y-axis shows the global sums over schedule

lengths for the three algorithms normalised to the global sum over the lower bound schedule

lengths. The results have been averaged over 30 different graphs for each size and for

over 10, 000 randomly generated mappings for any single graph. It can be seen that the

proposed algorithm creates better results for all depicted graph sizes with a larger margin

going towards larger graphs. Smaller graphs with fewer vertices |V| ≤ 15 did not show in

average any remarkable difference for the chosen schedules. The picture becomes clearer

4.2. Algorithms for Scheduling 53

when we plot the rescheduling algorithms not over their respective sizes but over their timed

degree of parallelism γT, as shown in Figure 4.9. The higher the inherent parallelism of the

graph, the more opportunities to exploit this trait exist. Due to the system graph generation

procedure the larger graphs feature on average a higher degree of parallelism. Therefore, the

growing performance difference with the growing number of vertices has been observed in

this setting. It can be stated that the proposed LEP algorithm benefits well from a higher

Fig. 4.9: Averaged global schedule lengths normalised to the global lower bound schedule
length over degree of parallelism γT.

degree of parallelism, whereas the HLF algorithm is focused on the current critical path, in

other words, its decision is lead by a successor evaluation of the current vertex. The ETF

algorithm obtains its decision from evaluating the predecessors of the current vertex, with

an HLF fallback mechanism that breaks the ties. None of them considers in any way the

vertices that lie in parallel to the current vertex, which is remarkable as parallelism is present

both in the graph as also in the architecture. For graphs with γT ≤ 2.5 the proposed LEP

algorithm did not show significant performance improvements in comparison to HLF.

54 4 Algorithms for Scheduling and Partitioning

4.3 Algorithms for System Partitioning

In this section the complete range of all the implemented approaches for OTIE is described.

For every technique a brief discussion is given individually and simulation results are listed.

Eventually, the chapter is concluded with a consolidated comparison of all algorithms and an

interpretation of their appropriateness is given.

4.3.1 Exhaustive Search

As long as the problem size allows for evaluating all possible solutions, an exhaustive search

(ES) is applied. In the given scenario the search space for the system partitioning problem

grows rampantly. When we assume av to be the average number of implementation alter-

natives for any vertex v ∈ V, and further assume that any edge’s implementation is hence

determined, then the size of the search space is approximately |S| = a
|V|
v . Moreover, when

we consider the possibilities to be multiplied coming from the alternative data transfer im-

plementations, a similar factor ae for all edges e ∈ |E| comes into play. In such a case we

end up with a search space size of |Sf | ≈ a
|V|
v a
|E|
e .

The exhaustive search has been implemented to cover this case, such that any possible solu-

tion is iteratively generated and evaluated by its cost. Still manageable search space sizes lie

approximately with |Sf | = 230 = 415 for 30 vertices in the classical binary partitioning case or

for 15 vertices in a more elaborated setting with four implementation alternatives per vertex.

The computational run time Θ on a common PC with a dual core AMD Athlon 64 3000+

is considered as manageable, when not exceeding a few minutes. That is due to the size of

the utilised graph sets with 100− 200 graphs, so that roughly one exhaustive search over a

complete graph set can be performed per day.

In the plot depicted by Figure 4.10 it has been tried to illustrate the multi-modality of the

search space for a small binary partitioning problem of |V| = 20 processes and av = 2 imple-

mentation alternatives, such that |Sf | = 220 = 1, 048, 576. Over the x-axis a fraction of the

solution space is plotted, with any solution being indicated by an integer between 160, 000
and 200, 000. The integers are the decimal representation of a Gray coded string correspond-

ing to a single solution: for instance solution number cGray = 195, 000 would correspond to

the Gray string 0011 1000 0101 0110 0100G, in which any bit xi, i = 1..20 is the implemen-

tation identifier for a vertex vi. The y-axis shows the cost Ω of the solutions. The rather

complicated encoding for the solutions on the x-axis just ensues from the effort to preserve

a minimum of a neighbourhood relations for this plot. Since the encoded solutions have

|V| dimensions, and hence |V| equally distant neighbours, it is naturally impossible to plot

all neighbours in vicinity to each other in only two dimensions. In this plot, a solution with

number cGray is plotted next to at least two of its real neighbours cGray−1 and cGray +1. Of

4.3. Algorithms for System Partitioning 55

Fig. 4.10: A first impression of the multi-modality of the search space.

course, due to the aforementioned difficulty to interpret the vicinity relations of the solutions

here depicted on the x-axis, this figure cannot serve as proof for the multi-modality of the

cost function, but rather shall give a first impression of the solution space. In the next section

several direct neighbourhood searches will be applied, from whose analysis the multi-modality

can be reliably concluded.

Another substantial contribution to the search space size, which could not be taken into

account in the exhaustive search, is made by the embedded scheduling problem, whenever

system execution time is part of the solution quality. As it had been shown in Section 3.5.3,

for any member of the search space many different schedules can be created in general.

The exact calculation of the additional degrees of freedom is not possible with a closed for-

mula. Even the very simplified case of sequencing |V| vertices with precedence constraints,

i.e. given as a graph, on a single processor can only be approximated by lower and upper

bounds. A lower bound is obtained from a rank ordering of the corresponding graph, from

which ∀ vr ∈ Vr ⊆ V vertices featuring the same r can be sequenced in |Vr|! ways. Per-

formed for any rank level r, the lower bound to the number of sequencing possibilities is then∏rmax
r=0 |Vr|!. It is a lower bound only, because it is in general possible to switch the sequence

of vertices with different ranks as well in case they are parallel vertices.

The latter observation enables us to create an upper bound. In order to do so, for any

vertex the number of parallel vertices is computed via the transitive closure. The vertices are

aligned on an array in rank ascending order and indexed with i = 1..|V| and for any vertex a

56 4 Algorithms for Scheduling and Partitioning

multiplier m1(i) = par(vi) is stored, with par(vi) being the number of parallel vertices of vi.

This array is then processed from j = 1 to j = |V| and in each step j those vertices vk with

index k > j, which are parallel to vj , diminish their multiplier by one mj(k) = mj−1(k)− 1.

When the last vertex has been processed, the upper bound is then
∏|V|
i=1m|V|(i). Both upper

and lower bound are precise only for vertex orders without any precedence constraints.

It has to be stated, that for sequences with more than one processor present and varying

execution times, even the calculation of reasonable upper and lower bounds turns out to be

a very complicated task. The most important observation in this respect is the non-existence

of an algorithm, which generates all possible sequences in a controlled manner, neither for

the simple case nor for the elaborate architecture and process model deployed herein. Hence,

this exhaustive search disregards the possibilities introduced by the embedded scheduling.

Nonetheless, all three scheduling algorithms presented in Section 4.2 are applied to any vis-

ited partitioning solution during the exhaustive search, hence being at least ’exhaustive’ in

the given set of fast scheduling algorithms.

|V| (CT, CA, CC) Ω Ψ Θ

20
(0.4,0.4,0.5) 2.534 95.1% 301M
(0.5,0.5,0.5) 1.988 100% 301M
(0.6,0.6,0.6) 1.659 100% 301M

(CT, CA, CC): Constraint ratios (3.13), Ω: Cost (3.10),
Ψ: Validity (Def. 19), Θ: Run time (Def. 20)

Tab. 4.1: Results obtained for exhaustive searches.

Table 4.1 contains the simulation results for the smallest graph sets for different constraints.

However, interesting problem sizes lie well beyond those with 20 vertices, and as the ES run

time at least doubles with every single vertex added, it is not applicable for interesting sizes.

As it will be shown, the more sophisticated techniques, like GA, TS, and RRES, draw very near

the optimal values for this problem size in most cases, and hence a meaningful comparison

of them is inhibited for |V| = 20. For this purpose these are judged by a comparison of their

performance for problem sizes up to |V| = 200.

4.3.2 Gradient Search

Among the very first candidates for any optimisation problem are the gradient based al-

gorithms evaluating the neighbourhood of a given solution. Typically, highly multi-modal

functions cannot be optimised with a good quality, since hill-climbing algorithms converge

very quickly to the nearest local optimum, and are hence not appropriate for system parti-

tioning. But the results obtained from neighbourhood searches yield very valuable insights

to the shape of solution space. Moreover, they are very simple to implement, can serve as

initial benchmark provider for more sophisticated approaches, and may be applied as final

4.3. Algorithms for System Partitioning 57

stage of the best solution obtained by an optimisation heuristic.

A hill-climbing search chooses one solution from the neighbourhood set and evaluates its

quality. If the neighbour solution has the same or a higher quality, the current solution is

replaced, if not, the next neighbour is analysed. This procedure iterates as long as another

neighbour can be identified that improves the current solution. But the way, in which the

neighbourhood is scanned for better solutions, may differ. Classically, three approaches can

be distinguished.

• Random neighbour (RN) applies iteratively a random local transformation nI(x) on

solution x, accepts any better solutions immediately, and terminates when every neigh-

bour or a specific number of neighbours has been visited without improvement.

• Next neighbour (NN) applies a procedure, which scans the neighbourhood in a deter-

ministic way and chooses the first neighbour that does not decrease the quality of the

current solution. It terminates when the complete neighbourhood has been scanned

without improvement.

• Best neighbour (BN) performs in any iteration a complete neighbourhood scan and

chooses that neighbour, which yields the best improvement. When a better solution

cannot be found, the search terminates.

Table 4.2 lists the results we obtain from these rather trivial approaches (best values are in

bold font). The BNS search delivers the lowest cost values, but with a smaller margin going

to larger graphs accompanied by rampantly increasing run time. RNS and NNS searches bare

a very similar performance, becoming more and more competitive to BNS for larger graphs,

and the run time difference becomes more and more significant. The most important fact

to be remembered is the rather large standard deviation σ of the obtained solutions due to

the well-known sensitivity to the randomly generated initial solution. Quality variations for

different runs of up to 30% are not rare, since the underlying cost function shows an extreme

multi-modal shape. This observation follows from the number of different solutions obtained

from consecutive runs starting from random initial solutions. This approach returns for

consecutive 100 runs of the smallest problem |V| = 20 between 20 and 40 different solutions.

For the medium sized problem |V| = 50 the algorithm returns persistently 200 different

solutions out of 200 runs. Of course, a multiple start approach provides a performance boost

compared to single start, but the basic problem lies in the vast number of local optima for

58 4 Algorithms for Scheduling and Partitioning

|V| (CT, CA, CC) Neighbour Ω σ Ψ Θ

20

Random 3.026 0.0338 16.1% 71k
(0.4,0.4,0.5) Next 3.026 0.0330 16.9% 65k

Best 2.936 0.0314 22% 147k

Random 2.341 0.0211 84.7% 66k
(0.5,0.5,0.5) Next 2.338 0.0221 83.9% 60k

Best 2.269 0.0194 89.2% 153k

50

Random 3.018 0.0235 16.6% 167k
(0.4,0.4,0.5) Next 3.043 0.0231 13.9% 145k

Best 3.044 0.0250 13.2% 606k

Random 2.417 0.0163 99.1% 163k
(0.5,0.5,0.5) Next 2.424 0.0164 99.1% 142k

Best 2.389 0.0161 98.8% 621k

100

Random 2.899 0.0160 39.1% 2.47M
(0.4,0.4,0.5) Next 2.921 0.0157 30.5% 1.95M

Best 2.949 0.0178 18.2% 13.8M

Random 2.404 0.0132 100% 2.43M
(0.5,0.5,0.5) Next 2.412 0.0133 100% 1.93M

Best 2.387 0.0132 100% 12.6M

(CT, CA, CC): Constraint ratios (3.13), Ω: Cost (3.10), σ: Standard deviation,
Ψ: Validity (Def. 19), Θ: Run time (Def. 20)

Tab. 4.2: Results obtained for neighbourhood searches.

realistic problem sizes. A multi start approach returns steadily medium quality output and

does not learn from the traits of the few high quality solutions it produces. The heuristic

algorithms in the following sections try to circumvent this drawback.

4.3.3 Global Criticality/Local Phase (GCLP) Algorithm

One of the leading research groups to address the difficulties in modern system design es-

tablished the Ptolemy Project (1991 - now) at the University of California, Berkeley [98].

The Global Criticality/Local Phase algorithm has been integrated into Ptolemy in 1995 [77].

In the following years the authors enhanced this method to solve the extended partitioning

problem [78], which incorporates the existence of several implementation alternatives, or bins

in their terms, for both hardware (HW) and software (SW). Due to its fine reputation to

be a fast technique, i.e. with a good efficiency of O(|V|2) , while yielding reasonably good

results compared to Integer Linear Programming [78], the Open Tool Integration Environ-

ment (OTIE) has been enriched with a version of the GCLP algorithm. The analysis and

evaluation of the original algorithm disclosed several possibilities to save computation time

and to improve quality. The contribution of this thesis comprises a thorough analysis of the

GCLP algorithm and the introduction of several modifications to increase the performance of

this approach with respect to the solution quality, the computation time and the probability

of valid results [91, Knerr et al.].

4.3. Algorithms for System Partitioning 59

In the case of the binary (SW, HW) partitioning problem for GCLP, the characteristic values

of the processes vi being part of the implementation alternatives AiHW and AiSW compose a

three-tuple: Air,j = (execution time, code size, gate count). The mapping of the task graph to

the given architecture in Figure 4.11b is performed by the GCLP algorithm with the objective

to meet constraints for time, area, and code size. The platform model features a general

purpose processor, which allows for sequential execution of the assigned processes, and an

FPGA or a set of ASICs for a custom data path, which allows for concurrent execution of the

assigned processes. A model for HW to SW communication via shared memory is provided,

whereas HW to HW and SW to SW communication is neglected. The following paragraphs

present a short discussion of the basic concepts of the GCLP approach. For complete detail,

please refer to the Kalavade’s dissertation [77].

Fig. 4.11: (a) Process graph, annotated with characteristic values. (b) Typical platform
model.

Essentially the GCLP is a greedy approach, which visits every vertex exactly once, and decides

where to map it based on two different values: the Global Criticality (GC) measure and the

Local Phase (LP) measure. The GC value is a global look-ahead measure that estimates

whether time, code size or area is most critical at the current stage of the algorithm and then

decides which of these targets shall be minimised. The LP value is calculated for every single

process before the main algorithm starts and is based on intrinsic properties that represent

the individual mapping preferences of this process. For instance, when a specific process

prefers an implementation in SW, because of its very large bit level instruction mix, the LP

value reflects this preference, or when a process stands out by its extraordinary HW size

60 4 Algorithms for Scheduling and Partitioning

and a rather small SW execution time, then the LP value takes this into account. By the

superposition of the global GC value and the local LP value the greediness of the approach

is moderated and a balanced mapping, which meets all constraints, shall be ensured.

Fig. 4.12: (a) Process graph at a distinct stage of the GCLP algorithm. (b) Pseudo code for
a single GCLP iteration.

In Figure 4.12a the process graph is depicted and in Figure 4.12b pseudo code of one GCLP

iteration is listed. The upper two vertices have been already mapped (Vm = {A,B}), all

others are still unmapped (Vu = {C,D,E, F}), of which two are ready (Vr = {C,D}) to

be mapped next. In step S1 the current GC value is calculated. Within S1 a provisional yet

complete mapping is performed such that the time constraint is surely met. The GC value

is then calculated based on this preliminary mapping and is normalised to lie in the interval

[0, 1] (0 = lowest time criticality, 1 = highest time criticality). In step S2 the ready processes

Vr = {C,D} are determined. The steps S3 and S4 shall decide which of both vertices C,D

will be mapped next. In step S3, an effective execution time teff = GC etHW+(1−GC) etSW

is assigned to all yet unmapped vertices. In step S4, teff serves as the base for a critical path

search from every vertex in Vr to the exit process f . In step S5, the vertex with the maximum

critical path value is selected to be mapped next. In step S6 the final mapping of this vertex

is performed based on the superposition of the global GC value and the local LP value. In

step S7, all sets, lists and intermediate values are updated. These seven steps are repeated

until all vertices have been finally mapped (Vu = ∅).

4.3. Algorithms for System Partitioning 61

In the following sections substantial modifications applied to this algorithm are introduced

and simulation results for all GCLP versions will be compared to each other.

GCLP Modification 1 - Revision of Step 3 and Step 4

Consider the steps S3 and S4 in the listing in Figure 4.12b. Note, that their single purpose

is the decision which process is going to be mapped next, neither where it is going to be

mapped, nor when exactly it will be scheduled when all processes have been finally mapped.

For all the graph sets, a positive impact on the solution quality by these two steps could not

be observed. A comparison to a random selection of the process from Vr, which should be

mapped next, did not show any significant difference, as Table 4.3 indicates. The reason

for this result is two-fold: the calculation of the critical paths in S4 is based on effective

execution times. The critical path searches yield correct values for all vertices in Vr, if and

only if GC = 1, or in other words in case of a complete HW solution of the remaining

vertices, given the HW processor allows for concurrent execution of tasks. For a complete

SW solution, the critical path calculations lose their relation to the graph completely, since the

SW processor is a sequential device, and all processes have to run on it consecutively anyway.

Thus, for small GC values this calculation does not have significance, and for balanced GC

values, the execution times are averaged between etHW and etSW and lack precision due to

this averaging. Only for large GC values S4 delivers approximately correct results, which is

not enough to compensate the imbalance of this mechanism.

To overcome this malfunction we propose two modifications, M1a or M1b:

• M1a: Omit the steps S3 and S4 completely to save run time of about 15%. That is

only of interest for very large graphs (|V| ≥ 200), in which the run time for each graph

becomes a matter of minutes instead of seconds.

• M1b: Calculate the critical path searches for all vertices in Vr based on the provisional

partitioning just generated in step S1. Recall, that step S1 comprises a full partitioning

and scheduling to compute the current GC value and thus represents a precise snapshot

of the present partitioning situation: all processes apply either their correct etSW or

etHW instead of a mixture of both and a full schedule exists also. Hence, the critical

path search in S4 returns correct values to determine the vertex in Vr that currently

lies on the critical path. S3 can be omitted.

Table 4.3 shows the impact for all graph sets on run time, cost, and validity. M1a saves

about 15% run time without any degradation of the obtained solutions. Modification M1b

improves the result quality by about 1.5% to 2% in cost, and reduces the run time, and

features an almost 3% higher Ψ, as listed.

62 4 Algorithms for Scheduling and Partitioning

|V| Ω σ Ψ Θ

20
GCLP 2.377 0.0253 88.9% 35k

M1a 2.385 0.0264 88.9% 24k
M1b 2.348 0.0252 95.6% 33k

50
GCLP 2.452 0.0163 89.8% 91k

M1a 2.476 0.0177 90.8% 71k
M1b 2.400 0.0162 96.3% 89k

100
GCLP 2.413 0.0134 89.0% 210k

M1a 2.428 0.0138 92.3% 166k
M1b 2.367 0.0131 99.4% 202k

200
GCLP 2.593 0.0125 85.5% 1.1M

M1a 2.621 0.0124 87.8% 810k
M1b 2.468 0.0123 92.3% 1.1M

Ω: Cost (3.10), σ: Standard deviation,
Ψ: Validity (Def. 19), Θ: Run time (Def. 20)

Tab. 4.3: Impact of proposed modifications M1a and M1b compared with the original GCLP
algorithm.

GCLP Modification 2 - Initial Solution

Another substantial gain in performance is possible by a more sophisticated choice of the

initial solution. Although the preparation phase of GCLP comprises the individual charac-

terisation of processes with respect to their preferred implementation type, GCLP assumes a

complete SW solution as starting point. Neither the constraints given by the designer nor the

just calculated local phase values affect this assumption in any manner. A strong potential to

enhance the quality of the final result without increasing the run time can be put forth. The

Fig. 4.13: Modification 2 (M2): Constructing the initial solution.

initial configuration for GCLP is a graph, in which every vertex has an LP value in [−0.5, 0.5]
indicating whether it is more suited for a SW (−0.5) or a HW (0.5) implementation. The

generation of these values is described in detail in the literature [77,78], due to limited space

it has to be omitted here. A simple and fast strategy to construct a better initial solution is

to build an ordered list of these individual values, which can be achieved very efficiently (on

average in O(|V| log |V|) with the quicksort algorithm).

We process this list simultaneously from both ends, depending on the absolute value of the

4.3. Algorithms for System Partitioning 63

contained measure, as depicted in Figure 4.13. We proceed as long as the initially mapped

processes do not reach the area limit bA for those mapped to HW or the code size limit bC

for those mapped to SW. The remaining processes in the middle of this list are flagged to be

considered preferentially in step S1 of the GCLP algorithm. The efficiency of this operation

is O(|V|) . The computational overhead is smaller than 0.3% and was only observable during

the simulations for the largest graphs (|V| ≥ 200) averaged over 180 graphs. Table 4.4 con-

|V| Ω Ψ

20
GCLP 2.377 96.9%

M2 2.353 98.1%

50
GCLP 2.452 97.8%

M2 2.420 97.2%

100
GCLP 2.413 96.0%

M2 2.368 99.6%

200
GCLP 2.593 91.3%

M2 2.537 94.9%

Ω: Cost (3.10), Ψ: Validity (Def. 19)

Tab. 4.4: Impact on cost and validity percentage of M2.

tains the results obtained while applying this modification (M2) to the graph sets compared

to the original algorithm. Another 2% quality gain and a higher yield in valid solutions can

be achieved.

GCLP Modification 3 - Precocious Breaks

A third modification (M3) is the insertion of precocious breaks as soon as all constraints are

met. Although the design of the GCLP algorithm is focused on low run time, a mechanism to

stop the algorithm as soon as possible is surprisingly not provided. As stated before, step S1

generates a full partitioning solution, even though being provisional, it makes perfect sense

to evaluate this solution as well. The partitioning with the lowest cost seen is stored and

when the constraints happen to be met, the algorithm stops. In the case of rather loose

constraints the run time drops dramatically. When the constraints are rather strict, so that

the original algorithm would finalise returning an invalid solution, the run time stays exactly

the same, with a possibly better cost obtained by one of the provisional mappings. When

the constraints are strict, but the original algorithm would finalise with a valid solution, the

run time will drop very likely by at least a small margin. For a profound understanding of

the last case, it is mandatory to demonstrate the functionality of S1 in detail.

As stated before, in step S1 it is always assumed that all processes in Vu are implemented

in SW. Then processes are tentatively moved to HW until the time constraint bT is met. Of

course this mechanism is sensitive to the chosen order in which the processes in Vu are moved.

The GCLP designers proposed a priority list for the processes ordered by their best gain in

time measured by the quotient etSW/etHW. A large gain means that its mapping from SW

64 4 Algorithms for Scheduling and Partitioning

to HW results very likely in a large reduction of the system’s execution time. Consider a

Fig. 4.14: Modification 3(M3): Precocious breaks.

situation, which adheres to the mentioned case: a valid solution exists, that would be found

by the original algorithm and rather strict constraints prevented a precocious break up to

the current stage of the algorithm. In Figure 4.14 the tail of a graph is depicted with the

exit vertex Z. The preceding iteration, in which process Y has been finally mapped, did not

break precociously, i.e. not all constraints had been fulfilled in S1 of the last iteration. Since

S1 ensures a provisional partitioning, in which the constraint bT is met, only bA and/or bS

could have been exceeded. But this is only possible when the order of the priority list, that

guides the tentative mapping, in S1 does not cause a valid mapping. On the top right of

Figure 4.14 the entries for X and Z in the priority list are shown. Hence, S1 does always

map X to HW at first, detects that bT is met and thus leaves Z in SW. In this example bA

is then exceeded by this combination (35, 000 + 6, 000 ≥ 40, 000), so a precocious break is

not possible. The following final mapping of X chooses a SW implementation, since bA is

exceeded whereas bT is met and proceeds the very last process Z in the graph.

This scenario demonstrates the only case in which the modified version is not capable of

finishing at least a short time earlier than the original algorithm. In all other scenarios,

when the tail of the priority list matches a valid partitioning solution, a precocious break will

occur. Table 4.5 lists the impacts of this last modification on the run time for loose, medium,

and strict constraints. The run time improvement for large graphs and loose constraints is

4.3. Algorithms for System Partitioning 65

|V| (CT, CA, CC) Ω Θ

100

(0.4,0.4,0.5)
GCLP 2.933 1.1M

M3 2.939 1.0M

(0.5,0.5,0.5)
GCLP 2.413 1.1M

M3 2.462 968k

(0.6,0.6,0.6)
GCLP 1.908 1.1M

M3 1.970 821k

200

(0.4,0.4,0.5)
GCLP 3.211 5.3M

M3 3.332 5.1M

(0.5,0.5,0.5)
GCLP 2.593 5.3M

M3 2.655 4.3M

(0.6,0.6,0.6)
GCLP 2.051 5.3M

M3 2.126 3.9M

(CT, CA, CC): Constraint ratios (3.13), Ω: Cost (3.10)
Θ: Run time (Def. 20)

Tab. 4.5: Effect of modification M3 on the run time.

substantial with up to 25%. The validity percentage is even improved by about 0.5% for larger

graphs (|V| ≥ 100), as there are rare occasions, when a provisional mapping is detected to

be valid and the modified algorithm ends precociously, whereas the original algorithm would

yield an invalid result with one of the constraints narrowly missed.

It has to be mentioned that the third modification evidently leads to a degradation of the

quality for the valid partitioning solutions, as a precocious break is surely valid but will often

have a higher cost than an algorithm with this option disabled, whereas the quality of invalid

solutions will increase, as the provisional mappings are considered additionally.

Results for Combined Modifications

Eventually, two promising combinations of the proposed modifications are build. The first

combination incorporates M1a and M3 to obtain an algorithm with a substantially lower

run time Θ, a slightly better validity percentage Ψ, and minor degradations of the solutions

cost Ω. The second combination incorporates M1b and M2 to obtain an algorithm, which

concentrates on cost improvements and higher validity percentages nearly without affecting

the run time. The subsequent Table 4.6 presents a comparison with the original algorithm

for all graph sets and different sets of constraints: Naturally, large graphs with rather loose

constraints lead to a dramatic drop in computation time of up to 27%. Additionally combi-

nation M1a+M3 causes a measurable increase in the validity percentage of about 1%. These

improvements are paid by a rise in averaged cost Ω of about 3-4%. The second combination

M1b+M2 is a more balanced improvement. The predominant part is the boost in validity

percentage Ψ, with about 4% most noticeable for strict constraints on smaller graphs. This

performance is accompanied by a quality improvement of up to 3%, while the run time even

drops slightly.

66 4 Algorithms for Scheduling and Partitioning

|V| (CT, CA, CC) Ω Ψ Θ

50

GCLP 3.096 13.3% 91k
(0.4,0.4,0.5) M1a+M3 3.101 13.9% 90k

M1b+M2 3.021 19.4% 89k

GCLP 2.452 89.8% 91k
(0.5,0.5,0.5) M1a+M3 2.482 90.2% 82k

M1b+M2 2.394 94.5% 89k

GCLP 1.920 100% 91k
(0.6,0.6,0.6) M1a+M3 2.011 100% 66k

M1b+M2 1.873 100% 90k

100

GCLP 2.933 57.6% 1.1M
(0.4,0.4,0.5) M1a+M3 2.937 59.1% 1.0M

M1b+M2 2.898 88.0% 1.0M

GCLP 2.413 89.0% 1.1M
(0.5,0.5,0.5) M1a+M3 2.451 90.2% 923k

M1b+M2 2.367 95.3% 1.1M

GCLP 1.908 100% 1.1M
(0.6,0.6,0.6) M1a+M3 1.988 100% 768k

M1b+M2 1.865 100% 1.1M

200

GCLP 3.111 11.6% 5.3M
(0.4,0.4,0.5) M1a+M3 3.137 12.3% 5.1M

M1b+M2 3.034 18.2% 5.2M

GCLP 2.493 88.8% 5.3M
(0.5,0.5,0.5) M1a+M3 2.544 89.8% 4.3M

M1b+M2 2.420 94% 5.3M

GCLP 1.951 100% 5.3M
(0.6,0.6,0.6) M1a+M3 2.030 100% 3.7M

M1b+M2 1.901 100% 5.3M

(CT, CA, CC): Constraint ratios (3.13), Ω: Cost (3.10)
Ψ: Validity (Def. 19), Θ: Run time (Def. 20)

Tab. 4.6: Impact of combined modifications M1a+M3 and M1b+M2 GCLP performance.

Both combinations cover different areas of problem instances, while both prove to be better

than the original algorithm in these areas. The first combination M1a+M3 is recommended

for problem instances with very large graphs (|V| ≥ 200) or a graph set containing a large

number of different graphs, for which valid results shall be produced, as its benefits lie pre-

dominantly in a run time reduction. The second combination M1b+M2 can simply replace

the implementation of the original GCLP algorithm, as it yields better results in every aspect

with the largest margin in increasing on average the number of valid results.

Finally, it has to be clarified that the GCLP approach was not designed and is not capable

to compete with time-consuming approaches based on genetic algorithms, tabu search, sim-

ulated annealing or even integer linear programming, when the aim is to find a near-optimal

solution. The run time of these approaches is 103 − 104 times higher [78,142], while tens of

thousands of solutions are generated and a cost reduction of up to 25% can be observed.

4.3. Algorithms for System Partitioning 67

4.3.4 Simulated Annealing

Simulated annealing (SA) is a generic probabilistic heuristic approach for the global opti-

misation problem, namely locating a good approximation to the global optimum of a given

function in a large search space [82]. Over the years SA gained a lot of popularity among

research groups to tackle many combinatorial optimisation problems. Due to its compre-

hensive structure, and its easy-to-use, it is one of the first candidates to be implemented,

when the solution space is large and the problem is analytically intractable. As in many

works before, SA will mainly serve as a typical benchmark provider for the more elaborate

approaches [7, 38, 142].The following paragraph summarises the basics of the simulated an-

nealing mechanism.

Simulated annealing is essentially a simple modification to a hill-climbing neighbourhood

search. It traverses iteratively through the search space and accepts better solutions. But

unlike a simple gradient search algorithm, which always rejects moves that lead to worse

solutions, its control structure avoids to be trapped in local optima by also accepting worse

solutions with a certain probability. This probability decreases as the algorithms proceeds

and eventually the algorithm converges. As the roots of SA lie in metallurgy, the classical

terms energy E and temperature T are common in algorithmic topics. Note, that energy E

is a synonym for cost, because genuinely in metallurgy SA tries to decrease the energy of an

alloy on a molecular level [106] as we try to decrease cost in this optimisation problem. The

probability of accepting the move of a vertex to another implementation type that creates

a new (worse) kth solution xk, is given by the function P (δE, Ti) = exp(−δE/(kBTi)) of

the energy/cost difference δE = E(xn) − E(xbest) and of a global time-varying parameter

called the temperature Ti, which is in metallurgy multiplied with the Boltzmann constant

kB to yield energy. As stated before, P is defined non-zero, if δE is positive. While the

optimisation proceeds, Ti −→ 0, so that P (δE, Ti) −→ 0 for worse solutions. Obviously, a

crucial parameter is Ti, since it defines the annealing strategy, i.e. the decreasing probability

of accepting worse solutions. Generally, the initial temperature has to be large enough to

allow all transitions to be accepted, because the physical analogy is the heating of the alloy

until all particles are randomly arranged. The corresponding candidate is the maximal differ-

ence in cost between any neighbouring solutions. However, this value is typically costly to

compute, thus a pragmatic approach is to compute Tinit large enough, that the probability

to accept any neighbouring solution, x ∈ nI(xinit), is approximately 1. To do so for the

first |nI(xinit)| = av|V| iterations is sufficient to obtain a reasonable initial temperature,

which adheres to the heating analogy [68]. Wiangtong et al. [142] elaborated on different

annealing strategies and identified the classical geometric cooling to be most appropriate.

Geometric cooling means that every u iterations the temperature will be updated as follows:

Ti+1 = ϑTi, with ϑ = 0.9 . . . 0.99, and u = f(|nI(xinit)|) = av|V|. By decreasing values of

68 4 Algorithms for Scheduling and Partitioning

Ti the algorithm is forced to converge by degenerating into a gradient search. The size of

the problem instance I expressed by the neighbourhood operation |nI(xinit)| is taken into

account by the parameter u.

|V| (CT, CA, CC) ϑ Ω σ Ψ Θ

20

(0.4,0.4,0.5)
0.99 2.735 0.0185 44.9% 692k
0.95 2.661 0.0148 55.5% 720k
0.90 2.678 0.0154 55.8% 611k

(0.5,0.5,0.5)
0.99 2.187 0.0105 99.2% 633k
0.95 2.146 0.0113 100% 796k
0.90 2.152 0.0120 99.8% 587k

50

(0.4,0.4,0.5)
0.95 2.964 0.0141 36.2% 40.1M
0.90 3.003 0.0139 29.5% 31.9M

(0.5,0.5,0.5)
0.95 2.317 0.0129 100% 61.1M
0.90 2.335 0.0134 100% 41.9M

100
(0.4,0.4,0.5) 3.127 0.0243 6.2% 312M

0.90
(0.5,0.5,0.5) 2.270 0.0115 100% 281M

(CT, CA, CC): Constraint ratios (3.13), ϑ: Cooling factor, Ω: Cost (3.10),
σ: Standard deviation, Ψ: Validity (Def. 19), Θ: Run time (Def. 20)

Tab. 4.7: Results obtained for simulated annealing.

Its rather large run time is a significant disadvantage compared to the following implemen-

tations of tabu search and genetic algorithm. However, its advantage lies in the reliable

generation of good quality solutions, if the problem instance is not large |V| ≤ 50 or design

time is not important. Simulated annealing has been tested for different values of the geo-

metric cooling factors ϑ = 0.9, 0.95, 0.99 and temperature level updates for every u = |V|av.

It can immediately stated that for medium |V| = 50 and large graphs |V| = 100, these

values had to be limited to ϑ = 0.95 for medium and ϑ = 0.90 for large graphs due to

the extraordinary run time of often several hours for one problem instance. Table 4.7 gives

an impression of cost values Ω averaged over all instances of all graphs and the standard

deviations σ averaged over all graphs. The second column yields two different constraint sets

(CT, CA, CC) for the three following objectives: area CA on the FPGA, code size CC on the

DSP, and the schedule length CT of a complete execution.

4.3.5 Tabu Search

The tabu search (TS) combines the concept of a neighbourhood search method with a mem-

ory in which the search history of the algorithm is tracked [48]. From a current solution x a

subset of the neighbourhood SN,TS ⊆ nI(x) is generated at any iteration of the algorithm,

of which the solution with the best cost serves as the base for the next iteration. Inspired by

artificial intelligence techniques this neighbourhood search incorporates a short-term memory

of recent moves through the search space and stigmatises these moves as tabu. A move

4.3. Algorithms for System Partitioning 69

with the tabu status is prohibited thus forcing the algorithm to traverse different regions of

the search space. After a certain number of steps, these moves are destigmatised and these

regions of the search space are allowed to be visited anew. An aspiration criterion may be

provided that can override the tabu status of a move, for instance in case the tabu move

creates a better solution than the best one seen so far. An additional long term memory

keeps track on the number of visits to certain regions of the search space and may even

store which regions feature high quality solutions more frequently than others. Based on the

long term memory, two complementary mechanisms are often applied: diversification, which

influences the algorithm to broaden the spectrum of visited solutions, and intensification,

which influences the algorithm to reward regions that more frequently produce high quality

solutions.

The work of Wiangtong [142] introduces a tabu search with both diversification and in-

Fig. 4.15: Wiangtong’s scheduling compared to a ETF.

tensification strategies called penalty reward and demonstrates its superior performance over

simulated annealing and genetic algorithm implementations. In the scope of this thesis this

very promising technique has been implemented to be incorporated into OTIE and to bench-

mark against other approaches. An additional modification of the original work has taken

place, since the scheduling technique chosen by Wiangtong revealed inferior performance in

comparison with HLF and LEP. Basically the vertices are annotated with their precedence

level (or rank) as in the upper part of Figure 4.15. For all vertices on a distinct rank, the

70 4 Algorithms for Scheduling and Partitioning

scheduler first extracts those mapped to a sequential device. Those causing a collision are

ordered according to decreasing utilisation of the shared communication resource. In other

words two processes, whose execution would collide on a DSP core, are scheduled such, that

the process comes first, which uses the shared bus most. When all processes for sequential

resources of the current rank have been scheduled, all remaining processes to be mapped to

concurrent resources are considered. These processes are then mapped onto the concurrent

device and whenever a collision on the shared communication resource occurs, the process

with the higher execution time is allowed to communicate first.

This scheduling technique has a severe drawback: first and foremost process execution is

always delayed until all processes on the previous precedence level have finished their execu-

tion. Consider the upper schedule in Figure 4.15 resulting for the simple graph on the right.

In fact, the precedence or rank levels as they are defined in the Wiangtong’s PhD thesis [141]

do not reflect the individual precedence constraints of a vertex. This scheduling technique

results in a consecution of maximum execution and transfer times for any precedence level,

inevitably delaying processes unnecessarily, as they are forced to wait not only for their own

predecessors but also for the predecessors of all vertices with the same rank. The collision

arbitration within a single precedence level according to the bus utilisation becomes then

irrelevant.

In Table 4.8 the results are listed for the original TS algorithm of Wiangtong (TSorg) and the

TS algorithm enhanced by the proposed LEP scheduling (TSLEP). The second column again

|V| (CT, CA, CC) Ω σ Ψ Θ

20

(0.4,0.4,0.5)
TSorg 2.631 0.0171 83.2% 213k
TSLEP 2.589 0.0176 84.4% 270k

(0.5,0.5,0.5)
TSorg 2.145 0.0129 100% 199k
TSLEP 2.108 0.0111 100% 249k

50

(0.4,0.4,0.5)
TSorg 2.919 0.0174 62.8% 611k
TSLEP 2.849 0.0173 67.7% 743k

(0.5,0.5,0.5)
TSorg 2.333 0.0114 100% 530k
TSLEP 2.257 0.0126 100% 616k

100

(0.4,0.4,0.5)
TSorg 2.862 0.0136 93.5% 20.3M
TSLEP 2.779 0.0139 98.4% 25.9M

(0.5,0.5,0.5)
TSorg 2.336 0.0111 100% 26.8M
TSLEP 2.231 0.0104 100% 34.4M

(CT, CA, CC): Constraint ratios (3.13), Ω: Cost (3.10), σ: Standard deviation,
Ψ: Validity (Def. 19), Θ: Run time (Def. 20)

Tab. 4.8: Results obtained for tabu search, original and with LEP scheduling.

yields the aforementioned constraint ratio set (CT, CA, CC) for the three following objectives:

area CA on the FPGA, code size CC on the DSP, and the schedule length CT of a complete

execution.

In fact the tabu search is improved by the better suited scheduling technique up to 2% for

larger graphs and feature an up to 4% higher validity value for strict constraints. Note, that

4.3. Algorithms for System Partitioning 71

herein the scheduling contributes only to a third to the overall cost besides area and code

size, hence the improvement is significant. Due to the added complexity of the LEP schedul-

ing the run time increases but with an admissible growth rate. For further comparisons, the

original Wiangtong scheduling is always replaced by either HLF, ETF, or LEP according to

what is chosen for competing algorithms.

The complete parameter set to obtain results with a good quality are chosen according to

Wiangtong’s original work: size of neighbourhood subset |SN,TS| = 0.5
√
|V| . . .

√
|V|, tabu

list length Ltabu = 7 . . . 20 but typically such that |SN,TS|Ltabu ≤ 0.5|V|, region size for

intensification and diversification strategy sreg ≤ 100, 000, which corresponds to 16 ele-

ments of x in the binary case (sreg = 216) and only six elements of x, when there are six

implementation alternatives per element (sreg = 66).

4.3.6 Genetic Algorithm

This section briefly introduces fundamental terms, sketches how the GA concept is typically

applied to system partitioning, reveals where of the flaws of such a typical deployment lie and

finally demonstrates how to significantly improve the GA’s performance [92, Knerr et al.].

The inspiration of GA originates from the modifications to the chromosomes of a species

Fig. 4.16: 3-operator genetic algorithm.

caused by natural reproduction that iteratively improve the fitness of the species. According

to the natural mechanisms, abstracted concepts of selection, recombination, and mutation

exist in the algorithm as depicted in Figure 4.16. A population of individuals (or solutions)

exists in a generation P ⊂ S , of which a subset of individuals is chosen to serve as the

parents of the population of the next generation. This selection process is guided by the

fitness (quality of solution) of the individuals. The creation of a new individual for the

next generation by mating of the parent individuals is called recombination. The concept of

mutation is a random mechanism that affects parts of a chromosome of an individual with a

certain probability. Mutation ensures a persistent diversity in the number of individuals in any

population. Depending on the problem formulation, there exists a large variety of concrete

implementations for all these mechanisms, that cannot be covered within the scope of this

paper. In the following we adhere to the classical terms and definitions used by Goldberg [49]

and Michalewicz [107].

72 4 Algorithms for Scheduling and Partitioning

Chromosome Coding

The fundament of any GA is the genome, which captures all necessary information to derive

a solution for a problem instance. Many different approaches exist, but most common in

general and for system partitioning in particular is a string representation. An intuitive and

comprehensive way to represent a solution for the partitioning problem in form of a genome

is depicted in Figure 4.17. Assume a system graph with |V| processes shall be partitioned.

A vector of length |V| is provided, in which every entry, a gene, corresponds to a specific

process:

Fig. 4.17: Chromosome coding for the system partitioning problem.

The value of a gene (allele) identifies the implementation alternative for the respective pro-

cess. A specific partitioning solution is then coded as such a vector filled with the implemen-

tation types for all its processes. A coding in this form is very beneficial, since recombination

and mutation schemes can be easily defined, as can be seen later on. Nearly all publications

in this field adhere to this concept. However, the question, in which order (v1, v2, .., v|V|)

the processes are aligned in the genome vector, is hardly ever raised and almost always said

to be arbitrary. In fact, this is problematic, because of the consequences of the fundamental

schema of genetic algorithms [49]. The theorem states explicitly that short, low-order, and

highly fit schemata are sampled, recombined, and resampled to form strings of potentially

higher fitness. When precedence graphs are considered and optimisation is subject to time,

a trivial observation consists in a mapping to be very beneficial for two reasons: first, if

- in general - process implementations are mapped such that they feature comparably low

execution times, which is a combinatorial trait; second, if the system graph is mapped to the

architecture graph such that the inherent parallelism in both matches very beneficially, which

is a structural trait. It is the latter aspect, which causes serious performance differences

depending on the chosen vertex order in the genome.

Assume the graph in Figure 4.18 features a highly fit mapping with respect to its timing for

4.3. Algorithms for System Partitioning 73

the substring containing the vertices e, f, g, h due to a clever exploitation of the parallelism

by mapping these vertices to different resources in the architecture graph. The schema rep-

resenting this substring is (3 ∗ ∗ ∗ ∗1 ∗ ∗ ∗ 2 ∗ 2∗) for Coding 1 and (∗ ∗ ∗ ∗ 2312 ∗ ∗ ∗ ∗∗)
for Coding 2, with ∗ representing wild cards in a schema. Both have the same low order

o = 4, which is the number of fixed values in a schema, and a very different defining length

δ, which is the maximum distance between any two fixed values of a schema. In the Coding

Fig. 4.18: Examples for bad (1) and good (2) chromosome codings.

1 it is almost certain that a beneficial mapping for e, f, g, h will be destroyed during the

next recombination cycle, since the defining length δ of this schema is very high for stan-

dard recombination operators such as one-point, multi-point or uniform crossover. Hence,

the probable persistent destruction of these schemata hinders an efficient exploitation of

this structural trait, which inevitably affects the convergence and overall performance of the

genetic algorithm. Naturally, when such a structural component does not exist, e.g. when

there are no precedence constraints or execution time is not of interest, this consideration is

irrelevant.

But in general execution time is a predominant optimisation objective and contributes largely

to cost function. Due to this strong relation, it is of major importance to align neighbour-

ing (with respect to the time dimension) vertices in the system graph preferentially next to

each other in the chromosome. This trait, although being a fundamental neighbourhood

property of this problem formulation, is hardly ever considered in the field of genetic algo-

rithms for system partitioning. The only work known to us elaborating on this trait has

been published by Dick et al. [35]. They conclude to order their task vector according to

a depth first search through the graph concatenating the vertices as they are visited. This

is an astonishing surmise, since such an order destroys the parallel vicinity of vertices in an

one-dimensional array instead of emphasising it. A depth first search could result in vertex

order (a, c,h, j, l,m, k, b, e, g, d, f, i) for the example in Figure 4.18. Trivially, a breadth first

74 4 Algorithms for Scheduling and Partitioning

search delivers then the more promising candidate resulting in (a, c, b, e, d,h, g, f, j, i, l, k,m)
and even much better candidates exist, as it is shown in the following. The theoretical un-

derpinning of the survival of schemata and neighbourhood examinations can be found in the

literature [49, 107].

Fig. 4.19: Example graph with annotated ranks, asap and alap schedule.

The remaining section evaluates different chromosome codings and points out the strong

dependency between the chromosome coding and the timing payoff. Additionally it is shown,

that these considerations do not in any way affect other objective values like code size or

area, since these are combinatorial and thus independent from the graph structure.

Three different codings are proposed: a random order (rand) of genes, an order based on the

vertices’ rank in the graph (rank), and a more elaborate order based on the medium start

times of an as soon as possible (asap) and as late as possible (alap) schedule of the graph

(med). In Figure 4.19 a small example graph is depicted, in which the ranks of the vertices

are annotated. Additionally, the two schedules, asap and alap, are depicted. In the interest

of clarity, communication is omitted in this figure and the execution times are averaged over

all implementation alternatives per process.

It becomes obvious that a genome, in which the genes are ordered according to the rank of

the corresponding vertex, mirrors the vicinity relations of the graph in a reasonable way. A

further intensification of this relation lies in the integration of the time dimension and the

vertices’ dynamic range in the graph. This information can be imported by the application of

the two indicated schedules, of which the start times serve as base for the genome ordering.

For instance, process a features in both schedules the same start times stasap(a) = stalap(a),

whereas process b exhibits different start times stasap(b) 6= stalap(b). In the latter case the

mean is taken as base for the genome ordering. It has to be stated, that for all processes

4.3. Algorithms for System Partitioning 75

more than one execution time exists, so the generation of the two schedules has to rely on

the average execution time. Nevertheless, a med based ordering of the genome preserves

the locality of the processes in the system graph more effectively. The plot in Figure 4.20

Fig. 4.20: Convergence behaviour for GAs with different genome codings.

illustrates the convergence behaviour of two genetic algorithms with identical parameters

but different chromosome codings. The four plots show the worst and best member of

a generation for a GA with randomly ordered chromosomes in the upper part and those

for a GA with an ordering depending on the asap and alap schedules in the lower part.

The difference between the quality of the best and worst individual of a population is an

indicator for the population’s diversity, which is basically adjusted by the mutation operator

in Section 4.3.6. It is apparent in this example that the convergence of the upper two curves

is significantly inferior, since promising candidates in the population are persistently destroyed

by the recombination and mutation operators. The empirical demonstration of this trait for

many instances of many graphs can be seen in the bar chart in Figure 4.21 with averaged

cost Ω on the y-axis. The bar groups a, b2, and c result from GA runs with identical weight

elements in the weight vector w = (1, 1, 1) (3.10). The effect of the chromosome coding is

dramatic with the biggest difference for large graphs: up to 20% better than random coding.

This is a reasonable result, since small graphs mean implicitly short chromosomes, in which

a disorder has only limited impact.

For |V| = 50 two more tests are depicted in bar groups b1 and b3 with a variation in

the fitness function. When optimisation is only subject to time w = (1, 0, 0), a GA with

randomly ordered genome performs tremendously worse. In opposition, when neglecting

time completely w = (0, 1, 1), the ordering does not matter at all, leading to identical

76 4 Algorithms for Scheduling and Partitioning

Fig. 4.21: Averaged cost Ω for different genome codings on all graph sizes |V| = 20, 50, 100.

results. Note, that the demonstrated effect is persistent, even when varying the following

three operators selection, recombination, and mutation. Further parameters for this test have

been: binary tournament selection, uniform crossover, and mutation disabled.

1st Operator - Selection

At any stage of the genetic algorithm, i.e. generation, among the individuals present in

the population, some have to be selected to serve as parents for the individuals of the next

generation. Again a multitude of selection criteria exist with varying effects on convergence,

robustness and solution quality. Although the focus of this work is not primarily set on

an evaluation of this feature, three classical schemes have been examined to complete the

picture: survival of the fittest (SOTF), binary tournament (BT), and roulette wheel (RW)

selection.

Selection based on survival of the fittest means that from a population consisting of |P|
individuals the best |P|/2 individuals are chosen to serve as parents for the next generation.

Binary tournament means to select consecutively random pairs out of the population, whose

fitness values are compared. The fitter one gets the parent status, whereas the other is

discarded. Both are removed from the population to avoid multiple selections of the same

individual. Roulette wheel selection distributes probabilities proportional to the fitness values

among the individuals. Since our fitness function Ω returns the lower values the better the

individual is, the cost-to-fitness transformation Ω̂(x) = Ωmax − Ω(x) is applied, with Ωmax

being the worst fitness of the last iteration. Hence, the selection probability Psel(x) of an

individual x in the current population P calculates to:

4.3. Algorithms for System Partitioning 77

∀x ∈ P : Psel(x) =
Ω̂(x)∑

y∈P Ω̂(y)
. (4.6)

Note, that for the RW selection the highly non-linear character of the fitness function when

evaluating invalid solutions, due to the penalty exponent η in (3.12), leads to an undesir-

able effect: the probabilities for invalid solutions become small very quickly. This is cir-

cumvented by scaling η with the number of invalid individuals in the population |Pinv| to

η = η0 − (η0 − 1) |Pinv|
|P| , η0 = 4.

The evaluation of this main operator exposes an interesting interdependence with the muta-

tion operator. The plot in Figure 4.22 depicts the three classical selection schemes [49, 68]

binary tournament (BT), roulette wheel (RW), and survival of the fittest (SOTF) for dif-

ferent values of common one-gene mutation on the x-axis. The graph size is |V| = 50
with uniform crossover and med-ordered genome. BT and RW selection exhibit an almost

Fig. 4.22: Result for different selection schemes over varying mutation probabilities.

identical performance with minimum cost for low mutation probabilities. In fact, mutation

improves the results by only about 1% if P1g = 0.01 but degrades the outcome for larger

values. The SOTF selection shows a very different behaviour improving Ω substantially with

best values for 0.05 ≥ P1g ≥ 0.07. A cause of this result may lie in the relatively high im-

plicit diversity of the BT and RW selection opposing the SOTF selection. Hence, mutation,

which is another guarantor of diversity, degenerates in the first case rather quickly, but leads

in the second case to substantial improvements. For mutation probabilities higher than 0.1
the degradation in cost becomes quickly outrageous for all three selection schemes.

78 4 Algorithms for Scheduling and Partitioning

2nd Operator - Recombination

Once a subset of individuals has been selected, the so-called mating takes place, that is the

creation of new offspring individuals from this subset. Combined with the aforementioned

chromosome coding, single- and multi-point as well as uniform crossover are very simple to

implement and ensure the creation of offspring solutions that are always feasible avoiding the

often costly implementation of a repair mechanism for infeasible solutions. In Figure 4.23 a

Fig. 4.23: Recombination via 2-point crossover with cut points c1, c2.

2-point crossover is illustrated. The two randomly chosen individuals from the parent subset

on the left are cut at two points c1 and c2 and recombined by permuting the two substrings

between the cut points. One- and multi-point crossover recombination are performed analo-

gously. Uniform crossover means a simple iteration over the genes of the parent chromosomes

and selecting the allele from one of the two parents with a certain probability. Normally this

probability is set to 0.5. In this work, uniform as well as multi-point crossover, reaching from

one cut point to |V|/10 cut points, are evaluated and a significant difference can be observed

especially for larger graphs. To keep the population size constant, any parent individual is

used twice in the crossover scheme with alternating partners.

In this section large graphs with |V| = 100 are tested with four different recombination

schemes (uniform and 10-,5-,1-point crossover) on two genome orderings (med and rand.

Parameters are: BT selection, and no mutation. The analysed schemes in Figure 4.24 reveal

Fig. 4.24: Result for different recombination schemes for two genome orderings.

negligible differences for the GA with randomly ordered genome. But in the med-case on

4.3. Algorithms for System Partitioning 79

the left a quite remarkable gap of more than 3% can be observed, which is accompanied

by a 15% shorter run time for the GA with 10-point (or uniform) crossover. This effect is

still observable to a minor degree for medium graphs (|V| = 50), and is negligible for small

graphs (|V| = 20).

3rd Operator - Mutation

The last major operator is a randomised mechanism, which processes the offspring generation

and alters small portions of the chromosome with a certain probability. Its main purpose is

to provide a chance to (re)introduce new or lost regions of the solution space, and thus to

ensure a persistent diversity in the solution subspace covered by the population. Almost om-

nipresent for the string coding of the chromosome is a simple one-gene mutation (M1g), that

is the alteration of an allele typically with a low probability P1g = 0.01 . . . 0.05. A related

scheme especially in symmetric multi-processor scenarios is a swap mutation (Mswap), that

is the exchange of two process assignments to different processors. In this work one-gene

and swap mutation are evaluated for varying probabilities. Due to similar deliberations as

in Section 4.3.6, it can be reasoned that a one-gene mutation does not tap the full po-

tential, especially with respect to the late stages of the genetic algorithm. Assume, a GA

has proceeded through several generations, so that the short low-order building blocks in

Figure 4.17 represent on average partial solutions with a rather good quality. As described

before, the solution quality then depends to a large degree on the strong exploitation of the

parallelism in system and architecture graph, as illustrated in Figure 4.25. One-gene muta-

Fig. 4.25: Partial system graph and schedule: one-gene versus swap mutation.

tion (M1g) is likely to destroy the beneficial combination of process assignment to different

processors, when mutating c onto DSP1 behind b, even if the new implementation alternative

of c is better suited to DSP1. Consequently, Mswap seems to be much more appropriate,

e.g. when exchanging a and b. Since we allow for platform abstractions with more than

two processor units, we extend the swap mutation towards a building block mutation (Mbb):

on a number of consecutive genes |R| swaps are applied with a certain probability, R being

the set of available processors. The result is a permutation in a limited range of the chro-

mosome that corresponds to a local region (subgraph) of the system graph. The latter is

80 4 Algorithms for Scheduling and Partitioning

implicitly true, if a chromosome order is chosen that reflects the locality of the processes in

the graph. The next paragraph lists the obtained results for the proposed mutation operators.

Unlike before the results in this section are related to different platform models to demonstrate

the dependency of the building block mutation with the number of available processors

|R| = 2, 3, 4 with local memories and connected by a system bus to a shared memory. Again

the outcome for the largest graphs is considered, as the differences turned out to be most

perceptible. Further operators are med-ordered genome, binary tournament selection, and

10-point crossover. From Figure 4.26 it can be seen, that a mutation, that permutes the

Fig. 4.26: Result for different mutation schemes M1g,Mswap, and Mbb on three different
platforms.

assignment of processes among the available processors, is very beneficial in comparison with

the most common one-gene mutation. Remember, that the permuted processes should lie

in the same region on the time scale, which is (very likely) implicitly true for adjacent genes

in an med-ordered genome. Hence, the building block mutation is very simple to implement

and only causes a negligible run time overhead.

Miscellaneous

This section completes the description of the genetic algorithm with the discussion of the

parameters population size |P| and termination criterion. The first of which is of major

importance, since it has a dramatic impact on the solution quality in a direct trade-off

with the GA’s run time: the bigger the population, the better the solution quality. Up to

a certain degree the algorithm designer can choose freely depending on his project’s time

frame. However, it is obligatory to consider certain policies: |P| has to be large enough to

yield a sufficient diversity in the initial population in order to guarantee a good search space

coverage. In general, it is reasonable to bind |P| to the same parameters that determine

the problem size and to ensure that any possible allele per gene is present in the initial

4.3. Algorithms for System Partitioning 81

population. In this scenario, the population size is then a function, |P| = f(|V|, av), with

the latter parameter being the average number of implementation alternatives per process.

We found the product |V| av to be an appropriate value.

The termination criterion, i.e. when the GA ceases to breed further generations, scales

typically in a similar fashion. However, we found, that terminating after |V|/2 generations

without improvement gave enough room to evaluate the operators and showed sufficient

convergence.

As stated before, there exist many more parameters and mechanisms for genetic algorithms:

elitism, crowding model, overlapping generations, variable neighbourhoods to name just a

few. A complete discussion of those would be far beyond the scope of this thesis. We

concentrated on the main operators and tried to give interpretations of their performance.

4.3.7 Restricted Range Exhaustive Search

Fig. 4.27: Global optimality

by locally optimal

solutions.

This section introduces the new strategy to exploit the prop-

erties of graph structures described at the beginning of this

chapter [93, Knerr et al.]. Recall the concept of local opti-

mality that is the fundament of the LEP scheduling technique.

Consider the simplified problem of mapping precedence con-

strained processes to a platform with the single objective to

minimise execution time, and additionally data transfer edges

are neglected. In that case the graph structure in Figure 4.27

allows for the concatenation of three locally optimal schedules

fT,opt(x) = fT,opt(xu) + fT,opt(xm) + fT,opt(xl) with fT be-

ing the objective function for time, and xu,xm,xl being the

upper, middle, and lower partial solution vectors of the com-

plete solution x, respectively. The vertex vj for relation xj is

identifiable by par(vj) = 0, i.e. it does not have any parallel

vertices1. For any vertex featuring this property, the graph can

be split into smaller subgraphs, which can be optimised indi-

vidually. Certainly, as soon as the other objective functions,

like area or code size, affect the cost Ω, the prerequisites for

these cuts are not fulfilled anymore. But as long as the sys-

tem’s execution time reveals a high relevance in the composed objective function, we accept

the trade-off between the restriction of the solution space and the obtainable optimal solu-

tions regarding the timing. Additionally, the majority of the graphs does not contain these

cut vertices (also called articulation points [126]). However, from the analysis of typical

1 Equivalently, this property vj is also called articulation point [126].

82 4 Algorithms for Scheduling and Partitioning

system graphs in this field, we observed in general rather low values for γ̂, i.e. on average for

any vertex the number of its parallel candidates is small. Hence, if we can cover the major

part of the neighbourhood of any vertex in a local optimisation, i.e. its direct successors,

predecessors, and parallel vertices, we may obtain a concatenation of locally optimal solutions

that can be composed to a near-optimal global solution.

Thus, instead of finding proper cuts in the graph, which is rarely possible, we consider a

contiguous subset of vertices, or in other words, a moving window over the topologically

sorted vertices of the graph, and apply exhaustive searches on these subsets, as depicted in

Figure 4.28. The annotations of the vertices refer to the graph in Figure 4.19. The window

Fig. 4.28: Moving window for the RRES on an ordered vertex vector.

is moved incrementally along the graph structure from the start vertices to the exit vertices

while locally optimising the subset of the RRES window.

A crucial part is certainly the identification of the order, in which the vertices are aligned in

the vector to be visited by the moving window, since the window shall reflect a good neigh-

bourhood coverage for any vertex. The main requirement for the ordering is that adjacent

elements in the vector mirror the vicinity of readily mapped processes in the schedule. Recall,

that this consideration is identical to that for the creation of a good chromosome coding for

the genetic algorithm in Section 4.3.6. Similarly, different schemes to order the vertices have

been tested: a simple rank ordering that neglects the annotated execution and transfer times;

an ordering according to ascending HLF priority levels that incorporates the critical path of

every vertex; and the more elaborate approach guided by the averaged start times of the as

soon as possible schedule and the as late as possible schedule as depicted in Figure 4.19.

The order is identical to that of the favoured chromosome coding.

The vertex alignment according to this last scheme yielded the best results compared to rank

and HLF ordering, since the dynamic range of possible schedule positions is hence incorpo-

rated. It has to be stated, that this vector has to be generated before the algorithm starts

and is thus forced to average the possible execution times of any vertex for the asap and alap
schedule creation. Note, that this averaging takes place before the RRES algorithm starts

to ensure a reasonable vertex order and hence a good exploitation of its potential. It shall

4.3. Algorithms for System Partitioning 83

not be mistaken as the method to calculate the graph’s execution time during the RRES

algorithm. Within RRES and all other algorithms, any generated partitioning solution is

properly mapped and scheduled onto a platform with any process and data transfer featuring

its individual unaveraged properties.

Once the vertex vector has been generated, the main algorithm starts. In Listing 4.2 pseu-

docode is given for the basic steps of the proposed algorithm. In Line 1 the initial solution

is created, the details of which are discussed in the next paragraph. Line 2 assembles the

vertex vector according to the aforementioned scheme. The loop in lines 4-6 is the windowing

across the vertex vector with window length W .

Listing 4.2: Pseudocode for the RRES scheduling algorithm

0 RRES() {

1 createInitialSolution ();

2 createOrderedVector ();

3

4 for(i=1; i <= |V|-W; i++) {

5 windowedExhaustiveSearch(i, i+W);

6 }

7 }

8

9 windowedExhaustiveSearch(int v_i , int v_j) {

10 while (! exhausted) {

11 createNextMapping(v_i , v_j);

12

13 if (constraints fulfilled) { valid = true; }

14 if (cost < bestCost) { storeSolution (); }

15 if (cost < bestValCost && valid) { storeValSolution (); }

16 }

17 mapVertex(v_i , bestSolution);

18 }

From within the loop, the exhaustive search in Line 9 is called with parameters for the window

from vi to vj . In Lines 10-16 any possible mapping of vertices vi, . . . , vj is created, combined

with the final mapping for v1, . . . , vi−1 and the tentative mapping for vj+1, . . . , v|V|, and then

evaluated. Any of these solutions is properly scheduled, avoiding any collisions, and its cost is

computed. In Lines 13-15, the checks for the best and the best valid solution are performed.

The current final mapping of the oldest vertex in the window vi takes place in line 17. Here,

that mapping of vi is chosen that is part of the best solution seen so far. When the window

reaches the end of the vector, the algorithm terminates.

84 4 Algorithms for Scheduling and Partitioning

The initial solution in Line 1, i.e. the very first assignment of vertices to an implementa-

tion type, has an impact on the achieved quality, although we can observe that this effect

is negligible for fast and reasonable techniques to create initial solutions. In Table 4.9 the

obtained cost values for a RRES (window length W = 8, constraint ratios (0.5, 0.5, 0.5)) is

depicted starting from different initial solutions for a classical binary partitioning: pure soft-

ware, pure hardware, random assignment, a more sophisticated but still very fast construction

heuristic is described in Section 4.3.3, and when applying RRES on the partitioning solutions

obtained by an preceding run with the aforementioned construction heuristic. Apparently,

Ω obtained when started from
|V| pure SW pure HW random heuristic heuristic and RRES
20 2.241 2.267 2.153 2.101 2.085
50 2.569 2.566 2.279 2.185 2.170

100 2.700 2.655 2.300 2.202 2.188

Ω: Cost (3.10)

Tab. 4.9: Averaged cost Ω obtained for RRES starting from different initial solutions.

the local optima reached via the pure HW and pure SW initial solutions are substantially

worse than the others. The random assignment already improves the outcome significantly.

The construction heuristic discussed for GCLP in the fourth column considers each vertex’

traits individually and incorporates a sorting algorithm with efficiency O(|V|log(|V|)). In the

last column RRES has been applied twice, the second time on the solutions obtained for an

RRES run with the custom heuristic. The improvement is marginal opposing the doubled run

time. These examples shall demonstrate that RRES is quite robust when proceeding from a

reasonable point of origin. Further on, RRES is always applied starting from the construction

heuristic, since it provides good solutions introducing only a small run time overhead.

Naturally, the most crucial parameter of RRES is the window length W , which has strong

effects on both the run time and the quality of the obtained solutions. In Figure 4.29, the

first result is given for the graph set with the least number of vertices |V| = 20, since a

complete exhaustive search (ES) over all 220 solutions is still computationally manageable.

The constraint ratios are strict (0.4, 0.4, 0.5). The vertical axes show the range of the validity

percentage Ψ and the best obtained cost values Ω averaged over the 180 graphs. Over the

possible window lengths W , shown on the x-axis, the performance of the RRES algorithm is

plotted. The dotted lines show the ES performance. For a window length of 20, the obtained

values for RRES and ES naturally coincide. The algorithm’s performance is scalable with the

window length parameter W . The trade-off between solution quality and run time can hence

directly be adjusted by the number of calculated solutions |SRRES| = (|V| −W)avW .

Another perspective uncloses an even better comprehension of the RRES algorithm and its

workings. This algorithm is now applied to a graph set containing sparse k-locality graphs

4.3. Algorithms for System Partitioning 85

Fig. 4.29: Validity Ψ, and cost Ω for RRES and ES plotted over the window length W .

with kloc = 3 . . . 10 and |V| = 50, which shall be mapped to a platform featuring three

identical DSP cores interconnected by a parallel read/write system bus. We set the objec-

tive to minimise for time exclusively, thus suppressing the strictly combinatorial objectives

like area or code size in doing so. In Figure 4.30 a bar chart is plotted to visualise the

results obtained for the mentioned architecture depicted at the right side. For very low kloc

the graphs exhibit rather chain-like structures and the RRES returns near-optimal solutions

for any window length ≥ 3. The red lines crossing the bar groups indicate the allegedly

near-optimal solutions, generated by extensive test runs with a genetic algorithm featuring a

very large population size |P| = 600, binary tournament selection, 2-point crossover recom-

bination and basic block mutation. The bathtub-like appearance of the bar groups results

from the relative performance improvement of RRES for increasing values of kloc, as more

parallelism is present in the graph. This structural trait is then exploited by a good match

to the three-core architecture. Thus, the system’s execution time is approaching the length

of the critical path, until a certain border, kloc,T ≈ 6, is trespassed, when the ever increasing

parallelism in the graph cannot be exploited anymore by the limited number of resources.

For values kloc ≥ 7 the gap between the system time returned by RRES and the estimated

optimal time is widening rapidly.

From this behaviour the general relation between the architecture traits and the graph struc-

ture becomes visible: as long as a nicely fitting subgraph (semi-)isomorphism between plat-

form graph and and system graph is present, the execution time can draw near the minimum.

Another RRES specific observation is the strong and reliable performance of this algorithm

for a the subset of sparse graphs featuring a high locality (i.e. small kloc). For graphs with

higher kloc values or when the objectives are strictly combinatorial, RRES is outperformed

by the genetic algorithms and tabu search, as it will be shown in Section 4.3.9.

86 4 Algorithms for Scheduling and Partitioning

Fig. 4.30: Dependency between graph locality kloc (or γTrloc) and performance for RRES.

In Table 4.10 simulation results are listed for different window length and constraint sets.

RRES returns high quality solutions even for rather small window lengths especially for the

analysed subset of graphs. For small graphs even RRES with W ≤ 6 yields very low cost

values for both listed constraint sets, substantially outperforming all neighbourhood searches,

GCLP plus modifications, and most notably simulated annealing, without imposing mention-

able run time overhead. Tabu search and genetic algorithms prove to be more competitive

as it will be shown in the concluding section.

Regarding the asymptotic efficiency of RRES consider the plot in Figure 4.31. It shows the

quality dependency of RRES over the window length W and the run time Θ in clock cycles

for the graph set with |V| = 100 in comparison to the GA. The constraint set is (0.5, 0.5, 0.5).

The shaded area illustrates where RRES outperforms GA both in quality and run time for the

analysed process graph set. Apparently the window length should lie below 14 for the binary

mapping problem in order to achieve a still feasible run time.

Consequently, a relevant aspect is the consideration of the extended mapping problem, when

more than two implementation alternatives exist. It is obvious that the run time of the RRES

algorithm suffers greatly from an increasing number of implementation alternatives. Assume

for every process in the design four implementation alternatives exist: for instance another

DSP is made available and two different FPGA implementations for any process exist trading

off area versus execution time. As the run time is then proportional to (|V| −W)4W , the

window length has to be halved to yield the same run time as in the case of two implemen-

4.3. Algorithms for System Partitioning 87

|V| (CT, CA, CC) RRES Ω Ψ Θ

20

(0.4,0.4,0.5)
W = 6 2.675 68.9% 104k
W = 8 2.612 78.7% 357k
W = 10 2.586 86.8% 1.2M

(0.5,0.5,0.5)
W = 6 2.121 100% 144k
W = 8 2.104 100% 462k
W = 10 2.094 100% 1.8M

50

(0.4,0.4,0.5)
W = 6 2.813 75.4% 1.3M
W = 8 2.774 86.9% 5.0M
W = 10 2.769 90.2% 25.7M

(0.5,0.5,0.5)
W = 6 2.224 100% 1.3M
W = 8 2.208 100% 4.9M
W = 10 2.199 100% 25.5M

100

(0.4,0.4,0.5)
W = 6 2.776 95.1% 22.9M
W = 8 2.76 98.3% 92M
W = 10 2.743 100% 358M

(0.5,0.5,0.5)
W = 6 2.20 100% 26.9M
W = 8 2.198 100% 108M
W = 10 2.190 100% 369M

(CT, CA, CC): Constraint ratios (3.13), W : Window length, Ω: Cost (3.10),
Ψ: Validity (Def. 19), Θ: Run time (Def. 20)

Tab. 4.10: Results obtained for the RRES.

tation alternatives. From Figure 4.31 such a bisection (from W = 10 to W = 5) may still

look acceptable, but it is clear that for an average number of implementation alternatives

greater than four per process, RRES becomes quickly infeasible.

4.3.8 Kernighan-Lin Min-Cut

The classical Kernighan/Lin (KL) heuristic for graph partitioning [81] seeks to improve a

given two-way graph partition by reducing the edges crossing between parts, known as the

cut, as depicted in Figure 4.32. Vahid et al. [140] modified the algorithm and applied it

to an access graph representation of a signal processing system. Chatha and Vemuri [25]

demonstrated an algorithm, which features the same control mechanism as KL to traverse

the search space. In both approaches KL includes system time as objective and both of

them have to rely on rough estimations for the execution time in their respective objective

functions. A similar KL adaptation based on estimation techniques was also the first system

partitioning approach that has been implemented for OTIE [86, Knerr et al.]. In the follow-

ing, this implementation is adjusted to include precise execution times based on collision-free

schedules, Moreover, the impact on KL is exposed, when the composition of the objective

function and the definition of the neighbourhood do not allow for an efficient incremental cost

computation. Hence, the application of KL to the problem formulation used in this thesis

is not straightforward and necessitates a careful consideration of the cost function and how

it is computed. Initially, the original version of KL for balanced bipartitioning is described,

88 4 Algorithms for Scheduling and Partitioning

Fig. 4.31: Quality and run time of RRES and GA over window length for graphs with
|V| = 100.

followed by the required modifications to be applicable to the chosen setting, their conse-

quences for the KL run time, and eventually its performance regarding different problem sizes.

The essence of the heuristic consists in the simple yet powerful control strategy, which over-

comes many local minima without using excessive moves. This strategy can be summarised

as follows. The classical algorithm for a balanced binary partitioning starts from an initial

solution with the same number of vertices in every partition (Line 1) and tentatively swaps

every vertex from one part with every vertex from the other part (Line 4, 12-18). For every

swap, i.e. a new temporary solution, the change in cost is evaluated and put in an ordered

list, the change list (Lines 14-16). The deeper sense of this list is to establish a memory for

already performed swaps in order to efficiently manage a search space traversal visiting all

possible neighbouring solutions within one iteration.

After all possible swaps have been performed (and again undone), the change list is being

processed in the order of increasing cost changes (Line 5, 20-26). The best (or least worse)

swap of the list is then realised (Line 23), and the swapped vertices are locked (Line 24).

As a consequence of this realised swap, in the classical problem only some entries in the

change list have to be updated (Line 25). This can be achieved very efficiently, since the cut

value (its cost) counts the crossing of edges between the two parts, and the movement of a

vertex to and fro only affects those list entries that correspond to swaps involving connected

neighbours of this vertex. Thus, only very few entries have to recalculated. After locking

the swapped vertices and updating the change list, the next best swap in the list is realised,

even when it actually causes a degradation.

4.3. Algorithms for System Partitioning 89

Fig. 4.32: Cut problem for a two-way partitioned graph.

Listing 4.3: Pseudocode for the classical Kernighan Lin min-cut

0 ClassicalKernighanLin () {

1 X = initialSolution; // serves as first best solution

2 while(bestSolutionFound) {

3 GenerateChangeList(X); // see line 12

4 ProcessChangeList (); // see line 20

5 UnlockAllVertices ();

6 ReturnToBestSeenSolution(X=X_best);

7 }

8 }

9

10 GenerateChangeList () {

11 for (all pairs x_i ,x_j being in different partitions) {

12 SwapPartitions(x_i ,x_j);

13 SortIntoChangeList(cost(X_new)-cost(X));

14 UndoSwap(x_i ,x_j);

15 }

16 }

17

18 ProcessChangeList () {

19 while (ChangeList not empty) {

20 <x_i ,x_j > = SelectNextSwap ();

21 if (<x_i ,x_j > unlocked) { RealiseSwap ();

22 LockSwappedVertices (); }

23 UpdateChangeListEntries ();

24 }

25 }

90 4 Algorithms for Scheduling and Partitioning

Again, the swapped vertices are locked and the list is updated again, and so forth. When all

vertices have been swapped and received the locked status, one pass ends and the algorithm

returns to the best partitioning solution seen during the last pass (Line 8). This solution then

serves as the initial solution for the next pass, and so forth. After a number of iterations,

typically less than five, without global improvement, the algorithm terminates.

There are several simple modifications that have to be applied. We allow for more than two

partitions, according to the number of resources in the platform. Another trivial observation

is that there is no need for balanced partitions in our scenario, so a swap of two vertices

can be redefined as a move of one vertex to another partition. The objective function is

indeed affected by ’crossing’ edges by the introduced inter-resource communication, which

is in general more expensive than intra-resource communication. But the major part of the

cost is caused by the individual exploitation of the resources and the overall system time. For

the classical algorithm, additional improvements exist that are concerned with sophisticated

data structures for constant-time change list look-ups and updates [40], etc. These mod-

ifications are likewise inapplicable in our scenario as it will be explained in the next paragraph.

The substantial drawback regarding the system partitioning, being binary or extended, lies

in the computation of the cost and how it is affected by the move of one vertex. Any

cost function that integrates the overall system execution time, that shall not be based on

crude estimations but on a proper scheduling, hinders the implementation of an efficient

neighbourhood scan and an efficient change list update. In general, every tentative swap or

move has consequences for the complete schedule of all resources: collisions on the bus or

on a DSP core may newly occur and/or time slots are freed. The execution interval of many

processes will naturally change whether or not they are directly connected or in vicinity of

each other. Thus, a complete schedule update for every new partitioning solution created by

the tentative move would be necessary in Line 14 of Listing 4.3. And we encounter the same

situation, as soon as the best (or least worse) move in the change list is about to be realised

in Line 23. Instead of just recalculating a few entries in the list, all remaining entries have

to be recalculated in Line 25, since it is not possible to determine beforehand which of them

are affected by the just realised move. In that sense the change list looses its qualification

to avoid ’unnecessary’ cost function calculations. Hence, this data structure is obsolete and

is removed from the algorithm.

The search space traversal strategy of KL can still be utilised, although its property of

being extremely fast is hence lost. Listing 4.4 shows the basic steps of the algorithm with

the required modifications to be applicable for the scenario chosen in this thesis. After an

initial solution has been generated and all vertices are flagged to be unlocked, the current

neighbourhood is analysed in Lines 6-10, and the best move is stored. This best move

4.3. Algorithms for System Partitioning 91

corresponds to first entry in the change list in the original algorithm, and is as such realised

and locked (Lines 12-13). At this point, the short cut offered by a change list to determine

the next move is not viable, as the cost in change for all neighbours might be affected by the

just realised move. Hence, all neighbours of the just realised solution xnew have to analysed

again to find the next best (or least worst) move. Certainly, a moved vertex is locked, so

with every iteration the neighbourhood to be analysed is decreased by one. When all vertices

have been moved once, and are thus locked, the algorithm unlocks all vertices, returns to the

best solution found during the last pass, and proceeds from there. The termination criterion

is met, when the last pass did not yield a new best solution.

Listing 4.4: Pseudocode for the Kernighan Lin partitioning algorithm

0 ModifiedKernighanLin () {

1 X = initialSolution; // serves as first best solution

2

3 while(bestSolutionFound) {

4

5 while (Unlocked vertices exist) {

6 for (all x in X) {

7 MoveToAnotherPartition(x); // Tentative move.

8 StoreBestMove(x_best);

9 UndoMove(x);

10 }

11 X_new = RealiseMove(x_best); // Best (or least worse).

12 LockVertex(x_best);

13

14 if (cost(X_new) < bestCost) StoreBestSolution(X_new);

15 }

16 UnlockAllVertices ();

17 ReturnToBestSeenSolution(X=X_best);

18 }

19 }

With respect to the run time of the modified KL, consider the following scenario. Assume,

a graph with |V| vertices and av implementation alternatives per vertex shall be partitioned.

Hence, the first tentative neighbourhood scan (Lines 6-10) visits and evaluates (av−1)|V| new

solutions. Before the next run, one vertex receives the locked status, and then (av−1)(|V|−1)
solutions are computed, in the third run (av−1)(|V|−2), and so forth. When all vertices have

been locked, (av−1)(|V|2)(|V|+1) solutions have been visited. As long as global best solution

could be identified during the last iteration, the algorithm proceeds. From the results listed

in Table 4.11, we can observe, that the run time lies well in the region of simulated annealing

and genetic algorithms. The tremendous degradation becomes more evident, when we recall

92 4 Algorithms for Scheduling and Partitioning

that KL is reputed as extremely fast algorithm with an asymptotic efficiency of O(|V|3) or

even O(|V|2 log(|V|)) in some formulations [100]. The main reason can be easily identified,

a cost change from neighbour to neighbour is originally a constant-time operation, and the

change list a very efficient way to guide the search space traversal. The modified KL has

to recalculate the cost change very expensively via a complete schedule update for every

possible neighbour and every iteration of the algorithm. Apart from this drawback, the

|V| (CT, CA, CC) Ω σ Ψ Θ

20
(0.4,0.4,0.5) 2.648 0.0661 69.6% 110k

(0.5,0.5,0.5) 2.118 0.0219 100% 102k

50
(0.4,0.4,0.5) 2.762 0.0423 73.2% 3.18M

(0.5,0.5,0.5) 2.253 0.0174 100% 3.31M

100
(0.4,0.4,0.5) 2.758 0.0346 91.6% 100M

(0.5,0.5,0.5) 2.240 0.0143 100% 110M

(CT, CA, CC): Constraint ratios (3.13), σ: Standard deviation,
Ω: Cost (3.10), Ψ: Validity (Def. 19), Θ: Run time (Def. 20)

Tab. 4.11: Results obtained for Kernighan-Lin.

control structure of the modified Kernighan-Lin still offers a very beneficial characteristic.

Every vertex is forced to leave its initial state in every iteration and can hence contribute

to the global cost reduction. Its performance lies well in the region of simulated annealing

and tabu search for the chosen scenario. Additionally, it represents a good candidate for

the extraordinary case that system time (and hence scheduling) is not of importance for the

objective functions, since then the original implementation utilising a change list is again

permitted.

In the last section the performance of all algorithms is visualised by bar charts in order to

facilitate the direct comparison and evaluation of their advantages and disadvantages.

4.3.9 Discussion

This section reviews the algorithms’ performance in direct comparison. In Figure 4.33 a bar

chart is depicted for three different graph sizes for the classical binary partitioning problem

with one DSP and one FPGA connected by system bus. As this is the formulation for which

the original versions of the applied algorithms have been supposed by their respective authors,

it is fair to evaluate at first the performance in this exact scenario. Exhaustive search (ES)

could only be deployed for the graph set with the least number of vertices. The general

parameters are a balanced constraint ratio set of (CT = 0.5, CA = 0.5, CC = 0.5) and

dynamic HLF scheduling being applied.

The specific parameters for the algorithms are:

• RRES: Window length W = 10.

4.3. Algorithms for System Partitioning 93

Fig. 4.33: Quality of all algorithms for different graph sizes for binary partitioning.

• GA: Population size = 2|V|, med-ordered and rand-ordered chromosome, binary tour-

nament selection, multi-point crossover recombination with |V|10 points, swap mutation

as the number of resources is |R| = 2, termination criterion after |V|/2 generations

without improvement.

The results for a randomly ordered chromosome are not depicted as they would lie well

beyond the value range of this bar chart.

• TS: Neighbourhood size |SN,TS| = max(5, 0.7
√
|V|), tabu list length Ltabu = 0.7

√
|V|,

region for intensification and diversification covers sreg ≤ 100, 000 different solutions,

here 16 elements of x. The termination criterion is reached after 10|V| analysed

solutions without improvement.

The mod subscripted bar indicates the TS with HLF scheduling, whereas the org

stands for the original version by Wiangtong.

• SA: Annealing factor ϑ = 0.95, temperature update after u = |V| iterations, termina-

tion after |V|/2 updates without improvement.

• KL: No parameters.

• GCLP: org indicates the original version, and mod indicates the version with the

modifications M1b and M3 deployed.

• NS: A trivial best neighbourhood search is indicated by single, and the multi-start

version with |V| consecutive runs is indicated by multi.

94 4 Algorithms for Scheduling and Partitioning

In summary, it can be stated that the well reputed global criticality local phase algorithm

is not a favourable technique for the system partitioning problem. Although being indeed a

very fast approach, it is on average easily outperformed by direct neighbourhood searches,

when they are started from the same initial solution. However, the proposed modifications

attenuate its poor performance, so that at least the direct neighbourhood searches drop

behind. Of course, the run time of the GCLP is very low, for the graph size of |V| = 100 it

turns out to be already 50 times smaller than that of the best neighbour gradient search as

it is depicted in Figure 4.34. This fact discloses its application to large and very large graphs,

for which all other algorithms would need many hours to terminate successfully.

Fig. 4.34: Run time of all algorithms for different graph sizes for binary partitioning.

Comparably, simulated annealing yields a first significant performance gain, but it is accom-

panied by a large run time of about 300Mcycles for |V| = 100 in this scenario. Wiangtong’s

tabu search, improved by a more powerful scheduling, offers a run time of about a tenth

of SA, while it still exposes better quality results. The adjusted Kernighan-Lin is obviously

competitive with respect to solution quality, although concerning the run time it is far from

the extremely fast and efficient original approach.

Restricted range exhaustive search and genetic algorithm prove to be significantly better

than the aforementioned approaches. For small graphs, in which the windows length of

RRES covers a substantial part of the solution vector, it draws near the optimal solution. Its

performance drops back behind the genetic algorithm with the proposed chromosome coding

with a growing margin for larger graphs. The run time of RRES with 369Mcycles and GA

with 429Mcycles is recognisable but not significant.

4.3. Algorithms for System Partitioning 95

When the system graphs are untypical with respect to locality and sparsity, and the platform to

be partitioned for is of very heterogeneous nature with many different resources |R| ≥ 6, and

the objectives incorporate many combinatorial metrics, then the performance evaluation is

still inclined towards genetic algorithms. Although it is notable, that all algorithms seem to be

in reachable distance. For this test a platform with four DSPs and two FPGAs interconnected

by three system busses has been composed for a graph set containing general graphs without

distinct locality property (i.e. k = |V|), as explained in Section C.2. The average graph

parameters are: |V| = 100, ρ = 6.58, rloc = 5.21, γ = 5.66, γ̂ = 25.4. The optimisation has

been subject to the complete set of objectives, including code size and gate count constraints

for any resource, and a deadline until which the complete graph had to be executed. The

constraint set has been set to (CT, CC, CA) = (1
5 ,

1
5 ,

1
5), which is a rather loose constraint

set, since there are six resources present, and hence to every resource 1
6 of the vertices is

assigned. The dashed red line in the bar chart in Figure 4.35 indicates the averaged cost

Fig. 4.35: Quality of all algorithms for different graph sizes for a heterogeneous platform.

over all graphs computed over their respective minimum cost regardless by which of the

algorithms it has been returned. The chosen scenario entails that the graphs’ parallelism

can be easily matched to the strong parallelism of the platform. With respect to the cost

function, it is of importance that there are now six individual resource constraints and one

general execution time constraint. Hence we have seven additive terms in (3.10) of which

time contributes only a fraction of 1
7 , if the weight vector is balanced, w = (1, 1, 1, 1, 1, 1, 1)T .

Therefore, the structural advantages of RRES due to local optimality and of GA due to the

structural chromosome coding are of minor relevance, because 6
7 of the cost is influenced by

combinatorial objectives. For all algorithms the standard deviation of the obtained solutions

showed to be very low, being highest for the next neighbour gradient search.

96 4 Algorithms for Scheduling and Partitioning

The specific parameters of the algorithms for this experiments are:

• RRES: Window length W = 4.

• GA: Population size = 2|V|, med-ordered chromosome, binary tournament selection,

multi-point crossover recombination with |V|10 points, basic block mutation every fourth

individual (Pmut = 0.25), termination criterion after |V|/3 generations without im-

provement.

• TS: The tabu search did not work well for many parameter sets in which |SN,TS| ≤ 10,

with growing margin towards smaller tabu list length Ltabu. The best results have been

obtained for a large neighbourhood of |SN,TS| = 20, and a short tabu list of Ltabu = 3,

hence prohibiting 60 vertices to be moved while analysing 20 of the remaining vertices

per iteration. Region for intensification and diversification is sreg ≤ 66 = 46, 656
and covers 6 elements of x. The termination criterion is reached after 10|V| analysed

solutions without improvement

The mod subscripted bar indicates the TS with HLF scheduling, whereas the org

stands for the original version by Wiangtong [142].

• SA: Annealing factor ϑ = 0.95, temperature update after u = |V| iterations, termina-

tion after |V|/2 updates without improvement.

• KL: No parameters.

• GCLP: Not applicable to extended partitioning in its current form.

• NS: A next neighbour gradient search has been applied, which is indicated by single,

and the multi-start version with |V| consecutive runs is indicated by multi. In this set-

ting the best neighbour gradient search performed significantly worse than the random

and next neighbour gradient searches.

However, the GA turned out to be the best technique with the same parameter set as in the

previously described binary partitioning and proved to be robust against its own parameter

variation. The doubling of the population size simply lead to less generations and very much

the same averaged cost values. Basic block mutation showed a much better impact than

’bit flip’ mutation, but whether the mutated individuals per population covered 10%, 15%,

or 25% of the population does not seem to have a strong impact.

Simulated annealing and tabu search yielded basically the same performance with now a

similar run time. Simulated annealing revealed the same trait as GA regarding parameter

variation. If the temperature update u occurred after |V|, 2|V| or 4|V| affected the run time

4.4. Criticism 97

but not the average solution quality. Of course, for values lower than |V| the obtained results

started to degrade.

Higher effort had to be undertaken to tune the tabu search to this scenario. The proposed

values of Wiangtong for tabu degrees of Ltabu = 7..20, and |SN,TS| ≈
√
|V| turned out

to be not competitive. Recall, that the tabu region of the forbidden vertices per iteration

calculates to Ntabu = Ltabu|SN,TS|. For any combination Ltabu|SN,TS| ≤ |V|/3, i.e. a low

number of prohibited vertices per iteration, the results deteriorated quickly. The best results

have been found for Ltabu|SN,TS| ≈ |V|/2, with a comparably large |SN,TS| = 20 and a short

Ltabu = 3. This setting is rather opposite to that proposed by the original authors. Hence,

we conclude that the analysed neighbourhood per iteration is of major importance and has

to scale with its growing size.

In opposite to TS and GA, the Kernighan-Lin based approach does not require a tedious

parameter adjustment, which can turn out as very beneficial trait, when the designer varies

frequently the platform composition. Then, Kernighan-Lin is immediately ready to be ap-

plied, whereas tabu search and genetic algorithms undergo typically an adjustment of their

parameters. This advantage shares KL with RRES and the NS approaches.

The next neighbour gradient search performs surprisingly well, being even better than RRES,

with only a fraction of its run time. When the multi-start option is set to 100, the perfor-

mance does not further improve significantly. The run time of a single start is approximately

a 1
20 of that of GA, SA, and TS, and 1

50 of RRES.

Naturally, the window length of RRES had to be diminished to four to offer a manageable

run time, and its good exploitation of the structural local fit between architecture and graph

is obscured by the number of combinatorial objectives, that do not possess such a locality

trait. Even a gradient search that can repeatedly visit the same vertex over and over again

is hence more capable to cope with the given scenario.

4.4 Criticism

Although the degree of realism that the proposed framework with respect to architecture

detail offers is significantly higher than in any other framework that has been referred to,

a major drawback still exists. The question, how realistic the metrics and estimations for

timing, code size, gates, power, etc. of the individual processes are, is very hard to answer, and

research teams struggle hard to give a reliable feedback [61]. As an immediate consequence

even a thoroughly decomposed system graph and a true to detail architecture model, on which

this graph is partitioned and scheduled, can only be as good as the underlying estimations of

the graph components. Until now, the proposed framework does not accomplish any means

to include uncertainty parameters such as a reliability metric for any estimated value, let

98 4 Algorithms for Scheduling and Partitioning

alone a sophisticated calculus to combine these values to a confidence level of a returned

partitioning solution that scales comprehensibly with these individual reliability values.

Related to this rather general aspect, a concrete problem shall be highlighted. One of

the reasons for the focus being set rather on data driven signal processing systems, as the

receiver circuits of a UMTS baseband chip, and xDSL transceivers, etc. lies in the fact

of the unpredictability of control oriented code in terms of execution time. According to

the data being processed functional parts, whether they are compiled code on a DSP or a

custom data-path burned into silicon, could vary their behaviour to a large degree. Assume

for instance, WCDMA correlator banks instantaneously vary their filter length according to

the signal to noise ratio of the current communication link. Such a scenario inhibits the

assignment of a single execution time for the process carrying out the filter function, but

rather introduces an execution time profile for this functional part. Such a profile outlines all

possible values the execution time can adopt depending on the current control parameters

and the data being processed. Static code analysis yields typically feedback on the best and

worst execution times of such a function or code segment, and a partitioning and scheduling

approach may either work with average or conservatively with the worst case times. But the

larger the number of these control depending system components, the less the chance to

obtain a reasonable schedule and thus a good partitioning solution based on static values.

In the considered designs made available by our industrial partner, the most time critical

parts of these designs are in fact highly data-driven and the worst case is the usual real

scenario. Still, it is foreseeable that the complexity of electronic system design is ever-

increasing and approaches based on conservative estimates do very likely not tap the full

potential of embedded systems. The incorporation of reliability metrics and confidence levels

of the obtained solutions is hence a task for the near future.

Although all the features are present in the architecture and algorithm library to extend the

system partitioning to a completely automated design space and architecture exploration, this

step has not yet been accomplished and has thus not found its way into this thesis. Solutions,

at present encoded as a vector of implementation alternatives for a fixed set of resources,

could encode the current platform composition as well, for which then optimisation operators

had to be excogitated. Or in a different scenario, an outer algorithmic structure could be

applied to analyse the outcome of the inner partitioning framework for instance regarding

processor load, bus load, number of postponed processes and data transfers (arbitrated

collisions), power consumption and so forth, to modify the platform composition by removal

of a poorly utilised DSP or insertion of another communication channel. However, the

underpinning for these very interesting and promising approaches, in which not only the

mapping, but also the allocation can be automatically optimised within in a single algorithmic

procedure, has been successfully established.

5 CONCLUSIONS

”Ich bin voller Gedanken und äußere daher nicht immer den richtigen 1.”

Katz und Goldt

This thesis presents a system partitioning framework for embedded systems in wireless com-

munication incorporated into OTIE, the open tool integration environment. OTIE has been

developed in the Christian-Doppler Laboratory for Design Methodology of Signal Processing

Algorithms to overcome the obstacles in embedded system design caused by the fragmen-

tation of the design process and the multiplicity of inherent hard optimisation problems.

System partitioning for heterogeneous platforms is amongst the most challenging problems

in this field. This thesis establishes a detailed C++ library within OTIE to compose arbitrary

architecture models that allow for the exact representation of a wide range of heterogeneous

platforms being composed of manifold processing and communication resources. Based on

this fundament, a variety of existing and newly developed partitioning and scheduling algo-

rithms has been implemented in this library to provide a powerful means to map the given

functionality of an electronic system onto a dedicated platform subject to multiple competing

objectives. The unique contributions of this thesis can be summarised as follows:

• A major contribution that enabled the development of any partitioning algorithm is

constituted by the thorough and realistic modelling of architecture components as well

as the platforms being assembled by them. The huge majority of the partitioning en-

gines known from literature base their insights on very simple platform models and

highly unrealistic assumptions about the processing elements and intra-platform com-

munication, if considered at all. In this thesis the focus has been set on embedded

systems in the wireless domain, which is the embodiment of platform heterogeneity.

Arbitrary structures including DSPs, µPs, ASICs, FPGAs, and busses etc. are available

for the designer and can be composed as desired. Great care has been taken to model

static schedules and communication overhead precisely. According to the designer’s

needs all resources are parameterisable with respect to occupied chip area, base power

consumption, and latency, DSPs can scale their dynamic power consumption according

to their processor load etc.

1 I am filled with thoughts and do therefore not always express the right one.

100 5 Conclusions

• The analysis of system graphs typical for this design domain delivered valuable in-

sights to the structure of the targeted problem formulation. Based on these insights

and on the architectural backbone the biggest attainment has been made with the

implementation of several partitioning and scheduling algorithms. The multiplicity

of implemented techniques for partitioning include exhaustive searches, hill-climbing

neighbourhood searches, simulated annealing, the global criticality/local phase algo-

rithm, tabu searches, genetic algorithms, and the restricted range exhaustive search

algorithm. The scheduling problem has been tackled to a minor degree with Hu’s dy-

namic highest level first, with Hwang’s dynamic earliest task first, and a scheduling

guided by the local exploitation of parallelism. The following list highlights briefly the

achievements for any algorithm individually.

– The system partitioning formulation embeds a multi-processor scheduling problem

at its very core. The focus has been set on very fast list scheduling techniques,

namely HLF and ETF. The analysis of the graph and architecture properties

revealed potential for a better exploitation of the parallelism present in both. A

new scheduling algorithm has been developed that shows superior performance

in terms of returned schedule length that scales with the parallelism factor in the

graphs. This performance gain of up to 6% is paid by the introduction of an

admissible run time overhead of about 30%.

– Besides exhaustive search for small problem sizes, three hill-climbing algorithms

with a multi-start option have been implemented in order to assess the struc-

ture of the search space and to obtain first benchmarks for more sophisticated

optimisation techniques. A simulated annealing strategy constituted the natural

extension of these direct neighbourhood search algorithms. It has been chosen to

serve as more competitive benchmark provider, since one of its first deployments

was the classical graph bipartitioning.

– Another technique has been developed, which is based on the Kernighan-Lin min-

cut algorithm for graph bipartitioning. Being in its classical form well-known

as extremely fast approach, the precise computation of the objective functions

disables this property. Still, it was demonstrated that its control structure is ap-

plicable and shows a competitive performance compared with simulated annealing

and tabu search, with a similar run time. The biggest advantage is the absence

of any complicated operator, which demands for a tedious adjustment before the

partitioning can start.

– The penalty reward tabu search based on Wiangtong’s work has also been chosen

as competitive candidate for this optimisation problem. Its original scheduling

technique turned out to be inferior and had to be replaced by one of the three

101

techniques described before. The replacement yielded a performance boost of up

a 10% reduction in cost, when the system’s execution time was the only objective,

and still up to 4%, when multiple objectives were considered.

– The well reputed global criticality local phase (GCLP) algorithm has been added

for the solution of the binary HW/SW partitioning problem. It has been thor-

oughly analysed and several modifications to increase its performance have been

introduced. Depending on the problem instances and the designer’s intentions,

two versions of GCLP advancements have been presented, either of which yielding

significantly better results than the original algorithm with the focus set on dif-

ferent objectives. The first modification set yielded up to 25% run time reduction

with negligible impact on the number of returned valid results. The second applied

modification set improved both the solution quality and the validity percentage

between 2% and 5%.

– The classical three-operator genetic algorithm has been implemented and thor-

oughly analysed in application to the system partitioning problem. The significant

relevance of the underlying genome coding for typical problem formulations was

demonstrated, which has been completely neglected in a large number of publica-

tions in this field. Hence, the standard GA implementations performed mislead-

ingly worse than for example dedicated tabu search implementations. Proposals

for a better exploitation of the GA’s potential with respect to genome coding and

mutation were made without imposing additional complexity. In extensive test

runs the superior performance of the proposed problem-oriented GA in compari-

son with the most common GA version and the other heuristic methods has been

revealed.

– Eventually, an entirely new heuristic for the HW/SW partitioning problem has

been introduced. A thorough analysis of its behaviour related to graph proper-

ties locality and parallelism revealed a strong performance for a distinct subset

of system graphs that are typical in the field of embedded system design. For

this subset and the mapping problem with a limited number of implementation

alternatives per process, the proposed RRES algorithm even outperforms more

sophisticated techniques like genetic algorithms and tabu search. Its dependency

on the locality property of the system graph and the parallelism present in the

architecture graph has been outlined.

A number of interesting topics for the future based on the framework accomplished in this

thesis can be identified.

102 5 Conclusions

With respect to very recent developments in the graph representations dedicated to the sig-

nal processing domain of embedded systems, namely the parameterisable cyclo-static SDF

graphs proposed by Saha [124], it has to be awaited whether these will be adopted by the

electronic system design community and perhaps become integral part of commercial EDA

tools. Since they offer dynamic and run time reconfigurable data rates, they seem to be

appropriate to represent the increasing complexity of modern signal processing systems. But

to what extent a reliable scheduling and partitioning engine based on a detailed platform

model can be developed for such graph representations has to answered in the future.

As already stated at the end of the last chapter, the consideration of the uncertainties im-

ported by the estimated characteristics of the design and its graph-like representation is

certainly of significant relevance. Concretely, it shall be possible to provide a reliability met-

ric and/or a possible variance for any estimated value in the partitioning scenario. Another

aspect in this context is the scalability of some code segments especially with respect to

hardware implementations. Whenever a code segment with loops offers adjustment of the

unrolling factor, then any integral division of the loop count into parallel paths is theoretically

possible. Hence, the trade-off between execution time and occupied gates is rather a func-

tion, than a fixed set of value pairs. How these degrees of freedom can be incorporated into

the model of computation for any design space exploration framework in a tractable manner

is yet unsolved.

The most pressing extension constitutes the deployment of an automated platform optimi-

sation. In the framework as it is, a designer can already assemble arbitrary heterogeneous

architectures, a feature entirely absent in any other partitioning engine, and then analyse

how a system’s functionality expresses itself on this platform. However, there is still a man-

ual step involved: the assembly of the next architecture, in case the last attempt turned

out to be unfavourable. The development of a regulation and control apparatus, in which

the architectural degrees of freedom can be assigned a-priori, and the implementation of an

optimisation engine that gears the outcomes of the partitioning and scheduling algorithms

towards a more favourable platform, embodies the vision of a completely automated design

space exploration on system level.

APPENDICES

A. THE OPEN TOOL INTEGRATION

ENVIRONMENT

To obtain a good impression of the bigger context, in which the contributions of this work

are residing, it can be of interest to survey the related research of this Christian-Doppler

Laboratory.

Hardware/software systems is the common term generally used to identify the heterogene-

ity of aforementioned electronic designs [31]. Basically, it refers to systems composed of

programmable devices as general-purpose or digital signal processors (software part) and

dedicated custom data paths (hardware part). Hardware performs a specific function, usually

with a much higher throughput, but is expensive and inflexible, whereas software features low

development efforts, is easily adjustable, but is rather slow and often much power consum-

ing. The term hardware/software codesign has been introduced by Franke and Purvis [43]

as ”the system design process that combines the hardware and software perspectives from

the earliest stages to exploit design flexibility and efficient allocation of function”. Wolf em-

phasised early that ”the hardware and software must be designed together to make sure that

the implementation not only functions properly but also meets performance, cost, and reli-

ability goals” [144]. The following paragraph indicates that the phrase ”..must be designed

together..” is persistently hard to achieve.

In Figure A.1 a rough breakdown of the design process for hardware/software systems is

depicted to illustrate the aforementioned fragmentation. Due to the large scope and the

extremely heterogeneous nature of modern wireless communication devices, their develop-

ment suffers from many incompatible system descriptions. On its way to the final product

the design meanders towards completion passing very dissimilar development stages. At the

very beginning the research team excogitates new algorithms and applications, that are de-

scribed and tested in high level languages as C/C++, UML, or Matlab. The system design

team elaborates on the platform structure and IP selection. In this stage a conglomerate

of tool suites, languages, and standards has to be considered: instruction set simulators

(ISS) for microprocessors (µPs), bus and bridge models, memory models, power simulators,

106 A The Open Tool Integration Environment

etc. Herein, a besetting variety of dedicated tools ensures a variety of experts. The last

Fig. A.1: The meandering of the electronic design process.

stages are embraced by the implementation team undertaking the actual programming, i.e.

rewriting parts of the system’s functionality in VHDL or Verilog for application specific inte-

grated circuits (ASICs) or custom data paths on an field programmable gate array (FPGA).

VHDL code is then synthesised to register transfer level (RTL) followed by a place and route

process. Other parts are transformed and assembled onto µPs, as DSPs or RISCs (reduced

instruction set computer). Platform drivers and register tables have to be developed. Due to

the heterogeneity, real time operating systems (RTOS) have often to be programmed from

scratch. Eventually, the assembled product may deviate from the original target and a fourth

team has to step in to explain that it essentially does not so.

Apparently, system descriptions are herein constantly rewritten by corresponding experts and

are converted into other, locally more suitable, forms. The outcome are serious communica-

tion obstacles between design teams in backward and forward direction leading to a dramatic

increase of verification effort of up to 70% of the overall development time [10, 59].

The initial framework concept to tackle the flaws in current system design manifests in the

establishment of the Open Tool Integration Environment (OTIE) [13, 16]. Therein, a flex-

ible, scalable, robust, and secure implementation of OTIE is presented, based on a design

database (MySQL [112], CVS [41]), providing a single, central repository for all refinement

information in the design process. Instead of non-realistically aiming at the development

of a complete stand-alone signal processing work suite and thus competing with large-scale

companies like Synopsys, CoWare, Mentor Graphics, and The MathWorks, this framework in-

107

terfaces the popular existing EDA tools on the market, connects their domains with powerful

tools targeting the missing design tasks, and additionally opens paths to mutual interconnec-

tions. In Figure A.2 this concept is illustrated. The pictograph in the centre represents the

Fig. A.2: The concept of the Open Tool Integration Environment (OTIE).

design database that captures the information of the complete design process. On the left

side existing tools/languages, COSSAP and SystemC [116], are depicted, which have already

been interfaced [83, Knerr et al.], [14] (COSSAP has been replaced by Synopsys System

Studio [133], which is also not longer available). On the right side two of the missing or

insufficiently covered design tasks are depicted.

The most fundamental ingredient for a consistent design methodology establishes a Single

System Description (SSD). An elaborated solution of an SSD is the implementation in the

form of a MySQL [112] based design database. A database representation is not bound to

specific language constraints and thus offers great flexibility in capturing the miscellaneous

aspects of a design. Additional advantages of the database approach are fast access, data

security by the capability to grant permissions to the developers, a high popularity as well

as compatibility with major Data Base Management Systems (DBMS) from Microsoft, IBM,

and Oracle.

In our framework OTIE, these obligations are illustrated by Figure A.2. It depicts the database

and concurrent version system (CVS) surrounded by the required tools each with dedicated

interfaces to incorporate the various existing EDA tools and languages, while being open for

incorporation of tools for missing design tasks. During the design flow various design teams

provide inputs, such as desired system behaviour and structure, constraints, tool options etc.

Also, the designers receive outputs, like status of the system description, results of simula-

108 A The Open Tool Integration Environment

tions, estimates of hardware cost, timing and so on. Typically, the outputs of the database

are handed to the tools, which present them in form of their graphical user interfaces (GUI)

to the designer. Some of the tools supported by OTIE are commercially available, favoured

by the various design teams, while others are specially written to perform missing tasks,

usually performed manually by designers in the past. As long as some design steps are not

covered by available tools, for example HW/SW partitioning, a database modification tool

is available, simply allowing the designer to enter manually derived values. The database

is thus enriched and the system description is refined on its way to implementation. Note,

that the database system does not require a specific order of which various tools need to be

performed. For example, some designers prefer to perform floating-point to fixed-point con-

version after the HW/SW partitioning, while others apply it first. As long as the succeeding

tool is provided with sufficient information, it can be started. Such an open environment has

not only the advantage that new commercial tools can be incorporated, but it also provides

a realistic platform to investigate the performance of new research tools. A possible design

flow sequence for example would be loading a SystemC description into the database. Fur-

thermore, design/analysis and estimation would be performed, which enriches the content

of the database with the results of the characterisation process. Finally, system partitioning

may be performed, which exploits the properties of the system analysis.

At the moment several design tools have been developed, that are integrated within this

design environment: automatic partitioning of the system into HW/SW parts [86, Knerr et

al.], automatic generation of virtual prototypes [83, Knerr et al.], an environment called fixify

is available for performing the task of fixed-point to floating-point optimisations [17], and

several design space exploration tools [62, 64, 66].

B. TYPICAL EXAMPLES OF ARCHITECTURAL

COMPONENTS

Throughout the thesis, architectural components are referred to, such DSPs, FPGAs, ASICs,

etc. This chapter sheds some light on their specifics, in case the reader is not familiar with

their architectural implications.

B.1 General-Purpose Processors

Although GPPs are not considered as viable choice in embedded systems a short description

is given to round up the picture. These processor types are all-rounders on which nearly any

application can be executed with a medium performance instead of being optimal for just

a single one. Workstations, PCs, servers, etc. are typical candidates for a deployment of

these processors. The steep requirements on flexibility and processing speed necessitate very

complex circuit structures with (super-)pipelining, branch prediction, hierarchical caching

structures, and superscalar scheduling by prefetching instructions. The execution time of

a characteristic code block varies therefore, as it is dependent on a number of dynamic

effects. For real time systems with strict deadlines on certain parts of the functionality,

these processors are normally inappropriate. Another obstacle for the deployment of GPPs

in embedded systems is the large power consumption and the tedious and time-consuming

interface design for I/O and memory access due to the aforementioned circuit complexity.

B.2 Digital Signal Processors

DSPs are processors dedicated to a specific application domain of digital signal processing,

e.g. mobile communication, image processing, audio/video applications. With respect to

the general instruction set, they offer very much the same possibilities as general-purpose

processors but with less facets and simpler circuitry. Their big advantage consists in additional

instructions for which its circuitry is optimised. Relevant traits for DSPs are amongst:

110 B Typical Examples of Architectural Components

• Combined multiply-accumulate (MAC) operations.

In a single instruction cycle a multiply operation of two operands is interlinked with

a subsequent accumulation of the result. This instruction has a direct realisation in

hardware circuitry in a DSP for floating-point or fixed point number formats.

• High jump predictability and zero-overhead loops.

A humble level of code branching and fixed loop count variable is exploited by special

registers, in which start and end address and the loop counter is stored. Every iteration

through the loop body triggers the counter’s increment or decrement and the subse-

quent comparison with the end condition, thus not imposing any overhead due to loop

controlling.

• Specialised addressing techniques.

DSPs provide address generators that are capable to increment or decrement the ad-

dress pointer by a programmable step width in parallel to the actual instruction pro-

cessing. Two relevant applications are the circular address scheme, which facilitates

filter implementations and bit-reverse address schemes for e.g. Walsh-Hadamard or

Fast Fourier Transforms.

Many embedded systems comprise DSPs with fixed-point numeric formats, since a fixed-

point arithmetic logic unit (ALU) is much faster than a floating-point ALU given the same

chip area. However, the transition towards fixed-point formats additionally complicates the

design due to quantisation noise, rounding and overflow errors.

Nowadays, C-compilers exist for most of the DSPs on the market, but crucial functions may

still be designed in assembler to ensure a better exploitation of the specific architectural

features of the DSP. For many applications, as e.g. in the image processing domain, time

critical code parts that have been manually optimised in assembler can be embedded into C

routines.

The digital signal processing domain gained significant attention due to the revolution in

mobile communications. Therefore, a large variety of different DSP cores emerged with

manyfold innovative architectures [47]: for instance multiple DSP platforms, very large in-

struction word (VLIW) DSPs, and desktop DSPs.

The multi-DSP strategy earns special attention, since it is conceptualised for the multitude

of present standards and protocols in the embedded system domain. For instance, the mean-

while common combination of multimedia applications, comprising huge amounts of data

and complex algorithms, merged with parallel signal processing for mixed UMTS, GSM, and

Bluetooth standards easily overstrains the capability of a single DSP. Examples for DSP struc-

tures that enable immediate bidirectional communication to other DSPs have been released

ten years ago, thus bypassing the need for external buffers or additional synchronisation,

B.3. Microcontrollers 111

e.g. ADSP21060 from Analog Devices or TMS320C40 from Texas Instruments. These DSPs

prepared the ground for more flexible systems for specific purposes.

B.3 Microcontrollers

As the name suggests a microcontroller (µC) is dedicated to control flow dominated appli-

cations like protocols that are characterised by a large number of branches, internal states,

and boolean logic operations. The data throughput as well as the arithmetic operations do

Fig. B.1: Block diagram of a state-of-the-art NXP 80C51 microcontroller [115].

not play a major role. Typically, µCs are used for interrupt handling and support a very fast

context switching often seen in protocol state machines. In other words, the current program

context is realised completely in the RAM, so that in the case of an interrupt the program

address pointer is simply set to a new address.

A classical example is the micro controller 80C51, optimised for very small code size, in

Figure B.1. Although, this design has been superseded by more innovative versions from all

big manufacturers like Texas Instruments, NXP, Maxim IC, or Intel, their characteristic traits

remained widely identical. The main part of its chip area is reserved for memory blocks. It

provides many units integrated in one chip: CPU, RAM, ROM, serial ports, analog-digital

112 B Typical Examples of Architectural Components

converters, timers, etc. The word width is 8bit and it offers several power saving modes and

two level interrupt priorities.

B.4 Application Specific Instruction Set Processors

These µPs are even more customised to their specific application domain than DSPs and

micro controllers. The key idea is the application-directed generation of a programmable

device, whose instruction set and data word widths have undergone a fierce optimisation

towards its purpose. As indicated in Figure 2.2, ASIPs occupy the location with the least

flexibility and the highest performance in the software domain.

Since ASIPs are by definition application specific, it is difficult to classify them by their com-

monalities. Usually their instruction set includes operator concatenation as MAC operations,

or vector arithmetics. Similar to their larger siblings, the DSPs, their circuitry exploits par-

allelism of address calculation and data operations. On the contrary, ASIPs usually dispense

complicated caching schemes and reduce the pin number as far as possible to enable smaller

chip sizes. In Figure B.2 a small ASIP is depicted with a classical Harvard architecture, i.e.

Fig. B.2: ASIP with Harvard architecture.

separated data and instruction storage to enable parallel access to both (in contrast to a

von Neumann architecture). This ASIP features a multiply-accumulate circuitry and a single

ALU and is designed to process any instruction within a single cycle.

The development of optimising compilers, debuggers, and linkers for ASIPs has long been

subject to intense research. In recent years, a design group from RWTH Aachen developed a

mature tool suite for ASIP design called LISA [60,146], which is now commercially available

in the portefeuille of CoWare [30].

B.5. Field Programmable Gate Arrays 113

B.5 Field Programmable Gate Arrays

Field programmable gate arrays belong in our notion to the hardware domain, although be-

ing programmable as the name suggests. A regular arrangement of configurable logic blocks

(CLB) is programmable by adjusting the interconnects between them in order to duplicate

basic logic gates as AND, OR, XOR, memory or more complex combinatorial functions.

The CLBs contain look-up tables, multiplexers, and flip-flops, whose structure usually differs

Fig. B.3: Structure of an FPGA.

widely to offer high flexibility on a single FPGA. The interconnection network occupies the

major portion of the chip area of up to 90%. I/O blocks surround the CLB grid.

The FPGA programming is undertaken by the system designer in the field, thus the name.

It is in general distinguished between one time only programming of FPGAs with anti-fuse

switches and reconfigurable programming of FPGAs with SRAM switches. In the first case

the interconnects and configuration of the multiplexers are burned onto the die to establish

a connection (thus anti-fuse). Eventually, these FPGAs resemble ASICs, as their behaviour

is permanently determined. The configuration of SRAM based FPGAs is accomplished by

setting variables in the SRAM units that determine the interconnects and multiplexers. In

modern FPGAs at every power up of the FPGA the configuration is loaded from an EEP-

ROM.

The development of FPGA circuitry resembles very much the development of ASICs. Classical

hardware design tools are utilised to develop schematics and netlists of integrated circuit ele-

114 B Typical Examples of Architectural Components

ments (gates, flip-flops). The FPGA vendor usually offers integrated tools for the schematics,

which automatically transpose the netlist into the configuration data and eventually config-

ures the FPGA.

Rapid prototyping is popular deployment of FPGAs. Since verification of integrated circuits

via simulation on a PC or a work station is normally a very slow process, FPGAs offer the

possibility to emulate the designed circuitry in a very fast manner. In embedded systems

SRAM based FPGAs found strong usage in the end product as they offer a much higher

throughput than microprocessors and are reconfigurable in the field. Base stations for mo-

bile communications are popular examples, as communication standards and protocols are

constantly rewritten and new versions pop up nearly once a year. Additionally, the signalling

of these protocols requires computationally intensive processing.

B.6 Application Specific Integrated Circuits

Application specific integrated circuits have been the answer to any application that de-

manded either high performance computation and vast throughput and/or that is sold in

large quantities. ASICs are completely customised to a single product and are sold by the

manufacturer normally only to the ordering customer. Digital ASICs integrate a large number

of logical and arithmetical functions, which are permanently burned on a single die. ASICs

outperform any other architectural component with respect to latency, throughput, power

consumption and chip size. Naturally, such a functional component can never be used for

anything else. In mobile communications ASICs adopt typically the most computation inten-

sive functions like Viterbi or turbo codecs.

Figure B.4 shows the top level schematic of a rather small ASIC for Viterbi decoding with

about two thousand gates. The interconnects and word widths are fixed as well as the inter-

nals of the eight computation blocks. The lower left part contains the traceback, the path

metric unit, and the add-compare-select (ACS) circuitry and the lower right block contains

the branch metric unit with the squarer-adder circuitry. The interconnect of this circuitry is

depicted to illustrate the rather simple IC composition strictly geared towards a fast streamed

computation within a single cycle.

B.7 Communication Infrastructure

The interconnection of heterogeneous structures assembled by a selection of the aforemen-

tioned processing elements is likely to be similarly multi-faceted. A brief overview shall

illuminate the most common types:

B.7. Communication Infrastructure 115

Fig. B.4: Core logic of an Viterbi decoder ASIC [128].

1.) The simplest connection to transfer data is performed over a signal wire on gate level,

herein referred to as direct link. Candidates are the data heavy connections with a high

throughput (≈ Gbytes/s) and low latency between the antenna subsystem and the first digi-

tal signal processing units, typically implemented as hardware devices such as ASIC or FPGA.

The synchronisation between transmitter and receiver is not managed and has to be precon-

ceived in the unit design, but the area and control logic overhead is naturally minimal.

2.) A FIFO based interconnection permits to push bits into a memory structure that are not

immediately processed by the receiving device but stored for a later time instant. Additional

silicon area is required for the memory according to the FIFO depth and for the glue logic to

control (non-)blocking read/write accesses. FIFOs are very versatile to connect hardware as

well as software devices due to relative small overhead and fast access times (≈ Mbytes/s).

3.) On-chip point-to-point (PTP) connections superpose another layer of complexity as a

protocol manages the handshake between the communicating resources including message

framing, control flags, data bits, and often error correction. PTP is considered to connect

ports of DSPs, µCs and rarely for FPGAs, but usually not for ASIC blocks.

When the number of ports of one or several processing elements is limited, or the number of

direct or FIFO interconnections causes a dramatic increase in chip area, bus based solutions

116 B Typical Examples of Architectural Components

come into play to integrate non-critical communication links. A bus structure collects several

data connections on the same bundle of wires, dispatches the messages from transmitter to

receiver and arbitrates collisions when two or more resources start transmitting simultaneously.

A popular bus structure in embedded systems is the Controller Area Network (CAN) [73]

for noisy industrial environments. The introduced control overhead increases due to logic

for bus arbitration, scheduling, message acknowledgement and error recovery. Transmitted

messages have to contain information concerning their priority, destination, current size and

cyclic redundancy check code. A typical throughput for a CAN bus 2.0 lies in the range of

up to 1Mbit/s. Another popular on-chip bus architecture is the Advanced Microcontroller

Bus Architecture (AMBA) from ARM Techn. [6] that offers a multitude of versions varying

in throughput, bandwidth, gate count and power consumption.

B.8 Academic and Commercial Co-Design Frameworks

At the beginning of the co-design process, a design language is generally used to embody

the semantics of a system prior to mapping it onto an architecture. The design language

must provide a way of describing the behaviour of the components in the system irrespective

of whether they will be mapped to software or hardware. It should support structure and

hierarchy, and should include the ability to incorporate the description of design constraints

such as dependency, timing, concurrency, and task scheduling between hardware and software.

Different design frameworks use different system design languages.

B.8.1 Design Languages

At the highest abstraction level, languages like the Unified Modelling Language (UML, www.

uml.org) and the Specification and Description Language (SDL, www.sdl-forum.org) are

available, providing modelling support for nearly any application type, from pure software

engineering to microelectronics. Traditionally, systems are not formally modelled at these

high levels, but the modelling starts when all the parts of the system and their interactions

have already been explored analytically to some extent. Hence, the C and/or C++ languages

have a more established base in algorithmic modelling, starting at a slightly lower level of

abstraction. It is interesting to note that the C/C++ languages are used in two parts of

the design process. At the algorithmic level, they are used to model the behaviour of the

system, i.e. the algorithm itself. At the timed functional level, C/C++ is widely used for

implementation of the software components of the embedded system, usually running on a

standard processor.

www.uml.org
www.uml.org
www.sdl-forum.org

B.8. Academic and Commercial Co-Design Frameworks 117

SystemVerilog [134] is an extension to the Verilog HDL, enhancing the abilities of the core

language into higher abstraction levels. For instance, typical concepts from object oriented

programming have been adopted. Unlike Verilog, SystemVerilog possesses constructs for

unions, structures, classes, inheritance, dynamic arrays, sophisticated loop control, and new/-

custom data types. With these enrichments, the aim of SystemVerilog is to help designers

describing the relatively abstract architectural structure through conceptual interfaces, rather

than describing concrete, implementable functions connected through registers and imple-

mentable data types. This enables the designer to refine the abstract model down to the

customary register transfer level design without having to migrate languages.

SystemC [116] is based directly on the C/C++ languages and hence inherits their strengths

both at the algorithmic and implementation levels, while attempting to create new support

(which was so far missing) at the architectural level. The SystemC language was divided

from its conception into three parts: SystemC 1.x for modelling at the implementation level,

SystemC 2.x for architectural modelling, and SystemC 3.x, for system level modelling. The

latest available version of SystemC is version 2.2, released in April 2007. The underlying C++

library supports hardware related concepts as concurrently running processes, a sophisticated

timing, and communication channels like FIFOs, buses, memory models, etc.

SpecC [138] is an alternative approach to describe structures on system level. It is basically an

ANSI-C extension, enriched with the same concepts for concurrency, hierarchy, communica-

tion and timed behaviour. Similar levels as in SystemC are covered, like untimed functional,

architectural, transaction, and register transfer level.

Esterel [18], SDL, and SpecCharts [113] are real-time capable languages that are based upon

a model for conditional event-based state transitions. Hence, it is often the method of choice

to represent control dominated system components. The realisation of algorithmic structures

is usually performed via encapsulated C/C++ constructs that are embedded in the distinct

states.

Handel-C [24] is a programming language also based on ANSI-C. A large number of the

types, operators and statements in ANSI-C are also available in Handel-C. However, it is a

programming language that offers concurrency in the system abstraction and that can be

used to compile directly to configurable hardware - e.g. FPGAs - by creating the information

needed by FPGA implementation tools. For this purpose it contains additional statements

and expressions handling e.g. synchronisation, timed computation, bit pattern formats, de-

terministic parallelism of operations, timed signals and channels, multiple clock domains, and

memory units (RAM, ROM).

A variety of other languages are available at the implementation level, each associated with a

particular implementation option. Assembler should be added as it has still not gone extinct

118 B Typical Examples of Architectural Components

in embedded system design. It should however be noted that the abstraction level offered in

assembler is very low, and hence any large parts of code (such as entire applications) are not

modelled well in this language. Nevertheless, the precise control, which this low abstraction

level brings, affords the designers the opportunity to write small, hardware-close pieces of

software (such as device drivers) which are nearly optimal.

B.8.2 Co-design Frameworks

A number of academic design environments emerged over the years in the field of embedded

systems. Early mentionable approaches originating from academia are POLIS, VULCAN,

COSYMA, Ptolemy, CASTLE and Chinook.

The CASTLE environment [143] is basically a comfortable profiling tool to support the

designer’s decision regarding the system structure. CASTLE yields feedback on execution

time spent in specific functions, operations, and memory accesses. The designer iteratively

alters the system structure towards the desired behaviour, hence not being released from the

optimisation process.

Chinook [27] is a hardware/software co-synthesis tool for control dominated, reactive systems

under timing constraints. Chinook focuses on the synthesis of the communication infrastruc-

ture. Allocation and partitioning is supposed to be performed by the designer at system level,

and Chinook transforms the source code to a lower level, namely register transfer level.

COSYMA [39] is a co-design system that is targeted to systems based around a standard

RISC processor core. Initially, the design, described in Cx, a C derivative featuring the con-

cept of concurrency, is considered to be mapped completely to the RISC. Iteratively, time

critical function blocks are retargeted to dedicated hardware blocks that act as coprocessors

for which the HDL code is automatically generated. Vice versa, the VULCAN co-design sys-

tem [51] starts from a virtual hardware setup captured in HardwareC. Silicon area is reduced

by moving non-critical parts to a software implementation.

Esterel is the design language accommodated in the POLIS environment [12]. Designers

are guided by feedback mechanisms provided by POLIS to partition the functional units in

hardware and software parts. As the designer’s interaction is required for any decision, this

process is unviable for large designs. Moreover, the POLIS design flow is not unified in a

sense that it requires mechanisms located in other environments, e.g. adopting Ptolemy

features.

A first version of Ptolemy has been published in the late eighties [98], called Ptolemy classic,

which has been replaced by Ptolemy II later on. Ptolemy classic has been designed in C++ to

B.8. Academic and Commercial Co-Design Frameworks 119

support a variety of models of computation for heterogeneous designs, such as synchronous

data flow (SDF), process networks (PN), and discrete events (DE). Ptolemy II supports even

more models of computation and is Java-based to exploit remote control and concurrent

processing on several platforms.

Not all the features offered by academic approaches found their way into the commercial

world. The following approaches survey those that are most commonly used by the industry.

The Matlab Simulink environment of The MathWorks [137] can be used for functional spe-

cification and algorithmic analysis in the co-design flow as well as for hardware synthesis via

the HDL Coder toolbox. For the first aspect, a library of Simulink blocks accompanied by a

corresponding analysis toolbox is used to evaluate parameter choices. The library components

are parameterised to provide a high flexibility and comfortable implementation. Automatic

partitioning routines do not yet exist. Software tasks are transferred to the The MathWorks

Real Time Workshop to generate C codes, while the hardware tasks are processed by the

HDL Coder’s Module Generator to generate VHDL netlists.

Synopsys is one of the major EDA tool vendors offering automated support for many parts

of the design process. Synopsys developed a commercial environment for tool integration,

the Galaxy Design Platform [132], which is based on a single description of the system,

implemented as a database. It eliminates the need for rewriting system descriptions at

various stages of the design process, covers both the design and the verification processes

and is capable of integrating a wide range of Synopsys commercial EDA tools. An added

bonus of this approach is the open nature of the interface format to the database, allowing

third-party EDA tools to be integrated into the tool chain, if these adhere to the interface

standard. A serious limitation of this approach is the lack of support for any other part of

the design process than the implementation level, and only for hardware components.

The Virtual Component Co-design (VCC) from Cadence [23] is a design framework built

around POLIS to enable the simultaneous development of hardware and software modules

as well as the integration of IP. An abstract infrastructure is provided that allows for the

integration of system parts modelled in different design languages like C/C++, SDL, Matlab

m-files, etc. by encapsulating those in virtual components. The communication interfaces

between these components are automatically generated thus facilitating the design space

exploration. However, all decisions with respect to the platform infrastructure have to be

performed manually. Another restriction is the lack of static code analysis and profiling

features within this environment.

CoWare is another major player in the EDA tool market. In the late nineties the tool suite

Napkin-to-Chip (N2C) emerged as first release dedicated to hardware/software co-design. In

close collaboration with ARM a framework was assembled that focused on the assembly of

120 B Typical Examples of Architectural Components

bus (AMBA) and memory structures for heterogeneous systems and data transfer analysis.

In 2003 the N2C’s successor ConvergenSC has been released in which also instruction set

simulators for the ARM 7 and ARM 9 core families were incorporated. Still this release

focused on the assembly of the platform infrastructure and did not support the design of the

functional parts themselves. After CoWare acquired the Signal Processing Worksuite (SPW)

from Cadence and LISA [60] from LisaTek in 2004 another tool suite has been released, the

CoWare System Designer. In principle, the CoWare portefeuille now covers a huge range of

abstraction levels in the design process. However, the seamless integration of these manifold

concepts that originate from completely separated design frameworks into a mature tool

has still not be accomplished. For instance the transition from algorithmic level (SPW) to

architecture level (ConvergenSC) is still weakly automated and introduces significant coding

overhead for the designer.

C GRAPHS IN EMBEDDED SYSTEM DESIGN

This chapter provides information necessary to reproduce and verify the algorithms on a

similar graph set. In the first section a few real examples of task graphs in embedded

systems are given to underpin the considerations about the typical properties found in this

field. The following section describes the graph generation method.

Fig. C.1: Part of the signal processing for an UMTS receiver.

C.1 Typical Graph Structures in Embedded Systems

In this section a few graph examples are given to illustrate that system graphs that are typical

for human made graphs in embedded systems can be isolated by distinct properties described

in Section 4.1.

The first example is a part of the digital signal processing of a UMTS baseband receiver chip

122 C Graphs in Embedded System Design

after the analogue to digital converter. The data flow of the most computation intensive

parts is depicted including the cell searcher with primary (PSCH) and secondary synchroni-

sation channel (SSCH), the delay profile estimator, the rake receiver, demodulator and the

two deinterleaver stages, followed by the decoder. The Viterbi and turbo decoder are not

presented in detail due to limited space. Although, some parts could not be clearly outlined,

like the 16 matched filters for SSCH module, and the complete array of fingers of the rake re-

ceiver, it becomes obvious how digital signal processing systems express themselves as graphs

with distinct properties when assembled by human designers. The graph properties of this

example are: |V| = 127, |E| = 226, ρ = 1.78, rloc = 1.23, γ = 5.77, γ̂ = 16.2.

Relevant figures were obtained for this design to enrich parts of the system graph for gate

count and code size. These values and their respective ranges in industrial deployment are

important for the generation of realistic system graphs in the next section. A typical value

set for the Viterbi block implemented as ASIP clocked with 100MHz is 26.5kgates in NAND2

equivalents, a code size of 2.6kbytes of optimised code for this ASIP, and a core power dis-

sipation of 48mW. For instance the first two matched filters in the cell searcher are both 16
tap accumulators of 16bit values accompanied by 256× os registers of length 32bit, with os

being the oversampling factor (os = 2..8). The latter 16 matched filters in the cell searcher

correlate for the group code on a half-chip basis. Table C.1 and C.2 list some more values

for the Cell Searcher and the Delay Profile Estimator sub modules. Note, that the huge cycle

counts results, as they are measured per frame, which equals = 15 slots, with 2560 I,Q pairs

(chips) per slot.

Cell Searcher gcop gcreg gc etHW etSW

2 MF 9,850 6,895 16,742 100k 146k
Energy Accumulate 2,761 924 3,685 14,752 24,970

Peak Detection 659 352 1,011 5,637 12,044
16 MF 24,855 17,398 42,253 252k 353k

Group Code 377 263 640 3,854 4,817

Tab. C.1: Some characteristic values for the Cell Searcher.

Delay Profile Estimator gcop gcreg gc etHW etSW

16 Searcher 5872 4112 9984 58,816 77,648
Path Select 266 156 523 2,675 3,852
TCU 98 67 166 529 677

Tab. C.2: Some characteristic values for the Delay Profile Estimator.

C.1. Typical Graph Structures in Embedded Systems 123

F
ig

.
C

.2
:

P
ar

t
of

a
d

at
a

fl
ow

gr
ap

h
of

an
xD

S
L

M
o

d
em

.

124 C Graphs in Embedded System Design

The second example is a cut out of the data flow diagram of the digital signal processing

part of an industry designed xDSL (symmetric and asymmetric DSL) transceiver [72]. This

modem handles the high speed wide band transmission utilising the classical two-wire copper

connection of the telephone network. Symmetric DSL exploits the complete frequency band

for DSL transmission, hindering any classical analogue utilisation, whereas asymmetric DSL

allows for combined classical telecommunication and digital high speed transmission. Such a

modem that has to be installed with the customer is a typical example for an embedded system

of a small form factor. In Figure C.2 the TX and RX path are depicted. To the left side the

front-end to the network has to be imagined, and to the right the DSL protocol processing,

depackaging and packet interpretation, has to be assumed. Nearly half of the depicted

vertices represent either finite impulse response (FIR) filters and Wigner distribution function

(WDF) filters. The remaining vertices represent of gain control, thresholds, decimators, hold-

and-sample, and so forth. The graph properties of this example are: |V| = 38, |E| = 44,

ρ = 1.16, rloc = 1.23, γ = 2.11, γ̂ = 18.4.

This design has been originally implemented on a single StarCore DSP with a clock frequency

of 300MHz for which the following cycle counts have been annotated:

Function Taps Aliases etSW

MAC Trim, Gain 6
SUM Thresh 6
WDF 1 9
WDF 2 13
WDF 3 16
WDF 5 22
WDF 7 28
WDF 9 34

FIR 2 11
FIR 7 21
FIR 11 29

MOV Hold 5
MUX Delay 6

Tab. C.3: Typical cycle counts for filter code segments on a DSP.

C.1. Typical Graph Structures in Embedded Systems 125

Fig. C.3: A realistic robot control process graph [79].

126 C Graphs in Embedded System Design

The Kasahara laboratory established a benchmark graph library, the standard task graph

(STG) set, dedicated to analyse the performance of multi-resource scheduling and partition-

ing algorithms. The majority of these graphs are generated according to their proprietary

ruleset, but three realistic examples are given as well: a robot control system, a sparse matrix

solver, and a SPEC process graph. In Figure C.3 the smallest of the three realistic examples

is depicted. The graph properties of this example are: |V| = 88, |E| = 131, ρ = 1.49,

rloc = 2.55, γ = 4.36, γ̂ = 11.4.

This example includes cycle counts as well, although the exact implementation type has not

been specified. The annotated values for the single processes lie between 5 and 111 cycles

with an average cycle count of 28.2. Unfortunately, the three realistic examples do not con-

tain the communication between processes in such a form that they could reliably expressed

according to their execution time.

Fig. C.4: Seven task graph categories for signal processing defined in the literature [94,142].

Wiangtong et al. [142] and Kwok et al. [94] specify the task graphs resolutely in the following

C.1. Typical Graph Structures in Embedded Systems 127

seven very typcial categories: in-tree, out-tree, fork-join, LU-decomposition, mean-value

computation, a Laplace equation solver, and an FFT. In Figure C.4 small examples for these

categories are depicted. In their work the referred authors varied the number of vertices and

the architecture dependent parameters: hardware and software execution time, number of

bytes per edge, bus speed, local memory access, the communication to computation ratio,

etc.

For our considerations, it is just of importance to extract the graph properties that characterise

these seven groups. Due to the very regular structure of some graphs, their graph properties

can be given as functions of their chosen size. For others the size has been chosen to be

|V| = 50, and the properties are evaluated accordingly.

• In-tree and Out-tree

The in-tree structure represents data collection, consolidation, and generalisation while

processing, whereas the out-tree represents data distribution and specification while

processing. Typically, for the in-tree |Vstart| ∼ log2 |V|, i.e. the number of start vertices

(data collecting points) increases logarithmically with the graph size (and analogically

for the end vertices of the out-tree).

For all sizes is ρ ≈ 1.0, and the rloc ≈ 1 . . . 2 is low, but increases with the graph size,

and γ ∼
√
|V| increases as well with the graph size but more rapidly.

• Fork-join

This category is a concatenation of in-tree and out-tree structures and obeys as such

the same rules.

• Mean-value and Laplace Equation Solver

These two ’categories’ exhibit identical graph structures, which raises the question why

they are separated in two categories. For all sizes ρ ≈ 1.5, rloc ≈ 1 and γ is simple

to calculate for this graph with depth d: γ =
(
d+1

2

)2
/d. For |V| = 49 (d = 13) is

γ = 49/13 = 3.77.

• Butterfly Graph (FFT or Walsh-Hadamard Transform)

Butterfly graphs belong to the most regular graph structures. The number of vertices

is given via the dimension of the input vector n (here n = 4 with input vertices

v4...7), to be |V| = n log2(n). The density is constant for all sizes ρ = 2, as well as

γ = n log2(n)/(n− 1) ≈ log2(n) and rloc = 1.

• LU Decomposition

The LU decomposition refers to an n × n nonsingular matrix [101]. The number of

vertices is |V| = (n + 1)n/2 and the length of the critical path through such a graph

(or its depth) is |VCP| = 2(n− 1), hence for n = 7 is γ = 28/12 = 2.33. The density

128 C Graphs in Embedded System Design

is ρ = (2(n − 1)n/2) / ((n + 1)n/2) = 2(n − 1)/(n + 1) ≈ 2. The rank-locality is

rloc ≈ 1.5.

Without exception any of the aforementioned examples and categories exhibits the charac-

teristic values for the graph properties introduced in Section 4.1.

These graphs originating from different sources in embedded system design did not contain

all the information regarding varying implementation types, which would have been required

to directly serve as application examples of the partitioning algorithms. However, for con-

siderable parts of the first two industrial design from IFX a lot of measurements and high

level synthesis values were available, so that it was possible to derive typical value ranges

for execution times, compiled code size and gate counts. Henceforth, the following section

surveys the graph generation and enrichment engine by which means the utilised graph sets

have been created.

C.2 Generation of System Graph Sets

An intuitive and trivial graph generator constructs a random graph just by adding random

pairs of integers from the interval [1, |V|] until the intended density ρ is reached. This strategy

either leads to many loops and parallel edges (multi-graphs) when the density is high or leads

to forests when the density is low. Although it is easily possible to eliminate self-loops, multi-

edges, and forests, these graphs do not have any specialised structure and may not resemble

typical graphs for the considered problem space.

From the literature many other graph generators are known [126] as the combinatorial na-

ture of graphs is typically intended to be structured yet randomised. The structured graph

generators are rather diverse: Euclidean neighbour graphs, transaction graphs, function call

graphs, interval graphs, de Bruijn graphs, etc. The k-neighbour graph, already described

in Section 4.1 has been chosen to serve as base model for our graph sets, as it is easy to

gear them towards the desired properties concerning sparsity, locality, and to a minor degree

towards parallelism. The sparsity is limited to ρ < kloc < |V| − 1 for k-locality graphs. The

vertices are then aligned on a vector, which processed element-wise. For any vector element

i, the following kloc elements are visited iteratively and an edge is inserted between two

vector elements with edge generation probability Pe. This probability is determined by the

intended sparsity Pe = ρ/kloc. To obtain acyclic graphs the edges are always directed from

lower indices of the vector to higher indices. In Figure C.5 an example of such an acyclic

k-locality graph is depicted.

C.2. Generation of System Graph Sets 129

Fig. C.5: Acyclic k-locality graph with kloc = 5, |V| = 25, ρ = 3
.

130 C Graphs in Embedded System Design

The other substantial ingredient is the enrichment of the system graph with realistic values

for code size, area, power consumption, and execution time. Apart from the individual

generation of reasonable values in typical ranges for leaf functions of a system graph, two

additional aspects have to be considered. The first aspect is the rather crude relation that

functions featuring many operations, operands, and control statements offer comparably large

implementation alternatives on all resources. It is in general very unlikely that implementation

alternatives with very low values for all parameters coexist with alternatives with rather high

values for all parameters.

Concretely, the following table lists the value ranges utilised in the graph generation engine

for execution time measured in cycles, code size measured in bytes, area measured in gates

(NAND2 equivalents), and power measured in mW. The listed properties have been ex-

tracted from the aforementioned realistic examples as well as from the literature [77,95,142].

These value ranges are of course supposed to be modified by the designer depending on his

knowledge about the chip manufacturing process, favoured FPGA or DSP type, and of course

the high level estimation techniques utilised to obtain these values. For instance, the power

property unit Minimum Maximum

execution time (et) cycles 10 200
code size (cs) bytes 8 1, 024

gate count (gc) NAND2 gate equivalents 500 10, 000
power consumption (pc) mW 10 1, 000

Tab. C.4: Possible ranges for process properties utilised in the graph generation engine.

consumption ranges may vary a lot depending on the intended DSP or CPU categories: the

Itaniumr2 processor consumes about 130Watt running at 1GHz under full load with about

10, 000MOPS (million operations per second), whereas the StrongARM110 processor works

at 160MHz under full load with about 500MOPS drawing only a power of about 900mW [95].

Another relevant aspect to be considered is that the generated subset of implementation

alternatives Ir(vi) ⊆ I(vi), of a process vi for any specific resource r contains K Pareto-

optimal elements Ai(r, k), i = 1 . . .K. Consider the example depicted in Figure C.6. The

graph generation engine tries to create eight implementation alternatives for a single process

vi for a specific resource r ∈ R with the two dimensions execution time et and area gc.

Three of these generated alternatives are not Pareto-optimal and have to be erased from the

subset of alternatives for this resource, since they only contribute to the search space size

without offering any possibility to improve the overall quality of the solution.

The last essential consideration for the task graph generation involves the fact that the values

for code size, area, power consumption, and execution time are not completely independent.

A common dependency is the area-execution time trade-off for an FPGA or ASIC implementa-

tion of a function: the higher the consumed silicon area, the lower the execution time. That is

due to design parameters as pipelining, unrolling factor, operator reuse, etc. [66, Knerr et al.].

C.3. Parameterisable SDF Graphs 131

Fig. C.6: Pareto-optimal implementation alternatives of a process for a single resource r.

Additionally, the power consumption of an implementation alternative is naturally correlated

both with the occupied chip area (ASIC or FPGA) and the code size (DSP). Therefore, the

task graph generation engine creates the first two dimensions of the implementation alterna-

tives for processes on any resource, Ai(r, k) = (et , cs, 0, 0) for DSPs, Ai(r, k) = (et , 0, gc, 0)
for ASICs or FPGAs, in a Pareto-optimal manner. Then, the global maximum and minimum

values for cs or gc for any resource are known: min
r

cs,max
r

cs,min
r

gc,max
r

gc, r ∈ R. The

power consumption of any process value is then correlated to these values, e.g. for a process

implementation on a DSP D:

pc =
cs −min

D
cs

max
D

cs −min
D

cs
(1 + vcs) (max

D
pc −min

D
pc), (C.1)

with vcs being randomly taken out of the interval [−0.2, 0.2] with uniform distribution and

analogously for FPGAs with gc instead of cs. By these means, both the correlation between

the characteristic values as well as the Pareto-optimality of the implementation alternatives

can be ensured.

C.3 Parameterisable SDF Graphs

Although widely accepted for signal processing systems, SDF graphs are restricted to static

dataflow behaviour, thus modern SoC applications are often not completely amenable to

SDF. Parameterised dataflow, published in 1996 [20], provides the dynamic behaviour by

means of structured, dynamic parameter changes in the base model that it is applied to. A

132 C Graphs in Embedded System Design

parameterised SDF (PSDF) graph is composed of PSDF actors and PSDF edges. A PSDF

actor is characterised by a set of parameters that can control the actors functionality, includ-

ing the actors dataflow behaviour that is, the numbers of tokens consumed and produced

at its input and output ports. Similarly, a PSDF edge also has associated notions of param-

eterisations and configuration. A PSDF subsystem consists of three distinct PSDF graphs

the init graph, the subinit graph and the body graph. Intuitively, the body graph models the

main functional behaviour of the specification, whereas the init and subinit graphs control

the behaviour of the body graph by appropriately configuring the body graph parameters.

Another more recent extension of SDF took place in 2001 with cyclo-static dataflow (CSDF) [19].

In CSDF, token production and consumption can vary between actor firings as long as the

variation forms a certain type of periodic pattern. Each component of this periodic pattern is

called a phase of the actor. Actor behaviour, including dataflow properties of the actor, can

vary between phases p = 1 . . . Pv, as long as the sequence of phases is periodic. Formally, in

Fig. C.7: SDF graph extensions.

CSDF, every actor v ∈ V has an underlying execution sequence fv(1), fv(2), . . . , fv(Pv) of

length Pv, where each fv(p) is called a phase as depicted in Figure C.7(a). Conceptually, at

every Pvth time instant an actor v periodically iterates again over its firing phase sequence

fv(1), fv(2), . . . , fv(Pv). As a consequence, in a CSDF graph sample production sev(p) and

consumption reu(p) rates follow periodic sequences.

Most recently, Saha et al. published a work in which the concepts of parameterised and

cyclo-static SDF graphs has been combined [124], hence creating a new class of graphs.

Parameterised cyclo-static SDF (PCSDF) combines powerful optimisation capabilities with

strong expressibility properties. The syntax and semantics for PCSDF graphs are similar to

that of PSDF graphs. However, unlike a PSDF actor, a PCSDF actors functionality as well

as its dataflow behaviour are not parameterised directly. Instead, they vary cyclically and this

cyclic pattern is parameterised.

C.3. Parameterisable SDF Graphs 133

The two fundamental parameters involved in the dataflow properties of a PCSDF actor are

the period of the cycle of phases, and the data rates (i.e., the rates of token production and

consumption) associated with each phase. Values of these parameters must remain constant

throughout any given iteration of the underlying (parameterised) CSDF graph; however,

there is significant flexibility in reconfiguring the parameters between iterations. Dynamic

behaviour of a CSDF graph is therefore modelled by allowing dynamic parameterisations of

the period length, and of the individual phases associated with each actor. Thus, it is possible

to have behaviours in which the sequence of phases is fixed for a single iteration, or for a

group of successive iterations, while the sequences can generally vary between iterations.

Figure C.7(b) shows an example of a PCSDF subsystem.

Up to now no commercial or academic EDA tools exists supporting any of the latter very

sophisticated models of computation in a comfortable way. As a consequence the major

part of embedded system domain still relies on a diverse set of models of computations:

discrete-event (or finite state machines) for the control-heavy system parts and process or

SDF graphs for computationally intensive signal processing.

134 C Graphs in Embedded System Design

D. NP-COMPLETE ALGORITHMS AND

OPTIMALITY

This chapter lists two classical NP-complete problems, both of which can alternatively serve

as problem description for the scheduling (and partitioning) problem. Their description can

be found in the literature by the authors Garey and Johnson [46]. Furthermore, in the last

section the term Pareto-optimality is described in more detail.

D.1 Multi-processor Scheduling

Given is the problem instance with a set T of tasks, a number m ∈ Z+ of processors, a

length l(t) ∈ Z+ for each t ∈ T , and a deadline D ∈ Z+.

The problem is to find an m-processor schedule σ for T that meets the overall deadline

D, i.e. a function σ(t) : T → Z+
0 , such that ∀u ≥ 0 : the number of tasks t ∈ T for

σ(t) ≤ u < σ(t) + l(t) is no more than m and such that ∀ t ∈ T : σ(t) + l(t) ≤ D.

As in our scenario unconnected graphs are uncommon but certainly allowed, in other words

precedence constraints may not be present, the aforementioned classical problem represents

a special case of our combined partitioning and scheduling (PS) problem. The unconnected

set of vertices V corresponds to the task set T , the execution time et(v) of a vertex v ∈ V
corresponds to the length l(t) of the tasks t ∈ T , the set of resources R corresponds to m

processors, and eventually the deadline D maps to the timing constraint bT. When there are

not any other constraints involved, as in Section 4.3.7, in which the impact of the k-locality

on the performance of the RRES algorithm is described for a platform of three identical

DPSs, this classical formulation is equivalent to the special case: k = 0⇐⇒ E = ∅. Thus,

a known NP-complete problem is a special case of the PS problem formulated in this thesis,

and hence, by restriction [46](pg 63), PS is also NP-complete.

136 D NP-complete Algorithms and Optimality

D.2 Precedence Constrained Scheduling

Given is the problem instance with a set T of tasks, each having the same length l(t) = 1,

a number m ∈ Z+ of processors, a partial order l on T 1, and a deadline D ∈ Z+.

The problem is to find an m-processor schedule σ for T that meets the overall deadline D and

obeys the precedence constraints, i.e. such that tl t′ implies σ(t′) ≥ σ(t) + l(t) = σ(t) + 1.

This problem can serve as well as a corresponding formulation of a special case to our

problem description. In this case the precedence constraints (represented by directed edges

between tasks) are explicitly included. Herein the task lengths are set to equal values in this

formulation, which is as well uncommon but certainly allowed in our scenario. Even for the

case m = 2, Ullman proved the problem to be NP-complete, if only two different task lengths

are allowed [139]. Thus, this classical problem is as well a special case for the problem PS

considered in this thesis, and consequently, by restriction, PS has also to be NP-complete.

D.3 Pareto Optimality

Pareto optimal solutions are characterised by their dominance relation. The following domi-

nance relations between two design points x1 and x2 can be identified:

x1 � x2 (dominates) if f(x1) < f(x2),

x1 � x2 (weakly dominates) if f(x1) ≤ f(x2),

x1 ∼ x2 (is indifferent to) if f(x1) � f(x2) ∧ f(x1) � f(x2).

The relation for vectors is defined in the following.

u = v if for all i = 1, . . . , k : ui = vi,

u ≤ v if for all i = 1, . . . , k : ui ≤ vi,
and u < v if for all i = 1, . . . , k : ui < vi.

The relations greater and greater equal are defined symmetrically.

A more detailed picture is given by the following considerations:

Definition 29 (Pareto-optimality). A vector x1 is Pareto optimal if there does not exist

another vector x2 such that x2 � x1. The set of Pareto optimal points is called Pareto

1 The operator l for partial order is an equivalent description of precedence constraints to directed edges
in graphs.

D.3. Pareto Optimality 137

optimal set Xp or short Pareto front. Furthermore, the approximation of the Pareto set Xp

is will be called quality set Xq.

Fig. D.1: Pareto front for implementation alternatives with area-time trade-off.

In Figure D.1 a two-dimensional objective space for area and timing is depicted. The design

point x1 is Pareto optimal and it dominates x2, x3, x4 and x5, (x1 � x2, x1 � x3, x1 � x4,

x1 � x5), whereas x3 is indifferent to x4 (x3 ∼ x4). The design point x2 weakly dominates

x3(x2 � x3). Also some constraints for maximum timing and area are shown, so that the

design points x5 and x6 become invalid. Mathematically, all the Pareto optimal points are

equally acceptable solutions. However, it is generally desirable to obtain only one solution,

which has been solved by the linear weighted sum described in Section 3.5.2.

138 D NP-complete Algorithms and Optimality

E NOTATION, VARIABLES, AND ACRONYMS

E.1 Notation

a,b,c scalars

a,b,c vectors

A,D,C matrices

ai element of vector

A, B, C sets

|A| cardinality of a set

(.)T Transpose operator

min f(x) Minimum of the function f(x)
max f(x) Maximum of the function f(x)
argmin f(x) Argument x for which the scalar function f(x) is minimised

argmax f(x) Argument x for which the scalar function f(x) is maximised

beg(e) Returns the vertex from which the edge e emerges in a directed graph.

end(e) Returns the vertex which the edge e points to in a directed graph.

indegree(v) Returns the number of incoming edges of a vertex v in a directed graph.

outdegree(v) Returns the number of outgoing edges of a vertex v in a directed graph.

out(e) Returns the number of samples produced by vertex v = beg(e) in an SDF graph.

in(e) Returns the number of samples consumed by vertex v = end(e) in an SDF graph.

rank(v) Rank of a vertex v in a graph structure.

par(v) Returns the number of parallel vertices of v.

l Partial-order operator, equivalent to directed edges in graph representations.

�,� Domination operator for Pareto relations.

P(A) Powerset of set A.

140 E Notation, Variables, and Acronyms

E.2 List of Variables

V Set of vertices.

vi ith vertex.

E Set of edges.

ei ith edge.

G(V, E) Graph.

p Path through a graph.

ps Simple path (without cycles).

Γ Topology matrix of an SDF graph.

kloc Classic locality property used for generation of graphs.

rloc Rank locality property used for characterising existing graphs.

ρ Graph density/sparsity.

γ Degree of parallelism based on number of vertices.

γT Degree of parallelism based on vertex’ weights.

γ̂ Average number of parallel vertices in a graph.

G Set of system graphs.

R Set of platform resources.

Air,j jth implementation alternative for vertex vi on resource r.

av Average number of implementation alternatives for vertices.

ae Average number of implementation alternatives for edges.

I(vi) Set of implementation alternatives for vertex vi.

I(ei) Set of implementation alternatives for edge ei.

x A partitioning solution represented by a vector.

xi Element of x, identifier for a distinct mapping of vertex vi.

xp Pareto-optimal partitioning solution.

I A problem instance.

S(I) Solution space for a problem instance I.

Sf (I) Subspace of all feasible solutions.

Sp(I) Subspace of all Pareto-optimal solutions.

nI(x) Neighbourhood transformation for solution x.

et Execution time.

gc Gate count when implemented as hardware.

cs Compiled code size when implemented as software.

pc Power consumption.

tt Communication transfer time.

bi ith constraint for a partitioning problem (absolute).

bA,r Area constraint for resource r.

bC,r Code size constraint for resource r.

E.2. List of Variables 141

bT Time constraint.

fi(x) ith objective function for solution x.

fi,norm ith objective function normalised to its constraint and minimum values.

f̃i,norm ith normalised objective function penalised when constraint is not met.

w weight vector for objective functions.

Ω Cost value of a partitioning solution.

Ω Cost value averaged over many runs of a single instance and/or over

many problem instances.

σ Standard deviation of cost for many runs of a single problem instance.

σ Standard deviation, averaged over many problem instances.

Ψ Validity ratio.

Ψ Validity value averaged over many problem instances.

Θ Run time measured in clock cycles on an AMD ATHLON 64 3000+

Dual Core 1.8GHz PC.

Θ Run time averaged over many problem instances.

Ci ith constraint ratio for a partitioning problem (relative to min, max

values).

CA Area constraint ratio.

CT Time constraint ratio.

CC Code size constraint ratio.

O(f(n)) Asymptotic efficiency of an algorithm.

LQ Average length of a breadth first search queue (LEP).

RoI Region of interest (LEP).

Cavg Average number of collision per schedule (LEP).

LP Local phase value (GCLP).)

GC Global criticality value (GCLP).)

ϑ Geometric cooling factor (SA).

T Temperature (SA).

Tinit Initial temperature (SA).

SN,TS Size of visited neighbourhood (TS).

Ltabu Tabu list length (TS).

sreg Region size for diversification and intensification (TS).

P Population set (GA).

stasap(v) Start time of vertex v in an ASAP schedule (GA).

stalap(v) Start time of vertex v in an ALAP schedule (GA).

Psel(x) Selection probability for roulette wheel selection (GA).

P1g(x) Mutation probability for one-gene mutation (GA).

W Window length (RRES).

142 E Notation, Variables, and Acronyms

E.3 List of Acronyms

ACS Add Compare Select

ALAP As Late As Possible

ALU Arithmetic Logic Unit

AMBA Advanced Microcontroller Bus Architecture

ASAP As Soon As Possible

ASIC Application Specific Integrated Circuit

ASIP Application Specific Instruction Set Processor

BB Basic Block

BFS Breadth First Search

BNS Best Neighbour Search

BT Binary Tournament

CAN Controller Area Network

CFG Control Flow Graph

CISC Complex Instruction Set Computer

CLB Configurable Logic Blocks

CPU Central Processing Unit

CVS Concurrent Version System

DAG Directed Acyclic Graph

DCT Discrete Cosine Transform

DE Discrete Event

DFG Data Flow Graph

DFS Depth First Search

DMA Direct Memory Access

DPRAM Dual Port RAM

DSL Digital Subscriber Line

DSP Digital Signal Processor

DRL Dynamic Reconfigurable Logic

EDA Electronic Design Automation

EEPROM Electrically Erasable Programmable ROM

ES Exhaustive Search

ETF Earliest Task First

FIFO First In, First Out

FIR Finite Impulse Response (Filter)

FPGA Field Programmable Gate Array

GA Genetic Algorithm

GCLP Global Criticality Local Phase

E.3. List of Acronyms 143

GPP General Purpose Processor

GSM Global System for Mobile Communication

GXL Graph Exchange Library

HDL Hardware Description Language

HLF Highest Level First

HLS High Level synthesis

HW Hardware

IP Intellectual Property

ISS Instruction Set Simulator

LEP Local Exploitation of Parallelism

LSB Least Significant Bit

LSI Large Scale Integration

MAC Multiply Accumulate

MOC Model of Computation

MOO Multi-Objective Optimisation

NNS Next Neighbour Search

OTIE Open Tool Integration Environment

PC Personal Computer

PDA Personal Digital Assistant

PTP Point To Point

RAM Random Access Memory

RISC Reduced Instruction Set Computer

RNS Random Neighbour Search

ROM Read Only Memory

RRES Restricted Range Exhaustive Search

RTL Register Transfer Level

RTOS Real Time Operating System

RW Roulette Wheel

SA Simulated Annealing

SAG Single Activation Graph

SDF Synchronous Data Flow

SDL Specification and Description Language

SDRAM Synchronous Dynamic RAM

SoC System-on-Chip

SOTF Survival Of The Fittest

SQL Structured Query Language

SRAM Static RAM

SW Software

144 E Notation, Variables, and Acronyms

TLM Transaction Level Model

TS Tabu Search

UML Unified Modeling Language

UMTS Universal Mobile Telecommunication System

VC Virtual Component

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VLIW Very Large Instruction Word

VLSI Very Large Scale Integration

VSIA Virtual Socket Interface Alliance

VP Virtual Prototyping

XML eXtensible Markup Language

µC Microcontroller

µP Microprocessor

BIBLIOGRAPHY

[1] G. Agosta, F. Bruschi, and D. Sciuto. Static Analysis of Transaction-Level Models. In

Proc. of the Design Automation Conference (DAC), pages 448–453, June 2003.

[2] A. Aho, R. Sethi, and J. Ullmann. Compilers: Principles, Techniques and Tools.

Addison-Wesley, 1985.

[3] Altera Corporation. Altera Devices. http://www.altera.com/products/devices/

dev-index.jsp.

[4] T. Anderson, R. Schutten, and F. Thoen. Virtual prototypes cut software bottleneck.

Technical report, Wireless Systems Design Online Magazine, February 2005. http:

//www.wsdmag.com/Articles/ArticleID/9821.

[5] ARM Corporate Communications. ARM7 Family - 32 bit RISC processor. http:

//www.arm.com/products/CPUs/ARM720T.html.

[6] ARM Corporate Communications. Advanced Microcontroller Bus Architecture

(AMBA) 3.0, 1996–2007. http://www.arm.com/products/solutions/AMBA3AXI.

html.

[7] J. Axelsson. Architecture Synthesis and Partitioning of Real-Time Systems: A Com-

parison of Three Heuristic Search Strategies. In Proc. of the 5th Int. Workshop on

HW/SW Codesign, (CODES/CASHE), pages 161–165, 1997.

[8] J. Axelsson. Cost Model for Electronic Architectures Trade Studies. In Proc. of the

6th Int. Conf. on Engineering of Complex Computer Systems, 2000.

[9] N. Azeemi. A Multiobjective Evolutionary Approach for Constrained Joint Source Code

Optimization. In Proc. of the 19th International Conference on Computer Application

in Industry (ISCA), pages 175–180, Las Vegas, Nevada, USA, November 2006.

[10] B. Bailey. The Waking of the Sleeping Giant – Verification, April 2002. http://www.

mentor.com/consulting/techpapers/mentorpaper_8226.pdf.

http://www.altera.com/products/devices/dev-index.jsp
http://www.altera.com/products/devices/dev-index.jsp
http://www.wsdmag.com/Articles/ArticleID/9821
http://www.wsdmag.com/Articles/ArticleID/9821
http://www.arm.com/products/CPUs/ARM720T.html
http://www.arm.com/products/CPUs/ARM720T.html
http://www.arm.com/products/solutions/AMBA3AXI.html
http://www.arm.com/products/solutions/AMBA3AXI.html
http://www.mentor.com/consulting/techpapers/mentorpaper_8226.pdf
http://www.mentor.com/consulting/techpapers/mentorpaper_8226.pdf

146 Bibliography

[11] R. Baines and D. Pulley. A Total Cost Approach to Evaluating Different Reconfigurable

Architectures for Baseband Processing in Wireless Receivers. In IEEE Communications

Magazine, volume 41, pages 105–128, January 2003.

[12] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, C. Passerone,

A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and B. Tabbara. Hardware-

software co-design of embedded systems: The polis approach. 1997.

[13] P. Belanović. An Open Tool Integration Environment for Efficient Design of Embedded

Systems in Wireless Communications. PhD thesis, Institute for Communications and

Radio Frequency Engineering, Vienna University of Technology, 2006.

[14] P. Belanović, M. Holzer, D. Mičuš́ık, and M. Rupp. Design Methodology of Signal

Processing Algorithms in Wireless Systems. In Int. Conf. on Computer, Communication

and Control Technologies CCCT’03, pages 288–291, July 2003.

[15] P. Belanović, B. Knerr, M. Holzer, and M. Rupp. A Fully Automated Environment for

Verification of Virtual Prototypes. EURASIP Journal on Applied Signal Processing,

2006. Article ID 32408, 12 pages.

[16] P. Belanović, B. Knerr, M. Holzer, G. Sauzon, and M. Rupp. A Consistent Design

Methodology for Wireless Embedded Systems. EURASIP Journal on Applied Signal

Processing, 2005(16):2598–2612.

[17] P. Belanović and M. Rupp. Automated Floating-point to Fixed-point Conversion with

the fixify Environment. In Proc. of the In. Workshop on Rapid System Prototyping

(RSP), pages 172–178, June 2005.

[18] G. Berry. The esterel v5 language primer, version 5.21 release 2.0, April 1999. ftp:

//ftpsop.inria.fr/meije/esterel/papers/primer.pdf.

[19] B. Bhattacharya and S. Bhattacharyya. Parameterized dataflow modeling for dsp

systems. IEEE Trans. on Signal Processing, 49(10):2408–2412, 2001.

[20] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete. Cyclostatic dataflow. IEEE

Trans. on Signal Processing, 44(2):397–408, 1996.

[21] P. Bjuréus, M. Millberg, and A. Jantsch. FPGA Resource and Timing Estimation

from Matlab Execution Traces. In Proc. of the Int. Workshop on Hardware/Software

Co-Design, pages 31–36, May 2002.

[22] C. Brandolese, W. Fornaciari, and F. Salice. An Area Estimation Methodology for

FPGA Based Designs at SystemC-Level. In Design Automation Conference, pages

129–132, June 2004.

ftp://ftpsop.inria.fr/meije/esterel/papers/primer.pdf
ftp://ftpsop.inria.fr/meije/esterel/papers/primer.pdf

Bibliography 147

[23] Cadence Design Systems Inc. Cadence Virtual Component Co-Design (VCC). http:

//www.cadence.com.

[24] Celoxica Ltd. Handel-c language reference manual. http://www.celoxica.com/

techlib/.

[25] K. Chatha and R. Vemuri. An Iterative Algorithm for Hardware-Software Partitioning,

Hardware Design Space Exploration and Scheduling. (5):281–293, 2000.

[26] K. Chatha and R. Vemuri. Magellan: multiway hardware-software partitioning and

scheduling for latency minimization of hierarchical control-dataflow task graphs. In

Proceedings of the ninth international symposium on Hardware/software codesign

(CODES), pages 42–47, New York, NY, USA, 2001. ACM Press.

[27] P. Chou, R. Ortega, and G. Borriello. The chinook hardware/software co-synthesis

system. pages 22–27, 1995.

[28] Y. Collete and P. Siarry. Multiobjective Optimization. Principles and Case Studies

(Decision Engineering). Springer-Verlag, Berlin Heidelberg New York, 2003.

[29] CoWare Design Systems. SPW 4. Technical report, 2004. http://www.coware.com/

products/spw4.php.

[30] CoWare Inc. Processor Designer, 2005. http://www.coware.com/products/

processordesigner.php.

[31] G. de Micheli, R. Ernst, and W. Wolf. Readings in Hardware/Software Co-Design.

Morgan Kaufman Publishers, Academic Press, San Francisco, CA, USA, 2002.

[32] G. de Micheli and M. Sami. Hardware-Software Co-Design. Kluwer Academic Publish-

ers, 1996.

[33] Design Automation Standards Committee. IEEE Std 1076-2000, IEEE Standard VHDL

Language Reference Manual. IEEE Computer Society, December 2000.

[34] Design Automation Standards Committee. IEEE Std p1364-2001, IEEE Standard Ver-

ilog Hardware Description Language. IEEE Computer Society, 345 East 47th Street,

New York, NY 10017-2394, USA, March 2001.

[35] R. Dick and N. Jha. MOGAC: A Multiobjective Genetic Algorithm for the Co-synthesis

of HW/SW Embedded Systems. In Proc. of the IEEE/ACM Int. Conf. on Computer-

Aided Design (ICCAD), pages 522–529, Washington, DC, USA, 1997. IEEE Computer

Society.

http://www.cadence.com
http://www.cadence.com
http://www.celoxica.com/techlib/
http://www.celoxica.com/techlib/
http://www.coware.com/products/spw4.php
http://www.coware.com/products/spw4.php
http://www.coware.com/products/ processordesigner.php
http://www.coware.com/products/ processordesigner.php

148 Bibliography

[36] Y. Donoso and R. Fabregat. Mult-Objective Optimization in Computer Networks Using

Metaheuristics. Auerbach Publications, 6000 Broken Sound Parkway NW, Boca Raton,

FL, 2007.

[37] S. Edwards, L. Lavagno, E. Lee, and A. Sangiovanni-Vincentelli. Design of embedded

systems: formal models, validation, and synthesis. pages 86–107, 2002.

[38] P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli. System level hardware/software

partitioning based on simulated annealing and tabu search. Design Automation for

Embedded Systems, 2:5–32, 1997.

[39] R. Ernst, J. Henkel, and T. Benner. Hardware-software cosynthsis for microcontrollers.

IEEE Design & Test of Computers, 10(4):64–75, 1993.

[40] C. Fiduccia and R. Mattheyses. A linear-time heuristic for improving network partitions.

In 25 years of DAC: Papers on Twenty-five years of electronic design automation, pages

241–247, New York, NY, USA, 1988. ACM.

[41] K. Fogel and M. Bar. Open Source Development with CVS. Paraglyph Press, 3rd

edition, 2003.

[42] W. Fornaciari, P. Gubian, D. Sciuto, and C. Silvano. Power Estimation of Embedded

Systems: A Hardware/Software Codesign Approach. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, 6:266–275, 1998.

[43] D. Franke and M. Purvis. Hardware/Software Codesign: A Perspective. In Proc. of

the 13th Int. Conf. on Software Engineering, pages 344–352, 1991.

[44] Gaisler Research. LEON3 SPARC V8 Processor Core. http://www.gaisler.com/

leonmain.html.

[45] D. Gajski, S. Narayan, L. Ramachandran, F. Vahid, and P. Fung. System Design

Methodologies: Aiming at the 100h Design Cycle. IEEE Transactions on Very Large

Scale Integration Systems, 4(1):70–82, March 1996.

[46] M. Garey and D. Johnson. Computers and Intractability: A Guide to NP-Completeness.

W.H. Freeman, San Francisco, California, 1979.

[47] L. Geppert. High-flying DSP architectures. IEEE Spectrum, 1998.

[48] F. Glover, E. Taillard, and D. de Werra. A user’s guide to tabu search. Ann. Oper.

Res., 41(1-4):3–28, 1993.

http://www.gaisler.com/leonmain.html
http://www.gaisler.com/leonmain.html

Bibliography 149

[49] D. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1989.

[50] T. Grötker, S. Liao, G. Martin, and S. Swan. System Design with SystemC. Kluwer

Academic Publishers, 2002.

[51] R. Gupta and G. D. Micheli. Hardware-software cosynthesis for digital systems. IEEE

Design & Test of Computers, 10(3):29–41, 1993.

[52] S. Gupta. SPARK: A high-level synthesis framework for applying parallelizing compiler

transformations. In Proc. of the Int. Conf. on VLSI Design, January 2003.

[53] W. Haas, M. Hofstaetter, T. Herndl, and A. Martin. UMTS Baseband Chip Design.

In Informationstagung Mikroelektronik, pages 261–266, Vienna, October 2003.

[54] W. Hardt and W. Rosenstiel. Prototyping of tightly coupled hardware/software systems.

Design Automation for Embedded Systems, 2:283–317, 1997.

[55] J. Hausner and R. Denk. Implementation of Signal Processing Algorithms for 3G and

Beyond. IEEE Microwave And Wireless Components Letters, 13(8), 2003.

[56] M. Hecht and J. Ullman. Flow graph reducibility. In STOC ’72: Proceedings of the

fourth annual ACM symposium on Theory of computing, pages 238–250, New York,

NY, USA, 1972. ACM.

[57] J. Henkel and R. Ernst. A hardware/software partitioner using a dynamically determined

granularity. In Proc. of the 34th Annual Conf. on Design Automation (DAC), pages

691–696, New York, NY, USA, 1997. ACM Press.

[58] T. Henzinger and J. Sifakis. The Embedded Systems Design Challenge. Lecture Notes

in Computer Science. Springer, 2006.

[59] A. Hoffmann, T. Kogel, and H. Meyr. A Framework for Fast Hardware-Software Co-

simulation. In Proc. of the Design, Automation and Test in Europe DATE’01, Munich,

2001.

[60] A. Hoffmann, H. Meyr, and R. Leupers. Architecture Exploration for Embedded Pro-

cessors with LISA. Kluwer Academic Publishers, December 2002.

[61] M. Holzer. Design Space Exploration for Embedded Systems in Wireless Communica-

tions. PhD thesis, Institut für Nachrichtentechnik und Hochfrequenztechnik, Vienna

University of Technology, 2008.

150 Bibliography

[62] M. Holzer and B. Knerr. Pareto Front Generation for a Tradeoff between Area and Tim-

ing. In Austrochip 2006 Tagungsband, pages 131–134, Messegelände Wien, Austria,

October 2006.

[63] M. Holzer, B. Knerr, P. Belanović, and M. Rupp. Efficient Design Methods for Embed-

ded Communication Systems. EURASIP Journal on Embedded Systems, 2006. Article

ID 64913, 18 pages.

[64] M. Holzer, B. Knerr, and M. Rupp. Structural Verification in Minimal Time. In Inter-

national Symposium on System-on-Chip, pages 151–154, Tampere, Finland, November

2006.

[65] M. Holzer, B. Knerr, and M. Rupp. Design Space Exploration for Real-Time Recon-

figurable Computing. In Asilomar Conference on Signals, Systems, and Computers,

Pacific Grove, CA, USA, November 2007.

[66] M. Holzer, B. Knerr, and M. Rupp. Design Space Exploration with Evolutionary Multi-

Objective Optimisation. In IEEE Symposium on Industrial Embedded Systems (SIES),

pages 126–133, July 2007.

[67] M. Holzer and M. Rupp. Static Estimation of the Execution Time for Hardware Acceler-

ators in System-on-Chips. In International Symposium on System-on-Chip, November

2005.

[68] J. Hromkovic and W. Oliva. Algorithmics for Hard Problems. Springer-Verlag New

York, Inc., Secaucus, NJ, USA, 2002.

[69] T. Hu. Parallel Sequencing and Assembly Line Problems. Technical Report 6, Opera-

tions Research, 1961.

[70] J.-J. Hwang, Y.-C. Chow, F. Anger, and C.-Y. Lee. Scheduling Precedence Graphs in

Systems with Interprocessor Communication Times. SIAM J. Comput., 18(2):244–257,

1989.

[71] L. Hyafil and R. Rivest. Graph partitioning and constructing optimal decision trees

are polynomial complete problems. Technical Report 33, IRIA-Laboria, Rocquencourt,

France, 1973.

[72] Infineon Technologies AG. Vinetic-xm, voice and internet enhanced telephony if circuit,

2004.

[73] International Organization for Standardization. ISO 11898-1:2003, Controller Area

Network (CAN), 2003. http://www.iso.org/iso/iso_catalogue/.

http://www.iso.org/iso/iso_catalogue/

Bibliography 151

[74] International SEMATECH. International Technology Roadmap for Semiconductors,

1999. http://www.sematech.org.

[75] International SEMATECH. International Technology Roadmap for Semiconductors,

2005. http://www.sematech.org.

[76] A. Jantsch and H. Tenhunen. Networks on Chip. Springer, 2003.

[77] A. Kalavade. System-level Codesign of Mixed Hardware-software Systems. PhD thesis,

University of California, Berkeley, CA, USA, 1995.

[78] A. Kalavade and E. Lee. The Extended Partitioning Problem: Hardware/software Map-

ping, Scheduling, and Implementation-bin Selection. Readings in hardware/software

co-design, pages 293–312, 2002.

[79] Kasahara Laboratory. Standard task graph set, 2006. Dept. of Electrical Engineering,

Waseda University.

[80] H. Keding, M. Willems, M. Coors, and H. Meyr. FRIDGE: A Fixed-Point Design and

Simulation Environment. In Proc. of the Design, Automation and Test In Europe

(DATE), Feb 1998.

[81] B. Kernighan and S. Lin. An Efficient Heuristic Procedure in Partitioning Graphs. Bell

System Technical Journal, February 1970.

[82] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by Simulated Annealing. Sci-

ence, 220(4598):671–680, 1983.

[83] B. Knerr, P. Belanovic, M. Holzer, G. Sauzon, and M. Rupp. Design Flow Improvements

for Embedded Wireless Receivers. In Proc. of the 12th European Signal Processing

Conference (EUSIPCO), pages 2015–2018, Wien, September 2004.

[84] B. Knerr, M. Holzer, P. Belanovic, G. Sauzon, and M. Rupp. Advanced UMTS Re-

ceiver Chip Design Using Virtual Prototyping. In Proceedings of the 2004 International

Symposium on Signals, Systems and Electronics ISSSE 04, Linz, Austria, August 2004.

[85] B. Knerr, M. Holzer, and M. Rupp. RRES: A Novel Approach to the Partitioning

Problem for a Typical Subset of System Graphs. EURASIP Journal on Embedded

Systems, 2008. Article ID 259686, 13 pages.

[86] B. Knerr, M. Holzer, and M. Rupp. HW/SW Partitioning Using High Level Metrics.

In Proceedings of the International Conference on Computing, Communications and

Control Technologies, pages 33–38, Austin, Texas, August 2004.

http://www.sematech.org
http://www.sematech.org

152 Bibliography

[87] B. Knerr, M. Holzer, and M. Rupp. Fast rescheduling of multi-rate systems for hw/sw

partitioning algorithms. In Proc. of Thirty-Ninth Annual Asilomar Conference on Sig-

nals, Systems, and Computers, Monterey, CA, USA, October 2005.

[88] B. Knerr, M. Holzer, and M. Rupp. Task scheduling for power optimisation of multi

frequency synchronous data flow graphs. In Proceedings of the 18th Annual Sympo-

sium on Integrated Circuits and System Design, pages 50–55, Florianapolis, Brazil,

September 2005. ACM Press.

[89] B. Knerr, M. Holzer, and M. Rupp. Extending the GCLP algorithm for HW/SW

partitioning: A detailed platform model and performance improvements. In Austrochip

2006 Tagungsband, pages 89–95, Messezentrum Wien, Austria, October 2006.

[90] B. Knerr, M. Holzer, and M. Rupp. A fast rescheduling heuristic of SDF graphs for

HW/SW partitioning algorithms. In Proceedings of COMSWARE 2006, New Delhi,

India, January 2006.

[91] B. Knerr, M. Holzer, and M. Rupp. Improvements of the gclp algorithm for HW/SW

partitioning of task graphs. In Proceedings of the 4th IASTED Int. Conf. on Circuits,

Signals, and Systems (CSS), pages 107–113, San Francisco, CA, USA, November 2006.

[92] B. Knerr, M. Holzer, and M. Rupp. Novel Genome Coding of Genetic Algorithms for

the System Partitioning Problem. In Proc. of IEEE 2nd Int. Symposium on Industrial

Embedded Systems (SIES), pages 134–141, Lisboa, Portugal, July 2007.

[93] B. Knerr, M. Holzer, and M. Rupp. Restricted Range Exhaustive Search: A New

Heuristic for HW/SW Partitioning of Task Graphs. In Proc. of XXII Conf. on Design

of Circuits and Integrated Systems (DCIS), Sevilla, Spain, November 2007.

[94] Y.-K. Kwok and I. Ahmad. Dynamic Critical-Path Scheduling: An Effective Technique

for Allocating Task Graphs to Multiprocessors. IEEE Trans. Parallel Distrib. Syst.,

7(5):506–521, 1996.

[95] L. Benini. ESSES’03: System-Level Power Optimization, Design Techniques & CAD

Tools, 2003. DEIS University’ di Bologna, Italy.

[96] P. Lapsley, J. Bier, A. Shoham, and E. Lee. DSP Processor Fundamentals. IEEE Press,

1997.

[97] M. Le. 8-bit microcontrollers: still going ..., June 2004. http://www.eetimes.com/

showAricle.jhtml?articleID=54202120.

[98] E. Lee. Overview of the Ptolemy Project. Technical report, University of Berkeley,

March 2001. http://ptolemy.eecs.berkeley.edu.

http://www.eetimes.com/showAricle.jhtml?articleID=54202120
http://www.eetimes.com/showAricle.jhtml?articleID=54202120
http://ptolemy.eecs.berkeley.edu

Bibliography 153

[99] E. Lee and D. Messerschmitt. Static scheduling of synchronous data flow programs for

digital signal processing. IEEE Transactions on Computers, 36(1):24–35, 1987.

[100] T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. JohnWiley and

Sons Ltd., Chichester, England, 1990.

[101] R. Lord, J. Kowalik, and S. Kumar. Solving linear algebraic equations on an mimd

computer. J. ACM, 30(1):103–117, 1983.

[102] T. McCabe. A Complexity Measure. In IEEE Transaction of Software Engineering,

volume SE-2, pages 308–320, December 1976.

[103] C. Mehlführer, F. Kaltenberger, M. Rupp, and G. Humer. A Scalable Rapid Prototyping

System for Real-time MIMO OFDM Transmissions. In Proc. of 2nd IEE/EURASIP

Conf. on DSP enabled Radio, Southampton, UK, September 2005.

[104] Mentor Graphics. High Level Synthesis with CatapultC. http://www.mentor.com/

products/esl/high_level_synthesis/index.cfm.

[105] Mentor Graphics. ModelSim. http://www.model.com/.

[106] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equation

of State Calculations by Fast Computing Machines. Journal of Chemical Physics,

21:1087–1092, 1953.

[107] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer

Verlag, Berlin, Heidelberg, New York, 2nd edition, 1994.

[108] MIPS Technologies. MIPS Hard IP Cores. http://www.mips.com/content/

Products/Cores/HardIPCores/content_html.

[109] G. Moore. Cramming More Components Onto Integrated Circuits. Electronics Maga-

zine, 38 (8):114–117, April 1965.

[110] Y. Moullec, N. B. Amor, J.-P. Diguet, M. Abid, and J.-L. Philippe. Multi-Granularity

Metrics for the Era of Strongly Personalized SOCs. In Design, Automation and Test

in Europe, pages 674–679, March 2003.

[111] Y. L. Moullec, P. Koch, J.-P. Diguet, and J. Philippe. Design Trotter: Building and

Selecting Architectures for Embedded Multimedia Applications. In Proc. of the IEEE

Int. Symposium on Consumer Electronics, December 2003.

[112] MySQL Database Products. http://www.mysql.com/products/database/.

http://www.mentor.com/products/esl/high_level_synthesis/index.cfm
http://www.mentor.com/products/esl/high_level_synthesis/index.cfm
http://www.model.com/
http://www.mips.com/content/Products/Cores/HardIPCores/content_html
http://www.mips.com/content/Products/Cores/HardIPCores/content_html
http://www.mysql.com/products/database/

154 Bibliography

[113] S. Narayan, F. Vahid, and D. Gajski. System specification with the speccharts language.

IEEE Design & Test of Computers, 9(4):6–13, December 1992.

[114] Y. Neuvo. Cellular Phones as Embedded Systems. In Proc. of the IEEE International

Solid-State Circuits Conference ISSCC’04, pages 32–37, February 2004.

[115] NXP Semiconductors. P80C51 8-bit microcontroller family 128/256 byte RAM ROM-

less low voltage 2.7V. Technical report, 2007. http://www.nxp.com/Products/

Microcontrollers/8-bit80C51microcontrollers/Standard80C51(12clock).

[116] Open SystemC Initiative. http://www.systemc.org.

[117] V. Pareto. Cours D’Economie Politique, volume I and II. 1896.

[118] M. Platzner and L. Thiele. Hardware/software codesign. Lecture, 2005.

[119] J. Poole. A Method to Determine a Basis Set of Paths to Perform Program Test-

ing. U.S. Department of Commerce/National Institute of Standards and Technology,

November 1995.

[120] H. Posadas, F. Herrera, P. Sanchez, E. Villar, and F. Blasco. System-Level Performance

Analysis in SystemC. In Design, Automation and Test in Europe, pages 378–383,

February 2004.

[121] Radioscape. Radiolab 3g, 1999. Licensable Block Set for The MathWorks MATLAB

and Simulink products.

[122] F. Renner, J. Becker, and M. Glesner. Communication Performance Models for

Architecture-Precise Prototyping of Real-Time Embedded Systems. Design Automa-

tion for Embedded Systems, 5:351–363, 2000.

[123] M. Rupp, A. Burg, and E. Beck. Rapid Prototyping for Wireless Designs: the Five-Ones

Approach. Signal Processing Europe 2003, 83:1427–1444, July 2003.

[124] S. Saha, S. Puthenpurayil, and S. Bhattacharyya. Dataflow transformations in high-

level dsp system design. In IEEE International Symposium on System-on-Chip, pages

131–136, Tampere, Finland, November 2006.

[125] A. Sangiovanni-Vincentelli, M. Sgroi, and L. Lavagno. Formal models for

communication-based design. In Proc. of the 11th Int. Conf. on Concurrency The-

ory (CONCUR’00), pages 29–47, London, UK, 2000. Springer-Verlag.

[126] R. Sedgewick. Algorithms in C++, Part 5: Graph Algorithms. Addison-Wesley, 3rd

edition, January 2002.

http://www.nxp.com/Products/Microcontrollers/8-bit 80C51 microcontrollers/Standard 80C51 (12clock)
http://www.nxp.com/Products/Microcontrollers/8-bit 80C51 microcontrollers/Standard 80C51 (12clock)
http://www.systemc.org

Bibliography 155

[127] J. P. Singh, A. Kumar, and S. Kumar. A Multiplier Generator for Xilinx FPGA’s.

In International Conference on VLSI Design: VLSI in Mobile Communications, pages

322–323, 1996.

[128] M. Smith. Application-Specific Integrated Circuits. Addison-Wesley, 1997.

[129] V. Srinivasan, S. Radhakrishnan, and R. Vemuri. Hardware software partitioning with

integrated hardware design space exploration. In Proceedings of Design, Automation

& Test in Europe (DATE), 1998.

[130] R. Subramanian. Shannon vs. Moore: Driving the Evolution of Signal Processing

Platforms in Wireless Communications. In Proc. of the IEEE Workshop on Signal

Processing Systems SIPS’02, October 2002.

[131] Synopsys Inc. Design Compiler. http://www.synopsys.com/products/logic/

design_compiler.html.

[132] Synopsys Inc. Galaxy Design Platform. http://www.synopsys.com/products/

solutions/galaxy_platform.html.

[133] Synopsys Inc. System Studio. http://www.synopsys.com/products/designware/

system_studio/system_studio.html.

[134] System Verilog. http://www.systemverilog.org.

[135] SystemC AMS and Design of Embedded Mixed Signal Systems. http://www.

systemc-ams.org.

[136] Texas Instruments. IP Video Phone, DaVinci SoC based. http://focus.ti.com/

docs/solution/folders/print/206.html.

[137] The MathWorks Inc. Simulink. http://www.mathworks.com/products/simulink.

[138] The SpecC System - Center for Embedded Computer Systems. http://www.cecs.

uci.edu/~specc/.

[139] J. Ullman. Np-complete scheduling problems. J. Comput. Syst. Sci., 10(3):384–393,

1975.

[140] F. Vahid and T. D. Le. Extending the Kernighan/Lin Heuristic for Hardware and

Software Functional Partitioning. Design Automation for Embedded Systems Journal,

(2):237–261, 1997.

http://www.synopsys.com/products/logic/ design_compiler.html
http://www.synopsys.com/products/logic/ design_compiler.html
http://www.synopsys.com/products/solutions/galaxy_platform.html
http://www.synopsys.com/products/solutions/galaxy_platform.html
http://www.synopsys.com/products/designware/system_studio/system_studio.html
http://www.synopsys.com/products/designware/system_studio/system_studio.html
http://www.systemverilog.org
http://www.systemc-ams.org
http://www.systemc-ams.org
http://focus.ti.com/docs/solution/folders/print/206.html
http://focus.ti.com/docs/solution/folders/print/206.html
http://www.mathworks.com/products/simulink
http://www.cecs.uci.edu/~specc/
http://www.cecs.uci.edu/~specc/

156 Bibliography

[141] T. Wiangtong. Hardware/Software Partitioning and Scheduling for Reconfigurable

Systems. PhD thesis, Dept. of Electrical and Electronic Engineering, University of

London, 2004.

[142] T. Wiangtong, P. Cheung, and W. Luk. Comparing Three Heuristic Search Methods

for Functional Partitioning in Hardware-Software Codesign. Design Automation for

Embedded Systems, 6(4):425–449, Sept 2002.

[143] J. Wilberg, A. Kuth, R. Camposano, W. Rosenstiel, and T. Vierhaus. Design explo-

ration in castle. In Workshop on High Level Synthesis Algorithms Tools and Design

(HILES), 1995.

[144] W. Wolf. Hardware-Software Co-design of Embedded Systems. In Proc. of the IEEE,

volume 82, pages 965–989, 1994.

[145] Xilinx Inc. Xilinx: The Programmable Logic Company. http://www.xilinx.com/.

[146] V. Zivojnovic, S. Pees, and H. Meyr. Lisa - machine description language and generic

machine model for hw/sw co-design. In Proc. of the IEEE Workshop on VLSI Signal

Processing, San Francisco, October 1996.

[147] Y. Zou, Z. Zhuang, and H. Chen. Hw-sw partitioning based on genetic algorithm.

In Congress on Evolutionary Computation (CEC), pages 628–633, Portland, Oregon,

June 2004.

http://www.xilinx.com/

	Introduction
	Motivation
	Contributions
	Outline

	State of the Art in HW/SW Co-Design
	Target Architectures in Embedded Systems
	Platform Composition

	Embedded Systems Design Flow

	System Partitioning
	Typical Graphs in Embedded System Design
	Process Graphs
	Synchronous Data Flow Graphs

	Classical Platform Model for Hardware/Software Partitioning
	Flexible Platform Model for Heterogeneous Embedded Systems
	System Graph Enrichments
	Problem Formulation
	The Classical Graph Partitioning Problem
	The System Partitioning Problem
	Embedded Scheduling Problem

	Algorithms for Scheduling and Partitioning
	Specific Properties of Typical Process Graphs
	Algorithms for Scheduling
	Classical Scheduling Techniques
	Local Exploitation of Parallelism

	Algorithms for System Partitioning
	Exhaustive Search
	Gradient Search
	Global Criticality/Local Phase (GCLP) Algorithm
	Simulated Annealing
	Tabu Search
	Genetic Algorithm
	Restricted Range Exhaustive Search
	Kernighan-Lin Min-Cut
	Discussion

	Criticism

	Conclusions
	Appendices
	The Open Tool Integration Environment
	Typical Examples of Architectural Components
	General-Purpose Processors
	Digital Signal Processors
	Microcontrollers
	Application Specific Instruction Set Processors
	Field Programmable Gate Arrays
	Application Specific Integrated Circuits
	Communication Infrastructure
	Academic and Commercial Co-Design Frameworks
	Design Languages
	Co-design Frameworks

	Graphs in Embedded System Design
	Typical Graph Structures in Embedded Systems
	Generation of System Graph Sets
	Parameterisable SDF Graphs

	NP-complete Algorithms and Optimality
	Multi-processor Scheduling
	Precedence Constrained Scheduling
	Pareto Optimality

	Notation, Variables, and Acronyms
	Notation
	List of Variables
	List of Acronyms

