
 
 
 
 
 
 
 

Implementierung und Analyse von Parallelen, 
Verteilten Datenbank Operationen auf Service-

orientierten Architekturen 
 
 
 
 

DIPLOMARBEIT  

 
zur Erlangung des akademischen Grades 

 

Diplom-Ingenieur 
 

im Rahmen des Studiums 
 

Software Engineering & Internet Computing 
 

eingereicht von 
 

Bakk. techn. Michael Koitz 
Matrikelnummer 0227547 

 
 
 
 
 

an der 
Fakultät für Informatik der Technischen Universität Wien 
 
 
 

Betreuung: 
Betreuer: Ao. Univ.-Prof. Dipl.-Ing. Dr. techn. Erich Schikuta 
Mitwirkung:  Univ.-Ass. Mag. Peter Paul Beran 
 
 
 
 

Wien, 11.07.2008 

Technische Universität Wien 
A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43/(0)1/58801-0 ▪ http://www.tuwien.ac.at 

 

 
 
Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der 
Hauptbibliothek der Technischen Universität Wien aufgestellt  
(http://www.ub.tuwien.ac.at). 
 
The approved original version of this diploma or master thesis is available at the 
main library of the Vienna University of Technology   
(http://www.ub.tuwien.ac.at/englweb/). 

 

http://www.tuwien.ac.at/


Abstract 

This thesis covers the optimization and analysis of parallel database operations in a 

heterogeneous environment. It focuses especially on sort and join operations, because of their 

relevance in database system. For the implementation of the sort operations the Parallel 

Binary Merge Sort and the Block Bitonic Sort have been chosen because of their increased 

performance in parallel processing. For the implementation of the join operations we focused 

on the Merge Join, Nested Loop Join and the Hash Join. 

All these algorithms are implemented as Web services to make them easy transferable from 

one node (a computer) to another. As framework for implementation SODA has been used 

because of its flexibility and expandability. SODA is written in Java and uses the Apache 

Tomcat, a container for the Web services. 

The work is motivated by the idea taking advantage of the varying resource characteristics 

(e.g. network bandwidth) of the heterogeneous environment. The approach was implemented 

and justified by a speedup and scale-up analysis. 

Zusammenfassung 

Diese Diplomarbeit befasst sich mit der Optimierung von Parallelen Datenbank Operationen 

in heterogenen Umgebungen. Der Fokus ist auf Sortier und Join Operationen gelegt, wegen 

ihrer Relevanz in fast allen Datenbank Systeme. Für die Implementierung der Sortier 

Operationen wurden der Parallel Binary Merge Sort und der Block Bitonic Sort ausgewählt, 

weil sie eine gute parallele Effizienz bieten. Für die Implementierung der Join Operationen 

wurde der Fokus auf den Merge Join, Nested Loop Join und den Hash Join gelegt. 

Alle diese Algorithmen wurden als Web Services implementiert um sie einfach zwischen den 

Nodes (Computer) zu transferieren. Als Framework wurde SODA wegen der Flexibilität und 

Erweiterbarkeit ausgewählt. SODA ist in Java geschrieben und benutzt Apache Tomcat als 

Container für die Web Services. 

Die Arbeit basiert auf der Idee die variierenden Ressource Charakteristiken (z.B. 

Netzwerkbandbreite) von heterogenen Umgebungen auszunutzen. Diese Herangehensweise 

wurde implementiert und mittels Speedup und Scale-up Analyse bestätigt. 



Table of Contents 
 

1. Introduction ....................................................................................................................... 1 

1.1 Motivation .................................................................................................................. 1 

1.2 Acknowledgements .................................................................................................... 1 

1.3 Definition of Terms .................................................................................................... 2 

2. Service-Oriented Environment ......................................................................................... 3 

3. Sort Operations .................................................................................................................. 5 

3.1 Parallel Binary Merge Sort ....................................................................................... 5 

3.2 Block Bitonic Sort ...................................................................................................... 8 

4. Join Operations ............................................................................................................... 11 

4.1 Nested Loop Join ..................................................................................................... 11 

4.2 Sort Merge Join ....................................................................................................... 12 

4.3 Hash Join .................................................................................................................. 12 

5. SODA ............................................................................................................................... 15 

5.1 SODA Environment ................................................................................................ 18 

5.2 SODA Services ......................................................................................................... 19 

5.2.1 Logging Service ................................................................................................. 19 

5.2.2 MultiFetch Service ............................................................................................. 22 

5.2.3 MultiSink Service ............................................................................................... 26 

5.2.4 MultiRelay Service ............................................................................................. 29 

5.2.5 QuickSort Service .............................................................................................. 32 

5.2.6 ParallelBinaryMergeSort Service ....................................................................... 33 

5.2.7 BitonicSort Service ............................................................................................ 36 

5.2.8 NestedLoopJoin Service ..................................................................................... 39 

5.2.9 MergeJoin Service .............................................................................................. 40 

5.2.10 HashJoin Service ................................................................................................ 41 

5.3 Sort Operation Workflows ..................................................................................... 43 

5.3.1 Parallel Binary Merge Sort ................................................................................. 43 

5.3.2 Bitonic Sort ........................................................................................................ 45 

5.4 Join Operation Workflows ..................................................................................... 47 

5.4.1 Nested Loop Join ................................................................................................ 47 

5.4.2 Sort Merge Join with Parallel Binary Merge Sort .............................................. 48 

5.4.3 Sort Merge Join with Bitonic Sort...................................................................... 50 

5.4.4 Hash Join ............................................................................................................ 52 



6. Benchmark ....................................................................................................................... 54 

6.1 Environment............................................................................................................. 57 

6.1.1 Servers ................................................................................................................ 57 

6.2 Analysis ..................................................................................................................... 59 

6.2.1 Parallel Binary Merge Sort – speedup ................................................................ 60 

6.2.2 Parallel Binary Merge Sort – scale-up ............................................................... 61 

6.2.3 Block Bitonic Sort – speedup ............................................................................. 62 

6.2.4 Block Bitonic Sort – scale-up............................................................................. 63 

6.2.5 Nested Loop Join – speedup ............................................................................... 64 

6.2.6 Nested Loop Join – scale-up .............................................................................. 65 

6.2.7 Merge Join with Parallel Binary Merge Sort – speedup .................................... 66 

6.2.8 Merge Join with Parallel Binary Merge Sort – scale-up .................................... 67 

6.2.9 Merge Join with Block Bitonic Sort – speedup .................................................. 68 

6.2.10 Merge Join with Block Bitonic Sort – scale-up ................................................. 69 

6.2.11 Hash Join – speedup ........................................................................................... 70 

6.2.12 Hash Join – scale-up ........................................................................................... 71 

7. Lessons learned and Future Outlook ............................................................................. 72 

Indices ...................................................................................................................................... 74 

List of Figures ..................................................................................................................... 74 

List of Listings .................................................................................................................... 75 

List of Tables ....................................................................................................................... 75 

References ................................................................................................................................ 76 



  Introduction | 1 

1. Introduction 

Databases always have been of great importance in the software engineering domain because 

hardly any software has to deal with masses of data, so a database is necessary. Therefore 

database performance is always a big issue. One way to improve the performance of a 

database is to use several computers for executing operations on a database. These computers 

can be built cheaper and can be placed in different locations too. Sometimes it is even 

necessary to have databases on different locations. Ways have to be found to query these 

databases in an efficient way. 

1.1 Motivation 

In the beginning Werner Mach (a college from Siemens) told me about his dissertation, on the 

field of parallel database operations in grids, and that he had a major breakthrough within his 

work. He figured out that in his equations the network speed was far more important for the 

overall execution time than someone might think. He wanted to practical proof his theory and 

therefore was looking for someone who was willing to take the dangerous and stony path to 

develop an application which fits the requirements. So I took this chance and began to walk 

the burdensome road. In a first meeting I meet Professor Erich Schikuta who told me what 

had to be done and how this target could be reached, he also introduced me to Peter Paul 

Beran, a research assistant, who had developed SODA [4] in his own diploma thesis, which is 

a framework for the provision and execution of service-oriented database operations. So 

SODA was taken as the base framework and used to implement the sort and join algorithms 

that had to be analysed. 

1.2 Acknowledgements 

First of all I want to thank my parents and my whole family who supported my from the day 

on I decided to study informatics. Many thanks go to my love Silvia who never had a taught 

that I could not make it. Thanks for his believe in me goes to Werner Mach who had chosen 

me to prove his ideas, and for his help. I also want to thank the people at the department of 

knowledge and business engineering, especially Erich Schikuta and Peter Paul Beran who 

guided me through the whole process of writing this thesis. Peter also helped me in main parts 

of the implementation of the operations and so he gets a second thanks from me. 



  Introduction | 2 

1.3 Definition of Terms 

NAT: Network Address Translation 

SOAP: Simple Object Access Protocol 

SODA: Service Oriented Database Architecture 

CSV: Character/Comma/Colon Separated Values 

HDD: High Density Disc 

DBMS: Database Management System 

TPC: Transaction Processing Performance Council 

SQL: Structured Query Language 

GB: Giga Byte 

SF: Scale Factor 

CBQ: Class-Based Queuing 

I/O: Input/Output 

DB: Database 

JVM: Java Virtual Machine 

CPU: Central Processing Unit 

URI: Uniform Resource Identifier 



  Service-Oriented Environment | 3 

2. Service-Oriented Environment 

Today the focus for new applications lies on the accessibility by other applications and to be 

available from anywhere. With the Internet the availability from any place in the world is 

nearly granted. 

Service-Oriented Environment is an architectural style for creating and using business 

processes, resembled as services. Moreover it allows different applications to exchange data 

and participate in business processes. One of the main aspects in this area is that it separates 

functions into distinct units called services, which can be accessed over a network and can be 

combined and therefore reused to create new applications. Here the services communicate 

with each other by passing data (messages) from one service to another. 

Services can run simultaneous on different computers and communicate over a network so 

this result in a form of parallel computing. Parallel computing is most commonly used to 

describe program parts running simultaneously on multiple processors on the same computer, 

of which services also take advantage. Both types of processing require a program that can be 

divided into parts, running simultaneously, but services often deal with heterogeneous 

environments, network links of varying latencies, and unpredictable failures in the network 

transfer or in computer states. 

The idea of Mach and Schikuta [1] was to use sort and join operations in a database, 

transform these into services and design a workflow that takes advantage of the 

heterogeneous environment. This is done in a way that every node, where an operation can be 

run, knows its processing power, disc performance and network speed, so a broker who 

collects this data can easily decide which node(s) to use. The analysis of Mach and Schikuta 

also shows that the most important factor is the network bandwidth. Generally every 

workflow - for a specific database operation - can be restructured to perform quicker if the 

network bandwidth is taken into account. 

The Service-oriented environment consists of three base paradigms shown in Figure 1. These 

paradigms are: 

 Service Registry 

A service registry is a network-based directory that contains the addresses of available 

services. It is an entity that accepts and stores information about service providers and 

provides those contracts to interested service consumers. 



  Service-Oriented Environment | 4 

 Service Consumer 

The service consumer is an application, service or some other type of software that 

requires a service. It is the entity that initiates the locating of the service in the service 

registry. After the successful retrieving of the service address it is binding the service 

over the network and executing the service function(s). The service consumer executes 

the service by sending a request formatted in the according messaging format. 

 Service Provider 

The service provider is a network-addressable entity that accepts and executes requests 

from service consumers. It can be a mainframe system, a component, or some other 

type of software system that executes the service request. The service provider 

publishes its information about available functions, address and availability in the 

service registry to provide access by service consumers. 

 

 

Figure 1: Service-Oriented Environment Schema 



  Sort Operations | 5 

3. Sort Operations 

Sort operations are a main part of each database system. They are a critical fact when 

performance is measured, so their optimization is very important. 

There are many already known sort algorithms and each of them have their pros and cons. For 

this thesis the focus lies especially on algorithms that perform faster in parallel processor 

systems, so they can be adapted to a service oriented environment. Therefore the Parallel 

Binary Merge Sort and the block bitonic sort are covered in detail. 

3.1 Parallel Binary Merge Sort 

The Parallel Binary Merge Sort is split into four phases [1]. These phases are the prepare 

phase, the suboptimal phase, the optimal phase and the postoptimal phase. In Figure 2 and 

Figure 3 a demonstration of the operation is illustrated. The processing nodes p are used to 

sort nk tuples, where n denotes the number of pages containing the dataset and k is the number 

of tuples of each page. For a realistic scenario we assume that there are much more pages n 

than processing nodes p (n >> p), also the size of the data set that is processed is much larger 

than the available main memory of the nodes. 

1. Prepare Phase 

The prepare phase is needed because in a general case the data is not distributed equally 

across the mass storage of the nodes. Moreover it cannot be assumed that the tuples of the 

data set are sorted by the sorting criteria of the pages. So the prepare phase distributes the 

pages to the nodes equally and orders the tuples inside every page by its sort criteria and 

writes them back to the persistent storage of the node. After the prepare phase is finished n/p 

pages are assigned to a specific node and the tuples of the pages are sorted in the nodes. 

2. Suboptimal Phase 

Inside every node the pages are merged. This happens by merging pages of longer and longer 

runs. A run is an ordered sequence of pages. In each step the length of the runs is twice as 

large as the preceding run. At the start each node reads two pages, merges them into a run of 

two pages and writes them back to the disk. This is repeated until all pages are read and 

merged into two-page-runs. If the number of runs exceeds 2p, the suboptimal phase continues 

with merging two-page-runs to a sorted four-page-run. This continues until all two-page-runs 

are merged. The phase ends when the number of runs is 2p. At the end of the suboptimal 



  Sort Operations | 6 

phase on each node two sorted files of length n/2p exist. In the suboptimal phase (see Figure 

2) the nodes work independently in parallel, and every node accesses its own data only. [1] 

 

Figure 2: Prepare and Suboptimal Phase 

3. Optimal Phase 

In the optimal phase each node merges its two runs of length n/2p  and sends them to a target 

node. Therefore the length of this run is n/p. To calculate the target node for even source node 

numbers use 

nodenrtarget =  + nodenrsource 

and for odd source node numbers use 

nodenrtarget =  + nodenrsource + 1. 

See Figure 3 for a demonstration of the optimal phase. 

4. Postoptimal Phase 

The postoptimal phase merges the remaining p/2 runs into the final run. This final run has the 

length n. Therefore at the beginning of this phase there are p/2 runs. During this phase p/2 

nodes are not used any more, each of the other nodes are used only once during this phase. 



  Sort Operations | 7 

There are two forms of parallelism used in the parallel binary merge sort. First, all nodes of 

one step work in parallel. Second, the steps of the postoptimal phase overlap in a pipelined 

fashion (see Figure 3). [1] 

 

Figure 3: Optimal and Postoptimal Phase 

The execution time between two steps consists of merging the first pages, building the first 

output-page and sending this page to the target-node. During the postoptimal phase every 

node is used only in one step, which means that every node is idle for a certain time. 

Thus the algorithm costs are 

 

 

 

  



  Sort Operations | 8 

which can be expressed as 

. 

3.2 Block Bitonic Sort 

The Block Bitonic Sort algorithm was developed by Batcher in 1968 [2]. It sorts n numbers 

with n/2 comparator modules in 1/2 log n (log n + 1) steps [2]. Every step consists of a 

comparison exchange at every comparator module and a transfer to the target comparator 

module. A comparator module is a node, which is connected by the perfect shuffle [3] (Figure 

4) to each other. The perfect shuffle uses three types of comparator modules (Figure 5), which 

merges two pages and distributes the lower page and the higher page to two target nodes. The 

target nodes are defined by using a mask information. 

 

Figure 4: Block Bitonic Sort 



  Sort Operations | 9 

 

Figure 5: Perfect Shuffle 

The algorithm uses three basic operations. 

1. Circulate(S) 

From each of the 2p files the pages are routed to a node through the perfect shuffle 

interconnection. Every node pi creates its MASK(i). After that it merges its pages and 

distributes them according to MASK(i) = 0, 1, -1 

2. Shuffle(MASK) 

This operation shuffles the MASK-array from the second 2
p-1

 nodes to their target nodes in a 

way that the target nodes will use the same type of comparator. 

3.  MASK(i) 

It computes the entries of the MASK-array. Given an integer i, an array of length 2p is created 

at this operation. 

MASK = -1, -1, -1, ..., -1 if i = -1 

MASK = 0, 1, 0, 1, ..., 0, 1 if i <= p - 1 

MASK = 0, 0, 0, ..., 0, 0 if i = p 

For the algorithm it is necessary to build 2p equally distributed and sorted runs of length n/2p. 

The prepare phase and the suboptimal phase produce the 2p runs. The algorithm for the 

perfect shuffle is defined in Listing 1. 



  Sort Operations | 10 

 

Listing 1: Perfect Shuffle Algorithm 

The total costs are: 

. 



  Join Operations | 11 

4. Join Operations 

Join Operations are also a major part of each database system, therefore their optimization is 

as well very important. 

There are many known join algorithms and each of them has its pros and cons. For this thesis 

the focus lies on the algorithms that perform especially well in multi processor systems, so 

they can be adapted to a service-oriented environment. The Nested Loop Join, the Sort Merge 

Join and the Hash Join are the most prominent ones. 

4.1 Nested Loop Join 

For this algorithm two steps are necessary to join the two participating relations. The inner 

relation T is the smaller one, and the outer relation R is the bigger one. 

1. Initiate Phase 

The first step is the initiate phase. For this phase each of the processors read a different page 

of the outer relation R. 

2. Broadcast and Join Phase 

The second step is the broadcast and join phase. All pages of the inner relation T are 

sequentially broadcasted to the processors. After getting the page which was broadcasted, 

each processor joins the page with its copy of page R. 

Assume that n and m are the number of pages of the relations R and R’, and n >= m. We 

assign p processors to perform the join of R and R’. When p = n the execution time is 

. 

The join selectivity factor S indicates the average number of pages produced by the join of a 

single page R with a single page of R’. To join the two pages they are merged, and later on the 

output page is sorted by the join attribute and written to the disc. 

 

If the number of processors K is smaller than the number of pages n, step 1 and 2 must be 

repeated n/p times. So the costs for the Parallel Nested Loop Join are 

. 



  Join Operations | 12 

4.2 Sort Merge Join 

This algorithm is performed in two steps. First of all the two relations are sorted by the join 

attribute, because it can be assumed that the two relations are not already sorted. The second 

step is performed after the sorting. Afterwards the two sorted relations are joined together and 

the resulting relation is being produced. 

For the first step the Block Bitonic Sort can be used, as described in section 3.2. The costs for 

the Sort Merge Join are 

 +  ∙  ∙ + . 

Using the Parallel Binary Merge Sort the costs are 

. 

4.3 Hash Join 

The algorithm described here is based on the analysis of Valduriez and Gardarin described in 

[13]. The Hash Join uses Bit-arrays. The method hashes the join attribute and use the result as 

an address into the Boolean array. Marked Bits in the array mean that matching tuples exist. 

The value of the Boolean array is to eliminate most of the data not needed in the result. 

This algorithm has two stages. For the first stage a cache processor is chosen and the smaller 

relation T is read into the cache memory and hashed on the join attribute. The results are 

tuples written into buckets of a hashed file. This hashed file contains buckets, having a 

variable number of linked pages. In cache memory a page frame is maintained for each 

bucked, so an overflow area is not needed. At the same time for each join attribute value v, 

B(h(v)) is set to 1, where h is a hashing function applied to the join attribute. When the entire 

relation is hashed the first stage is completed. 

At the beginning of the second stage, the Boolean array is sent to p processors. The lager 

relation R is sequentially distributed to p processors. Each processor uses four buffers. Two 

for the input pages, one for the output page and one to store the Boolean array. Therefore each 

processor receives one page of the larger relation and performs the Hash Stage-2 algorithm 

(see Listing 2). 



  Join Operations | 13 

 

Listing 2: Hash Stage-2 Algorithm 

More than one hashing function is used to avoid collisions. If v1 and v2 are different join 

attribute values, we can have h(v1) = h(v2). The Boolean array is accessed by hashing. 

Collisions can lead to unnecessary access to the hashed file at the second stage. To reduce this 

collisions, more than one hashing function h1, h2, …, hq can be used, each is associated with a 

Boolean array B1, B2, …, Bq. Then, for each value v, all of the corresponding bits in each Bi 

must be set (e.g.: B1(h1(v)) = 1, B2(h2(v)) = 1, …, Bq(hq(v)) = 1). Increasing q causes the 

chance of collisions to nearly zero. 

The execution time of the algorithm is made up of time T1 for hashing the smaller relation by 

the cache processor, time T2 for sending the larger relation among p processors, time T3 for 

accessing the hashed file and time T4 for writing the result. The time for broadcasting the 

Boolean arrays is ignored because it is insignificant. There are c page frames available in the 

cache for the join operation. Therefore the creation of the hashed file consists of creating m 

buckets if c > m, or c buckets otherwise. In the first case, the hashed file could be maintained 

in cache memory during the entire execution of the join operation. In the other case, the pages 

of the same bucket would be linked and written on disc and retrieved using a table of physical 

address. The time for reading a page for R, taking the ratio H into account is 

t1 = (1 – H) Rc. 

The time for hashing a page of k tuples is 

t2 = k (C + V). 

The time for writing the hashed file, consists of the time for writing (m – c) pages, because c 

pages are reserved in cache memory during the join execution. Besides that, page frames may 

be available in cache with the probability H’. Therefore the time for writing (m – c) pages 

from cache to disc is 



  Join Operations | 14 

t3 = (m – c)(l – H’) Rc. 

The execution time for hashing a relation for m pages is 

T1 = m(t1 + t2) + t3 

T1 = m[(1 – H) Rc + k (C + V)] + (m – c)(l – H’) Rc. 

The time costs for the second stage consists of: 

 reading the relation S by p processors in parallel 

 accessing the hashed file 

 writing the result relation 

Each processor reads n/p pages of the relation S and accesses the Boolean array for each of 

the tuples. So the costs are 

T2 = (Cr + k C) . 

An access to the hashed file is needed if the tuples match. The number of matching tuples is 

defined by the semijoin selectivity factor SS. Therefore each bucket of the hashed file contains 

 pages. So, for each page of S, the number of pages read from the hashed file is 

T3 = . 

The time for writing the result relation of size m * n * JS to disc in parallel by p processors is 

. 

Therefore the total time T of the Hashing join is the sum of T1, T2, T3 and T4. 



  SODA | 15 

5. SODA 

SODA is a Service Oriented Database Architecture developed by Beran and Habel [4]. It is a 

framework for distributed database operations. The idea is that everyone can add services, 

implement algorithms for selection, sort, join, projection, and so on to provide new functions 

to workflows that connect database specific services. 

SODA can answer questions like: 

 Does a change of the infrastructure have an impact on the query execution? 

 How does a change of the number of working services affect the query execution 

time? 

 Does a change of the performance of a single service affect the query execution time? 

The basic mechanism of SODA is that the broker receives a query request and analyzes it. In 

this step it dynamically builds a workflow (a plan) to execute the query (see Figure 6). To do 

this, all available services are checked and the best available are subsequently chosen to build 

the final query execution tree. There must be at least one operator service registered for every 

operation type in the query, otherwise this operation type cannot be provided by the system. If 

the operation service is missing, the query cannot be performed and the execution terminates. 

 

Figure 6: Broker and Execution Tree 

There is also another way to execute a query. For testing and benchmarking a workflow can 

be built which is executed directly without the help of the broker. So operator services can be 

called and executed in the order which is necessary for the given query. The result is, like in 

the broker an execution tree. 

After the generation of the execution tree, subrequests are sent to the operator services, so 

every service gets only the part of the query which is necessary for its execution. Beginning at 

the top of the execution tree all subrequest objects are distributed. All subrequests can have 

links to other operator services. There can be links for incoming and outgoing data. Incoming 



  SODA | 16 

links wait for input data from a child operator service while an outgoing link sends results of 

an operation to a parent operator service, applied on a query execution tree hierarchy. 

 

Figure 7: Distribution of Subrequests 

When an operator service receives a job it starts with its execution. If the operator service is a 

data service, which gets data from a database or any other persistent storage, it can start the 

execution as soon as it is initialized. All other operator services need to wait until they get 

some input data. Some of the operators have to wait until all data packets are received, others 

can start with the processing immediately as soon as the first data packet arrives. At this point 

the broker service is not needed any more. When all operator services have finished their 

work the overall execution is finished as well. At this point the result is stored at the root node 

of the execution tree, a data sink operator. 

 

Figure 8: Operator Services at Work 



  SODA | 17 

SODA uses SOAP messages for communication, therefore every SODA service can be 

located at another system or at another location. A service can be of one of the following 

kinds: 

 SODA Client 

 SODA Broker Service 

 SODA Operator Service 

 Data Source (mostly a DB or a flat file) 

This distributed architecture looks according to Figure 9. 

 

Figure 9: SODA Distributed Architecture 

The SODA Client can be every type of code that can establish a connection to one of the 

services of the SODA system. For example it could be the SODA Broker Service or one of 

the SODA Operator Services. 

The communication between services can be described as a kind of pipeline. Data packets are 

pushed into one end of the pipeline and received again at the other side of the pipeline. A 

pipeline must contain at least one pipe but can also have multiple pipes. Each packet in a pipe 

has a packet id. Therefore, if a packet is lost or the packet order is wrong, the receiver can put 

them back into the right order. 



  SODA | 18 

 

Figure 10: Schematic Pipeline Diagram 

The original pipeline was not capable to deal with big data streams, so a caching mechanism 

had to be implemented. EHCache [12] is a Java object cache and was therefore the best choice 

for SODA. EHCache is used to store the data packets in memory and if the machine runs out 

of memory it stores the data on the HDD. The caching can be enabled or disabled. If it is 

enabled, various parameters like storage path or memory limit can be configured. 

Because of the flexibility and the good tool support, XML acts as a well fitting transportation 

format for SODA. It is used to deliver the data sent from one operator service to another. 

XML brings flexibility and support, but there is also one big downside. XML produces a lot 

of overhead data (because of the used XML-tags) than for example a plain CSV file. This 

leads to a huge transportation overhead which is indeed not a big problem when modern 

broadband connections are used. Additionally the storage of the XML files, respectively the 

XML objects in memory and the disc cache is about five to ten times larger than for example 

storage space that is required to save a comparable CSV file. 

5.1 SODA Environment 

SODA is written in Java 1.5 [5] and needs therefore a Java Virtual Machine (JVM). It also 

needs the Apache Tomcat 6.0 [6] as a container for the used Web services. 

For developing SODA services there is also Apache Ant 1.6.5 [7], Apache Muse 2.2.0 [8], 

AXIS 2.1.1 [9] (which is included in Muse) and XMLBeans 2.2.0 [10] required. 

MySQL 5 [11] is recommended but not necessary for the persistent storage. It is also possible 

to use CSV files or any other data service can be implemented for other databases, like Oracle 

DB, MSSQL, PostgreSQL or any other database management system (it has not to be a 

relational database). 

For further installation instructions please refer to the work of Beran and Habel in [4]. 



  SODA | 19 

For the benchmarking two machines out of our pool of three are used. Some algorithms like 

the Bitonic Sort needs a node number which is a power of two, therefore virtualization 

software was used to simulate up to eight nodes. 

5.2 SODA Services 

For the implementation of the new Sort and Join Operators new Services had to be written. 

5.2.1 Logging Service 

The Logging Service (Figure 11) is used to log tracing messages which are sent by other 

services. It stores the message with the Timestamp, RequestId, ClassName, 

ThreadId and State to a persistent file. The message is used to identify the disc, network 

or CPU usage, so that the duration of the different operations at the different services can be 

calculated. The timestamp is taken at the service so that a timing problem does not occur. 

 

Figure 11: Logging Service 

See Figure 12 for the class diagram of the following classes. 

LoggingService: Web Service enabled Java class that implements the IMyCapability 

(see [4] for a detailed class description) interface and has among others these methods 

implemented: 

 getRB 

Implements the getRB method of the IMyCapability interface (see [4] for a 

detailed class description), by returning the LoggingService 

ResourceBundle. 

 doPerform 

Performs an incoming request, which is sent as an org.w3c.dom.Element and 

specified as a RequestDocument. 

 doReceive 

Receives an incoming response, which is sent as an org.w3c.dom.Element and 

specified as a RequestDocument. 



  SODA | 20 

 getState 

Sends a Message that contains the logging messages for the given RequestId and 

SubRequestId. 

 makeTable 

Is a utility function that creates the table representation of the logging Messages. 

 makeBorder 

Is a utility function that creates the border of the logging table, it is used by the 

makeTable function. 

 makeLine 

Is a utility function that creates one line of the logging table, it is used by the 

makeTable function. 

 duration 

Is a utility function that calculates the duration between two Timestamps which are 

captured in milliseconds. 

 formatDuration 

Is a utility function that formats the milliseconds returned by the duration function 

in the format Hour:Minute:Second.Millisecond (e.g.: 5:21:11.329). 

LoggingService.properties: Contains the following parameters: 

 param.TYPE = LOGGING  

 param.SUBTYPE = STORAGE 

 param.NUMBER_OF_PARALLEL_REQUEST = 10 

 param.TIMEOUT_FOR_REQUEST = 3600000 

LoggingManager: It calls the LoggingService and performs a logging action or retrieve 

a log from the LoggingService with the given RequestId. 

 getLog 

Gets the formatted LoggingMessage for the given RequestId. 

 log 

Performs the logging call. CPU_START, CPU_STOP, NETWORK_START, 

NETWORK_STOP or DISC_DURATION can be specified as the message for the 



  SODA | 21 

LoggingService which is necessary for the calculation of the CPU, network and 

disc I/O duration. 

 

Figure 12: LoggingService Classes 

  



  SODA | 22 

5.2.2 MultiFetch Service 

The MultiFetch Service (Figure 13) fetches data from a MySQL database and splits the input 

data stream to multiple pipelines which can have multiple pipes, and so it distributes the data 

over a variable amount of endpoints (the x in Figure 13 illustrates this). 

 

Figure 13: MultiFetch Service 

See Figure 14 for the class diagram of the following classes. 

MultiFetchService: Web Service enabled Java class that implements the IMyCapability 

(see [4] for a detailed class description) interface and has among others these methods 

implemented: 

 getRB 

Overloads the abstract method getRB of the BaseWSResourceCapability 

class (see [4] for a detailed class description), by returning the 

MultiFetchService ResourceBundle. 

 doPerform 

Performs an incoming request, which is sent as an org.w3c.dom.Element and 

specified as a RequestDocument. 

o Case 1: If the request arrived the first time this class creates a new 

MultiFetchThread instance and starts this thread using the 

OperatorThreadController (see [4] for a detailed class description). 

o Case 2: If the request and its ReqId and SubReqId are known (has arrived 

at least once before) and the created thread is still running it skips the request. 

o Case 3: If the request has already arrived and the result is available it 

propagates the result (ResponesDocument) again to all URIs listed in the 

OutputTo parts of the RequestDocument. 

 getMYSQLConnectionName 



  SODA | 23 

Returns the value of the mysql.connection property declared in the 

MultiFetchService.properties file. This MySQL connection has to be 

created manually in the system control panel. 

 getMYSQLUser 

Returns the value of the mysql.user property declared in the 

MultiFetchService.properties file. This user must be created in the 

database with the administration tool. 

 getMYSQLPassword 

Returns the value of the mysql.password property declared in the 

MultiFetchService.properties file. This is the user’s password and can be 

set with the database administration tool. 

 getMYSQLCatalog 

Returns the value of the mysql.catalog property declared in the 

MultiFetchService.properties file. This defines the database used by this 

service. 

 getMYSQLConnection 

This creates a new java.sql.Connection session with the above specified 

settings (connection, user, and password). 

 getDBSchema 

Provides a database schema for the database accessed. To obtain a listing of all 

available tables in the specified database the SQL command TABLE_CAT is used. 

Each table name is retrieved using the TABLE_NAME command. To get the column 

type of a column the TYPE_NAME command is used. 

MultiFetchService.properties: Contains the following parameters: 

 param.TYPE = DATA 

 param.SUBTYPE = MULTIFETCH 

 param.QUANTITY = PACKETS 

 param.PROPAGATION = EAGER 

 param.PROPAGATION_MODE = SYNC 

 param.PARALLELIZATION = NONE 



  SODA | 24 

 param.SNAPSHOT = ON 

 param.NUMBER_OF_PARALLEL_REQUEST = 4 

 param.PACKET_SIZE = 1000 

 param.TIMEOUT_FOR_REQUEST = 3600000 

 mysql.connection = SODA_MYSQL 

 mysql.catalog = sodadb 

 mysql.user = soda 

 mysql.password = soda 

MultiFetchThread: Implements the application logic for a data operation. It retrieves the 

TABLE_NAME from the RequestDocument, reads out the table data and creates a new 

WebRowSetDocument. It propagates the final WebRowSetDocument in the 

pipelining mode to the defined endpoints. The thread splits the WebRowSetDocument 

into packets with a specified number of rows defined in param.PACKET_SIZE property. 

Each packet is sent in an incrementally increasing packetId, this ensures the correct 

ordering of the packets at the receiver’s side.  

 run 

Performs the fetching operation of the operation. 

 throws MissingParameterException 

Thrown, if the request parameter TABLE_NAME is not specified in the 

RequestDocument. 

 throws InvalidTableNameException 

Thrown, if the TABLE_NAME is a null string. 

 throws TableNotFoundException 

Thrown, if the TABLE_NAME is not found in the database shema. 

 throws SQLException 

Thrown, if the given SQL statement fails. 



  SODA | 25 

Figure 14: MultiFetch Service Classes 



  SODA | 26 

5.2.3 MultiSink Service 

The MultiSink Service (Figure 15) collects the data from multiple pipelines, which can have 

multiple pipes, and stores it to be fetched by a client. The x in Figure 15 illustrates this 

behaviour. 

 

Figure 15: MultiSink Service 

See Figure 16 for the class diagram of the following classes. 

MultiSinkService: Web Service enabled Java class that implements the IMyCapability 

(see [4] for a detailed class description) interface and has among others these methods 

implemented: 

 getRB 

Overloads the abstract method getRB of the BaseWSResourceCapability 

class (see [4] for a detailed class description) by returning the MultiSinkService 

ResourceBundle. 

 doPerform 

Performs an incoming request, which is sent as an org.w3c.dom.Element and 

specified as RequestDocument. 

o Case 1: If the request arrived the first time this class creates a new 

MultiSinkThread instance and starts this thread using the 

OperatorThreadController (see [4] for a detailed class description). 

o Case 2: If the request and its ReqId and SubReqId are known (has arrived 

at least once before) and the created thread is still running it skips the request. 

MultiSinkService.properties: Contains the following parameters: 

 param.TYPE = STORAGE  

 param.SUBTYPE = XML-MULTISINK 

 param.QUANTITY = FULL 

 param.PROPAGATION = EAGER 

 param.PROPAGATION_MODE = SYNC 



  SODA | 27 

 param.PARALLELIZATION = NONE 

 param.SNAPSHOT = ON 

 param.NUMBER_OF_PARALLEL_REQUEST = 10 

 param.TIMEOUT_FOR_REQUEST = 3600000 

MultiSinkThread: The MultiSinkThread can be specified to store the 

WebRowSetDocuments received by the input channels as an XML file in the local file 

system. If it is not necessary to store the XML file, only the rows are counted and this 

count is saved to the local file system. 

 run 

Performs the store operation. 



  SODA | 28 

Figure 16: MultiSink Service Classes 



  SODA | 29 

5.2.4 MultiRelay Service 

The MultiRelay Service (Figure 17) collects data from multiple services and concatenates this 

data. It adds data in the ordering of the pipelines and their pipes. The x in Figure 17 illustrates 

this behaviour. 

 

Figure 17: MultiRelay Service 

See Figure 18 for the class diagram of the following classes. 

MultiRelayService: Web Service enabled Java class that implements the IMyCapability 

(see [4] for a detailed class description) interface and has among others these methods 

implemented: 

 getRB 

Overloads the abstract method getRB of the BaseWSResourceCapability 

class (see [4] for a detailed class description), by returning the 

MultiRelayService ResourceBundle. 

 doPerform 

Performs an incoming request, which is sent as an org.w3c.dom.Element and 

specified as RequestDocument. 

o Case 1: If the request arrived the first time, this class creates a new 

MultiRelayThread instance and starts this thread using the 

OperatorThreadController (see [4] for a detailed class description). 

o Case 2: If the request and its ReqId and SubReqId are known (has arrived 

at least once before) and the created thread is still running, it skips the request. 

o Case 3: If the request has already arrived and the result is available, it 

propagates the result (ResponesDocument) again to all URIs listed in the 

OutputTo parts of the RequestDocument. 

MultiRelayService.properties: Contains the following parameters: 

 param.TYPE = JOIN  



  SODA | 30 

 param.SUBTYPE = MULTIRELAY 

 param.QUANTITY = PACKETS 

 param.PROPAGATION = EAGER 

 param.PROPAGATION_MODE = SYNC 

 param.PARALLELIZATION = NONE 

 param.SNAPSHOT = ON 

 param.PACKET_SIZE = 1000 

 param.NUMBER_OF_PARALLEL_REQUEST = 10 

 param.TIMEOUT_FOR_REQUEST = 3600000 

MultiRelayThread: It combines the WebRowSetDocuments received by the input 

pipelines. The data is added to the output in the ordering of the pipelines. When enough 

data is combined to fill a packet, this packet is propagated in a new 

ResponseDocument (containing the WebRowSetDocument). This is done till all data 

has arrived on all pipelines. 



  SODA | 31 

Figure 18: MultiRelay Service Classes 

  



  SODA | 32 

5.2.5 QuickSort Service 

The QuickSort Service (Figure 19) implements the famous quick sort algorithm. All data has 

to be present for the QuickSort Service to begin its work. 

 

Figure 19: QuickSort Service 

See Figure 20 for the class diagram of the QuickSort Service. For a detailed description refer 

to the thesis of Beran and Habel [4]. 

 

Figure 20: QuickSort Service Classes 

  



  SODA | 33 

5.2.6 ParallelBinaryMergeSort Service 

This service retrieves two sorted input streams and merges them to one sorted output stream. 

As the first parts of data arrive at the two input channels, the ParallelBinaryMergeSort Service 

(Figure 21) begins its work to compare the two streams and merge them to one sorted output 

stream. 

 

Figure 21: ParallelBinaryMergeSort Service 

See Figure 22 for the class diagram of the following classes. 

PBMSortService: Web Service enabled Java class that implements the IMyCapability 

(see [4] for a detailed class description) interface and has among others these methods 

implemented: 

 getRB 

Overloads the abstract method getRB of the BaseWSResourceCapability 

class (see [4] for a detailed class description), by returning the PBMSortService 

ResourceBundle. 

 doPerform 

Performs an incoming request, which is sent as an org.w3c.dom.Element and 

specified as RequestDocument. 

o Case 1: If the request arrived the first time this class creates a new 

PBMSortThread instance and starts this thread using the 

OperatorThreadController (see [4] for a detailed class description). 

o Case 2: If the request and its ReqId and SubReqId are known (has arrived 

at least once before) and the created thread is still running it skips the request. 

o Case 3: If the request has already arrived and the result is available it 

propagates the result (ResponesDocument) again to all URIs listed in the 

OutputTo parts of the RequestDocument. 

  



  SODA | 34 

PBMSortService.properties: Contains the following parameters: 

 param.TYPE = SORT  

 param.SUBTYPE = PBMSORT 

 param.QUANTITY = PACKETS 

 param.PROPAGATION = EAGER 

 param.PROPAGATION_MODE = SYNC 

 param.PARALLELIZATION = INTER 

 param.SNAPSHOT = ON 

 param.NUMBER_OF_PARALLEL_REQUEST = 10 

 param.PACKET_SIZE = 500 

 param.TIMEOUT_FOR_REQUEST = 3600000 

PBMSortThread: Implements the application logic for the parallel binary merge sort 

operation described in section 3.1. The execution starts when at least one of the two input 

channels contains some data. The algorithm then continuously merges data from the first 

channel with data from the second channel. When enough data is merged to fill a packet, 

this packet is propagated in a new ResponseDocument (containing the 

WebRowSetDocument). This is done until all data has arrived at the two input channels. 

 run 

Performs the merging operation of the sorting algorithm. 

 throws MissingParameterException 

Thrown, if there is no parameter ATTRIBUTE specified in the RequestDocument. 

 throws MissingColumnNameException 

Thrown, if there is a column definition in the Metadata part that does not contain a 

column name. 

 throws ColumnNotFoundException 

Thrown, if one specified column cannot be found in the Metadata part. 



  SODA | 35 

Figure 22: ParallelBinaryMergeSort Service Classes 

  



  SODA | 36 

5.2.7 BitonicSort Service 

The BitonicSort Service (Figure 23) implements the Bitonic Sorter, it has two input pipelines 

and two output pipelines. 

 

Figure 23: BitonicSort Service 

See Figure 24 for the class diagram of the following classes. 

BitonicSortService: Web Service enabled Java class that implements the IMyCapability 

(see [4] for a detailed class description) interface and has among others these methods 

implemented: 

 getRB 

Overloads the abstract method getRB of the BaseWSResourceCapability 

class (see [4] for a detailed class description), by returning the 

BitonicSortService ResourceBundle. 

 doPerform 

Performs an incoming request, which is sent as an org.w3c.dom.Element and 

specified as RequestDocument. 

o Case 1: If the request arrived the first time this class creates a new 

BitonicSortThread instance and starts this thread using the 

OperatorThreadController (see [4] for a detailed class description). 

o Case 2: If the request and its ReqId and SubReqId are known (has arrived 

at least once before) and the created thread is still running it skips the request. 

o Case 3: If the request has already arrived and the result is available it 

propagates the result (ResponesDocument) again to all URIs listed in the 

OutputTo parts of the RequestDocument. 

BitonicSortService.properties: Contains the following parameters: 

 param.TYPE = SORT  

 param.SUBTYPE = BITONICSORT 



  SODA | 37 

 param.QUANTITY = PACKETS 

 param.PROPAGATION = EAGER 

 param.PROPAGATION_MODE = SYNC 

 param.PARALLELIZATION = INTER 

 param.SNAPSHOT = ON 

 param.NUMBER_OF_PARALLEL_REQUEST = 20 

 param.PACKET_SIZE = 1000 

 param.TIMEOUT_FOR_REQUEST = 3600000 

BitonicSortThread: Implements the application logic for the bitonic sort operation described 

in section 3.2. The execution starts when the whole data has arrived at the two input 

channels. It combines the data from both inputs and checks the MASK information it gets. 

If the MASK is -1 it just splits the data into two parts and propagates two new 

ResponseDocuments (containing the WebRowSetDocuments). In case of 0 or 1 it 

sorts the data with the quick sort algorithm, if the MASK is 0 with ascending order 

otherwise with descending order. After that the data is split into two halves and each half is 

propagated as a new ResponseDocuments (containing the sorted 

WebRowSetDocuments). 

 run 

Performs the MASK decisions of the sorting algorithm. 

 quickSortMultiple 

Performs the multi-level quick sorting algorithm, which compares and sorts on the 

attributes on the next level if the current attributes are equal. 

 swap 

Swaps two rows in a data document. 

 throws MissingParameterException 

Thrown, if there is no parameter ATTRIBUTE specified in the RequestDocument. 

 throws MissingColumnNameException 

Thrown, if there is a column definition in the Metadata part that does not contain a 

column name. 

 throws ColumnNotFoundException 

Thrown, if one specified column cannot be found in the Metadata part. 



  SODA | 38 

Figure 24: BitonicSort Service Classes 



  SODA | 39 

5.2.8 NestedLoopJoin Service 

The NestedLoopJoin Service (Figure 25) implements the nested loop join algorithm described 

in section 4.1. 

 

Figure 25: NestedLoopJoin Service 

See Figure 26 for the class diagram of the NestedLoopJoin Service. For a detailed description 

refer to the thesis of Beran and Habel [4]. 

 

Figure 26: NestedLoopJoin Service Classes 

  



  SODA | 40 

5.2.9 MergeJoin Service 

The MergeJoin Service (Figure 27) implements the merge join algorithm described in section 

4.2. 

 

Figure 27: MergeJoin Service 

See Figure 28 for the class diagram of the MergeJoin Service. For a detailed description refer 

to the thesis of Beran and Habel [4]. 

 

Figure 28: MergeJoin Service Classes 

  



  SODA | 41 

5.2.10 HashJoin Service 

The HashJoin Service (Figure 29) implements the hash join algorithm described in section 

4.3. 

 

Figure 29: HashJoin Service 

See Figure 30 for the class diagram of the HashJoin Service. For a detailed description refer 

to the thesis of Beran and Habel [4]. 



  SODA | 42 

Figure 30: HashJoin Service Classes 



  SODA | 43 

5.3 Sort Operation Workflows 

The sort algorithms described in section 3 had to be implemented as Web services, which are 

described in section 4. To uses these services in SODA, workflows had to be implemented, 

which will be described for the use of two nodes. 

5.3.1 Parallel Binary Merge Sort 

The theory how the Parallel Binary Merge Sort operates is described in section 3.1. The 

algorithm is implemented and split into services and an execution tree is build. The four 

phases of the algorithm named prepare, suboptimal, optimal and post optimal phase are 

therefore implemented in different services (see Figure 31). 

The MultiFetch Service implements the prepare phase, where the data is fetched from a 

persistent storage and equally distributed to the participating nodes. This service fetches data 

from a MySQL database and splits the input data stream into two outputs. 

The QuickSort Service is required to support the suboptimal phase where the data has to be 

presorted before the actual merging can take place. All data has to be present for the 

QuickSort Service to begin its work. 

The ParallelBinaryMergeSort Service is the main service which retrieves two sorted input 

streams and merges them to one sorted output stream. As soon as the first data parts arrive at 

the two inputs the ParallelBinaryMergeSort Service can begin its work to compare the two 

streams and merge them to one sorted output stream. Compared to the theory part the service 

implements the optimal and suboptimal phase. 

The MultiSink Service collects the data and stores it to be fetched by a client.  

Workflow 

The execution tree seen in Figure 31 uses the services explained earlier and is an optimized 

sample workflow for the execution on two machines. 



  SODA | 44 

 

Figure 31: Parallel Binary Merge Sort Query Execution Tree 

At the bottom of the tree there are two MultiFetch Services, one on each node. These services 

collect the data from the MySQL database they are connected to, and split it up into two 

output stream of the same size. Since there are two services which split their data in halves, 

one output stream of each service is delivered to the other node. Therefore the data is equally 

distributed to all participating QuickSort nodes. 

In the next step the QuickSort Services fetch the input from the MultiFetch Services and sorts 

this input data. This step is done in parallel on each node. Because of the assembly of the 

machines used, which are at least dual core processors, the two QuickSort Services can also 

run parallel on one node. So the four existing QuickSort Services run in parallel. 

After the sorting is done the optimal phase of the Parallel Binary Merge Sort begins by 

merging the presorted input streams. The ParallelBinaryMergeSort Services can begin with 



  SODA | 45 

the work when data is available at the two input pipes. When the parallel execution of the 

ParallelBinaryMergeSort Services is finished the suboptimal phase begins. In this phase only 

one node can be used to merge the input streams, but as mentioned before it can begin with its 

work when there is data at the two input lanes available. 

The MultiSink Service is used to collect the data and store it for the client. 

5.3.2 Bitonic Sort 

How the Bitonic Sort algorithm works in theory is described in section 3.2. The algorithm is 

implemented and split into services and an execution tree is built (see Figure 32). 

The MultiFetch Service fetches data from a MySQL database and splits its input data stream 

into two output data streams. 

The BitonicSort Service retrieves the data from the MultiFetch Service. According to its 

MASK information (the MASK can be -1, 0 or 1), it decides if it should sort the input (in case 

of 0 and 1) and then distribute it, or leaves the data untouched and passes it to the next service 

(in case of -1). 

The MultiSink service collects the data from the last BitonicSort Services and merges them in 

the right order. 

Workflow 

The execution tree seen in Figure 32 uses the services explained earlier and is an optimized 

sample workflow for the execution on two machines. 



  SODA | 46 

 

Figure 32: Bitonic Sort Query Execution Tree 

At the bottom of the tree there are two MultiFetch Services, one on each node. These services 

collect the data from the MySQL database they are connected to, and split it up into two 

output stream of the same size. Since there are two services which split their data in halves, 

one output stream of each service is delivered to the other node. Therefore the data is equally 

distributed to all participating BitonicSort nodes. 

In the next step the BitonicSort Services begin with their work. Starting with a MASK of  

(-1, -1) the two services pass the result to the next service stage. The next service on the right 



  SODA | 47 

path has 1 as MASK information so it sorts the input, splits it and passes the lower part to the 

right output pipeline and the higher part to the left output pipeline. All remaining services 

have 0 as there MASK information, so they sort the input, split it up and pass the lower part to 

the left output execution path and the higher part to the right output execution path. 

The MultiSink Service collects the data from the last BitonicSort Services. It has to merge the 

input pipelines from index 0 to 3 in the exact order because otherwise the sorting would not 

be correct. 

5.4 Join Operation Workflows 

For the join algorithms described in section 4 to work in SODA, workflows that consist of 

services had to be implemented. All workflows will be described for the use of two nodes. 

5.4.1 Nested Loop Join 

How the nested loop join algorithm works in theory is described in section 4.1. The algorithm 

is implemented and split into services and an execution tree is built (see Figure 33). 

The MultiFetch Services fetches data from a MySQL database. 

The NestedLoopJoin Service retrieves the data of relation R and T from the MultiFetch 

Services and performs the join on them together. 

The MultiSink Service collects the data from both of the NestedLoopJoin Services and 

merges them together. 

Workflow 

The execution tree seen in Figure 33 uses the services explained earlier and is an optimized 

sample workflow for the execution on two machines. 



  SODA | 48 

 

Figure 33: Nested Loop Join Query Execution Tree 

At the bottom of the tree there are two MultiFetch Services on the left side and one on the 

right side. The MultiFetch with two outputs fetches relation R which is smaller than T and 

splits it into two parts. The other two MultiFetch Services fetch the same relation T from local 

MySQL databases on each node. 

Each of the NestedLoopJoin Services retrieves the half of the relation R and relation T as 

input. Since T is smaller it is used as the inner loop assignment and is sequentially read. 

The MultiSink Service collects the data from the two NestedLoopJoin Services and merges 

the input pipelines. 

5.4.2 Sort Merge Join with Parallel Binary Merge Sort 

How the sort merge join algorithm works in theory is described in section 4.2. The algorithm 

is implemented and split into services and an execution tree is built (see Figure 34). 

The MultiFetch Services fetches data from a MySQL database and spits it into two output 

pipelines. 

The QuickSort Services sort the relations on the join attribute and distribute them to the 

ParallelBinaryMergeSort Service. 



  SODA | 49 

The ParallelBinaryMergeSort Service sorts the input streams on the join attribute. 

The MergeJoin Service joins the presorted inputs on the join attribute. 

The MultiSink Service collects the data from the MergeJoin Service. 

Workflow 

The execution tree seen in Figure 34 uses the services explained earlier and is an optimized 

sample workflow for the execution on two machines. 

 

Figure 34: Sort Merge Join with Merge Sort Query Execution Tree 

At the bottom of the tree there are two MultiFetch Services that fetch relation R and T and 

split it into two parts. 

The QuickSort Services on both sides sort the two relations on the join attribute as a 

preparation for the following ParallelBinaryMergeSort Service. 



  SODA | 50 

The ParallelBinaryMergeSort Service then merges and sorts the two input streams from the 

QuickSort Service. 

The MergeJoin Service retrieves the sorted relations R and T as input and joins them to the 

output relation. 

The MultiSink Service collects the data from the MergeJoin Service. 

5.4.3 Sort Merge Join with Bitonic Sort 

How the Sort Merge Join algorithm works in theory is described in section 4.2. The algorithm 

is implemented and split into services and an execution tree is built (see Figure 35). 

The MultiFetch Services fetches data from a MySQL database and spits it into four output 

streams. 

The BitonicSort Service retrieves the data from the MultiFetch Service. It decides according 

to the MASK information (the MASK can be -1, 0 or 1), if it should sort the input (in case of 0 

and 1) and then distribute it or, if the MASK is -1, it leaves the data untouched and passes it to 

the next service. 

The MultiRelay Service collects the data from the last BitonicSort Services, merges it in the 

right order and distributes the result to the MergeJoin Service. 

The MergeJoin Service joins the presorted inputs on the join attribute. 

The MultiSink Service collects the data from the MergeJoin Service. 

Workflow 

The execution tree seen in Figure 35 uses the services explained earlier and is an optimized 

sample workflow for the execution on two machines. 



  SODA | 51 

 

Figure 35: Sort Merge Join with Bitonic Sort Query Execution Tree 



  SODA | 52 

At the bottom of the tree there are two MultiFetch Services that fetch relation R and T and 

split it into four parts. 

In the next step the BitonicSort Services begin with their work. Starting with a MASK of  

(-1, -1) the two services pass the result to the next service stage. The next service on the right 

path has 1 as MASK information, so it sorts the input, splits it and passes the lower part to the 

right output pipeline and the higher part to the left output pipeline. All remaining services 

have 0 as there MASK information, so they sort the input, split it up and pass the lower part to 

the left output execution path and the higher part to the right output execution path. 

The MultiRelay Services collect the data from the last BitonicSort Services. They have to 

merge the input pipelines from index 0 to 3 in the exact order because otherwise the sorting 

would not be correct. After that it distributes the output to the MergeJoin Service. 

The MergeJoin service retrieves the sorted relations R and T as input and joins them to the 

output relation. 

The MultiSink Service collects the data from the MergeJoin Service. 

5.4.4 Hash Join 

How the Hash Join algorithm works in theory is described in section 4.3. The algorithm is 

implemented and split into services and an execution tree is built (see Figure 36). 

The MultiFetch Services fetches data from a MySQL database. 

The HashJoin service retrieves the data of relation R and T from the MultiFetch Services and 

performs the join on them. 

The MultiSink Service collects the data from both of the HashJoin Services and merges them. 

Workflow 

The execution tree seen in Figure 36 uses the services explained earlier and is an optimized 

sample workflow for the execution on two machines. 



  SODA | 53 

 

Figure 36: Hash Join Query Execution Tree 

At the bottom of the tree there are two MultiFetch Services on the left side and one on the 

right side. The MultiFetch Service with two outputs fetches relation R which is smaller than T 

and splits it into two parts. The other two MultiFetch Services fetch the same relation T from 

local MySQL databases on each node. 

Each of the HashJoin Services retrieves the half of the relation R and relation T as input. Since 

T is smaller it is used as the prehashed relation and is sequentially read. 

The MultiSink Service collects the data from the two HashJoin Services and merges the input 

pipelines. 



  Benchmark | 54 

6. Benchmark 

For benchmarking, database relations have to be produced. The Transaction Processing 

Performance Council, also known as TPC [14], provides a suite of benchmarks to test 

databases according their performance, measured in Transactions/Time interval. Because of 

the general purpose the TPC-H benchmark is designed, it was used as basis for the testing. 

The TPC-H tools consist of a database generator, which creates the SQL statements for 

inserting the tuples, and the query generator for testing the performance of the database. The 

overall database layout is illustrated in Figure 37. 

 

Figure 37: TPC-H Database Shema 

In the case of testing the SODA operators only sorts and joins are used, therefore the database 

layout and the benchmark queries were adapted to their needs. Hence only the PART and 



  Benchmark | 55 

PARTSUPP tables are used. The sort operators query the PART table and the join operators 

join the PART with the PARTSUPP table. 

For the normal TPH-H benchmark [14] a scale factor (SF) of 1 means that there is 1GB of 

data in all tables. Because only two of the tables are used, the SF has changed. Table 1 shows 

how the data is distributed among the tables. 

Table Name Cardinality (in rows) Length (in bytes) of 
Typical1 Row 

Typical1 Table Size (in 
MB) 

SUPPLIER 10.000 15 2 

PART 200.000 155 30 

PARTSUPP 800.000 144 110 

CUSTOMER 150.000 179 26 

ORDERS 1.500.000 104 149 

LINEITEM3 6.001.215 112 641 

NATION1 25 128 < 1 

REGION1 5 124 < 1 

Total 8.661.245  956 
1
 Typical lengths and sizes given here are examples, not requirements, of what could result from an 

implementation (sizes do not include storage/access overheads). 
2
 The cardinality of LINEITEM table is not a strict multiple of SF since the number of lineitems in 

an order is chosen at random with an average of four. 
3
 Fixed cardinality: does not scale with SF. 

Table 1: Estimated Database Size 

With the data from Table 1 as fundament the new SF, if just the PART and PARTSUPP tables 

are used, will be approximately 7,6 for 1GB of data. 

Some sample rows from the PART table can be seen in Table 2. 

  



  Benchmark | 56 

C
O

M
M

EN
T 

ly
. s

ly
ly

 ir
o

n
i 

la
r 

ac
co

u
n

ts
 

am
o

 

eg
u

la
r 

d
ep

o
si

ts
 

h
ag

 

p
 f

u
ri

o
u

sl
y 

r 

w
ak

e 
ca

re
fu

lly
 

R
ET

A
IL

P
R

IC
E 

9
0

1
.0

0
 

9
0

2
.0

0
 

9
0

3
.0

0
 

9
0

4
.0

0
 

9
0

5
.0

0
 

C
O

N
TA

IN
ER

 

JU
M

B
O

 P
K

G
 

LG
 C

A
SE

 

W
R

A
P

 C
A

SE
 

M
ED

 D
R

U
M

 

SM
 P

K
G

 

SI
ZE

 7
 

1
 

2
1

 

1
4

 

1
5

 

TY
P

E 

P
R

O
M

O
 

B
U

R
N

IS
H

ED
 

C
O

P
P

ER
 

LA
R

G
E 

B
R

U
SH

ED
 

B
R

A
SS

 

ST
A

N
D

A
R

D
 

P
O

LI
SH

ED
 

B
R

A
SS

 

SM
A

LL
 

P
LA

TE
D

 B
R

A
SS

 

ST
A

N
D

A
R

D
 

P
O

LI
SH

ED
 T

IN
 

B
R

A
N

D
 

B
ra

n
d

#1
3

 

B
ra

n
d

#1
3

 

B
ra

n
d

#3
2

 

 B
ra

n
d

#4
2

 

B
ra

n
d

#3
4

 

M
FG

R
 

M
an

u
fa

ct
u

re
r#

1
 

M
an

u
fa

ct
u

re
r#

1
 

M
an

u
fa

ct
u

re
r#

4
 

M
an

u
fa

ct
u

re
r#

3
 

M
an

u
fa

ct
u

re
r#

3
 

N
A

M
E 

go
ld

en
ro

d
 la

ce
 

sp
ri

n
g 

p
er

u
 

p
o

w
d

er
 

b
lu

sh
 r

o
sy

 
m

et
al

lic
 le

m
o

n
 

n
av

aj
o

 

d
ar

k 
gr

ee
n

 
an

ti
q

u
e 

p
u

ff
 

w
h

ea
t 

ch
o

co
la

te
 

m
et

al
lic

 s
m

o
ke

 
gh

o
st

 d
ra

b
 

fo
re

st
 b

lu
sh

 

ch
if

fo
n

 t
h

is
tl

e 
ch

o
co

la
te

 

P
A

R
TK

EY
 1 2 3 4 5 

Table 2: Sample PART Table 

  



  Benchmark | 57 

Some sample rows from the PARTSUPP table can be seen in Table 3. 

PARTKEY SUPPKEY AVAILQTY SUPPLYCOST COMMENT 

1 2 3325 771.64 , even theodolites. regular, final theodolites 
eat after the carefully pending foxes. furiously 
regular deposits sleep slyly. carefully bold 
realms above the ironic dependencies haggle 
careful 

1 2502 8076 993.49 ven ideas. quickly even packages print. 
pending multipliers must have to are fluff 

1 5002 3956 337.09 after the fluffily ironic deposits? blithely 
special dependencies integrate furiously even 
excuses. blithely silent theodolites could have 
to haggle pending, express requests; fu 

2 3 8895 378.49 nic accounts. final accounts sleep furiously 
about the ironic, bold packages. regular, 
regular accounts 

2 2503 4969 915.27 ptotes. quickly pending dependencies 
integrate furiously. fluffily ironic ideas impress 
blithely above the express accounts. furiously 
even epitaphs need to wak 

2 5003 8539 438.37 blithely bold ideas. furiously stealthy packages 
sleep fluffily. slyly special deposits snooze 
furiously carefully regular accounts. regular 
deposits according to the accounts nag 
carefully slyl 

Table 3: Sample PARTSUPP Table 

6.1 Environment 

The environment was predefined by the infrastructure and the circumstances of the 

knowledge and business engineering institute. There are three servers to run the tests and to 

install the necessary software. 

To simulate the different network speeds in a heterogeneous environment the test nodes have 

to be configured with a limited bandwidth. Class-Based Queueing [15] delivers this demand. 

A class for the network device has to be configured which can limit the throughput of the 

network device. To ease the configuration and the specially to manage more configurations 

the cbq.init script [16] is used. 

6.1.1 Servers 

Processor Name Operating System RAM HDD 

Single Dual Xenon (@ 2.0 GHz) chachacha1 Scientific Linux 5.0 3 GB 260 GB 

Double Dual Xenon (@ 2.0 GHz) chachacha2 Scientific Linux 5.0 3 GB 260 GB 

Single Quad Xenon (@ 2.0 GHz) chachacha3 Scientific Linux 5.0 3 GB 260 GB 

Table 4: List of Servers 



  Benchmark | 58 

A virtualisation software is used because of the flexibility it provides in setting up different 

environments. 

The first step was to install VMware Server 1.0.4 [18] on the three machines. The program 

installs a network bride so that the guest operating system can access the outside world. There 

are four options a guest can access the network. The bridged networking, network address 

translations (NAT), host-only networking and no network connection. 

Bridged 

Bridged Network enforces the guest to directly access the network. The guest needs to have 

an own IP-address and can be contacted by other devices on the network. 

NAT 

Network Address Translation enables the guest to access the hosts dial-up or external network 

connection. The guest cannot be contacted by the outside world. The guest does not get an IP-

address on the external network. 

Host-only 

The guest is connected to the host’s virtual network. This is used if the guest is not allowed to 

access the external network. 

For our purpose bridged networking is the best choice, because the nodes need to 

communicate a lot and have to be accessible from the outside. 

  



  Benchmark | 59 

6.2 Analysis 

For all six algorithms a speedup and a scale-up analysis, as described by DeWitt and Gray in 

[17], has been performed. 

Speedup describes the effect of processing time by adding nodes to the system. Therefore the 

speedup is defined by the ratio of the time used to run a job, with a fixed number of tuples, on 

a small system and the time used to run a job, with the same amount of tuples, on a larger 

system. 

This can be described by the following formula: 

 

Scale-up explains the scalability of an algorithm. It determines if an increasing problem size 

can be compensated by increasing resources like adding nodes. 

This behaviour can be expressed with the following formula: 

 

Moreover every algorithm has been analyzed with a naive way of distributing the services in 

the heterogeneous environment, in which every node has a different network bandwidth, and 

using a smart way of distribution. This distribution is mainly based on the analysis of each 

algorithm and the amount of data it has to send and receive. Therefore services with higher 

demand on data are placed on nodes with higher network bandwidth, but there is also the 

processing power and the I/O performance of a node which is taken into account. The smart 

way will be called “modified” in the corresponding text and figures. For this analysis all 

nodes have the same processing power and I/O performance. 

  



  Benchmark | 60 

6.2.1 Parallel Binary Merge Sort – speedup 

The Parallel Binary Merge Sort speedup analysis in Figure 38 shows that the speedup is - as 

expected - good but it could be even better. The modified workflow performs better because it 

uses a workflow that takes advantage of the heterogeneous environment in a way, that a data 

intensive node which has to send and receive more data than other nodes possesses a higher 

network bandwidth. The speed for one node is the same because no network is used and the 

algorithm is the same, therefore the speed has to be as well the same. 

 

 

Figure 38: Parallel Binary Merge Sort – speedup 

  

0,00

0,50

1,00

1,50

2,00

2,50

1 2 4 8

sp
e

e
d

nodes

Merge Sort
(10000 tuples) speedup

Merge Sort

Merge Sort - modified



  Benchmark | 61 

6.2.2 Parallel Binary Merge Sort – scale-up 

The Parallel Binary Merge Sort scale-up analysis in Figure 39 shows that the scale-up for 

both workflows is more or less the same, but the modified workflow is a little bit faster. The 

modified workflow performs better because it uses a workflow that takes advantage of the 

heterogeneous environment in a way, that a data intensive node which has to send and receive 

more data than other nodes possesses a better network bandwidth. 

 

 

Figure 39: Parallel Binary Merge Sort – scale-up 

  

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

5000 10000

sc
al

e

tuples

Merge Sort
scale-up

Merge Sort

Merge Sort - modified



  Benchmark | 62 

6.2.3 Block Bitonic Sort – speedup 

The Block Bitonic Sort speedup analysis in Figure 40 shows that the modified workflow 

performs better but all two are even worse. This is because the Block Bitonic Sort uses eight 

services with two nodes, 64 services with four nodes and 512 services with eight nodes, 

therefore the network cost is far too high to increase the overall performance. From one to 

two nodes a speedup can be identified, this is because one node uses eight services like two 

nodes. Therefore the processing power will be doubled, but on the other side the network 

slows this down again, therefore a speedup of about 1,68 can be achieved. With the naive 

workflow the network is taken much more into account so the speedup is only about 1,18. 

 

 

Figure 40: Block Bitonic Sort – speedup 

  

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

1 2 4 8

sp
e

e
d

nodes

Bitonic Sort
(10000 tuples) speedup

Bitonic Sort

Bitonic Sort - modified



  Benchmark | 63 

6.2.4 Block Bitonic Sort – scale-up 

Taken into account that the speedup of the Bock Bitonic Sort is really poor it is no surprise 

that the scale-up shown in Figure 41 is also really bad. But here the modified workflow is also 

a little bit more performing. 

 

 

Figure 41: Block Bitonic Sort – scale-up 

  

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

5000 10000

sc
al

e

tuples

BitonicSort
scale-up

Bitonic Sort

Bitonic Sort - modified



  Benchmark | 64 

6.2.5 Nested Loop Join – speedup 

The Nested Loop Join speedup analysis shown in Figure 42 points out that the speedup is very 

good for two and four nodes, but later on (using eight nodes) the speedup breaks down. This 

excellent speedup, which is unexpected in theory, could resemble from the fact that the nodes 

performing the smaller relation have to wait until the nodes which are processing the larger 

relation are finished. With more nodes processing the larger relation the overall time gets 

significantly lesser. Again the modified workflow is by far better and takes advantage of the 

distribution of services, also  the naive workflow is not bad at all. 

 

 

Figure 42: Nested Loop Join – speedup 

  

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

1 2 4 8

sp
e

e
d

nodes

Nested Loop Join
(6000 tuples) speedup

Nested Loop Join

Nested Loop Join - modified



  Benchmark | 65 

6.2.6 Nested Loop Join – scale-up 

The Nested Loop Join scale-up analysis in Figure 43 shows that the scale-up for both 

workflows is not bad at all, but the naive workflow is a bit faster, which is a unexpected 

because the speedup is better for the modified workflow. This could come from the fact that 

the speedup from four to eight nodes is better in the naïve workflow. The modified workflow 

performs better because it uses a workflow that takes advantage of the heterogeneous 

environment in a way, that a data intensive node which has to send and receive more data than 

other nodes possesses a better network bandwidth. 

 

 

Figure 43: Nested Loop Join – scale-up 

  

0

0,5

1

1,5

2

2,5

1 2

sc
al

e

tuples

Nested Loop Join
scale-up

Nested Loop Join

Nested Loop Join - modified



  Benchmark | 66 

6.2.7 Merge Join with Parallel Binary Merge Sort – speedup 

The Merge Join with Parallel Binary Merge Sort speedup analysis shown in Figure 44 reveals 

that the modified workflow is better than the naive one. The nearly same speed of one node 

compared to two nodes is not surprising, because the service count, the workflow execution 

tree of both workflows and the relation sizes that have to be processed are equal. Regarding to 

the fact that the network costs are not present at one node the shape of this curve can be 

explained. 

 

 

Figure 44: Merge Join with Merge Sort – speedup 

  

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

1 2 4 8

sp
e

e
d

nodes

Merge Join with Merge Sort 
(6000 tuples)  speedup

Merge Join with Merge Sort

Merge Join with Merge Sort - modified



  Benchmark | 67 

6.2.8 Merge Join with Parallel Binary Merge Sort – scale-up 

The Merge Join with Parallel Binary Merge Sort scale-up analysis shown in Figure 45 pointed 

out that the scale-up for both workflows is good, but the modified workflow is a little bit 

better. The modified workflow performs better because it uses a workflow that takes 

advantage of the heterogeneous environment in a way, that a data intensive node which has to 

send and receive more data than other nodes possesses a better network bandwidth. 

 

 

Figure 45: Merge Join with Merge Sort – scale-up 

  

0

0,5

1

1,5

2

2,5

3

3,5

3000 6000

sc
al

e

tuples

MergeJoin with MergeSort 
scale-up

Merge Join with Merge Sort

Merge Join with Merge Sort - modified



  Benchmark | 68 

6.2.9 Merge Join with Block Bitonic Sort – speedup 

The Merge Join with Block Bitonic Sort speedup analysis shown in Figure 46 illustrates that 

the speedup is not as good as expected. For the modified workflow the speed is a bit faster 

which uses a workflow that takes advantage of the heterogeneous environment in a way that a 

node which has to send and receive more data has a better network bandwidth. This workflow 

uses 16 services for one, two and four nodes and 128 services for eight nodes so it is a little 

surprise that the speedup of the modified workflow is that good. The worse speedup of the 

naive workflow can be explained by the higher network usage and the resulting delays. 

 

 

Figure 46: Merge Join with Block Bitonic Sort – speedup 

  

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

2,00

1 2 4 8

sp
e

e
d

nodes

Merge Join with Bitonic Sort
(6000 tuples) speedup

Merge Join with Bitonic Sort

Merge Join with Bitonic Sort - modified



  Benchmark | 69 

6.2.10 Merge Join with Block Bitonic Sort – scale-up 

The scale up analysis of the Merge Join with Block Bitonic Sort shown in Figure 47 is not 

good for the naive workflow, a bit better for the modified workflow but also not intoxicating. 

This is really no surprise because the measured speedup for this paradigm is also a very low. 

 

 

Figure 47: Merge Join with Block Bitonic Sort – scale-up 

  

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

3000 6000

sc
al

e

tuples

Merge Join with Bitonic Sort
scale-up

Merge Join with Bitonic Sort

Merge Join with Bitonic Sort - modified



  Benchmark | 70 

6.2.11 Hash Join – speedup 

The Hash Join speedup analysis shown in Figure 48 performs very well for the modified 

workflow but on the other side worse for the naive workflow. The cause of this behavior 

could be the fact that HashJoin Services spawn worker threads and these send many small 

packets to the MultiFetch Service, so with two, four and eight nodes the count of the worker 

threads is multiplied and the network is overloaded, therefore the naive workflow is much 

slower. The good speedup from one to two nodes is because the two workflow execution trees 

are the same. 

 

 

Figure 48: Hash Join – speedup 

  

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

1 2 4 8

sp
e

e
d

nodes

Hash Join
(12000 tuples) speedup

Hash Join

Hash Join - modified



  Benchmark | 71 

6.2.12 Hash Join – scale-up 

The Hash Join scale-up analysis shown in Figure 49 illustrates that the scale-up for both 

workflows is not bad at all, but the naive workflow is a bit faster, which is unexpected 

because the speedup is better for the modified workflow. This could come from the fact that 

the speedup from four to eight nodes is better in the naïve workflow. The modified workflow 

performs better because it uses a workflow that takes advantage of the heterogeneous 

environment in a way, that a data intensive node which has to send and receive more data than 

other nodes possesses a better network bandwidth. 

 

 

Figure 49: Hash Join – scale-up 

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

6000 12000

sc
al

e

tuples

Hash Join 
scale-up

Hash Join

Hash Join - modified



  Lessons learned and Future Outlook | 72 

7. Lessons learned and Future Outlook 

First off all benchmarking is not fun. The benchmarks took ages and the reruns to get good 

results were annoying. But as everything good thing, it takes a long time. 

Another point is that the virtualization used might not be the best way to analyse and build a 

heterogeneous environment, because of the time spend in configuring the virtual machines, a 

distributed application simulator could be uses like OptorSim [19], GridSim [20] or SimGrid 

[21]. Also the performance of the virtual machines does not reach the performance of real 

machines, but for the available resources it was the best choice. 

So with these results, which are far from perfect, the theory of Mach and Schikuta [1], that a 

smart way to use nodes in a heterogeneous environment is a key to better performance, can be 

proven. Therefore it can be said that the network bandwidth of a node in a heterogeneous 

environment is more important than the processing power or the I/O performance. This is 

especially true if the network speed of two nodes is very different. 

There are operations that benefit more from a smarter workflow than other. This can be taken 

to advantage by a dynamic system that can decide which operation to use when it knows the 

environment and it has to run the workflow. So this could be a smart broker aware of the 

properties like CPU, RAM, disc I/O performance, network bandwidth and other parameters 

which it uses to create a workflow best fitting to the execution environment. 

The identification of deadlocks, where one service in the middle of a workflow execution tree 

is not responding or is endlessly processing, could be better in SODA. So there should be 

some kind of mechanism to watch the progress of the workflow, because in SODA only the 

data endpoint service is queried for completion. 

Another point would be a dynamic adaption of the packet size for different network loads. To 

go a step further also the amount of data and how many receiving services are there, should be 

concerned for a dynamic adjustment of the packet size. With all these factors taken into 

account a better network performance could be achieved. 

For this thesis static workflow execution trees were used. It would be better to dynamically 

use nodes if they have free CPU time or there network bandwidth has changed. Also a nice 

idea would be to run two key services, which are important for fast execution of the 

workflow, in parallel, if there are enough resources left, and if one is finished the other is told 

to stop and maybe begin with another task. 



  Lessons learned and Future Outlook | 73 

As mentioned in section 5 a main part of SODA is Muse. Sadly Muse is not in active 

development any more according to the Muse mailing list. So SODA has to be migrated to 

another Web service platform especially using another library. Maybe it would be wise to 

take the experience gained from SODA and start a whole new project, so any design flaws of 

SOAD could be found in the design state of the new project, and also new ideas which 

otherwise be hard to implement in SODA as it is today can be integrated easier. 

With this said a future work could be the design of a middleware like SODA but with more 

dynamic aspects like awareness of its surrounding environment and planning the workflow 

execution tree according to these parameters in a runtime aware manner. 



  Indices | 74 

Indices 

List of Figures 

Figure 1: Service-Oriented Environment Schema ..................................................................... 4 

Figure 2: Prepare and Suboptimal Phase .................................................................................... 6 

Figure 3: Optimal and Postoptimal Phase .................................................................................. 7 

Figure 4: Block Bitonic Sort ...................................................................................................... 8 

Figure 5: Perfect Shuffle ............................................................................................................ 9 

Figure 6: Broker and Execution Tree ....................................................................................... 15 

Figure 7: Distribution of Subrequests ...................................................................................... 16 

Figure 8: Operator Services at Work ........................................................................................ 16 

Figure 9: SODA Distributed Architecture ............................................................................... 17 

Figure 10: Schematic Pipeline Diagram ................................................................................... 18 

Figure 11: Logging Service ...................................................................................................... 19 

Figure 12: LoggingService Classes .......................................................................................... 21 

Figure 13: MultiFetch Service .................................................................................................. 22 

Figure 14: MultiFetch Service Classes ..................................................................................... 25 

Figure 15: MultiSink Service ................................................................................................... 26 

Figure 16: MultiSink Service Classes ...................................................................................... 28 

Figure 17: MultiRelayService .................................................................................................. 29 

Figure 18: MultiRelay Service Classes .................................................................................... 31 

Figure 19: QuickSort Service ................................................................................................... 32 

Figure 20: QuickSort Service Classes ...................................................................................... 32 

Figure 21: ParallelBinaryMergeSort Service ........................................................................... 33 

Figure 22: ParallelBinaryMergeSort Service Classes .............................................................. 35 

Figure 23: BitonicSort Service ................................................................................................. 36 

Figure 24: BitonicSort Service Classes .................................................................................... 38 

Figure 25: NestedLoopJoin Service ......................................................................................... 39 

Figure 26: NestedLoopJoin Service Classes ............................................................................ 39 

Figure 27: MergeJoin Service .................................................................................................. 40 

Figure 28: MergeJoin Service Classes ..................................................................................... 40 

Figure 29: HashJoin Service .................................................................................................... 41 

Figure 30: HashJoin Service Classes ....................................................................................... 42 

Figure 31: Parallel Binary Merge Sort Query Execution Tree ................................................. 44 



  Indices | 75 

Figure 32: Bitonic Sort Query Execution Tree ........................................................................ 46 

Figure 33: Nested Loop Join Query Execution Tree ................................................................ 48 

Figure 34: Sort Merge Join with Merge Sort Query Execution Tree ....................................... 49 

Figure 35: Sort Merge Join with Bitonic Sort Query Execution Tree ..................................... 51 

Figure 36: Hash Join Query Execution Tree ............................................................................ 53 

Figure 37: TPC-H Database Shema ......................................................................................... 54 

Figure 38: Parallel Binary Merge Sort – speedup .................................................................... 60 

Figure 39: Parallel Binary Merge Sort – scale-up .................................................................... 61 

Figure 40: Block Bitonic Sort – speedup ................................................................................. 62 

Figure 41: Block Bitonic Sort – scale-up ................................................................................. 63 

Figure 42: Nested Loop Join – speedup ................................................................................... 64 

Figure 43: Nested Loop Join – scale-up ................................................................................... 65 

Figure 44: Merge Join with Merge Sort – speedup .................................................................. 66 

Figure 45: Merge Join with Merge Sort – scale-up .................................................................. 67 

Figure 46: Merge Join with Block Bitonic Sort – speedup ...................................................... 68 

Figure 47: Merge Join with Block Bitonic Sort – scale-up ...................................................... 69 

Figure 48: Hash Join – speedup ............................................................................................... 70 

Figure 49: Hash Join – scale-up ............................................................................................... 71 

 

List of Listings 

Listing 1: Perfect Schuffle Algorithm ...................................................................................... 10 

Listing 2: Hash Stage-2 Algorithm .......................................................................................... 13 

 

List of Tables 

Table 1: Estimated Database Size ............................................................................................ 55 

Table 2: Sample PART Table .................................................................................................. 56 

Table 3: Sample PARTSUPP Table ......................................................................................... 57 

Table 4: List of Servers ............................................................................................................ 57 

 



  References | 76 

References 

[1] Erich Schikuta, Werner Mach, “Parallel Database Sort and Join Operations Revisited on 

Grids”. High Performance Computation Conference (HPCC) Houston, Texas, 2007. 

[2] K. E. Batcher, “Sorting networks and their applications,” Proc. of the 1968 Spring Joint 

Computer Conference (Atlantic City, NJ, Apr. 30-May 2), vol. 32, 1968. 

[3] H. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans. Computing, vol. 

C-20, no. 2, Februar 1971. 

[4] Peter Paul Beran, Gernot Habel, “Soda (Service Oriented Database Architecture)”, 

diploma thesis, 2007 

[5] Java: “Developer Resources for Java Technology”. http://java.sun.com/, [last access 

2008-04-15] 

[6] Tomcat: “Apache Tomcat”. http://tomcat.apache.org/, [last access 2008-04-15] 

[7] Apache Ant: “Apache Ant - Welcome”. http://ant.apache.org/, [last access 2008-04-15] 

[8] Apache Muse: “Apache Muse - A Java-based implementation of WSRF 1.2, WSN 1.3, 

and WSDM 1.1.”. http://ws.apache.org/muse/, [last access 2008-04-15] 

[9] AXIS2: “Apache AXIS2”. http://ws.apache.org/axis2/, [last access 2008-04-15] 

[10] XMLBeans: “Welcome to XMLBeans”. http://xmlbeans.apache.org/, [last access 2008-

04-15] 

[11] MySQL: “MySQL :: The world's most popular open source database”. 

http://www.mysql.com/, [last access 2008-04-15] 

[12] EHCache: “Ehcache”. http://ehcache.sourceforge.net/, [last access 2008-04-15] 

[13] P. Valduriez and G. Gardarin, “Join and semijoin algorithms for a multiprocessor 

database machine,” ACM Trans. Database Syst., vol. 9, no. 1, pp. 133–161, 1984. 

[14] TPC: “Transaction Processing Performance Council”. http://www.tpc.org/, [last access 

2008-04-30] 

[15] Floyd, S., and Jacobson, V., “Link-sharing and Resource Management Models for 

Packet Networks” IEEE/ACM Transactions on Networking, Vol. 3 No. 4, pp. 365-386, 

August 1995. 



  References | 77 

[16] cbq.init: “SourceForge.net: CBQ.init traffic management script”. 

http://sourceforge.net/projects/cbqinit/, [last access 2008-06-09] 

[17] D. DeWitt and J. Gray, “Parallel database systems: the future of high performance 

database systems”, Commun. ACM, vol. 35, no.6, pp.85-98, 1992. 

[18] VMware Server: “VMware Server, Virtual Server Consolidation, Free Virtualization - 

VMware”. http://www.vmware.com/products/server/, [last access 2008-06-20] 

[19] OptorSim: “SourceForge.net: OptorSim”. http://sourceforge.net/projects/optorsim/, [last 

access 2008-07-10] 

[20] GridSim: “The GRIDS Lab and the Gridbus Project”. http://www.gridbus.org/gridsim/, 

[last access 2008-07-10] 

[21] SimGrid: “Welcome to the SimGrid project!”. http://simgrid.gforge.inria.fr/, [last access 

2008-07-10] 


	Introduction
	Motivation
	Acknowledgements
	Definition of Terms

	Service-Oriented Environment
	Sort Operations
	Parallel Binary Merge Sort
	Block Bitonic Sort

	Join Operations
	Nested Loop Join
	Sort Merge Join
	Hash Join

	SODA
	SODA Environment
	SODA Services
	Logging Service
	MultiFetch Service
	MultiSink Service
	MultiRelay Service
	QuickSort Service
	ParallelBinaryMergeSort Service
	BitonicSort Service
	NestedLoopJoin Service
	MergeJoin Service
	HashJoin Service

	Sort Operation Workflows
	Parallel Binary Merge Sort
	Bitonic Sort

	Join Operation Workflows
	Nested Loop Join
	Sort Merge Join with Parallel Binary Merge Sort
	Sort Merge Join with Bitonic Sort
	Hash Join


	Benchmark
	Environment
	Servers

	Analysis
	Parallel Binary Merge Sort – speedup
	Parallel Binary Merge Sort – scale-up
	Block Bitonic Sort – speedup
	Block Bitonic Sort – scale-up
	Nested Loop Join – speedup
	Nested Loop Join – scale-up
	Merge Join with Parallel Binary Merge Sort – speedup
	Merge Join with Parallel Binary Merge Sort – scale-up
	Merge Join with Block Bitonic Sort – speedup
	Merge Join with Block Bitonic Sort – scale-up
	Hash Join – speedup
	Hash Join – scale-up


	Lessons learned and Future Outlook
	Indices
	List of Figures
	List of Listings
	List of Tables

	References

