
Data Models, Graph Analysis,
and

Information Retrieval
from

Biological Data

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur/in

im Rahmen des Studiums

Software Engineering & Internet Computing

ausgeführt von

Raul Fechete
Matrikelnummer 0225871

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung:
Ao.Univ.-Prof. Dr.techn. Rudolf Freund
Univ.Doz. Dr. Bernd Mayer

Wien, 20.02.2009 _______________________ ______________________
(Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Technische Universität Wien
A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43/(0)1/58801-0 http://www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Technical University of Vienna

Data Models, Graph Analysis,

and

Information Retrieval

from

Biological Data

A Master Thesis Submitted to the

Faculty of Computer Sciences

in Candidacy for the Degree of

Diplom Ingenieur (Dipl.-Ing.)

by

Raul Fechete

supervised by

Ao.Univ.-Prof. Dr.techn. Rudolf Freund

Univ.Doz. Dr. Bernd Mayer

Vienna

February 20, 2009

Abstract

With the dawn of the omics revolution a new paradigm was born in molecular

biology: the extraction of causal dependencies from descriptive data, building the

foundation of a new discipline - computational systems biology. With it, a shift

of perspectives took place, pushing the research focus away from data gathering,

and towards information mining and assessment.

This thesis introduces a possible approach to information extraction from a

biological context. By combining different omics data types, we construct a molec-

ular dependency network which we then use as basis for our novel information

mining strategy.

A well-structured graphical representation of functional dependencies between

genes, mRNAs and proteins can significantly improve the understanding of the

cell functioning and, by extension, optimize hypothesis generation for laboratory

experiments, with the ultimate goal of disease-associated biomarker and drug

target discovery.

We present a three-stage method involving data warehousing, scientific infor-

mation consolidation, as well as analysis and visualization. Finally, we investigate

the method by running tests using specific datasets from B-cell lymphoma and

renal transplant ischemia reperfusion injury, and elaborate on the obtained re-

sults.

Zusammenfassung

Mit dem Anbruch des Omics-Zeitalters wird in der Molekularbiologie ein neues

Paradigma geboren, die Extraktion von kausalen Zusammenhängen aus deskrip-

tiven Daten, das, in weiterer Folge, als Grundkonzept für ein neues Forschungs-

gebiet dient - die Computational Systems Biology. Zur selben Zeit findet ein Per-

spektivenwechsel statt, der den Forschungsschwerpunkt von der Datensammlung

auf die Datenauswertung verschiebt.

Diese Diplomarbeit stellt einen neuen Ansatz zur Wissensgenerierung vor.

Durch die Kombination verschiedener Omics Datentypen bauen wir ein moleku-

lares Abhängigkeitsnetzwerk auf, das als Basis für unser neues Wissensableitungs-

verfahren dient.

Eine gut strukturierte grafische Darstellung der Abhängigkeiten zwischen Ge-

nen, Transkripten und Proteinen kann das Verständniss der zugrunde liegenden

Prozessen wesentlich verbessern und, in weiterer Folge, die Hypothesengener-

ierung für Laborexperimenten optimieren.

Wir stellen ein dreistufiges Verfahren vor, das aus Data Warehousing, Infor-

mationskonsolidierung und -analyse besteht. Abschließend untersuchen wir unsere

Methode mit Datensätzen aus der B-Zell Lymphom- und ischämischer Reperfu-

sionsschadensforschung.

Acknowledgments

I would like to thank Dr. Bernd Mayer for making this thesis possible with

both his expert advice and financial support.

My full gratitude also goes to all my emergentec colleagues for their invaluable

help and the great working environment.

i

Contents

Chapter 1 Introduction 1

1.1 General Background . 1

1.1.1 Systems Biology / Omics 1

1.1.2 The Cell . 3

1.2 Thesis Overview . 6

1.2.1 Prologue: Descriptive Data vs. Causal Dependencies . . . 6

1.2.2 Scope and Goals . 6

1.2.3 Method Outline . 7

Chapter 2 Biological Data and Standards 12

2.1 Biological Data . 12

2.1.1 Identity Mapping . 12

2.1.2 Protein Interactions . 16

2.1.3 Functional Pathways . 17

2.1.4 Biological Ontologies . 17

2.1.5 Subcellular Location . 18

2.1.6 Gene Expression Profiles 19

2.1.7 Transcription Factors . 19

2.2 Pathway Representation Standards 19

2.2.1 SBML . 20

2.2.2 BioPAX . 21

2.2.3 PSI-MI . 22

2.2.4 Summary . 22

Chapter 3 Molecular Networks 24

3.1 Overview . 24

3.2 An Existing Approach: STRING 24

3.3 Building a Human Specific Protein Network 26

3.4 Graph Characterization . 28

Chapter 4 The Database 31

4.1 Rationale . 31

4.2 Hibernate . 34

4.2.1 Basic Techniques . 35

4.2.2 Advanced Techniques . 35

4.3 Data Model . 38

4.3.1 Core Identities . 39

4.3.2 Context Information . 41

4.3.3 Biomart . 47

4.4 Database Maintenance . 50

Chapter 5 Data Analysis in Biological Context 52

5.1 Biological Neighborhood Selection: Rationale 52

5.2 Neighborhood Selection Algorithms 56

5.2.1 Single Maximum Value Paths 56

5.2.2 Variant Multiple Maximum Value Paths 58

5.2.3 Heuristic Spanning Trees 60

5.3 Case Studies . 61

5.3.1 B-Cell Lymphoma . 61

5.3.2 Ischemic Reperfusion Injury 62

5.4 Results . 62

5.4.1 Single Maximum Value Paths 62

5.4.2 Variant Multiple Maximum Value Paths 64

5.4.3 Heuristic Spanning Trees 65

Chapter 6 Conclusions and Outlook 72

iii

List of Figures

1.1 The omics types . 2

1.2 The protein biosynthesis . 4

2.1 A typical biological hyperstructure 15

2.2 An excerpt from the Gene Ontology 18

2.3 An SBML example . 21

2.4 A PSI-MI example . 21

3.1 An interaction network example 25

4.1 A trivial class diagram example 32

4.2 Relational table structure for classes in figure 4.1 33

4.3 The core identities . 40

4.4 The interaction information . 42

4.5 The pathway information . 43

4.6 The location information . 44

4.7 The gene expression information 45

4.8 The ontology information . 46

4.9 The transcription factor information 47

4.10 The consolidated information . 48

4.11 The dependency graph . 49

4.12 A screenshot from the database maintenance program 51

5.1 Symbols/edges - cutoff correlation 53

5.2 Reference graph at a 1.4 cutoff . 54

5.3 MVP-computed subgraph for the consolidated BCL dataset in a

1.3 cutoff . 55

5.4 Consolidated BCL dataset S-MVP length distribution 67

5.5 Ischemic reperfusion injury dataset S-MVP length distribution . . 68

5.6 The number of found symbols per cutoff 69

5.7 Consolidated BCL dataset S-MVP length distribution (2) 69

5.8 NoS/NoP - delta correlation in V-MVP 70

5.9 Possible heuristic spanning trees for the IRI dataset 71

iv

List of Tables

2.1 Important biological entity accessions 13

2.2 The data sources accessions . 14

2.3 A BCL2-associated hyperstructure example 15

v

Listings

4.1 Java code for classes in figure 4.1 32

vi

List of Algorithms

5.1 The Floyd-Warshall algorithm . 57

5.2 The Dijkstra algorithm . 58

5.3 A dynamic programming approach to the V-MVP 60

5.4 A heuristic approach to spanning trees 66

1

Chapter 1

INTRODUCTION

1.1 General Background

This first chapter aims at getting the reader acquainted with the basic concepts

behind systems biology and omics. In order to better outline the goals of this

thesis, we will also provide the reader with a brief overview of cell protein biosyn-

thesis as well as of the concept of biomarkers. Finally, we will state the goals and

scope of the thesis and shortly describe the methods employed therein.

1.1.1 Systems Biology / Omics

While the first attempts at studying life under all its aspects followed a reduction-

ist approach, systems biology was born as a life science only after the academic

community realized that a biological system is in fact more than just the sum of

its components.

As a result, the notion of emergence [1] was introduced in this context to

describe the properties of a biological entity that only become obvious when

viewing the latter as an integrated whole. One of the main goals of systems

biology thereby, is to analyze the emergent properties by pursuing an integrative

approach [2, 3].

In [4], Goel et al. provide a qualified comparison between the standard and

the - later introduced - computational systems biology: while the former was born

as a paradigm shift from the reductionist approach, the latter arose to tackle the

problem of the ever increasing amount of available data and provide new analysis

means including, among others, information discovery through data and literature

mining, and experimental testing of hypotheses generated through mathematical

and computational modeling.

We can identify two types of models: qualitative and quantitative. While the

former describe a cellular status quo based on experimental results, the latter, like

the E-Cell [5], aim at allowing precise, whole cell simulations at the molecular level

[6]. Due to the extreme complexity of the targeted systems, however, they remain

mostly in the area of toy systems. For more information on qualitative models,

please see [7].

The computational systems biology attempts to create working models of en-

2

���������	

���	��������	

�����������	

��������	

��������	

�������	

��������	

��������	

��������������
�����������

����������� �����������

���������� 	����	

��������	 �����������	

�����������	

� ��

����

�������
������	

���	�������
!�����

� " �

�
�

�

"

�

�

#

�

�

$

% &

�

�
&

���

Figure 1.1: The omics types [11]

tire biological systems [8, 9] by, for example, processing omics data acquired

through three areas of expertise [10]:

1. high-throughput interrogation technologies,

2. increasingly comprehensive databases of biomolecules and their interactions,

3. computational predictions of molecular function and interaction.

We have, however, yet to provide the reader with a definition for omics.

The term itself is a generic name for an entire class of experiments focusing on

different aspects of cellular biology. Figure 1.1 provides an overview of the main

omics data types, as presented in [11] by Joyce and Palsson.

The work described in this thesis is settled mainly in five of the listed fields.

The basic category is genomics, concentrating on the study of the human genome

and the identification of genes. The analysis of the gene expression is handled

by transcriptomics. Proteomics is focused on determining the protein levels in

the cell, while localizomics provides information on their subcellular location.

Interactomics aims at studying the interactions between DNA, RNA, proteins

and other molecules and the resulting consequences.

3

For a better understanding of this area of study, we will attempt to follow the

path of the genetic information next, beginning from the deoxyribonucleic acid

(DNA) and reaching as far as its manifestation as cell phenotype.

1.1.2 The Cell

When we say cell, we almost always refer to the fundamental unity of life. The cell

can be prokaryotic or eukaryotic. It can be as small as one micrometer in diameter

or as large as one meter in length. It can be epithelial, muscular, nervous, etc.

It can have a fixed position inside a tissue or it can be mobile, flowing with the

bloodstream. It can be benign or malign (if part of a tumor). The list could go

on endlessly, emphasizing the variety of the entity we call cell.

A careful reader will notice that all properties previously mentioned are part

of the cell’s phenotype. Since both the structural and functional blueprints of the

cell are encoded in the DNA, the following question arises: how does descrip-

tive information stored in the genome come to manifest itself as an observable

property?

From DNA to Phenotype

In spite of a certain residual risk of oversimplifying the issue, it is, however, still

safe to assume that the majority of the phenotype traits emerges from the inter-

action networks forming between genes, transcripts, proteins and other molecules

present in the cell.

The road from DNA to proteins, on the other hand, as presented for the first

time 1958 in [12] by Francis Crick, is the central dogma of the molecular biology. It

describes the information transfer from DNA to RNA, and from RNA to proteins

[13, 14]. We will have a closer look at this transformation process next.

The basic building blocks of the deoxyribonucleic acid are the four nucleotides:

adenine (A), guanine (G), cytosine (C) and thymine (T). A single DNA strand is a

nucleotide polymer built along a sugar-phosphate backbone. The DNA molecule

consists of two antiparallel DNA strands held together by hydrogen bonds, ro-

tating around an imaginary axis and forming the well-known double helix. The

genetic information is encoded in the nucleotide sequence.

The protein synthesis takes place in two phases. The first one is the transcrip-

tion and the second one is the translation.

During transcription, the RNA-polymerase [16] enzyme binds to certain sec-

tions of the DNA molecule and begins moving downstream (3′ → 5′), successively

unwinding the two polynucleotide chains and producing a complementary copy

of the main strand. In some cases, the binding of the polymerase is facilitated by

proteins called transcription factors.

4

Figure 1.2: The protein biosynthesis [15]

The resulting primary transcript is then spliced and reassembled yielding the

final messenger RNA (mRNA). During the reassembly process, sections of the

transcribed mRNA are being removed (the introns) while the remaining ones

(the exons) are being joined back to a shorter RNA strand.

In the translation phase, amino acids are being linked together in the ribosome,

in an orderly fashion, according to the mRNA transcript, thereby producing the

polypeptide chain of the final protein.

Having introduced the players we can now put them into context. We learned

that systems biology strives to fully understand the processes taking place in

the cell and that the information necessary to achieve this goal is won largely

through different omics techniques. We have also seen that the cell phenotype

and functionality emerge, among others, from the interactions between various

cell molecules, like RNA, proteins, and so on.

The interactions themselves, however, are not isolated but aggregate to entire

functional pathways responsible for cell proliferation, cell death, etc. Often, a

molecule is involved in more than one process, stripping its mere identification

in the cell of any additional information on the underlying mechanisms. In some

cases, however, measuring an under- respectively over-expression of a molecule is

considered to be clear evidence for a certain cellular process. This type of actors

are referred to as biomarkers.

5

Cellular processes can also be disease-associated, with their corresponding

biomarkers playing a special role in the clinical diagnosis of the illness. In the

next section we will have a closer look at this type of molecules.

Disease-Associated Biomarkers

Before proceeding with an informal definition of a disease-associated biomarker

we will provide the reader with a brief description of a gene expression experiment.

In the previous section we have seen that during transcription and transla-

tion mRNA and proteins are being synthesized. For a better understanding of

the cell’s functionality, it is also of high informational value, how much of each

certain mRNA type is available in the cell at a certain moment. Gene expression

experiments are quantitative methods developed specifically to assess this kind of

information.

Since a direct quantification of the protein levels poses certain technical dif-

ficulties, the experiments are limited to measuring the transcript concentrations,

which are considered to be in direct correlation with the former due to the mRNA

→ protein translation.

Because of the extreme complexity of the biological processes taking place in

the cell, it is usually difficult to postulate a simple rule without likewise accepting

the risk of finding inconsistencies in a number of cases. Nevertheless, abstracting

beyond and in spite of possible biological exceptions or experiment-induced noise,

we assume that healthy cells of a given type, without being exposed to different

artificial external stimuli, exhibit similar gene expression patterns regardless of

the sample source.

Based on the previous considerations, gene expression experiments are used

to determine statistically significant differences in the concentration values of

proteins between samples with different background, like, for example, diseased

and healthy tissues.

Diseases can often be traced at the gene expression level, with the deviating

mRNA concentrations being either a cause or a result of the illness. In an ideal

environment, cells of the same population type, affected by the same disease would

also exhibit similar gene expression patterns. This is, however, rarely the case

in real life. Different experiment conditions, strong experiment noise, or simply,

poor understanding of the cellular processes, all work against a clearly defined

expression pattern-disease association.

In light of these considerations, a biomarker associated with a certain disease

is a molecule present in the cell, a deviation in the concentration of which has

been generally accepted as an indicator for the presence of that disease, on the

basis of a verified biological explanation. Examples for biomarkers can be found

in [17] for chronic kidney disease.

6

As we will see in the next section, biomarkers and specifically their prediction

is also one of the central topics handled in this thesis.

1.2 Thesis Overview

This section attempts to provide the reader with an overview of the thesis and

the motivation behind it, as well as a quick glance at the employed techniques.

1.2.1 Prologue: Descriptive Data vs. Causal Dependencies

During the last decade, the science community has witnessed a growing informa-

tional avalanche originating in the plethora of available techniques for experimen-

tal biological data retrieval. The trend was boosted once again in 2001 by the

publication of the sequenced human genome [18] and has been increasing ever

since with results acquired through high throughput approaches like the afore-

mentioned gene expression assays, protein-protein or protein-DNA interactions

analysis and mass spectrometry experiments coupled with two-dimensional gel

electrophoresis [19].

One major disadvantage of the gathered data is the fact that it is purely de-

scriptive. While tackling the scientific question of what, it provides no answer

to the functional why. Both are fundamental for the understanding of the cell’s

functionality, but the leading role is still taken up by the need to comprehend the

causal dependencies linking the actors (proteins, genes, etc.). Let us consider the

specific case of a disease study at molecular level. A gene expression experiment

may provide us with a list of differentially regulated genes as potential therapeu-

tical targets, but without a thorough understanding of the functional connections

between them, no drugs can be developed.

This brings us to the goals of this thesis.

1.2.2 Scope and Goals

The main goal of this thesis is to improve methodologies for information gain

from existing biological data. We can identify several areas of interest.

The major focus is dedicated to the deduction of causal dependencies at the

molecular level. Given the descriptive data obtained through various omics exper-

iments as input, the developed application shall provide assistance mechanisms

for predicting functional connections between genes, mRNA and proteins. In this

context, the goal of the system is the extraction of emergent biological information

from different, interlinked omics fields.

A specific use case of the system in the medical field and a subsequent goal is

the identification of disease-associated genes and biomarkers. The newly acquired

7

knowledge is then to be used in the prediction of therapeutical targets for medical

drug development.

By combining data from different omics experiments, our software constructs

molecular networks and visualizes them as graphs. A well-structured graphical

representation of a molecular interaction network can significantly improve the

understanding of the cell functioning and, by extension, optimize hypothesis gen-

eration for laboratory experiments.

1.2.3 Method Outline

We will now attempt to provide the reader with an overview of the methods

employed to achieve the stated goals.

From a technical point of view, the constructed system represents a compre-

hensive framework for biological data integration and analysis. We can identify

three main sections.

Data warehousing

The first stage of the analysis workflow comprises the data integration process.

At the base of our system lies an extensive data warehouse, currently incorpo-

rating sections from over ten databases provided by renowned international bi-

ological research organizations, like the European Bioinformatics Institute (IPI,

Gene Ontology, IntAct, UniProt), the National Center for Biotechnology Informa-

tion (GenBank, RefSeq), the Ontario Cancer Institute and University of Toronto

(OPHID), the Kyoto Encyclopedia of Genes and Genomes (KEGG) and several

others.

To prevent any artificial biasing during the import phase, the data is stored

with the corresponding identifiers of the source databases, organized around a

global accession mapping provided by the International Protein Index of the Eu-

ropean Bioinformatics Institute.

The ease of accessibility and maintenance of the system is ensured by the

employment of an object-relational data mapping backed up by an associated

object persistence layer, in our case, Hibernate.

Scientific data consolidation

During the second phase, we consolidate the gathered information in four func-

tional categories, and calculate, for each individual pair of proteins, a dependency

score based on the data available for the two entities in each respective class. A

fifth category, the transcription factors has also been modeled, but will only be

used in the next version of the system. Please refer to section 4.3 for further

details.

8

We differentiate between the following informational classes:

• Protein interactions

In this section we gather information about experimentally confirmed or

computer predicted molecular interactions between the two actors.

• Functional pathways and biological ontologies

This category contains information on the two corresponding genes’ depen-

dency on the functional level, i.e., if the two entities both occur on the same

pathways or in the same ontology terms, etc.

• Subcellular location

The subcellular location section consolidates information on the presence of

the two proteins in the various cell components, like the nucleus, the golgi

apparatus, etc.

• Gene expression sheets

This section holds information on the expression of the two mRNAs across

different tissue types.

• Transcription factors

In this category we gather information about relationships between tran-

scription factors and the genes the expression of which they regulate.

The four values are then used as input parameters for a dependency function

asserting the relation strength between the two actors in the continuous interval

[−1, 2], from weakest (−1) to strongest (2).

Data analysis and visualization

In the third phase, we construct a complete dependency graph using the biological

entities (genes, proteins, etc.) as nodes and the relation strength values obtained

in the previous step as edge weights.

The new data representation form allows an intuitive display of the emergent

information. One possible analysis scenario, based on the rationale that nodes

bound by heavier edges share stronger functional dependencies, would be to apply

a layouting algorithm on the resulting graph that clusters nodes linked by heavier

edges closer together. In that way, we can provide visual feedback on proteins

and genes with a higher probability of working together in the cell.

Independently from the previous example, we can introduce the notion of

neighborhood of a biological entity, as a set of nodes and their interlinking edges

selected on the basis of a given criteria. The concept of neighborhood is also

9

the main tool used to achieve the goals stated in the previous section. Let us

consider a specific example. Given a list of genes, possibly determined in a gene

expression experiment, the typical use case would be to analyze their interactions

in the context of the calculated dependency graph. To achieve this, we define

three types of neighborhood selection criteria, each with its own rationale:

1. Single maximum value paths

Given a set of biological entities, i.e., a set of nodes in the graph, a trivial

approach to determining the dependency networks spanning between them

is to calculate the closure over the maximum value paths linking them.

Let eij be an edge between two arbitrary nodes i and j and ω(eij) its weight.

Let P (x, y) be the set of all possible paths between two given vertices x and

y and ω(p) the weight of an arbitrary path p from P (x, y), defined as follows:

ω(p) =
∑
eij∈p

ω(eij)

P (x, y) = { p | p = (exi1 , ei1i2 , .., ein−1in , einy)}

We define the maximum value path pmax between the given vertices x and

y as a path for which the following constraint holds:

pmax ∈ P (x, y) ∧ ω(pmax) ≥ ω(p), ∀p ∈ P (x, y)

Depending on the ratio of selected versus maximum possible edges in the

analyzed subgraph, we employ either the Dijkstra [20] or the Floyd War-

shall [21] algorithm for the calculation of the paths. To be able to apply a

shortest path algorithm to a maximum value path problem, we invert the

edge weights, i.e., we use 2−ω(eij) instead of the original relation strength.

2. Variant multiple maximum value paths

Since several different maximum value paths may exist between two vertices,

but both algorithms mentioned in the previous section can only identify one,

we must develop a technique that is able to handle multiple maximum value

paths as well.

Taking the issue one step further, it would be of great informational value,

from a biological point of view, to not only determine all the maximum

value paths but also the paths with an only marginally inferior score.

10

If we regard the maximum value path as an interlinked set of edges respect-

ing a weight constraint with a lower bound of δ · ω(pmax) for a δ of 1, we

can define the set of paths we are looking for as:

Pδ = { p | ω(p) ≥ δ · ω(pmax), p ∈ P (x, y) }, δ ∈ [0, 1]

In section 5.2.2 we will present an efficient algorithm for determining the δ-

variant maximum value paths based on Dijkstra’s algorithm and a reversed

bounded depth first search (RB-DFS).

3. Heuristic spanning trees

The path-techniques used to build the neighborhood of the selected vertices

in the previous sections are well suited for the analysis of the highest ranked

functional connections between the actors. Having made this statement, we

must also note the fact, that, on the other hand, both techniques ignore cer-

tain biological aspects of the network. The nodes situated on the δ-variant

paths between two vertices x and y can provide us with an explanation for

the dependency between the two, should such a dependency indeed exist.

While this is often the case, the data retrieved by these means may also

prove misleading if the two entities have no dependency at all.

To counter this effect, let us take a different approach into consideration.

Starting from the assumption that the calculated dependency graph is - as

far as the input data allows it - a correct mathematical representation of

the reality, it could prove beneficial from a biological point of view to let

the neighborhoods grow naturally, beginning from the set of input vertices

and evolving along the heaviest adjacent edges.

This new approach is basically the biological visualization of the maximum

spanning tree concept from computer science. Having dropped the path-

related connectivity constraint of the previous two approaches, this new

neighborhood evolution technique can yield various neighborhood topologies

and connectivities between the selected actors. We can identify two main

behavioral aspects:

• Hub proteins will develop star topologies, having selected several heavy

adjacent edges, while others, like members of signaling pathways, may

evolve into elongated components with a low average node degree.

• While entities with no functional interaction will remain separated in

disjoint connected components, the trees of related entities will even-

tually grow together, merging into a larger connected component.

11

The latter aspect imposes a certain difficulty on the problem solution since

standard maximum spanning tree approaches, like the well-known Kruskal

and Prim [22] algorithms only compute one maximum spanning tree per

graph. In our case, however, we need a separate tree for each of the selected

vertices.

In section 5.2.3 we will introduce a heuristic approach to this issue based

on the aforementioned Kruskal and Prim algorithms.

Chapter 5 is dedicated entirely to the implementation of the three neighbor-

hood expansion methods and the analysis of the B-cell lymphoma and IRI data

sets in the context of the dependency graph. It will also present results obtained

by each of the introduced techniques.

12

Chapter 2

BIOLOGICAL DATA AND STANDARDS

The second chapter aims to provide the reader with an overview of the data

that has been integrated in our framework, including the corresponding source

databases. In the end, we will describe three of the most important file formats

used for biological pathway data representation.

2.1 Biological Data

In the introduction to this thesis, we briefly outlined the biological information

we use to build the molecular dependency graph: protein interactions, functional

pathways, ontologies, subcellular location, gene expression and transcription fac-

tors. In this section we will elaborate on the respective data types, their source

and the mechanisms employed to link them together.

2.1.1 Identity Mapping

Since the dawn of modern biology, the vast amount of gathered experimental

data have forced researchers into developing various informational infrastructures.

Considering that many of the ad-hoc solutions evolved in parallel and/or with no

coordination between the developers, it is not surprising that different databases

emerged, each with its own type of information, constraints, identifiers, etc. A

side-effect of this development was that data was often stored redundantly, in-

consistently, or was simply omitted altogether.

With the rise of computational systems biology, the need occurred to aggregate

different data sources and thereby allow a more comprehensive knowledge mining.

In the context of this thesis, when we speak of information aggregation, we refer to

the process of merging data from different databases for each individual biological

entity (transcript, gene, protein, etc.).

The first obstacle on the path to achieving this goal is set by the different iden-

tifier associations. While, in the beginning, each database used its own identifiers,

nowadays, the accessions of several leading research institutions have established

themselves as de facto standards for this purpose. In spite of this development, it

is still often the case that the same biological entity is referred to with different

names in different databases, e.g., BCL2 and ENSG00000171791 both denote the

same apoptosis regulator.

13

Molecular level Accession Database Institution

Gene

Identifier ENSEMBL EMBL-EBI

Identifier Entrez NCBI

Symbol Entrez NCBI

Protein

Identifier IPI EMBL-EBI

Identifier UniProt SwissProt EMBL-EBI

Identifier UniProt TrEMBL EMBL-EBI

Identifier RefSeq Protein NCBI

Table 2.1: Important biological entity accessions

Table 2.1 provides an overview of the most important accession types, as re-

quired by our project. Please note that although each database assigns accessions

to all its stored biological entities (transcripts, genes, proteins, etc.) we are only

interested in the latter two.

On the gene level, we are interested in the identifiers provided by the EN-

SEMBL [23] database of the European Molecular Biology Laboratory (EMBL)

- European Bioinformatics Institute (EBI) [24] and the identifiers and symbols

provided by the Entrez [25] database of the National Center for Biotechnology

Information (NCBI).

On the protein level, we use the identifiers of the International Protein Index

(IPI) [26], the UniProt SwissProt [27, 28], and the UniProt TrEMBL [28], all

three provided by the EMBL-EBI. Further, we use the identifiers of the RefSeq

Protein [29] database provided by the NCBI.

All the information we integrate in our system is available for at least one

of the accession types previously mentioned. Table 2.2 provides an overview of

the imported databases, their maintaining organizations, the accessions they use

and the type of data they provide. We will present the databases themselves

in more detail in the course of the next sections. For now, this information is

intended only to better illustrate the problems one encounters when attempting

to consolidate data from different sources.

In order to tackle the problem of multiple identifiers per entity, we introduce

the concept of biological hyperstructure. A hyperstructure is the virtual represen-

tation of a physical entity. It holds all identifiers available for that entity grouped

by molecular level and accession type. Figure 2.1 depicts a typical hyperstructure

as implemented in the current version of our system.

The outer bubble represents the border of the structure. The first classification

is done by the molecular level. In the current version, we distinguish only between

the gene and the protein levels. This first differentiation provides us with a twofold

flexibility:

14

Source Institution Accession Data type

IntAct EMBL-EBI UniProt id.

Protein interactionsOPHID OCI-UT UniProt id.

BioGrid SLRI & UT NCBI gene sym.

KEGG Kanehisa Labs. NCBI gene id.
Functional pathways

PANTHER SRI Intl. UniProt id.

Gene Ontology GOC NCBI gene id. Biological ontologies

SwissProt UniProt UniProt id.
Subcellular location

Plasma P.P. HUPO IPI id.

BodyMap NCBI NCBI gene id. Gene expression

Internal EmergenTec ENSEMBL gene id. Transcription factors

Table 2.2: The data source accessions

1. Flexibility of usage: when working with hyperstructures we can transpar-

ently switch between the gene and protein layers, being able to dynamically

access the associated information.

2. Flexibility of expansion: we can also transparently add new layers to the

structure, for example, the transcript layer, without having to modify the

existing data.

Inside each layer we further differentiate between the various identifier types.

The gene accessions are split into NCBI gene symbols respectively identifiers and

ENSEMBL gene identifiers, while the proteins are split into IPI, RefSeq Protein,

SwissProt and TrEMBL identifiers.

The dark spots in figure 2.1 depict single accessions. The NCBI identifiers

and symbols always come in pairs - hence the one-on-one associations depicted

by the arrows. Our hyperstructure provides means to facilitate the retrieval of

this information at runtime.

The accessions outside the main bubble symbolize identifiers that have been

replaced by newer ones and that are therefore no longer in use. These depre-

cated names are not associated with a hyperstructure, but instead link to the

corresponding, currently valid accession. The decision to do so is based on the

rationale that a hyperstructure should always be up-to-date. On the other hand,

the reason for allowing each accession to manage its own history and not discard-

ing the deprecated names altogether, is to facilitate the integration of data that

is only being provided for older accessions.

The main purpose of the hyperstructure is to provide a mapping between the

identifiers of a biological entity, which will then act as basis for the information

consolidation. The information blocks depicted in figure 2.1 symbolize the data,

15

Hyperstructure

Proteins Genes

ENSEMBL

NCBI id.

NCBI sym.SwissProt

IPI

RefSeq

TrEMBL

History

History

Information

Information

Information

Information

Information

Figure 2.1: A typical biological hyperstructure

M. level Accession Primary History

Gene

ENSEMBL id. ENSG00000171791 -

NCBI id. 596 -

NCBI sym. BCL2 -

Protein

IPI id. IPI00020961 IPI00105268

SwissProt id. P10415 P10416, Q13842, Q16197

TrEMBL id. A9QXG9, Q96PA0 -

RefSeq id. NP 000624 -

Table 2.3: A BCL2-associated hyperstructure example

like protein interactions, etc., that is linked to a certain accession in a hyper-

structure. If certain information is provided only for a deprecated accession, our

system will automatically link it to the currently valid one.

In the context of this thesis, a hyperstructure is tied to a particular protein

sequence. This status quo has the side-effect that a protein name is present in

only one hyperstructure, whereas gene names may be linked to several structures,

provided they have different splice variants.

Table 2.3 shows an excerpt from a biological hyperstructure associated with

the aforementioned apoptosis regulator BCL2.

Having introduced the biological hyperstructures, we can now put them in

the context of the dependency graph. Since the information is consolidated on a

per-hyperstructure basis, it only stands to reason that we also use them as graph

16

nodes.

In the next sections we will have a closer look at the different information

types we aggregate, as well as their source databases.

2.1.2 Protein Interactions

By playing a key role in many of the cell’s biological functions, protein-protein

interactions are especially important for our molecular dependency graph. Pro-

teins can pass on signals from the cell exterior to the interior through a process

called signal transduction. They can transport other proteins from and into the

nucleus or they can modify them, e.g., through phosphorylation. Proteins can

facilitate cell division or can drive it into apoptosis, for example.

Due to the substantial diversity of the proteins’ structure, size and chemical

properties, several methods for interaction detection have been developed. While

some aim to demonstrate the interactions in a specific experimental setup, other

have a probabilistic approach, attempting to computationally predict them based

on the aforementioned protein properties.

Two of the most important experimental methods for protein interaction de-

termination are yeast-two-hybrid [30] and co-immunoprecipitation [31]. In the

former, each of the two examined proteins is attached to one half of a transcrip-

tion factor, for example, GAL4 in Saccharomyces cerevisiae. If the actors bind

each other, the transcription factor will be reconstructed, which will further result

in an expression of the reporter gene. In the latter technique, an antibody target-

ing a certain protein is used to pull the protein out of a solution together with its

associated complex. The result is then analyzed, i.e., the pulled-down proteins are

identified where possible. All members of the complex which have been detected

at significant levels are considered to have an interaction with the originally tar-

geted protein. Further experimental verification is, however, necessary to remove

the possibility of indirect binding.

We imported protein-protein interactions from the following databases:

• The IntAct [32] database of the EMBL-EBI contains information obtained

entirely through literature mining. The interactions are manually anno-

tated to a high level of detail, including, among others, the experimental

confirmations and interacting domains.

• The Online Predicted Human Interaction Database (OPHID) [33] of the

Ontario Cancer Institute from the University of Toronto is a collection of

annotated interactions provided by databases such as BIND [34], HPRD

[35], MIPS [36], MINT [37] and DIP [38], as well as predicted interactions

made from Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila

melanogaster and Mus musculus.

17

• The BioGrid [39] database of the Samuel Lunenfeld Research Institute and

the University of Toronto contains interactions derived from both high-

throughput and conventional focused studies, providing full annotation sup-

port for thirteen major model organism species.

2.1.3 Functional Pathways

The interactions we described in the previous section are rarely isolated events.

Usually, an interaction between two or more molecules will subsequently trigger

a second one, which, in turn, will trigger a third one, etc. thereby building en-

tire event cascades. Such sequences serve, in most cases, a well defined purpose

and are referred to as functional pathways. The apoptosis pathways, inducing

programmed cell death, are a well-known example.

Considering that pathways directly represent functional dependencies, they

are a core component of our dependency graph. The documented pathways,

however, are only a fragment of all existing dependencies in the cell and we

will, therefore, try to extend this knowledge by taking emergent information into

consideration, obtained through the integration of other data sources, like protein-

protein interactions, ontologies, subcellular location, and so on.

Sources for functional pathways are:

• The Kyoto Encyclopedia of Genes and Genomes (KEGG) [40] of Kanehisa

Laboratories provides, among others, the PATHWAY database containing a

collection of manually drawn pathway maps representing the knowledge sta-

tus quo on the molecular interaction and reaction networks for metabolism,

genetic information processing, environmental information processing, cel-

lular processes and human diseases.

• The Protein ANalysis THrough Evolutionary Relationships (PANTHER)

[41] classification system of SRI International is a collection of protein fami-

lies subdivided into functionally related subfamilies, using human expertise.

The subfamilies model the divergence of specific functions within protein

families, allowing more accurate association with function (ontology terms

and pathways).

2.1.4 Biological Ontologies

The goal of the Gene Ontology [42] classification, created and maintained by the

GO Consortium, is to produce a structured, precisely defined, common, controlled

vocabulary for describing the roles of genes and gene products in any organism.

The Gene Ontology is structured in three distinct organizational units:

• The biological process refers to a biological objective to which the gene or

gene product contributes, e.g., signal transduction.

18

all : all [251065 gene products]

GO:0003674 : molecular_function [163999 gene products]

GO:0005488 : binding [45802 gene products]

GO:0005515 : protein binding [24503 gene products]

GO:0045294 : alpha-catenin binding [10 gene products]
GO:0043532 : angiostatin binding [8 gene products]

GO:0034185 : apolipoprotein binding [14 gene products]

Figure 2.2: An excerpt from the Gene Ontology

• The molecular function refers to the biochemical activity of a gene product,

e.g., enzyme.

• The cellular component describes the subcellular location where a gene prod-

uct is active, e.g., ribosome.

Figure 2.2 provides an example from GO, depicting the first sub-terms of the

molecular function category.

Similar to the pathways, the ontology provides us with information on func-

tional dependencies between molecules, and is therefore an important factor in

the calculation of the graph edge weights.

2.1.5 Subcellular Location

In the previous sections, we argued that the existence of a direct interaction

between two gene products also indicates, with a high probability, the existence

of a functional dependency between these two. This reasoning strategy proves

flawed, however, if the two molecules only become active in different subcellular

components.

To counter this effect, we will evaluate the interactions in the context of the

actors’ subcellular location when calculating the edge weights. In order to do so,

we need location information on all graph nodes. We obtained such data from

the following sources:

• The SwissProt [28] database provides high quality, manually curated, both

experimentally obtained and computed protein-related information. Among

others, the database also provides information on the subcellular location

of the described proteins.

• WoLF PSORT [43] is an algorithm for protein subcellular location pre-

diction. Based on special properties of the analyzed protein’s amino acid

sequence, it computes a ten-valued output vector, indicating the probability

of the protein’s presence in ten different subcellular components.

19

• The Plasma Proteome Project (PPP) [44] of the Human Proteome Organ-

isation (HUPO) provides, among others, a list of proteins the presence of

which has been detected in plasma.

2.1.6 Gene Expression Profiles

Aside from the subcellular location, an important role in the dependency pre-

diction is also played by the genes’ expression within various tissue types. The

rationale is that molecules sharing a functional dependency have to be expressed

in the cell at the same time. Furthermore, since in most cases cells aggregate

forming tissues, it stands to reason that the same actors have to be expressed

across an entire cell population originating from the same tissue.

Information on genes’ expression across 32 human tissue types can be obtained

from the Gene Expression Omnibus dataset GSE7905 [45].

2.1.7 Transcription Factors

In the introduction to this thesis, during the description of the protein biosynthe-

sis, we briefly mentioned the transcription factors. By facilitating the binding of

the RNA-polymerase to the DNA, the transcription factors are directly responsi-

ble for a gene’s expression, a relation which is basically another form of functional

dependency.

The detailed description of a mechanism for in-silico prediction of transcription

factor binding site in the human genome can be found in [46]. The database con-

taining information obtained by the technique previously mentioned is generated

in-house.

2.2 Pathway Representation Standards

While certain biological data types such as gene expression and subcellular loca-

tion are relatively easy to handle, types like pathways and, generally, quantitative

models share an intrinsic complexity which makes them much more difficult to

store and transfer across different application platforms.

Furthermore, with the ever increasing amount of available biological data, the

need for a standardized information representation format became more and more

obvious. Such a unified mechanism would facilitate the data transfer between

applications in bioinformatics and prevent data loss through obsolete software.

During the years, several representation standards for biological pathway data

have been developed and, in the course of the following sections, we will have a

closer look at three of them. A good overview of the same three standards can

also be found in [47].

20

2.2.1 SBML

In [48], Hucka et al. provide a well-structured overview of the rationale behind

the Systems Biology Markup Language (SBML). The first reason named is the

need to work with complementary resources from different software tools. Each

program has its own strengths and weaknesses and optimal results are achieved

by employing each tool for what it is best suited for. Having a data representation

standard supported by all programs would spare time and eliminate the risk of

errors induced by information re-encoding. Further, the use of a common language

would facilitate the reuse of models published in peer-reviewed journals and last

but not least, it would prevent models from becoming stranded once the systems

they have been created in become obsolete.

SBML has been developed to address the previous issues, but instead of trying

to define a universal language for all quantitative models, the authors concentrated

on building a common intermediate format, a lingua franca as they call it, enabling

the transfer of the most essential model aspects.

Defined as an XML-based machine readable format, SBML is being developed

in levels, with each extra level providing means for the representation of additional

information. Currently, two levels are available, with the third already being in

development.

An overview of Level 1 can be found in [49] with a brief description of the fea-

tures available in Level 2 in [50]. The first level breaks down a chemical reaction

in six conceptual elements: compartments are finite volume containers, species are

entities that take part in a reaction, reactions describe transformations, transports

or binding processes, all with their associated rate laws, parameters are quantities

with associated symbolic names, unit definitions are used, for example, to set ab-

breviations for default unit combinations, and rules are mathematical expressions

used, for example, to establish constraints between quantities.

Some of the most important differences between Level 1 and 2 include among

others: in Level 2, mathematical formulae have been changed from plain text

to MathML, the possibility of adding metadata and defining new mathematical

functions has been implemented, and support for delay functions and discrete

events has been included.

The elements described previously are the basic building blocks of an SBML

file. Their definition was deliberately kept generic, in order to allow a better

coverage of the various systems biology models, and provide the applications

using them with a greater interpretation flexibility.

Put in a nutshell, SBML promotes a horizontal information representation

architecture for biological models, providing, among others, means for the de-

scription of actors, reactions and associated stochastic parameters.

SBML is supported by a wide array of programs, including: Cellerator [51],

21

<model name="Example">
<listOfCompartments>
<compartment name="Mithocondrial Matrix" id="MM"/>

</listOfCompartments>
<listOfSpecies>
<species name="Succinate" compartment="MM" id="Succinate" />
<species name="Fumarate" compartment="MM" id="Fumarate" />
<species name=”Succinate dehydrogenase"

compartment="MM" id="Succdeh" />
</listOfSpecies>
<listOfReactions>
<reaction name="Succinate dehydrogenas catalysis" id="R1">
<listOfReactants>
<speciesReference species="Succinate" />

</listOfReactants>
<listOfProducts>
<speciesReference species="Fumarate" />

</listOfProducts>
<listOfModifiers>
<modifierSpeciesReference species="Succdeh" />
<modifierSpeciesReference species="S4" />

</listOfModifiers>
</reaction>

</listOfReactions>
</model>

Figure 2.3: SBML example [47]

<entry>
<interactorList>
<proteinInteractorid="Succinate>

<names>
<shortLabel>Succinate</shortLabel>
<fullName>Succinate</fullName>

</names>
</proteinInteractor>
….

</interactorList>
<interactionList>
<interaction>
<names>
<shortLabel> Succinate dehydrogenas catalysis </shortLabel>
<fullName>Interaction between</fullName>

</names>
<participantList>
<proteinParticipant>
<proteinInteractorRef ref="Succinate"/> <role>neutral</role>

</proteinParticipant>
<proteinParticipant>
<proteinInteractorRef ref="Fumarate"/><role>neutral</role>

</proteinParticipant>
<proteinParticipant>
<proteinInteractorRef ref="Succdeh"/><role>neutral</role>

</proteinParticipant>
</participantList>

</interaction>
</interactionList>

Figure 2.4: PSI-MI example [47]

DBsolve [52], E-CELL [53], Gepasi [54], Jarnac [55], NetBuilder [56], StochSim

[57] and VirtualCell [58]. An open source implementation of the SBML format is

provided by the libSBML library [59].

Currently, some of the most important databases that provide their data in

SBML format are KEGG [40], EcoCyc [60] and Reactome [61].

Figure 2.3 displays a short excerpt from an SBML file.

2.2.2 BioPAX

An approach completely different from SBML, is the Biological Pathway Exchange

(BioPAX) [62] format. Although also defined in levels, the latter promotes a

vertical, ontology-based architecture.

The BioPAX representation format is based on a class hierarchy with entity

as its top structure and physical entity, interaction and pathway as its immediate

children. These are then split into further subclasses with the main relation types

between them being is-a for inheritance and has for aggregation. All structures

used in BioPAX are declared in this inheritance tree, and, as mentioned previously,

pathways are represented as ontologies.

To better visualize the concept, let us have a quick look at a section of the

apoptosis pathway. This ontology has a top level node called apoptosis. This node

has several children, namely the intrinsic and extrinsic mechanisms, along with

nodes describing the overall regulation of the apoptosis pathway. Moving deeper

into the extrinsic branch, we encounter two children: death receptor signaling and

caspase 8 forming from pro-caspase 8. The latter is then split into activation of

pro-caspase 8 and formation of caspase 8 dimer. The process is repeated for all

22

branches of the ontology down to the basic molecular interactions.

BioPAX is defined in W3C consortium’s Web Ontology Language (OWL, sic)

and thereby offers extensive automated reasoning capabilities based on the source

language’s strong semantic orientation.

Notably, the advantages of a semantic representation scheme come at a cer-

tain processing performance price. While powerful, the language itself creates a

high computational overhead. The comparably large file size also hinders from

providing the reader with a specific example of a BioPAX model.

Presently two BioPAX levels are available, with the third still in development.

The most renowned databases providing their pathways in this format are KEGG

[40] and Reactome [61].

2.2.3 PSI-MI

Another biological data representation standard promoting a horizontal definition

hierarchy is the Proteomics Standards Initiative - Molecular Interaction (PSI-

MI) [63] XML format of the Human Proteome Organization (HUPO). Designed

initially only for the representation of protein-protein interactions, it can also be

used for the representation of pathways.

The PSI-MI format offers a certain trade-off between ease of use and language

strength. A structural unit that can be interpreted as a pathway - an entry in

the format’s vocabulary - provides means for the declaration of an interactor

respectively an interaction list. Certain attributes, like the interaction type, can

be chosen from an external controlled vocabulary. The vocabularies themselves

can be decided upon by the user. Moreover, it is possible to use attribute lists for

storing information that is not directly supported by the standard’s definition.

Some of the databases that currently offer their information in PSI-MI format

are: IntAct [63], BIND [34], MINT [37], HPRD [35] and DIP [38].

Figure 2.4 displays a short excerpt from a PSI-MI file.

2.2.4 Summary

In this section, we provided the reader with a quick overview of the most important

biological pathway data representation formats. Each of the three standards is

too complex to be described properly in only a few sentences, but for the sake

of completion, we will attempt to summarize their features in relation to one

another.

SBML is best suited for quantitative models, where a high degree of interop-

erability between different application platforms is required. Although difficult

to use due to its high complexity, SBML is presently one of the best supported

formats by databases and applications.

23

BioPAX is the format with the strongest expression level and is best suited for

automated reasoning due to its intrinsic semantic definitions. The high complexity

and computational overhead make it less attractive for common use.

PSI-MI is, by comparison, the simplest format with the lowest computational

overhead. The ease of use, however, comes at the price of lower expression power.

24

Chapter 3

MOLECULAR NETWORKS

In this chapter we will elaborate on the concept of molecular networks, which

is also the main paradigm in our dependency graph. After providing a quick

overview of an existing system, we will introduce our own approach to building a

human specific protein network.

3.1 Overview

In the first chapter of this thesis we described the differences between the re-

ductionist and the integrative research approaches to systems biology. In the

second one we elaborated on the different biological information types. We can

now combine this knowledge to describe a new research paradigm: the molecular

networks.

The molecular networks are the next logical step away from the reductionist

research principle, based on the rationale that all entities (DNA, RNA, proteins,

etc.) present in the cell interact, exhibiting an emergent behavior grounded on

their coexistence.

Molecular networks can be constructed on the basis of different biological

information types. Figure 3.1, for example, depicts a BCL2-associated protein

interaction network as generated by the STRING database and web tool (please

refer to the next section for details).

The main benefit of representing biological information in the form of molec-

ular networks can be summarized as providing means to facilitate the access to

the emergent properties of its members.

3.2 An Existing Approach: STRING

Several approaches to creating molecular networks exist today, with STRING

being one the most significant projects to date.

STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) aims

to collect, predict and unify most types of protein–protein interactions, including

direct and indirect associations [64]. The data is obtained by high-throughput

experiments, database and literature mining, and predictions based on genomic

context analysis [65].

Aside from direct interaction databases including (but not limited to) DIP,

MINT, HPRD and IntAct, STRING also imports curated biological pathway

25
BAK1BAK1

BCL2L1BCL2L1

BIDBID

BODBOD
NBKNBK BADBAD

CSNK2A1PCSNK2A1P

BCL2BCL2BAXBAX

CREBBPCREBBP
MAPK8MAPK8EIF2AK2EIF2AK2

P53P53
hCG_17515hCG_17515

BBC3BBC3

MST075MST075

ATMATM
USP7USP7

TP53BP1TP53BP1

ENSP00000372583ENSP00000372583 CHK2CHK2

Figure 3.1: An interaction network example for the BCL2 apoptosis regulator as

generated by the STRING database and web tool

knowledge from KEGG and Reactome.

Additionally, several algorithms are used on genomic data to predict further

protein interactions. The most important ones are listed below [66]:

• Within prokaryotic organisms, the close proximity of genes on the chromo-

some is a good indicator for functional linkage.

• Genes that join to encode a single fusion protein are considered to share a

dependency.

• Genes sharing similar phylogenetic profiles are also considered to contribute

to similar functional processes.

• A similar transcriptional response across a variety of conditions is an indi-

cator for functional linkage between genes.

Two further resources are taken into consideration: text mining and interac-

tion analogy in different organisms. The first one includes, among others, the

parsing of all abstracts available in the NCBI’s PubMed library [67]. The second

one implies the transfer of interactions detected between proteins of an organism

A to an organism B, if the same proteins are also available in the latter.

All protein pairs are assigned scores describing their information quality in

respect to their source, type, experimental verification, etc. Considering that

information on a certain association can be obtained from different sources and

26

that the respective scores may vary, a combined score must be calculated. The

mathematical formula employed for this purpose is:

S = 1−
∏
i

(1− Si)

with Si symbolizing the individual scores. The molecular network is defined with

the proteins as nodes and their associated interactions as edges. The edge weight

function is S.

One disadvantage of the STRING approach is that it only uses one protein per

gene, i.e., the one with the longest nucleotide sequence, not taking splice variants

into consideration. This also explains why many of the vertices in the network

depicted in figure 3.1 are annotated using gene names, e.g., NCBI gene symbols,

rather than protein identifiers.

3.3 Building a Human Specific Protein Network

Similarly to STRING we build our molecular network by assigning edge weights

based on the information we have consolidated in our database. A major difference

to the project described previously, however, is that we construct a complete graph

rather than compiling only a partial one.

Also, we do not discard the information on splice variants, but, through the use

of hyperstructures, are able to associate each piece of data with the corresponding

biological entity.

Last, but not least, our system includes subcellular and extracellular (plasma)

location information, as well as knowledge from the PANTHER database.

The first step of the network construction process consists of splitting the

information in four category types and calculating for all molecules a pairwise

partial dependency score. The generator functions used are listed in the following.

1. fINT - Interaction

This function consolidates and evaluates all direct and indirect interaction

information available in our database for the two proteins given as input

parameters. This information includes the databases IntAct, OPHID and

BioGrid as well as the interaction lists extracted from the KEGG and the

PANTHER pathways.

The function returns a value of 1 should there be enough evidence for at

least one interaction between the two proteins, and 0 otherwise.

2. fGEX - Gene Expression

27

This function evaluates the correlation of the expression of the two genes

given as input parameters across different tissue types. For this purpose,

we use the Pearson correlation coefficient, defined as follows:

fGEX =
1

n

n∑
i=1

(
Xi − µX
σX

)(
Yi − µY
σY

)
where X and Y are the two expression vectors, and µ and σ the correspond-

ing mean value and standard deviation.

3. fFAT - Functional Annotation Terms

The functional annotation value describes the two input gene’s dependency

as derived from the Gene Ontology Terms, i.e., how many terms the two

entities have in common. Furthermore, the function evaluates the number

of pathways (KEGG and PANTHER) the two molecules jointly populate.

For this purpose we calculate the Dice coefficient, defined as follows:

fFAT =
2|X ∩ Y |
|X|+ |Y |

where X and Y denote the sets of terms and paths associated with each of

the two input parameters.

4. fLOC - Location

This function evaluates the expression of the two proteins specified as input

parameters in the various subcellular components, and in plasma.

The information taken into consideration originates from the SwissProt

database, the Wolf PSORT algorithm and the Human Plasma Proteome

Project. Since the first two use different classifications, with UniProt being

finer grained, we have decided to map everything onto the PSORT location

list. We therefore have a ten-valued consolidated location array for each

protein.

The function is defined as follows:

fLOC = 1−

10∑
i=1

|Xi − Yi|

10∑
i=1

|Xi + Yi|

28

where X and Y denote the ten-dimensional location vectors of each protein.

The four introduced functions are united by a fifth one, used to calculate the

consolidated edge weight. This latter function is defined as follows:

f = fINT +

(
2 · fGEX + fFAT + fLOC

3

)
− 1

The partial functions fINT , fGEX , fFAT , and fLOC have the codomain [0, 1]

and the return values of the consolidated function therefore lie within [−1, 2],

with −1 representing a very low, and 2 indicating a very high probability of a

functional dependency between the arguments.

As stated earlier, we calculate the edge weights between all possible pairs of

nodes, which leads to a number of edges equal to the square number of proteins

represented in the network. Considering that our network, in the current version,

holds information on approximately 24 ·103 genes coding for roughly 71 ·103 splice

variants, we obtain consolidated edge weights for 5·109 edges. Our main approach

to tackling this vast amount of generated data is to introduce a cutoff, i.e., we

discard all edges with a weight below a certain cutoff-value. For more information

on the obtained results, please see chapter 5.

3.4 Graph Characterization

Having introduced the concept of molecular networks, we will now elaborate on

the associated analysis principles.

A classical approach is to interpret the molecular network as a graph. The

direction and edge weight properties are problem specific. Shifting the inter-

pretation of the network into mathematics opens up an entire array of analysis

possibilities.

A concept inherent to mathematics that can now be applied to molecular net-

works are the graph characterization values or graph invariants. A good overview

of common graph invariants can be found in [68]. The most important ones, i.e.,

the ones with the highest relevance in molecular biology, and, specifically, in our

project, are listed in the following.

• Clustering coefficient - This parameter is defined for a node u and provides

information on how strongly connected u’s neighborhood is, i.e., how many

edges exist between u’s neighbors, compared to the maximum number of

possible edges between the same vertices. In this context, the neighborhood

of u is defined as the set of u-adjacent nodes in the graph.

29

• Connectivity - Similarly to the previous value, the connectivity parameter

describes how well connected the entire graph is, i.e., how many edges exist

between the vertices of the graph, compared to the total number of possible

edges.

• Index of aggregation (IoA) - The IoA value plays a special role in the analysis

of subgraphs. Considering a case in which we are searching for a well defined

set of nodes, the IoA for a certain subgraph provides information on how

many of the input nodes have been found in the regarded subgraph.

• Betweenness - This parameter is defined for a given input node u and de-

scribes the node’s importance for the cohesion of the graph, i.e., how many

of all existing paths in the graph contain the node u.

• Closeness centrality - This value is defined for an input node u and describes

how well the given node is linked to all other members of the graph, i.e.,

the shorter the paths from u to the rest of the nodes are, the higher the

closeness centrality value is.

One of the most important properties of cellular networks is that they are scale

free. While the node degrees of random networks follow a Poisson distribution,

the molecular networks are characterized by a power-law degree distribution and

are highly non-uniform: most of the vertices have a low degree with only a few

hub-nodes.

According to [69], the scale freedom property of biological networks is based

on their evolutionary origin. The authors identify two specific reasons. First,

biological networks are the result of a growth process in which new nodes becomes

attached to existing ones. Unless all nodes attach to and form a single strand -

which is highly improbable -, local star topologies will occur. Second, new nodes

tend to prefer connections to existing ones that already have many links. This

process is known as preferential attachment.

Further network properties emerge from their scale freedom:

• The small world effect is implicitly conditioned by the special degree dis-

tribution of a scale free network. Having most vertices connected to hub

nodes leads to relatively short paths between any two vertices of the graph.

• Due to the same special degree distribution, such networks have a high

robustness, since most nodes can be removed with the graph still remaining

connected.

• Modules can often be identified in biological networks, each with a specific

function.

30

• Motifs, i.e., subgraphs - with a certain structure - which occur significantly

more often than others in the network, are also a specific trait of biological

networks. A typical example is the feed-forward motif, in which the product

of gene X regulates both genes Y and Z, while Y also regulates gene Z [70].

In this chapter we have provided the reader with a quick overview of the

molecular network concept and have introduced two different specific approaches

to generating protein dependency graphs. During the course of the next chapter,

we will further describe the construction logic behind our molecular dependency

network.

31

Chapter 4

THE DATABASE

This chapter provides the reader with an in-depth description of our biolog-

ical information database. We will outline the general concepts employed and

describe our specific domain model. Finally, we will briefly describe our database

maintenance application.

4.1 Rationale

In the previous chapters we introduced a series of biological information databases.

As this type of storage framework is ideal for the housing and retrieval of large

data volumes - while upholding consistency constraints [71] -, its use has also

become common practice in systems biology.

Our project requires data from different sources, and we chose to tackle this

issue by building a data warehouse. While doing so, we unify the structure of the

imported data, which, in turn, optimizes the ease of access and eliminates the

risks of redundancy and inconsistency.

In contrast to other similar systems, advanced database management features

like distributed architecture or optimized access concurrency, do not play key roles

in our infrastructure.

Let us consider some of the available options. The ORACLE [72] database,

for example, although powerful and - if properly tuned - fast, does not account for

its extreme configuration complexity. Also powerful, but much easier to deploy is

PostgreSQL [73]. The comparably low speed of the latter, however, could prove

to be a major disadvantage in the long run. An overall better choice, in our case,

would be the well-known MySQL [74] database.

The Database Management System (DBMS), however, is just one variable in

the envisioned system. Furthermore, binding our analysis framework to a certain

database would be a poor software design decision, even if our project were not

situated in the research field. Since this is very well the case, we have to remain

flexible on this end.

To be able to pursue this issue further, we must first say a few words about the

programming language our system has been developed in. In order to facilitate

our project’s deployment in a heterogeneous network, we have decided to use

Java, presently at version 1.6, as the base programming language. A pure Java

approach was not possible due to the usage of mandatory libraries, for example

32

Gene mRNA Protein
1 n 1 1

Figure 4.1: A trivial class diagram example

class Gene { class RNA {
String id ; String id ;

List<RNA> mRNAs; Gene gene ;

} Prote in p ro t e in ;

}
class Prote in {

String id ;

RNA mRNA;

}

Listing 4.1: Java code for classes in figure 4.1

written in C++, like the libSBML for the parsing of the PANTHER pathway

files.

Using Java also has other implications on the project’s architecture: while all

data processed in the program is organized in objects, the classical approach to

database information storage is represented by the entity-relationship model. Two

options are available at this point: using direct SQL statements and explicitly de-

/marshaling the data, or employing an object-relational (OR) mapping. We have

decided in favor of the latter.

Put in a nutshell, an OR mapping system is able to transparently translate

between an object-oriented model, like the one used by the Java programming lan-

guage, and the standard entity-relationship model employed by most databases.

To better illustrate the concept of object-relational mapping, let us have a

closer look at a specific example related to protein biosynthesis. Supposedly we

wish to persist information describing which genes are transcribed into which

mRNA molecules, and then further, translated into proteins. For now, we will

omit the possibility of trans-splicing.

Figure 4.1 formalizes the requirements described previously as a class diagram

embodying the following semantics: an mRNA molecule is transcribed from ex-

actly one gene, and is translated to exactly one protein, whereas one gene can be

transcribed to a variable number of mRNAs and a protein is always translated

from exactly one transcript.

Listing 4.1 contains the Java source code associated with the class diagram in

figure 4.1. The reader will notice, however, that the transition between the two

representation forms is not bijective. While, for example, the class diagram dic-

33

Genes ProteinsRNAs

Id Gene_IdId RNA_IdId

Figure 4.2: Relational table structure for classes in figure 4.1

tates that an mRNA and a protein instance share a bidirectional association, the

source code enforces no such constraint. It is, theoretically, possible to instantiate

an mRNA object and point it to a protein, without also mapping the relationship

backwards.

This is possible because the grammar of the Java programming language is not

powerful enough to express logical data dependencies. This is not necessarily a

Java flaw, but is rather a characteristic of the imperative programming paradigm

and has been explicitly addressed in the declarative programming approach, for

example, in the Prolog-derived languages.

Figure 4.2 depicts the database table structure associated with our model.

The reader will notice, that this new transformation is also non-bijective. While

the relational table structure provides a better formal description of the class di-

agram than the Java code, it is neither unique, nor does it match the diagram’s

semantics perfectly. The gene-mRNA one-to-many relationship depicted in the

class diagram is modeled in the database by saving the transcribed gene’s id with

the corresponding mRNA. This allows only one gene per transcript, without lim-

iting the number of mRNAs per gene. Less optimal, however is the description of

the mRNA-protein one-to-one relationship: by saving the RNA’s id together with

the protein, we implicitly allow only one RNA per protein, but it is - erroneously

- possible to associate more proteins to the same transcript. We will regulate this

by defining SQL constraints.

The transition from Java to SQL is done by the object-relational mapping

system, that is also responsible for generating the database structure altogether.

The process can be controlled by using annotations, i.e., certain syntactic con-

structs that instruct the OR system how to handle the transformation, e.g., which

tables to create, how to manage associations, etc. We will describe some of the

most important annotation types in the next section.

Please note that the previous example is trivial. The procedure becomes more

complicated when attempting to reconstruct complex relationships like inheri-

tance, many-to-many associations, etc.

The main advantage of such mapping systems is that they eliminate the need

for the user, i.e., in this context the programmer, to work with the back-end

databases and write direct queries for the underlying tables.

Let us consider a specific use case in which a list of transcripts corresponding

34

to a set of given criteria is required. The user can post the query to the OR

mapping system, and the result will be a list of RNA-class instances upholding

the specified constraints. To obtain this list, the mapping system automatically

translates the criteria into SQL, executes the query, and finally, marshals the

results obtained from the database into objects.

By hiding the database, it also becomes possible to exchange it altogether if

the requirements to the underlying DBMS change, without having to modify the

application code. This characteristic of the OR mapping systems obsoletes the

problem of a definitive DBMS binding and provides us with exactly the flexibility

we mentioned earlier in this chapter.

The following section provides the reader with a quick overview of the specific

object-relational mapping system we employ.

4.2 Hibernate

Hibernate [75] is presently a state-of-the-art OR mapping system for Java. Aside

from implementing Sun’s Java Persistence API [76] (JPA), it provides extensive

mechanisms for session and entity management, as well as object querying with

full-text search.

Considering the framework’s complexity, the Hibernate workflow is relatively

straight-forward. An overview is listed in the following.

1. The first step consists of defining the domain model, e.g., by drawing the

class diagrams.

2. During the second step, the domain model is implemented in Java.

3. The Java code is then annotated with either JPA (our choice) or XML. The

annotations instruct Hibernate how to perform the mapping, e.g., which

classes should be persisted, which constraints should be applied, etc.

4. During the fourth step Hibernate can be instructed to extract the relational

model from the class definitions and automatically create the database.

5. Once the database exists, Hibernate can be used to create, query, modify

and delete instances of the annotated classes. The object state will be

persisted automatically.

In the course of the next sections we will describe the domain model employed

in our project, underlining both the considerations based on requirements imposed

by the biological background of the stored data and the ones fueled by the need

to avoid traps and pitfalls typical of object-relational mapping technologies.

Before proceeding, however, we must first provide the reader with a quick

introduction to the mapping principles.

35

4.2.1 Basic Techniques

A mapping is, in this context, a logical correspondence between a structure in

the object-oriented paradigm and a structure in the entity-relationship paradigm,

on the basis of which a bijective transformation between the two states can be

defined.

The simplest association possible is that of a class to a database table. As-

suming that all properties of the class are basic Java types, like char, long, int,

etc., (String is, by exception, also considered a basic type), it is possible to cre-

ate a database table for the regarded class, in which each column holds one class

property. Each instance of the class created in the program and persisted by

Hibernate will be saved as a table entry. The inverse transformation reads a row

from the same table, and marshals all values back into the corresponding class

variables, recreating the original object.

Since Java classes contain properties of not only basic types, but also references

to other instances, Hibernate provides mechanisms to address this issue as well.

The simplest reference type is a single pointer to another object, like protein

in the RNA class, as depicted in listing 4.1, previously in this chapter. This

relation is implemented in the database by using a foreign key column in the

table associated with the class containing the reference. This pointer ↔ foreign

key pattern is the foundation of more complex techniques, like associations with

different cardinality. We will present such techniques in the next section.

4.2.2 Advanced Techniques

The more advanced Hibernate techniques are related to the following topics:

• Collections

A common concept associated with the object-oriented paradigm is that of

collections, aggregating entities on the basis of common function or struc-

ture. When transposing collections into the relational model, their original

semantics play an important role in the design of the database tables. We

distinguish between:

– One-to-many : This type of relationship describes an asymmetric asso-

ciation, in which the entity of the one side can be linked to an arbitrary

number of elements of the many side, while the opposite is not true.

A typical example is the gene-RNA association in figure 4.1.

This type of relationship is implemented in the database by saving the

primary key of the one side together with each element of the many

side, thereby implicitly ensuring data consistency.

36

A major Hibernate feature is its ability to reconstruct bidirectional

associations by using data from only one side, e.g., in our gene-RNA

example, Hibernate will automatically reconstruct the RNA list in a

gene object by inspecting only the foreign (gene) keys used in the

RNA table. By employing this technique, the OR mapping system

automatically prevents inconsistencies.

– Many-to-many : Contrary to the former, the latter type imposes no

constraints on the association cardinality. However, like in the previous

case, the relationships must be bidirectional.

Let us extend our gene-RNA example with the possibility of trans-

splicing, i.e., the primary transcripts of several genes are combined

to form the final mRNA. In this case, the mRNA is not only associ-

ated with one gene, but, to several, forming a logical many(genes)-to-

many(RNAs) relationship.

In the database, Hibernate uses a separate join-table to store this type

of relationship. This new table consists usually of two columns, one

for each primary key of the two many sides, and holds an ordered

Cartesian product of all the keys involved in the association.

When restoring persisted objects that contain many-to-many associa-

tions, Hibernate walks the join-table and rebuilds each collection from

the entries found therein.

• Inheritance

Another concept inherent to the object-oriented paradigm is class inheri-

tance. Hibernate provides means for transparent inheritance handling, i.e.,

genericity. Per default, when querying persisted objects with an OR map-

ping system, the user must specify the exact targeted class. In case of

inheritance, however, it is possible to query an abstract super-class, and

receive specific sub-class instances that can be subsequently casted to their

correct subtypes.

Several options for inheritance mapping exist [75]. The most important

ones, each with its own advantages and drawbacks, are listed in the follow-

ing.

– Table per concrete class with unions : When using this technique Hi-

bernate creates tables only for the non-abstract members of the inher-

itance hierarchy. Each table holds all properties of the implemented

class, i.e., tables associated with classes sharing a common ancestor in

the inheritance tree have similar columns.

37

This characteristic and the need to perform unions each time a super-

class is queried are the two main drawbacks of this strategy. By elimi-

nating the need for joins, however, this type of mapping performs very

well in case of broad, but otherwise shallow inheritance hierarchies with

many class instances.

– Table per hierarchy : This technique creates a single table for all classes

of the inheritance tree. Fields that do not exist in certain instances

remain NULL. Hibernate uses a discriminator field to decide which row

contains which class type.

The high data overhead is the major disadvantage of this strategy,

while the performance is maximized since no joins or unions are nec-

essary.

– Table per subclass : This is a normalized database form in which all

inheritance relationships are represented as foreign key associations.

Each type (regardless if abstract or not) is persisted in its own table,

with each field in the inheritance hierarchy occurring only once in its

source entity. By splitting a class instance across several normalized

tables, this mechanism reduces the risk of data inconsistency.

When reconstructing an object, Hibernate walks the inheritance hier-

archy top-down, inspecting each corresponding table and adding new

data to the rebuilt object as necessary.

This strategy eliminates the need for unions, but dramatically increases

the computational overhead generated by joins.

• Performance

The overall performance is a central issue when working with Hibernate.

Although powerful, the framework can easily stall an application if used

improperly. Best results are often achieved by accepting certain trade-offs.

In some cases, for example, adopting a lower normal form [77], like embed-

ding child entries in the parent table, can provide a powerful speed-boost

at the cost of a higher data inconsistency risk.

Another mechanism for safeguarding information consistency is provided

by the cascading semantics mechanism. Cascading semantics are used, for

example, in strong aggregations, i.e., where a set of child elements can only

exist as long as their parent entity does. If the latter is removed, the former

must be deleted as well. Although optimal for managing dependencies, the

cascading semantics can significantly degrade performance when running

redundant checks on large data volumes.

In Java applications objects usually build connected networks. If Hibernate

were to follow all pointers present in an object, i.e., all foreign keys in a table

38

row, a query for a single object would result in the OR mapping system

trying to load the entire database at once. This issue is addressed by a

mechanism called lazy loading. Hibernate does not load objects completely,

but instead retrieves only the mandatory sections, and provides proxies for

the rest. Should the user attempt to access a proxy, Hibernate would search

the database and provide the information on demand.

Basic types and, generally, one-to-one associations are loaded from the be-

ginning (eager loading). In the domain model implemented in listing 4.1,

the protein associated with an RNA instance would, for example, be part

of this category, unless explicitly excluded by the programmer.

Collections, on the other hand, regardless of their cardinality, are subject

to lazy loading. Again, tuning the loading policy, may improve or degrade

performance.

Having seen how one-to-many associations are implemented in the database

and having introduced the lazy loading mechanism, we can now describe a

special technique for increasing Hibernate performance when inserting a

large amount of data.

Since one-to-many collections are built from the single foreign keys in the

many side objects, the optimal way to save such associations is to set only

the many side pointer. The one side collection does not have to be modified.

Both changes are formally equal, but since collections are loaded lazily, we

can skip their associated queries in this case altogether. In our specific

gene-RNA example, it would be sufficient to set the gene pointer of the

RNA object. When loading the associated gene, its mRNA list will be

updated automatically.

This principle applies only to one-to-many relationships. Many-to-many

associations, however, not only occur less often than the former, but can

also be implemented by using two symmetrical one-to-many relationships.

The concepts and techniques presented in this section play key roles in the

design our application. In the course of the next sections we will apply this

knowledge to create our domain model, while bearing in mind that decisions

related to the class hierarchies have a high impact on the corresponding database

entities.

4.3 Data Model

Our domain model is divided in four distinct sections:

• The core holds the identifier mapping.

39

• The context describes the information we use to generate the dependency

graph.

• The content describes additional biological information that is not used

directly during the graph generation.

• The biomart holds the consolidated information extracted from the context

section as well as the reference graph itself.

We have decided in favor of this classification for several reasons. The core part

is stand-alone and can be used by itself as an identifier mapping infrastructure.

The context section is a raw data repository used only during the computation of

the biomart. The content information is an optional raw data repository that has

no influence on the generation of the dependency graph. The biomart provides

means for consolidating information from the other sections and is intended to

store different versions of the dependency graph.

4.3.1 Core Identities

The domain model for the core section of the database is depicted as class diagram

in figure 4.3.

In section 2.1.1 we elaborated on the identity mapping issue and we introduced

the biological hyperstructure concept, uniting all identifiers associated with a

specific biological entity.

The various names and identifiers are described in an inheritance tree rooted in

a generic biological identity structure. The latter stores information on the name

and description of the molecule. If the name is deprecated, the structure addi-

tionally points to the presently valid identity. Due to the inheritance mechanism,

all attributes are passed down to all subclasses.

The generic biological identities are split further into genes and proteins. This

mechanism allows us to transparently add new entity types, like mRNA, etc.

We have three types of gene identifiers: symbols and identifiers from NCBI as

well as identifiers from ENSEMBL. A distinctive feature of the symbols is that

each one keeps additional track of its own set of alias names.

All proteins can have an associated sequence, and the main group is split into

three subcategories based on their origin: IPI, NCBI and UniProt. The NCBI is

further divided into manually curated (NP) and computationally predicted (XP)

identities, whereas UniProt is separated into SwissProt and TrEMBL.

This architecture allows a flexible handling of the mapping and provides the

user with the ability to either treat all entities equally, by using the super-class,

or specifically, by down-casting them to their corresponding types.

Due to the large number of identifiers available in the database we decided to

map the inheritance tree using the table per concrete class with unions technique,

40

Figure 4.3: The core identities

41

which allows us to increase the query performance if we use specific classes instead

of generic ones, e.g., the IPI identity is used instead of the generic biological

identity.

4.3.2 Context Information

All biological information types introduced in sections 2.1.2 to 2.1.7 are considered

to be part of the context data group. We will now provide the reader with a

description of the corresponding domain models.

Protein Interactions

The domain model for the interaction information is depicted in figure 4.4.

From a strictly relational point of view, an interaction is basically a two-

dimensional vector of biological identities. We differentiate between imported

and extracted interactions. The former are obtained from OPHID, BioGrid and

IntAct, whereas the latter are generated from the KEGG and the PANTHER

pathways.

While the extracted interactions are annotated directly with their type and

subtype, the imported ones keep track of their experimental confirmations, like

experiment type, confirmation count, etc.

The experiments themselves are divided in concordance to their origin into the

IntAct and BioGrid categories. We must save both, since a one-on-one mapping

is not possible. By using a restricted vocabulary, the IntAct experiment list is

considerably better suited for automated processing. It also allows an annotation

of the interactions with direction and directness attributes.

Functional Pathways

The domain model associated with the functional pathways is depicted in figure

4.5.

As defined in our class model, a pathway consists of complexes and reactions,

which are defined in a common inheritance tree rooted in the abstract pathway

component structure.

A complex can be either basic or extended, with the difference that an ex-

tended one can be built of an entire group of basic complexes. A basic one, on

the other hand, is either a homo-polymerization of a single biological identity or

a family composed of several distinct identities. Again, all subtypes are either

KEGG or PANTHER specific.

A reaction is annotated with its type (e.g., binding, compound, etc.), sub-

type (e.g., glycosylation, phosphorylation, etc.), component interaction type (e.g.,

42

Figure 4.4: The interaction information

43

Figure 4.5: The pathway information

44

Figure 4.6: The location information

gene-gene, protein-protein, etc.) and mode of activation (e.g., activation, inhibi-

tion, etc.).

Complexes can play various roles in reactions: products, reactants and/or

modifiers. Each reaction has at least one set of resulting products.

Depending on the number of interactors, we distinguish between binary and

ternary reactions. Additionally to the inherited products list, the binary reaction

type can also hold a list of reactants or modifiers, depending on its classification

in its original database, while the ternary reaction has all three interactor types.

Subcellular Location

Figure 4.6 depicts the domain model associated with the subcellular location

information.

We classify the location information for a biological identity in accordance

with the data source and the associated subcellular compartment.

The data is either generated or imported. We generate a location probability

vector by running the Wolf PSORT algorithm on the protein sequence of the

biological identity. At the same time, we import location information from the

SwissProt database and the Human Plasma Proteome Project.

The specific locations are separated into the intra- and extracellular categories.

45

Gene Expression Sheets

The domain model associated with the gene expression information is depicted in

figure 4.7.

We group all expression information in datasets. Each dataset holds infor-

mation obtained from a series of samples, whereas each sample originates from a

certain tissue (e.g., bone marrow, retina, etc.), in a certain developmental stage

(e.g., fetal).

Each biological identity has an associated expression value for a given sample

in a given dataset.

Biological Ontologies

Figure 4.8 depicts the domain model associated with the biological ontologies. In

contrast, for example, to the pathways, a simplified model suffices here.

An ontology is defined in our context by its name, top terms and complete

term list. Moreover, we differentiate between imported and generated ontologies.

The former include raw data, like an excerpt from the Gene Ontology, whereas

the latter include preprocessed information resulting from various computations.

Each term has a name, a list of associated biological identities, and it keeps

track of both its parent and child terms.

Transcription Factors

The domain model for the transcription factor information is depicted in figure

4.9. Again, a simplified structure suffices.

The information is predicted pairwise for each biological identity-transcription

factor association. Since several binding sites may exist per identity, we only save

information related to the site with the maximum score. Furthermore, due to

binding domain similarities in the transcription factors, it may be necessary to

save more than one factor per identity and maximum score site.

Together with the binding site scoring information, we also save a brief de-

scription of the prediction method, like the number of upstream kilo-bases taken

into consideration.

4.3.3 Biomart

We argued previously that the context section of the database is basically a raw

data repository. Our goal is to create a molecular dependency network based on

this information. Considering the large number of actors (presently approximately

7 · 104 proteins) and the quadratic amount of edges that need to be computed

(approximately 5 · 109) it only stands to reason that we need to preprocess this

46

Figure 4.7: The gene expression information

47

Figure 4.8: The ontology information

Figure 4.9: The transcription factor information

48

information and store it adequately in order to increase the query speed when gen-

erating the graph. The biomart was designed bearing exactly these considerations

in mind.

Consolidated Information

This database section holds the preprocessed information as an early step in the

generation of the dependency network. Figure 4.10 depicts the association domain

model.

As opposed to the context part, the information is no longer identity-centered

but hyperstructure-centered. This way, we unite both the protein and the gene

information for each specific biological identity.

For each hyperstructure we save five types of information: localization, inter-

actions, gene expression, transcription factors and functional annotation terms.

While the first four consist of rearranged context information with regard to

computational performance, the fifth one is algorithmically generated from the

biological ontologies and the available pathway information.

We manage the consolidated objects in an inheritance tree in order to preserve

information consistency. Moreover, this provides us with the necessary means

to introduce additional information later without having to modify the existing

structures.

Dependency Graph

Figure 4.11 depicts the domain model for our dependency graph.

Considering the large number of edges that need to be stored, we kept this sec-

tion of the object-oriented, and, by extension, the entity-relational model simple,

to avoid unnecessary computational overhead.

The graph class bears the timestamp and the description of the generation, as

well as a list of available nodes.

Each node describes the biological hyperstructure it represents and the edges

it is either the source or the target of, whereas each edge provides information on

the parameters used for computing its weight.

Hibernate’s ability to rebuild one-to-many associations from the pointers of the

many-side is especially useful in this particular case. We have here two one(node)-

to-many(edges) relationships, which we can persist into the database by setting

only the source and target pointers of the edge structures. This way we can

execute millions of bulk insert statements into the edge table without having to

query any other section of the database.

49

Figure 4.10: The consolidated information

50

Figure 4.11: The dependency graph

4.4 Database Maintenance

Due both to the considerable size of the final data warehouse and the require-

ment to continuously update various sections of the database during the research

process, we have decided to implement a software tool specifically for this purpose.

Apport is a modular utility able to independently execute different tasks on the

database. Figure 4.12 depicts a screenshot of the current application front-end.

Each module to be registered with Apport must expose a clearly defined inter-

face. Dependencies between modules are specified using execution policies, e.g.,

the data import modules are registered with a priority-based policy, defining the

IPI data set, i.e., the core, both as being the first to be run and also playing a

critical role for all other imports.

Presently six types of modules are in use respectively planned:

• Downloader modules are responsible for data retrieval from the Internet.

• Importer modules build the raw data repositories: core, context and content.

• Preprocessor modules generate additional information, by, for example, cal-

culating subcellular location probabilities of proteins using Wolf PSORT.

• Biomart generator modules consolidate the raw data.

• Graph calculator modules compute the dependency network.

• Extractor modules pull data from the database.

• Analyzer modules perform various computations on the dependency graph,

like maximum value paths and spanning trees analysis, etc.

51

Figure 4.12: A screenshot from the database maintenance program

52

During the course of this chapter we presented our biological information

database, both from a technological point of view as well as from an organizational

perspective.

In the next chapter we will provide the reader with specific application exam-

ples of our research approach and discuss the obtained results.

53

Chapter 5

DATA ANALYSIS IN BIOLOGICAL CONTEXT

In the course of this chapter we will outline the rationale for our three biological

neighborhood selection methods. We will then apply them on two specific case

studies, and discuss the obtained results.

5.1 Biological Neighborhood Selection: Rationale

A standard approach to studying diseases on the molecular level is to determine

the genes exhibiting a significant differential regulation in the affected tissue.

Hypothesis generation is then conducted by means of literature research.

As present-day knowledge of the cell functioning is limited, this scientific ap-

proach often generates false positives. Furthermore, differential gene expression

(DGE) experiments provide biased information on the disease itself, by describing

a discrete status quo rather than a time-dependent process, which may lead to the

erroneous detection of disease effects rather than cause. Furthermore, extrinsic

factors like experiment noise may also negatively influence the observation and

introduce false results.

In the previous chapters we described a procedure to build a molecular depen-

dency network based on publicly available biological information. We will regard

this graph as the reference description of a healthy cell.

An improved approach to hypothesis generation, is to highlight the signifi-

cantly differentially expressed genes on the reference graph, thereby implicitly

obtaining information on the biological context.

Before proceeding, we must first make a note on the reference graph used

in this chapter. The dependency network described so far in the course of this

thesis is a novel, hyperstructure-centered implementation, with its granularity

dictated by the protein sequence. As the analysis framework for this graph is not

yet completely implemented, we will use the original gene-centered implementa-

tion for the analysis performed in this chapter. Both networks are constructed

identically, with the only difference consisting in their level of granularity. The

gene-centered reference graph has roughly 18·103 nodes and approximately 16·107

edges.

Since we are working with a complete graph, highlighting nodes without any

additional node/edge selection criteria would make little sense. A trivial approach

to this issue is to use a cutoff. While doing so, we use a fixed edge weight - in the

54

●

●

0.0 0.5 1.0 1.5 2.0

0
50

00
10

00
0

15
00

0
20

00
0

Reference Graph Symbols/Edges − Cutoff Correlation

cutoff

no
. o

f s
ym

bo
ls

symbols
edges

0
1e

+
06

3e
+

06
5e

+
06

7e
+

06

no
. o

f e
dg

es

Figure 5.1: Correlation between the number of symbols respectively the number

of edges in the reference graph and the cutoff values

interval [−1, 2] - to select a subgraph, all edges of which have a weight above the

specified value. All edges below this number are dropped. Additionally, all nodes

that have a degree of zero, as a result of the previous measure, are removed as

well. The resulting subgraph is used for further analysis.

Choosing the right cutoff is of critical importance. While a high cutoff de-

scribes strong dependencies, either obtained from all data sources or demonstrated

in experimental setups with high confidence, it tends to bias the information at

the same time by emphasizing entities that have often been investigated and

therefore a lot of data on the subject is available.

Similarly, using a low cutoff has its own drawbacks. While a low threshold may

provide access to correct information obtained through the combination of only

some of the different input data types, the exponential increase of the subgraph

size threatens to dilute the very same information we are targeting.

To better emphasize this issue, we have provided figure 5.1. Its curves depict

the number of symbols (red) and the number of edges (blue) in respect to the

cutoff value.

We have only covered the [0, 2] weight interval due to the exponential growth

of the number of edges towards lower cutoff values. At a threshold of zero, the

subgraph holds approximately 8 · 106 edges, which already prevents almost any

statistically relevant statement regarding the underlying data. Also, at the same

threshold we have already reached every node in the original graph.

Once we have decided upon the analyzed cutoff, we can visualize the subgraph,

55

Figure 5.2: A section of the reference graph at a 1.4 cutoff with members of the

consolidated BCL dataset highlighted (red)

e.g., with the Cytoscape [78] software. Figure 5.2 depicts a section of the reference

graph at a 1.4 cutoff, drawn with the aforementioned program. The red nodes are

members of the consolidated B-cell lymphoma dataset, i.e., a list of genes that

have been determined as significantly differentially regulated in cancerous B-cells.

We will elaborate on this issue in section 5.3.

This approach works, however, only for high cutoffs. For lower cutoffs, ad-

ditional node and edge selection methods are needed. Since we are obviously

interested only in nodes and edges that share some type of relation to the initial

entity set, we will refer to them as the latter’s biological neighborhood.

When provided with an experimentally determined DGE list, we naturally

assume that certain functional dependencies exist between its members. The

goal of the reference graph is to improve the hypothesis generation regarding

such dependencies.

Since strong dependencies translate into high edge weights in our network, it

only stands to reason that we mine large graphs, i.e., at lower cutoffs, using max-

imum value paths (MVP). This way we attempt to, at least partially, reconstruct

dependency sub-networks as they exist in the real world. Figure 5.3 depicts a

possible outcome of a maximum value path approach to the neighborhood selec-

tion for the same consolidated B-cell lymphoma dataset, in a 1.3 cutoff. Contrary

to the cutoff-only approach, the MVP-computed subgraphs are much smaller in

size since many of the paths overlap.

The concept of maximum value paths supports a bijective transformation into

shortest paths (SP). The latter has been extensively addressed by computer sci-

ence, especially as a routing problem. We will also employ SP-specific algorithms

56

Figure 5.3: MVP-computed subgraph for the consolidated BCL dataset in a 1.3

cutoff

to calculate the maximum value paths.

Contrary to computer science, however, in systems biology we need a slight

shift of perspective. Routing problems inherently require only one shortest path

between two points A and B. The dependency graph is calculated with a specific

mathematical function on the basis of different data sources, which may result

in several high-value paths between the same genes. An MVP-based analysis

approach would be incomplete, if we ignored these.

Calculating all-to-all maximum value paths, as we do in the previous approach,

implicitly infers the existence of dependencies between all involved pairs of genes.

This is not necessarily the case since cellular processes may be disjoint with regard

to the sets of involved actors. Calculating all-to-all MVPs automatically induces

a certain error in the computation by poisoning the resulting dataset with non-

members.

We described our approach to this issue in the introductory chapter of this

thesis: heuristic spanning trees (HST). We consider each node of the input DGE

set as being the root of its own spanning tree and add edges (and nodes) beginning

from the edge with the highest weight to the lowest. This concept is similar to the

computer science’s maximum spanning trees (MST), except that the additional

constraints we use during their computation prevent them from evolving into

MSTs.

The notion of neighborhood inherently implies locality. By not restricting

the number of nodes we take during the HST computation, the algorithm would

always return the complete graph, and by not constraining the HSTs’ depth, we

would always obtain the same strongly connected components we see when using

the cutoff-only filtering method.

In some configurations, trees may grow together forming cycles. The reasons

we refer to them as HSTs are because spanning trees are the computer science

concept closest to the graphs we are computing and because we employ modified

versions of ST-specific algorithms for their calculation.

In the next section we will have a look at the algorithms employed for the

57

calculation of the biological neighborhood from a computer science point of view.

5.2 Neighborhood Selection Algorithms

In the previous section we presented the rationale behind the neighborhood selec-

tion methods. We will now describe the algorithms themselves, and the associated

considerations like performance issues, strengths and weaknesses.

5.2.1 Single Maximum Value Paths

As previously mentioned, we convert the computation of the maximum value path

between two arbitrary vertices of the graph to a single shortest path problem. By

doing so, we are able to employ SP-specific methods. Moreover, by converting

the input data we can avoid having to adapt the algorithms themselves.

To execute the conversion, we must inverse the [−1, 2] edge weight interval.

Since many SP algorithms cannot handle negative edge weights, the procedure

allows us to also circumvent this issue, by remapping the original value range into

R+.

Let G(V,E) be our undirected and weighted dependency graph, with V its set

of vertices and E its set of edges. Let i and j be two arbitrary vertices in V . Let

eij be the edge in E between i and j. Let ω(eij) be the weight of the specified

edge.

We achieve the weight conversion by using the value 2− ω(eij) instead of the

original edge weight. The resulting interval is [0, 3].

For the calculation of the single MVP we considered two well-known algo-

rithms. We will outline them shortly in the course of the next sections.

The Floyd-Warshall Algorithm

The Floyd-Warshall1 algorithm [21] is a dynamic programming approach to the

all-to-all shortest paths problem.

The algorithm has an O(|V |3) complexity, independent from the number of

edges. Although other approaches to the same problem exist, they are dependent

on the cardinality of |E|, leading in a worst case scenario, with a dense graph, to

the same complexity as the Floyd-Warshall algorithm. The latter, however, due

to its extreme simplicity bearing almost no overhead, performs better on dense

graphs than other approaches with a lower average complexity.

The main disadvantages of the algorithm are its performance on sparse graphs,

i.e., the same one as in dense graphs, and its inability to reconstruct the paths

once the computation has finished.

1also known as the Roy-Floyd algorithm

58

The Roy-Floyd algorithm is described in the pseudocode listing 5.1.

Require: Graph G(V,E)

Require: Edge weights ω(eij)

1: for all i ∈ V do

2: for all j ∈ V do

3: dist(i, j)←∞ or ω(eij) if ∃ eij ∈ E
4: end for

5: end for

6: for all k ∈ V do

7: for all i ∈ V , i 6= k do

8: for all j ∈ V , j 6= k ∧ j 6= i do

9: dist(i, j)← min(dist(i, j), dist(i, k) + dist(k, j))

10: end for

11: end for

12: end for

Ensure: Shortest path weight matrix dist

Algorithm 5.1: The Floyd-Warshall algorithm

The method is trivial: it repeatedly tries to interpose a vertex k between all

pairs of nodes (i, j) and compute an alternate, shorter route between the two

vertices over k.

Dijkstra’s Algorithm

Dijkstra’s Algorithm [20] is one of the fastest approaches to the single-source

shortest paths problem. Its complexity is O(|E|+|V |2) without any optimizations,

respectively O(|E| + |V | log |V |) when using a Fibonacci heap [79] as priority

queue.

Compared to Floyd-Warshall, when computing the all-to-all shortest paths,

Dijkstra’s algorithm has a running time of O(|V | · |E|+ |V |2 log |V |), which means

that for sparse graphs, i.e., for graphs where |E| ∼ α·|V | for an arbitrary constant

α holds, this approach has a complexity of O(|V |2 log |V |), as opposed to the

previous method with O(|V |3).
For dense graphs, however, i.e., for graphs where |E| ∼ |V |2 holds, the running

time reaches towards O(|V |3) as well, and, with its additional overhead, it is

actually slower than the former algorithm.

Since our use case of the Dijkstra algorithm involves only the computation of

the shortest paths between the vertices of a given DGE set V ′ with |V ′| � |V |
this approach is best. Also, Dijkstra’s algorithm allows the extraction of the edges

forming the shortest paths for further analysis.

This algorithm is described in the pseudocode listing 5.2.

59

Require: Graph G(V,E)

Require: Edge weights ω(eij)

Require: Start node x

1: for all i ∈ V do

2: dist(i)←∞
3: prev(i)← undefined

4: end for

5: dist(x)← 0

6: Q← V

7: while Q 6= ∅ do

8: select vertex i ∈ Q with minimal dist(i)

9: Q = Q \ {i}
10: for all j ∈ Q,∃ eij ∈ E do

11: alt = dist(i) + ω(eij)

12: if alt < dist(j) then

13: dist(j)← alt

14: prev(j)← i

15: end if

16: end for

17: end while

Ensure: Shortest path weights from x to all other nodes in dist

Ensure: Previous nodes on the paths in prev

Algorithm 5.2: The Dijkstra algorithm

Dijkstra’s algorithm begins with a valid solution, i.e., the minimum distance

from the start node to itself is zero, and incrementally builds the shortest paths by

successively taking the next best node that has not been visited yet (thereby also

ensuring the method’s correctness) and inspecting its neighbors for an alternate,

shorter route than the one already available.

This algorithm is also the starting point for the variant multiple maximum

value paths approach, as we will see in the next section.

5.2.2 Variant Multiple Maximum Value Paths

Given a maximum value path pmax between two specific vertices x and y with a

total weight of ω(pmax), we define the set of δ-variant multiple maximum value

paths (V-MVP) as the set of paths P (x, y), such that ∀ p ∈ P (x, y), ω(p) ≥
δ · ω(pmax) holds. δ is defined in the interval [0, 1].

Please remember, however, that we have transformed our MVP problem into

an SP problem (pmax is now pmin). In this context, we also need to remap our

variance constraint: we are not looking for shorter paths, but for longer paths,

60

i.e., paths with length of maximum (1 + δ) times the shortest path length, for a

variance factor defined as δ ≥ 0. For convenience and an improved readability we

will henceforth use this latter definition of δ!

The starting point for the calculation of the variant paths is the Dijkstra

algorithm. Since V-MVP only make sense if calculated for a relatively small

input set of vertices, like a DGE set, we can obtain the maximum distances from

each of the regarded nodes to all other nodes in the graph by running the Dijkstra

algorithm first. We will then use this information to construct all paths respecting

the specified weight constraint.

We developed two approaches. The first one follows a dynamic programming

principle, while the second one is a more efficient bounded reversed depth-first-

search (BR-DFS). The original solution needed to be re-engineered due to the

exponential behavior of the V-MVP count in regard to the δ-coefficient. We will

describe this correlation in detail, later in this chapter.

Dynamic Programming

This approach starts from the premises that at least one solution exists (for δ = 0)

and begins building this path backwards, from the target node.

Let x and y be the source respectively the target of the paths we are construct-

ing. We define an ethereal path as a triplet S(z, FP, ω(FP)), describing a partially

fixed path FP = (z, k1, k2, .., km, y) from z to y and its associated weight ω(FP).

For all such partial solutions, the constraint dist(z) + ω(FP) ≤ (1 + δ) · ω(pmin)

must hold. This means that at least one complete path from x to y exists over

the edge sequence FP .

Please note that dist(z) is the shortest distance possible between x and z as

obtained by the Dijkstra algorithm, and that we are using a ≤ (1 + δ) constraint

due to the MVP → SP transformation.

The start solution is S0(y, FP0 = ∅, 0). A complete solution has the following

structure: Sn(x, FPn = (x, k1, k2, .., kn, y), ω(FPn)).

In each step, we choose one valid ethereal solution from the available set and

inspect all predecessors of the current node z. Should a predecessor w of z exist,

for which the following constraint holds: dist(w) + ω(ewz) + ω(FP) ≤ (1 + δ) ·
ω(pmin), we add the new solution S(w,FP = (w, z, k1, k2, .., km, y), ω(FPn) +

ω(ewz)) to the available partial paths set.

This procedure is depicted in the pseudocode listing 5.3.

Bounded Reversed Depth-First-Search

This approach makes use of the dist vector provided by the Dijkstra algorithm

as well. Contrary to the previous solution, we will not provide the pseudocode

61

Require: Graph G(V,E)

Require: Source node x, target node y

Require: Path length variance factor δ

Require: Shortest distances from x to all nodes in the graph in dist

1: Sol← {S0(y, FP0 = ∅, 0)}
2: for all S(z, FP = (z, k1, k2, .., km, y), ω(FP)) ∈ Sol, z 6= x do

3: for all w ∈ V, ∃ ewz ∈ E do

4: if dist(w) + ω(ewz) + ω(FP) ≤ (1 + δ) · ω(pmin) then

5: Sol← Sol ∪ {S(w,FP = (w, z, k1, k2, .., km, y), ω(FP) + ω(ewz))}
6: end if

7: end for

8: Sol← Sol \ {S}
9: end for

Ensure: Sol holds all paths from x to y respecting the length constraint

Algorithm 5.3: A dynamic programming approach to the V-MVP

for this approach since it is basically a trivial depth-first-search [80] (DFS) with

minor adjustments.

Again, we will build the paths backwards beginning the DFS in the target node

and working our way towards the source. The procedure is therefore reversed.

The direction of the search is dictated by the dist vector, i.e., from a given current

node z, the only nodes reachable are the ones with a dist value lower than dist(z).

The DFS is therefore bounded. This condition also ensures that the algorithm

stops after a finite number of steps, when dist reaches zero, i.e., when the search

inevitably reaches x.

In contrast to the standard DFS, the visited nodes do not remain marked

after the search retreats from the subgraph. This means they can be visited

again later. This property facilitates a combinatorial generation of all possible

paths. Although the exponential number of paths is of little biological relevance,

it does provide statistical information on the underlying graph’s structure.

5.2.3 Heuristic Spanning Trees

Two well-known algorithms for the computation of maximum spanning trees are

described by Kruskal and Prim [22].

Prim is intuitively the algorithm we need, since it works with a small set of

edges adjacent to the regarded start node, in our case adjacent to the set of start

nodes. Furthermore, Prim is better suited for dense graphs, which is also relevant

considering the quadratic amount of edges our graph holds.

On the other hand, Kruskal is the only one able to handle sub-tree merging.

Prim has, per definition only one connected component. Joining the default

62

features of the two algorithms is trivial. Doing so while upholding the sub-tree

depth constraint we mentioned previously is not.

Let us consider a specific example. Let x and y be two input nodes for which

we wish to calculate their maximum spanning trees, while upholding a maximum

tree depth constraint of two. Let us assume that after two iterations the first

tree has evolved to x → k1 → k2. Due to the depth constraint, no new nodes

can be appended after k2. Now let us assume, the next edge available is y →
k2. This would extend the constraint on the connected component for one more

edge adjacent to k2. Providing an optimal solution without falling back to a

combinatorial approach is non-trivial.

We introduce a heuristic approach to this issue based on Prim’s algorithm

extended with Kruskal’s ability to merge subgraphs. Also, each node we visit

keeps track of its depth in its connected component. When reaching a vertex that

has already been visited, we have two options: either the regarded node has a

lower depth value that the current one, which means a shorter path to it already

exists, or the regarded node has a higher depth value than the current one, which

means we have just found a shorter path to it. In the latter case, we must update

its depth value, e.g., we would have to update the depth of k2 in the previous

example.

This approach is depicted in the pseudocode listing 5.4.

5.3 Case Studies

In the course of this section we will introduce two specific datasets we used to

analyze our research approach.

5.3.1 B-Cell Lymphoma

Lymphoma is a class of cancer diseases originating in the lymphocytes. One

specific form is the B-cell lymphoma (BCL), affecting, as the name says, the

B-cells, which play a key role in the humoral immune response.

The analysis procedure in this specific case is to map an experimentally de-

termined list of significantly differentially expressed genes (in cancerous cells) on

our reference dependency graph in an attempt to extract context information on

the processes taking place in the diseased cells. The ultimate goal is to improve

hypothesis generation for drug target discovery. As this is a computer science

thesis, we will not go into more biological detail, but instead, we will analyze the

method itself from a statistical point of view.

For the B-cell lymphoma we extracted genes from the Oncomine database [81]

which are reported to show significant levels of differential regulation. Five studies

were extracted from three publications [82, 83, 84], characterizing B-cell chronic

lymphocytic leukemia, diffuse large B-cell lymphoma, and mantle cell lymphoma.

63

The five DGE lists named ONCO 389, 41, 40, 36 and 863 have 52, 169, 182,

388 and 890 genes, respectively.

5.3.2 Ischemic Reperfusion Injury

Ischemic reperfusion injury (IRI) refers to tissue damage caused by a returning

blood supply after a period of ischemia, i.e., blood supply restriction. IRI is a

negative side-effect occurring during organ transplantation that can lead, among

others, to delayed graft function (DGF).

We are analyzing IRI in the context of kidney transplantation. Two types

of donors exist: living and deceased. In case of deceased donors it is of critical

importance to determine ex ante if the donated organ will exhibit primary, or

delayed graft function / acute transplant renal failure.

Similarly to the B-cell lymphoma case study, we map a list of features, i.e., in

this case a list of biomarker candidates for IRI on our reference dependency graph

in an attempt to gain additional context information on the cellular processes

involved. The ultimate goal is to improve hypothesis generation for biomarker

discovery in order to facilitate the early detection of DGF.

For our IRI analysis we use a consolidated feature list consisting of 12 protein

markers reported in the context of reperfusion injury in [85] and 25 biomarker

candidates reported in the literature [86]. The non-redundant list holds 25 genes.

5.4 Results

In this section we will elaborate on the results obtained with our three biological

neighborhood expansion methods for the BCL and IRI datasets.

5.4.1 Single Maximum Value Paths

Our analysis setup is defined in the following.

Let L be an arbitrary list of n genes for which a significant differential regula-

tion has been experimentally determined. Let C = {0.5, 1.0, 1.3, 1.5, 1.7} be the

list of analyzed cutoffs.

• The first step consists of computing the single maximum value paths (S-

MVP) between all pairs of genes (x, y) ∈ L× L for all cutoffs in C.

• The second step consists of generating 100 lists RLi of size n with genes

chosen randomly from our reference dependency graph.

• The third step consists of computing the S-MVP between all pairs of genes

(x, y) ∈ RLi ×RLi for all cutoffs in C, for all sets RLi.

64

The random genes are picked from the complete reference graph, i.e., from the

−1.0 cutoff. We will address the implications of this measure later in this chapter.

Moreover, the previous procedure is executed both for weighted and unweighted

paths (ω(eij) = 1,∀ eij ∈ V).

We analyze the results by building a histogram of the path length distribution

for the list L together with the average over all RLi and their 95% confidence

interval (CI). Further, we draw boxplots for the number of symbols in the random

lists that have been found in each cutoff in C.

We are investigating the hypothesis that genes in DGE lists have shorter paths

between them than genes chosen randomly from our dependency network.

All BCL lists share almost identical length distributions in regard to the same

cutoffs, with larger input sets exhibiting a less erratic curve behavior at higher

cutoffs due to their inherent large size. For this reason, we did not include the

histograms of the single lists. Instead, figure 5.4 depicts the path length distri-

bution for the consolidated BCL dataset, both weighted and unweighted (edge

count) side-by-side, for the cutoffs 0.5, 1.0 and 1.3.

Although a minimal left-shift of the BCL curve compared to the average case

is visible at lower cutoffs, it bears no statistical relevance, and the hypothesis

stated previously is therefore invalid. This conclusion is confirmed by the IRI

curves which show no relevant difference between the IRI and average shortest

path length.

An interesting observation, however, is that the number of paths between the

BCL- and IRI-associated genes is significantly higher than the number of paths

between randomly picked nodes. The distribution curve of the consolidated BCL

dataset is constantly above the 95% CI and even the IRI distribution curve is

statistically significant at its peak, despite the small size of the dataset: 23 found

genes for the 0.5 cutoff and 13 genes for 1.0.

The cause for this significantly higher number of paths between features of

the BCL and IRI datasets may be twofold:

• The nodes of the reference sets lie closer together, i.e., in the same connected

components and therefore a higher number of paths exists between them,

as opposed to the randomly chosen nodes which are scattered across several

connected components.

• The members of the BCL and IRI reference sets share a strong bias and are

therefore present at higher cutoffs while the high dropout rate of the random

nodes chosen in the −1.0 cutoff is keeping the path numbers between such

vertices low.

To analyze this question, we have investigated the number of found features

in each respective cutoff, using boxplots. Figure 5.6 depicts the obtained results.

65

While all BCL datasets exhibit the same behavior as can be seen in figure 5.6

(a), with a significantly lower node dropout than in the random test cases, the

IRI dataset, due probably to its small size, has a significantly lower dropout rate

only for the 1.0 cutoff than the average.

To reduce the effects of a hypothetical bias we have performed the same S-

MVP experiment while making sure that each random set has the same number

of found genes in a certain cutoff as the reference BCL and IRI input sets.

Figure 5.7 depicts the obtained results, both for weighted and unweighted

edges. The former extreme discrepancy between the BCL and random path num-

bers is no longer visible, the BCL curve, however still being outside the 95% CI.

This method may remove an implicit bias, but if the cutoff chosen for computa-

tion lies too high, it may induce an explicit bias, by randomly picking vertices

from an already small set of available nodes, see figure 5.1.

5.4.2 Variant Multiple Maximum Value Paths

The analysis setup fort the V-MVP is similar to the S-MVP with the main dif-

ference that we repeat the complete procedure for each δ ∈ [0.000, 0.250] at 0.025

intervals. Also, we do not analyze the distribution of the symbols and path num-

bers over the different cutoffs, but instead, for a given cutoff over the different

δ values. By doing so, we gain insight in how the number of possible variant

maximum value paths changes with an increase of the variation factor. Again,

in an attempt to remove the implicit information bias, we prevent dropouts in

the random sets by always choosing the vertices from the cutoff we are currently

using for the computation.

Figure 5.8 depicts the obtained results for the IRI dataset at a 1.1 cutoff and

for the consolidated BCL dataset at a 1.4 cutoff.

Subfigure (a) shows an exponential increase in the number of possible paths

between the vertices of the IRI dataset, for a linear growth of δ. Interestingly

enough, the randomly chosen nodes do not exhibit the same behavior.

Subfigure (b) shows the distribution of the number of symbols in relation to

the variation factor. The IRI dataset does not show any statistically relevant

difference from the random tests.

Subfigure (c) shows the results obtained for the consolidated BCL dataset. The

random tests exhibit a statistically significant increase in the affinity to additional

vertices as opposed to the BCL list. This contradicts the results depicted in

subfigure (a), but we must bear in mind that we are working both with a larger

input dataset and at a higher cutoff. The path numbers do not follow a normal

distribution and can therefore not be analyzed using boxplots.

66

5.4.3 Heuristic Spanning Trees

As opposed to the maximum value paths, the heuristic spanning trees are intended

to be a tool integrated in a supervised iterative computational process and are

less suited for automated statistical analysis.

Figure 5.9 depicts two possible outcomes of the spanning tree neighborhood

expansion method for the IRI dataset at a 1.1 cutoff.

The trees in subfigure (a) were generated with maximum depth constraint

of 1. The resulting information describes the most important next neighbors of

the IRI vertices. Having drastically restricted the depth, the algorithm will visit

direct neighbors regardless of the edge weights until the maximum node count

criteria has been met. The topology is therefore biased, this constraint leading,

for example, to star topologies even for nodes that are no hub proteins.

The trees in subfigure (b), on the other hand, were generated with a maximum

depth constraint of 4. As opposed to the previous example, here, two nodes from

the IRI list are sufficient to reach a relatively large section of the dependency

graph. The topology plays in this case an important role, and can provide infor-

mation on the function of the analyzed vertices. Please note, for example, that

both highlighted nodes in subfigure (b) are necessary in order for the subgraph

to remain connected. The biological plausibility of this information has, however,

yet to be assessed by an expert in the field.

In this chapter we elaborated on the rationale fueling our three biological

neighborhood expansion methods. We then provided the reader with algorithmic

details regarding the expansion procedures. Finally we applied our approach to

two specific case studies, the ischemic reperfusion injury and the B-cell lymphoma.

67

Require: Graph G(V,E)

Require: Initial set of nodes W

Require: The constraints MaxDepth, MaxNodes

1: for all x ∈ W do

2: depth(x)← 0

3: component(x)← x

4: end for

5: Edges← ∅
6: Nodes← W

7: PriorityQueue← {exy ∈ E | x ∈ W, y /∈ W}
8: while PriorityQueue not empty do

9: get heaviest edge exy from PriorityQueue

10: if y /∈ Nodes then

11: if depth(x) ≥MaxDepth ∨ |Nodes| ≥MaxNodes then

12: ignore node

13: else

14: Edges← Edges ∪ exy
15: depth(y)← depth(x) + 1

16: component(y)← x

17: Nodes← Nodes ∪ {y}
18: PriorityQueue← PriorityQueue ∪ {eyz ∈ E | z /∈ Nodes}
19: end if

20: else

21: if component(x) 6= component(y) then

22: merge components

23: end if

24: if depth(x) < depth(y)− 1 then

25: depth(y)← depth(x) + 1

26: reset PriorityQueue

27: end if

28: end if

29: end while

Ensure: The Nodes and Edges sets describe the resulting spanning trees

Algorithm 5.4: A heuristic approach to spanning trees

68

Consolidated BCL Dataset (cutoff 0.5)

path length (weighted)

nu
m

be
r

of
 p

at
hs

0 5 10 15 20

0
20

00
0

60
00

0
10

00
00

BCL
random
95% CI

(a)

Consolidated BCL Dataset (cutoff 0.5)

path length (edge count)

nu
m

be
r

of
 p

at
hs

0 5 10 15 20

0
50

00
0

15
00

00
25

00
00

BCL
random
95% CI

(b)

Consolidated BCL Dataset (cutoff 1.0)

path length (weighted)

nu
m

be
r

of
 p

at
hs

0 5 10 15 20

0
50

00
10

00
0

15
00

0
20

00
0

BCL
random
95% CI

(c)

Consolidated BCL Dataset (cutoff 1.0)

path length (edge count)

nu
m

be
r

of
 p

at
hs

0 5 10 15 20

0
50

00
15

00
0

25
00

0
BCL
random
95% CI

(d)

Consolidated BCL Dataset (cutoff 1.3)

path length (weighted)

nu
m

be
r

of
 p

at
hs

0 5 10 15 20

0
20

40
60

80
10

0
12

0

BCL
random
95% CI

(e)

Consolidated BCL Dataset (cutoff 1.3)

path length (edge count)

nu
m

be
r

of
 p

at
hs

0 5 10 15 20

0
20

40
60

80
10

0
12

0
14

0

BCL
random
95% CI

(f)

Figure 5.4: Consolidated BCL dataset S-MVP length distribution. The random

lists are generated from the −1.0 cutoff.

69

Ischemic Reperfusion Injury Dataset (cutoff 0.5)

path length (weighted)

nu
m

be
r

of
 p

at
hs

0 5 10 15 20

0
10

20
30

40
50

IRI
random
95% CI

(a)

Ischemic Reperfusion Injury Dataset (cutoff 0.5)

path length (edge count)

nu
m

be
r

of
 p

at
hs

0 5 10 15 20

0
20

40
60

80
10

0

IRI
random
95% CI

(b)

Ischemic Reperfusion Injury Dataset (cutoff 1.0)

path length (weighted)

nu
m

be
r

of
 p

at
hs

0 5 10 15 20

0
2

4
6

8
10 IRI

random
95% CI

(c)

Ischemic Reperfusion Injury Dataset (cutoff 1.0)

path length (edge count)

nu
m

be
r

of
 p

at
hs

0 5 10 15 20

0
2

4
6

8
10

IRI
random
95% CI

(d)

Figure 5.5: Ischemic reperfusion injury dataset S-MVP length distribution. The

random lists are generated from the −1.0 cutoff.

70

●

●

0.5 1.0 1.3 1.5 1.7

0
20

40
60

80
10

0

Consolidated BCL Dataset

cutoff

fo
un

d
sy

m
bo

ls
 (

%
)

BCL
random

(a)

●

●

●●●●●●●●●●●●●●●●●

●

●●

●

●

●

●

0.5 1.0 1.3 1.5 1.7

0
20

40
60

80
10

0

Ischemic Reperfusion Injury Dataset

cutoff

fo
un

d
sy

m
bo

ls
 (

%
)

IRI
random

(b)

Figure 5.6: The number of found symbols per cutoff

Consolidated BCL Dataset (cutoff 1.0)

path length (weighted)

nu
m

be
r

of
 p

at
hs

0 5 10 15 20

0
50

00
10

00
0

15
00

0
20

00
0

BCL
random
95% CI

(a)

Consolidated BCL Dataset (cutoff 1.0)

path length (edge count)

nu
m

be
r

of
 p

at
hs

0 5 10 15 20

0
50

00
15

00
0

25
00

0

BCL
random
95% CI

(b)

Figure 5.7: Consolidated BCL dataset S-MVP length distribution. The random

lists are generated from the same cutoff: 1.0

71

●

●

0.00 0.05 0.10 0.15 0.20 0.25

2
4

6
8

10
12

14

Ischemic Reperfusion Injury Dataset

delta

no
. o

f s
ym

bo
ls

 (
..t

im
es

 s
sp

−
co

un
t)

No. of Paths − Delta Correlation

IRI NoS
IRI NoP

1
1e

+
05

2e
+

05
3e

+
05

4e
+

05
5e

+
05

6e
+

05

no
. o

f p
at

hs
 (

..t
im

es
 s

sp
−

co
un

t)

●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●
●
●●

●

●
●
●

●●●●●●● ●

●

●●

●

●

●

●

●●●●●●●
●

●

●
●

●

●

●

●

●

●
●

●●●

●
●
●
●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

(a)

●

●

0.00 0.05 0.10 0.15 0.20 0.25

2
4

6
8

10
12

14

Ischemic Reperfusion Injury Dataset

delta

no
. o

f s
ym

bo
ls

 (
..t

im
es

 s
sp

−
co

un
t)

No. of Symbols − Delta Correlation

IRI NoS
IRI NoP

1
1e

+
05

2e
+

05
3e

+
05

4e
+

05
5e

+
05

6e
+

05

no
. o

f p
at

hs
 (

..t
im

es
 s

sp
−

co
un

t)

●●

●

●●

●●

●

●

●

●

(b)

●

●

0.00 0.05 0.10 0.15 0.20 0.25

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

Consolidated BCL Dataset

delta

no
. o

f s
ym

bo
ls

 (
..t

im
es

 s
sp

−
co

un
t)

No. of Symbols − Delta Correlation

BCL NoS
BCL NoP

1
2

3
4

5
6

7
8

9
10

no
. o

f p
at

hs
 (

..t
im

es
 s

sp
−

co
un

t)

●

●

●
●

● ●

●

●

(c)

Figure 5.8: NoS/NoP - delta correlation in V-MVP

72

(a)

(b)

Figure 5.9: Possible heuristic spanning trees for the IRI dataset

73

Chapter 6

CONCLUSIONS AND OUTLOOK

In this thesis we present a possible approach to information mining of biological

data as means for inferring causal dependencies on the basis of descriptive data.

We introduce a modular framework providing a unified architecture for bio-

logical data integration, consolidation, as well as analysis and visualization.

The biological data integration is accomplished by means of data warehous-

ing. We import several public domain databases into a unified structure, and

provide a solution for the cross-database identifier inconsistency issue by intro-

ducing the concept of biological hyperstructure (HS), linking the genomic and

proteomic namespaces. This mechanism also allows for a transparent extension

to the transcriptomic namespace. Presently, information on approximately 71·103

HS exists in our database.

The information consolidation is accomplished by building a weighted, undi-

rected dependency graph between all hyperstructures. For achieving this, we

present a weight function based on gene expression, subcellular location, protein

interaction and functional annotation data.

The subsequent analysis is implemented by means of biological neighborhood

expansion. For this purpose, we propose single and multiple maximum value

paths and heuristic spanning trees.

We analyze our scientific approach by running tests based on input datasets

obtained on B-cell lymphoma and renal transplant ischemia reperfusion injury.

Further, we demonstrate statistically significant differences between results ob-

tained from random and reference input datasets.

Future plans and possibilities are manifold; some of the most important ones

are mentioned in the following.

• Further system development

This includes, among others, the integration of new data sources, the adap-

tation of the edge weight function by machine learning algorithms and the

modification of the biological neighborhood expansion mechanisms.

• Experimental hypothesis testing

Our project aims at improving hypothesis generation for laboratory exper-

iments, with the ultimate goal of disease-associated biomarker and drug

target discovery. However, our mechanisms are purely theoretical. Experi-

mental testing has to follow.

74

• Data basis improvement

This is still a challenge for the future. Experimental information currently

available is still lacking in quality, either coming from experiment noise or

from purely artificial information biasing. As methods change and improve,

the quality of the results obtained with our system will improve as well.

75

Bibliography

[1] P. A. Corning, “The re-emergence of ’emergence’: A venerable concept in

search of a theory,” Complexity, vol. 7, no. 6, pp. 18–30, 2002.

[2] K. Strange, “The end of ’naive reductionism’: rise of systems biology or

renaissance of physiology?,” Am J Physiol Cell Physiol, vol. 288, pp. C968–

C974, May 2005.

[3] H. Kitano, “Systems biology: a brief overview.,” Science, vol. 295, pp. 1662–

1664, Mar 2002.

[4] G. Goel, I.-C. Chou, and E. O. Voit, “Biological systems modeling and anal-

ysis: a biomolecular technique of the twenty-first century.,” J Biomol Tech,

vol. 17, pp. 252–269, Sep 2006.

[5] M. Tomita, “Whole-cell simulation: a grand challenge of the 21st century.,”

Trends Biotechnol, vol. 19, pp. 205–210, Jun 2001.

[6] D. Dori and M. Choder, “Conceptual modeling in systems biology fosters

empirical findings: the mrna lifecycle.,” PLoS ONE, vol. 2, no. 9, p. e872,

2007.

[7] P. Veber, M. Le Borgne, A. Siegel, S. Lagarrigue, and O. Radulescu, “Com-

plex qualitative models in biology: A new approach,” Complexus, vol. 2,

no. 3-4, pp. 140–151, 2004.

[8] A. Spivey, “Systems biology: the big picture.,” Environ Health Perspect,

vol. 112, pp. A938–A943, Nov 2004.

[9] K. Aggarwal and K. H. Lee, “Functional genomics and proteomics as a foun-

dation for systems biology.,” Brief Funct Genomic Proteomic, vol. 2, pp. 175–

184, Oct 2003.

[10] D. Hwang, J. J. Smith, D. M. Leslie, A. D. Weston, A. G. Rust, S. Ram-

sey, P. de Atauri, A. F. Siegel, H. Bolouri, J. D. Aitchison, and L. Hood,

“A data integration methodology for systems biology: experimental verifica-

tion.,” Proc Natl Acad Sci U S A, vol. 102, pp. 17302–17307, Nov 2005.

[11] A. R. Joyce and B. . Palsson, “The model organism as a system: integrating

’omics’ data sets.,” Nat Rev Mol Cell Biol, vol. 7, pp. 198–210, Mar 2006.

76

[12] F. H. Crick, “On protein synthesis.,” Symp Soc Exp Biol, vol. 12, pp. 138–

163, 1958.

[13] L. You, “Toward computational systems biology.,” Cell Biochem Biophys,

vol. 40, no. 2, pp. 167–184, 2004.

[14] J. C. Smith and D. Figeys, “Proteomics technology in systems biology.,” Mol

Biosyst, vol. 2, pp. 364–370, Aug 2006.

[15] N. H. Barton, D. E. Briggs, J. A. Eisen, D. B. Goldstein, and N. H. Patel,

Evolution. Cold Spring Harbor Laboratory Press, 2007.

[16] J. Hurwitz, “The discovery of rna polymerase.,” J Biol Chem, vol. 280,

pp. 42477–42485, Dec 2005.

[17] P. Perco, C. Pleban, A. Kainz, A. Lukas, G. Mayer, B. Mayer, and R. Ober-

bauer, “Protein biomarkers associated with acute renal failure and chronic

kidney disease.,” Eur J Clin Invest, vol. 36, pp. 753–763, Nov 2006.

[18] I. H. G. S. Consortium, “Finishing the euchromatic sequence of the human

genome.,” Nature, vol. 431, pp. 931–945, Oct 2004.

[19] M. Berth, F. M. Moser, M. Kolbe, and J. Bernhardt, “The state of the art in

the analysis of two-dimensional gel electrophoresis images.,” Appl Microbiol

Biotechnol, vol. 76, pp. 1223–1243, Oct 2007.

[20] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

Algorithms, ch. 24.3, pp. 595–601. MIT Press and McGraw-Hill, 2. ed., 2001.

[21] R. W. Floyd, “Algorithm 97: Shortest path,” Commun. ACM, vol. 5, no. 6,

p. 345, 1962.

[22] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

Algorithms, ch. 23.2, pp. 567–574. MIT Press and McGraw-Hill, 2. ed., 2001.

[23] P. Flicek, B. L. Aken, K. Beal, B. Ballester, M. Caccamo, Y. Chen, L. Clarke,

G. Coates, F. Cunningham, T. Cutts, T. Down, S. C. Dyer, T. Eyre,

S. Fitzgerald, J. Fernandez-Banet, S. Grf, S. Haider, M. Hammond, R. Hol-

land, K. L. Howe, K. Howe, N. Johnson, A. Jenkinson, A. Khri, D. Keefe,

F. Kokocinski, E. Kulesha, D. Lawson, I. Longden, K. Megy, P. Meidl,

B. Overduin, A. Parker, B. Pritchard, A. Prlic, S. Rice, D. Rios, M. Schuster,

I. Sealy, G. Slater, D. Smedley, G. Spudich, S. Trevanion, A. J. Vilella, J. Vo-

gel, S. White, M. Wood, E. Birney, T. Cox, V. Curwen, R. Durbin, X. M.

Fernandez-Suarez, J. Herrero, T. J. P. Hubbard, A. Kasprzyk, G. Proctor,

J. Smith, A. Ureta-Vidal, and S. Searle, “Ensembl 2008.,” Nucleic Acids Res,

vol. 36, pp. D707–D714, Jan 2008. ENSEMBL.

77

[24] C. Brooksbank, E. Camon, M. A. Harris, M. Magrane, M. J. Martin, N. Mul-

der, C. O’Donovan, H. Parkinson, M. A. Tuli, R. Apweiler, E. Birney,

A. Brazma, K. Henrick, R. Lopez, G. Stoesser, P. Stoehr, and G. Cameron,

“The european bioinformatics institute’s data resources.,” Nucleic Acids Res,

vol. 31, pp. 43–50, Jan 2003. EBI Databases.

[25] D. Maglott, J. Ostell, K. D. Pruitt, and T. Tatusova, “Entrez gene: gene-

centered information at ncbi.,” Nucleic Acids Res, vol. 35, pp. D26–D31, Jan

2007.

[26] P. J. Kersey, J. Duarte, A. Williams, Y. Karavidopoulou, E. Birney, and

R. Apweiler, “The international protein index: an integrated database for

proteomics experiments.,” Proteomics, vol. 4, pp. 1985–1988, Jul 2004.

[27] A. Bairoch, R. Apweiler, C. H. Wu, W. C. Barker, B. Boeckmann, S. Ferro,

E. Gasteiger, H. Huang, R. Lopez, M. Magrane, M. J. Martin, D. A. Natale,

C. O’Donovan, N. Redaschi, and L.-S. L. Yeh, “The universal protein resource

(uniprot).,” Nucleic Acids Res, vol. 33, pp. D154–D159, Jan 2005. UniProt

Database.

[28] B. Boeckmann, A. Bairoch, R. Apweiler, M.-C. Blatter, A. Estreicher,

E. Gasteiger, M. J. Martin, K. Michoud, C. O’Donovan, I. Phan, S. Pilbout,

and M. Schneider, “The swiss-prot protein knowledgebase and its supple-

ment trembl in 2003.,” Nucleic Acids Res, vol. 31, pp. 365–370, Jan 2003.

UniProt: SwissProt (LOC).

[29] K. D. Pruitt, T. Tatusova, and D. R. Maglott, “Ncbi reference sequences

(refseq): a curated non-redundant sequence database of genomes, transcripts

and proteins.,” Nucleic Acids Res, vol. 35, pp. D61–D65, Jan 2007. Proteins:

NCBI RefSeq.

[30] W. V. Criekinge and R. Beyaert, “Yeast two-hybrid: State of the art.,” Biol

Proced Online, vol. 2, pp. 1–38, Oct 1999.

[31] E. Phizicky and S. Fields, “Protein-protein interactions: methods for detec-

tion and analysis,” Microbiol. Rev., vol. 59, pp. 94–123, Mar 1995.

[32] S. Kerrien, Y. Alam-Faruque, B. Aranda, I. Bancarz, A. Bridge, C. Derow,

E. Dimmer, M. Feuermann, A. Friedrichsen, R. Huntley, C. Kohler,

J. Khadake, C. Leroy, A. Liban, C. Lieftink, L. Montecchi-Palazzi, S. Or-

chard, J. Risse, K. Robbe, B. Roechert, D. Thorneycroft, Y. Zhang, R. Ap-

weiler, and H. Hermjakob, “Intact–open source resource for molecular inter-

action data.,” Nucleic Acids Res, vol. 35, pp. D561–D565, Jan 2007. INT:

IntAct.

78

[33] K. R. Brown and I. Jurisica, “Online predicted human interaction database.,”

Bioinformatics, vol. 21, pp. 2076–2082, May 2005. INT: OPHID.

[34] G. D. Bader, D. Betel, and C. W. V. Hogue, “Bind: the biomolecular in-

teraction network database.,” Nucleic Acids Res, vol. 31, pp. 248–250, Jan

2003.

[35] S. Peri, J. D. Navarro, R. Amanchy, T. Z. Kristiansen, C. K. Jonnalagadda,

V. Surendranath, V. Niranjan, B. Muthusamy, T. K. B. Gandhi, M. Gron-

borg, N. Ibarrola, N. Deshpande, K. Shanker, H. N. Shivashankar, B. P.

Rashmi, M. A. Ramya, Z. Zhao, K. N. Chandrika, N. Padma, H. C. Har-

sha, A. J. Yatish, M. P. Kavitha, M. Menezes, D. R. Choudhury, S. Suresh,

N. Ghosh, R. Saravana, S. Chandran, S. Krishna, M. Joy, S. K. Anand,

V. Madavan, A. Joseph, G. W. Wong, W. P. Schiemann, S. N. Constanti-

nescu, L. Huang, R. Khosravi-Far, H. Steen, M. Tewari, S. Ghaffari, G. C.

Blobe, C. V. Dang, J. G. N. Garcia, J. Pevsner, O. N. Jensen, P. Roep-

storff, K. S. Deshpande, A. M. Chinnaiyan, A. Hamosh, A. Chakravarti, and

A. Pandey, “Development of human protein reference database as an initial

platform for approaching systems biology in humans.,” Genome Res, vol. 13,

pp. 2363–2371, Oct 2003.

[36] P. Pagel, S. Kovac, M. Oesterheld, B. Brauner, I. Dunger-Kaltenbach, G. Fr-

ishman, C. Montrone, P. Mark, V. Stmpflen, H.-W. Mewes, A. Ruepp, and

D. Frishman, “The mips mammalian protein-protein interaction database.,”

Bioinformatics, vol. 21, pp. 832–834, Mar 2005.

[37] A. Zanzoni, L. Montecchi-Palazzi, M. Quondam, G. Ausiello, M. Helmer-

Citterich, and G. Cesareni, “Mint: a molecular interaction database.,” FEBS

Lett, vol. 513, pp. 135–140, Feb 2002.

[38] L. Salwinski, C. S. Miller, A. J. Smith, F. K. Pettit, J. U. Bowie, and

D. Eisenberg, “The database of interacting proteins: 2004 update.,” Nucleic

Acids Res, vol. 32, pp. D449–D451, Jan 2004.

[39] B.-J. Breitkreutz, C. Stark, T. Reguly, L. Boucher, A. Breitkreutz, M. Liv-

stone, R. Oughtred, D. H. Lackner, J. Bhler, V. Wood, K. Dolinski, and

M. Tyers, “The biogrid interaction database: 2008 update.,” Nucleic Acids

Res, vol. 36, pp. D637–D640, Jan 2008. INT: BioGrid.

[40] M. Kanehisa and S. Goto, “Kegg: kyoto encyclopedia of genes and

genomes.,” Nucleic Acids Res, vol. 28, pp. 27–30, Jan 2000. PHE: KEGG.

[41] H. Mi, B. Lazareva-Ulitsky, R. Loo, A. Kejariwal, J. Vandergriff, S. Rabkin,

N. Guo, A. Muruganujan, O. Doremieux, M. J. Campbell, H. Kitano, and

79

P. D. Thomas, “The panther database of protein families, subfamilies, func-

tions and pathways.,” Nucleic Acids Res, vol. 33, pp. D284–D288, Jan 2005.

[42] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry,

A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P.

Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson,

M. Ringwald, G. M. Rubin, and G. Sherlock, “Gene ontology: tool for the

unification of biology. the gene ontology consortium.,” Nat Genet, vol. 25,

pp. 25–29, May 2000. PHE: GO.

[43] P. Horton, K.-J. Park, T. Obayashi, N. Fujita, H. Harada, C. J. Adams-

Collier, and K. Nakai, “Wolf psort: protein localization predictor.,” Nucleic

Acids Res, vol. 35, pp. W585–W587, Jul 2007. LOC: WPSORT.

[44] G. S. Omenn, D. J. States, M. Adamski, T. W. Blackwell, R. Menon, H. Her-

mjakob, R. Apweiler, B. B. Haab, R. J. Simpson, J. S. Eddes, E. A. Kapp,

R. L. Moritz, D. W. Chan, A. J. Rai, A. Admon, R. Aebersold, J. Eng, W. S.

Hancock, S. A. Hefta, H. Meyer, Y.-K. Paik, J.-S. Yoo, P. Ping, J. Pounds,

J. Adkins, X. Qian, R. Wang, V. Wasinger, C. Y. Wu, X. Zhao, R. Zeng,

A. Archakov, A. Tsugita, I. Beer, A. Pandey, M. Pisano, P. Andrews, H. Tam-

men, D. W. Speicher, and S. M. Hanash, “Overview of the hupo plasma pro-

teome project: results from the pilot phase with 35 collaborating laboratories

and multiple analytical groups, generating a core dataset of 3020 proteins and

a publicly-available database.,” Proteomics, vol. 5, pp. 3226–3245, Aug 2005.

LOC: Plasma.

[45] T. Barrett, D. B. Troup, S. E. Wilhite, P. Ledoux, D. Rudnev, C. Evangelista,

I. F. Kim, A. Soboleva, M. Tomashevsky, and R. Edgar, “Ncbi geo: mining

tens of millions of expression profiles–database and tools update.,” Nucleic

Acids Res, vol. 35, pp. D760–D765, Jan 2007. GEX: BodyMap Dataset.

[46] M. Wiesinger, “In-silico prediction of transcription factor binding site in the

human genome,” Master’s thesis, FH Obersterreich, July 2007.

[47] L. Strmbck and P. Lambrix, “Representations of molecular pathways: an

evaluation of sbml, psi mi and biopax.,” Bioinformatics, vol. 21, pp. 4401–

4407, Dec 2005.

[48] M. Hucka, A. Finney, B. J. Bornstein, S. M. Keating, B. E. Shapiro,

J. Matthews, B. L. Kovitz, M. J. Schilstra, A. Funahashi, J. C. Doyle, and

H. Kitano, “Evolving a lingua franca and associated software infrastructure

for computational systems biology: the systems biology markup language

(sbml) project.,” Syst Biol (Stevenage), vol. 1, pp. 41–53, Jun 2004.

80

[49] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano,

A. P. Arkin, B. J. Bornstein, D. Bray, A. Cornish-Bowden, A. A. Cuellar,

S. Dronov, E. D. Gilles, M. Ginkel, V. Gor, I. I. Goryanin, W. J. Hedley, T. C.

Hodgman, J.-H. Hofmeyr, P. J. Hunter, N. S. Juty, J. L. Kasberger, A. Krem-

ling, U. Kummer, N. L. Novre, L. M. Loew, D. Lucio, P. Mendes, E. Minch,

E. D. Mjolsness, Y. Nakayama, M. R. Nelson, P. F. Nielsen, T. Sakurada,

J. C. Schaff, B. E. Shapiro, T. S. Shimizu, H. D. Spence, J. Stelling, K. Taka-

hashi, M. Tomita, J. Wagner, J. Wang, and S. B. M. L. Forum, “The systems

biology markup language (sbml): a medium for representation and exchange

of biochemical network models.,” Bioinformatics, vol. 19, pp. 524–531, Mar

2003. Format: SBML.

[50] A. Finney and M. Hucka, “Systems biology markup language: Level 2 and

beyond.,” Biochem Soc Trans, vol. 31, pp. 1472–1473, Dec 2003. Format:

SBML.

[51] B. E. Shapiro, A. Levchenko, E. M. Meyerowitz, B. J. Wold, and E. D. Mjol-

sness, “Cellerator: extending a computer algebra system to include biochem-

ical arrows for signal transduction simulations.,” Bioinformatics, vol. 19,

pp. 677–678, Mar 2003.

[52] I. Goryanin, T. C. Hodgman, and E. Selkov, “Mathematical simulation and

analysis of cellular metabolism and regulation.,” Bioinformatics, vol. 15,

pp. 749–758, Sep 1999.

[53] M. Tomita, K. Hashimoto, K. Takahashi, T. S. Shimizu, Y. Matsuzaki,

F. Miyoshi, K. Saito, S. Tanida, K. Yugi, J. C. Venter, and C. A. Hutchison,

“E-cell: software environment for whole-cell simulation.,” Bioinformatics,

vol. 15, pp. 72–84, Jan 1999.

[54] P. Mendes, “Biochemistry by numbers: simulation of biochemical pathways

with gepasi 3.,” Trends Biochem Sci, vol. 22, pp. 361–363, Sep 1997.

[55] H. M. Sauro, M. Hucka, A. Finney, C. Wellock, H. Bolouri, J. Doyle, and

H. Kitano, “Next generation simulation tools: the systems biology workbench

and biospice integration.,” OMICS, vol. 7, no. 4, pp. 355–372, 2003.

[56] C. T. Brown, A. G. Rust, P. J. C. Clarke, Z. Pan, M. J. Schilstra, T. D.

Buysscher, G. Griffin, B. J. Wold, R. A. Cameron, E. H. Davidson, and

H. Bolouri, “New computational approaches for analysis of cis-regulatory

networks.,” Dev Biol, vol. 246, pp. 86–102, Jun 2002.

[57] C. J. Morton-Firth and D. Bray, “Predicting temporal fluctuations in an

intracellular signalling pathway.,” J Theor Biol, vol. 192, pp. 117–128, May

1998.

81

[58] L. M. Loew and J. C. Schaff, “The virtual cell: a software environment for

computational cell biology.,” Trends Biotechnol, vol. 19, pp. 401–406, Oct

2001.

[59] B. J. Bornstein, S. M. Keating, A. Jouraku, and M. Hucka, “Libsbml: an api

library for sbml.,” Bioinformatics, vol. 24, pp. 880–881, Mar 2008. Format:

SBML.

[60] P. D. Karp, M. Riley, M. Saier, I. T. Paulsen, J. Collado-Vides, S. M. Pa-

ley, A. Pellegrini-Toole, C. Bonavides, and S. Gama-Castro, “The ecocyc

database.,” Nucleic Acids Res, vol. 30, pp. 56–58, Jan 2002.

[61] G. Joshi-Tope, M. Gillespie, I. Vastrik, P. D’Eustachio, E. Schmidt,

B. de Bono, B. Jassal, G. R. Gopinath, G. R. Wu, L. Matthews, S. Lewis,

E. Birney, and L. Stein, “Reactome: a knowledgebase of biological path-

ways.,” Nucleic Acids Res, vol. 33, pp. D428–D432, Jan 2005.

[62] M. Aladjem, G. D. Bader, E. Brauner, M. P. Cary, K. Dahlquist, E. Demir,

P. D’Eustachio, K. Fukuda, F. Gibbons, M. Gillespie, R. Goldberg, C. Hogue,

M. Hucka, G. Joshi-Tope, D. Kane, P. Karp, T. Klein, C. Lemer, J. Lu-

ciano, E. Pichler, D. Marks, N. Maltsev, E. Marland, E. Neumann, S. Pa-

ley, J. Pick, J. Rees, A. Regev, A. Ruttenberg, A. Rzhetsky, C. Sander,

V. Schachter, I. Shah, A. Splendiani, M. Syed, E. Wingender, G. Wu, and

J. Zucker, BioPAX Biological Pathways Exchange Language Level 2, Version

1.0 Documentation. BioPAX Workgroup, Dec 2005.

[63] H. Hermjakob, L. Montecchi-Palazzi, G. Bader, J. Wojcik, L. Salwinski,

A. Ceol, S. Moore, S. Orchard, U. Sarkans, C. von Mering, B. Roechert,

S. Poux, E. Jung, H. Mersch, P. Kersey, M. Lappe, Y. Li, R. Zeng, D. Rana,

M. Nikolski, H. Husi, C. Brun, K. Shanker, S. G. N. Grant, C. Sander,

P. Bork, W. Zhu, A. Pandey, A. Brazma, B. Jacq, M. Vidal, D. Sherman,

P. Legrain, G. Cesareni, I. Xenarios, D. Eisenberg, B. Steipe, C. Hogue,

and R. Apweiler, “The hupo psi’s molecular interaction format–a community

standard for the representation of protein interaction data.,” Nat Biotechnol,

vol. 22, pp. 177–183, Feb 2004. Format: PSI-MI.

[64] C. von Mering, L. J. Jensen, M. Kuhn, S. Chaffron, T. Doerks, B. Krger,

B. Snel, and P. Bork, “String 7–recent developments in the integration and

prediction of protein interactions.,” Nucleic Acids Res, vol. 35, pp. D358–

D362, Jan 2007.

[65] C. von Mering, L. Jensen, B. Snel, S. Hooper, M. Krupp, M. Foglierini,

N. Jouffre, M. Huynen, and P. Bork, “String: known and predicted protein-

82

protein associations, integrated and transferred across organisms,” Nucleic

Acids Research, vol. 33, pp. 433–437, 2005.

[66] L. J. Jensen, M. Kuhn, M. Stark, S. Chaffron, C. Creevey, J. Muller, T. Do-

erks, P. Julien, A. Roth, M. Simonovic, P. Bork, and C. von Mering, “String

8–a global view on proteins and their functional interactions in 630 organ-

isms.,” Nucleic Acids Res, Oct 2008.

[67] PubMed library: http://www.ncbi.nlm.nih.gov/pubmed/, Nov 2008.

[68] A. Platzer, P. Perco, A. Lukas, and B. Mayer, “Characterization of protein-

interaction networks in tumors.,” BMC Bioinformatics, vol. 8, p. 224, 2007.

[69] A.-L. Barabsi and Z. N. Oltvai, “Network biology: understanding the cell’s

functional organization.,” Nat Rev Genet, vol. 5, pp. 101–113, Feb 2004.

[70] P. J. Ingram, M. P. H. Stumpf, and J. Stark, “Network motifs: structure

does not determine function.,” BMC Genomics, vol. 7, p. 108, 2006.

[71] J. M. Hellerstein, M. Stonebraker, and J. Hamilton, “Architecture of a

database system,” Found. Trends databases, vol. 1, no. 2, pp. 141–259, 2007.

[72] ORACLE: http://www.oracle.com/, Nov 2008.

[73] PostgreSQL Database: http://www.postgresql.org/, Nov 2008.

[74] MySQL Database: http://www.mysql.com/, Nov 2008.

[75] C. Bauer and G. King, Java Persistence with Hibernate. Manning Publica-

tions Co., 2007.

[76] M. Keith and M. Schincariol, Pro EJB 3: Java Persistence API. Apress,

1 ed., May 2006.

[77] W. Kent, “A simple guide to five normal forms in relational database theory,”

Commun. ACM, vol. 26, no. 2, pp. 120–125, 1983.

[78] Cytoscape: http://www.cytoscape.org, Dec 2008.

[79] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in improved

network optimization algorithms,” J. ACM, vol. 34, no. 3, pp. 596–615, 1987.

[80] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

Algorithms, ch. 22.3, pp. 540–549. MIT Press and McGraw-Hill, 2. ed., 2001.

83

[81] D. R. Rhodes, J. Yu, K. Shanker, N. Deshpande, R. Varambally, D. Ghosh,

T. Barrette, A. Pandey, and A. M. Chinnaiyan, “Oncomine: a cancer mi-

croarray database and integrated data-mining platform.,” Neoplasia, vol. 6,

no. 1, pp. 1–6, 2004.

[82] A. Rosenwald, A. A. Alizadeh, G. Widhopf, R. Simon, R. E. Davis, X. Yu,

L. Yang, O. K. Pickeral, L. Z. Rassenti, J. Powell, D. Botstein, J. C. Byrd,

M. R. Grever, B. D. Cheson, N. Chiorazzi, W. H. Wilson, T. J. Kipps,

P. O. Brown, and L. M. Staudt, “Relation of gene expression phenotype to

immunoglobulin mutation genotype in b cell chronic lymphocytic leukemia.,”

J Exp Med, vol. 194, pp. 1639–1647, Dec 2001.

[83] A. Rosenwald, G. Wright, W. C. Chan, J. M. Connors, E. Campo, R. I.

Fisher, R. D. Gascoyne, H. K. Muller-Hermelink, E. B. Smeland, J. M. Gilt-

nane, E. M. Hurt, H. Zhao, L. Averett, L. Yang, W. H. Wilson, E. S. Jaffe,

R. Simon, R. D. Klausner, J. Powell, P. L. Duffey, D. L. Longo, T. C. Greiner,

D. D. Weisenburger, W. G. Sanger, B. J. Dave, J. C. Lynch, J. Vose, J. O.

Armitage, E. Montserrat, A. Lpez-Guillermo, T. M. Grogan, T. P. Miller,

M. LeBlanc, G. Ott, S. Kvaloy, J. Delabie, H. Holte, P. Krajci, T. Stokke,

L. M. Staudt, and L. M. P. Project, “The use of molecular profiling to pre-

dict survival after chemotherapy for diffuse large-b-cell lymphoma.,” N Engl

J Med, vol. 346, pp. 1937–1947, Jun 2002.

[84] F. Zhan, J. Hardin, B. Kordsmeier, K. Bumm, M. Zheng, E. Tian, R. Sander-

son, Y. Yang, C. Wilson, M. Zangari, E. Anaissie, C. Morris, F. Muwalla,

F. van Rhee, A. Fassas, J. Crowley, G. Tricot, B. Barlogie, and J. Shaugh-

nessy, “Global gene expression profiling of multiple myeloma, monoclonal

gammopathy of undetermined significance, and normal bone marrow plasma

cells.,” Blood, vol. 99, pp. 1745–1757, Mar 2002.

[85] P. Perco, C. Pleban, A. Kainz, A. Lukas, B. Mayer, and R. Oberbauer, “Gene

expression and biomarkers in renal transplant ischemia reperfusion injury.,”

Transpl Int, vol. 20, pp. 2–11, Jan 2007.

[86] I. Mühlberger, P. Perco, R. Fechete, B. Mayer, and R. Oberbauer, “Biomark-

ers in renal transplantation ischemia reperfusion injury.” Dec 2008.

