
High-level System Modeling
with SystemC and TLM

MASTERARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur/in

im Rahmen des Studiums

Technische Informatik

ausgeführt von

Christian Widtmann
Matrikelnummer 0125145

am:
Institut für Technische Informatik

Betreuung:
Betreuer: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas STEININGER
Mitwirkung: Univ.Ass. Dipl.-Ing. Dr.techn. Martin DELVAI

Wien, 19.01. 2009
(Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43/(0)1/58801-0 http://www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Abstract

Traditional methodologies increasingly fail to tackle the challenge of contemporary

embedded system design. The drive towards shorter product life cycles and time-

to-market necessitates an increase of productivity. Electronic System Level Design

(ESL) addresses this issue by modeling and abstraction. The Transaction Level Mod-

eling (TLM) standard, based on the system modeling language SystemC, is targeted

at the design of fast virtual system prototypes that allow early hardware/software co-

development as well as architectural and performance exploration. This thesis presents

the methodology of ESL design based on transaction models. It describes the features

of SystemC, the concepts of the thereupon defined modeling standard and the tools

available to the designer. In the course of a case study the Advanced Encryption Stan-

dard (AES) is refined from its mathematical description to an architectural model. The

design flow includes a number of modeling steps that illustrate the capabilities of the

different modeling styles. Particular focus is laid on linking theoretical concepts to their

practical implementation.

The discussion works out the individual attributes that make a certain modeling style

useful for a particular use case, as it is perceived during the case study. Performance

figures conclude the analysis and illustrate the simulation performance of the various

modeling styles.

i

Zusammenfassung

Der Drang zu kürzeren Produktlebenszyklen und -einführungszeiten sowie die ständig

steigende Komplexität von Embedded Systems erfordern einen Anstieg der Produk-

tivität, dem traditionelle Designmethoden immer weniger gewachsen sind. Zur Bewäl-

tigung dieses Problems verwendet Electronic System Level Design (ESL) Modellierung

und Abstraktion. Der auf der Modellierungssprache SystemC basierende Transaction

Level Modeling (TLM) Standard zielt auf die Erstellung virtueller Prototypen, die bereits

früh parallele Entwicklung von Hard- und Software sowie Analysen von Architektur und

Leistung ermöglichen.

Diese Arbeit präsentiert die Methodologie von auf TLM basierendem ESL Design. Sie

beschreibt die Fähigkeiten von SystemC, die Konzepte des darauf aufbauenden Stan-

dards sowie die Werkzeuge, die dem Entwickler zur Verfügung stehen. Im Zuge einer

Fallstudie wird der Advanced Encryption Standard (AES) von einer mathematischen

Beschreibung zu einem Architekturmodell weiterentwickelt. Der Designflow besteht

aus einer Reihe von Modellierungsschritten, die die Möglichkeiten der verschiedenen

Modellierungsstile aufzeigen sollen. Ein Schwerpunkt dabei liegt auf der Verknüpfung

theoretischer Konzepte mit ihrer praktischen Implementierung.

Basierend auf den Ergebnissen der Fallstudie werden jene Eigenschaften der jeweili-

gen Modellierungsstile herausgearbeitet, auf denen die Eignung für ihre Anwendungs-

fälle beruht. Abschliessend erfolgt eine Analyse der Simulationsleistung der beschrie-

benen Modelle.

ii

Danksagung

Diese Arbeit widme ich meinen Eltern, deren unermüdliche Unterstützung mein Studium

erst möglich gemacht hat.

Weiters gilt mein Dank . . .

. . . Univ.Ass. Dipl.-Ing. Dr.techn. Martin Delvai für seine Betreuung und Anleitung.

. . . Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Steininger für Jahre engagierter Lehre.

. . . Andreas Dielacher für die produktive und unterhaltsame Studienzeit.

Last but not least danke ich meiner Freundin, Mag. DI Birgit Schnattinger, dass sie ihre

aus zwei Diplomarbeiten stammenden Erfahrung mit mir geteilt und mich auch sonst

in jeder erdenklichen Weise unterstützt hat.

iii

Contents

Abstract i

Zusammenfassung ii

Danksagung iii

1. Introduction 1
1.1. Motivation . 1

1.2. Goals and organization of this work . 2

2. The methodology of TLM-based ESL design 5
2.1. Electronic System Level Design . 5

2.2. SystemC . 7

2.2.1. Processes and sensitivity . 9

2.2.2. Interfaces, (ex)ports and signals 9

2.2.3. Events . 11

2.2.4. Implications on simulation performance 12

2.3. Transaction Level Modeling . 12

2.3.1. TLM with SystemC . 13

2.3.2. Modeling styles . 14

2.3.3. Classification of behavior by phase transitions 19

3. Transaction Level Model development 23
3.1. Basic modeling classes . 23

3.1.1. Generic payload (GP) . 24

3.1.2. Payload event queue (PEQ) . 24

3.1.3. Quantum keeper (QK) . 25

3.2. Core TLM2 interfaces . 25

3.2.1. Forward and backward path . 26

iv

Contents

3.2.2. Operational interfaces . 27

3.2.3. Supplementary interfaces . 32

3.3. Basic TLM sockets . 33

3.3.1. Combined interfaces and basic sockets 33

3.3.2. Socket binding . 34

3.4. Model development in practice . 37

3.4.1. Modeling options in LT and AT 38

3.4.2. Implementing communication through sockets 39

4. Case Study: Advanced Encryption Standard 43
4.1. Description of the algorithm . 43

4.1.1. The standard AES algorithm . 43

4.1.2. The T-Box variant . 45

4.2. Outline of the design flow . 46

4.3. Software implementation . 47

4.3.1. Control flow considerations . 48

4.3.2. Application-related considerations 48

4.4. Untimed modeling . 49

4.4.1. Partitioning into computation modules 49

4.4.2. Implementing an algorithmic model 51

4.5. Loosely-timed modeling . 53

4.5.1. Relevant design rules for timed models 54

4.5.2. Model migration from UT to LT 54

4.5.3. Removal of temporal decoupling 55

4.5.4. Introduction of concurrency . 57

4.5.5. Facilities for basic HW/SW tradeoff analysis 59

4.5.6. Bottleneck identification . 60

4.5.7. Concluding model implementation 63

4.6. Approximately-timed modeling . 64

4.6.1. Migration and timing considerations 64

4.6.2. Model implementation . 66

4.6.3. Architectural exploration in practice 68

5. Results and discussion 74
5.1. Application comprehension by algorithmic modeling 75

5.2. Delay modeling scopes of LT and AT . 75

v

Contents

5.3. Adequacy for HW/SW partitioning . 77

5.4. Software development focus of LT . 78

5.5. Performance analysis . 79

5.5.1. Setup for data gathering . 79

5.5.2. Results and interpretation . 80

6. Conclusion and outlook 83

A. Acronyms 85

B. Identifiers 87

C. Codelisting 91
C.1. SimpleSocket transport function pointer 91

C.2. Event (untimed) model vs. call (algorithmic) 94

C.3. Loosely-timed target busy flag management 98

C.4. Approximately-timed target example . 101

C.5. Switching between HW/SW behavior . 108

D. Bibliography 110

vi

List of Figures

1.1. The Computing Universe [MB06] . 3

2.1. Virtual System Prototype with SystemC and TLM 7

2.2. Comparison of SystemC against other languages [BD05] 8

2.3. Architecture of the SystemC language [Ope07b] 8

2.4. Port / export example . 11

2.5. Cornerstones of the TLM standard [Ope07b] 14

2.6. TLM use cases (extended from [Ope07b]) 16

2.7. Hardware and software behavior as defined by OCP-IP [KHA05] 20

2.8. OSCI phase transitions for software behavior 21

2.9. OSCI phase transitions for non-pipelined hardware behavior 21

2.10. OSCI phase transitions for pipelined hardware behavior 22

3.1. Basic blocking and non-blocking transport behavior 28

3.2. Transport call through forward and backward path 30

3.3. TLM standard basic sockets . 34

3.4. Socket export to implementation binding 35

3.5. Initiator to target socket binding . 36

3.6. Hierarchical socket binding . 36

4.1. Sequence of AES rounds [Zab03] . 44

4.2. T-Box data encryption [AHL+06] . 46

4.3. Coarse AES data dependency analysis 49

4.4. System architecture with instantaneous lookup 50

4.5. Loosely-timed encryption with/out temporal decoupling 56

4.6. Busy times of AES algorithm subtasks with original delays 62

4.7. Busy times of AES algorithm subtasks with altered delays 62

4.8. System architecture with dedicated lookup modules 64

4.9. System architecture with shared lookup module 70

vii

List of Figures

4.10. System architecture with bus topology 72

5.1. Mapping between TLM use cases and modeling styles [IEE03] 74

viii

List of Tables

4.1. Subtasks of the AES algorithm model . 61

4.2. Delays attributed to operations . 61

4.3. Subtasks of the AES algorithm model . 62

4.4. Delays attributed to operations in the microcontroller model 71

4.5. Delays attributed to operations in the NOC model 73

4.6. Results of the exemplary architectural analysis 73

5.1. Facts’n figures about selected models . 80

B.1. Index of identifiers . 90

ix

Chapter 1.

Introduction

1.1. Motivation

The design of modern computing systems is evolving into a more and more complex

task. The distinction between hardware and software systems has been blurred, and

has been replaced by the paradigm of the Embedded System which strives for employ-

ing the optimal hardware/software tradeoff solution. A good example of a contempo-

rary embedded system is the common cellphone which deploys complex algorithms

for a variety of communication tasks, multimedia features and organizer jobs. These

capabilities come with respective sets of sometimes contradicting requirements like

speed versus power consumption that must eventually be satisfied by the final imple-

mentation.

The wide application space is complemented by a vast architectural space that allows

an abundance of implementation strategies. The Computing Universe by Clive Max-

field and Alvin Brown (Figure 1.1) shows an overview of the various possibilities that

range from single processor to multi processor, ASIC and a collection of hybrid ap-

proaches. Qualified reasoning about the nature and requirements of the system as

whole, rather than as a collection of algorithmic pieces, is a prime prerequisite to de-

vise an optimized architecture among the many possible choices. Traditional design

methodologies increasingly fail to handle such reasoning in a cost- and time-effective

manner, at that when product time-to-market is the key to success.

Electronic System Level Design lines up to tackle this issue. At the center of its method-

ology is a hardware/software co-development environment that allows the design of a

1

Chapter 1. Introduction

Virtual System Prototype (VSP). A VSP is a single or a collection of models that may

comprise different levels of abstractions. It describes system behavior as well as ar-

chitecture, and a variety of use cases can be addressed by the appropriate level of

abstraction.

"ESL methodologies have many starting points, and there is no "right one"

for all designs in all design domains." . . . "What is important to recognize

is that there are "right principles" in an ESL methodology, and these may

be implemented in flows incorporating multiple languages and notations."

[MBP07]

The above definition already indicates that there is a manifold of ESL design flows and

tools. While some focus on model-based reasoning about system properties, others

concentrate on software development based on realistic models of the underlying hard-

ware. The transition from a traditional (possibly VHDL or otherwise RTL-based) design

flow to a more comprehensive ESL design flow initially requires a considerable effort.

Adequate tools have to be selected, models have to be written or otherwise acquired,

and designers have to adapt to a new style of development. But adopting a consistent

and deliberate ESL design flow has many positive effects. It increases quality and relia-

bility of solutions, aids in the production of optimal designs due to the ability to explore

and evaluate different strategies, and ultimately reduces time to market primarily by

early software development based on Virtual System Prototypes. Therefore this thesis

focuses on the understanding and development of models which can be assembled to

constitute a Virtual System Prototype in the context of an ESL design flow.

1.2. Goals and organization of this work

The purpose of this thesis is to understand the principles and application of SystemC

and Transaction Level Modeling as tools for Electronic System Level Design.

Chapter 2 outlines the fundamental methodology behind ESL and introduces SystemC

and the thereupon based TLM standard with the objective of evolving the theoretical

rules and definitions into practical approaches that are useful for model design.

The building blocks available for model implementation are described in Chapter 3.

It specifies the attributes of individual classes and also illustrates and elaborates con-

2

Chapter 1. Introduction

Figure 1.1.: The Computing Universe [MB06]

3

Chapter 1. Introduction

cepts related to their implementation and usage. It focuses on creating a preliminary

conception of how the constructs of SystemC and TLM are practically applicable, in

particular in relation to the outlined methods.

Chapter 4 deals with an exemplary modeling case study. It shows the capabilities of the

respective modeling styles, their traps and pitfalls and the implications on productivity

for both implementation and simulation. One particular focus is placed on a consistent

design flow, starting from the algorithmic level and traversing through several modeling

stages.

The simulation results of the models designed using different modeling styles are pre-

sented in Chapter 5. Additionally, the following questions are answered.

• Which insights can be gained by employing a certain modeling style?

• How well do the TLM use cases and their mapping on modeling styles match with

practical experience?

• To what extent can HW/SW partitioning be addressed by TLM modeling and

which modeling style is most appropriate?

The thesis concludes with Chapter 6.

4

Chapter 2.

The methodology of TLM-based ESL
design

2.1. Electronic System Level Design

Electronic System Level Design (ESL) is by [MBP07] defined as . . .

". . . the utilization of appropriate abstractions in order to increase compre-

hension about a system, and to enhance the probability of a successful im-

plementation of functionality in a cost-effective manner."

There we also find a definition from Wikipedia dated July 2006, which has since then

been modified to . . .

"Electronic System Level (ESL) design and verification is an emerging elec-

tronic design methodology that focuses on the higher abstraction level con-

cerns first and foremost." [Wik08]1

In principle ESL spans a multitude of abstraction levels, beginning with high-level al-

gorithmic representation of a system and ending with a description that is detailed

enough to be a link to implementation like RTL. Common to all is the treatment of a

whole system using a high-level language such as C++, MATLAB, Petri-Net techniques

etc. and a gain of speed and efficiency by abstracting away details that are considered

irrelevant to the intended task. Thus, ESL design is often related to creating models of

the system under consideration.

1Last edit at the time of writing: 22 October 2008

5

Chapter 2. The methodology of TLM-based ESL design

"Basically a model is a simplified abstract view of the complex reality. It may

focus on particular views, enforcing the "divide and conquer" principle for

a compound problem." [Goo05]

The related activities include high-level behavioral synthesis of whole systems by Elec-

tronic Design Automation (EDA) tools, elevating their level of applicability above the

Register Transfer Level (RTL). Modeling of complex systems at the beginning of the

design phase allows architectural exploration, hardware/software tradeoff analysis and

software development while the target hardware is not yet available. Most of these tasks

are performed manually today. Therefore a main goal that ESL strives to achieve is the

creation of a consistent design flow that starts at the algorithmic level and concludes

with a link to implementation. Due to the wide range of tasks involved ESL employs

complementary methods, each suited to specific subtask(s). One possibility through

which these methods can be connected to each other is the use of a Virtual System Pro-

totype (VSP) as central piece of the methodology. A cross-section of the commercial

ecosystem surrounding ESL can be found in [MBP07].

In particular, ESL design can be conducted using the language2 SystemC as an abstract

system modeling language. Its intended application fields span from high-level mod-

eling to behavioral synthesis and RTL, which makes it appropriate for the generation

of models that can serve as VSP. To aid this process and to avoid uncontrolled growth

of incompatible IP interface and modeling styles, the Open SystemC Initiative (OSCI)

has complemented SystemC with the Transaction Level Modeling Standard (TLM) (Fig-

ure 2.1). It uses function calls, rather than signals or wires, for inter-module communi-

cation. Its goal is to create a common standard for the generation of high-level models

and to leverage the full potential of the unique features offered by SystemC. This thesis

employs Version 2.2.0 of the SystemC language [IEE03] and Version 2.0 draft 2 of the

OSCI TLM standard [Ope07b].

2Strictly speaking SystemC is not a language of its own but rather a library. Nevertheless, due to the
specific capabilities that it introduces, we will refer to it as language in this work.

6

Chapter 2. The methodology of TLM-based ESL design

Figure 2.1.: Virtual System Prototype with SystemC and TLM

2.2. SystemC

The Open SystemC Initiative, founded 1999 by CoWare3and Synopsys4, is a nonprofit

organization working on the definition of an industry-standard system-level hardware

modeling language. SystemC was approved as IEEE standard 1666 in 2005. Version

1.0 resembles HDLs like VHDL or Verilog and provides features like concurrency, bit-

accuracy and timing. Being based on C++, it is free of many limitations that are im-

posed by strongly-typed language such as VHDL. Version 2.0 and above focus on more

abstract concepts like interfaces and channels, and emphasize the modeling aspects of

SystemC.

While similarly to VHDL only a certain subset of SystemC is synthesizable [Ope04], it

leverages the strengths and flexibility of C++ to enable more efficient modeling and

design before going into synthesis or implementation. These strengths include the

Standard Template Library, Object Orientation and Templates. Figure 2.2 illustrates the

overlaps of SystemC with other languages as well as the additional capabilities. Sys-

temC is rather a system modeling language but still includes many features that are

offered by a HDL and is also applicable in verification scenarios. The sum of these

qualities makes it well suited for ESL and TLM tasks.

Executable models are created by compiling the model code into a binary which al-

ready includes the OSCI reference simulator kernel and thus eliminates the need for

an additional simulation tool. The compilation can be conducted by any regular C++

3http://www.coware.com/
4http://www.synopsys.com/

7

Chapter 2. The methodology of TLM-based ESL design

Figure 2.2.: Comparison of SystemC against other languages [BD05]

compiler, making it possible to combine normal C++ with SystemC code. Output and

debugging can be performed by simple shell output or by writing out waveform data

for later review by an external viewer. The free OSCI reference simulator does not in-

clude any IDE or IP library which is a potential motivation to migrate to one of the many

commercially available tools. This thesis uses the reference simulator for a focus on

SystemC and TLM without bias by a commercial tool or IDE.

Figure 2.3.: Architecture of the SystemC language [Ope07b]

Figure 2.3 depicts the building blocks of the SystemC language that we will now con-

trast to VHDL, with which the reader is assumed to be familiar to some degree. The

common features root in the area of hardware design and related simulation semantics,

enabling SystemC and VHDL to be used together in mixed-language simulators such

as Mentor Graphics Modelsim5.

5http://www.mentor.com/ | http://www.model.com/

8

Chapter 2. The methodology of TLM-based ESL design

2.2.1. Processes and sensitivity

The basic unit of simulation behavior is, in VHDL and SystemC alike, the execution

thread. While in VHDL all these threads are subsumed under the term process, Sys-

temC distinguishes between three types. A thread is allowed to call wait for an event

or time during its execution and thus suspend it, while a method is not allowed to do

this and is always executed from its beginning to its end. A cthread is a special type

of thread that must be sensitive to a clock signal and is currently relevant for synthe-

sis rather than for simulation [BD05]. A clock signal in turn is a special type of signal

defined by the SystemC language.

In additional to explicit waits, SystemC and VHDL support static sensitivity. Along with

the declaration of a process, a list of events to which it shall be sensitive is enumerated.

The firing of such an event will trigger the execution of all processes that are sensitive

to it. A method will be executed in its entirety, while a thread is possibly only resumed

at the point where it has been suspended. SystemC additionally supports dynamic

sensitivity for both threads and methods, enabling them to change their sensitivity list

during simulation. Also, while in VHDL all processes are executed once at simulation

start, this can be prevented in SystemC by calling dont_initialize() right after process

declaration, which is especially useful with methods.

2.2.2. Interfaces, (ex)ports and signals

Ports and signals in VHDL and SystemC are based upon the evaluate-update paradigm.

It means that a process will, after having written a new value to a signal, still read the

old value from this signal as long as it has not yielded (i.e. handed simulation control

back to the scheduler), in contrast to a variable that instantly reflects the new value.

An interface is an abstract class that contains no data members but only purely virtual

functions which need to be implemented by another class inheriting from the interface

[Wil06]. Using the intuition of a signal and the definition of an interface, we will now

define the term channel, which can comprise communication mechanisms of varying

complexity, from single wires to whole bus protocols. Channels are a basic mean of

communication between two processes at the same or different levels of hierarchy.

9

Chapter 2. The methodology of TLM-based ESL design

"A SystemC channel is a class that implements one or more SystemC in-

terface classes and inherits from either sc_channel or sc_prim_channel6. A

channel implements all the methods of the inherited interface classes. A

SystemC interface is an abstract class that inherits from sc_interface and

provides only pure virtual declarations of methods referenced by SystemC

channels and ports. No implementations or data are provided in a SystemC

interface." [BD05]

A signal in SystemC is a class that inherits from and implements an interface that offers

similar capabilities like those of a signal known from VHDL (in particular the evaluate-

update paradigm). It is therefore also a channel. Signal implementations are supplied

for SystemC data types, bit-accurate data types (comparable to those in VHDL) as

well as native C++ data types. Any user-defined class can be used as signal if the

class implements the functions required by the signal interface, which offers increased

flexibility compared to VHDL.

A port is a pointer to a signal (or channel) outside the current module that enables

the processes inside this module to talk to processes of another module that is again

connected to that external signal by one of its ports.

An export allows a module to provide an interface to its parent module. It forwards

interface method calls to the channel to which it is bound. An export defines a set

of services (as identified by the type/interface of the export) that are provided by the

module containing the export [IEE03], i.e. an export is used for advertising internal

interfaces for access from outside. They are available in SystemC since Version 2.1.

While ports declare interfaces that are required at the module boundary (and thus

need to be bound), exports declare interfaces provided at a module boundary and

may remain unbound [Sys04].

Figure 2.4 illustrates how port and export can be used together. It shows a part of the

example design lt_min_system which is included with the TLM standard download. The

traffic_generator module writes data to the lt_initiator module by calling the functions of

the associated port. The available functions are determined by the type of the port, in

this case it is the interface class rw_if which offers simple read and write functions. They

are implemented in the lt_initiator and made available for external binding through an

6Inheriting from sc_channel or sc_prim_channel is a structural requirement similar to the fact that a
SystemC module needs to inherit from sc_module.

10

Chapter 2. The methodology of TLM-based ESL design

Figure 2.4.: Port / export example

export of the same type rw_if. This export is then bound to the port of same type, so

the port effectively calls the function implementation to which the export is bound.

2.2.3. Events

One feature specific to SystemC is the possibility of using atomic events. These events

constitute an entity of their own, while in VHDL, the smallest such unit is a whole signal

which already includes a variety of associated events. Often these events are an un-

necessary surplus, for instance when only simple synchronization is required which in

principle needs only a single event.

A SystemC event knows three types of notifications. The first one is the instant notifica-

tion. It triggers all processes that listen to the event as soon as the process that notified

the event yields (and therefore still in the same delta cycle7). The second, delayed

notification, puts the notification off by a delta delay8. Therefore the trigger becomes

effective only when all processes that can run in the current delta cycle have yielded

and the simulator has advanced to the next delta cycle, but has not yet advanced simu-

lation time. And third, a notification annotated by a span of simulation time greater than

zero delays the notification until the annotated amount of simulation time has passed.

Single events are important for efficient synchronization in models that reside on a

higher level than (synthesizable) RTL, and are one of the main reasons for the potential

increase in simulation performance of abstract SystemC models (see Section 5.5).

7A simulation cycle that is performed at the same simulation time as the previous one is called a delta
cycle.[Ele00]

8A delta delay is an infinitesimally small delay that separates events occurring in successive simulation
cycles but at the same simulation time.[Ele00]

11

Chapter 2. The methodology of TLM-based ESL design

2.2.4. Implications on simulation performance

Due to the progress in modern compiler technology, SystemC is not by itself faster than

VHDL 9. If the simulation takes place at RTL level or the simulated code is even synthe-

sizable, the simulation performance of SystemC is comparable to that of other HDLs

[BD05, RDL05]. The picture is different for simulation at a higher level of abstraction.

The features of SystemC can result in increased simulation performance if the following

rules are considered . . .

• Keep the number of events and context switches to a minimum by (un)timed tech-

niques. Use single events rather than signals for synchronization.

• Choose the right data type for the required task as well as for the used machine.

Native C++ data types simulate faster than SystemC or VHDL data types.

• Take advantage of the STL and other well-defined libraries.

• Use pointers instead of copying data.

• Use ports with exports to avoid reliance on explicit multilevel paths and to per-

mit direct function call interfaces for TLM without introducing additional context

switches (in contrast to port-to-port mappings). [Sys04]

The next section describes how the features available through the SystemC language

can be implemented in a modeling standard that increases simulation performance by

embedding them in appropriately defined levels of abstraction and modeling styles.

2.3. Transaction Level Modeling

The following definition of Transaction Level Modeling (TLM) in the context of SystemC

is given in [Gro02]. It not only states the abstract definition but also illustrates the design

paradigms by which TLM can be realized in practice and the positive consequences.

9Synthesis for instance, regardless of the language, usually requires a certain level of detail, a certain
usage and number of events and processes, certain data types.

12

Chapter 2. The methodology of TLM-based ESL design

"TLM is a high-level approach to modeling digital systems where details of

communication among modules are separated from the details of the im-

plementation of functional units or of the communication architecture. Com-

munication mechanisms such as busses or FIFOs are modeled as channels,

and are presented to modules using SystemC interface classes. Transaction

requests take place by calling interface functions of these channel models,

which encapsulate low-level details of the information exchange.

At the transaction level, the emphasis is more on the functionality of the data

transfers - what data are transferred to and from what locations - and less

on their actual implementation, that is, on the actual protocol used for data

transfer. This approach makes it easier for the system-level designer to

experiment, for example, with different bus architectures (all supporting a

common abstract interface) without having to recode models that interact

with any of the buses, provided these models interact with the bus though

the common interface."

2.3.1. TLM with SystemC

The TLM 1.0 standard (introduced in 2005) defines a set of APIs for transaction-level

communication, but does not define the content of the transactions or how they should

be managed within a system. The OSCI tries to address this yet unstructured area

by Version 2 of the standard, to enable consistent interaction between tools and thus

consistent usage of these tools.

In the context of Figure 2.3, TLM constitutes a user library based on the classes offered

by SystemC. A key concept is the declaration of interface classes (as defined in Sec-

tion 2.2.2) and calling the functions of these interfaces as mean of communication in

contrast to long-winded synchronization procedures including maybe several signals

or events. These are the Core TLM2 interfaces depicted in Figure 2.5 and described in

Section 3.2.

The TLM library is relying on templates that may in principle assume any user-defined

data types. The standardization of version 2 was targeted at the context of a memory-

mapped bus (MMB) and the default template data types and their values have been

defined with this context in mind. In particular, this includes the generic payload (GP)

13

Chapter 2. The methodology of TLM-based ESL design

as basic transaction class transported by interface calls. Only a reference to the trans-

action, which in turn contains only a pointer to the associated data buffer, is passed.

This alleviates the need for extensive copying and increases simulation performance

significantly. The phase of the transaction represents the current state of the protocol

state machine used for communication. It enables the notion of timing points that mark

the transition to the next phase. The different use and availability of phases are impor-

tant for the definition of a modeling style.10

Figure 2.5.: Cornerstones of the TLM standard [Ope07b]

2.3.2. Modeling styles

The following definition of the term coding style can be found in [Ope07b].

"A coding style is a set of programming language idioms that work well

together, not a specific abstraction level or software programming interface.

10In the context of the MMB communication protocol, synchronization phases are tailored to simple
read and write requests and responses. For modeling a more complex protocol state machine like
e.g. packet based network protocols, different type definitions might be required. Since the TLM
standard defines its modeling styles based on the (theoretically replaceable) MMB data types, they
would need to be re-defined as well, if these data types were altered.

14

Chapter 2. The methodology of TLM-based ESL design

TLM2 recognizes several coding styles, which should be used as a guide to

model writing."

The same document uses the term modeling style in an inconsistent but semantically

equivalent fashion. This thesis therefore consistently uses the term modeling style to

refer to both modeling and coding style in the sense of [Ope07b].

A modeling style is represented by a set of interfaces together with an (optional set)

of classes. It defines usage and behavior guidelines that enable the model designer

to create interoperable models with certain features, as offered by the modeling style.

The most important feature is the capability to model time (in particular delays between

phase transitions) more or less differentiated, if at all. The tradeoff is usually the one

between (simulation or design) speed and accuracy.

Several use cases that shall be tackled by TLM have been defined, each of which im-

plies the required data and timing accuracy. In order to provide an efficient modeling

framework for the individual use cases, TLM provides three modeling styles named

Untimed (UT), Loosely-timed (LT) and Approximately-timed (AT). The combination with

additional template classes results in the features and accuracy that is required for an

intended use case.

Figure 2.6 illustrates the usability of certain modeling styles for individual use cases

and their associated interfaces and classes. For a more detailed discussion of these

classes and socket-related communication see Chapter 3.

Untimed (UT) modeling style

An untimed model may be viewed as a functional model that can minimally consist of

just one single execution thread. By definition, an untimed model has no notion of time,

just like the interfaces defined to form this modeling style (although syntactically they

could contain wait statements for both time and events).

A single-thread model is sometimes referred to as algorithmic model rather than trans-

action model, since such a model would require communication between several con-

current execution threads. If several execution threads are employed in an untimed

model, they synchronize explicitly and hard-coded by waiting on explicit events rather

than time delays. Such a model can be executed without any advance of simulation

time. This style is useful for evaluating the algorithmic description of an application,

15

Chapter 2. The methodology of TLM-based ESL design

Figure 2.6.: TLM use cases (extended from [Ope07b])

its partitioning into blocks and the resulting communication and data dependencies

between the blocks, while yet omitting concurrency and structured communication.

As Figure 2.6 depicts, this makes untimed modeling style interesting for software de-

velopment on a rapid untimed model of the underlying hardware that requires only

functional correctness, architectural analysis of the application and in relation to this, for

hardware verification. Performance analyses are not possible due to the missing notion

of time.

Loosely-timed (LT) modeling style

The loosely-timed modeling style uses a set of interfaces that allows the annotation

of delays and the structuring of communication into two phases, begin request and

begin response. Requests and responses are not attributed with a duration, but the

transaction ends with the begin response phase. However the delay between request

and response can be specified. A loosely-timed model is aware of time, in particular

of a global simulation time as delivered by the sc_time_stamp call, and a time that is

local to the respective module or processing thread which may be ahead of the global

simulation time. It does not necessarily rely on an advance of global simulation time to

produce a reply.

16

Chapter 2. The methodology of TLM-based ESL design

Temporal decoupling (TD) is an optional feature of the loosely-timed modeling style. It

means that an execution thread runs ahead of the current global simulation time, keep-

ing track of the local time offset, until it has exceeded its local time quantum. This quan-

tum denotes the span of time that a thread is allowed to run uninterrupted. A temporally

decoupled thread may run beyond a point where a non-decoupled thread would have

already yielded11. The decoupled thread eventually yields and permits another pro-

cess to run for its respective quantum. The global simulation time is only advanced

when all threads that are currently scheduled to run have used up their quantum, and

the simulation time is then advanced by this quantum (or less if some threads were

using a local quantum that is shorter than the global quantum). This scenario requires

that no thread needs any explicit synchronization whatsoever, possibly at the cost of

simulation accuracy, but at the largest increase in simulation performance that can be

gained by temporal decoupling due to the low number of context switches. Since it

is an attribute of a thread it is not required that all threads of a model are temporally

decoupled, although this is recommended by the standard in [Ope07b].

In order to use temporal decoupling without compromising simulation accuracy, threads

must be able to synchronize on demand if they encounter an unresolved data depen-

dency that does not permit them to run ahead safely until the end of their quantum.

In a loosely-timed model without temporal decoupling, delay information and func-

tional result of a request can be known instantly and annotated to the transaction right

way (without synchronization). If the target is not yet able to construct the response, it

can indicate to the initiator to wait for a later callback because the target requires an ad-

vance of simulation time. In both cases the delay is, in contrast to temporal decoupling,

implemented as soon as the transaction has been completed.

So while interfaces and phases stay the same, there are several ways in which the

loosely-timed modeling style can become manifest. Common to all of them is that a

model should in the best case not require to yield or advance global simulation time

to serve a request. Such fast models are well suited for software development on vir-

tual prototypes of the underlaying hardware platform. The loosely-timed coding style

supports the modeling of timers and course-grained process scheduling, sufficient to

model the booting and running of an operating system [Ope07b]. Under certain con-

ditions it can also be used as modeling style for a coarse architectural and hardware/-

11Such points are for instance the resolution of a data dependency or the implementation of a delay as
required by a modeling style not using temporal decoupling.

17

Chapter 2. The methodology of TLM-based ESL design

software tradeoff analysis, as described in Section 4.5.5, and is also useful for the de-

sign process in evaluating concurrency schemes and delay distributions. Concurrency

schemes themselves cannot be derived by TLM or SystemC but require other forms

of analyses. Furthermore the loosely-timed modeling style can aide the implementa-

tion process by fast models which can by a few function calls model delays at their

interfaces that have been derived by analyzing the internal workings of more detailed

models, for instance, an already available IP core or real hardware.

Approximately-timed (AT) modeling style

The approximately-timed modeling style syntactically uses the same interfaces as the

loosely-timed modeling style, but provides additional phases for the model designer

to structure the life-cycle of a transaction. Requests and responses consist of a be-

gin and an end event. This enables finer modeling of timing and is a prerequisite for

the realistic modeling of pipelined hardware. It makes the approximately-timed style

useful for contention / arbitration modeling, architectural exploration and performance

analysis.

Annotated delays are implemented by calls to the scheduler (waits or delayed notifica-

tion of events). The modules do not make use of precognition as in the loosely-timed

temporally decoupled case. The syntactically equal interfaces permit interoperability

with loosely-timed models, possibly requiring an adapter module to compensate for

the two additional phases.

The availability of four phases allows the definition of the following delays . . . [KHA05]

Accept delay Annotates the minimal interval between two subsequent request begins

or response begins. In essence the accept-delay constraints the bandwidth of a

block. During this period a slave module is busy with the processing of a request

or a master module is busy with the processing of a response.

Response delay Annotates the interval between a request begin and a response be-

gin i.e. the module latency.

In general it is sufficient to model these two delays to implement an approximately-

timed module. By simply changing the accept and response delays, it is possible to

switch between hardware- and software-style behavior in a flexible way. It is stated in

18

Chapter 2. The methodology of TLM-based ESL design

[KHA05] that for a pipelined ASIC, the request accept delay is supposed to be smaller

than the response delay, while for software it is the other way round. Figure 2.7 il-

lustrates this classification of behavior based on accept and response delay as done in

[KHA05]. The circumstance that this aspect is not treated thoroughly enough in the TLM

standard Version 2 draft 2, and that the definition in Figure 2.7 uses a different syntax

and is not consistent to the OSCI TLM standard, gives rise to the problem addressed in

the following section.

2.3.3. Classification of behavior by phase transitions

The Open Core Protocol International Partnership (OCP-IP) cooperates with the OSCI

in its effort for industry-wide modeling standards. It focuses on the decoupling of IP

computation behavior from communication behavior to promote IP design and reuse

in a plug-and-play fashion. In [KHA05] the OCP-IP published concepts that, while em-

bracing the same principles like OSCI TLM, take a more practical approach in their

definitions. OCP-IP outlines an UT-like Functional View advertised for algorithm/spec-

ification, a LT-like Programmers View advertised for SW development and an AT-like

Architects View advertised for hardware/software tradeoff analysis and architectural

(platform) modeling.

Figure 2.7 summarizes the definition given in [KHA05]. It should be noted that, while

both sources discuss the same TLM semantic, OCP-IP does not use the same syntac-

tical elements as the OSCI. The getRequest function call corresponds to the transmis-

sion of a request begin, calling acceptRequest corresponds to the phase transition to

request end and sendResponds amounts to a response begin and end in OSCI terms.

In the ASIC case, ∆t_1 matches the accept delay while in the software case it represents

the response delay. In the first case the sum of ∆t_1 and ∆t_2 constitutes the response

delay and in the second case the accept delay.

The OSCI TLM standard [Ope07b] states that the phase transition to response begin im-

plicitly includes a request end. Although the rule was in the first place meant to enable

interfacing of loosely-timed initiators with approximately-timed targets, it is nonetheless

valid regardless of the context. This however poses a contradiction to the event order

depicted in Figure 2.7, where in the case of software a request is accepted only after

the response end.

19

Chapter 2. The methodology of TLM-based ESL design

Figure 2.7.: Hardware and software behavior as defined by OCP-IP [KHA05]

Although OCP-IP and OSCI rules are thus incompatible for direct interfacing, the OCP-

IP approach for defining approximately-timed simulation behavior was adopted due

to its intuitiveness. For instance, consider the case of a software function. It delivers

its full response before a second call to it is possible (due to the sequential nature of

software), which is modeled by the late request acceptance. Therefore a reformulation

of OCP-IP function calls into OSCI phase transitions that matches this behavior and

preserves the OSCI rules was required, and is depicted in Figure 2.8, 2.9 and 2.10. In

addition to software and (pipelined) hardware, the category of non-pipelined hardware

is defined.

Software Request accept delay > response delay. It is assumed that an initiator first

needs to process a response before it can issue a new request. Communication

overhead for software can be neglected because context switches etc. can be

modeled by appropriate delay values in computation modules.

Non-pipelined hardware Request accept delay = response delay. It is assumed that

the initiator response accept delay is smaller than the target response delay i.e.

the initiator can process a response before the target can send the next one. In

practice the target can potentially communicate while doing the next workload.

If this is not the case, non-pipelined hardware is effectively like software. This

depends on the actual implementation of the hardware model. Communication

delays are introduced by separate modules.

Pipelined hardware Request accept delay < response delay. The target request ac-

cept delay resembles the delay of the slowest pipeline stage (not necessarily the

first), the response delay models the latency. Obviously, pipelined hardware can

communicate while processing.

Consequently, modeling the difference between hardware and software is effectively

20

Chapter 2. The methodology of TLM-based ESL design

Figure 2.8.: OSCI phase transitions for software behavior

Figure 2.9.: OSCI phase transitions for non-pipelined hardware behavior

21

Chapter 2. The methodology of TLM-based ESL design

Figure 2.10.: OSCI phase transitions for pipelined hardware behavior

only possible with the additional delays available through the approximately-timed

style. In practice, the difference between hardware and software shows in the length of

individual delays and the causality of event notifications (concurrent vs. sequential).

The authors of [KHA05] discourage shared ownership of communication and compu-

tation delay parameters by the same module and advocates dedicated communication

nodes for the modeling of communication delays. In particular, it is stated that the ac-

cept delay (i.e. the minimum delay between two successive request begins) of a block

should only be related to its computation and should not include communication de-

lays. Section 5.2 discusses the necessary constrains on loosely-timed modeling that

allow coarse hardware/software tradeoff analysis without modeling communication de-

lays by separate modules.

22

Chapter 3.

Transaction Level Model
development

The concept of modularity is not only visible in the implementation of a model, but

also in the structure of the TLM standard itself. As Figure 2.6 shows, the starting point

is one of several use cases that represent the context that a model is targeted at (e.g.

software development, hardware verification etc.). A use case requires certain features

and thus an appropriate modeling style. The features of a modeling style depend on

the inclusion of certain classes supplied by the standard and the way that these classes

are employed to implement a model, following the rules that apply to the respective

modeling style.

The knowledge of these classes and the illustration of their usage is the focus of this

chapter. We cover only those classes that are important for the understanding of what

the TLM standard can do, and only in such depth that the reader becomes familiar with

the concept. For a more in-depth coverage of the code, see [Ope07b].

3.1. Basic modeling classes

The classes described in this section are, in contrast to the interfaces described in

Section 3.2, fully implemented in the TLM standard and can be used out of the box.

23

Chapter 3. Transaction Level Model development

3.1.1. Generic payload (GP)

The generic payload class has been designed as standard transaction for memory-

mapped buses (MMB) and represents the data structure towards which the develop-

ment of the current TLM standard was primarily geared to. Assuming the context of a

MMB, it comprises attributes such as a pointer to an associated data buffer, a length

value for the data buffer, an address that is the start of the target memory area in focus

and a command attribute stating the purpose of the transaction (read or write). Suc-

cess or the type of error is indicated by the setting of status members. Apart from these

basic features, more elaborate ones like byte enables, data stream attributes and user-

customized extensions are supported. For our modeling purposes, the basic features

mentioned so far suffice.

Sockets are an important aspect of the OSCI TLM communication model. It is usually

through a socket that a module is able to communicate with other modules. Sockets

encapsulate and implement the interfaces that are discussed in Section 3.2 and 3.3.

They can be initiators or targets. An initiator issues a request (in form of a transaction

reference), while a target accepts and processes the request.

The data buffer can assume any user-defined type or class. To set the transaction data

pointer to the user data buffer, it needs to be cast to a character pointer (char*) on

the initiator side (this is required by the TLM standard transport function declaration),

and cast back to the user data type at the target side. The GP only provides the char

pointer, but imposes no other restrictions on the transported data structure in addition

to the need to cast.

3.1.2. Payload event queue (PEQ)

The PEQ is used for timed modeling and represents a type of FIFO. Unlike a regular

FIFO that sorts its content by the input order, the PEQ sorts by the time value that

is put into the queue along with each item. It is is not restricted to generic payload

transactions but can hold any data type.

The PEQ’s output event is notified once for each item that is inserted. Thus, waiting for

this event yields a temporal ordering. This work uses the class MyPEQ, a redesign of

the standard class tlm_peq included with the standard’s code examples. It was chosen

24

Chapter 3. Transaction Level Model development

because the documentation indicated that MyPEQ would most likely replace tlm_peq

in the next standard version [Ope07b].

// MyPEQ put function

void notify(transaction_type& trans, sc_core::sc_time& t)

{

mScheduledEvents.insert(std::make_pair(t + sc_core::sc_time_stamp(),

&trans));

mEvent.notify(t);

}

3.1.3. Quantum keeper (QK)

The quantum keeper is a class that is used solely in temporally decoupled models.

Although it has not been employed in this work, it is mentioned for completeness.

When individual threads are allowed to run ahead of the local simulation time (i.e. not

releasing control of the simulation and continuing in a local time warp), the QK can be

used to manage the maximum quantum of simulation time that the current thread may

run ahead. Before initiating a new action, the current thread should check with the QK to

see if it may still continue to execute, or if the quantum has been exceeded. Decoupled

threads that never encounter an unresolvable data dependency (i.e. whose temporally

decoupled request can always be answered) are thus kept from running forever.

The QK provides all necessary functions to manage the quantum for each thread, and is

an important tool to leverage the increased simulation performance of the LT modeling

style in combination with temporal decoupling.

3.2. Core TLM2 interfaces

The interfaces described in this section are abstract classes (as in Section 2.2.2) de-

fined by the TLM standard and have to be implemented in order to be usable. The

implementation can be trimmed to fit the model’s and application’s needs, but has to

adhere the rules defined by the standard. Many data types related to communication

and user payload are templates and can be replaced by the user to fit his needs. The

enumeration data types described here (phase values, return values etc.) are the ones

25

Chapter 3. Transaction Level Model development

declared by the TLM standard for a memory-mapped bus based on generic payload

transactions.

Two types of interfaces have been identified. On the one hand those that are intended

to model the operational behavior of a system and its application, i.e. the behavior that

the system exhibits while performing its intended function. They are thus named op-

erational interfaces. On the other hand the standard provides interfaces that are meant

for meta-functions like simulation setup and analysis. We will call those supplementary

interfaces.

All interfaces are unidirectional. The target only reacts to the initiator’s requests, similar

to a master/slave relation. If a target is required to autonomously issue own requests to

a module which acts as its initiator, it needs an additional pair of interface sockets. This

effectively turns the former target into the initiator and vice versa, for that additional

pair of sockets.

3.2.1. Forward and backward path

Despite their names, forward and backward path constitute one interface that goes

from one initiator to one target. The forward path describes the chain of calls that starts

at the initiator and ends at the target that is meant to receive a transaction. One way to

communicate the reaction of the target back to the initiator is through the return value of

the function call, after possibly altering the information associated with the transaction

(e.g. phase or delay). If the target is not able to supply such a reaction right away, it

can, by its return value, indicate to the initiator that it has been reached by the request.

It wold then reply at a later time by calling the backward path, which goes through the

same modules and sockets as the forward path, but in reverse order.

For some interfaces the backward path is not a mean for reply to a request, but offers

an independent function, like the DMI pointer invalidation described in Section 3.2.2.

It depends on the interface’s intention if there is a backward path and if its interfaces

offer complementary or independent functions in relation to those of the corresponding

forward path.

26

Chapter 3. Transaction Level Model development

3.2.2. Operational interfaces

Blocking transport interface

The blocking transport interface is the simpler of the two transport interfaces. It does

not include a backward path like the non-blocking transport interface, but upon re-

turn, the transaction must be processed. There is no structuring of communication into

phases and no delay annotation. In contrast to the non-blocking version, the blocking

interface allows calls to wait within the transport function. Consequently it should be

called from a SystemC thread rather than a method, since it is usually unknown to the

initiator whether a wait will occur within the target’s transport function implementation.

Since a later response can thus be implemented by calling wait in the forward path

implementation, there is no need for a backward path.

This interface is characteristic for the untimed modeling style, and a good initial step

towards the implementation of an algorithm into a model, because it yet hides the ad-

ditional complexity involved with the use of structured communication and time. In

code, this is expressed by the fact that the blocking transport call takes a transaction

reference as only function argument and has no return value (void).

// Blocking transport forward function

template <typename TRANS = tlm_generic_payload>

virtual void b_transport(TRANS& trans) = 0;

Passing the transaction object by reference implies that there is only one transaction

object and all operations are carried out on that very instance. A transaction includes a

pointer to the data payload that it encapsulates. All data copy operations are performed

by dereferencing this pointer rather than by real copy operations. The same is valid for

the non-blocking transport interface described in the next section.

The actual transaction type can be user-defined and is not restricted to the default

generic payload. For more details, see [Ope07b]. The models created in the course of

this work employ the default templates.

Non-Blocking transport interface

The non-blocking transport interface introduces the notion of time, begin and end

phases of requests and responses, and enables more realistic modeling of commu-

27

Chapter 3. Transaction Level Model development

nication and intertwined computation. The fact that it is forbidden to call wait during

the execution of such a transport call requires that the non-blocking interface defines a

backward path for cases when the target needs to yield control to process the request

(and thus needs to call back at a later time). As a benefit, a non-blocking interface can

also be called from a SystemC method, not only from a thread. It is used in the more

difficile loosely- and approximately-timed modeling styles.

Figure 3.1.: Basic blocking and non-blocking transport behavior

Figure 3.1 contrasts the basic cases for the blocking and non-blocking transport in-

terfaces. To the left, the initiator using the blocking interface issues the first transport

call and the target instantly (which in the untimed style means without any wait for an

external event) processes the transaction and returns. For the second call, the target

transport function needs to wait for some event to occur and only afterwards the target

finishes processing the transaction and returns. No synchronization values or annota-

tions are provided.

To the right, an initiator issues its first request which is instantly (i.e. without an ad-

vance of simulation time) processed by the target which returns the annotated delay.

28

Chapter 3. Transaction Level Model development

The initiator implements the delay and issues a second call. This time the target indi-

cates the initiator to wait for a callback by the return value. Before returning though,

the target would usually notify some external worker thread that will later perform the

callback to the initiator. The transport function itself must not call wait. The synchroniza-

tion values and annotations provided at transport function calls and returns will now be

discussed.

The following phases mark the life cycle of a transaction in the context of a memory-

mapped bus. Changes to transaction attributes may only take place along with phase

transitions, also called timing points. In theory it is possible to use any phase enu-

meration data type in a user model. Since however the definition of the loosely- and

approximately-timed modeling styles is intertwined with the default phases, an ex-

change would include a significant modification to the modeling styles as well.

// Standard TLM transaction phases

enum tlm_phase { BEGIN_REQ, END_REQ, BEGIN_RESP, END_RESP };

To leverage the potential for simulation speed increase, the LT style includes only the

two begin phases which reduces the number of function calls and context switches.

The more accurate AT style incorporates all four phases, attributing a distinct length to

request and response as well as the time in between them, in contrast to LT that models

requests and responses as singular events.

The return value of the transport call represents the action that the callee has taken with

regard to the caller’s request. It may have rejected the transaction, accepted it without

changing anything yet, accepted it and updated the state or phase of the transaction, or

completed it (but not necessarily semantically successful, this is indicated by special

attributes). In the case of LT, an update automatically completes the transaction since

there is only one phase to update to.

// Synchronization values returned by nb_transport

enum tlm_sync_enum { TLM_REJECTED = 0, TLM_ACCEPTED = 1, TLM_UPDATED = 2,

TLM_COMPLETED = 3 };

It should be noted that phase changes of a transaction always apply to the same trans-

action instance. A transaction is created once with the phase BEGIN_REQ and, until

completion, this object shall not be deleted or recreated. Like the transaction, the men-

tioned data structures are passed to the transport call by reference and thus always the

same object instance is manipulated.

29

Chapter 3. Transaction Level Model development

// Non-blocking transport forward function

template <typename TRANS=tlm_generic_payload, typename PHASE=tlm_phase>

virtual tlm_sync_enum nb_transport(TRANS& trans, PHASE& phase,

sc_core::sc_time& t) = 0;

The time argument annotates a delay to the call that shall postpone the phase transition,

if there is one. The target shall behave as if it had received the call only after this delay

has passed in relation to the current simulation time. Similarly, if the target increases the

delay during its processing, the initiator shall, upon return of the call, behave as if it had

received the return value after the annotated span of time. It is the caller’s responsibility

to implement the simulation time advance upon return from the transport call.

The delay can be greater than zero already for the begin of a request (see Section 3.4.1)

which effectively asks the callee to predict its future. The callee can either reply or only

accept the request and wait until the delay has passed (synchronize on demand). For

instance, a target with several reading and writing masters may have to establish R/W

consistency and prevent out of order execution, or can accept the potential inaccuracy

for increased simulation speed.

Similar to the transaction type, also the phase argument can assume an arbitrary user-

defined enumeration type. For more details, see [Ope07b]. The models described in

this work have been created with the default templates.

Figure 3.2.: Transport call through forward and backward path

Figure 3.2 illustrates the sequence of events that occurs during the use of a transport

interface. In the left case, the initiator thread creates a new transaction (1) and then

calls the forward interface (2), transmitting the reference to the transaction object. The

30

Chapter 3. Transaction Level Model development

transport function implementation processes the transaction by reading and/or writing

to the reference (3) and returns TLM_COMPLETED in the case of a non-blocking inter-

face (4). The blocking interface function of type void is assumed to always complete

and simply returns (4).

In the right case, instead of completing the transaction after creation (1) and transmis-

sion (2), the transport function implementation tells the initiator to yield (3) and wait

for a callback since the processing is not carried out immediately. The forward trans-

port function then triggers the target thread (4) which processes the transaction (5).

The thread subsequently calls the backward interface implementation in the initiator

(6) which indicates the transaction completion to the target (7) and then notifies the

suspended initiator thread (8)that can now access the completed transaction (9).

Direct memory interface

The DMI interface allows models to communicate with other models without constantly

going through a transport interface, reducing the number of interconnect components

involved and thus reducing the number of function calls, events et cetera. It returns a

direct pointer to the target module memory that can be directly read/written, optionally

annotating a latency. It can be used to speed up simulation of memory read/writes by

bypassing the chain of transport calls, at a loss of simulation accuracy since a simple

latency annotation can generally not be as accurate as the actual interconnect behav-

ior.

The initiator requests the DMI pointer for a certain address of the target’s memory.

The target announces in its reply to which region of its memory it grants the desired

type of access (read/write/both), and which latencies are involved for read and write.

This indication is performed by setting the data members of a data structure whose

reference is sent by the initiator along with the initial request. If this request is successful

and the data members are set, the initiator can hence use the DMI pointer for direct

read and writes. The pointer stays valid beyond the lifetime of the DMI request and has

to be invalidated by the target through the backward path.

// DMI forward function

virtual bool get_direct_mem_ptr(const sc_dt::uint64& address, DMI_MODE&

dmi_mode, tlm_dmi& dmi_data) = 0;

31

Chapter 3. Transaction Level Model development

The request for the DMI pointer initially passes through the transport chain, along the

forward path, and delivers the target’s response when returning. This procedure re-

sembles that of the transport interface depicted in Figure 3.2, left. The transport trans-

action is simply replaced by the DMI request and its data pointer by the pointer to the

DMI data structure. There is no callback in the backward path, but only the invalidate

function.

// DMI backward function

virtual void invalidate_direct_mem_ptr(sc_dt::uint64 start_range,

sc_dt::uint64 end_range) = 0;

3.2.3. Supplementary interfaces

Debug transaction interface

This interface lets debuggers access the storage of a model. Debug calls follow the

same forward path as the transport calls used for normal transactions to allow the same

address translations, but without side effects like waits, delays, notifications or others.

They enable instantaneous reads and writes to/from the module.

// Debug forward function

virtual unsigned int transport_dbg(tlm_debug_payload& r) = 0;

The debug interface is used for quick initialization at the start of the simulation, to peek

the data contents of modules during simulation, or to alter their value by non-intrusive

means. It does not define a backward interface.

Analysis interface

The analysis interface’s purpose is the non-intrusive duplication of (user-defined) trans-

actions to subscribers for later analysis/evaluation. It uses a dedicated kind of port that

can transport an arbitrary type of transaction and can thus contain any type of informa-

tion which the user desires for his analyses. In contrast to normal sockets, the binding

of one analysis initiator to several analysis targets is possible.

This interface is not part of the convenience sockets defined by the TLM standard, and

is thus not a necessary prerequisite for their implementation.

32

Chapter 3. Transaction Level Model development

3.3. Basic TLM sockets

The interfaces described in Section 3.2 can, without any further steps, be used to cre-

ate models without infringement of their functionality. To do this, it is necessary that a

model class inherits from these interfaces and implements them. But for ease of use

and reusability, the individual interfaces are grouped into combined interfaces and then

joined with SystemC ports and exports (Section 2.2.2) in the TLM standard basic sock-

ets. They therefore require a port binding comparable to the one already known from

RTL SystemC or VHDL. In contrast to the latter two, TLM knows three different types of

socket binding.

3.3.1. Combined interfaces and basic sockets

The following combined interfaces are defined based on the core interfaces described

in Section 3.2.

tlm_fw_b_transport_if Inherits from the blocking transport, the forward DMI

and the debug interface

tlm_bw_b_transport_if Inherits from the backward DMI interface

tlm_fw_nb_transport_if Inherits from the non-blocking transport, the forward DMI

and the debug interface

tlm_bw_nb_transport_if Inherits from the non-blocking transport

and the backward DMI interface

These combined interfaces characterize sockets as a whole. An untimed initiator socket

(where untimed implies using the blocking transport interface) for instance implements

the class tlm_bw_b_transport_if which contains all related backward interfaces. Since

however the blocking transport interface does not provide a backward path, the only

appropriate interface is the backward interface class of the DMI interface.

Most interfaces have asymmetric forward and backward paths because the two paths

do not offer the same functionality. For instance, the DMI forward path requests memory

access while the backward path invalidates it. The non-blocking transport’s forward

and backward interfaces however consist of the one same function header as listed in

Section 3.2.2, since both paths offer the same functionality i.e. the indication of a phase

33

Chapter 3. Transaction Level Model development

transition. The modeling style in turn regulates which phase transactions are allowed to

take place via a certain path and in which way.

Figure 3.3.: TLM standard basic sockets

As depicted in Figure 3.3, the two prime types of TLM standard basic sockets are the

initiator and the target socket. They both consist of one port and one export. In clas-

sical mapping, when socket is mapped to socket, the port is mapped onto the export

(respectively). In a separate step, the respective exports are mapped onto the im-

plementation (compare Section 2.2.2 and Figure 2.4). The port is the interface that is

superficially called by a model, while the body that is really executed is the export to

which that port is mapped. Therefore the target socket’s export is of the forward inter-

face type, while its port is of the backward interface type, and vice versa (for details,

see Section 3.3.2).

The brackets indicate that port and export can in principle be of any interface type,

as long as they match for mapping. In practice, the TLM basic sockets use either the

blocking or the non-blocking interface types to determine the type of modeling desired

(timed or untimed).

Since the elements of this section are abstract classes, the implementation must be

provided by the model.

3.3.2. Socket binding

Due to the overloading of the binding operator known from SystemC, applying it on

sockets can have three different meanings. Binding 1 and 2 are the minimal bindings

34

Chapter 3. Transaction Level Model development

required to receive a functioning model, while binding 3 is only required for a hierar-

chical design.

Binding 1 - Export to implementation

The binding depicted in Figure 3.4 is called on a socket. The argument has to be

an object that inherits from and implements the same interfaces like the ones used

for declaring the socket. A SystemC module inheriting from and implementing an

interface is a channel (Section 2.2.2). The call effectively binds the socket export to the

channel, or rather to the implementation of the export interface type (since a port is

just a pointer to a channel).

The argument must not be a socket itself. The nature of the following two binding meth-

ods and the fact that a socket itself inherits from an interface would prevent the compiler

to determine a socket-to-socket or a socket-to-implementation binding is desired.

Figure 3.4.: Socket export to implementation binding

For example, lt_initiator inherits from the backward interface and includes an initia-

tor_socket member. Calling initiator_socket(*this) in the lt_initiator constructor binds

the backward export of the socket member to the local implementation. The same

applies symmetrically to lt_target_memory.

Binding 2 - Initiator to target

The binding illustrated in Figure 3.5 is the classical binding of an initiator to its target. It

is called on the initiator socket with the target socket as argument and binds the initiator

port to the target export, and the target port to the initiator export. It is typically used for

binding socket-to-socket at the same level of hierarchy. As a result, and in combination

35

Chapter 3. Transaction Level Model development

Figure 3.5.: Initiator to target socket binding

with binding 1, calling either port effectively calls the function bound to the export of

the opposite socket. Multiple binding of sockets is not possible.

For example, the initiator socket is bound to its target counterpart by initiator(target)

which comprises binding the initiator forward port to the target forward export and the

target backward port to the initiator backward export.

Binding 3 - Hierarchical binding

Figure 3.6 shows the binding used to connect sockets up and down through the model

hierarchy between child and parent socket. It is called on a socket with another socket

of the same type as argument. It binds port to port and export to export.

Figure 3.6.: Hierarchical socket binding

Since the called socket is always bound to the argument socket, the order of binding

is important. When binding initiator to initiator, the child must be bound to the parent

by calling child(parent), going up the hierarchy. For target to target binding, the parent

must be bound to the child by parent(child), going down. In combination with binding

2 this means that going upward means binding port to port, then port to export at the

top level, and export to export going down the hierarchy.

36

Chapter 3. Transaction Level Model development

3.4. Model development in practice

So far we discussed only the classes that are already provided by the standard itself

and available as soon as the TLM header is included in a design. With the exception

of the classes described in Section 3.1, the standard supplies only declarations and no

implementation. Included in the TLM2 draft 2 download archive, based on these dec-

larations, comes a collection of example designs that can either be directly employed

in a design or serve as blueprint for the implementation of user designs.

Classification of modules

Considering the different contexts encountered, we can distinguish the following cat-

egories of modules that constitute a system model. As we will see in Chapter 4, the

context of the module can have implications on the general design approach.

Computation module A module whose prime task is to transform data, usually re-

ceived and transmitted by its interface sockets or other interfaces.

Leaf module A computation module whose function, in particular the completion of

a transaction, does not depend on nested transactions. A nested transaction is

initiated between receiving a request and completing the associated response.

Non-leaf module The complement of a leaf module, i.e. the module requires addi-

tional nested communication to complete a request.

Communication module A module whose prime task is to manage the communica-

tion between two computation modules, requiring only the address information

of a transaction.

Interconnect module A communication module which relays only one class of trans-

actions (i.e. preserving the transaction type) without changing the data payload

of the transaction. The SimpleBus (Section 3.4.2) is such an interconnect module.

Bridge A communication module which relays more than one class of transaction (pos-

sibly translating between the transaction types) without changing the data pay-

load of the transaction.

37

Chapter 3. Transaction Level Model development

3.4.1. Modeling options in LT and AT

The following standard situations are representative for the communication over the

non-blocking transport interface in the loosely-timed (LT) and approximately-timed

(AT) modeling style. The nature of the blocking interface and the lack of timing do

not permit similar options for the untimed modeling style.

LT with annotation The standard case with precognition. The initiator sends the re-

quest with zero delay, the target replies with TLM_COMPLETED. The target knows

and annotates the delay that the response is supposed to be delayed compared

to the request. The initiator usually implements the delay.

LT with sync No precognition from the target is available. It simply accepts12 the re-

quest without delay annotation, indicating that the initiator should yield. At a later

point in (simulation) time, the target performs a callback to send the response that

the initiator confirms by returning a TLM_COMPLETED. This concept is similar to

AT with backward path but includes only 2 instead of 4 phases that are available

in AT.

LT with TD Similar to the standard case with precognition. The initiator does not im-

plement the delay annotated by the target right away but sends additional re-

quests, using the accumulated local time offset as initial delay annotation.

AT with backward path The four phase transitions are indicated by dedicated trans-

port calls without annotated delays. The initiator begins the request phase by the

first call. The target ends the request phase and starts the response phase by one

or two13 explicit calls. The initiator finally ends the response phase by yet another

call. All calls are performed at different simulation times and are accepted by the

respective recipients.

AT with annotation An AT target might as well annotate a delay and update the trans-

action phase during execution of the forward call, indicating the end of the request

phase implicitly rather than by an explicit backward call. Similarly, an AT initiator

can reply to the response begin by annotating a delay that indicates the response

end which completes the transaction without another call. The annotated delays

are implemented by the respective recipients.

12Accepting means to return TLM_ACCEPTED and preserving the current transaction phase.
13A response begin implicitly includes a preceding request end.[Ope07b]

38

Chapter 3. Transaction Level Model development

In the case that a LT target’s precognition is dependent on the individual request it may

be necessary to use sync on demand which constitutes a dynamic switch between LT

with annotation to LT with sync when a request can’t instantly be completed.

In general, an annotation is not describing a processing delay or a span of time during

which something specific happens, but it should be interpreted such that the related

phase transition is delayed by that annotated time, without any additional assumptions

on the nature or origin of that delay.

For more specific rules on the handling of delays and the calling of interfaces, see

Section 4.5.1 and [Ope07b].

3.4.2. Implementing communication through sockets

Two implementation approaches to equipping a module with facilities for communica-

tion through sockets could be identified.

Basic socket member and interface inheritance The module class has a basic

socket member and inherits from and implements the socket member’s export

interface, mapping the export onto itself in its constructor.

Basic socket inheritance and subclass interface inheritance The module class

inherits from a basic socket and thus becomes a socket itself. It defines a sub-

class that inherits and implements the basic socket’s export interface, and in its

constructor maps the export onto the subclass implementation.

A third conceivable approach is a module class that inherits from a basic socket and

simultaneously from the required interfaces. The module class would implement the

interface functions and map itself as a socket onto itself as an interface implementation.

As already mentioned in Section 3.3.2, this approach is not feasible since the compiler

would not be able to determine whether the desired mapping is socket-to-socket or

socket-to-interface.

The TLM2 draft 2 kit includes a collection of examples that illustrate how targets and

initiators (not just sockets but e.g. memories) can be implemented using the first ap-

proach, in which the module class inherits from the interface classes. By doing so, the

interface functions become part of the module member functions and are thus mixed

39

Chapter 3. Transaction Level Model development

with the module-specific member functions that are not concerned with communica-

tion aspects. Communication and computation functionality is thus intermingled in the

same class. While this is a straight forward approach for simple modules which do not

require diversified communication capabilities, a more elaborate approach should be

taken to promote modularity between sockets and the modules using them.

SimpleSocket

The SimpleSocket class is an example design that takes the second approach. It in-

herits from a basic socket and includes a private subclass that inherits from the basic

socket’s export interfaces (see Figure 3.3). The constructor of the SimpleSocket class

then maps the basic socket’s export on the implementation within the private class via

binding 1 (Section 3.3.2). By doing so the SimpleSocket’s communication behavior

is kept well separated from the module’s computation behavior. The following code

listing illustrates this concept.

// SimpleLTTargetSocket inherits from a basic TLM socket

class SimpleLTTargetSocket : public tlm::tlm_target_socket< ... >

{

// The constructor maps the export to the implementation in mProcess

explicit SimpleLTTargetSocket(const char* n = "") : ...

{

// mapping target forward interface port to implementation

(*this)(mProcess);

}

// Process is a private subclass that inherits from the export interface

private:

class Process : public tlm::tlm_fw_nb_transport_if<TYPES>

{

// Now comes the interface implementation

sync_enum_type nb_transport(transaction_type& trans,phase_type& phase,

sc_core::sc_time& t)

{

...

}

}

}

40

Chapter 3. Transaction Level Model development

In addition the SimpleSocket class manages function pointers for each method required

by its interfaces. As a result the user can decide for each instance if it should use its

built-in default behavior (by registering no function pointer), or if a different behavior

is desired for the respective module. See Appendix C.1 for illustrative code.

When it is possible, the default behavior replies to a phase transition according to the

standard and notifies events that enable the outside module to react to the transition.

In principle, it denies any special requests like DMI or debug due to the ignorance

about the module around it, and also cannot offer a default behavior for the transport

target because the transaction handling in the target is highly application dependent. It

is thus advisable to register pointers for all transport functions. Other pointers can be

left unregistered if no special action except the TLM-standard default negative answer

to the caller is required.

The SimpleSockets (originally included for LT) and their adaption for the UT and AT

modeling style will be the sockets of choice for the modeling done in this work. They

are referred to as SimpleUTSocket, SimpleLTSocket and SimpleATSocket and can be

employed in one of the two following ways.

SimpleSocket and function pointer The module class has a SimpleSocket mem-

ber, implements functions with the same signature as the ones included in the

required interfaces and registers appropriate function pointers.

SimpleSocket and default behavior The module class has a SimpleSocket mem-

ber and employs the default behavior of the SimpleSocket.

The first approach appears similar to having the module inherit and implement the

socket interface. The main advantage is that by using SimpleSocket with function point-

ers, the user implementation can be named more descriptive and can be chosen more

flexibly be reassigning the pointer, or not registering it at all.

SimpleBus

This example design provided by the TLM2 draft 2 manages an array of SimpleSockets

(both initiators and targets) by a unique address that is valid only within the bus compo-

nent. This address enables the SimpleBus to keep track of which pending transaction

41

Chapter 3. Transaction Level Model development

belongs to which socket pair. It enables cross-over communication from each initia-

tor to any target by generic payload transactions and supports both AT and LT timing

mode as well as the dynamic switching between the modes (see also [Gro02]).

The SimpleBus will be the basis for the bus model used in Section 4.6.3.

42

Chapter 4.

Case Study: Advanced Encryption
Standard

This chapter describes the modeling case study of an application from its abstract de-

scription to an approximately-timed model supporting architectural exploration. Since

previous experience has been established in [AHL+06], the Advanced Encryption Stan-

dard (AES) has been chosen as example application.

4.1. Description of the algorithm

The Advanced Encryption Standard, also known as Rijndael algorithm, is a symmetric

block cipher that generates cipher text out of plain text by iterative transformations

[Nat01]. It employs the same key for encryption and decryption. The encryption in-

volves a certain set of operations carried out on the data (that we refer to as state) as

well as on the key. The results are the so-called round state and the round key for a

given round number. The combination of the round key with the corresponding round

state concludes an encryption round.

4.1.1. The standard AES algorithm

We are considering the 128-bit version of AES in the electronic codebook (ECB) op-

erating mode, comprising 11 encryption rounds - 1 initial, 9 regular, 1 final. The ini-

tial round consists of only the XOR combination of the initial state with the initial key,

43

Chapter 4. Case Study: Advanced Encryption Standard

yielding the first round state. The process of round key creation is referred to as key

scheduling or key expansion, and operates on 16 key bytes that are regarded as 4x4

matrices. Since the calculation of a new round key is only dependent on the previous

round key, it is independent of the data encryption process that in turn operates on 4x4

matrices of state bytes. Thus, the generation of all 10 round keys can either be carried

out beforehand (offline), reusing the stored round keys for each new block of data, or

during the encryption (online), creating and storing only the next required round key.

Data encryption

Figure 4.1 depicts the sequence of data encryption operations. [AHL+06]

Figure 4.1.: Sequence of AES rounds [Zab03]

1. Substitute Bytes (SubBytes) - each state byte is used as address value to look up

the substitute value in a so-called S-Box (i.e. a 256 byte array).

2. Shift Rows - rotation of state row n by n bytes.

3. Mix Columns - multiplication of each state column with a constant 4x4 matrix,

containing only the values 01, 02 and 03.

44

Chapter 4. Case Study: Advanced Encryption Standard

4. Add Round Key - XOR combination of state and key, constituting the initial round

and ending all other encryption rounds.

Key scheduling

The generation of the next round key comprises the following operations on the current

round key, in the order of listing. [AHL+06]

1. Rotate Word (RotWord) - rotation of the last column of the current round key by

one byte.

2. Substitute Bytes (SubBytes) applied to the last column of the current round key.

3. Rcon - XOR of the rotated and substituted column with a column taken from a

given constant matrix.

4. The first column of the next round key is generated by XOR of the first column

and the transformed last column of the current round key.

5. The remaining 3 columns of the next round key are generated by XOR of column

i of the current round key with column i−1 of the next round key.

4.1.2. The T-Box variant

It is possible to merge the SubBytes, ShiftRows and MixColumns operations of the data

encryption process into one single lookup (similar to the S-Box lookup of the standard

algorithm) [FD01, MS04, RSQL04]. This extended lookup array is referred to as T-Box.

It can be divided into three distinct S-Boxes, called S1, S2 and S3, that each contain

different values and anticipate the MixColumn operation. While the data encryption

process requires all three S-Boxes, Key scheduling requires only S1 lookups since it

does not use a MixColumn operation.

Generating one byte of the next state comprises the lookup of four bytes of the current

state (two in S1, one in S2, one in S3) and their XOR combination. To implicitly imple-

ment the ShiftRows operation, the diagonal of the current state is used to generate a

column of the next state. Rotating the input pattern by one over the same four current

state diagonal bytes delivers the respective next state column byte. The input for the

45

Chapter 4. Case Study: Advanced Encryption Standard

subsequent next state column is selected by shifting the diagonal window on the cur-

rent state horizontally by one. The first generation using the yet unrotated new diagonal

as input now generates the last byte of the second next state column (rotated vertically)

and so on. Figure 4.2 illustrates the data encryption using the T-Box variant.

Figure 4.2.: T-Box data encryption [AHL+06]

4.2. Outline of the design flow

The modeling styles of TLM can be applied to a variety of use cases and thus in differ-

ing order. The case study follows the design flow described below.

1. Implement the algorithm in software to understand the involved computations.

46

Chapter 4. Case Study: Advanced Encryption Standard

2. Create an algorithmic system model based on the software implementation as

functional reference and for deriving a partitioning into distinct modules.

3. Introduce a notion of time by refinement to the loosely-timed modeling style.

4. Based on that notion of time, conduct a preliminary hardware/software tradeoff

analysis to gather information for the next refinement steps.

5. Refine to the approximately-timed modeling style for architectural exploration.

The steps that are required to meet the respective goals will be described in the re-

spective sections.

4.3. Software implementation

Based on the algorithm outlined in Section 4.1, the initial step is its implementation in

software, using the round-wise output of [Zab03] as initial lead. The C++ code is then

meant to serve as a functional reference throughout the rest of the modeling process

and as a first step of understanding the computations that are required by the applica-

tion. The algorithm is split into coarse subunits, that become manifest in four methods

that are called by the main control flow, and which execute distinct sub-algorithms.

• ScheduleKey

• NextState

• NextStateFinal

• AddRoundKey

With the exception of the first round, which only comprises an AddRoundKey, the func-

tions are executed in this order. Since several operations of the standard AES algo-

rithm are wrapped up in lookups, a partitioning of the T-Box algorithm results in more

coarse functions. One particular result is the differentiation of the final round from the

regular encryption rounds. The core data structure of the implementation are 16-byte

buffers (uint8[16]). Their manipulation by NextState(Final) requires a temporary buffer

because the generation of a new state by the T-Box algorithm requires the old state

to remain unchanged until completion. ScheduleKey can be executed directly on the

buffer. AddRoundKey could be executed directly as well but is implemented using a

47

Chapter 4. Case Study: Advanced Encryption Standard

temporary buffer. This simplifies the control flow since the result is written back into

the original buffer from where NextState(Final) previously read its input.

4.3.1. Control flow considerations

The control flow can be implemented in several ways. One possibility is to preliminarily

schedule all round keys and have them instantly available to AddRoundKey (offline key

scheduling). The downside of this approach is the initial idle time for AddRoundKey, the

subsequent inactivity of ScheduleKey and the preliminary assumption of a sequential

order of the two functions.

Alternatively, ScheduleKey could run loose without any synchronization. AddRoundKey

requests keys on demand and has to wait only if ScheduleKey is yet busy with the

requested key. This implicitly already assumes that the two tasks will be carried out

concurrently, a decision that is not part of this phase.

Ultimately, the control flow is implemented in such a way that ScheduleKey calculates

just one key at a time (online key scheduling) and continues with the next key only when

the last one has been consumed by AddRoundKey. This intertwining of actions, involv-

ing periodic synchronization points, was found to be most appropriate for the modeling

task at hand since it was ignorant to whether the two functions execute sequentially or

concurrently, a question that was yet to remain open in this phase.

4.3.2. Application-related considerations

In addition to the modeling-related discussion of the control flow, the same application-

related assumptions as the ones mentioned in [AHL+06, page 6] are applied. Namely,

that the application is assumed to exhibit small bursts of a few data packets, or possibly

only one at a time, justifying the use of online scheduling. Offline scheduling would

be preferable for long data streams per session key, where the scheduling overhead

becomes negligibly small compared to the encryption process.14

14If these aspects of the application were not fixed in the beginning, they would need to be incorporated
into the modeling evaluations. For the sake of simplicity, and due to the focus of this work, these
assumptions are maintained.

48

Chapter 4. Case Study: Advanced Encryption Standard

The resulting set of software methods along with initial insights about the control flow

and storage requirements will be the functional core of distinct simulation modules.

4.4. Untimed modeling

The intent of this phase is the implementation of a functional system model using the un-

timed modeling style. The advantage of performing the first modeling steps in this style

is that yet irrelevant details like timing and communication phases can be postponed

and focus can be laid on the modular composition and as yet simple communication

between the sub-modules. The main difference between the software and the untimed

functional implementation is that in software, some data availability requirements can

remain hidden, while the untimed system model and its self-contained modules natu-

rally reveal them.

4.4.1. Partitioning into computation modules

Analyzing the usage of the data buffers mention in Section 4.3 reveals the data de-

pendencies among the four functions, which are illustrated in Figure 4.3. An incoming

arrow means that a function needs the result of the function where the arrow originates

before it can continue its computation. Note that ScheduleKey does not require any

more input after being initialized with the initial key.

Figure 4.3.: Coarse AES data dependency analysis

One conclusion that can be drawn from Figure 4.3 is that each of the four functions

is qualified to constitute a proper computation module. Still, two issues remain. First,

NextStateFinal represents the special case of NextState in the final round and is only

49

Chapter 4. Case Study: Advanced Encryption Standard

called once. Thus, it is merged with NextState into one module. Consequently, the

round number associated with each data buffer becomes relevant for the NextState

module. Second, the initialization with the initial key and state must be performed by

some kind of master which, in the software version, was the method that would call

the encryption procedure. In the system model this master will be represented as

additional module that triggers the encryption by supplying the initial key and state

to the encryption system, and that reads the cipher text after completion. The master

shall otherwise not be involved in the processing and the interface should be subject

to as little change as possible to maintain transparency. The master presents the user

application that employs the AES encryption facility in its context.

While NextState and ScheduleKey exhibit enough functionality to justify their imple-

mentation as dedicated modules, AddRoundKey is performing only the XOR combi-

nation of their results. AddRoundKey is thus the natural synchronization point between

these two modules and in addition the first module to perform an operation at the start

of a new encryption. AddRoundKey is therefore the interface to the master module and

in control of the encryption, implementing the previously derived control flow. Since

the untimed modeling phase is intended to confirm the big picture and functional cor-

rectness of the algorithm implementation and the module composition, lookups are yet

assumed to happen instantaneous and will be treated in a later stage. These consider-

ations yield the system architecture depicted in Figure 4.4.

Figure 4.4.: System architecture with instantaneous lookup

50

Chapter 4. Case Study: Advanced Encryption Standard

4.4.2. Implementing an algorithmic model

Design guidelines

The prime focus of this untimed model is the creation of a functional reference for later

timed models, while yet including as little complexity as possible. One goal therefore

is to execute the simulation without the use of simulation time i.e. in a finite number of

delta cycles.

Although we are not yet modeling communication procedures or communication mod-

ules, we already perform communication by blocking transport calls (Section 3.2.2).

Later stages will involve a shift towards more complex communication. Adhering the

principle of separation of communication and computation, communication modules

should be kept ignorant of the transactions’ semantic.

A conceptual separation between the software description of the functionality and the

system model that executes the functionality shall be preserved. It should be possible

to include the sub-algorithms (depicted in Figure 4.3) that are the core of the com-

putation modules and that have initially been implemented in pure software in a way

that does not require an extensive rewrite. The module implementation shall control

the use of the respective thread or function while the function itself is ignorant of its

environment.

Data structures

The choice of the transaction class as well as the data structure that is included in a

transaction are key design decisions. The default transaction class is the generic pay-

load as described in Section 3.1.1. The core data structure of the algorithm is a packet

consisting of 16 bytes (either key or state). Since the final round consists of different

operations than the other data processing rounds, the round number that a packet cor-

responds to must be known. There are several approaches to tag such a packet with

the associated round number.

1. Create a new transaction class to replace the default generic payload (GP).

2. Create a new transaction class by inheriting from and extending the GP.

3. Extend the GP data payload rather than the GP class itself.

51

Chapter 4. Case Study: Advanced Encryption Standard

Option 1 involves all the overhead required by the object-oriented design of the TLM

facilities, and is only advisable if the communication context of a memory-mapped bus

is totally inadequate for the task at hand. Since the model operates on a read/write

basis, this is not the case.

Option 2 involves less overhead, but would introduce application-specific attributes at

a level where they are not appropriate. The design rules in [Ope07b] state that any

extension of the GP class with additional member variables must not be relevant to a

target’s functional operation. This however would be the case for the round number, if

it were added as distinct class member to a new transaction class.

Rather, the data payload member of the default GP class will transport an extended

data structure. This leaves the GP class itself unchanged (since the data payload is just

a pointer to an external data structure) and corresponds to option 3. The data structure

whose pointer is included in the GP transaction is implemented in a class aes_payload

that comprises the 16-byte data matrix member and an additional member value con-

taining the associated round number. Note that because the round number is relevant

only internally within the AES system, the master module issues transactions carrying

the basic 16-byte data member.

Implementation

A top module instantiates the system modules, performs the port binding and triggers

a packet stream by performing a notification in its simulation control thread. A new

notification starts another data stream. The master generates the stream by repeatedly

calling b_transport to AddRoundKey to deliver the initial key and data of each new

packet.

Within AddRoundKey, the thread Encrypt which contains the encryption control can

be initiated in one of two ways. Either Encrypt is implemented as a function that is

called by the second transport interface call which completes the initialization. So upon

return from the second transport call, the cipher text is available for instant read by

the third transport call. Or Encrypt is implemented as a simulation thread and the

second transport call notifies an event to which Encrypt is sensitive. Because the master

has not yet yielded, allowing no other thread to run yet, the third transport (cipher

text read) happens before Encrypt has started and during the third call the master

thread is suspended until a done-event is notified by Encrypt. The main difference

52

Chapter 4. Case Study: Advanced Encryption Standard

is that in the first case, the encryption remains in the context of the master thread,

while in the second case, the master yields simulation control to the scheduler which

thereupon schedules Encrypt (see Appendix C.2 for an illustrative code). Therefore

only the first version is an algorithmic model, which is defined to have only one thread

of execution15.

Encrypt performs the encryption along the control flow outlined in Section 4.3.1. It calls

NextState and ScheduleKey by sending transactions containing all relevant information.

It first writes the initial key to ScheduleKey, subsequently sends a read transaction for

each new round key, and sends a pair of transactions (first write then read) to NextState

for each round. The write transaction includes the result of the last AddRoundKey while

the read transaction retrieves the next round state. The handling of the round number

in the transaction data structure requires no intelligence by the worker modules. Since

simulation time never has to be advanced, the simulation terminates after zero time.

Model breakdown

The following classes are used for implementing the untimed algorithmic model.

• Generic payload

• SimpleUTSocket

• Blocking transport interface

The model consists only of leaf modules.

4.5. Loosely-timed modeling

Based on the untimed model described in the previous section, the next step is to in-

troduce the concept of time. The loosely-timed model shall be able to generate and

implement an advance of simulation time by adding up the delays of an operation se-

quence and call, at some point, wait or a delayed notification. Communication shall

be structured into the two phases BEGIN_REQ and BEGIN_RESP, possibly performing

computation before the phase transition.

15Since the simulation control thread of the top module is not part of the application, the system model
is still considered to be an algorithmic model.

53

Chapter 4. Case Study: Advanced Encryption Standard

4.5.1. Relevant design rules for timed models

The following rules from [Ope07b] summarize the guidelines for handling delays in

timed models. For a given modeling style, some rules may be further restricted (e.g.

ban of temporal decoupling in AT).

1. The nb_transport method shall not call wait, directly or indirectly.

2. An nb_transport call on the forward path shall under no circumstances directly or

indirectly make a call to nb_transport on the associated backward path, and vice

versa.

3. A timing annotation using the sc_time argument shall delay the phase transition,

if there is one.

4. On return from nb_transport, it is the responsibility of the caller to behave as if it

had received notification that the transaction will change state at time

sc_time_stamp() + t. In other words, the time argument is used to annotate latency

to the nb_transport call, and it is the caller’s responsibility to realize that latency.

5. On return from nb_transport, the caller has three options for implementing an

annotated latency. It can run in temporally decoupled mode, it can put the trans-

action into a payload event queue (or similar), or it can call wait(t) (assuming the

caller is a thread process).

6. Transactions may be pipelined. The initiator could call nb_transport to send an-

other transaction to the target before the delay returned from the first call had

elapsed. It is the responsibility of the initiator to account for the delays as it wishes.

4.5.2. Model migration from UT to LT

In the simplest case, the transition from the untimed to loosely-timed style is performed

by replacing the calls to the void b_transport function with a transaction argument by

calls to nb_transport functions with transaction, phase and delay annotation arguments

which always returns TLM_COMPLETED and the associated delay. Doing this for our

untimed model, we get a sequence as depicted in Figure 4.5, left.

In accordance with rule 5 the master calls the transport with zero offset, expects an in-

stant completion and implements the delay explicitly by wait for both reads and writes.

54

Chapter 4. Case Study: Advanced Encryption Standard

Since the model still uses Encrypt as a function call and follows the same control flow

as the untimed version it is still executing the subtasks sequentially. Rule 1 requires that

the encryption is carried out without calling wait, because it happens in the context of

the master’s read request and thus in AddRoundKey’s transport interface implemen-

tation. So the delays of all intermediate steps are added up and, eventually, explicitly

implemented by the master. No other fundamental changes to the untimed model are

yet applied. This results in a situation that deserves special consideration.

4.5.3. Removal of temporal decoupling

The fact that the same accumulating delay value is used as the annotation for the nested

transport calls from AddRoundKey to NextState and Skey represents a case of temporal

decoupling. This poses no problem because the modules know the time they require

for completion of their time-invariant computation and the model complies with rules

1, 4, 5 and 6.

Since this is not the general case we remove the temporal decoupling. This requires

AddRoundKey to call wait after each transport, which would violate rule 1 if it happened

during the master’s transport call. Encrypt is therefore implemented as a thread that is

notified by the master’s read call. By explicitly implementing the delays annotated from

the other modules, Encrypt can perform its transport calls with zero offset. The master’s

read request can not anymore be completed before returning from the transport call,

so it must now support sync on demand by handling a return value of TLM_ACCEPTED

and providing a callback transport function.

When AddRoundKey receives the read request, it decides dynamically if it is able to

complete it by returning the cipher text or if it only accepts the transaction and indicates

the master to yield. AddRoundKey remembers the choice and performs a callback at

the end of the processing.

The standard rules are unclear whether just a forward call or also a backward call

with non-zero offset would constitute temporal decoupling. To be on the safe side,

AddRoundKey explicitly implements the accumulated delay and performs the callback

with zero offset. The alternative is a non-zero callback offset and a delayed notification

by the master’s backward transport function to the callback event. In the current model

this is effectively the same behavior, but with an additional assumption on the behavior

55

Chapter 4. Case Study: Advanced Encryption Standard

Figure 4.5.: Loosely-timed encryption with/out temporal decoupling

56

Chapter 4. Case Study: Advanced Encryption Standard

or the master. Figure 4.5, right depicts the sequence for the conservative solution.

Please note that both sequences are still sequential and thus transport calls to NextState

and ScheduleKey are not carried out concurrently. We will introduce concurrency in

the next section.

4.5.4. Introduction of concurrency

The previous models were still based on the sequential nature of the initial software

implementation As can be seen in Figure 4.3 however, several actions can be executed

concurrently to one another. Already the addition of a second thread to remove tempo-

ral decoupling in the previous section introduced the notion of concurrency between

Master and AddKey as depicted in Figure 4.5, right. There already concurrency had

to be considered to maintain the same simulation behavior, by delaying the encrypt

event notification by the write delay. Otherwise this delay would have been lost com-

pared to the non-concurrent temporally decoupled case. Temporal decoupling was

not causal to the sequential nature of the first model though. Rather, removing temporal

decoupling by introducing a second thread implied the concurrency issues.

SystemC by itself cannot achieve something like a concurrency analysis. What it can be

used for is to model and evaluate a certain concurrency scheme, but this scheme has

to be derived by different techniques. We can use the scheme that is already hidden

in the data dependency analysis depicted in Figure 4.3. The term scheme refers to the

fact that it indicates what task can or cannot be carried out concurrently with others,

which is the first requirement for evaluating execution times and different concurrency

schemes to achieve well-distributed load or performance scenarios.

In principle there are two possibilities that enable introducing and taking advantage of

concurrency.

• Perform computation and communication in separate threads coordinated by de-

layed notifications and waits for events.

• Perform several concurrent communication activities (e.g. to different target mod-

ules) in separate threads.

To cope with several concurrent requests to the same computation module, a busy

flag is introduced. A queue structure for requests (like the payload event queue of

57

Chapter 4. Case Study: Advanced Encryption Standard

Section 3.1.2) is needed to store transactions for later processing. Temporal decoupling

or instant replies without yielding can become very tricky, or even impossible.

Introducing concurrency into our model

An initial concurrency scheme has been identified by data dependency analysis (Fig-

ure 4.3). Every action (both computation and communication) that shall be concurrent

with any other action requires an own thread. Enabling AddRoundKey to communi-

cate with NextState and ScheduleKey concurrently therefore requires two communica-

tion threads. As additional benefit, this enables NextState and ScheduleKey to perform

their computations concurrently to each other as well without requiring a thread of their

own. They can implement their respective computation as functions that are called by

their transport interface implementations. The communication threads in AddRound-

Key subsequently implement the delays annotated by these computation calls after

return from the transport call. AddRoundKey waits for the completion of both commu-

nications and continues only after state and key have been synchronized. So in addi-

tion to the Encrypt thread, AddRoundKey now includes two additional communication

threads.

The fact that NextState and ScheduleKey not necessarily require dedicated threads to

perform their work is beneficial to the simulation speed. However, concurrency also

means that a target which is able to process only one transaction at a time can still

receive several requests from different initiators simultaneously. To minimize the num-

ber of assumptions on the behavior of any module a queue+callback approach com-

bined with a busy flag is applied. To keep the modules as simple as possible, the

target transport functions unconditionally queue the received transactions in a PEQ and

return TLM_ACCEPTED while, depending on the busy flag, an independent worker

thread on the other end of the queue performs the computation and callback. There-

fore NextState and ScheduleKey each now include a worker thread to perform their

function. See Appendix C.3 for illustrative code.

This separation of request from work/response requires more synchronization with the

SystemC scheduler at a gain of increased flexibility, reusability and simplicity.

The busy flag is managed by a dedicated second thread and serves as indicator of the

current busy status of the target, both internally for the worker thread and, if required,

externally (including tracing). The worker thread assembles the delay values in zero

58

Chapter 4. Case Study: Advanced Encryption Standard

time (in case of a leaf module) and notifies the busy thread which implements them.

If the module is dependent on unknown delays from other modules, the busy thread

itself must wait on appropriate events that are delivered by worker and communication

threads. The at first glance useful distinction between computation and communication

busy times that should allow better analyses of the concurrency scheme comes with

certain complications, as described in Section 5.2.

4.5.5. Facilities for basic HW/SW tradeoff analysis

Using fast loosely-timed models (and their busy flags) can yield preliminary informa-

tion about potential bottlenecks. Constantly active and thus critical components are

candidates for concurrent hardware implementation. Uncritical components are can-

didates for sequential software, possibly sharing a common CPU. To gain this kind of

insights from a model in an efficient way, it must offer certain capabilities beyond indi-

cating busy and idle status. We will now introduce them into the model.

Easy timing variation

One main goal of hardware/software tradeoff analysis, architectural exploration and

other model based evaluations is to determine the best execution time / communi-

cation time relation between the concurrent tasks or the criticality of the execution time

of certain computations. Allowing easy variation of these parameters enables efficient

simulation of different timing combinations and should be given special attention.

A straight forward approach is the use of a global header that contains a set of static

variables which includes all delays present in the simulation. They can either be coarse

for each module’s computation, specialized for certain fine grain atomic actions that

build the computation, or a mix of the two. The individual modules employ these vari-

ables in their wait and notification statements.

The master module issues data packets to AddRoundKey for encryption. The top mod-

ule notifies the master to start a new encryption. To simulate two timing schemes, the

top module sets the new delay scheme before the next notification to the master.

59

Chapter 4. Case Study: Advanced Encryption Standard

This approach assumes complete white-box control over the modeling and that all

modules include the same header. A more flexible OOP approach could pass a ref-

erence to the module constructor that points to the shared variable, while the module

internally waits for the reference rather than directly for the shared variable.

Signal tracing

The analysis interface (Section 3.2.3) enables very sophisticated and automated ways

of simulation analysis. If just a simple evaluation is desired, tracing variables (not only

signals) and their values, similar to VHDL, can already suffice. The busy flags are good

candidates for such tracing.

The OSCI reference simulator does not include a waveform viewer but writes tracing

information into a file for later review. Variables that shall be traced need to be public

to be accessible. Tracing is set up before the start of the simulator and changing the

tracing setup during simulation (create an additional tracing file, add or remove vari-

ables etc.), results in a segmentation fault. Therefore two timing schemes cannot be

written to two separate trace files. A long wait between two schemes is recommended

for easier reading.

There seems to be no possibility to trace strings or enumeration types. Tracing strings

yields only the first character as binary, tracing enums yields their integer encoding.

The trace function for enums is reported deprecated. Also, the Value Change Dump

(VCD) format has, according to Verilog standard [IEE01], no definition of strings or

enums and saves all values as bit vectors that are interpreted accordingly by a wave-

form viewer such as Wave VCD Viewer16 (freeware for Windows), SynaptiCAD Wave-

Viewer (Windows)17 or GTKWave (Linux).

4.5.6. Bottleneck identification

Employing the outlined facilities for tracing and analysis, we will now derive and as-

sign execution times to the various computation and communication steps between the

modules to identify the most critical component. The focus is on a qualitative rather

16http://www.iss-us.com/wavevcd/index.htm
17http://www.syncad.com/

60

Chapter 4. Case Study: Advanced Encryption Standard

than a quantitative assessment and no optimizations related to implementation are as-

sumed. Consequently, a XOR operation carried out in one module is assumed to take

as long as in any other module. Table 4.1 lists the subtasks under consideration.

Task required operations
Write/read of 16 data bytes 16 reads/writes (algorithm operates byte-wise)
NextState regular round 4x (4 lookups + 12 XOR) = 16 lookups + 48 XOR
NextState final round 4x (4 lookups + 4 assign) = 16 lookups + 48 assign
ScheduleKey round 1 lookup + 17 XOR
AddRoundKey 16 XOR

Table 4.1.: Subtasks of the AES algorithm model

The operations used above are now refined to the instructions that would be required

to implement them on an abstract general purpose CPU (listed in Table 4.2). Each in-

struction is considered as 1 ns delay which corresponds to an operating frequency of

1 GHz. However this is just an aid to derive delays that do not presume unbalancing

optimizations to the implementation of any part of the algorithm. Rather the goal of this

analysis step is to determine the part that should be optimized in the first place. Any

other scenario that preserves this balance would be appropriate as well. Also note that

the structure of the model does not yet include a communication structure that would

enable congestion modeling and that S-Box lookup is still ideal. Therefore this reason-

ing must not be confused with already presuming an implementation approach.

The two operations required for write/read are considered symmetric since a transfer

medium (either a register file or a bus) is assumed to which the transfered value has to

be written and read in both cases, but possibly reversed order. The assign operation is

performed only after data has been retrieved by a read operations and is thus already

available.

Operations attributed delays
Write/read load + store / store + load = 2 ns
XOR 2 operand loads + XOR + result store = 4 ns
Assign store = 1 ns
Lookup start address load + offset load + indirect read + store = 4 ns

Table 4.2.: Delays attributed to operations

Consequently, the subtasks are annotated with the following delays listed in Table 4.3.

61

Chapter 4. Case Study: Advanced Encryption Standard

Task assigned delay
Write/read of 16 data bytes 32 ns
NextState regular round 256 ns
NextState final round 112 ns
ScheduleKey round 72 ns
AddRoundKey 64 ns

Table 4.3.: Subtasks of the AES algorithm model

The derived delays already indicate that NextState is the most complex subtask and

will be the bottleneck. This is confirmed by Figure 4.6 which illustrates that Sched-

uleKey and AddRoundKey both have to wait a significant amount of time due to the

long runtime of NextState. While the derived delays might have already been enough

to support that assumption, this may not be the case for more complex algorithms or

concurrency schemes.

Figure 4.6.: Busy times of AES algorithm subtasks with original delays

The designer can already now evaluate what effect for instance a fast implementation

of the NextState XOR operation would have. Assigning only 1 ns to this operation as

compared to the original global value results in 112 ns total time for a NextState regular

round. Figure 4.7 illustrates the improvement. The overall computation time drops from

3888 ns to 2592 ns. Therefore it is possible to already derive indicators about which

part of the implementation should be particularly optimized. Please note however that

this does not yet presume an implementation already but is only a qualitative statement

that can be used as guideline.

Figure 4.7.: Busy times of AES algorithm subtasks with altered delays

62

Chapter 4. Case Study: Advanced Encryption Standard

4.5.7. Concluding model implementation

NextState has been identified as the critical component. This hints to a possible subse-

quent implementation in hardware. In particular the S-Boxes that are critical for the

performance of NextState would then be realized in one or more ROM memories.

They should thus be moved to separate modules for an analysis of the best memory

and communication structure. To ease the modeling refinement for such an analysis

it is first carried out based on a loosely-timed model, and only then refined it to an

approximately-timed model.

Each external S-Box is called through its own socket. This allows maximum flexibility

with respect to the external bus and memory organization. If each S-Box transport call

can be assumed to return instantly without competition for the target (which is the case

assuming a replicated S1-Box), an initiator requires no dedicated thread for concurrent

communication with several S-Boxes, but just call and wait in NextState/ScheduleKey

is sufficient. If no such assumptions are made, one thread and 2 events per S-Box are

necessary. The price for this increase in flexibility is a higher number of transport calls,

events and context switches.

Since a lookup always comprises 4 bytes, they can be merged into one read transac-

tion. The data buffer initially contains the 4 values that are to be substituted. Upon com-

pletion, it contains the substituted result. Lacking a concrete communication medium

implementation to consider, this abstract form of communication is valid and complies

with the standard.

The S-Box modules are implemented using a PEQ in the same style as described in

Section 4.5.4. The initial loosely-timed model structure with instantaneous lookup is

depicted in Figure 4.4. The final model structure with dedicated lookup modules is

shown in Figure 4.8. All other intermediate steps described in this section had no

effect on the block structure of the model. If the associated delays are set to zero, there

is no difference from a model with instantaneous lookup.

Model breakdown

The following classes are used for implementing loosely-timed models.

• Generic payload

63

Chapter 4. Case Study: Advanced Encryption Standard

Figure 4.8.: System architecture with dedicated lookup modules

• SimpleLTSocket

• Non-blocking transport interface (forward and backward)

• Payload event queue

The model consists of leaf and non-leaf modules which implement the loosely-timed

style with both annotation and sync.

4.6. Approximately-timed modeling

4.6.1. Migration and timing considerations

The approximately-timed modeling style enables a finer modeling of communication

and computation by additional end phases for request and response. These become

particularly interesting because of their usability for architectural and hardware/soft-

ware tradeoff analysis. In contrast to the loosely-timed style, they resolve the need to

impose certain restrictions on model behavior (i.e. always sync and callback, see Sec-

tion 5.2).

Unlike the migration from untimed to loosely-timed, no interfaces have to be exchanged

due to their syntactic equivalence to the ones used in the approximately-timed style.

An AT initiator works with an LT target, assuming that the target replies to a BEGIN_REQ

64

Chapter 4. Case Study: Advanced Encryption Standard

with TLM_COMPLETED and that the initiator is robust enough to handle the three im-

plicit phase transitions being coincident. An LT initiator requires an inserted adapter

module to filter the callbacks of an AT target that might employ phases which an LT

initiator is not required to understand. The target SimpleLTSocket can therefore be

reused in the AT model, while the initiator has to be marginally extended to handle the

additional phases.

The concepts of request/response accept delay and response delay have been estab-

lished in Section 2.3.2. Both delays in theory start at the begin of a request. In practice,

the response delay (maybe even the request accept delay) of a target can only be

known in advance if the module is a leaf node and not dependent on communication

with another module. In our practical models, the response delay cannot start until after

the request phase has ended (see Figure 2.8, 2.9 and 2.10). Therefore, the theoretical

response delay as defined in the documentation is constituted by the request accept

delay and the effectively implemented response delay which begin only after request

acceptance (similar to ∆t_1 and ∆t_2 in Figure 2.7).

ResponseDelaytheoretical = RequestAcceptDelay+ResponseDelayimplementation

In the approximately-timed style, delays are accumulated less often then in the loosely-

timed style. The focus is shifted to explicit synchronization with more frequent zero

delay annotated transport calls. Based on [KHA05], an approximately-timed computa-

tion module may not include delays related to communication, rather these should be

contained in dedicated communication modules.

Consequences for implementation

The practical considerations from Section 4.6.1 combined with Section 2.3.3 yield the

following implementation guidelines for our AT models. See Section 2.3.3 for the de-

scription of intervals between events and the classification into software, non-pipelined

hardware and pipelined hardware modules.

A software module accepts a request without annotation or callback, returning an im-

plicit END_REQ along with BEGIN_RESP. No later point is possible because of a rule

in [Ope07b], which is actually intended for LT/AT interfacing but is nevertheless valid.

Only after the response has been accepted, it starts processing the next request. This

65

Chapter 4. Case Study: Advanced Encryption Standard

assumes that the initiator first needs to receive/process the response before issuing the

next request (Figure 2.8).

A non-pipelined hardware module also accepts a request without annotation or call-

back and returns END_REQ implicitly along with BEGIN_RESP, but already starts pro-

cessing the next request before receiving the response acceptance. Care must be

taken to delay the next response begin until the old response acceptance has been

received (Figure 2.9).

A pipelined hardware module returns END_REQ either implicitly by annotation if it is a

leaf module or by callback if the result is dependent on a nested transport call (which

is unlikely though due to the nature of pipelining). The accept delay should be equal

to the slowest stage. After the accept delay, the next request processing can be started

(Figure 2.10).

Communication delays shall be introduced by dedicated communication modules ex-

cept in the case of two communicating software modules. In this case, the function call /

context switch overhead can be modeled by increased request accept delay (call) and

response accept delay (return).

If a request/response buffer is desired, i.e. the module is not pipelined and a request

should be accepted before the module can process it, the buffer should rather be

placed in the communication module, because this aspect is part of communication

rather than computation.

It is the responsibility of the initiator to delay the next request until it has received the

request acceptance or alternatively in the responsibility of the communication module

to delay a new request until a request acceptance for the last request has been returned

by the computation module.

4.6.2. Model implementation

The master/AddRoundKey interface remains loosely-timed to stress the interoperability

aspect between LT and AT. Based on the implementation guidelines of Section 4.6.1, we

develop the models in the following way.

66

Chapter 4. Case Study: Advanced Encryption Standard

Computation modules

A computation module is implemented by two communication methods (responsible

for handling begin and end of the response) and one worker method (leaf module)

or thread (non-leaf module), combined with a C++ standard template library worker

queue and a worker event. The transport call puts the transaction into the worker

queue, instantly notifies the work event (after checking for a zero delay to detect un-

desired temporal decoupling) and returns TLM_ACCEPTED. Once the worker is idle

it fetches the transaction from the queue and starts processing it. Only one transac-

tion is processed at a time, others are queued. This concept matches the behavior of

software or non-pipelined HW. For pipelined behavior, an additional request handling

method, a different synchronization among the methods and additional queues would

be required. In the following, only software or non-pipelined hardware is modeled.

END_REQ is delivered implicitly by the BEGIN_RESP callback. The worker notifies

the begin response method with the response delay that was accumulated during its

processing. Once a response acceptance is received (by either method, depending if

the initiator annotates or calls back), the transaction is removed from the queue.

In case of a leaf module that is not dependent on communication with another module,

the worker can be a method which notifies the response method with the processing

time as offset. If additional communication or waits occur, the worker thread is im-

plementing part of the delay by waits and the last part by a notification offset. See

Appendix C.4 for illustrative code.

Communication modules

The bus interconnect module includes 2 modes: single and multi trans. Single means

that the bus will accept the next transaction only after receiving an end response event

from the old one. Multi means that this response is not necessary for the next request to

be transmitted. Into both directions, the bus implements a size-dependent delay before

passing the transaction on. Only one transaction into each direction can be processed

by multi, a limitation which results from the 2-threaded design (request, response). For

more flexibility, a more elaborate thread-structure would be required.

It has been assumed that regardless whether the interconnect module is possibly able

to manage several pending transactions (as in the multi transaction mode), only one can

67

Chapter 4. Case Study: Advanced Encryption Standard

actually be transmitted at any time. This means that an initiator or interconnect module

monitors the status of the last delivered transaction and should not start a new one while

the target is busy, which indicated by the lack of response in form of a transition to the

END_REQ phase.

The coincidence of END_REQ with BEGIN_RESP (and thus the possibility that no dis-

tinct END_REQ is ever transmitted) caused complications. The possible requirement

of completing a nested transaction would deadlock communication over the common

single-transaction bus for the following reason. To start BEGIN_RESP of the enclosing

transaction that is dependent on the nested transaction, this nested transaction would

obviously need to be completed first. The nested transaction however cannot start be-

fore an END_REQ (explicit or implicit) of the enclosing one was received, since without

seeing an END_REQ for the enclosing transaction, the single transaction bus remains

busy and thus unavailable for the nested transaction. Thus, an interconnect model that

is designed for only one transaction at a time (i.e. a simple ROM interface) would dead-

lock. Also, a non-leaf module employing an initiator SimpleATSocket should therefore

not wait for END_REQ (and dismiss the possibly conincidence with BEGIN_RESP). The

default behavior of the SimpleATSocket would need to be modified such that both En-

dRequestEvent and BeginResponseEvent are notified when BEGIN_RESP is received

(see Section 3.4.2).

These concepts are applied to the SimpleBus of Section 3.4.2 to generate a modified

version, the aes_SimpleBus.

4.6.3. Architectural exploration in practice

As described in Section 2.3.2, one purpose of the AT modeling style is to enable effi-

cient and fast architectural exploration and hardware/software tradeoff analysis. We will

now focus on this aspect.

Alternation between hardware and software behavior

To enable an easy simulation of several architectural configuration, every module can

alternate its behavior between hardware and software. The associated configuration

parameter determines whether potentially concurrent actions are executed in a way

68

Chapter 4. Case Study: Advanced Encryption Standard

that corresponds to concurrent hardware or sequential software, for example whether

three concurrent transactions are to be notified at the same time, followed by a wait for

the conjunction of all three done events, or if the three notifications and waits are per-

formed in an interleaved fashion (see Appendix C.5 for illustrative code). This concept

is applied to potentially concurrent computation as well as communication. A prereq-

uisite this alternation of behavior is the separation of each of these actions into distinct

threads and methods.

The simulation of several hardware/software behavior configurations can be merged

into a single run by changing the behavior configuration parameter in the top module

between two successive encryption runs, similar to setting a new delay scheme as

described in Section 4.5.5.

Model 1: Software solution

We first set a configuration that models a pure software implementation. In essence,

it comprises the loosely-timed model refined to approximately-timed transport inter-

faces and enhanced by the mentioned facilities for a switch between hardware and

software behavior. There are no communication nodes yet, all delays represent the

busy time of processing modules and all modules call each other directly. Each lookup

socket has its own dedicated lookup module (compare Figure 4.8).

All parameters are set to software behavior. Only one action, communication or com-

putation, is performed at any time. The resulting delays model the computation and

call/return (context switch) timing that software is known to exhibit18. The model block

structure corresponds to the once depicted in Figure 4.8. Keep in mind that the delays

for the external S-Box lookups can be set to zero to model a fast lookup as opposed to

an external memory lookup.

The delay scheme for an assumed abstract software implementation has already been

outlined in Section 4.5.6, Table 4.2. Now this scheme is applied to evaluate the practi-

cal implementation in a 1 GHz general purpose CPU, which yields a runtime of 7504 ns

for the encryption of one packet. The fact that two similar models with equal delay

assignments exhibit so different results can be explained by the fact that the model in

18Setting all parameters to hardware behavior would model a non-pipelined ASIC with point-to-point
connections between the submodules.

69

Chapter 4. Case Study: Advanced Encryption Standard

Section 4.5 served the goal of evaluating a concurrency scheme and thus made mas-

sive use of concurrency, while the software model of this section models a software

implementation and is sequential in nature. So while the two models somewhat resem-

ble each other structurally, their respective purposes do not.

Model 2: Microcontroller with simple ROM interface

We now employ our bus component for the first time. All lookups are performed by

transactions to one single memory module. The calls are transmitted over the shared

bus, to which all lookup sockets are connected.

Since NextState has three lookup sockets that shall remain ignorant of the communi-

cation architecture, they are mapped to an interconnect component that serializes the

calls and modifies the addresses for uniqueness within the memory that represents

all three S-Boxes. ScheduleKey modifies the address of its only lookup-socket by it-

self. This is the only modification that is required to reflect the new model structure in

computation modules, and could, if the model were not white-box accessible, be per-

formed by another interconnect component. The only two initiators connected to the

bus are therefore the one from the interconnect component and one from ScheduleKey.

The only target connected is the memory module (depicted in Figure 4.9).

Figure 4.9.: System architecture with shared lookup module

All computation modules are switched to software to model sequential software ex-

ecuted on a microcontroller. Consequently, we keep the point-to-point connections

70

Chapter 4. Case Study: Advanced Encryption Standard

among the computation modules. Since the memory has no potentially concurrent be-

havior, switching it from software to hardware has no actual effect.

Since only lookup transactions travel over the bus and have no nested dependency, the

structure in principle works with all combinations of hardware/software switch settings

as well as single/multi bus settings. Due to the usually simple nature of a ROM interface,

single is preferable.

The delay scheme for an assumed abstract software implementation has already been

outlined in Section 4.5.6, Table 4.2. In contrast to model 1 however which assumes a fast

CPU, model 2 models a comparably slower (500 MHz) microcontroller with memory

bus congestion as potential bottleneck. Therefore all delays related to computation are

doubled. The lookup delay which is only partly related to the computation speed is

changed to one I/O store operation plus memory delay and represents the lookup of

one byte. A short delay of 1 ns per byte is added to a transaction when it traverses the

assumed fast bus.

Operations attributed delays
Write/read load + store / store + load = 4 ns
XOR 2 operand loads + XOR + result store = 8 ns
Assign store = 2 ns
Lookup CPU start address load + offset load + indirect read + store = 8 ns
Lookup MC store + memory delay = 2 ns + 4 ns = 6 ns
Bus transfer 1 ns per byte

Table 4.4.: Delays attributed to operations in the microcontroller model

Applying the microcontroller delay values to this model yields a runtime of 13056 ns

for the encryption of one packet. This increase should be contrasted to the 15008 ns

that the same computation would have required if it would have been performed by

model 1 at 500 MHz. The assumed fast memory interface alleviated the impact of the

operating frequency reduction.

Model 3: ASIC comprising a Network-on-Chip (NOC)

We now connect all sockets to the bus, and let all transactions travel across it. All mod-

ules are switched to hardware behavior to model an ASIC, the crossbar connection

71

Chapter 4. Case Study: Advanced Encryption Standard

mimics a Network-On-Chip. This configuration only works with a multi trans bus set-

ting due to the resulting nested transactions (see Section 4.6.2). A re-design of the bus

would be necessary to bring it closer to a true network-on-chip behavior.

It should be particularly noted that the only change necessary to create this version was

to re-map the modules, after they have been generally made fit for communication over

a shared bus as in model 2. A reconfiguration to any communication structure can in

principle be performed, as long as the modules use the same addresses and the bus

uses the same address resolution to determine the transaction target. The resulting

system structure is depicted in Figure 4.10.

Figure 4.10.: System architecture with bus topology

The NOC is again assumed to run at 500 MHz and consist of ASICs who are optimized

such that each operation requires only one clock cycle per byte. Communication be-

tween modules is assumed to be slower than the internal computation. A higher read-

/write delay models the coordination overhead of the network infrastructure and a delay

of 1 ns per byte is added to a transaction to model the assumed fast network transfer.

This results in the delay scheme listed in Table 4.5.

The NOC employs maximum concurrency and encrypts a packet in 7488 ns, which is

a significant decrease compared to the microcontroller or slow software model. Please

note that these are rather exemplary and rough evaluations. More realistic analyses

require a more profound knowledge of the considered hardware components like the

CPU instruction set and memory architecture or the NOC communication architecture

to leverage their full potential, which is out of the scope of this work.

72

Chapter 4. Case Study: Advanced Encryption Standard

Operations attributed delays
Write/read 4 ns
XOR 2 ns
Assign 2 ns
Lookup 2 ns
Network 1 ns per byte

Table 4.5.: Delays attributed to operations in the NOC model

Model simulated encryption time
Software 1 GHz 7504 ns
Software 500 MHz 15008 ns
Microcontroller 500 MHz 13056 ns ns
NOC 500 MHz 7488 ns

Table 4.6.: Results of the exemplary architectural analysis

Table 4.6 illustrates the results gathered during this exemplary architectural analysis.

Model breakdown

The following classes are used for implementation of approximately-timed models.

• Generic payload

• SimpleATSocket

• Non-blocking transport interface (forward and backward)

• Standard Template Library queue

The models consist of leaf and non-leaf modules which implement the approximately-

timed style with both annotation and backward path.

Appendix B constitutes a concluding index or the identifiers that have been used in the

modeling process, to assist in the understanding of the developed code.

73

Chapter 5.

Results and discussion

Figure 5.1 shows the summary of use cases at which TLM is targeted and the modeling

styles that are designed to meet them. This chapter will discuss the experiences made

during the case study described in Chapter 4 and present facts and figures on the

resulting models.

Figure 5.1.: Mapping between TLM use cases and modeling styles [IEE03]

74

Chapter 5. Results and discussion

5.1. Application comprehension by algorithmic

modeling

An algorithmic model is defined by Section 2.3.2 as an untimed model containing only

one execution thread, consequently performing its function per instant calls that are

not afflicted with timing. Such a model was designed and described in Section 4.4

and found to be a good tool for a better understanding of an application that is initially

given as an abstract, possibly mathematical description. It is an appropriate first step

in the design process. Particularly the resulting division into blocks and revealed data

dependencies laid the basis for the subsequent timing afflicted modeling.

From an implementation point of view it was advantageous to create a functional golden

model whose core functions could be embedded in subsequent timed models, with-

out requiring changes to the functions themselves and therefore eliminating a potential

point of error.

The well defined and separated interface to the AES system by its master module fa-

cilitate its use as part of a greater development project involving AES just as another

subsystem, for the use cases depicted in Figure 5.1. These include the development of

software based on an untimed system model that offers its services at such interfaces,

as well as hardware functional verification due to the correctness of the model.

It was in particular this last use case for which the untimed AES model was used in this

work, namely to identify errors introduced by the refinement process.

5.2. Delay modeling scopes of LT and AT

The different timing modeling capabilities of LT and AT were of particular interest. The

theory has been outlined in Chapter 2 and 3. The practical implication that showed dur-

ing the modeling phase is that it is not natively possible in LT to differentiate between

delays that are produced by communication and delays that are produced by compu-

tation processes. This has been tried by incorporating facilities for hardware/software

tradeoff analysis as described in Section 4.5.5, using distinct busy flags to indicate the

75

Chapter 5. Results and discussion

current status of a module, what it is waiting for or occupied with, to enable such analy-

sis while still using the speed of LT and come to conclusions about which module would

be best implemented as hardware or software.

To determine the different types of business however it is required to determine their

duration or at least their begin and end. It was found that this was not generally possible

without imposing restrictions on the usage and interpretation of the delays annotated

to transport calls. For instance, the delay annotated by a target to a backward path

callback had to be non-zero (in contrast to implementing the delay in the target and

performing the callback with a zero delay) to enable the initiator that was waiting for

the callback to differentiate between the time that is has been waiting for the callback

to arrive and the communication time required to receive that callback. This distinction

would have been desirable to determine how long a module has to wait for a callback

due to bus congestion or other causes. Without that non-zero annotation though, the

actual communication busy time gets merged into the preceding waiting time because

of missing or simultaneous event triggers in the initiator SimpleSocket. The fundamen-

tal contradiction is that for such a differentiated analysis, a request or response would

somehow have to be divided into partial delays that together constitute the whole re-

quest and response delay. By definition though, request and response are singular

events in the LT modeling style and any alternation to this paradigm results in imposing

restriction on the interpretation of LT timing values.

The conclusion is that with LT only a coarse architectural and tradeoff analysis is possi-

ble that attributes delays to certain functions, but without the capability of differentiating

them more exactly. However the need for additional events within the initiator for mod-

eling these differentiated delays already hints to the AT style which offers semantically

comparable additional phase end events natively.

The demand of [KHA05] to separate communication from computation delays by sep-

arate modules in contrast to mixing them in the same module consequently raises the

question whether communication delays can be correctly modeled at all without an

interconnect component. The modeling conducted in this work shows that it is pos-

sible on an abstract level, but even there not advisable, since it would complicate the

individual module and impose restraints on the usage of implicit and explicit delay val-

ues as explained above. One exception is the modeling of software behavior. While

it is natural to model busy times by busy flags to ease the analysis of effects that inter-

nal changes have on the externally visible timing, they should not influence or create

76

Chapter 5. Results and discussion

assumptions on the way that the timing is implemented. Combined with that LT is tar-

geted at only coarse architectural modeling or more software related use cases while

AT is advocated as a more hardware related style, AT should be used when (hardware)

communication structures are to be evaluated. Since the delay definitions related to

AT are only concerned with the overall throughput and latency of the respective model

without any differentiations, the conclusion is that the recommendations of [KHA05] are

coherent.

5.3. Adequacy for HW/SW partitioning

Among the goals set for this work was to answer the question to what extent the prob-

lem of hardware/software partitioning can be addressed by the described TLM tools.

The results comprise the following key points . . .

• SystemC or TLM cannot natively tackle the task of concurrency analysis, which is

an important prerequisite for deriving a hardware/software partitioning.

• The use of an untimed model as initial step does reveal the insights mentioned in

5.1 through the analyses necessary for the model implementation, not by running

the model.

• The loosely-timed modeling style can be used for a coarse analysis and the

derivation of qualitative statements about a proposed partitioning. It can be em-

ployed for a quick simulation of a variety of delay schemes.

• For a more detailed performance analysis of a chosen scheme, the loosely-timed

style does not offer sufficient capabilities. The attempt to introduce them into the

model at the LT stage resulted in potentially problematic restrictions that infringe

the interoperability with other models and rather resembled a step towards the

approximately-timed style.

• The mechanisms for switching between hardware and software behavior are not

influenced by the migration from LT to AT. When observing the recommendations

of [KHA05], AT enables the distinct modeling of communication versus computa-

tion by correct usage of the associated request and response delays.

77

Chapter 5. Results and discussion

• Consequently, the conclusion can be drawn that AT is an appropriate style for

evaluating a certain hardware/software architecture.

LT and AT are both useful for architectural modeling, depending on the required ac-

curacy. While LT can be used for more qualitative analyses, AT is better suited for

the evaluation of more refined structures. Since time accuracy is important for perfor-

mance evaluations, AT or even cycle-accurate models are suitable for this use case.

More diversification in modeling must on the other hand be paid for by an increased

number of events and context switched, as illustrated in Section 5.5. These conclusions

match the use cases depicted in Figure 5.1.

5.4. Software development focus of LT

SystemC and TLM have been advertised as new technology for generating virtual pro-

totypes of (hardware) architectures and to enable early software development based

on these prototypes while the real hardware is yet unavailable. Especially the loosely-

timed modeling style has been targeted at related use cases, primarily due to its ability

to use much fewer events and context switches than an approximately-timed or RTL

model, in particular when TD can be used in its full extent. Section 5.5 illustrates the

decrease of events when pure LT is used in contrast to more detailed styles.

From a more qualitative perspective, LT can, as already established, not differentiate

well between the causes of delays. This statement is targeted at the internal workings

of a system model. In the case of software development or performance evaluation, this

software employs only the interfaces of the underlying LT model that it is developed for.

While it might be important for model itself and the derivation of the correct interface

timing, the distinction between different sources of delays is not so much relevant for

the external software when its performance is evaluated.

What on the other hand is important is the increase of simulation speed, that enables

e.g. the booting of an operating system within the model in reasonable time. Also, since

an LT model comprises less details than an AT model, it might be available before the

AT model and enable an earlier start of software development.

It is also possible to abstract an LT model from an AT or RTL model to use it for more

rapid development than with the original one. This latter case seems to be a more

78

Chapter 5. Results and discussion

attractive field for companies these days, since it enables them to add more value to

their IPs by opening them to this use case. One example is a fast model of a CPU IP, or

an ISS that is embedded in the overall system model by including it in a LT module.

In contrast to a design flow that maps the algorithm to already existing LT or AT platform

models, the flow in this work employs LT models early for coarse hardware/software

tradeoff analysis, before the selection or implementation of AT models. The goal is

to derive qualitative data on which the selection / implementation can then be based.

This is not a contradiction but an intermediate phase that, based on the context of the

project, may very well be advisable. The experiences made in the modeling process

indicate that LT is appropriate for these intended use cases.

5.5. Performance analysis

This section illustrates the performance of the various modeling styles and models.

5.5.1. Setup for data gathering

The figures in table 5.1 refer to the simulated encryption of a 1 Mbyte data stream (8192

packets à 128 bit). The stream is triggered by a single notification from the top module

to the master, and the simulation is stopped by the master after reading the last cipher

text packet.

Time values are retrieved by the following function.

#include <sys/time.h>

struct timeval tv;

int getTime(void)

{

gettimeofday(&tv,NULL);

return (int)((tv.tv_sec*1000) + (tv.tv_usec/1000));

}

The current time value is recorded immediately before and after the simulation start.

The measurement discards time components that have only constant influence on the

execution time, like the loading of the binary or the instantiation of the model object.

Tracing has been disabled.

79

Chapter 5. Results and discussion

int starttime = getTime();

sc_core::sc_start();

int endtime = getTime();

cout << endtime - starttime << endl;

The models are compiled with GCC 3.4.6 20060404 (Red Hat 3.4.6-3) along with the

arguments -O3 -march=nocona. The employed operating system is a Redhat Linux,

running on a Dual core Intel(R) Xeon(TM) 64-bit CPU with 3.20GHz.

The resulting runtime value is the average of 100 model executions. It was noted that

the compiler arguments not only significantly reduced the absolute runtime of the mod-

els but also the variance among the individual runs.

5.5.2. Results and interpretation

Model threads/methods19 events20 context switches21 runtime [ms]
Software 1/0 0 (0/0/0) 0 26
Algorithmic 1/0 0 (0/0/0) 1 24
LT seq. TD 1/0 3 (0/3/0) 24577 83
LT seq. 2/0 6 (3/3/0) 385026 200
LT conc. 8/0 18 (15/3/0) 1728522 801
LT conc. flags 16/0 36 (29/7/0) 8372249 3871
AT software 12/7 41 (27/14/0) 8060942 2786
AT NOC 14/7 55 (27/22/6) 11591696 6812

Table 5.1.: Facts’n figures about selected models

As can be seen in table 5.1, the runtimes of software and the algorithmic model match

closely. This seems reasonable because the algorithmic model performs only one

context switch followed by the exact same computation like the software implemen-

tation, with only the transport calls as additional overhead. However the fact that the

runtime of the algorithmic model is smaller than the software model, and not a little

larger as would be expected, is inconclusive. It can only be presumed that the com-

piler performs a better optimization of the algorithmic model compared to the software

19The number of software threads is 1. For models, the additional thread that only triggers the simulation
start is not considered since it is not actively participating in the remaining model execution.

20The number of events does not include the start simulation event used by the top module. The format
is total(module/socket/bus) and includes events associated with PEQs.

21The number of context switches covers wait-calls for events and delays as well as the execution of
methods in modules, sockets and buses.

80

Chapter 5. Results and discussion

implementation. The result still confirms though that the execution times are roughly

the same magnitude.

The mere translation from algorithmic (untimed) to loosely-timed with the associated

introduction of events and synchronization instantly increases the number of context

switches by several orders of magnitude. This underlines the fact that untimed models

should be applied wherever time is of no relevance.

The removal of temporal decoupling again increases the number of context switches

by a factor of more than 15 and the runtime by a factor of about 2.5, illustrating the

power of this optional loosely-timed technique.

As mentioned in Section 4.5.2, the initial two loosely-timed models still exhibit a se-

quential software behavior like the algorithmic model. A maximum parallelization re-

sults in yet another increase of context switches due to the additional events and threads

required to model concurrent computation (see the rise of threads and events in the

module category).

A comparison between the increase of context switches and the increase of runtime

indicates that they rise by approximately the same factor as long as the modeling style

is not significantly changed. This is illustrated by the aligned increases of the not tem-

porally decoupled loosely-timed models.

The decrease of runtime from the last loosely-timed to the first approximately-timed

model is unexpected but could be related to the reduction of threads by a forth, which

are more costly than methods. We can also see how the performance of the loosely-

timed model with busy flags enters the dimension of the approximately-timed models,

which supports the conclusion from Section 5.3 that the additional overhead required

for architectural exploration negates the performance gain of the modeling style.

The inconclusive performance relation among the approximately-timed models gives

rise to the supposition that the runtime does not always increase in simple relation with

the number of context switches and processes, but that also structural changes within

the model are relevant. Keep in mind that the loosely-timed models all had the same

basic shape that was only extended by additional lookup modules, while the block dia-

grams of the approximately-timed models changed significantly between the software

and the NOC model. While the compiler optimizations reduced the variance of runtime

results, they could contribute as well to a disguise of performance relations.

81

Chapter 5. Results and discussion

In general the performance figures indicate the significant differences that the various

modeling styles exhibit, and illustrate the importance of choosing the right modeling

style for the intended use case.

82

Chapter 6.

Conclusion and outlook

This thesis has introduced the idea of TLM-based modeling as a tool for Electronic Sys-

tem Level Design. It outlined the language SystemC upon which the TLM methodology

is based and focused on translating its theoretical concepts and guidelines into practi-

cal implementation approaches. Where the OSCI standard was not a sufficient basis,

the terms and definitions of the OCP-IP were applied or adapted. This led to a set of im-

plementation guidelines that were either extracted from documentation or abstracted

from included example designs, and that were the basis for the implementation of an

exemplary case study.

This case study was carried out based on a design flow which delivered insights re-

quired to evaluate the methodology’s potential. The discussion was focused on the

usefulness of the different modeling styles and their applicability to certain use cases.

The most prominent among them were hardware/software partitioning and tradeoff

analysis as well as architectural exploration. The facilities necessary to perform such

analyses were established and implemented, and the applicability of the loosely- and

approximately-timed modeling styles was discussed. It was concluded that the AT style

is the first choice for the kind of analyses in focus. While the LT style shows potential

for them as well, its main focus of either abstract or software related use cases was dis-

cussed and illustrated. A short architectural exploration of the case study concluded

the design flow and the focus of this thesis.

TLM-based Electronic System Level Design is a very broad field of application and sev-

eral ways to extend this work are conceivable. A next step on the employed design flow

would be to apply the results of the architectural exploration to implement a model that

83

Chapter 6. Conclusion and outlook

consists of IP cores rather than abstract models. Alternatively refinement could con-

tinue down to the RTL level or serve as input to a commercial behavioral synthesis tool.

Furthermore the model could be centered around an extensible processor IP, based

on which parts of the application can be implemented in software.

A new case study could contrast this design flow that has a theoretical focus to the one

outlined in [KHA05]. After initial algorithmic modeling it progresses to an AT-like hard-

ware modeling phase and then abstracts these hardware models to allows prototype

based software engineering, while additional refinement results in a hardware imple-

mentation that can then run the developed software.

This variety of links to follow illustrates the potential that Electronic System Level De-

sign and Transaction Level Modeling offer to evolve today’s embedded system design

flows.

84

Appendix A.

Acronyms

AES Advanced Encryption Standard

ASIC Application-Specific Integrated Circuit

AT Approximately-timed

DMI Direct Memory Interface

GP Generic Payload

HDL Hardware Description Language

ISS Instruction Set Simulator

LT Loosely-timed

MMB Memory-Mapped Bus

NOC Network On Chip

OCP-IP Open Core Protocol International Partnership

OOP Object Oriented Programming

OSCI Open SystemC Initiative

PEQ Payload Event Queue

QK Quantum Keeper

RAM Random Access Memory

ROM Read-Only Memory

85

Appendix A. Acronyms

RTL Register Transfer Level

STL Standard Template Library

TLM Transaction Level Modeling

UML Unified Modeling Language

UT Untimed

VHDL Very High Speed Integrated Circuit Hardware Description Language

VSP Virtual System Prototype

86

Appendix B.

Identifiers

SysC function declared and defined by the SystemC language

TLM UT function declared by the TLM standard for untimed modeling

TLM LT/AT function declared by the TLM standard for loosely / approximately timed

modeling

Socket Impl function declared and defined by the individual socket implementation

App function declared and defined by the individual user application implementation

TLM + Socket Impl function/class defined by the SimpleSocket implementation, hav-

ing the same function signature(s) but a different name as a function declared by

the TLM standard, to implement this function through a function pointer

TLM + App function/class defined by the individual user application implementation,

having the same function signature(s) but a different name as a function declared

by the TLM standard, to implement this function through a function pointer

Declared means the declaration of the name and signature of a function, defined means

the actual implementation of that declaration.

Fpoint = Functon Pointer

87

Appendix B. Identifiers

Function name SysC TLM TLM Socket App Category

UT LT/AT Impl

sc_core::sc_module X SytemC basics

sc_core::sc_module_name X

sc_core::sc_event X

sc_core::sc_time X

SC_HAS_PROCESS(. . .) X SystemC macros

SC_THREAD(. . .) X

SC_METHOD(. . .) X

wait(. . .) X SystemC sync

notify(. . .) X

sc_trace(. . .) X SystemC tracing

tlm_fw_b_transport_if X TLM interfaces

tlm_bw_b_transport_if X

tlm_fw_nb_transport_if X

tlm_bw_nb_transport_if X

b_transport(. . .) X TLM functions

nb_transport(. . .) X

transport_dbg(. . .) X X

get_direct_mem_ptr(. . .) X X

invalidate_d._m._p.(. . .) X X

tlm_generic_payload X X TLM datatypes

tlm_generic_payload_types X X

tlm_debug_payload X X

tlm_dmi X X

tlm_dmi_mode X X

tlm_phase X

tlm_sync_enum X

tlm_initiator_socket X X TLM sockets

tlm_target_socket X X

MyPEQ X TLM queue

SimpleUTInitiatorSocket X X SimpleSockets

SimpleUTTargetSocket X X

SimpleLTTargetSocket X X

88

Appendix B. Identifiers

SimpleLTInitiatorSocket X X

registerBTransport(. . .) X Fpoint reg.

registerNBTransport(. . .) X

registerInvalidateDMI(. . .) X

registerDebugTransport(. . .) X

registerDMI(. . .) X

REGISTER_XXX X Fpoint macro

setInvalidateDMIPtr(. . .) X Fpoint setters

setTransportPtr(. . .) X

setTransportDebugPtr(. . .) X

setGetDMIPtr(. . .) X

simple_socket_utils X SocketID

set***UserId(. . .) X

getEndEvent() X Event getter

masterBTransport(. . .) X X App. transport

addkeyBTransport(. . .) X X

addkeyNBTransport(. . .) X X

masterNBTransport(. . .) X X

nextstateNBTransport(. . .) X X

skeyNBTransport(. . .) X X

Initiate () X App. threads

Encrypt() X

NextStateThread() X

NextStateFinalThread() X

ScheduleKeyThread() X

WorkerThread() X

WorkerMethod() X

ManageBusyFlagThread() X

S1/2/3ComThread() X

SKeyComThread() X

NextStateComThread() X

BeginResponseMethod() X AT comm. only

EndResponseMethod() X

NextState(. . .) X App. core

89

Appendix B. Identifiers

NextStateFinal(. . .) X

ScheduleKey(. . .) X

Lookup(. . .) X

PrintKey(. . .) X App. output

PrintNextState(. . .) X

PrintResultState(. . .) X

PrintArray(. . .) X

aes_payload X App. data

Table B.1.: Index of identifiers

90

Appendix C.

Codelisting

C.1. SimpleSocket transport function pointer

SimpleLTTargetSocket forward transport function pointer management - condensed

class SimpleLTTargetSocket : public tlm::tlm_target_socket< ... >

{

...

// ==

// REGISTER_XXX methods (registering function pointers)

// ==

template <typename MODULE>

void registerNBTransport(MODULE* mod,

sync_enum_type (MODULE::*cb)(transaction_type&, phase_type&, sc_core::

sc_time&), int id)

{

mProcess.setTransportPtr(mod, static_cast<typename Process::

TransportPtr>(cb));

mProcess.setTransportUserId(id);

}

...

// ==

// Subclass " Process " (executing function pointers or default behavior)

// ==

private:

class Process : public tlm::tlm_fw_nb_transport_if<TYPES>

{

91

Appendix C. Codelisting

// ==

// Type definitions

// ==

public:

typedef sync_enum_type (sc_core::sc_module::*TransportPtr)

(transaction_type&, tlm::tlm_phase&, sc_core::sc_time&);

...

// ==

// Constructors and destructor

// ==

Process(const std::string& name) :

...

{

}

// ==

// Setter functions for UserID and function pointers

// ==

void setTransportUserId(int id) { mTransportUserId = id; }

void setTransportDebugUserId(int id) { mTransportDebugUserId = id; }

...

void setTransportPtr(sc_core::sc_module* mod, TransportPtr p)

{

if (mTransportPtr)

{

std::cerr << "non-blocking forward call already registered" << std

::endl;

}

else

{

assert(!mMod || mMod == mod);

mMod = mod;

mTransportPtr = p;

}

}

// ==

// Target non - blocking forward interface

// (executing function pointers or default behavior)

// ==

/// Target non - blocking transport forward interface

sync_enum_type nb_transport(transaction_type& trans,phase_type& phase,

sc_core::sc_time& t)

92

Appendix C. Codelisting

{

if (mTransportPtr)

{

// forward call to function pointer

assert(mMod);

simple_socket_utils::simple_socket_user::instance().set_user_id(

mTransportUserId);

return (mMod->*mTransportPtr)(trans, phase, t);

}

else

{

std::cerr << "no non-blocking transport registered" << std::endl;

assert(0); exit(1);

}

}

...

// ==

// Member variables (Process)

// ==

private:

const std::string mName;

sc_core::sc_module* mMod; ///< pointer to module holding functions

TransportPtr mTransportPtr; ///< pointers to module functions

int mTransportUserId; ///< user IDs

int mTransportDebugUserId;

...

};

...

};

Register macros used in models (simple_socket_utils)

#define REGISTER_NBTRANSPORT(socket, process) \

socket.registerNBTransport(this, &SC_CURRENT_USER_MODULE::process, 0)

#define REGISTER_NBTRANSPORT_USER(socket, process, id) \

socket.registerNBTransport(this, &SC_CURRENT_USER_MODULE::process, id)

93

Appendix C. Codelisting

C.2. Event (untimed) model vs. call (algorithmic)

AddKey constructor, transport and encrypt function (event) - condensed

// ==

// Constructor and destructor

// ==

ut_aes_addkey::ut_aes_addkey (///< constructor

sc_core::sc_module_name module_name ///< module name

) : ///< initializations

...

{

// Register target forward interface functions to replace default

// Transport default : error

REGISTER_BTRANSPORT(m_master_socket, masterBTransport);

SC_THREAD(Encrypt);

}

...

// ==

// Method performing communication , preparing and initiating computation

// ==

void ut_aes_addkey::masterBTransport(transaction_type& trans)

{

...

switch (command)

{

default:

{

break; ///< error

}

case tlm::TLM_WRITE_COMMAND:

{

if (address == KEY_INIT_ADDRESS)

{

...

m_key_initialized = true;

}

else if (address == STATE_INIT_ADDRESS)

{

...

m_state_initialized = true;

}

94

Appendix C. Codelisting

else

{

... ///< error

}

// Start computation once initialized

if ((m_state_initialized == true) && (m_key_initialized == true))

{

m_StartEncryptEvent.notify(); // < event notification

}

break;

}

case tlm::TLM_READ_COMMAND:

{

if (address == CYPHER_READ_ADDRESS)

{

///< data ready if bool is already true or wait returns

if (m_encrypt_done == false)

wait(m_EncryptDoneEvent);

...

m_encrypt_done = false;

}

else

{

... ///< error

}

break;

}

}

// Set parameters to indicate all is well

trans.set_response_status(tlm::TLM_OK_RESPONSE);

}

// ==

// Method performing computation

// ==

void ut_aes_addkey::Encrypt()

{

...

while(1)

{

/* Wait for wakeup call from transport procedure */

wait(m_StartEncryptEvent);

... ///< Encryption

95

Appendix C. Codelisting

/* Reset control variables for possible next encryption */

m_encrypt_done = true;

m_state_initialized = false;

m_key_initialized = false;

/* Notify waiting transport procedure that encrypted data is ready */

m_EncryptDoneEvent.notify();

}

}

AddKey constructor, transport and encrypt function (call) - condensed

// ==

// Constructor and destructor

// ==

ut_aes_addkey::ut_aes_addkey (///< constructor

sc_core::sc_module_name module_name ///< module name

) : ///< initializations

sc_module (module_name)

, ...

{

// Register target forward interface functions to replace default

// Transport default : error

REGISTER_BTRANSPORT(m_master_socket, masterBTransport);

}

...

// ==

// Method performing communication , preparing and initiating computation

// ==

void ut_aes_addkey::masterBTransport(transaction_type& trans)

{

...

switch (command)

{

default:

{

break; ///< error

}

case tlm::TLM_WRITE_COMMAND:

{

if (address == KEY_INIT_ADDRESS)

{

...

m_key_initialized = true;

96

Appendix C. Codelisting

}

else if (address == STATE_INIT_ADDRESS)

{

...

m_state_initialized = true;

}

else

{

... ///< error

}

// Start computation once initialized

if ((m_state_initialized == true) && (m_key_initialized == true))

{

Encrypt(); ///< function call

}

break;

}

case tlm::TLM_READ_COMMAND:

{

if (address == CYPHER_READ_ADDRESS)

{

... ///< perform read

m_encrypt_done = false;

}

else

{

... ///< error

}

break;

}

}

// Set parameters to indicate all is well

trans.set_response_status(tlm::TLM_OK_RESPONSE);

}

// ==

// Method performing computation

// ==

void ut_aes_addkey::Encrypt()

{

... ///< Encryption

/* Reset control variables for possible next encryption */

m_encrypt_done = true;

97

Appendix C. Codelisting

m_state_initialized = false;

m_key_initialized = false;

}

C.3. Loosely-timed target busy flag management

Busy flag management in lt_aes_lookup - condensed

// ==

// Constructors

// ==

lt_aes_lookup::lt_aes_lookup (...) : ///< initializations

...

{

REGISTER_NBTRANSPORT(m_lookup_socket, lookupNBTransport);

SC_THREAD(ManageBusyFlagThread);

SC_THREAD(WorkerThread);

}

// ==

// Target non - blocking forward interface

// (m_lookup_socket)

// ==

/// Target non - blocking transport forward interface

/// performing the communication , preparing and initiating computation

lt_aes_lookup::sync_enum_type ///< result

lt_aes_lookup::lookupNBTransport(///< nb_transport

transaction_type& trans, ///< transaction

phase_type& phase, ///< transaction phase

sc_core::sc_time& time ///< elapsed time

)

{

// Pass tranction and arrival time to PEQ for WorkerThread

m_TransQueue.notify(trans, time);

return tlm::TLM_ACCEPTED;

}

// ==

// Internal module functions

// ==

/// Thread setting the busy -flag , calling wait for the time of processing ,

and resetting the flag when done

void lt_aes_lookup::ManageBusyFlagThread(void)

{

98

Appendix C. Codelisting

while(true)

{

wait(m_StartBeingBusyEvent);

cout << this->name() << " is now busy for " << (m_BusyComTime +

m_BusyProcTime) << endl;

m_isBusy = true;

m_isBusyCom = true;

m_isBusyProc = false;

wait(m_BusyComTime);

m_isBusy = true;

m_isBusyCom = false;

m_isBusyProc = true;

wait(m_BusyProcTime);

m_isBusy = false;

m_isBusyCom = false;

m_isBusyProc = false;

cout << sc_core::sc_time_stamp() << " - " << this->name() << " is

now idle" << endl << endl;

m_StopBeingBusyEvent.notify();

}

}

/// Thread performing computation and transaction handling

void lt_aes_lookup::WorkerThread(void)

{

while(true)

{

wait(m_TransQueue.getEvent());

bool done = false;

while (done == false)

{

transaction_type* trans_p = m_TransQueue.getNextTransaction();

if (trans_p == 0)

{

done = true;

break;

}

sc_core::sc_time CallbackTime = sc_core::SC_ZERO_TIME;

m_BusyComTime = sc_core::SC_ZERO_TIME;

m_BusyProcTime = sc_core::SC_ZERO_TIME;

...

switch (command)

{

99

Appendix C. Codelisting

default:

{

... ///< error

break;

}

case tlm::TLM_WRITE_COMMAND:

{

... ///< error

break;

}

case tlm::TLM_READ_COMMAND: ///< read request - return the result

{

if (m_isBusy == true) ///< busy flag is true , wait until last

processing is done to read consistent memory

{

wait(m_StopBeingBusyEvent);

}

unsigned int address1 = address % 256;

unsigned int address2 = (address >> 8) % 256;

unsigned int address3 = (address >> 16) % 256;

unsigned int address4 = (address >> 24) % 256;

switch (m_LookupType)

{

case(t_S1):

data_p[0] = S1[address1];

data_p[1] = S1[address2];

data_p[2] = S1[address3];

data_p[3] = S1[address4];

m_BusyComTime += global_delay_sbox_read;

m_BusyProcTime += global_delay_sbox_lookup;

CallbackTime += global_delay_sbox_read +

global_delay_sbox_lookup;

break;

case(t_S2):

...

break;

case(t_S3):

...

break;

case(t_RCON):

...

100

Appendix C. Codelisting

break;

}

m_StartBeingBusyEvent.notify();

break;

}

}

// Set parameters to indicate all is well at callback

trans_p->set_response_status(tlm::TLM_OK_RESPONSE);

tlm::tlm_phase phase = tlm::BEGIN_RESP;

(void)m_lookup_socket->nb_transport(*trans_p,phase,CallbackTime);

}

}

C.4. Approximately-timed target example

AT lookup memory model as non-pipelined hardware (at_aes_memory.h) - complete

#include "SimpleSocket/simple_at_target_socket.h"

#include "utils/MyPEQ.h"

#include "aes_lookup.h"

#include "aes_constants.h"

#include <stdint.h>

#include <queue>

class at_aes_memory

: public sc_core::sc_module ///< module base clase

{

SC_HAS_PROCESS(at_aes_memory);

// ==

// Type definitions

// ==

public:

typedef tlm::tlm_generic_payload transaction_type;

typedef tlm::tlm_dmi_mode dmi_mode_type;

typedef tlm::tlm_phase phase_type;

typedef tlm::tlm_sync_enum sync_enum_type;

typedef SimpleATTargetSocket<32,tlm::tlm_generic_payload_types>

target_socket_type;

// ==

// Constructors and destructor

// ==

public:

101

Appendix C. Codelisting

at_aes_memory ///< constructor

(sc_core::sc_module_name module_name ///< module name

);

~at_aes_memory(void); ///< destructor

private:

at_aes_memory (void); ///< disabled default constructor

// ==

// Target non - blocking forward interface

// (m_lookup_socket)

// ==

public:

/// Target non - blocking transport forward interface

sync_enum_type lookupNBTransport(///< nb_transport

transaction_type& trans, ///< transaction

phase_type& phase, ///< transaction phase

sc_core::sc_time& time); ///< elapsed time

// ==

// Internal module functions

// ==

private:

/// Thread fetching new request , computing and scheduling the response

void WorkerMethod(void);

/// Method executing callback to the Initiator to start response phase

void BeginResponseMethod(void);

/// Method removing the finished transaction and starting a new response

phase for the next transaction

void EndResponseMethod(void);

// ==

// Member variables

// ==

public:

target_socket_type m_lookup_socket; ///< target socket

private:

// std :: queue < transaction_type *> m_RequestQueue ;

// std :: queue < transaction_type *> m_ResponseQueue ;

std::queue<transaction_type*> m_WorkQueue;

sc_core::sc_time m_ResponseDelay;

sc_core::sc_event m_StartWorkEvent;

// sc_core :: sc_event m_EndRequestEvent ;

sc_core::sc_event m_BeginResponseEvent;

sc_core::sc_event m_EndResponseEvent;

}; // end class at_aes_memory

102

Appendix C. Codelisting

memory model as non-pipelined hardware (at_aes_memory.cpp) - complete

#include "tlm.h" ///< TLM headers

#include "at_aes_memory.h" ///< our class header

using namespace std;

// ==

// Constructors and destructor

// ==

at_aes_memory::at_aes_memory (///< constructor

sc_core::sc_module_name module_name ///< module name

) : ///< initializations

sc_module (module_name)

, m_lookup_socket ("m_lookup_socket")

, m_ResponseDelay (sc_core::SC_ZERO_TIME)

{

// ==

// Register target forward interface functions to replace default

// Transport default : error

// Debug default : no support (return false)

// Direct Memory default : no support (return false)

// ==

REGISTER_NBTRANSPORT(m_lookup_socket, lookupNBTransport);

SC_METHOD(WorkerMethod);

sensitive << m_StartWorkEvent;

dont_initialize();

SC_METHOD(BeginResponseMethod)

sensitive << m_BeginResponseEvent;

dont_initialize();

SC_METHOD(EndResponseMethod)

sensitive << m_EndResponseEvent;

dont_initialize();

}

at_aes_memory::~at_aes_memory(void) ///< destructor

{

}

// ==

// Target non - blocking forward interface

// (m_lookup_socket)

// ==

/// Target non - blocking transport forward interface

/// performing the communication , preparing and initiating computation

103

Appendix C. Codelisting

at_aes_memory::sync_enum_type ///< result

at_aes_memory::lookupNBTransport(///< nb_transport

transaction_type& trans, ///< transaction

phase_type& phase, ///< transaction phase

sc_core::sc_time& time ///< elapsed time

)

{

switch (phase)

{

case tlm::BEGIN_REQ:

assert(time == sc_core::SC_ZERO_TIME); // No TD in AT

// Pipelined HW: Notify end of request phase after accept delay ,

// if no other request end is currently scheduled

// if (m_RequestQueue . empty ())

// m_EndRequestEvent . notify (global_delay_sbox_accept);

// m_RequestQueue . push (& trans);

// Notify start of work (carried out in zero time),

// if no other work is currently scheduled

// (without TD , a simple queue is enough to keep execution order)

if (m_WorkQueue.empty())

m_StartWorkEvent.notify(sc_core::SC_ZERO_TIME);

m_WorkQueue.push(&trans);

// Pipelined HW: Return END_REQ with associated delay

// time += global_delay_sbox_accept ;

// phase = tlm :: END_REQ ;

// return tlm :: TLM_UPDATED ;

// SW or non - pipelined HW: Return END_REQ implicitly by BEGIN_RESP

return tlm::TLM_ACCEPTED;

break;

case tlm::END_RESP:

m_EndResponseEvent.notify(time);

return tlm::TLM_COMPLETED;

break;

case tlm::END_REQ: // initiator should never call with these phases

case tlm::BEGIN_RESP://

default:

assert(0); exit(1);

};

}

104

Appendix C. Codelisting

// ==

// Internal module functions

// ==

/// Thread fetching new request , computing and scheduling the response

void at_aes_memory::WorkerMethod(void)

{

assert(!m_WorkQueue.empty());

transaction_type* trans_p = m_WorkQueue.front(); // Process oldest trans

assert(trans_p);

// Start processing transaction

m_ResponseDelay = sc_core::SC_ZERO_TIME;

sc_dt::uint64 address = trans_p->get_address(); ///< memory address

tlm::tlm_command command = trans_p->get_command(); ///< memory command

uint8_t* data_p = reinterpret_cast<uint8_t*>(trans_p->get_data_ptr());

// assure that call is meant for this module

assert(address >> 2 == MODULE_MEMORY_ADDRESS >> 2);

switch (command)

{

default:

{

break; // error

}

case tlm::TLM_WRITE_COMMAND:

{

break; // error

}

case tlm::TLM_READ_COMMAND: ///< read request - return the result

{

unsigned int sbox_id = address & 0x3;

switch (sbox_id)

{

case(1):

data_p[0] = S1[data_p[0]];

data_p[1] = S1[data_p[1]];

data_p[2] = S1[data_p[2]];

data_p[3] = S1[data_p[3]];

m_ResponseDelay += global_delay_sbox_read +

global_delay_sbox_lookup;

break;

105

Appendix C. Codelisting

case(2):

data_p[0] = S2[data_p[0]];

data_p[1] = S2[data_p[1]];

data_p[2] = S2[data_p[2]];

data_p[3] = S2[data_p[3]];

m_ResponseDelay += global_delay_sbox_read +

global_delay_sbox_lookup;

break;

case(3):

data_p[0] = S3[data_p[0]];

data_p[1] = S3[data_p[1]];

data_p[2] = S3[data_p[2]];

data_p[3] = S3[data_p[3]];

m_ResponseDelay += global_delay_sbox_read +

global_delay_sbox_lookup;

break;

case(0):

assert(data_p[0] < 10);

data_p[0] = rcon[data_p[0]];

m_ResponseDelay += global_delay_rcon_read +

global_delay_rcon_lookup;

break;

}

break;

}

}

// SW or non - pipelined HW: trigger response after work is done

m_BeginResponseEvent.notify(m_ResponseDelay);

// Pipelined HW: Remove transaction from queue and rocess the next

transaction , if available

// m_WorkQueue . pop ();

// if (! m_WorkQueue . empty ())

// m_StartWorkEvent . notify (sc_core :: SC_ZERO_TIME);

// Pipelined HW: Notify start of response phase after response delay , if

no other transaction is yet scheduled for response

// if (m_ResponseQueue . empty ())

// m_BeginResponseEvent . notify (m_ResponseDelay);

// m_ResponseQueue . push (trans_p);

}

106

Appendix C. Codelisting

/// Method executing callback to the Initiator to start the response phase

void at_aes_memory::BeginResponseMethod(void)

{

// assert (! m_ResponseQueue . empty ()); // Pipelined HW: assert resp . queue

assert(!m_WorkQueue.empty()); // SW , non - pipelined HW: assert work queue

// Start response phase of oldest transaction

phase_type phase = tlm::BEGIN_RESP;

sc_core::sc_time t = sc_core::SC_ZERO_TIME;

// transaction_type * trans_p = m_ResponseQueue . front ();

transaction_type* trans_p = m_WorkQueue.front();

assert(trans_p);

// Set response data

trans_p->set_response_status(tlm::TLM_OK_RESPONSE);

switch (m_lookup_socket->nb_transport(*trans_p, phase, t))

{

case tlm::TLM_COMPLETED:

m_EndResponseEvent.notify(t); // Response phase ends after t

break;

case tlm::TLM_ACCEPTED:

case tlm::TLM_UPDATED: // Initiator will call nb_transport to

indicate end of response phase

break;

case tlm::TLM_REJECTED:

default:

assert(0); exit(1);

};

}

/// Method removing the finished transaction and starting a new response

phase for the next transaction

void at_aes_memory::EndResponseMethod(void)

{

// assert (! m_ResponseQueue . empty ()); // Pipelined HW: assert resp . queue

assert(!m_WorkQueue.empty()); // SW , non - pipelined HW: assert work queue

// m_ResponseQueue . pop ();

m_WorkQueue.pop();

// Pipelined HW: Notify begin of response phase for next transaction

after new response delay , if a new transaction is available

// if (! m_ResponseQueue . empty ())

// m_BeginResponseEvent . notify (m_ResponseDelay);

// SW or non - pipelined HW: Notify work begin for next transaction if a

107

Appendix C. Codelisting

new transaction is available

if (!m_WorkQueue.empty())

m_StartWorkEvent.notify(sc_core::SC_ZERO_TIME);

}

C.5. Switching between HW/SW behavior

Choice between concurrency behavior in at_aes_addkey - condensed

// ==

// Constructors and destructor

// ==

at_aes_addkey::at_aes_addkey (///< constructor

sc_core::sc_module_name module_name ///< module name

) : ///< initializations

...

, m_module_type (SW)

{

...

SC_THREAD(Encrypt);

SC_THREAD(SKeyComThread);

SC_THREAD(NextStateComThread);

}

...

// ==

// User function for coordination of encryption

// ==

void at_aes_addkey::Encrypt()

{

...

while(1)

{

/* Wait for wakeup call from transport procedure */

wait(m_StartEncryptEvent);

...

for(round = 0; round<10; round++)

{

...

if (m_module_type == SW) // Notify communication sequentially

{

// Trigger SKey key read

m_StartSKeyTransEvent.notify(sc_core::SC_ZERO_TIME);

108

Appendix C. Codelisting

wait(m_SKeyTransDoneEvent);

// Trigger NextState write / read

m_StartNextStateTransEvent.notify(sc_core::SC_ZERO_TIME);

wait(m_NextStateTransDoneEvent);

}

if (m_module_type == HW) // Notify communication concurrently

{

// Trigger SKey key read

m_StartSKeyTransEvent.notify(sc_core::SC_ZERO_TIME);

// Trigger NextState write / read

m_StartNextStateTransEvent.notify(sc_core::SC_ZERO_TIME);

wait(m_SKeyTransDoneEvent & m_NextStateTransDoneEvent);

}

...

}

/* Reset control variables for possible next encryption */

...

}

}

109

Appendix D.

Bibliography

[AHL+06] K. Ambrosch, C. Helpa, J. Lechner, R. Leidenfrost, T. Panhofer, A. Platschek,

S. Ramberger, U. Stadler, D. Steiner, H. Trinkl, C. Widtmann, and M. Delvai.

Design Variety in Hardware/Software Codesign - Implementations of an AES

Encoder. In Austrochip proceedings, Vienna, Austria, 2006.

[BD05] David C. Black and Jack Donovan. SystemC: From the Ground Up. Springer,

Berlin, 2nd printing edition, Oct. 2005.

[Dou08] Doulos Ltd. Getting Started with TLM-2.0.

http://www.doulos.com/knowhow/systemc/tlm2/, 2008.

[Ele00] Petru Eles. System Synthesis - VHDL Basic Issues and Simulation Semantics.

Linköping University, Linköping, Sweden.

http://www.ida.liu.se/~petel/SysSyn/lect2.frm.pdf, 2000.

[FD01] Viktor Fischer and Milos Drutarovsk. Two Methods of Rijndael Implemen-

tation in Reconfigurable Hardware. CHES ’01: Proceedings of the Third In-

ternational Workshop on Cryptographic Hardware and Embedded Systems,

pages 77–92, 2001.

[Ghe06] Frank Ghenassia. Transaction-Level Modeling with SystemC: TLM Concepts

and Applications for Embedded Systems. Springer-Verlag New York, Inc.,

Secaucus, NJ, USA, 2006. ISBN 0387262326.

[Goo05] Tom Gooch. History of UML. http://pigseye.kennesaw.edu/

~dbraun/csis4650/A&D/UML_tutorial/history_of_uml.htm,

Dec. 2005.

110

http://www.doulos.com/knowhow/systemc/tlm2/
http://www.ida.liu.se/~petel/SysSyn/lect2.frm.pdf
http://pigseye.kennesaw.edu/~dbraun/csis4650/A&D/UML_tutorial/history_of_uml.htm
http://pigseye.kennesaw.edu/~dbraun/csis4650/A&D/UML_tutorial/history_of_uml.htm

Appendix D. Bibliography

[Gro02] Thorsten Grotker. System Design with SystemC. Kluwer Academic Publish-

ers, 2002. ISBN 1402070721.

[IEE01] IEEE Computer Society. IEEE standard Verilog hardware description lan-

guage, IEEE Std 1364-2001, 2001.

[IEE03] IEEE Computer Society. IEEE standard SystemC language reference manual,

IEEE Std 1666-2005, Mar. 2003.

[KHA05] Tim Kogel, Anssi Haverinen, and James Aldis. OCP TLM for Architectural

Modelling, 2005.

[MB06] Clive Maxfield and Alvin Brown. DIY Calculator.

www.diycalculator.com/sp-compuniverse.shtml, 2006.

[MBP07] Grant Martin, Brian Bailey, and Andrew Piziali. ESL Design and Verification.

A Prescription for Electronic System Level Methodology (Systems on Silicon).

Morgan Kaufmann, Mar. 2007.

[MRR03] M. Müller, W. Rosenstiel, and J. Ruf. SystemC - Methodologies and Applica-

tions. Kluwer Academic Publishers, 2003.

[MS04] Sumio Morioka and Akashi Satoh. A 10-Gbps full-AES crypto design with a

twisted BDD S-box architecture. IEEE Trans. Very Large Scale Integr. Syst.,

12(7):686–691, 2004.

[Nat01] National Institute of Standards and Technology (NIST). Announcing the Ad-

vanced Encryption Standard (AES). Federal Information Processing Stan-

dards Publication, (197), Nov. 2001.

[Ope04] Open SystemC Initiative. SystemC Synthesizable Subset Draft 1.1.18, Dec.

2004.

[Ope07a] Open SystemC Initiative. Requirements specification for TLM 2.0, Version 1.1,

Sep. 2007.

[Ope07b] Open SystemC Initiative. TLM2 User Manual, TLM 2.0 draft 2, Version 1.0.0,

Oct. 2007.

[RDL05] Tero Rissa, Adam Donlin, and Wayne Luk. Evaluation of SystemC Modelling

of Reconfigurable Embedded Systems. In DATE ’05: Proceedings of the

111

www.diycalculator.com/sp-compuniverse.shtml

Appendix D. Bibliography

conference on Design, Automation and Test in Europe, pages 253–258. IEEE

Computer Society, 2005. ISBN 0-7695-2288-2.

[RSQL04] Gael Rouvroy, Francois-Xavier Standaert, Jean-Jacques Quisquater, and

Jean-Didier Legat. Compact and Efficient Encryption/Decryption Module

for FPGA Implementation of the AES Rijndael Very Well Suited for Small

Embedded Applications. ITCC, 02:583, 2004.

[Sys04] Stuart Swan (Cadence Design Systems). SystemC 2.1 Overview.

www-ti.informatik.uni-tuebingen.de/~systemc/Documents/

Presentation-9-OSCI_2_swan.pdf, Feb. 2004.

[Wik08] Wikipedia. The free encyclopedia. http://www.wikipedia.org, Nov.

2008.

[Wil06] André Willms. C++ Master Class. Einstieg für Anspruchsvolle. Addison-

Wesley, München, Jan. 2006. ISBN 9783827323682.

[Zab03] Enrique Zabala. Rijndael Cipher. Universidad ORT, Montevideo, Uruguay.

http://www.formaestudio.com/rijndaelinspector/, 2003.

112

www-ti.informatik.uni-tuebingen.de/~systemc/Documents/Presentation-9-OSCI_2_swan.pdf
www-ti.informatik.uni-tuebingen.de/~systemc/Documents/Presentation-9-OSCI_2_swan.pdf
http://www.wikipedia.org
http://www.formaestudio.com/rijndaelinspector/

	Abstract
	Zusammenfassung
	Danksagung
	1 Introduction
	1.1 Motivation
	1.2 Goals and organization of this work

	2 The methodology of TLM-based ESL design
	2.1 Electronic System Level Design
	2.2 SystemC
	2.2.1 Processes and sensitivity
	2.2.2 Interfaces, (ex)ports and signals
	2.2.3 Events
	2.2.4 Implications on simulation performance

	2.3 Transaction Level Modeling
	2.3.1 TLM with SystemC
	2.3.2 Modeling styles
	2.3.3 Classification of behavior by phase transitions

	3 Transaction Level Model development
	3.1 Basic modeling classes
	3.1.1 Generic payload (GP)
	3.1.2 Payload event queue (PEQ)
	3.1.3 Quantum keeper (QK)

	3.2 Core TLM2 interfaces
	3.2.1 Forward and backward path
	3.2.2 Operational interfaces
	3.2.3 Supplementary interfaces

	3.3 Basic TLM sockets
	3.3.1 Combined interfaces and basic sockets
	3.3.2 Socket binding

	3.4 Model development in practice
	3.4.1 Modeling options in LT and AT
	3.4.2 Implementing communication through sockets

	4 Case Study: Advanced Encryption Standard
	4.1 Description of the algorithm
	4.1.1 The standard AES algorithm
	4.1.2 The T-Box variant

	4.2 Outline of the design flow
	4.3 Software implementation
	4.3.1 Control flow considerations
	4.3.2 Application-related considerations

	4.4 Untimed modeling
	4.4.1 Partitioning into computation modules
	4.4.2 Implementing an algorithmic model

	4.5 Loosely-timed modeling
	4.5.1 Relevant design rules for timed models
	4.5.2 Model migration from UT to LT
	4.5.3 Removal of temporal decoupling
	4.5.4 Introduction of concurrency
	4.5.5 Facilities for basic HW/SW tradeoff analysis
	4.5.6 Bottleneck identification
	4.5.7 Concluding model implementation

	4.6 Approximately-timed modeling
	4.6.1 Migration and timing considerations
	4.6.2 Model implementation
	4.6.3 Architectural exploration in practice

	5 Results and discussion
	5.1 Application comprehension by algorithmic modeling
	5.2 Delay modeling scopes of LT and AT
	5.3 Adequacy for HW/SW partitioning
	5.4 Software development focus of LT
	5.5 Performance analysis
	5.5.1 Setup for data gathering
	5.5.2 Results and interpretation

	6 Conclusion and outlook
	A Acronyms
	B Identifiers
	C Codelisting
	C.1 SimpleSocket transport function pointer
	C.2 Event (untimed) model vs. call (algorithmic)
	C.3 Loosely-timed target busy flag management
	C.4 Approximately-timed target example
	C.5 Switching between HW/SW behavior

	D Bibliography

