
Technische Universität Wien

Wirtschaftsinformatik

Institut: Softwaretechnik und Interaktive Systeme

Diplomarbeit

The AudioSquare
A collaborative virtual Music Environment

ausgeführt von

Ronald Genswaider

Mohsgasse 33/36

1030 Wien

unter der Anleitung von:

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Rauber

und

Dipl.Ing. Dr.techn. Helmut Berger

Vienna, 2008

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Zusammenfassung

Im Rahmen dieser Diplomarbeit wurde eine dreidimensionale kollaborative Um-
gebung namens The AudioSquare entwickelt, die ein virtuelles Erkunden von
Musikarchiven ermöglicht. In Form von Avataren können User einander in ei-
ner 3D Welt begegnen, über ein einfaches Chatsystem kommunizieren und die
angebotene Musik gemeinsam anhören. Die Musik wird anhand von zwei ver-
schiedenen Methoden räumlich angeordnet. Die erste Methode basiert auf der
Verwendung von Self-Organizing Maps, welche die Musikstücke anhand ihrer
Soundeigenschaften auf einer Art Landkarte verteilen. Die zweite Methode bie-
tet die Möglichkeit, Musikdateien in einer bestimmten Ordnerhierarchie auf dem
Dateisystem abzulegen, um in der virtuellen Welt entsprechend abgebildet zu
werden.

The AudioSquare stellt Zusammenhänge zwischen den repräsentierten Me-
dien in ein räumliches Bezugssystem, in das der User selbst eingebunden ist. Es
entsteht eine intuitive Schnittstelle, die realen Handlungs- und Navigationsformen
nahe kommt. Die derzeitige Entwicklung von Online-Welten und 3D Spielen zeigt
außerdem, dass die Metapher des virtuellen Raumes immer mehr an Bedeutung
gewinnt. Konzepte wie der hier vorgestellte Prototyp zur Aufbereitung von medi-
alen Inhalten, also eines Contents, innerhalb dieses Raumes sind jedoch noch
spärlich vorhanden.

Die Umsetzung von The AudioSquare erfolgte mittels der Torque Game En-
gine, die ein umfangreiches Rahmenwerk für die Gestaltung virtueller Welten
bietet. Durch die Client-Server-Architektur wird es Usern möglich gemacht, die
virtuelle Welt nach dem Download einer entsprechenden Client-Applikation über
das Internet zu betreten. Ein zusätzlicher Streaming-Server ermöglicht es, die
eingebundenen Musikstücke, entnommen aus einer freien Musiksammlung von
Magnatune, gemeinsam anhören zu können.

iii

Abstract

This work presents The AudioSquare, a three-dimensional collaborative environ-
ment allowing users to explore automatically organized music archives. Users,
impersonated as avatars, may interact with each other, communicate through a
simple chat-system and enjoy the presented music. Two different methods for
music organization are implemented by the system. The first method takes ad-
vantage of a self-organizing map. It uses the sound characteristics of each audio
track to calculate its position on a two-dimensional map. The second method uti-
lizes folder hierarchies on the file system for the organization of media. The music
files stored in the folders are transformed into a spatial representation within the
virtual environment.

The AudioSquare transforms correlations between the represented media into
a system of spatial relations and involves the users directly into the scene. This
produces an intuitive interface that allows forms of interaction and navigation
similar to real life. Since the number of people participating in online worlds and
3D games increases steadily, the metaphor of virtual space is gaining momentum.
The proposed prototype shows a novel approach for organizing and presenting
media as content within such environments.

The development of The AudioSquare is based on the Torque Game Engine.
It provides a powerful framework for the development of state-of-the-art virtual
3D environments. Based on a client-server architecture it allows users to enter the
world through the Internet by downloading a client-application. The presented
music, gathered from Magnatune’s royalty-free online archive, is distributed over
the Internet by a streaming server to allow a collaborative experience when users
listen to the music together.

v

Contents

Contents vii

1 Introduction 1

2 Related Work 5
2.1 Music Information Retrieval (MIR) 5

2.1.1 Metadata-based MIR . 6
2.1.2 MIR based on musical Data 8
2.1.3 Content-based MIR . 9

2.2 3D Game Engines . 11
2.3 3D Virtual Communities . 14

3 Technological Foundations 21
3.1 Audio Feature Extraction . 22

3.1.1 Preprocessing the Audio Files 22
3.1.2 Specific Loudness Sensation - Sone 23
3.1.3 Rhythm Patterns . 24

3.2 Self-Organizing Maps . 25
3.3 A Game Engine as Development Framework: Torque 28

4 Conceptual Design 33
4.1 SOM-based Music-Organization . 34
4.2 Manual Music-Organization . 34

5 Implementation 37
5.1 System Architecture . 37
5.2 Implementations in Torque . 39

5.2.1 The User Interface for the Torque Client 39
5.2.2 Customized 3D Objects . 40
5.2.3 Setting up the virtual environment in Torque 42
5.2.4 Creating assets for the Repository 43
5.2.5 Importing the Objects-File 44

vii

viii CONTENTS

5.3 Implementation of the the Wrapper 44
5.3.1 Class-Representation of Torque Objects and Input Files . . 46
5.3.2 Processing the Output-Files 47

5.4 The Icecast Streaming Server . 49

6 Visit The AudioSquare 51

7 Conclusions and Future Work 59

8 Acknowledgements 61

Bibliography 63

A Game Engine Overview 71

B Example of an Objects-File 73

C Example of Marker-Objects in the Mission-File 79

List of Figures 81

List of Tables 83

Chapter 1

Introduction

In the last few years the Internet experienced a paradigm shift, placing empha-
sis on the community of people. Today the Internet is no longer an instrument
just for representation, rather it becomes a platform for users to extend their
real-life by means of a virtual presence. On the one hand this change can be
seen on community-based Web sites summarized as “Web 2.0”, featuring user-
generated content and providing extensive tools to share personal information.
On the other hand, the Internet is also a virtual stage for users to encounter
each other. The most advanced examples for such environments today are Mas-
sively Multiuser Online Roleplaying Games (MMORPGs) [65, 8], consisting of
huge virtual worlds inhabited by thousands of concurrent users impersonated as
avatars. While the predominant motivation for participating in MMORPGs is
still “playing”, an increasing number of users is spending a significant amount of
time in 3D virtual worlds without following a predefined quest. Generating, pub-
lishing and experiencing content in 3D virtual spaces is an emerging trend on the
Internet. The recent media hype around Second Life1 gave an outlook on the fu-
ture of such virtual communities. On the one hand virtual environments broaden
the possibilities of social interaction that go beyond text-based chat rooms. Es-
pecially one’s inherent presence in space and the awareness of others facilitate
the initiation of social contacts. On the other hand, using 3D virtual worlds has
the advantage of communicating via commonly accepted spatial metaphors [18].
Similarity of objects can be expressed by spatial relations, i.e. the more similar
two objects are, the closer they are located together. Furthermore, users can
interpret each other’s interests by how close they are to one another and to the
objects in space. Consequently, users are supported in building a mental model
of the information space. They begin to understand its characteristics and to
recognize which information is present and how the respective objects are related
to each other.

1http://www.secondlife.com (date of access: 20.04.2007)

1

2 CHAPTER 1. INTRODUCTION

In this context we utilized the possibilities of virtual environments for mu-
sic representation. We developed a prototype, The AudioSquare, which allows
users to explore music in a collaborative virtual world. It takes advantage of
spatial metaphors to describe the relationships of the represented music tracks
to one another. The prototype offers the organization of music libraries by a
self-organizing map (SOM) as introduced in “Island of Music” [40], and later in
the PocketSomPlayer and PlaySom [39]. Sound-specific characteristics are ex-
tracted from music files by applying methods from digital signal processing and
psycho-acoustics. The resulting features are used for the training of the SOM that
arranges similar music tracks in spatially adjacent regions. More specifically, a
self-organizing map is an unsupervised neural network model that provides a
topology-preserving mapping from a high-dimensional input space onto a two-
dimensional output space [28]. Alternatively, a manual organization method is
also provided. First, audio files are organized by setting up a specific directory
structure on the local file system. This folder hierarchy is then automatically
transformed into an architectural setting. Folders are represented by buildings
that are arranged by a selectable layout algorithm. The music tracks are placed
inside of the buildings according to the their location in the folders.

The technical foundation for the realization of The AudioSquare is the 3D
game engine Torque2. Built as a framework for game development it already
comes with many efficient features for creating collaborative virtual environments.
A key feature is the built-in client-server architecture that makes it easy to de-
velop an Internet-based virtual community. After installing the client-application
a user may start the program and enter the The AudioSquare online. To ensure
that users are listening to the same music when on the same place at the same
time, the music is streamed by a media server over the Internet3.

The remainder of this thesis is structured as follows. Chapter 2 provides an
overview about related work and includes the areas music information retrieval,
game engines and virtual communities. Chapter 3 explains the technological
foundations used to build the prototype. On the one hand, the principles of
feature extraction and self-organizing maps are explained. On the other hand
the Torque Game Engine that was used as development framework for the cre-
ation of the prototype is discussed. The conceptual design of the prototype is
described in Chapter 4. It explains how a virtual world should be utilized in
order to represent media and discusses the two different methods for organizing
and visualizing the music tracks. Chapter 5 describes the technological details
of the prototype. It outlines the general system architecture of the prototype
and discusses the components of the system. These are Torque’s client-server
architecture, the media server used for audio streaming over the Internet and the

2http://www.garagegames.com/products/torque/tge/ (date of access: 27.07.2007)
3http://www.icecast.org/ (date of access: 27.07.2007)

3

Java-based preprocessing-facility, the Wrapper, which sets up the data to start
the system. Moreover, the workflow of creating the virtual world is explained.
Chapter 6 takes the reader on a tour through The AudioSquare and provides
screenshots of the virtual world. A summary followed by suggestions for future
work are given in Chapter 7.

Chapter 2

Related Work

The theoretical background for this thesis comprises three areas that are discussed
in this chapter. The AudioSquare is an interface that provides exploration of mu-
sic in a spatial environment. This approach expands existing methods from the
area of music information retrieval (MIR). Thus, the first section explains the
different approaches in MIR and gives examples for the visualization of sound and
music. Since the technical realization of the prototype is based on the Torque
Game Engine, the next section describes the origin and present use of game en-
gines, especially in non-game scenarios and research projects. As a collaborative
environment The AudioSquare is a basis for 3D virtual communities which are
discussed in the last section.

2.1 Music Information Retrieval (MIR)

A research project of the University of Berkley, called How much information?
2003 1, highlights the fast growth of digitally stored information. As presented
in Table 2.1, the researchers and students estimated the amount of produced
information in terabytes for the year 2002, regarding different media, namely
paper, film, magnetic media and optical media (CD, DVD). The result has been
compared with the same estimates for the year 1999. It turned out that the
difference of annually produced data is over 70 percent, whereby the greatest
change was on digital media.

This trend is similar in digital music. The number of available music files has
grown rapidly with the emergence of large archives driven by powerful compres-
sion algorithms like MP3 and their distribution over the Internet. For example
Apple states that their online music store iTunes offers more than 6 million songs
and 2 billion tracks have been downloaded already2. eMUSIC, the largest online

1http://www2.sims.berkeley.edu/research/projects/how-much-info-2003/ (date of access:
04.02.2008)

2 http://www.apple.com/de/itunes/store/ (date of access: 06.02.2008)

5

6 CHAPTER 2. RELATED WORK

Storage Medium 2002 (Terabytes) 1999 (Terabytes) Change (Percent)
Paper 1,634 1,200 36.0
Film 420,254 431,690 -3.0
Magnetic 5,187,130 2,779,760 87.0
Optical 103 81 28.0
Total 5,609,121 3,212,731 74.5

Table 2.1: How much information? Comparing the estimates for the amount of
generated digital media in the years 1999 and 2002 in the United States.

store for independent labels, already hosts 2 million online tracks that were down-
loaded over a hundred million times3. The enormous amount of available music
online points out the need for efficient strategies in music retrieval. Considering
the different interests of music listeners, strategies are very diverse.

Music information retrieval can be roughly classified into three main paradigms
that are discussed in the subsequent sections. The first relies on metadata which
describes a music piece by text properties such as title or artist. Approaches based
on musical data focus on melodies and the notes of a song. Finally, content-based
strategies use the raw sound information for analysis.

2.1.1 Metadata-based MIR

A common way of querying music is to search in metadata such as title, artist,
genre or lyrics. In most cases, ID3 tags are used to store metadata in music files4.
ID3 tags offer a broad range of possible attributes for the description of a song.
However, the tags are often assigned by users and, thus, the provided information
is sometimes inconsistent or simply false.

On Internet platforms users are often invited to create relations between music
tracks. Following the Web 2.0 paradigm, Last FM 5 gives users the possibility for
social tagging of songs. Listeners enter desired songs and the Web application
creates an audio stream containing songs with similar tags. This empowers the
users to find related music by stating in their personal preferences.

A strategy that goes beyond textual search is the creation of music maps that
visualize the relations between songs according to metadata. A music map as
seen on the Dimvision Web site6 is depicted in Figure 2.1. When a user enters
an artists name or a song title, a network of interconnected nodes representing a
band or artist is displayed. The similarities of the nodes have been calculated by
comparing descriptions stored in Amazon’s music database.

Torrens proposes three different visual representations for private digital mu-

3 http://www.emusic.com/about/pr/pr20061213.html (date of access: 06.02.2008)
4http://www.id3.org (date of access: 06.02.2008)
5http://www.lastfm.de (date of access: 06.02.2008)
6http://www.dimvision.com/musicmap (date of access: 06.02.2008)

2.1. MUSIC INFORMATION RETRIEVAL (MIR) 7

Figure 2.1: A music map as shown on the Dimvision Web site. The nodes
represent artists and bands. The edges identify the relations of the nodes to one
another.

sic collections [56] (see Figure 2.2). The first representation shows a disc that is
divided into sectors according to each of the genres of the library. Each sector
is divided into sub-sectors representing the artists of the associated genre. The
radius of the disc, from the center to the perimeter, is equivalent to the time
axis. The rectangle visualization is quite similar to the disc-view. The time axis
goes along the vertical axis and the genres divide the rectangle into columns.
The third visualization follows a tree structure. A rectangular area representing
the complete library is recursively split three times: First into genres, each genre
into its sub-genres and finally each sub-genre is split into its artists. The col-
ors of the divisions provide additional information about quantitative attributes,
such as the play-count or user ratings. All three visualizations are intended as
alternative user interfaces. Relations are shown in easy-to-understand graphics
to provide efficient interaction. Another approach for creating relations in music
takes the geospatial location of the music pieces into account. AROOOGA [26]
is a Web crawler that scans entire Web sites for music tracks. The location of
the Web server is determined by applying the “whois” command applied to the
servers IP address. The main idea was to create a world map where the locations
of the servers hosting the sound files are marked. Unfortunately, the technolog-
ical restrictions of location detection on the Internet resulted in low accuracy.
The MUSICtable provides a collaborative interface that invites all participants
to select music tracks in a playful manner [50]. A tabletop display standing in
the middle of a room shows a colored map that graphically represents a music
archive. A floating cursor marks the music track on the map that is played next.
Users can press buttons around the table to influence the direction of the cursor
and each others decision at the same time.

8 CHAPTER 2. RELATED WORK

Figure 2.2: Three visual representations as proposed by Torrens: The disc view,
divided (left), the rectangular view (middle) and the tree view (right).

2.1.2 MIR based on musical Data

The most popular way to represent musical data is the Common Music Notation
(CMN) (cf. Figure 2.3). It arose in the Middle Ages, developed to preserve the
extensive plain chant repertoire of the Roman Catholic church and refined several
times, especially in the Renaissance. As Isaacson pointed out in his comparison
of different representations of musical information, CMN is very adaptable for
live performance, but it is not very suitable to show information about harmonic
or motivic relations and the musical form [20].

Figure 2.3: Excerpt from Bach’s score for his piece Schweigt stille.

For computers the first standard to represent music in an abstract form was
MIDI, an interface standard for interchanging musical events between electronic
instruments. In the early 1990s Stephen Malinowski created the Music Animation
Machine7, a computer tool that transformed the score of a music piece into
an animated visual representation. It was a very early attempt in creating a
computer program that can help unexperienced listeners to understand musical
structure.

The focus on music seen as events of notes and intervals leads to queries that
are related to musical notation. Dovey [14] proposes an algorithm for the OMRAS
framework, a Java-based development suite for testing search algorithms. It

7http://www.musanim.com (date of access: 06.02.2008)

2.1. MUSIC INFORMATION RETRIEVAL (MIR) 9

allows music queries in a regular expression-style for specific notes and melodies.
Such techniques are more of a textual kind and hard to perform by an average
user. The query-by-humming approach was introduced in the mid 1990s. It
allows users to query songs by simply singing or humming melodies [16, 37, 42].
Bainbridge et al. [2] developed a music library that stores the musical notation of
music pieces retrieved from scanned pages, song books and MIDI files. Users can
combine hummed queries with textual search to narrow down the results. Today,
query-by-humming has reached a mature state and can be used in the commercial
online archive midomi.com8. Polyphonic queries that address harmonies and
more complex passages of a music piece are addressed by Suyoto et al. [52].
Query-by-example approaches use segments of a song as search criteria and are
used in queries for similar songs [19] and cover versions [57].

2.1.3 Content-based MIR

Since electronic processing evolved, many different representations of the sound
itself were introduced. The simplest method is to display the amplitude of the
sonic wave against a time line, comparable to the analogue audio tracks on film
reels. Spectrograms offer even broader possibilities. They display the distribu-
tions of frequency bands over a certain time. On a typical spectrogram as seen in
Figure 2.4, time is represented by the x-axis and the frequency by the y-axis. The
more intense a certain frequency is at a certain time, the brighter it is plotted. In
1984 Cogan analyzed a broad range of music pieces by plotting spectrograms [11].
Such visualizations can help to emphasize the view on changes in orchestration
and the dynamics more than with traditional notations. In content based ap-
proaches of MIR spectrograms are used for analyzing dynamics and rhythmic
patterns to create qualitative patterns describing the underlying music pieces.
Logan and Salmon propose a method to compare songs based solely on their au-
dio content [33]. Each music track is described by a signature based on K-means
clustering of spectral features. West and Lamere combine this approach with
textual information such as the genre, style or emotion of the music to build a
similarity metric [64].

Music similarity measurements can also be transformed into an euclidean
space. Visualized as a kind of map, the similarity of music tracks is displayed
by their distance to one another. Pampalk proposes an approach that takes ad-
vantage of a self-organizing map (SOM) to organize music on a two-dimensional
plane [41]. Spectral features are extracted from each music track and used as
input for the SOM. This organization method is also used for the automatic or-
ganization approach within The AudioSquare and is described in detail in Chapter
3. Pampalk uses this technique to create a map of music which can be used as
an alternative view for a jukebox, referred to as Island of Music. The PlaySOM

8http://www.midomi.com (date of access: 06.02.2008)

10 CHAPTER 2. RELATED WORK

Figure 2.4: Spectral analysis of a guitar playing a melody.

and the PocketSOMPlayer take up this approach to create an interface for small
devices such as palmtops and mobile phones [39]. As seen on Figure 2.5, the main
part of the interface shows a height-map. Different colors indicate the density of
music tracks of a certain location. Users can create playlists by simply drawing
a path or marking a region on the map (c.f. Figure 2.5).

Figure 2.5: Utilizing content-based music organization - the PocketSOMPlayer
on a tablet PC (left) and the graphical user interface (right).

Knees transforms the SOM-generated height-map into a 3D landscape [25].
The height of the terrain indicates the density of music tracks in a certain lo-
cation. The music pieces are represented by images which are located in the
landscape. Each image shows the most prominent artist on a certain place. The
image is retrieved over the Internet by simple keyword-search. A virtual camera
can be moved to fly around the map and listen to the music nearby played as
spatial sound. Luebbers also addresses SOM-generated music maps [34]. He tries
to improve the human interface design by focussing on the sound of the orga-
nized music. He created two graphical interfaces using spatial sound metaphors

2.2. 3D GAME ENGINES 11

to improve the users experience when exploring the music map. The Sonic Radar
is visually comparable to a radar-screen. The center of the screen denotes the
actual position of the listener. The volume of the music tracks around the listener
increases and decreases according to the actual direction the listener heads to-
wards. The Sonic SOM is very similar to the visual design of Pampalk’s concept.
It shows a map from top-view with the organized music tracks displayed as dots.
The listener can choose a standpoint by selecting one of these dots. Similar to
the Sonic Radar, the actual direction influences the loudness of the surround-
ing tracks. The user can move through the map by clicking on the dots around
the current location which represent the currently playing songs. Tzanetakis
and Cook introduce Marsayas3D, an audio browser and editor for collaborative
work on a large-scale multiuser-screen [58]. The framework offers different audio
analysis methods such as classification, segmentation, similarity-retrieval, princi-
pal component analysis (PCA), beat-detection and clustering. Each method can
be applied to different browsers, real-time monitors and an editor. For example
sound files can be mapped into a browser called “TimbreSpace3D” by using PCA
and clustering can be used to color them. A multi-speaker display consisting of
16 speakers supports the users operating the various 2D and 3D interfaces by
playing spatial sound.

2.2 3D Game Engines

Tennis for Two created in the year 1958 is known as the first video game in
history9. Its “game logic” was hard-wired on an analogue computer system with
a small oscillator display. Commercial game titles followed in the 1970s with
simple video consoles and arcade cabinets [24]. Most of the early titles could
be developed by a single person in a very short time. With the advancement of
computer technology video games became more and more complex. The produc-
tion of a current high-class title demands long-term plans comparable to those
of film-making and a development team consists of many people with differ-
ent professions. The complexity of today’s games states the need for modular
frameworks, which abstract fundamental programming routines from game de-
sign. These frameworks are referred to as game engines and used in nearly every
modern computer game. One of the first development frameworks which follows
the principle of game engines is SCUMM, written to improve the development
workflow of the point-and-click adventure Maniac Mansion. It was a scripting
language that supported instructions such as “walk to” and “pick up”. This
helped game designers to concentrate on artwork, the gameplay and the plot of
the adventure. Today SCUMM is still maintained by an online community10.

9http://www.bnl.gov/bnlweb/history/higinbotham.asp (date of access: 04.02.2008)
10http://scumm.mixnmojo.com/?page=scumm (date of access: 06.02.2008)

12 CHAPTER 2. RELATED WORK

Game engines are used for all kinds of game genres but they are generally
known as foundations for so-called first-person shooter games. The plot of such
games is usually to run through a realistic 3D environment and to kill as many
opponents as possible. Despite the moral issues, the underlying engines are tech-
nically very sophisticated. Photorealistic 3D graphics, surround sound, multiuser
support and a very fast gameplay create a highly immersive experience for the
player. The era of first person shooters started with Wolfenstein 3D and Doom,
both developed by id Software in the early 1990s. A very interesting aspect was
that the players started to change level designs of the games by themselves. For
example, there are still many ”custom levels” for Doom made by fans available
for download on the Internet11. The creation of self-made levels called modding
has become that popular that many game developers distribute their titles to-
gether with dedicated level editors, scripting interfaces and other development
tools. A very popular editor comes from Epic Games and is called Unreal Editor.
Version 2 is a very comfortable development suite featuring terrain editing, dif-
ferent mesh types, creation of indoor sceneries, texturing, audio effects, various
special effects and a scripting language called UnrealScript12. id Software goes
other ways by releasing the source code of discontinued game engines under the
GNU/GPL license, which makes them attractive to the open-source community.
Another popular feature of game engines is the possibility for users to create
cinematografic content. Machinimas are movies created entirely within a 3D
game engine and are usually distributed over the Internet as a package of code,
objects and textures [61]. Other users who downloaded a machinima need the
same game engine as the creator for playback. Today there are annual contests
such as the Machinima Festival which awards such movies in different categories
every year13.

The flexibility of 3D game engines for building virtual environments makes
them applicable for non-game usage. In research game engines are used for
projects addressing realtime visualizations and simulations. Usually, power work-
stations have been used for this task which require specially qualified people for
maintenance and programming. The high costs of such machines made research
in many cases impossible. Game engines are an alternative to these heavyweight
systems. The costs to establish a workstation for developing applications with
a game engine are approaching zero. A common personal computer with a rela-
tively new graphics card is often already available or can be upgraded very easily.
The learning curve is also much faster than on a professional 3D workstation
since these engines are dedicated to non-professionals. Lewis et al. point out
that game engines are the tools of choice for research projects which require re-
liable maintenance of player states, objects and terrain locations [32]. However,

11http://www.doomwadstation.com (date of access: 08.02.2008)
12http://udn.epicgames.com/Two/UnrealEd.html (date of access: 08.02.2008)
13http://festival.machinima.org (date of access: 06.02.2008)

2.2. 3D GAME ENGINES 13

if the task is simulation where high accuracy is crucial, photorealistic solutions
still are the better choice.

In visualization projects for architecture the use of game engines instead of
supercomputers have shown several advantages. Students of the Technical Uni-
versity of Denmark tried to visualize their campus on an SGI graphics worksta-
tion [49]. The programming was very time-consuming and the project was about
to stop. Eventually, the use of a game engine let them succeed. The possibility
of establishing multiuser worlds over networked applications driven by a game
engine lead to a proposal for a collaborative environment for experimental ar-
chitectural design [47]. Moloney et al. propose a tool for architectural design
critique realized in Torque [38]. The goal was to allow students to publish their
architectural models in a virtual environment where others could examine the
buildings. Notes could be placed at particular locations for discussing details of
the presented objects. With the Quake III Engine a source code comprehension
tool for distributed work has been created to collaboratively examine program-
ming projects [29]. Fritsch and Beck suggest a 3D system for indoor-visualization
of buildings [4, 15]. Their approach addresses a cost-effective virtual environment
for Computer Aided Facility Management-Systems (CAFM). A prototype created
with the Quake 3 Arena Engine features a virtual building that users can walk
through. By “shooting” objects textual data could be queried showing contextual
information. VR Kon-Tiki goes new ways for presenting a museum and shows
the virtual representation of the Kon-Tiki Museum in Norway [55]. The appli-
cation based on the Torque Game Engine can be downloaded on the homepage
of the institution14. A similar project but from a more artistic view is called
Museum Meltdown15. The artists used the level editors of different game en-
gines to recreate the architecture of contemporary museums and to use them as
virtual exhibition spaces. ARQuake is an augmented reality game where game
levels are written to match actual physical locations [54]. Players wearing head-
mounted displays encounter monsters superimposed over a real scenery. CaveUT
takes advantage of Unreal’s network ability to use multiple player’s viewpoints
to construct a Cave-like display [21].

Schools and other educational institutions can benefit from game engines by
teaching the basic principles of modding [48]. Scholars learn different concepts
in game development such as computer science, mathematics, physics and aes-
thetic principles. Artificial intelligence routines in computer games are used for
simulating the behavior of virtual opponents. PSDoom utilizes these routines
for managing system processes in Doom [9, 10]. As a usual behavior of mon-
sters in the game the artificial entities start to fight against each other when the
place becomes too crowded. In this case “important” processes represented by

14http://www.kon-tiki.no/VR/ (date of access: 08.02.2008)
15http://www.bernstrup.com/meltdown/main.html (date of access: 08.02.2008)

14 CHAPTER 2. RELATED WORK

Figure 2.6: PSDoom is a process management tool realized with Doom 1.

stronger monsters kill weaker ones resulting in an automatic process manage-
ment (c.f. Figure 2.6). The idea of managing system resources inside of a first
person shooter environment is also realized in Brutal File Manager16. Folders
represented by rooms are inhabited by files represented by monsters which can be
killed to delete them on the file system. The recent version also supports moving
and copying of files. GameBots is a multi-agent system infrastructure [22] based
on Unreal Tournament. It was designed to study human team behavior and al-
lows the construction of artificial agents that collaboratively interact with users
of other agents. Laird and Young use the Unreal Tournament Engine to create
artificial intelligence characters that are able to interact with each other within
a virtual scenery [30, 66].

2.3 3D Virtual Communities

The Internet introduced many new forms of communication and interaction. The
apparent impact of the Internet on human community led to a controversy in
opinions about its influence on the quality of our everyday life [3, 43, 62, 63].
Indeed, there are more and more people spending a noteable amount of time on
the Internet. With a recent paradigm change the Internet itself transformed into
a place for people to socialize and to extend their own subsistence on arbitrary
virtual stages. This change has been summarized under the notion “Web 2.0”
which should express the advancement of the Internet away from an information
base towards a social platform for its users17. In addition, efforts are made to
create virtual places dubbed Cyberspace in the 1990s. These immersive 3D virtual
worlds address the satisfaction of the user’s social needs and are complemented
by immersive characteristics. Virtual worlds support the way humans act and
communicate in real life to a certain extent and offer an environment to meet

16http://www.forchheimer.se/bfm/ (date of access: 11.02.2008)
17http://www.oreilly.de/artikel/web20.html (date of access: 12.02.2008)

2.3. 3D VIRTUAL COMMUNITIES 15

other people. Such interfaces go beyond the text-based approaches dominating
the Internet and graphically represent the user in terms of an avatar [12]. The
virtual embodiment gives users the experience to be literally in the Internet rather
than on it. 3D virtual worlds address the issue of social interactions much more
since location awareness, presence, as well as direct communication are intrinsic
elements. A notable number of users participate in Massively Multiuser Online
Roleplaying Games (MMORPGs), the most successful virtual worlds today. Some
examples for the increase of active subscribers over the years until 2006 can
be seen on Table 2.3, taken from the independent Web site mmogchart.com18.
The most successful MMORPG today, World of Warcraft (cf. Figure 2.7) has
more than 10 million active subscribers worldwide19. From an economic view
such online worlds are gaining momentum. The borderline between the virtual
and the real world tends to blur in current titles. In particular the buying and
selling of items for the game provide some gamers with a notable source of real
income [59]. For EverQuest an economic study has revealed that the virtual
Norrath has become the 77th richest country in the world, roughly comparable
to Russia [7]. Other research revealed that some people start to spend more time
in the virtual realms of an MMORPG than they spend in their job [65].

Figure 2.7: Masses of avatars in World of Warcraft.

Until now, three-dimensional collaborative virtual worlds are mostly different
kinds of online games, especially MMORPGs. However, since the 1990’s litera-
ture such as the books Neuromancer by William Gibson [17] and Snowcrash by
Neal Stephanson [51] have been indicatory for the idea of virtual spaces with-
out any game context. The latter author introduced the term Metaverse as a
concept of a virtual habitat for users as well as the term Avatar for the virtual

18http://www.mmogchart.com/ (date of access: 05.02.2008)
19http://blizzard.co.uk/press/080122.shtml (date of access: 05.02.2008)

16 CHAPTER 2. RELATED WORK

Game Title Developer July 2004 July 2006 Delta
City of Heroes Cryptic Studios 180,000 160,000 -11 %
Dark Age of
Camelot

Mythic Enter-
tainment

245,000 125,000 -49 %

Everquest Verant Interac-
tive

420,000 200,000 -52 %

Everquest II Verant Interac-
tive

150,000 175,000 +17 %

Final Fantasy
XI

Squaresoft 500,000 650,000 +30 %

Lineage NCsoft 2,659,502 1,497,287 -44 %
Lineage II NCsoft 1,474,280 1,302,340 -12 %
Star Wars
Galaxies

Verant Interac-
tive

300,000 170,000 -43 %

Toontown On-
line

Disney Interac-
tive

85,000 110,000 +29 %

Ultima Online Origin Systems 170,000 135,000 +21 %
World of War-
craft

Blizzard Enter-
tainment

250,000 6,600,000 +2,450 %

Other
MMORPGs

137,031 560,337 +309 %

Total 6,664,402 12,466,740 +87 %

Table 2.2: Listing of the most relevant MMPORGs and the number of active
subscribers in the years 2004 and 2006 (According to mmogchart.com). The right
columns on the right show the title of the game and the name of the developing
company. The next two columns show the total number of active subscribers in
the years 2004 and 2006. The rightmost column shows the difference between
these two years in percent.

representation of a user. As an early example the virtual chat environment called
Onlive Traveler [13], developed in the year 1999, tried to improve the experience
of conversations online. The surroundings had a rather decorative character and
were used as places to meet as groups of several users. The avatars were only
heads without a body to emphasize on mimics and lip movements, because the
chat was supported by a full duplex audio stream. Although users commended
the impression of realistic and lively conversations, they felt decontextualized.
The researchers concluded that having shared interests is crucial to virtual com-
munities. According to Kaplan et al. virtual communities have to provide some
basic properties to be satisfying for users [23]. First, they should provide the
possibility to define a user’s identity in a broad way, thus avatars represent-
ing the users have to be very customizable in shape and style. Communication
should be supported by a wide variety of expressions that come close to face-
to-face conversations. Typically this is done via gestures which can be triggered
via buttons or voice-chat such as in Traveler. 3D worlds should also empower
users to contribute to the collaborative space by building parts of the virtual

2.3. 3D VIRTUAL COMMUNITIES 17

environment. Last but not least the researchers also mention the importance
of a shared interest that gives the users a reason to interact. They suggest to
encourage the users in steadily creating new contexts by building new facilities
and improving the virtual world. 3D environments that mostly fit these criteria
are referred to as Metaverses. One of the first is the open virtual space Active
Worlds, online since 199520. Via a client-application users can enter different
virtual worlds and contribute in creating the environment. The originators had
the vision of an alternative to traditional Web browsing. Instead of building a
Web site, users could create buildings such as offices to represent their products
or information. Active Worlds never became very popular and seems to keep
the status of a niche product. Eight years later, a very similar but much more
prominent virtual world called Second Life21 was published by Linden Lab (cf.
Figure 2.8). It is the first virtual online world without a gaming context that
generated media attention. As Linden Lab CEO Pilip Rosedale says, in the year
1996 he had been inspired by Neal Stephensons Metaverse, which people could
walk through with their avatars and independent programmers called “hackers”
built the world and the virtual objects [35]. In correspondence to this most of the
things in Second Life are made by the users. If they are familiar with scripting,
they can change behavior of things in a very dynamic way. Now it seems that the
big media-hype around Second Life is over and the number of active users is not
growing any more. However, Second Life still shows the capability of virtual on-
line environments for social interaction as well as for new business models. A very
potential feature is the Linden Dollar, the official currency in Second Life that
can be exchanged against real US Dollars. As an estimate users spend about one
Million US Dollars a day [60]. Some companies started to contribute with large
projects. IBM started to build virtual meeting venues and presentation areas for
employees. Toyota created a virtual representation where people could obtain
virtual cars for free as an advertising gimmick. Many other companies followed
with interesting ideas, mostly to refresh their image as innovative companies for
the press.

Second Life’s short-term success led to a renaissance of the cyberspace and
sensitized the public for the relevance of virtual communities. Several companies
started to follow with their own concepts for online worlds. Sony announced a
3D virtual environment referred to as Home on the game developers conference
in March 2007 [31] (cf. Figure 2.9). Home should enable all owners of their
latest game console, the PlayStation 3, to enter an exclusive online 3D commu-
nity world. In his keynote, Sony’s Phil Harrison mentioned the notion Game 3.0
as an emerging trend of mashing up game concepts with virtual communities.
The Chinese HiPiHi22, which has been online as a Beta version since April 2006,

20http://www.activeworlds.com/ (date of access: 05.02.2008)
21http://secondlife.com (date of access: 05.02.2008)
22http://www.hipihi.com (date of access: 05.02.2008)

18 CHAPTER 2. RELATED WORK

Figure 2.8: Impressions from the virtual online world Second Life

shows conspicuous similarities to Second Life while the originator, Xu Hui, sees
these similarities as a coincidence. The German company Metaverse looks at the
development of their product Twinity, which was announced to be online by the
end of 2007, in a more practical manner [5]. The appearance of the avatar should
correspond with the users appearance in real life and the goal is to merge actual
trends on the Internet. vSide23 is a 3D online community for teenagers to meet
in virtual nightclubs and listen to popular music (cf. Figure 2.10). The young
company Pixel-Orange combines Web browsing with the strengths of collabora-
tive virtual environments24. A Java applet, embedded in an HTML page presents
architectural 3D models. Users may explore the objects and start conversations
with others nearby.

23http://www.vside.com (date of access: 05.02.2008)
24http://www.pixel-orange.com (date of access: 15.03.2008)

2.3. 3D VIRTUAL COMMUNITIES 19

Figure 2.9: Home for the PlayStation 3.

Figure 2.10: vSide, a virtual online community for teenagers.

Chapter 3

Technological Foundations

This chapter explains the technological foundations used for developing The Au-
dioSquare. As depicted in Figure 3.1 this concerns the organization of music
archives and the visual representation of the results in a collaborative virtual en-
vironment. The organization is done by means of a combination of audio feature
extraction and self-organizing maps (SOM) as already proposed in prior research
projects [39, 41, 44, 45]. Each audio file of a music archive is analyzed by a series
of digital signal processing algorithms to create a set of audio-specific parameters,
called the Rhythm Pattern. A SOM uses this Rhythm Pattern as input features
to calculate a position on a two-dimensional map. The result is a map of music,
in which tracks with similar characteristics are located close to one another. It
is represented in a three-dimensional environment based on the Torque Game
Engine.

Audio
library

Audio feature
extraction

Self-organizing
map

Game engine

Media Organization Representation

Figure 3.1: Organization and representation of music libraries with a self-
organizing map.

21

22 CHAPTER 3. TECHNOLOGICAL FOUNDATIONS

3.1 Audio Feature Extraction

The process of audio feature extraction analyses the music files in a music library
to extract meaningful parameters. In this case, each audio file runs through
several processes to achieve a time-invariant measure that allows the comparison
of the music files. The process involves three main steps. First, sound files are
reduced in quality to allow fast analysis. Then the sound data is transformed to a
power spectrum representing the loudness sensations per critical band over time.
The loudness sensation is calculated to Sone, a loudness measure that reflects the
perception of the human ear. Finally, the power spectrum is transformed into a
time-invariant representation which focusses on the modulation of the loudness
over time, called Rhythm Pattern.

3.1.1 Preprocessing the Audio Files

High-quality music in digitized format consumes a high amount of storage. For
example one minute of sound data in CD quality requires about 10 MB. For
detailed analysis of large music libraries the large amount of data needs to be
reduced by a certain degree. Figure 3.2 shows the steps taken to transform
a specific audio file from the library to audio data ready for analysis. First,
the original audio file is decoded to raw Pulse Code Modulation (PCM) format.
Since the raw audio format in good quality requires a huge amount of storage,
the quality is reduced from 44 kHz stereo sound to 11 kHz mono. Within this
poor quality it is still easy for humans to identify the music. Finally, the sound
data is split up into 6-second segments. This length has been chosen because it is
enough for humans to recognize the style of a piece of music within this duration.
To avoid lead-in and fade-out effects, the first and the last segments are dropped.
In addition, only every third segment is kept, which is still sufficient to identify
the underlying music easily.

Audio file (eg. MP3) PCM stereo, 44 kHz PCM mono, 11 kHz 6 sec 6 sec6 sec ... 6 sec

Figure 3.2: Preprocessing a music file in the library, which results in several 6
second sequences. The first and the last sequence are dropped to avoid lead-in
and fade-out effects.

The result of the preprocessing steps are segments of 6 seconds of music every
18 seconds at 11 kHz for each music file. Without loosing relevant information
for analysis, the music is reduced by a factor of over 24.

3.1. AUDIO FEATURE EXTRACTION 23

3.1.2 Specific Loudness Sensation - Sone

First, the power spectrum of the audio signal is calculated. This is is done by de-
composing the audio data into its frequencies using Fast Fourier Transformation
(FFT). The frequencies are then bundled into the first 20 out of the 24 critical
bands of the so-called Bark scale, that refers to the frequency resolving ability of
the human auditory system. The inner ear can be thought of as a complex system
with bandpass filters separating the frequencies to concentrate them at certain
locations along the basilar membrane. The response to the different frequencies
is asymmetric. For example, we can distinguish low frequencies of up to about
500 Hz very well, while our ability decreases significantly below 500 Hz. In the
next step spectral masking effects, meaning the occlusion of a quiet sound by a
louder sound, present at the same time with similar frequencies, are calculated.
The resulting so-called spreading matrix identifies the influence of the critical
bands on each other and is used for their adjustment.

Power
spectrum

Critical
bands

Spectral
masking

Decibel
to

dB-SPL

Phon:
equal loudness

Sone
6-second
sequence

Figure 3.3: Transformation of an audio signal to a representation regarding the
specific loudness sensation in Sone.

PCM data corresponds to the sound pressure which is measured in Pascal
(Pa). Before the calculation of Sone values it is necessary to transform the data
into decibel, which is calculated as the value between the sound pressure and the
pressure of the hearing threshold. This is also known as dB-SPL, where SPL is the
abbreviation for sound pressure level. Since the perceived loudness depends on
the frequency of the tone, the relationship between the sound pressure in decibel
and the hearing sensation measured in Sone is not linear. The dB-SPL values are
thus transformed to the equal loudness levels with their unit Phon. By definition,
one Phon is equal to 1 dB-SPL at a frequency of 1 kHz. For example, a value
of 40 Phon corresponds to 40 dB-SPL at 1 kHz. Finally the perceived loudness
sensation varies for different loudness levels. When transformed to Sone, this is
taken into respect. The loudness of an audio signal at 1 kHz and 40 dB-SPL is
to be defined as 1 Sone. A tone perceived twice as loud is defined to be two Sone
and so on. Within this stage of processing the raw audio data has been finally
transformed into a spectrum that measures the specific loudness sensation for 20
frequency bands along the time axis.

24 CHAPTER 3. TECHNOLOGICAL FOUNDATIONS

3.1.3 Rhythm Patterns

Since the current data representation is not time-invariant, it may not be used to
compare two pieces of music point-wise. Thus, this stage of processing is used to
calculate a time-invariant representation of music, namely the Rhythm Pattern.
These Rhythm Patterns indicate how strong and fast rhythms are played within
specific frequency bands. Figure 3.4 outlines the steps needed to achieve the
Rhythm Pattern.

Modulation
amplitude

Fluctuation
strength

Modified
fluctuation
strength

Sone
spectrum

Rhythm
Pattern

Figure 3.4: Transformation of the power spectrum in Sone to the time-invariant
Rhythm Pattern

For every critical band the loudness usually rises and falls more or less pe-
riodically over time. This results in a more or less regular pattern also known
as rhythm. These changes can also be seen as a signal that has been sampled
at discrete points over time. Thus, the periodical patterns can be processed by
a Fourier transformation for each critical band. The resulting amplitude mod-
ulation concerns Rhythm Patterns from 0 Hz up to 43 Hz. The sensation of
fluctuation strength is most intense at frequencies from 4 Hz and gradually de-
creases up to 15 Hz. Focussing on the frequencies relevant for rhythm sensation,
20 values between 0 Hz and 10 Hz are obtained for each of the 20 critical bands. A
gradient and a Gaussian filter are then applied to better distinguish the Rhythm
Patterns and to remove irrelevant information. While the gradient filter applied
to the modulation frequency should emphasize distinctive beats, the Gaussian
applied across both, the modulation frequency and the critical bands should in-
crease the similarity between two Rhythm Pattern characteristics. By simply
using the median of the 6-second segments, the final result can now be taken for
further cluster analysis by the Self-organizing map which is described in the next
section.

The final result of the feature extraction process is summarized in Figure 3.5.
The graphics show the Rhythm Patterns for each analyzed segment as well as the
median. The left-hand example shows the representation of Beethoven’s classical
piano piece Für Elise. The modulation amplitude shows that there is no beat
present. On the other hand, the right-hand Freak on a Leash has a strong beat
at around 7 Hz in all frequency bands.

3.2. SELF-ORGANIZING MAPS 25

Figure 3.5: Two results of the feature extraction process (left: Für Elise by
Beethoven, right: Freak on a Leash by Korn)

3.2 Self-Organizing Maps

The representation of the music tracks in the three-dimensional virtual world fol-
lows the schema of a topographic map, which consists of several units, whereby
each unit can contain multiple music tracks. For this kind of organization a self-
organizing map (SOM) is used, introduced in the year 1982 by Theuvo Kohonen,
also known as Kohonen map [27, 28]. The principle of a SOM follows observed
mechanisms in the human brain. Studies in the field of neurobiology revealed that
many structures in the cortex have a linear or planar topology, whereas sensory
perception is often multidimensional. An example is the sensation of color, which
consists of the three primary colors red, green and blue, by the visual cortex. Ad-
ditionally the eye delivers information about texture, position and structure of an
object. This raises the question how the visual cortex achieves the representation
of this multidimensional data through it’s planar structure. The studies showed
that relationships in sensorial patterns are represented as spatial relationships on
the cortex. Of course, all details of how the cortex processes sensory signals have
not yet been discovered. However, it seems a safe presumption that the first rep-
resentation of the world built by the brain is a topological one. Kohonen’s model
of self-organizing networks goes to the heart of this issue. The model works with
elements not very different from the ones used by other researches. The main
difference is the definition of the neighborhood of its elements because of their
lateral connections to their neighbors. If the state of an element changes, this
also effects others to a certain degree.

A self-organizing map consists of so-called units that usually constitute a
one-, two- or three-dimensional grid. The input for a SOM is an n-dimensional
feature space. Each unit has a weight vector with the same dimensionality as
the feature space. Like many other artificial neural networks, a SOM has two
modes of operation, training and mapping. When trained, the n-dimensional
input x is passed to every unit to compute the corresponding excitation by using
the weight vectors. The main task of the SOM is to move its units as close as

26 CHAPTER 3. TECHNOLOGICAL FOUNDATIONS

possible towards the represented features. Figure 3.6 shows a one-dimensional
SOM that attunes to a two-dimensional feature space with triangular shape [46].

Figure 3.6: A one-dimensional SOM maps a triangular region.

The goal of the learning algorithm is to associate different parts of the SOM
matrix to respond similarly to certain input patterns. Each training iteration t

starts with the random selection of one input pattern x(t). This input pattern is
delivered to the self-organizing map and each unit determines its activation. The
calculation of the activation is usually done with the Euclidean distance between
the weight vector and the input vector. In this case, the unit with the lowest
activation value is referred to as the winner, c, of the current training iteration
(cf. Expression 3.1).

c : mc(t) = min
i
||x(t)−mi(t)|| (3.1)

Finally the weight vector of the winner c as well as the weight vectors of
its adjacent units are adapted. The adaptation is implemented as a gradual
reduction of the difference between the corresponding components of the input
pattern and the weight vector, as shown in Expression 3.2.

mi(t+ 1) = mi(t) + α(t) · hci(t) · [x(t)−mi(t)] (3.2)

In terms of geometry the weight vectors are moved towards the input pattern
by a small value. The amount of this movement depends on the so-called learn-
ing rate, α, and its decrease over time. The number of units that are affected
by an adaption process is described by the so-called neighborhood function hci.
Typically this function is unimodal and symmetric around the location of the
winner decreasing monotonic with increasing distance from the winner. With
the advantage of time the functional form shrinks until it only affects the winner.

3.2. SELF-ORGANIZING MAPS 27

As shown in Expression 3.3 a typical neighboring function may be a Gaussian
curve, with ri is representing the two-dimensional vector pointing to the location
of the unit i within the grid, and ||rc − ri|| denoting the distance between the
units c, i.e. the winner of the current training iteration, and i in terms of the
output space. Since the distance range of the neighboring function reaches many
units at the beginning of a training session of a self-organizing map, it allows
the formation of large clusters. This is followed by a steady refinement towards
the end of the training process. The spatial width is described by means of the
time-varying parameter σ.

hci(t) = exp
(
−||rc − ri||

2

2σ2(t)

)
(3.3)

The translation of weight vectors has the consequence, that the Euclidean
distance between the weight vectors and the input patterns are minimized. The
weight vectors get more similar to the input patterns, thus it is more likely to
be a winner at future representations of this input pattern. The adaption of the
winner to the input pattern together with its neighbors leads to clusters which
provide representation of similar input patterns. Thus, similarities between input
patterns that are represented in the n-dimensional vector space are mirrored
in the two-dimensional output-space of the self-organizing map. The training
process of the self-organizing map is a topology preserving mapping of a high-
dimensional input space onto a low-dimensional output space where patterns that
are similar in the input space are also close to each other in the low-dimensional
output space.

Figure 3.7 gives an example for a graphical representation of a self-organizing
map. In this case the map consists of a square arrangement of 7 x 7 units depicted
as a matrix of circles on the left hand side of the figure. The black circle in the
center of the matrix represents the winner regarding to the input pattern x(t).
The weight vector of the winner mc(t) is moved towards the input pattern and
thus, the new weight vector mc(t + 1) of the winner is closer to x(t) than was
mc(t). The grey shaded units in the grid of the self-organizing map are also
adapted but not as strong as the winner, thus the degree of shading corresponds
to the strength of adaption.

Self-organizing maps have proven their usefulness in many applications. For
example, they are used for medical purposes such as the classification of cancerous
tissue [36] as well as in the financial sector such as the clustering of high-frequency
financial data [6] or the prediction of stock prices [1]. They provide a very robust
and relatively fast method for clustering data with high dimensionality.

28 CHAPTER 3. TECHNOLOGICAL FOUNDATIONS

x(t)

m
c
(t+1)

m
c
(t)

Output Space Input Space

Figure 3.7: Architecture of a 7× 7 self-organizing map

3.3 A Game Engine as Development Framework: Torque

A three-dimensional environment such as The AudioSquare needs a framework
with a broad range of features. Besides real-time rendering of 3D graphics, it
has to provide multi-user support, a 2D graphical user interface, support for var-
ious input devices and the ability to play back spatial sound. Many of today’s
game engines fulfill these requirements and come with even more modules such
as physics engines or artificial intelligence routines to simulate opponents. The
choice of the appropriate game engine stood at the beginning of the development
process for The AudioSquare. The first criteria that narrowed down the number
of possible choices was the type of game engine. We decided to use a game en-
gine for first person shooters (FPS). These games have the most immersive char-
acteristics, the fastest gameplay and the most sophisticated graphics routines.
When supporting multiplayer-mode, they also feature a very efficient network
code that maintains accurate update rates. Obtaining a full software develop-
ment kit (SDK) for the recent commercial products such as the Doom 3 Engine1

or the latest Unreal Engine2 is very expensive. Since the project demanded a
whole SDK that goes beyond the capabilities of a level editor, the commercial
engines were skipped. Some older commercial engines such as the Quake En-
gine series are now licensed under the GNU/GPL but technically outdated and
sparsely documented. Today, a broad range of low-cost and open-source engines
are also available. For a detailed overview of examined low-budget products the
reader may be referred to Appendix A. One of these low-cost engines, the Torque

1http://www.doom3.com/ (date of access: 20.10.2007)
2http://www.unrealtechnology.com/features.php?ref=technology-overview (date of access:

21.10.2007)

3.3. A GAME ENGINE AS DEVELOPMENT FRAMEWORK: TORQUE 29

Game Engine (TGE) from GarageGames3 turned out to be the best choice to
develop The AudioSquare. It has been the top-rated engine on the game devel-
oper community Web site Devmaster.net4 for a long time. It is also the only
affordable product that provides everything for the development of a full virtual
environment. While most of the investigated engines had poor or no network sup-
port, Torque comes with an award winning and very efficient network code. The
graphics are fairly good and indoor as well as outdoor scenarios are supported.
The reason for Torque’s superiority amongst the other engines is it’s origin as a
commercial product, the Tribes 2 Engine, which was created for the multiplayer
egoshooter game Tribes 2 published in 2001 by Dynamix. Shortly after the release
of the game, several members of the Dynamix team left the company and created
their own company, GarageGames. They bought the Tribes 2 Game Engine and
after extensive modifications the Torque Game Engine was created [53]. Since
GarageGames provides a unique licensing model for their products, the Torque
Game Engine is a compromise between commercial and open source software.
Non-commercial developers can purchase an Indie-license for 150 US Dollars, a
commercial license costs 500 US Dollars per developer workstation, a very low
price when compared to other professional game engines. With the license of
the Torque Game Engine comes a development kit that includes the full source
code and a few demo games. Besides a Wiki-based online documentation there
is a broad online community of license owners who support each other with fo-
rum discussions, tutorials, artwork and code enhancements. Torque supports the
platforms Windows, Linux and Mac OSX natively.

Torque follows a strict client-server architecture. Even when run on a single
computer, it acts as both a client and a server on the same machine. Over the
Internet, communication between client and server is supported through a very
robust and fast networking protocol that allows accurate update rates even for
low bandwidth connections. The Torque server is responsible for the organiza-
tion of the virtual world. It creates the environment on startup and coordinates
objects and the actions of the users. A Torque client is mainly responsible for
the audiovisual representation of the environment and the user interface. The
logic of a game or 3D application is written in the byte-compiled scripting lan-
guage TorqueScript. Although very flexible and powerful, sometimes it is nec-
essary to enhance the source code of the engine written in C++. In the case
of The AudioSquare the support for Internet audio streaming had to be added
because originally Torque only supports the playback of local sound files. The
management of assets such as 3D objects, textures and sounds also follows the
client-server principle. When a client connects, it synchronizes the missing data
with the server via file download.

3http://www.garagegame.com (date of access: 26.04.2007)
4http://www.devmaster.net/engines/ (date of access: 24.01.2008)

30 CHAPTER 3. TECHNOLOGICAL FOUNDATIONS

Figure 3.8: The Torque SDK comes with a first person shooter example. It can
also be edited with the World Editor as shown here.

Torque comes with a built-in World Editor that provides a broad range of
tools to design virtual environments (cf. Figure 3.8). Terrains can be created
automatically with a palette of different algorithms or by loading a bitmap-based
height map. Manual adjustments are then made with a mouse-controlled brush
tool. Pre-built 3D assets can be imported, positioned, rotated and scaled. These
include 3D objects such as trees, buildings or interiors as well as additional objects
to emphasize the atmosphere such as water areas, a sun, sky textures, volumetric
fog, etc. The resulting virtual world is stored in so-called mission-files. A GUi
Editor, as shown in Figure 3.9, is also a standard tool of Torque.

The modeling of 3D objects cannot be done in the World Editor, rather there
are two different file-types of objects that need different applications to create
them. Efficient realtime rendering needs highly optimized 3D shapes, therefore
the two file-types are suitable for different demands. DIF stands for Dynamix
Interior Format, it is the file format for large and static, mainly architectural
objects and interiors. These objects can be designed and exported in the free
program QuArK 5 and the shareware product 3D World Editor6. The other
format for 3D objects, DTS is mainly used for characters, vehicles and smaller
objects such as interiors. The models can be animated via skeletal and morph
target animation, moreover animation sequences can be blended together. Torque

5http://quark.planetquake.gamespy.com (date of access: 09.02.2008)
6http://3dworldstudio.thegamecreators.com (date of access: 09.02.2008)

3.3. A GAME ENGINE AS DEVELOPMENT FRAMEWORK: TORQUE 31

provides exporter plug-ins for different 3D programs, such as 3D Studio Max,
Maya and Blender.

Figure 3.9: The GUI Editor is a standard feature of the Torque SDK. The image
shows the start menu for the first person shooter example.

Chapter 4

Conceptual Design

Virtual three-dimensional environments yield the potential of reproducing inter-
action scenarios known from real-life situations. Avatars, for example, give users
the opportunity for self-identification and encourage them to start social inter-
actions with each other. Walking, running and jumping are navigation forms
everyone is familiar with. In contrast to other human interface concepts such as
desktop applications or Web sites, navigating through a virtual space prevents
users from experiencing visual cuts and, thus, loosing their context. A virtual
continuum implicitly creates spatial relations between the objects it contains.
When used for representing content it helps users to grasp inherent relations of
its entities by creating a mental map of the perceived environment.

The AudioSquare takes advantage of the virtual world paradigm for repre-
senting music archives. After downloading and starting a client-application, a
user can choose an avatar and enter the virtual world over the Internet. A dedi-
cated server delivers the virtual environment and manages the positions of present
avatars. The client-server approach enables a social platform where users are en-
couraged to start conversations about the presented content through a simple
text chat. All objects, avatars and the landscape designed for The AudioSquare
are reminiscent of real-life scenes. This is based on the assumption that users
don’t want to learn the principles of every virtual environment from the ground
on. Rather, they are supported in quickly orienting themselves in a scenario that
looks familiar to them and are able to focus on the main purposes of the virtual
world. The music is represented by 3D objects emitting spatial sound. To ensure
that users hear the same music when in the same location the sound is streamed
over the Internet by a media server.

The workflow for creating the virtual world of The AudioSquare comprises
three main steps. The first step is the creation of a basic environment with a
terrain, buildings, interior and other objects. The second step is the creation of
3D objects for music representation which can be either a single object such as a

33

34 CHAPTER 4. CONCEPTUAL DESIGN

radio or a group of objects, for example a table with a speaker on its top. However,
these objects are stored as assets in a simple repository, from where they can easily
be used for representation. The last step is to place marker-objects in the basic
environment which specify locations for the music representation. An automatic
process places the assets in the virtual world, whereby two different approaches for
organizing and representing the underlying music archives are supported. On the
one hand, automatic organization by means of a self-organizing map is provided.
On the other hand, music tracks can be organized manually by generating a
specific folder hierarchy on the file system. These two approaches are offered
in order to ensure high flexibility for different demands. If the representation
of large music archives is desired, the automatic method should be considered.
For showing only a small to medium audio collection and for emphasizing on
individual tracks, the manual option may be the better choice. However, both
modes can be used in the same virtual environment at the same time.

4.1 SOM-based Music-Organization

The SOM-based approach relies on automatic organization according to the sound
characteristics of the music tracks. Every audio file within an archive is analyzed
for a time-invariant representation of the sound in terms of a set of features (cf.
Section 3.1). The features are passed to a self-organizing map which positions
each music piece on a two-dimensional matrix (cf. 3.2). Such a matrix consists of
n x m units, each containing several audio tracks. Since the SOM classifies music
according to the sound, similar audio tracks are located close to one another
or even on the same unit. The AudioSquare transforms the SOM-generated
matrix into a three-dimensional representation of objects. A marker-area can be
defined in the virtual world to specify the boundaries wherein the representation
should take place. It also designates a matrix considered for representation, which
section thereof and an asset from the repository. As depicted in Figure 4.1, these
areas can be used to distribute a matrix over multiple places. Two marker-areas
located in different rooms in the virtual world address two different sections of
a SOM-generated matrix. Additionally, each area refers to another asset of the
repository. The result in the virtual space is a matrix of 3D objects separated
into two sections with different visual designs.

4.2 Manual Music-Organization

The manual organization approach addresses the three-dimensional representa-
tion of a simple folder hierarchy on the file system. Top-level folders stand for an
umbrella term wherein further folders contain the audio files. Each folder con-
tains a text file that describes its contents by name, date and an optional short

4.2. MANUAL MUSIC-ORGANIZATION 35

Marker-area 1

Marker-area 2

1/1

1 2 3 4

1

2

3

4

1/2

4/1

4/2

3/1

3/2

2/1

2/2

Room 1

Room 2

SOM Virtual environment

1/3

1/4

2/3

2/4

3/3

3/4

4/3

4/4

Asset 1

Asset 2

Repository

Figure 4.1: Automatic organization based on a SOM.

description. Within the virtual environment, the top-level folders are represented
by buildings. The low-level folders are represented by objects that are located
inside these buildings. The descriptions in the text files are displayed on virtual
signboards attached next to the respective objects. The design of a building as
well as its interior objects are stored as an asset in the repository.

Figure 4.2 shows an example for how a simple folder hierarchy is transformed
into a visual representation in the virtual environment. The top-level folder is
considered as a collection of albums from the rock band “The Beatles”. It contains
two folders which refer to the albums “White Album” and “Abbey Road”, which
contain the respective audio files. Transformed into the virtual world, the top-
level folder is represented by a house. An attached sign shows a description as
stored in the text file. Two hi-fi systems standing on a table are located inside
of the building. They represent the two lower-level folders containing the audio
files. Two signs above the stereos show the title and the date of publication of
the respective albums.

A marker-object set in the virtual world designates a point where the music
representation should start. It also identifies the location of the folders on the file
system and a template from the repository. Additionally, one out of three layout
algorithms as depicted in Figure 4.3 is defined with this object. When linear
layout is specified, the buildings are placed sequentially next to another. The first
building is aligned to the starting point, the subsequent ones are placed one after
another with a definable distance d. The generated arrangement is comparable

36 CHAPTER 4. CONCEPTUAL DESIGN

1st level:
groups

2nd level:
music collections

base
folder

Virtual representation

The Beatles
Albums

White Album
White Album
22.11.1968

back_in the_ussr.mp3
dear_prudence.mp3
glass_onion.mp3
ob-la-di_ob-la-da.mp3
wild_honey_pie.mp3

White Album
Abbey Road
26.09.1969

come_together.mp3
something.mp3
maxwells_silver_hammer.mp3
oh_darling.mp3
octopuss_garden.mp3

White Album
22.11.1968

Abbey Road
26.09.1969

The Beatles
Albums

Figure 4.2: The manual organization of music is based on a folder structure. In
the virtual environment, the top-level folders are represented as buildings and
the low-level folders containing the audio files are represented as interior.

to a residential area with separate houses. In case of a circular layout the starting
point acts as the center of a circle with a given radius r. The buidings are placed
along the circle with a given distance d to one another. Last but not least, the
matrix-style layout arranges buildings similar to a checker board. The number n
of objects in a row can be defined as well as the horizontal and vertical distances
dx and dy.

linear cyclic matrix

d

r

d

n

dx

dy

Figure 4.3: Layout algorithms for manual music organization.

Chapter 5

Implementation

This chapter discusses the implementation of The AudioSquare. The core of the
system is based on the Torque Game Engine as introduced in Chapter 3.3. Its
integrated client-server architecture facilitates the development of a collaborative
virtual world. Other features such as scripting and the availability of the full
source-code make it possible to adapt the game engine to own requirements. The
broadcasting of the music is done with the open source media server Icecast1. The
playback of the streams on the client-side is realized by integrating the FMOD2

API, which is dedicated to all kinds of sound-processig, into Torque’s source
code. While Torque and Icecast are used on runtime, a Java-based application,
henceforth referred to as the Wrapper, preprocesses the data needed to integrate
music representation into the virtual environment.

5.1 System Architecture

The system architecture of The AudioSquare is depicted in Figure 5.1. Basically,
it can be divided into a preprocessing-layer and a runtime-layer. The core of
the runtime-layer is a dedicated Torque server, responsible for the execution of
the virtual environment. This includes the instantiation of the virtual world on
startup and the coordination of the connected clients. For broadcasting audio
streams over the Internet, Icecast is used as a media server. A Torque client is
mainly responsible for the user interface and the audiovisual representation of
the virtual world. It is connected to both, the Torque server as well as to the
Icecast server.

The basic definition of the virtual world is stored in a mission-file. It contains
information about the terrain, buildings and other objects. The objects used for
representing the music are described in a separate XML-file, the objects-file. It

1http://www.icecast.org/ (date of access: 23.02.2008)
2http://www.fmod.org/ (date of access: 22.02.2008)

37

38 CHAPTER 5. IMPLEMENTATION

Mission
file PlaylistsPlaylists

Reposi-
tory

Wrapper (Java)

Objects
file PlaylistsPlaylistsPlaylistsPlaylistsPlaylistsTextures

Torque server
Icecast
server

P
re
p
ro
ce
ss
in
g

R
u
n
ti
m
e

Torque clients

Audio files

SOMs

PlaylistsPlaylists
Unit
files

Manual Assignment

Directory structure

Figure 5.1: System architecture.

is generated by the Java-based Wrapper that performs all steps necessary before
starting the Torque server. When the Wrapper starts, it loads a configuration-
file and scans the mission-file for marker-objects that designate locations for
music representation. According to the encountered objects it loads the data
that describes the organized music files. When a marker-object refers to a SOM-
based organization it parses the respective unit-file, a text file describing the
SOM-generated matrix. When a marker-object refers to a manually generated

5.2. IMPLEMENTATIONS IN TORQUE 39

folder hierarchy, it scans the related directories. When the Wrapper has processed
all input data, it starts to generate the objects-file which describes every single
music-related object. The information about the appearance and arrangement
of these objects is gathered from predefined asset-files in a simple repository.
Playlist-files and a start-script are created in order to configure the Icecast server.
The playlists are also used to generate JPEG-images that show the title and the
artist for each music track. The images are used as textures for playlist-objects
within the virtual environment. Further images are created for each text file
that describes a folder for directory-based organization. In this case, the images
are used as textures for signboards-objects. When the Wrapper has finished its
tasks, the Torque server as well as the Icecast server can be started. The Torque
server creates the basic environment by loading the mission-file and integrates
the music representation according to the definitions in the objects-file. The
start-script initializes the Icecast server and creates an audio stream for each
playlist-file. When both servers are successfully started, the system is running
and ready for client connections.

5.2 Implementations in Torque

The Torque SDK comes with an example project that already provides a lot of
functionality. Client-server communication, text-chat, user navigation, a graphi-
cal user interface (GUI) and much more can be used and adapted to own needs.
This section describes the main changes and additional implementations in Torque
necessary for the realization of The AudioSquare. The visual design of the GUI
has been adapted and new elements have been added. Additional routines written
in TorqueScript were implemented for importing the objects-file. New Datablocks,
Torque’s concept for describing object-types in TorqueScript, have been created.
In order to enable playback of broadcasted audio streams over the Internet within
the virtual environment, a new audio object has been integrated into Torque’s
source code.

5.2.1 The User Interface for the Torque Client

The GUI of The AudioSquare follows a straightforward black-and-white scheme.
A window appears in transparent white with black text, while the colors of its
title-bar are displayed inversely. The menu on the start-screen contains buttons
for entering the virtual world, changing the display settings and closing the ap-
plication. When the start-button is pressed, a small window shows up where a
user may select an avatar and type in a name for identification. On confirming,
the client-application connects to the Torque server.

The view of the virtual world fills the whole window or the whole screen,
depending on the selected display-option. When the avatar encounters an audio

40 CHAPTER 5. IMPLEMENTATION

source, a small head-up display (HUD) appears on the lower left of the screen. It
describes the currently playing track by title, author, album and genre. Aligned
to the right border of the screen, an additional HUD appears showing the whole
playlist of the audio stream. This HUD can be disabled by pressing “F6”. A
small chat-HUD can be found on the top of the screen. The key “C” may be
pressed in order to start chatting. The chat message is sent to all other users
within the same area as the sender. More information about navigation and
interaction within the virtual environment may be found in Table 5.1.

Key / Mouse Move or Button Description
Horizontal mouse movement Turn left / right
Vertical mouse movement Look up / down
“w” Move forward
“s” Move backwards
“a” Move left
“d” Move right
“e” Zoom view (useful for viewing details such as

playlists)
space Jump
Left mouse button Skip actual music track (only when close to an audio

source)
“c” Start chat (when chat-HUD is open)
“F4” Toggles the visibility of the chat-HUD
“F5” Toggles the visibility of the debug-HUD
“F6” Toggles the visibility of playlist-HUD

Table 5.1: Keyboard and mouse settings for navigation

5.2.2 Customized 3D Objects

Torque provides many 3D objects that can be used in the virtual world. Some of
these objects had to be extended or rewritten to fit the needs of The AudioSquare.
Usually this is done by creating new Datablocks in TorqueScript, a concept of the
game engine for creating new object types described by a shape, properties and
a behavior.

Objects representing Playlists and Signboards

Two similar 3D objects show metadata about the presented content within the
virtual world. In both cases images mapped as textures onto the objects show
descriptive text. The corresponding image files are automatically generated by
the Wrapper. Figure 5.2 shows an example for such objects. As seen in the left
picture, a playlist-object is reminiscent of a menu card, showing a list of music
tracks designated by title and artist. The signboard-object on the right is used
for directory-based mapping and shows the metadata that describes the contents

5.2. IMPLEMENTATIONS IN TORQUE 41

of a folder in a text file. It indicates that the corresponding audio stream plays
music from the genre “Rock & Pop” whereas the featured band is called “Very
large Array”.

Figure 5.2: 3D objects representing metadata. The left picture shows a playlist-
object, the right picture shows a signboard-object.

Marker-Objects

As described in the conceptual design in Chapter 4, marker-objects integrated
in the basic virtual environment specify locations for music representation. For
SOM-based organization a Datablock called “SomMapping” has been created.
The corresponding object is a simple cube that is only visible in the World Edi-
tor. Its position, rotation and scale describes the area wherein a SOM-generated
matrix should be represented. Further properties specify the name of the unit-file
describing the matrix, the section of the matrix and the name of the asset-file
from the repository. The corresponding Datablock for directory-based organiza-
tion is called “DirectoryMapping”. Similar to the other marker-object, it is a cube
invisible in runtime. Its location indicates a starting point from where on the rep-
resentation starts. Other properties specify the location of the folder structure,
the name of the asset-file from the repository and the information needed for the
layout of the representation (cf. Chapter 4.2). Code-examples for both types of
marker-objects are demonstrated in Appendix C. Figure 5.3 demonstrates how
marker-objects are displayed within the World Editor. The left example shows
a “SomMapping” object placed inside of a building. Its boundaries specify the
area wherein the SOM-generated matrix is to be represented. The right example
shows a “DirectoryMapping” object, displayed as an outlined cube.

42 CHAPTER 5. IMPLEMENTATION

Figure 5.3: Marker-objects indicate locations for music representation. The ob-
jects are signified by the yellow outlines. The left picture defines an area for SOM-
based representation. The right picture defines a starting-point for directory-
based mapping.

Audio Triggers

A Trigger in Torque is an invisible cube which initiates an event as soon as a user
enters or leaves it. A customized child-Datablock of Trigger handles the head-
up displays which show information about a specific audio source. When a user
enters such a Trigger, the embedded meta-data of the respective audio stream is
used to show information about the currently playing track and the playlist on
the HUDs.

AudioStreamEmitter

Torque’s original AudioEmitter -object plays audio spatially when placed in a
virtual environment. Since it only supports playback from the local file system,
a new object called AudioStreamEmitter has been added into the source code.
This object takes advantage of FMOD, a proprietary cross-platform programming
interface for audio playback. It is free of charge for non-commercial use, easy
to implement and supports the playback of MP3-based audio streams over the
Internet. Moreover, the streams can be played as 3D audio sources.

5.2.3 Setting up the virtual environment in Torque

At the beginning of a new virtual world which is supposed to act as a venue
for the exploration of music archives stands the basic design. In Torque this
is made with its built-in World Editor. Creating environmental objects such
as a terrain, the sun and water areas are supported as well as importing and
placing 3D objects. When the design of the basic environment is completed, the
locations for music representation are defined by placing the marker-objects for

5.2. IMPLEMENTATIONS IN TORQUE 43

SOM-based and directory-based representation. The whole world definition is
stored in a single mission-file, a text-based file that describes the 3D objects via
TorqueScript.

5.2.4 Creating assets for the Repository

In the virtual environment the music is represented in terms of spatially posi-
tioned audio sources as well as visually in the form of 3D objects. A set of these
objects is stored as an asset in a simple repository. Such an asset is created in the
World Editor and stored in a separate mission-file. The repository is thus a direc-
tory containing mission-files which are used for music representation. An asset
representing a unit of a SOM-generated matrix contains the following objects:

• At least one 3D object for visual representation.

• One playlist-object.

• One AudioStreamEmitter for playing a broadcasted audio stream.

• One Trigger object for identifying avatars close to the audio source.

In case of directory-based representation an asset covers even more objects. It
contains a building wherein several objects for music representation are located.
Accordingly, the following objects are needed:

• A building which acts as a container for music representation.

• Other 3D objects related to the building (eg. windows).

• Multiple sets of objects as described for SOM-based mapping for each po-
tential audio stream within the building. Thus, one such set consists of 3D
objects, one playlist-object, one AudioStreamEmitter and one Trigger.

• Several signboard-objects, one attached to the building and multiple objects
placed next to the audio sources.

The objects used for representation are collected in a Torque-specific Sim-
Group which represents a hierarchical element for collecting objects. An asset
can contain multiple collections in order to facilitate variations of the same visual
design.

Figure 5.4 depicts four different examples for assets as seen in the World Edi-
tor. The rightmost picture shows an example for directory-based representation.
It is a building containing several stereos on a table. A small signboard next
to the entrance of the building displays the description of the music presented
inside. The other pictures show designs of assets for SOM-based representation.

44 CHAPTER 5. IMPLEMENTATION

All three examples show a table surrounded by chairs, with a small speaker on
the top. The third picture from the left shows, how variations of the same visual
design are realized within an asset.

Figure 5.4: Assets for the repository. The rightmost picture depicts an asset for
directory-based mapping, the others address SOM-based representation.

5.2.5 Importing the Objects-File

When the Torque server starts, it loads the mission-file that describes the basic
virtual environment. A custom script parses the XML-structure provided by the
objects-file and creates an internal tree-structure of Torque’s ScriptObjects, very
flexible objects that can contain randomly assigned attributes. This structure
is then used to integrate and configure 3D objects for music representation in
the virtual world. When this process is finished, the server is ready for client-
connections.

5.3 Implementation of the the Wrapper

The Wrapper is a Java-based command-line application that processes the data
specified for music organization in order to create a definition of the visual repre-
sentation within the virtual environment. Several internal Java-classes represent
the data provided by the input-files, locations and objects in the virtual world,
the audio streams for the Icecast server and the XML-output. When started, the
Wrapper performs the following tasks consecutively:

• Read the configuration-file for the Wrapper itself. It contains file paths,
settings for the graphical output and settings for the Icecast server.

• Scan the mission-file that describes the basic virtual environment for marker-
objects defining locations for SOM-based as well as directory-based repre-
sentation.

• Load asset-files from the repository as specified by the marker-objects.

5.3. IMPLEMENTATION OF THE THE WRAPPER 45

• Load a text file that contains metadata extracted from all audio files in the
music archive.

• Load the unit-files referenced by marker-objects in the mission-file.

• Load the folder structures as specified by marker-objects in the mission-file.

• Create images for playlist-objects and signboard-objects as used for repre-
senting metadata within the virtual environment.

• Create a startup-script and playlist-files for the Icecast server.

• Create the XML-based objects-file which specifies all 3D objects used for
music representation.

Mission

MissionObject

MissionPoint

Configuration

IcecastStation

Settings
file

Mission
file

TemplateCollection

Template

TemplateGroup

TemplateObjectTemplate
files

MatrixCollection

MSMatrixMatrix

MSUnitUnit

Unit files

SongInfo

ID3 Tags
file

DirectoryMappingCollection

DirectoryMapping

DirectoryNode

MediaNode

Directory
structure(s)

on
filesystem

Objects-
file
(XML)

Playlists
and
start-
script

Figure 5.5: The Java-classes of the Wrapper support the representation and
processing of the mission-file, one or more unit-files, one or more manually created
directory structures, song-metadata, locations in the virtual environment and the
Icecast-streams.

46 CHAPTER 5. IMPLEMENTATION

Parameter Description
$PLATFORM Operating system for runtime (“Windows”, “Mac”, “Linux”)
$UNIT PATH Path where the unit-files reside
$MISSION FILE Path for the mission-file which describes the virtual environment
$DIRECTORY ROOT Path for the directories that represent the manual mapping
$TORQUE OUTPUT Path for the final XML-file that is used by the game engine
$ID3 INFO FILE Path for the file that contains the extracted ID3 tags
$TEMPLATES Directory of the repository
$IC SOURCEPATH Directory where the templates for the Icecast files reside
$IC TARGETPATH Directory where the compiled Icecast files should be written
$IC SONGPATH Absolute path on the server where the audio files reside
$IC PORT TCP/IP-port used by Icecast
$IC ICES ENTRY Bash-command template for starting an Ices instance
$IC MAIN Name of the Icecast start script
$IC PLAYLISTFILENAME File name template of a playlist file
$IC CONFIG XML File name of the configuration for Icecast
$IC URL URL of the Icecast server
$PLAYLIST WIDTH The width in pixels of the image that represents a playlist
$PLAYLIST HEIGHT The height in pixels of the image that represents a playlist
$PLAYLIST FONT TYPE The font used for a playlist image (e.g. Arial)
$PLAYLIST FONT SIZE The font size for a playlist image
$PLAYLIST FONT LINEHEIGHT Line spacing between two entries on the playlist
$PLAYLIST MAX CHARS Maximum of characters in a playlist entry
$PLAYLIST IMAGE FOLDER Folder where the playlist image are stored
$LABEL WIDTH The width in pixels of the image that represents an object label
$LABEL HEIGHT The height in pixels of the image that represents an object label
$LABEL FONT TYPE The font used for an object label image
$LABEL FONT SIZE The font size for an object label image
$LABEL FONT LINEHEIGHT The line spacing used for an object label image
$LABEL FONT MAX CHARS Maximum characters in a line of an object label

Table 5.2: Parameters in the configuration-file for the Wrapper.

5.3.1 Class-Representation of Torque Objects and Input Files

The Java-classes of the Wrapper and their major dependencies are depicted in
Figure 5.5. The first file loaded is the configuration-file which is represented by the
static class Configuration to provide general settings across all other Java-classes
(cf. Table 5.2). The Mission class scans the mission-file for marker-objects which
specify the locations for music representation. According to the Datablock -types
of the marker-objects the Wrapper considers different representation scenarios.
When the object is of the type “SomMapping”, its position, size and rotation
around the vertical axis define the area for visualizing a SOM-based matrix.
Additional properties, “xfrom”, “yfrom”, “xto” and “yto”, specify the section
of the matrix that should be imported. When the marker-object is of the type
“DirectoryMapping”, its position and rotation around the vertical axis define a
starting point for the representation of a directory structure. By setting one of the
three properties “linear”, “circular” and “matrix” to true the layout algorithm
for placing the buildings is selected. Depending on the layout, further properties
define the distances between the objects, the radius of the circle or the size of the
matrix. The property “directory” refers to the location of the directory structure.
Finally, the attribute “templatename” specifies the filename of the asset in the
repository.

A 3D object within an asset is represented as an instance of the TemplateOb-
ject class. Several of these objects are collected in instances of the TemplateGroup

5.3. IMPLEMENTATION OF THE THE WRAPPER 47

class. Accordingly, TemplateGroup stands for a set within an asset. In order to
allow variations of the same design, multiple sets are aggregated in the Template
class which finally represents a whole asset-file. Different assets are collected in
TemplateColletion.

The Matrix class represents the data loaded from a single unit-file. Since mul-
tiple unit-files are supported, the representations are collected in the MatrixCol-
lection class. Instances of the Unit class describe the units of a SOM-generated
matrix and contain attributes for the position in the matrix, a list of filenames of
the audio tracks and a unique number to identify the audio stream for the Icecast
server.

The DirectoryMapping class represents a folder hierarchy for manual organi-
zation. Several instances of DirectoryNode refer to a low-level folder containing
the music files. The audio files are represented by instances of MediaNode which
describe an audio track by its filename, title, artist, genre and a stream number
for the Icecast server. Since it is possible to represent more than one directory
hierarchy in the same virtual environment, the class DirectoryMappingCollection
aggregates multiple DirectoryMapping instances.

The Wrapper retrieves the metadata describing the music files from a single
text file. The file is generated by a Unix-based shell-script that scans all audio
files in a given folder for meta-tags. This file is loaded by the class SongInfo
that creates instances of itself for every title. IcecastStation is responsible for the
creation of the audio streams broadcasted by the Icecast server. An IcecastStation
instance represents an audio stream and is created for each instance of Unit and
DirectoryNode. It stores a list of filenames within a playlist and a unique stream
number.

MissionPoint represents a specific location in the virtual world. Its instances
specify where representation of music should take place. On the one hand this is
the case for SOM units. Every instance of Unit creates a MissionPoint according
to the location and size of the respective marker-area and the number of columns
and rows in the matrix. On the other hand, every DirectoryNode instance creates
a MissionPoint according to the starting point and the layout algorithm as given
in the corresponding MissionObject instance.

5.3.2 Processing the Output-Files

The main output of the Wrapper, the objects-file, contains XML-data that de-
scribes all objects used for the representation of the music. It is generated by
iterating through every instance of MissionPoint and calling the method for
building an XML-node on the Template instance. If a Template instance con-
tains more than two TemplateGroup objects, one of them is selected randomly.
An example of an objects-file is given in Appendix B. The following nodes and
sub-nodes are generated in this XML file:

48 CHAPTER 5. IMPLEMENTATION

• unit : This node contains all objects that represent a single unit of the
respective SOM.

• dirmapping : This node contains all objects that represent top-level folders
in directory-based mapping.

• songinfo: Represents a collection of music tracks that belong to an audio
stream.

• song : Sub-nodes of songinfo representing a music track by title, artist,
album and genre.

• static: Describes a 3D object that represents the media visually. It refers
to a 3D file in Torque’s DTS-format, its position, rotation, scale and name.

• interior : Describes a 3D object used for representing buildings or similar
objects. The XML-node refers to a 3D file in Torque’s DIF-format, its
position, rotation, scale and name.

• audioemitter : Stands for an object that plays the audio stream and contains
its name, position, rotation, scale and the URL of the stream including
its unique number. Further properties describe audio-specific parameters.
These are the distance wherein the sound is played at full volume (reference
distance) and the maximum distance wherein the sound is audible.

• playlist : Represents a 3D object that shows the playlist for the audio stream
as an image-texture. It refers to a 3D file in Torque’s DTS-format and
contains properties for its position, rotation, scale, name and the filename
of the image to use as texture.

• label : Represents the objects that act as signboards. It has the same prop-
erties as the playlist object listed above.

• objecttrigger : Describes a Trigger that initiates an event for showing the
HUDs with information about the audio tracks when the user crosses its
boundaries. The node specifies the Trigger by position, rotation, scale and
name. Additional information is provided for debugging purposes.

Besides the objects-file, the Wrapper creates JPEG-images which are used
as textures in the virtual environment. One the one hand, this is the case for
playlist-objects. The corresponding image contains the artist and title of each
track. On the other hand the images are used for signboards to describe the
buildings and audio streams when directory-based organization is used.

For the Icecast server, every instance of IcecastStation creates a playlist-file
with a unique name. Such files simply contain the file path of each audio file,
separated by a line break. A start-script is also generated providing the code for
starting the Icecast server and configuring the audio streams.

5.4. THE ICECAST STREAMING SERVER 49

5.4 The Icecast Streaming Server

The Torque server does not support broadcasting of audio over the Internet.
This is done by Icecast, an open source media server, developed by the non-profit
organization Xiph.org3. Icecast provides a large number of audio streams at the
same time. It supports the MP3-format as used for The AudioSquare as well
as the license-free OGG-format. The decision for MP3 was made due to the
technical requirements of FMOD which receives the streams on the client-side.
In order to run a streaming environment, a single Icecast process and multiple
instances of Ices, one for each audio stream, are needed. An Ices instance acts
as a transcoder which continuously converts audio files on-the-fly according to
a defined playlist. The converted audio stream is passed to the Icecast server
that delivers the data over HTTP, where each stream is identified by a different
TCP-port.

Figure 5.6 depicts the Icecast setup used for The AudioSquare. The streaming
environment is started by a shell-script called “icecast.sh”. Just like the playlist-
files, this script is generated automatically by the Wrapper. When the script
executes, it starts the Icecast server and one Ices instance for each playlist. When
all processes are started, the streaming environment is ready for broadcasting
audio to the Torque clients.

icecast.sh

Icecast2

Ices
(stream1)

Ices
(stream2)

Ices
(stream3)

Ices
(stream<n>)

...

playlist
1

playlist
2

playlist
3

playlist
n

create
instances

Internet

Figure 5.6: Icecast architecture

3http://www.xiph.org/ (date of access: 23.02.2008)

50 CHAPTER 5. IMPLEMENTATION

Icecast
start script

ices_all.pid

Ices instance

Ices instance

Ices instance

...
starts instances

w
rite file

PHP scriptreads file

Torque client

ki
ll

si
gn

al

request for next track

Figure 5.7: Setup for skipping tracks

Icecast also integrates metadata for the currently playing music track by using
the ID3-tags4 embedded in the audio files. Since it only features information
about title and artist in the original version, the source code has been modified
for The AudioSquare. The customized version provides additional tags which are
album title, genre and the position of the actual track in the playlist. The Torque
clients use the metadata for displaying information about the currently playing
track in the HUD and for determining its position in the playlist.

Users can skip to the next music track when they are close to an audio source
by pressing the left mouse button. Since the only way for skipping in Icecast is
to send a Unix-based “kill”-signal to the respective Ices process, a special setup
has been implemented for this feature. As depicted in Figure 5.7, the startup-
script for Icecast writes the process numbers and the stream names into a text
file called “ices all.pid”. When a user wants to skip an audio track by pressing
the mouse button, a PHP-script is called via HTTP-request containing the name
of the stream. The script reads the text file in order to determine the process-id
of the respective Ices instance. By sending the kill-signal “SIGUSR1” to this
process, the current track is skipped and the next one starts playing.

4http://www.id3.org/ (date of access: 22.03.2008)

Chapter 6

Visit The AudioSquare

The final version of The AudioSquare can be downloaded from the Web site
http://www.theaudiosquare.net and runs on Windows XP, Linux and Mac OS X.
The latter operating system only covers the visual representation of the virtual
world, since FMOD’s support for OS X relies on a different version which is not
used in Torque’s source code. In order to run The AudioSquare, just extract the
downloaded package to any location on the local hard drive. A broadband Inter-
net connection is required in order to connect to the Torque server and to listen
to the audio streams. There is also an option for starting the application offline
if no connection is present. The AudioSquare features music from Magnatune,
an online-disributor of loyalty-free music. As depicted in Figure 6.1, the virtual
world has four areas. Users start their exploration in the welcome-area (1) at the
center. Basic information about the virtual world can be found on the screen in
the information-area (2). The SOM showroom (3) is a building, where the music
tracks are organized by a self-organizing map. The manual showrooms (4) repre-
sent music organized according to a predefined directory structure. Each building
covers a different genre, according to Magnatune’s library. Hence, the genres are
“Classical”, “Electronic”, “Jazz & Blues”, “Metal & Punk” and “Rock & Pop”.
The subsequent text takes the reader on a tour through The AudioSquare by
telling a short fictitious story.

The virtual tour starts at the imaginary home of Bob. He likes to listen to all
kinds of music and has recently heard about a new virtual place on the Internet
where people can explore music and talk about their favorite songs online. Fortu-
nately he remembers the name of the place, The AudioSquare, and starts to search
for it on the Web. He quickly finds the project page and downloads a package
containing the client-application to his computer. After unpacking the contents,
he immediately starts the program. The start-screen of The AudioSquare pops
up, presenting a background image that gives him a clue of how the virtual world
looks like (cf. Figure 6.2). A simple menu in the form of buttons with small icons

51

52 CHAPTER 6. VISIT THE AUDIOSQUARE

Figure 6.1: Bird’s-eye view on The AudioSquare

tell him what he can do next. He decides to enter the virtual world online and
clicks on the first button in the menu.

A small window appears where Bob is encouraged to select an avatar and to
enter a name (cf. Figure 6.3). He chooses the avatar that looks like a man with
a yellow-striped pullover. Since he has nothing to hide, Bob simply enters his
real name. Then he clicks on the start-button located on the bottom left of the
window. Immediately he is informed that The AudioSquare is being started.

When the loading from the server has been completed, Bob finds himself in the
middle of the virtual world (cf. Figure 6.4). As he looks around, he recognizes a
big house, an architectural setting of long buildings arranged along an imaginary
circle and a big screen showing some text. At the center, where Bob is standing,
he can see guideposts telling him the names of the different locations.

Since he is new to this world, he decides to head towards the screen, expecting
to be informed about the virtual world (cf. Figure 6.5). By reading the text, he
learns more about The AudioSquare and how he can interact and communicate
with other users. Next he decides to visit the big house.

Inside the building which has been referred to as the SOM-showroom by the
guidepost, he sees an arrangement of tables (cf. Figure 6.6). He sees speakers
standing on these tables. This suggests him that he can find music there. As he
encounters one of the tables, he immediately starts hearing music. The playlist
on the table next to him shows him what kind of music is being played here.
Since he likes the music, he starts to walks around a little bit.

53

Figure 6.2: The start-screen shows a preview of the virtual world and a menu.

After a while Bob wants to hear more music and decides to go upstairs (cf.
Figure 6.7). The playlist on one of the tables shows a song he might know.
Wondering if he is right, he wants to skip the currently playing track so he can
immediately listen to the song in question. Since the featured music archive
comes from Magnatune, a rather unknown music-label, Bob must admit that he
doesn’t recognize the track.

Bob wonders what the other people think about this place. He decides to
ask someone close to him. He walks over to an avatar called Sally, opens the
chat-HUD by pressing “F4” and starts his message by pressing “c”. After saying
“hello”, the two start a small conversation about The AudioSquare (cf. Figure
6.8).

During their conversation, Sally tells him about the other area, where music
is organized in a different way. She tells him that she found a very beautiful
classical piece there. She offers to show him the area. Bob accepts and they start
walking towards the other showrooms (cf. Figure 6.9).

Sally leads him to the place where her favorite song is being played and
switches to the track she wanted to show him. Bob listens for a while, then they
start to talk about the music piece (cf. Figure 6.10).

The two virtual strangers stick together for a while, chatting about music and
other topics while listening to the music played at their location. Finally, Bob

54 CHAPTER 6. VISIT THE AUDIOSQUARE

Figure 6.3: The login-window lets a user select an avatar and type in a name.

and Sally say good bye and leave The AudioSquare. This is the end of our short
story. What happened to Bob and Sally is kept secret.

55

Figure 6.4: The entrance-area of the virtual world is located in the middle of the
whole scenario.

Figure 6.5: The information-screen informs users about the purpose of The Au-
dioSquare and how to navigate and interact within the virtual world.

56 CHAPTER 6. VISIT THE AUDIOSQUARE

Figure 6.6: Inside the “SOM showroom”. Each table represents a unit of a SOM
and plays an audio stream.

Figure 6.7: Another area in the same building. The appearance of the interior is
different here.

57

Figure 6.8: The small chat-HUD on the top of the screen is used for conversations
with other users.

Figure 6.9: In front of the showrooms for directory-based organization.

58 CHAPTER 6. VISIT THE AUDIOSQUARE

Figure 6.10: This showroom is dedicated to classical music.

Chapter 7

Conclusions and Future Work

This chapter summarizes the work presented in this thesis. Moreover, some
suggestions are made for future developments concerning media representation
within three-dimensional virtual environments.

A prototype, referred to as The AudioSquare, was developed in order to pro-
pose a new approach for representing music archives within a virtual environment.
The Torque Game Engine was used to set up a system architecture that allows
multiple users to connect to a dedicated server over the Internet. The users, im-
personated as avatars, can walk through a collaborative virtual world and explore
music represented by 3D objects playing spatial sound. A simple chat-system en-
courages people to exchange their experiences. A media server was set up to
take over the broadcasting of the audio streams, whereas the Torque clients were
modified in order to receive the streams over the Internet.

The creation of the virtual world was done in three main steps. First, the
basic environment was designed, containing the terrain, buildings and environ-
mental objects. In the second phase, areas were defined within the environment
which specify where the music is to be represented. Finally, an automatic pro-
cess, performed by a Java-based application, mapped all objects necessary for the
representation into the virtual space. In order to meet different demands, two
methods for organization and representation were developed. On the one hand,
the music can be organized by means of a self-organizing map. The resulting
representation in the virtual world are objects arranged according to a matrix.
The distance between the objects to one another indicates the sound-similarity of
the respective music. The other organization-method relies on manually setting
up a folder-structure on the local file system. The hierarchy is preserved as an ar-
chitectural setting within the virtual world, where buildings represent collections
and objects inside represent the music.

The AudioSquare is an attempt of showing the relevance of virtual worlds
for media representation. On the one side, they are multimedia “by nature”,

59

60 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

meaning they usually come with the ability of representing images, sound or even
videos. On the other side, the virtual space can be used for showing relations
between the entities of a data set by transformation of similarities into spatial
relations. Moreover, an increasing number of people are getting used to 3D
environments. Unfortunately, online worlds such as Second Life are simply not
advanced enough to fulfill the requirements for creating a complex system capable
of visualizing media content in a dynamic way. For this reason, The AudioSquare
was developed on the basis of a highly customizable technical framework, the
Torque Game Engine. However, a transformation of the present concept into the
realms of a popular virtual world would be interesting for future work.

A further approach for refining the principal concept is to make the system
more dynamic. Currently, the visual representation is created on startup of the
server. Enabling the system to add and remove content on runtime would create
a persistent and more vibrant virtual world. Another improvement could be
achieved by adding semantic layers to the objects that represent the music in order
to enhance the user’s experience. For example, artworks of albums or pictures of
artists could be retrieved from a Web service such as Amazon’s online-database
and used as images within the virtual world. Additional objects could change
their appearance according to variable parameters. For instance, the size of a
3D object could indicate how many people already listened to a specific audio
stream.

The strategies used for organizing and representing music in The AudioSquare
can also be applied to other types of media. This has already been done with
the development of an extended version, called The MediaSquare1. Created in
cooperation with the EC3 in Vienna, it is able to present music, text and images
within one virtual world by applying the same organization methods as used in
its predecessor.

1http://mediasquare.ec3.at (date of access: 20.03.2008)

Chapter 8

Acknowledgements

I would like to thank all the people who supported me during the long time of work
on this thesis. In particular, I would like to express my deepest gratefulness to my
advisors Helmut Berger and Andreas Rauber. It were the lots of conversations
with Helmut in combination with his patience that helped me to develop my ideas
and come through the hard times of my thesis. Andreas was the one who made
it possible to find an interesting and challenging topic which inspired me through
the whole time of writing. I would also like to thank the members of the EC3
in Vienna, where I could work for a long time in a friendly atmosphere. Thanks
to Florian Boschitsch for proof-reading and for not complaining too much about
my English. Further thanks to Bernhard Faiss for his professional suggestions
concerning the poster.

I would like to express my deepest esteem and biggest thanks to my dearly-
loved Agnes. During the two and a half years we know each other, she had to
stand the vexations of two diplomas. What I definitely can tell is that I will
never do another thesis and, even more essential, that she is the most important
person in my life. I would like to sincerely thank my mother and my father for
always being loving parents. In memories of the early times of my study, I would
like to thank Rainer Müller for being the closest fellow student I ever had.

61

Bibliography

[1] M. O. Afolabi and O. Olude. Predicting stock prices using a hybrid Kohonen self
organizing map (SOM). In HICSS-40: Proceedings of the 40th International Con-
ference on System Sciences, page 48, Washington, DC, USA, January 2007. IEEE
Computer Society. [cited at p. 27]

[2] D. Bainbridge, C. Nevill-Manning, I. Witten, Smith L., and R. McNab. Towards
a digital library of popular music. In DL ’99: Proceedings of the fourth ACM
conference on Digital libraries, pages 161–169, New York, NY, USA, 1999. ACM
Press. [cited at p. 9]

[3] J. Barlow, S. Birkerts, M. Slouka, and S. Kelly. What are we doing on-line? Harper’s
Magazine, pages 35–44, August 1995. [cited at p. 14]

[4] M. Beck. Realisierung eines Geoinformationssystems - Visualisierung und Analyse-
funktionalität mit einer 3D Engine. Master’s thesis, University Stuttgart, Stuttgart,
Germany, June 2002. [cited at p. 13]

[5] D. Bergert. Twinity: Second Life-Konkurrent “Made in Berlin”, www.pcwelt.de/
start/gaming_fun/sonstiges/news/86634/ (accessed: January 17, 2008). PC
Welt, August 2007. [cited at p. 18]

[6] A. Blazejewski and R. Coggins. Application of self-organizing maps to clustering of
high-frequency financial data. In ACSW Frontiers ’04: Proceedings of the second
workshop on Australasian Information security, Data Mining and Web Software In-
ternationalization, pages 85–90, Darlinghurst, Australia, 2004. Australian Computer
Society, Inc. [cited at p. 27]

[7] E. Castronova. Virtual worlds: A first-hand account of market and society on
the cyberian frontier. CESifo Working Paper Series No. 618., December 2001.
[cited at p. 15]

[8] E. Castronova. Synthetic Worlds: The business and culture of online games. Uni-
versity of Chicago Press, Chicago, Illinois, USA, 2005. [cited at p. 1]

[9] D.L. Chao. Doom as an interface for process management. In CHI ’01: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, pages 152–
157, New York, NY, USA, 2001. ACM Press. [cited at p. 13]

[10] D.L. Chao. Computer games as interfaces. Interactions, 11(5):71–72, September
2004. [cited at p. 13]

63

www.pcwelt.de/start/gaming_fun/sonstiges/news/86634/
www.pcwelt.de/start/gaming_fun/sonstiges/news/86634/

64 BIBLIOGRAPHY

[11] R. Cogan. New Images of Musical Sound. Harvard University Press, Cambridge,
Massachusetts, USA, December 1984. [cited at p. 9]

[12] B. Damer. Avatars: Exploring and Building Virtual Worlds on the Internet. Peach-
pit Press, Berkeley, California, USA, October 1997. [cited at p. 15]

[13] S. DiPaola and D. Collins. A social metaphor-based 3D virtual environment. In
SIGGRAPH ’03: ACM SIGGRAPH 2003 Educators Program, pages 1–2, New York,
NY, USA, July 2003. ACM Press. [cited at p. 16]

[14] M.J. Dovey. A technique for “regular expression” style searching in polyphonic
music. In ISMIR 2001: Proceedings of the 2nd Annual International Symposium
on Music Information Retrieval 2001, pages 179–185, Bloomington, Indiana, USA,
October 2001. Indiana University. [cited at p. 8]

[15] D. Fritsch and M. Kada. Visualisation using game engines. In Proceedings of the
XX ISPRS Congress, Commission V, pages 621–625, Istanbul, Turkey, July 2004.
International Archives of Photogrammetry, Remote Sensing and Spatial Information
Sciences. [cited at p. 13]

[16] A. Ghias, J. Logan, D. Chamberlin, and B. C. Smith. Query by humming: mu-
sical information retrieval in an audio database. In Proceedings of the third ACM
international conference on Multimedia, pages 231–236, New York, NY, USA, 1995.
ACM Press. [cited at p. 9]

[17] W. Gibson. Neuromancer. Heyne, Munich, Germany, 1984. [cited at p. 15]

[18] S. Greenberg and M. Roseman. Using a room metaphor to ease transitions in
groupware. In Beyond Knowledge Management: Sharing Expertise, pages 203–256,
Cambridge, Massachusetts, USA, 2002. MIT Press. [cited at p. 1]

[19] H. Harb and L. Chen. A query by example music retrieval algorithm. In E. Izquierdo,
editor, Digital Media Processing for Multimedia Interactive Services, pages 122–128.
Queen Mary, University of London, UK, 2003. [cited at p. 9]

[20] E. Isaacson. What you see is what you get: On visualizing music. In ISMIR 2005:
Proceedings of the 6th International Conference on Music Information Retrieval,
pages 389–395, London, UK, September 2005. University of London. [cited at p. 8]

[21] J. Jacobson. Common office equipment and caveut make a cheap portable cave. In
VR ’03: Proceedings of the IEEE Virtual Reality 2003, page 311, Washington, DC,
USA, March 2003. IEEE Computer Society. [cited at p. 13]

[22] G.A. Kaminka, M.M. Veloso, S. Schaffer, C. Sollito, R. Adobbati, A.N. Marshall, A.
Scholer, and S. Tejada. GameBots: A flexible test bed for multiagent team research.
Communications of the ACM, 45(1):43–45, 2002. [cited at p. 14]

[23] F. Kaplan, A. McIntyre, C. Numaoka, and S. Tajan. Growing virtual communities
in 3d meeting spaces. Lecture Notes In Computer Science, 1434:286–297, 1998.
[cited at p. 16]

[24] S. L. Kent. The ultimate History of Video Games. Three Rivers Press, New York,
NY, USA, 2001. [cited at p. 11]

65

[25] P. Knees, M. Schedl, T. Pohle, and G. Widmer. An innovative three-dimensional
user interface for exploring music collections enriched. In Proceedings of the 14th
annual ACM international conference on Multimedia, pages 17–24, New York, NY,
USA, October 2006. ACM Press. [cited at p. 10]

[26] I. Knopke. Geospatial location of music and sound files for music information re-
trieval. In ISMIR 2005: Proceedings of the 6th International Conference on Music
Information Retrieval, pages 29–33, London, UK, September 2005. University of
London. [cited at p. 7]

[27] T. Kohonen. Self-organized formation of topologically correct feature maps. Bio-
logical Cybernetics, 43:59–69, 1982. [cited at p. 25]

[28] T. Kohonen. Self-organizing maps. Springer Verlag, Berlin, Germany, 1995.
[cited at p. 2, 25]

[29] B. Kot, B. Wuensche, J. Grundy, and J. Hosking. Information visualisation util-
ising 3D computer game engines - case study: A source code comprehension tool.
In CHINZ ’05: Proceedings of the 6th ACM SIGCHI New Zealand chapter’s inter-
national conference on Computer-human interaction, pages 53–60, New York, NY,
USA, July 2005. ACM Press. [cited at p. 13]

[30] J. E. Laird. Research in human-level AI using computer games. Communications
of the ACM, 45(1):32–35, 2002. [cited at p. 14]

[31] J. Langer. GDC: PlayStation 3 - mit Sony Home gegen Xbox Live, http://www.
golem.de/0703/50934.html (accessed: January 16, 2008). golem.de, March 2007.
[cited at p. 17]

[32] M. Lewis and J. Jacobson. Game engines in scientific research. Communications of
the ACM, 46(1):27–31, 2002. [cited at p. 12]

[33] B. Logan and A. Salomon. A music similarity function based on signal analysis. In
Proceedings of the IEEE International Conference on Multimedia and Expo, pages
745–748, Washington, DC, USA, July 2001. IEEE Computer Society. [cited at p. 9]

[34] D. Luebbers. Sonixplorer: Combining visualization and auralization for content-
based exploration of music collections. In ISMIR 2005: Proceedings of the 6th
International Conference on Music Information Retrieval, pages 590–593, London,
UK, September 2005. University of London. [cited at p. 10]

[35] K. Maney. The king of alter egos is surprisingly humble guy, http://www.usatoday.
com/printedition/money/20070205/secondlife_cover.art.htm (accessed: Jan-
uary 11, 2008). USA Today, page 1B, February 5, 2007. [cited at p. 17]

[36] M. K. Markey, J. Y. Lo, G. D. Tourassi, and C. E. Floyd Jr. Self-organizing map for
cluster analysis of a breast cancer database. In Artificial Intelligence in Medicine,
pages 113–127, Oxford, UK, 2003. Elsevier Science Ltd. [cited at p. 27]

[37] R. J. McNab, L. A. Smith, I. H. Witten, C. L. Henderson, and S. J. Cunningham.
Towards the digital music library: tune retrieval from acoustic input. In Proceedings
of the first ACM International Conference on Digital Libraries (DL ’96), pages 11–
18, New York, NY, USA, 1996. ACM Press. [cited at p. 9]

http://www.golem.de/0703/50934.html
http://www.golem.de/0703/50934.html
http://www.usatoday.com/printedition/money/20070205/secondlife_cover.art.htm
http://www.usatoday.com/printedition/money/20070205/secondlife_cover.art.htm

66 BIBLIOGRAPHY

[38] J. Moloney, R. Amor, J. Roberts, J. Furness, and B. Moores. Design critique inside
a multi-player game engine. In Proceedings of the CIB W78’s 20th International
Conference on Construction IT, Construction IT Bridging the Distance, pages 255–
263, Waiheke Island, New Zealand, 2003. CIB Publication. [cited at p. 13]

[39] R. Neumayer, M. Dittenbach, and A. Rauber. PlaySOM and PocketSOMPlayer,
alternative interfaces to large music collections. In ISMIR 2005: 6th International
Conference on Music Information Retrieval, pages 618–623, London, UK, September
2005. University of London. [cited at p. 2, 10, 21]

[40] E. Pampalk. Islands of music: Analysis, organization, and visualization of music
archives. Master’s thesis, Vienna University of Technology, Vienna, Austria, De-
cember 2001. [cited at p. 2]

[41] E. Pampalk, A. Rauber, and D. Merkl. Content-based organization and visualization
of music archives. In Proceedings of the 10th ACM international conference on
Multimedia, pages 570–579, New York, NY, USA, December 2002. ACM Press.
[cited at p. 9, 21]

[42] C. Parker. Applications of binary classification and adaptive boosting to the query-
by-humming problem. In ISMIR 2005: Proceedings of the 6th International Confer-
ence on Music Information Retrieval, pages 245–251, London, UK, September 2005.
University of London. [cited at p. 9]

[43] A. Quan-Haase, B. Wellman, J. Witte, and K. Hampton. Capitalizing on the In-
ternet: Social contact, civic engagement, and sense of community. In B. Wellman
and C. Haythornthwaite, editors, The Internet and Everyday Life, pages 291–324,
Oxford, UK, 2002. Blackwell. [cited at p. 14]

[44] A. Rauber and M. Frühwirth. Automatically analyzing and organizing music
archives. In ECDL ’01: Proceedings of the 5th European Conference on Research and
Advanced Technology for Digital Libraries, Springer Lecture Notes in Computer Sci-
ence, pages 402–414, Darmstadt, Germany, September 2001. Springer. [cited at p. 21]

[45] A. Rauber, E. Pampalk, and D. Merkl. Using psycho-acoustic models and self-
organizing maps to create a hierarchical structuring of music by musical styles. In
ISMIR 2002: Proceedings of the 3rd International Symposium on Music Informa-
tion Retrieval, pages 71–80, Paris, France, October 2002. Ircam, Centre Pompidou.
[cited at p. 21]

[46] R. Rojas. Neural Networks: A Systematic Introduction. Springer Verlag, Berlin,
Germany, 1996. [cited at p. 26]

[47] T. Scheiblauer. Anwendung von Game Engines für kollaborative virtuelle Umgebun-
gen in der Architektur. Master’s thesis, Vienna University of Technology, Vienna,
Austria, 2004. [cited at p. 13]

[48] M. Seif El-Nasr and B. K. Smith. Learning through game modding. Computers in
Entertainment (CIE), 4(1):7, January 2006. [cited at p. 13]

[49] B. Stang. Game engines - features and possibilities. Project Report, Technical
University of Denmark, Lyngby, Denmark, 2003. [cited at p. 13]

67

[50] I. Stavness, J. Gluck, L. Vilhan, and S. Fels. The MUSICtable: A map-based
ubiquitous system for social interaction with a digital music collection. In F. Kishino,
Y. Kitamura, H. Kato, and N. Nagata, editors, ICEC 2005: Proceedings of the
4th International Conference on Entertainment Computing, pages 291–302, Berlin,
Germany, September 2005. Springer Verlag. [cited at p. 7]

[51] N. Stephenson. Snow Crash. Bantam Books, New York, NY, USA, 1995.
[cited at p. 15]

[52] I. Suyoto, A. Uitdenbogerd, and F. Scholer. Effective retrieval of polyphonic audio
with polyphonic symbolic queries. In Proceedings of the international workshop
on Workshop on multimedia information retrieval, pages 105–114, New York, NY,
USA, September 2007. ACM Press. [cited at p. 9]

[53] C. Svensson. Roar of the indy, http://www.businessweek.com/innovate/

content/nov2005/id20051114_582047.htm (accessed: January 19, 2008). Busi-
ness Week Online, November 2005. [cited at p. 29]

[54] B. Thomas, B. Close, J. Donoghue, J. Squires, P. De Bondi, and W. Piekarski.
First person indoor/outdoor augmented reality application: Arquake. Personal and
Ubiquitous Computing, 6(1):75–86, February 2002. [cited at p. 13]

[55] I. Tjostheim and J. Lous. Attracting visitors - using computer games technology to
build a VR-museum. In M. Hitz, M. Sigala, and J. Murphy, editors, Information
and Communication Technologies in Tourism 2006, pages 44–54, Berlin, Germany,
2006. Springer Verlag. [cited at p. 13]

[56] M. Torrens, P. Hertzog, and J. Arcoss. Visualizing and exploring personal music
libraries. In ISMIR 2004: Proceedings of the 5th International Conference on Music
Information Retrieval, pages 421–424, Barcelona, Spain, October 2004. Universitat
Pompeu Fabra. [cited at p. 7]

[57] W. Tsai. A query-by-example technique for retrieving cover versions of popular
songs with similar melodies. In ISMIR 2005: Proceedings of the 6th International
Conference on Music Information Retrieval, pages 183–190, London, UK, September
2005. University of London. [cited at p. 9]

[58] G. Tzanetakis and P. Cook. MARSYAS3D: A prototype audio browser-editor using a
large scale immersive visual and audio display. In Proceedings of the 7th International
Conference on Auditory Display, pages 250–254, Espoo, Finland, July 2001. Helsinki
University of Technology. [cited at p. 11]

[59] M. Wallace. The game is virtual. The profit is real. http://www.nytimes.com/
2005/05/29/business/yourmoney/29game.html (accessed: January 15, 2008).
New York Times, May 29 2005. [cited at p. 15]

[60] K. Weber. The “new” new economy in second life? http://www.heise.de/tp/r4/

artikel/24/24584/1.html (accessed: February 17, 2008). Telepolis, February 6,
2007. [cited at p. 17]

[61] K. Wehn. Machinima - Was Ego-Shooter und Puppentheater gemeinsam haben,
http://www.heise.de/tp/r4/artikel/17/17818/1.html (accessed: February 22,
2008). Telepolis, July 13, 2004. [cited at p. 12]

http://www.businessweek.com/innovate/content/nov2005/id20051114_582047.htm
http://www.businessweek.com/innovate/content/nov2005/id20051114_582047.htm
http://www.nytimes.com/2005/05/29/business/yourmoney/29game.html
http://www.nytimes.com/2005/05/29/business/yourmoney/29game.html
http://www.heise.de/tp/r4/artikel/24/24584/1.html
http://www.heise.de/tp/r4/artikel/24/24584/1.html
http://www.heise.de/tp/r4/artikel/17/17818/1.html

68 BIBLIOGRAPHY

[62] B. Wellman. Networks in the Global Village: Life in Contemporary Communities.
Westview Press, Boulder, Collorado, USA, July 1999. [cited at p. 14]

[63] B. Wellman, J. Boase, and W. Chen. The networked nature of community online
and offline. IT & Society, 1(1):151–165, 2002. [cited at p. 14]

[64] K. West and P. Lamere. A model-based approach to constructing music similarity
functions. EURASIP J. Applied Signal Processing, 2007(1):149, 2007. [cited at p. 9]

[65] N. Yee. The psychology of massively multi-user online role-playing games: Motiva-
tions, emotional investment, relationships and problematic usage. In R. Schroeder
and A. Axelsson, editors, Avatars at Work and Play: Collaboration andd Interaction
in Shared Virtual Environments, pages 187–207, Secaucus, New Jersey, USA, 2006.
Springer Verlag New York. [cited at p. 1, 15]

[66] R. M. Young. An overview of the mimesis architecture: Integrating intelligent
narrative control into an existing gaming environment. In Working Notes of the
AAAI Spring Symposium on Artificial Intelligence and Interactive Entertainment,
Menlo Park, California, USA, March 2001. AAAI Press. [cited at p. 14]

Appendix

69

Appendix A

Game Engine Overview

Table A shows a list of low-budget 3D game engines that were considered for
developing The AudioSquare.

71

72 APPENDIX A. GAME ENGINE OVERVIEW

Table A.1: Game Engines for less than $300.
3Impact 3D

Game
Studio

C4 Crystal
Space

Dark
Basic
Pro

Irrlicht Ogre
3D

Torque

OS Windows Windows Windows,
MacOS

Windows,
Xbox,
PS 3

Windows Windows,
Linux,
MacOS

Windows,
Linux,
MacOS

Windows,
Linux,
MacOS

Current re-
lease

3.8 6.5 134 1.0.1 - 1.3 1.4.0 1.5

Programming
language

C/C++,
Delphi,
Basic

C/C++,
Delphi

C/C++ C/C++ Basic C++,
C#,
VB.NET

C/C++ C/C++

Source code
available

No No Yes Yes No Yes Yes Yes

Graphics
API

OpenGL,
DirectX

DirectX OpenGL OpenGL,
Soft-
ware

DirectX OpenGL,
DirectX

OpenGL,
DirectX

OpenGL,
DirectX

Shaders - Shader
model
3.0

Vertex,
pixel

CG,
ARB

Vertex,
pixel

Vertex,
pixel,
GLSL

Vertex,
pixel,
HLSL,
GLSL

-

Bump maps Yes Yes Yes Yes Yes Yes Yes Yes
Light maps Yes Yes Yes Yes Yes Yes Yes Yes
Environment
maps

Yes Yes Yes - Yes Yes Yes Yes

Normal
maps

- - Yes - - Yes - -

Scene man-
agement

BSP BSP,
LOD

BSP Portals,
kd-trees

BSP BSP BSP,
LOD,
Octrees

BSP,
LOD

Dynamic
shadows

Vol. Stencil Various
tech-
niques

Stencil Vol. Stencil Stencil,
texture-
based

Mapping,
vol.,
pro-
jected
planar

Terrain Yes Yes Yes Yes Yes - Yes Yes
GUI module - Yes Yes Yes - - Yes Yes
3D file for-
mats

.x .3ds, .x,
.map,
.mdl,
.md2

.3ds,

.obj,

.xsi,

.blend

.3ds,

.mdl,

.md2,

.obj,

.pov,

.ase

.x .3ds,
.obj,
.dae,
.dmf,
.ms3d

.3ds,

.blend
.3ds,
.max,
.lwo,
.blend,
.dts,
.scn,
.ma,
.ms3d

Keyframe Yes Yes - - - - - Yes
Skeletal Yes Yes Yes Yes Yes Yes Yes Yes
Blending Yes Yes Yes - - - Yes Yes
Sound
3D sound Yes Yes Yes Yes Yes Yes - Yes
File formats .wav,

.ogg
.wav,
.ogg,
.mp3,
.mid

Quick-
Time
com-
patible
formats

.wav,

.ogg,

.au,

.aiff,

.iff,

.mod

.wav,

.wma,

.aiff,

.au,

.snd,

.mp3,

.midi

.wav,

.ogg,

.mp3,

.mod,

.xm, .it,

.s3m

- .wav,
.ogg

Networking - Client-
server

Yes - Yes - - Client-
server

Physics Yes Yes Yes Yes - - - Yes
Scripting - C-

Script
Yes Python - LUA - Torque-

Script
Level editor - Yes Yes - - Yes - Yes
GUI editor - - Yes Yes - - - Yes
Model edi-
tor

- - - Yes - - - -

Price $99 Free $200 $49 -
$899

$100 Free Free $150

Appendix B

Example of an Objects-File

The subsequent XML-code has been extracted from an objects-file as used in The
AudioSquare for the import of media-related 3D objects. The example contains
the description of one unit of a SOM as well as of one building containing one
audio stream.

<?xml version="1.0" encoding="UTF-8"?>

<objects>

<unit unitfile="ismir_genre" x="5" y="0">

<unitfile>ismir_genre</unitfile>

<x>5</x>

<y>0</y>

<mediatype>audio</mediatype>

<songinfo>

<streamnr>5</streamnr>

<song>

<title>Yedi tekrar</title>

<artist>Tim Rayborn</artist>

<album>Veils of Light</album>

<genre>Ethnic</genre>

</song>

<song>

<title>Tas</title>

<artist>Tim Rayborn</artist>

<album>The Path Beyond</album>

<genre>Ethnic</genre>

</song>

<song>

<title>Laz 7/8</title>

<artist>Solace</artist>

<album>Rhythm Of The Dance</album>

<genre>Unknown</genre>

</song>

73

74 APPENDIX B. EXAMPLE OF AN OBJECTS-FILE

<song>

<title>Raghba</title>

<artist>Solace</artist>

<album>Iman</album>

<genre>Unknown</genre>

</song>

</songinfo>

<static>

<shapename> /data/interiors/mediasquare/table11.dts</shapename>

<name>Table_5_0</name>

<position>37.93565871993286 -264.3509500400416 50.5</position>

<rotation>0 0 1 106.07939516125099</rotation>

<scale>1.0 1.0 1.0</scale>

</static>

<static>

<shapename> /data/interiors/mediasquare/stool06.dts</shapename>

<name>Stool01_5_0</name>

<position>37.6873459227665 -265.2160591525028 50.525</position>

<rotation>0 0 1 106.07939516125099</rotation>

<scale>1.0 1.0 1.0</scale>

</static>

<static>

<shapename> /data/interiors/mediasquare/stool06.dts</shapename>

<name>Stool02_5_0</name>

<position>38.18589033478738 -263.486477275504 50.525</position>

<rotation>0 0 1 286.079395161251</rotation>

<scale>1.0 1.0 1.0</scale>

</static>

<audioemitter>

<sound>http://admin.ec3.at:7800/stream5</sound>

<streamnr>5</streamnr>

<refdistance>1.0</refdistance>

<maxdistance>10.0</maxdistance>

<infodistance>1.9</infodistance>

<matrixpos>5 / 0</matrixpos>

<unitfile>ismir_genre</unitfile>

<name>AudioEmitter01_5_0</name>

<position>37.96120482570963 -264.4103909197427 51.475</position>

<rotation>0 0 1 106.07939516125099</rotation>

<scale>1.0 1.0 1.0</scale>

</audioemitter>

<static>

<shapename> /data/interiors/speaker_usb.dts</shapename>

<name>Speaker_5_0</name>

<position>37.74307690691523 -264.30061152303085 51.945</position>

<rotation>0 0 1 106.07939516125099</rotation>

<scale>1.0 1.0 1.0</scale>

75

</static>

<objecttrigger>

<organization>unit</organization>

<type>audio</type>

<matrixpos>5/0</matrixpos>

<streamnr>5</streamnr>

<name>ObjectTrigger01_5_0</name>

<position>39.59485461056448 -263.197116742632 50.6</position>

<rotation>0 0 1 106.07939516125099</rotation>

<scale>3.0 3.0 1.0</scale>

</objecttrigger>

<playlist>

<skin>pics/playlist5</skin>

<shapename> /data/shapes/playlist/playlist.dts</shapename>

<name>TSPlaylist_5_0</name>

<position>38.04655446672187 -264.3309211847546 51.925</position>

<rotation>0 0 1 186.079395161251</rotation>

<scale>1.0 1.0 1.0</scale>

</playlist>

</unit>

<dirmapping directory="../../SDK 1.5/example/torquesom/data/dirmapping/audio01/01/">

<directory>../../SDK 1.5/example/torquesom/data/dirmapping/audio01/01/</directory>

<songinfo>

<streamnr>251</streamnr>

<song>

<title>Gigue</title>

<artist>James Edwards</artist>

<album>Canarios</album>

<genre>Classical</genre>

</song>

<song>

<title>Aria de Fiorenza</title>

<artist>James Edwards</artist>

<album>Canarios</album>

<genre>Classical</genre>

</song>

<song>

<title>Fandango</title>

<artist>James Edwards</artist>

<album>Canarios</album>

<genre>Classical</genre>

</song>

<song>

<title>Rujero</title>

<artist>James Edwards</artist>

<album>Canarios</album>

<genre>Classical</genre>

76 APPENDIX B. EXAMPLE OF AN OBJECTS-FILE

</song>

<song>

<title>Pavanas</title>

<artist>James Edwards</artist>

<album>Canarios</album>

<genre>Classical</genre>

</song>

<song>

<title>Marionas</title>

<artist>James Edwards</artist>

<album>Canarios</album>

<genre>Classical</genre>

</song>

<song>

<title>Caprice de chaconne</title>

<artist>James Edwards</artist>

<album>Canarios</album>

<genre>Classical</genre>

</song>

</songinfo>

<interior>

<interiorfile>~/data/buildings/projection_building.dif</interiorfile>

<name>Building</name>

<position>-24.218820261851334 -226.90305250468305 50.32425</position>

<rotation>0 0 1 -45.2637</rotation>

<scale>1.0 1.0 1.0</scale>

</interior>

<label>

<skin>../../dirmapping/audio01/01/title</skin>

<shapename>~/data/shapes/projection/projection_label.dts</shapename>

<name>TSProjectionLabel00</name>

<position>-4.4065931962842475 -200.8050742952335 52.15505</position>

<rotation>0 0 1 135.0003</rotation>

<scale>1.0 1.0 1.0</scale>

</projectionlabel>

<static>

<shapename>~/data/interiors/window10x10.dts</shapename>

<name>window</name>

<position>-45.62821140279159 -248.35698393664023 51.32505</position>

<rotation>0 0 1 -45.2637</rotation>

<scale>1.0 1.1 0.3</scale>

</static>

<label>

<skin>../../dirmapping/audio01/01/01/title</skin>

<shapename>~/data/shapes/projection/projection_label.dts</shapename>

<name>TSProjectionLabel01</name>

<position>-8.247764074169838 -203.6660596336936 52.15505</position>

77

<rotation>0 0 1 45.836600000000004</rotation>

<scale>1.0 1.0 1.0</scale>

</label>

<objecttrigger>

<directorypos>1</directorypos>

<organization>directory</organization>

<nr>1</nr>

<streamnr>251</streamnr>

<name>TSObjectTrigger01</name>

<position>-9.446593482194398 -205.5676616940773 50.22425</position>

<rotation>0 0 1 -45.2637</rotation>

<scale>5.0 9.0 2.0</scale>

</objecttrigger>

<static>

<shapename>~/data/interiors/table06.dts</shapename>

<name>Table01</name>

<position>-1.5278482049767406 -209.95838767556864 50.25505</position>

<rotation>0 0 1 -45.2637</rotation>

<scale>1.0 1.0 1.0</scale>

</static>

<static>

<shapename>~/data/interiors/stereo01.dts</shapename>

<name>Hifi01</name>

<position>-1.5508634609465628 -210.012446421324 50.90505</position>

<rotation>0 0 1 44.7363</rotation>

<scale>0.75 0.75 0.75</scale>

</static>

<static>

<shapename>~/data/interiors/speaker01.dts</shapename>

<name>SpeakerRight01</name>

<position>-2.17611902250455 -210.56008497250608 50.90505</position>

<rotation>0 0 1 -45.2637</rotation>

<scale>0.5 0.5 0.5</scale>

</static>

<static>

<shapename>~/data/interiors/speaker01.dts</shapename>

<name>SpeakerLeft01</name>

<position>-1.029485309223455 -209.4028477722886 50.90505</position>

<rotation>0 0 1 -45.2637</rotation>

<scale>0.5 0.5 0.5</scale>

</static>

<audioemitter>

<sound>http://admin.ec3.at:7800/stream251</sound>

<streamnr>251</streamnr>

<refdistance>6.0</refdistance>

<maxdistance>10.0</maxdistance>

<infodistance>1.0</infodistance>

78 APPENDIX B. EXAMPLE OF AN OBJECTS-FILE

<name>AudioStreamEmitter01</name>

<position>-1.2789893005001423 -209.6719924143252 51.32425</position>

<rotation>0 0 1 -45.2637</rotation>

<scale>1.0 1.0 1.0</scale>

</audioemitter>

</dirmapping>

</objects>

Appendix C

Example of Marker-Objects in

the Mission-File

The following code samples describe different marker-objects as used in the mission-
file. The first example with the name “SomMapping01” is an object with the
Datablock “SomMapping”. This means, that is defines an area wherein a part of
a SOM-generated matrix is represented. The properties “xfrom”, “xto”, “yfrom”
and “yto” define which section of the matrix is used within the area. The property
“mappingfile” defines the name of the unit-file used for the representation. The
second example with the name “DirectoryMapping01” has the Datablock “Direc-
toryMapping” which means that is is used as a starting point for representing
directory-based organization. The property “Directory” identifies the name of
the base-folder where the directory structure is located. The circular layout al-
gorithm is selected used since the property “circular” is set to one. “Radius” and
“spacing” define the size of the underlying circle and the distance between the
buildings aligned along the circle.

new StaticShape(SomMapping01) {

canSaveDynamicFields = "1";

position = "101.482 -221.926 3.43";

rotation = "1 0 0 0";

scale = "32 21 2";

dataBlock = "SomMapping";

receiveSunLight = "1";

receiveLMLighting = "1";

useAdaptiveSelfIllumination = "0";

useCustomAmbientLighting = "0";

customAmbientSelfIllumination = "0";

customAmbientLighting = "0 0 0 1";

useLightingOcclusion = "1";

templatename = "template01";

xfrom = "0";

79

80 APPENDIX C. EXAMPLE OF MARKER-OBJECTS IN THE MISSION-FILE

xto = "4";

yfrom = "0";

yto = "3";

autorotate = "1";

mappingfile = "ismir_genre";

};

new StaticShape(DirectoryMapping01) {

canSaveDynamicFields = "1";

position = "72.7833 -278.761 3.3";

rotation = "0 0 -1 93.4384";

scale = "1 1 1";

dataBlock = "DirectoryMapping";

receiveSunLight = "1";

receiveLMLighting = "1";

useAdaptiveSelfIllumination = "0";

useCustomAmbientLighting = "0";

customAmbientSelfIllumination = "0";

customAmbientLighting = "0 0 0 1";

useLightingOcclusion = "1";

Directory = "audio01";

templatename = "dir_audio_template01";

Radius = "28";

spacing = "13";

circular = "1";

};

List of Figures

2.1 A music map as shown on the Dimvision Web site. The nodes repre-
sent artists and bands. The edges identify the relations of the nodes
to one another. 7

2.2 Three visual representations as proposed by Torrens: The disc view,
divided (left), the rectangular view (middle) and the tree view (right). 8

2.3 Excerpt from Bach’s score for his piece Schweigt stille. 8
2.4 Spectral analysis of a guitar playing a melody. 10
2.5 Utilizing content-based music organization - the PocketSOMPlayer on

a tablet PC (left) and the graphical user interface (right). 10
2.6 PSDoom is a process management tool realized with Doom 1. 14
2.7 Masses of avatars in World of Warcraft. 15
2.8 Impressions from the virtual online world Second Life 18
2.9 Home for the PlayStation 3. 19
2.10 vSide, a virtual online community for teenagers. 19

3.1 Organization and representation of music libraries with a self-organizing
map. 21

3.2 Preprocessing a music file in the library, which results in several 6
second sequences. The first and the last sequence are dropped to
avoid lead-in and fade-out effects. 22

3.3 Transformation of an audio signal to a representation regarding the
specific loudness sensation in Sone. 23

3.4 Transformation of the power spectrum in Sone to the time-invariant
Rhythm Pattern . 24

3.5 Two results of the feature extraction process (left: Für Elise by
Beethoven, right: Freak on a Leash by Korn) 25

3.6 A one-dimensional SOM maps a triangular region. 26
3.7 Architecture of a 7× 7 self-organizing map 28
3.8 The Torque SDK comes with a first person shooter example. It can

also be edited with the World Editor as shown here. 30

81

82 LIST OF FIGURES

3.9 The GUI Editor is a standard feature of the Torque SDK. The image
shows the start menu for the first person shooter example. 31

4.1 Automatic organization based on a SOM. 35
4.2 The manual organization of music is based on a folder structure. In the

virtual environment, the top-level folders are represented as buildings
and the low-level folders containing the audio files are represented as
interior. 36

4.3 Layout algorithms for manual music organization. 36

5.1 System architecture. 38
5.2 3D objects representing metadata. The left picture shows a playlist-

object, the right picture shows a signboard-object. 41
5.3 Marker-objects indicate locations for music representation. The ob-

jects are signified by the yellow outlines. The left picture defines
an area for SOM-based representation. The right picture defines a
starting-point for directory-based mapping. 42

5.4 Assets for the repository. The rightmost picture depicts an asset for
directory-based mapping, the others address SOM-based representation. 44

5.5 The Java-classes of the Wrapper support the representation and pro-
cessing of the mission-file, one or more unit-files, one or more manually
created directory structures, song-metadata, locations in the virtual
environment and the Icecast-streams. 45

5.6 Icecast architecture . 49
5.7 Setup for skipping tracks . 50

6.1 Bird’s-eye view on The AudioSquare 52
6.2 The start-screen shows a preview of the virtual world and a menu. . . 53
6.3 The login-window lets a user select an avatar and type in a name. . . 54
6.4 The entrance-area of the virtual world is located in the middle of the

whole scenario. 55
6.5 The information-screen informs users about the purpose of The Au-

dioSquare and how to navigate and interact within the virtual world. . 55
6.6 Inside the “SOM showroom”. Each table represents a unit of a SOM

and plays an audio stream. 56
6.7 Another area in the same building. The appearance of the interior is

different here. 56
6.8 The small chat-HUD on the top of the screen is used for conversations

with other users. 57
6.9 In front of the showrooms for directory-based organization. 57
6.10 This showroom is dedicated to classical music. 58

List of Tables

2.1 How much information? Comparing the estimates for the amount of
generated digital media in the years 1999 and 2002 in the United States. 6

2.2 Listing of the most relevant MMPORGs and the number of active
subscribers in the years 2004 and 2006 (According to mmogchart.com).
The right columns on the right show the title of the game and the
name of the developing company. The next two columns show the
total number of active subscribers in the years 2004 and 2006. The
rightmost column shows the difference between these two years in
percent. 16

5.1 Keyboard and mouse settings for navigation 40
5.2 Parameters in the configuration-file for the Wrapper. 46

A.1 Game Engines for less than $300. 72

83

	Contents
	1 Introduction
	2 Related Work
	2.1 Music Information Retrieval (MIR)
	2.1.1 Metadata-based MIR
	2.1.2 MIR based on musical Data
	2.1.3 Content-based MIR

	2.2 3D Game Engines
	2.3 3D Virtual Communities

	3 Technological Foundations
	3.1 Audio Feature Extraction
	3.1.1 Preprocessing the Audio Files
	3.1.2 Specific Loudness Sensation - Sone
	3.1.3 Rhythm Patterns

	3.2 Self-Organizing Maps
	3.3 A Game Engine as Development Framework: Torque

	4 Conceptual Design
	4.1 SOM-based Music-Organization
	4.2 Manual Music-Organization

	5 Implementation
	5.1 System Architecture
	5.2 Implementations in Torque
	5.2.1 The User Interface for the Torque Client
	5.2.2 Customized 3D Objects
	5.2.3 Setting up the virtual environment in Torque
	5.2.4 Creating assets for the Repository
	5.2.5 Importing the Objects-File

	5.3 Implementation of the the Wrapper
	5.3.1 Class-Representation of Torque Objects and Input Files
	5.3.2 Processing the Output-Files

	5.4 The Icecast Streaming Server

	6 Visit The AudioSquare
	7 Conclusions and Future Work
	8 Acknowledgements
	Bibliography
	A Game Engine Overview
	B Example of an Objects-File
	C Example of Marker-Objects in the Mission-File
	List of Figures
	List of Tables

