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Abstract

Integrated Modular Avionics (IMA), especially Distributed Integrated Modular
Avionics (DIMA), and Modular Certi�cation are widely discussed approaches in
the aerospace community at the moment. IMA deals with the idea of sharing
hardware resources and integrating several aircraft functions into one hardware
unit, using a modular architectural approach, to reduce weight, space, cabling,
power consumption and costs.

In di�erence to such, already established, IMA systems, DIMA architectures pro-
vide more �exibility to the used hardware, which does not necessarily have to be
in a single box. It may be split-up into several smaller hardware units, distributed
all over the aircraft connected by a safety-critical communication system.

Modular Certi�cation uses the modularity, provided by IMA/DIMA systems to
split their certi�cation into several parts. In combination with e�cient certi�ca-
tion, based on optimized processes, development time and e�ort are reduced.

Based on these prerequisites, the concept of a distributed and integrated plat-
form solution (DIPS) is introduced. This concept, based on a DIMA architecture,
de�nes the constraints and services needed for the implementation of a modular
certi�able and �exible platform, which, in combination with the hosted applica-
tions, is able to handle all safety-critical functions in an aircraft by providing data
exchange between and encapsulation of di�erent modules.

This thesis describes such a platform approach, discusses its attributes and cer-
ti�cation demands, identi�es its requirements and constraints and considers its
business opportunities and future applications.
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Kurzfassung

Integrierte modulare Luftfahrtsysteme (IMA), im speziellen verteilte integrierte
modulare Luftfahrtsysteme (DIMA) und modulare Zerti�zierung sind vielver-
sprechende Themen, welche derzeit umfassend diskutiert werden. IMA behandelt
die Idee gemeinsam genutzter Hardware Ressourcen und die Möglichkeit, mehrere
verschiedene Funktionen auf einer Hardwareeinheit zu vereinen. Basierend auf
einem modularen Architekturansatz können so Gewicht, Platz, Verkabelung, Leis-
tung und Kosten optimiert werden.

Im Gegensatz zu diesen, bereits eingesetzten, IMA Systemen, ermöglichen DIMA
Systeme gröÿere Flexibilität, da die verwendeten Ressourcen nicht an der selben
Stelle platziert werden müssen, sondern aufgespaltet und überall im Flugzeug
verteilt werden können, wobei die einzelnen Einheiten mit einen sicherheitskri-
tischen Kommunikationsnetzwerk verbunden werden.

Modulare Zerti�zierung verwendet die Eigenschaften solcher Architekturen, um die
Aufgabe in mehrere Teile zu spalten. Dieser Ansatz, kombiniert mit optimierter
Zerti�zierung, erlaubt auch in diesem Bereich die Kosten zu reduzieren.

Basierend auf diesen Voraussetzungen wird das Konzept einer verteilten und inte-
grierten Plattform eingeführt, welche alle Voraussetzungen bietet, um gemeinsam
mit den eigentlichen Anwendungen alle computergesteuerten Funktionen in einem
Flugzeug auszuführen.

Diese Dissertation beschreibt solch eine Plattform, diskutiert ihre Eigen-
schaften und Zerti�zierungserfordernisse, identi�ziert ihre Anforderungen und Ein-
schränkungen und behandelt ihre wirtschaftlichen Aspekte beziehungsweise ihre
zukünftigen Anwendungsgebiete.
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Terminology

The following terms are used in the thesis and are essential for consistent under-
standing of the topic.

• Aircraft Function - A set of hardware and software modules, which together
provide the wanted avionics functionality (e.g. �ight control system, autopi-
lot, power distribution, etc.).

• Application - Software with a de�ned set of interfaces that performs a func-
tion.

• Architecture - The architecture provides the theoretical environment of a
platform. It considers services, interfaces, topologies, requirements, con-
straints, and integration and implementation details.

• Component - A self-contained hardware part, software part, database, or
combination of them. A component does not provide an aircraft function by
itself.

• Core Communication System - The core communication system is the cen-
tral component of a distributed platform. It is a safety-critical, high-speed
connection between nodes and has to provide several basic platform services.

• Core Software - The operating system and support software that manage
resources to provide an environment in which applications can be executed.
Core software is a necessary component of a platform and is typically com-
prised of one or more modules.

• Host (Processor/CPU) - The host is the processing element which executes
the core software and the application. In connection with a communication
interface, it is a node of a system.
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• (D)IMA System - Consists of a platform and a de�ned set of hosted appli-
cations.

• Module - A component or collection of components that may be software,
hardware, or a combination of hardware and software, which provides re-
sources to the hosted applications. Modules may be distributed across the
aircraft or may be co-located.

• Node - A node consists of the host CPU and the communication interface.

• Partitioning - An architectural technique to provide the necessary separation
and independence of functions or applications to ensure that only intended
coupling occurs.

• Platform - Module or group of modules, including core software, hardware
and communication that manages resources to support at least one appli-
cation. Platforms, by themselves, do not provide any aircraft functionality.
The platform is the implementation of an architecture which establishes a
computing environment, support services, and platform-related capabilities,
such as health monitoring and fault management. The platform can be cer-
ti�ed independently from hosted applications.

• Reusable - The design assurance data of previously accepted modules and
applications may be used in a subsequent aircraft system design with reduced
need for redesign or additional acceptance.

• Subsystem Communication System - Additional to the core communication
system, low-cost subsystem communication is needed which also provides
several platform services.
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Where am I?

(Charles A. Lindbergh, upon

arrival in Paris)

Chapter 1

Introduction

1.1 Motivation and Objectives

Cost, weight and safety are probably the most important key characteristics of
aerospace development. Much e�ort is taken to reduce costs and weight by keep-
ing the safety level or even increasing it. Furthermore electronic components and
their features become more and more and the complexity of such systems increases
too, which leads to development problems based on too complex designs.

In current planes, there are several di�erent systems, like multimedia, power or
control systems. Some of them are safety-critical and a lot of them need to share
data with other systems. To be able to manage this complexity, for e�cient devel-
opment of such systems on the one hand, and to manage it in terms of the mental
capability on the other hand, some sort of abstraction is needed. Therefore, such
systems need to be separated into subsystems to reduce the overall complexity.

Several new concepts are currently under discussion to give the development of
electronic systems in the aerospace domain a change. Among them, there is the
concept of (Distributed) Integrated Modular Avionics (IMA/DIMA), which tries
to increase e�ciency by reducing hardware, and Modular Certi�cation, which tries
to cut development costs by reducing certi�cation e�orts. Both concepts use the
approach of separating large systems into smaller subsystems.

1
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1.1.1 (Distributed) Integrated Modular Avionics

The concept of (Distributed) Integrated Modular Avionics [106] deals with a mod-
ular structure of software and hardware components which are independently de-
veloped and certi�ed. In di�erence to IMA, Distributed IMA [114][107] modules
are spread all over the aircraft and connected by a communication system.

The composition of these distributed modules creates avionics functions which may
interact with each other. This approach provides more �exibility to the system
designer, reduces production costs and maintenance e�ort, and allows the reuse of
already created modules but also creates a set of new problems in the design of
aerospace applications.

One of the biggest problems is to guarantee that di�erent aircraft functions are
not able to disturb each other. To ensure this, an underlying distributed platform
is needed, which provides the required services and handles the data exchange
between these applications.

Another constraint is, that the integration of the pre-certi�ed modules, which may
be descended from di�erent sources and have di�erent levels of criticality, provides
a system which can be certi�ed according to airworthiness requirements. The
Radio Technical Commission for Aeronautics (RTCA) and the European Organi-
zation for Civil Aviation Equipment (EUROCAE) addressed this demands with
the SC-200/WG60 working group. This working group developed a new guideline
for the use of IMA/DIMA systems, the DO-297 - Integrated Modular Avionics
(IMA) Development Guidance and Certi�cation Considerations [99].

1.1.2 Modular Certi�cation

The certi�cation cost of a software project according to DO-178B [96] are doubled
in contrast to a common software project [55]. The concept of Modular Certi�-
cation approaches this problem by the possibility of splitting the certi�cation in
several parts.

In di�erence to the current approach, which approves only whole systems, Modular
Certi�cation veri�es the correct development of single parts and their integration
into the entire system. This provides a module based certi�cation approach. The
system is split up into single modules which are certi�ed. The advantages of this
approach are, that a module developer just has to care about his single module
and its interfaces, but not about the whole system and its certi�cation, on the
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one hand and that already developed modules, including its certi�cation evidence,
may get reused on the other hand.

Using the IMA concept named above, Modular Certi�cation allows the indepen-
dent development and certi�cation of the software and hardware components the
platform consists of. Only the integration has to be certi�ed additionally but
modules can be exchanged without the need of a complete re-certi�cation of the
system. This allows to reduce the certi�cation costs after the second use of this
module.

1.1.3 Conclusion

The objectives of this thesis are discussing the concepts of Distributed Integrated
Modular Avionics and Modular Certi�cation, illuminating their environment and
creating a practical approach using these concepts. The ultimate goal is to es-
tablish theoretically a �exible, full certi�able, safety-critical platform which ful-
�lls aerospace demands and is able to host aircraft functions of di�erent safety
classes. To achieve this idea, research regarding e�cient certi�cation is done and
requirements and recommendations for the implementation of such a platform are
developed.

According to this research, which is the main task of this thesis, several key factors
are presented which allow to improve the development and certi�cation process in
future projects. In addition, the results are veri�ed by a comparison to accom-
plished aerospace software projects. The second main task of this thesis is the
question how to deal with the change of the avionics platform. Therefore, the
parameters regarding the switch from current to future platforms is described and
requirements and recommendations for such a problem are discussed.

1.2 Related Work

The basic constraints of establishing a safety-critical system are given by Kopetz
[70]. He describes the properties of safety-relevant systems, especially for a safety-
critical architecture. He continued his work by using this constraints to develop
the Time-Triggered Architecture (TTA) [74].

Rushby [103] discusses Modular Certi�cation and provides methods for formal ver-
i�cation of this concept. He identi�es the key elements of the concept by showing
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how these elements can be achieved and veri�ed. Furthermore, he discusses "Par-
titioning" [101], which is one of the key services of an Integrated Modular Avionics
architecture.

The DO-297 [99] guideline describes the process of certi�cation for Modular Certi-
�cation. It is the result of the SC-200/WG60 working group and can be regarded
the current guideline for the development of IMA systems. It gives guidance for
development and discusses additional considerations.

Decos, which is an EU funded project, has the goal to develop a distributed ex-
ecution platform using partitioning as a key service. The project provides an
implementation of a distributed architecture using a safety-critical communication
system.

This related work provides a baseline which will be supplemented during detailed
consideration.

1.3 Structure of this Thesis

This thesis describes the requirements for a DIMA based platform and discusses
several aspects of Modular Certi�cation.

Chapter 2 addresses the architectural aspects of such a platform and provides a
concluding overview regarding current concepts.

Chapter 3 discusses and compares several communication systems which can be
used for platform communication, providing the base for distributed aircraft func-
tions.

Chapter 4 de�nes requirements and constraints for the development of a safety-
critical system architecture. It discusses the parts of such a system and gives
an overview about already established architectures and new developments within
this area.

Chapter 5 deals with the concept of Modular Certi�cation. It describes current
approaches for certi�cation, gives insight in new standards and talks about pro-
cesses and formal aspects. Furthermore, parameters for e�cient certi�cation are
presented which are applicable for modular but also for common certi�cation pro-
cesses.

Chapter 6 combines the concepts and systems discussed before to present a so
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called distributed and integrated platform solution. This chapter contains require-
ments, recommendations and bene�ts regarding such an approach, which may
change the way the development of aircraft functions is done.

Chapter 7 gives a prospectus about the way such a new technology can be used and
describes its economical e�ects. Furthermore, it gives an outlook into the future
and shows how the development of aerospace and also of several other domains
might change.

Chapter 8 concludes this thesis with an overview about what has been achieved
and what is still open for further investigation.
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Trouble in the air is very rare.

It is hitting the ground that

causes it.

(Amelia Earhart)Chapter 2

Avionics Architectures

2.1 Introduction

This section describes the way avionics systems are designed and evaluates new
approaches for architecture design.

From the beginning of aircraft deployment, single functions got developed inde-
pendently to provide the desired functionality. In case of electronic resources it
is a widely used approach that each function has its own dedicated hardware and
interfaces.

To illustrate this concept, let us assume this function is the autopilot. It has its
own sensors, actuators, computational resources and displays and does not share
data with any other function. The development of such a function is more or less
independent and, based on the fact that no data is shared, it contains a natural
fault-propagation barrier. This means that in case of faults no other function is
in�uenced and the autopilot uses an internal fault-tolerance approach to provide
the correct service.

The important point in this example is the fault-propagation barrier based on the
dedicated hardware and interfaces. This approach has advantages on the one hand
but also leads to a set of di�erent computer systems in an aircraft which consume
costs, weight and power.

Another concept which is already used in the aerospace domain is the model of In-
tegrated Modular Avionics (IMA) systems. These systems use a di�erent approach
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by sharing computational power for several functions. The challenge is to prevent
fault-propagation between functions using the same hardware resources, which is
called "partitioning". Partitioning may be considered as memory partitioning, to
separate functions inside the host memory, and network partitioning, to separate
modules in a network. The advantage is that less hardware is needed and the
functions operate more integrated. This allows more convenient sharing of data
which provides a reduction of interface modules.

A currently discussed concept, which is a combination of both architecture de-
signs, is called Distributed Integrated Modular Avionics (DIMA). It describes
a distributed but also integrated architecture which shares the advantages but
also the disadvantages of both concepts. Based on the distribution, the fault-
propagation barrier is achieved by physical separation but less hardware is needed
by sharing the computational power and interfaces. On the other hand, it causes
a lot of di�culties, like the communication between distributed nodes.

An advantage for both types of integrated architectures is the reduction of the
certi�cation e�ort caused by modularized certi�cation evidence and the possibility
of reusing these arguments.

2.2 Federated Avionics

Federated avionics [36][14] is currently a widely used concept in the aerospace
domain was developed in the 1970s. This concept is based on the fact that every
aircraft function was developed independently. These functions were developed
even further and new functionalities were added which also used their own
dedicated hardware.

Based on the increased complexity of aircraft functions, like �y-by-wire, commu-
nication between subsystems of aircraft functions was introduced with relatively
little interaction between separate functions to reduce their in�uence on each
other. This provides the advantage of function independence which ensures a
natural fault-propagation barrier. A faulty function is not able to in�uence any
other function and therefore the fault can not propagate and lead to a faulty
behavior in several systems. A schematic illustration of a federated architecture
design may be found in �gure 2.1 on the following page.

Fault-tolerance is provided by active redundancy, which is a common approach
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Figure 2.1: Schematic Illustration of Federated Architecture Design

for safety-critical systems, and demands dedicated hardware and, in case of dis-
tributed aircraft functions, dedicated communication channels.

A main point is that every system needs its own interfaces like sensors, actuators,
displays and controls [121] which leads to a complex environment for the operator
and can moreover lead to replicated hardware by several functions which are not
necessary. This is a problem in the aerospace domain, where costs, space and
weight are major design drivers. Therefore, federated avionics are an expensive
way to map aircraft functions even if the control of complexity is easier, compared
to other concepts, because di�erent systems do no interact with each other.

A major disadvantage of this concept is a lack of �exibility. The missing interoper-
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ability between di�erent aircraft functions reduce their e�ciency. The interaction
between such functions like the �ight control system, the autopilot and the nav-
igation system for example allow reducing the overall computing and interface
resources and provide additional functionalities like global diagnosis, advanced
�ight controls and optimized fuel consumption.

Another disadvantage is the fact that small changes in a function or an upgrade,
including new functionalities, may make redevelopment and recerti�cation of large
parts of an aircraft function necessary. Although, recerti�cation in a federated ap-
proach is easier than in a modular approach, new developments and certi�cation
of single modules needs less e�ort if the system is already established. This is a
major problem considering the operational life time of an airplane, which is about
30 years, and the fast evolution cycle in the electronics domain.

Because of these disadvantages, there was a need for new concepts which address
these new requirements.

2.3 Integrated Modular Avionics

Based on the evolution of software and electronics technology, new functions are
developed for aircraft. These functions provide new capabilities but also increase
complexity. To be able to handle these increased requirements a new approach was
necessary. Current aerospace developments, which head in this direction, are called
More Electric Architecture (MEA) [57]. The goal of these approaches is to have a
fully connected and modular avionics architecture which is called IMA (Integrated
Modular Avionics). IMA [36][106] supports the use of high-performance computing
platforms. These platforms are able to host multiple applications on a single
processor or on distributed processors connected by a communication system.

A schematic illustration of a IMA architecture design can be found in �gure 2.2
on the next page.
The de�nition of IMA which is given by DO-297 [99] gives an overview about

what IMA is and how it is used:

IMA is a shared set of �exible, reusable, and interoperable hardware

and software resources that, when integrated, form a platform that pro-

vides services, designed and veri�ed to a de�ned set of safety and per-

formance requirements, to host applications performing aircraft func-

tions.
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Figure 2.2: Schematic Illustration of IMA Architecture Design

The advantages of IMA are included in this de�nition:

• Flexibility: Flexibility allows to distribute functions over several computa-
tional resources. Therefore, it is possible to place the function in its naturally
best position. This means that it may be next to its interfaces like sensors
and actuators.

Furthermore, based on the modular approach, a system may be composed
of several modules which facilitates �exible products.

• Certi�cation costs are a major part of the development costs of aircraft func-
tions. IMA supports the reusability of modules and therefore certi�cation
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evidence. Furthermore, the overall development e�ort is signi�cantly reduced
if modules are used more than once.

• Interoperability: The use of an architecture allows the sharing of computa-
tional resources. Furthermore, it handles the sharing of data between aircraft
functions which do not need a direct connection to all of their system inter-
faces anymore. The bene�t of this is the reduction of electronic systems per
aircraft which cuts weight and volume of the systems and equipment. In
addition, advanced diagnosis for all subsystems is possible.

Another important property is stated in the de�nition which is the capability of
building a platform by integration of hardware and software. This platform has to
provide a shared environment for multiple applications. Therefore, the platform
needs to have protection mechanism like robust partitioning [101]. Furthermore,
the platform has to consist of a fault-tolerant network to support safety-critical
distributed functions.

Other aspects which have to be considered are the demands of the aerospace in-
dustry [85], where system integrator and application developer may be di�erent
parties. In this case, the intellectual property has to be protected without causing
any problems for integration.

Even going a step further, economic factors for aerospace systems are depend-
ability, maintenance and enhancement capabilities. These requirements ask for
fast and cost-e�ective upgrade possibilities and ways to introduce new operational
functionality which are also demands for the platform. Furthermore, continuing
diagnosis is needed to support error detection and maintenance to prevent un-
scheduled downtime.

Based on the de�nition and the points discussed above, there are several require-
ments for an IMA platform which have di�erent origins and provide a lot of chal-
lenges [93][41]. An approach called DIMA is currently under discussion in the
aerospace community. It deals with aspects like safety-critical and secure commu-
nication, distributed integration, partitioning and physical distribution in addition
to already described IMA properties like �exibility, reusability and interoperability
and will be discussed in the upcoming section.
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2.4 Distributed Integrated Modular Avionics

Distributed Integrated Modular Avionics (DIMA) [107] is an approach in the
scope of IMA with an important amendment. It combines the advantages of the
federated and the IMA concept [101] by physically distributing the integrated
modules and connecting them with a fault-tolerant communication system.

A schematic illustration of a DIMA architecture design can be found in �gure 2.3.

Figure 2.3: Schematic Illustration of Distributed IMA Architecture Design

The main advantages of this concept are

• the natural fault propagation barrier and
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• the physical positioning choices.

As already mentioned, federated avionics provide a natural fault-propagation bar-
rier by the physical distribution of aircraft functions. DIMA uses this approach by
distributing the functions over the aircraft but this does not solve the problem of
fault-propagation completely. Considering the federated approach, the functions
are not linked, in contrast to DIMA. Therefore, when using the DIMA concept, the
fault-propagation barrier has to be provided at the interfaces between the mod-
ules of the function which means that the communication system is responsible for
providing such a property.

The second main advantage is the possibility to position the functions near their
in- and outputs [62]. Furthermore, remote data concentration units [108] may be
used for exchange of input and output data with the next processing unit over a
communication system. Because of the hierarchical structure of the architectural
approach, cabling and system complexity may be reduced, because not every host
in the system needs to be directly connected with each other. Furthermore, ev-
ery processing unit in the system may be used for hosting functions because data
may be shared with every other functions in the system. This reduces the overall
needed processing power and therefore the number of needed hardware units [61].

Based on these advantages the DIMA architecture reduces weight, space and sys-
tem complexity while demanding a fault-tolerant high-speed communication sys-
tem to connect the modules. This communication system causes additional e�ort
for the development of such a system.

2.5 Communication System

The communication system is an integral part of an avionics architecture. It con-
nects the computational resources with each other and enables the sharing of data.

Based on this, there are several requirements for the communication system to be
able to handle the communication in a correct manner. First of all, it has to be
fault-tolerant. Therefore it needs to have a set of independent channels to be able
to tolerate di�erent types of faults.

This fault-tolerant approach also demands support for the replication of modules
and data. The mechanism of replicated data handling should also be done on com-
munication level instead of application level to increase the available processing
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power for the applications or to use cheaper processors for reducing costs.

Another requirement for the communication system is the distance between the
modules. In IMA systems, it can only be a backplane bus, e.g. Safebus/Arinc 659
[58][15] which is used in the Boeing 777, which connects processing units within
in a single box. In contrast, DIMA architectures need a communication system
which is able to handle distances of up to 40 meters. Therefore, there are di�erent
physical requirements for such a communication system.

According to its relevance, a set of already existing or currently developed commu-
nication systems is discussed in detail in chapter 3 on page 19 and their suitability
for the named requirements is compared.

2.6 From Federated to Integrated

This section discusses the way from a federated to an integrated concept [110]
and describes its bene�ts. Kopetz, Obermaisser, Peti and Suri [51] identi�ed
�ve key obstacles that interlink economic and technical considerations regarding
automotive architectures which are adaptable for avionics purposes:

• Electronic Hardware Costs: In federated systems, hardware costs increase
with every additional function because of the dedicated hardware principal.
Integrated systems allow adding functions without the need of further hard-
ware.

• Diagnosis and Maintenance: Real-time diagnosis, which is able to detect
faults in the system, handle them and maybe solve the problem, is a neces-
sary approach for fault-tolerant systems. Especially if there is no safe state
available like in the automotive domain.

Furthermore maintenance is a major point in this domain because of ground
time costs. Therefore a diagnosis system which detects faults and noti�es
the service responsible would enable reduced ground time and costs.

• Dependability: Fault-tolerant electronic systems have to ful�ll avionics re-
quirements. Because of the architectural approach, complex dependability
requirements may be decomposed into several supportive functions which
reduces system complexity.
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• Development Costs: Using an architectural approach supports and even
forces integration and reuse. This means that changes in a subsystem may
not in�uence other subsystems in any unplanned manner.

Another main issue is certi�cation where reusability is a major factor. The
development costs may be reduced signi�cantly by using module based cer-
ti�cation, where the certi�cation evidence can be reused for previously de-
veloped and certi�ed modules.

• Intellectual Property (IP) Protection: One of the advantages of the federated
concept is intellectual property protection because every company develops
their system by itself. Therefore, every competing concept has to provide
mechanism to protect the knowledge of the developing company.

2.7 Federated vs. Integrated

This section lists the advantages of both concepts, gives a summary and a clear
overview about the requirements of an optimal solution. Kopetz, Obermaisser,
Peti and Suri [51] named the advantages which were used to develop the Decos
[79] architecture concept.

2.7.1 Advantages of Federated Systems

• Fault containment

• Error containment

• Intellectual property protection

• Independent development

• Complexity control

2.7.2 Advantages of Integrated Systems

• Interoperability

• Hardware cost reduction

• Dependability improvements due to reductions of wiring and connectors
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• Improved diagnostics

• Flexibility

• Fault-tolerance

• Quality of service

Based on these key aspects, an integrated approach consisting of distributed
subsystems would provide the cornerstone for current and upcoming requirements.

Hammet [54] describes the future of an avionics system architecture as follows:

The ideal future system architecture would combine the complexity

management advantages of the federated approach, but would also re-

alize the functional integration and hardware bene�ts of an integrated

system.

Such a system which has not been used in commercial systems yet, combines
the advantages of federated and integrated system design, which is, in my opinion,
concluded in a DIMA platform concept.

2.8 Conclusion

In this chapter of the thesis, several requirements, advantages, disadvantages, fea-
tures and examples of digital avionics architectures have been discussed.

The next step, which has not been taken by commercial systems yet, is to evolve
the IMA concept and combine the advantages of federated and integrated system
design into the DIMA approach.

The DIMA architecture will be used for avionics function development in the fu-
ture. But, based on the life-cycle of currently developed aircraft systems, it is not
clear when DIMA systems will replace them.
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Aviate, Navigate,

Communicate.

(Unknown)

Chapter 3

Communication Systems

3.1 Introduction

In chapter 2 on page 7 several concepts for aircraft architectures were discussed.
The concluded result is that an integrated but distributed solution would be able
to use all advantages of common concepts.

In opposite to IMA systems where all functions are integrated into one rack and
therefore close to each other, a DIMA system may have to span a communica-
tion network over wider distances. Therefore, it is not possible to connect the
di�erent parts of the system by a backplane or other short range buses but by a
safety-critical communication system, which provides ranges between subsystems
of several decades of meters.

The communication system is an integral part of a distributed architecture. It con-
nects the distributed subsystems and provides several services which are needed
by the applications. If such services move from the application level to the com-
munication level, the application complexity and the needed processing power are
decreased.

Several suitable communication systems are available which provide di�erent at-
tributes. This section discusses these communication systems which may be used
for DIMA based systems. Some of these systems have already been used in the
aerospace domain while others are still in development. At the end of the chapter,
a comparison can be found which discusses the suitability of the described com-
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munication systems for di�erent classes of application in DIMA based systems.

A comparison of bus systems for safety-critical systems was already done by
Rushby [102]. It also describes some of the systems named below. This sec-
tion wants to pursue this work in showing further developments of these systems
but also wants to narrow on DIMA suitable communication systems.

3.2 Communication System Categories

3.2.1 Introduction

A distributed architecture needs at least two di�erent categories of communication
systems to be able to ful�ll its requirements. Based on a hierarchical approach, a
core communication system is needed which connects di�erent subsystems. Fur-
thermore, there has to be a subsystem communication system for inter-subsystem
communication [115].

3.2.2 Core Communication System

The core communication system is the central part of a distributed architecture
which connects di�erent (sub)systems. It has to provide several attributes like
fault-tolerance, high-speed and high-performance.

If a single architecture is used, these communication system can also connect
systems from di�erent suppliers and therefore be globally con�gurable. This means
that its speci�cation is the interface between several parties and therefore, it has
to be con�gured by the OEM or system integrator.

3.2.3 Subsystem Communication System

The subsystem communication system is the central part of a distributed
(sub)system. It connects several nodes of these subsystem to provide inter-
subsystem communication. It is connected by a gateway to the core communi-
cation system and therefore also connected to every other system, subsystem or
even node in the architecture. Its main attribute is low-cost, although it may have
to provide fault-tolerance depending on the requirements of its subsystem.
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3.3 TTP

3.3.1 Introduction

The Time-Triggered Protocol (TTP) [75] has been developed at the Technical
University of Berlin [24] and the Vienna University of Technology [84] in the last
25 years. For commercial purposes, a company called TTTech [11] was founded
which has continued the development of TTP.

The implementation of TTP which is discussed in this section is TTP [116], which is
a safety-critical communication protocol which ful�lls SAE (Society of Automotive
Engineers) requirements. TTP has already been used in several domains like
automotive, aerospace, railway and special vehicles.

3.3.2 Conceptual Attributes

TTP provides several services needed for safety-critical real-time communication.
Two main concepts which were major design drivers in the development of TTP
are:

• Fault-Tolerance: TTP is based on the fault-hypothesis that a single compo-
nent may fail in an arbitrary failure mode. The likeliness of two concurrent
independent component failures is so unlikely that it is considered as rare
event. Furthermore TTP provides a Never-Give-Up (NGU) strategy to han-
dle this rare events.

• Composability: TTP ensures that distributed subsystems are composable to
a larger system. This leads to several advantages like the reduction of com-
plexity, based on the separation of large systems into smaller ones, reduced
interface mismatches, based on a detailed interface speci�cation and the pro-
tection of intellectual property, according to separation at the interfaces.

Several services, which are described in detail in the upcoming sections, were
introduced on the protocol level to support these concepts named above.

3.3.2.1 Communication Services

TTP uses a TDMA (Time-Division Multiple Access) scheme for communication.
This means that every node in the cluster has a given amount of time, its sending
slot, to transmit data. Based on this, every node in the cluster can have such a
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slot, one after the other. A set of such slots is called a round. After the last slot
in the cluster is �nished, the next TDMA round starts with the �rst slot again.

Furthermore, TTP is a broadcasting protocol which means that the data in the
sending slot is transmitted to all other nodes.

The information about the sending slot and every other information, which is
necessary for communication is stored in the Message Descriptor List (MEDL).
This con�guration information is de�ned before runtime which ensures a consistent
view of the communication for every node in the cluster.

Cluster Startup Cluster startup is a service which is performed at power-on or
a reset of the whole cluster. This service changes the state of the cluster from an
unsynchronized to a synchronized one.

A node queries for synchronization information from other nodes and if received, it
uses this information to synchronize with other nodes in the cluster. If no synchro-
nization information is received after a certain period of time, a node performs a
"cold start". This means that the node starts to send synchronization messages by
itself to provide other nodes in the cluster with the necessary startup information.

Another concept which is used at startup is called "big bang". This mechanism
ensures that in case of a startup collision between two cold starting node, no one
will integrate on any of the collided frames.

Integration The process of synchronization to a running cluster is called in-
tegration. The controller state information, which is sent by other nodes in the
cluster, is used to get the necessary synchronization information and based on this,
the node tries to synchronize to the network and acquire a sending slot.

Data Transport Data transport is the service of distribution of data. This
service only consists of application data and does not include protocol information
overhead and data provided by other services like global time base.

The host communicates with the TTP controller via the CNI (Communication
Network Interface). This is a dual ported memory where either the host or the
TTP controller can read or store data. For data transport, the host stores the
data into the CNI and these data will be sent in the nodes transmission slot.

Based on the broadcasting functionality, every node in the cluster receives the
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data and stores it in its CNI to provide it for the application running on the
host. Furthermore, an acknowledgment algorithm is implemented which provides
information about the validity of the transmissions in the cluster.

TTP supports replicated and non-replicated data transport. A controller is able
to send di�erent data on di�erent channels which may be lost in case of a single
fault. In case of safety-critical information, it has to be sent on both channels to
prevent this scenario.

Clock Synchronization - Global Time Base The global time used in the
TTP protocol is based on a sparse time base [69][42]. This means that the time is
separated into statically designated intervals. This approach reduces �exibility but
also reduces complexity and simpli�es clock synchronization and the determination
of concurrency.

To determine a global time over a cluster, distributed clock synchronization has to
be done. To achieve this, an algorithm is used which calculates a correction term
for the own local clock based on several local times from di�erent nodes in the
cluster to bring the clock into better agreement with the ensemble. The algorithm
which is used by TTP is called fault-tolerant average (FTA) algorithm [73].

Noise Tolerance TTP is able to tolerate one (permanent) noisy channel during
startup and normal operation. This is important to ful�ll the single point of failure
fault-hypothesis.

Acknowledgment Acknowledgment, which is a service based on the member-
ship mechanism (see section 3.3.2.2), informs a sender whether the receivers of a
message have consistently and timely got the new information.

Based on this, all nodes in the cluster have a consistent view about the transmis-
sions and may decide about transmission errors or faulty nodes.

3.3.2.2 Safety Services

Safety for communication systems means, that the receiver gets all the data cor-
rectly and timely. Even in the case of errors, the receiver should get the data. To
be able to handle this, consistent communication is needed which is enabled by a
global view of the system for all nodes in the cluster.
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Membership Membership is one of the main services of TTP and is formally
veri�ed [23]. This service informs all nodes of a cluster about the operational state
of each node within a latency of about one TDMA round.

Every node maintains a membership vector, including information about all other
nodes in the cluster, which is broadcasted with every data transmission. Due
to this service, every node in the system receives this information and compares
it with its own membership vector, which ensures a consistent view about the
operational state of each node in the system.

Clique Detection To avoid clique formation and to detect inconsistencies in the
cluster, the number of nodes that agree on the current controller state is monitored.

Host/Controller Life-sign The host life-sign is used to indicate the TTP con-
troller that the host application is alive.

If the host life sign is not updated periodically, the TTP controller does not send
any data and switches into a passive mode. It is also a pre-condition for correct
controller startup.

The controller also provides a life-sign to the host to indicate a correct operational
state.

Bus Guardian The bus guardian is an autonomous subsystem, which may be
implemented locally (bus topology) or centrally (star topology) and protects the
communication channels from temporal transmission failures. Additionally, it can
be used to prevent "slightly-o�-speci�cation" faults.

The bus guardian has knowledge about the communication schedule and the time.
Based on this information, it opens a transmission window for the sending node
during the time of its sending slot. Nodes which are not allowed to send at the
moment, are prevented from transmitting data and therefore from corrupting the
current transmission.

3.3.2.3 Higher Level Services

These services provide extra functionality to the host application but are not
necessary for basic TTP communication.
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Cluster Modes Based on the fact that a system can be used under di�erent
circumstances, TTP is able to handle di�erent modes. These modes can have
di�erent schedule parameters but the TDMA slot sequence has to be the same.

TTP needs at least one cluster mode, the startup mode, which is used for the
startup of the cluster. Usually after startup, a mode change is proposed to change
from startup mode to a normal operation mode.

External Clock Synchronization This service can be used to synchronize a
cluster with an external time source.

A time gateway node which is connected with an external time source on the one
hand and part of the synchronized cluster on the other, is able to calculate the
external rate correction value, combine it with the clock synchronization value and
broadcast it to the other nodes to synchronize them with the external time source.

3.3.3 Implementation Attributes

3.3.3.1 Network Topology

TTP provides two network topologies:

• Bus Topology: In the bus topology, every node in the system is connected to
both communication channels. To protect the bus from faulty nodes, local
bus guardians are used. To support the single-fault hypothesis, two TTP
channels are needed.

• Star Topology: In the star topology, several nodes are connected by so called
star-couplers. These star-couplers also provide a centralized bus guardian
service and of course they are replicated to support the single-point of failure
hypothesis.

TTP supports up to 64 nodes in a system and a mixture of both topologies is
possible, too.

3.3.3.2 Physical Layer

TTP does not rely on a particular physical medium or bus coding scheme. But
there are constraints which are:

• two independent physical channels,
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• a shared broadcast medium and

• a known propagation delay.

Available physical layers support communication speeds of up to 25 Mbit/s for
synchronous and 5 Mbit/s for asynchronous transmission.

According to physical distribution, cable lengths of up to 100 meters were success-
fully tested.

3.3.4 Application Attributes

3.3.4.1 Flexibility

Flexibility is a major disadvantage of TTP. This is based on the fact that the
attention, in the trade-o� between �exibility and safety, had always been on safety.
Therefore, it is appropriate for safety-critical applications, especially demanded in
the aerospace domain, but also narrows the system designer, especially in lower
criticality cases.

3.3.4.2 Suitability

TTP is suitable for aerospace applications and has already been used several times
in this domain. The TTA (see section 4.7.1 on page 69), which is the architecture
behind this communication system, also provides constraints and services which
are needed for designing a DIMA based platform.

A disadvantage of the communication system is the limited �exibility and the
bandwidth which is whether high nor expandable enough to ful�ll the requirements
for a core communication system in a DIMA architecture. Considering subsystem
communication, TTP is already used and may also be a possibility for the future.

3.3.5 Conclusion

The communication systems which were described in this section provide several
services which are needed for safety-critical aircraft functions.

Based on this, TTP is suitable for the use in aircraft functions but also has some
weaknesses which keep it from being the core communication system. On the other
hand it provides a safety-proven solution for other �elds of application, even in the
aerospace domain.
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3.4 FlexRay

3.4.1 Introduction

FlexRay [31][34] is a communication protocol designed for the automotive domain
to meet the requirements of communication bandwidth, determinism, reliability
and scalability that are hard or impossible to meet with existing technologies. It
addresses high-speed, high-throughput applications as well as distributed control
functions with high accuracy requirements.

The FlexRay communication schedule consists of two main parts:

• The Static Segment: Comparable to TTP communication.

• The Dynamic Segment: Comparable to ByteFlight [64] communication.

Based on these segments, FlexRay tries to support deterministic, without the loss
of �exible communication for smaller applications.

3.4.2 Conceptual Attributes

3.4.2.1 Communication Services

Communication Format The time-triggered and therefore fully deterministic
"static segment" of FlexRay communication supports protection against commu-
nication controller faults and the clock synchronization mechanism o�ers a fault-
tolerant distributed time base built up from low-cost hardware components. Ser-
vices based on this segment are ideally suited for control algorithms and functions
with strict timing and response time requirements due to the highly deterministic
behavior of communication in this segment, even in very complex systems.

The event-triggered "dynamic segment" of FlexRay supports periodic and a-
periodic data transmission based on a collision-free minislotting arbitration
scheme. The advantage of this segment is that the communication bandwidth,
reserved for dynamic transmissions, does not need to be statically scheduled and
is therefore well suited for highly dynamic services such as diagnosis.

Clock Synchronization Like every time-triggered communication protocol,
FlexRay needs a global time base. Therefore FlexRay provides a fault-tolerant
synchronization algorithm which ensures that all local clocks are synchronized.
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Startup and Integration FlexRay provides startup and integration algorithms
which allow a distributed startup of all nodes. After the startup, a node tries to
establish the communication, which allows other nodes to join. If there is an
interrupt during the startup procedure, the starting node stops trying to establish
the communication and listens to the bus if other nodes are trying to establish
communication too.

If a node resets itself, it can start up again and join communication. Using an
integration algorithm, nodes who are not part of the communication anymore are
able to join the communication again.

3.4.3 Implementation Attributes

3.4.3.1 Network Topology

FlexRay provides two network topologies, or a combination of both of them:

• Bus Topology: Every node in the system is connected to one or both commu-
nication channels using a bus topology. A local bus guardian ensures passive
communication which means that a node only transmits when it is allowed
to.

• Star Topology: Using the star topology, several nodes are connected by
one or both communication channels to so called star-couplers. These star-
couplers are central points which actively forward the received data to all
communication nodes.

3.4.3.2 Physical Layer

Based on the physical layer speci�cation [33][32], FlexRay supports communication
speeds of 10MBit/s only.

3.4.4 Application Attributes

3.4.4.1 Flexibility

Based on the communication services of FlexRay, many existing functions, which
are already implemented, can be reused and integrated into the communication
network. Furthermore, new functions can be added to the same network instead of
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adding further communication systems to the already complex network architec-
ture by using the static communication for regular and the dynamic communication
for occasional data exchange.

3.4.4.2 Suitability

New functionalities which demand safety-critical communication are currently not
addressed by the technology. This means that FlexRay is currently intended as a
faster and more deterministic communication technology in the automotive domain
but not as an enabler for distributed safety-critical applications.

At the design phase, such speci�c safety functions were intended to be implemented
on higher levels. Using FlexRay for safety-related functions, which require more
than basic FlexRay services, these speci�c safety services have to be provided by
those higher layers as part of an additional hardware or software layer.

3.4.5 Conclusion

The advantages of FlexRay are that it is highly used in the automotive domain
and therefore already integrated in several di�erent microcontrollers as standard
communication system. Furthermore, di�erent vendors are available which provide
development and production diversity which is an important issue in the aerospace
domain.

On the other hand, the safety services which are also needed are not implemented
innately and need additional resources. Therefore, to be able to widely use FlexRay
in the aerospace domain, an approach is needed which supports the use of low-cost
standard components but also introduces advanced safety services to FlexRay.

3.5 Layered-TTP and Layered-FlexRay

3.5.1 Introduction

Layered-TTP (L-TTP) and Layered-FlexRay (L-FlexRay) [20][80][124] provide
conceptual extensions on top of the standard communication systems TTP and
FlexRay. Therefore, the implementation attributes are the same like for the stan-
dard systems which were already discussed before.

These extensions which have been developed in the DECOS project (see sec-
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tion 4.7.3 on page 76) introduce several new services to the communication sys-
tems. Using this layered approach, both communication systems provide advanced
services to fully support aerospace demands.

3.5.2 Conceptual Attributes

L-TTP and L-FlexRay provide a set of extended services for TTP respectively
FlexRay. The extensions include advanced services for integrated systems. Based
on this, TTP and FlexRay become more suitable for the use in DIMA architectures.

The name of L-TTP and L-FlexRay originates from the layered approach. It
consists of two layers, the synchronization and communication layer (SCL) and
the advanced services layer (ASL). Both of these layers and their services are
described in the upcoming sections.

3.5.2.1 Synchronization/Communication Layer (SCL)

The SCL provides the basic communication services with some additional func-
tionalities in comparison with TTP or FlexRay. Only these additional services are
described below.

Fault-Tolerant Startup Using a central bus guardian, any single fault during
startup is tolerated. This service guarantees cluster startup within a known time.

Never-give-up Integration Strategy If the synchronization is lost, the con-
trollers try to integrate or to coldstart. This never-give-up strategy supports fault-
tolerance.

Flexible Cluster Round Schedule Using this service, a controller may have
more than one sending slot per round. In opposite to TTP where every node has
at most one slot per round, a task which needs high bandwidth is able to provide
more data.

Dynamic Slots This service allows a task to allocate an additional dynamic
slot if needed. This slot is assigned during runtime according to the priority of
the task. A major advantage in opposite to standard FlexRay is, that this slot
is also protected by the bus guardian. This service and the �exible cluster round
schedule increase the �exibility for the cluster designer.
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3.5.2.2 Advanced Services Layer (ASL)

The ASL provides some higher-level services which may be used by the host ap-
plication. These services, which are described below, are optional and may be
deactivated.

ASL/SCL Independence An important constraint which is supported by this
approach is the independence of the layers. This ensures that membership or clique
failures do not have in�uence on synchronization and communication.

Partitioned Membership Partitioned membership allows to de�ne di�erent
membership groups which do not in�uence each other. This supports the possi-
bility of having applications with di�erent safety-levels in the same cluster. This
algorithm has also been formally veri�ed [87].

Another service is called passive membership which allows to agree on the member-
ship of a slot which does not belong to the same membership group. Furthermore,
it is possible to have membership free slot and nodes.

3.5.3 Application Attributes

3.5.3.1 Flexibility

Increased �exibility is one of the major advantages of L-TTP in opposite to TTP
and was a major design driver. Based on this lack in TTP and according to new
requirements in the aerospace but also in the automotive domain, L-TTP is an
approach to ful�ll these requirements and increase �exibility without a major re-
duction of safety.

In terms of L-FlexRay, �exibility is provided by the underlying FlexRay commu-
nication system. The layered services on top of it provide advanced safety services
without a signi�cant reduction of �exibility.

3.5.3.2 Suitability

Like TTP and FlexRay, their layered upgrades are suitable as safety-critical sub-
system communication systems. According to their extended services, they have
advantages compared to the standard systems but the performance is still too slow
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for the use as core communication system.

An interesting possibility is that the additional layers can be included into the cen-
tral switches of a star topology which provides the extended services to the commu-
nication system by simultaneously using cheap commercial-o�-the-shelf (COTS)
components at the end nodes.

3.5.4 Conclusion

The layered approach for TTP and FlexRay provides the advantage that both
communication systems become more suitable for integrated architecture commu-
nication, according to their extended services. Furthermore, it reduces the dis-
advantages of both systems regarding the trade-o� between safety and �exibility.
On the one hand, TTP, which is designed to be highly reliable and safety-critical,
gains more �exibility. On the other hand, FlexRay, which has no safety related
services innately, conceives these safety-services on communication system level.

3.6 AFDX

3.6.1 Introduction

Avionics Full Duplex Switched Ethernet (AFDX) is described in the ARINC (Aero-
nautical Radio, Inc) speci�cation 664 [19]. The ARINC664 speci�cation deals with
communication systems for aerospace applications.

During the 90s, Airbus performed several technology programs to evaluate new
technologies in various domains. Regarding data bus communication, the goal
was to �nd a better solution then ARINC429 [18] in terms of costs, performance,
�exibility and applicability.

The �rst consideration was the ARINC629 [17] speci�cation which is based on an-
other avionics communication system. But later on, technology from the telecom-
munications domain was evaluated, especially Ethernet. Based on the maturity,
the standardization aspect and the hardware costs, Ethernet was the preferred
choice and Full Duplex Switched Ethernet was adopted to ful�ll civil aerospace
requirements [44].

Airbus speci�ed the AFDX protocol which is used in the Airbus A380 the �rst
time. Based on this communication service, IMA functionality is contributed us-
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ing distributed communication resources and multi-function real-time computers.

3.6.2 Conceptual Attributes

3.6.2.1 Virtual Links

Packet routing mechanism in AFDX are called virtual links. In traditional Ether-
net, the destination address is used by the switch to route incoming frames to the
correct output links. In AFDX, a value called the virtual link ID is used to route
the frames within the network.

The switches in an AFDX network are "con�gured" to route an incoming frame
to one or more outgoing links. An important property of AFDX is, that a frame
has exactly one originating end system. Based on the virtual link ID, the switches
are con�gured to deliver the frames to a predetermined set of end systems.

The virtual links concept also provides partitioning at the network layer and a �ow
control mechanism, which regulates the �ow of data between the switch and the
end systems. Partitioning is done by the virtual links, which should not be shared
by two or more source applications or source partitions.

3.6.2.2 Service Guarantee

AFDX provides a set of guaranteed services, like the bandwidth and the maximum
end-to-end latency of a virtual link. But there is no guarantee that a packet
is delivered. Acknowledgments for transmission and retransmission have to be
handled at application level.

Bandwidth The communication system provides a bandwidth control mecha-
nism. The Bandwidth Allocation Gap (BAG), which de�nes the minimum time
interval between two successive frames assuming zero jitter, is used to transmit
the given data. The system integrator has to de�ne the BAG value and thus the
allocated bandwidth for each virtual link, according to the application and equip-
ment requirements. These con�guration values are stored in the appropriate end
systems and the con�guration tables of the switches.

Jitter Jitter is introduced by the transmission of frames for a virtual link. It is
de�ned as the interval between the start of the BAG interval and the �rst sent bit
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of the frame.

An end system might have to send multiple virtual links which can delay a frame
up to the maximum allowed jitter value, to limit the instantaneous frame rate of
the end system and thus accommodate frames from other virtual links.

Latency The maximum system latency is not de�ned by the speci�cation but
each supplier has to specify the upper limit for any delivered system. According
to these limits, the maximum latency of the whole network can be evaluated.

3.6.2.3 Real-Time Control

Based on the guaranteed services, an accurate time-stamping logic and the la-
tency control in form of the maximum network transit delay control, real-time
performance is achieved for special end systems.

3.6.2.4 Redundancy Management

In an AFDX network, there are always two independent, physically separated
paths between each end system. Furthermore, there are redundant switches to
support fault-tolerance.

The default way is the transmission of the same frame on both networks. The
receiving end system accepts the �rst valid frame and passes it to the application.
For every received frame, an integrity check is done. If a frame is valid, any other
frame with the same sequence number is discarded.

Based on the con�gurable redundancy option it has to be decided for every frame
whether it is sent either via one or both separated paths.

3.6.2.5 Application Services

From the application point of view, AFDX provides three di�erent services:

• Sampling: A simple connectionless implementation which does not support
acknowledgment.

• Queuing: Like sampling, a simple connectionless implementation without
acknowledgment.

• File Transfer: The Trivial File Transfer Protocol (TFTP) is used for �le
transfer.
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3.6.3 Implementation Attributes

3.6.3.1 Network Topology

AFDX uses a star topology with a special switch as central connection point. The
end systems are connected by a point-to-point connection to the switch which is
responsible for the routing of the data frames.

A network consists of a maximum of 24 end systems but may be cascaded to
construct larger networks.

3.6.3.2 Physical Layer

Based on the fact that AFDX is an Ethernet based communication system, the
communication speeds are 10MBit/s and 100MBit/s. Furthermore, it supports
cable lengths of up to 100 meters.

3.6.4 Application Attributes

3.6.4.1 Flexibility

Flexibility was a major design driver during the development of Ethernet. There-
fore, AFDX provides a high level of �exibility, too. But according to the require-
ments in the aerospace domain, �exibility was decreased to increase determinism
and predictability.

These limitations are re�ected in the maximum number of end systems in one net-
work and the virtual links including its prede�ned data handling. Despite these
restrictions, AFDX is one of the most �exible solutions in the �eld of avionics.

3.6.4.2 Suitability

AFDX is already used in several major airplanes and supports IMA based systems.
Due to its �exibility and high performance, it is absolutely suitable for the use in
aircraft functions and as DIMA core communication system in special.

There is only one major disadvantage which is the absence of several system ser-
vices on communication level. More precisely, most of the required safety services
have to be implemented on application level which reduces the e�ciency of the
host computers and therefore the computational power available for the aircraft
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functions. Furthermore, the complexity of the application is increased.

A minor disadvantage is the absence of a tool chain for the con�guration of the
network and its end systems. But this problem will be addressed in near future.

3.6.5 Conclusion

AFDX is a relatively new but already used communication system for aerospace
systems. It is based on Full Duplex Switched Ethernet including additional services
like guaranteed latency, guaranteed bandwidth and virtual links to ful�ll aerospace
requirements.

The biggest advantages are its high performance, its mature functionality and
the high degree of �exibility. The only disadvantage can be seen in the absence
of advanced system services which requires their implementation on application
level.

In the future, AFDX should be extended to provide a set of system and safety
services on communication level to be able to fully support DIMA architectures.

3.7 TT-Ethernet

3.7.1 Introduction

TT-Ethernet [53][52] combines the advantages of common Ethernet and TTP.
It allows the coexistence of TDMA and CSMA (Carrier Sense Multiple Access)
schedules by using a star topology with central switches. These redundant switches
do not only provide message forwarding but also include central bus guardians,
which verify the communication and assure determinism and a priori known latency
according to the di�erentiation of time-triggered and event-triggered messages.

3.7.2 Conceptual Attributes

3.7.2.1 Communication Services

The central switches, which ensure the communication between the communication
nodes, are the main parts in TT-Ethernet. If one of the central switches gets a
message, it veri�es if this is a time-triggered (TDMA based) or an event-triggered
(CSMA) one. The time-triggered message always has priority because this ensures
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a deterministic communication and an a priori known latency.

There is no possibility that two time-triggered messages arrive at the switch at
the same time because these messages have to be properly scheduled before. If
two event-triggered messages arrive at the same time, one will be delayed until the
other one is transmitted.

3.7.3 Implementation Attributes

3.7.3.1 Network Topology

TT-Ethernet only supports a star topology because the centralized switch [65] is
the major communication point. The central switch provides the safety services
and handles the distinction between time-triggered and event-triggered messages.

3.7.3.2 Physical Layer

TT-Ethernet uses standard Ethernet physical layers which allow communication
speeds of 100MBit/s, 1GBit/s and 10GBit/s. Based on the Ethernet approach,
either electrical or optical physical layers are available. The decision which one to
use depends on the requirements of the application and its environment.

3.7.4 Application Attributes

3.7.4.1 Flexibility

TT-Ethernet is compatible to Ethernet and AFDX innately and supports a central
gateway approach for TTP and FlexRay. Therefore, it is able to communicate with
several di�erent communication systems and to connect subsystems with di�erent
classes of criticality.

3.7.4.2 Suitability

Based on the fact that TT-Ethernet is compatible to AFDX, the current stan-
dard for high performance communication systems, it is suitable as DIMA core
communication system. TT-Ethernet provides high dependability, high perfor-
mance, fault-tolerance and support safety-critical communication by extending
AFDX with its missing services.
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3.7.5 Conclusion

According to the fact, that TT-Ethernet combines Ethernet and TTP, all impor-
tant communication and safety services of TTP are implemented in TT-Ethernet
too. Consequently, it allows deterministic, fault-tolerant and safety-critical com-
munication with advanced diagnosis features.

As a result, it is perfectly suitable as high-performance core communication system
for DIMA architectures.

3.8 Spider - Robus

3.8.1 Introduction

The Scalable Processor-Independent Design for Extended Reliability (SPIDER)
project is a research project of the NASA [10] formal methods group in Langley
[81]. The goal of the project is the formal veri�cation of safety-critical communi-
cation systems and architectures as well as creating an environment for the use of
formal veri�cation for certi�cation purposes.

SPIDER is an architecture which provides partitioning for the application and a
safety-critical communication system between these partitions, respectively appli-
cations. The communication system, which is used, is called Reliable Optical Bus
(ROBUS). ROBUS, which is based on a fault-tolerant TDMA bus, and its services
are fully veri�ed by formal methods.

SPIDER, including its communication system ROBUS, is still a research project,
which is prototyped in conjunction with Derivation Systems [111] but does not get
designed commercially. Since this chapter discusses communication systems, the
section below deals with ROBUS and its services. For detailed information about
the SPIDER architecture, please refer to section 4.7.2 on page 74.

3.8.2 Conceptual Attributes

3.8.2.1 Distributed Coordination

ROBUS uses a set of two main protocols:

• Synchronization Protocols: The synchronization protocols are based on
event-triggered communication which is used to synchronize all nodes in a
system. This is done at startup or during a restart phase.
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• Synchronous Protocols: The synchronous protocols use time-triggered com-
munication, which is started after synchronization to provide the operational
communication.

Clock synchronization is used to coordinate the local clocks of the nodes and to
provide a global time. The fault-tolerance attributes allow clock synchronization
even in the occurrence of faults.

Based on the synchronous state of the node and a determined execution scheme,
ROBUS provides a highly deterministic behavior.

3.8.2.2 Redundancy Management

Fault Containment and Diagnostics The communication system provides re-
dundancy management on communication level. Furthermore, it establishes fault-
containment-regions (FCRs) which isolate faults and prevent their propagation.

ROBUS provides a distributed diagnostic system which is divided into two layers:

• The Local Layer: The nodes monitor the communication and diagnose the
bus and each individual node separately.

• The Collective Layer: The nodes exchange their local diagnostic information
to extend their local assessments.

Every node performs several diagnostic functions like error detection, node assess-
ment and bus assessment.

Cliques Groups of BIUs and RMUs which are working together are called cliques
in ROBUS. If the service of a clique is in accordance with the speci�cation, it is
considered trustworthy. Based on the diagnostic assessments, a clique membership
is provided which indicates the trusted nodes.

Error Detection and Containment Based on the FCRs, the only path of
error propagation between nodes is through their interfaces. Therefore, barriers
are placed at both ends of the interfaces. If a local failure is detected or a bus failure
is considered, the interfaces are disabled. Furthermore, input-error detection, in-
line checks and dynamic voting are used to mask undetected errors from trusted
sources.
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3.8.2.3 Operational Modes

BIUs and RMUs use the same state transitions in the operational mode. After
enabling the node or after a local or a bus failure, the node starts with the self-test.
If this test is passed, the node searches for existing cliques which are already in
the clique preservation mode.

If a working clique is found, the node tries to join it in the corresponding mode. If
no clique is found, the node tries to establish a new one in the clique initialization
mode.

If the node joined an existing clique or set a new clique up, the node switches to
the clique preservation mode.

3.8.2.4 Point-to-Point Communication

The point-to-point communication supports three di�erent communication modes:

• synchronous: It is used with the synchronous protocols which uses a time-
triggered communication scheme based on the local time.

• �xed-delay: It is also used with the synchronous protocols. Based on event-
triggered events, the data is bu�ered for a predetermined time till it is pro-
cessed. This communication mode is used for synchronization.

• asynchronous-monitoring: It is used by a recovering node to observe the bus
in order to be able to synchronize the local time source.

3.8.3 Implementation Attributes

3.8.3.1 Network Topology

The network topology used in the ROBUS communication system is an active star
topology. Based on the concept, it consists of two major parts:

• Bus Interface Units (BIUs): These units are used for the network access.

• Redundancy Management Units (RMUs): These units are network hubs
which provide the connection between the BIUs.

The BIUs and the RMUs are connected using point-to-point links.
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3.8.3.2 Physical Layer

The design of the communication system is independent from the physical imple-
mentation of the point-to-point links, which are used as connection between the
BIUs and RMUs. It is suitable for use with point-to-point optical data links.

3.8.4 Application Attributes

3.8.4.1 Flexibility

The focus in the design of ROBUS, in the trade-o� between safety and �exibility,
is clearly on safety. In particular, the fully veri�ed services and the predetermined
communication schedule state this fact.

To increase �exibility, it is possible to introduce a new schedule during runtime
using an agreement protocol. If all nodes in the clique agree on this schedule, it
will be used after the agreement process. If there is no agreement on the schedule,
a default schedule is used.

Based on this, �exibility is increased a bit but is still very static compared to the
Ethernet based protocols.

3.8.4.2 Suitability

The architectural approach based on a communication system which provides a
set of safety and system services, ROBUS is theoretically perfectly suitable for
aircraft systems and DIMA architectures.

But due to the fact that ROBUS is a research project which is not o�ered com-
mercially it can not be used at the moment.

3.8.5 Conclusion

ROBUS is one of the most advanced safety-critical communication systems which
has been designed yet and it provides important research in the area of formal
veri�cation.

But it is nevertheless a research project which does not allow the practical use in
an aircraft. Based on this, it is a standard, for every other communication system
which is developed, in terms of formal veri�cation and theoretical investigation
but cannot play a major role in current or closely upcoming aerospace platforms.
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3.9 Comparison

From a theoretical point of view, the ROBUS communication system is the most
advanced one, according to the fact that every service is formally veri�ed. Further-
more, it is able to tolerate several possible failure scenarios, including Byzantine
failures. The main problem of ROBUS is that it is commercially not available.

TTP, FlexRay, and their layered versions L-TTP and L-FlexRay, provide a set
of services which support the architectural approach but their performance is too
low to be suitable for a DIMA core communication system. But for subsystem
communication, some of these communication systems are already used and all of
them are perfectly suitable.

AFDX is already in use in aerospace applications and provides a high degree of
performance but does not include services which therefore have to be implemented
on application level.

Therefore, TT-Ethernet might be the best choice for a communication system in
a DIMA based platform. It has good performance which is comparable to AFDX,
supports legacy systems and provides additional safety and system services at
communication level.

3.10 Conclusion

This section shows that there are several di�erent communication systems avail-
able which can be used for aircraft applications or architectures. According to
their di�erent constraints and attributes, they can be used for di�erent classes of
communication systems needed by a DIMA architecture.

Regarding commercial aircraft, AFDX has already been used several times and
is therefore considered to be the standard. Upcoming projects will clarify if TT-
Ethernet will be able to compete. In terms of subsystem communication, where
TTP has already been used several times, there is an interest to use FlexRay
because its communication controller is already integrated into several microcon-
trollers.
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The major di�erence between

a thing that might go wrong

and a thing that cannot

possibly go wrong is that

when a thing that cannot

possibly go wrong goes wrong

it usually turns out to be

impossible to get at or repair.

(Douglas Adams)

Chapter 4

System Architecture

4.1 Introduction

The system architecture, including the communication system, de�nes the at-
tributes, services and constraints of DIMA architectural based platforms. Good
architecture design reduces the work of the aircraft function developer. Most of
the network management and communication services are done hidden from the
application. Therefore, complexity is reduced by increased safety.

The system architecture consists of the communication system, the system ser-
vices, the operating system, the hardware, including its drivers, and a software
tool chain for con�guration.

This chapter discusses the requirements that have to be considered in the design
phase of an architecture, talks about operating systems and their services, de-
scribes the structure of the hardware, de�nes demands for a tool chain and shows
some examples from already used or still developed architectures.

4.2 Design

4.2.1 Introduction

During the design of an architecture, several constraints and requirements have to
be considered. This section wants to discuss such key factors which are needed by
an architecture which is suitable for the use in the aerospace environment, espe-
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cially in DIMA systems.

Most of this is also valid for architectures in several other domains like the auto-
motive's, special vehicles' or other safety-critical systems.

4.2.2 Composability

Composability [113] means that a system is composable into subsystems which
provide the functionality of the whole system. An architecture which ensures
composability must adhere to following four principles: independent development
of nodes, stability of prior services, constructive integration of the nodes to gener-
ate the emerging services and replica determinism as discussed by Poledna [88].

Composability provides several advantages for platform design and implementation
like:

• Reduction of Glue Code: If the system has well de�ned interfaces, which is
a requirement for composability, glue code, which is needed to connect the
subsystems at the interfaces, is minimized. Since the interfaces are de�ned in
the value and the time domain and they are considered during (sub)system
design, no glue code should be needed at all.

• Reduction of Complexity: If the system is decomposed into smaller pieces,
the mental complexity of the subsystems is reduced [100]. This provides
an easier understanding of the subsystems and therefore the whole system,
which leads to higher quality and faster development.

• Advanced Testability: Decomposed subsystems can be tested independently
which allows the start of the testing process in a much earlier state of devel-
opment. Furthermore, this focused testing allows to �nd design and imple-
mentation faults much easier than by testing the whole system at once.

• Specialization and Focusing: Based on the separation into subsystems, every
development team can focus on their core competence. Furthermore, the
integration can be done by a specialist which forces productive work with
increased quality and reduced instruction e�ort.

• Distribution of Work: Di�erent teams can develop di�erent subsystems in
parallel without having a direct dependency between them. Even testing
and integration can be distributed which allows e�cient development.
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• Protection of Intellectual Property: Based on the fact that outsourcing is a
popular strategy nowadays, several subsystems can be outsourced without
the risk of losing intellectual property. Furthermore, the system integrator
is able to handle all system design decisions regardless the design or im-
plementation considerations of the subsystem provider. The interfaces of
the architecture are the only point of connection which needs to be de�ned
clearly.

Based on this, the straightforwardness will be increased and this allows an e�cient
development of aircraft functions. Therefore, composability is a major design
driver for an architecture in the aerospace domain.

4.2.3 Scalability

Scalability means the partitioning and abstraction of large systems into subsystems
that are easier to handle. This is supported by the communication system which
encapsulates functions and makes only properties available, which are needed for
the correct operation of the function.

4.2.4 Extendability

Extendability describes how an architecture can be extended for future require-
ments. The development of an architecture is an evolving process, where new
requirements can come up after the basic design has already been speci�ed. But
not only in the development phase, also during the use of a system, innovations in
established technologies can force the extension of a system.

A scalable architecture is designed to support extensions and enhancements. A
distributed architecture provides the possibility of extending the system by adding
or changing nodes. This allows to add further functionalities or processing power
to the system. Furthermore, gateway nodes can be used to connect several clusters
to a system which provide additional resources and the possibility of hierarchical
and therefore scalable architectures.

4.2.5 Complexity

A main question during the development of an aircraft function is how to man-
age the complexity. According to current highly integrated developments and by
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increasing size of the system, the complexity [37] and therefore the e�ort to un-
derstand the system increases too.

Using subsystems, the behavior of functions can be encapsulated behind simple in-
terfaces to reduce complexity. Kopetz [70] describes this as follows: "The partition-
ing of a system into subsystems, the encapsulation of the subsystem, the preserva-

tion of the abstractions in case of faults, and the most importantly, a strict control

over the interaction patterns among the subsystems, are thus the key mechanisms

for controlling the complexity of a large system."

4.2.6 Dependability

Dependability is one of the most important claims in the aerospace domain. Based
on the fact that no safe state is available during a �ight, the safety requirements
are important design drivers.

To provide at least a minimum of service during the occurrence of faults, a system
has to provide following requirements to be dependable:

• Fault-Containment: Fault-containment [74][66] tries to limit the impact of a
fault to a de�ned region, the fault-containment region (FCR). In a distributed
architecture, one node can be considered to be one FCR.

• Error-Containment: Error-containment [74][66] tries to assure that an error,
the consequence of a fault, may not propagate to other components and cor-
rupt their state. In a safety-critical computer system an error-containment
region (ECR) requires at least two fault-containment regions.

• Fault-Tolerance: Fault-tolerance assures that the system works even if faults
a�ect parts of the system. Further information can be found in section 4.3.2
on page 52.

4.2.7 Partitioning

The term partitioning [101] is tightly coupled with the terms IMA/DIMA and
Modular Certi�cation because it is the baseline which is absolutely necessary for
the development and certi�cation of such systems. Partitioning is used to provide
fault-containment. A fault in one partition must not in�uence any other partition
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neither in the spatial nor in the time domain.

There are two di�erent types of partitioning which can be achieved in an architec-
ture:

• On a Single Processor

• Across a Distributed System

Based on the fact that partitioning is used as the means of protection for the
computer resources in an IMA system, the certi�cation of the partition and their
interfaces has to be considered during development [8]. The certi�cation of such
systems is discussed in detail in chapter 5 on page 83.

Using partitioning is no decision between the single-processor or the distributed
system approaches, rather both approaches should be used to provide a consistent
environment.

4.2.7.1 Partitioning on a Single Processor

Partitioning on a single node deals with the possibility of running several par-
titions on one host processor by sharing computational resources, interfaces and
peripherals.

Advantages Aircraft functions with di�erent levels of criticality can be hosted
by the same processor. This allows sharing computational power and therefore
reduces the number of needed hardware units in an aircraft, which furthermore
decreases cost, weight, space and power consumption.

Implementation Partitioning has to be implemented in connection with the
operating system. There are two ways where the functionality can be located:

• Above the Operating System (see part A of �gure 4.1 on the next page):
It provides the same structure as standard operating systems but has the
disadvantage that the operating system has to handle a lot of functionality.

• Above a minimal Kernel, below the operating system (see part B of �gure 4.1
on the following page): This approach can be considered as a "virtual ma-
chine" and has the advantage that partitioning depends only on the kernel
and the hardware.
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Figure 4.1: Implementation Possibilities for Partitioning

Additional information about operating systems and some examples can be found
in section 4.5 on page 58.

Design Considerations Based on the fact that several partitions use the same
processor, there are two major challenges for the development of this service:

• Spatial Partitioning: The memory of a partition can not be overwritten by
any other partition, even if the other one is faulty. Furthermore, it is im-
portant that a partition does not have single access to the interfaces and the
peripherals of the host system.

Current processors provide memory management units which are able to
handle di�erent partitions in the memory and guard them against unautho-
rized changes.

Another main point to consider is the communication between partitions be-
cause it can in�uence the state of the receiving partition. Therefore, only
prede�ned communication should be possible, using bu�ers which are han-
dled by the kernel.

• Temporal Partitioning: Based on the safety requirements of aircraft func-
tions, which are mostly handled by real-time functions, the state of the
system also depends on the time. If a partition has uninterruptible access
to the processor, a single fault can corrupt the whole host. Therefore, deter-
ministic schedules should be used to guarantee correct functionality, even if
one partition is corrupted.

Furthermore, such prede�ned static schedules, although they decrease �exi-
bility, simplify the operating system and increase the safety because the state
of every partition is deterministic.
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4.2.7.2 Partitioning Across a Distributed System

Partitioning across a distributed system is similar to partitioning on a single pro-
cessor, using the assumption that the whole system including the communication
is comparable to a single processor.

Of course, there is no processing power which needs to be shared and memory can
not be overwritten directly, but regarding the complexity, replication, use of di�er-
ent criticality levels, fault propagation and the communication between partitions
the same problems but also advantages appear.

Advantages Large systems can be decomposed in several smaller components
with di�erent levels of criticality and therefore di�erent requirements for certi�ca-
tion. Furthermore, di�erent functions are able to share nodes and in the distributed
approach their replicated partitions are distributed over the system.

Implementation In a distributed system, partitioning has to be implemented
in the communication system. The interface between the host processor and the
communication system has to be the fault-propagation barrier which assures that
only correct data may pass.

Design Considerations Like partitioning on a single processor, the separation
between spatial and temporal partitioning has to be done in a distributed system,
too:

• Spatial Partitioning: Spatial partitioning over a distributed system is easier
than on a single processor because the partitions are already physically sep-
arated like in the federated avionics concept.

Therefore, the most important point is the communication between the par-
titions. Like in the single processor case, prede�ned communication assures
that only conscious data may in�uence the state of the partition.

• Temporal Partitioning: Temporal partitioning is also comparable to the sin-
gle processor case. A static schedule of the communication system, based
on a global time, provides determinism and therefore a high degree of pre-
dictability.
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4.2.8 Layering

Layering is the possibility to abstract and reduce functionality to an adequate
amount for the hosted application. This is very important for the design of an
architecture to reduce complexity. Furthermore, using layers makes it possible to
split the work according to the interfaces between these layers.

An architecture can be layered into the communication layer, the hardware, the
operating system and the application. Each of these layers consists of several
layers itself. The most important thing in a layered concept is that the interfaces
between these layers are simple and well de�ned to prevent wasteful e�ort during
the composition of the layers.

4.2.9 Time

In the context of real-time systems, time plays a major role. The validity of a
value depends not only on its value but also on the current time.

4.2.9.1 Global Time

Several services which support fault-tolerance need to have a consistent view of
the system and therefore a global time base.

Current communication systems provide a global time. This global time is es-
tablished during synchronization of the nodes and is synchronized continuously to
prevent drifts of the local clocks.

Based on this global time, the host is able to know the order of events, check
deadlines, handle time-triggered communication and even schedule its tasks.

4.2.9.2 Correctness in the Time Domain

As already mentioned, preventing fault-propagation needs correct data in the value
and in the time domain. Real-time systems need the correct data at the correct
point in time in order to be able to react in time.

4.2.10 Conclusion

This section described a set of constraints and requirements which have to be con-
sidered during the design of an architecture, especially a safety-critical, distributed
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and integrated one.

Most of these points consider directly or at least touch the design and de�nition of
di�erent interfaces. Interface design is the most important but also most critical
part during the design of such an architecture. If it is done well, it can solve a lot
of problems at the start, if not, it can cause a lot of problems in the future.

4.3 Implementation

4.3.1 Introduction

This section considers the implementation details of the design requirements dis-
cussed in the previous section. Several mechanisms which are used to provide the
claimed requirements are discussed.

4.3.2 Fault-Tolerance

Fault-tolerance is needed for safety-critical systems to assure that faults are not
able to have catastrophic e�ects. Therefore, every safety-critical system should
de�ne how it will handle faults and how many faults will be tolerated.

4.3.2.1 Fault Hypothesis

The fault hypothesis [71] speci�es how many and what types of faults are tolerated
by the system. Therefore, it is the baseline for the development of fault-tolerance
mechanism which have to be validated at the end of the project.

4.3.2.2 Never-Give-Up Strategy

If a failure arises which lies beyond the fault-hypothesis, there has to be a never-
give-up (NGU) strategy in addition which should keep the system in a de�ned
state. This can be the restart of a permanent faulty node or even the whole
system, if necessary. If possible it should try to lead the system into a safe state.

4.3.2.3 Error Detection

Error detection provides two major functionalities. Based on error detection,
strategies can be initiated which try to resolve the problem and bring it back
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to a correct state. In the worst case this has to be the NGU strategy.

Furthermore it provides important information for diagnosis which helps to debug
and maintain the system.

4.3.2.4 Fault-Containment and Error-Containment

As already mentioned, fault-containment and error-containment tries to prevent
the propagation of faults. To ensure this, the direction of control has to be uni-
directional to reduce the dependency between di�erent nodes and the interfaces
have to obtain a strict speci�cation.

Furthermore, fault-containment regions (FCR) and error-containement region
(FCR) have to be considered in the design phase, to ensure functional and physical
independence between FCRs which form an ECR. A single ECR has to consist of
at least two FCRs.

4.3.2.5 Fail-Silence

Fail-silence means that a node either produces correct results in the value and
the time domain or does not produce any results at all. If a node is fail-silent, it
supports fault-tolerance even if it fails because it does not propagate any faults.
Therefore, a set of critical failure types, which increase the complexity of the fault-
hypothesis, do not need to be considered.

4.3.2.6 Critical Failures

This section describes two critical failure types which need to be considered in the
fault hypothesis.

Babbling Idiot A major problem regarding the communication are nodes which
are faulty and send data when they are not allowed to. This would corrupt any
other communication and therefore a�ect the whole system. Based on a fault-
hypothesis which depends on a single point of failure, this behavior has to be
prevented. Current time-triggered communication systems use guards which allow
a node to send in his speci�c time slot only. Therefore, it may corrupt its own slot
but not the communication of any other node.

Byzantine Byzantine faults are derived from the Byzantine Generals problem
[76]. It is based on the problem that a faulty node agrees every information it
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receives, even if di�erent nodes send di�erent information. This is di�cult to
resolve because it needs at least 3k+1 di�erent nodes which are connected to each
other, whereas k means the number of Byzantine faults which have to be tolerated.

4.3.3 Redundancy

Redundancy is one of the widest used mechanism for fault-tolerance in the
aerospace domain. In a federated architecture, every safety-critical aircraft func-
tion has at least one replicated node which is able to take over the provided func-
tionality in case of a fault in the primary system. Highly critical functions, like
the primary �ight control, typically use quad-redundant hardware or even a higher
degree of redundancy. Redundancy in IMA systems provides the advantage that
a function is not bound to a speci�c hardware. Therefore, the plane can use the
normal mode of operation, even in the case of faults, as long as the number of
non-faulty processors is su�cient to provide the de�ned level of replication and
therefore safety.

The approach that one system replaces the other is called redundancy. The pos-
sibility that several instances of the same function can run redundantly in the
network needs consistent communication for all nodes in the system. If it is guar-
anteed that all instances of the redundant function implementations always run
synchronously and always receive consistent input data, they will always produce
the same output as well and thus one function can replace the other one in case
of a fault.

Current communication systems are designed to support active redundancy.
Replica determinism [88] guarantees that if one host receives a certain data item
at a certain time, all others will receive either the same value or will be excluded
from the list of valid hosts.

4.3.4 Diagnosis

Diagnosis has to be integrated directly into an architecture to allow the e�ective
detection, identi�cation and classi�cation of experienced errors. This allows every
component in the system to have a consistent and holistic view on the state of the
distributed system.

Based on this advanced diagnostic information, debugging and maintenance are
simpli�ed and fault-tolerance is supported because recovery actions can be taken.
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4.3.5 Certi�cation

Every system that is used in the aerospace domain has to be certi�ed before it is
used in normal service. Therefore, certi�cation has to be considered at the design
phase as well [30].

Chapter 5 on page 83 discusses the certi�cation for aerospace systems in detail
and focuses on modular certi�cation which is a rather new approach, appropriate
for integrated architectures.

4.3.6 Conclusion

This section described a set of key points which have to be considered during the
implementation of an architecture. All of these points regard safety which has to
be the ultimate goal for aerospace or any other type of safety-critical systems.

4.4 Hardware Considerations

4.4.1 Introduction

The considerations regarding hardware in an integrated approach are di�erent
from those in the federated one [7]. In the federated approach, every hardware is
developed for its own, dedicated purpose. Therefore, every node can be designed
for its special functionality.

In an integrated approach, the hardware should be as general as possible to sup-
port all needed functionalities. Furthermore, a single processor should host several
di�erent applications or subsystems and provide access to its peripherals to every-
one. Therefore, the organization of such an integrated node is much more di�cult
than in the federated approach.

4.4.2 Types of Hardware

An interesting point which arises when comparing di�erent available operating
systems, which may be found in section 4.5.4 on page 62, is the wide range of
supported hardware. Some operating systems support hardware for special func-
tionalities which equals dedicated hardware systems in the federated approach,
others support general purpose hardware, like x86-compatibles, per default.

Within this wide range of di�erent computer systems, this thesis wants to con-
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centrate on multiple purpose embedded systems because they are widely used for
safety-critical aircraft functions.

4.4.3 Node Design

From the viewpoint of the system designer, the hardware of a node consists of
following major parts:

• Host Processor: The host processor is the central part which handles the
access to the interfaces and the communication, and the execution of the
software.

• Communication Controller: The communication controller handles the inter-
action with other nodes in the system. It can be included into the host pro-
cessor or located on a separate chip. The advantage of the extern solution is
that the processor and the communication controller may fail independently
of each other. On the other hand, an integrated controller saves costs and
space.

If the node provides gateway functionalities, it is possible that it contains
several communication controllers to shift information from one network to
another.

• Environmental Interfaces: The environmental interfaces are the inputs and
outputs of a node. This can be sensors, actuators, displays or any other
interface to the environment. These interfaces can be the major property
of the node, if it provides a transition to the environment, but can also be
nonexistent, if it is a general purpose processing unit.

4.4.4 Interfaces and Peripherals

The interfaces and peripherals of a common aircraft function are sensors, actua-
tors, displays and switches. A lot of them pertain the interface to the users which
are the pilots or the maintenance sta�.

New approaches for small aircraft try to standardize this interface using touch-
screens and bigger displays to provide all relevant data. Even in commercial air-
planes a standard environment is used to reduce the training costs.

Based on this experience, the systems in the aircraft will consist of processing
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units which can be located anywhere in the plane and the input and output nodes.
These nodes are part of the architecture connected by a communication system.
The information of these inputs and outputs is shared for all aircraft functions.
The access is handled by the architecture, in detail the communication system and
the operating system of the nodes.

Another advantage of this approach is the health monitoring functionality which
is done on architecture level by logging all relevant data and providing it to the
corresponding maintenance sta� for detailed veri�cation.

4.4.5 Commercial-O�-The-Shelf

The use of Commercial-O�-The-Shelf (COTS) hardware [67][46] allows to reduce
the development of aircraft functions to software development and certi�cation.
The development of hardware is only necessary if a special functionality is needed.
Based on this, the development costs can be reduced. Furthermore, using COTS
hardware increases the safety because the hardware has been used and tested
several times and faults in design or implementation can be found much earlier.

4.4.6 Integration of Communication

The development of special hardware which is not COTS has to be considered.
Using a communication chip which is easy to integrate in the developed hardware
provides the interface to the architecture. This chip should also support the up-
grade from other communication systems to support the reuse of legacy systems.

4.4.7 Conclusion

Considerations regarding the choice of the hardware should include the aspects
named in this section. Based on tight boundaries for costs and weight, the use of
integrated solutions will increase and dedicated hardware will only be developed
for special purposes.
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4.5 Operating System

4.5.1 Introduction

This section discusses the requirements of an operating system which is suitable
for the use in an integrated architecture [6]. In addition to already mentioned
aspects in association with partitioning, there are several other properties which
need to be respected.

An important factor is, for example, is the compliance to the Arinc653 standard
and the possibility of certi�cation for the operating system. At the end, this
section shows several examples of operating systems, which may be suitable, and
compares their attributes.

4.5.2 Design Considerations

4.5.2.1 Layering and Partitioning

Both points were already mentioned in the context of design considerations for
architectures. Layering and partitioning [120] in terms of the operating system are
related to the one already discussed but provide additional insight into the topic.

The operating system can be divided into several layers [86]:

• Communication Layer: The communication layer which provides the support
for the respective communication system.

• Core Services: The main part of the operating system are the core services,
which consist of the partition handling including their scheduling, the inter
partition communication and the error handling system.

• Partition System Interface: The partition system interface provides the in-
terface between a partition and the core services. It is responsible for the
resource handling of the partition and the communication to the core ser-
vices.

• Partition Level OS: The partition level OS provides operating system services
to the partition like task scheduling and intra partition resource management.

• Application Layer: The application layer is on top of the partitioned OS.
Based on the abstraction of the services of several layers, the implementation
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details are hidden for the application and it can use the resources like in the
federated approach where only a single function is hosted by one processor.

An important feature which supports these hidden implementation details is the
virtual network service. This service provides di�erent network interfaces to the ap-
plication by hiding their implementation. For example, time-triggered and event-
triggered communication services are supported [92][82][91]. Furthermore, it han-
dles inter-partition and cluster communication which means that the application
does not have to care about the di�erence between internal or external communi-
cation.

Based on the core services including the virtual network layer, it is possible to
have di�erent partitions with di�erent criticality levels and di�erent communica-
tion requirements on the same host processor.

4.5.2.2 Scheduling

Scheduling for safety-critical real-time applications is always a trade-o� between
safety and �exibility. There are two di�erent ways to realize it:

• Dynamic Scheduling

• Static Scheduling

Dynamic Scheduling Dynamic scheduling provides more �exibility to the ap-
plication developer but also needs more resources on the other hand. A dynamic
scheduler is able to handle tasks in a changing environment and does not need
to know every constraint in advance. But this is also a problem because it is not
predictable and therefore the behavior under critical conditions is not de�ned.

Static Scheduling Static scheduling provides more safety to the system be-
cause it is absolutely predictable and therefore even critical conditions are known
in advance and solved before runtime. The major disadvantage is that it is very
in�exible and minor changes in the design need a complete recalculation and re-
con�guration of the system.

4.5.3 Arinc 653

The Arinc 653 speci�cation [16] describes the interfaces between an operating
system and an application for the use in IMA systems. The so called APEX
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(Application/Executive) is the main interface which is described. Furthermore,
operating system services like communication and scheduling are described.

This speci�cation builds the baseline for operating systems which are supposed
to be used in an IMA environment. It consists of the core operating system, the
APEX and several partitions.

4.5.3.1 Core OS

The core OS is the central part of the operating system which is called core services
in section 4.5.2.1 on page 58. The already discussed idea of partitioning is a main
concept in the Arinc 653 speci�cation, too. Consequently, partitioning has to be an
integral part of the core OS. Partitioning has to be robust in time and space to be
able to host several di�erent partitions. The scheduling of these partitions, which
is handled by the core OS, has to be de�ned statically by the system integrator.

4.5.3.2 APEX

APEX is the interface layer between the core OS and the partitions. It allows in-
dependent applications to run on the same processor and use the same peripherals.
APEX is the layer which is called the "Partition System Interface" in section 4.5.2.1
on page 58.

APEX provides the following bene�ts:

• Portability: Based on the fact that APEX is a static interface, it o�ers the
same services and constraints for every processing environment. Therefore,
every application which is based on this interface can easily be ported to
other targets.

• Reusability: According to portability, the reuse of applications in other en-
vironments is also supported for applications based on the APEX interface.

• Modularity: Based on the decomposition of the application into partitions
and the reduced hardware and software dependencies according to the APEX
interface, modularized applications are supported.

• Integration of Application with Di�erent Criticality Levels: Using robust
partitioning, APEX supports applications of di�erent criticality levels to
run on a single processor.
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4.5.3.3 Partitions

The partition level OS is responsible for managing the processes in a partition
and the communication with the APEX interface. Each partition supports several
processes which can be scheduled periodically or aperiodically. This means that
dynamic scheduling as well as static scheduling is supported at partition level. For
dynamic scheduling, task priorities are intended.

4.5.3.4 Time Management

IMA systems are often real-time systems and therefore a time management is
needed. Time in the Arinc 653 speci�cation is unique and independent of the
partition execution in a node. Several services are de�ned, based on the unique
time like scheduling, deadline monitoring, periodicity and communication.

4.5.3.5 Inter Partition Communication

APEX supports communication between partitions in a cluster, even if those par-
titions are not on the same node. The design of the communication has to be
independent from the physical destination of the sender and the receiver. The
communication uses messages for data transport which support time stamping for
determination. Several times of di�erent messages are supported like:

• Fixed or Variable Length

• Periodic or Aperiodic

• Direct or Broadcast Messages

• Acknowledged or Unacknowledged

4.5.3.6 Health Monitoring

The health monitor is a set of maintenance functions which reports hardware,
application and OS software faults and failures. It helps to detect and isolate
faults, and prevents their propagation.

Furthermore, it supports maintenance, by creating an error log, and supports
recovery, by stopping and/or restarting single processes or partitions to resolve
the failure or to obtain a safe state.
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4.5.3.7 Con�guration

Based on the goal of the speci�cation to de�ne an environment which supports full
portability and reusability of the application, the con�guration of the environment
is an important decision. Therefore, the system integrator is responsible for the
integration of the partitions into the nodes and their access to the required external
data.

According to that the integrator needs a set of requirements for every partition:

• Memory Requirements

• Period

• Duration

• Incoming Messages

• Outgoing Messages

Based on this data and other information regarding the operating system, the con-
�guration tables are created which con�gure the operating system and its services.

4.5.4 Examples

4.5.4.1 VxWorks 653 Platform

The VxWorks 653 Platform [112] is an operating system by Wind River Systems
for aerospace and defense applications. The operating system provides full API
conformance to Arinc 653 for the supported programming languages C and C++.
Ada support is also possible but not directly included.

The partitions support software which is written for VxWorks, which is the real-
time operating system of Wind River, or legacy operating systems which need to
be adapted. Furthermore, a con�guration tool suite and a certi�cation package
according to DO-178B Level A is available.

Following target processors and COTS boards are supported:

• Target Processors:

� IBM 750GX

� PowerPC 7xx, 74xx
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• COTS Boards:

� MVME5110

� wrSbc7447, wrSbc7457

� wrSbc750GX

4.5.4.2 Integrity

Integrity of Green Hills is a partitioned operating system for safety-critical systems.
It supports the Arinc 653 APEX API and provides the possibility to run Ada, C
and embedded C++ partitions on the same node.

A DO-178B Level A compliant certi�cation package is available and it has already
been used in several projects.

Several hardware targets are supported by performing the certi�cation e�ort on
the customer hardware.

4.5.4.3 LynxOS

LynxOS [78] is an Arinc 653 compliant operating system for safety-critical real-
time systems. It supports the APEX API and the POSIX standard for operating
systems.

A certi�cation package according to DO-178B Level A is available as well as a
development tool suite. Furthermore, training support is provided.

Following systems are supported by board support packages:

• AMCC 440EP

• Apple PowerPC G5

• Extreme Engineering XPedite6032

• Thales VMPC6a, VMPC6c, VMPC6d

• PC-AT/x86-compatibles

4.5.4.4 CsLEOS

BAE Systems' operating system is called CsLEOS [21]. There is already the second
generation available which provides an Arinc 653 interface and support for OpenGL
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graphics for display control.

Furthermore, a development tool suite and a Level A certi�cation package are
obtainable.

Following board support packages are available for hardware support:

• RAD750

• BAE Systems Modular Control 555, Modular Control 750/7400

• Dy 4 Systems SCP/DCP-119, SVME/DMV-179, SVME/DMV-181

• SBS Technologies RL4, VG4

• Motorola Sandpoint PPCEVAL-SP3-755

4.5.4.5 Decos - EEE

The Encapsulated Execution Environment (EEE) [40][39] is developed for the De-
cos [79] research project. For inter-partition communication, event-triggered as
well as time-triggered messages are supported which ensures the reuse of legacy
systems.

Furthermore, a strong isolation between safety-critical and non safety-critical sub-
systems provides guaranteed safety (for safety-critical subsystems) by increased
�exibility (for non safety-critical subsystems).

4.5.5 Conclusion

This section shows that an operating system which is suitable for an integrated
architecture has to ful�ll a set of requirements. Especially partitioning requires
extensive attention in the design phase.

The Arinc 653 speci�cation provides the baseline for this kind of operating sys-
tems [122]. Based on this speci�cation there are several operating systems already
available which ful�ll most of the needed functionality. For academic purposes,
the Decos project also develops an partitioned operating system which provides
interesting approaches.

The choice of the operating system has to be taken carefully because it has e�ects
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on the whole platform. The main criteria include the availability of the certi�ca-
tion package, the supported hardware platforms and the reusability possibilities of
already developed systems.

4.6 Development Environment

4.6.1 Introduction

The development environment is a set of software tools for the con�guration and
initialization of the architecture. The most important tools are needed to create
the schedule con�guration of the communication system and the task respectively
partition schedule of the operating system, if a static schedule is used.

Other tools which simplify the work with the architecture are download, diagnosis
and debugging solutions.

4.6.2 Design Approach

The design of the used software con�guration is based on the system which is
chosen. As already mentioned, event-triggered communication and dynamic task
or partition scheduling demands lower con�guration data but a higher degree of
processing power. Furthermore, they are less predictable which is di�cult in terms
of safety-critical systems.

The more complexity in the con�guration, the less complexity has to be in the
running system and therefore more safety and a better performance is achieved.
If everything is prede�ned and predictable, critical situations can be simulated in
advance but this also means that the system is not very �exible anymore. This
is again a trade-o� between safety and �exibility which forces the choice of the
design.

As already mentioned, the schedules of the di�erent parts of the architecture are
the most critical parts in the system. Dynamic scheduling allows to recon�gure the
system during execution without the need of a complete recalculation. Probably
a mixture of dynamic and static parts is the best solution.

The con�guration tools for scheduling, no matter if they are dynamic or static,
often use di�erent approaches to create and de�ne the needed messages, tasks or
partitions. Databases are often used to de�ne this items but they are di�erent to
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handle for embedded applications.

Therefore, simpler representations are often chosen for the used con�guration, like
structures which have the advantage that they can be accessed directly in the
source code but have the disadvantage that they need a complete recompile if
changed. Another possibility are tables which can also be accessed easily and do
not depend directly on the source code.

Obviously even the design of the con�guration tools consume a lot of mental work.
Therefore, this thesis wants to discuss the possibilities for several tools which might
be useful.

4.6.3 Communication

The type of the communication system for safety-critical systems is a highly dis-
cussed topic. There are several approaches which result in the well known trade-o�
between predictability and therefore safety on the one, and �exibility on the other
side.

For example TTP is a fully predictable system in opposite to AFDX which is
completely event-triggered. The solution of this problem or just the best approach
might be hybrid systems like FlexRay which introduce �exible messages to a static
schedule or TT-Ethernet which adds time-triggered real-time messages to an Eth-
ernet based and therefore event-triggered system.

4.6.3.1 Schedule

Based on the type of system, either event-triggered or time-triggered, the commu-
nication system has a dynamic or static schedule. In case of a dynamic schedule,
the scheduling process is done during runtime. Therefore, only the messages and
their sizes have to be de�ned as con�guration data and given to the application.
The e�ort for a con�guration tool is comparatively small.

In case of a static schedule, the scheduling process is done in advance. The schedul-
ing tool needs a set of data regarding the messages, their deadlines and even the
tasks which send or receive these messages. Furthermore, it provides the possibil-
ity to optimize the schedule and to simulate it. The e�ort for such a tool is even
higher because the complexity of the scheduling is handled in this tool.

The decision of the type of communication system is a design question which is
based on the application and its requirements.

66



4.6. DEV. ENVIRONMENT CHAPTER 4. SYSTEM ARCHITECTURE

4.6.3.2 Driver

The application needs an interface to handle the communication. Therefore, the
communication system should provide an Advanced Programming Interface (API)
for the control of the communication system. This API should be generic to
support the use in several applications, no matter if it is an operating system or
not.

4.6.4 Operating System

The operating system and its role in safety-critical systems has already been dis-
cussed. The scheduling problem is comparable to the one concerning the com-
munication systems with the di�erence that a hybrid solution is more di�cult to
implement.

4.6.4.1 Task Schedule

Considering a partitioned operating system, the task schedule is handled for the
partitions. Based on the fact that the partitions are absolutely independent it
would be possible to implement dynamic schedules for non safety-critical parti-
tions and static schedules for the safety-critical ones.

The disadvantage is that the system has to be prede�ned but also needs a schedul-
ing algorithm in the operating system which doubles the e�ort. At least for sys-
tems which pro�t from a high degree of �exibility, the task scheduling should be
dynamic.

4.6.4.2 Partition Schedule

The scheduling of the partitions have to be strictly deterministic in accordance to
Arinc 653. This is suitable for safety-critical systems to ensure that the partitions
always keep in shape and safety-critical ones are never disturbed by non safety-
critical ones.

4.6.5 Download

Download regarding embedded systems consists of two main parts:

• Download of Executables
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• Download of Data

These two features di�er in several ways because the �rst one has to be done
before runtime, the second one can be done during runtime of the system. Fur-
thermore, the executables are downloaded using external resource whereas the
data are loaded by the application itself.

4.6.5.1 Download of Executables

Ideally, the download of the executables is done once and will never have to be
done again for a system. By experience it has to be done at least for upgrades
of the system. Therefore the requirements for a system should include an easy
update solution which should be able to update every single part of the system.

The interface for such an update solution can be shared with the maintenance
interface which is used for diagnosis.

4.6.5.2 Download of Data

The download of data can be an important functionality for several systems which
need mission speci�c data (e.g. maps or �ight routes).

Furthermore, not only download has to be recognized, but upload should also be
supported to be able to handle log �les or other diagnosis data.

4.6.6 Diagnosis and Debugging

Diagnosis and debugging are related but di�erent approaches for error detection.
Debugging has to be done during the development phase whereas diagnosis has to
be executed during operational conditions.

The important point is that there is a feedback loop, where diagnosis information
from the maintenance is used for improvements in the system development again.

4.6.6.1 Debugging

The veri�cation and debugging of a system should always be done on a hardware
which is exactly the same like the one in the runtime environment. This provides
additional safety, making sure that hardware dependencies can not in�uence the
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behavior of the system.

The tools that are needed for debugging are communication and source code ana-
lyzers. They enable the development team to investigate every single anomaly to
ensure the correctness of the system in every situation.

Furthermore, problems in the schedule, like critical situations or peak loads, can
be uncovered in an early state of the development and countermeasures can be
taken.

4.6.6.2 Maintenance

The interface for maintenance has to be comprehensive but easy. Every anomaly
has to be logged, stored and provided for the corresponding person to evaluate the
problem. This ensures a continuous improvement of the whole system.

Additional tools may be suitable to optimize the maintenance process and to sim-
plify the error detection.

4.6.7 Conclusion

This section discussed di�erent approaches for development tools and described
a set of tools which are suitable for the development and operation of aircraft
functions.

The tool chain is an important development instrument which is also useful and
needed during the operational phase. The existence of such tools increases the
e�ciency of the development and provides additional safety for the �nal system.

4.7 Examples

4.7.1 TTA - The Time Triggered Architecture

4.7.1.1 Introduction

The TTA provides a computing infrastructure for the design and implementation
of dependable distributed embedded systems [74]. It has been developed over a
period of 25 years at the Vienna University of Technology [84] under the aegis of
Prof. Kopetz.

The TTA infrastructure enables the implementation of applications and provides
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constraints to partition them into nearly autonomous subsystems. To be able to
control the complexity, partitioning will be applied along small and well-de�ned
interfaces which provide composability.

The subsystems are connected by a time-triggered, fault-tolerant communication
system like TTP, FlexRay or TT-Ethernet. The communication system has to
provide a set of services. The most important is a fault-tolerant global time base
of known precision at every node. This global time base is used for communication,
error detection and the timeliness of the real-time applications.

4.7.1.2 Architecture Model

As mentioned above, the TTA provides constraints for the development of dis-
tributed applications:

• Model of Time: The TTA uses the model of a sparse time base, which
divides the time into durations of activity and silence. All events that occur
happen in a duration of activity. From a global point of view the events which
happen in the same duration of activity even on di�erent nodes are considered
simultaneous. Events that happen on di�erent durations of activity, which
means there is a duration of silence in between, have a consistent temporal
order.

• Time and State: The sparse time base provides a system wide notion of time
which furthermore supports a consistent state of the distributed system. This
consistent view of time and state is important if fault-tolerance is provided
by replication.

• Structure of the TTA: The TTA consists of nodes, clusters and the commu-
nication system. A node contains a processor with memory, an input-output
system, a time-triggered communication controller, optional an operating
system and the application software.

The nodes which are connected over two replicated communication channels
form a cluster. The communication system is based on a TDMA (time-
division multiple access) schedule which periodically sends messages. It reads
a state message from the CNI (Communication Network Interface) of the
sending node and sends it to all other CNIs in the cluster and replaces the
last version of these message. Every node has a global view on the communi-
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cation schedule included in a schedule table which is called MEDL (message
descriptor list).

• Interconnection Topology: The network topology of TTA can be a bus or
a star. Using the bus topology, every node has a bus guardian, which is
an independent unit that monitors the temporal behavior of the node. The
star topology uses two central bus guardians which monitor the temporal
behavior of all the connected nodes.

4.7.1.3 Design Principles

A main purpose of the TTA is to provide a consistent view of the system for all
correct nodes in the system. To achieve this, a membership service is necessary. If
the consistent view of the system is not possible, the fault-hypothesis is violated
and the application is informed about the situation. Then it can decide how to
proceed to reestablishing consistency as soon as possible.

The most important interface in the TTA is the CNI, which is the interface between
the communication controller and the host computer. The control �ow of this
interface is unidirectional and no control signals ever cross the CNI. Therefore, the
application can never be interrupted by the communication system which ensures
that the propagation of control errors is prohibited by design. Furthermore, the
CNI, which provides a well de�ned interface in the spatial but also in the temporal
domain, supports composability and scalability.

Safety-critical real-time applications need a transparent implementation of fault
tolerance. Active redundancy and voting is a common approach. This is supported
by the fault tolerance layer which is embedded in the CNI and remains transparent
to the application in the TTA.

4.7.1.4 Communication

A communication system has to provide the following services to be suitable for
the TTA:

• Fault-Tolerant Message Transport

• Global Time Base with Fault-Tolerant Clock Synchronization

• Membership Service

• Clique Avoidance
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4.7.1.5 Fault Tolerance

The fault hypothesis describes the types and numbers of faults the system should
be able to tolerate. If the fault hypothesis is violated, the TTA activates an ap-
plication speci�c never-give-up strategy.

Fault-tolerance is supported at design level in the TTA. The architecture provides
active redundancy, fault-isolation and error detection independently from the ap-
plication.

4.7.1.6 TTA Design Methodology

TTA provides a two-level design approach [117] which supports composability and
the reuse of nodes and applications. The TTA distinguishes between the cluster
design and the component design level.

• At the cluster level, the system integrator designs the physical cluster layout,
the subsystems, and the interactions between the subsystems.

• At the component level, the suppliers design and implement the subsystems
on the basis of the subsystem interactions, precisely speci�ed in the cluster
design.

In the cluster design the system is decomposed into clusters and nodes and the
interfaces (CNI) are de�ned in the value and time domain. During the component
design phase, the application software for the host computers is developed with
respect to the CNI speci�cation. The integration and validation is supported by
this design methodology because of the well de�ned interfaces.

Two-Level Design using the V-Model The V-Model in �gure 4.2 on the fol-
lowing page illustrates the di�erent levels of system design. The big line indicates
the separation of the cluster level and the component level.
The important fact regarding this approach is that the system integrator, which

develops the system speci�cation, does not need to provide his suppliers with this
information. Based on the component interface speci�cation, each supplier is able
to develop a subsystem and provide it to the system integrator without passing
proprietary information. Due to composability, which is an important aspect of
the TTA, the system integrator composes the di�erent subsystems, based on a
system speci�cation, to the entire system.
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Figure 4.2: Two-Level Design using the V-Model

Reusability A crucial aspect for the software development for aircraft functions
is reusability which leads to the use of o�-the-shelf products. The main concept
for the use of such software subsystems is composability which needs development
methods that guarantee the stability of their interfaces. As already mentioned,
the TTA uses the CNI with its de�ned messages to provide this stability. Based
on the strict speci�cation of the interfaces, these subsystems can be updated and
reused according to their message de�nition.

4.7.1.7 TTA - Platform Components

The TTA provides solutions for dependable hard real-time requirements which
consist of:

• Time-Triggered Architecture TTA / Time-Triggered Protocol: The design
speci�cation of the TTA and communication protocol TTP build the basis
for the development.

• Communication Controller: The TTP-controller allows fault-tolerant time-
triggered communication with membership service and distributed clock syn-
chronization. The controller is certi�ed according to aerospace standards
DO-178B [96] and DO-254 [97].

• Operating System and Middleware: Certi�ed software supports the develop-
ment of TTA based products.

• Development Tools: The TTP-Tools are an integrated TTP software de-
velopment suite which allow a seamless integration with other design and
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development systems.

4.7.1.8 Conclusion

The TTA is an established architecture for safety-critical systems. It has already
been used in several automotive and aerospace applications, provides certi�ed soft-
ware solutions and its algorithms are mostly veri�ed by formal methods.

For the use as IMA platform [126], some services are not �exible enough, which
was addressed by the L-TTP/L-FlexRay approach (section 3.5 on page 29). Parti-
tioning on operating system level is not innately supported and the reuse of legacy
systems needs additional e�ort.

Decos, which is based on TTA, tries to address these points and to improve their
architectural constraints. Decos is discussed in section 4.7.3 on page 76 in detail.

4.7.2 Spider - Scalable Processor-Independent Design for

Extended Reliability

4.7.2.1 Introduction

Spider is a general purpose fault-tolerant architecture which has been developed
under the lead of Paul Miner at the NASA [10] Langley Research center [81].

The most important and also most advanced feature of Spider and its communi-
cation system Robus, which is discussed in section 3.8 on page 38, is that all used
algorithms are formally veri�ed. This approach guarantees a predictable behavior
in every possible state.

Based on this work, it is shown that formal methods are suitable in this �eld and
therefore they will become more important for safety-critical systems and maybe
support or even be a condition for certi�cation in the future.

4.7.2.2 Architecture Model

In Spider, every Processing Element (PE) is connected with the Robus commu-
nication system. As already mentioned, Robus is a TDMA based broadcast bus
with a time-triggered schedule.

An advantage of Spider in opposite to the TTA is its fault assumption. Spider
is able to tolerate several combinations of simultaneous faults, whereas TTA only
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tolerates a single fault at a time.

Based on a global view of the system which is provided by the health information
of every PE, diagnosis information for the whole system is available.

4.7.2.3 Design Principles

Safety and formal correctness were the major design driver of Spider. The com-
munication is based on interactive consistency which is also known as "Byzantine
Agreement":

• Agreement: For any message, all non-faulty receiving nodes will agree on the
value of the message.

• Validity: If the originator of the message is non-faulty, good receivers will
receive the message sent.

Based on this agreement and a global time, every non-faulty node receives the
same messages and agrees on their validity. This provides a global state of the
system which is a prerequisite for active redundancy.

4.7.2.4 Communication

The communication system Robus provides the basic services which are used for
the fault-tolerance of the architecture. Based on the speci�cation, each PE is con-
nected with every other PE in the system with a direct link. This leads to a high
degree of needed resources but guarantees the availability of the service even if
several faults arise at the same time.

In such critical situations, Spider allows a dynamic recon�guration of the commu-
nication schedule, which eliminates less important functions to ensure the correct
operation of critical functions.

4.7.2.5 Fault Tolerance

As already mentioned, Spider including Robus provides the highest degree of fault-
tolerance compared to other architectures and communication systems discussed.
Furthermore, Spider prevents the propagation of faults using fault-containment
regions and is able to detect communication cliques.
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4.7.2.6 Services

Spider provides a set of services to support inter-dependent applications with dif-
ferent classes of criticality:

• Robust Partitioning on Communication Level

• Fault-Tolerant Clock Synchronization

• Clique Detection

• Consistent System Diagnosis

• Fault-Containment Regions

4.7.2.7 Conclusion

Spider is the most advanced architecture in terms of fault-tolerance and safety
that is currently available. It was designed for the use in space missions with a
long mission time under di�cult circumstances.

This leads to the disadvantage that it is too expensive for the use in aerospace
applications but this research project creates new standards for the development
of safety-critical architectures in terms of formal veri�cation, used algorithms and
services, and numbers and types of tolerated faults.

4.7.3 Decos - Dependable Embedded Components and

Systems

4.7.3.1 Introduction

The European research project Dependable Embedded Components and Systems
[79] (DECOS) develops an integrated architecture for safety-critical systems.

The key features are:

• Hardware Cost Reduction: Based on an integrated architecture, COTS hard-
ware is used which hosts several applications on the same processor.

• Reduction of Wiring and Connectors: By reducing the hardware, also wiring
and connectors are removed which reduces connector problems as well.
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• Improved Diagnostics: Diagnosis is also integrated into this approach. Using
data from every part of the system enables a global view and an e�ective
way to detect, identify and classify faults.

• Flexibility: The possibility of dynamic recon�guration of subsystems in the
architecture provides a high degree of �exibility. Furthermore, subsystems
can freely be arranged on any processor in the architecture.

• Fault-Tolerance: Based on dynamic recon�guration and free arrangement of
subsystems, safety-critical subsystems can be executed on every processor in
the system. Therefore hardware faults can be tolerated while a minimum of
operational processors is available.

Furthermore, active redundancy is supported by the partitioning approach
because replicated partitions can be located everywhere in the system.

• Quality of Service: Based on the communication between every application
in the system, a tactic coordination of tightly coupled control activities is
possible.

According to these requirements, Decos wants to develop an integrated architecture
for the use in the aerospace and automotive domain, based on the services of the
TTA.

4.7.3.2 Architecture Model

Decos is based on Distributed Application Subsystems (DAS). These are a set
of nearly-independent subsystems which, connected by a communication system,
provide the overall functionality of the application together. In terms which are
used in this thesis, a DAS is a subsystem of an aircraft function, like a single
partition including its application.
The structure of a node in Decos can be seen in �gure 4.3 on the following page.

Comparable to the Arinc 653 partitioned OS, Decos provides a partitioned op-
eration system called Encapsulated Execution Environment (EEE) [39][40]. The
subsystems are divided into partitions providing one di�erence to the Arinc stan-
dard that partitions are divided into safety-critical and non-safety critical ones
using the architectural high-level services [83].

Below these layers, the core services are located which are independent of the DASs
providing fault-tolerant services like:
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Figure 4.3: Structure of a Decos Node

• Deterministic and Timely Message Transport

• Fault-Tolerant Clock Synchronization

• Strong Fault Isolation

• Consistent Diagnosis of Failing Nodes

These core services have to be provided by the underlying communication system
which is independent from the layers above.

The architecture consists of such nodes, connected by the communication system.
The focus is on independence of the layers to provide a high degree of �exibility
in the choice of the parts of the system.

4.7.3.3 Design Principles

The design principles for the Decos hardware are the current and future require-
ments of the automotive and aerospace industry. Based on this, an architecture is
developed which focuses on the reduction of costs and weight by increased �exi-
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bility and safety.

Based on the core services of the communication system, an architectural approach
is created which tries to address requirements from the named domains. Important
issues are the support of legacy systems, reduced hardware and wiring, improved
diagnostic and maintenance and extended services.

The trade-o� between safety and �exibility is tried to be disarmed by increasing
�exibility in the communication and the operating system without reducing the
level of safety.

4.7.3.4 Communication

The only requirement for the communication system is to provide the core services.
For research aims, TTP, FlexRay, respectively L-TTP/L-FlexRay, or TT-Ethernet
are considered as a communication system because they provide the needed ser-
vices and are well known in the �eld of safety-critical systems. In general, every
communication system which provides these services can be used.

Decos also considers a virtual network service which is a network layer on top
of the time-triggered communication layer providing the core services. This layer
abstracts the communication service for the application from the physical imple-
mentation. A connector unit provides time-triggered and event-triggered commu-
nication channels to the application. This supports the reuse of legacy systems.

The physical communication, based on the inter-node communication and the core
services, is handled by this communication layer. This abstraction frees the ap-
plication from interdependence with the communication system which increases
�exibility and reduces complexity for the application designer.

4.7.3.5 Fault Tolerance

The system is designed to support active redundancy using the core services and
the encapsulated execution environment. Furthermore, fault-containment regions,
for strong fault isolation, are provided on partition level by the operating system.

The integrated approach provides improved diagnostics supporting a global view
of the architecture. Due to universally available resources, fault-tolerance is sup-
ported by better replication strategies, like dynamic recon�guration of safety-
critical subsystems.
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4.7.3.6 Services

Based on its core services, the TTA is appropriate for the implementation of a
distributed and integrated platform solution which is able to host aircraft func-
tions. Figure 4.4 shows such a platform which provides services for the subsystems

Figure 4.4: Integrated Platform Solution

on top. This system platform distinguish between safety-critical and non safety-
critical subsystems which have di�erences in their failure modes and needed ser-
vices. Minimal services for safety-critical subsystems force predictability, depend-
ability and minimize certi�cation e�orts. On the other hand, non safety-critical
subsystems with extended services increase e�ciency and �exibility.

4.7.3.7 Conclusion

Decos is a research project at the moment but provides several interesting ap-
proaches which will in�uence upcoming projects in this domain. The outputs of
this project should be used for the development of a distributed and integrated
platform for aircraft functions.

In addition, Decos also provides ideas regarding upcoming platforms in the auto-
motive domain.

4.8 Conclusion

The system architecture provides the theoretic environment for the platform.
Based on the maturity of this environment, the complexity of the implementation
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can be signi�cantly reduced. In case of an integrated architecture, the developed
platform contains most of the complexity in contrast to the federated architecture,
where all of these issues have to be addressed by the application designer himself.

According to the possibility of using a given platform including a communication
system, support for COTS hardware, a development tool suite and the appropriate
certi�cation package, the major complexity and therefore the focus remains on the
aircraft function. This reduces the e�ort and the development time and therefore
the costs by increasing the dependability and the safety.
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If you were born on an airliner

in the US in this decade and

never got o� you would

encounter your �rst fatal

accident when you were 2300

years of age and you would

still have a 29% chance of

being one of the survivors.

(Les Lautman)

Chapter 5

Modular Certi�cation

5.1 Introduction

Certi�cation is the way the authorities, like the FAA [2] in the United States and
the EASA [12] in Europe, verify the development of software and hardware which
will be used in aerospace applications. The authorities demand standards for de-
velopment processes which have to comply to Federal Airworthiness Requirements
FAR 23 [4] and FAR 25 [3].

The authorities monitor these processes by review meetings which are conducted by
Designated Engineering Representatives (DERs). DERs are experienced engineers
designated by the authorities to approve engineering data used for certi�cation.

After the DER has checked and accepted the di�erent steps of the process, the
generated artifacts are shipped to the authority. The authority has to review the
whole aircraft certi�cation data and award the product certi�cation if everything
is approved.

5.2 Software Certi�cation in the Aerospace

Domain

5.2.1 Introduction

Software quality is a widely discussed topic, especially in the aerospace domain
where a fault in the software can lead to catastrophic behavior. Therefore, several
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approaches have been developed to ensure quality for aerospace software.

The most common approach is certi�cation according to DO-178B [96], which de-
�nes guidelines for di�erent phases of software development. The main idea behind
such process de�nitions is to have a controlled way for the planning, the design,
the implementation and the veri�cation of software where all steps are reasoned by
at least two persons, the executing one and the reviewing one. This e�ort provides
con�dence in understanding the system behavior under several conditions. The
ultimate goal of certi�cation is that the developed software is fully predictable.
This means that it is known in advance what the application does in every situa-
tion, even in critical ones.

DO-178B is a means of compliance with airworthiness requirements which is ac-
ceptable for the aviation authorities and therefore is treated like a standard. Every
process that has been chosen to provide evidence has to ensure compliance with
the objectives of DO-178B.

A rather new guideline for the certi�cation of integrated modular avionics is DO-
297 [99], which considers the certi�cation of integrated systems and architectures.
This approach, called modular certi�cation, allows the independent development
and certi�cation of aircraft functions and their corresponding integrated architec-
ture which hosts these safety-relevant applications [43].

A major problem for such software projects, which are going to be certi�ed accord-
ing to any standard, is the e�ort that is much higher than for common software
projects. Based on this and the fact that an authority has to check the system and
the used processes, too, the costs for such a project increase with every level of
criticality. Especially for Level A certi�cation, which is the highest criticality class
in DO-178B, the e�ort is more than two times higher than for the same software
development without certi�cation [55].

According to the high amount of certi�cation costs and e�ort, it is interesting to
know which parts are the most critical ones in the development and certi�cation
process and which e�ort can be saved through an e�cient process. This would
allow to improve the planning, reduce design faults in the beginning and minimize
the risks of such a project.
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5.2.2 DO-178B

Based on the DIMA approach discussed in this thesis, software certi�cation accord-
ing to DO-178B [96][105] is one of the needed development standards. Considering
the architectural approach, DO-297, which is described in section 5.3 on page 88,
is essential for the development and certi�cation of the platform. In terms of cer-
ti�cation, DO-297 is used to verify the integration of the di�erent modules and
components, but their individual certi�cation is very similar to DO-178B.

5.2.2.1 Overview

Radio Technical Commission for Aeronautics (RTCA) DO-178B is the certi�cation
standard which is used for commercial aerospace software. It de�nes guidelines for
the processes which have to be used for the development of safety-relevant software.

Based on the objectives de�ned in the standard, a process has to be established
which ensures that the software is su�ciently safe and understood. Su�ciency is
de�ned according to software levels which are de�ned by the circumstances and
the failure conditions of the software [50]. The software levels reach from Level A
for catastrophic to Level D for minor failure conditions.

For a detailed description of the failure conditions and the corresponding process
objectives [95], please refer to table 5.1.

Failure Condi-

tions

Software Level Process Objec-

tives

Catastrophic A 66
Hazardous B 65
Major C 57
Minor D 28

Table 5.1: Software Levels and Objectives

According to these software levels and their objectives, the development process
is de�ned. Therefore, the following stages of the project have to be considered in
advance:

• Planning Process

• Development Process

85



5.2. CERTIFICATION CHAPTER 5. MODULAR CERTIFICATION

� Requirements Process

� Design Process

� Implementation Process

• Veri�cation Process

• Con�guration Management Process

• Quality Assurance Process

• Customer and Certi�cation Liaison

Especially the requirements and the design phase are of decisive importance and
should not be switched into the implementation phase too early. The requirements
and the design should clarify the most likely problems and provide a solution, that
is clear and easy to understand. Every �nding in the beginning reduces the e�ort
for veri�cation and rework, which can, in the worst case, strike the customer.

Figure 5.1 shows how the costs for a detected fault in the system increase if it is
found later in the process or even in the �eld [25][89].

Another major aspect to enhance quality is the feedback at the end of the project.

Figure 5.1: Costs for Recognized Faults

It is not directly part of the standard but helps to improve planning estimations
and to customize the process to fully comply with the individual work �ow and
project structure.
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5.2.2.2 Reuse of Previously Developed Software

The reuse of already developed software and the corresponding certi�cation pack-
age is a solution which is granted by the authority. According to Advisory Circu-
lar AC20-148 [9], it is possible to certify software as reusable software component
[94][1].

This approach provides the advantage that the certi�cation e�ort for projects are
minimized after the completion of the �rst project and the corresponding approval.
If this approval has been successful, the authority provides a letter of certi�cation
credit to the applicant which either reduces or eliminates the certi�cation e�ort
for the following projects, using the same piece of software.

The disadvantage of this approach is that the initial e�ort for certi�cation of
a reusable software is higher than for common software certi�cation [68]. Fur-
thermore, it is possible to formally or informally reuse parts of the already devel-
oped software life-cycle data for follow-up projects including the same source code.
Therefore, a certi�cation according to AC20-148 is rarely done.

The additional e�ort for certi�cation of a reusable software component is based on
additional coordination, extended reviews and analysis by the developer, integra-
tion e�ort with corresponding applications, reusable software components change
and post certi�cation issues, document retention and increased e�ort in tracking
compliance.

Certi�cation for a reusable software component only makes sense if the software
does never change and is used very often, like control algorithms for example. It
has to be kept in mind that the reduction provided by this approach starts at the
second time the software and the certi�cation is used.

COTS-Components: Commercial-O�-The-Shelf (COTS) software [5] is a spe-
cial form of previously developed software, as it can be developed independently
from the corresponding application. Operating systems, for example, can be con-
sidered COTS, providing certi�cation credit like service history and a veri�ed
development life-cycle.

As already mentioned, COTS software needs to have the same software level as
the application it supports. Furthermore, service history provides additional credit
but does not preclude the presence of unintended functionality and therefore does
not fully satisfy certi�cation objectives. Based on these constraints, certi�cation
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evidence is needed for COTS components, too.

5.2.3 DO-178C

According to rapid changes in the aerospace domain, the working group RTCA
SC205/EUROCAE WG-71 is currently discussing updates of the DO-178B stan-
dard. Apart from minor changes several major issue are under discussion like:

• Con�ation of DO-178 and DO-278 [98]

• Increased use of COTS Software

• Use of Formal Methods

• Use of Object-Oriented Technology

• Use of Model based Design and Veri�cation

• Update of Tool Quali�cation

5.2.4 Conclusion

This section describes the current standard used for software certi�cation in the
aerospace domain. DO-178B, which is this standard, de�nes development processes
to ensure high quality and therefore safety for every artifact developed.

Although there are new standards, like DO-297, DO178B or its successor DO-
178C are still suitable and needed for aerospace software development. DO-178C
will provide new approaches in di�erent areas of certi�cation but the main idea
regarding multiple validation of every artifact will be kept.

5.3 DO-297 - Integrated Modular Avionics

Development Guidance and Certi�cation

Considerations

5.3.1 Introduction

Integrated Modular Avionics based systems are already in use and are rapidly
expanding. Due to this, it is necessary to have a standard for an IMA based
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development process. DO-297 [99] was developed to address this problem and to
de�ne a process for the development and certi�cation of modular software and
hardware for avionics functions.

The main problem of modular certi�cation is to prove that a set of modules or
subsystems does not a�ect each other. This is equal to the problems arise by
partitioning at operating system level. Rushby [103][104] identi�ed this problem
and discussed its solutions.

5.3.2 Overview

Modular certi�cation according to DO-297 is a rather new approach based on the
need of certi�cation for integrated modular avionics and the corresponding system
architectures [22].

DO-297 breaks down the whole system into the following levels to map the mod-
ular approach:

Module Acceptance: A module is a component or a collection of components
which can be software, hardware or a combination of both which provides resources
to the application and/or the system platform.

Application Acceptance: An application is based on modules and performs a
function.

System-level Acceptance: The system-level consists of one or several platforms
which provide a computing environment, managing resources for at least one ap-
plication. Furthermore, it establishes support services and platform-related capa-
bilities like health monitoring and fault management.

Aircraft-level Acceptance: The aircraft-level considers the integration of the
system into the aircraft and its systems.

Furthermore, it de�nes criteria for the change and the reuse of parts of the system.

5.3.3 Architectural Considerations

DO-297 de�nes an architectural approach which enables the certi�cation of
reusable modules and applications. The needed functionality is established by
connecting the single parts of the distributed application using a communication
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system.

The integrated architecture provides constraints to partition the aircraft function
into nearly autonomous subsystems which can be certi�ed independently. To be
able to control the complexity and to support the independent certi�cation, par-
titioning will be applied along small and well-de�ned interfaces which have to
provide composability [74]. The main concept behind this is: "architecture design
is interface design".

Based on this distributed approach, some requirements are of major importance
[70]. These requirements are:

Partitioning:[101][8] Robust partitioning has to be provided on system level to
ensure that di�erent applications are not able to interfere with each other. Using
partitioning, the platform shall establish a computing infrastructure for every ap-
plication like in a federated architecture.

Data and Control Coupling: Another aspect of partitioning for distributed
systems is data and control coupling [26][48]. If several modules use the same data
sources, dependencies have to be analyzed and veri�ed. Furthermore, di�erent
modules can not in�uence the execution of each other.

Composability: Composability means that an application can be decomposed
into small, distributed subsystems which provide the wanted functionality to-
gether. A system which supports composability must adhere to following four
principles: Independent development of modules, stability of prior services, con-
structive integration of the modules to generate the emerging services and replica
determinism [88], which deals with active replication of subsystems.

Interface De�nitions: Well-de�ned interfaces are a condition to support par-
titioning, composability and data and control coupling are needed for every dis-
tributed approach. Necessary glue code reduces the performance and the safety of
a system and can be avoided through correct interface de�nitions.

Using an architectural approach forces the reuse of legacy systems and provides
the possibility of modular platforms. Therefore, the certi�cation activities have
to consider the certi�cation of modules and especially their integration into the
platform.

The certi�cation of single modules in this approach is fairly similar to the certi�ca-
tion e�ort needed for a certi�cation package according to DO-178B [96] for SW or
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DO-254 [97] for hardware modules. Therefore, the reduction of certi�cation e�ort
is �rstly given at the second use. Furthermore, the communication system which
connects the modules needs to become fully approved.

5.3.4 Integral Processes

5.3.4.1 Safety Assessment

Safety Assessment de�nes standards which have to be used for the creation of the
Safety Assessment Analysis. Recommended standards are ARP4754/ED-79 [50]
and ARP4761 [28]. Furthermore, the responsibilities of the di�erent parties and
their activities are de�ned.

5.3.4.2 System Development Assurance

This process establishes the development guidelines for hardware and software
modules in IMA systems. Furthermore it discusses the interrelationship of di�erent
parties during the development of modules. Shared design, integration and testing
in accordance with the given environment are described.

5.3.4.3 Validation

The validation process ensures that the requirements are correct and complete.
It identi�es the validation activities for every level of system development (see
section 5.3.2 on page 89) and the artifacts which need to be validated.

5.3.4.4 Veri�cation

The veri�cation process ensures that the implementations of speci�ed requirements
have been met. It identi�es the veri�cation activities for every single part of the
acceptance steps (see section 5.3.2 on page 89) and the artifacts which need to be
veri�ed.

5.3.4.5 Con�guration Management

This process addresses the con�guration management activities for the develop-
ment of the IMA system and the modules it consists of.
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5.3.4.6 Quality Assurance

This process addresses the quality assurance activities for the development of the
IMA system and the modules it consists of. Quality assurance needs to pay
increased attention that all levels of system development (see section 5.3.2 on
page 89) and their integration provide compliance to the needed safety level.

5.3.4.7 Certi�cation Liaison

This process de�nes the interaction between the applicant and the certi�cation
authority. Furthermore, it describes typical development life-cycle data which is
needed for acceptance of the developed system.

5.3.5 Conclusion

The modular certi�cation approach is an important step to support the develop-
ment needs for future aerospace applications. It provides the baseline for the use
of (distributed) integrated modular avionics and ensures their modular structure.

Furthermore, essential concepts like partitioning, reuse of modules, modularity
and integration are de�ned. Therefore, it will become a commonly used standard
in the future.

5.4 Parameters for E�cient Certi�cation

5.4.1 Introduction

This section is based on a survey regarding e�cient certi�cation [125], supported
by about 40 experts in this �eld. The main focus is on software but the results
are also suitable for hardware certi�cation according to DO-254 [97]. Based on
the fact that certi�cation of software or hardware systems is fairly similar to mod-
ule certi�cation according to DO-297, this results should also be considered for
modular certi�cation.

5.4.2 E�orts and Savings

Based on the results of the survey and valuable data from several certi�ed soft-
ware projects [49][56] the e�orts for the software development have to be divided
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according to �gure 5.2 including validation steps for each of the phases.

The key phases, where most e�ort can be saved, are the requirements and the

Figure 5.2: E�orts of Software Development Process

veri�cation phase.

The e�orts which are saved in the requirements and design phase can be achieved
by increased attention, which means that the implementation is not started too
early, and tool support, which provides a structured environment for the creation
and validation of the system design.

In the veri�cation phase most of the e�ort can be saved by using an automated
test suite. According to the costs of such a suite an appropriate solution has to be
considered which is suitable for the current but also for upcoming projects.

5.4.3 Requirements, Design and Traceability

5.4.3.1 Introduction

The requirements and design phases at the beginning are the most important
parts in the software life-cycle process. The requirements de�ne the outcome and
therefore need to be clear and easy to understand. The design is derived from
the requirements and describes how they should be implemented. Every fault or
ambiguity in this phases returns later on with highly increased e�ort.

Requirements are the building blocks of the system. Therefore, the quality of the
system depends on the quality of every single requirement. The design consists of
detailed requirements, which have to be traceable to the high level requirements
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mostly, and design components which describe complex algorithms and data struc-
tures to support the understanding. Another major point is the traceability from
the requirements to the design and further on to the test cases, down to the source
code. This ensures that nothing is missing and everything has a reason for its
existence. To ensure a constant quality level for the requirements and guarantee
traceability through the process, some basic points have to be considered.

5.4.3.2 Tool Support

A database centric requirements management tool provides a lot of advantages to
the development and certi�cation process. Firstly, several process steps are already
included in the tool and therefore the formal handling is simpli�ed. Furthermore
the waterfall based top-down life cycle process can be split up which allows to
move forward from requirements to implementation and veri�cation without the
need of showing consideration for other parts of the system. Furthermore such
a tool checks that all relevant traceability information is available. Additionally,
some of these tools provide the possibility of creating an evidence media which
contains all necessary life-cycle and traceability information in an easy to review
form. According to this e�cient way to deal with the process and based on the
experts judgment, the e�ort for these steps can be optimized by between 2% and
up to 20% with respect to the process used before.

5.4.3.3 Standardized Requirements De�nitions

There should be standards for requirement de�nitions which provide guidelines for
requirements engineering to ensure their quality. Furthermore, each requirement
has to be self contained because this supports the veri�cation of each requirement.

5.4.3.4 Design Components

If the requirement describes complex functionality, the developer should add de�-
nitions, �gures and information which support the understanding. This encourages
the demand for self contained requirements and helps to comprehend the whole
system.

5.4.3.5 Testability

The requirement has to be checked for testability. This must be done by the
requirement developer and especially by the reviewer. The easiest way to handle
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this is to write functional test cases in parallel to the requirements to �nd testability
problems at an early stage of the requirements process. If this is not possible, the
developer should at least give advice regarding what to test to the veri�cation
sta�.

5.4.3.6 Conclusion

I conclude that, based on experts judgment as well as own experience and research,
considering these points in the requirements and design phase can de�nitely reduce
the e�ort and the costs for the overall project by up to 30% because a clear system
design decreases the e�ort for implementation and veri�cation.

5.4.4 Veri�cation and Validation

5.4.4.1 Introduction

The veri�cation phase is commonly the phase of the software life cycle where most
work has to be invested. Based on estimations, the e�ort for this part of the
software life cycle is up to 50% of the overall project outlay.

Independent from the used tool, the veri�cation e�ort can be minimized if the
requirements, the design and the implementation are kept simple and clear (see
also 5.4.3 on page 93). In this case, every function can be tested by its own
low-level and additional high-level tests, which verify the required functionality to
complete the test of the whole system. Additionally, some robustness test cases
are needed, where boundary values are checked.

Another very important part is the validation phase. These reviews ensure the
quality of every generated artifact and provide the transition to the next phase. As
already mentioned, especially increased e�ort for requirements and design review
pays o� later on.

According to these facts, there are several points to consider which help to carry
out these steps e�ciently.

5.4.4.2 Test Suite

A major concern regarding the veri�cation process is the use of a test suite. The
advantage of such a tool is the possibility of automatic veri�cation of the test cases
and their structural coverage. Considering that the tool quali�cation package, that
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has to be provided to the authority, is already available, which is most common
for suitable tools, the veri�cation e�ort can be optimized between by 5% and up
to 20% based on the process used before. These numbers are the outcome of the
research survey.

5.4.4.3 Veri�cation Tools

The use of veri�cation tools is an interesting aspect of DO-178B. It provides the
possibility of having complex algorithms, like schedulers, easily certi�ed. The
veri�cation tools must verify the results of these algorithms to prove their safe and
deterministic behavior. Furthermore, a tool quali�cation package is needed for the
veri�cation tool suite, which provides con�dence about the tool. The veri�cation
tool and its tool quali�cation package are mostly less expensive if the veri�cation
for correctness has to be done several times, compared to verifying the algorithm
itself.

5.4.4.4 Review Criteria and Checklists

The criteria for reviews should be clear, suitable, applicable, detailed and have
to be stated on the corresponding checklist. Furthermore, it is sometimes useful
to have detailed checklists, which name every single review item and every corre-
sponding review criteria, including additional information about what and how to
review the items. This increases the quality by enhanced e�ciency.

5.4.4.5 Informal Reviews

Informal reviews of the life-cycle artifacts disclose major problems and increase
the quality in an early stage. The overhead of a formal review process for imma-
ture artifacts is minimized and necessary evidence is provided in a formal, second
stage. This approach provides the same quality like doing every review in a formal
manner, but more e�ciently.

5.4.4.6 Conclusion

According to these points, I conclude that the reduction of e�ort and therefore
costs is up to 15% of the overall project if the veri�cation and validation is done
in an optimized way.
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5.4.5 Optimized Processes and Continuous Process

Improvement

5.4.5.1 Introduction

A well set-up process and its continuous improvement are key tasks for the devel-
opment of high-quality software. There are several points to consider which help
to optimize the process and therefore increase the quality and e�ciency [47].

5.4.5.2 Quality Culture

Establishing a quality culture is a major issue considering safety-critical software.
It takes some time to train, introduce and establish the processes and customize the
work �ow but �nally it is an opportunity for the whole software development. This
cultural approach increases the quality and e�ciency considerably if everybody
who is involved feels responsible for producing high quality artifacts. The survey's
outcome is that, once established, a quality culture decreases the e�ort of the
whole software development process by 5% to 20%.

5.4.5.3 Continuous Process Improvement

The de�ned and used process should not be set in stone. It has to be customized
if a better approach is found or new tools are used. After the end of the project, a
feedback loop has to be installed to verify the changes for their positive or negative
in�uence. According to expert's judgment, if continuous process improvement has
strong management support, possible improvements can be up to 20% in three
years, depending on the maturity of the currently used process.

5.4.5.4 Training

Training ensures that every person involved in the process ful�lls his role and
helps to complete the project with the needed quality. Ensuring constant high
quality, every person involved should receive customized training according to its
special needs. Based on my research, appropriate training increases the quality
and therefore the e�ciency by 2% to 10%, depending on the experience of the
sta�.
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5.4.5.5 Conclusion

Concluding the points described in this section, I am of the opinion that optimized
processes do not only save e�ort up to 15% in a single project, but also increase
the quality in a sustainable manner on the long term.

5.4.6 Conclusion

There are several possibilities for e�cient software certi�cation by modifying and
optimizing the process, considering several criteria described. These criteria name
the phases of the process, where most of the e�ort is needed and especially where
most of the e�ort can be saved.

The key aspect is that additional e�ort in the requirements and design phase,
which is spent at the beginning, pays o� for the software development process and
the whole product lifetime. Furthermore, it is possible to save a lot of e�ort in the
veri�cation phase using appropriate tools.

All parameters that are presented in this section are based on research and assume
the saved e�ort comparing a new process to a well established one. Achieving these
goals might take some time but it will increase e�ciency of development and the
quality of the product.

5.5 Comparison of Survey Assumptions and

Actual Results

This section compares the assumptions from the survey with actual results from
real software development and certi�cation projects. According to this comparison,
the assumptions are validated. Two types of projects were chosen which have
comparable size. There �rst comparison is based on two small sized projects with
less than 1000 e�ective lines of code (eLoc) and the second source are two medium
sized projects with about 4000 eLoc.

The major di�erence between the comparable projects is that one of them was
the �rst approach of development according to aerospace requirements and the
other one is developed with 2 to 3 years of experience in this area. Based to these
projects and its results in several phases the possible gain of e�orts and costs,
based on advanced processes, increased knowledge and additional tool support, is
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evaluated and the assumptions are validated or discarded.

5.5.1 Requirements

According to the survey, the requirements phase can be optimized with di�erent
approaches. The one which have been selected for evaluation are those which are
considered to provide the biggest enhancements. These approaches are:

• The Introduction of a Requirements Management Tool

• Several minor enhancements like:

� Standardized Requirements De�nition

� Testability of Requirements

� Design Components

The evaluation, based on the compared projects, provided interesting results.
The e�ort lost, based on bad developed requirements in terms of no standardized
requirements, requirements not reviewed for testability and the absence of design
components is signi�cant higher than expected.

The use of a requirements management tool supports the process and reduces the
e�ort but not as signi�cant than the problems named before.

In summary, good requirements reduce the e�ort of the whole project up to 40%
compared to a project with bad requirements.

5.5.2 Veri�cation and Validation

The veri�cation and validation phase is the most extensive one in the software
development and certi�cation process. Therefore, it is necessary to �nd the key
aspects which have the biggest in�uence to this phase:

• The Introduction of an Automated Test Suite

• Several minor enhancements like:

� The development of Veri�cation Tools instead of tool certi�cation.

� Review Criteria and Checklists

� Informal Reviews

99



5.5. COMPARISON CHAPTER 5. MODULAR CERTIFICATION

Although this phased turned out to be the most extensive one, the results of the
survey could not get con�rmed. According to the high amount of needed e�ort, the
process can be improved by using automatic veri�cation tools and the other points
described before but it does not reduce the e�ort to the expected results. Based
on the comparison of the actual projects, a reduction of about 4% was observed.

This result includes the introduction of a requirements management tool which
reduced the gained e�ort because a new review process had been introduced. If
this process is well established, a reduction of up to 10% compared to the �rst
project is conceivable.

5.5.3 Process

The process itself de�nes the development and certi�cation environment. There-
fore, it is from critical importance to review this area and evaluate its criteria.
The major points which can be in�uenced are:

• The Introduction of a Quality Culture

• Continuous Process Improvement

• Training

The adaption and continuous improvement of the process are important factors
in such development and certi�cation projects. Based on the fact that the im-
provements may not directly be observed it is di�cult to provide this information.

Based on the comparison of the projects and the e�orts needed for them it can be
concluded that the results of the survey are correct and the gained e�ort after three
years is about 15%. The important fact regarding continous process improvement
is the increase of e�ciency and quality on the long term.

5.5.4 Conclusion

According to the results presented above, it is shown that there are several as-
pects which have major in�uence on the development and certi�cation approach.
Therefore it is essential to �t the process to the development team and improve
the process continuously because this ensures that the e�orts are reduced and the
quality is increased on the long term.

The comparison of the actual project with the survey shows that the experts
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judgment has been correct in terms of the requirements process. Bad developed
requirements lead to problems which turn up through the whole software life cycle
process. Therefore, the approaches presented in 5.4 on page 92 lead not only to a
signi�cant improvement of the e�orts needed for the project but also to increased
overall quality.

On the other hand, deviations between the survey and the actual results can be
observed in terms of veri�cation and validation. Although it is possible to reduce
e�orts, the reduction does not re�ect the assumption.

In conclusion, the total gain of e�orts between the comparable, actual projects,
based on process enhancements and advanced tool support is 50% which is a major
part of such a project.

5.6 Conclusion

Certi�cation is a common approach to ensure the safety of developed hardware
and software. Applying the presented standards, a modular architecture and the
software on top of it can be developed, certi�ed and approved by the authorities.

An important possibility, according to high costs of certi�cation, is to accomplish
development and certi�cation e�ciently. There are several ways for e�cient cer-
ti�cation that were shown in this section. Using the described parameters allows
to reduce the e�ort by at least keeping the level of quality the same. Therefore, it
makes sense to use these parameters to adjust the development and certi�cation
process.

Another possibility to reduce the certi�cation e�ort is an architectural approach
according to DO-297. This modular approach deals with integrated architectures,
enables a simpli�ed development process for distributed systems and therefore al-
lows a signi�cant reduction of the certi�cation e�ort for single applications.

Furthermore, all parameters for e�cient software development and certi�cation
are also suitable for this modular approach, because the development process of a
single component is very similar to the process de�ned in DO-178B.
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It only takes �ve years to go

from rumor to standard

operating procedure.

(Dick Markgraf)Chapter 6

A Distributed and Integrated

Platform Solution

6.1 Introduction

According to the chapters 3 on page 19 where communication systems are de-
scribed, 4 on page 44 where the system architecture, including hardware, middle-
ware and application software and tool support, is discussed and 5 on page 83
where the certi�cation process is explained, all prerequisites for a avionics com-
puter platform are provided.

This chapter discusses now the system level requirements, attributes and bene�ts
of such a platform.

6.2 Requirements and Recommendations

This section provides requirements and recommendations regarding the change of
the system architecture. In addition to certi�cation considerations and presented
requirements, a change in the culture of the development teams has to be applied
in terms of a holistic approach to ensure an optimal outcome [27].
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6.2.1 Change of System Architecture

The transition from federated to integrated systems started in the late eighties.
Further evolution toward physically distributed, but fully integrated avionics and
control systems continues in new aircraft programs as a result of the needed re-
duction of lifecycle costs and weight.

Another advantage is the opportunity to optimize or change classical aircraft sys-
tem design, as distributed functions can be fully integrated independent from
placement and distances between subsystems. Due to the fact that open and stan-
dardized platforms [63] can reduce the e�ort for aircraft function development and
provide new tools for advanced system integration, the system architecture and its
properties become the source of competitive advantage for suppliers and system
integrators and reduce the investment barriers for market entry for new aircraft
function developers.

A major question regarding integrated systems concerns the costs for changing the
system architecture. The initial costs for the development of such an architecture
are very high. Furthermore, there are costs to integrate the function into the new
environment for using a legacy system on the new platform. Therefore, the step
of changing the system architecture has to be done very thoughtfully [27], by con-
sidering all possible costs and savings.

Another approach is to obtain the platform from a supplier. This has the advan-
tage that the whole development and certi�cation considerations are part of the
purchased platform and the system developer does not have to care about it. The
development concentrates mostly on the application instead of the overall system
and therefore the needed e�ort for development and certi�cation and thus the
time-to-market are signi�cantly reduced.

Advanced services like partitioning, communication and control �ow are handled
by the platform and their services. Therefore, costs for the development of an
integrated function are the same or less than for a comparable federated one be-
cause additional hardware layers (e.g. OS, Drivers,..) have to be considered in the
federated approach. In the integrated approach, this is already part of the plat-
form and except for the interface speci�cation it does not need to be considered
at all. But additional costs for the development or purchase of such a platform is
the other point that has to be kept in mind.
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6.2.2 Reuse of Legacy Systems

A crucial aspect of aerospace software development is reusability [94][123] which
leads to the use of o�-the-shelf products [5]. The main concept for the use of
such software subsystems is composability. Therefore, development methods are
needed that guarantee the stability of the interfaces between these subsystems,
which have to be provided by the system architecture.

Based on these partitioned resources, full reusability of legacy systems independent
from their original core hardware and the interfaces can be supported. Considering
the operating system, the communication between partitions and the communi-
cation between distributed hosts, abstraction layers have already been developed
which provide several aspects of application environment without the need of ma-
jor rework.

An important fact to support legacy systems is the need to support di�erent in-
terfaces. Therefore, an abstraction layer in the operating system and/or in the
communication systems has to provide interfaces for several communication sys-
tems like AFDX/ARINC664 [19], Safebus/ARINC659 [58][15], ARINC629 [17] and
ARINC429 [18]. This allows reuse of existing applications without major redevel-
opment and recerti�cation.

Considering the reuse of a system, the e�ort for additional certi�cation issues cor-
responds with the factor of software changes. Based on the fact that most of the
certi�cation data of the federated system can be reused with little modi�cation,
the only additional e�ort is the integration of the system into the new environ-
ment. Nevertheless, these costs for integration and updated certi�cation are not
negligible and have to be evaluated in advance.

6.2.3 Initial E�orts and Long Term Advantages

As already mentioned, the initial e�ort for the development or purchase of an
integrated architecture is very high. Furthermore, already developed aircraft func-
tions have to be updated and integrated into the new environment. Therefore, the
initial e�orts and costs for switching the architecture are several times higher than
keeping the federated system.

On the other hand, there are several advantages of the integrated approach like
modularity which allows the change or update of every single module without the
need of a full system re-certi�cation. Furthermore, these modules can be reused
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in other systems with the possibility of reusing most of the certi�cation credit.

Because of these advantages, a more e�cient airplane is possible which furthermore
provides quite new design possibilities without a loss of safety.

6.2.4 Communication Infrastructure

The communication system for an integrated architecture or especially for a dis-
tributed integrated architecture has to ful�ll several requirements. As already
mentioned, network partitioning, data- and control coupling, network composabil-
ity and interface design have to be solved on communication level.

Another important property for communication is security. Based on current prob-
lems and especially due to the fact that functions with di�erent levels of criticality
are hosted on a common platform, the secure transport of information is necessary.
Therefore, a distributed communication system for open avionics platforms has to
provide safe and secure [118] exchange of information. The next property which
has to be considered are the types of communication systems needed to create a
whole platform. On the one hand, a high performance system bus is needed which
connects all subsystems. This also provides the advantage of increased diagnosis
by evaluating the information shared by di�erent subsystems. On the other hand,
there has to be a low cost bus for subsystem communication. Currently automotive
systems, which are cheap because of their high number of pieces, are evaluated.

Such a common communication infrastructure provides several advantages like
lower costs, less interface problems and interface control by the aircraft manufac-
turer. Interface problems between di�erent suppliers are currently a huge problem.
According to this communication approach the aircraft manufacturer de�nes the
interface speci�cation which guarantees easier integration of every single aircraft
function.

Furthermore it is connected by the low-cost bus to the system bus and therefore a
reduction of wiring is possible because the interface data can be shared with every
other application in the system.

6.2.5 Conclusion

This section describes the requirements and recommendations for changing the
system architecture from a federated to an integrated one. The key criteria are
the set up of an open architecture which allows to develop and certify applications
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according to the open and well de�ned interfaces and reuse already developed
legacy systems. A key role plays the communication system which has to provide
such open interface too, to be able to support not only several applications but
also several types of subsystems.

6.3 Platform Attributes

Following attributes have to be considered during the development of a distributed
avionics platform. Furthermore, these attributes support the evaluation process
regarding a possible change from a federated to an integrated system.

6.3.1 Integrated vs. Distributed

An interesting aspect of such a platform is the possibility of distribution in addi-
tion to integration. As already discussed in the DIMA architecture, it is possible
to have integrated systems which are physically distributed. This means that from
the point of view of the application there is no di�erence if the inputs and out-
puts are directly connected or at another place in the aircraft. Therefore it is no
contradiction to talking about an integrated and distributed platform.

6.3.2 Aircraft Function Development

The aircraft function development process in an integrated architecture contrasts
to that in a federated one. In the federated approach, the subsystem, which pro-
vides the aircraft function, consists of the software application and the underlying
middleware software and hardware, which includes directly connected interfaces
to the environment. In the integrated approach, several applications share the
underlying middleware software and hardware and the interfaces can be provided
by another subsystem which shares it.

Therefore, the aircraft function developer primarily needs to consider the inter-
faces but does not need to care about the whole subsystem because all in- and
outputs are provided by the underlying architecture. Based on this approach, the
development process mainly consists of the interface speci�cation, which has to be
provided by the system integrator, and the application development. This allows
a signi�cant reduction of the development and certi�cation process and ensures
easier integration into the global aircraft system.
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6.3.3 Platform Communication

The platform communication using a DIMA approach should consist of a high-
performance system bus which connects all subsystems and a low-cost �eld bus for
the communication within the subsystems. The advantage of such an approach
is that standard components can be used all over the aircraft which reduces the
development and production costs.

Furthermore, global diagnosis and easier integration are supported if all of the
subsystem are based on the same communication system. This ensures e�cient
maintenance in terms of fault detection and replacement of defect systems.

6.3.4 Modular Design

The modular design approach, used for the development of integrated systems
[126], enables the separate development of system architecture and subsystems
design. Furthermore, it allows the strict control of key system interfaces and the
separation of functional/logical from temporal behavior facilitates the reuse and
seamless integration of electronic subsystems provided by di�erent suppliers.

6.3.5 Development Control and Intellectual Property

An interesting aspect of such an integrated platform is that the system integrator
(e.g. aircraft manufacturer, tier-one supplier), who is responsible for the platform
communication system, has development control over all subsystems. Based on the
interface speci�cation (communication schedule), every supplier is able to develop
its own subsystem. Therefore, the system integrator has full control but is also able
to integrate each subsystem easily based on the well-de�ned interface speci�cation.

Another important fact in an architectural approach is that the module interfaces
always provide a gate for information. This means that the system integrator does
not have to provide the supplier with all relevant information about his or other
subsystems because the supplier is able to develop his own aircraft function based
on the interface speci�cation.

6.3.6 Reusability and Composability

Reusability and composability are major design drivers for an integrated platform.
Based on the modular structure of the architecture, modules can easily be changed,
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reused and integrated. To achieve this, the operating system, which handles the
interaction of modules inside the host, and the communication system, which
handles the interaction of modules inside the network, have to provide several
services which support this approach.

6.3.7 COTS

Commercial-o�-the-shelf (COTS) hardware and software are a highly discussed
topic in the aerospace domain. The advantages are a reduction of development
and certi�cation e�ort, especially if the system has already been used several times.

But there is also resistance which argues that a system has to be fully certi�ed
to comply to airworthiness requirements. Currently, the DO-178C working group
SC205/WG-71 discusses this topic and the result will be very interesting for aircraft
function developers.

6.3.8 Certi�cation

If the certi�cation evidence for a modular platform is accepted once, the e�ort and
costs for changes are low compared to changes in non-modular developed systems.
Of course the e�ort for this �rst certi�cation is very high, but the certi�cation
evidence can be used with minor changes several times.

Assuming that certi�cation has already been done on platform level including all
levels below the application, the certi�cation e�ort for new aircraft functions is
reduced to the acceptance of the application and its integration into the platform.

6.3.9 Conclusion

A distributed and integrated platform solution has to provide a set of attributes.
This section describes these attributes and discusses their requirements and op-
portunities.

The key aspect is modular construction which supports independent development
and certi�cation. Furthermore, the interface between these modules can be used to
save and control intellectual property and support reusability and composability.
Another important argument is the use of COTS components because this reduces
costs and certi�cation e�orts.
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6.4 Bene�ts of an Integrated Platform Approach

The main bene�ts of the integrated architecture listed below lead to economic
bene�ts, higher quality and better serviceability which are main criteria in the
aerospace domain.

6.4.1 Reduction of Complexity

The integrated architecture allows designers to develop subsystems as in a feder-
ated system. Based on the fact that every computing resource in the system may
be used to host replicated applications, fewer computer systems are needed.

Another point is the integrated diagnosis support which facilitates the understand-
ing of the systems behavior in the presence of faults. Furthermore, the integrated
architecture provides rules for structuring the overall application functionality into
a set of subsystems.

6.4.2 Reduction of Space, Weight and Power Consumption

Space and weight are major design drivers in the aerospace domain. According to
a distributed and integrated platform, common computing units are able to host
several di�erent aircraft functions which reduces the units and therefore space,
weight and power consumption [35]. Furthermore, interface units can be placed
directly at their physical in- and outputs which decreases needed cabling.

6.4.3 Independent Development

The independent development [90] of di�erent aircraft functions allows paralleliz-
ing this work. Furthermore, di�erent vendors can develop their functions inde-
pendently based on the open interface speci�cation of the integrated architecture,
which also provides seamless system integration in combination with the encapsu-
lation services of the architecture.

Another aspect is the reuse of components which is also exploited by the modular
development of the components and the integration philosophy of the architecture.
This speeds up the development process and reduces the time-to-market.

In addition, aircraft function development is reduced to application development
because system requirements like replication handling, communication and inter-

110



6.4. BENEFITS
CHAPTER 6. A DISTRIBUTED AND INTEGRATED PLATFORM

SOLUTION

action with the environment are handled by the platform and its services. The
aircraft function is just an application which is hosted by the platform.

6.4.4 Simpli�ed Certi�cation

Certi�cation for ultra-dependable systems is a signi�cant cost factor. The inte-
grated architecture o�ers modular certi�cation by separating the certi�cation of
architectural services from applications and by supporting independent safety ar-
guments for di�erent subsystems. Combined with the reuse of components, this
strategy considerably reduces the e�ort for certi�cation and veri�cation activities
for the second time the platform is used because only new applications and their
integration have to be reviewed.

6.4.5 Increased Flexibility

The integrated architecture provides �exibility in terms of the development process
and product customization. In the development process it is possible to experi-
mentally evaluate di�erent con�gurations and communication topologies without
changing the physical structure of the system. Furthermore, it provides mass cus-
tomization to allow the modi�cation of a subsystem without the need of readapting
other subsystems.

6.4.6 Increased Maintainability

Maintenance costs are of major importance for aircraft. Therefore, the computer
system has to support this process. Based on such a modular platform, single
modules can easily be replaced or updated. Furthermore it is possible to update
whole functions or even subsystems faster.

In addition, based on advanced diagnosis, faults can be detected and recovered
much faster which reduces the ground times, too.

6.4.7 Conclusion

The switch of a system architecture creates a lot of costs because it has to be
developed from scratch. Therefore, there have to be bene�ts which justify this
decision. The key aspects are space, weight and power consumption but also
complexity, �exibility and maintainability a from major importance. This section

111



6.5. CONCLUSION
CHAPTER 6. A DISTRIBUTED AND INTEGRATED PLATFORM

SOLUTION

discusses these bene�ts and shows that a change of the system architecture in the
aerospace domain has to be done.

6.5 Conclusion

A distributed and integrated platform solution is the future core system for air-
craft electronics. Based on such an open platform, every aircraft function is hosted
by standard hardware and middleware software and the function development is
reduced to the interface speci�cation and the application development. This re-
duces the market entry barriers for new function developers and therefore ensures
a higher degree of competition which leads to cheaper and better products.

A key advantage of this approach is that every function is connected with each
other and information is shared between them. This decreases the number of
needed computational resources and in- and outputs, and enhances interaction
between di�erent aircraft functions and allows global diagnosis.

In terms of commercial advantages, key aspects for aerospace systems like space,
weight and power consumption can be reduced by increased maintainability. In
addition, the platform provides technological advantages like reduced complexity,
modular design, increased �exibility and simpli�ed development and certi�cation.
As a result, such an approach ensures safety and e�ciency by reducing develop-
ment, production and operational costs.
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In the future, airplanes will be

�own by a dog and a pilot.

And the dog's job will be to

make sure that if the pilot

tries to touch any of the

buttons, the dog bites him.

(Scott Adams)

Chapter 7

Prospectus

7.1 Introduction

This section wants to give an overview about current and upcoming trends regard-
ing integrated platforms and their underlying architecture and discuss their e�ects
in di�erent domains. As already considered, the change in aerospace system design
is already noticeable but in future systems, it will gain even more in�uence with
respect to technical but also commercial considerations.

7.2 Architectural Evolution

Aircraft architectures will evolve continuously. In my opinion, one of the most
promising architectural approaches is the "Web Architecture". This concept is a
special kind of a DIMA architecture which consists of several layered, redundant
webs. The biggest di�erence from a common DIMA architecture is that the
communication services are initiated and monitored by intelligent, centralized
switches.

This star topology allows fault-tolerance and advanced communication services
without the need to have advanced services supported by every communication
controller. All of these services are handled by the centralized switches. A
schematic overview about a web architecture can be found in �gure 7.1 on the
next page.
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Figure 7.1: Schematic Illustration of Web Architecture Design

This approach also provides the possibility of a hierarchical setup by using a
high-performance system bus, the core communication system, which connects
gateway modules. Such gateway modules connect the core communication system
and a low-cost communication system, where this gateway module act as central-
ized switch. This allows to create a hierarchical platform which integrates modules
with di�erent levels of criticality which are able to communicate with each other
and share application and diagnosis data.

A major advantage is that the interface speci�cation of the high-performance core
web is in control of the OEM or integrator. The subsystem communication can
also be de�ned by the OEM to reduce the number of di�erent communication sys-
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tems in the aircraft and therefore minimize maintenance costs in terms of spares,
test equipment, production costs and complexity.

Furthermore this architecture provides all DIMA functionalities and increases �ex-
ibility, modularity, upgradeability, maintainability, advanced and centralized diag-
nosis, easy integration and composability. This is because based on the hierarchical
approach not only single modules but also groups of modules, which have their
own, independent communication, may be replicated, reused, changed, rearranged,
upgraded and provide mutual diagnosis.

7.3 Aerospace Domain

7.3.1 Orion - CEV

The decision of the system architecture in the NASA Orion [119] spacecraft might
initiate a change for aircrafts, too. Therefore the used system architecture like
IMA or DIMA but also the used communication system can e�ect future trends
in the aerospace domain.

The decision for the high-speed communication system has already been taken
by using a special development of TT-Ethernet called TT-GBE. This approach
allows to send time-triggered and event-triggered data on the same medium. Fur-
thermore it supports a DIMA architecture which demands a high-performance and
fault-tolerant communication network.

The choice for the low-cost subsystem network has not been taken yet but a time-
triggered approach, like TTP, is still in consideration for this class of communica-
tion system.

The �nal choice of the communication system provides an outlook of the used
architecture and can be the �rst step into a new and forward-looking direction.

7.3.2 Commercial Aircraft

In the Airbus A380 [13] and the Boeing 787 [29] aircraft, there are still several
di�erent communication systems in use. But the possibility of cutting costs will
also lead to a reduction of the number of di�erent systems. Therefore, a common
platform for all aircraft functions connected by a high-performance communication
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system will be the result.

The switch to such a platform will probably evolve in upcoming projects like
the Airbus A350 or the update of the Boeing 737 aircraft. But according to my
experience, the �nal step to a common platform will need some more time for
commercial aircraft over 100 seats.

The competition in new developments of regional aircraft (100 seats class) between
Airbus, Boeing, Bombardier [60], Embraer [38], Mitsubishi, [77], Suchoi [109] and
the China Aviation Industry Corporation I [59] might lead to faster development
cycles and the need for advanced technology to provide a reduction of costs, weight
by increased e�ciency, maintainability, safety and comfort. Therefore, the use of
an advanced computer platform which supports these demands will increase. This
competition will also rise in the domain of bigger aircraft if the Chinese and Russian
companies start their plans to develop airplanes in this class, too.

7.3.3 Small Aircraft

The demand for integrated platforms in smaller aircraft is currently not signi�cant.
But the market for small aircraft, especially business jets, is currently increasing
and will rise even more in the future. Therefore, it is possible that the competition
between di�erent manufacturers will increase like in the regional market segment
and requirements for higher safety, more comfort and increased e�ciency needs to
be addressed. In this case, there will be a market for advanced computer systems
for small aircraft, too.

In my opinion this switch will be forced by suppliers who want to use their mod-
ular aircraft applications without major changes in several types [85] of aircraft
and therefore force the use of integrated platforms. But the change will start at
commercial and proceed to small aircraft.

7.4 Automotive Domain

The switch to integrated approaches can not only be found in the aerospace do-
main. Key phrases like X-by-wire and communication architecture are also dis-
cussed in the automotive area at the moment. According to their demands, several
automotive companies joined to a consortium called Automotive Open System Ar-
chitecture (AUTOSAR) to develop an architectural approach.
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7.4.1 AUTOSAR

The AUTOSAR initiative [45] is a development partnership of leading automotive
manufacturers and suppliers. The goal of the initiative is to develop and standard-
ize an open software architecture for automotive electronic control units (ECUs).

This approach is based on a layered software architecture which should be de�ned
and speci�ed. The layers consist of:

• the hardware abstraction layer (HAL)

• the basic software layer

• the runtime environment

• the application layer

According to these layers, the runtime environment and the basic software layer
provide a clearly de�ned and standardized infrastructure for the development of
application software. Based on this, the application can be developed fully inde-
pendently from the used hardware.

Furthermore, the use of a standardized software architecture allows to reduce de-
velopment costs and time signi�cantly. The major objectives of the AUTOSAR
approach are the possibility of easy integration and transferability of functions,
�exible maintenance, scalable functionality, a high standard of system reliability
and the already mentioned independence of software and hardware.

7.4.2 Communication System

The standard communication system in the automotive domain is FlexRay which
replaces CAN. According to the latest speci�cation, FlexRay [34] does not sup-
port safety-critical communication on communication level. This means that it is
currently not suitable for safety related functions.

This might lead to problems for the development of a safety-critical architecture on
top of FlexRay because all safety-services either have to be solved in the software
layers above the communication system, which reduces the e�ciency of the host
CPU, or have to use the Layered FlexRay approach, described in section 3.5 on
page 29. Nevertheless, FlexRay is the standard and will be used to provide the
communication services for automotive architectures.

Apart from this disadvantage regarding safety, FlexRay will be used in every future
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car and therefore a lot of microcontrollers already support it innately. According
to this availability and the low costs, FlexRay is also an interesting approach for
aerospace systems.

7.5 Economical E�ects

The change to integrated platforms provides several economic e�ects which will
change current development processes.

7.5.1 Reusability

Based on composability and a modular system approach, including hardware and
software, the reuse of several modules, applications, or whole subsystems is sup-
ported even for di�erent domains. For example, �ight control systems can be
used for commercial but also for regional and small aircraft. Maybe the function-
ality will be limited to �t the demands of smaller aircraft but the development
and certi�cation e�ort will be minimized based on modularity, composability and
reusability.

7.5.2 Faster Development

The factors named in the last section and the platform approach, where a devel-
oper only needs to care about the application, allow faster development cycles. If
most of the modules can be reused, the development time is decreased even more.
Furthermore, if the core system stays the same, di�erent product families can be
developed faster, too.

7.5.3 Faster Product Changes

Based on faster development and a reduced time-to-market, modularity and in-
creased competition in the aerospace domain, products will also change faster.
Current systems are developed for a product lifetime of at least 20 years. For
an integrated platform it is possible to update or change subsystems easier and
faster. Therefore, products like �ight hardware or software can be changed at a
major maintenance procedure.
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7.5.4 Cheaper Development and Production

Based on faster and more e�cient development, a reduction of development cost
is possible. Furthermore, the certi�cation e�ort is reduced which decreases the
development costs, too. Using a platform solution reduces cabling which is also a
cost factor for production.

7.6 Future Trends

7.6.1 Development and Integration

Future platforms will be fully designed to support easy development and integra-
tion [72]. Advanced development methods, including model-driven ones, allow the
developer to focus on aircraft function development without the necessity to con-
sider the underlying platform. Furthermore, the integration of these functions is
fully handled by the platform whereby composability problems cease to exist.

7.6.2 Diagnosis and Maintenance

According to advanced and integrated services [72] of future platforms, diagnosis
and maintenance are improved but simpli�ed. The whole state of a system, includ-
ing every minor �aw, will be globally observable and therefore input for recovery or
maintenance. According to this, the availability of the overall system is increased
and maintenance down-time is minimized.

7.6.3 Weight and Costs

As already mentioned, the use of integrated computer systems allows a reduction
of weight, power consumption and, therefore, costs. The economic e�ects like a
decrease in fuel consumption and, therefore, of air pollution is possible.

7.7 Conclusion

This sections describes the future e�ects of using computer platforms based on
an integrated architecture. Increased e�ciency and the fact that the competition
becomes even higher, aerospace systems and therefore aircrafts will become cheaper
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in development and production.

Further on, these e�ects will lead to more e�cient aircrafts which need less fuel,
provide less air pollution and a provide at least the same degree of safety by
reduced costs. This ensures cheaper �ights and will make the world an even more
globalized one.
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I may not have gone where I

intended to go, but I think I

have ended up where I needed

to be.

(Douglas Adams)
Chapter 8

Conclusion

This thesis discusses several parts that are necessary for the implementation of an
digital avionics platform. First of all, the architecture needs to be selected because
it is the baseline for all upcoming considerations.

Integrated architectures already provide advantages in terms of reduced hardware
resources and cabling and therefore reduced size, space, weight, power consumption
and design constraints. But according to the approach of Distributed Integrated
Modular Avionics (DIMA), the advantages of the federated and the integrated
architectures can be combined which push these advantages even more and sup-
port others like the placement of physical interface at their natural best position
and the avoidance of common cause errors. Therefore, it is concluded that such a
DIMA architecture is the best solution for an avionics platform.

The next point that is discussed are communication systems which connect di�er-
ent nodes in such a distributed platform. Two classes emerge during consideration,
the core and the subsystem communication system. Based on this classi�cation,
several di�erent systems are evaluated and their attributes and suitability are com-
pared. The result indicates that the choice of the communication system depends
on the requirements, in terms of safety, �exibility and performance, of the hosted
applications.

After choosing the communication system, several major parts of the architecture
and its nodes need to be speci�ed like the provided services, the used hardware,
operating system and tool support, if needed. Several possibilities, including di�er-
ent operating systems and their interaction are discussed. Furthermore, examples
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of architectures are presented which can partly be suitable as a platform environ-
ment.

To close the prerequisites for a distributed platform solution, certi�cation consid-
erations are presented which allow to reduce the needed development and certi-
�cation e�orts. The concepts of Modular Certi�cation and optimized processes
discuss ways to increase e�ciency for the certi�cation of such a platform solution.
This is one of the major pasts of this thesis which extends the current state of the
art. Research provides information regarding process optimization and develops
key criteria to achieve this. This research is evaluated based on a comparison to
successfully accomplished projects and their actual output is described.

After every part of such a platform has been considered, implementation re-
quirements and recommendations are provided, including major concerns like the
change of the architecture and the reuse of already developed aircraft functions.
This is the second major part which provide major contributions. These param-
eters provide considerations which are necessary for a successful implementation
of such an approach. Furthermore, platform attributes, based on concerns raised
before, are de�ned and bene�ts of such an approach are discussed.

Prospected further evolution and commercial challenges are also discussed as up-
coming applications and future trends in aerospace development. Further research
in this area will have to deal with new architectural approaches, advanced mod-
ularity and �exibility but also standardization to provide suitable solutions for
di�erent classes of application or even di�erent classes of aircrafts. Regarding
certi�cation, the practical use of Modular Certi�cation needs to be veri�ed, and
further e�orts are needed to update and optimize this approach for future needs.

According to the results developed in this thesis, I am of the opinion that such
a Distributed Integrated Platform Solution (DIPS) will be the digital core sys-
tem in one of the upcoming aircrafts of which development planning is currently
starting. Based on the major advantages which result in a reduction of develop-
ment, production and operational costs, this approach will change aircraft function
development.
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regarding "E�cient Software Certi�cation" and "Integrated Architectures" with
time, e�ort and knowledge, especially the DO-178C and the DO-297 working
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Appendix A

Acronyms and Abbreviations

AC Advisory Circular
AFDX Avionics Full Duplex Switched Ethernet
APEX Applications/Executive
API Advanced Programming Interface
ARINC Aeronautical Radio Incorporated
ASL Advanced Services Layer
AUTOSAR Automotive Open System Architecture
BAG Bandwidth Allocation Gap
BIU Bus Interface Unit
CNI Communication Network Interface
COTS Commercial-O�-The-Shelf
CPU Central Processing Unit
CSMA Carrier Sense Multiple Access
DAS Distributed Application Subsystem
DER Designated Engineering Representative
DIMA Distributed Integrated Modular Avionics
DIPS Distributed Integrated Platform Solution
EASA European Aviation Safety Agency
EUROCAE European Organization for Civil Aviation Equipment
ECR Error Containment Region
ECU Electronic Control Unit
EEE Encapsulated Execution Environment
eLoc E�ective Lines of Code
FAR Federal Airworthiness Requirement
FCR Fault Containment Region
FTA Fault-Tolerant Average
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HAL Hardware Abstraction Layer
IMA Integrated Modular Avionics
L-FlexRay Layered FlexRay
L-TTP Layered Time Triggered Protocol
MEA More Electric Architecture
MEDL Message Descriptor List
NASA National Aeronautics and Space Administration
NGU Never-Give-Up
OEM Original Equipment Manufacturer
OS Operating System
PE Processing Element
PIL Platform Interface Layer
RMU Redundancy Management Unit
ROBUS Reliable Optical Bus
RTCA Radio Technical Commission for Aeronautics
SAE Society of Automotive Engineers
SCL Synchronization and Communication Layer
SPIDER Scalable Processor-Independent Design for Extended Reliability
TDMA Time-Division Multiple Access
TT-Ethernet Time Triggered Ethernet
TT-Gbe Time Triggered Giga-Bit Ethernet
TTP Time Triggered Protocol
TTPos Time Triggered Protocol Operating System
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Appendix B

Publications

High Speed and High Dependability Communication for Automotive

Electronics

B. Rumpler, C. Weich and R. Wol�g
SAE World Congress, 2006

Time-Triggered Architecture based on FlexRay: Roadmap from High-

Speed Data Networking to Safety Relevant Automotive Applications

M. Buhlmann, S. Poledna, G. Stoeger and R. Wol�g
Convergence, 2006

Layered FlexRay - An Environment for Distributed Safety-Critical Ap-

plications

R. Wol�g
Embedded World Conference, 2007

Subsystem Design Using Time-Triggered Protocol (TTP): Key Aspects

of Control System Application Reuse

R. Wol�g
SAE Aerotech, 2007

Parameters for E�cient Software Certi�cation

R. Wol�g
EUROMICRO, ERCIM / DECOS Workshop on Dependable Embedded Systems,
2007
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