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Holzhacken ist deshalb so beliebt, weil man bei dieser Tätigkeit den Erfolg sofort sieht.
Albert Einstein

People love chopping wood. In this activity one immediately sees results.
Albert Einstein
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Abstract

Wood is currently facing a boom in the construction sector and is increasingly used, both
for common building and for special civil engineering purposes. To meet the resulting high
demands on wood in design and dimensioning, accurate knowledge of the material and its
properties is necessary.

Thereby the moisture content is one of the determining factors in matters of technological
and mechanical properties of the material wood. For instance strength and elasticity vary
with changing moisture content. Furthermore, wood swells and shrinks when the moisture
content is changed in ranges typical of structural applications. Moreover, the moisture
content has a great influence on the degradation of the material by means of fungi and
insects.

In order to investigate these phenomenons, and, further, also to model them, it is indis-
pensable to have a model for the conduction of moisture through wood on one’s disposal.
Since the moisture transport process strongly depends on temperature, also a model for
heat transport in wood is needed. In this thesis models for both processes are developed
and validated by comparing model predictions for transport properties to corresponding
measured values.

After an introduction to the structure and microstructure of wood, an abstract model for
transport processes in wood is defined that predicts the macroscopic behavior of wood
from its microstructure. By consideration of the cellular structure, some phenomenons
can be explained on a physical basis, that can be simulated on the macroscale only in
phenomenological ways. In order to proof the suitability of the model, it is compared to a
model based on the unit cell method which provides a more accurate representation of the
microstructure. The transport behavior of the unit cell is analyzed by means of the finite
element method (FEM), using the FEM-program Abaqus.

After formulation of the required homogenization steps, the model is applied to moisture
transport in wood. After defining some fundamental terms, the input parameters are
determined, in particular the diffusion coefficients of both cell walls and lumens. Since the
energy relationships of the water molecules in the cell wall have a great influence on the
overall moisture transport behavior of wood, they are analyzed in detail. Afterwards the
developed moisture transport model is compared to measured values from the literature.

The partial differential equations describing the moisture transport in wood are identical
to the corresponding equations for thermal conduction. Thus, with few adjustment, the
developed model for moisture transport can also be applied to this second process. As
before, the behavior of the model is checked by comparing model predictions to experi-
mental results from the literature, after defining the thermal conductivities of the single
components of the cell assembly.

With the completion of this diploma thesis insight is gained into the topic ”moisture in
wood”. On the one hand it is pointed out where further research is needed, on the other
hand the developed models for water transport and thermal conduction provide a basis for
further research into the influence of moisture on wood. Moreover, this diploma thesis is
the first step of my future research work at the Institute for Mechanics of Materials and
Structures, Vienna University.



Kurzfassung

Der Werkstoff Holz erfährt zur Zeit einen starken Aufschwung im Bausektor und eine immer
weitere Verbreitung sowohl im allgemeinen Bauwesen als auch im Ingenieurbau. Um den
daraus resultierenden Anforderungen in der ingenieurmäßigen Bemessung gerecht werden
zu können, sind genaue Kenntnisse des Werkstoffes und dessen Eigenschaften vonnöten.

Die Holzfeuchtigkeit ist dabei eine ausschlaggebende Zustandsgröße des Werkstoffes Holz
in Bezug auf seine technologischen und mechanischen Eigenschaften. So verändern sich
die Festigkeit und Elastizität mit dem Feuchtigkeitsgehalt. Außerdem schwindet Holz bei
Änderungen der Holzfeuchtigkeit im für konstruktive Anwendungen relevanten Bereich.
Weiters hat die Holzfeuchte einen großen Einfluss auf die Gefährdung durch Holzschädlinge
wie Pilze und Insekten. Um diese Phänomene näher untersuchen und in weiterer Folge auch
numerisch modellieren zu können, ist es unabdingbar, ein Modell für den Feuchtigkeit-
stransport in Holz zur Verfügung zu haben. Da das Transportverhalten in Holz auch
stark temperaturabhängig ist, wird parallel dazu auch ein Modell für den Wärmetransport
erforderlich. In dieser Arbeit werden Modelle für beide Prozesse entwickelt und zur Vali-
dierung Modellaussagen mit entsprechenden gemessenen Werten verglichen.

Nachdem die Struktur von Holz – vor allem auf der Mikroskala – geklärt ist, wird ein
allgemeines Modell für Transportprozesse in Holz formuliert, das vom Verhalten auf der
Zellebene auf jenes auf der Makroebene schließt. Durch die Berücksichtigung der Zellstruk-
tur können dabei einige der Phänomene, die auf der Makroskala nur phänomenologisch
nachgebildet werden können, physikalisch basiert erklärt werden. Um die Funktionsweise
des Modells zu überprüfen, wird anschließend ein Vergleich mit einem Modell nach der
Unit-Cell-Methode durchgeführt, welches eine genauere Beschreibung der Mikrostruktur
bietet. Die Analyse des Transportverhaltens der Unit-Cell erfolgt mit Hilfe der Methode
der finiten Elemente (FEM) unter Anwendung des FEM-Programms Abaqus.

Nachdem die Homogenisierungsschritte geklärt sind, folgt die Anwendung des entwickel-
ten Modells auf die Simulation des Wassertransports in Holz. Nach der Definition von
Grundbegriffen folgt die Ermittlung der benötigten Eingangsparameter, im speziellen Fall
der Diffusionskoeffizienten von Zellwänden und Lumen. Hierbei wird sehr genau auf die
Energieverhältnisse der Wassermoleküle in der Zellwand eingegangen, die einen großen
Einfluss auf das gesamte Feuchtigkeitstransportverhalten von Holz haben. Anschließend
erfolgt zur Modellvalidierung ein Vergleich der errechneten Werte mit gemessenen Werten
aus der Literatur.

Die partiellen Differentialgleichungen, die dem Modell für Wasserdiffusion in Holz zugrunde
liegen, sind dieselben wie jene für Wärmeleitung in Holz. Deshalb kann das entwickelte
Modell mit leichten Adaptionen auf diesen Prozess übertragen werden. Auch hier wird
nach Ermittlung der Wärmeleitfähigkeiten der einzelnen Komponenten der Zellstruktur
das Verhalten des Modells anhand von Literaturdaten überprüft.

Mit Abschluss dieser Arbeit ist der Einstieg in das Thema ”Feuchtigkeit in Holz” geschafft.
Einerseits wird aufgezeigt, wo noch weiterer Forschungsbedarf nötig ist, andererseits ist mit
den beiden entwickelten Modellen für Wasser- und Wärmetransport eine Basis für weitere
Forschung in diese Richtung gelegt. Zusätzlich stellt diese Diplomarbeit auch den ersten
Schritt meiner Forschungstätigkeit am Institut für Mechanik der Werkstoffe und Strukturen
an der Technischen Universität Wien dar.



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The structure of wood 5
2.1 Structure on the macroscopic level . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Structure on the microscopic level - softwood . . . . . . . . . . . . . . . . . 7

2.2.1 Earlywood cells and latewood cells . . . . . . . . . . . . . . . . . . 8
2.2.2 Pit aspiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Structure on the microscopic level - hardwood . . . . . . . . . . . . . . . . 10
2.4 Ultra- and molecular structure . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Microscale transport model for wood 13
3.1 Fundamentals of continuum modeling on the microscale . . . . . . . . . . . 13
3.2 Eshelby’s problem in linear diffusion . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 The inclusion problem . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.3 The second order P-tensor . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Application of the homogenization scheme to wood . . . . . . . . . . . . . 24
3.3.1 Calculation of the geometric parameters . . . . . . . . . . . . . . . 24
3.3.2 Homogenization step 1: Diffusion coefficients of the cell assembly . 26
3.3.3 Homogenization Step 2: Diffusion coefficients of a whole sample . . 26

4 The unit cell method 28
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Basics of the comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Comparison 1: The unit cell for earlywood . . . . . . . . . . . . . . . . . . 30

4.3.1 Dimensions of the unit cell . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.2 Results and comparison . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Comparison 2: The unit cell for latewood . . . . . . . . . . . . . . . . . . . 32
4.4.1 Dimensions of the unit cell . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.2 Results and comparison . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Further results of the unit cell method . . . . . . . . . . . . . . . . . . . . 33



CONTENTS II

5 Evaluation of the model for moisture diffusion 36
5.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.1 Moisture content . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1.2 The equilibrium moisture content . . . . . . . . . . . . . . . . . . . 37
5.1.3 The fiber saturation point . . . . . . . . . . . . . . . . . . . . . . . 37
5.1.4 The sorption isotherm . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.1 The universal gas constant . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.2 The Avogadro constant . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.3 The density of the cell wall . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.4 The molar mass of water . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 Properties of steam and water . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3.1 The saturation vapor pressure . . . . . . . . . . . . . . . . . . . . . 40
5.3.2 The density of water . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3.3 The heat of evaporation . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.4 The viscosity of water . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3.5 The specific heat at constant pressure of steam . . . . . . . . . . . 45

5.4 The diffusion tensor of the lumen . . . . . . . . . . . . . . . . . . . . . . . 46
5.4.1 The diffusion coefficient of air . . . . . . . . . . . . . . . . . . . . . 46
5.4.2 The diffusion coefficient of the lumen . . . . . . . . . . . . . . . . . 46
5.4.3 Assembly of the diffusion tensor . . . . . . . . . . . . . . . . . . . . 49

5.5 The diffusion tensor of the cell wall . . . . . . . . . . . . . . . . . . . . . . 49
5.5.1 The Arrhenius equation . . . . . . . . . . . . . . . . . . . . . . . . 49
5.5.2 Energy relationships, activation energy . . . . . . . . . . . . . . . . 50
5.5.3 The activation energy, lower limit . . . . . . . . . . . . . . . . . . . 52
5.5.4 The activation energy, upper limit . . . . . . . . . . . . . . . . . . . 54
5.5.5 Assembly of the diffusion tensor . . . . . . . . . . . . . . . . . . . . 55

5.6 The multiscale moisture diffusion model . . . . . . . . . . . . . . . . . . . 55
5.6.1 Homogenization step 1: Diffusion coefficients of the cell assembly . 56
5.6.2 Homogenization step 2: Diffusion coefficients of a whole sample . . 56

5.7 Validation of the multiscale diffusion model . . . . . . . . . . . . . . . . . 57
5.7.1 Radial diffusion coefficient at different moisture contents . . . . . . 57
5.7.2 Comparison of the activation energies . . . . . . . . . . . . . . . . . 58
5.7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 Evaluation of the model for thermal conduction 60
6.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.1.1 Fourier’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.1.2 Comparison of thermal conductivities . . . . . . . . . . . . . . . . . 60
6.1.3 The thermal conductivity of water . . . . . . . . . . . . . . . . . . 61
6.1.4 The thermal conductivity of air . . . . . . . . . . . . . . . . . . . . 61

6.2 The thermal conductivities of lumen and cell wall . . . . . . . . . . . . . . 63
6.2.1 The thermal conductivity of the lumen . . . . . . . . . . . . . . . . 63
6.2.2 The thermal conductivity of the cell wall . . . . . . . . . . . . . . . 63

6.3 The multiscale thermal conduction model . . . . . . . . . . . . . . . . . . . 64



CONTENTS III

6.3.1 Homogenization step 1: Thermal conductivities of the cell assembly 64
6.3.2 Homogenization step 2: Thermal conductivities of a whole sample . 64

6.4 Validation of the multiscale thermal conduction model . . . . . . . . . . . 64
6.4.1 Thermal conductivity at different densities . . . . . . . . . . . . . . 64
6.4.2 Thermal conductivity at different moisture contents . . . . . . . . . 65
6.4.3 Thermal conductivities for single specimens . . . . . . . . . . . . . 66

7 Summary, conclusions and future work 67

A Steam table in SI-Units 73

B Program code 76
B.1 Fitting of tabulated values . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

B.1.1 The density of water . . . . . . . . . . . . . . . . . . . . . . . . . . 76
B.1.2 The heat of evaporation . . . . . . . . . . . . . . . . . . . . . . . . 77
B.1.3 The viscosity of water . . . . . . . . . . . . . . . . . . . . . . . . . 77
B.1.4 The specific heat of steam . . . . . . . . . . . . . . . . . . . . . . . 77
B.1.5 The thermal conductivity of water . . . . . . . . . . . . . . . . . . 78
B.1.6 The thermal conductivity of air . . . . . . . . . . . . . . . . . . . . 78

B.2 The multiscale moisture diffusion model . . . . . . . . . . . . . . . . . . . 79
B.2.1 Program structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
B.2.2 Source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

B.3 The multiscale thermal conduction model . . . . . . . . . . . . . . . . . . . 92
B.3.1 Program structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
B.3.2 Source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



Chapter1
Introduction

1.1 Motivation

To almost all intents and purposes, water and wood are two inseparable substances. In
the living tree the flow and content of water-borne nutrients are important indicators of
the health status. After felling, the green wood must be dried before it can be used as
structural timber. This drying process is associated with significant costs, because green
wood may contain up to 800 kg/m3 water that has to be removed. Furthermore, the quality
of the end product depends to a large extent on the drying process, since wood may deform
(see Figure 1.1) when the water is removed in a non-uniform way. At last, when being used
for example as structural timber, the water in wood induces a number of unwanted effects,
including further moisture induced mechanical deformations (swelling and shrinking) as
well as rot, fungal growth and other types of biological degradation, all of which are highly
sensitive to the moisture content [18]. Furthermore, also the mechanical properties of wood
(like stiffness and elasticity) vary with the moisture content. The transport process is in
addition influenced by temperature, where the heat transport in turn depends on the actual
moisture content.

Figure 1.1: Shrinking of wood because of variations in moisture content
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Thus, the moisture transport and heat transfer play a key role in a large number of sce-
narios. Therefore it is essential for wood research to have an adequate model for these
transport processes at one’s hand. Such a model should provide accurate estimates of the
transport behavior, that agree with corresponding experimental observations. Moreover,
it should also be extendable to new scenarios. The basics for such a model are summarized
and advanced in this diploma thesis.

1.2 Previous work

The importance of heat and moisture transport in wood motivated a large number of
research activities by both experimental and numerical means, which are exemplarily re-
viewed in the following.

One of the most quoted books is that by Siau [32], which contains a summary of the basic
wood-moisture relationships, the structure of wood, and models for thermal and electrical
conductivity and for the different ways of moisture movement in wood. Also a simple
homogenization model is published in this book based on the rules of mixture. This book
turns out to be a good introduction to the topic ”transport processes”, but with some
inaccuracies in detail.

Perré and Turner [28, 29] developed a comprehensive heat and mass transfer computational
model for the simulation of drying of porous media called TransPore. They also devised a
geometric model that describes the shape of the tracheids in softwood as a function of the
actual density. Since TransPore is partly based on the work of Siau [32], the same detail
inaccuracies can be found.

Krabbenhoft [18] developed models for the description of the transport behavior of wood
with particular emphasis on water transport. After a brief review of the basic features of
wood as related to the transport of moisture, a general theoretical approach to transport
of water in wood is described. Thereon a transport model is introduced and validated by
comparing model predictions with a number of experimental results.

Since the behavior of the cell wall of the wood cells is the determinant factor in moisture
transport processes in wood, several authors are engaged in this topic. Nelson [23, 24, 25,
26] describes in detail the energy relationships in the cell wall, while Skaar [33] specifies
the mathematical background for moisture movement in the cell wall.

Gu [13] and Thunman [35] analyzed the thermal conduction in wood. Their developed
models agree quite well with their reported test results.

Dormieux [3, 4, 5], Gross [12], and Zaoui [38] provide the mathematical background of the
homogenization model used in this thesis. Its first reported application to wood was done
by Hofstetter et. al. [15] for mechanical properties.

The book of Kollmann [17] is one of the best sources of values and test results for various
wood properties, although it was already published in 1951. It includes a detailed chapter
about the structure of wood including possible wood defects. Further chapters deal with
the chemistry, physics, elasticity, and strength of wood and refer of course also to water
diffusion and thermal conduction. Heuristic and phenomenological models are described
for various aspects of the material behavior that, however, can’t describe all phenomenons.



Introduction 3

1.3 Scope

The thesis is organized in seven chapters. After this introductory chapter, the structure
and basic features of wood as related to transport processes are briefly discussed in Chap-
ter 2. Furthermore, the microstructure of both softwood and hardwood from the cross
section down to the molecular scale is described. Special attention is paid to the geometric
properties since they are required for the following homogenization model.

Chapter 3 describes the homogenization model for moisture diffusion in wood based on the
Mori-Tanaka scheme. After the definition of the characteristic length scales and the intro-
duction of the homogenization scheme (Section 3.1), the P-Tensor needed for this scheme is
derived step-by-step in Section 3.2 for diffusion and ellipsoidal inclusions. In Section 3.3.1
equations for the geometric properties of the microstructure of wood are reported, and
Sections 3.3.2 and 3.3.3 finally deal with the application of the homogenization schemes to
wood. It includes the influence of the microstructure of the cell assembly and the density
variation within the annual rings on the transport behavior.

In Chapter 4 the unit cell method is used to verify the model obtained in Chapter 3. The
transport behavior of the unit cell was calculated by means of the finite element method
using the program Abaqus. Thereon some further results gained with the unit cell method
will be reported.

In Chapter 5 the problem of moisture transport below the fiber saturation point is treated.
First the developed homogenization model is specialized to this application. As in previous
research on the modeling of water transfer below the fiber saturation point, the transport of
bound water and water vapor are described separately. At first several fundamental terms
are explained in Section 5.1. Sections 5.2 and 5.3 provide constants and properties of steam
and water, that are needed in the thereon following sections. In Section 5.4 the diffusion
coefficient for water in the lumen is derived, while Section 5.5 treats with the diffusion
properties of the cell wall. Since the energy relationships of water molecules in the cell
wall turn out to be very important in water diffusion, they are discussed in detail within
this section. Section 5.6 explains the assembly of the model for water diffusion, while
in Section 5.7 this model is validated by comparing its predictions with corresponding
measured values.

Chapter 6 treats the homogenization model for thermal conduction. After an introduction,
the input parameters for the cell walls and lumens are derived in Section 6.1 and 6.2. The
model thereon is assembled in Section 6.3. A comparison of model estimates to several
measured values follows in Section 6.4.

Finally, Chapter 7 contains the conclusions of this work.

1.4 Nomenclature

The quantities, units, and indices used throughout this thesis are summarized in the Tables
1.1 and 1.2.
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Symbol Name of quantity Symbol Name of SI unit
a Cell dimension m meter
cp Specific heat capacity J/kg K joule per kilogram kelvin
d characteristic inhomogeneity length m meter
D Diffusion coefficient m2/s square meter per seconds
D Diffusion tensor m2/s square meter per seconds
Ea Activation energy J/mol joule per mole
f Volume fraction % percent
h Specific enthalpy J/kg joule per kilogram
j Mass flux mol/m2 s mole per square meter second
K Thermal conductivity tensor W/mK watt per meter kelvin
` characteristic length of RVE m meter
L characteristic length of structure m meter
m Mass kg kilogram
mc Moisture content % percent
M Molar mass g/mol gram per mole
n Amount of a substance 1 one
NA Avogadro constant 1/mol reciprocal mole
p Pressure Pa pascal
p0 Saturation vapor pressure Pa pascal
P P-tensor for diffusion s/m2 seconds per square meter
P P-tensor for heat conduction mK/W meter kelvin per watt
Q Heat (energy) J/kg joule per kilogram
r Effective molecular radius m meter
R Universal gas constant J/molK joule per mole kelvin
t Celsius temperature ◦C degree Celsius
T Temperature K kelvin
V Volume m3 cubic meter
α Effective area 1 one
η Viscosity Pa s pascal second
λ Thermal conductivity W/mK watt per meter kelvin
ρ Concentration mol/m3 mole per cubic meter
% Density kg/m3 kilogram per cubic meter
τ Tortuosity 1 one
φq Heat flux W/m2 watt per square meter
ϕ Relative humidity % percent

Table 1.1: Quantities and units used in this thesis

Symbol Name Symbol Name
earlywood Earlywood γ Substance γ
latewood Latewood est Estimated
rad Radial hom Homogenized
tang Tangential ell ellipsoidal
long Longitudinal ovendry Oven-dry
trans Transversal green Green
lumen Lumen w Water
cellwall Cell wall v Vapor
s Solid phase a Air
p Pore phase r Self-diffusion
I Inclusion

Table 1.2: Indices used in this thesis



Chapter2
The structure of wood

This chapter is about the structure and basic features of wood. Some attention is also paid
to the properties which control the transport of fluids (since this is one of the scopes of
this thesis) within the wooden cell structure. Knowledge of the structure of wood is useful
basically for the understanding of experimentally observed phenomena. The behavior of
wood, that can be described on the macroscopic scale only by empirical relations, often
turns out to be describable by more simple processes on the microscale. Moreover, the
structure of wood serves as a physical justification for the model presented in this thesis.

The various wood species can be divided into two classes, normally referred to as softwood
and hardwood. Although these names can be misleading, since some hardwoods are softer
than some softwoods (for example: balsa is a hardwood), they are really useful since they
specify two quite distinct types of cellular arrangements. In the following the structures of
both kinds of wood (as related to transport phenomena) are discussed.

For the wood microstructure, five levels of organization [15] with different associated length
scales can be distinguished (see also Figure 2.1):

� The macroscopic level, on which softwood and hardwood can be treated together (to
a certain degree). A typical length scale is 2− 4 mm (see Figure 2.1a).

� The microscopic or cell level, with the most clearly manifested distinctions between
softwood and hardwood (see Figures 2.1c and 2.1b).

� A first ultra-structural level, on which the sequentially deposited layers of the cell
walls are dealt with (Figure 2.1d).

� A second ultra-structural level for the cellulosic fibers in a non-cellulosic matrix,
making up the cell wall layers (see Figure 2.1e).

� The molecular level, on which the chemical composition of the cell wall is dealt with:
the cellulose chains (Figure 2.1f) and the matrix deposited in the spaces between the
cellulose (Figure 2.1g shows the structure of hemicellulose, one of the matrix parts).
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Figure 2.1: Hierarchical organization of wood

2.1 Structure on the macroscopic level

Before the cellular structures of softwood and hardwood are described, some common
characteristics of all woods will be summarized. The trunk of a tree has three physical
functions: it must support the crown, conduct minerals and water upwards from the roots
to the crown, and store nutrients until they are needed. Whereas the entire trunk takes
part in supporting the crown, only its outer regions contribute to conduction and storage.
The wood located in this outer region is termed sapwood, the remaining part is referred
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to as heartwood. The width of the sapwood zone is usually much smaller than that of
heartwood and mostly accounts for less than one third of the total width [18].

When the tree grows, former sapwood cells will gradually be transformed to heartwood
cells. This transformation comes along with a number of chemical changes, which gives
the heartwood a darker color than the sapwood (see Figure 2.2).

Figure 2.2: Cross section of a taxus tree [60]

With respect to the overall flow properties of the two kinds of wood, sapwood is usually
much more permeable than heartwood. This is clear, since the two types of wood fulfill
different functions in the living tree. In addition, the sapwood porosity is a bit higher than
that of the heartwood. These factors affect the ability to water conduction of wood.

When a typical cross section of a tree (see Figure 2.2) is inspected further, the existence
of a set of concentric rings with origin in the center of the tree can be noticed. These
growth or annual rings are a consequence of the growing process during each season and
result in the three principal material directions of wood - the longitudinal (L), radial (R),
and tangential (T) direction. The longitudinal direction is that of the longitudinal axis of
the trunk, which almost coincides with the direction of the tracheid cell axes. The radial
direction points from the center of the trunk outwards, normal to the annual rings. The
tangential direction is defined by the local tangent to the growth rings.

2.2 Structure on the microscopic level - softwood

The microscopic structure of a typical softwood tissue is shown in Figure 2.3. As can be
seen, the cellular arrangement is one of long interconnected cells with ellipsoidal or square
cross sections. These cells, named tracheids, account for 95 % of the mass of softwood
tissues [31]. They are formed in the radial direction by the division of the same initial cell
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in the cambium [36]. Thus the cell walls are aligned in this direction. In the tangential
direction, they are randomly arranged.

In softwood the cells do not form an unbroken pathway as longitudinal cylinders but have
tapered ends, so that the cells form independent and relatively closed units, as seen in
Figure 2.4. The conduction in the longitudinal direction thus takes place through holes in
the cell walls, so-called pits, which interconnect neighboring cells. The resistance to flow
through these pits makes up a mainly portion of the total resistance to longitudinal flow.

Figure 2.3: Structure of softwood (red pine) [39]

In the two other directions flow also takes place through interconnecting pits, and in the
radial directions furthermore through ray cells as shown in Figure 2.3. This results in a
slightly higher permeability in radial direction than in tangential direction, although most
pits are located on the radial surfaces and thus support tangential flow [18].

2.2.1 Earlywood cells and latewood cells

The growth activity of trees varies within a year. Therefore the clearly visible growth rings
are approximately linked to the seasons. In the beginning of the growing season in spring
the tree will form cells whose primary function is conduction. Therefore, these cells are
thin-walled and have more pits to increase connectivity. This wood named earlywood can
be identified by its rather light color.

In contrast the darker part of an annual ring (the latewood) consists of cells with opposite
features. Since the primary function is not longer conduction but mechanical support,
the cells have thicker walls resulting in a much higher density and a lower number of
interconnecting pits [18]. From earlywood to latewood, the tangential diameter is nearly
constant (about 20− 50µm in softwood), while the radial diameter decreases, and the cell
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wall thickness (2−20µm) increases (see Figure 2.3). The cell length ranges between 2 and
10 mm [15].

Figure 2.4: Earlywood and latewood tracheid cells [32]

2.2.2 Pit aspiration

As already mentioned, there is usually a distinct difference between the flow properties
of green wood and dried wood. The higher porosity and the larger number of pits in
earlywood motivate the assumption that the permeability of earlywood is much higher
than that of latewood. This is the case, in fact, but only in the green state. The reason
for the different behavior of dried wood can be found in a process named pit aspiration,
that will be explained next.

The pits interconnecting the cells consist of an impermeable torus, that is held in position
by surrounding margo strands as shown in Figure 2.5.

Figure 2.5: Unaspirated bordered pit in a sapwood tracheid [32]

In green wood, the pit torus is positioned in the middle of the pit chamber, so that flow
through the pit is not really hindered. When water is removed, tension stresses because
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of water menisci will displace the torus like shown in Figure 2.6, resulting in an effectively
closed pit. Afterwards, the torus is kept in the displaced position, so that pit aspiration is
irreversible to the most extent. Rewetting with water will only cause partial reduction in
the number of aspirated pits [18].

Pit aspiration takes place at relatively high moisture contents. According to Siau [32],
the process of pit aspiration is already finished when the moisture content reaches the
fiber saturation point (no liquid water in wood, see Section 5.1.3). All pits are closed
under the fiber saturation point and, thus, can be neglected when modeling moisture
transport in wood. The moisture transport is only affected by diffusion processes then,
what considerably simplifies the modeling.

Figure 2.6: Cross section of a bordered pit in the unaspirated state (left) and the aspirated
state (right) [18]

2.3 Structure on the microscopic level - hardwood

Although this diploma thesis deals only with softwood, also the structure of hardwood is
described in order to point out why the modeling of hardwood is more complicated. The
structure of hardwood is quite different from that of softwood, since hardwoods are younger
species in biological evolution. Hardwood contains in contrast to softwood additional ves-
sels wit a diameter up to 500µm, that form continuous pathways in the cell assembly.
Moreover, variability between several species is much greater for hardwood than for soft-
woods. In general, two types of hardwood can be differentiated: ring porous hardwood and
diffusive porous hardwood. Figure 2.7 shows the microscopic structure of diffuse porous
hardwood. In this type of wood, the cell sizes don’t change throughout the growing season.
This results in an even distribution of the large vessels, which are surrounded by cells with
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a much smaller diameter. These vessels cause the much higher longitudinal permeability
of hardwood species compared to softwood tissues. Also the differences between the per-
meabilities of green and dried hardwood are much smaller, since the water flow through
pits is only of minor importance [18]. In contrast to diffusive porous hardwood, the vessels
are arranged according to the growth ring pattern in ring porous hardwood as is clearly
visible in Figure 2.8. As can be easily understood, the differentiated structure of hardwood
is much more difficult to model than that of softwood, which is more homogeneous.

Figure 2.7: Structure of diffusive porous hardwood (aspen) [39]

Figure 2.8: Structure of ring porous hardwood (red oak) [39]
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2.4 Ultra- and molecular structure

The cell walls of wood consist of three polymers for the most part: cellulose, hemicellulose,
and lignin. The relative shares of these three polymers vary between different species.
Cellulose usually accounts for 40 − 50 % of the mass of the cell wall, while the rest is
made up of hemicellulose and lignin in approximately equal shares [18]. The polymers
are arranged as shown in Figure 2.9, which constitute the basic building blocks of the cell
walls. Therein cellulosic microfibrils are sheathed by hemicellulose and finally connected
by lignin. The long cellulosic threads with a typical length of about 5000 nm and a width
of 10− 20 nm are shown in Figure 2.9 [15].

Figure 2.9: Cross section of a basic building block (a), and the layered structure of the cell
wall (b) [18]

The cell walls are made up of several layers (denoted by P, S1, S2, S3, W), which differ
in the chemical composition and the orientation of the cellulose. The individual cells are
bonded together by the middle lamella (M) to form the cellular microscopic honeycomb
structure described before.

Since the different polymers each have different properties, for example different sorption
isotherms, wood is in fact a composite material, where the overall behavior is a result of
the features of the individual components and the arrangement of these components in the
cell wall [18].



Chapter3
Microscale transport model for wood

The aim of this diploma thesis is to predict the macroscopic transport behavior of wood
from its microstructural characteristics. In contrast to previous research in this field, a
new model for transport processes based on multiscale modeling is developed. The success
of a similar model for the mechanical behavior of wood [15], developed at the Institute for
Mechanics of Materials and Structures, Vienna University of Technology (my future place
of employment), supports the research endeavor to apply such a model also to transport
processes.

In this chapter a short introduction to the fundamentals of continuum modeling is given
first. Since no analytical formulations for the components of the second order P-tensor
could be found in literature, this tensor is derived step-by-step in the second section. At
last the model is applied to wood, and a summary of the resulting equations is given for
use in a computer program.

3.1 Fundamentals of continuum modeling on the mi-

croscale

In microscale continuum modeling, a material is understood as a macro-homogeneous, but
micro-heterogeneous body filling a representative volume element (RVE) with characteris-
tic length `, ` À d, d standing for the characteristic length of inhomogeneities within the
RVE (see Figure 3.1), and `À L , L standing for the characteristic length of a structure
built up by the material defined on the RVE. In general, the microstructure within the
RVE is so complicated that it cannot be described in complete detail. Therefore, quasi-
homogeneous sub-domains with known physical properties (such as volume fractions and
diffusion coefficients) are reasonably chosen. They are called material phases. The homog-
enized behavior of the overall material, i.e. the relation between concentration gradients
acting on the boundary of the RVE and resulting (average) fluxes, can then be estimated
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from the behavior of the homogeneous phases (representing the inhomogeneities within
the RVE) as mentioned afore, their volume fractions within the RVE, their characteris-
tic shapes, and their interactions. Based on solutions for matrix-inclusion problems, an
estimate for the homogenized diffusion coefficient of the material reads as [38, 3]:

Dest =

∑
r fr · Dr · [I+ P0

r · (Dr − D0)]
−1

∑
s fs · [I+ P0

s · (Ds − D0)]−1 (3.1)

where Dr and fr denote the diffusion tensor and the volume fraction of phase r, respec-
tively, and I is the second order unity tensor. The two sums are taken over all phases
of the heterogeneous material in the RVE. The second order P-tensor or Hill tensor, P0

r,
accounts for the characteristic shape of phase r in a matrix with diffusion tensor D0. It is
determined based on Eshelby’s solution for matrix inclusion problems as outlined in Sec-
tion 3.2. Choice of this diffusion tensor describes the interactions between the phases: For
D0 corresponding to one of the phase diffusion tensors (Mori-Tanaka scheme), a composite
material is represented (continuous matrix with inclusions); for D0 = Dest (self-consistent
scheme), a dispersed arrangement of the phases is considered. If a single phase exhibits
a heterogeneous microstructure itself, its behavior can be estimated by introduction of an
RVE within this phase, with dimensions `2 ≤ d, comprising again smaller phases with
characteristic length d2 À `2, and so on (see Figure 3.1).

Figure 3.1: Multistep homogenization

This leads to a multistep homogenization scheme. Such a procedure should, in the end, pro-
vide access to universal phase properties of the structure, at a sufficiently low observation
scale.
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3.2 Eshelby’s problem in linear diffusion

The following section presents the solution of Eshelby’s problem in linear diffusion which
delivers the components of the P-tensor. The section is primarily according to two books by
L. Dormieux [3, 4], but throughout the text the derivations in these books were amended
for a better traceability. Furthermore, the P-tensor was derived for ellipsoidal shape of the
inclusions, which is not part of the mentioned books.

3.2.1 Introduction

The mathematical approach used for solving the homogenization problem for transport
processes in the framework of this diploma thesis was first described by J. Eshelby in the
year 1957, though for the mechanical behavior. For diffusion processes, a porous material
(e.g. wood) is considered to be composed of a solid phase Ωs (the cell walls) and a pore space
Ωp (the lumens), through which a diffusive flux occurs driven by a gradient in the solute
concentration of substance γ. For this process a continuous description of the molecular
diffusion throughout the porous material (the solid plus the connected pore space) can
be given: the solute concentration ργ and the diffusive flux jγare extended into the solid
phase, while setting the diffusion coefficient to zero, Ds = 0. This is a simplified model
since the cell walls in wood are not a completely impermeable solid phase. The physics of
the molecular diffusion problem is then defined by the following set of equations:

� mass balance equation for the γ-component (a)

� Fick’s law of diffusion [50] (b)

� boundary condition for concentration (c)

div jγ = 0 (a)

jγ = −D(z) · grad ργ with D(z) =

{
Ds = 0 for z ∈ Ωs

Dγ for z ∈ Ωp (b)

ργ = H · z when z ∈ ∂Ω (c)

(3.2)

where H denotes the macroscopic concentration gradient, prescribed at the boundary ∂Ω of
the representative volume element. The solid phase is assumed being isotropic at first with
diffusion coefficient Dγ, but the model will be extended to the more general anisotropic
case later. The set of equations (3.2) defines a boundary value problem in a bounded
domain Ω. Instead of solving it, it is more practical to reverse the problem and to define
an auxiliary problem of a bounded inhomogeneity I embedded in an infinite homogeneous
medium ω, the former representing a solid phase inclusion, the latter the pore space. The
solution of the mechanical equivalent on the auxiliary problem was first derived by Eshelby
[3]. Given the assumed infinity of ω, the boundary condition (3.2c) in the original problem
needs to be replaced by a condition formulated at infinity. The set of equations that define
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this inhomogeneity problem is the following:

div jγ = 0 (a)

jγ = −D(z) · grad ργ with D(z) =

{
Ds = 0 for z ∈ I
Dγ for z ∈ ω

(b)

ργ → H · z when |z| → ∞ (c)

(3.3)

Further, by introducing δD = Ds −Dγ = −Dγ, (3.3b) can be written in the form:

jγ = −Dγ · grad ργ + jp(z) with jp(z) = −δD · χI(z) · grad ργ (3.4)

where jp(z) is a fictitious flux that is non-zero only in the solid phase. Hereby χI denotes
the characteristic function of the domain I.

For the purpose of analysis, it is assumed that jp(z) = jI · χI(z), where jI is a constant
vector. Hence, the problem defined by (3.3a), (3.3c), and (3.4) is:

div jγ = 0 (a)

jγ = −Dγ · grad ργ + jI · χI(z) (b)

ργ → H · z when |z| → ∞ (c)

(3.5)

The equivalent mechanical set of equations is known as Eshelby’s inclusion problem. An
inclusion is a bounded domain with imposed concentration gradient (eigenstrains in me-
chanics) or diffusive flux (eigenstresses in the mechanical problem). In the following Es-
helby’s inclusion problem (3.5) is solved step-by-step. It will be seen, that the solution of
this problem provides estimates for the homogenized diffusion tensor Dhom, that captures,
at the macroscopic scale, the overall effect of the microscopic physics of the molecular
diffusion problem.

3.2.2 The inclusion problem

First the special case H= 0 is considered. The combination of (3.5a) and (3.5b) gives [48]:

div jγ = 0 = div
(−Dγ · grad ργ + jI · χI(z)

)
=

= div
(−Dγ · grad ργ

)
+ div

(
jI · χI(z)

)
=

= −Dγ · div
(
grad ργ

)
+

〈
gradχI(z) , j

I
〉

+ χI(z) · div
(
jI

)
=

= −Dγ · 4ργ +
〈
gradχI(z) , j

I
〉

(3.6)

with div
(
jI

)
= 0 because the vector field jI is solenoidal. The angle brackets 〈〉 in (3.6)

denote the inner product of two vectors. According to the definition of the derivation of a
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distribution [47], it holds for any function ψ of D(R3) that:

〈gradχI(z) , ψ〉 = −〈χI(z) , gradψ〉 = −
∞∫

−∞

χI(z) gradψ dV =

= −
∫

I

gradψ dV = −
∫

∂I

ψ · n dS

(3.7)

In (3.7), n is the outward unit normal to I. Further the Dirac distribution δ∂I is introduced
that is associated with the boundary of I and defined by:

〈δ∂I , ψ〉 =

∫

∂I

ψ dS (3.8)

From (3.7) and (3.8) it is seen that:

gradχI(z) = −n · δ∂I (3.9)

Thus, using (3.9) in (3.6) yields:

−Dγ · 4ργ − jI · n · δ∂I = 0 (3.10)

The solution of such a partial differential equation can be gained by using the Green’s
function concept [54]. Technically, a Green’s function G(z, z

′
) of a linear operator L acting

on distributions over a manifold I is any solution of:

LG(z, z
′
) = δ(z − z

′
) (3.11)

where δ(z − z
′
) is the Dirac delta function at point z

′
, defined by:

∫

I

δ(z − z
′
) f(z

′
) dz

′
=

∫

I

δ(z
′ − z) f(z

′
) dz

′
= f(z) (3.12)

This technique can be used to solve differential equations of the form:

Lu(z) = f(z) (3.13)

In short, if such a function G(z, z
′
) can be found for the operator L, then multiplication of

(3.11) by f(z
′
) and subsequent integration over z

′
yields:

∫

I

LG(z, z
′
) f(z

′
) dz

′
=

∫

I

δ(z − z
′
) f(z

′
) dz

′
= f(z) (3.14)

The result equals the right hand side of (3.13) which in turn equals Lu(z), so that:

Lu(z) =

∫

I

LG(z, z
′
) f(z

′
) dz

′
(3.15)
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Because the operator L is linear and acts only on the variable z (and not on the variable of
integration, z

′
), the operator L can be taken outside of the integration on the right hand

side, resulting in:

Lu(z) = L

∫

I

G(z, z
′
) f(z

′
) dz

′
(3.16)

This implies:

u(z) =

∫

I

G(z, z
′
) f(z

′
) dz

′
(3.17)

The solution of (3.13), u(z), can be determined by the integral given in (3.17). Although the
function f(z) is known, this integration cannot be performed before the Green’s function
G(z, z

′
) is known too. The problem therefore is to find the Green’s function G(z, z

′
) that

satisfies (3.11). Rewriting (3.10) as:

−Dγ · 4ργ = jI · n · δ∂I (3.18)

and comparing it with (3.13) shows:

L = −Dγ · 4 (a)

u(z) = ργ(z) (b)

f(z) = jI · n · δ∂I (c)

(3.19)

Substituting (3.19a) in (3.11) gives:

−Dγ · 4z G(z, z
′
) = δ(z − z

′
) (3.20)

With (3.19a) and (3.19c), Equation (3.17) can be written as:

ργ(z) =

∫

I

G(z, z
′
) · jI · n · δ∂I dVz′ =

∫

∂I

G(z, z
′
) · jI · n dVz′ (3.21)

Using the divergence theorem [49], (3.21) changes to:

ργ(z) =

∫

∂I

G(z, z
′
) · jI

j · nj dVz′ =

∫

I

∂

∂z
′
j

(
G(z, z

′
)
)
jI
j dVz′ (3.22)

Next, with the relation ∂

∂z
′
j

(G(z, z
′
)
)

= − ∂
∂zj

(G(z, z
′
)
)
, one obtains:

ργ(z) = −
∫

I

∂

∂zj

(
G(z, z

′
)
)
jI
j dVz′ = − ∂

∂zj




∫

I

G(z, z
′
) dVz′


 jI

j (3.23)

An additional derivation gives the concentration gradient:

∂

∂zi

(ργ(z)) = − ∂2

∂zi · ∂zj




∫

I

G(z, z
′
) dVz′


 jI

j (3.24)
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which can be put in the form:

grad ργ(z) = P(z) · jI (3.25)

with:

Pij(z) = − ∂2

∂zi · ∂zj




∫

I

G(z, z
′
) dVz′


 (3.26)

The solution (3.25) holds for H= 0. However, since the problem (3.5) is linear with respect
to jI and H, the concentration gradient grad ργ(z) in the general case (H 6= 0) takes the
form:

grad ργ(z) = P(z) · jI +H (3.27)

In summary, provided that jI is constant, the solution of Eshelby’s inclusion problem (3.5)
reduces to the determination of the expression of the P-tensor defined by (3.26), which is
shown next.

3.2.3 The second order P-tensor

The presented derivation of the P-tensor is based on isotropic diffusion behavior of the
material at the microscale. Although the isotropic version of Fick’s law applies here, it will
turn out to be useful for multiscale homogenization to have an expression for the P-tensor
also for the case where the diffusion tensor at the microscale is anisotropic. Then the
microscopic diffusive flux is related to the microscopic concentration gradient. Equation
(3.3b) therefore changes to:

jγ = −D · grad ργ with D = Dγ
ij ei ⊗ ej (3.28)

With (3.28), Equation (3.20) for the Green’s function changes to:

−Dγ
ij · G,ij(z, z

′
) = δ(z − z

′
) (3.29)

where the subscripts , i refers to the derivation with respect to zi. A solution for the Green’s
function is obtained in the following. For a given value of z with r = |z|, the following
equation holds:

2 · π
r

=

∫

|ξ|=1

δ(ξ · z) dSξ (3.30)

Therein, integration is performed over the surface of the unit sphere, where
∣∣ξ

∣∣ = 1. In order
to prove Equation (3.30), it is first re-formulated in spherical coordinates (see Figure 3.2).
Then let z be parallel to the θ = 0 axis. By substitution of ζ = ξ · z = r · cos θ on the right
hand side of (3.30), the integral over the surface of the unit sphere can be evaluated:

∫

|ξ|=1

δ(ξ · z) dSξ =

2π∫

0

π∫

0

δ(r · cos θ) dθ dϕ =

2π∫

0

dϕ

+r∫

−r

δ(ζ)
dζ

r
=

2 · π
r

(3.31)
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Figure 3.2: Spherical coordinate system

By use of the chain rule, it can be observed that:

∂

∂zi

(
δ(ξ · z)) = ξi · δ′(ξ · z) (3.32)

where δ
′
(ξ · z) denotes the first derivation of the Dirac delta function with respect to its

argument (ξ · z). Further, recalling that
∣∣ξ

∣∣ = 1, the Laplacian is taken of both sides in
(3.31):

δ(z) = − 1

8 · π2

∫

|ξ|=1

δ
′′
(ξ · z) dSξ (3.33)

Inserting this result in (3.29) yields:

−Dγ
kl · G,kl(z, z

′
) = − 1

8 · π2

∫

|ξ|=1

δ
′′
(ξ · z − ξ · z′) dSξ (3.34)

For a given value of ξ on the unit sphere, relation (3.34) motivates a search for the solution

Gξ(z, z
′
) of:

Dγ
kl · Gξ

,kl(z, z
′
) = δ

′′
(ξ · z − ξ · z′) = δ

′′
(ξ · (z − z

′
)) (3.35)

An immediate solution is:

Gξ(z, z
′
) = δ(ξ · (z − z

′
)) · (Dγ

kl · ξk · ξl)−1 (3.36)

By superposition of (3.34) and (3.36), one obtains the Green’s function in the form:

G(z, z
′
) =

1

8 · π2

∫

|ξ|=1

δ(ξ · (z − z
′
)) · (Dγ

kl · ξk · ξl)−1 dSξ (3.37)
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Now the components of the P-tensor can be derived. Substituting:

∂2

∂zi · ∂zj

G(z, z
′
) =

1

8 · π2

∫

|ξ|=1

ξi · ξj · δ′′(ξ · (z − z
′
)) (Dγ

kl · ξk · ξl)−1 dSξ (3.38)

in (3.26) yields:

Pij(z) = − 1

8 · π2

∫

I

∫

|ξ|=1

ξi · ξj · δ′′(ξ · (z − z
′
)) (Dγ

kl · ξk · ξl)−1 dSξ dVz
′ = (3.39)

= − 1

8 · π2

∫

|ξ|=1

ξi · ξj · (Dγ
kl · ξk · ξl)−1




∫

I

δ
′′
(ξ · (z − z

′
)) dVz′


 dSξ (3.40)

What is still missing is to determine the value of the integral over I in (3.40). For this
purpose, the function I(ζ) and its second derivative I ′′(ζ) with respect to ζ, which de-
pend on the shape of the inclusion I (for example spherical or ellipsoidal inclusions), are
introduced:

I ′′(ζ) =

∫

I

δ
′′
(ζ − ξ · z′) dVz′ with I(ζ) =

∫

I

δ(ζ − ξ · z′) dVz′ (3.41)

Equation (3.40) thus can be recast in the form:

Pij(z) = − 1

8 · π2

∫

|ξ|=1

ξi · ξj · (Dγ
kl · ξk · ξl)−1 T ′′

(ξ · z) dSξ (3.42)

Expression (3.42) provides a relation for the components of the P-tensor, which is par-
ticularly efficient for numerical implementation. For the application to wood, the case of
an ellipsoidal inclusion shape is considered. In order to simplify the integration over the
volume of the inclusion, this ellipsoid is mapped onto a unit sphere:

z → ẑ (3.43)

by:

ẑi =
zi

ai

and zi = ẑi · ai (3.44)

where ai, i = 1, 2, 3, denote the radii of the ellipsoid. The differential volume dVz thus
changes to:

dVz = dz1 · dz2 · dz3 =

= dẑ1 · a1 · dẑ2 · a2 · dẑ3 · a3 =

= dVẑ · a1 · a2 · a3

(3.45)
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Further, also ξ has to be transformed by an inverse map to:

ξ → ξ̂ (3.46)

with:

ξ̂i = ξi · zi

ẑi

= ξi · zi · ai

zi

= ξi · ai (3.47)

ξi =
ξ̂i
ai

(3.48)

Applying (3.44) and (3.48) to (3.41) yields:

I(ξ · z) =

∫

I

δ(ξ · z − ξ · z′) dVz =

=

∫

I

δ(ξ · (z − z
′
) dVz =

=

∫

S

δ(
ξ̂i
ai

· ((ẑi · ai − ẑ
′
i · ai)) · a1 · a2 · a3 dVẑ =

= a1 · a2 · a3 ·
∫

S

δ(ξ̂i · ẑi − ξ̂i · ẑ′i) dVẑ =

= a1 · a2 · a3 · I(ζ̂)

(3.49)

Now I(ζ̂) represents a spherical inclusion S(O, a) with radius a and the origin O. (r̂
′
, θ̂

′
, ϕ̂

′
)

denote the spherical coordinates of ẑ
′
in S(O, a). I(ζ̂) does not depend on the orientation

of the unit vector ξ̂. It is therefore possible to assume that ξ̂ is parallel to the θ̂
′
= 0 axis,

so that ξ̂ · ẑ′ = r̂
′ · cos θ̂. By using the substitution ζ̂

′
= ζ̂− r̂′ · cos θ̂

′
the term I(ζ̂) converts

to:

I(ζ̂) =

2π∫

0

a∫

0

π∫

0

δ(ξ̂i · ẑi − ξ̂i · ẑ′i) dθ̂
′
dr̂

′
dϕ̂

′
=

=

2π∫

0

a∫

0

π∫

0

δ(ζ̂ − r̂
′ · cos θ̂

′
) dθ̂

′
dr̂

′
dϕ̂

′
=

=

2π∫

0

a∫

0

π∫

0

δ(ζ̂
′
) dθ̂

′
dr̂

′
dϕ̂

′
=

=

2π∫

0

a∫

0

ζ̂+r̂
′∫

ζ̂−r̂′

r̂
′
δ(ζ̂

′
) dζ̂

′
dr̂

′
dϕ̂

′
=

=

2π∫

0

dϕ̂
′

a∫

0

r̂
′
dr̂

′
ζ̂+r̂

′∫

ζ̂−r̂
′

δ(ζ̂
′
) dζ̂

′

(3.50)
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For the case that
∣∣∣ζ̂

∣∣∣ < a, this yields:

I(ζ̂) =

2π∫

0

dϕ̂
′

a∫

|ζ̂|
r̂
′
dr̂

′
= π ·

(
a2 − ζ̂2

)
⇒ I ′′(ζ̂) = −2 · π (3.51)

which together with (3.49) gives:

∀ẑ ∈ I = S(O, a) I ′′(ξ · z) = −a1 · a2 · a3 · 2 · π (3.52)

Finally, returning to (3.42), the P-tensor for ellipsoidal inclusions can be calculated as:

Pell,ij(z) =
1

4 · π · a1 · a2 · a3

∫

|ξ|=1

ξi · ξj · (Dγ
kl · ξk · ξl)−1 dSξ (3.53)

A further simplification is possible: First, a transformation to the unit sphere is performed,
whose coordinates are then expressed in spherical coordinates (see Figure 3.2). With

sin θ̂ =

√
1−

(
cos θ̂

)2

=

√
1−

(
ξ̂3

)2

(3.54)

and r̂ = 1, the values for ξ̂i can be calculated as follows:

ξ̂1 = r̂ · sin θ̂ · cos ϕ̂ = sin θ̂ · cos ϕ̂ =

√
1−

(
ξ̂3

)2

· cos ϕ̂

ξ̂2 = r̂ · sin θ̂ · sin ϕ̂ = sin θ̂ · sin ϕ̂ =

√
1−

(
ξ̂3

)2

· sin ϕ̂

ξ̂3 = r̂ · cos θ̂ = cos θ̂ = ξ̂3

(3.55)

The values of ξi are therefore:

ξ1 =
ξ̂1
a1

=

√
1− ξ̂2

3 · cos ϕ̂

a1

ξ2 =
ξ̂2
a2

=

√
1− ξ̂2

3 · sin ϕ̂
a2

ξ3 =
ξ̂3
a3

(3.56)

By use of the matrix notation for the cross product with the unit vectors ξ̂
1
, ξ̂

2
and ξ̂

3
,

the differential dSξ can be expressed as:

dSξ = dξ
I
× dξ

II
=

dξ̂
I
× dξ̂

II

a1 · a2 · a3

=
dSξ̂

a1 · a2 · a3

(3.57)
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With (3.57), Equation (3.53) can therefore be written as:

Pell,ij(z) =
1

4 · π
∫

|ξ|=1

ξi · ξj · (Dγ
kl · ξk · ξl)−1 dSξ̂ (3.58)

By use of the values of ξi according to Equation (3.56) as functions of ϕ̂ and ξ̂3, the
components of the P-tensor for ellipsoidal inclusion shape can be calculated as following:

Pell,ij(z) =
1

4 · π

+1∫

−1

2π∫

0

ξi · ξj · (Dγ
kl · ξk · ξl)−1 dϕ̂ dξ̂3 (3.59)

3.3 Application of the homogenization scheme to wood

In this section the homogenization model developed in the previous sections will be applied
to wood. According to Chapter 2, five levels of organization may be distinguished. For
each of the hierarchical levels of wood homogenization techniques can be used to gain input
parameters for the next higher level. So the overall macroscopic behavior can be derived
with a multistep homogenization model from the behavior of elementary constituents of
wood at the molecular level. This strategy pursued in the micromechanical model for wood
[15] can also be applied to the modeling of transport processes, for example heat conduction
or water vapor diffusion. This diploma thesis focuses on the homogenization step at the cell
level, starting from given input values for the cell walls and the lumens. For comparability
with measured values, another simplified homogenization step is performed in order to
take the variation of the density and the cell shape between latewood and earlywood into
account. Further refinement of the model is possible by introducing homogenization steps
also at the other levels described before.

The main task of this diploma thesis is therefore to determine overall transport properties
for a wood tissue from corresponding values for lumens and cell walls. This homogenization
procedure is done by means of the Mori-Tanaka scheme (see Equation (3.1)), with the cell
wall material as matrix material and the lumens as ellipsoidal inclusions. What remains
to be specified is an equation for the P-tensor for ellipsoidal inclusions — it is derived in
Section 3.2. To check the results of this homogenization method, the results are compared
with corresponding values obtained by means of the unit cell method as described in
Chapter 4.

3.3.1 Calculation of the geometric parameters

For the calculation of the P-tensor for the cell assembly of wood and, thereon, the homog-
enized diffusion tensor, geometric parameters of the cell structure are needed.

The volume fractions

Since there are two phases (cell walls and lumens) used in the homogenization step, their
volume fractions (fcellwall and flumen) have to be specified. The volume fraction of the
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cell walls can be calculated as the ratio of the specific oven-dry wood density %ovendry to
the density of the oven-dry cell walls %0. The latter density can be taken as 1530 kg/m3

according to Siau [31]. The volume fraction of the cell walls therefore is:

fcellwall =
%ovendry

%0

(3.60)

The volume fraction of the lumens is the difference to 100 %:

flumen = 1− fcellwall (3.61)

The cell dimensions

Turner [36] developed a model for the average tracheid shape depending on the local
density. Because of the alignment of the cells in radial direction, the tangential dimension
is chosen as a constant value with:

atang = 50 · 10−6 m (3.62)

The length of the tracheids is also required for the evaluation of the longitudinal diffusivity.
Tracheids in softwood have lengths between 3 and 5 mm [37]. Because of overlapping, the
mean distance between two consecutive tracheids is less. The value used for the tracheid
dimension in longitudinal direction is:

along = 1.8 · 10−3 m (3.63)

The radial dimension of a tracheid, arad, varies according to the position within the annual
ring and, thus, with density. Turner [36] assumes this variation to be linear. Assuming
that arad,200 = 50 · 10−6 m at %ovendry = 200 kg/m3 and arad,1000 = 20 · 10−6 m at %ovendry =
1000 kg/m3, the radial dimension can be calculated as:

c1 =
1

1000 kg/m3 − 200 kg/m3
(arad,1000 [m]− arad,200 [m]) (3.64)

c2 = arad,200 [m]− c1 · 200 kg/m3 (3.65)

arad = c2 + c1 · %ovendry [kg/m3] (3.66)

Based on the radial and tangential dimensions and the volume fraction of the cell wall, the
cell wall thickness can be calculated by solving the following equation for acellwall:

fcellwall = 1− (arad − 2 · acellwall) (atang − 2 · acellwall)

arad · atang

(3.67)

In the following, the lumens are considered as ellipsoidal inclusions. For their calculation
the three principal ellipsoidal radii are needed:

2 · a1 = arad − 2 · acellwall (3.68)

2 · a2 = atang − 2 · acellwall (3.69)

2 · a3 = along (3.70)

With these values the further calculations can be accomplished.
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3.3.2 Homogenization step 1: Diffusion coefficients of the cell
assembly

Now the developed equations are assembled for use in the homogenization step described in
Section 3.2. At first the volume fractions and the dimensions of the lumens are calculated
as shown in the previous Section 3.3.1. Next the components of the P-tensor are calculated
by Equations (3.56), and (3.59):

Pell,ij(z) =
1

4 · π

+1∫

−1

2π∫

0

ξi · ξj · (Dγ
kl · ξk · ξl)−1 dϕ̂ dξ̂3 (3.71)

with

ξ1 =
ξ̂1
a1

=

√
1− ξ̂2

3 · cos ϕ̂

a1

ξ2 =
ξ̂2
a2

=

√
1− ξ̂2

3 · sin ϕ̂
a2

ξ3 =
ξ̂3
a3

=
ξ̂3
a3

(3.72)

Specifying Equation (3.1) for two phases, namely the cell walls and lumens, and choosing
the cell walls as matrix material, the Mori-Tanaka scheme takes the form:

Dhom1 =
fcellwall · Dcellwall + flumen · Dlumen · [I+ Pell · (Dlumen − Dcellwall)]

−1

fcellwall · I+ flumen · [I+ Pell · (Dlumen − Dcellwall)]
−1 (3.73)

Dhom1 =



Dhom1,rad 0 0

0 Dhom1,tang 0
0 0 Dhom1,long


 (3.74)

with I denoting the second order unity tensor, and fcellwall and flumen the volume fractions
of cell walls and lumens. Dhom1 is the homogenized diffusion tensor of the cell matrix for
a constant density, with components for the radial, tangential, and longitudinal direction.

3.3.3 Homogenization Step 2: Diffusion coefficients of a whole
sample

Dhom1 is the homogenized diffusion tensor of the cell matrix for a constant density. Because
of the density variation within the annual rings, a second homogenization step is needed
to allow comparison with measured values. The actually continuous density distribution
over an annual ring was approximated by two sections with constant density: ρearlywood

as average density of earlywood and ρlatewood as average density of latewood. For a given
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value of density ρovendry, the volume fractions of earlywood and latewood can be calculated
as follows:

fearlywood =
%ovendry − %earlywood

%earlywood − %latewood

(3.75)

flatewood = 1− fearlywood (3.76)

In longitudinal and tangential direction earlywood and latewood are arranged in parallel,
while they are arranged in series in the radial direction. Therefore, with a grading in only
two densities, the homogenized diffusion tensor for a whole wood sample can be written
as:

Dhom2,rad =

(
fearlywood

Dhom1,rad,earlywood

+
flatewood

Dhom1,rad,latewood

)−1

(3.77)

Dhom2,tang = Dhom1,tang,earlywood · fearlywood +Dhom1,tang,latewood · flatewood (3.78)

Dhom2,long = Dhom1,long,earlywood · fearlywood +Dhom1,long,latewood · flatewood (3.79)

Dhom2 =



Dhom2,rad 0 0

0 Dhom2,tang 0
0 0 Dhom2,long


 (3.80)



Chapter4
The unit cell method

To evaluate the homogenization scheme developed in the previous chapter, a test series with
different volume fractions and diffusivity ratios of cell walls and cell lumens, respectively,
was made. The resulting effective conductivities were compared to corresponding values
computed with the unit cell method, an alternative homogenization method.

4.1 Introduction

Unit cell computational homogenization methods typically involve constructing a contin-
uum model of a periodic material microstructure with uniform repeating basic elements,
so-called unit cells (see Figure 4.1). After that a predefined macroscopic flux or imposed
concentration gradient is applied to this element. By solving the resulting boundary value
problem, the unit cell method provides a link between the properties of the microstructure
and those of the macrostructure. The relation between the overall flux and the concentra-
tion gradient on the boundary of the unit cell yields an effective diffusion coefficient of the
material.

For simple microstructures the unit cell problem can sometimes be solved analytically,
but often only a numerical solution is possible. The method used for this diploma thesis
was the finite element method (FEM). The computations were done by the FEM-program
Abaqus Version 6.7-3.

Similar to mechanical investigations, the unit cell method provides different results for
the effective material properties depending on the type of boundary conditions. Applying
a constant concentration gradient in terms of a constant concentration on one side of
the unit cell, and a different but also constant concentration on the other side results
in an overestimation of the homogenized diffusion coefficient. On the other hand, when
a constant flux is applied, the homogenized diffusion coefficient will be somewhat too
low. However, these two methods can be used to calculate strict upper and lower bounds
for the real diffusion coefficient. In most cases the result gained by applying constant
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Figure 4.1: Periodic material microstructure with unit cell

concentration is closer to the real result. The best results can be gained by use of periodic
boundary conditions for both the flux and the concentration gradient. Because of their
complexity (a further computer program is needed to calculate the required couplings of
degrees of freedom of the FEM model), in this diploma thesis only the first two types of
boundary conditions were used to calculate bounds. They are accurate enough to compare
the behavior of the two homogenization schemes based on microscale continuum modeling
and the unit cell method, respectively.

4.2 Basics of the comparison

To check the different behaviors of the Mori-Tanaka scheme and the unit cell method at
varied conditions, several numerical test series were made. To investigate the influence
of volume fractions and cell dimensions, one series was made for a sample of earlywood
(%ovendry = 200kg/m3) and another series for a sample of latewood (%ovendry=1000kg/m3).
The effect of different ratios of the diffusion coefficients of cell walls and lumens, respec-
tively, was checked by three varied diffusivity ratios that are typical of transport processes
in wood (Table 4.1):

Dcellwall Dlumen appearance in transport processes

1 10 water diffusion
1 100 water diffusion
10 1 heat conduction

Table 4.1: Diffusion coefficient ratios used in the comparison of the homogenization models

For these six different conditions (two geometries and three ratios) the diffusion coefficients
for the three principal material directions of wood were calculated and compared.
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4.3 Comparison 1: The unit cell for earlywood

4.3.1 Dimensions of the unit cell

The first comparison was made for a sample of earlywood with a density of %ovendry =
200 kg/m3. According to Subsection 3.3.1 the volume fractions and cell dimensions were
set to:

fcellwall = 0.130719 (a)
flumen = 0.869281 (b)
arad = 50 · 10−6 m (c)
atang = 50 · 10−6 m (d)
along = 3000 · 10−6 m (e)

(4.1)

The calculation was made by one unit cell for the transversal direction and one for the
longitudinal direction, in order to optimize the computational effort. Because of the negli-
gible influence of the cell tails in the transversal directions (about ±0, 5 %), the transversal
diffusivity can be described by a 2-dimensional model. According to an existing unit cell
model for the cell matrix of wood [15], the angle between radial and tangential cell walls
was chosen as 70°. Because of the tapered ends of the tracheids in longitudinal direction,
an angle of 20° is chosen for the separating cell wall. The resulting geometries of the unit
cells for softwood are shown in Figures 4.2 and 4.3.

Figure 4.2: Geometry of the transversal unit cell for earlywood

4.3.2 Results and comparison

The results of the calculations are assembled in Table 4.2. As can be seen, the two homoge-
nization models agree quite well. The higher deviations at ratio 1 : 100 of the diffusivities of
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Figure 4.3: Geometry of the longitudinal unit cell for earlywood

cell wall and lumen, respectively, can be explained by the different geometries (ellipsoidal
cross section of the inclusions in the Mori-Tanaka scheme compared with hexagonal cross
section of the inclusions in the unit cell method).

Homogenization method Dcellwall Dlumen Dhom,rad Dhom,tang Dhom,long

m2/s m2/s m2/s m2/s m2/s

Mori-Tanaka scheme 1 10 5.9300 5.9300 8.8029

Unit cell, constant flux 1 10 6.0949 5.7183 8.7491
+2.78% −3.57% −0.61%

Unit cell, constant concentration 1 10 6.1718 5.7574 8.7634
+4.08% −2.91% −0.45%

Mori-Tanaka scheme 1 100 12.5421 12.5421 84.6269

Unit cell, constant flux 1 100 13.7227 11.5027 79.7829
+9.41% −8.29% −5.72%

Unit cell, constant concentration 1 100 14.0567 11.6628 80.9773
+12.08% −7.01% −4.31%

Mori-Tanaka scheme 10 1 1.6887 1.6887 2.1744

Unit cell, constant flux 10 1 1.6083 1.3740 2.1462
−4.76% −18.64% −1.30%

Unit cell, constant concentration 10 1 1.7386 1.6222 2.1560
+4.99% −3.94% −0.85%

Table 4.2: Comparison of unit cell method to Mori-Tanaka scheme, %ovendry = 200 kg/m3
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4.4 Comparison 2: The unit cell for latewood

4.4.1 Dimensions of the unit cell

The second comparison was made for a sample of latewood with a density of ρovendry =
1000 kg/m3. Again according to Subsection 3.3.1 the volume fractions and cell dimensions
were calculated as:

fcellwall = 0.653595 (a)
flumen = 0.346405 (b)
arad = 20 · 10−6 m (c)
atang = 50 · 10−6 m (d)
along = 3000 · 10−6 m (e)

(4.2)

Similar to the calculation for softwood two 2-dimensional unit cells for the transversal and
the longitudinal direction were used. Using the same angles between radial and tangential
cell walls (70°) and for the tapered ends (20°) results in the geometries of the unit cells for
latewood shown in Figures 4.4 and 4.5.

Figure 4.4: Geometry of the transversal unit cell for latewood

Figure 4.5: Geometry of the longitudinal unit cell for latewood
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4.4.2 Results and comparison

The results of the calculations are assembled in Table 4.3. Like for softwood, also the
results for latewood obtained with the two homogenization methods agree well, especially
for the case of a constant concentration gradient used in the calculation of the unit cell.
The comparisons for both earlywood and latewood depict the similarity of the two ho-
mogenization models. Differences can be explained by the different inclusion geometries
(ellipsoidal and hexagonal), which are both abstractions of the real structure of wood.

The advantage of the Mori-Tanaka scheme over the unit cell method is the simple adaptivity
to different geometries because of the analytical formulation of this scheme. When using
the fully parametrized Mori-Tanaka scheme, a change in geometry can be easily taken into
account by changing the geometrical parameters, while the use of the unit cell method
requires the generation of a completely new unit cell.

Homogenization method Dcellwall Dlumen Dhom,rad Dhom,tang Dhom,long

m2/s m2/s m2/s m2/s m2/s

Mori-Tanaka scheme 1 10 1.5389 2.4886 4.1098

Unit cell, constant flux 1 10 1.5378 2.3364 4.0059
−0.07% −6.12% −2.53%

Unit cell, constant concentration 1 10 1.5583 2.4616 4.0228
+1.26% −1.08% −2.12%

Mori-Tanaka scheme 1 100 1.6393 3.6302 34.3671

Unit cell, constant flux 1 100 1.6465 3.2245 26.0952
+0.72% −11.18% −23.46%

Unit cell, constant concentration 1 100 1.6732 3.5980 27.1823
+2.07% −0.89% −20.91%

Mori-Tanaka scheme 10 1 4.0213 6.4992 6.8816

Unit cell, constant flux 10 1 3.1893 5.8074 6.8592
−20.69% −10.64% −3.26%

Unit cell, constant concentration 10 1 4.1059 6.4539 6.8698
+2.10% −0.70% −0.17%

Table 4.3: Comparison of unit cell method to Mori-Tanaka scheme, ρovendry = 1000 kg/m3

4.5 Further results of the unit cell method

Since the unit cell method resolves the microscopic flux and concentration fields, and the
calculation is done by a FEM-program with many graphical illustration facilities, further
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insight into the diffusion processes on the cell level can be gained.

Figures 4.6 and 4.7 show the concentration distribution and the resulting fluxes in radial
direction for the earlywood unit cell and a diffusivity ratio of 10 : 1. This ratio appears in
heat transfer modeling.

Figures 4.8 and 4.9 show the concentration distribution and the resulting fluxes in tan-
gential direction for the latewood unit cell and a diffusivity ratio of 1 : 10. Figure 4.8 also
depicts the mesh of the used FEM-model.

Figure 4.6: Temperature distribution in earlywood resulting from a radial temperature
gradient

Figure 4.7: Heat flux distribution in earlywood resulting from a radial temperature gradient
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Figure 4.8: Concentration distribution in latewood resulting from a tangential concentra-
tion gradient

Figure 4.9: Distribution of fluxes in latewood resulting from a tangential concentration
gradient



Chapter5
Evaluation of the model for moisture
diffusion

In this chapter the developed model is applied to moisture diffusion in wood and evaluated
for the first time. First definitions for a few basic terms are given, that are important for the
topic ”water diffusion”. Thereafter some constants and properties of water and steam are
defined. After deriving values for the diffusivities of both cell walls and water, homogenized
diffusivities obtained with the homogenization model are compared with corresponding
measured values.

5.1 Basics

5.1.1 Moisture content

Moisture content (mc) is the mass of moisture in wood, expressed as a percentage of oven-
dry mass. The latter is defined as the constant mass obtained after drying in an air oven
maintained at 102± 3 ◦C [31]. The moisture content is computed as:

mc =
mgreen −movendry

movendry

(5.1)

where mgreen is the green or moist mass, and movendry the oven-dry mass. The moisture in
wood has two forms: bound or hygroscopic water, and free or capillary water. Bound water
is found in the cell wall and is believed to be hydrogen bonded to the hydroxyl groups of
primarily cellulose and hemicellulose, and to a lower extent also to the hydroxyl groups of
lignin. The bound water moisture content is limited by the number of available sorption
sites and by the number of molecules of water which can be held on a sorption site.

The moisture content of green wood varies considerably between different wood species,
between heartwood and sapwood in the same tree, and even between logs cut from different
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heights in the tree. For example, the reported average moisture content of a conifer sapwood
was 148.9 %, ranging from 98 % up to 249 %. This was almost three times higher than the
heartwood mean value of 55.4 %, with a variation from 30 % to 121 % [33].

5.1.2 The equilibrium moisture content

Wood in a living tree generally has a moisture content well above 30 %. At this state the
cell walls are fully saturated, and the cell lumens generally contain some water as shown
in Figure 5.1. When the tree is felled, and the green wood is exposed to atmospheric
conditions, moisture is lost until a moisture content is reached that is in equilibrium with
the ambient atmosphere [33]. The moisture content mc in equilibrium with a given relative
humidity ϕ of the environmental air is called the equilibrium moisture content (EMC).

Although relative humidity is the most important variable affecting the EMC, other in-
fluencing factors are: mechanical stress, the drying history of the wood tissue, the species
and the specific gravity of the wood, the extractive content, and the temperature. These
other factors are discussed in detail for example by Skaar [33]. In general, an increase in
compressive stress decreases the EMC.

The EMC of never-dried wood is higher than that of wood that has undergone drying. In
addition, the EMC is higher during desorption than during adsorption. These effects can
be explained by an incomplete rehydration of sorption sites during a subsequent adsorption
cycle and by the effect of compressive stresses during swelling. This hysteresis phenomenon
has been discussed by several authors like Skaar [33], Frandsen [10], and Krabbenhoft [19].

5.1.3 The fiber saturation point

Conceptually, the moisture content at which only the cell walls are completely saturated
with bound water and no free water exists in the cell lumens, is called the fiber saturation
point (FSP, see Figure 5.1).

Figure 5.1: Schematic diagram showing the different moisture distributions in the cell wall
and the lumen in a wood cell cross-section
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At the fiber saturation point abrupt changes in the behavior of the physical properties
of wood such as shrinkage, mechanical strength, and electrical conductivity are observed.
While being a useful concept, the term fiber saturation point is not very precise. Con-
ceptually, it distinguishes between the two ways water is held in wood. But, in reality,
it is possible that a cell wall will begin to dry before all the water has left the lumen of
the same cell. The fiber saturation point of wood is on average at a moisture content of
about 30 % [34], but there are considerable variations across species, with values extend-
ing from 21 % for Thuja plicata up to 32 % for Tilia americana [31]. The FSP is also
temperature-dependent and increases with decreasing temperature.

5.1.4 The sorption isotherm

The relationship between EMC and relative humidity under the FSP at a given temper-
ature (between the freezing and boiling points) is called the sorption isotherm. In this
diploma thesis the data for EMC, FSP (equivalent to the moisture content at 100 % rela-
tive humidity), and the sorption isotherms were taken from the Wood Handbook [34] of the
USDA Forest Products Society. The sorption isotherms describe an average for sorption
and desorption data suitable for several wood species. Although significant deviations from
these values may occur in specific wood tissues as noted above, this data is very useful for
many practical applications where the sorption isotherm for a particular wood tissue is not
available. According to the Wood Handbook [34], the EMC can be approximated by the
following relation:

mc =
18

W

[
K · ϕ

1−K ·H +
K1 ·K · ϕ+ 2 ·K1 ·K2 ·K2 · ϕ2

1 +K1 ·K · ϕ+K1 ·K2 ·K2 · ϕ2

]
(5.2)

with

W = 349 + 1.29 · T + 0.0135 · T 2

K = 0.805 + 0.000736 · T + 0.00000273 · T 2

K1 = 6.27− 0.00938 · T + 0.000303 · T 2

K2 = 1.91 + 0.0407 · T + 0.000293 · T 2

(5.3)

where ϕ is the relative humidity, mc the equilibrium moisture content, and T the temper-
ature in [K].

Figure 5.2 shows sorption isotherms at five different temperatures according to Equa-
tion (5.2).
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Figure 5.2: Mean sorption isotherms of wood at five temperatures calculated from (5.2)

5.2 Constants

5.2.1 The universal gas constant

The universal gas constant (usually denoted by R) is a physical constant which is needed
in several equations in the following section. Its value is [51]:

R = 8.314472
J

mol K
(5.4)

5.2.2 The Avogadro constant

The Avogadro constant is the number of entities (atoms, molecules, elementary particles)
contained in one mole of a substance. It is also a physical constant with a value of [43]:

NA = 6.02214179 · 1023 1

mol
(5.5)

5.2.3 The density of the cell wall

According to Siau [31], the density of the cell wall is taken as:

%0 = 1530
kg

m3
(5.6)
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5.2.4 The molar mass of water

Molar mass is the mass of one mole of a substance. The molar mass of water is [59]:

M = 18.01524
g

mol
(5.7)

5.3 Properties of steam and water

In several equations in the following chapter values of water and steam properties are
needed:

� the saturation vapor pressure p0,

� the density of water %w,

� the heat of evaporation Qv,

� the viscosity of water ηw,

� and the specific heat of steam at constant pressure cp,v.

Because of their importance in chemistry and physics there exist comprehensive tables for
these properties across a wide range of temperatures and pressures [11, 30]. The values for
the relevant temperature range for transport processes in wood (from the freezing up to
the boiling point) are specified in Appendix A. In this section equations for the different
values are evolved for the later use in a computer program.

5.3.1 The saturation vapor pressure

The saturation vapor pressure is the pressure at which air is saturated with water vapor.
Thus, at saturation vapor pressure, air has a relative humidity of 100 % and condensation
occurs at any increase of water vapor content or reduction in temperature. Therefore
the saturation vapor pressure is temperature-dependent, an increase in temperature comes
along with an increase in the adsorption capacity of air. There exist many different formulas
for the saturation vapor pressure like the Goff-Gratch equation or the Arden Buck equation
[58]. In this diploma thesis the equation given by the ”International Association for the
Properties of Steam” was used [30]:

ln

(
p0

pc

)
=

(
Tc

T

) (
b1τ + b2τ

1.5 + b3τ
3 + b4τ

3.5 + b5τ
4 + b6τ

7.5
)

(5.8)

with:

τ = 1− T

Tc

Tc = 647.14 K pc = 220.64 bar (5.9)
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and:
b1 = −7.85823

b2 = +1.83991

b3 = −11.7811

b4 = +22.6705

b5 = −15.9393

b6 = +1.77516

(5.10)

By inserting (5.9) and (5.10) into (5.8) and converting the formula to p0 one gains the
desired equation. Figure 5.3 shows the saturation vapor pressure over the temperature
range of interest from the freezing up to the boiling point.

Temperature K
280 290 300 310 320 330 340 350 360 370

p
0
 

Pa

0

20,000

40,000

60,000

80,000

100,000

Figure 5.3: Saturation vapor pressure from 273.15 to 373.15 K
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5.3.2 The density of water

The values for the density of water used in this diploma thesis were taken from steam
tables [11] and fitted (see Section B.1.1) by the polynomial (5.11). Figure 5.4 shows the
density of water over the temperature range from the freezing up to the boiling point.

%w =− 1.390021658 10−7 T 4 + 0.1956853951 10−3 T 3 − 0.1058224883T 2

+ 25.39735328T − 1256.217406

[
kg

m3

]
(5.11)

Temperature K
280 290 300 310 320 330 340 350 360 370
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Figure 5.4: Density of water from 273.15 to 373.15 K
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5.3.3 The heat of evaporation

The heat of evaporation of water, also known as enthalpy of vaporization, is the energy
required to transform a given quantity of liquid water into gas (vapor). The values for the
heat of evaporation of water used in this diploma thesis were taken from steam tables [11]
and fitted (see Section B.1.2) by a polynomial reading as:

Qv = −0.1278794562 10−2 T 2 − 1.601883570T + 3033.019010

[
kJ

kg

]
(5.12)

Figure 5.5 shows the heat of evaporation of water over the temperature range from freezing
to boiling point.

Temperature K
280 290 300 310 320 330 340 350 360 370
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Figure 5.5: Heat of evaporation of water from 273.15 to 373.15 K
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5.3.4 The viscosity of water

The viscosity of water is a measure of the resistance of water to being deformed either by
shear stress or extensional stress. The values for the viscosity of water were also taken
from steam tables [11] and fitted (see Section B.1.3) by a polynomial:

ηw =− 4.239227084 10−7 T 5 + 0.7171886828 10−3 T 4 − 0.4855992853T 3

+ 164.5725238T 2 − 27937.97821T + 1.902803765 106 [µPa s]
(5.13)

Figure 5.6 shows the viscosity of water over the temperature range from freezing to boiling
point.

Temperature K
280 290 300 310 320 330 340 350 360 370
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Figure 5.6: Viscosity of water from 273.15 to 373.15 K
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5.3.5 The specific heat at constant pressure of steam

The specific heat or specific heat capacity is the measure of the heat energy required to
increase the temperature of a unit quantity of a substance by a certain temperature interval
[56]. Again the values for the specific heat at constant pressure of steam were taken from
steam tables [11] and fitted (see Section B.1.4) by a polynomial:

cp,v = 5.407142991 10−8 T 3 − 0.3784676236 10−4 T 2 + 0.9149548711 10−2 T

+ 1.090125256

[
kJ

kg K

]
(5.14)

Figure 5.7 shows the specific heat at constant pressure of steam over the temperature range
from freezing to boiling point.

Temperature K
280 290 300 310 320 330 340 350 360 370
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Figure 5.7: Specific heat at constant pressure of steam from 273.15 to 373.15 K
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5.4 The diffusion tensor of the lumen

In this section the diffusion tensor of the lumen, Dlumen, is calculated for use in Equation
(3.73)

5.4.1 The diffusion coefficient of air

In order to be able to calculate homogenized diffusion properties of wood, it is necessary
to know the coefficient for the transport of water vapor through the air in the lumens.
This may be calculated from the inter-diffusion coefficient of water vapor in air, which
describes the diffusive transport of water vapor in bulk air. A semi-empirical equation for
this coefficient can be taken from Siau [31]:

Da = 2.2 · 10−5 ·
(
p0

p

)
·
(

T

273.15

)1.75 [
m2

s

]
(5.15)

with Da denoting the inter-diffusion coefficient of the water vapor in air, p the total pres-
sure, p0 the saturation vapor pressure, and T the temperature in [K].

5.4.2 The diffusion coefficient of the lumen

Diffusion in wood is usually described by the moisture flux resulting from a spatial gradient
of the moisture content in wood. Since the diffusion coefficient of water vapor in air, Da,
is based on a concentration gradient of moisture in air, it must be converted to a basis of
concentration of moisture in the cell wall substance, which is in equilibrium with the relative
humidity of the surrounding air. This requires knowledge of the sorption isotherm, which
describes the cell wall moisture content associated with a specific water-vapor concentration
in the lumens. Moisture is diffusing from one side (1) of the lumen to the opposite side
(2) if mc1 > mc2 and ϕ1 > ϕ2 (see Figure 5.8). Therefore the relative humidity gradient
in the lumen must correspond to a moisture gradient in the cell wall substance as defined
by the sorption isotherm. When Da is converted to a gradient of moisture concentration
in the cell wall, it is generally designated as Dv, the water-vapor diffusion coefficient of air
in the lumens of wood. Formulating Fick’s Law on the basis of concentration gradients in
air and in the cell wall substance, respectively, yields:

jγ = −Da · grada ρ
γ (5.16)

jγ = −Dv · gradv ρ
γ (5.17)

Dv = Da · grada ρ
γ

gradv ρ
γ

(5.18)

The pressure gradient to be used with Da may be calculated from the ideal gas law [52]:

p · V = n ·R · T (5.19)

with p denoting the partial water-vapor pressure in the lumen, n the number of moles of
water vapor, R the universal gas constant, and T the temperature.
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Figure 5.8: Illustration of the corresponding moisture concentration gradients in the cell
wall and in the lumen

The value of n can be calculated by dividing the mass of water vapor in the volume, V ,
through the molecular weight of water, M :

n =
m

M
(5.20)

The water-vapor pressure is related to the relative humidity ϕ by:

ϕ =
p

p0

(5.21)

Equation (5.21) can also be written as:

p = ϕ · p0 (5.22)

With (5.20) and (5.22), Equation (5.19) yields the concentration of water vapor in the
lumen as:

m

V
=
M · p
R · T =

M · p0 · ϕ
R · T (5.23)

Thus the concentration gradient is:

grada ρ
γ =

M · p0 · dϕ
R · T · dL

(5.24)

with dϕ = ϕ1 − ϕ2 and dL denoting the diameter of the lumen.
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The associated gradient on basis of concentration in cell wall substance is much larger,
because the moisture concentration in wood is very high compared to that in air in equi-
librium with it. Its value is:

gradv ρ
γ =

dmc · %′
dL

(5.25)

with %′ denoting the density of the moist cell wall substance. %′ can be calculated as cell
wall density in the oven-dry state divided by moist volume as:

%′ =
%0

1 + %0

%w
·mc =

1530

1 + 1530
%w

·mc
[

kg

m3

]
(5.26)

where %w is the density of water according to (5.11). With the Equations (5.24) and (5.25)
the expression for Dv (5.18) can be rewritten as:

Dv = Da · grada ρ
γ

gradv ρ
γ

= Da · M · p0

%′ ·R · T ·
dϕ

dmc
(5.27)

where the inverse slope of the sorption isotherm is expressed as a derivative. Values of Dv

calculated from Equation (5.27) are plotted in Figure 5.9.

Figure 5.9: Water-vapor diffusion coefficient in the lumens at five temperatures

As can be seen, Dv increases with the moisture content mc at lower moisture content and
temperatures and then decreases significantly at higher moisture contents. The reason for
this is the inflection point of the sorption isotherm (see Figure 5.2). As stated previously,
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the calculations in this diploma thesis are based on the sorption data given in the Wood
Handbook [34]. When applied to a specific wood specimen, sorption data determined for
that specimen should be used in order to improve the fit of the model [31].

5.4.3 Assembly of the diffusion tensor

With the one-dimensional diffusion coefficient of the lumen, Dv, the diffusion tensor of the
lumen can be assembled. Since Dv is expressed on the basis of moisture concentration in
the cell wall substance in wood, it must be divided by the volume fraction of the cell wall
substance in wood, fcellwall, in order to relate it to the whole wood substance. The diffusion
tensor of the lumen thus is:

Dlumen =




Dv

fcellwall
0 0

0 Dv

fcellwall
0

0 0 Dv

fcellwall


 (5.28)

5.5 The diffusion tensor of the cell wall

Diffusion coefficients in solids normally are several orders of magnitude smaller than those
in gases or fluids. Thus the cell walls give rise to the main resistance to water diffusion
through wood, especially in the transverse direction.

5.5.1 The Arrhenius equation

The diffusion coefficient in solids is described by the Arrhenius equation [31, 42, 46], which
is named after the Swedish chemist Svante Arrhenius:

D = D0 · exp

(
− Ea

R · T
)

(5.29)

where the prefactor D0 is equal to the diffusion coefficient in the limit of infinitely high
temperature T. In (5.29) Ea denotes the activation energy and R the universal gas constant.
According to Siau [31], the value for D0 can be taken as 7·10−6 m2/s for transverse diffusion
and as 17.5 · 10−6 m2/s for diffusion in longitudinal direction in first approximation.

Siau [31] also published a formula for the activation energy, which constitutes a linear fit
of measured results at a temperature of 26.7 ◦C:

Ea = 38500− 29000 ·mc
[

J

mol

]
(5.30)

Since this empirical formula partly provides inexact results, the topic ”activation energy”
was studied more deeply in the framework of this diploma thesis. Because of its complexity,
the activation energy became one of the most time-consuming items of the thesis.
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5.5.2 Energy relationships, activation energy

In thermodynamics and molecular chemistry, the enthalpy or heat content denotes a part
of the thermodynamic potential of a system. Each state of water thus has a specific heat
content or enthalpy depending on the actual temperature and pressure. The enthalpy can
also be interpreted as energy level.

Because of their importance in chemistry and physics, the thermodynamic properties of
water and steam are well-known and expressed in tables [11, 30].

Ordinary water exists in three basic physical conditions: the solid state, the liquid state,
and the vapor state. Energy increases during transition from the solid to the vapor phase.
Moisture in wood can be found in each of these three state, as well as in a fourth ”condition”
– the sorbed or bound water in the cell wall. At temperatures above the melting point,
only three states may coexist: sorbed water in the cell walls, capillary or free water in
the lumens at moisture contents above fiber-saturation, and water vapor in the lumens,
present at all moisture contents except in fully-saturated wood. Below the melting point,
the capillary water is frozen while the two other phases are still present [33].

Sorbed water in the cell wall of wood is similar to water in the frozen or solid state in
terms of its lower enthalpy than liquid water. The enthalpy of sorbed water increases with
increasing wood moisture content up to fiber-saturation, above which it is more or less the
same as for liquid water [33]. Figure 5.10 shows the energy levels of water vapor, liquid
water, and bound water at 40 ◦C, relative to the energy level of liquid water, that was set
equal to zero.

Figure 5.10: Relative energy levels at 40 ◦C of water vapor, liquid water, and bound water
in wood as functions of wood moisture content

As can be seen, the enthalpy of water vapor, hv, is higher than that of liquid water, hw,
which is in turn higher than that of bound or sorbed water, hs. The latter increases with
increasing moisture content up to fiber-saturation at a moisture content of about 30 %.
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The difference between the energy levels of liquid water and water vapor, respectively, is
called the differential heat of evaporation, Qv (see Equation (5.12)), while the difference
between the energy levels of bound water and liquid water is denoted by differential heat
of sorption Qw.

There are two different methods of determining the differential heat of sorption. One is
the calorimetric method, in which the phase change energy is measured directly. In this
diploma thesis the isosteric method is used, based on the Clausius-Clapeyron equation
[33, 44]. It requires sorption isotherms at two or more temperatures. Finally, Skaar ends
up with the following formula for Qw:

Qw ' R · T 2


d ln

(
p
p0

)

dT


 (5.31)

in which the differential can be written as difference quotient in case of constancy of Qw

between temperatures T1 and T2,:

Qw ≈ R · T1 · T2


 ln

(
ϕ2

ϕ1

)

T2 − T1


 (5.32)

Therein ϕ1 and ϕ2 are the relative vapor pressures at temperatures T1 and T2, respec-
tively, at a given constant moisture content of the wood. The differential heat of sorption
calculated on the basis of sorption data of the U.S. Department of Agriculture [34] (see
Equation (5.2)) is displayed in Figure 5.11. It clearly can be seen that the differential heat
of sorption strongly depends on temperature as well as on the moisture content.

Figure 5.11: Differential heat of sorption at different temperatures
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In the state of equilibrium, where no moisture transport occurs, the bound water in the
cell wall has enthalpy hs, and the water vapor in the lumens the higher enthalpy hv. In
case of moisture transport the water molecules in the cell wall must reach an activated
state with an energy level that exceeds the enthalpy of bound water by a value Ea –
the activation energy. This is because diffusion requires activated jumps, and thus the
molecules must possess a certain minimum energy before they can traverse the cell wall.
Figure 5.12 illustrates energy changes that water molecules undergo upon passing the cell
wall. The red line depicts the mean energy of water passing from the vapor state to the
sorbed state and then to the activated state at side 1, or from the activated state to the
sorbed state and then to the vapor state at side 2.

Unfortunately the activation energy is not known in detail. Strict theoretical relations only
exist for a lower limit, hr, and an upper limit, h∗, for this energy, which will be specified
in the next sections.

Figure 5.12: Energy relationships for diffusion through cell wall (mc = 0.09, T = 25.5 ◦C)
.

5.5.3 The activation energy, lower limit

A lower limit for the activation energy can be calculated as an energy value hr, marking
the minimum energy the water molecules must possess in order to participate in diffusion.
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According to the Einstein diffusion equation [7], the self-diffusion coefficient of liquid water
can be calculated as:

Dr =
R

NA

T

6 π ηw rw

(5.33)

with rw denoting the radius of the diffusing molecule, which is H2O in this case. Eisenberg
[8] specifies a value of 2.272 · 10−9 m2/s for Dr at 25 ◦C. With NA, R, and ηw as stated in
Sections 5.2 and 5.3, the value for the radius rw results in 1.08137 · 10−10 m. Figure 5.13
shows the self-diffusion coefficient of water over the temperature range from the freezing
point up to the boiling point.

Temperature K
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Figure 5.13: Self-diffusion coefficient of water from 273.15 to 373.15 K
.

Further evaluation of the lower limit of the activation energy requires expressions for tor-
tuosity τ and effective area α. The effective path length for diffusion generally exceeds
the cell wall thickness since the diffusing molecules must move around stationary polymer
molecules. The ratio of the length of the effective path within the cell wall to the cell wall
thickness is the tortuosity τ . Furthermore, the diffusive flow of moisture is further affected
by the presence of the polymers because the area available for diffusion is smaller than the
cell wall cross section. The ratio of total cell wall cross section to available cross section is
denoted as the effective area α. The resistance to diffusion is inversely proportional to α,
but directly proportional to τ . Nelson [24] proposes a combined factor for tortuosity and
effective area in terms of the following empirical equation:

α

τ
=

1

2− 0.9 mc
0.685+0.9 mc

(5.34)
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With the Arrhenius Equation (5.29) the activation energy for self-diffusion therefore is:

Er = − ln

(
Dr · τ
D0 · α

)
·R · T (5.35)

Finally the energy level hr marking the lower limit for the activation energy follows from:

hr = hw + Er (5.36)

5.5.4 The activation energy, upper limit

When water passes from the vapor state in the lumen into the cell wall, the wall absorbs
the heat generated at the condensation of the vapor. After transport through the cell wall,
this heat is released again and absorbed by the water upon evaporation. Apparently, water
diffusion through the cell wall is coupled with a conduction of heat in an direction opposite
to the diffusive moisture transport. Thereon, Nelson [24] derives that the upper limit for
the activation energy is the mean energy h∗, defined by:

h∗ = hv − cp,v · T (5.37)

with hv denoting the enthalpy of water vapor and cp,v the specific heat of steam at constant
pressure.

Figure 5.14: Energy relationships of water in wood at 40 ◦C
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With the lower and upper boundary for activation energy bounds for the diffusion co-
efficients for the cell wall and the whole wood sample can be calculated. The energy
relationships with the calculated boundaries are displayed in Figure 5.14 for a tempera-
ture of 40 ◦C. The red line is back-calculated from experimental results for the diffusion
coefficients reported by Kollmann [17] for a sample of spruce wood at different moisture
contents.

Unfortunately the activation energy has a great influence on the diffusion coefficient be-
cause of its appearance in the exponential function in the Arrhenius Equation (5.29). Since
no analytical relation or exact experimental result exists for the activation energy, the em-
pirical relation for the activation energy of Siau [32] (see Equation (5.30)) is used in most
articles about moisture diffusion in the cell wall. Also in this diploma thesis, Siau’s equa-
tion is used for the evaluation of the diffusion model, resulting in overestimation of the
diffusion coefficients especially at higher temperatures.

5.5.5 Assembly of the diffusion tensor

Assuming that the cell wall is transversal isotropic results in two different diffusion coef-
ficients for the transversal and longitudinal direction. Insertion of Siau’s equation for the
activation energy (5.30) in (5.29) leads to the following relations:

Dcellwall,trans = 7 · 10−6 · exp

(
−38500− 2900 ·mc

8.314472 · T
) [

m2

s

]
(5.38)

Dcellwall,long = 17.5 · 10−6 · exp

(
−38500− 2900 ·mc

8.314472 · T
) [

m2

s

]
(5.39)

Since Dcellwall,trans and Dcellwall,long are expressed on the basis of concentration in the cell
wall substance in wood, they both must be divided by the volume fraction of the cell wall
substance in wood, fcellwall. The diffusion tensor of the cell wall thus is:

Dcellwall =




Dcellwall,trans

fcellwall
0 0

0
Dcellwall,trans

fcellwall
0

0 0
Dcellwall,long

fcellwall


 (5.40)

5.6 The multiscale moisture diffusion model

The calculated diffusion coefficients for the cell wall and the lumen serve as the basis for
two homogenization steps for the computation of overall diffusion coefficients of wood as
described in Chapter 3. In the first step an overall diffusion coefficient for the cell assembly
is calculated. The second, final step refers to the density variation within the annual
rings. The results of the diffusion model are compared with values given by Kollmann [17]
afterwards.
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5.6.1 Homogenization step 1: Diffusion coefficients of the cell
assembly

In the first homogenization step the diffusion coefficients of the cell assembly are calculated
for a given oven-dry density and a moisture content between zero and the fiber saturation
point, based on the model developed in Section 3.2. The Mori-Tanaka scheme is formu-
lated with ellipsoidal inclusions for the lumens for this purpose. Because of the different
diffusion tensors of the cell wall material at different moisture contents, the calculation
time would be very long due to the time-consuming calculation of the P-tensor with about
one minute per step. Therefore the calculation of the P-tensor was split in two steps.
First a standardized P-tensor for one specific wood density was calculated. The ratio of
Dcellwall,trans to Dcellwall,long is always the same irrespective of the moisture content and
temperature, so that the real P-tensor for each step can easily be gained by dividing the
standardized P-tensor by the tensor component Dcellwall,trans of the actual diffusion tensor
of the cell wall. The standardized P-tensor was calculated as described in Section 3.2 as:

Dcellwall,standard =




1 0 0
0 1 0

0 0
Dcellwall,long

Dcellwall,trans


 (5.41)

resulting in:

Pell,standard,ij =
1

4 · π

+1∫

−1

2π∫

0

ξi · ξj · (Dcellwall,standard,kl · ξk · ξl)−1 dϕ̂ dξ̂3 (5.42)

The real P-tensor can now be gained as following:

Pell =
Pell,standard

Dcellwall,trans

(5.43)

Now the homogenized diffusion tensor for the cell matrix can be calculated with Equa-
tion (3.73).

5.6.2 Homogenization step 2: Diffusion coefficients of a whole
sample

Next the second homogenization step as described in Subsection 3.3.3 is executed. The
whole diffusion model was programmed with Maple 11.0, the source code is displayed in
Appendix B.2.
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5.7 Validation of the multiscale diffusion model

The validation of the model is based on experimental moisture diffusion data for wood
stated by F. Kollmann in his book [17]. In particular, these data were compared with
corresponding model predictions in order to check the behavior of the model at different
moisture contents and temperatures.

5.7.1 Radial diffusion coefficient at different moisture contents

By means of the model developed in Section 5.6, the variation of the radial diffusion
coefficients for different moisture contents and temperatures was studied. Kollmann [17]
published such coefficients for spruce with a density of 404 kg/m3 at temperatures of 40, 60,
80, and 100 ◦C which were measured in diffusion tests. For the second homogenization step
the densities of earlywood and latewood were set to 280 kg/m3 and 820 kg/m3, respectively,
which are typical values for Norway spruce [17].

Figure 5.15 shows the results obtained with the developed model (solid lines) in comparison
with the data given by Kollmann [17] (crosses denote the measured values, the dash-dotted
lines are interpolations of these values). As one can see, the calculated values don’t fit
very well, especially for higher temperatures. The main reason for the deviation is the
application of a linear term for the activation energy, which was derived for a temperature
of 26.7 ◦C without consideration of the density variation within the annual rings.

Figure 5.15: Radial diffusion coefficient of spruce wood (%ovendry = 404 kg/m3)
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5.7.2 Comparison of the activation energies

Because the used term for the activation energy delivered quite inaccurate results, adequate
activation energies were back-calculated from the measured values of Kollmann [17] aiming
at the identification of any regularities. Figure 5.16 shows the results of the back-calculation
in comparison with Siau’s term for activation energy (5.30). Several facts can be stated:

� The activation energy seems to be a temperature-dependent quantity.

� A linear approximation of the activation energy over different moisture contents is
very rough.

� For 80 ◦C, the back-calculated curve is quite different in qualitative terms compared
to the curves for the other temperatures.

� Although the differences between Siau’s equation and the measured values are small
(e.g. approximately 7 % for 100 ◦C at a moisture content of 0.03), they result in huge
errors in the values for the diffusion coefficient of the cell wall substance (e.g. 61 %
for 100 ◦C at a moisture content of 0.03).

� The slope of the graph according to Siau’s equation doesn’t fit very well to the
other, back-calculated ones. This is because the activation energy is calculated for
a constant density of the whole sample. If the density variations within the annual
rings are taken in account, the resistance to diffusion is higher, and therefore the
diffusion coefficient and the slope of the activation energy as function of the moisture
content are lower.

Figure 5.16: Back-calculated activation energies for different temperatures
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5.7.3 Discussion

At present the diffusion model provides too inaccurate values for further use. An im-
provement is possible by replacing Siau’s approximated formula for activation energy by
a temperature-dependent nonlinear one. The more elegant way would be the completely
physics-based calculation as introduced in the Subsections 5.5.3 and 5.5.4. Since the last
step from analytical limits to a definite value of the activation energy is still unclear, how-
ever, the way of an empirical equation is more practical or, rather, unavoidable. Anyway
further research is needed.



Chapter6
Evaluation of the model for thermal
conduction

6.1 Basics

6.1.1 Fourier’s law

Thermal conduction is the transfer of thermal energy through matter, from a region of
higher temperature to a region of lower temperature, and acts to equalize temperature
differences [55]. It is described by the law of heat conduction, also known as Fourier’s law,
that links the time rate of heat transfer through a material to the negative gradient of
temperature:

φq = −λ · gradT (6.1)

where φq is the local heat flux [W/m2], λ the thermal conductivity [W/m K], and gradT

the temperature gradient [K/m]. When Equation (6.1) is compared with Equation (3.2b),
Fick’s law of diffusion, it easily can be seen that the structure of the two equations is the
same. Thus the homogenization techniques developed in Chapter 3 for diffusion can also
be applied to the prediction of effective thermal conduction properties.

6.1.2 Comparison of thermal conductivities

In Table 6.1 the thermal conductivities of some common materials are specified. As it
can be seen, wood is a relatively good insulator, especially perpendicular to the fiber axis.
The resistance to flow is high in this direction due to the interruption of the path by the
air-filled lumens with only low conductivity [31]. The insulating properties of wood have
several advantages in construction engineering, for example with respect to better heat
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insulation and also to better fire-resistance compared with highly conducting materials
such as metals, which soften at high temperatures.

Material λ Source
[W/m K]

Water (20 ◦C) 0.598 Eq. (6.2)
Air (20 ◦C) 0.026 Eq. (6.3)
Cell wall substance transversal 0.439 Siau [31]
Cell wall substance transversal 0.410 Gu [13]
Cell wall substance transversal 0.520 Thunman [35]
Cell wall substance longitudinal 0.876 Siau [31]
Cell wall substance longitudinal 0.730 Thunman[31]
Softwood 0.150 Bautabellen [20]
Hardwood 0.200 Bautabellen [20]
Brick 0.760 Bautabellen [20]
Concrete 1.500 Bautabellen [20]
Limestone 1.700 Bautabellen [20]
Granite 3.500 Bautabellen [20]
Gypsum plasterboard 0.210 Bautabellen [20]
Glass 0.810 Bautabellen [20]
Mineral fibrous insulating material 0.040 Bautabellen [20]
Copper 386.167 Siau [31]
Aluminum 201.729 Siau [31]
Stainless steel 16.282 Siau [31]

Table 6.1: Thermal conductivities of several materials

6.1.3 The thermal conductivity of water

The values for the thermal conductivity of water used in this diploma thesis were again
taken from steam tables [11] and fitted (see Section B.1.5) by an empirical correlation:

λw = −0.9449956778 10−2 T 2 + 7.298074517T − 728.5203013 [W/m K] (6.2)

Figure 6.1 shows the thermal conductivity of water over the temperature range from the
freezing up to the boiling point.

6.1.4 The thermal conductivity of air

The values for the thermal conductivity of air were chosen according to Incropera [16] in
this diploma thesis and fitted (see Section B.1.6) by a polynomial in temperature:

λa = −2.917470146 10−8 T 2 + 9.49953295 10−5 T + 3.102291022 10−4 [W/m K] (6.3)

Figure 6.2 shows the thermal conductivity of air over the temperature range from 100 up
to 1000 Kelvin.
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Figure 6.1: Thermal conductivity of water from 273.15 to 373.15 K
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Figure 6.2: Thermal conductivity of air from 100 to 1000 K
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6.2 The thermal conductivities of lumen and cell wall

6.2.1 The thermal conductivity of the lumen

Since this diploma thesis discusses only conditions under the fiber saturation point, the
lumens never contain water. Therefore the thermal conductivity of the lumen is assumed
to be the same like that for air. Using Equation (6.3), the thermal conductivity tensor of
the lumen can be written as:

Klumen =



λa 0 0
0 λa 0
0 0 λa


 (6.4)

6.2.2 The thermal conductivity of the cell wall

Thermal conductivity of the cell wall is calculated by means of mixture rules considering
a simple parallel connection of the conductivities of the cell wall substance and the bound
water [31]. Hereby it is assumed that the cell wall material is transversal isotropic by
means of thermal conductivity, and has therefore two different thermal conductivities for
the transversal and longitudinal direction. As can be seen in Table 6.1, the values for
the thermal conductivity of the cell wall specified in the literature vary considerably. For
this diploma thesis the lowest and newest values were taken with 0.410 [W/m K] according
to Gu [13] for the thermal conductivity of the cell wall substance in transversal direction
and 0.876 [W/m K] according to Thunman [35] for the thermal conductivity of the cell
wall substance in longitudinal direction. Here further refinement of the model is possible
by an additional homogenization step for the cell wall material, based on the thermal
conductivities of its components hemicellulose, cellulose, and lignin.

The water phase and the cell wall material phase are assumed to be arranged in parallel in
the transversal and longitudinal directions of the cell wall [31]. The value for the thermal
conductivity of water is calculated according to Equation (6.2). For parallel connection
the conductivities of the dry cell wall substance and the bound water are weighted by their
volume fractions and added together. Hence, the equations for transversal and longitudinal
thermal conductivity of the cell wall are the following:

λtrans = λ0,trans + λw ·mc (6.5)

λlong = λ0,long + λw ·mc (6.6)

For further use, the thermal conductivities of the cell wall are assembled in the thermal
conductivity tensor of the cell wall:

Kcellwall =



λtrans 0 0

0 λtrans 0
0 0 λlong


 (6.7)
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6.3 The multiscale thermal conduction model

In most transport processes there is a significant flux through the cell-wall substance and
usually, but not always, through the air in the lumens. Frequently, the flow through the
pit openings may be neglected because of their small fractional surface area of the cell wall
(less than 1 %). The aim of one homogenized thermal conductivity for the whole sample
is reached by two homogenization steps.

6.3.1 Homogenization step 1: Thermal conductivities of the cell
assembly

In Step 1 the thermal conductivity of the cell assembly for a given oven-dry density is
calculated by the model developed in Chapter 3. Again the Mori-Tanaka scheme with
ellipsoidal inclusions is used. The standardized P-tensor was calculated as described in
Section 3.2 as:

Pell,ij =
1

4 · π

+1∫

−1

2π∫

0

ξi · ξj · (Kcellwall,kl · ξk · ξl)−1 dϕ̂ dξ̂3 (6.8)

Now the homogenized thermal conductivity tensor for the cell assembly can be calculated
according to Equation (3.73), replacing the diffusion tensors of the cell wall and the lumen
by the corresponding thermal conductivity tensors.

6.3.2 Homogenization step 2: Thermal conductivities of a whole
sample

Next the second homogenization step as described in Subsection 3.3.3 is executed. The
whole thermal conduction model was programmed with Maple 11.0, the source code is
displayed in Appendix B.3

6.4 Validation of the multiscale thermal conduction

model

The experimental validation of the model developed in this diploma thesis is again based
on test results for thermal conductivities of several wood species collected by F. Kollmann
in his book [17]. The first comparison of these data with corresponding model estimates
was made to check the dependency on density, and the second to test the behavior of the
model for different moisture contents.

6.4.1 Thermal conductivity at different densities

By use of the model developed in Section 6.3, the variation of the thermal conductivity
across different oven-dry densities was studied. Since the species is not specified for most
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test results, densities of 280 kg/m3 for earlywood and of 820 kg/m3 for latewood were
assumed. These values actually apply to Norway spruce [17], but are also roughly valid
for other softwoods. For comparability with the data of Kollmann [17], a temperature of
20 ◦C and a constant moisture content of 12 % were assumed.

Figure 6.3 shows the results of the developed model in comparison with data given by
Kollmann [17]. The conductivities in the direction perpendicular to the grain of Kollmann
are the arithmetic means of radial and tangential conductivity. The good agreement of
test data and model predictions can be clearly seen, also for hardwood.
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Figure 6.3: Thermal conductivity of wood at 20 ◦C and 12 % moisture content

6.4.2 Thermal conductivity at different moisture contents

To check the behavior of the model at different moisture contents, test results of three
samples given by Kollmann [17] were recalculated. Unfortunately neither the density of
the samples nor the temperature during the experiments is reported, so they were fitted
for the results at zero moisture content, in order to check at least the slope of the curves
of thermal conductivity over moisture content. As can be seen in Figure 6.4, this fits quite
well.



Evaluation of the model for thermal conduction 66

Figure 6.4: Dependence of tangential thermal conductivity of wood on the moisture content

6.4.3 Thermal conductivities for single specimens

At last test results for four single specimens with known values of density, moisture content,
and temperature (again according to Kollmann [17]) were recalculated. The results are
assembled in Table 6.2. The calculated values for the only softwood specimen in this
group, spruce, fit quite well. The too low radial conductivity can be explained by the
negligence of the ray cells in the model, which constitute continuous pathways of good
thermal conduction in radial direction. The values for hardwood fit not as well as those for
softwood because of the more complicated microstructure of hardwood with vessels and
distinctive amounts of ray cells. While the vessels act as thermal insulators in longitudinal
direction and, thus, result in smaller thermal conductivity, the ray

Wood Oven-dry Moisture Temperature Measured thermal conductivity Calculated thermal conductivity
species density content λrad λtang λlong λrad λtang λlong

[kg/m3] [%] [◦C] [W/mK] [W/mK] [W/mK] [W/mK] [W/mK] [W/mK]

Ash 740 15 20 0.3056 0.1758 0.1633 0.4096 0.1518 0.2073
Spruce 410 16 20 0.2219 0.1214 0.1047 0.2399 0.0878 0.1149
Mahogany 700 15 20 0.3098 0.1675 0.1549 0.3888 0.1450 0.1936
Walnut 650 12 20 0.3308 0.1465 0.1382 0.3629 0.1235 0.1840

Table 6.2: Thermal conductivities of single specimens



Chapter7
Summary, conclusions and future
work

The focus of this thesis was the modeling of transport processes in wood (especially soft-
wood) based on microstructural considerations by means of homogenization techniques
such as the Mori-Tanaka scheme. Taking the microstructure into account, allows to suit-
ably describe the anisotropic material behavior on the microscale with different properties
in the radial, tangential, and longitudinal direction on a physical basis. In theoretical
respects, the main task within the model formulation was the derivation of the Hill tensor
(P-tensor) for a diffusion process and ellipsoidal inclusion shape.

The successful operation of the model was proved by means of a comparison with a sec-
ond multiscale model, using the unit cell method as homogenization technique. A good
agreement of the results obtained with the two models was observed. The appearing de-
viations could be explained by the different inclusion shapes, namely ellipsoidal inclusions
in the Mori-Tanaka scheme compared with hexagonal inclusions in the unit cell method.
The comparison also showed the advantage of the Mori-Tanaka scheme over the unit cell
method because of the simple adaptivity to different geometries because of the analytical
formulation of this scheme.

First the model was applied to moisture transport in softwood under the fiber saturation
point. The main challenge in this context was the determination of the diffusion coefficients
for both cell walls and lumens. Especially the diffusion behavior of the cell walls as con-
tributing factor of the diffusion process through wood turned out to be quite complicated
to model.

Since the activation energy of the adsorbed water molecules turned out to be decisive, it was
investigated in detail. Unfortunately only a lower and an upper bound could be derived
for this energy, what is too inaccurate because of the great influence of the activation
energy on the resulting diffusion coefficients. Thus, a simplified phenomenological relation
describing a linear dependence of the activation energy on the moisture content was used,
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which is commonly applied in literature to model the moisture transport behavior of the
cell wall. Evaluation of the developed multiscale model with this linear equation resulted in
partly very inaccurate model predictions for macroscopic diffusion coefficients. It turned
out that the reason for these errors was the negligence of the nonlinearity with respect
to the moisture content and the temperature dependency of the activation energy. Here
further refinement of the model is possible by replacing the approximated formula for this
energy by a temperature-dependent nonlinear one. As long as a completely physics-based
calculation is not possible, however, the use of an empirical equation is unavoidable.

The application to thermal conduction turned out to be easier because of the better knowl-
edge of the thermal properties of both cell walls and lumens. Nevertheless, also in this
area further research is possible. For example an additional homogenization step could be
performed in order to calculate the thermal conductivity of the cell wall from the behavior
of its constituents. This is expected to result in improved accuracy of the model, since the
thermal conductivity of the cell wall is not exactly known but reported differently in the
literature. The actual homogenization model for thermal conduction provided estimates
for the thermal conductivity of softwood which agree well with corresponding measured
results. For hardwood, the agreement is not that good (as supposed) due to the more
differentiated microstructure, including large vessels and ray cells. But, again, a further
homogenization step would allow to take also these further inhomogeneities into account.

On the whole, the performed calculations and numerical simulations delivered interesting
insight into transport processes in wood. With a few refinements, the developed models
can be used for a further investigation of moisture dependent procedures in wood. Also
an extension to other states is possible. For example, the extension to conditions over
the saturation point could be established by taking the liquid water in the cell lumens
into account. This would also enable in parts the simulation of wood drying processes
starting at green conditions and therefore also provide an interesting simulation tool for
both timber engineering and the timber industry.
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AppendixA
Steam table in SI-Units

In several chapters of this diploma thesis values obtained from steam tables are used.
These values were taken from the steam tables given in [11] and [30] are summarized in
the Tables A.1, A.2, and A.3

t T p0 %w %v hw hv Qv cp,v λw ηw
◦C K MPa kg/m3 kg/m3 kJ/kg kJ/kg kJ/kg kJ/kg K mW/mK µPa s

0.0 273.15 0.00061 999.8 0.0049 -0.0416 2500.5 2500.6 1.868 561.0 1793
1.0 274.15 0.00066 999.8 0.0052 4.1832 2502.4 2498.2 1.868 562.9 1732
2.0 275.15 0.00071 999.9 0.0056 8.4010 2504.2 2495.8 1.869 564.8 1674
3.0 276.15 0.00076 999.9 0.0060 12.613 2506.0 2493.4 1.869 566.7 1620
4.0 277.15 0.00081 999.9 0.0064 16.819 2507.9 2491.1 1.870 568.6 1568

5.0 278.15 0.00087 999.9 0.0068 21.021 2509.7 2488.7 1.871 570.5 1519
6.0 279.15 0.00094 999.9 0.0073 25.220 2511.5 2486.3 1.871 572.4 1472
7.0 280.15 0.00100 999.9 0.0078 29.415 2513.4 2484.0 1.872 574.3 1428
8.0 281.15 0.00107 999.8 0.0083 33.608 2515.2 2481.6 1.872 576.2 1385
9.0 282.15 0.00115 999.8 0.0088 37.799 2517.1 2479.3 1.873 578.1 1345

10.0 283.15 0.00123 999.7 0.0094 41.988 2518.9 2476.9 1.874 580.0 1306
11.0 284.15 0.00131 999.6 0.0100 46.175 2520.7 2474.5 1.875 581.9 1270
12.0 285.15 0.00140 999.5 0.0107 50.362 2522.6 2472.2 1.875 583.8 1235
13.0 286.15 0.00150 999.4 0.0114 54.547 2524.4 2469.8 1.876 585.6 1201
14.0 287.15 0.00160 999.2 0.0121 58.732 2526.2 2467.5 1.877 587.5 1169

15.0 288.15 0.00171 999.1 0.0128 62.917 2528.0 2465.1 1.878 589.3 1138
16.0 289.15 0.00182 998.9 0.0136 67.101 2529.9 2462.8 1.879 591.2 1109
17.0 290.15 0.00194 998.8 0.0145 71.285 2531.7 2460.4 1.879 583.0 1080
18.0 291.15 0.00206 998.6 0.0154 75.468 2533.5 2458.1 1.880 594.8 1053
19.0 292.15 0.00220 998.4 0.0163 79.652 2535.3 2455.7 1.881 596.6 1027

Table A.1: Steam table in SI-Units, 0− 19 ◦C
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t T p0 %w %v hw hv Qv cp,v λw ηw
◦C K MPa kg/m3 kg/m3 kJ/kg kJ/kg kJ/kg kJ/kg K mW/mK µPa s

20.0 293.15 0.00234 998.2 0.0173 83.835 2537.2 2453.3 1.882 598.4 1002
21.0 294.15 0.00249 998.0 0.0183 88.019 2539.0 2451.0 1.883 600.2 978.0
22.0 295.15 0.00264 997.7 0.0194 92.202 2540.8 2448.6 1.884 601.9 954.8
23.0 296.15 0.00281 997.5 0.0206 96.386 2542.6 2446.2 1.885 603.7 932.6
24.0 297.15 0.00299 997.3 0.0218 100.57 2544.5 2443.9 1.886 605.4 911.1

25.0 298.15 0.00317 997.0 0.0231 104.75 2546.3 2441.5 1.887 607.1 890.5
26.0 299.15 0.00336 996.8 0.0244 108.94 2548.1 2439.2 1.888 608.8 870.6
27.0 300.15 0.00357 996.5 0.0258 113.12 2549.9 2436.8 1.889 610.5 851.4
28.0 301.15 0.00378 996.2 0.0273 117.30 2551.7 2434.4 1.890 612.2 832.8
29.0 302.15 0.00401 995.9 0.0288 121.49 2553.5 2432.0 1.891 613.8 815.0

30.0 303.15 0.00425 995.6 0.0304 125.67 2555.3 2429.7 1.892 615.4 797.7
31.0 304.15 0.00451 995.3 0.0322 129.85 2557.1 2427.3 1.893 617.0 781.4
32.0 305.15 0.00476 995.0 0.0339 134.04 2559.0 2424.9 1.894 618.6 765.1
33.0 306.15 0.00504 994.6 0.0358 138.22 2560.8 2422.5 1.896 620.2 749.5
34.0 307.15 0.00533 994.3 0.0377 142.41 2562.6 2420.2 1.897 621.7 734.6

35.0 308.15 0.00563 994.0 0.0397 146.59 2564.4 2417.8 1.898 623.2 719.6
36.0 309.15 0.00596 993.6 0.0419 150.77 2566.2 2415.4 1.899 624.7 705.8
37.0 310.15 0.00629 993.3 0.0440 154.96 2568.0 2413.0 1.900 626.2 692.0
38.0 311.15 0.00664 992.9 0.0463 159.14 2569.8 2410.6 1.902 627.7 678.7
39.0 312.15 0.00701 992.6 0.0488 163.32 2571.6 2408.3 1.903 629.1 666.0

40.0 313.15 0.00738 992.2 0.0512 167.50 2573.4 2405.9 1.904 630.5 653.2
41.0 314.15 0.00780 991.8 0.0539 171.68 2575.2 2403.5 1.906 631.9 641.4
42.0 315.15 0.00821 991.4 0.0566 175.87 2576.9 2401.1 1.907 633.3 629.6
43.0 316.15 0.00865 991.0 0.0595 180.05 2578.7 2398.7 1.909 634.7 618.2
44.0 317.15 0.00912 990.6 0.0625 184.24 2580.5 2396.3 1.910 636.0 607.3

45.0 318.15 0.00959 990.2 0.0655 188.42 2582.3 2393.9 1.912 637.3 596.3
46.0 319.15 0.01011 989.8 0.0689 192.60 2584.1 2391.5 1.913 638.6 586.1
47.0 320.15 0.01063 989.3 0.0722 196.78 2585.9 2389.1 1.914 639.9 575.9
48.0 321.15 0.01118 988.9 0.0757 200.96 2587.7 2386.7 1.916 641.1 566.1
49.0 322.15 0.01176 988.4 0.0794 205.15 2589.4 2384.3 1.917 642.3 556.6

50.0 323.15 0.01234 988.0 0.0831 209.33 2591.2 2381.9 1.919 643.5 547.1
51.0 324.15 0.01299 987.5 0.0872 213.51 2593.0 2379.5 1.921 644.7 538.2
52.0 325.15 0.01364 987.0 0.0913 217.69 2594.7 2377.0 1.923 645.8 529.3
53.0 326.15 0.01432 986.6 0.0955 221.87 2596.5 2374.6 1.925 647.0 520.8
54.0 327.15 0.01503 986.1 0.1000 226.06 2598.2 2372.2 1.926 648.1 512.5

55.0 328.15 0.01575 985.7 0.1045 230.24 2600.0 2369.8 1.928 649.2 504.2
56.0 329.15 0.01655 985.2 0.1094 234.42 2601.8 2367.4 1.930 650.2 496.4
57.0 330.15 0.01734 984.7 0.1143 238.61 2603.5 2364.9 1.931 651.3 488.7
58.0 331.15 0.01818 984.2 0.1195 242.79 2605.3 2362.5 1.933 652.3 481.2
59.0 332.15 0.01905 983.7 0.1249 246.97 2607.0 2360.0 1.935 653.3 473.9

60.0 333.15 0.01993 983.2 0.1303 251.15 2608.8 2357.6 1.937 654.3 466.6
61.0 334.15 0.02090 982.7 0.1362 255.33 2610.5 2355.2 1.939 655.3 459.8
62.0 335.15 0.02187 982.2 0.1421 259.52 2612.2 2352.7 1.941 656.2 452.9
63.0 336.15 0.02288 981.6 0.1483 263.70 2614.0 2350.3 1.943 657.1 446.3
64.0 337.15 0.02395 981.1 0.1548 267.89 2615.7 2347.8 1.945 658.0 439.8

Table A.2: Steam table in SI-Units, 20− 64 ◦C
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t T p0 %w %v hw hv Qv cp,v λw ηw
◦C K MPa kg/m3 kg/m3 kJ/kg kJ/kg kJ/kg kJ/kg K mW/mK µPa s

65.0 338.15 0.02502 980.5 0.1613 272.08 2617.5 2345.4 1.947 658.9 433.4
66.0 339.15 0.02620 980.0 0.1684 276.26 2619.2 2343.0 1.949 659.8 427.4
67.0 340.15 0.02737 979.5 0.1755 280.45 2620.9 2340.5 1.952 660.7 421.3
68.0 341.15 0.02860 978.9 0.1828 284.63 2622.7 2338.1 1.954 661.5 415.5
69.0 342.15 0.02989 978.3 0.1905 288.82 2624.4 2335.6 1.956 662.3 409.8

70.0 343.15 0.03118 977.7 0.1982 293.01 2626.1 2333.1 1.958 663.1 404.1
71.0 344.15 0.03259 977.1 0.2066 297.20 2627.9 2330.6 1.960 663.9 398.7
72.0 345.15 0.03400 976.6 0.2150 301.39 2629.6 2328.1 1.963 664.6 393.3
73.0 346.15 0.03547 976.0 0.2237 305.58 2631.3 2325.7 1.965 665.4 388.1
74.0 347.15 0.03702 975.4 0.2328 309.77 2633.0 2323.2 1.968 666.1 383.0

75.0 348.15 0.03856 974.8 0.2419 313.96 2634.6 2320.7 1.970 666.8 377.9
76.0 349.15 0.04025 974.2 0.2518 318.15 2636.3 2318.2 1.972 667.4 373.1
77.0 350.15 0.04194 973.6 0.2617 322.34 2638.0 2315.7 1.975 668.1 368.3
78.0 351.15 0.04370 973.0 0.2720 326.54 2639.7 2313.1 1.977 668.7 363.6
79.0 352.15 0.04553 972.4 0.2827 330.73 2641.4 2310.6 1.980 669.4 359.1

80.0 353.15 0.04737 971.8 0.2934 334.93 2643.1 2308.1 1.983 670.0 354.5
81.0 354.15 0.04937 971.2 0.3050 339.13 2644.8 2305.6 1.985 670.6 350.2
82.0 355.15 0.05138 970.5 0.3165 343.32 2646.5 2303.1 1.988 671.2 345.9
83.0 356.15 0.05347 969.9 0.3285 347.52 2648.1 2300.5 1.990 671.8 341.7
84.0 357.15 0.05564 969.2 0.3410 351.72 2649.8 2298.0 1.993 672.3 337.6

85.0 358.15 0.05781 968.6 0.3535 355.92 2651.4 2295.5 1.996 672.8 333.5
86.0 359.15 0.06017 968.0 0.3670 360.12 2653.0 2292.9 1.999 673.3 329.6
87.0 360.15 0.06254 967.3 0.3805 364.32 2654.7 2290.4 2.002 673.8 325.7
88.0 361.15 0.06500 966.7 0.3944 368.52 2656.3 2287.8 2.005 674.3 321.9
89.0 362.15 0.06756 966.0 0.4089 372.73 2658.0 2285.3 2.008 674.8 318.2

90.0 363.15 0.07012 965.3 0.4234 376.93 2659.6 2282.7 2.011 675.3 314.5
91.0 364.15 0.07289 964.6 0.4390 381.14 2661.2 2280.1 2.014 675.7 311.0
92.0 365.15 0.07566 963.9 0.4546 385.35 2662.9 2277.5 2.017 676.2 307.5
93.0 366.15 0.07854 963.3 0.4708 389.56 2664.5 2274.9 2.021 676.6 304.1
94.0 367.15 0.08153 962.6 0.4875 393.77 2666.1 2272.4 2.024 677.0 300.8

95.0 368.15 0.08453 961.9 0.5043 397.98 2667.7 2269.8 2.027 677.4 297.4
96.0 369.15 0.08776 961.2 0.5223 402.20 2669.3 2267.2 2.030 677.8 294.2
97.0 370.15 0.09099 960.5 0.5403 406.41 2671.0 2264.5 2.033 678.1 291.1
98.0 371.15 0.09409 959.9 0.5575 410.32 2672.5 2262.1 2.037 678.4 288.2
99.0 372.15 0.09704 959.3 0.5738 413.91 2673.8 2259.8 2.040 678.7 285.6

99.63 372.78 0.10000 958.7 0.5902 417.51 2675.1 2257.6 2.043 679.0 283.0
100.0 373.15 0.10130 958.4 0.5975 419.06 2675.7 2256.7 2.044 679.1 281.9

Table A.3: Steam table in SI-Units, 65− 100 ◦C
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Program code

This chapter contains the source codes of the programs developed and used in the frame-
work of this diploma thesis. The used mathematics software package was Maple 11.

B.1 Fitting of tabulated values

This section includes programs for the fitting of tabulated values for water and steam.
Each of these programs calculates a polynomial equation with temperature as independent
parameter based on given single values and displays the graph of this equation.

B.1.1 The density of water
restart:

points := [273.15, 999.8], [274.15, 999.8], [275.15, 999.9], [276.15, 999.9], [277.15, 999.9],

[278.15, 999.9], [279.15, 999.9], [280.15, 999.9], [281.15, 999.8], [282.15, 999.8],

[283.15, 999.7], [284.15, 999.6], [285.15, 999.5], [286.15, 999.4], [287.15, 999.2],

[288.15, 999.1], [289.15, 998.9], [290.15, 998.8], [291.15, 998.6], [292.15, 998.4],

[293.15, 998.2], [294.15, 998.0], [295.15, 997.7], [296.15, 997.5], [297.15, 997.3],

[298.15, 997.0], [299.15, 996.8], [300.15, 996.5], [301.15, 996.2], [302.15, 995.9],

[303.15, 995.6], [305.65, 994.8], [308.15, 994.0], [310.65, 993.1], [313.15, 992.2],

[315.65, 991.2], [318.15, 990.2], [320.65, 989.1], [323.15, 988.0], [325.65, 986.8],

[328.15, 985.7], [330.65, 984.4], [333.15, 983.2], [335.65, 981.9], [338.15, 980.5],

[340.65, 979.2], [343.15, 977.7], [345.65, 976.3], [348.15, 974.8], [350.65, 973.3],

[353.15, 971.8], [355.65, 970.2], [358.15, 968.6], [360.65, 967.0], [363.15, 965.3],

[365.65, 963.6], [368.15, 961.9], [370.65, 960.2], [372.78, 958.7], [373.15, 958.4]:

with(plots):

with(CurveFitting):

plot1 := pointplot([points], symbol = circle, symbolsize = 5):

Approx := LeastSquares([points], T, curve = a*T^4+b*T^3+c*T^2+d*T+e);

plot2 := plot(Approx, T = 273.15 .. 373.15, thickness = 2):

display(plot2, plot1, view = [273.15 .. 373.15, 950 .. 1010], gridlines = true,

labels = [Temperature*[K], varrho[w]*[mu Pa*s]],

labeldirections = [horizontal, vertical], labelfont = [TIMES, ROMAN, 14]);
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B.1.2 The heat of evaporation
restart:

points := [273.15, 2500.5416], [274.15, 2498.2168], [275.15, 2495.7990], [276.15, 2493.3870],

[277.15, 2491.0810], [278.15, 2488.6790], [279.15, 2486.2800], [280.15, 2483.9850],

[281.15, 2481.5920], [282.15, 2479.3010], [283.15, 2476.9120], [284.15, 2474.5250],

[285.15, 2472.2380], [286.15, 2469.8530], [287.15, 2467.4680], [288.15, 2465.0830],

[289.15, 2462.7990], [290.15, 2460.4150], [291.15, 2458.0320], [292.15, 2455.6480],

[293.15, 2453.3650], [294.15, 2450.9810], [295.15, 2448.5980], [296.15, 2446.2140],

[297.15, 2443.9300], [298.15, 2441.5500], [299.15, 2439.1600], [300.15, 2436.7800],

[301.15, 2434.4000], [302.15, 2432.0100], [303.15, 2429.6300], [305.65, 2423.7700],

[308.15, 2417.8100], [310.65, 2411.8500], [313.15, 2405.9000], [315.65, 2399.8400],

[318.15, 2393.8800], [320.65, 2387.9300], [323.15, 2381.8700], [325.65, 2375.8200],

[328.15, 2369.7600], [330.65, 2363.7000], [333.15, 2357.6500], [335.65, 2351.4900],

[338.15, 2345.4200], [340.65, 2339.2600], [343.15, 2333.0900], [345.65, 2326.9200],

[348.15, 2320.6400], [350.65, 2314.4600], [353.15, 2308.1700], [355.65, 2301.8800],

[358.15, 2295.4800], [360.65, 2289.0800], [363.15, 2282.6700], [365.65, 2276.2500],

[368.15, 2269.7200], [370.65, 2263.2800], [372.78, 2257.5900], [373.15, 2256.6400]:

with(plots):

with(CurveFitting):

plot1 := pointplot([points], symbol = circle, symbolsize = 5):

Approx := LeastSquares([points], T, curve = a*T^2+b*T+c);

plot2 := plot(Approx, T = 273.15 .. 373.15, thickness = 2):

display(plot2, plot1, view = [273.15 .. 373.15, 2000 .. 2600], gridlines = true,

labels = [Temperature*[K], h[wv]*[kJ/kg]], labeldirections = [horizontal, vertical],

labelfont = [TIMES, ROMAN, 14]);

B.1.3 The viscosity of water
restart:

points := [273.15, 1793], [274.15, 1732], [275.15, 1674], [276.15, 1620], [277.15, 1568],

[278.15, 1519], [279.15, 1472], [280.15, 1428], [281.15, 1385], [282.15, 1345],

[283.15, 1306], [284.15, 1270], [285.15, 1235], [286.15, 1201], [287.15, 1169],

[288.15, 1138], [289.15, 1109], [290.15, 1080], [291.15, 1053], [292.15, 1027],

[293.15, 1002], [294.15, 978.0], [295.15, 954.8], [296.15, 932.6], [297.15, 911.1],

[298.15, 890.5], [299.15, 870.6], [300.15, 851.4], [301.15, 832.8], [302.15, 815.0],

[303.15, 797.7], [305.65, 757.0], [308.15, 719.6], [310.65, 685.1], [313.15, 653.2],

[315.65, 623.7], [318.15, 596.3], [320.65, 570.8], [323.15, 547.1], [325.65, 524.9],

[328.15, 504.2], [330.65, 484.8], [333.15, 466.6], [335.65, 449.5], [338.15, 433.4],

[340.65, 418.3], [343.15, 404.1], [345.65, 390.6], [348.15, 377.9], [350.65, 365.9],

[353.15, 354.5], [355.65, 343.7], [358.15, 333.5], [360.65, 323.8], [363.15, 314.5],

[365.65, 305.8], [368.15, 297.4], [370.65, 289.5], [372.78, 283.0], [373.15, 281.9]:

with(plots):

with(CurveFitting):

plot1 := pointplot([points], symbol = circle, symbolsize = 5):

Approx := LeastSquares([points], T, curve = a*T^5+b*T^4+c*T^3+d*T^2+e*T+f);

plot2 := plot(Approx, T = 273.15 .. 373.15, thickness = 2):

display(plot2, plot1, view = [273.15 .. 373.15, 0 .. 2000], gridlines = true,

labels = [Temperature*[K], eta[w]*[mu Pa*s]], labeldirections = [horizontal, vertical],

labelfont = [TIMES, ROMAN, 14]);

B.1.4 The specific heat of steam
restart:

points := [273.15, 1.868], [274.15, 1.868], [275.15, 1.869], [276.15, 1.869], [277.15, 1.870],

[278.15, 1.871], [279.15, 1.871], [280.15, 1.872], [281.15, 1.872], [282.15, 1.873],

[283.15, 1.874], [284.15, 1.875], [285.15, 1.875], [286.15, 1.876], [287.15, 1.877],

[288.15, 1.878], [289.15, 1.879], [290.15, 1.879], [291.15, 1.880], [292.15, 1.881],

[293.15, 1.882], [294.15, 1.883], [295.15, 1.884], [296.15, 1.885], [297.15, 1.886],

[298.15, 1.887], [299.15, 1.888], [300.15, 1.889], [301.15, 1.890], [302.15, 1.891],
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[303.15, 1.892], [305.65, 1.895], [308.15, 1.898], [310.65, 1.901], [313.15, 1.904],

[315.65, 1.908], [318.15, 1.912], [320.65, 1.915], [323.15, 1.919], [325.65, 1.924],

[328.15, 1.928], [330.65, 1.932], [333.15, 1.937], [335.65, 1.942], [338.15, 1.947],

[340.65, 1.953], [343.15, 1.958], [345.65, 1.964], [348.15, 1.970], [350.65, 1.976],

[353.15, 1.983], [355.65, 1.989], [358.15, 1.996], [360.65, 2.004], [363.15, 2.011],

[365.65, 2.019], [368.15, 2.027], [370.65, 2.035], [372.78, 2.043], [373.15, 2.044]:

with(plots):

with(CurveFitting):

plot1 := pointplot([points], symbol = circle, symbolsize = 5):

Approx := LeastSquares([points], T, curve = a*T^3+b*T^2+c*T+d);

plot2 := plot(Approx, T = 273.15 .. 373.15, thickness = 2):

display(plot2, plot1, view = [273.15 .. 373.15, 1.8 .. 2.1], gridlines = true,

labels = [Temperature*[K], c[p, v]*[kJ/(kg*K)]], labeldirections = [horizontal, vertical],

labelfont = [TIMES, ROMAN, 14]);

B.1.5 The thermal conductivity of water
restart:

points := [273.15, 561.0], [274.15, 562.9], [275.15, 564.8], [276.15, 566.7], [277.15, 568.6],

[278.15, 570.5], [279.15, 572.4], [280.15, 574.3], [281.15, 576.2], [282.15, 578.1],

[283.15, 580.0], [284.15, 581.9], [285.15, 583.8], [286.15, 585.6], [287.15, 587.5],

[288.15, 589.3], [289.15, 591.2], [290.15, 593.0], [291.15, 594.8], [292.15, 596.6],

[293.15, 598.4], [294.15, 600.2], [295.15, 601.9], [296.15, 603.7], [297.15, 605.4],

[298.15, 607.1], [299.15, 608.8], [300.15, 610.5], [301.15, 612.2], [302.15, 613.8],

[303.15, 615.4], [305.65, 619.4], [308.15, 623.2], [310.65, 627.0], [313.15, 630.5],

[315.65, 634.0], [318.15, 637.3], [320.65, 640.5], [323.15, 643.5], [325.65, 646.4],

[328.15, 649.2], [330.65, 651.8], [333.15, 654.3], [335.65, 656.7], [338.15, 658.9],

[340.65, 661.1], [343.15, 663.1], [345.65, 665.0], [348.15, 666.8], [350.65, 668.4],

[353.15, 670.0], [355.65, 671.5], [358.15, 672.8], [360.65, 674.1], [363.15, 675.3],

[365.65, 676.4], [368.15, 677.4], [370.65, 678.3], [372.78, 679.0], [373.15, 679.1]:

with(plots):

with(CurveFitting):

plot1 := pointplot([points], symbol = circle, symbolsize = 5):

Approx := LeastSquares([points], T, curve = a*T^2+b*T+c);

plot2 := plot(Approx, T = 273.15 .. 373.15, thickness = 2):

display(plot2, plot1, view = [273.16 .. 373.16, 0 .. 700], gridlines = true,

labels = [Temperature*[K], lambda*[W/(m*K)]], labeldirections = [horizontal, vertical],

labelfont = [TIMES, ROMAN, 14]);

B.1.6 The thermal conductivity of air
restart:

points := [100, 9.34], [150, 13.8], [200, 18.1], [250, 22.3], [300, 26.3], [350, 30.0], [400, 33.8],

[450, 37.3], [500, 40.7], [550, 43.9], [600, 46.9], [650, 49.7], [700, 52.4], [750, 54.9],

[800, 57.3], [850, 59.6], [900, 62.0], [950, 64.3], [1000, 66.7]:

with(plots):

with(CurveFitting):

plot1 := pointplot([points], symbol = circle, symbolsize = 5):

Approx := LeastSquares([points], T, curve = a*T^2+b*T+c);

plot2 := plot(Approx, T = 100 .. 1000, thickness = 2):

display(plot2, plot1, view = [100 .. 1000, 0 .. 70], gridlines = true,

labels = [Temperature*[K], lambda*[mW/(m*K)]], labeldirections = [horizontal, vertical],

labelfont = [TIMES, ROMAN, 14]);



Program code 79

B.2 The multiscale moisture diffusion model

This section contains the source code of the program for the homogenization model for
water diffusion. This program has the following structure:

B.2.1 Program structure

� Input of variables

– Oven-dry density of the wood sample

– Earlywood density

– Latewood density

� Input of constants

� Procedures for computation of different properties:

– Diffusion tensor of the cell wall

– Activation energy

– Heat of evaporation of water

– Heat of sorption

– Specific heat of steam

– Diffusion tensor of the lumen

– Relative humidity

– Slope dϕ/dmc

– Specific gravity of the cell wall

– Density of water

– Vapor pressure

– Volume fraction of the cell wall

– Volume fraction of the lumen

– Radial cell size

– Cell wall thickness

– Diameter ratio

– Aspect ratio

– P-tensor

– Fiber saturation point

� Calculation of the homogenized diffusion tensor for 40, 60, 80 and 100 ◦C

� Plotting of the results compared to values reported by Kollmann [17]
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B.2.2 Source code
#-------------------------------------------------------------------------------------------------------

# Calculation of the homogenized diffusion tensor

#-------------------------------------------------------------------------------------------------------

# Start settings

#---------------

restart:

with(linalg):

with(Units[Standard]):

# Input

#------

# Variables

densitywood := 404*Unit(’kg’/’m’^3):

densityearlywood := 280*Unit(’kg’/’m’^3):

densitylatewood := 820*Unit(’kg’/’m’^3):

# Constants

densitycellwall := 1530*Unit(’kg’/’m’^3):

cellsizelongitudinal := 1.8*10^(-3)*Unit(’m’):

cellsizetangential := 50*10^(-6)*Unit(’m’):

cellsizeradial200 := 50*10^(-6)*Unit(’m’):

cellsizeradial1000 := 20*10^(-6)*Unit(’m’):

R := 8.314472*Unit(’J’/(’mol’*’K’)):

molmasswater := 18.01528*Unit(’g’/’mol’):

D0transversal := 7*10^(-6)*Unit(’m’^2/’s’):

D0longitudinal := 17.5*10^(-6)*Unit(’m’^2/’s’):

# Procedures

------------

# Diffusion tensor of the cell wall

DIFFUSIONTENSORCELLWALL := proc ()

local DBT, DBL, a:

description "calculates the actual diffusion tensor for the cell wall":

a := simplify(temperaturekelvin*Unit(1/’K’));

DBT := D0transversal*exp(-ACTIVATIONENERGY()/(R*temperaturekelvin))/VOLUMEFRACTIONCELLWALL();

DBL := DBT*D0longitudinal/D0transversal;

matrix([[DBT, 0, 0],

[0, DBT, 0],

[0, 0, DBL]])

end proc:

# Activation energy

ACTIVATIONENERGY := proc ()

description "calculates the activation energy for bound water in the cell wall";

(38500-29000*moisturecontent)*Unit(’J’/’mol’)

#(HEATOFEVAPORATION()+HEATOFSORPTION()-temperaturekelvin*SPECIFICHEAT())*molmasswater

end proc:

# Heat of evaporation of water

HEATOFEVAPORATION := proc ()

local T;

description "calculates the heat of vaporization for the actual temperature";

T := temperaturekelvin/Unit(’K’);

simplify((3033.019010-1.601883570*T-0.1278794562e-2*T^2)*Unit(’kJ’/’kg’))

end proc:
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# Heat of sorption

HEATOFSORPTION := proc ()

local W, K, K1, K2, M, T, T1, T2, h, h1, h2, h11, h22;

description "calculates the heat of sorption by integration of the sorption isotherms";

T1 := temperaturekelvin+(-1)*.1*Unit(’K’);

T := T1/Unit(’K’)-273.16;

M := 4000.*h*(-5.840216510*10^24*h*T^6-1.268201413*10^36*h^2*T-2.840236168*10^34*h *T^2

-7.707429775*10^21*h*T^7-1.490348416*10^16*h^2*T^9+1.190989816*10^19*h*T^8

+3.023094436*10^36*h*T+5.267115000*10^37-1.753245859*10^27*h^2*T^5

-1.887848874*10^32*h*T^3-1.980162000*10^34*T+2.792561411*10^27*h*T^5

+1.625701098*10^13*T^10*h^2+9.056451018*10^31*h^2*T^3+2.701186854*10^24*h^2*T^6

+1.009642716*10^30*h*T^4+1.051012861*10^34*h^2*T^2+9.063286487*10^21*h^2*T^7

-1.776605400*10^30*T^3-5.622520638*10^37*h^2-2.435992020*10^33*T^2

+1.396899538*10^38*h+7.444710000*10^27*T^4-3.756775783*10^29*h^2*T^4

-9.929295389*10^18*h^2*T^8)/((6.98000*10^5+2580.*T+27.*T^2)*(1*10^8

-8.0500000*10^7*h-73600.*h*T+273.*h*T^2)*(1*10^28+5.047350000*10^28*h

-2.93618*10^25*h*T-2.679357800*10^24*h*T^2-1.974006000*10^21*h*T^3

+8.2719*10^18*h*T^4+1.679496909*10^27*h^2*T+1.551423006*10^18*h^2*T^5

-3.244564727*10^15*h^2*T^6+7.760552992*10^28*h^2+5.609126200*10^20*h^2*T^4

-4.281905431*10^12*h^2*T^7+6.616610091*10^9*h^2*T^8-1.048804930*10^23*h^2*T^3

-1.577908982*10^25*h^2*T^2));

h1 := fsolve(M=moisturecontent,h=0..1);

T2 := temperaturekelvin+.1*Unit(’K’);

T := T2/Unit(’K’)-273.16;

M := 4000.*h*(-5.840216510*10^24*h*T^6-1.268201413*10^36*h^2*T-2.840236168*10^34*h *T^2

-7.707429775*10^21*h*T^7-1.490348416*10^16*h^2*T^9+1.190989816*10^19*h*T^8

+3.023094436*10^36*h*T+5.267115000*10^37-1.753245859*10^27*h^2*T^5

-1.887848874*10^32*h*T^3-1.980162000*10^34*T+2.792561411*10^27*h*T^5

+1.625701098*10^13*T^10*h^2+9.056451018*10^31*h^2*T^3+2.701186854*10^24*h^2*T^6

+1.009642716*10^30*h*T^4+1.051012861*10^34*h^2*T^2+9.063286487*10^21*h^2*T^7

-1.776605400*10^30*T^3-5.622520638*10^37*h^2-2.435992020*10^33*T^2

+1.396899538*10^38*h+7.444710000*10^27*T^4-3.756775783*10^29*h^2*T^4

-9.929295389*10^18*h^2*T^8)/((6.98000*10^5+2580.*T+27.*T^2)*(1*10^8

-8.0500000*10^7*h-73600.*h*T+273.*h*T^2)*(1*10^28+5.047350000*10^28*h

-2.93618*10^25*h*T-2.679357800*10^24*h*T^2-1.974006000*10^21*h*T^3

+8.2719*10^18*h*T^4+1.679496909*10^27*h^2*T+1.551423006*10^18*h^2*T^5

-3.244564727*10^15*h^2*T^6+7.760552992*10^28*h^2+5.609126200*10^20*h^2*T^4

-4.281905431*10^12*h^2*T^7+6.616610091*10^9*h^2*T^8-1.048804930*10^23*h^2*T^3

-1.577908982*10^25*h^2*T^2));

h2 := fsolve(M = moisturecontent, h = 0 .. 1);

simplify(R*T1*T2*ln(h2/h1)/(molmasswater*(T2-T1)))

end proc:

# Specific heat of steam

SPECIFICHEAT := proc ()

local T;

description "calculates the specific heat of steam for the actual temperature";

T := temperaturekelvin/Unit(’K’);

simplify((1.09012526+0.914954871e-2*T-0.378467624e-4*T^2+5.40714299e-7*T^3)*Unit(’kJ’/(’kg’*’K’)))

#simplify((1.31980370+0.164464028e-2*T-0.102698084e-4*T^2+1.96778034e-8*T^3)*Unit(’kJ’/(’kg’*’K’)))

end proc:

# Diffusion tensor of the lumen

DIFFUSIONTENSORLUMEN := proc ()

local Da, Dv;

description "calculates the actual diffusion tensor of air in the lumen";

Da := 2.31e-5*RELATIVEHUMIDITY()*(temperaturekelvin/(273.16*Unit(’K’)))^1.81*Unit(’m’^2/’s’);

Dv := simplify((molmasswater*Da*VAPORPRESSURE()*SLOPEDHDM())/

(SPECIFICGRAVITYCELLWALL()*R*temperaturekelvin*VOLUMEFRACTIONCELLWALL()));

matrix([[Dv, 0, 0],

[0, Dv, 0],

[0, 0, Dv]])
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end proc:

# Relative humidity

RELATIVEHUMIDITY := proc ()

description "calculates the actual relative humidity for a given moisture content";

local T, b, h;

T := temperaturekelvin/Unit(’K’)-273.16;

h := ((18*((.805+0.736e-3*T-0.273e-5*T^2)*b/(1-(.805+0.736e-3*T-0.273e-5*T^2)*b)+((6.27-0.938e

-2*T-0.303e-3*T^2)*(.805+0.736e-3*T-0.273e-5*T^2)*b+(2*(6.27-0.938e-2*T-0.303e-3*T^2))

*(1.91+0.407e-1*T-0.293e-3*T^2)*(.805+0.736e-3*T-0.273e-5*T^2)^2*b^2)/(1+(6.27-0.938e

-2*T-0.303e-3*T^2)*(.805+0.736e-3*T-0.273e-5*T^2)*b+(6.27-0.938e-2*T-0.303e-3*T^2)

*(1.91+0.407e-1*T-0.293e-3*T^2)*(.805+0.736e-3*T-0.273e-5*T^2)^2*b^2)))

/(349+1.29*T+0.135e-1*T^2) = moisturecontent, b)[1]

end proc:

# Slope dh/dM

SLOPEDHDM := proc ()

description "calculates the actual slope of the sorption isotherm dH/dM";

local T, b, h;

T := temperaturekelvin/Unit(’K’)-273.16;

h := ((18*((.805+0.736e-3*T-0.273e-5*T^2)*b/(1-(.805+0.736e-3*T-0.273e-5*T^2)*b)+((6.27-0.938e

-2*T-0.303e-3*T^2)*(.805+0.736e-3*T-0.273e-5*T^2)*b+(2*(6.27-0.938e-2*T-0.303e-3*T^2))

*(1.91+0.407e-1*T-0.293e-3*T^2)*(.805+0.736e-3*T-0.273e-5*T^2)^2*b^2)/(1+(6.27-0.938e

-2*T-0.303e-3*T^2)*(.805+0.736e-3*T-0.273e-5*T^2)*b+(6.27-0.938e-2*T-0.303e-3*T^2)

*(1.91+0.407e-1*T-0.293e-3*T^2)*(.805+0.736e-3*T-0.273e-5*T^2)^2*b^2)))

/(349+1.29*T+0.135e-1*T^2) = moisturecontent, b)[1];

-(10^8*(2.063641731*10^55*h^02*T^07-3.675749638*10^52*h^02*T^08+1.078329103*10^12*T^20*h^05

-8.077141728*10^61*h^01*T^04+5.412110003*10^57*h^02*T^06-1.027829935*10^60*h^02*T^05

-2.106846000*10^69*h^00*T^00+4.520901016*10^65*h^04*T^02-3.096164295*10^59*h^03*T^05

+7.149378516*10^29*h^05*T^14+5.887059432*10^39*h^05*T^10+3.055465902*10^56*h^03*T^06

+2.301720675*10^65*h^04*T^03+8.424221918*10^42*h^03*T^11-1.068853722*10^61*h^05*T^00

-1.391476219*10^51*h^03*T^08+7.063379834*10^35*h^04*T^15+9.743968080*10^64*T^02*T^00

-1.499611817*10^29*h^03*T^14+3.464587822*10^32*h^05*T^13+7.106421600*10^61*T^03*T^00

+6.032899276*10^56*h^04*T^07+1.409333952*10^22*h^03*T^16+7.192210464*10^57*h^05*T^02

-1.238463654*10^24*h^05*T^16-9.126357169*10^34*h^05*T^12+1.228920340*10^66*h^03*T^02

+4.672173208*10^56*h^01*T^06+1.267828976*10^47*T^10*h^02+3.057046019*10^20*h^05*T^17

-6.835811784*10^26*h^05*T^15-3.941737740*10^53*h^05*T^04-5.744289226*10^57*h^04*T^06

-4.431187872*10^48*h^04*T^10-7.649605429*10^14*h^05*T^19-6.375915268*10^37*h^05*T^11

-7.241806605*10^69*h^03*T^00+6.165943820*10^53*h^01*T^07-9.167593471*10^69*h^02*T^00

+3.227982985*10^17*h^05*T^18-7.047680916*10^48*h^03*T^09-1.774447257*10^61*h^04*T^05

-4.231321955*10^61*h^03*T^04-1.534476018*10^56*h^05*T^03+1.345633201*10^64*h^03*T^03

+2.395342334*10^43*h^04*T^12+2.155772896*10^66*h^02*T^02-1.699654213*10^68*h^03*T^01

+7.086243882*10^42*h^05*T^09+3.727535815*10^49*h^05*T^06-4.727748888*10^44*h^05*T^08

+3.111981319*10^26*h^03*T^15-9.527918528*10^50*h^01*T^08-2.234049128*10^59*h^01*T^05

-2.405335416*10^47*h^05*T^07+4.675993515*10^45*h^03*T^10-1.067847737*10^50*h^02*T^09

-9.805509457*10^68*h^04*T^01-6.728861094*10^29*h^04*T^17+2.251261084*10^54*h^03*T^07

+7.491197318*10^46*h^04*T^11-7.101117937*10^39*h^03*T^12-1.659453149*10^57*h^05*T^01

-1.970349732*10^41*T^12*h^02+1.745305975*10^44*h^02*T^11+1.510279099*10^64*h^01*T^03

-9.861258080*10^36*h^04*T^14-1.920172449*10^62*h^02*T^04-9.668314996*10^51*h^04*T^09

-2.977884000*10^59*h^00*T^04-1.117519630*10^70*h^01*T^00-2.659153086*10^70*h^04*T^00

+7.920648000*10^65*h^00*T^01+4.302652124*10^26*h^04*T^18+9.562256318*10^61*h^04*T^04

-2.418475548*10^68*h^01*T^01-2.199880451*10^32*h^04*T^16+1.337561493*10^64*h^02*T^03

+2.272188934*10^66*h^01*T^02+7.770551426*10^66*h^02*T^01+2.084514389*10^53*h^04*T^08

-3.144165774*10^41*h^04*T^13+3.826766107*10^32*h^03*T^13+7.069296861*10^51*h^05*T^05)

/((6.98000*10^5+2580.*T+27.*T^2)*(1.00000000*10^8-8.0500000*10^7*h-73600.*h*T+273.*h*T^2)^2

*(1.000000000*10^28*h^00*T^00+5.047350000*10^28*h^01*T^00-2.936180000*10^25*h^01*T^01

-2.679357800*10^24*h^01*T^02-1.974006000*10^21*h^01*T^03+8.271900000*10^18*h^01*T^04

+1.679496909*10^27*h^02*T^01+5.609126200*10^20*h^02*T^04-3.244564727*10^15*h^02*T^06

-4.281905431*10^12*h^02*T^07+1.551423006*10^18*h^02*T^05-1.048804930*10^23*h^02*T^03

+6.616610091*10^09*h^02*T^08-1.577908982*10^25*h^02*T^02+7.760552992*10^28*h^02)^2))^(-1)

end proc:

# Specific gravity of the cell wall
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SPECIFICGRAVITYCELLWALL := proc ()

description "calculates the specific gravity of the cell wall for the actual moisture content";

densitycellwall/(1+(densitycellwall/DENSITYWATER())*moisturecontent)

end proc:

# Density of water

DENSITYWATER := proc ()

description "calculates the density of water for the actual temperature";

local T;

T := temperaturekelvin/Unit(’K’);

simplify((-1.390021658*10^(-7)*T^4+0.1956853951*10^(-3)*T^3-0.1058224883*T^2

+25.39735328*T-1256.217406)*Unit(’kg’/(’m’^3)))

end proc:

# Vapor pressure

VAPORPRESSURE := proc ()

description "calculates the actual relative vapor pressure";

local T, tau;

T := temperaturekelvin/Unit(’K’);

tau := 1+(-1)*T/647.14;

220.64*10^5*Unit(’bar’)*exp(647.14*(-7.85823*tau+1.83991*tau^1.5-11.7811*tau^3+22.6705*tau^3.5

-15.9393*tau^4+1.77516*tau^7.5)/T)

end proc:

# Volume fraction of the cell wall

VOLUMEFRACTIONCELLWALL := proc ()

description "calculates the volume fraction of the cell wall";

evalf(specificdensitywood/densitycellwall)

end proc:

# Volume fraction of the lumen

VOLUMEFRACTIONLUMEN := proc ()

description "calculates the volume fraction of the lumen";

evalf(1-VOLUMEFRACTIONCELLWALL())

end proc:

# Radial Cell Size

CELLSIZERADIAL := proc ()

local c1, c2;

description "calculates the radial cell size for the given specific wood density";

c2 := (1/800)*(cellsizeradial1000-cellsizeradial200)/Unit(’kg’/’m’^3);

c1 := cellsizeradial200-200*Unit(’kg’/’m’^3)*c2;

evalf(c1+c2*specificdensitywood)

end proc:

# Cellwall thickness

CELLWALLTHICKNESS := proc ()

local cellsizeradial, x;

description "calculates the cell wall thickness for the given specific wood density";

cellsizeradial := CELLSIZERADIAL();

solve(VOLUMEFRACTIONCELLWALL()=1-(cellsizeradial-2*x*Unit(’m’))*(cellsizetangential-2*x*Unit(’m’))/

(cellsizeradial*cellsizetangential), x)*Unit(’m’)

end proc:

# Diameter ratio

DIAMETERRATIO := proc ()
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local cellwallthickness;

description "calculates the diameter ratio for the given specific wood density";

cellwallthickness := CELLWALLTHICKNESS();

(CELLSIZERADIAL()-2*cellwallthickness)/(cellsizetangential-2*cellwallthickness)

end proc:

# Aspect ratio

ASPECTRATIO := proc ()

local cellwallthickness;

description "calculates the aspect ratio for the given specific wood density";

cellwallthickness := CELLWALLTHICKNESS();

(cellsizelongitudinal-2*cellwallthickness)/(cellsizetangential-2*cellwallthickness)

end proc:

# P-Tensor

PTENSOR := proc ()

local a1, a2, a3, diffusiontensorcellwall, z3, xi, i, j, g, gdach, P, phi;

description "calculates the P-Tensor";

a2 := 1;

a1 := a2*DIAMETERRATIO();

a3 := a2*ASPECTRATIO();

diffusiontensorcellwall := array(1..3,1..3,[[1,0,0],[0,1,0],[0,0,D0longitudinal/D0transversal]])

xi[1] := cos(phi)*sqrt(1-z3^2)/a1;

xi[2] := sin(phi)*sqrt(1-z3^2)/a2;

xi[3] := z3/a3;

i := ’i’;

j := ’j’;

g := sum(sum(diffusiontensorcellwall()[i,j]*xi[i]*xi[j],i=1..3),j=1..3);

gdach := 1/g;

P := array(1 .. 3, 1 .. 3);

i := ’i’;

j := ’j’;

for i to 3 do

for j to 3 do

P[i,j] := simplify(evalf((1/4*pi)*(int(int(gdach*xi[i]*xi[j],phi=0..2*pi),z3=-1..1))))

end do

end do;

P

end proc:

# Fiber saturation point

FIBERSATURATIONPOINT := proc ()

local h, T, W, K, K1, K2;

description "calculates the fiber saturation point for the actual temperature";

T := evalf(temperaturekelvin/Unit(’K’)-273.16);

h := 1.00;

W := 349+1.29*T+0.135e-1*T^2;

K := 0.805+0.736e-3*T-0.273e-5*T^2;

K1 := 6.270-0.938e-2*T-0.303e-3*T^2;

K2 := 1.91+0.407e-1*T-0.293e-3*T^2;

18*(K*h/(1-K*h)+(K1*K*h+2*K1*K2*K^2*h^2)/(1+K1*K*h+K1*K2*K^2*h^2))/W

end proc

# Assembly and Results

#---------------------

# Calculation of the properties of the example given by F. Kollmann for 20-100 C

specificdensitywood := densityearlywood:

PTensorearlywood := PTENSOR():

specificdensitywood := densitylatewood:
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PTensorlatewood := PTENSOR():

fearlywood := (densitywood-densitylatewood)/(densityearlywood-densitylatewood):

flatewood := 1-fearlywood:

temperaturekelvin := (273.16+20)*Unit(’K’):

amin := 1;

amax := trunc(100*FIBERSATURATIONPOINT())+1:

amax20 := amax:

results20 := array(1..amax-amin+2,1..8):

results20[1,1] := Moisture Content:

results20[1,2] := D[v]:

results20[1,3] := Activation Energy:

results20[1,4] := D[cellwall,transversal]:

results20[1,5] := D[cellwall,longitudinal]:

results20[1,6] := D[hom,radial]:

results20[1,7] := D[hom,tangential]:

results20[1,8] := D[hom,longitudinal]:

for a from amin to amax do

if a < amax

then moisturecontent := 0.01*a

else moisturecontent := FIBERSATURATIONPOINT()-0.001

end if

specificdensitywood := densityearlywood

f0 := VOLUMEFRACTIONCELLWALL():

f1 := VOLUMEFRACTIONLUMEN():

D0 := DIFFUSIONTENSORCELLWALL():

D1 := DIFFUSIONTENSORLUMEN():

P := evalm(PTensorearlywood/D0[1,1]):

U := matrix([[1,0,0],[0,1,0],[0,0,1]]):

numerator := simplify(evalm(f0*D0+f1*D1/(U+P*(D1-D0)))):

denumerator := simplify(evalm(f0*U+f1/(U+P*(D1-D0)))):

Dhomearlywood := simplify(evalm(numerator/denumerator)):

specificdensitywood := densitylatewood:

f0 := VOLUMEFRACTIONCELLWALL():

f1 := VOLUMEFRACTIONLUMEN():

D0 := DIFFUSIONTENSORCELLWALL():

D1 := DIFFUSIONTENSORLUMEN():

P := evalm(PTensorlatewood/D0[1,1]):

U := matrix([[1,0,0],[0,1,0],[0,0,1]]):

numerator := simplify(evalm(f0*D0+f1*D1/(U+P*(D1-D0)))):

denumerator := simplify(evalm(f0*U+f1/(U+P*(D1-D0)))):

Dhomlatewood := simplify(evalm(numerator/denumerator)):

results20[a-amin+2,1] := moisturecontent:

results20[a-amin+2,2] := 0:

results20[a-amin+2,3] := 0:

results20[a-amin+2,4] := 0:

results20[a-amin+2,5] := 0:

results20[a-amin+2,6] := 1/(fearlywood/Re(Dhomearlywood[1,1])+flatewood/Re(Dhomlatewood[1,1])):

results20[a-amin+2,7] := Re(Dhomearlywood[2,2])*fearlywood+Re(Dhomlatewood[2,2])*flatewood:

results20[a-amin+2,8] := Re(Dhomearlywood[3,3])*fearlywood+Re(Dhomlatewood[3,3])*flatewood:

end do:

temperaturekelvin := (273.16+40)*Unit(’K’):

amin := 1;

amax := trunc(100*FIBERSATURATIONPOINT())+1:
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amax40 := amax:

results40 := array(1..amax-amin+2,1..8):

results40[1,1] := Moisture Content:

results40[1,2] := D[v]:

results40[1,3] := Activation Energy:

results40[1,4] := D[cellwall,transversal]:

results40[1,5] := D[cellwall,longitudinal]:

results40[1,6] := D[hom,radial]:

results40[1,7] := D[hom,tangential]:

results40[1,8] := D[hom,longitudinal]:

for a from amin to amax do

if a < amax

then moisturecontent := 0.01*a

else moisturecontent := FIBERSATURATIONPOINT()-0.001

end if

specificdensitywood := densityearlywood

f0 := VOLUMEFRACTIONCELLWALL():

f1 := VOLUMEFRACTIONLUMEN():

D0 := DIFFUSIONTENSORCELLWALL():

D1 := DIFFUSIONTENSORLUMEN():

P := evalm(PTensorearlywood/D0[1,1]):

U := matrix([[1,0,0],[0,1,0],[0,0,1]]):

numerator := simplify(evalm(f0*D0+f1*D1/(U+P*(D1-D0)))):

denumerator := simplify(evalm(f0*U+f1/(U+P*(D1-D0)))):

Dhomearlywood := simplify(evalm(numerator/denumerator)):

specificdensitywood := densitylatewood:

f0 := VOLUMEFRACTIONCELLWALL():

f1 := VOLUMEFRACTIONLUMEN():

D0 := DIFFUSIONTENSORCELLWALL():

D1 := DIFFUSIONTENSORLUMEN():

P := evalm(PTensorlatewood/D0[1,1]):

U := matrix([[1,0,0],[0,1,0],[0,0,1]]):

numerator := simplify(evalm(f0*D0+f1*D1/(U+P*(D1-D0)))):

denumerator := simplify(evalm(f0*U+f1/(U+P*(D1-D0)))):

Dhomlatewood := simplify(evalm(numerator/denumerator)):

results40[a-amin+2,1] := moisturecontent:

results40[a-amin+2,2] := 0:

results40[a-amin+2,3] := 0:

results40[a-amin+2,4] := 0:

results40[a-amin+2,5] := 0:

results40[a-amin+2,6] := 1/(fearlywood/Re(Dhomearlywood[1,1])+flatewood/Re(Dhomlatewood[1,1])):

results40[a-amin+2,7] := Re(Dhomearlywood[2,2])*fearlywood+Re(Dhomlatewood[2,2])*flatewood:

results40[a-amin+2,8] := Re(Dhomearlywood[3,3])*fearlywood+Re(Dhomlatewood[3,3])*flatewood:

end do:

temperaturekelvin := (273.16+60)*Unit(’K’):

amin := 1;

amax := trunc(100*FIBERSATURATIONPOINT())+1:

amax60 := amax:

results60 := array(1..amax-amin+2,1..8):

results60[1,1] := Moisture Content:

results60[1,2] := D[v]:

results60[1,3] := Activation Energy:

results60[1,4] := D[cellwall,transversal]:

results60[1,5] := D[cellwall,longitudinal]:

results60[1,6] := D[hom,radial]:

results60[1,7] := D[hom,tangential]:
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results60[1,8] := D[hom,longitudinal]:

for a from amin to amax do

if a < amax

then moisturecontent := 0.01*a

else moisturecontent := FIBERSATURATIONPOINT()-0.001

end if

specificdensitywood := densityearlywood

f0 := VOLUMEFRACTIONCELLWALL():

f1 := VOLUMEFRACTIONLUMEN():

D0 := DIFFUSIONTENSORCELLWALL():

D1 := DIFFUSIONTENSORLUMEN():

P := evalm(PTensorearlywood/D0[1,1]):

U := matrix([[1,0,0],[0,1,0],[0,0,1]]):

numerator := simplify(evalm(f0*D0+f1*D1/(U+P*(D1-D0)))):

denumerator := simplify(evalm(f0*U+f1/(U+P*(D1-D0)))):

Dhomearlywood := simplify(evalm(numerator/denumerator)):

specificdensitywood := densitylatewood:

f0 := VOLUMEFRACTIONCELLWALL():

f1 := VOLUMEFRACTIONLUMEN():

D0 := DIFFUSIONTENSORCELLWALL():

D1 := DIFFUSIONTENSORLUMEN():

P := evalm(PTensorlatewood/D0[1,1]):

U := matrix([[1,0,0],[0,1,0],[0,0,1]]):

numerator := simplify(evalm(f0*D0+f1*D1/(U+P*(D1-D0)))):

denumerator := simplify(evalm(f0*U+f1/(U+P*(D1-D0)))):

Dhomlatewood := simplify(evalm(numerator/denumerator)):

results60[a-amin+2,1] := moisturecontent:

results60[a-amin+2,2] := 0:

results60[a-amin+2,3] := 0:

results60[a-amin+2,4] := 0:

results60[a-amin+2,5] := 0:

results60[a-amin+2,6] := 1/(fearlywood/Re(Dhomearlywood[1,1])+flatewood/Re(Dhomlatewood[1,1])):

results60[a-amin+2,7] := Re(Dhomearlywood[2,2])*fearlywood+Re(Dhomlatewood[2,2])*flatewood:

results60[a-amin+2,8] := Re(Dhomearlywood[3,3])*fearlywood+Re(Dhomlatewood[3,3])*flatewood:

end do:

temperaturekelvin := (273.16+80)*Unit(’K’):

amin := 1;

amax := trunc(100*FIBERSATURATIONPOINT())+1:

amax80 := amax:

results80 := array(1..amax-amin+2,1..8):

results80[1,1] := Moisture Content:

results80[1,2] := D[v]:

results80[1,3] := Activation Energy:

results80[1,4] := D[cellwall,transversal]:

results80[1,5] := D[cellwall,longitudinal]:

results80[1,6] := D[hom,radial]:

results80[1,7] := D[hom,tangential]:

results80[1,8] := D[hom,longitudinal]:

for a from amin to amax do

if a < amax

then moisturecontent := 0.01*a

else moisturecontent := FIBERSATURATIONPOINT()-0.001

end if

specificdensitywood := densityearlywood
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f0 := VOLUMEFRACTIONCELLWALL():

f1 := VOLUMEFRACTIONLUMEN():

D0 := DIFFUSIONTENSORCELLWALL():

D1 := DIFFUSIONTENSORLUMEN():

P := evalm(PTensorearlywood/D0[1,1]):

U := matrix([[1,0,0],[0,1,0],[0,0,1]]):

numerator := simplify(evalm(f0*D0+f1*D1/(U+P*(D1-D0)))):

denumerator := simplify(evalm(f0*U+f1/(U+P*(D1-D0)))):

Dhomearlywood := simplify(evalm(numerator/denumerator)):

specificdensitywood := densitylatewood:

f0 := VOLUMEFRACTIONCELLWALL():

f1 := VOLUMEFRACTIONLUMEN():

D0 := DIFFUSIONTENSORCELLWALL():

D1 := DIFFUSIONTENSORLUMEN():

P := evalm(PTensorlatewood/D0[1,1]):

U := matrix([[1,0,0],[0,1,0],[0,0,1]]):

numerator := simplify(evalm(f0*D0+f1*D1/(U+P*(D1-D0)))):

denumerator := simplify(evalm(f0*U+f1/(U+P*(D1-D0)))):

Dhomlatewood := simplify(evalm(numerator/denumerator)):

results80[a-amin+2,1] := moisturecontent:

results80[a-amin+2,2] := 0:

results80[a-amin+2,3] := 0:

results80[a-amin+2,4] := 0:

results80[a-amin+2,5] := 0:

results80[a-amin+2,6] := 1/(fearlywood/Re(Dhomearlywood[1,1])+flatewood/Re(Dhomlatewood[1,1])):

results80[a-amin+2,7] := Re(Dhomearlywood[2,2])*fearlywood+Re(Dhomlatewood[2,2])*flatewood:

results80[a-amin+2,8] := Re(Dhomearlywood[3,3])*fearlywood+Re(Dhomlatewood[3,3])*flatewood:

end do:

temperaturekelvin := (273.16+100)*Unit(’K’):

amin := 1;

amax := trunc(100*FIBERSATURATIONPOINT())+1:

amax100 := amax:

results100 := array(1..amax-amin+2,1..8):

results100[1,1] := Moisture Content:

results100[1,2] := D[v]:

results100[1,3] := Activation Energy:

results100[1,4] := D[cellwall,transversal]:

results100[1,5] := D[cellwall,longitudinal]:

results100[1,6] := D[hom,radial]:

results100[1,7] := D[hom,tangential]:

results100[1,8] := D[hom,longitudinal]:

for a from amin to amax do

if a < amax

then moisturecontent := 0.01*a

else moisturecontent := FIBERSATURATIONPOINT()-0.001

end if

specificdensitywood := densityearlywood

f0 := VOLUMEFRACTIONCELLWALL():

f1 := VOLUMEFRACTIONLUMEN():

D0 := DIFFUSIONTENSORCELLWALL():

D1 := DIFFUSIONTENSORLUMEN():

P := evalm(PTensorearlywood/D0[1,1]):

U := matrix([[1,0,0],[0,1,0],[0,0,1]]):

numerator := simplify(evalm(f0*D0+f1*D1/(U+P*(D1-D0)))):

denumerator := simplify(evalm(f0*U+f1/(U+P*(D1-D0)))):

Dhomearlywood := simplify(evalm(numerator/denumerator)):
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specificdensitywood := densitylatewood:

f0 := VOLUMEFRACTIONCELLWALL():

f1 := VOLUMEFRACTIONLUMEN():

D0 := DIFFUSIONTENSORCELLWALL():

D1 := DIFFUSIONTENSORLUMEN():

P := evalm(PTensorlatewood/D0[1,1]):

U := matrix([[1,0,0],[0,1,0],[0,0,1]]):

numerator := simplify(evalm(f0*D0+f1*D1/(U+P*(D1-D0)))):

denumerator := simplify(evalm(f0*U+f1/(U+P*(D1-D0)))):

Dhomlatewood := simplify(evalm(numerator/denumerator)):

results100[a-amin+2,1] := moisturecontent:

results100[a-amin+2,2] := 0:

results100[a-amin+2,3] := 0:

results100[a-amin+2,4] := 0:

results100[a-amin+2,5] := 0:

results100[a-amin+2,6] := 1/(fearlywood/Re(Dhomearlywood[1,1])+flatewood/Re(Dhomlatewood[1,1])):

results100[a-amin+2,7] := Re(Dhomearlywood[2,2])*fearlywood+Re(Dhomlatewood[2,2])*flatewood:

results100[a-amin+2,8] := Re(Dhomearlywood[3,3])*fearlywood+Re(Dhomlatewood[3,3])*flatewood:

end do:

# Plot for the results of the calculation and the data of Kollmann

#-----------------------------------------------------------------

column := 6

with(plots)

with(CurveFitting)

if column = 1

then

b := 1:

mode2 := 1:

else

if column = 3

then

b := Unit(’mol’/’J’):

mode2 := 1:

else

b := Unit(’s’/’m’^2):

mode2 := 2

end if:

end if:

pointsY20 := array(1..amax20 -amin+1):

pointsY40 := array(1..amax40 -amin+1):

pointsY60 := array(1..amax60 -amin+1):

pointsY80 := array(1..amax80 -amin+1):

pointsY100 := array(1..amax100-amin+1):

a := ’a’:

for a from amin to amax20 do pointsY20[a-amin+1] := simplify(results20 [a-amin+2,column]*b) end do:

for a from amin to amax40 do pointsY40[a-amin+1] := simplify(results40 [a-amin+2,column]*b) end do:

for a from amin to amax60 do pointsY60[a-amin+1] := simplify(results60 [a-amin+2,column]*b) end do:

for a from amin to amax80 do pointsY80[a-amin+1] := simplify(results80 [a-amin+2,column]*b) end do:

for a from amin to amax100 do pointsY100[a-amin+1] := simplify(results100[a-amin+2,column]*b) end do:

a := ’a’:

points20 := seq([results20 [a-amin+2,1],pointsY20 [a-amin+1]],a=amin..amax20 ):

points40 := seq([results40 [a-amin+2,1],pointsY40 [a-amin+1]],a=amin..amax40 ):

points60 := seq([results60 [a-amin+2,1],pointsY60 [a-amin+1]],a=amin..amax60 ):

points80 := seq([results80 [a-amin+2,1],pointsY80 [a-amin+1]],a=amin..amax80 ):

points100 := seq([results100[a-amin+2,1],pointsY100[a-amin+1]],a=amin..amax100):

plot20 := pointplot({points20 },colour=black,symbol=circle,symbolsize=4):

plot40 := pointplot({points40 },colour=black,symbol=circle,symbolsize=4):
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plot60 := pointplot({points60 },colour=black,symbol=circle,symbolsize=4):

plot80 := pointplot({points80 },colour=black,symbol=circle,symbolsize=4):

plot100 := pointplot({points100},colour=black,symbol=circle,symbolsize=4):

splineplot20 := plot(Spline([points20 ],m),m=(1/100)*amin..(1/100)*amax20 ,colour=green, thickness=1):

splineplot40 := plot(Spline([points40 ],m),m=(1/100)*amin..(1/100)*amax40 ,colour=blue, thickness=1):

splineplot60 := plot(Spline([points60 ],m),m=(1/100)*amin..(1/100)*amax60 ,colour=red, thickness=1):

splineplot80 := plot(Spline([points80 ],m),m=(1/100)*amin..(1/100)*amax80 ,colour=black, thickness=1):

splineplot100 := plot(Spline([points100],m),m=(1/100)*amin..(1/100)*amax100,colour=gold, thickness=1):

kollmann40 := [0.0545,1.0556*10^(-10)],[0.0665,1.2222*10^(-10)],[0.0712,1.2778*10^(-10)],

[0.0825,1.5833*10^(-10)],[0.0865,1.5556*10^(-10)],[0.0890,1.6667*10^(-10)],

[0.0908,1.5000*10^(-10)],[0.0940,1.7778*10^(-10)],[0.1005,1.9722*10^(-10)],

[0.1068,1.7222*10^(-10)],[0.1170,1.8889*10^(-10)],[0.1240,1.8611*10^(-10)],

[0.1340,2.2222*10^(-10)],[0.1382,2.4722*10^(-10)],[0.1407,2.4167*10^(-10)],

[0.1505,2.6111*10^(-10)],[0.1595,2.8611*10^(-10)],[0.1670,2.8333*10^(-10)],

[0.1690,3.1944*10^(-10)],[0.1778,3.0556*10^(-10)],[0.1817,3.3333*10^(-10)],

[0.1927,3.4722*10^(-10)],[0.2065,3.6111*10^(-10)],[0.2222,4.0000*10^(-10)],

[0.2266,4.1667*10^(-10)],[0.2403,4.5278*10^(-10)],[0.2545,5.0278*10^(-10)],

[0.2735,5.9722*10^(-10)],[0.2850,6.2222*10^(-10)]:

kollmann60 := [0.0295,2.0000*10^(-10)],[0.0418,2.3611*10^(-10)],[0.0440,2.3056*10^(-10)],

[0.0494,2.7222*10^(-10)],[0.0553,2.8889*10^(-10)],[0.0624,3.2778*10^(-10)],

[0.0625,2.7500*10^(-10)],[0.0676,3.3333*10^(-10)],[0.0692,3.5833*10^(-10)],

[0.0744,3.5000*10^(-10)],[0.0786,3.2500*10^(-10)],[0.0836,3.9444*10^(-10)],

[0.0873,3.8056*10^(-10)],[0.0918,4.3611*10^(-10)],[0.0959,4.0556*10^(-10)],

[0.1031,5.1111*10^(-10)],[0.1058,4.9444*10^(-10)],[0.1137,4.9444*10^(-10)],

[0.1197,5.1111*10^(-10)],[0.1279,5.8611*10^(-10)],[0.1352,6.0000*10^(-10)],

[0.1570,6.3889*10^(-10)],[0.1636,6.7222*10^(-10)],[0.1727,7.5556*10^(-10)],

[0.1760,7.1111*10^(-10)],[0.1906,7.6667*10^(-10)],[0.2086,8.1944*10^(-10)],

[0.2208,9.3333*10^(-10)],[0.2374,1.0917*10^(-09)],[0.2465,1.0778*10^(-09)],

[0.2601,1.1556*10^(-09)],[0.2704,1.2833*10^(-09)]:

kollmann80 := [0.0284,3.9722*10^(-10)],[0.0364,3.7778*10^(-10)],[0.0401,4.8611*10^(-10)],

[0.0484,5.3333*10^(-10)],[0.0492,4.6389*10^(-10)],[0.0554,5.2222*10^(-10)],

[0.0568,6.0000*10^(-10)],[0.0604,5.6944*10^(-10)],[0.0684,7.3889*10^(-10)],

[0.0689,6.3611*10^(-10)],[0.0702,6.7222*10^(-10)],[0.0794,8.0000*10^(-10)],

[0.0795,7.3333*10^(-10)],[0.0868,8.1944*10^(-10)],[0.0888,8.7500*10^(-10)],

[0.1002,9.7222*10^(-10)],[0.1003,9.2222*10^(-10)],[0.1101,1.0222*10^(-09)],

[0.1213,1.2194*10^(-09)],[0.1244,1.2056*10^(-09)],[0.1438,1.4333*10^(-09)],

[0.1543,1.4778*10^(-09)],[0.1566,1.5361*10^(-09)],[0.1837,1.8278*10^(-09)],

[0.2004,2.0750*10^(-09)],[0.2029,2.1000*10^(-09)],[0.2345,2.6694*10^(-09)]:

kollmann100 := [0.0211,8.4444*10^(-10)],[0.0259,9.9722*10^(-10)],[0.0311,1.5583*10^(-09)],

[0.0329,1.1444*10^(-09)],[0.0410,1.3472*10^(-09)],[0.0423,1.3500*10^(-09)],

[0.0453,1.5972*10^(-09)],[0.0481,1.3444*10^(-09)],[0.0496,2.0583*10^(-09)],

[0.0531,1.6889*10^(-09)],[0.0532,1.4056*10^(-09)],[0.0598,2.0083*10^(-09)],

[0.0612,1.7917*10^(-09)],[0.0629,2.3222*10^(-09)],[0.0649,1.7389*10^(-09)],

[0.0704,2.5167*10^(-09)],[0.0744,2.2361*10^(-09)],[0.0782,2.5667*10^(-09)],

[0.0902,2.3833*10^(-09)],[0.0966,2.4583*10^(-09)],[0.1012,2.3222*10^(-09)],

[0.1116,3.1167*10^(-09)],[0.1154,2.3583*10^(-09)],[0.1205,2.8083*10^(-09)],

[0.1310,2.6639*10^(-09)],[0.1432,3.4278*10^(-09)],[0.1529,2.9778*10^(-09)],

[0.1672,4.3417*10^(-09)],[0.1704,2.8306*10^(-09)],[0.1771,3.8667*10^(-09)],

[0.1968,4.7056*10^(-09)],[0.1983,4.0972*10^(-09)],[0.2093,5.6528*10^(-09)]:

kollmann40plot1 := pointplot([kollmann40], symbol=diagonalcross,symbolsize=5,colour=blue):

kollmann60plot1 := pointplot([kollmann60], symbol=diagonalcross,symbolsize=5,colour=red):

kollmann80plot1 := pointplot([kollmann80], symbol=diagonalcross,symbolsize=5,colour=black):

kollmann100plot1 := pointplot([kollmann100],symbol=diagonalcross,symbolsize=5,colour=gold):

kollmann40plot2 := plot(2.842666470*10^(-8)*x^3-9.128236704*10^(-9)*x^2+2.534640867*10^(-9)*x

-1.323359679*10^(-11),x=0.042..0.29,linestyle=dashdot,colour=blue, thickness=2):

kollmann60plot2 := plot(5.920661911*10^(-8)*x^3+5.711533729*10^(-9)*x-2.018730940*10^(-8)*x^2

+2.327765984*10^(-11),x=0.030..0.27,linestyle=dashdot,colour=red, thickness=2):

kollmann80plot2 := plot(-9.092464889*10^(-9)*x^2+8.509373191*10^(-9)*x+7.986240847*10^(-8)*x^3

+1.112713233*10^(-10),x=0.024..0.24,linestyle=dashdot,colour=black,thickness=2):

kollmann100plot2 := plot(9.198470913*10^(-10)+1.282704261*10^(-8)*x+2.675278982*10^(-8)*x^2,

x=0.020..0.21,linestyle=dashdot,colour=gold, thickness=2):

if column = 3

then



Program code 91

ylabel := convert(combine(results40[1, column]/b, ’units’), ’units’, J/mol):

else

ylabel := results40[1, column]/b:

end if:

unwith(Units[Standard]):

if column = 2

then

display(splineplot20, splineplot40, splineplot60, splineplot80, splineplot100, plot20, plot40,

plot60, plot80, plot100, axes=normal, gridlines=true,

axis[1]=[tickmarks=[7,subticks=4]],axis[2]=[tickmarks=[10,subticks=4],mode=log],

labels=[moisture*content,ylabel],labeldirections=[horizontal,vertical],

view=[0..0.30,1*10^(-6)..1*10^(-2)],labelfont = [TIMES, ROMAN, 14])

end if;

if column = 3

then

display(splineplot20, splineplot40, splineplot60, splineplot80, splineplot100, plot20, plot40,

plot60, plot80, plot100, axes=normal, gridlines=true,

axis[1]=[tickmarks=[7,subticks=4]],axis[2]=[tickmarks=[10,subticks=4]],

labels=[moisture*content,ylabel],labeldirections=[horizontal,vertical],

view=[0..0.30,0..55000],labelfont = [TIMES, ROMAN, 14])

end if;

if column = 4

then

display(splineplot40, splineplot60, splineplot80, splineplot100, plot40, plot60, plot80, plot100,

axes=normal, gridlines=true,

axis[1]=[tickmarks=[7,subticks=4]],axis[2]=[tickmarks=[10,subticks=3],mode=log],

labels=[moisture*content,ylabel],labeldirections=[horizontal,vertical],

view=[0..0.30,5*10^(-13)..10^(-9)],labelfont = [TIMES, ROMAN, 14])

end if;

if column = 5

then

display(splineplot40, splineplot60, splineplot80, splineplot100, plot40, plot60, plot80, plot100,

axes=normal,gridlines=true,

axis[1]=[tickmarks=[7,subticks=4]],axis[2]=[tickmarks=[10,subticks=3],mode=log],

labels=[moisture*content,ylabel],labeldirections=[horizontal,vertical],

view=[0..0.30,5*10^(-13)..5*10^(-9)],labelfont = [TIMES, ROMAN, 14])

end if;

if column = 6

then

display(splineplot40, splineplot60, splineplot80, splineplot100, plot40, plot60, plot80, plot100,

kollmann40plot1, kollmann40plot2, kollmann60plot1, kollmann60plot2, kollmann80plot1,

kollmann80plot2, kollmann100plot1, kollmann100plot2, axes=normal, gridlines=true,

axis[1]=[tickmarks=[7,subticks=4]],axis[2]=[tickmarks=[10,subticks=4],mode=log],

labels=[moisture*content,ylabel],labeldirections=[horizontal,vertical],

view=[0..0.30,9*10^(-12)..3*10^(-8)],labelfont = [TIMES, ROMAN, 14])

end if;

if column = 7

then

display(splineplot40, splineplot60, splineplot80, splineplot100, plot40, plot60, plot80, plot100,

axes=normal,gridlines=true,

axis[1]=[tickmarks=[7,subticks=4]],axis[2]=[tickmarks=[10,subticks=3],mode=log],

labels=[moisture*content,ylabel],labeldirections=[horizontal,vertical],

view=[0..0.30,9*10^(-12)..3*10^(-8)],labelfont = [TIMES, ROMAN, 14])

end if;

if column = 8

then

display(splineplot20, splineplot40, splineplot60, splineplot80, splineplot100, plot20, plot40, plot60,

plot80, plot100, axes=normal, gridlines=true,

axis[1]=[tickmarks=[7,subticks=4]],axis[2]=[tickmarks=[10,subticks=3],mode=log],

labels=[moisture*content,ylabel],labeldirections=[horizontal,vertical],

view=[0..0.30,9*10^(-10)..3*10^(-7)],labelfont = [TIMES, ROMAN, 14])

end if;

with(Units[Standard]):
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B.3 The multiscale thermal conduction model

This section contains the source code of the program for the homogenization model for
thermal conduction. This program has the following structure:

B.3.1 Program structure

� Input of variables

– Earlywood density

– Latewood density

� Input of constants

� Procedures for computation of different properties:

– Thermal conductivity tensor of the cell wall

– Thermal conductivity of water

– Thermal conductivity tensor of the lumen

– Thermal conductivity of air

– Volume fraction of the cell wall

– Volume fraction of the lumen

– Radial cell size

– Cell wall thickness

– Diameter ratio

– Aspect ratio

– P-tensor

� Calculation of the thermal conductivity tensor for a given temperature and moisture-
content

� Plotting of the results compared to values reported by Kollmann [17]

B.3.2 Source code
#-------------------------------------------------------------------------------------------------------

# Calculation of the homogenized thermal conductivity tensor

#-------------------------------------------------------------------------------------------------------

# Start settings

#---------------

restart:

with(linalg):

with(Units[Standard]):

# Input

#------
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# Variables

densityearlywood := 280*Unit(’kg’/’m’^3):

densitylatewood := 820*Unit(’kg’/’m’^3):

# Constants

densitycellwall := 1530*Unit(’kg’/’m’^3):

cellsizelongitudinal := 2.8*10^(-3)*Unit(’m’):

cellsizetangential := 50*10^(-6)*Unit(’m’):

cellsizeradial200 := 50*10^(-6)*Unit(’m’):

cellsizeradial1000 := 20*10^(-6)*Unit(’m’):

lambda0transversal := 0.410*Unit(’W’/(’m’*’K’)):

lambda0longitudinal := .730*Unit(’W’/(’m’*’K’)):

# Procedures

#-----------

# Thermal conductivity tensor of the cell wall

CONDUCTIVITYTENSORCELLWALL := proc ()

local lambdatransversal, lambdalongitudinal;

description "calculates the actual thermal conductivity tensor for the cell wall";

lambdatransversal := lambda0transversal+LAMBDABOUNDWATER()*moisturecontent;

lambdalongitudinal := lambda0longitudinal+LAMBDABOUNDWATER()*moisturecontent;

matrix([[lambdatransversal, 0 , 0 ],

[ 0 ,lambdatransversal, 0 ],

[ 0 , 0 , lambdalongitudinal]])

end proc:

# Thermal conductivity of water

LAMBDABOUNDWATER := proc ()

local T;

description "calculates the bound water thermal conductivity for the actual temperature";

T := simplify(temperaturekelvin*Unit(1/’K’));

(-728.198686+7.298716648*T-0.9453916040e-2*T^2)*Unit(’mW’/(’m’*’K’))

end proc:

# Thermal conductivity tensor of the lumen

CONDUCTIVITYTENSORLUMEN := proc ()

local lambdaa;

description "calculates the actual thermal conductivity tensor for the lumen";

lambdaa := LAMBDAAIR();

matrix([[lambdaa, 0 , 0 ],

[ 0 ,lambdaa, 0 ],

[ 0 , 0 ,lambdaa]])

end proc:

# Thermal conductivity of air

LAMBDAAIR := proc ()

local T;

description "calculates the actual thermal conductivity of air";

T := simplify(temperaturekelvin*Unit(1/’K’));

(.3102291022+0.9499532950e-1*T-0.2917470146e-4*T^2)*Unit(’mW’/(’m’*’K’))

end proc:

# Volume fraction of the cell wall

VOLUMEFRACTIONCELLWALL := proc ()

description "calculates the volume fraction of the cell wall";

evalf(specificdensitywood / densitycellwall)
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end proc:

# Volume fraction of the lumen

VOLUMEFRACTIONLUMEN := proc ()

description "calculates the volume fraction of the lumen";

evalf(1-VOLUMEFRACTIONCELLWALL())

end proc:

# Radial Cell Size

CELLSIZERADIAL := proc ()

local c1, c2;

description "calculates the radial cell size for the given specific wood density";

c2 := (1/800)*(cellsizeradial1000-cellsizeradial200)/Unit(’kg’/’m’^3);

c1 := cellsizeradial200-200*Unit(’kg’/’m’^3)*c2;

evalf(c1+c2*specificdensitywood)

end proc:

# Cellwallthickness

CELLWALLTHICKNESS := proc ()

local cellsizeradial, x;

description "calculates the cell wall thickness for the given specific wood density";

cellsizeradial := CELLSIZERADIAL();

solve(VOLUMEFRACTIONCELLWALL()=1-(cellsizeradial-2*x*Unit(’m’))*(cellsizetangential-2*x*Unit(’m’))/

(cellsizeradial*cellsizetangential), x)*Unit(’m’)

end proc:

# Diameter ratio

DIAMETERRATIO := proc ()

local cellwallthickness;

description "calculates the diameter ratio for the given specific wood density";

cellwallthickness := CELLWALLTHICKNESS();

(CELLSIZERADIAL()-2*cellwallthickness)/(cellsizetangential-2*cellwallthickness)

end proc:

# Aspect ratio

ASPECTRATIO := proc ()

local cellwallthickness;

description "calculates the aspect ratio for the given specific wood density";

cellwallthickness := CELLWALLTHICKNESS();

(cellsizelongitudinal-2*cellwallthickness)/(cellsizetangential-2*cellwallthickness)

end proc:

# P-Tensor

PTENSOR := proc ()

local a1, a2, a3, z3, xi, i, j, g, gdach, P, phi;

description "calculates the P-Tensor";

a2 := 1;

a1 := a2*DIAMETERRATIO();

a3 := a2*ASPECTRATIO();

xi[1] := cos(phi)*sqrt(1-z3^2)/a1;

xi[2] := sin(phi)*sqrt(1-z3^2)/a2;

xi[3] := z3/a3;

i := ’i’;

j := ’j’;

g := sum(sum(CONDUCTIVITYTENSORCELLWALL()[i,j]*xi[i]*xi[j],i=1..3),j=1..3);

gdach := 1/g;

P := array(1 .. 3, 1 .. 3);
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i := ’i’;

j := ’j’;

for i to 3 do

for j to 3 do

P[i,j] := simplify(evalf((1/4*pi)*(int(int(gdach*xi[i]*xi[j],phi=0..2*pi),z3=-1..1))))

end do

end do;

P

end proc:

# Assembly and Results

#---------------------

# Calculation of the Thermal Conductivity Tensor for a given temperature and moisturecontent

temperaturekelvin := (273.16+20)*Unit(’K’):

moisturecontent := 0.16:

specificdensitywood := densityearlywood:

P := PTENSOR():

f0 := VOLUMEFRACTIONCELLWALL():

f1 := VOLUMEFRACTIONLUMEN():

K0 := CONDUCTIVITYTENSORCELLWALL():

K1 := CONDUCTIVITYTENSORLUMEN():

U := matrix([[1,0,0],[0,1,0],[0,0,1]]):

numerator := simplify(evalm(f0*K0+f1*K1/(U+P*(K1-K0)))):

denumerator := simplify(evalm(f0*U+f1/(U+P*(K1-K0))))

Khomearlywood := simplify(evalm(numerator/denumerator)):

specificdensitywood := densitylatewood:

P := PTENSOR():

f0 := VOLUMEFRACTIONCELLWALL():

f1 := VOLUMEFRACTIONLUMEN():

K0 := CONDUCTIVITYTENSORCELLWALL():

K1 := CONDUCTIVITYTENSORLUMEN():

U := matrix([[1,0,0],[0,1,0],[0,0,1]]):

numerator := simplify(evalm(f0*K0+f1*K1/(U+P*(K1-K0)))):

denumerator := simplify(evalm(f0*U+f1/(U+P*(K1-K0)))):

Khomlatewood := simplify(evalm(numerator/denumerator)):

amin := round(densityearlywood/10*Unit(’m’^3/’kg’)):

amax := round(densitylatewood/10*Unit(’m’^3/’kg’)):

results := array(1..amax-amin+2,1..7):

results[1,1] := Specific wood density:

results[1,2] := K[lumen]:

results[1,3] := K[cellwall,transversal]:

results[1,4] := K[cellwall,longitudinal]:

results[1,5] := K[hom,radial]:

results[1,6] := K[hom,tangential]:

results[1,7] := K[hom,longitudinal]:

for a from amin to amax do

specificdensitywood := a*10*Unit(’kg’/’m’^3):

fearlywood := (specificdensitywood-densitylatewood)/(densityearlywood-densitylatewood):

flatewood := 1-fearlywood:

Khom := matrix([[1,0,0],[0,1,0],[0,0,1]]):

Khom[1,1] := 1/simplify(fearlywood/Khomearlywood[1, 1]+flatewood/Khomlatewood[1, 1]):

Khom[2,2] := Khomearlywood[2,2]*fearlywood+Khomlatewood[2,2]*flatewood:

Khom[3,3] := Khomearlywood[3,3]*fearlywood+Khomlatewood[3,3]*flatewood:

results[a-amin+2,1] := specificdensitywood:

results[a-amin+2,2] := K1[1,1]:

results[a-amin+2,3] := K0[1,1]:

results[a-amin+2,4] := K0[3,3]:

results[a-amin+2,5] := Re(Khom[1,1]):

results[a-amin+2,6] := Re(Khom[2,2]):

results[a-amin+2,7] := Re(Khom[3,3]):

end do:
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print(results);

# Plot for the results of the calculation and the data of Kollmann

#-----------------------------------------------------------------

with(plots):

with(CurveFitting):

b := Unit(’m’^3/’kg’):

c := Unit(’s’^3*’K’/(’m’*’kg’)):

a := ’a’:

pointsX := array(1..amax-amin+1):

pointsY := array(1..amax-amin+1):

for a from amin to amax do

pointsX[a-amin+1] := simplify(results[a-amin+2,1]*b):

pointsY[a-amin+1] := simplify((results[a-amin+2,5]*c+results[a-amin+2, 6]*c)*1/2):

end do:

a := ’a’:

pointsradial := seq([pointsX[a-amin+1],pointsY[a-amin+1]],a=amin..amax):

radialplot := pointplot({pointsradial},colour=black,symbol=circle,symbolsize=4):

radialsplineplot := plot(Spline([pointsradial],x),x=10*amin..10*amax,colour=red,thickness=2):

a := ’a’:

pointsX := array(1..amax-amin+1):

pointsY := array(1..amax-amin+1):

for a from amin to amax do

pointsX[a-amin+1] := simplify(results[a-amin+2,1]*b):

pointsY[a-amin+1] := simplify(results[a-amin+2,7]*c):

end do:

a := ’a’:

pointslongitudinal := seq([pointsX[a-amin+1],pointsY[a-amin+1]],a=amin..amax):

longitudinalplot := pointplot({pointslongitudinal},colour=black,symbol=circle,symbolsize=4):

longitudinalsplineplot := plot(Spline([pointslongitudinal],x),x=10*amin..10*amax,colour=red,thickness=2):

readings1 := matrix([[452, 0.23100], [551, 0.30100]]):

kollmannsoftwoodparallel := seq([readings1[x,1],1.163*readings1[x,2]],x=1..2):

readings2 := matrix([[100, 0.51e-1], [330, 0.73e-1], [330, 0.82e-1], [345, 0.69e-1], [350, 0.86e-1],

[350, 0.90e-1], [350, 0.75e-1], [350, 0.77e-1], [360, 0.73e-1], [362, 0.78e-1],

[370, 0.74e-1], [380, 0.72e-1], [390, 0.77e-1], [370, 0.80e-1], [385, 0.83e-1],

[365, 0.84e-1], [364, 0.86e-1], [361, 0.88e-1], [360, 0.92e-1], [360, 0.94e-1],

[380, 0.87e-1], [390, 0.91e-1], [395, 0.87e-1], [410, 0.79e-1], [452, 0.78e-1],

[412, 0.83e-1], [415, 0.82e-1], [460, 0.84e-1], [465, 0.82e-1], [475, 0.85e-1],

[405, 0.86e-1], [410, 0.87e-1], [415, 0.86e-1], [425, 0.86e-1], [420, 0.89e-1],

[427, 0.87e-1], [424, 0.92e-1], [435, 0.92e-1], [450, 0.94e-1], [470, 0.93e-1],

[485, 0.96e-1], [412, 0.99e-1], [414, 0.97e-1], [422, 0.10000], [430, 0.98e-1],

[440, 0.97e-1], [460, 0.11000], [495, 0.90e-1], [510, 0.89e-1], [522, 0.90e-1],

[510, 0.92e-1], [512, 0.95e-1], [524, 0.92e-1], [525, 0.94e-1], [540, 0.95e-1],

[555, 0.92e-1], [568, 0.96e-1], [575, 0.98e-1], [587, 0.96e-1], [600, 0.91e-1],

[475, 0.10200], [480, 0.11000], [486, 0.10700], [490, 0.10500], [510, 0.10500],

[490, 0.10100], [510, 0.10200], [507, 0.98e-1], [518, 0.99e-1], [523, 0.10300],

[530, 0.10200], [545, 0.10500], [555, 0.10300], [560, 0.10900], [575, 0.11100],

[513, 0.10900], [525, 0.10800], [530, 0.11500], [570, 0.11600], [545, 0.12100],

[560, 0.11900], [410, 0.11800], [535, 0.12500], [627, 0.12100], [640, 0.11400],

[655, 0.11600], [640, 0.13400], [673, 0.13200], [690, 0.12500], [715, 0.13100]]):

kollmannsoftwoodperpendicular := seq([readings2[x,1],1.163*readings2[x,2]],x=1..90):

readings3 := matrix([[650, 0.21100], [600, 0.33100], [700, 0.34100], [708, 0.30800], [817, 0.30200]]):

kollmannhardwoodparallel := seq([readings3[x,1],1.163*readings3[x,2]],x=1..5):

readings4 := matrix([[115, 0.42e-1], [190, 0.43e-1], [458, 0.98e-1], [580, 0.90e-1], [512, 0.11400],

[525, 0.11200], [560, 0.11400], [568, 0.12200], [580, 0.12300], [580, 0.14700],

[550, 0.18500], [600, 0.16500], [600, 0.11000], [603, 0.11500], [620, 0.10600],

[650, 0.11100], [605, 0.11500], [618, 0.11400], [625, 0.11900], [630, 0.11600],

[665, 0.12400], [665, 0.12400], [630, 0.12300], [625, 0.12500], [618, 0.12700],

[615, 0.13000], [630, 0.13100], [705, 0.12600], [723, 0.12600], [730, 0.12800],
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[743, 0.13000], [655, 0.13100], [660, 0.13400], [670, 0.13500], [685, 0.13500],

[690, 0.13800], [645, 0.15000], [710, 0.13900], [685, 0.14300], [710, 0.15600],

[713, 0.15700], [730, 0.14000], [735, 0.14400], [750, 0.14300], [755, 0.13900],

[773, 0.15000], [776, 0.14600], [790, 0.15000], [795, 0.16000], [825, 0.15500],

[830, 0.18000], [900, 0.12900], [1165, 0.2160]]):

kollmannhardwoodperpendicular := seq([readings4[x,1],1.163*readings4[x,2]],x=1..53):

kollmannsoftwoodparallelplot := pointplot({kollmannsoftwoodparallel},colour=black,symbol=asterisk,

symbolsize=7,legend="Softwood parallel"):

kollmannsoftwoodperpendicularplot := pointplot({kollmannsoftwoodperpendicular},colour=black,symbol=cross,

symbolsize=7,legend="Softwood normal"):

kollmannhardwoodparallelplot := pointplot({kollmannhardwoodparallel},colour=black,symbol=solidcircle,

symbolsize=7,legend="Hardwood parallel"):

kollmannhardwoodperpendicularplot := pointplot({kollmannhardwoodperpendicular},colour=black,symbol=circle,

symbolsize=7,legend="Hardwood normal"):

display(radialsplineplot,longitudinalsplineplot,kollmannsoftwoodparallelplot,

kollmannsoftwoodperpendicularplot,kollmannhardwoodparallelplot,kollmannhardwoodperpendicularplot,

view=[0..1200,0..0.45],gridlines=true,

axis[1]=[tickmarks=[12,subticks=4]],axis[2]=[tickmarks=[10,subticks=4]],

labels=[ovendry density [kg/m^3],thermal conductivity lambda [W/(m*K)]],

labeldirections=[horizontal,vertical],labelfont=[TIMES,ROMAN,14],

legendstyle=[location=right,font=[TIMES,ROMAN,12]]);
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