

DISSERTATION

Evaluation of Downtimeless System Evolution in Automation and
Control Systems

How to decide whether a system under operation can be changed without
disturbances?

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors der
technischen Wissenschaften unter der Leitung von

Em.O.Univ.-Prof. Dipl.-Ing. Dr. techn. Gerfried Zeichen /
Univ.-Prof. Dipl.-Ing. Dr. techn. Bernard Favre-Bulle

Institut für Automatisierungs- und Regelungstechnik (E376)

eingereicht an der Technischen Universität Wien,
Fakultät für Elektrotechnik und Informationstechnik

von
Dipl.-Ing. Christoph Sünder

Matr.Nr.: 9925300

Korneuburgerstraße 2
2003 Wiesen

ÖSTERREICH

 Wiesen, im August 2008

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

“It is not said,
that it will get better,

if things change the way they are;
but if it should get better,

then things have to change the way they are.”

Georg Christoph Lichtenberger (1742-1799)
German physicist and author

„Es ist nicht gesagt,
dass es besser wird,

wenn es anders wird;
wenn es aber besser werden soll,

muss es anders werden.“

Georg Christoph Lichtenberger (1742-1799)
Deutscher Physiker und Schriftsteller

 i

Abstract

This thesis concentrates on downtimeless evolution of the functionality of automation and
control systems for production processes. These processes have to be adapted during the
whole life cycle of the plant because of changing requirements, for instance new products or
product variants. In addition, the free competition forces the companies to do not stop their
production during the application of such changes. During operation the whole production
plant has to be continuously adapted. These changes are introduced as downtimeless system
evolution of automation and control systems in this thesis.
Current state of the art automation and control systems already provide the possibility to
apply changes during operation to some extent. But these changes of the control logic
introduce disturbances to the production processes, which may lead to reduced product
quality or even damage of the plant machinery. In order to avoid these failures, the engineer
has to be in the position to explicitly coordinate the evolution of the automation and control
system to the special needs of the application.
Within this thesis we introduce a new engineering cycle for downtimeless system evolution.
Thus the user is capable to freely program the kind of changes which will be applied during
the evolution execution. Therefore, existing programming languages will be used, which
additionally include the possibility for dynamic reconfiguration. Due to these applications, the
so called evolution control applications, it is possible to change the current control logic
during its operation. By additional interaction of the user also hardware components may be
changed during operation.
The most important aspect for the execution of system evolution is the question regarding
correctness. The new system state of the plant may be checked by conventional methods. But
the check for the transition to the new system state needs a new methodology, as there is no
concept available in literature up to now. This work provides as its main contribution an
evaluation method for downtimeless system evolution.
The new methodology combines the engineering method and the basic properties of a correct
downtimeless system evolution, which leads to a set of necessary measures for the evaluation.
As main concept the current system state—a comprehensive description of all involved
elements called KAPPA vector—is put into the center of investigations. The dynamically
changing character of the system state during execution of the evolution control application is
the basis for the overall evaluation method. As evaluation means two different concepts are
applied: rule-based calculations and verification by model checking. Both concepts are based
on the information provided in the KAPPA vector. Therefore the evolution of an automation
and control system can be checked sufficiently and the new methodology of downtimeless
system evolution can be applied to real systems.

 ii

Kurzfassung

Diese Arbeit beschäftigt sich mit der unterbrechnungsfreien Änderung der Funktion von
Automatisierungssystemen für Produktionsprozesse. Diese müssen über den ganzen Lebens-
zyklus einer Anlage an die ständig veränderlichen Anforderungen wie etwa neue Produkte
oder Produktvarianten angepasst werden. Da Änderungen aber durch den hohen Druck des
freien Wettbewerbs zu keinem Stillstand der Anlage führen dürfen, muss das gesamte System
kontinuierlich während des Betriebs adaptiert werden. Diese Änderung des Automatisierungs-
systems wird hier mit unterbrechungsfreier Systemevolution bezeichnet.
Aktuelle Automatisierungssysteme bieten zwar großteils die Möglichkeit, Umschaltungen der
Steuerungslogik während des Betriebs durchzuführen, dabei werden aber Störungen in das
System eingebracht, die z.B. zu verminderter Produktqualität oder auch Beschädigung der
Anlage führen können. Um dies verhindern zu können, muss der Anwender in der Lage sein,
die Evolution des Automatisierungssystems explizit auf die jeweilige Situation abzustimmen.
Diese Arbeit führt einen neuen Engineering-Zyklus für die Evolution von Steuerungssyste-
men ein, der es dem Anwender erlaubt, die Art und Weise der Durchführung einer Evolution
frei zu programmieren. Dazu werden die vorhandenen Programmiersprachen genutzt und um
die Möglichkeit zur dynamischen Rekonfiguration erweitert. Durch die Ausführung dieses
sogenannten Evolutionssteuerungsprogramms kann das aktuelle Steuerungsprogramm (und
unter Mitwirkung des Anwenders auch die dazugehörige Hardware) während des Betriebes
verändert werden.
Die wichtigste Fragestellung in diesem Zusammenhang ist die Korrektheit des Evolutions-
steuerungsprogramms. Ein neuer Zustand des Steuerungsprogramms kann mit herkömmli-
chen Mitteln auf Richtigkeit geprüft werden, aber für die Übergangsphase während der
Änderung des Systems im laufenden Betrieb gibt es derzeit noch keine adäquate Überprü-
fungsmethode. Deshalb legt diese Arbeit ihren Schwerpunkt auf die Evaluierung von
unterbrechungsfreien Systemevolutionen von Automatisierungssystemen.
In dem neuartigen Ansatz wird die Engineeringmethode mit den Eigenschaften für eine
fehlerfreie Evolution in Zusammenhang gebracht und daraus die notwendigen Maßnahmen
zur Evaluierung abgeleitet. Als wesentliches Grundkonzept wird der aktuelle, umfassend
dargestellte Systemzustand hervorgehoben, der KAPPA Vektor genannt wird. Diese sich
entsprechend der Evolution ändernde Größe ist die Grundlage für den gesamten Evaluie-
rungsprozess. Auf Basis dieser Systembeschreibung werden zwei Arten von Überprüfungen
durchgeführt: regelbasierte Berechnungen und Verifikation durch Model Checking. Beiden
Fällen liegen die umfassenden Informationen aus dem KAPPA Vektor zugrunde. Dadurch
kann die Veränderung des Automatisierungssystems vollständig überprüft und somit erst die
neue Methodik der unterbrechungsfreien Evolution in der Praxis angewendet werden.

 iii

Acknowledgement

First of all I would like to thank Professor Dr. Bernard Favre-Bulle, who conducted my thesis
as supervisor during a long period of time. Unfortunately he was not able to finish this work,
and I am very grateful that Professor Dr. Gerfried Zeichen took this job during the final phase
of my thesis.
I want to thank also Dr. Valeriy Vyatkin from Auckland University, who supported my work
in many fruitful discussions and with enhancements of his verification tools. Finally, I am
glad that he was willing to co-supervise this work.
This dissertation came to standing during my employment as a research assistant at the
Automation and Control Institute at Vienna University of Technology. I want to thank all
colleagues for providing a highly innovative and productive environment. My special thanks
are dedicated to Dr. Alois Zoitl and Oliver Hummer for their support and fuitful discussions
during my work. Wilfried Lepuschitz provided me with proof-reading the manuscript.
This thesis was highly supported by the research project εCEDAC. As second research
partner, company Profactor GmbH, and especially Dr. Thomas Strasser, Martijn Rooker,
Gerhard Ebenhofer, Mario Schüpany, and Roland Mungenast provided me with their ideas
and discussions for my thesis. Even as we were located in different affiliations, we have been
one big team. Dr. Franz Auinger took a central role during the preparation of this project,
many thanks also to him.
The industrial members of the εCEDAC consortium have provided important incentives for
my work. I want to express my gratitude to Josef Fritsche, Siegmar Thomas, Gerold Ker-
bleder (Bachmann electronic GmbH), Heinrich Steininger, Mario Semo, Thomas Baier
(logi.cals Austria), Robert Schranz, Georg Keintzel (Siemens VAI), and last but not least
Dr. Dietmar Loy (Loytec electronics).
Many warm thanks go to my parents, Brigitta and Karl Sünder, for their support during the
long period of my education.
Finally and above all, I would like to thank my wonderful wife Monika for her devoted love
and her incessant patience when my time schedule needed prolongation several times. Her
meticulous attention to details has significantly improved my work for instance by proof-
reading the manuscript. This thesis is dedicated to you my dear darling.

 iv

Content

Abstract ... i

Kurzfassung ... ii

Acknowledgement...iii

1 The general tasks for downtimeless system evolution.. 1
1.1 Motivation ... 3
1.2 Purpose of this thesis... 5
1.3 Guideline through the thesis ... 6

2 Analysis of Requirements.. 7
2.1 Execution requirements for control devices.. 7
2.2 Requirements for downtimeless system evolution ... 8
2.3 Usability requirements .. 9
2.4 Summary.. 10

3 State of the Art ... 11
3.1 Automation and control systems ... 11
3.2 Programming languages ... 15

3.2.1 IEC 61131-3 .. 16
3.2.2 IEC 61499 ... 19

3.3 Description languages... 25
3.4 Software evolution and dynamic reconfiguration ... 28

3.4.1 Reference architecture for dynamic reconfiguration 30
3.4.2 Further approaches to dynamic reconfiguration .. 33
3.4.3 Dynamic reconfiguration in automation and control systems 35

3.5 Transition management... 38
3.6 Verification by model checking ... 40

3.6.1 Enhanced model checking techniques... 42
3.6.2 Formal specification by temporal logic .. 43
3.6.3 Approaches to model checking.. 46
3.6.4 Model checking in automation and control systems 49

3.7 Summary.. 51

v CONTENT

4 New Engineering method for Downtimeless System Evolution 53
4.1 Evolution engineering method .. 53
4.2 Basic evolution control engineering ... 56

4.2.1 Why is it necessary to freely program evolution control applications?........ 56
4.2.2 Basic reconfiguration services .. 57
4.2.3 Modeling evolution control applications .. 60

4.3 Enhanced evolution control engineering .. 64
4.4 Downtimeless system evolution with physical reconfiguration................................. 68
4.5 Summary.. 69

5 New Concept for the Evaluation of Downtimeless System Evolution............................. 71
5.1 Specification of the evaluation framework.. 71

5.1.1 Evaluation of ACSs operating control applications...................................... 71
5.1.2 Evaluation of ACSs incorporating downtimeless system evolution 73

5.2 Concept formulation.. 75
5.2.1 System integrity characteristics .. 77
5.2.2 Evaluation means for a system evolution step .. 79
5.2.3 Evaluation of CECAs .. 85

5.3 The current system state: KAPPA vector .. 85
5.3.1 Characterization of KAPPA vector elements .. 86
5.3.2 FDCML as basis for a KAPPA vector representation 87
5.3.3 KAPPA vector during execution of a system evolution step 89

5.4 Summary.. 90

6 Evaluation of properties by KAPPA-based calculations.. 93
6.1 Influences to temporal control application properties.. 93

6.1.1 Scheduling theory of R3E... 95
6.1.2 Calculation of event chain execution time .. 98
6.1.3 Evaluation of ECA influences on control applications 103

6.2 Check for dependent operation ... 104
6.2.1 Dependencies of IEC 61499 management commands 105
6.2.2 Correct order of basic reconfiguration services ... 107
6.2.3 Creation and deletion of applications/application parts 108

6.3 Check for requirements of resources .. 109
6.3.1 Type library check ... 110
6.3.2 Available memory check.. 110

6.4 Summary.. 111

7 Evaluation of properties by model checking .. 113
7.1 Architectural elements of the system model .. 113
7.2 Modeling real-time behavior... 118
7.3 Dynamic reconfiguration support in formal models ... 120

7.3.1 Manipulation of connections ... 121
7.3.2 Execution control of FB instances .. 124
7.3.3 Reading of input/output variables as well as internal variables................. 125
7.3.4 Writing of input and internal variables... 125

7.4 Modeling architectural elements in NCES.. 126

CONTENT vi

7.4.1 Real-time operating system (eCos) ... 127
7.4.2 Real-time reconfiguration runtime environment... 130
7.4.3 IEC 61499 applications... 133
7.4.4 Evolution control application.. 134

7.5 Interrelation with the system environment .. 134
7.6 Definition of evolution specifications.. 137

7.6.1 Specifications in natural language.. 137
7.6.2 Evolution specifications .. 140
7.6.3 Evaluation of small portions of system behavior .. 142

7.7 Summary.. 143

8 Demonstration and Experiments .. 145
8.1 Typical example on a specific test model .. 145

8.1.1 Demonstration control device ... 145
8.1.2 Typical control example .. 147
8.1.3 KAPPA-based calculations ... 150
8.1.4 Verification by model checking ... 154

8.2 Experiments with selected architectural elements .. 161
8.2.1 Event dispatcher as critical section .. 161
8.2.2 Modeling the plant behavior ... 163

8.3 Summary.. 164

9 Discussion of Industrial Application .. 167
9.1 Value-added chain for total evaluation... 167
9.2 Automation Extreme Programming .. 170
9.3 Summary.. 173

10 Towards Evaluation of logi.CAD εCEDAC Instant reload ... 175
10.1 logi.CAD Instant reload .. 175
10.2 logi.CAD εCEDAC Instant reload .. 176
10.3 Evaluation approach for the logi.CAD εCEDAC Instant reload 178
10.4 Summary.. 181

11 Outlook... 183

12 Conclusion ... 187

Appendix

A Field Device Configuration Markup Language... 191
A.1 Basic elements of the FDCML schema definition ... 191
A.2 Elements that provide extensibility in FDCML... 193

B Real-time Reconfiguration Runtime Environment.. 195
B.1 Real-time execution of IEC 61499 applications.. 195
B.2 Basic reconfiguration services .. 198
B.3 Measurement results ... 201

vii CONTENT

C Net Condition/Event Systems .. 203
C.1 Timed net condition/event systems .. 203
C.2 Signal net systems.. 206
C.3 Tool framework ... 208

D Embedded Configurable Operating System (eCos).. 211
D.1 Configurability .. 211
D.2 The kernel component ... 212

E Property Specification Patterns .. 215
E.1 Occurrence specification patterns .. 216

E.1.1 Absence property pattern .. 216
E.1.2 Universality property pattern.. 217
E.1.3 Existence property pattern .. 217
E.1.4 Bounded existence property pattern.. 218

E.2 Order specification patterns.. 219
E.2.1 Precedence property pattern ... 219
E.2.2 Response property pattern .. 220
E.2.3 Response chain property pattern... 220
E.2.4 Precedence chain property pattern ... 221

E.3 Property specification pattern notes ... 221

F FDCML-based description of the demonstration control device................................... 223

G Additional information for demonstration example .. 229

Used terms and abbreviations ... 243

Bibliography .. 255

Webiography .. 269

Index of Figures .. 273

Index of Tables .. 277

Curriculum Vitae... 279

 1

1 The general tasks for downtimeless system evolution

Chapter 1

The general tasks for downtimeless system evolution

An automation and control system (ACS) for plant automation consists of different compo-
nents such as actuators, sensors, communication systems, and appropriate control devices, as
for instance depicted in Favre-Bulle (2004, Chapter 2). The most important type of control
devices, which will be considered within this thesis, are programmable logic controllers
(PLCs). Since its invention 40 years ago [45] many technologies have been added to the
classical design of a PLC, their foundations have been defined by the International Electro-
technical Commission (IEC) in the IEC 61131 standard. Especially the software architecture
and the programming languages of part 3 (IEC 61131-3, 2003) build the fundamentals of each
PLC. The application fields for PLCs are manifold—the process under control concerns any
kind of continuous, discrete, or mixed plant—and the ACS customers have very different
background knowledge according to their role in the ACS industry: plant operator, field
engineer, electrician, computer scientist.
The needs of the ACSs customers have been the topic of various studies and surveys. In order
to give an impression of upcoming and new technologies in this field some key studies will be
mentioned. A study has been conducted by the Iacocca Institute (1991), which identified
nowadays well known requirements such as “production to order” or “lot/batch size equal or
greater than one” as future demands for manufacturing systems. It has been stated that ACSs
will be information intensive, reprogrammable, reconfigurable, and continuously changeable.
These requirements can be summarized by the key word agile manufacturing, which means
highly flexible adaptations to the current needs. The study also triggered standardization work
within the IEC, and since 2005 the IEC 61499 standard is available as international standard,
providing a basis for the requirements stated in this early study. A more recent study has been
done by Favre-Bulle (2005) concerning the future directions in manufacturing science in
Europe. Within this study a large number of European experts from industry and academia
have been interviewed. The different views have been interrelated with existing international
studies, and six future key technologies have been extracted. Three of them are directly
related to ACSs, namely simultaneous production, 100% reconfigurable adaptive production
systems, and semantic systems (introduction of reasoning and self-learning into control
devices). Without going into detail about the results of this study it can be seen that these
directions are very close to the vision of the early study of the Iacocca Institute. Even more
impressive is the strategic research agenda of the European High-Level Group Manufuture
(European Commission, 2006). This industry driven platform provides future research
directions within the European Union frame programs in the field of ACSs. The report
identifies advanced manufacturing engineering as one of the future challenges, with the topics
reconfigurable technical systems and integrated processes/systems as important pillars.
The current situation of the overall time-to-market cycle within a process or production plant
is depicted in the schematic in Figure 1. The bar diagram in the middle of this figures shows
an average production process, starting from enterprise control until sales and after sales

2 THE GENERAL TASKS FOR DOWNTIMELESS SYSTEM EVOLUTION

activities. The main time consumption is related the production process, which is denoted as
standard production time TPSt. In case of changing production requirements (e.g., new
variants of products) the capabilities of the production plant and especially the production
automation in order to support these changes significantly influence the resulting time-to-
market for the reconfiguration. The worst case situation is given in the top bar diagram. After
using rapid prototyping and digital engineering for dynamic changes in product development
functions of an enterprise the time for reconfiguration of manufacturing execution TPC is the
bottle neck for quicker time-to-market.

Figure 1: Minimal and maximal time for reconfiguration of manufacturing execution1

With downtimeless system evolution (DSE), as it will be introduced in this thesis, we purpose
to reduce the time for production to a minimum (see TPCmin in the third bar diagram of Figure
1). DSE aims at reconfiguration and changes to a system without the need to stop its opera-
tion. It enables the engineering of smooth transitions to new system states, whereas these
changes are not limited to functionalities for the pure exchange of software parts. In literature,
the term dynamic reconfiguration is used for changes of software during run-time. DSE does
have a more comprehensive view, as a plant does consist of hardware and software. The plant
evolves in its overall system characteristics over time and the ACS customer needs an
appropriate means to model this behavior. As most important aspect of this new methodology,
the evaluation of DSE will be developed: as means for the ACS customer to decide whether it
will be downtimeless or cause a system break down (or something in between).
In order to make the challenges of DSE more descriptive, application scenarios from current
industrial practice can be considered as for instance presented in Baier et al. (2007). One
common prerequisite is that the plant has to be fully functional all the time, although the plant
requires permanent maintenance like fault analysis and repair, incorporation of new function-
ality, or refactoring in reaction to environmental or changed requirements. For instance
production plants for steel (e.g. rolling mills, hot dip galvanization lines) need to be operated
continuously due to requirements of the process. A line stop would cause a lot of scrap and
costs. A typical scenario for program changes is the optimization of the production process.
Or a wind mill as example for an energy production plant, which cannot be shut down easily
as this needs to be managed within the overall wind farm and wears out the mechanics of the
wind turbine, too. Updates of erroneous software parts or added/changed functionality of the
control program needs to be applied without downtime. Another application field of DSE is

1 The different tasks and their correlation within the time-to-market cycle are based on Zeichen and Fürst (2000).

THE GENERAL TASKS FOR DOWNTIMELESS SYSTEM EVOLUTION 3

building automation. A modern building consists of a network of hundreds or even thousands
of controllers. And the building changes its functions for instance when new tenants are
moving in and out, when special events take place, or due to energy saving programs. The
special challenge of such a building is the event triggered character of the usage of the
building. A reconfiguration within the control program cannot be scheduled reliably to an
uncritical time, since a switch-on of a light or a fire alarm may occur at any time.
The critical question of this thesis “How to decide whether a system under operation can be
changed without disturbances?” aims at the use of basic means for evaluation of complex
systems32 applied especially for the methodology of DSE. According to the introductory
chapter of Clarke et al. (1999), there are four principal methods available for complex
systems: simulation, testing, deductive verification and model checking.

• Simulation means making experiments on a model of the system.
• Testing means making experiments on the real system.

Simulation and testing are well known and often applied for ACSs. In both cases it is rarely
possible to check all possibilities of interactions and pitfalls.

• Deductive verification means the use of axioms and proof rules to check the correct-
ness of the system.

• Model checking means the automatic and exhaustive search of the state space of the
model of a system in order to determine the behavior of the system.

Deductive verification and model checking are known as formal methods, as their foundations
are based on mathematical principles. Deductive verification is done by verification experts
(usually mathematicians or logicians) with considerable experience. Although there is some
support by software tools, this kind of verification is very extensive, takes long time and is
only used for highly sensitive systems such as security or safety-relevant systems. Model
checking is applicable also for non-experts due to its automatic character. Model checking
consists of three tasks. First of all a model of the system has to be generated. Many different
kinds of formalisms are available for this purpose. In a second step, the specification needs to
be defined which describes the properties of the system under observation. Typically, a
specification is expressed in any logical formalism. The use of temporal logics enables the
definition of the system’s behavior evolving over time. The third and last step within the
process of model checking is the verification itself. Ideally this step is done completely
automatic in ideal. The result is a Boolean value that states whether the model of the system
fulfills the specification or not. If not, a counterexample is given which describes a path
within the state space of the system where the specification is violated.
Based on these introductory comments on ACS, the DSE requirement and the current state of
evaluation methods—especially model checking—the upcoming question is: How do these
different topics fit together? The subsequent section describes the motivation for this work.

1.1 Motivation
The engineering process of an ACS is error-prone, as depicted by the statistics presented in
Kropik (2005). By the use of extensive testing and simulation with existing engineering tools,
the error rate can be kept rather low. Although, outstanding applications as depicted for
instance in Bani Younis and Frey (2003) already require the use of more powerful methods
such as verification by model checking in order to avoid failures of the system. The special
parameters of DSE add further demands to the evaluation in contrast to “standard” applica-
tions:

• The DSE process happens only at once. There are no iterations that lead to a succes-
sive transition from the old system state to the new one. DSE means a hard switch to a
new application.

4 THE GENERAL TASKS FOR DOWNTIMELESS SYSTEM EVOLUTION

• Therefore, DSE means an interruption of the control program’s execution. Even when
the new system state has been checked for correctness successfully, the transition to
the new system state may cause a failure in the plant.

• DSE has to be performed without any—or at least as few as possible—disturbances to
the total process, because any disturbance may lead to bad product quality or damage
to the plant and its machinery. Even if it may be unlikely, the worst case is a break
down of the plant.

• The single action “downtimeless system evolution” and the requirement of negligible
disturbances faces the engineer with the challenge to think of all possible environ-
mental conditions for the application of a DSE at any time in the production cycle of
the plant.

The engineer has to decide, whether he wants to apply the changes by triggering the DSE at a
certain time or not. This means that the engineer is responsible for a very complex operation
to the operating plant and needs some means to support this decision. The choice of one of the
above discussed evaluation methods may provide such kind of support. If we do have a closer
look to the prerequisites of the different methods, a clear situation appears:

• Testing cannot be applied because the plant generally is not available for any experi-
ences as it is in operation.

• Simulation is possible and may give an impression on the effects of the DSE. But it is
not able to incorporate all possible scenarios and different situations that may happen
in the plant.

• Deductive verification lacks the usability for ACS customers for different reasons, for
example knowledge of the engineers as well as time consumption of the method.

• Model checking offers an automatic methodology that leads to a true/false decision. If
an appropriate model of the control program and the plant is available, the engineer
can decide about the system evolution by defining the specification. The model check-
ing tool verifies the correctness of the specification for the whole state space of the
model, and gives a counterexample in the case of a violation.

Verification by model checking promises to be the basic methodology that successfully
provides support for the engineer when considering the application of DSE to the operating
plant. But model checking does only provide answers with regard to the given specification.
The engineer is responsible to define an appropriate specification in order to decide whether
the DSE will be successful or not. This work has to provide a guideline on what are the
important aspects that need to be incorporated in the specification, in order to make a decision
about the correctness of a DSE. Because if necessary aspects are missing within the specifica-
tion, the model checking tool will reply that the model may satisfy these requirements. But
the system may produce failures during the DSE.
The problem itself may be examined in a more abstract way as depicted in Figure 2. Herein,
an ambigram of Scott Kim is presented, which includes both the words true (written in lower
case letters) and false (written in capital letters) in the same word. Depending on the perspec-
tive of the viewer, one of the two words appears (in Figure 2 this is clarified by different
shadings of the words). In the case of system evolution, the engineer is in a very similar
situation. He has to ask the right questions in order to receive a satisfactory answer. Even if
all possible behaviors of the plant and the control program are taken into account for the
execution of DSE, the result of the evaluation process will be the wrong answer (depending
on the view point, which is given by the specification for successful DES defined by the
engineer).

THE GENERAL TASKS FOR DOWNTIMELESS SYSTEM EVOLUTION 5

Figure 2: "TRUE/FALSE", Scott Kim, 19812

1.2 Purpose of this thesis
This thesis aims at the providing of a methodology for the engineering process of DSE.
Therefore, three topics have to be addressed:

• A new methodology for modeling of DSE, the transition from a current system state to
a new system state during operation of the plant, without any disturbances to the plant.

• A new methodology for checking the correctness of DSE, if the modeled changes to
the system under operation do not violate the plant’s operation. This part represents
the main novelity, which has to investigate the different aspects that need to be taken
into consideration in terms of specifications for DSE. The ACS customer has to be
guided for his decision on applying DSE to the system under operation. Clear and
concise properties need to be developed in accordance with the means necessary for
their evaluation. Model checking has been the first choice, but it does not have to be
the best fitting means for all kind of properties.

• Provision of models of the system incorporating DSE for appropriate evaluation
means. Next to a detailed specification also the detailed model as basis for verification
by model checking has to be developed. Only if all relevant aspects are part of the
model, the check for specifications can be executed satisfactory.

The presented methodology requires a system environment which provides basic means of
dynamic reconfiguration. Further it has to be applicable for the specific standards used in
ACSs. These are IEC 61131 and IEC 61499, whereas only IEC 61499 does provide a defined
interface for dynamic reconfiguration. Consequently this work will use IEC 61499 as basis,
but the use of IEC 61131 based systems needs to be supported, too (see Chapter 10 for this
purpose).
Next to the list of aims for this work some excluded targets need to be mentioned clearly also.
First of all, we will not investigate on a new formal modeling language or a new algorithm for
model checking. Several modeling languages and model checking algorithms already exist,
which have proved their benefits for certain application fields. We will utilize existing
approaches and focus on an methodology for the application of these means for DSE.
Additionally, this work does not aim at the development of a fully functional automatic
verification tool. An appropriate tool framework needs to be based on the specific characteris-
tics of a concrete system environment. The variety of ACSs is very broad, therefore we will
concentrate on general considerations which may be applied to a concrete system environ-
ment and then integrated into the engineering tool.

2 Copyright ©2007 Scott Kim [37]

6 THE GENERAL TASKS FOR DOWNTIMELESS SYSTEM EVOLUTION

1.3 Guideline through the thesis
We will start the discussion about the new methodology for evaluation of DSE with an
analysis of requirements in Chapter 2. Herein the aim of the thesis is presented in more detail
by definition of concrete tasks which have to be faced. The discussion about related work in
this field as well as the state of the art concerning this work in Chapter 3 will provide the
necessary background knowledge for this thesis. Furthermore the novelty of the approach will
be described.
As starting point for our investigations we will introduce a new modeling method for DSE in
Chapter 4. This is the necessary starting point, which provides a structured methodology
based on the use of dynamic reconfiguration within a system environment for DSE.
Chapters 5 to 7 present the new methodology for evaluation of DSE. First of all, we will
describe the general framework for evaluation in ACSs with DSE. According to the engineer-
ing methodology, the evaluation concerns will be split up into two parts: calculations based
on the current system state and verification by model checking. The reason for this is on the
one hand that many questions concerning the success of a DSE can be checked by rules with
detailed knowledge of the system and its characteristics. On the other hand, the scope for the
verification by model checking will be cut down and complexity is decreased for the ACS
customer. Next to the definition of properties for the specification of DSE, also appropriate
models for the evaluation process will be presented.
The results of the evaluation methodology are discussed in Chapters 8 to 10. In order to give a
more practical impression of the evaluation process, different examples are given for demon-
stration. Another interesting aspect is the effect of DSE and its evaluation to industrial
practice. Herein two concrete implications are discussed: the role of companies in the value-
added chain of ACSs on the one hand and a new paradigm for engineering of ACSs on the
other hand. These investigations will be concluded by the consideration of an industrial
engineering tool based on IEC 61131 and the application of the proposed modeling and
evaluation methodology to this system.
An outlook on further enhancements and developments of this thesis is given in Chapter 11.
The work is summarized in Chapter 12. Some interesting topics are prepared in the appendix,
as they would overload the main content of this work.

 7

2 Analysis of Requirements

Chapter 2

Analysis of Requirements

The overall reasons of providing a methodology for the evaluation of DSE have been
described above. When we take a closer look at such an evaluation method, we will find
several requirements that need to be satisfied. An important prerequisite for this analysis is
the situation in ACSs. The customers in ACSs are commonly only skilled in those fields
which are related to the process under control, but they have to use programming languages as
interfaces to the ACS components. The means of ACSs component providers need to be
adapted to this special situation, and usability for the ACS customer has to be kept in mind in
general. On the other hand, an ACS component is a highly sophisticated, programmable
device that interacts steadily with its environment.
We start our consideration with very general requirements which are related to any kind of
control device, even if pure control logic needs to be verified. Secondly we will give a list of
additional requirements for the evaluation of DSE. As a third view point we will investigate
the needs of the ACS customer. Herein, some issues concerning the usability of such a new
methodology are taken into consideration.

2.1 Execution requirements for control devices
The practical work with ACSs is dominated by testing and simulation as means for evaluation
of the functionality of a control device. When we think of verification by model checking for
the pure control functionality of a control device, the following requirements have to be
handled.
(1) Temporal behavior: In an ACS each control device typically is a real-time computer
system. According to Kopetz (1997) such systems are characterized by functional require-
ments (these belong to the task that is solved by the control device), temporal requirements
(correctness of the calculated results and actions), and dependability requirements (herein
reliability, safety, maintainability, availability, and security are summarized). The main goal
of an evaluation method is to prove the correctness of the computations of a given system.
This belongs to the first item, functional requirements. Additionally, it is very important to
take into consideration the temporal behavior of the control device, too. Only if both items are
mentioned together, appropriate evaluation results will be achieved. When we apply this
temporal behavior to verification by model checking, different specialized requirements
emerge:

• Modeling: The modeling language needs to provide appropriate means for character-
izing temporal behavior of the system.

• Specification: The use of temporal logic for the definition of specifications already
includes temporal behavior. Nevertheless, there are different extensions available for
improved handling of real-time behavior in specifications as discussed for instance in
Clarke et al. (1999, Chapters 16 and 17).

8 ANALYSIS OF REQUIREMENTS

• Model checking algorithm: Obviously, the algorithms and techniques for model
checking must be able to handle these specializations for temporal behavior.

Dependability requirements of the control system as declared above will not be mentioned in
this work. Of course, evaluation methods will also be useful for evaluation of safety or
security of a control device. But this is not relevant for the process of DSE at a first glance.
Further investigations (see outlook in Chapter 11) may be started as a next step based on the
initial results of this work.
(2) Execution semantics: The way of executing control logic, which is implemented in a
given control device, needs to be modeled exactly. The behavior of the control device
obviously depends on the concrete implementation of the control logic and the runtime
environment. This also applies when the runtime environment is compliant to a specific
standard. For instance, early approaches for the verification of the IEC 61499 standard—
Vyatkin and Hanisch (1999) presented a modeling approach for IEC 61499 function block
applications the first time —purely concentrated on the definitions of the standard. Implemen-
tation details have not been considered and the approach was applicable for any kind of
runtime environment. But in recent publications diverse examples are given that the concrete
implementation of the standard, the so-called execution semantics, definitely influences the
behavior of the control device in certain cases. Sünder et al. (2006a) discuss different
questions about the execution semantics of the IEC 61499 standard in general, a precise
answer is only possible with respect to a given implementation. Sünder et al. (2006a)
especially focus on the Function Block Run-Time (FBRT), which is included in the Function
Block Development Kit (FBDK), the first IEC 61499 engineering tool. Another impressive
example is given by Čengić et al. (2006) by a comparison of the Function Block Execution
Runtime (FUBER) and the ISaGRAF engineering tool [26]. The described situation of so-
called contiguous events shows that events may be lost depending on the used runtime
environment.
(3) Underlying system configuration: The consideration of implementation issues of a
runtime environment may be obvious, because there may be different demands according to
the wide application field within ACSs. But the situation is even worse, if we assume one
runtime environment in different system configurations. The underlying system configuration
has to be taken into consideration for the evaluation process, too. The most important aspects
are the operating system and the computational power of the hardware platform. Zoitl (2007)
describes a runtime environment for IEC 61499 standard, which enables real-time execution
of control logic. The implementation includes an abstraction layer for the underlying operat-
ing system in order to provide similar behavior on various platforms. As proof of concept, the
runtime environment was adapted to three different operating systems. By the use of diverse
scenarios and appropriate measurements Zoitl concludes that characteristics of the operating
system influence the execution behavior of the runtime environment, and therefore also the
behavior of the control logic.

2.2 Requirements for downtimeless system evolution
The evaluation process for changes during operation of ACSs adds further specific require-
ments the above mentioned general claims to control logic evaluation. These aspects concern
to the overall system evolution process—the engineering—and especially the evaluation
process.
(4) Modeling dynamic reconfiguration: DSE tends to changes of the ACS in a bigger
context, utilizing dynamic reconfiguration as one basic methodology. It is necessary to define
these basic actions of dynamic reconfiguration in detail for the implementation within a
runtime environment as well as for a formal description. Zoitl et al. (2006) provide a catego-
rization of such so-called basic reconfiguration services, which are necessary to model any

ANALYSIS OF REQUIREMENTS 9

kind of changes in the control logic of a control device. As a basis the management com-
mands of the IEC 61499 standard, defined in (IEC 61499-1, 2005), are used and enhanced
compliant to the standard. The above mentioned runtime environment discussed in Zoitl
(2007) implements a full set of basic reconfiguration services and provides a detailed
description of their behavior.
(5) Free programmable downtimeless system evolution: Many different reasons exist for the
development of DSE in ACSs, and the changes may influence even large parts of the control
logic. Baier et al. (2007) describe also situations where the DSE is spread over several control
devices within the distributed ACS. As concrete example the reconfiguration of a communi-
cation channel is given. The scope of a DSE—and correspondingly also the scope for the
evaluation of the DSE—needs not to be restricted to any kind of area in the control logic or in
its size. Furthermore it is an important aspect to be able to freely program the process of DSE
because of the widespread application fields in ACSs. This is in contrast to other approaches.
For instance Steffen (2005) claims minimal invasiveness as one main requirement for the
reconfiguration of control systems at run-time. As this approach is focused on closed-loop
control systems such a restriction is possible to reduce the complexity problem.
(6) Extensive engineering support: The acceptance of new technologies by the ACS cus-
tomer is a very difficult process as already denoted above. Hall et al. (2007) consider the very
slow adaptation of the IEC 61499 standard by ACS vendors and describe challenges that must
be met in order to encourage more active use and support. One of the main points is the
availability of appropriate engineering tools. On the one hand, ACS customers need good
tools to use the standard in industrial practice. On the other hand, it is hard to provide a tool
without appropriate market response. For the methodology of DSE and especially its evalua-
tion, one very important requirement is the extensive engineering support for this new
technique. Of course, this work does not aim at the development of such an engineering tool.
But the methodology for evaluation of DSE needs to be based on mechanisms which enable
simple integration to an engineering tool. Especially, there should not be any principal
hindering reason for this integration.

2.3 Usability requirements
The last mentioned requirement already suggests that the usability for the ACS customer
needs to be kept in mind for the whole approach. The situation is very complicated due to the
different kinds of ACS customers—see the discussion in (Hanisch, 2004)—, which are skilled
very differently. And especially the necessary skills for evaluation and mathematics are very
often not present.
(7) Provision of formal models: The ACS customer is not able to provide the formal models3
for the overall system. There are various hindering reasons, for instance lack of knowledge,
time effort, and unknown details about the underlying system. Therefore it is necessary to
provide the formal models to the ACS customer in such a way that they can be easily used
within the engineering process. Vyatkin and Hanisch (2001a) give an example for such an
integrated engineering support in the Verification Environment for Distributed Applications
(VEDA) tool. Herein, the IEC 61499 application is automatically transformed into formal
models. Furthermore the model of the plant is an integral part of the tool. This enables VEDA
to easily generate the model of the overall system. Validation of single traces within the state
space of the system is animated in a graphical visualization of the plant. According to the
above given Requirements (1) “Temporal behavior”, (2) “Execution semantics”, and (3)
“Underlying system configuration”, this process of automatic generation of formal models is

3 We will use the term formal model for a mathematical description, which is necessary for instance as input for
a model checking algorithm.

10 ANALYSIS OF REQUIREMENTS

much more complicated than realized in VEDA, but there needs to be a methodology for the
generation of the formal models with only very little interaction by the ACS customer.
Provision of formal models by the different ACS vendors included in the overall system is
necessary.
(8) User-friendly definition of specifications: Verification by model checking is a technology
used in research, but the transition of this technology to practice has been slow even in the
field of computer science. Dwyer et al. (1998) state that one of the main reasons is that
practitioners are not familiar with the specification processes, notations and strategies. As a
consequence, they propose Property Specification Patterns as a generalized description of the
specification for a certain property. Dwyer et al. (1999) present a survey on specifications
used in literature, which reports that 92 percent of the specifications can be categorized in
their system of property patterns. As the background knowledge of people working with
ACSs concerning verification by model checking is even less, the use of a user-friendly
definition of specifications is necessary. A pattern may be described using natural language
which is automatically adapted to a temporal language. As a consequence also ACS custom-
ers may be able to define also complex properties of the system evolution process without
being faced with any kind of temporal language. For successful application of a property
specification pattern system for the evaluation of system evolution it is necessary to adapt the
general patterns to the special needs of DSE.

2.4 Summary
This chapter provides a detailed analysis of the requirements which need to be satisfied by a
methodology for evaluation of DSE. This is part of an overall engineering methodology for
DSE. These requirements build also the basis for modeling of DSE. Table 1 gives a short
overview on the different requirements.

(1) Temporal behavior In addition to functional behavior it is very important to recognize
also temporal behavior for evaluation.

(2) Execution semantics Implementation details about the execution semantics of the used
runtime environment must be mentioned.

C
on

tro
l d

ev
ic

e

(3) Underlying system
configuration

The overall system configuration has to be considered for a full
featured model of the control device.

(4) Model dynamic reconfigu-
ration

The basic actions of dynamic reconfiguration have to be described
and modeled in detail.

(5) Free programmable DSE DSE must not be restricted in order to enable its use in any
application field of ACSs.

D
ow

nt
im

el
es

s
sy

st
em

 e
vo

lu
tio

n

(6) Extensive engineering
support

Evaluation of DSE needs to be accompanied by extensive
engineering support.

(7) Provision of formal models Formal models of the overall system need to be generated
automatically or provided by ACS vendors.

U
sa

bi
lit

y

(8) User-friendly definition of
specifications

Specifications have to be defined by ACS customers in natural
language (without knowledge in temporal logics).

Table 1: Requirements for the evaluation of DSE for this thesis

 11

3 State of the Art

Chapter 3

State of the Art

Already the introduction of this thesis in Chapter 1 gives a very brief description of the related
fields of technology. This chapter will provide more detailed information about the three main
topics:

• A general view on automation and control systems is depicted with particular interest
on the lower levels of control in production industries, their programming languages,
and description languages.

• Dynamic reconfiguration, as outstanding feature of these systems, will be considered
within various architectures. Based on a more general view on methodologies known
from computer science and embedded systems design, the usage within ACSs is em-
phasized in detail. This includes also the way of how to manage the transition from
one system state to another.

• The aspect of evaluating the functionality of a given system is discussed with respect
to the model checking methodology. There has been very much progress in this field
in the past decades. Although practical relevance is rather low for industrial applica-
tions—this especially applies for ACSs—several approaches exist for the use of veri-
fication by model checking in the current state of the art.

There is no claim for completeness of the presented material, since the variety of possible
methodologies and technologies is overwhelming. Researchers have been active in many
fields of ACSs to face the challenges of industry, and as already depicted by different studies
(e.g., European Commission, 2006) investigating new solutions for today and future challeng-
ing requirements will continue.

3.1 Automation and control systems
The initial aim of an automation and control system is to provide control over a physical
process by the use of some control devices. As a general source of information concerning
ACSs we will use Favre-Bulle (2004). Herein a principal differentiation between product
automation and plant automation is given. The first one is related to the control of physical
processes within a product, the latter investigates complex technical processes within a plant.
Our focus is clearly on plant automation, although similar or equal methodologies may be
used for product automation, too.
The general structure of an ACS for plant automation is given in Figure 3 as a very abstract
schematic. There are different roles of vendors that can be identified. This kind of illustration
stems from Vyaktin et al. (2005), who argue that this structure characterizes both manufactur-
ing plants as well as process plants. The responsibilities of the different players can be
described roughly as follows:

• Component vendors: The basic building blocks of an ACS are actuators and sensors.
These are the direct interfaces to the process under control. The range of these ele-

12 STATE OF THE ART

ments is very wide according to the large application field of ACSs. For integration of
components into the overall ACS, a defined interface is applied for instance by the use
of a field bus as communication system.

• Machine vendors: Based on the various components machine vendors build function-
ally complete production machines. Herein also handling of products as well as logis-
tics infrastructure is included. The integration of a machine may be based again on
field buses, but also more complex communication is possible.

• System integrators: The overall production plant is assembled by a system integrator,
who takes care of coordination of machines, production flow, and supervision.

• Industrial enterprises: The industrial enterprise integrates the production plant into
the overall enterprise. Herein various aspects like product life cycle planning, cus-
tomer requirements, or customization of products are taken into consideration.

• Tool/Controller vendors: All levels mentioned above use different tools, runtime
environments, or complete control devices in order to fulfill the required functionality.
On the lower levels of Figure 3 simple microcontrollers or PLCs will be used for in-
stance as control devices for components and machines. On the upper levels Industrial
Personal Computer (IPC) will provide the necessary computational power for Produc-
tion Planning and Scheduling (PPS) or Enterprise Resource Planning (ERP).

• Service vendors: In addition, service vendors exist who are specialized on specific
topics within the life cycle of the ACS, for instance diagnostics, maintenance, or opti-
mization.

Figure 3: General structure and roles of vendors in ACSs, based on (Vyatkin et al., 2005, Fig. 1)

Figure 3 also indicates the basic business model of the different vendors within an ACS. For
instance, a component vendor provides his special expertise on the component. The machine
vendor creates additional value as he appends his expertise on the machine and its behavior
and so on. Vyaktin et al. (2005) claim that if each of the different players is able to add his
knowledge to his product on the particular level of the ACS in an open manner, a new level of
increased efficiency and simplified engineering can be achieved. The main requirements for
such a new open knowledge economy in the ACS are encapsulation and protection of
Intellectual Property (IP) in software components, an open architecture of interoperable
control devices, and open software tool integration platforms.

STATE OF THE ART 13

Automation objects
One main concept presented in (Vyaktin et al. 2005) is characteristic for current research in
ACSs, the so-called automation object. A proper description of an automation object includes
apart from the control logic also information concerning layout, electric wiring, diagnostics,
visualization, simulation, and so on. Therefore an automation object represents mechanical
devices associated with software functionality and additional data. Also a computational unit
is part of the mechatronic devices, and these basic building blocks are used to establish
machines and systems in a hierarchical manner. The concept of a component, that includes
mechanics and electronics, is well known as mechatronic device (e.g., a sensor or actor with a
field bus interface). The idea of free programmable mechatronic devices with an extensive
description of the different aspects of the device is the topic of new work presented in recent
years. Vyatkin (2003) gives a description of such an automation object as a product that
unifies three items:

• Mechatronic component: A physical functional device with sensors, actuators and
electronic circuits.

• Embedded control device: A computing device with interfaces to the sensors and
actors as well as to the network.

• Software component: A set of data and control logic implementing various automa-
tion functions. These elements provide the autonomy and cooperation of the automa-
tion object.

There are several reasons for the definition of such an automation object. Sünder et al.
(2006b) describe the composition of ACSs based on these elements (the work uses the term
automation component as it does not include all views of an automation object) for simplifica-
tion in engineering. The aspects logic, diagnostics, and Human Machine Interface (HMI) are
mentioned explicitly. The structure for all these elements is oriented to the functional
structure of the ACS, which is commonly already consistent with the hardware structure. This
unified hierarchical architecture increases efficiency for both engineering and maintenance.
Each automation component is represented by a universal interface towards the system, which
additionally increases exchangeability of components. This provides the basis for reconfigura-
tion of the ACS on the level of automation objects, as it is also discussed by Vyatkin (2003).
Ferrarini et al. (2003) describe a very similar approach. Herein the motivation is to deal with
complex systems by a hierarchical decomposition of the system behavior and possible
modularization. The overall system is considered as an object, with the expected behavior as
its main method. This method makes use of the functionality (again methods) of sub-modules.
Ferrarini et al. (2003) refer to these elements as intelligent mechatronic modules, similar to
the definition of automation objects. For further work in this field the reader may consider for
instance also Lee et al. (2004), which present a component-based distributed control systems
for assembly automation, or Thramboulidis (2005), which additionally includes the analysis
and design phases of the development process to establish so called model-integrated
mechatronics.
Another interesting aspect—especially for this work—is included in the approach presented
by Bonfe and Fantuzzi (2003), the evaluation of mechatronic object-oriented models. The
basic elements for the design of ACSs are again similar to the above given definition of
automation objects, although they are called mechatronic objects in this work. These objects
are modeled by the use of adapted class diagrams and state charts from the Unified Modeling
Language (UML). For each mechatronic object the control action as well as the hardware
behavior (the uncontrolled plant) are modeled. The interaction of the mechatronic objects is
described by means of collaboration diagrams (also specified by the UML). The authors
present the transformation of these models into the input language of the verification tool

14 STATE OF THE ART

Symbolic Model Verifier (SMV) in order to provide verification by model checking. We will
refer to this aspect of the work in more detail in section 3.6.4.

Reconfigurable manufacturing systems
The aspect of reconfigurability in ACS is also topic of a new type of manufacturing systems,
the Reconfigurable Manufacturing Systems (RMSs). Koren et al. (1999) claim that RMSs are
needed for cost-efficient response to the fast changing market. In contrast, dedicated manufac-
turing systems have a fixed machine structure and are able to produce high volumes at low
prices, but they lack fast response to market changes. Flexible manufacturing systems are
limited due to the use of universal machines, e.g. Computer Numerical Control (CNC)
machines, and they lack high throughput. Setchi and Lagos (2004) also mention cellular
manufacturing systems, that are also inflexible to market changes. According to the definition
of RMSs in Koren et al. (1999, Section 2), RMSs “are designed at the outset for rapid change
in structure, as well as hardware and software components”. The use of automation objects,
herein defined as the elements of a modular machine, achieves the ultimate goal of RMSs: “a
systems approach in the design of the manufacturing process that allows simultaneous
reconfiguration of (1) the entire system, (2) the machine hardware, and (3) the control
software.“ (Koren et al., 1999, Section 3).
This work will focus especially on the third goal of RMS on the lower levels of control logic.
This is in contrast to other approaches related to the upper levels of a machine or system.
Herein often agent-based approaches are introduced. To give an example, Lopez Orozco and
Lastra (2007) describe their approach of a control model for RMSs, that utilizes so called
mechatronic modules as basic building blocks (these are again similar to automation objects).
They differentiate between two types of control for a system based on mechatronic modules,
the logic control application and the coordination control. The logic control encapsulates the
interaction with the hardware, its functionality is fixed. The coordination control is realized
by the use of agent technology, which is responsible for communication and coordination of
the mechatronic modules in order to fulfill the overall task of the RMS. Reconfigurability of
the RMS is achieved by the coordination logic.

Software components in computer science
The above discussion about the use of components in ACSs needs to be examined also from
the viewpoint of methodologies from computer science. An important source for an insight
into component-based software development is Szyperski (2002). The situation about terms
and definitions is even worse for software components as already described for the idea of
automation objects. In order to structure the following discussion, we will refer to the
definition given by Szyperski (2002, Section 4.1.5): “A software component is a unit of
composition with contractually specified interface and explicit context dependencies only. A
software component can be deployed independently and is subject to composition by third
parties.”4 There are three main characteristic properties of a software component according to
this definition (Szyperski, 2002, Section 4.1.1):

• Unity of independent deployment: This property aims at a clear separation between
the software component’s environment and other software components. Further, a
software component will never be deployed partially.

• Unity of third-party composition: A third party means someone who has no access to
the construction details of all the components involved. Nevertheless, a third party has

4 This definition is not in conflict with the definition of an automation object or its software components in
general. It strongly depends on the used programming languages and methods in order to decide this question.
We will discuss this aspect in more detail in Section 3.2.

STATE OF THE ART 15

to be able to combine a software component with other software components. There-
fore, a software component needs to be self-contained.5

• No (externally) observable state: It is required that a software component cannot be
distinguished from copies of its own.

The component-oriented approach is very popular in information technologies and represents
a main technology for current software architectures. This also applies for a special class of
computer systems related to ACSs, the so-called embedded systems. The term embedded
systems is again widely used and—expectedly—even contradicting definitions are mentioned
in literature. We will follow the definition used within the European Union funded project
Accompanying Measure on Advanced Real-Time Systems (ARTIST). Herein Bouyssounouse
and Sifakis (2005, Section 1.2) refer to embedded systems as “electronic programmable sub-
systems that are generally an integral part of a larger heterogeneous system”. The interaction
with the physical plant is the source of the real-time constraints, therefore embedded systems
in general belong to the class of real-time computer systems (as already mentioned in
Section 2.1). Consequently, any kind of computer controlled device within ACSs, for instance
PLCs or automation objects, is an embedded system. But the application field of embedded
systems is very broad and includes for example also automotive, aeronautics, consumer
electronics, or telecommunications. This has an important impact to the techniques that are in
use for the design and development of embedded systems. The programmer of an embedded
system, for example a specific controller for a car or an airplane, is in common a specialist in
computer science. At least the tools and proposed methods require distinctive skills in this
area. For ACS this is only true for those people who are involved in the design of a control
device such as a PLC. The end-user or customer of ACSs has skills concerning the process
under control, but typically not in computer science as described by Hanisch (2004). The
interface visible for the customer of an ACS control device is a programming language,
whereas for embedded systems in general the interface is described by a set of parameters or
some kind of HMI, if at all.
Another aspect that needs to be mentioned is the design of distributed embedded systems.
Within all topics mentioned in the ARTIST roadmap (Bouyssounouse and Sifakis, 2005) it is
obvious that a system consists of more than one single embedded system. Even more a large
number of embedded systems have to cooperate in order to fulfill the system requirements.
Kopetz (1997) presents the time-triggered architecture as main element for such a distributed
real-time system. Herein, the communication between the different single embedded systems
is determined by a schedule fixed at design time. In ACSs different means for handling this
problem are available according to the special requirements. We will discuss these solutions
in the following section.

3.2 Programming languages
The majority of ACS customers uses programming languages that are based on the standard
IEC 61131-3 (2002). Herein four different languages for programming as well as one
modeling language are defined, that can be found (at least in some dialects) in any PLC
system. In addition, the IEC has defined the standard IEC 61499 in 2005, which is expected to
become the successor of IEC 61131-3. Nevertheless, the practical usage of IEC 61499 is at
the moment very low. Next to these two IEC standards, there may be used also any kind of
programming or modeling approach from the wide field of embedded systems and computer

5 The claim for protection of IP from Vyaktin et al. (2005) fits exactly with the claim for third-party composi-
tion. In detail the general structure of ACSs presented in Figure 3 requests such a property as there are several
players involved for the establishment of production plants.

16 STATE OF THE ART

science. But from an overall perspective, these approaches are insignificant, as this is
reflected also by Bouyssounouse and Sifakis (2005).
We will discuss these two IEC standards in contrast to the definitions of software components
in order to bring them in the context of the component-oriented programming paradigm. This
is especially useful, as for the purpose of dynamic reconfiguration the use of software
components is very advantageous due to its characteristic properties. Additionally, the
following definitions from Szyperski (2002, Section 20.3) may support the discussion:

• “A component framework is a dedicated and focused architecture, usually around a
few key mechanisms, and a fixed set of policies for mechanisms at the component
level.”

• “A component system architecture consists of a set of platform decisions, a set of
component frameworks, and an interoperation design for the component frameworks.”

The first definition points out clearly that it is very important to mention also the component
framework when considering software components. We will discuss this topic in detail for the
programming languages of ACSs. The second definition aims at the overall configuration of a
system, in our case a control device. As already mentioned in Requirement (3) in Section 2.1,
the underlying system configuration needs to be taken into consideration for the evaluation of
control logic. In detail, typical control devices are based on a real-time operating system,
which represents a component framework itself. Additionally, some kind of middleware may
be integrated (again a component framework), and on top of this the component framework
for a programming language may be applied. Bouyssounouse and Sifakis (2005) provide an
overview on current available real-time operating systems and middleware architectures,
which is representative also for ACS control devices.

3.2.1 IEC 61131-3
The international standard IEC 61131 provides a set of eight parts concerning PLCs and their
associated peripherals. Part one (IEC 61131-1, 2003) defines the principal characteristics of a
PLC as digital, electronic system designed for industrial environments, which uses internal
memory and user-oriented instructions in order to control and command machines and
industrial processes. The most important part is IEC 61131-3 (2003), which defines pro-
gramming languages and data types as well as a software architecture for PLCs. There are
several sources for detailed information available. The most important one is the standard
itself, next to several books as for instance Lewis (1998) or John and Tiegelkamp (1995). To
the author’s best knowledge there exists no book that is related to the actually valid, second
edition of IEC 61131-3, although John and Tiegelkamp (2000) provide an outlook on
upcoming changes to the first version of the standard.
The programming languages of IEC 61131-3 are widely used in industry. This is also a result
of the work of the PLCopen organization, which is a user and vendor-driven platform to
support the usage of IEC 61131-3 in industry. In recent years some specifications for add-ons
in form of explicitly defined function blocks (e.g. motion control or safety) have been
published that have strengthened unified usage of the IEC 61131-3 for certain application
fields.

Software model
The main elements of the software architecture defined in IEC 61131-3 are given in Figure 4.
The top element is called configuration and represents a programmable controller (this term is
used in the standard for a PLC). A configuration consists of one or more resources, which
represent a signal processing function. A resource consists of tasks and programs. A task is an
execution control element that provides periodic or triggered execution of associated program
organization units (POUs). This association is depicted by the execution control paths in

STATE OF THE ART 17

Figure 4. In general POUs may be programs, function blocks (FBs), or functions. Programs
can only be instanced within resources, while FBs can be instanced within programs and FBs.
The difference between functions and FBs is that functions shall not contain internal state
information.

Figure 4: IEC 61131 Software model, (IEC 61131-3, 2003, Figure 3)

Data types
(IEC 61131-3, 2003) defines a set of elementary data types, such as integers, strings, or real
numbers, a hierarchy of generic data types in order to enable overload mechanisms, and so-
called derived data types. The last one describes user-defined data types that are derived from
the existing data types, for instance an enumeration or a structure.

Variables
Variables are data objects associated with the inputs, outputs, or memory of the PLC. A
variable can be declared to be one of the elementary or derived data types. There exist several
variants of variables, which have important influence on the way of how to program a PLC. A
detailed list is given in (IEC 61131-3, 2003, Table 16).

• Directly represented variables provide access to data elements with physical or logical
locations in the PLC’s input, output, or memory structure.

• VAR and VAR_TEMP identify internal variables (the second one means temporary
storage).

• VAR_INPUT, VAR_OUTPUT, and VAR_IN_OUT define the interface of a POU,
whereas the last one can be seen as a reference instead of a storage element.

• VAR_GLOBAL defines variables that can be used within the whole scope of a con-
figuration or resource. By the use of the VAR_EXTERNAL construct a POU can
yield access to a globally defined variable.

• VAR_ACCESS defines variables that can be used for remote access via the communi-
cation services specified in (IEC 61131-5, 2000). An access path associates each such
variable with a global variable, directly represented variable, or input, output, or inter-
nal variable of a program or FB. The direction of the access path can be specified (i.e.,
read/write or read only).

18 STATE OF THE ART

• VAR_CONFIG is used to provide a means to assign a location or an initial value to
symbolically represented variables. For this special case the use of an asterisk notation
is possible, which enables the utilization of a “*” in a type definition. The full specifi-
cation for an asterisk notation has to be expressed in the configuration which uses an
instance of this type.

Structuring of programs and FBs
A POU is considered as a single action which is executed under control of the invoking entity.
Additional structuring of programs and FBs is possible by means of the Sequential Function
Chart (SFC) construct. Herein actions are associated with states, and the active state evolves
according to interrelation of states via transitions and evaluation of the transition conditions.
SFC represents a kind of state machine, with the possibility of several active states at the
same time. The execution of actions is additionally parameterized by action qualifiers, so that
for instance an action may only be executed once when the corresponding state becomes
active. As a result programs and FBs can be structured in a sequential manner.

Programming languages
The programming languages of the IEC 61131-3 standard are defined in order to describe the
control behavior of a POU. Nevertheless, any other programming language may be used
instead. The standard defines two textual languages, Instruction List (IL) and Structured Text
(ST), and two graphical languages, Ladder Diagram (LD) and Function Block Diagram
(FBD). LDs come from the relay ladder logic diagrams, which have been replaced by the
PLC. This programming concept provides a similar visual interface with additional features
such as calls of FBs and functions. IL is very similar to the assembler language and provides a
very simple instruction set. In contrast ST is similar to a higher level programming language
such as Pascal or ADA, but with limited functionality (e.g., restricted specification of
procedures or no use of pointers and memory access). The FBD programming language stems
from Boolean logic diagrams, but additionally supports non-Boolean data types. A general
difference to programming languages from computer science that needs to be kept in mind for
all IEC 61131-3 programming languages is their execution behavior. The execution element
is a task which can be triggered cyclical (which is typically the case) or by occurrence of an
event, and POUs are executed in the context of these tasks.

Concepts for distribution
Although the IEC 61131-3 standard is defined for one PLC, also the cooperation of PLCs is a
matter of fact in real world applications. There are two means that have to be mentioned when
considering programming of two or more PLCs within one application:

• Network variables: Many providers of runtime environments according to IEC 61131-
3 have introduced the concept of network variables, which is based on global vari-
ables. The only difference is that a network variable is valid for several configurations
which may be located on different PLCs. The mechanism for synchronization of the
local representations of a network variable is implemented vendor specific. Petig
(2000) describes this methodology in more detail.

• Communication function blocks: Part five of the IEC 61131 standard (IEC 61131-5,
2000) defines communication FBs for access to variables that are identified via the
VAR_ACCESS construct from outside the configuration (see also Figure 4). Addi-
tionally, status information can be requested from a PLC. Although this standardized
concept for communication exists it is not used in practical realizations of PLCs.

Software components within IEC 61131-3
In order to find a relationship of the IEC 61131-3 constructs and the paradigm of component-
based software development we will consider different scenarios for a mapping with the

STATE OF THE ART 19

above mentioned definitions for software components and component frameworks. A first
idea is provided by Bouyssounouse and Sifakis (2005, Section 12.2, Example 3), which states
that “function blocks can be viewed as components and interfaces between blocks are released
by connecting in-ports and out-ports”. In this context especially the definition of interfaces
and their descriptions are very important. The interface has to be defined in a clear manner
and (as denoted in the definition for a software component) represents a contract in order to
separate the software component from the component framework and other components.
There should not exist any hidden interface that influences the behavior of a software
component. Kopetz (1997, Sections 4.3.1 and 5.5.1) describes such hidden interfaces for a
component-based distributed real-time system. He claims that they lead to incorrect results
when reasoning about the correctness of a composition.

• Function as software component: A function is the most restricted element within the
IEC 61131-3 software model. It does not include state information and is not allowed
to use the VAR_EXTERNAL construct. Its interface and behavior is clearly described
and a function can be seen as a software component.

• FB as software component: An FB is able to have state information, which is not
contradicting the mapping as a software component. But there exists additionally the
VAR_EXTERNAL construct, which enables the relation to any other element within a
configuration or resource. The interface is only described by the use of a data element
without any further description of the behavior of this interface. If the counterpart (and
even the number of these counterparts is not limited) is related to another task with
different execution settings, the behavior of an FB is in conflict with the principles of
a software component.

• Program as software component: Roughly speaking there is no difference between a
program and an FB aside from the reusability of FB types. Therefore, the same argu-
ment concerning the VAR_EXTERNAL construct applies also for programs. Another
problem occurs from the execution control of FBs within programs. As depicted also
in Figure 4 an FB may be related to another task than the overall program, which is
specified within the resource. This results in another problematic situation concerning
the definition of software components, as the behavior of two program instances will
be different.

• Resource as software component: A resource includes information about the control
logic depending on the used program instances as well as the execution behavior—the
included tasks and their parameters. The result is a rich description of a resource as a
software component. Nevertheless, there exists also the VAR_EXTERNAL construct
which enables the use of an interface without behavior description in the resource.
Therefore a resource cannot be considered as a software component.

• Configuration as software component: The configuration is the highest level in the
software model of IEC 61131. A global variable within the configuration depicts an
internal state of a software component and would fulfill the requirements for a soft-
ware component. The interface of a configuration is given by the VAR_ACCESS
definition. In case of a read-only restriction for such an access path the output of a
software component is defined. But an input is defined without clear behavior descrip-
tion, which is again a problem when considering the mapping to a software compo-
nent. This is especially problematic when thinking of the use of network variables in
order to establish communication between configurations.

3.2.2 IEC 61499
The aim of the IEC 61499 standard is to provide “a generic architecture (…) for the use of
function blocks in distributed industrial-process measurement and control systems. This

20 STATE OF THE ART

architecture is presented in terms of implementable reference models, textual syntax and
graphical representations” (IEC 61499-1, 2005, Section 1). The trigger for this new standardi-
zation work for ACSs (standardization work started 1992 when the IEC 61131-3 standard has
just been finished) came from visionary studies of the Iacocca Institute (1992) and research
programs. Especially the Holonic Manufacturing Systems (HMS) project is very important in
this context, as depicted for instance by Christensen (1994). Key requirements that have been
considered during the development are next to distribution and reconfigurability:

• Portability: The ability of software tools to accept and correctly interpret library ele-
ments produced by other software tools.

• Configurability: The ability of devices and their software components to be config-
ured (selected, interconnected, parameterized, and assigned to locations) by multiple
software tools.

• Interoperability: The ability of devices to operate together in order to perform the
functions specified by one or more distributed applications.

The standard consists of four parts. Part one (IEC 61499-1, 2005) includes all definitions and
models which are required to describe the architecture of the standard. Part two (IEC 61499-2,
2005) aims at software tool requirements and includes a Document Type Definition (DTD) for
the representation of data types and library elements. Part three (IEC 61499-3, 2004) is a
technical report which contains explanations on the elements and methodologies of the
standard. Part four (IEC 61499-4, 2005) provides rules for compliance profiles, which are the
means of the standard to cope with implementation depended details that are neglected in the
standard itself. Next to the standard there are up to now two books available that describe
IEC 61499 in more detail. Lewis (2001) gives a good introduction to the aims of the standard,
but due to its early publication date it is not conform to the current standard. However, this is
the case for Vyatkin (2007a), which is the teaching material of a university course and
introduces the concepts of IEC 61499 by the use of the FBDK tool.
The Open, Object-Oriented Knowledge Economy for Intelligent Industrial Automation
(O3neida) organization pays attention to the further development and industrial application of
the IEC 61499 standard. Next to several other activities especially a working group [40] on
the development of compliance profiles has been founded in order to specify open issues
within the definitions in the IEC 61499 standard. Actually, the topics of the working group
are concentrated on execution semantic issues in order to provide similar execution behavior
in heterogeneous system environments (IEC 61499 devices from different vendors). In
addition also a compliance profile for the communiation via the CIP protocol has been
established in a first version.

Basic architecture
The architecture of the IEC 61499 standard is described as a list of models. Figure 5 includes
several of these models which can be considered as basic architecture of the IEC 61499
standard:

• System model: A system consists of devices, which are interrelated by some commu-
nication network, and applications.

• Device model: A device includes resources and interfaces to the process and/or the
communication network.

• Resource model: The resource6 is the element which executes FBs independently. It
makes use of the interfaces from the device.

6 The definition of a resource in IEC 61499 is not equivalent to the one of IEC 61131-3.

STATE OF THE ART 21

• Application model: An application consists of an FB network, which is composed of
FB instances, their parameters and connections between the FBs. The execution of ap-
plications is determined by the event and the data flow within the FB network.

• Distribution model: An application can be distributed to different resources, which
may be located on different devices. In Figure 5 ‘Application A’ is distributed to dif-
ferent devices, ‘Application C’ is distributed to two resources within the same device.
‘Application B’ is distributed to ‘Device 2’ and ‘Resource X’ in ‘Device 3’. The FB
network visible in Figure 5 is allocated to ‘Resource X’ only, the communication
within ‘Application B’ is capsulated in FBs. As the execution flow of an application is
given by events, a distributed application will behave in the same manner as if it is lo-
cated within one resource (delays due to communication neglected).

Figure 5: IEC 61499 architecture, based on (IEC 61499-1, 2005)

Function block model
The most important element of the IEC 61499 standard is the function block. In contrast to an
FB defined by (IEC 61131-3, 2003) the interface is not only defined by variables but also by
events. Figure 6 (a) depicts the graphical representation of an FB according to (IEC 61499-1,
2005). The upper part of the FB includes the event inputs (‘EV1’ and ‘EV2’) and event
outputs (‘EV3’ and ‘EV4’), the lower part contains the data inputs (‘DI1’ to ‘DIx’) and the
data outputs (‘DO1’ to ‘DOy’). The FB is executed as soon as it receives an event. In this case
the data inputs related to this event are sampled. The means of the standard for the association
of events and data is called WITH construct. Graphically the WITH construct is displayed as
vertical line for an FB type, as for instance between ‘EV1’ and ‘DI1’ in Figure 6 (a).
IEC 61499 does not define its own data types but makes use of the ones defined in
(IEC 61131-3, 2003). After the execution of the internals of the FB output events may be
initiated. There exists also an association between output events and output data, which
denotes that these data outputs have been updated according to the FB execution before the
corresponding output event has been produced. Therefore, the connection of an input event
with an output event (including the corresponding data connections) will lead to a stable
execution of FB networks with the latest data values. As an additional means the so-called
adapter concept is introduced in the IEC 61499 standard. Herein, a bidirectional interface
consisting of events and data can be specified and used as input or output for an FB. This can
be used for simplification for instance if a specific interface is defined for some special
purpose.
The internals of an FB can be categorized in three main types, which are called Basic FB
(BFB), Composite FB (CFB), and Service Interface FB (SIFB):

22 STATE OF THE ART

• Basic function block: The behavior of a BFB is defined as event driven state machine,
the so-called Execution Control Chart (ECC). Figure 6 (b) provides an example of an
ECC. The ECC consists of states, that are connected via transitions. The transition
condition can be an input event (e.g., ‘EV1’), a Boolean expression (e.g., ‘1’), or the
conjunction of both. When an input event triggers a BFB, all transitions from the ac-
tive state are evaluated. There can only be one transition that fires (there exists an or-
der for evaluation) and the active state of the ECC changes (there is only one active
ECC state at one time possible). When a new state is entered, the corresponding ac-
tions are executed. An action consists of an algorithm, an output event (e.g., the action
with ‘EV3’), or both (e.g., the action consisting of ‘Alg’ and ‘EV4’). There is more
than one action possible for one state, and they are executed in a given order. If all ac-
tions of the active state have been executed, the transitions of the active state are
evaluated. When a transition fires (e.g., ‘1’), than the ECC state changes and the cor-
responding actions are executed. Otherwise the execution of the BFB has finished. An
algorithm within a BFB can be written in any programming language, but the
IEC 61499 standard especially mentions the languages defined in (IEC 61131-3,
2003). An algorithm can use only input data, output data, and internal data of the FB
type, therefore a BFB defines a very strong encapsulation of algorithms.

Figure 6: IEC 61499 FB model and FB types

• Composite function block: The behavior of a CFB is defined by an FB network. The
FBs within a CFB are called component FBs, and there is no restriction to a special
FB type. For instance, hierarchical structures can be designed by reuse of existing
CFBs. The execution of a CFB is defined according to the event and data connections
of the component FB network. A CFB cannot have internal data, since there is no pos-
sibility to use them within the component FB network. Figure 6 (c) depicts an example
for a component FB network. In order to use the events and data from the CFB inter-
face, their name can be used directly as inputs or outputs of the component FBs (e.g.,
‘EV1’ or ‘EV3’).

• Service interface function block: The SIFB is a concept for the encapsulation of the
interaction with external elements, that are not in the scope of the definitions of the
IEC 61499 standard. Examples are interaction with the process or communication in-
terface of a device, but also internal functionality of the underlying system (e.g., the

STATE OF THE ART 23

timer). In more general, within a SIFB any kind of functionality may be hidden. But
the interface is equal to a BFB or CFB. In order to provide more information about the
hidden functionality, a sequence diagram is defined by the standard. Figure 6 (d) de-
picts a simple example for one operational mode of a SIFB. If the event input ‘EV1’ is
triggered, the SIFB will execute ‘Some action’ and emits the output event ‘EV3’ af-
terwards.
The IEC 61499 standard distinguishes two different types of SIFBs, the responder
type and the requester type. The differentiation is based on the way the interaction be-
tween the FB network and the encapsulated functionality (which is called service)
takes place. If the interaction is triggered by the FB network, then the SIFB is of re-
quester type, and the interaction is called application triggered. This is the case for in-
stance when outputs of the device can be written by the use of a SIFB. The sequence
diagram in Figure 6 (d) describes exactly such an interaction. If the interaction is trig-
gered by the service, then the SIFB is of responder type, and the interaction is called
resource triggered. A typical example are time FBs, which are defined in (IEC 61499-
1,2005, Annex A). For instance an E_CYCLE is triggered only once by the FB net-
work to start its operation. Afterwards it emits events periodically triggered by the
timing service.

Next to these FB types, the IEC 61499 standard defines the element subapplication. This
element is similar to a CFB, but there exists no WITH construct and the component FBs and
component subapplications may be distributed to different resources.

Management model
The IEC 61499 standard also includes a model for the management of resources and devices.
It is stated that a management application may be modeled in order to facilitate the manage-
ment of a device or resource. The management application itself is left open as an implemen-
tation-dependent part using SIFBs for communication and management. For the management
SIFB a generic FB definition is included with a description of its functionality. The following
management commands, see (IEC 61499-1, 2005, Table 6), are given based on a state
machine for managed FBs, see (IEC 61499-1, 2005, Figure 24). Examples are provided in
order to illustrate the management commands:

• CREATE: Creates an object such as an FB instance, resource instance, data connec-
tion, or event connection.

• DELETE: Deletes an object such as an FB instance, resource instance, data connec-
tion, or event connection.

• START: Starts an object such as an FB instance or an application.
• STOP: Stops an object such as an FB instance or an application.
• READ: Reads data from an access path7, e.g., the data output of an FB instance.
• WRITE: Writes data to an access path such as the data inputs of an FB instance or

resource instance.
• KILL: Makes an object unrunnable such as an FB instance.
• QUERY: Request for information on an object such as the FB types of a device, the

FB instances of a resource or connections within a resource.

7 An access path in IEC 61499 is a little bit different to the one defined in IEC 61131-3. It is defined as the
association of a symbolic name with a variable, which is based on the concatenation of the instance names of the
hierarchical elements, e.g., DEVICE_NAME.RESOURCE_NAME.FB_NAME.DATA_OUTPUT.

24 STATE OF THE ART

Compliance Profiles
A very important element of the IEC 61499 standard is the use of compliance profiles
(IEC 61499-4, 2005) in order to specify open issues. The standard does not claim for com-
pleteness, but provides this element to unfold details of an implementation. A compliance
profile is organized in three parts, which have been already mentioned above: portability,
configurability, and interoperability.
Two practically relevant compliance profiles exist at the moment. The first one has been
defined by James H. Christensen for his IEC 61499 implementation FBDK. It was the basis
for the first inter-vendor feasibility demonstration of IEC 61499 within the HMS project and
is called IEC 61499 Compliance Profile for Feasibility Demonstration [17]. Further
IEC 61499 implementations have used this compliance profile, too, instead of using their own
definitions. One example for a definition used in the compliance profile is the management
application. The standard defines a generic management FB, but this compliance profile adds
a concrete implementation of a management FB and its communication to a software tool.
Also the semantics of this interface are defined as DTD for management commands. Commu-
nication FBs are another example, which are proposed in their interface within the standard.
The compliance profile adds a definition for serialization of data streams in order to use
simple Ethernet protocols for data exchange between devices. The second compliance profile
has been established for the ISaGRAF tool [26], but it is not publically available.

Software components within IEC 61499
The main element of the IEC 61499 standard is the FB, which is treated very different in
contrast to the ones discussed for the IEC 61131-3 standard. The first element for the
discussion about software components within the IEC 61499 standard is therefore the FB in
its different occurrences:

• Basic FB as software component: The interface of an IEC 61499 FB includes both
data and events. Therefore also the execution of an FB is included in the FB interface.
The behavior is given by the ECC and is well defined. There exist no hidden inter-
faces, as a BFB is only allowed to use input, output and internal data. A BFB can be
considered as a software component.

• Service Interface FBs as software component: The SIFB hides its concrete imple-
mentation. But the IEC 61499 standard defines sequence diagrams in order to describe
the functionality of a SIFB. If a SIFB is well described by the use of sequence dia-
grams, the SIFB can be considered as a software component. This is independent from
the concrete type of SIFB. In case of a requester type SIFB, the execution behavior is
defined by the interface as this type does not become active by itself. For the re-
sponder type SIFB, execution is triggered by the underlying services.

• There are two possibilities to undermine the representation of a SIFB as a software
component. The first one depends on the underlying functionality encapsulated by the
SIFB. There are no restrictions mentioned in the IEC 61499 standard for these ser-
vices. Therefore it is possible to implement also some hidden interfaces, e.g. a similar
construct as global variables. The second restriction concerns to the definition of the
SIFB behavior by the use of sequence diagrams. This means may be not powerful
enough to describe the SIFB behavior in all details (e.g., temporal order) or it is not
used sufficiently.

• Composite FB as software component: The behavior of a CFB is defined by its com-
ponent FB network. But the IEC 61499 standard lacks a concrete definition of the
execution of FB networks, as this is discussed by the O3neida working group [40] in
general and especially for CFBs by Sünder et al. (2007). Another problem occurs by
the use of SIFBs as component FBs within a CFB. If such a SIFB cannot be consid-

STATE OF THE ART 25

ered as a software component, then this is also true for the CFB. But also if each com-
ponent SIFB fulfills all requirements of a software component, the CFB may lack a
good description of its interface and behavior. The reason may be the hierarchy of
composition levels within the CFB. A SIFB on the lower levels is hardly visible at the
interface of the CFB, and only detailed analysis of the overall structure of the compo-
nent FB network will clarify this situation.

• Subapplication as software component: A subapplication is very similar to a CFB
and provides the possibility of distribution in addition. Already the considerations
about CFBs have yield to the result that a CFB may be considered as a software com-
ponent only in certain situations. The same can be stated for subapplications, if we ne-
glect the impact of communication in case of a distributed subapplication.

• Application as software component: An application has no separate interface in form
of an FB shape. Its interface emerges from the FBs used within the FB network, and
especially by the SIFBs used. This fact and the above reflections about SIFBs within
FB networks yield to the conclusion that an application cannot be considered as a
software component.

The elements resource, device and even system may also not be considered as software
components. For all these elements exist no separate interface descriptions as this is based on
the FB network included.

3.3 Description languages
During the development of ACSs and especially PLC-based systems, a major improvement
was achieved by the introduction of field buses. In the beginning, only very simple in-
put/output field bus devices have been used, but their functionality increased more and more
up to the point that nowadays each of such a component can be considered as a control device
(see also the discussion about automation objects above). In order to handle the information
about the various field bus devices, description languages have been developed for the
engineering and operation of ACSs. We distinguish two different types of description
languages—for simple field bus devices and enhanced system components. This determina-
tion is not very sharp because the functionality of also simple field bus devices increases.
With regard to the requirements stated in Chapter 2 there are two aspects that are strongly
based on the description of control devices. Requirement (3) “Underlying system confiugra-
tion” aims at the intensive use of information about the overall control device and especially
the system configuration. Therefore, these parameters need to be available in an appropriate
manner by the use of a description language. Requirement (5) “Free programmable DSE”
targets at the engineering support for DSE, which is the origin for description languages in
general. The more information concerning a device is available in a standardized manner the
more support can be included within the engineering tool by applying sophisticated algo-
rithms on the available data.

Description of field bus devices
Many field bus systems, which have been developed in recent years, provide their own
description language for the appropriate field bus devices. But there are also efforts for
standardization of the description and integration of devices as for instance summarized in
Niemann (2007), such as the Electronic Device Description Language (EDDL), Field Device
Tool (FDT), and Tool Calling Interface (TCI). EDDL is defined in IEC 61804-3 (2006) and
provides a generic language for describing the properties of ACS components. The main
elements of EDDL concern device parameters, device functions, graphical representation, and
interactions with control devices. The other two standards are defined by user organizations,
in detail the FDT Group [11] and the Profibus and Profinet International organization [48].

26 STATE OF THE ART

Next to the description of the field device, which may again be based on the EDDL defini-
tions, FDT aims at the integration of dedicated software for interaction with the field device
into the engineering tool. Also the communication to the field device is part of the FDT
specification, in order to achieve the flexibility of field device specific software elements
within the engineering tool. The TCI specification concentrates on the integration of whole
configuration tools into the engineering process of ACSs. Another important approach of a
user organization is OPC Unified Architecture (OPC UA), specified by the OPC Foundation
[41]. OPC UA defines the relations between clients and servers in order to achieve platform
independence in spite of various kinds of systems and devices. One main aspect of OPC UA
is the definition of information models, which define structure and semantics of data within
the address space of the OPC UA server. Bender et al. (2007) present a concept based on
OPC UA that integrates also the specific advantages of EDDL and FDT. This work shows
that no description language exists that fulfills all needs of the customer.
The discussion above was driven mainly by specifications from user organizations that are
often used in parallel for different types of applications. But there is also some more stan-
dardization work available in this field. A very basic definition of the elements of a device
description is given in ISO 15745-1 (2003) next to more general rules on an application
integration framework. The four elements of a device profile according to ISO 15745-
1 (2003) are:

• Device identity: “The device identity object contains attributes which uniquely iden-
tify the device. Examples of such attributes are the manufacturer’s identification, part
number (…) and indication of the number and type of additional objects within the
device.”

• Device manager: “The device manager object represents the set of attributes (e.g.,
revision of the device identity object) and services (e.g., reset, configuration/run mode,
retrieval of device manager objects’ attributes) used to configure and to monitor a de-
vice integrated into the application system.”

• Device function: “The device function object describes intrinsic function of a device
in terms of its technology (e.g., mechanical limit switch, proximity sensor, ultrasonic
sensor). The device function object differentiates the technology of the device from
the application of the device. Examples of device function objects are analogue current
inputs in milliamps, and discrete voltage outputs in volts.”

• Application process: “The application process object represents a set of attributes and
services that correspond to the application requirements captured in the attributes and
services of the associated process profile. The application process object describes the
behavior of the device in terms of the application, independent of the device technol-
ogy.”

The technical report IEC 62390 (2005) aims at the “development of device profiles for
industrial field device and control devices, independent of their complexity”. The basis is
given by ISO 15745-1 (2003), whereas IEC 62390 provides a guideline for the profile
development process. It is clearly mentioned that the scope is not limited to simple field bus
devices. For instance programmable controllers and HMI devices are also targeted by this
report. As general means for the establishment of a device description the eXtensible Markup
Language (XML) [64] is recommended. XML is widely used also in ACSs during the last
years, the two main application fields are given by Wollschlaeger and Wenzel (2005) as data
exchange (e.g., within the OPC UA specification) and device description. Several user
organizations have already proposed XML Schemas for the second purpose based on
ISO 15745. Some are mentioned here briefly:

• XML@Profibus: This specification provides a technical guideline for the use of XML
within the field buses Profibus and Profinet. Wollschlaeger and Wenzel (2005) de-

STATE OF THE ART 27

scribe its concepts as a common model that is able to integrate existing XML formats
(from the various field buses covered by Profibus and Profinet International [48]) into
this framework.

• CANopen: CANopen is one of the networks promoted by the user group CAN in
Automation (CiA). Device descriptions have been originally developed on a textual
basis, since 2007 a specification for the use of an XML schema for CANopen device
descriptions (CiA DSP 311, 2007) has been published.

• Field Device Configuration Markup Language (FDCML): The FDCML specifica-
tion (FDCML.org, 2002) follows a more general approach. It defines an XML schema
which is again a markup language, but specialized for the description of field devices.
(for a detailed description see also Appendix A)

Enhanced description of system components
The above considerations mainly concentrate on the communication aspects of a system
component, more specifically field bus devices. But for an ACS consisting of several different
components or automation objects it is important to yield an even more comprehensive
description of these system components. The communication aspect is an important item
within this enhanced description. But further topics need not to be neglected, too. The
following discussion gives examples for an enhanced description of system components.
The Total life cycle web-integrated control (TORERO) project is next to the HMS project an
example for the application of the IEC 61499 standard. The idea is based on devices that are
capable to be self-configuring and self-maintaining. For example, a device can be introduced
into the ACS by automatic plug and play mechanisms or it may be updated automatically by
using information from a server of its manufacturing company. A basis for these capabilities
is constituted by the TORERO device description, which includes all hardware and software
information concerning the device. As described by Schwab et al. (2005) the predecessor of
the FDCML specification, which is based on the same principles, has been used for the
TORERO device description. Also in the case of the Evolution Control Environment for
Distributed Automation Components (εCEDAC) project [8], which is closely related to this
work, FDCML represents the basis for an extensive description of devices. Further details
will be presented in Section 5.3 or are available in Strasser et al. (2007). Next to the support
for the engineering process especially information concerning the properties of the hardware
and software have been added to the device description in order to provide the basis for an
enhanced engineering of systems, incorporating also the evaluation process.
Thramboulidis and Prayati (2001) analyze the current state of device description languages
and argue, that there is no common model for the device specification which enables dynamic
aspects and system management. Therefore they propose a field device specification based on
IEC 61499 and IEC 61804 that adds the missing aspects and provides the basis for their
function block oriented engineering support system. Their model is oriented to support both
the development and the operational phase and consists of the main items network interface
unit, resources, industrial process entity, and application management entity.
A very interesting approach is given in (VDMA 66430-1, 2006), the so-called XML Interface
for Robots and Peripherals (XIRP). For the special application scenario of interaction
between robots and processor-based peripherals (e.g., a vision system) XIRP defines a device
description as well as a communication protocol, which specify a machine-to-machine
interface and the rules for interaction. Several components (based on the discussion in Section
3.1 these are automation objects) are able to interact autonomously and provide a given
functionality.
A device description is also an elementary part for sensor and actuator networks as addressed
by the IEEE 1451 standard. Herein especially in part 3 (IEEE 1451.3, 2003) the plug and play

28 STATE OF THE ART

aspect at the transducer level is depicted by the use of a common communication interface
with an appropriate description file (the so called transducer electronic data sheet). Transduc-
ers according to this standard may be plugged into a compatible system and may be used
without additional specific drivers, profiles or changes to the system. A similar approach is
described in Kaiser and Piontek (2005), who investigate self-describing devices, which means
that all information necessary for the use of such a device is stored within the device itself.
The proposed device description includes three categories of information: general informa-
tion, information about the physical connections and the temporal properties of the network,
and information about the semantics of data provided by the device.

3.4 Software evolution and dynamic reconfiguration
The life-cycle of a software product consists next to the initial phase of software creation
(programming) also of two further important activities: Software Maintenance and Software
Evolution. Whereas software maintenance is defined by the IEEE 1219 (1998) standard8 as
“the modification of a software product after delivery to correct faults, to improve perform-
ance or other attributes, or to adapt the product to a modified environment”, there is no
equivalent definition available for software evolution. Bennett and Rajlich (2000, Section 1.1)
argue, that—although sometimes these terms are used interchangeably—“we shall use
maintenance to refer to general post-delivery activities, and evolution to refer to a particular
phase in the staged model” of the software lifecycle. “Software evolution takes place only
when the initial development has been successful. The goal is to adapt the application to the
ever-changing user requirements and operating environment.” (Bennett and Rajlich, 2000,
Section 2.2).
Several studies in the last 30 years concerning software evolution in computer science have
yielded to the so-called laws of software evolution, which are discussed with respect to
component-based software engineering in Lehmann and Ramil (2000). “The laws provide a
phenomenology, a description of systematically observed patterns. The term ‘laws’ was used
to indicate that they emerge from sociological, organizational and cognitive phenomena
which appear to be to a large extent beyond the control of individual software developers and
even managers.” (Lehmann and Ramil, 2000, Section 2). In the following some laws with
special relevance for this thesis are given:

• “Continuing change (I): An E-type9 system that is used must be continually adapted
else it becomes progressively less satisfactory.” (Lehmann and Ramil, 2000, Sec-
tion 4.2)

• “Increasing complexity (II): As an E-type system evolves its complexity increases
unless work is done to maintain or reduce it.” (Lehmann and Ramil, 2000, Section 4.3)

• “Continuing growth (VI): The functional capability of an E-type system must be
continually increased to maintain user satisfaction over its lifetime; where, in the con-
text of the present paper, the term user applies to both component customers and end-
users.” (Lehmann and Ramil, 2000, Section 4.2)

• “Declining quality (VII): Unless rigorously adapted to take into account changes in
the operational environment, the quality of E-type systems will appear to be declin-
ing.” (Lehmann and Ramil, 2000, Section 4.6)

8 This standard has been superseded by ISO/IEC 14764-IEEE 14764 (2006), which focuses in more detail on the
software life cycle process. Maintenance is considered in much more facets and its definition is more compre-
hensive accordingly. For our purpose the definition of IEEE 1219 (1998) is more useful.
9 „An E-type program may, for simplicity, be defined as one whose acceptability depends on the perception,
judgment and degree of satisfaction of appropriate stakeholder(s). Software used to solve a problem or address
an application in a real world domain is in general of this type.“ (Lehmann and Ramil, 2000, Section 3.1)

STATE OF THE ART 29

Although these laws have been stated already long time ago, and the process of evolution was
intended as an interception of operation of the software program (e.g., an update to a newer
version), they are also applicable to today’s practice in software engineering. Nowadays the
need for software systems that are available without any downtimes is more and more
claimed. Herein, the situation is equal for business software as well as control logic used in
ACSs. The challenges for software evolution have been summarized in Mens et al. (2005)
with the main statement that “the only way to overcome or avoid the negative effects of
software aging is by placing change and evolution in the center of the software development
process” (Mens et al., 2005, Section 1). In the following some of these challenges with
special relevance for this thesis are given:

• Preserving and improving software quality: “The challenge is to provide tools and
techniques that preserve or even improve the quality characteristics of a software sys-
tem, whatever its size and complexity.” (Mens et al., 2005, Section 3.A)

• Supporting model evolution: “Software evolution techniques should be raised to a
higher level of abstraction, in order to accommodate not only evolution of programs,
but also evolution of higher-level artifacts such as analysis and design models, soft-
ware architectures, requirement specifications, and so on.” (Mens et al., 2005, Sec-
tion 3.C)

• Formal support for evolution: “In order to become accepted as practical tools for
software developers, formal methods need to embrace change and evolution as an es-
sential fact of life”. (Mens et al., 2005, Section 3.E)

• Evolution as a language construct: “Programming (or even modeling) languages
should provide more direct and explicit support for software evolution.” (Mens et al.,
2005, Section 3.F)

• Need for better versioning systems: “Version control is a crucial aspect in software
evolution, especially in a collaborative and distributed setting. (…) Therefore, the
challenge is to develop new ways of recording the evolution of software that over-
come the shortcomings of the current state-of-the-art tools.” (Mens et al., 2005, Sec-
tion 3.J)

• A theory of software evolution: “It is necessary to develop new theories and mathe-
matical models to increase understanding of software evolution.” (Mens et al., 2005,
Section 3.Q)

• Post-deployment runtime environment: “There is an urgent need for proper support
of runtime adaptations of systems while they are running, without the need to pause
them, or even to shut them down.” (Mens et al., 2005, Section 3.R)

Dynamic reconfiguration
Especially the last noted challenge above, post-deployment runtime environment, has been
the topic of research in the last years, called Dynamic Reconfiguration. This term is especially
used for the change of architectures at run-time. Following the discussion presented by
Wermelinger (1999), different issues need to be taken into consideration. By focusing
especially on dynamic reconfiguration, the issue time is already defined to be meaning of “at
run-time” (in contrast to off-line).

• Source: We distinguish between a change that may be triggered by the current state of
components, topology of the architecture, or it may be asked for by the user.

• Operations: The fundamental operations of dynamic reconfiguration are adding and
removing components and connections as well as querying relevant system properties
at run-time.

30 STATE OF THE ART

• Constraints: Dynamic reconfiguration is constrained by any kind of property if it has
to be preserved during the change process.

• Specification: The process of dynamic reconfiguration should be verifiable against the
constraints.

• Management: The reconfiguration process may be managed in an explicit and central-
ized manner or management is implicit and distributed among the components.

Downtimeless System Evolution
This thesis aims at a combination of the above described topics software evolution and
dynamic reconfiguration. Therefore, the term Downtimeless System Evolution is introduced,
which explicitly faces the challenges of software evolution at run-time for the wide range of
ACSs.

• Downtimeless: Changes have to be applied to the running system with as less distur-
bances to the process under control as possible.

• System: Although software is considered to be the central element that is under
change, also changes in hardware—or more general changes of the overall system—
are taken into account.

• Evolution: In order to keep a system satisfactory, the system has to be changed con-
tinuously during the whole life-cycle.

The remaining section presents a reference architecture for dynamic reconfiguration, which
can be used to distinguish different scenarios that may take place within a component-based
system and describes their interdependencies. Furthermore, several existing approaches of
frameworks for dynamic reconfiguration with special focus on embedded systems and ACSs
are briefly summarized.

3.4.1 Reference architecture for dynamic reconfiguration
In order to provide an almost general view on dynamic reconfiguration it is valuable to
examine a reference architecture. We will use the conceptual framework presented by
Walsh et al. (2007b) for this purpose, who systematically and consistently address problems
and solutions related to dynamic reconfiguration. Although this work comes from classical
computer science as their case study is a financial analysis system, the architecture is useful
also for embedded systems and especially ACSs. The work is based on component-based
system development, as it has been mentioned in Section 3.1.

Change types
The action of dynamic reconfiguration can be categorized into different change types, which
describe how a system is adapted to the new situation. An evolution of a system may be
conform to one or more of these change types. Walsh et al. (2007b) distinguish six different
types of changes. Figure 7 depicts these change types and their interdependencies. There are
two significant determinations for these change types:

• Effect on the component interdependency: For the characteristic of a change type it is
important to separate inter-component change and intra-component change.

• Effect on the system signature: A change type may affect a structural change, a be-
havioral change, or both, with respect to the signature of the system.

The change types are defined by Walsh et al. (2007b) in general. In the following also their
relevance for the application in ACSs is mentioned:
Internal change: Changes are applied to the internals of a software component. This ad-
dresses clearly intra-component changes and does not require any other types of change. A
component may be changed regarding to its internal operations or state elements. Although

STATE OF THE ART 31

the elements of ACS programming languages do not fit in all details to the software compo-
nent paradigm, internal change can be applied equally.

Figure 7: Change types and dependencies, based on Walsh et al. (2007b)

Interface change: Interface change is defined as “changing the interface of a component and
therefore means changing provided and/or required services” (Walsh et al., 2007b, Sec-
tion 3.1.5). It affects only the behavior of a component and is an intra-component change.
With regard to ACSs, the term services is limited to data and/or event interfaces as well as
SIFBs within a component. An interface change needs to be considered always in the context
with the protocol change, mentioned below. An internal change may be required due to the
interface change.
Protocol change: A protocol change concerns the control and/or data flow between compo-
nents. In the terminology of computer science this means change to service protocols. Again
this kind of change affects only the behavior, but it affects at least two components and
belongs to an inter-component change. The interconnection of components is the way of
modeling control applications in IEC 61499 and at least for graphical languages also in
IEC 61131-3. Therefore protocol change does not mean changes in communications of for
instance a field bus, as this would match better with the terminology in ACSs, but of control
applications themselves and changes to their behavior. According to the level of consideration
within the elements of ACS programming languages, it has to be considered whether changes
of interconnections belong to an internal change (e.g., in case of the component FB network
of a CFB) or to protocol change (e.g., for applications in an IEC 61499 system).
Protocol change may require interface change and/or topology change. For the second issue
this may be the case also in the other direction. Protocol change may be required also due to
an architectural change.
Substitution: A substitution means the exchange of one component by another one. Therefore
it belongs to structural changes, as the type of one component is changed. But it does not
belong to inter-component changes, as there are no other components influenced. One
component is removed and another one is added in order to fulfill similar requirements.
Substitution may be required due to a topology change. Substitution can be considered
equally also for ACS programming languages.
Topology change: The addition and/or removal of components is defined as topology change.
Therefore this type of change is characterized by structural change and inter-component
change. For topology change also substitution or protocol change may be necessary. Topol-

32 STATE OF THE ART

ogy change may be part of an architectural change. The meaning of topology change can be
projected in an equal manner also to ACSs.
Architectural change: “Architectural change means changing global or local system proper-
ties. A change to global or local properties can imply pervasive behavioral and/or structural
system evolution to conform to these changed properties. This may mean changing whole
configurations of components of a greater system.” (Walsh et al., 2007b, Section 3.1.1)
If we apply this definition to ACSs, the content can be transferred without adaptations. An
architectureal change correspondingly means changing the control application of the ACS in
general.

Integrity characteristics
A second important item of a reference architecture for dynamic reconfiguration concerns the
management of integrity during the process of dynamic reconfiguration. Walsh et al. (2007b,
Section 3.2) mention different kinds of integrity characteristics:
Global consistency: Any global property defined for a system (e.g. implied by its specifica-
tion) needs to be preserved during dynamic reconfiguration.
Local consistency: If local properties of a system are defined they need to be preserved for
the application of dynamic reconfiguration. Local properties need to be reconciled with global
properties.
Active references: A component may have established communication paths as bindings of
services. If these bindings are affected during dynamic reconfiguration, they need to be
managed accordingly to do not violate any local or global consistency specification.
Dependent operation: There may occur dependencies between the operation of different
components due to data flow interrelation. A change to an operation needs to be considered
with regard to such dependencies.
Composite component: Similar to dependent operation, also the composition of components
is affected by changes to one component. It has to be taken care that a changed component
does not violate properties of composite components.
Constrained operation: A change to a component may be constrained by a dependency to the
state of another component. Therefore, the process of dynamic reconfiguration has to be
managed according to such constraints.
State management: In case of changes to or substitution of a component, a synchronization of
the state within the components may be necessary.

Dynamically reconfigurable component-based system
Walsh et al. (2007b) also describe how to design a dynamically reconfigurable component-
based system in order to fulfill the above mentioned change types and integrity characteris-
tics. A domain model of dynamic reconfiguration needs to be set up, defined in three steps:
(1) model of the primary concepts of the component-based system, (2) model of primary
concepts of the context of dynamic change, and (3) combination of these two models in order
to achieve the desired domain model of dynamic reconfiguration. As a very important item of
the domain model also fault tolerance modes are introduced.
Walsh et al. (2007a) present the implementation of the above described model of dynamic
reconfiguration by the use of explicit metaclass programming techniques. It is illustrated how
global and local properties can be encoded and reconciliation of existing system properties
and new change properties can then be resolved through a constraint solver.

STATE OF THE ART 33

3.4.2 Further approaches to dynamic reconfiguration
Many different approaches exist for dynamic reconfiguration. As a brief overview, only a few
are mentioned. The first approach towards dynamic reconfiguration known to the author has
been presented by Kramer and Magee (1985), who used the term dynamic configuration for
“the ability to modify and extend a system while it is running”. They present the CONIC
system, which consists of a configuration language (describing systems consisting of inter-
connected modules), a programming language (for module types), and a distributed operating
system. Their model for dynamic reconfiguration is based on a configuration manager, which
is capable to translate requests for configuration changes expressed in the CONIC configura-
tion language into commands to the operating system. The configuration manager is part of
the target system and validates the change specifications against the current system configura-
tion specification. In Kramer and Magee (1990) they enhance their methodology by separa-
tion between structural concerns and application concerns. They claim that in order to
perform configuration changes it is important to do not lose application information and leave
the application in a consistent state. For consistency during the change they introduce the
quiescence property, which expresses that a node is both passive and has no outstanding
transactions which it must accept or service. This is the basis to decide whether a change can
be applied or not.
Appavoo et al. (2003) use the technique of hot swapping in order to support self-diagnosing
and self-healing abilities of autonomous computer systems. Hot swapping is known also for
dynamic reconfiguration in general and is accomplished either by the interposition of code
(inserting a new component between two existing) or by a replacement of code (switching an
active component to a new implementation). The infrastructure for hot swapping has to take
different actions into consideration in order to perform a hot swap, namely triggering,
choosing the target, swapping components, transferring the state, and potentially adding
object types. Appavoo et al. (2003) depict a general description of such an infrastructure and
the involved methodologies as well as a reference implementation in the open source research
kernel K42.
Whisnant et al. (2003) describe a methodology for formally expressing the dependencies
among processes in order to analyze whether dynamic reconfigurations are compatible with
the existing configuration or not. Their system model consists of code blocks (they perform a
computation triggered by events called operations), state variables (only accessed via
executing code blocks), and threads (execute sequentially invoking code blocks). Recon-
figurability is achieved by either adding or removing single operation bindings. The decision
whether a reconfiguration will lead to a failure or not is based on the analysis of the dataflow
within the system model. If an unsafe situation occurs due to the reconfiguration, the user is
notified of the existing broken dataflow dependency.

Dynamic reconfiguration in embedded systems
Especially in the field of embedded systems, the topic of dynamic reconfiguration has been
investigated by various researchers. The following list is again only a small excerpt of this
very active field.
Yu et al. (2002) present a framework for a so-called live software update (this exactly
matches with dynamic reconfiguration) in order to support mission- and safety-critical
software applications. Their dynamic architecture is characterized by indirect addressing of
modules and flexible communication via the publisher and subscriber model. The module
proxy is essential for dynamic reconfiguration, as it is responsible for the management of e.g.
the substitution of a module. For substitution, the upgrade protocol defines three phases: (1)
uploading the new module, (2) switching operation to the new module implementation, and
(3) removing the old module. Herein also the state of the module can be transferred, which

34 STATE OF THE ART

must be implemented in the module by itself. By the use of a software upgrader element, the
coordination of reconfiguration requests via a command line interface and the module proxies
is achieved. The software upgrader is also used to synchronize the dynamic reconfiguration of
several modules in parallel.
Rasche and Polze (2005) describe a framework for the run-time adaptation of component-
based applications—Adapt.NET—based on the commercial component framework .NET
[34]. In order to achieve reconfigurability, each component has to comprise a specific
interface containing methods for connecting components, setting component parameters, or
transferring the component state. Additionally they use an XML-based configuration descrip-
tion language to describe components in order to be able to identify components and connec-
tions involved in the reconfiguration process and to perform appropriate reconfiguration
commands. The realization of adaptive applications, which can be adapted to certain envi-
ronmental settings (e.g., state or attributes of components), is based on so-called adaptation
policies. An adaptation policy defines the mapping of a monitored parameter and application
configurations. If significant changes are detected, a reconfiguration request is generated and
the framework executes the related dynamic reconfiguration. The Adapt.NET framework is
able to achieve application consistency and furthermore also deadlines of application tasks
can be met when necessary processor resources for potential reconfiguration commands are
provided. Rasche and Polze (2005) demonstrate how the required resources can be calculated
before run-time and included into the design and implementation of applications.
Angelov et al. (2006) present two versions of the COMDES framework for distributed
embedded systems. The frameworks are defined as a set of executable models, whereas
executable models are ultimately implemented as reusable and reconfigurable components.
The second version has been improved especially in order to support statically allocated
function units onto network nodes and hybrid timed event-driven state machines. Communi-
cation is based on signals that are exchanged at precisely specified time instants. Ange-
lov et al. (2005) especially describe their implementation approach for components that
include a reconfigurable state machine. By separating the executable code of such a compo-
nent from the transition state table (represented as multiple-output binary decision diagram)
reconfiguration is possible without re-programming. Therefore, internal change of a compo-
nent is achieved on basis of the reconfiguration of state machines.
Stewart et al. (1997) developed dynamically reconfigurable real-time software in order to
support reconfigurable robots based on port-based objects. A port-based object is an inde-
pendent concurrent process whose functionality is defined by methods. The interface of a
port-based object is given by input and output ports (used for the interconnection between
port-based objects), resource ports (for the communication with sensors and actors), and
configuration constants (used for the reconfiguration of generic components for specific
hardware or applications). An application is modeled in the same way as a control engineer
configures a system using transfer functions and block diagrams. Strictly speaking this was
the original idea of port-based objects, in order to provide a simple modeling method for real-
time software for control engineers. Communication between port-based objects is achieved
by state variables that are synchronized by using local and global tables. Dynamic reconfigu-
ration is supported by the framework, but it is clearly stated by Stewart et al. (1997) that there
are no mechanisms integrated to perform a safe reconfiguration. It is mentioned that policies
that ensure a stable execution during the reconfiguration are usually application specific. In
their experiments they used a conservative approach for dynamic reconfiguration, namely the
robot was temporally set at rest (velocity and acceleration are both zero) before the dynamic
reconfiguration started.

STATE OF THE ART 35

3.4.3 Dynamic reconfiguration in automation and control systems
For the special purpose of dynamic reconfiguration in ACSs the above described approach
cannot be applied directly as there are different means for system’s programming in use. It is
important to distinguish between vendors of ACS components and users of ACSs, as depicted
for instance in Bouyssounouse and Sifakis (2005, Section 19.2). The first one face the
problem of providing tools and runtime environments that are adequate also for dynamic
reconfiguration, but with the restriction of an interface to the user in form of the programming
languages mentioned in Section 3.2. None of the above mentioned approaches can be applied
directly for ACSs. We will survey the approaches for dynamic reconfiguration based on the
ACS programming languages:

IEC 61131-3
The IEC 61131-3 standard does not provide any means for dynamic reconfiguration. Never-
theless, nearly each IEC 61131-3 compliant runtime environment and engineering tool
provides the possibility to change the elements of the IEC 61131-3 software model during
operation. Of course, there are differences depending on the implementation of the runtime
environment as well as the granularity of the reconfiguration, but commonly POUs can be
changed dynamically. Hummer et al. (2007, III.B-1) give a description of the used methodol-
ogy. The main idea is to use the cyclic execution of the control logic, which is the common
way to program a PLC (although IEC 61131-3 enables also the triggering of tasks via the
rising edge of a Boolean signal). There is a point in time when it is possible to change a POU
without influencing the current execution of the control logic: This is between the finishing of
the current cycle and the trigger for a new cycle of execution. Simply speaking this is
equivalent to the quiescence property introduced by Kramer and Magee (1990). Based on the
ratio between cycle time and execution time, there may be a big amount of time to execute the
dynamic reconfiguration, which can be reduced to a readjustment of the pointer to the start
address, if the new POU is already available. A typical methodology for state recovery is that
the value of similar variables is copied to the new POU. Otherwise the variables of the new
POU are set to their default values. Considering the approaches mentioned above this
methodology for dynamic reconfiguration in IEC 61131-3 compliant systems is very similar
to hot swapping.
There are several problems that occur when dynamically reconfiguring an IEC 61131-3
control logic without mentioning an appropriate engineering methodology (see Chapter 10 for
an IEC 61131-3 system utilizing the εCEDAC methodology for dynamic reconfiguration),
which have been depicted by Sünder et al. (2006c, Section 1). Fundamental problems exist
based on the IEC 61131-3 software model:

• “The switching point in time cannot be determined because of the cyclic way of exe-
cution and the lack of information about the state of the system or application.”

• “The reconfiguration of one task of an application interferes with all tasks of this ap-
plication since all tasks have to be stopped because of the asynchronous cyclic execu-
tion of tasks. This leads to jittering effects.”

• “The lack of fine granularity (task level) introduces high complexity in communica-
tion, memory management and re-initialization.”

• “The reconfiguration of elements may lead to inconsistent states, e.g. deadlocks or
token-proliferation in Sequential Function Charts (SFC).”

• “New elements start with their cold start initial value.”

IEC 61499
The management model of the IEC 61499 standard directly addresses dynamic reconfigura-
tion. There are of course no implementation techniques included in the standard, but the

36 STATE OF THE ART

interface as well as the behavior for dynamic reconfiguration are mentioned. According to the
short description of the management model in Section 3.2.2, the standard defines a state
machine for managed FBs (Appendix B, Figure 63). Correspondingly, an FB is in an idle state
after its creation. The START management command forces the FB into the running state,
which means that the FB is operating input events. The FB may be stopped or killed by a
management command, depending on whether a possible active operation should be finished
or not when the management command occurs. By the use of an IEC 61499 compliant
runtime environment such as the FBDK [15] and a compliance profile describing the concrete
interface of the management application [17] an IEC 61499 control logic can be dynamically
reconfigured. Hummer et al., (2007, III.B-2) depict a test application which provides the
possibility to simple send management commands to an IEC 61499 device. Demmelmayr and
Zafari (2007) have used the FBDK for dynamic reconfiguration of a simple application under
supervision of the author. In detail, the well-known programming exercise “Towers of Hanoi”
has been adapted during operation by simply using management commands via an engineer-
ing station. These results have shown that dynamic reconfiguration can be achieved with the
IEC 61499 standard, although the handling of pure management commands was very
complex and means for state recovery are missing.
There are some approaches available that implement and enhance the dynamic reconfigura-
tion capabilities of the IEC 61499 standard, which are mentioned chronological.
Brennan et al. (2002a) examine reconfiguration based on IEC 61499 already in a very early
state of the standard during the HMS project. Their work is based on a draft version of
IEC 61499, nevertheless their work can be applied in a similar way also to the final version.
Brennan et al. (2002a) describe an enhanced model for function blocks that enables also the
modeling of reconfiguration. Figure 8 depicts the general idea of two different kinds of
control paths within an IEC 61499 application. Horizontally there exists the execution path
which is responsible for operating the normal control flow modeled via the event and data
connections of FBs. Vertically there is a configuration control path that can be used to model
the reconfiguration of the control application. For the implementation of these two paths, they
introduce two agent types: (1) the execution agent is primarily concerned with the FB
execution and (2) the configuration agent is primarily responsible for implementing recon-
figuration plans. In order to synchronize the execution of these two agents, a state machine is
proposed. An FB therefore does not only provide an interface for data und events for control
execution but also for reconfiguration execution. The configuration management application
mentioned in Figure 8 again can be considered as an FB application. Brennan et al. (2002a)
mention two different kinds of configuration management applications as the key to achieve
an reconfiguration, which are discussed in more detail in Brennan et al. (2002b):

• Contingencies approach: “Within this form of reconfiguration control, contingencies
are made for all possible changes that may occur. In other words, alternate configura-
tions are pre-programmed based on the system designer’s understanding of the current
configuration, possible faults that may occur, and possible means for recovery.”
(Brennan et al. , 2002b, Section IV.B)

• Soft-wiring approach: “The basic idea behind this approach to reconfiguration is to
enable higher layers to use higher-level reasoning to analyze the current configuration
and plan for reconfiguration when required.” (Brennan et al. , 2002b, Section IV.C)

For both cases, the configuration management application has to take care for a smooth
transition from one configuration to another. For the contingencies approach this has to be
modeled by the system designer. In the soft-wiring approach the higher layers reasoning about
the reconfiguration also need to take care of the transition. The authors propose the use of
agents for these higher layers. An implementation of this model for reconfiguration has been

STATE OF THE ART 37

described by the use of real-time Java in Brennan et al. (2002a) and an FB operating system
in Brennan et al. (2002b).
Thramboulidis and Zoupas (2005) present an implementation of an IEC 61499 runtime
environment also based on real-time Java. This framework provides support for dynamic
reconfiguration according to the interface defined by the standard. For the process of recon-
figuration two different phases are proposed: In the first phase (low priority) all actions for
the preparation of the dynamic reconfiguration should be included. These are for instance the
download of a new FB type and the creation of a new FB instance. The second step has to be
executed with high priority. Herein all actions that directly influence the active application
have to be executed. The authors also provide timing characteristic measurements for the
execution of management commands for different platforms. Thramboulidis and Zoupas
(2005) present data for two different configurations of a personal computer, and Thram-
boulidis and Papakonstantinou (2006) mention data for an embedded platform. This is of
special interest as the temporal behavior of reconfiguration is as important as its functional
behavior, as already stated in Requirement (1) “Temporal behavior”.

Figure 8: Conceptual model for configuration/reconfiguration, (Brennan et al., 2002a, Fig. 5c)

Zoitl (2007) investigates an IEC 61499 runtime environment utilizing two major characteris-
tics: real-time execution of IEC 61499 applications and enhanced support for dynamic
reconfiguration. The first one, real-time execution, is a necessity to provide full support for
dynamic reconfiguration, as the control logic is constrained by the real-time characteristics of
the process under control. Therefore, also the dynamic reconfiguration needs to be executed
with appropriate real-time constraints in order to do not disturb control applications. Zoitl
(2007) develops his concept on the basis of Kramer and Magee (1985). The interface to the
device management is given by FBs which represent a certain management command. Similar
to the idea of Brennan et al. (2002a) an FB application can be modeled in order to program a
dynamic reconfiguration process. This runtime environment builds the basis for the imple-
mentation of the modeling approach for DSE and will be discussed in more detail in Sec-
tion 4.2 and Appendix B.
The modeling of dynamic reconfiguration by using the above mentioned FBs has been
described in Hummer et al., (2007) as next steps towards downtimeless ACSs. The author of
this thesis was part of the related research project εCEDAC [8]. A general description of the
idea and a requirements analysis for the εCEDAC project is given for instance in

38 STATE OF THE ART

Strasser et al. (2005). The results have been described in a brief overview for instance in
Rooker et al. (2007). The modeling method for DSE from the εCEDAC project will provide
the general framework for this thesis (see Chapter 4 for a detailed discussion).

Programming language independent approach
Almeida et al. (2007) present a different approach in order to program ACSs. They utilize
Event-Condition-Action (ECA) rules as formal method for defining the reconfigurable logic
control. Almeida et al. (2007, Section I) describe the way of executing an ECA system as
follows: “The occurrence of the event triggers the rule, which will start a query to check the
condition, which determines if the system is in a particular state. The actions will fire if the
conditions are satisfied.” A monolithic structure of ECA rules is similar to a program
consisting of a list of if-statements. Almeida et al. (2007) propose modular structures of ECA
rules and trees (an enhanced rule with several conditions that build a tree). By applying
changes to the ECA system, reconfigurability can be achieved. An important aspect for the
reconfiguration as well as execution of ECA systems in general is the synchrony hypothesis,
which states that the reaction of the controller takes negligible time with respect to the plant.
The ECA system is independent of a programming language. Almeida et al. (2007) provide
two examples for the implementation: modular finite state machines and IEC 61499 applica-
tions.

3.5 Transition management
A very important point in the above given description of the reference architecture for
dynamic reconfiguration discussed in Section 3.4.1 are integrity characteristics. There are
certain properties that need to be achieved during the process of dynamic reconfiguration in
order to do not disturb the control logic during operation. These can be split up into two
different kind of properties:

• General properties of the overall system: Commonly there are several applications
running on a control device, and dynamic reconfiguration is applied only to a limited
part of these applications. This kind of properties refers to those parts of the applica-
tions that are not affected by the reconfiguration. Therefore, the system environment
as well as the dynamic reconfiguration’s implementation need to take care that the in-
tegrity characteristics of the unaffected application parts are preserved.

• Properties of the application under reconfiguration: There are also integrity charac-
teristics that apply to those parts of the application that are changed by dynamic recon-
figuration. Therefore it is very important to integrate special mechanisms in order to
retain these properties also when changes happen. These special mechanisms are usu-
ally called transient or transition management.

As already mentioned for instance by Stewart et al. (1997) the policy for ensuring a stable
execution and as little disturbances as possible to the process is application specific. There-
fore, a transition management policy cannot be stated generally and needs to be considered
always in combination with the application. A field with a big amount of literature for such
policies is control theory, where adaptive structures of controllers and plants are the topic of
research since many years. The following discussion is affected by the methodologies from
control theory, which may be adapted also to other application fields. As a starting point, we
use the definition of transients from Kovacshazy et al. (2001) as

STATE OF THE ART 39

)()()(nfnfnf idtr −= , (1)

where)(nftr transient of the variable;

)(nf observed variable in the investigated reconfigurable system;

)(nfid same variable observed in an ideal reconfigurable system.

For control loops the observed variable would be for instance the plant output. The ideal
reconfigurable system would match with the plant output when the new controller has been
used already for a long time. Kovacshazy et al. (2001) also provide measures in order to
quantify the efficiency of a transition management policy based on Equation 1 as for instance
the average energy of the transient or the absolute maximum of the transient.
Guler et al. (2003) provide an overview on different transition management policies, which
can be summarized in four main topics. The principle idea is based on the substitution of a
component (e.g., the controller):

• Output blending: Herein the old and the new component work in parallel, and their
outputs are merged by some functional relations, whereas the transition starts with the
old configuration and ends with the new configuration. The functional relation can be
arbitrarily complex, a simple example would be a linear function. The method is
meaningless especially for the substitution of controllers, as during the transition both
controllers are not fully integrated in the closed loop.

• Parameter blending: This method concerns internal change, especially of a controller.
When the new controller’s structure is very similar to the old one, the parameters of
the controller can be blended during the transition. Therefor, a functional relation be-
tween the parameter settings of the two controller settings is applied (similar to output
blending).

• Transient management: Simon et al. (2001) provide a methodology in order to add a
so-called anti-transient signal to the controller’s output (similar to disturbance variable
compensation), which is calculated based on the models of the plant and the control-
ler. They claim that transient management can compensate both changes—of the con-
troller as well as the plant. Simon et al. (2001) strongly restrict this approach to the
prerequisites steady state of the control loop and a constant reference signal.

• State initialization: This methodology calculates the initial state of the new controller
according to special algorithms in order to reduce transients during dynamic recon-
figuration. Simon et al. (2000b) describe several approaches. Two very simple strate-
gies have been already mentioned in Section 3.4.3 for IEC 61131-3 compliant sys-
tems. In the state zeroing method all state variables are set to zero, and in the state pre-
serving method similar state variables are copied from the old controller to the new
one. A more sophisticated method with a significantly higher reduction of transients is
the output fitting method. Herein the state variables of the new controller are calcu-
lated so that it produces the same output as the old controller. An analytic solution for
this problem may also include deviations of the output signal. Simon et al. (2000a)
provide considerable simulation results of these different strategies by using a two link
planar robot.

There are manifold results available from the field of transition management research. For
instance Simon et al. (2000a) investigate the influence of the control logic’s structure
regarding to the occurrence of transients and show that there is a significant effect during the
execution of similar dynamic reconfigurations within different structures. Kovac-
shazy et al. (2001) apply similar methodologies for transition management to reconfigurable
signal processing channels. Guler et al. (2003) provide a generic pattern for transition

40 STATE OF THE ART

management as well as graphical modeling for the above mentioned scenarios. These patterns
may also be structured hierarchically enabling the coordination of several dynamic reconfigu-
ration processes as well as transition management in distributed systems. Steffen (2005)
investigates reconfiguration based on failures of actors and sensors in control loops. He
introduces a so-called reconfiguration block which is in between the nominal controller and
the faulty plant. The purpose of the reconfiguration block is twofold: On the one hand the
faulty plant faces a reconfigured controller and on the other hand the nominal controller faces
a reconfigured plant (the faulty plant including the reconfiguration block models the nominal
plant).

3.6 Verification by model checking
The technique of verification by using model checking has been invented independently in the
early 1980’s by Clarke and Emerson (1981) in the United States and Queille and Sifakis
(1981) in France. Both approaches utilize temporal logic (in detail branching time) in order to
specify the desired system behavior. Since that, a lot of research and progress has been
achieved in order to improve the capabilities of verification by model checking. First indus-
trial applicable results have been presented for verification of hardware design and communi-
cation protocols, as the complexity in these fields is quite limited. Nowadays research is
focused on software design and code, or also on the combination of software and hardware
design.
A lot of literature exists about the field of verification by model checking. We will use two
references for this work, Clarke et al. (1999) and Huth and Ryan (2004). There is a big variety
of symbols and notations in use within the literature, and also the two works mentioned use
different nomenclatures. We will follow the symbols and notations used in
Clarke et al. (1999).
Model checking is a process that consists of three main steps: modeling, specification, and
verification. These steps can be described briefly as follows:

• Modeling: The basis for model checking is a model of the system, which can be given
in any description language of a model checker. Generally the model is given in some
sort of transition system. The model may be compiled from a given design, but due to
limitations in time and memory abstraction may be used to eliminate irrelevant or un-
important details.

• Specification: Model checking is based on temporal logic. In detail the combination
of temporal logic with automatic algorithms for verification of a given model was the
starting point for the research in model checking. A specification is the summary of
properties that need to be comprised by the model. A high number of various dialects
and languages of temporal logic exist (see Section 3.6.2), whereas in practice their use
is restricted to the given model checker.

• Verification: Verification means the execution of a model checking algorithm with
the specification and the model as input. The result is the answer, whether the model
satisfies the specification or not. If the answer is no, the model checker provides the
user in most cases with an error trace. The error trace is a counterexample for a
checked property; a path in the state space of the model where the specification is vio-
lated. The generation of a counterexample is an important aspect for the (re-)design
and debugging of a system.

The model checking problem (Clarke et al., 1999, Chapter 4) can be described as follows.
Given is a model M that represents a finite-state concurrent system. The model includes a set
of states S. A specification that is given as temporal logic formula f expresses some desired
properties of the model. Then model checking aims at finding the set of states in S that
satisfies f:

STATE OF THE ART 41

{ s 0 S | M , s Ö f }. (2)

Normally some states exist within the model that are designated as initial states. Then the
model satisfies the specification if all initial states are in the set. The definition of the
satisfaction relation Ö depends on the used temporal logic and is given for CTL* (see
Section 3.6.2) for instance in (Clarke et al., 1999, Section 3.1).
Following the classification criteria given in (Huth and Ryan, 2004, Section 3.1) for the
determination of the verification approach, model checking fulfills the following characteris-
tics:

• Model-based: The system description is represented by a model M. This is in contrast
to proof-based approaches, where the system description is given as a set of formulas.

• Automatic: The degree of automation is another criteria for verification approaches.
Model checking can be executed completely automatic.

• Property-verification: Model checking verifies whether a given system satisfies a
given specification or not. But it does not determine whether the given system covers
all the properties the system should satisfy (this would be called full-verification).

• Concurrent, reactive systems: The intended application fields for model checking are
systems that may be hardware and/or software. Their characteristics are concurrent
(instead of sequential) and reactive (instead of terminating) behavior.

• Post-development: The earlier verification is used in the course of system develop-
ment, the greater are the benefits in terms of reduced rectification costs. Model check-
ing is a post-development methodology, that means the model is built from a given
design.

A general model: Kripke structures
Many possibilities exist to model concurrent, reactive systems. Concurrent systems are often
given by the text of a program, utilizing shared variables and communication via message
passing. They may be of synchronous or asynchronous type. Reactive systems are character-
ized by frequent interaction with the environment. They usually do not terminate. For both
kinds of systems Clarke et al. (1999) propose to use a general type of state transition system
called Kripke structure in order to capture this behavior. The general characteristics of such
Kripke structures are that states exist (a snapshot of the system that captures values of
variables at a particular instant of time), changes of the state are described by transitions, and
computations within the system are depicted as an infinite sequence of states (the change from
the previous state is given by some transition). A formal description of a Kripke structure is
given in (Clarke et al., 1999, Section 2.1) as follows:
“Let AP be a set of atomic propositions. A Kripke structure M over AP is a four tuple

M = (S, S0, R, L) (3)

where 1. S is a finite set of states.
 2. S0 f S is the set of initial states.
 3. R f S H S is a transition relation that must be total, that is, for every

state s 0 S there is a state s’ 0 S such that R (s , s’).
 4. L : S 6 2AP is a function that labels each state with the set of atomic

propositions true in that state.

Sometimes we will not be concerned with the set of initial states S0. In such cases, we will
omit this set of states from the definition. A path in the structure M from a state s is an infinite
sequence of states π = s0s1s2… such that s0 = s and R (si , si+1) holds for all i $ 0.”

42 STATE OF THE ART

State explosion problem
When we think of an automatic algorithm for deciding on a given problem, the theory of
computability needs to be kept in mind. “In particular, it shows that there cannot be an
algorithm that decides whether an arbitrary computer program (written in some programming
language like C or Pascal) terminates. This immediately limits what can be verified automati-
cally.” (Clarke et al., 1999, Section 1.2) But as model checking is a technique for verifying
finite state concurrent systems, an appropriate algorithm will terminate (theoretically). In
order to determine a given specification, an exhaustive search of the state space of the system
has to be performed by such an algorithm. The efficiency of the algorithm is an important
measure for the applicability of model checking to practical problems (see the discussion
below on enhanced model checking techniques in Section 3.6.1).
Nevertheless, the size of the model is a critical issue in model checking. Herein also the
number of variables as well as the number of components of the system which execute in
parallel are important measures. “The tendency of state space to become very large is known
as the state explosion problem.” (Huth and Ryan. 2004, Section 3.6.1).
This especially applies for the application of model checking in embedded systems design.
Boyounnouse and Sifakis (2005, Section 1.4) state that “formal methods have scaled up
drastically in the last decade, and this process is going to continue even faster. (…) Still,
skilled engineers managed to use them by properly phrasing or decomposing their validation
or analysis problems into traceable parts. Nevertheless, it is a constant and stringent need that
formal methods and tools scale up to follow the increasing complexity of designs.”

3.6.1 Enhanced model checking techniques
A common methodology for human beings to visualize the model checking problem is
unwinding the given Kripke structure, which means starting from the initial state of the model
and representing the overall system behavior by an infinite tree of all computation paths. The
first model checking algorithms used such an explicit representation of the Kripke structure,
but obviously these approaches lack efficiency in contrast to the state explosion problem.
Many enhanced algorithms for model checking have been developed in recent years. We will
give a brief overview describing the main ideas in improving the performance of model
checking algorithms.

Efficient data structures—symbolic model checking
A key step in increasing the possible number of states in model checking was done by a
symbolic representation of the state transition graphs. In detail, such a representation has been
proposed by using Ordered Binary Decision Diagrams (OBDDs). OBDDs provide a very
compact, canonical form for Boolean formulas. As a simple example, the transition relation
can be expressed as a Boolean formula using two sets of variables, one for the old state and
the other encoding the new one, which is represented by an OBDD. The model checking
algorithm is based on computing fixpoints of predicate transformers that are obtained from
the transition relation.

Abstraction
The technique of abstraction is described in Clarke et al. (1999, Chapter 13) as a methodology
applied before the model of a system is constructed. In detail it aims at a reduction of states
on a high level description of the system. There are two concrete techniques mentioned: cone
of influence reduction and data abstraction. The cone of influence reduction analyses the
influence of variables to the ones mentioned in the specification. If the influence of variables
can be neglected, they can be eliminated for the creation of the model of the system. Data
abstraction aims at a mapping from actual data values to abstract data values. For instance, a

STATE OF THE ART 43

real number may be represented by three attributes: smaller than zero, equal to zero, or greater
than zero. Again, a reduction in size of the original system can be achieved.

Simulation
In the sense of modeling a system, the simulation relation is an important means in decreasing
the number of states. Clarke et al. (1999, Chapter 11) define that two given Kripke structures
M and M’ according to Equation 3—we say that M’ simulates M (denoted by M ˜ M’)—if a
simulation relation exists which associates each state in M a corresponding state in M’.
Furthermore it can be shown that simulation is a preorder and given an ACTL* formula f (a
detailed description of ACTL* is given in Section 3.6.2), M’ Ö f implies M Ö f. The model
checking problem can be solved with the reduced structure M’ instead of the original struc-
ture M.

Partial order reduction
This technique especially focuses on the verification of software. Concurrent software often
consists of different processes which are performed independently—that is also called
asynchronous (without global synchronization clock). This property often can be used to
substantially reduce the size of the model. In detail, “it exploits the commutativity of concur-
rently executed transitions, which result in the same state when executed in different orders.”
(Clarke et al., 1999, Chapter 10)

On-the-fly model checking
This technique is used in conjunction with model checking with automata (Clarke et al., 1999,
Chapter 9). Herein the automaton for both the model and the negation of the specification are
generated and the emptiness of the intersection is checked. If the intersection is empty, the
model satisfies the specification. On-the-fly model checking only generates the automaton for
the specification. This automaton is used to guide the generation for the system automaton. It
has been shown that this often leads to the construction of only a small portion of the state
space before finding a counterexample for the properties being checked.

Bounded model checking
This technique uses the construction of a Boolean formula that is satisfiable if a counterexam-
ple exists. For the counterexample the length of the path is bounded. Starting from length 0 it
is incremented until a proof is found. In certain cases the number of iterations of this proce-
dure can be bounded for instance by the diameter of the finite state systems in case of safety
properties.

Compositional reasoning
In many cases the overall model is represented by a composition of smaller parts. If it is
possible to decompose the specification of the overall system into properties that describe the
behavior of such smaller parts, model checking can be applied to much larger systems.

3.6.2 Formal specification by temporal logic
Model checking is used to verify properties of concurrent and reactive systems. Therefor it is
necessary to specify also the dynamic aspects of these properties. It is not sufficient to
investigate only fixed properties of the model, as this would be possible by using proposi-
tional and predicate logic. An appropriate means for specifiying dynamic system properties is
temporal logic. Various dialects of temporal logic exist that differ in the provided operators
and the semantics of these operators. We will start our considerations with a very powerful
logic called Computation Tree Logics (CTL) CTL*, which can be seen as superset for the
most common temporal logics CTL and Liner-time Temporal Logic (LTL). In addition we
will investigate further derivatives such as ACTL*, real-time and stochastic time temporal

44 STATE OF THE ART

logic. Next to various dialects of temporal logic there are also investigations on simplified
understanding and application of temporal logics available, which are of special interest for
ACS customers who are in common no experts in computer science.

The Computation Tree Logic CTL*
There are two different kinds of temporal logic that can be distinguished, branching-time
logic and linear temporal logic. Branching time means that the model of time has a tree-like
structure. There are several paths possible within this structure and the path that is realized in
the future is not determined. In linear temporal logic the model of time is a sequence of states,
extending infinitely often in the future. As the future is not determined in general, several
paths are taken into consideration representing different possible futures.
CTL* combines both models of time. The following description is based on Clarke et al.
(1999, Section 3.1). In CTL* formulas can use two different kinds of quantifiers: path
quantifiers and temporal quantifiers. As principle model for reasoning with CTL* a computa-
tion tree is examined, which represents the unwinded Kripke structure with one state desig-
nated as the initial state. Path quantifiers can be used in a particular state to specify whether
all or some of the paths starting in that state have a given property. The two path quantifiers
are

• A which means “for all paths” and
• E which means “for some paths”.

Temporal quantifiers describe properties of a path through the computation tree. Five basic
operators exist:

• X (next time) specifies that the property holds in the second state of the path.
• F (future or eventually) specifies that the property will hold at some state on the path.

This may be also the first state of the path.
• G (globally or always) specifies that a property holds at all states on the path.
• U (until) is based on two properties of a path. If the second property holds at some

state of the path, the first property has to hold at every preceding state.
• R (release) is dual to U. The second property has to hold along the path up to and

including the first state where the first property holds. The first property is not re-
quired to hold eventually.

The precise definition of CTL* formulas is split up into two kinds of formulas: state formulas
(for a specific state) and path formulas (for a specific path). According to the definition of a
Kripke structure in Equation 3 we assume AP to be a set of atomic propositions. Then the
syntax of CTL* is given by the following rules (Clarke et al., 1999, Section 3.1):

1. “If p 0 AP, then p is a state formula.”
2. “If f and g are state formulas, then 5f, f w g and f v g are state formulas.”
3. “If f is a path formula, then E f and A f are state formulas.”
4. “If f is a state formula, then f is also a path formula.”
5. “If f and g are path formulas, then 5f, f w g, f v g, X f, F f, G f, f U g, and f R g are path

formulas”.

The Computation Tree Logic CTL
Whereas CTL* included both branching-time and linear-time, CTL as a subset of CTL* only
focuses on branching-time logic. In CTL each temporal operator has to be immediately
succeded by a path quantifier. This means that there exist always pairs of one path quantifier
and one temporal quantifier. CTL can be defined by exchange of the fifth rule of CTL* by the
following restricted rule (Clarke et al., 1999, Section 3.2):

STATE OF THE ART 45

5. “If f and g are state formulas, then X f, F f, G f, f U g, and f R g are path formulas”.
Next to this basic definition also different extensions of CTL exist, for instance Starke and
Roch (2002) include especially state transition information (see also Appendix C.2).

Linear-time Temporal Logic LTL
LTL is also a subset of CTL*, but in contrast to CTL it is focused on linear time. An LTL
formula has the form A f, where f is a path formula whereas only subformulas are permitted
that consist of atomic propositions. In detail a LTL path formula can be defined according to
(Clarke et al., 1999, Section 3.2) by two rules:

1. “If p 0 AP, then p is a path formula.”
2. “If f and g are path formulas, then 5f, f w g, f v g, X f, F f, G f, f U g, and f R g are path

formulas”.
A very important aspect of temporal logic is the expressiveness of a given language. It is not
possible to express any LTL specification in CTL and vice versa. For instance the LTL
formula A(FG p) cannot be expressed in CTL, and the CTL formula AG(EG p) cannot be
expressed in LTL. The disjunction A(FG p) w AG(EG p) is a CTL* formula that is expressi-
ble neither in CTL nor in LTL. The choice of a specific temporal logic may be motivated also
by its expressive power.

ACTL* and ACTL
An often used subset of CTL* is when only the path quantifier A is allowed. The restriction of
CTL* to only utilize the A path qualifier is called ACTL*, and accordingly the same restric-
tion of CTL is called ACTL.

Derivatives of CTL for real-time systems
Sveral extensions to temporal logics exist in order to support mentioning of time directly in
the specification. Clarke et al. (1999, Section 16.3) mention for instance RTCTL which uses
bounded operators such as U[a,b], where [a, b] defines the time interval in which the property
has to be true. Another approach called TCTL has been introduced by Alur et al. (1990). In
contrast to CTL the next operator X is omitted and all other temporal operators are extended
by a timing condition such as <c, #c, 'c, $c, and >c (c as time value).

Derivatives for stochastic time
Another extension of temporal logics is the introduction of stochastic time. Again several
approaches exist in this field as for instance probabilistic temporal logic PCTL, “in which a
probabilistic quantifier of the form P®λ is used in place of a path quantifier of CTL, where
® 0 {<, #, ', $, >} is a comparison operator and λ 0 [0, 1] is a probability” (Sproston, 2004,
Section 5.4). D’Aprile et al. (2004) discuss the use of Continuous Stochastic Logic (CSL) in
model checking. CSL comprises the ability to specify qualitative and quantitative properties.

User friendly representation of temporal logic
The use of temporal logic for specification in the model checking process is highly supported
by the various model checking approaches (see Section 3.6.3). But also a problem occurs due
to the lack of good understanding of the expressiveness of temporal logics by engineers.
There are two trends that can be observed in order to simplify the use of temporal logics:

• Timing diagrams: In Clarke et al. (1999, Chapter 18) the use of timing diagrams in-
stead of temporal logic is mentioned for the specification of hardware design. Typi-
cally circuit designs are considered and timing diagrams are the natural way to express
the behavior of the system. The timing diagram as specification may be used directly
by adapted model checking algorithms or they are translated into temporal logic auto-
matically. Vyatkin and Hanisch (2001b) and Vyatkin and Bouzon (2008) depict the

46 STATE OF THE ART

use of timing diagrams for the specification in ACSs. In detail, they develop a specifi-
cation language for timing diagrams which is used to generate a model of possible in-
put behavior for a given system.

• Pattern: Similar to patterns used in software engineering for recurrent problems also
patterns may be used for recurrent types of specifications. Dwyer et al. (1998, Sec-
tion 3) introduced the term property specification pattern, which “is a general descrip-
tion of a commonly occurring requirement on the permissible state/event sequences in
a finite-state model of a system”. They set up a hierarchy of such patterns with addi-
tional characterization of the pattern scope. Each pattern consists of a textual descrip-
tion, temporal logic formulas for different languages, examples, and the relationship to
other patterns. Dwyer et al. (1999) present a study on available specifications in litera-
ture whereas most of them have been instances of their proposed patterns. The patterns
are publicly available via [53]. Another survey of patterns has been presented also in
Meolic et al. (2001). A special kind of patterns for safety requirements with different
classification scheme is presented in Bitsch (2001). Herein a selection process is pro-
posed which leads to the selection of the best fitting pattern.

3.6.3 Approaches to model checking
Concerning the wide field of applications for verification by model checking and the different
kinds of problems that may be evaluated, many different model checkers and model checking
algorithms exist. This section aims at a brief overview by spotlighting some of these ap-
proaches. A more comprehensive overview is given for instance in Boyounnouse and Sifakis
(2005, Chapter 7).

Finite state model checking
As described above model checking initially is concentrated on finite state models. The first
model checker that was capable to manage a large amount of states for a practical application
was developed in the PhD thesis of Ken McMillan (1993) and is called SMV. It is based on
OBDD symbolic model checking and uses an input language that is based on the decomposi-
tion of a system into modules. Hierarchically structured designs are possible. The modules
can be composed synchronously or using interleaving, and state transitions can be modeled
either as deterministic or nondeterministic. The principles of SMV as well as an application
are presented for instance in Clarke et al. (1999, Chapter 8). SMV supports the specification
in CTL, LTL as well as further dialects of temporal logics. There are several versions
available as for instance the original version from Carnegie Mellon University [52], a re-
implementation with extensions as an open source project NuSMV [35], or TSMV [55] for
the verification of timed Kripke structures by using TCTL.
A second important approach in finite state model checking is based on the application of
model checking algorithms in the framework of automata. Herein an automaton is used as the
model, and by using LTL formulas again in the form of automata very efficient on-the-fly
model checking algorithms can be applied as depicted in Clarke et al. (1999, Chapter 9). The
corresponding tool is called SPIN [51] which uses its own input language PROMELA in
order to build formal models.

Continuous time model checking
There are different approaches available in order to use time within models. The notion of
time has to be distinguished, whether discrete or continuous time is utilized. For discrete time
model checking existing finite state model checkers can be utilized and enhanced such as for
instance in TSMV. In case of a continuous time, the use of so-called timed automata as
introduced by Alur and Dill (1992) has become the standard methodology. A timed automa-
ton is a finite automaton augmented with a finite set of real-valued clocks. The automaton

STATE OF THE ART 47

consists of locations (set of states) and labeled edges (set of transitions). Clock constraints can
be used as guards on edges, and when a transition is taken clocks may be reset. A recent
survey on the semantics and algorithms for model checking with timed automata is given for
instance in Bengtsson and Wang (2004).
The UPPAAL tool [58] is one of the most notable approaches to model checking with timed
automata. The UPPAAL modeling language comprises networks of timed automata with
some extensions such as integer values (in addition to clocks) or urgent channels (for
synchronization). Specifications are expressed in TCTL in general. The UPPAAL framework
provides a rich featured environment for modeling, simulation and verification of timed
automata. Another important tool for verification of timed automata is KRONOS [30].

Petri net based model checking
The theory of Petri nets has been established in the PhD thesis of Carl Petri (1962) in order to
model the communication between asynchronous components in computer systems. As
depicted in Peterson (1981) a big amount of research work was already available before
model checking has been invented. Moreover, Queille and Sifakis (1981) used a special class
of Petri nets, so called interpreted Petri nets, as the internal representation of the model in
their first approach to model checking. A basic Petri net consists of four parts: a set of places,
a set of transitions, an input function that represents edges from transitions to places, and an
output function that represents edges from places to transitions. The dynamic behavior of a
Petri net is represented by markings and their flow due to rules defined via the edges between
places and transitions. Popular extensions of these models are colored Petri nets, that include
different colors in order to distinguish markings. A recent survey on the Petri net theory is
given for instance in Priese and Wimmel (2003), a collection of online services such as a tool
database is available in [42]. Next to the analysis methodologies developed within the Petri
net theory also model checking has been incorporated by some tools.
One special extension of Petri nets are Net Condition/Event Systems (NCES), which are a
module based modeling approach introduced by Rausch and Hanisch (1995). A module
interface utilizes event and condition inputs/outputs, the internal behavior is represented as
Petri net. A detailed description of NCES is provided in Appendix C, an appropriate tool
chain capable to provide model checking based on NCES is available in [61].

Probabilistic model checking
Based on the different approaches to model checking different extensions exist in order to
incorporate also stochastic models into the model checking algorithms. Bause and Kritzinger
(1996) discuss additions to the Petri net theory, in detail they discuss the introduction of
Markov processes and queuing theory, which is the basis for Stochastic Petri Nets, General-
ized Stochastic Petri Nets (GSPN), and Queuing Petri Nets. D’Aprile et al. (2004) depict the
use of several tools for model checking of a GSPN model. These are ETMCC [18] (model
checker for Continuous Time Markov Chains), PRISM [46] (a tool for analysis and model
checking of different types of stochastic models), and GreatSPN [21] (a graphical editor and
analyzer for timed and stochastic Petri nets). A survey on different approaches to model
schekcing of probabilistic timed automata is presented in Sproston (2004).
An application of probabilistic model checking in ACS has been presented in Greifeneder and
Frey (2007). Herein especially the situation in networked automation systems is taken into
consideration, which consists of cyclic executed PLCs and sensors and actuators connected
via some communication network.

Source code model checkers
For the model checking of software, the source code is the initial representation of the system.
Several approaches exist already that are capable to handle source code of different program-

48 STATE OF THE ART

ming languages as an input. For instance, Bandera [4] enables model checking of concurrent
Java software by automatic conversion into the input languages of SMV or SPIN. A different
approach is implemented in Java PathFinder [27], which provides a systematical exploration
of all potential execution paths of a Java program in order to verify a given specification. A
similar approach is used by VeriSoft [60] but without the restriction to a certain programming
language. The C programming language is the basis for the tool SLAM [50] which is used for
the verification of device drivers for Microsoft Windows. Herein the behavior according to
the description of the application programming interface is checked. A more general approach
for C programs is given in BLAST [5], which uses a counterexample-driven automatic
abstraction refinement in order to construct an abstract model of the C source code for model
checking. A similar approach is also utilized in the MAGIC framework [31] described for
instance in Chaki et al. (2004). The abstract model simulates the model of the source code. If
the specification is satisfied in the abstract model, the properties hold also for the original
model. Otherwise, a refinement of the abstract model is calculated based on the information
from the counterexample.

Model checking and dynamic reconfiguration
The discussion on model checking given above has one main prerequisite: there is a static
model of the system in order to check whether it fulfills the specification or not. But also
approaches exist that focus on dynamic reconfiguration of systems and therefore also dynamic
reconfiguration of the model. We will concentrate our discussion of approaches to the field of
embedded systems and especially ACSs.
Tešanović et al. (2005) present a model checking algorithm that is capable to verify properties
of reconfigurable components. In detail, their approach is based on aspect-oriented software
development which modifies given components during the establishment of a system by
applying certain aspects. A component incorporates a set of reconfiguration locations where
code may be changed during the aspect weaving. The verification is based on timed automata
and the presented model checking algorithm checks whether properties of components are
preserved upon the reconfiguration or not.
In ACSs especially the field of RMS initiated different approaches for the verification of
dynamic reconfiguration. Herein formal models are used in the design process in order to
generate the control logic based on these models. Kalita and Khargonekar (2002) present a
methodology that combines both theorem proving and model checking based on timed
transition models. The reconfiguration is described as the change of configurations which
include models of the plant and the controller. Li et al. (2005) aim at the design of reconfigur-
able logic controllers by rewriting Petri net based controllers. Instead of carrying out a
redesign and a new verification a method for rewriting the existing Petri net based controller
is presented. A similar approach with Petri net rewriting rules is given in Alcaraz-Mejía and
López-Mellado (2006). The dynamic reconfiguration is expressed directly as rewriting of the
model.
A very important aspect within the process of dynamic reconfiguration is the behavior of the
system during the execution of the changes. In Park et al. (2001) this is also taken into
consideration for a controller capable to change within three pre-given modes. As a conse-
quence next to the formal model of the different controllers and their control modes also the
mode-switching logic needs to be included into the model of the system. This approach is
based on Petri nets and automatic code generation from these models. The formal models of
changes induced by dynamic reconfiguration are main elements of this work, as already stated
in Requirements (4) “Modeling dynamic reconfiguration and (5) “Free programmable
downtimeless system evolution” in Section 2.2.

STATE OF THE ART 49

3.6.4 Model checking in automation and control systems
The model checking problem in ACSs has to be enlarged especially due to the close intercon-
nection to the plant and its requirements of controlled behavior. Hanisch (2004) describes this
situation of a closed-loop modeling of the plant and the controller in more detail. The plant
behavior dictates the design of the control logic. The interface between plant and controller is
given by actuator and sensor signals. An integrated approach for the modeling of plant and
control logic based on automation objects (the authors use the term mechatronic objects) is
given in Bonfe and Fantuzzi (2003). Herein an automatic transformation into the input
language of SMV is included and also the execution semantics of the control logic (the
synchronous execution model of IEC 61131-3 and the asynchronous execution model of
IEC 61499) are taken into consideration.
In the following we will survey several approaches for the analysis of existing code from the
ACS programming languages IEC 61131-3 and IEC 61499 by model checking, with special
focus on IEC 61499. According to Frey and Litz (2000) further reasons for the use of formal
methods in PLC programming are the design of the control logic (with integrated automatic
code generation) and the re-implementation of existing code on different platforms. They
include also a survey on examples for the application of evaluation in ACSs. Further reasons
for the use of formal models in ACSs are coordination activities and scheduling in manufac-
turing systems. Herein the high-level control is modeled and analyzed. Recalde et al. (2003)
provide an overview on the use of Petri nets for this field of application as for instance a car
manufacturing plant.

IEC 61131-3
The various elements of the IEC 61131-3 standard may be part of a verification approach by
model checking. One important element with regard to verification is the structuring of POUs
by the use of the SFC modeling languages. As described in IEC 61131-3 (2003, Section 2.6.5)
the rules for the execution of SFC elements do not exclude failure situations such as unsafe
SFCs (for instance uncontrolled behavior due to proliferation of tokens) or unreachable SFCs
(the token may be locked and parts of the SFC may be unreachable). As the usual methods for
validation—testing and simulation—cannot be applied easily in order to detect such situations
also in complex SFCs, the method of verification by model checking has been used in
different situations. As an example, Bauer et al. (2004) describe the translation of untimed
SFCs into the SMV input languages and timed SFCs into Timed Automata. Based on these
models and the dynamic model of the plant Bauer et al. (2004) depict the identification of
errors in the control program by the use of model checking.
As this work utilizes NCES as modeling language we will concentrate on approaches in this
field. One of the first applications is given in Hanisch et al. (1997) for the IEC 61131-3
programming language LD. The structure of LD is analyzed and a transformation into NCES
models is presented. This transformation also incorporates timer function blocks. A more
recent approach is presented in Hanisch et al. (2006) on basis of the practical example of a
lifter. There are two different implementations of this example taken into consideration: by
the use of LD control logic and visual flowcharts (a proprietary PLC programming language).
They describe in detail the modeling of the plant in a hierarchical architecture of NCES
modules and especially take into account the execution behavior of a PLC by execution
cycles. Furthermore this approach uses data abstraction in the models in order to handle non-
Boolean values by utilizing discrete thresholds. Lobov et al. (2006b) describe the translation
of the IL dialect from the company Siemens (the language is called statement list) into NCES.
Next to the fundamental transformation of IL commands into NCES models this approach
takes into account also a very detailed model of the execution behavior of the PLC such as the
scheduler of the operating system or organization blocks. Comprising also a model of the
plant detailed analysis is possible. The modeling of the plant is done in a special manner,

50 STATE OF THE ART

which is described in more detail in Lobov et al. (2006a). Here again a transformation is used
for generating NCES models from plant models given in UML. Therefore a very powerful
framework is established in order to simplify a closed-loop modeling of an ACS application.

IEC 61499
There are also many approaches available for the verification of IEC 61499. A survey on
these approaches is given for instance in Frey and Hussain (2006, Section III) or
Sünder et al. (2007, Section II). We will focus in the following brief introduction to the state
of the art in formal modeling of IEC 61499 especially on the Requirements (1) “Temporal
behavior”, (2) “Execution semantics”, and (3) “Underlying system configuration” mentioned
in Section 2.1.
The first approach for a formal description of FBs according to IEC 61499 has been published
by Vyatkin and Hanisch (1999). They use NCES which has a number of direct similarities
with IEC 61499. NCES modules can be interconnected by event and condition arcs to bigger
modules. The formal model of BFBs is based on the IEC 61499 standard, without taking into
consideration the execution semantics of a given runtime environment. Event propagation is
modeled directly by event arcs, the runtime scheduling is assumed to be concurrent and
instantaneous. Further work based on this approach uses closed-loop verification of the
controller and the plant. Enhancements of this early approach are for instance given in
Vyatkin (2006), who describes especially the modeling of execution semantics of IEC 61499
FBs. In detail, the correct order of actions within an FB as well as the propagation of events
over the network by the use of a scheduler which provides sequential operation of events is
incorporated in the formal models. Pang and Vyatkin (2007) investigate on the representation
of data and algorithms in NCES for the formal verification of IEC 61499. The work from
Lüder et al. (2005) is based also on the concepts of Vyatkin and Hanisch (1999).
Wurmus and Wagner (2000) depict a formal description of IEC 61499 FBs and FB networks
by using Petri nets. The event flow is represented by the flow of tokens, and especially the
representation of the ECC within BFBs is taken into account. The approach also incorporates
SIFBs utilizing timing services in a very simple manner, but all considerations are based
directly on the standard without regard to a concrete runtime implementation.
Schnakenbourg et al. (2002) propose to model FBs using the synchronous language SIGNAL.
They use clocks in order to assure the synchronization between the Execution Control Chart
(ECC) and the input events. There is no model included for the propagation of events
according to a concrete runtime implementation. Physical time is also not included, but the
authors claim that this can be overcome by giving a value to the gap between two instances of
a clock.
Khalgui et al. (2004) propose a state machine model compliant to the standard IEC 61499. To
avoid unpredictable behavior in the case of a simultaneous occurrence of events, they propose
to design an offline scheduling of an FB execution. They verify the scheduling correctness
using a state machine model. By using this scheduler, a hard-coded execution model of a
runtime environment can be implemented. Khalgui et al. (2006) include considerations also
for distributed applications based on a temporal specification of exchanged messages between
devices.
Zhang et al. (2004) consider the verification of IEC 61499 applications in contrast of safety-
related system development. They propose a transformation of the IEC 61499 standard into
finite state models without a concrete runtime environment or the physical time in mind.
Based on the verification of BFBs, the verification of FB networks and CFBs is reduced to the
verification of the connections between the pre-checked elements. In Zhang et al. (2005) the
formal language for the overall specification of the software design cycle is UML. Herein, the
special focus is on an integrated approach starting from system requirements till code

STATE OF THE ART 51

implementation by using similar means, in detail the different UML models. For the verifica-
tion a transformation from UML into finite state machines is given.
Stanica (2005) provides a study on modeling BFBs and FB networks together with a very
simple model of the run-time behavior of a virtual IEC 61499 execution platform. His
approach is based on Timed Automata and takes into account the physical time of algorithm
execution. The formal description restricts the execution of algorithms to only one algorithm
at the same time. But there are no models included to describe the propagation of events and
further runtime behavior.
A rather new approach has been presented by Dubinin et al. (2006) using the verification
engine of Prolog language, whose implementations contain a built-in deductive inference
engine. Therefore, the class of properties that can be checked is extended to more substantial
queries providing in return not only “yes” or “no”, but also the parameters explaining the
reasons. For instance, questions like “at which values of parameter X does parameter Y belong
to the interval [a, b]” can be formulated and checked. This approach is limited to BFBs in the
current version.
Čengić et al. (2006) describe their formal model of the runtime environment FUBER [13],
which they have developed based on interacting finite automata in Supremica. In this case the
formal description includes many aspects of the runtime behavior. For instance, the event
execution model specifies that each FB instance must wait for another instance to finish its
event handling before it can begin its own event handling. Incoming events of an FB instance
are stored in a queue; all FB instances waiting for execution are also handled in another
queue. By the use of such a detailed formal description of the runtime behavior, they are able
to prove in many details the behavior of the FUBER implementation. Physical time is not
mentioned in their approach. As the implementation of FUBER is based on Java, the virtual
machine as well as the underlying operating system need to be included to the models for the
consideration of physical time.

3.7 Summary
The state of the art for this thesis consists of three main parts. First a general description of
computer-based systems for automation and control purposes is presented, which can be
characterized as embedded, real-time systems. The ACS customer is skilled in the abilities
necessary for the operation of the plant and uses special programming languages (the widely
used IEC 61131-3 standard and its successor IEC 61499) in order to operate the plant.
General means from computer science are in use within the products of ACS component’s
suppliers, but these cannot be anticipated to be used by ACS customers. The analysis of ACS
programming languages shows that their concepts are quite different from modern program-
ming disciplines, in detail software components and the appropriate software development
cannot be matched directly, which is a problem for the generalization of approaches from
embedded systems design.
Dynamic reconfiguration describes the changes of software during operation, whereas the
new concept of DSE incorporates the overall configuration of hardware and software over the
lifecycle of a plant. For computer science and especially component-based software develop-
ment a reference architecture gives an overview on interdependencies of the different types of
changes as well as the influence to integrity characteristics. To some extent dynamic recon-
figuration is already possible in ACS. Special work has to be done in order to minimize
disturbances to the plant during dynamic reconfiguration. Appropriate means for such a
transition management are currently available especially for closed-loop control systems.
Verification by model checking has been successfully applied to hardware design and is in
recent years also used in software design. The main problem is to decide whether a given
system satisfies some specifications. Therefore the system as well as the specification have to

52 STATE OF THE ART

be transformed into the input language of a model checking tool. Various means exist for the
description of a system as a formal model. Specifications are expressed in some kind of
temporal logic. In order to apply model checking in ACSs the model of the system needs to be
generated as much as possible automatically (according to a closed-loop modeling paradigm
the system comprises the plant and the controller) and the specifications have to be encapsu-
lated in some user friendly format such as patterns or signal diagrams. Next to these prerequi-
sites a concept for the evaluation of the effect of the execution of dynamic reconfiguration is
missing in the current state of the art.

 53

4 New Engineering method for Downtimeless System
Evolution

Chapter 4

New Engineering method for Downtimeless System Evolution

An appropriate engineering method is the basis of an evaluation approach for DSE. This is a
very critical part especially for ACSs. Vyatkin et al. (2005, Section IV.A) state as an addi-
tional restriction for the software architecture of new systems: “Maintainability of automation
systems is determined by the training level of the factory floor personal. For this reason, the
human interface (which also includes means for re-programming) should not be radically
different from what is used in the field now.” Due to the special situation of ACS customers it
is not feasible to apply highly sophisticated approaches such as presented in Section 3.4
directly.
This chapter starts with the definition of an engineering cycle for DSE, which is based on a
special application in order to model the transition from a current system state to a new
system state. This application can be split up into three sequences, providing a clear structure
for an evolution step. For practical use different evolution steps need to be coordinated, which
is again modeled in an application. Up to now this process only focuses on changes to the
control logic of an ACS at run-time. But also hardware changes can be integrated into the
engineering cycle, as depicted in Section 4.4.

4.1 Evolution engineering method
The process of engineering in ACSs can be described in a very simplified manner as depicted
in Figure 9a in three steps:

1. Planning new ACS: First of all the requirements for the new ACS as well as a rough
schematic of the planned functionality need to be set up.

2. Application engineering: Then an appropriate application is modeled and tested in
order to fulfill the specified requirements.

3. Start of operation: At last the engineer has to download the application to the control
devices and start the operation of the ACS. This phase may last for months especially
for complex plants and manufacturing systems.

This very rough representation can be used for an overall plant as well as small parts of an
ACS. The characteristic item is that when new requirements need to be added or requirements
are changing, the process starts again from the first step (dotted arrow in Figure 9a). The plant
or single control devices need to be stopped in order to download the new application. Then
the ACS has to be started again.
In case of an engineering process with DSE, the initial steps are similar to those stated above.
But as soon as the operation of the ACS has started, the process changes (see arrow from
Figure 9a to Figure 9b). From now on the engineering process is characterized by the
following steps (Figure 9b):

54 NEW ENGINEERING METHOD FOR DOWNTIMELESS SYSTEM EVOLUTION

4. Planning system evolution: If new requirements exist or the requirements are chang-
ing, the new situation is planned. This is rather similar to the application engineering
mentioned above.

5. Evolution engineering: In contrast of modeling the new application, the transition
from the current system state to the new system state needs to be modeled. Herein it
may be necessary to split up the overall system evolution into smaller steps.

6. Downtimeless system evolution: In contrast to the start of operation of a new applica-
tion the actions for the transition to the new system state need to be executed at run-
time of the overall plant.

Figure 9: Engineering of ACSs (a) without and (b) with downtimeless system evolution

New or changed requirements can be handled by repeating steps 4 to 6 again and again. The
engineering process for such an incremental enhancement of the overall functionality of the
ACS is depicted in Figure 10.
Step 4, planning system evolution, is spilt up into two subtasks. First of all it is a prerequisite
to have a detailed depiction of the current system state. Secondly the new application (the
changed application) will be modeled rather similar to the application engineering mentioned
in Figure 9a. There should be no difference for the ACS customer whether he models the
initial application or a changed application. Then the evolution engineering takes into account
the differences between the current system state and the proposed new system state. It is
necessary to especially model the transition management in order to minimize the distur-
bances to the operating plant. The last step refers to the execution of the downtimeless system
evolution. These steps describe the engineering process for one system evolution step, and as
already depicted in Figure 9b the overall engineering process for an ACS consists of the
recurrent application of these steps. A more detailed look at the tasks that have to be consid-
ered within this engineering cycle is given by the following description:

Acquire existing application
This first activity can be summarized as collecting all data available for describing the current
system state. The used method depends on the possibilities of the used engineering tools and
runtime platforms. For instance, all data of the ACS may be stored in some kind of data base
or simply in the project file of the engineering tool. But as especially for bigger ACSs
engineering takes place in larger teams, it may be necessary to countercheck these descrip-
tions by directly interacting with the control devices. The collected data is used as input for
the next step, the application modeling. In terms of an ACS based on the IEC 61499 standard
the data consists of the system model including applications currently running in the system,
the hardware configuration of the system (used devices and network structure), the mapping
of the applications to the different devices and in addition a description of the hardware
capabilities of the control devices.

NEW ENGINEERING METHOD FOR DOWNTIMELESS SYSTEM EVOLUTION 55

Figure 10: Engineering cycle for downtimeless system evolution

Application modeling
The ACS customer models the new control application based on the existing application by
adding/removing components and their interconnections. According to the application
centered engineering paradigm of the IEC 61499 standard the application modeling consists
of four steps:

• Application control engineering: The modeling of the control application is based on
the existing application and focuses on the satisfaction of the new or changed re-
quirements of the ACS. Furthermore the ACS customer has to specify application
properties like real-time constraints.

• Hardware specification: As DSE focuses on both changes in hardware and software
also the hardware configuration may be changed.

• Control mapping: The procedure of allocating applications or application parts to the
available control devices is called mapping. A DSE may be also the relocation of ap-
plication parts without changed software and hardware specifications.

• Evaluation: The evaluation process of the new application aims at checking the prop-
erties of the new system state. It is supposed that there is no DSE and only the proper-
ties of the new system state are examined. Based on the four evaluation methods pre-
sented in Chapter 1 especially simulation is used in industrial practice. Testing cannot
be applied since the plant is still in operation, but is often used for the engineering of
ACSs without DSE (Figure 9a). Deductive verification and model checking may be
used as well.

Evolution engineering
The third step aims at the description of the transition from the current system state to the new
system state. The main idea is that the ACS customer uses an application in order to model
this transition. In detail, this evolution control application will be modeled utilizing the
IEC 61499 standard. There are again four tasks that need to be applied:

• Analyze the ∆ (Delta): The starting point for the evolution engineering is an analysis
of the changes that have been modeled. A simple implementation may protocol all
changes that have been applied to the current system state during the application mod-
eling step. But there may be also more sophisticated algorithms that provide additional
information in order to simplify the following tasks.

• Evolution control engineering: The ACS customer can use the same means for mod-
eling the Evolution Control Application (ECA) as well as the control application. The

56 NEW ENGINEERING METHOD FOR DOWNTIMELESS SYSTEM EVOLUTION

most important aspect is the provision of management commands in the shape of func-
tion blocks. The control properties and parameters for the DSE (especially for transi-
tion management) are specified in the same manner as control application properties.

• Evolution control mapping: Similar to the application centered engineering paradigm
also the ECA is not restricted to a specific control device. It may be split up into parts
and executed as a distributed application similar to a control application. This is espe-
cially important for synchronizing of changes on different control devices.

• Evaluation: Up to now no changes have been applied to the current system state.
Within the next step, the DSE will be executed. In order to guarantee that the ACS
will not break down due to the changes that will be applied, it is necessary to evaluate
the process of DSE. As already discussed in Section 1.1 model checking is used for
the evaluation process.

Execution of downtimeless system evolution
The execution of DSE consists of three tasks. Firstly the ECA has to be downloaded to the
control devices. This is similar to the download of any control application. Secondly, the ECA
has to be started, which means that it will execute the changes according to the constraints
that have been modeled by the ACS customer. After the ACS has changed into the new
system state, the ECA is useless and it can be deleted in order to leave the system in a clean
state.

4.2 Basic evolution control engineering
As a first step we will investigate on an ECA as an IEC 61499 application for one system
evolution step. As already depicted above, the process of DSE sets high demands on the
underlying concepts and methodologies: Applications within the ACS have to be executed
without disturbances. The system evolution has to be adapted to the special environmental
conditions of the affected application part. Any failure during the evolution process has to be
managed at least to such a degree, that the system is left in a defined state. The standard
IEC 61499 already includes management commands for the configuration and reconfiguration
of applications. But the standard lacks an engineering methodology for dynamic reconfigura-
tion or even DSE.
The use of an application for modeling the DSE is closely related to the work of Bren-
nan et al. (2002a), whereas we will use an IEC 61499 application utilizing basic reconfigura-
tion services as described in Zoitl (2007) in order to model the interaction of the ECA with
the control application. This topic has been presented in Sünder et al. (2006c), which provides
the basis for this section.

4.2.1 Why is it necessary to freely program evolution control applications?
Before we start our detailed analysis of an ECA it may be helpful to reconsider the reasons for
the need of a free programmable ECA. The Requirement (5) “Free programmable DSE”
mentions that the scope of the system evolution may be very large and it is not restricted to
any special field of applications. Based on the state of the art review presented in Chapter 3
there are two more reasons for this requirement:

• Transition management: One main requirement is the use of appropriate transition
management strategies in order to minimize the disturbances to the control applica-
tions. As depicted in Section 3.5 various techniques especially exist for the field of
closed-loop control. But the scope of dynamic reconfiguration in ACS is very broad as
described for instance in Baier et al. (2007). Therefore, it is not sufficient to provide a
defined set of transition management techniques in order to satisfy the ACS customer

NEW ENGINEERING METHOD FOR DOWNTIMELESS SYSTEM EVOLUTION 57

needs. The transition management strategy has to be modeled based on the special pre-
requisites of the concrete DSE.

• The nature of ACS programming languages: The component-based software devel-
opment paradigm provides a good basis for dynamic reconfiguration as the different
software components represent independent operational units. The rules for the inter-
action of software components within a given component framework can be used as
basis for automatic scenarios of dynamic reconfiguration especially for inter-
component changes (see the reference architecture in Section 3.4.1). Intra-component
changes may be handled by using strict interfaces and software component specific
implementations as mentioned in Section 3.4.2. But as the analysis of the program-
ming languages in ACS with respect to the definitions of a software component have
indicated, it is not possible to apply these concepts directly. As a consequence, the
ECA cannot be established automatically and needs to be modeled freely according to
the given control application.

4.2.2 Basic reconfiguration services
IEC 61499 already defines a basic set of commands to the enable management of resources,
function blocks or connections. Based on the generic interface of the management function
block a set of specialized function blocks should be available for modeling ECAs. But this set
is not sufficient and has to be enlarged. The following gives an overview of missing instruc-
tions:

• Query of all internals of FBs: For instance the currently active Execution Control
Chart (ECC) state or the value of an internal variable may be needed.

• Setting of all internals of FBs: A management FB should be able to set internal vari-
ables or to force the ECC to a dedicated state. In case of the latter action it must be
possible to choose whether the corresponding algorithms or output events should be
executed or not.

• Generation of events: The occurrence of an event at an FB input has to be controlled
by a command for selective operation sequences. Such functionality may be simply
modeled by using an event connection, but for engineering purposes also an appropri-
ate FB may be useful.

• Sniffing of events: In order to synchronize the ECA with the control application
events from the control application are an important input for the ECA. This function-
ality can be simply modeled by an event connection, but as already mentioned above it
may be useful for engineering to provide a special function block for sniffing of
events.

• Real-time execution of specific ECA parts: This is a general prerequisite also for the
execution of control applications, as control applications are always constrained by the
process under control. Any changes to the control application (modeled within the
ECA) need to fulfill real-time constraints, too.

• Resolving of timing conflicts: In the best case no conflict will ever occur during the
execution of control applications and ECAs. But this may not be possible in every
situation, since for instance control devices have a limited amount of computational
power. There has to be a means in order to define the procedure of execution for the
competing application parts.

For this thesis we will use the IEC 61499 runtime environment which is described in
Zoitl (2007). This runtime environment, we will use the term Real-time Reconfiguration
Runtime Environment (R3E), has been developed during the research project Micro Holons
for Next Generation Distributed Embedded Automation and Control Systems (µCrons), which

58 NEW ENGINEERING METHOD FOR DOWNTIMELESS SYSTEM EVOLUTION

focuses on dynamic reconfiguration and real-time execution of IEC 61499. This runtime
environment has been adapted in some special topics within the εCEDAC project and is
available as part of the open source project Framework for Distributed Industrial Automation
and Control (4DIAC). A more detailed description of the runtime environment is given in
Appendix B, for our considerations we will use the terminology from Zoitl (2007).
The open points mentioned above can be summarized in two categories. On the one hand the
real-time constrained execution of FB applications has to be included in general. Therefore
Zoitl (2007) investigates the identification of event sources within an application. These event
sources are always SIFBs, which are triggered by some external sources such as the timer or
the network. In order to integrate a real-time execution concept, so called real-time event FBs
(Zoitl, 2007, Appendix C), which provide parameters in order to define real-time constraints
for the FB network that is triggered by these sources, have been defined. This concept enables
the modeling of real-time execution within the control application without violating the
concepts of the IEC 61499 standard.
The second enhancement is represented by basic reconfiguration services, which provide full
access to the device management in order to control dynamic reconfiguration. The basic
reconfiguration services are described in detail in Zoitl, (2007, Appendix A). Five categories
of basic reconfiguration services exist:

• Structural services: The structural reconfiguration services provide mechanisms for
changes to the structure of the control application. Herein creation and deletion of re-
sources, FBs and connections as well as writing of parameters is summarized.

• Library services: The library reconfiguration services influence the library available
within a device. The library includes resource, FB, and data types.

• Execution control services: The execution control reconfiguration services set the
state of a managed FB or resource. The corresponding management commands are
START, STOP, KILL and RESET.

• State interaction services: The state interaction reconfiguration services provide ac-
cess to the internals of an FB by using the management command READ and WRITE
(herein an enhanced functionality is necessary in contrast to the IEC 61499 standard).

• Query services: The query reconfiguration services can be used to establish the cur-
rent system state by interacting with the control devices. For instance, lists of in-
stanced FBs or connections can be polled.

In order to describe the interrelation between these basic reconfiguration services and the
reference architecture for dynamic reconfiguration presented in Section 3.4.1, we have to
define the association of the models defined in the IEC 61499 standard and a software
component. For this thesis we will consider an FB as a software component10. The resulting
types of changes and their dependencies are depicted in Figure 11. In comparison to Figure 7
all types of inter-component changes are available, as the IEC 61499 standard defines each
FB as an entity. But for intra-component changes only internal changes are possible with the
restriction to behavioral changes, as only state elements may be changed by their value. No
basic reconfiguration services exist in order to change the type of an FB. In this case a new
FB type needs to be created. Also substitution is not possible by using the basic reconfigura-
tion services as single command. But it can be modeled within an ECA (see also the example
presented in Section 4.2.3). The different basic reconfiguration services can be mapped to the
possible change types as follows:

10 Any kind of FB type will be considered as basic FB, although the analysis in Section 3.2.2 has identified
different problems for CFBs and SIFBs.

NEW ENGINEERING METHOD FOR DOWNTIMELESS SYSTEM EVOLUTION 59

• Protocol change: With respect to IEC 61499 a protocol change can be applied by
changing connections and parameters within an application. The software components
(FB instances) themselves will not be changed.

• Topology change: In contrast to protocol change, the topology change aims at modifi-
cations to the software components, the FB instances. Without influencing the behav-
ior of the application there are two different kinds of changes possible: the substitution
of an FB type without changing the interface and the relocation of application parts.

• Architectural change: The combination of both protocol and topology change yields
to architectural change, which means any changes to an application within the ACS.

• Internal change: Based on the enhancement of R3E in order to access also internal
variables of an FB internal change is provided. But it is limited to behavioral change
of the software component.

Figure 11: Change types within R3E

Access to the device management
The interface to the device management is defined in the IEC 61499 standard by using a
generic FB, which has been adapted within the IEC 61499 compliance profile for feasibility
demonstration [17] as DEV_MGR FB type. This FB type is incorporated within a manage-
ment application which simply defines a communication channel to the device management.
A compliant engineering tool uses this communication channel in order to download applica-
tions to the device. Examples are the FBDK [15] or the 4DIAC platform [12], which utilize
these definitions for the engineering tool as well as the runtime environment. Only one access
mode to the device management of an IEC 61499 device exists: via the management applica-
tion defined in the IEC 61499 compliance profile for feasibility demonstration.
The use of basic reconfiguration services sets much higher demands to the device manage-
ment of an IEC 61499 control device. Each FB instance that represents a basic reconfigura-
tion service includes an access mode to the device management. Figure 12 depicts this
situation for an example device. The device includes several resources (‘MGR’, ‘Resource A’,
‘Resource B’) that execute function block networks. The management application described
above is included within the ‘MGR’ resource (this is defined also in the IEC 61499 compli-
ance profile for feasibility demonstration). The dotted arrows describe the access modes. For
instance, the engineering tool uses the communication channel to send commands to the
‘DEV_MGR’ FB instance, which is an interface to the device management. According to the
management commands sent to the device the device management acts within the resources
of the device. Within ‘Resource A’ there is also an evolution control application which
includes FB instances incorporating basic reconfiguration services. According to the execu-
tion of the ECA again the device management acts within the resources of the device. But

60 NEW ENGINEERING METHOD FOR DOWNTIMELESS SYSTEM EVOLUTION

now the device management is part of the execution of applications (in detail the ECA) and
has to fulfill real-time constraints based on control applications the ECA acts on (‘Applica-
tion 1’ and ‘Application 2’ are control applications).

Figure 12: Different access modes to the device management of an IEC 61499 control device

4.2.3 Modeling evolution control applications
The main idea of this methodology is to control the DSE of control applications by an
application, the evolution control application. This special application should make use of
basic reconfiguration services in order to control another application. Furthermore the
reconfiguration application can use any event and data flow in order to recognize the current
system state of the application. For instance, the ECA may realize that the process has
reached an idle state and would start the DSE. The event driven approach of IEC 61499
supports such a kind of synchronization with the control application in a very good manner.
From a general point of view the following aspects should be mentioned for modeling ECAs:

• The ECA can be located on the local device. This enables a direct interaction to the
concerned device/application without time delays due to communication networks.
Real-time requirements of the system evolution can be fulfilled.

• The reconfiguration application has to interact directly with the corresponding applica-
tion in order to react on the current system state and to coordinate the evolution proc-
ess with the application behavior. By using event and data connections the ECA can
be tightly coupled with the control application.

• Failure handling may be integrated directly within the ECA. A main requirement to
the system evolution process is to leave the system within a defined state, even in the
case of unexpected failures during the reconfiguration process, as otherwise the further
operation of the ACS may be not possible.

• The system evolution process can be split up into characteristic sequences that repre-
sent typical sections within the execution of a system evolution step. Based on these
sections patterns and libraries may be developed which will help the ACS customer to
simplify the use of ECAs.

• Distributed ECAs are needed to model the interaction of the engineering tool and the
devices and of course to synchronize the system evolution steps that need to be exe-
cuted on several devices concurrently.

NEW ENGINEERING METHOD FOR DOWNTIMELESS SYSTEM EVOLUTION 61

This general description provides some abstract guidelines for the modeling of ECAs. The
concrete ECA highly depends on the control application and the required changes to this
control application. In order to give a more detailed depiction of an ECA, we will use a
closed-loop control circuit as an example for a typical control application. The proposed
change to the control application is the exchange of the controller without disturbances to the
process under control, which was a linear axis as described in Hanni (2007). Based on a short
description of the control application we will describe the actions within the ECA in detail.

Example: Closed-loop control circuit
The control application is marked as grey shaded FBs within Figure 13 (lower part). The
control cycle consists of four steps: write the output value from the previous cycle to the
physical process (‘Set_Value’), read the current value of the control variable (‘Get_Value’),
build the difference of current value and set point (‘Summing_point’), and calculate the
control algorithm (‘Controller’). The additional FBs are used for the generation of the control
clock (‘Clock’), receiving the set point (‘Get_Setpoint’) and the generation of the initial event
for initialization (‘START’). The controller calculates the output value based on a propor-
tional part and an integral part. The task for the DSE is to exchange the controller with a new
type which includes also a limitation of the output value. This exchange should use appropri-
ate transition management methods in order to minimize the disturbances to the control value.

Evolution control application
The appropriate evolution control application for this task is depicted in Figure 13 (upper
part). The ECA consists of three typical sequences, which are available in any ECA. In order
to execute the ECA, first of all the ECA has to be downloaded to the control device and all FB
instances of the ECA need to be started (management command START) and, if necessary,
they are initialized by the ‘INIT event’. After these actions have been executed successfully,
the ECA is ready for the execution of the DSE.
Initialization sequence: The first sequence within the execution of the ECA is called
initialization sequence and is responsible for preparation purposes. In detail no action within
the initialization sequence should affect the execution of the current application. As a
consequence these actions are not time critical and may be executed whenever there is spare
execution time within the control device. The initialization sequence is started by ‘Start event’
mentioned schematically in Figure 13.
For the example given in Figure 13 the following actions are summarized within the FB
instance ‘Initialization’. As the system evolution process dynamically changes the current
application, Figure 13 does not depict a special situation within the system evolution step but
a schematic of the overall process. All FBs or connections which are created within the
system evolution step are drawn with dotted lines. Deletion of FBs or connections is not
shown in Figure 13.

• Creation of the new controller (‘NewController’) as well as its input connections. The
latter are the connections to the event inputs ‘INIT’ and ‘REQ’ as well as the data in-
put ‘Delta’.

• Writing of the input parameters of the FB ‘NewController’.
• Starting of the FB ‘NewController’. This action influences the control application as

the new FB needs to be executed as soon as a ‘REQ’ event is issued to the FB (this
happens each control cycle).11

11 In general the influence on the current application needs to be considered carefully. If it is not possible or
intended to execute the new FBs the creation of the input connections or the START management command for

62 NEW ENGINEERING METHOD FOR DOWNTIMELESS SYSTEM EVOLUTION

• The issue of the ‘INIT’ event to the ‘NewController’ FB. This action depends on the
internal implementation of the FB. For the ‘NewController’ FB we expect that a
‘REQ’ event will only lead to a proper calculation if the FB has been initialized.

The second FB within the initialization sequence is called ‘Check_RINIT’ and has two
responsibilities. On the one hand it checks whether all previous actions have been executed
successfully. This can be done simply by the input qualifier ‘QI’, which is commonly defined
to be true if the operation should be performed. On the other hand ‘Check_RINIT’ generates
the starting event for the next sequence within the system evolution step. Information from
the control application is necessary in order to synchronize the following actions with the
execution of the system evolution. In case of a closed-loop control circuit a good starting
point is the finishing of an execution cycle. The connection from ‘Controller.CNF’ to
‘Check_RINIT.CLK’ has been established during the download of the ECA. When all actions
within the initialization phase have been executed correctly and the next execution cycle of
the control application occurs, the output event ‘Check_RINIT.CNF’ will be fired in order to
start the next sequence within the DSE.
Reconfiguration sequence: The second sequence within the execution of the ECA is called
reconfiguration sequence and is responsible for the changes to the current application. Based
on the preparations of the initialization sequence the current application is changed to the new
application. Accordingly the actions within the reconfiguration sequence are time critical.
For the example of the closed-loop control circuit within the reconfiguration sequence the
new controller ‘NewController’ needs to be initialized according to a transition management
method. In this example the output fitting method (see also Section 3.5) is utilized. The
following actions need to be performed:

• Reading of the internal state of the old controller ‘Controller’. The only value that
needs to be considered for this kind of controller is the integral part, denoted as ‘Con-
troller.I’.

• Then this value is used to calculate the appropriate internal value of the new controller
‘NewController’ in such a way that the new controller will produce the same output
value for the current execution cycle. The FB ‘Transition’ performs this calculation by
using data from the application. In detail the current output value (‘Controller.U’) and
the current deviation (‘Summing_point.DELTA’) are used apart from the integral part
of the old controller and the parameters of the new controller.

• Writing of the internal state of the new controller ‘NewController’. The WRITE man-
agement command in the ‘Set_Internal’ FB is used to provide this action.

• The FB ‘Rewire’ again includes several management commands for the purpose of
moving the output connections from the old controller ‘Controller’ to the new control-
ler ‘NewController’. By executing these actions the current application is changed to
the new application as from now on the new controller ‘NewController’ calculates the
output value ‘U’. In detail the connection from ‘Controller.U’ to ‘Set_Value.VALUE’
needs to be deleted and correspondingly a connection from ‘NewController.U’ to
‘Set_Value.VALUE’ has to be created. Additionally the INITO output event needs to
be rewired.

The last FB ‘Check_RECONF’ again provides a check for the correctness of previous actions
within the reconfiguration sequence. Next to a simple check of the ‘QI’ data input now also
the correctness of the changed application needs to be taken into consideration. For the
closed-loop control circuit the ‘Check_RECONF’ FB considers the current control value as

the new FBs may be moved to the second sequence, the reconfiguration sequence. If there is an initialization
necessary for the new FBs the former option should be preferred.

NEW ENGINEERING METHOD FOR DOWNTIMELESS SYSTEM EVOLUTION 63

well as the set point for a given number of cycles in order to recognize whether the new
application is in a stable state. If yes, the output event ‘Check_RECONF.CNF’ will be fired in
order to start the next sequence within the DSE.

Figure 13: Downtimeless system evolution of a closed-loop control application

Deinitialization sequence: The third sequence within the execution of the ECA is called
deinitialization sequence and is responsible for bringing the system into a clean state. As the
reconfiguration sequence needs to be executed under real-time constraints, there is no time to
delete FBs or connections which are not in use any longer and do not influence the behavior
of the new application. These elements will be deleted within the deinitialization sequence.
As the system is already in the new state, the actions within this sequence do not influence the
behavior of the control application. The deinitialization sequence is not time critical.
The situation in the closed-loop control circuit at the beginning of this sequence is similar to
the finishing state after the initialization sequence. Only the new controller ‘NewController’
and the old controller ‘Controller’ change their roles. Now the new controller is in operation,
and the old controller is just present and of course also executed, but its output value is not
used anymore. Therefore the actions within the deinitialization sequence are the same as for
the initialization sequence, but with inverted order:

• Stopping of the old controller ‘Controller’.
• Deleting the input and output connections of ‘Controller’. It is not necessary to delete

input parameters, but there may be some output connections that are still available and
need to be deleted, too. For the example in Figure 13 this is true for the output connec-
tion of ‘Controller.CNF’, which has been used for the synchronization with the ECA.

• Deleting the FB instance ‘Controller’.
After the successful execution of the deinitialization sequence the new system state has been
established without any unused elements from the old system state. The only thing that has to
be done furthermore is to delete the ECA itself. This is again not time critical, as the ECA has
no active interrelations with the current application.

64 NEW ENGINEERING METHOD FOR DOWNTIMELESS SYSTEM EVOLUTION

Failure handling
As indicated in Figure 13, the ECA uses check points in order to trigger the different se-
quences. At these check points failure handling mechanisms can be applied, too. Depending
on the application behavior, different algorithms are needed for failure handling. In this
example ‘ErrorHandling1’ includes countermeasures if an error occurs during the initializa-
tion sequence, ‘ErrorHandling2’ reacts on a failure during the reconfiguration sequence. A
failure may happen also during the deinitialization sequence. An appropriate FB is not
depicted in Figure 13, also the two failure handling FBs are only indicated schematically. The
actions that may be performed after each of the three sequences can be summarized roughly
as follows:

• Failure during the initialization sequence: As at this point the current application has
not been influenced the simplest action for error handling is to stop the ECA. A more
sophisticated method may analyze the initialization sequence and retry those actions
that have not been executed successfully. If the ECA is aborted, then those elements
that have been already executed need to be canceled.

• Failure during the reconfiguration sequence: This is a very critical point within the
ECA since the application is just in change. In most cases the error handling method
needs to return the current status of the application into the old application. This may
happen with some kind of transition management policy or without, depending on the
kind of failure. Another possibility is to implement a retry for unsuccessful actions,
but due to the real-time constrained execution of the reconfiguration sequence this
may be critical.

• Failure during the deinitialization sequence: The DSE has successfully changed the
ACS to the new application at this point. A failure influences only the process of
cleaning up the old application. An error handling method may retry those actions that
have not been successful.

Within this thesis we will investigate on a method in order to check that an ECA will not
produce a failure during its execution. Therefore, we will not consider failure handling built
within the ECAs.

4.3 Enhanced evolution control engineering
The above described methodology for establishing an evolution control application fulfills
many requirements of a DSE. But there are some open aspects especially usability and
clearness of this basic approach:

• The simple example of a controller exchange depicted in Figure 13 already visualizes
the most important hindering reason for the application of such a methodology by the
ACS customer: The ECA is rather big in contrast to the control application and adds
considerable complexity to the overall ACS. The basic reason for this is of course that
the DSE is a highly sophisticated action and changes without disturbances to the con-
trol application need significant efforts.

• The assignment of an ECA and the control application it concerns is not presented in a
clear manner. The example given in Figure 13 shows a very simplified situation since
only the interesting part of the overall ACS application is visible. Within control ap-
plications in industrial practice it may be much more complicated to consider a single
system evolution step.

• The above described situation takes only one system evolution step into account. But
it is necessary to coordinate several system evolution steps in their order or synchro-
nize them in order to apply changes to different control applications simultaneously.

NEW ENGINEERING METHOD FOR DOWNTIMELESS SYSTEM EVOLUTION 65

• The coordination and synchronization of system evolution steps needs to be possible
also in distributed systems. The above described evolution modeling method does not
limit the user to systems consisting only of one single device. But the introduction of a
distributed ECA will again increase complexity.

In order to overcome these problems an enhanced evolution control engineering method has
been developed which is based on the above presented basic methodology. This approach has
been described for instance in Hummer et al. (2006).

Encapsulation of single ECAs
The execution of an ECA can be split up into three characteristic sequences: initialization,
reconfiguration, and deinitialization. These sequences represent independent parts within the
execution of a system evolution step. They are triggered at certain points in time and need
separate consideration of successful execution and also failure handling. A first step within
the enhanced evolution control engineering is to encapsulate these single ECAs within a
defined containment. We call this containment the Evolution Execution Control Function
Block (EECFB). Each of the three sequences should be operated and represented by the
interface in an independent manner. The generic interface of an EECFB is depicted in Figure
14. A separate event input and output exists for each sequence as well as an input and output
qualifier in order to represent status information. The generic interface can be described as
follows:

• FB Initialization: As it is defined by the IEC 61499 standard SIFBs provide an inter-
face for the initialization/deinitialization of the underlying services. The event input
‘INIT’ together with the data input ‘QI’ are used in order to start the initialization
(‘QI’ is true) or deinitialization (‘QI’ is false) of the SIFB. The corresponding outputs
are ‘INITO’ and ‘QO’, which state the end of the FB initialization together with its
status (‘QO’ true for successful initialization and vice versa). As each basic reconfigu-
ration service is a SIFB, the EECFB needs to provide such an interface, too.

• Initialization sequence (RINIT): The first sequence within the ECA is responsible for
the preparation of the control application in order to reduce the effort for dynamic re-
configuration. This sequence has an interface similar to FB initialization, that is char-
acterized by the key word RINIT (in order to describe that it represents the initializa-
tion sequence for the dynamic reconfiguration). Accordingly, the event input ‘RINIT’
and the data input ‘RINIT_QI’ can be used for starting the initialization sequence, and
‘RINITO’ and ‘RINIT_QO’ issue its result.

• Reconfiguration sequence (RECONF): The second sequence of an ECA includes the
time critical dynamic reconfiguration. We use the key word RECONF in order to iden-
tify this sequence. The interface for starting and issuing its results is similar: event in-
put ‘RECONF’ and data input ‘RECONF_QI’ as well as the event output ‘RE-
CONFO’ and data output ‘RECONF_QO’.

• Deinitialization sequence (RDINIT): The third sequence aims at the clean-up of the
control application in order to remove unused FBs and connections. We use the key
word RDINIT (deinitialization of dynamic reconfiguration). The interface is again
similar and includes the event input ‘RDINIT’ and the data input ‘RDINIT_QI’ as
well as the event output ‘RINITO’ and the data output ‘RDINITO’.

This generic interface of an EECFB needs to be extended with parameters that may be useful
for the ECA and of course also the event and data connections in between the control
application and the ECA. It has to be mentioned that in contrast to an ECA modeled accord-
ing to the basic evolution control engineering the EECFB does not include all elements
necessary to execute the ECA. Each of the sequences is included as a separate part within the
EECFB, but their interconnection to each other needs to be modeled outside of the EECFB.

66 NEW ENGINEERING METHOD FOR DOWNTIMELESS SYSTEM EVOLUTION

This especially influences the ‘CHECK_RINIT’ FB within Figure 13, which has two different
purposes. On the one hand it checks the correctness of the initialization sequence execution,
which belongs to the internals of the EECFB. But on the other hand it is responsible to trigger
the reconfiguration sequence, which now belongs to the external “wiring” of the EECFB, as
otherwise there would be a dependency between the different sequences. But for the estab-
lishment of the EECFB there has to be taken care that such an dependency does not exist.
Another important aspect of the EECFB is its implementation. As far as we have described
the EECFB it simply represents a containment for an FB network. Although we have used the
word function block, the IEC 61499 standard provides two different means for such a
containment: CFB and subapplication. It is a matter of the implementation, which version will
be preferred (in Figure 14 the CFB version is depicted due to the used WITH construct). If the
ECCFB is realized as a CFB, this FB type has to be available for execution within the runtime
environment. This means, a CFB type declaration has to be created during operation. If the
ECCFB is realized as a subapplication, only the component FBs have to be available for
execution within the runtime environment. Although it can be assumed that most of the FBs
used within the ECA are available (e.g., the basic reconfiguration services), there may be
some FB types missing as for instance in order to provide an appropriate transition manage-
ment method. These FB types need to be created within the runtime environment during its
operation anyway.

Figure 14: Evolution Execution Control Function Block type (implemented as CFB)

Region of interest taken into consideration within an EECFB
The second step for enhancing the evolution control engineering approach concerns to the
association of an ECCFB to an application area it concerns. We call this application area
Evolution Region of Interest (EROI), as it includes exactly those parts of the control applica-
tion that will be affected by the EECFB. During the process of establishing the new applica-
tion, the different EROIs occur based on the changes that are modeled within the current
application. The following rules define the borders of the EROI:

• Creating/Deleting a function block: The EROI consists of the function block itself
plus the corresponding halves12 of the surrounding FBs it is connected with, because a
significant temporal order of operations exists within the ECA, as for instance a dele-
tion of an FB incorporates all connections of this FB.

• Creating/Deleting a connection: The EROI consists of the corresponding halves of
source and target function blocks of the connection as well as the connection itself.

12 For the consideration of the EROI we split up FBs into one half consisting of all event and data inputs and
another half incorporating all event and data outputs.

NEW ENGINEERING METHOD FOR DOWNTIMELESS SYSTEM EVOLUTION 67

• Creating/Deleting a parameter: The EROI consists only of the input half of the target
FB and the parameter itself.

This association is very helpful for structuring the evolution engineering process. The
different areas of DSE within the control application get their own EECFB that includes the
necessary ECA for the intended changes. Figure 15b depicts this situation schematically.
During the engineering process of DSE the ACS user may examine the control application
and mark the changes that are necessary. These markings correspond to the EROIs (grey
shaded circles) and as the next step the user designs an appropriate ECA in terms of an
EECFB. Finally the coordination and synchronization of the changes to the different EROIs
need to be modeled, which will be described below.

Figure 15: Composite ECA and its influence to the EROIs within the control application

The definition of EROIs opens up another important possibility for the simplification of
evolution control engineering: the usage of templates for certain changes. It is obvious to
design standardized procedures for recurrent activities such as the exchange of a controller FB
with a distinct internal algorithm, or the exchange of an FB without transition management.
This template EECFB needs to be adapted to the concrete control application, but most parts
within the EECFB can be defined in advance. This is also an interesting aspect for companies
which provide control applications or FB types to their customers. In order to update to a new
version they are able to prepare an EECFB which may be applied by their customer without
high work load.

Coordination of single ECAs
The third step for improving the evolution control engineering approach is the modeling of a
Composite Evolution Control Application (CECA). The CECA consists of single ECAs as its
main parts with an additional control logic in order to coordinate and synchronize their
execution. Again the CECA is an IEC 61499 application and can be modeled with the same
means as the control application. In detail the coordination is based on the three sequences
within each ECA. The initialization and deinitialization sequences are not important since
they do not influence the control application. But the reconfiguration sequence directly

68 NEW ENGINEERING METHOD FOR DOWNTIMELESS SYSTEM EVOLUTION

changes the control application and the actions within the reconfiguration sequence have to be
taken into account. Additional interfaces (especially events for synchronization) may be
necessary for a fine-grain synchronization between two EECFBs. The event FBs which are
defined in (IEC 61499, 2005, Annex A) provide a first set of FBs that can be used within this
synchronization.
Figure 15b depicts a CECA incorporating three EECFBs. Within these EECFBs no interde-
pendencies exist, but their execution is modeled in a special temporal order. After the issue of
‘COLD’ or ‘WARM’ events from the ‘Evo_Start’ FB all three EECFBs are initialized
sequentially. When this initialization has been successful (due to the connections of the input
and output qualifiers the DSE will be stopped as soon as any action within the EECFBs is not
executed successfully) the first EECFB ‘EROI1’ is executed. Herein all three sequences are
executed sequentially without any further external synchronization mechanism. When this
first system evolution step has been performed successfully, ‘EROI2’ and ‘EROI3’ execute
their initialization sequence sequentially. As soon as both system evolution steps are ready for
their reconfiguration sequence, the changes within both EROIs are applied simultaneously.
When the reconfiguration sequence of these EECFBs has been executed successfully,
deinitialization sequence will be executed independent from each other.
The execution order of EECFBs within a CECA can be easily visualized as depicted in Figure
15a. As already mentioned above only the reconfiguration sequences of the EECFBs within
the CECA are of special interest for the execution order. The initialization and deinitialization
sequences are necessary, too, but they do not influence the control application. The very
simple schematic in Figure 15a provides a very good overview of the execution order and
increases the usability of the evolution control engineering approach.
The modeling of distributed CECAs can be added in a simple manner based on the enhanced
evolution control engineering method. When we assume that an EECFB and its associated
EROI are related to only one device, a distributed CECA can be modeled by using communi-
cation FBs in order to spread the coordination and synchronization events and data connec-
tions via the communication network. In case of very tight coupled EECFBs this has to be
handled appropriately.

4.4 Downtimeless system evolution with physical reconfiguration
The previous investigations for a modeling method for DSE have been focused on the control
logic. But as stated in Section 3.4 we want to take dynamic reconfiguration of both software
and hardware into consideration. This dynamic reconfiguration of hardware, in short physical
reconfiguration, can be easily applied within the engineering cycle for DSE. But the ACS
customer has to be involved into the execution of a physical reconfiguration since up to now it
is not possible to provide basic reconfiguration services for hardware (this possibility may
arise in highly flexible and self-adapting ACSs in the future).
Figure 16 depicts the enhanced engineering cycle for DSE of hardware and software within an
ACS. The main elements remain identically to the description given in Section 4.1 (Figure 16
only includes the main elements). In the lower part of Figure 16 an example for the removal
of a device is given from the system’s perspective. This example will be used for explaining
of the necessary tasks in order to provide also physical reconfiguration within the engineering
cycle:

• Acquire existing application: The first step remains similar as it already includes the
acquisition of the existing software as well as the hardware configuration. For the ex-
ample given in Figure 16 only one device ‘Dev1’ exists which includes one control
application ‘Application’.

• Application modeling: The application modeling already includes one task which
aims at the configuration of the hardware. Herein it is necessary to include new hard-

NEW ENGINEERING METHOD FOR DOWNTIMELESS SYSTEM EVOLUTION 69

ware devices into the overall hardware configuration. Depending on the possibilities
of the engineering tool and runtime environment it may be sufficient to add the physi-
cal device into the ACS and it will be recognized automatically by using plug-and-
play mechanisms. In any case it is necessary to add the new hardware before the exe-
cution of the DSE.

• Evolution engineering: The task of modeling the ECA in order to achieve a smooth
transition from the current system state to the new system state remains the same since
there cannot be assumed any automatisms for changes of the hardware configuration.
In the example depicted in Figure 16 the mapping of ‘Application’ is changed from
‘Dev1’ to the new device ‘Dev2’.

• Execution of downtimeless system evolution: Also for the execution of DSE there are
no changes necessary to the description given above. The only prerequisite is that any
new hardware that has been specified needs to be available within the ACS. In the
given example ‘Application’ moves to ‘Dev2’ and ‘Dev1’ remains unused.

• Removal of unused hardware: This task is necessary only for a physical reconfigura-
tion. As due to the system evolution step some hardware may not be necessary within
the ACS any more, these devices can now be removed.

Figure 16: Downtimeless system evolution with physical reconfiguration

The description of the engineering cycle for physical reconfiguration incorporates both
possible scenarios, the addition and the removal of hardware. In both cases DSE needs
manual support from the ACS customer in terms of adaptations to the hardware configuration
of the ACS. But these manual actions can be integrated into the engineering cycle for DSE as
unobstructed enhancement without changes to the above described methodology. Only in case
of CECAs with physical reconfiguration within several EECFBs the execution of the DSE
needs to be planned carefully in order to synchronize the manual actions with the CECA.

4.5 Summary
The modeling methodology for DSE represents the basic framework in order to enable ACS
customers to describe changes within a system at run-time. The essential part within this
engineering cycle is the evaluation of the DSE since any failures during the execution of a
system evolution step may lead to a break-down of the overall ACS. Additionally the ACS
customer is able to define appropriate failure handling mechanisms within the ECA. Physical
reconfiguration is an unobstructed enhancement to the engineering cycle which focuses on
changes to the control application mainly. In this case manual support by the ACS customer is
necessary as there exist no means in order to automatically change hardware configurations.

70 NEW ENGINEERING METHOD FOR DOWNTIMELESS SYSTEM EVOLUTION

In order to summarize the main ideas of this engineering methodology for downtimeless
system evolution, we will consider the challenges for software evolution from
Mens et al. (2005) presented in Section 3.4:

• Preserving and improving software quality: The clear structure for a single system
evolution preserves high quality of the reconfiguration process itself and also of the
overall system.

• Supporting model evolution: The methodology for modeling the DSE is based on a
clear engineering cycle, therefore different versions and steps of the evolution process
can be separated and planned in detail.

• Formal support for evolution: The evaluation of DSE is an integral part of the model-
ing approach. The details about the evaluation approach will be described in the fol-
lowing chapters.

• Evolution as a language construct: DSE is modeled with the elements of the
IEC 61499 standard, enhanced by special FB types for dynamic reconfiguration (the
basic reconfiguration services).

• Need for better versioning systems: The engineering cycle for DSE provides the
means for the documentation of the different system states as well as the transition
process in between. This can be used as basis for versioning systems.

• A theory of software evolution: The reference architecture for dynamic reconfigura-
tion presented by Walsh et al. (2007b) has been presented as a basis with restrictions
according to the special needs of DSE and the IEC 61499 standard.

• Post-deployment runtime environment: DSE is based on a runtime environment ca-
pable to change the control logic during operation. We will use the R3E within this ap-
proach, which is an IEC 61499 compliant runtime environment with special adapta-
tions to real-time execution and dynamic reconfiguration as presented in Zoitl (2007).

 71

5 New Concept for the Evaluation of Downtimeless System
Evolution

Chapter 5

New Concept for the Evaluation of Downtimeless System
Evolution

The evaluation of DSE is depicted in the total engineering cycle as the fourth step within
evolution control engineering (see Figure 10). But the evaluation is of outstanding importance
for the application of DSE, because the main target next to the application of changes to the
control application is the operation of the plant without disturbances. The concept for the
evaluation needs to provide the necessary means for the proof of a system evolution step in
such a way that it may be used also by ACS customers. The basis for this concept is repre-
sented by the structure of a system evolution step within the engineering methodology
presented in the previous chapter.
The formulation of the concept for DSE will be split up into three items:

• First of all we will investigate the framework for the evaluation in an ACS, starting
fromthe evaluation of control applications and as an additional task the evaluation of
DSE.

• The formulation of the concept for the evaluation of DSE provides the main guideline
within this work. The means will be different according to the necessary properties
and different sequences within a system evolution step.

• A very important aspect for the evaluation process is the availability of a comprehen-
sive description of the current system state. We will describe a possible scenario for
the representation of this information that is based on the description of control de-
vices.

5.1 Specification of the evaluation framework
The scope for the evaluation of control applications in general can vary in big extents. Bani
Younis and Frey (2003) distinguish three different levels for the evaluation of control
applications: some parts of the algorithm, the whole control application, or the whole system
configuration. Based on the requirements that have been stated in Section 2.1, we need to take
into account the overall control device and its configuration. This is stated especially by
Requirement (3) “Underlying system configuration”.
In order to provide a structured analysis of the evaluation framework, we will start our
considerations with ACSs operating only control applications and extend these considerations
in a second step for DSE.

5.1.1 Evaluation of ACSs operating control applications
The classical situation of a control application that is used to control some kind of process or
plant is depicted with respect to evaluation for instance in Hanisch (2004). The evaluation

72 NEW CONCEPT FOR THE EVALUATION OF DOWNTIMELESS SYSTEM EVOLUTION

proves or falsifies if the system’s behavior complies with the specifications of the desired or
prohibited behavior. The control application as well as the process under control have to be
considered in combination. Both have to be modeled in an appropriate formal description in
order to provide the necessary system model for model checking. This way of system
modeling is called closed-loop modeling. In the overall system, the control application acts on
the measurement signals from the process under control and generates control signals that
again influence the process. Therefore, a closed circuit of signals emerges that are exchanged
between control application and process. Figure 17 depicts this classical situation of the
evaluation framework for ACSs that operate control applications.

Figure 17: Classical situation for evaluation of control applications

The different elements involved in this closed circuit are characterized as follows:
• Process under control: In most cases no model of the process under control is neces-

sary, when we consider the current practice of testing and simulation as main methods
for the evaluation in ACSs. The ACS customer is not used to specify the process in
advance and uses either the plant itself or a simulation model of some plant aspects for
the development of the control application. Nevertheless, in specialized areas such as
control theory high efforts are put into such a model in order to achieve highly effi-
cient control strategies. But in general the design of a model of the process is an addi-
tional task that is necessary to permit also model checking for the evaluation. Hanisch
(2004) considers this situation in more detail. As soon as any description of the proc-
ess exists this can be used to generate the model in an appropriate input language for
the model checking tool, as this is for instance described by Lobov et al. (2006a) for
UML as the description of the plant and NCES for the input language for the model
checking tool.

• Control application: The algorithms necessary to control the process are included in
the control application, which is written in any kind of programming language as de-
picted in Section 3.2. Within this work we focus on the IEC 61499 standard. The FB
networks can be used as input in order to generate the appropriate model of the control
application in the input language of the model checker. Herein especially the Re-
quirement (2), “Execution semantics”, has to be treated carefully, as the implementa-
tion of the runtime environment used for the execution of the control application has
significant influence on the behavior of the control application.

• Control signals: Control signals describe the interaction interface from the control
application to the process under control. This interface is visible within the control ap-
plication by means of SIFBs, that are the elements within IEC 61499 standard which
are capable to integrate any kind of interaction with the environment.

• Measurement signals: These signals describe the counterpart of the overall interface
to the process, the direction from the process to the control application. Again this in-
terface is visible within the control application by means of SIFBs. As stated in Ha-
nisch (2004) this interface usually does not provide access to all state variables within
the process.

These four elements describe the models that need to be built on the information about the
structure and internals of the ACS. Additionally, there are two aspects that have to be

NEW CONCEPT FOR THE EVALUATION OF DOWNTIMELESS SYSTEM EVOLUTION 73

integrated into the evaluation process in order to evaluate the operational behavior of the ACS
during the life cycle of the plant:

• Disturbances: An initial requirement of evaluation is to check whether the specifica-
tion of a plant holds for all possible scenarios or not. The model of the process pro-
vides a variety of scenarios based on its modeled behavior. But additionally different
disturbances may be modeled in order to describe for instance failures within the
plant. These disturbances need to be modeled separately and are important for proving
the behavior in unusual situations.

• Hardware capability: Another kind of disturbances belongs to the control application,
in more detail to the underlying system configuration. In most cases a control device
includes different software in order to provide the needed functionality of the ACS. A
typical example is a web server, which does not influence the control application as it
only reads the current status of the control device and offers this information within a
web page. But it influences the execution behavior of the control application and may
lead to violations of real-time constraints. Computational power of the control device
needs to be considered, too. As the operation of control applications is constrained by
time constraints, the speed of execution is an important source of disturbances within a
given control device. Therefore these influences to the hardware capabilities need to
be taken into consideration as additional disturbances within the evaluation process.

The above described elements of the framework for the classical evaluation situation have to
be taken into consideration for the model of the system. Additionally, there are different
categories of specifications that may occur, depending on the concrete system. Hanisch (2004,
Section 4) mentions that at least three different groups of specifications exist:

• Plant specifications: “Plant specifications can often be formalized as forbidden state
problems, but they might also specify forbidden sequences of states or state transi-
tions.”

• Process specifications: “Process specifications can be formalized as a set of partially
ordered states or state transitions, sometimes even with time or hybrid dynamics.”

• Product specifications: “Numerous product specifications cover an extremely wide
range. Specifications of substances in process industries define chemical or physical
properties of the products. (…) Product specifications in the manufacturing industry
focus on geometrical or mechanical properties, color, surface properties etc.”

5.1.2 Evaluation of ACSs incorporating downtimeless system evolution
When we consider ACSs that provide the possibility of DSE the framework for evaluation
needs to be extended. All elements that have been mentioned above are valid also for the
evaluation of DSE. But there are additional elements that need to be taken into account.
Figure 18 provides a schematic of the overall framework for the evaluation of an ACS with
DSE (additional elements are marked with gray color). Another closed circuit exists in
between the control application and the ECA. The basic reconfiguration services used within
the ECA are the appropriate means to influence the control application. On the other hand the
current system state is the basis for the ECA in order to synchronize its actions with the
control application. This second closed circuit is put on top of the above described closed-
loop modeling of the process under control and the control application.
The additional elements within the framework for the evaluation of DSE are characterized as
follows:

• Evolution control application: The ECA takes care of the execution of the DSE.
Based on the EECFBs involved in the ECA different areas within the control applica-
tion are related to the DSE. As the ECA can be modeled by the same means as the

74 NEW CONCEPT FOR THE EVALUATION OF DOWNTIMELESS SYSTEM EVOLUTION

control application, namely as IEC 61499 application, the same prerequisites have to
be taken into account for the ECA as for the control application (e.g., execution se-
mantics). Further special requirements for the evaluation of the ECA are the incorpo-
ration of basic reconfiguration services which are represented as SIFBs.

• Basic reconfiguration services: The control flow from the ECA to the control applica-
tion is represented by basic reconfiguration services. These incorporate management
commands that are issued to the IEC 61499 device management in order to execute
changes within the control application. Herein especially Requirement (4), “Modeling
dynamic reconfiguration”, has to be mentioned which demands the representation
within the model of the ECA as well as within the model of the control application.
The first aspect is simply defined by the interface of the SIFB and the sequence dia-
grams in order to describe the external interface behavior. The second task is much
more complicated as formal models do not provide means for applying changes to the
model during model checking. The approaches presented in Section 3.6.3 which inves-
tigate also dynamic reconfiguration provide possibilities to change the models based
on given rules, but they do not incorporate changes to the model during evaluation.
The modeling of basic reconfiguration services is one of the key tasks for the evalua-
tion of DSE.

• Current system state: The ECA interacts with the control application by using event
and data connections in order to get the necessary information about the current sys-
tem state and coordinate its execution accordingly. The model of these event and data
connections is the same as for the control application or the ECA. But additionally
also basic reconfiguration services need to be used in order to achieve more detailed
information on the current system state. As depicted in the example “closed-loop con-
trol circuit” in Section 4.2.3 for instance internal variables are necessary for certain
transition management methods. Further simplifications of engineering such as a snif-
fer for events may be encapsulated as basic reconfiguration service and provides in-
formation of the current system state to the ECA. Accordingly, also basic reconfigura-
tion services that provide information of the control application (instead of influencing
its current state) need to be modeled for the evaluation of DSE.

Figure 18: Framework for the evaluation of downtimeless system evolution

Also for the evaluation of DSE additional sources of disturbances exist next to those men-
tioned already in Section 5.1.1.

• Other applications: From the ECA’s point of view only those parts of the control
application that are included in the EROI are of special interest. In order to incorporate
an appropriate behavior of the control application itself the areas of the EROIs need to
be enlarged to the applications that incorporate these EROIs. But the overall control
application, which usually consists of various IEC 61499 applications, is not com-
pletely part of the control application that needs to be modeled for the evaluation of
DSE. From the point of view of DSE, a control application refers only to those

NEW CONCEPT FOR THE EVALUATION OF DOWNTIMELESS SYSTEM EVOLUTION 75

IEC 61499 applications that are affected by the EECFBs. All other IEC 61499 applica-
tions will be denoted as other applications. But as these other applications may pro-
vide some inputs also for the control application, the interaction between the control
application and other applications can be taken into consideration as disturbances.
Similar to disturbances to the process, other applications do not need to be modeled in
detail. But their behavior and especially the interface behavior to the control applica-
tion have to be incorporated into the evaluation process.
The influence of other applications is also important from the viewpoint of hardware
capabilities mentioned for the control application. They have the same influence as the
web server depicted above. Since they may need computational power for execution
they also influence the execution of the DSE which e.g. may yield to violated real-
time constraints.

• Hardware capability: On the level of ECA again hardware capabilities occur as dis-
turbances to the evaluation process. But in this case they concern the actions that
should be performed by the ECA, especially the basic reconfiguration services.
Unlimited resources do not exist, e.g., memory, in order to execute any request from
the ECA. These limitations of the hardware capability have to be considered apart
from the general hardware capabilities described in Section 5.1.1.

The overall target of DSE is to change the current control application without causing
disturbances to the process. The three different categories for specifications (plant, process,
and product specification) need to be fulfilled for the system also during DSE (according to
the reference model described in Section 3.4.1 these may belong to global and local consis-
tency characteristics). Additionally, the ECA itself has to fulfill certain properties, which are
summarized as fourth category of specifications:

• Evolution specification: Evolution specifications describe the properties of the ECA
that additionally may be specified for the execution of DSE (e.g., preserving the con-
sistent state of components that are exchanged).

5.2 Concept formulation
The evaluation of DSE has to prove whether the ECA violates any properties of the plant,
process, product, or evolution specification. Therefore the execution of the ECA has to be
taken into consideration. Figure 19 depicts the different phases for the execution of a single
system evolution step. We will concentrate at the beginning on the basic evolution control
engineering method, as within the enhanced methodology only the engineering process is
simplified. The main characteristics of an ECA do not change and for the sake of concentra-
tion on the important aspects of the execution of an ECA we will neglect CECAs in a first
step.
Five different phases can be distinguished during the execution of a single system evolution
step, which will be discussed according to their impact on the execution of the control
application:

• Download ECA: First of all it is necessary to download the evolution control applica-
tion to the control device(s). This step is similar to the download of any application.
From the control applications point of view it has no influence with the exception of
one special case: The creation of connections between the control application and the
ECA. When such a connection is an event connection, then events will be passed to
the ECA and the ECA has to be operated already after this phase (before the system
evolution step itself has been started).

• RINIT sequence: The initialization sequence includes actions for the preparation of
the changes within the control application. As depicted in the example given in Sec-

76 NEW CONCEPT FOR THE EVALUATION OF DOWNTIMELESS SYSTEM EVOLUTION

tion 4.2.3 new FBs as well as their input connections are created and parameters of
these FBs are written. As the input connections of the FBs may include also event con-
nections the control application will trigger the execution of the new generated FBs
which may influence the execution of the control application (in general by consumed
execution time from the control device).
Both phases do not produce changes to the functionality of the control application. In-
fluences happen based on side effects due to the interconnection of the ECA and the
control application, but there are no active adaptations of the control application in-
cluded concerning its behavior. These two phases provide the same characteristic and
may be considered as preparation for the dynamic reconfiguration of the control
application.

Figure 19: Execution phases of a system evolution step

• RECONF sequence: The reconfiguration sequence includes the active interaction of
the ECA and the control application in order to change the control application. Any
kind of adaptations to the control application may be applied based on the basic recon-
figuration services and produce changes to the behavior of the control application.

• RDINIT sequence: The deinitilization sequence is responsible for cleaning up the
control application, which aims at the deletion of FBs and connections from the old
system state that are not used any longer in the new system state. The actions within
the RDINIT sequence do not influence the behavior of the control application, but
they provide changes in the execution behavior since the “old” FBs will be executed
until they have been stopped or their input connections have been deleted. As depicted
in the example given in Section 4.2.3 the parallel execution of the old and the new
control application can be used in order to provide failure handling if the new control
application produces errors.

• Delete ECA: The last phase in the execution of an ECA is the deletion of the ECA
itself. The elements of the ECA themselves do not produce any disturbances to the be-
havior of the control application, but connections may exist between the ECA and the
control application. As long as the ECA is available on the control device, the event
connections will trigger the execution of FBs within the ECA and influence the execu-
tion behavior of the control application.
The two last phases within the execution of a system evolution step again handle very
similar actions and can be considered as post-processing. The unnecessary parts within
the control device (from the old control application as well as the ECA that has been
executed) are deleted and the system is left in a clean new system state.

NEW CONCEPT FOR THE EVALUATION OF DOWNTIMELESS SYSTEM EVOLUTION 77

Based on this discussion the related approach for dynamic reconfiguration in ACSs presented
in Zoitl (2007) can be classified. Zoitl (2007) describes the basic features real-time execution
and reconfigurability of an IEC 61499 runtime environment (see Appendix B). The execution
of dynamic reconfiguration is proposed by using an application that utilizes basic reconfigura-
tion services. Furthermore Zoitl (2007, Section 3.5) identifies three different phases for the
execution of a so-called reconfiguration application (similar to the ECA): the setup phase (for
the preparation of the control application for reconfiguration), the execution phase (for the
switch to the new application parts), and the shut-down phase (for cleaning up the remaining
part of the original application). These sequences are compatible with the preparation of the
system evolution step (download of ECA and RINIT sequence), the application of the system
evolution step (RECONF sequence), and the post-processing of the system evolution step
(RDINIT sequence and deletion of ECA). The main difference in Zoitl (2007) is that only the
execution phase (in our terminology the RECONF sequence) should be represented within the
reconfiguration application on the control device. The other two phases are executed by using
the management application and the engineering tool.
Based on the engineering methodology for the modeling of DSE the approach presented by
Zoitl (2007) can be included, too. The only difference is the design of an ECA that includes
also the RINIT and RDINIT sequence within the control device. The additional possibility of
modeling these two sequences as an application may not be necessary. In general the included
actions will be executed almost sequentially. And by using the management application as a
remote interface to the engineering tool exactly the same functionality is offered. The
differences are on the one hand additional time consumption due to the communication
between engineering tool and control device and on the other hand additional storage usage
due to the representation of the RINIT and RDINIT sequence as IEC 61499 applications.
When we consider also CECAs the situation is a little bit different, since the coordination of
different system evolution steps needs additional means which are provided as IEC 61499
applications within this approach. Synchronization or influences between the different
EECFBs need to be handled appropriately, which will be complicated if the engineering tool
has to take care for the different RINIT and RDINIT sequences.

5.2.1 System integrity characteristics
The reference architecture for dynamic reconfiguration described in Section 3.4.1 includes a
hierarchy of change types and their dependency as well as the different types of integrity
management during the application of these changes. These integrity characteristics have to
be considered for DSE in an appropriate way, as the concentration on ACSs and especially the
IEC 61499 standard as programming language need tailoring of the general architecture. The
change types that fit to the models of the IEC 61499 standard and which are supported by
using basic reconfiguration services are protocol change, topology change, architectural
change, and to some extent internal change (see Section 4.2.2).
We will consider the different characteristics and discuss their applicability for DSE. As
changes to the internals of a software component (we have decided to consider an FB as a
software component in Section 4.2.2) are only possible by changing the value of internal
variables and ECC states, only three categories of system integrity remain based on the
investigation of Walsh et al. (2007b):

• Global consistency: In terms of DSE global consistency aims at the preservation of
the specifications of the control application and the process under control. These
specifications are split up into plant, process, and product specifications in Sec-
tion 5.1.1.

78 NEW CONCEPT FOR THE EVALUATION OF DOWNTIMELESS SYSTEM EVOLUTION

• Local consistency: Global integrity characteristics may be split up into local aspects
that are mentioned within local consistency. Herein special issues for the different
specifications of plant, process, or product are included.

• Active references: System integrity with respect to active references targets especially
at SIFBs. A SIFB may encapsulate any kind of service which may include also de-
pendencies to other SIFBs (for instance SIFBs for communication purposes). If the
changes within the control application influence such an active reference to an under-
lying service, the behavior of the control application may produce failures. In detail
this integrity characteristic has to be split up into two aspects: On the one hand such a
dependency may be violated in the new system state and therefore has to be detected
during the evaluation of the new application (see Section 4.1). On the other hand the
dependency may be violated during the system evolution step temporarily (e.g. due to
a disorder of basic reconfiguration services) which has to be proved by the evaluation
of DSE.

Next to the given system characteristics there are further aspects that include especially
evolution specifications. One of the above mentioned aspects, the active references consis-
tency, already represents such an evolution specification for the dependencies that have to be
kept in mind during a system evolution step. Further elements of the evolution specification
can be derived also from the reference architecture in Section 4.2.2 as well as the from basic
work Kramer and Magee (1985):

• State management: Although no basic reconfiguration service exists in order to ex-
change an FB instance it is possible to model such an exchange by a sequence of
commands. The example given in Section 4.2.3 especially depicts this situation with
an appropriate transition management for a controller. For this special case of FB ex-
change but also for the substitution of whole FB networks the requirement of state
management has to be proved as property within the evolution specifications.

• Dependent operation: In contrast to the definition used in the reference architecture
for dynamic reconfiguration, dependent operations may be recognized within the
ECA. The data flow interrelation is based on the parameters of the basic reconfigura-
tion services and hence on their effects to the control application. As already depicted
for active references consistency above, a disorder within the execution of basic recon-
figuration services of a system evolution step may not only produce failures within
underlying services of SIFBs. For instance, a very simple dependency occurs if a con-
nection should be established to a new FB instance which is created later during the
execution of the ECA. Dependent operation consistency is an important property
within the evolution specifications.

• Real-time constrained operation: A very important requirement within DSE is real-
time constrained execution, which has its origin in the process under control and has
to be fulfilled by the control application. As the ECA reconfigures the control applica-
tion the changes to the control application are liable to appropriate real-time con-
straints. For the example of controller exchange mentioned in Section 4.2.3 the recon-
figuration sequence starts as soon as one control cycle has been finished. But it will be
executed successfully only when the reconfiguration sequence has been finished be-
fore the next control cycle is triggered (in detail as soon as the controller is triggered
for execution). The time slot between two execution cycles of the closed-loop control
circuit constrains the execution of the ECA and represents another property within the
evolution specification.
Real-time constrained operation is also included in the global and local consistency
characteristics with respect to the ECA. Any execution phase of a system evolution
step influences the execution of a control application since the same computational re-

NEW CONCEPT FOR THE EVALUATION OF DOWNTIMELESS SYSTEM EVOLUTION 79

sources are used. Therefore, real-time constrained operation is part of these integrity
characteristics, which have to be fulfilled although DSE is applied to the ACS. The
real-time constraints should be modeled by the ACS customer during the engineering
of the control application as well as the ECA. But also if the runtime environment is
configured correctly in order to fulfill these constraints properly the influence of dis-
turbances (see the discussion above) has to be evaluated.

• Requirements of resources: Already Kramer and Magee (1985) mentioned that re-
quirements of resources are a desirable property for dynamic configuration (in this
work we use dynamic reconfiguration instead of dynamic configuration). In detail they
claim that it is necessary that the control devices provide enough free storage for the
changes that should be applied. For DSE two different aspects have to be considered:
the storage necessary for the ECA as well as the storage for the changes that are ap-
plied to the control application by the ECA. In both cases the system evolution step
will only be satisfactory if enough free storage is available. If we consider also the
computational power of the control device as a resource, the above mentioned real-
time constrained operation characteristics also concerning the requirements of re-
sources. Two similar applications with similarly applied DSE on different hardware
platforms (with different computational power) may result in a successful execution of
the system evolution step in the case of enough computational power and failure in the
other case. Additional requirements of resources may emerge based on the type library
of the control device. As a new FB instance can only be created if the proposed FB
type is available in the type library of the control device, it is necessary to check the
type library in regard with the actions within the ECA.

5.2.2 Evaluation means for a system evolution step
This work has identified evaluation of DSE based on model checking as basic methodology
already in the introduction and especially in Section 1.1. But on the other hand an important
aspect is the application field of ACSs, which especially has been stated in Requirement (6) to
(8), namely “Extensive engineering support”, “Provision of formal models”, and “User-
friendly definition of specifications”. The discussion above provides the different kinds of
properties that are included especially in the evolution specifications. The different properties
refer to very different questions concerning the execution of a system evolution step and may
lead to even more simple evaluation methods than model checking in certain cases.
We will investigate each of the five execution phases with respect to the system integrity
characteristics and their tasks during a system evolution step in order to identify the most
appropriate evaluation means.

Download ECA
The download of the IEC 61499 application within the ECA is a time uncritical action with
respect to the control application. The execution of the involved basic reconfiguration
services needs not to be constrained by timing bounds. Based on an appropriate scheduling of
the control application within the runtime environment of the control device no reason exists
for a detailed analysis of this first phase within the execution of a system evolution step (we
will take into consideration the R3E in Chapters 6 and 7). But based on the connections
between the control application and the ECA the execution behavior is influenced. This may
be investigated by using model checking and appropriate specifications. On the other hand the
influence on the control application is clearly arranged due to a very limited number of such
connections and the clearly described influence within the ECA. Based on a comprehensive
description of the current system state a rather simple valuation of the execution time
necessary for the execution of the ECA in this phase is possible and the successful execution
of the control application can be checked.

80 NEW CONCEPT FOR THE EVALUATION OF DOWNTIMELESS SYSTEM EVOLUTION

The different system integrity characteristics for the download of the ECA can be summarized
as follows:

• Global consistency: The ECA does not influence the behavior of the control applica-
tion. Only the effect based on the execution of new FBs due to connections to the
ECA within the context of the control application has to be checked. This can be done
by calculating the impact on the execution time of the control application.

• Local consistency: Similar to global consistency.
• Active references: This property is not influenced by the download of the ECA.
• State management: This property is not influenced by the download of the ECA.
• Dependent operation: The download of any application has to follow appropriate

rules in order to do not violate the dependent operation property. These rules have to
be followed also for the download of the ECA and do not need an additional verifica-
tion.

• Real-time constrained operation: No real-time constraints exist due to the nature of
this execution phase for the download of the ECA. Therefore, the runtime environ-
ment may execute the necessary management commands for the download of the ECA
during spare time. When we assume appropriate concepts within the runtime environ-
ment, there is no need to investigate on this property.

• Requirements of resources: As the resource computational power is already included
within the evaluation of global and local consistency, only storage and type libraries as
well as their requirements of resources during the download of the ECA have to be
verified. As appropriate means the calculation of the interaction of the current system
state and the memory management policy of the control device is sufficient in order to
check this property.

The different system integrity characteristics for the download of the ECA can be checked for
correctness without using model checking algorithms. Nevertheless, detailed knowledge
about the current system state and the internal policies of the control device and the runtime
environment can be used to provide an evaluation of the different evolution specifications.

RINIT sequence:
The initialization sequence provides the necessary preparation actions within the control
application for the dynamic reconfiguration of the control application. Based on the approach
presented in Chapter 4 this part of the ECA will be executed by the control device and
appropriate computational resources are necessary. But the initialization sequence is also time
uncritical and the influence to the control application is limited based on the scheduling policy
of the IEC 61499 runtime environment. The establishment of the new FBs and connections
for the new system state provide also an additional influence on the control application, as
these FBs may be executed within the context of the current control application. The example
given in Section 4.2.3 describes the final situation after executing the RINIT sequence as
parallel execution of both the old and the new controller. But the new controller does not
influence the behavior of the control application, which is a general prerequisite to the actions
within the initialization sequence. Again only the execution time necessary for the new FBs
has to be evaluated. Together with the information about the current system state the evalua-
tion of the influences of actions within the RINIT sequence to the temporal behavior of the
control application can be examined.

• Global consistency: The execution of the RINIT sequence does not influence the be-
havior of the control application. The additional FBs and connections which are added
to the control application can be evaluated according to their necessary execution time.

• Local consistency: Similar to global consistency.

NEW CONCEPT FOR THE EVALUATION OF DOWNTIMELESS SYSTEM EVOLUTION 81

• Active references: This property is not influenced by the RINIT sequence.
• State management: This property is not influenced by the RINIT sequence.
• Dependent operation: The correctness of the different basic reconfiguration services

within the execution of the RINIT sequence can hardly be proved by model checking
as no means exists for the dynamic changes to the model. But based on the representa-
tion of the current system state (especially including the changes applied during the
system evolution step) the dependencies between the different operations can be
checked rather easily.

• Real-time constrained operation: According to the scheduling policy of the runtime
environment the execution of this sequence will be constrained in an appropriate man-
ner. The prerequisites for these influences need to be evaluated according to the under-
lying scheduling theory.

• Requirements of resources: The resources memory and type library within the control
device need to be taken into consideration based on the actions within the RINIT se-
quence and the current system state.

As the characteristics of the RINIT sequence and the download of the ECA are very similar
(preparation of the system evolution step) also the used evaluation means are similar or even
the same. Again it is not necessary to apply model checking for the verification of this
execution phase. The evaluation process uses the information of the current system state and
the actions within the initialization sequence for calculations in order to prove the different
system integrity characteristics.

RECONF sequence:
The reconfiguration sequence represents the most important phase during the execution of a
system evolution step. The control application is actively adapted to the new system state,
which implies the time critical execution of the basic reconfiguration services and calculations
included. This situation needs a very careful investigation on the influences between the
control application and the ECA, which will be applied by the model checking technique. As
already stated above no appropriate means exists for the dynamic adaptation of the system
model for model checking. But at this point the preparation of the system evolution step has
been finished and at least a static configuration of FBs can be considered. The changes to the
control application are restricted to changes of connections and parameters (especially internal
variables). The example in Section 4.2.3 for the exchange of the controller of a closed-loop
control circuit includes the reading and writing of internal variables as well as the deletion
and creation of connections. The scope of possible actions for dynamic reconfiguration is very
limited for the consideration of the RECONF sequence and will be integrated into the model
of the system. Additionally also properties exist that may be evaluated by using calculations
within the information about the current system state.

• Global consistency: The properties within the plant, process and product specifica-
tions of the control application have to be considered based on the adaptations to the
control application during the reconfiguration sequence. An appropriate model of all
elements within the evaluation framework has to be established in order to apply
model checking for proving these specifications.

• Local consistency: Similar to global consistency.
• Active references: The interrelation of different control application parts due to under-

lying services encapsulated in SIFBs is considered within the active references prop-
erty. Especially the temporal interruption of references needs to be considered during
the execution of the reconfiguration sequence. The proof of this property within the
evolution specification requires a detailed description of the mentioned underlying

82 NEW CONCEPT FOR THE EVALUATION OF DOWNTIMELESS SYSTEM EVOLUTION

services in order to provide the necessary information for the model checking proce-
dure.

• State management: State management has to be modeled within the reconfiguration
sequence of the ECA. The behavior of the control application (global and local consis-
tency) is directly influenced by the used transition management method, but even if
the transition management fails the disturbances to the process may be tolerated by the
plant, process, and product specifications. As the target of DSE is the reduction of
such disturbances, state management is added as a special property of the evolution
specification and has to be checked by model checking.

• Dependent operation: For the reconfiguration sequence we have to design an appro-
priate system model that includes also the dynamic reconfiguration of the control ap-
plication. This could be used also for checking the dependencies between the actions
within the RECONF sequence, too. But on the other hand the incorporation of dy-
namic adaptations to the model will be based on a correct order of basic reconfigura-
tion services as the appropriate means for modeling changes are not intrinsic function-
alities of the modeling language. Similar to the RINIT sequence the calculation of the
different basic reconfiguration services based on the current system state will be util-
ized for the reconfiguration sequence, too. This evaluation of the correct order of basic
reconfiguration services provides a good basis for the generation of the system model
used for model checking of the different other system integrity properties.

• Real-time constrained operation: As the reconfiguration sequence is deeply involved
with the execution of the control application and the time critical aspect of this execu-
tion phase it is necessary to include this aspect in the model checking procedure. The
temporal properties are as important as the functional properties within the evolution
specification.

• Requirements of resources: Although the reconfiguration sequence concentrates on
the adaptations of connections and parameters/variables also such kind of basic recon-
figuration services may influence the memory of the control device. Similar calcula-
tions as already depicted above for the RINIT sequence and download of ECAs can be
applied in order to evaluate the satisfaction of the requirements of resources of the
RECONF sequence.

The reconfiguration sequence is the most critical part within the execution of a system
evolution step and needs to be considered in all details by model checking techniques.
Additionally also calculations based on the current system state are applied for certain
properties, which will help to simplify especially the modeling of basic reconfiguration
services.

RDINIT sequence:
The deinitialization sequence starts the post processing of the system evolution step and
focuses especially on the deletion of the old parts within the control application. Based on the
general idea of the engineering methodology for DSE this phase will only remove elements of
the unused control application and should apply no influences in terms of additional execution
time for new FBs to the control applications. In contrast the old application parts which are
still part of the control application and consume execution time in the context of the control
application will be removed and the total necessary execution burden for the control applica-
tion will be decreased. As the deinitialization sequence does not influence the behavior of the
control application itself and its execution is time uncritical, the influence to the control
application can be neglected based on an appropriate scheduling policy of the runtime
environment.

NEW CONCEPT FOR THE EVALUATION OF DOWNTIMELESS SYSTEM EVOLUTION 83

• Global consistency: No additional influence exists to the control application during
the execution of the RDINIT sequence. Any connection between the ECA and the
control application, which may exist from previous execution phases, has been already
investigated during the corresponding execution phases.

• Local consistency: Similar to global consistency.
• Active references: This property is not influenced by the RDINIT sequence.
• State management: This property is not influenced by the RDINIT sequence.
• Dependent operation: Similar to the creation of FBs and connections also the deletion

of these elements may be executed in disorder. The consequences of such a disorder
vary according to the concrete implementation of the IEC 61499 runtime environment
and consequently should be avoided, too. The correct execution of the basic reconfigu-
ration services can be evaluated based on the representation of the current system state
during the sequence of commands.

• Real-time constrained operation: The scheduling policy of the runtime environment
provides the basic framework for the evaluation of the real-time constrained operation
of the RDINIT sequence. The RDINIT sequence has to be scheduled appropriately in
order to do not disturb the execution of control applications.

• Requirements of resources: The RDINIT sequence will free allocated memory ac-
cording to the deletion of unused FBs and connections. This property needs not to be
checked in detail. A similar calculation as provided above can be used to update the
current system state with respect to the requirements of resources.

The deinitialization sequence includes also no verification by model checking. Many proper-
ties do not need to be checked at all. The remaining properties can be evaluated based on the
current system state.

Delete ECA:
The last phase within the execution of the ECA concerns to the deletion of the ECA itself by
using the management application under control of the engineering tool. This sequence is of
course time uncritical and will not influence the behavior of the control application. The
execution of the different management commands has to be handled by the runtime environ-
ment similar to the download of any IEC 61499 application in order to delete the ECA
without disturbances of the execution of control applications.

• Global consistency: This property is not influenced by the deletion of the ECA. The
scheduling policy of the runtime environment has to handle any request by the man-
agement application without disturbances to the control application’s execution.

• Local consistency: Similar to global consistency.
• Active references: This property is not influenced by the deletion of the ECA.
• State management: This property is not influenced by the deletion of the ECA.
• Dependent operation: The deletion of any application has to follow appropriate rules

in order to leave the control device in a clean system state. Based on the implementa-
tion of the runtime environment it may lead to an erroneous situation if for instance an
FB is deleted although connections exist from or to this FB. The engineering tool has
to implement appropriate rules, which do not need an additional check by some
evaluation means.

• Real-time constrained operation: Similar to the download of the ECA also the dele-
tion of the ECA does not have any real-time constraints. The runtime environment will
execute the necessary management commands during spare time. An additional check
for this property is not necessary.

84 NEW CONCEPT FOR THE EVALUATION OF DOWNTIMELESS SYSTEM EVOLUTION

• Requirements of resources: The deletion of the ECA does not require additional
memory but relieves the amount of used memory. Accordingly this property does not
need to be checked separately. A similar calculation as already mentioned during the
previous execution phases may be used in order to provide the current system state af-
ter the deletion of the ECA.

The deletion of the ECA does not need any evaluation means to prove its correctness, when
we assume an appropriate scheduling policy for the management application within the
runtime environment and a structured sequence of management commands generated by the
engineering tool.

Overview of evaluation means
The above discussion of appropriate evaluation means in order to prove the different system
integrity characteristics for a system evolution step are summarized in Table 2. The different
evaluation means have been simplified according to the following conventions:

• ‘Verify’ means prove of the property by using model checking.
• ‘Check’ means the evaluation of the property based on calculation especially by using

the current system state.
• ‘Engineering tool’ refers to the necessity of appropriate rules within the engineering

tool.
• Any prerequisites according to the scheduling policy of the IEC 61499 runtime envi-

ronment have not been mentioned.
 Download ECA RINIT RECONF RDINIT Delete ECA

Global consistency Check Check Verify — —

Local consistency Check Check Verify — —

Active references — — Verify — —

State management — — Verify — —

Dependent operation Engineering tool Check Check Check Engineering tool

Real-time constrained
operation — — Verify — —

Requirements of resources Check Check Check — —

Table 2: Evaluation means for the proof of system integrity characteristics

This overview provides a clear classification of the different evaluation means necessary for
the evaluation of the five execution phases of a system evolution step. Only for the
reconfiguration sequence verification by model checking is applied. All other sequences can
be handled by using appropriate calculations in order to evaluate the effect of the ECA on the
control application. This also improves the usability of this method for ACS customers as the
complex method of model checking is concentrated only on one sequence and also its scope is
very limited.
The detailed consideration of the different calculations based on the current system state will
be discussed in Chapter 6. The verification of the RECONF sequence by model checking is
depicted in Chapter 7. The following section will investigate the necessary enhancements for
CECAs as well as the representation of the current system state as it provides the necessary
information in order to apply the different calculations and model checking.

NEW CONCEPT FOR THE EVALUATION OF DOWNTIMELESS SYSTEM EVOLUTION 85

5.2.3 Evaluation of CECAs
The enhanced evolution control engineering described in Section 4.3 is based on the encapsu-
lation of the three sequences of an ECA (initialization, reconfiguration, and deinitialization)
within EECFBs which may be modeled in order to coordinate and synchronize the execution
of different system evolution steps within a CECA. Herein the reconfiguration sequence is of
special interest, as it describes the coordination of changes applied to the control applications.
When we consider the evaluation means necessary for CECAs we can apply the previous
system integrity characteristics to each single system evolution step within the CECA. Based
on the five execution sequences of a system evolution step the situation can be described for
CECAs as follows:

• Download CECA: The situation can be handled similar as depicted for an ECA. Only
the overall CECA has to be taken into consideration and respectively each EECFB and
its interactions with the control application has to be checked.

• RINIT sequences: Each initialization sequence within the EECFBs of a CECA can be
treated separately in the same manner as for a single evolution step.

• RECONF sequences: The reconfiguration sequences of the different EECFBs have to
be analyzed according to their interrelations as already depicted in Figure 15a in the
overview schematic of a CECA. For the execution of CECAs this is the most impor-
tant aspect and has to be treated appropriately for the evaluation of the reconfiguration
sequence. If for instance the RECONF sequences of two EECFBs are started synchro-
nously (as this is depicted in Figure 15 for ‘EECFB2’ and ‘EECFB3’) the evaluation
process has to incorporate both sequences for the proof of the different integrity char-
acteristics. If no interrelation exists between the different EECFBs (as for instance in
the case of ‘EECFB1’ in Figure 15) the reconfiguration sequences of such EECFBs
can be verified independently.

• RDINIT sequences: Each deinitialization sequence within the EECFBs of a CECA
can be treated separately in the same manner as for a single evolution step.

• Delete CECA: The situation can be handled similar as depicted for an ECA. The over-
all CECA has to be taken into consideration instead of a single evolution step.

The main prerequisite for the evaluation of a CECA is that even if the different sequences
may be considered independently at least the current system state incorporates the whole
CECA (e.g. for the consideration of requirements of resources).

5.3 The current system state: KAPPA vector
The discussion about the evaluation of system integrity characteristics as properties of the
evolution specifications above mentioned many times the link to the current system state in
order to provide the necessary information for the different evaluation means. The different
kinds of calculations and verification by model checking make high demands for the descrip-
tion of the current system state. Therefore this element becomes an important aspect within
the concept for the evaluation of DSE.
In order to provide a comprehensive description of the current system state we will use the
term KAPPA vector as synonym for the different kinds of information related to the current
system state. In detail all information concerning the different applications, the system
configuration as well as the interrelation between different control devices has to be included
into the KAPPA vector. The calculations based on the KAPPA vector mentioned above for
the evaluation of different system integrity properties will be summarized as KAPPA calculus
(see Chapter 6).
The KAPPA vector characterizes the current system state. This means KAPPA is a structured
list of parameters that describe the current system state. The classification of parameters of the

86 NEW CONCEPT FOR THE EVALUATION OF DOWNTIMELESS SYSTEM EVOLUTION

KAPPA vector can be provided by using different aspects. One aspect is the changeability of
parameters according to the dependencies of applications and devices. This will be investi-
gated in Section 5.3.1. Another aspect is the structure of the automation and control system
and will be discussed in Section 5.3.2. Finally the temporal behavior of the KAPPA vector
during the execution of a system evolution step will be depicted in Section 5.3.3.

5.3.1 Characterization of KAPPA vector elements
The parameters within the KAPPA vector (respectively the KAPPA vector elements) aim at
the description of the hardware and the software within an ACS. These elements may be
characterized according to the dependency of what may be changed during the process of
DSE. This belongs on the one hand to the applications (as primary target of a system evolu-
tion step) and to the devices on the other hand.

• Applications: This category includes the software part within the ACS that may be
changed during the DSE. It includes the control applications as well as the ECAs.

• Devices: This category includes the hardware in terms of control devices within the
ACS as well as those software parts that will not be changed within a DSE. Herein es-
pecially the operating system and the runtime environment have to be mentioned as
parts of the device. This is based on the fact that these elements of the software within
a control device will only change in case of a physical reconfiguration (addition or
removal of a control device).

According to these categories four combinations of parameters would be possible, whether
the parameters are changeable or not concerning the application or the device. As the
application will not be of interest in case of independent parameters from the device, only
three different kinds of parameters can be distinguished.

Device dependent & application independent parameters
Within a heterogeneous system the fundamental parameters of a control device like available
memory, processing capability, input/output interfaces or supported network communications
have to be mentioned within this group. Further parameters within this group concern the
features of the system configuration within the software part of the control device (e.g.,
operating system, runtime environment). Examples for these parameters may be the set of
supported commands, the functionality of the runtime environment, processing time for
atomic control operations, capability of the scheduling algorithm, etc. But also those applica-
tions that will not be changed (e.g., the web server mentioned in previous discussions) have to
be incorporated.

Device dependent & application dependent parameters
Due to the relation of applications to control devices, any parameter dependent on the
application is also a parameter dependent on the device. But within this group we especially
focus on information about the currently available applications within the control device. This
includes information about the currently available free memory space and processing power
as well as the mapping of the control applications and ECAs and their actions (e.g., instantia-
tion of function blocks). Within this group also the behavior of control applications has to be
described, which is based on the one hand on the event connections within the control
application and on the other hand on the behavior of the external triggers for execution
(incorporated in SIFBs).

Device independent parameters
There may be also a third group, which is independent of both the device and the application.
These parameters describe for instance the position of a device within the network. This
information is necessary if network communications will be used within DSE. For instance,

NEW CONCEPT FOR THE EVALUATION OF DOWNTIMELESS SYSTEM EVOLUTION 87

the number of switches within the communication of two devices has a major impact on the
latency time of an Ethernet network.

5.3.2 FDCML as basis for a KAPPA vector representation
The concrete representations of the different parameters which are necessary for the evalua-
tion of DSE are dependent on the implementation that provides the basis for the evaluation
method. In order to provide an example for the representation of the KAPPA vector we will
utilize the device description based on FDCML, which is depicted in more detail in Appen-
dix A. As FDCML provides a framework for the description of any parameters for control
devices it is capable to integrate the necessary parameters for the evaluation process. A brief
overview on this kind of representation of a KAPPA vector is given also in
Sünder et al. (2007c).
The general aim of the FDCML specification (FDCML.org, 2002) is to provide a meta
language for the description of control devices. There is only a small amount of parameters
(e.g., for device identification) that are defined within the specification. The majority of
elements within the XML schema aim at a framework in order to define further parameters.
Examples are for instance ‘specificProperty’ or ‘additionalItem’, as described in detail in
Appendix A. Furthermore the topics ‘DeviceFunction’ and ‘ApplicationProcess’, which
represent an important part of parameters especially concerning the group of parameters that
are dependent on the device and the application are completely left open by the specification.
A first step for the adaptation of the FDCML specification for the use as representation of a
KAPPA vector has to investigate the usage of an appropriate description of applications.
Herein the data model of the IEC 61499 standard, especially the definition of the XML
representation of its elements given in IEC 61499-2 (2005), provides a good starting point.
Figure 20 depicts the general structure of the XML schema for FDCML (lower part) and the
DTD of an IEC 61499 system (upper part). As the XML schema for FDCML is explained
already in Section A.1, only the elements of the IEC 61499 system will be introduced
roughly. The DTD represents the definitions of the system model which has been provided
already in Section 3.2.2. A system consists of applications (depicted by the element ‘Applica-
tion’), devices (depicted by the element ‘Device’), and the communication systems (depicted
by the elements ‘Segment’ and ‘Link’). The element ‘Mapping’ is responsible for the
description of the interrelation between an FB instance in ‘Application’ and ‘Device’.
Additionally appropriate DTDs exist in order to describe libraries, especially ‘LibraryEle-
ment’ for FB types, adapter types, or subapplication types and ‘DataType’ for the declaration
of user defined data types. In general the parameters included in these DTDs provide a
mixture of structural information about the different devices and their connections via the
communication networks and application information in terms of FB networks.
The bold arrows used in Figure 20 depict the strategy for incorporating the contents of the
IEC 61499 models into the framework of the FDCML XML schema. FDCML provides a very
detailed description of the structural elements of a control device, which is not part of the
IEC 61499 standard and expands the relatively simple overview of a system configuration. On
the other hand, the representation of applications is completely missing in FDCML. The
following list provides an overview on the principle methodology of merging the two
different representations on the basis of the FDCML XML schema.

• The most important enhancement of FDCML is the use of the element ‘Device’ as
child element of ‘ApplicationProcess’. As the FDCML representation is focused on a
control device, the mapping as well as applications within the system will be repre-
sented by the appropriate application parts within the ‘Device’ elements. A control
device may have several devices (there are different runtime environments possible
within one control device), which may include several ‘Resource’ elements as well as

88 NEW CONCEPT FOR THE EVALUATION OF DOWNTIMELESS SYSTEM EVOLUTION

control applications and ECAs in terms of ‘FBNetwork’. The reason for the usage of
‘FBNetwork’ within ‘Resource’ and ‘Device’ comes from the definition of
IEC 61499-1 (2005, Section 1.4.2) that a device which does not contain a resource
should be functional equivalent to a resource.

• The type definitions included in ‘LibraryElement’ and ‘DataType’ describe the capa-
bilities of the runtime environment within the control device. A runtime environment
is a special kind of ‘resourceEntity’ following the definitions of FDCML. The ‘resour-
ceEntity’ element has to be enhanced by these two kinds of elements in order to de-
scribe the type library within a runtime environment.

Figure 20: Incorporation of IEC 61499 into FDCML in order to represent the KAPPA vector

• Another aspect representing a completely open point within the FDCML is the ele-
ment ‘DeviceFunction’. Herein the “intrinsic function of a device in terms of its tech-
nology” (ISO 15745-1, 2003) should be included. The sequence diagrams within the
declaration of SIFBs provide some aspects of ‘DeviceFunction’, as SIFBs are the in-
terface to the intrinsic functions of the device within the runtime environment. Ac-
cordingly the DTD elements representing the declaration of SIFBs may be used also
within ‘DeviceFunction’.

• The representation of communication networks and the connections of devices via
communication are described very roughly in IEC 61499. FDCML includes a more
detailed description of the interfaces within a control device (‘MAUList’) as well as
the communication aspects (‘communicationEntity’). This information can be used to
improve the brief description within IEC 61499. In terms of elements within FDCML
the cooperation of different control devices is given within the element ‘Profiles-
Body’. In detail, a list of control devices (‘ProfileBody’) and their connections (‘con-
nectionList’) are depicted based on the information about the internal structure of a
control device.

NEW CONCEPT FOR THE EVALUATION OF DOWNTIMELESS SYSTEM EVOLUTION 89

The FDCML device description needs additional enhancements in order to provide a compre-
hensive representation of the KAPPA vector. One important aspect concerns to the element
‘resourceEntity’ within the element ‘DeviceManager’. Up to now we have discussed the use
of the description of library elements within the runtime environment. But there are different
aspects that need to be incorporated within the ‘resourceEntity’ element, too:

 Computational unit and available memory storage
• Operating System: The description of the operating system may start with general

parameters such as information about the scheduling of tasks (e.g., number of priori-
ties) as well as further aspects such as the behavior of the operating system for admin-
istrative activities (e.g., amount of time and frequency for such activities). The tempo-
ral behavior is of special interest for the formal description and has to include time pa-
rameters for instance for a task switch.

• Runtime environment: Next to the library elements available within the runtime envi-
ronment further parameters such as the memory consumption or the set of accepted
management commands may be part of the description. With regard to the temporal
behavior, the different timing parameters are of special interest for a detailed analysis
of the execution behavior.

• Formal models: A very detailed description of a control device may also include the
formal models of its elements such as operating system, runtime environment, or FB
types. FDCML provides the possibility to include this kind of information by using
external XML schemas, too.

5.3.3 KAPPA vector during execution of a system evolution step
The current system state which is represented by the KAPPA vector is a constant representa-
tion of parameters during the normal operation of the ACS. But especially for DSE the
KAPPA vector is changing according to the applied changes to the ACS. This has to be
pointed out as a very important aspect during the evaluation of a system evolution step. Figure
21 depicts the situation during the execution of a system evolution step.

Figure 21: Execution of a system evolution step with regard to the KAPPA vector

We can distinguish the five different sequences that provide changes to the current system
state: download of the ECA (denoted by ‘Downl. ECA’), RINIT sequence, RECONF
sequence, RDINIT sequence, and deletion of the ECA (denoted by ‘Del. ECA’). In a very
brief overview two different KAPPA vectors exist: ‘KAPPA 1’ for the current system state
and ‘KAPPA 6’ for the new system state. These two KAPPA vectors represent the stable
system configuration before and after the DSE. But after each of the different execution
sequences within a system evolution step we can characterize the system state again by using
KAPPA vectors. Figure 21 exactly describes this situation mentioning also ‘KAPPA 2’ up to
‘KAPPA 5’ in between the stable system states. And if we again have a more detailed look at

90 NEW CONCEPT FOR THE EVALUATION OF DOWNTIMELESS SYSTEM EVOLUTION

the five execution sequences, we can split up the changes to the KAPPA vector into the
smallest part of basic reconfiguration services which are applied to the system state. There-
fore, the KAPPA vector provides only a snapshot of the system state. Especially for the
calculations based on the KAPPA vector mentioned for the evaluation of system integrity
properties it is important to provide the evaluations on the currently valid KAPPA vector.
This situation includes high requirements to the engineering tool which incorporates DSE and
especially its evaluation, since the overall process of the execution of a system evolution step
has to be verified before its actual execution.
The situation can be adapted accordingly also to the combination of system evolution steps
within a CECA. Special attention has to be paid to the situation of physical reconfiguration as
described in Section 4.4. Herein the interaction of the ACS customer is mentioned in terms of
changes to the hardware configuration also for DSE. This represents also a change to the
KAPPA vector and has to be coordinated with the actions within the (C)ECA and accordingly
also with its evaluation.

5.4 Summary
The concept for the evaluation of DSE has to take into consideration the different elements
and especially disturbances within the evaluation framework as well as the properties
mentioned as evolution specifications for the proof of a system evolution step.
The evaluation framework is characterized by two closed circuits. On the one hand the control
application and the process under control are modeled as a closed circuit via the control and
measurements signals. On the other hand, the ECA and the control application are modeled
also in a closed circuit via the basic reconfiguration services and the current system state.
Apart form the usual sources (disturbances to the process and hardware capabilities) also any
other applications that request computational power as well as hardware capabilities for the
execution of the ECA act as disturbances to the overall system.
The evolution specifications which have to be fulfilled by the ECA can be split up into
different properties according to the system integrity characteristics with special tailoring to
the field of ACSs and IEC 61499:

• Global and local consistency: Preserving the properties of the product, plant, or proc-
ess during execution of DSE.

• Active references: Incorporation of dependencies based on underlying services which
are utilized via SIFBs.

• State management: Inspecting the effects to the process under control and the effi-
ciency of modeled transition management methods.

• Dependent operation: Checking the correct temporal order of basic reconfiguration
services.

• Real-time constrained operation: Investigating the temporal behavior of operations is
as important as the functional behavior for the correctness of DSE.

• Requirements of resources: Evaluation of basic properties such as sufficient resources
in terms of memory and type libraries.

The analysis of the different properties of the evolution specification in terms of appropriate
evaluation means results in the use of model checking only in the reconfiguration sequence of
DSE. Many properties can be evaluated by calculations based on the current system state.
Therefore, applicability for the ACS customer is increased as the complex method of model
checking can be restricted to a small portion within the overall evaluation method.
The current system state, denoted as KAPPA vector, is of special interest for the evaluation
method because it includes all necessary information for the evaluation based on calculations
and model checking. In contrast to normal operation, where the KAPPA vector can be

NEW CONCEPT FOR THE EVALUATION OF DOWNTIMELESS SYSTEM EVOLUTION 91

assumed as static, the current system state is changed due to the execution of each single basic
reconfiguration service and therefore it is a highly versatile quantity (in detail a structured set
of parameters) during the evaluation of DSE.

 93

6 Evaluation of properties by KAPPA-based calculations

Chapter 6

Evaluation of properties by KAPPA-based calculations

This thesis proposes the use of verification by model checking in order to prove the correct-
ness of DSE. Already in the introduction model checking has been identified as the best
fitting means available for evaluation. The considerations about the different system integrity
characteristics in the previous chapter give a detailed description of the necessity of model
checking within the most critical phase of a system evolution step, the reconfiguration
sequence. But the discussion also provides the important result that many properties can be
simply evaluated by some calculations based on the current system state, the KAPPA vector.
Especially the preparation of DSE, the download of ECA and the initialization sequence, as
well as the post-processing, which includes the deinitialization sequence and the deletion of
the ECA, can be sufficiently evaluated by KAPPA-based calculations.
The different properties of the evolution specification have to be treated by different types of
calculations. The following three categories will be distinguished within this chapter:

• Influences to temporal control application properties: The global and local properties
of control applications are influenced only in their temporal properties due to the addi-
tional execution of the system evolution step. Therefore it is not necessary to verify
functional properties. But the disturbances to the execution of control applications
have to be taken into consideration in order to prove whether the control logic will be
executed in time or not.

• Check for dependent operation: The order of the basic reconfiguration services
within all phases of a system evolution step is part of these calculations. Two different
situations have to be distinguished. On the one hand the three phases of the execution
of an ECA need to be considered for any disorder in basic reconfiguration services.
On the other hand the download and the deletion of the ECA are executed by the engi-
neering tool, whereas certain rules need to be followed in order to do not be in conflict
with the dependent operation characteristic.

• Check for requirements of resources: Two kinds of resources are of special interest
within the process of DSE: the library elements of the runtime environment and the
available memory.

6.1 Influences to temporal control application properties
The preparation of a system evolution step includes two phases: the download of the ECA and
the initialization sequence. Both phases are characterized as not time critical because the
control applications are not changed in their functional behavior. Nevertheless, the temporal
behavior may be changed and therefore in this context the global and local properties of the
control applications may be violated. The evaluation of the influence to these properties will
be based on the KAPPA vector, which includes the characteristics for the execution of the
control applications as well as the basic theory of scheduling within the runtime environment.

94 EVALUATION OF PROPERTIES BY KAPPA-BASED CALCULATIONS

There are two different aspects that need to be checked:
• Control applications which are not part of the EROI: A control application which is

not involved in the DSE is considered as disturbance to the execution of the system
evolution step. But on the other hand, these applications may be influenced by the
DSE, too. The reason is the same in both cases: each execution within the control de-
vice needs computational power, and if certain limits are exceeded the temporal be-
havior of applications will be violated.

• Control applications under control of the ECA: A control application which is influ-
enced by the ECA will not be changed in its functional behavior, too. But during the
download of the ECA also event and data connections between the control application
and the ECA are created. These connections are necessary for the synchronization dur-
ing the execution of the system evolution step. In addition to the above mentioned in-
terrelation based on the computational power of the control device the control applica-
tion will include further executed FBs based on the new connections. The effect to the
temporal behavior of the control application has to be checked. The situation is even
more complicated during the initialization sequence. Herein new FBs and connections
are added to the control application itself (e.g., the new controller in the example
given in Section 4.2.3). From the viewpoint of temporal behavior the influence to the
control application is the same: additional FBs need to be executed in the context of
the control application.

For a general consideration of an appropriate calculation for the estimation of the influence to
the temporal behavior of a control application it may not be possible to evaluate this property
in a satisfactory manner. The reason for this is the dependency of the control application
behavior on the process under control, which may provide triggers for the execution at any
time (if we include erroneous behavior, too). For the general case the use of verification by
model checking (see Chapter 7) will be necessary in order to prove the global and local
consistency of the control application during the download of the ECA and the initialization
sequence. But under certain prerequisites, which depend also on the characteristics of the
runtime environment, it is possible to use theoretical results of scheduling theories and
approximations for an evaluation of the temporal behavior of the control applications.
We will investigate two different situations. First of all we will provide a short description of
the evaluation for a cyclic execution of control applications. Secondly we will follow the
investigation depicted in Zoitl (2007), which is the basis for the R3E.

Consideration of cyclic execution
Cyclic execution of control applications is widely used in ACSs and also manifested in the
principle architecture of IEC 61131-3 (2003). If we neglect the possibility to trigger an
execution by an external event, the situation gets very simple concerning the evaluation of
temporal behavior. The influences from outside are incorporated only within the cyclic
execution. Based on an analysis of the current system state, it is easy to evaluate whether
there will be an influence to the control applications or not.
In order to provide a more detailed example we can examine industrially used operating
systems and their development tools, as for instance (Wind River, 2007). Herein the work-
bench for the real-time operating system VxWorks [62] is depicted, which includes so-called
run-time analysis tools. These tools provide a visualization of the tasks of the operating
system during operation of the system, which includes for instance the dynamic interaction of
the target hardware, the operating system, and the different programs. Another aspect is
especially important for an estimation of the influence to the temporal behavior of control
applications: the so-called performance profiler. The system displays the execution time of
each control application (minimal and maximal execution time). Based on such a detailed

EVALUATION OF PROPERTIES BY KAPPA-BASED CALCULATIONS 95

information about the current system state and the settings of priorities and cycle times for the
control algorithms it is possible to estimate whether the preparation of a system evolution step
influences the control applications or not.
The paradigm of cyclic execution can be utilized also for a performance analysis in ACSs
which is based on IEC 61499. The IEC 61499 standard is purely event driven, but by the
restriction of external events to cyclic occurrence the execution within the event-driven FB
network will have cyclic behavior, too. This prerequisite has been used in Khal-
gui et al. (2004) for the development of a scheduling design that does not violate temporal
properties of control applications. In more detail each input event of an FB is considered to
occur periodic. The behavior of the resource and the FBs is given as state machine imple-
mented in timed automata (see Section 3.6.3). Based on a characterization of the input event
occurrences (period and jitter) and the execution time for algorithms the behavior of output
events and the composition of FBs can be evaluated. Khalgui et al. (2004) use this informa-
tion in order to construct a non-preemptive offline scheduling which avoids simultaneous
event occurrences for a given FB. The evaluation of a given system state as well as the
execution of the first two phases of a system evolution step can be done by using the sched-
ulability conditions defined by Khalgui et al. (2004). The first schedulability condition
examines if occurrences exist, and the second condition proves the assumption of periodic
output events.

Consideration for pure event-based execution
The assumption of periodic input events of FBs based on the IEC 61499 standard is a very
limiting prerequisite for the execution behavior. And it neglects one of the most important
aspects of IEC 61499, the event-based execution. Within this thesis we especially focus on a
concrete implementation of an IEC 61499 runtime environment, the R3E. This runtime
environment is based on the fundamental theory given in Zoitl (2007), which provides a
concept for the real-time constrained execution of pure event-based control applications.
Appendix B provides a more detailed description of the basic idea for the real-time execution
of FB networks, which uses the event sources as the initial points of execution paths within
the control application. But in contrast to Khalgui et al. (2004) there is no prerequisite of
periodic occurrence for event sources.
We will give a short description of the scheduling theory developed in Zoitl (2007) in order to
identify the important parameters which are necessary for the evaluation of real-time execu-
tion within the R3E. Then we will depict the extraction of the necessary parameters based on
the KAPPA vector. Finally, we will examine the situation of influences to the temporal
control application behavior during the preparation of a system evolution step.

6.1.1 Scheduling theory of R3E
Zoitl (2007) takes into consideration the combination of real-time execution and dynamic
reconfiguration within an IEC 61499 runtime environment. This section gives a rough
overview on the scheduling theory that is given in Zoitl (2007, Chapter 4), which defines the
following requirements for the real-time execution model of IEC 61499:

• The number of tasks within the control device may change during operation.
• The execution time of tasks, which includes the execution of event chains, may

change based on adaptations incorporated as basic reconfiguration services to the con-
trol application.

• Control applications and ECAs may be connected via data and event connections.

96 EVALUATION OF PROPERTIES BY KAPPA-BASED CALCULATIONS

Occurrence of external events
The initial elements of execution are the event sources, which are triggered by external
events. These provide the incentives for any execution within the control application.
Accordingly real-time constraints are related to event sources. In order to provide parameters
for the occurrence of external events, Zoitl (2007, Section 2.3.3) takes into consideration
different process models which are known in literature:

• Periodic occurrence model: A very strict periodic model can be simply characterized
by the cycle time TP and does not take into consideration deviations in the occurrence
of the external event.

• Periodic occurrence with jitter: Additionally the occurrence of a periodic event may
vary by a small amount of time. The occurrence of the external event is mainly de-
fined by the cycle time TP, but a variation in the magnitude of two times J is incorpo-
rated, too.

• Irregular arrival patter: Herein a varying sequence of time intervals which is known
in advance is characterized. TS is the bounded sequence of time intervals. Furthermore
this sequence will reoccur based on an overall period TP.

• Bursty arrival pattern: This pattern characterizes a group of n events (burst) which
may occur with a minimal inter-arrival time Tmin of two consecutive events. A time in-
terval TP exists that describes the cycle time or a minimal inter-arrival time of the dif-
ferent bursts.

• Bounded model: The bounded model limits the occurrence of consecutive events by a
lower bound, the minimal inter-arrival time Tmin, and an upper bound, the maximal in-
ter-arrival time Tmax. The upper bound may be neglected.

• Bounded average rate model: This occurrence model is based on a statistical descrip-
tion of event occurrences by using an average minimal inter-arrival time Tmin and a
distribution function such as a Gaussian distribution with the standard deviation σ.

• Unbounded arrival pattern: The sequence of events is not known and cannot be used
as external event for the real-time constrained execution.

These parameters can be used in two different manners. First of all they provide the basis for
the calculation of scheduling criteria which provide a check whether real-time constraints can
be met or not. On the other hand this information can be used also within the runtime
environment in order to limit the invocation of executions based on external events. As the
ACS customer knows in detail the assumed behavior of the process under control he can
specify also the appropriate parameters for the occurrence of external events during applica-
tion engineering. Based on Zoitl (2007, Section 4.5) this can be incorporated in the runtime
environment as filters of unexpected external events, e.g., in case of erroneous behavior of the
plant.

Execution time of event chains
Each execution of FBs within an event source and an event sink is called event chain. These
event chains may be constrained by real-time parameters. If a real-time constraint is issued to
an event chain, a separate task is established within the runtime environment. A resulting set
of tasks can be derived from the current configuration of the control device. Unconstrained
event chains are executed within so-called background tasks, which do not need to be
considered for the evaluation of real-time constrained execution. The execution time of event
chains is characterized by two parameters:

• Worst Case Execution Time (WCET): The longest time which is necessary for the
execution of the event chain.

EVALUATION OF PROPERTIES BY KAPPA-BASED CALCULATIONS 97

• Best Case Execution Time (BCET): The shortest time which is possible for the exe-
cution of the event chain.

In case of event chain execution the differences in the execution time come from the internals
of the event chain, the FB network. An FB may issue an output event only if the control
application is in a certain state, and consequently different execution times occur for different
triggers of the event chain. Another possibility for changing execution times is the application
of DSE to the control application, e.g., during the execution of the initialization sequence. We
will consider the extraction of WCETs and BCETs for given control applications in the next
section.

The set of active tasks
Zoitl (2007, Section 4.6.2) introduces the Worst Case Active Task Set (WCATS) as basis for
schedulability rules in the following way. The WCATS describes “the set of active tasks
which requests the highest demand of processor execution capacity of all possible active task
sets”. In case of pure cyclic execution this set can be identified rather easily based on the
cycle times and their starting times, and appropriate evaluations about the real-time execution
can be applied rather easily. For the derivation of the WCATS in case of mixed periodic and
acyclic tasks Zoitl (2007) defines the following rules:

• Only tasks with real-time constraints need to be considered.
• Arrival times of all tasks are not synchronized or harmonic to each other.
• The bounded model, which provides an upper boundary on the occurrence frequency

of a task, is assumed as general model for real-time constrained tasks.
• Periodic tasks are a special case within the bounded model where the minimal and

maximal inter-arrival times are equal to the cycle time: Tmin = Tmax = TP.
• For each task the relation iii TDWCET min,≤≤ has to be fulfilled, where Di is the dead-

line of the i-th task.
Following these rules the WCATS consists of all tasks that may be triggered within the
control device and it is assumed that all tasks are activated at the same time. But as depicted
in Appendix B event chains may be coupled to each other by special SIFBs. Based on the
parameters of the different coupled event chains a more concrete WCATS can be derived. If
for instance the sum of all deadlines Di of the coupled event chains is smaller or equal to the
minimal inter-arrival time of the initial external event, only one task of this event chain can be
active at the same time. Accordingly the WCATS is not a single set of tasks but different
WCATSs exist. In the example given above a separate WCATS has to be considered for each
task within the coupled event chain.

Bounds for real-time constrained execution
In order to provide schedulability rules for a given WCATS Zoitl (2007) determines two
different situations: static priority scheduling and dynamic priority scheduling. In both cases a
general task set based on the bounded model is taken into consideration. If the different
WCATSs of a given configuration of a control device fulfill the schedulability rules all real-
time constraints within the control application will be met.
Static priority scheduling (Zoitl, 2007, Section 4.6.3): The basic prerequisite for the static
priority scheduling is the use of a deadline monotonic priority assignment as it has been
checked that this is optimal for static priority scheduling of aperiodic task sets. Deadline
monotonic means that the task with the shortest deadline gets the highest priority. The basis
for the schedulability boundary is the so-called synthetic utilization Usyn(t). For each WCATS
the synthetic utilization can be derived over the set of active tasks S(t) according to

98 EVALUATION OF PROPERTIES BY KAPPA-BASED CALCULATIONS

∑
∈

=
)(

)(
tSi i

i
syn D

WCETtU . (4)

The synthetic utilization may change over time according to the current configuration of the
control device. The schedulability boundary UB(t) for a given task set consisting of n tasks is

3:

3:

1
11

2
11

1
2
1

2
1

)()(:
≥

<

−
−+

+

=≤∀
n

n

n

n
tUtUt Bsyn . (5)

If Equation 5 holds for all WCATSs, the control application will meet all real-time con-
straints. For large numbers of n the bound for the synthetic utilization UB(t) will reach the
value 58,3%.
Dynamic priority scheduling (Zoitl, 2007, Section 4.6.4): If we assume that the priority of a
task may be changed during operation, dynamic priority scheduling will be considered.
Herein the most important scheduling policy is earliest deadline first, which assigns the task
with the shortest absolute deadline the highest priority. The scheduling boundary for dynamic
priority scheduling is according to Zoitl (2007) given by

1)(: ≤∀ tUt syn . (6)

All tasks within the configuration of a control device will meet their real-time constraints, if
Equation 6 holds for the WCATSs at t = 0.

6.1.2 Calculation of event chain execution time
For the evaluation of real-time execution for the control applications based on the schedula-
bility rules given above it is necessary to define the WCET of the event chains within the
control application. Based on Equation 4 the synthetic utilization of the WCATS can be
calculated by using the WCET WCETi and the deadline Di of the different event chains. We
will describe a methodology for the calculation of the execution time of any event chain based
on models of the IEC 61499 standard as well as the runtime environment R3E. Both aspects
are necessary because this evaluation has to fulfill the Requirements (2) “Execution seman-
tics” and (3) “Underlying system configuration”, which describe the dependency of the
behavior of control applications on implementation details of the control device.
Different approaches exist for the calculation of WCET especially in the field of real-time
computer systems, because it is an important measure for guaranteeing whether a system
fulfills its real-time constraints or not. Kopetz (1997, Section 4.5) describes the analytic
calculation of the WCET for different types of tasks within an operating system and states
that “at present, the systematic analysis of all the effects that determine the WCET of C-
tasks13 is still in its infancy”. The current state of practice is described as the combination of
diverse techniques, which are based on measurements of the real implementation (all involved
parts such as tasks, operating system, or internal services), restriction of architectural ele-
ments within the control device, generation of an effective set of test cases, and extensive
testing of the complete implementation.
The evaluation of the execution time of an event chain can be based on the characteristics of
the models of IEC 61499-1 (2005). Herein the execution of an FB network is defined by the

13 A C-task is defined in Kopetz (1997, Section 4.5.3) as a preemptive complex task which has access to
protected shared objects.

EVALUATION OF PROPERTIES BY KAPPA-BASED CALCULATIONS 99

event connections in between the FB instances. The FB type gives a more detailed insight into
the behavior of the event chain, as for instance the ECC can be used to analyze which events
are emitted by a BFB in certain situations. Additionally the execution semantics of the
runtime environment have to be incorporated because this is of special interest for the
execution order of FBs within the event chain and therefore it may have an impact on the
execution behavior, too. The exercise of WCET analysis is to determine which path of an
event chain, i.e., which sequence of FBs, will take the longest time for execution14. Analogous
the BCET of an event chain can be defined as the path of an event chain which will take the
shortest time for execution. As a result the minimal and maximal execution times of an event
chain represents the two bounds of the execution time of an event chain.
The following analysis is based on the work presented in (Sünder et al., 2007a), which takes
into consideration a previous version of a runtime environment developed at the ACIN.
Continuative considerations with different versions of the R3E have been provided by
Brunnenkreef (2006) within the εCEDAC project (supervised by Thomas Strasser) and Mandl
and Zhang (2008) under the supervision of the author, which provide also measurement
values for the different parameters of a given control device configuration.

Calculation of execution time at application level
The WCET analysis of an event chain can be spilt up into two parts: Firstly the FB network is
analyzed only taking into consideration the information available at the application level.
Second the internals of FBs are analyzed. The first step is depicted in Figure 22 by using
simple FBs with only one event output. The execution semantics within an event chain of the
R3E implementation can be simply defined as follows:

• If an output event is sent by an FB instance, each connected FB input is put into the
first-in first-out queue within the event dispatcher.

• If there are several input events connected to an output event, each input event is put
into the event dispatcher (the order is given by the creation of the event connections
during the download of the control application).

• As soon as the execution of an FB instance has finished, the eldest input event is taken
from the queue and issued to the corresponding FB instance.

• There is only one FB executed at the same time (no preemption of FBs). In case of
CFBs the component FBs are considered as non-preemptive (except a component FB
is again of CFB type).

• If an external event occurs, the external event handler puts an identification, which
corresponds to the registered SIFB, into the event dispatcher. The invocation of the
SIFB is treated in the same manner as the invocation of any other FB by the issue of
an input event.

As a consequence of these execution semantics, the execution within an event chain can be
characterized as sequential. The depicted execution flow given in Figure 22 starts with the
introduction of the ‘SIFB-ID’ into the event dispatcher as a result of the occurrence of an
external event. As soon as the ‘SIFB-ID’ is the eldest entry in the event dispatcher, ‘SIFB’
will be invoked for execution (bold arrow). The ‘SIFB’ instance emits an output event, which
is connected to event input ‘EI1’ of ‘FB1’. Accordingly this input event is put into the event
dispatcher queue (dotted arrow). At this point in time there is no further entry visible within
the event dispatcher, as the SIFB is just executed and no other event has been emitted (the
figure includes a virtual situation within the queue). As soon as ‘SIFB’ has finished its

14 See analogous definition in Kopetz (1997, Section 4.5.1): “The WCET analysis of a program which is written
in a high-level language must determine which program path, i.e., which sequence of instructions, will be
executed in the worst-case scenario. The longest path is called the critical path.”

100 EVALUATION OF PROPERTIES BY KAPPA-BASED CALCULATIONS

execution ‘FB1.EI1’ is taken from the event dispatcher and ‘FB1’ is invoked with ‘EI1’ as
input event. This procedure is continued for the FB network in a similar manner. The
execution stops as soon as there are no more input events within the event dispatcher.

Figure 22: Execution behavior of control applications within R3E

According to this procedure a calculation of the execution time of the event chain can be
based on a small set of parameters. Firstly the time needed to execute the external event
handler TEEH has to be considered. Herein an entry to the event dispatcher has to be added.
The time needed for this insertion of an entry Tentry is considered separately, because it occurs
in a similar way for each issued input event. Each FB within the event chain has a certain
execution time TFB,i. The invocation of an FB is characterized by the time Tinvoke. As a
consequence the execution time of the event chain TEC with n FB instances (this number
counts each FB instance as often as it is invoked as well as the SIFB which starts the execu-
tion) is

()∑
=

⋅++⋅+=
n

i
entryiFBinvokeEEHEC TndataTTnTT

0
, . (7)

The WCET of an event chain WCETEC is the maximal time necessary for the execution of the
event chain. TEC varies especially because of the internal behavior of the FB instances, which
will be considered in a second step. There may be differences according to the issued input
event, the current state of the FB instance, or the issued data, which is denoted as TFB,i(data)
in Equation 7. The event outputs which are emitted by the FB instance are also depending on
these parameters. So the FB instances influence the event chain execution time twofold: TFB,i
may vary and the event flow depends on the FB instances.

Calculation of execution time of FB instances
The execution time of an FB instance depends on the FB type. For each type a unified
calculation method can be provided which may be applied to a concrete FB type. We will
start our consideration with the BFB type, which is characterized by the ECC structure and
the algorithms. The CFB will be calculated based on the previous considerations. A SIFB
needs to be considered based on the specified input behavior.
Basic FB: The procedure of executing a BFB is depicted schematically in Figure 23. If an
event input is issued to the FB instance, first the associated data inputs have to be sampled.
Then the ECC is evaluated and if a transition clears the active state of the FB changes and the
associated actions will be executed. The execution of an action is split up into two parts: the
algorithm (the execution time of an algorithm may depend on the current input and internal
data) and the emitting of an output event. The emitting of an output event is again split up into

EVALUATION OF PROPERTIES BY KAPPA-BASED CALCULATIONS 101

two parts, the sampling of the associated output data and the event sending itself. As the FB
instance does not have any information about the number of connected input events, the time
necessary for event sending cannot be included in the calculation of the FB instance execution
time. This part is already incorporated in Equation 7. The different actions within the active
ECC state are executed one by one. If all actions have been executed, the ECC is evaluated
again. At this time the issued input event has been cleared and only those transitions can be
evaluated positively which consist of a Boolean condition only. If again a transition clears, the
ECC will change its active state. The new active state is executed as already described above.
If there is no more operation possible within the ECC, the execution of the FB is finished with
the sampling of those data outputs which are not associated with any output event.15

Figure 23: Execution behavior of BFBs within R3E

The different parts of the execution time of a BFB type can be summarized as follows:
• Data sampling: There are three different situations where data has to be sampled:

when the input event is issued, when an output event is sent and when the execution of
the FB is finished. In all three cases the time necessary for this step may be calculated
in a similar manner. An offset time TDS,offset exists which describes some effort inde-
pendent of the data which is sampled. And for each data value (the number of data
values is denoted generally by dvalues) which has to be sampled an appropriate time
Tsample (dependent on the type of data DT) must be included. The time for data sam-
pling TDS can be described generally as

∑
=

+=
dvalues

i
sampleoffsetDSDS DTTTT

0
,)(. (8)

• ECC evaluation: The time necessary to evaluate the ECC TECC,eval depends on the
currently active ECC state and the sequence of transitions that need to be evaluated. It
may take some time TAS in order to find the currently active state and for the active
state all outgoing transitions need to be evaluated as soon as a transition clears. Based
on the definitions of a transition condition in IEC 61499-1 (2005) such a condition
may be a single input event, a Boolean expression, or an AND relation of both. Ac-
cordingly the time necessary for a transition varies on the type of condition transition.
As soon as a transition clears, no more transitions need to be evaluated. Equation 9 de-

15 IEC 61499-1 (2005, Section 5.2.1.2) especially refers to this situation in note 7. As there is no information
available when these output events are changed, the implementation of R3E updates these output values each
time the FB is executed.

102 EVALUATION OF PROPERTIES BY KAPPA-BASED CALCULATIONS

scribes a general calculation of TECC,eval which uses the variable TCond,i in order to
symbolize the different execution times for the different transition types. The addition
ends if either one transition clears or no more outgoing transitions can be evaluated in
the active ECC state (denoted by cleared).

∑
=

+=
cleared

i
iCondASevalECC TTT

1
,, (9)

• Action execution: An action consists of an algorithm, or an output event, or both. For
each of these items an appropriate execution time has to be taken into consideration.
The time for executing an algorithm TAlg,i has to be evaluated for each algorithm se-
perately. As an algorithm may be any kind of source code, a WCET analysis for this
part of the code should be provided. The analysis will be rather simple, because the
containment for the algorithm is fixed by the FB instance and for example preemption
is not allowed. As the sampling of output data is already given as TDS,i and the sending
of an output event will be incorporated at the application level, the time necessary to
execute an action Taction,i is given by

iDSiAiaction TTT ,lg,, += . (10)

The overall execution time for a BFB instance TBFB consists of the above mentioned elements
according to the execution path depicted in Figure 23. The number of cleared transitions
within the ECC will be denoted as x, and the number of actions within a state will be denoted
as y. In addition to the above given parameters there may be a time for changing the active
ECC state necessary, which is denoted as TCS. The BFB execution time TBFB depends on the
issued input event, the internal data and the input data, depicted as TBFB(data).

() noWITHDSevalECC

x

i

y

j
jactionCSevalECCinputDSBFB TTTTTTdataT ,,

1 1
,,, ++

+++= ∑ ∑

= =

 (11)

Composite FB: The execution of a CFB is similar to the execution of an FB network. The
only difference is that an additional data sampling exists at the interface of the CFB. Based on
Equation 7 and 8, the execution time for a CFB TCFB(data), which depends on the issued input
event and the input data, is

() outputDS

m

i
entryiFBinvokeinputDSCFB TuTumTTmTdataT ,

0
,,)(⋅+

⋅−++⋅+= ∑

=

.
(12)

The number of component FBs which are invoked during the execution of the CFB is denoted
by m. The number of output events, which are emitted by the CFB is given by the variable u.
Again it is not necessary to take into consideration the insertion of those output events which
are emitted by the CFB. Therefore the term (m-u) is used for the execution of the component
FB network (depicted by the outer brackets within Equation 12). The use of a sampling time
for those data outputs which are not associated with an output event is not necessary, as
IEC 61499-1 (2005, Section 5.3.1) states that those data outputs are represented by the
component FB data outputs.
Service Interface FB: The execution of a SIFB is not defined by elements of the IEC 61499
standard. But sequence diagrams exist in order to describe the behavior of these FB type. An
analysis of the execution time of an SIFB has to provide appropriate measurements for each
of these different actions within the sequence diagram. A WCET analysis may become
complicated as the internals of a SIFB are typically deeply involved in the internals of the
runtime environment, the operating system, or the low level programming of the control
device peripherals. A prerequisite for the incorporation of SIFBs into the execution time

EVALUATION OF PROPERTIES BY KAPPA-BASED CALCULATIONS 103

calculation of event chains is that all possible scenarios of SIFB invocation (this includes also
a detailed description of the output events and the possible output data) are characterized by
their functionality and timing behavior.

6.1.3 Evaluation of ECA influences on control applications
The evaluation of control applications regarding their real-time constraints consists of two
tasks: the WCET analysis of the different event chains incorporated in the WCATS (herein
only real-time constrained event chains are included) and the calculation of the synthetic
utilization of the WCATS according to Equation 4. If the schedulability rules given in
Equations 5 and 6 (depending on the scheduling policy applied in the runtime environment)
are fulfilled, the control application will be executed without a violation of real-time con-
straints.
The influences of the first two phases within a system evolution step to the real-time behavior
of the control application will be considered separately.

Download ECA
There are two things that need to be considered during the download of the ECA. On the one
hand the download process itself may influence the execution behavior of the control
applications. And on the other hand also connections between the control application and the
ECA may be created, which lead to additional execution effort within the control application
in the case of event connections.

• Download process: A main prerequisite for the use of DSE is a runtime environment
which provides the ability to change the control logic during operation. The simplest
case is the addition of further control applications which are not related to the existing
ones. In this case no special engineering methodology is necessary, but the runtime
environment needs to support the download of further applications without distur-
bances of currently executed applications. The R3E provides this feature which has
been proved by experimental measurements in Zoitl (2007). A short summary of these
results is given in Appendix B.3. The download of an ECA will be applied without
disturbances to the real-time constrained event chains within the control application.

• Interrelation of control applications and the ECA: If event connections exist be-
tween any part of real-time constrained event chains within the control application and
the ECA, the WCET analysis of these event chains within the WCATS has to be re-
peated based on the changed situation. The enhancements to the execution paths
within the event chains will be very simple, because the purpose of these connections
is the synchronization of the ECA with the control application. In the initial state of
the ECA there should be no actions within the ECA that are executed based on an
event from the control application. The influence on the execution time of the control
application will be limited to the invocation of in most cases one FB instance within
the ECA which does not issue an output event. This can be stated as a design rule for
the ECA. In addition there should be some spare execution time available because the
addition of connections during the execution of a real-time constrained event chain
provides some (according to Appendix B.3) limited additional effort.16

16 Zoitl (2007, Section 5.3) has quantified the impact of a single management command (e.g., creation of an
event connection to a started FB) on the real-time execution by an increase of execution time by one to ten
percent. This is of course dependent on the size of the real-time constrained event chain, whereas Zoitl (2007)
has taken into consideration a rather small test application. For a given system configuration appropriate test
cases have to be provided in order to determine the necessary spare execution time. For instance Rasche and
Polze (2005) describe a method for the calculation of processor resources that have to be reserved in order to

104 EVALUATION OF PROPERTIES BY KAPPA-BASED CALCULATIONS

Initialization sequence
The initialization sequence within the ECA adds new elements to the control application
without influencing the functional behavior. As depicted for instance in the example of a
closed-loop control circuit (Section 4.2.3) the new controller as well as the input connections
are added to the existing control application. Therefore, these parts are executed additionally
within the context of the control application. In order to prove the influence on the real-time
behavior of the control application, the worst case scenario has to be considered. As the main
purpose of the initialization sequence is the addition of new FBs, connections, and parameters
to the existing control application, the worst case is the final situation after the execution of
the initialization sequence. Each new FB which is connected to a real-time constrained event
chain has to be included in the WCET analysis of the event chain. The new WCATS has to
fulfill the schedulability rules given in Equations 5 and 6. As already depicted above also in
the initialization sequence a real-time constrained event chain is adapted during operation,
which results in additional execution time within the event chain because of the influence of
the basic reconfiguration service. A certain amount of spare execution time (see footnote 16)
has to be available in order to operate the initialization sequence, too.
There is also another aspect which may violate real-time constraints of the control application
and can be avoided by a further design rule for ECAs. During the execution of the system
evolution step, events from the control application may be used to trigger the ECA execution.
If these events stem from a real-time constrained event chain, a decoupling of these event
paths is necessary in order to protect the control application’s real-time constraints. The
means for this decoupling have been described in Appendix B. Next to the initialization
sequence this design rule should be applied for the reconfiguration sequence and the deini-
tialization sequence as well. If an additional execution of parts of the ECA exists based on
such synchronization events a detailed WCET analysis of the control application has to be
applied additionally.

Reconfiguration sequence
The reconfiguration sequence is the only time critical execution phase within the ECA. The
proof of matching global and local consistency properties of the control application will be
done by using verification by model checking. But based on the previous discussion the check
for real-time behavior may be supported also by a WCET anaylsis. The WCATS will include
the real-time constrained event chains within the ECA additionally. But it has to be stated that
as depicted in Zoitl (2007, Section 5.3.3) the influence of basic reconfiguration services
within a real-time constrained event chain, that influence another real-time constrained event
chain, violates the consideration of independent tasks. The WCET analysis may be used to
provide a rough estimation of the spare execution time within the control device, but it can
not be used as sufficient check (see also the discussion of measurement results of R3E in
Appendix B.3).

6.2 Check for dependent operation
The dependent operation integrity characteristic has to be checked by some KAPPA-based
calculations within all phases of the execution of a system evolution step. The download and
the deletion of the ECA will be controlled by the engineering tool, which has to apply
appropriate rules for the sequence of management commands in order to fulfill the dependent
operation criterion. The other three phases are modeled by the ACS costumer in a free
manner; therefore a check of consistency with respect to the sequential order of basic
reconfiguration services is necessary.

apply dynamic reconfiguration without the violation of deadlines of real-time applications (it has to be stated that
their model is based on cyclic execution of real-time applications).

EVALUATION OF PROPERTIES BY KAPPA-BASED CALCULATIONS 105

As common element for both categories of dependent operation checks the dependencies of
IEC 61499 management commands are taken into consideration. Based on these dependen-
cies, the mechanisms for checking the initialization, reconfiguration, and deinitialization
sequence as well as rules for the engineering tool for the download and deletion of applica-
tions are investigated. These rules may be applied also for algorithms which provide a
skeleton of the FB network within the initialization, reconfiguration, and deinitialization
sequence.

6.2.1 Dependencies of IEC 61499 management commands
IEC 61499 management commands are defined on the one hand in IEC 61499-1 (2005,
Chapter 6.3) and on the other hand within the compliance profile of a runtime environment (if
extensions or changes exist). The third possibility is that no standard compliant documenta-
tion exists, as it is the case for the enhancements of management commands within R3E. Zoitl
(2007) includes a detailed description of the supported commands which will provide the
basis for this analysis. As the different basic reconfiguration services incorporate a manage-
ment command we do have to take into consideration these different management commands
and their dependencies for the check of dependent operation within the ECA.

CREATE
The CREATE management command is responsible for the creation of different kinds of
elements.

• Create a resource or FB instance: A resource instance may be created within a de-
vice, if this device is available (which needs to be ensured by the ACS customer). An
FB instance may be created within a valid resource instance or a device. In any case
the type of the created element (resource or FB) needs to be available within the type
library of the control device.

• Create a connection: A connection is defined by a source (event or data output of an
FB) and a destination (event or data input of an FB). Source and destination need to be
within the same resource (if no resource exists they need to be within the same device)
and of the same type (different types are possible for event and data connections). In
case of an adapter connection source and destination additionally need to have opposi-
tional interfaces (a connection is only possible between a plug and a socket).

• Create a library element: A library element can be added to the control device’s type
library if the appropriate device is available and the format of the library element is
provided in an appropriate manner.

DELETE
The DELETE management command provides the opposite functionality of the CREATE
command. Correspondingly the following elements may be deleted:

• Delete a resource or FB instance: In order to delete a resource or FB instance the
corresponding element has to be manageable. The possibility exists to use for example
FB instances within the type definition of a resource type. Such an FB instance may
not be deleted by a management command. Furthermore the operational state machine
for managed FBs has to be considered, which defines that a DELETE command is
only possible if the FB instance is in the states STOPPED and KILLED (see Figure
63). In case of a managed resource instance there should not be any active FB instance
within the resource; all FB instances should be stopped before deleting the resource
instance.

• Delete a connection: The only prerequisite for the deletion of a connection is that the
connection is available within the control device.

106 EVALUATION OF PROPERTIES BY KAPPA-BASED CALCULATIONS

• Delete a library element: A library element may be deleted within the control device’s
type library if it is available and no instances of this type are used within the control
device.

WRITE
The WRITE management command provides the possibility to put a parameter to a data input
or to an internal variable. In both cases the destination of the WRITE command has to be
valid and the value of the parameter/variable has to be provided in the data type format of the
destination. The opportunity of using the WRITE command also for internal variables is an
enhancement of the R3E.

READ
The READ management command provides the possibility to read any data input, data
output, or internal variable (enhancement of R3E). The prerequisites for the READ command
are on the one hand that the source of the variable is valid and on the other hand that the
expected data type format complies with the source format, e.g., a specific basic reconfigura-
tion service for reading a variable of the type integer may be used.

START
According to the operational state machine for managed FBs (see Figure 63) the START
command may be applied only if the FB instance is in the states IDLE or STOPPED. Within
the IEC 61499 standard the START command is also mentioned to be used for applications,
which is not supported by R3E. This functionality has to be implemented within the engineer-
ing tool, which would have to start every FB instance within the application. The only
restriction of such a sequence of START commands for FB instances is that the FB instance
of type E_RESTART should be started at last, because the START command issues the initial
event for the operation of the application. Otherwise the correct operation of the application
may be violated because an input event may be issued to FB instances which are still in the
IDLE state.

STOP
The STOP management command may be applied to a managed FB if it is in the state
RUNNING (see Figure 63). Also the STOP command can be used for applications according
to the IEC 61499 standard. This functionality is not directly available within R3E and may
again be implemented within the engineering tool. But as there may be instances of SIFBs
within an application the STOP command should be applied to FB instances of the type
E_RESTART at first, since a deinitialization of the application may be necessary. The main
problem for the stopping of an application is that the engineering tool has to take care that the
deinitialization is finished before all other FB instances are applied with the STOP command.

KILL
An FB instance may be applied with the KILL management command if it is in the state
RUNNING (see Figure 63).

RESET
According to the operational state machine for managed FBs (see Figure 63) the RESET
management command may be applied to FB instances if they are in the states STOPPED or
KILLED.

QUERY
The QUERY management command does not have any consequences for the execution
behavior of the control device and its applications. Therefore no prerequisites have to be
stated for the application of the QUERY command. If the control device is available any

EVALUATION OF PROPERTIES BY KAPPA-BASED CALCULATIONS 107

information provided by the runtime environment may be asked for via the management
application or by using an appropriate basic reconfiguration service.

Summary
The different dependencies for the IEC 61499 management commands are summarized
roughly in Table 3. Herein the functionality for manipulating the type library of a control
device as well as the starting and stopping of whole applications is neglected, as these
managemant commands are not relevant within the execution of a system evolution step.

Command Object Dependency
Resource The device has to be valid; resource type has to be available.

FB The device or resource has to be valid; FB type has to be available. CREATE
Connection Source and destination have to be valid; type of source and destination need

to fit to each other.

Resource The resource instance is deletable; any managed FB instance should be
stopped within the resource.

FB The FB instance is deletable; it should be in the states IDLE or STOPPED. DELETE

Connection The connection should be available.

Parameter The target (data input) should be valid; the format has to comply with the
data type of the data input.

WRITE
Internal
variable

The target (internal variable) should be valid; the format has to comply
with the data type of the internal variable.

input or output
variable

The target (data input or output) should be valid; the expected format has to
comply with the data type of the data input or output.

READ
Internal
variable

The target (internal variable) should be valid; the expected format has to
comply with the data type of the internal variable.

START FB The FB instance should be in the states IDLE or STOPPED.

STOP FB The FB instance should be in the state RUNNING.

KILL FB The FB instance should be in the state RUNNING.

RESET FB The FB instance should be in the states STOPPED or KILLED.

QUERY Anything The device has to be available.

Table 3: Dependencies of IEC 61499 management commands

6.2.2 Correct order of basic reconfiguration services
In order to check the dependent operation integrity characteristic within the initialization,
reconfiguration, and deinitialization sequence within the execution of a system evolution step
different aspects of the above described dependencies need to be taken into consideration.

• Static dependency check: Different dependencies mentioned above can be checked
without information about the use of the basic reconfiguration service within the ECA.
These are for instance the data type of a variable which should be read/written or the
availability of an FB type within the control device. These dependencies may be
checked during the modeling of the ECA automatically by the engineering tool.

• Dynamic dependency check: All other dependencies are related to the position of the
basic reconfiguration service within the execution of the ECA. Only if the basic recon-
figuration services are applied in the correct order, a successful execution of the sys-

108 EVALUATION OF PROPERTIES BY KAPPA-BASED CALCULATIONS

tem evolution step can take place. As a consequence the check for these dynamic de-
pendencies has to be based on a dynamically adapted KAPPA vector within the
evaluation framework. According to the execution sequence of basic reconfiguration
services within the ECA the appropriate changes have to be applied to a virtual
KAPPA vector in order to provide the basis for the check of the above given depend-
encies.

The final result of the execution of a system evolution step (the situation after finishing the
deinitialization sequence) can be checked additionally by a comparison with the envisaged
new system state. The check for the dependent operation integrity characteristic cannot
provide an answer to the question if the system evolution will be executed without distur-
bances to the control application. But it checks if the used basic reconfiguration services are
in principle able to reach the new system state. An analog comparison of the situation after
the execution of the initialization sequence may be very helpful, too, as the evaluation of the
reconfiguration sequence by model checking will be simplified (principle failures due to
missing elements are neglected). Herein the ACS customer has to define the envisaged initial
situation for the reconfiguration sequence during the engineering process.
Based on the dependencies of basic reconfiguration services and a description of the KAPPA
vector at the initial and the final state of a sequence within a system evolution step the
principal order of the basic reconfiguration services can be generated by an appropriate
algorithm within the engineering tool. This would support the ACS customer to a high extent
and simplify the usage of the engineering methodology for DSE. This algorithm will be
similar to the download and deletion of applications, as it is depicted in the next section.

6.2.3 Creation and deletion of applications/application parts
There are several parts within the engineering process for DSE which can utilize automatic
mechanisms for the creation or deletion of applications or application parts. On the one hand
these are the download and the deletion of the ECA (the rules given within the following
description can be applied for any application). Within the other three phases of a system
evolution step, the automatic generation of the ECA for the initialization, reconfiguration, and
deinitialization sequences (at least a basis for a detailed modeling by the ACS customer) may
benefit of such an automatism. We will consider the principle mechamism for the creation
and the deletion of applications or application parts. The initial and the final KAPPA vector
(in detail the differences within the application model) are used as input for this algorithm. If
elements are mentioned in the algorithm which are not necessary for the concrete difference
in the KAPPA vector, the appropriate line may be neglected.

Creation of applications/application parts
• Create resource instances
• Write parameters of the resource instances
• Create FB instances
• Write parameters of FB instances
• Create data connections
• Option for application parts (if they are involved in an existing application which is

already in operation):
o Start FB instances which need an initialization event (these are in most cases

of SIFB type)

EVALUATION OF PROPERTIES BY KAPPA-BASED CALCULATIONS 109

o Prepare necessary input parameters for the initialization as well as issue the in-
put event for the initialization.17

o Check if the initialization was successful.
o Rewrite those parameters which have been changed for initialization.

• Create event connections
• Start FB instances: In order to avoid problems based on the event flow in between the

FB instances the order of the issued start commands to FB instances should be in in-
verse sequence to the execution flow. For an independent application this rule leads to
the above proposed situation that the last FB instance which receives a START com-
mand is the E_RESTART FB.

Deletion of applications/application parts
For the deletion of an application the above mentioned order can be inverted (without the
mentioned option). Only two differences exist:

• The STOP commands issued to the FB instances are now ordered according to the
execution flow. The first FB is of the type E_RESTART, which will issue a STOP
event. The execution flow based on this STOP event should trigger the deinitialization
of the application.

• Parameters do not need to be deleted separately.
If application parts or applications without an explicitly modeled deinitialization have to be
deleted, a slightly different procedure has to be applied:

• Stop all FB instances which do not need a deinitialization (again the order of the exe-
cution flow may be followed).

• Delete event connections.
• Prepare necessary input parameters for the deinitialization as well as issue the input

event for the deinitialization (see footnote 17).
• Check if hte deinitialization was successful.
• Stop all FB instances which are in the state RUNNING.
• Delete data connections.
• Delete FB instances.
• Delete resource instances.

6.3 Check for requirements of resources
The last category of properties which may be evaluated by KAPPA-based calculations
concerns the requirements of resources. Such resources may be any functionalities within the
control device that are necessary as basis for the use of DSE. For instance, the set of basic
reconfiguration services, which may vary between different runtime environments, has to be
checked in advance before modeling an ECA. For our considerations we will focus on the
requirements of resources which may change dynamically during the execution of a system
evolution step. These are the type library and the available memory.

17 IEC 61499-1 (2005, Section 6.1) defines different standard inputs and outputs for SIFBs, which represent the
necessity of initialization and deinitialization. As inputs the event input INIT and the data input QI (true in case
of initialization, false in case of deinitialization) are forseen. The success of a (de)initialization is documented by
the event output INITO and the data outputs QO and STATUS.

110 EVALUATION OF PROPERTIES BY KAPPA-BASED CALCULATIONS

6.3.1 Type library check
The set of types within the type library of a control device will not be changed within the
ECA itself, therefore it can be considered as static for one system evolution step. But as an
ACS is typically engineered by different ACS customers it is necessary to check if the current
situation within the type library satisfies the needs of the system evolution steps. If any
violation is detected, the necessary element types may be added by the engineering tool
before the execution of the system evolution step is triggered.
The following element types are supported within an IEC 61499 control device:

• Data types (a data type may have any other data type as prerequisite)
• Adapter types (an adapter type may have any data type as prerequisite)
• FB types (an FB type may have any data or adapter type as prerequisite, in case of

CFBs also any FB type may be necessary)
• Resource types (a resource type may have any data, adapter, or FB type as prerequi-

site)
• Subapplication type (the R3E does not support this element type, as a subapplication is

handled only within the engineering tool)

6.3.2 Available memory check
The second type of requirements of resources is the available memory within the control
device. For a very abstract consideration of this topic the rule seems to be very simple, as the
amount of available memory has to be compared to the amount of necessary memory
requested within the different phases of a system evolution step. But when taking a closer
look to the practice of memory management within a computer system we will find highly
sophisticated concepts. Douglass (1999, Section 2.6.1) describes this situation regarding
predictability for operations that influence the memory of a real-time computer system. He
subdivides the problem into different aspects:

• “Execution memory, where the executable code resides”
• “Data memory: 1. stack, 2. heap, 3. static”

Orthogonal to this view on the usage of memory, also the persistence of memory has to be
considered, which may be distinguished in non-writeable persistent, writeable persistent, and
volatile. Additionally modern operating systems implement different memory management
policies such as paging or virtual memory as for instance described in Blunden (2003). A very
problematic situation occurs in addition due to the dynamic changes in memory consumption,
as it is the case especially for DSE. The memory segments will be fragmented as different
areas within the memory will be freed for instance due to the deletion of FB instances within
a system evolution step.
In order to provide a sufficient check whether the necessary memory is available within the
control device three aspects have to be taken into consideration:

• The memory consumption of the different basic reconfiguration services, which of
course depends on the concrete element that should be created or deleted.

• The memory management policy of the control device as well as the overall memory
configuration (which kind of memory segments are available).

• The current state of memory usage within the control device, which is again part of the
KAPPA vector.

The last aspect is the most critical one in order to apply the check for available memory, as
the current situation of the overall memory has to be visible within the engineering tool. It is
not sufficient to know the overall amount of available memory, since due to fragmentation
there may be not enough atomic free space (a piece of free memory without fragmentation)

EVALUATION OF PROPERTIES BY KAPPA-BASED CALCULATIONS 111

for the creation of an FB instance although the overall free memory is much bigger. Currently
only development tools for certain RTOSs deliver such a detailed insight into the memory
usage of the system, as for instance described in (Wind River, 2007). Within the so-called
run-time analysis tools also a tool exists which provides information about the memory usage
in all details and therefore it may be used in the engineering tool for DSE in order to check
the available memory for a system evolution step.

6.4 Summary
The different properties of the evolution specification are verified by two different means. On
the one hand verification by model checking has to be provided for the reconfiguration
sequence. But on the other hand the evaluation of properties based on KAPPA-based calcula-
tions is sufficient for all other phases within a system evolution step. It can be used to fulfill
the requirements of verifying the download of the ECA, the initialization sequence, the
deinitialization sequence, and the deletion of the ECA.
The three different types of calculations have been described as follows (see also Table 2):

• The global and local consistency of the control application can be reduced to the
evaluation of the temporal behavior within the download of the ECA and the initiali-
zation sequence. Herein the mechanisms of the runtime environment as well as the op-
erating system have to be considered. Based on schedulability rules and an appropriate
method for the calculation of the necessary execution time of the contol application it
can be checked whether the real-time constraints will be met or not.

• The consistency of the ECA regarding the dependent operation property leads to the
consideration of the temporal order of execution of basic reconfiguration services or
more general the IEC 61499 management commands. As these commands change the
current system state (KAPPA vector) it is necessary to determine their dependabilities,
as for instance a connection to a new FB instance may be created only if the FB in-
stance has been created in advance. As a consequence of these dependabilities espe-
cially the download and deletion process can be described by an appropriate order of
management commands. But also for the freely programmable ECA the order of basic
reconfiguration services can be established automatically based on the information of
the initial and final states of a given sequence in the system evolution step. The
evaluation checks if the dependencies of a management command are fulfilled based
on the current KAPPA vector, which is changed as soon as a management command is
applied to the control device.

• The evalution of requirements of resources is the last aspect which has to be consid-
ered by KAPPA-based calculations. The complexity of this property depends on the
concrete resource which is taken into consideration. A check for elements within the
type library of a control device can be performed very easily. But the evaluation of the
available memory within a control device becomes very complicated due to sophisti-
cated memory management policies and the fragemtation of memory because of dy-
namic changes within the configuration of the control device.

 113

7 Evaluation of properties by model checking

Chapter 7

Evaluation of properties by model checking

Verification by model checking has been identified as the appropriate means for the evalua-
tion of the core part of DSE. Based on the discussion in Section 5.2.2 only the reconfiguration
sequence has to be taken into consideration by model checking, in detail the system integrity
properties for

• Global and local consistency,
• Active references,
• State management, and
• Real-time constrained operation.

In addition KAPPA-based calculations for dependent operation and requirements of resources
have to be applied in order to evaluate all properties within the evolution specification for the
reconfiguration sequence (see Chapter 6)
The process of model checking can be split up into three parts (see Section 3.6). Firstly a
formal model of the system has to be established in the modeling language of the model
checking tool. Secondly the specification has to be defined, in most cases temporal logic is
used for this purpose. The third and last part is the evaluation whether the system model
satisfies the given specification or not. Herein a model checking algorithm is applied and
automatically checks the given properties. We will investigate the first two parts of the model
checking process within this chapter. On the one hand a detailed description of the different
architectural elements within a control device are given, in order to fulfill the Requirements
(1) “Temporal behavior”, (2) “Execution semantics”, (3) “Underlying system configuration”,
and (4) “Modeling dynamic reconfiguration”. On the other hand the necessary properties of
the evolution specification as well as their formulation are examined, with special respect for
Requirement (8) “User-friendly definition of specifications”.
The formal models for different aspects of the control device will be discussed on a concrete
example, the demonstration control device used also in Chapter 8. As modeling language
NCES (see Appendix C) will be used in order to provide concrete examples.

7.1 Architectural elements of the system model
The formal model of the system is the starting point for the model checking process. Based on
the evaluation framework for DSE already depicted in Section 5.1.2 we have to consider at
least three elements: the process under control, the control application, and the evolution
control application. Additionally several sources of disturbances exist, which need to be taken
into consideration for the evaluation of the specification properties. These are on the one hand
explicitly modeled disturbances (e.g., a special condition within the model of the process
under control) and on the other hand aspects that come from details within the implementation
of the control device (e.g., hardware capabilities or other applications).

114 EVALUATION OF PROPERTIES BY MODEL CHECKING

In order to incorporate the different aspects of the system model and to provide an appropriate
model to fulfill the different Requirements (1) “Temporal behavior”, (2) “Execution seman-
tics”, (3) “Underlying system configuration”, and (4) “Modeling dynamic reconfiguration” we
have to consider a control device as the smallest part within the system model. It is not
sufficient to model only some aspects such as the control application and the ECA without
taking into consideration also all other elements within the control device. In addition to the
control device the process under control (at least the portion which is relevant for the control
application and disturbances to the process) and the communication network may be neces-
sary. The communication network provides the possibility to extend the overall system model
to several control devices.
A schematic of the architectural elements within the system model, when only one single
control device is taken into consideration, is depicted in Figure 24. The gray shaded elements
represent the intrinsic parts of the control device, which are independent from the application
scenario. On the one hand the process under control and on the other hand the communication
network are included as interfaces of the control device to the environment. Within the
control device the control application and the ECA represent those parts which are of special
interest for DSE: the model of the application, which will be changed during operation, and
the model of the application which executes these changes. The elements additional tasks and
other applications represent disturbances in terms of influences on the execution behavior
(especially the temporal behavior) within the control device.

Figure 24: Architectural elements of the system model

The different elements of the system model architecture will be described in a general manner
in the following paragraphs. An arbitrary modeling language may be used for these elements,
according to the model checking tool that should be used for the evaluation of DSE. A more
detailed description of several elements based on the modeling language NCES will be
provided in the following sections.
Process under control: The model of the process under control (the plant) is the basis for a
closed-loop modeling as described in Section 5.1.1. The model creation for this element is
highly manual, because no predefined structures exist within a general ACS. Of course,
libraries of model parts (pre-given or typical elements in the plant) may be available in an
engineering environment, but the ACS customer has to establish the model of the process
under control for each particular plant by hand. Examples for the modeling of processes are

EVALUATION OF PROPERTIES BY MODEL CHECKING 115

available in different publications: Vyatkin and Hanisch (2003) describe a model for a drilling
station or Hanisch et al. (2006) present the model of a lifter. By using a transformation from
UML to NCES Lobov et al (2006a) provide a framework that may utilize already existing
descriptions of a plant in order to generate the model of the process under control. In addition
to the nominal behavior of the plant it is also important to include failure situations to the
models, as depicted for instance in Vyatkin and Hanisch (2003) by exceptions within the
process. The more failure situations are incorporated in the model of the process the better
and more realistic results will be achieved via verification by model checking.
Communication network: An ACS based on the ideas presented in Section 3.1 typically
consists of several control devices and HMI devices which cooperate via a communication
network. The influence of the communication network on the model of the system can be
described in two different ways, depending on the target of the evaluation: (i) the communica-
tion network may be used as boundary of the system model and (ii) it may provide the
interaction channel between models of different control devices. The first possibility is
important in order to focus on the relevant parts for the DSE within the system model. If only
one control device is involved in the system evolution step, all other control devices may be
incorporated only by a model of the messages sent to the relevant control device. The second
possibility is used for situations where several control devices are included within a DSE.
Herein apart from a pure data exchange between the control devices also the temporal
behavior of the communication network may be included into the system model, as this is also
some kind of disturbance to the process of DSE (especially for temporal properties as there
may be at least some latency due to communication).
Processing unit: This item represents all elements of the control device which provide the
basis for the execution of source code. Generally speaking, this item includes the microproc-
essor and the memory of the device. Of course, a detailed formal model of the microprocessor
may not be useful for the evaluation of a control device, because too much information is
necessary and the details of the model would require an enormous effort for their design. But
for the description of real-time behavior, this element is of special interest. The computational
power of the processing unit will be abstracted in terms of execution time of different portions
of the source code (see also the calculation of the WCET of an event chain in Section 6.1.2).
If the different parts of the source code within a control device are characterized by their
execution times, the real-time behavior will be included in the formal models because it is
possible to sum up and measure the overall execution time along paths within the system
model. But it has to be noted, that this simple model for the effect of the processing unit is
limited by the structure of the microcontroller. It has to be evaluated if this model may be
applied for a concrete example. For instance, in the case of multi-core processors or sophisti-
cated algorithms for branch prediction, a more detailed consideration may be necessary.
The topic of predictable execution time is in general very important for the development of
real-time computer systems. Bouyssounouse and Sifakis (2005, Section 7.3) state as relevant
challenge and work direction also the WCET analysis: “The determination of precise bounds
on the execution times of real-time software critically depends on the predictability of the
processor architecture. They are the more precise, the more predictable the processor architec-
ture is. Processor architectures started to being used today reach the limit of non-deterministic
behaviour that makes computation of precise upper bounds possible. An interesting research
direction is to identify principles for the design of processors that perform well both in the
average and in the worst case.”
Real-time operating system: The basis for the software architecture of a computer system is
given by the operating system. As control devices belong to the class of real-time computer
systems, real-time operating systems are in use. An RTOS provides a deterministic behavior
for the execution of different tasks (in general execution contexts) according to a scheduling

116 EVALUATION OF PROPERTIES BY MODEL CHECKING

policy. Furthermore the interaction between processes and resources within the control device
are under control of the RTOS. A very important point for ACSs is also the usage of inter-
rupts, which are the sources of external events based on a state change in the plant (e.g., a
rising edge of a sensor signal) or also within the control device (e.g., the timer). If the
mechanisms of the RTOS are incorporated in the model of the control device, the interaction
between different parts of the control application, the external events, and other programs can
be modeled in detail. The description of the RTOS has to include two aspects, the functional
as well as the temporal behavior. The different actions within the RTOS, as for instance the
switching time between different tasks in the case of preemption, have to be measured and the
execution times need to be added to the formal model.
The topic of formal description of real-time applications and especially real-time operating
systems and their applications has been discussed in several applications. Corbett (1996) aims
at the formal description of Ada programs, with special attention to its concurrency and real-
time constructs. For the scheduling of tasks the task dispatching policy has been modeled. The
formal description is based on a constant slope hybrid automata, whereas a transition repre-
sents a code region and execution time is modeled with an appropriate delay before its
(instantaneous) transition. Cofer and Rangarajan (2003) describe the verification of the DEOS
real-time operating system by using SPIN model checker. In detail, the rate monotonic
scheduler policy is implemented and analyzed in contrast to an event-triggered system
environment. Waszniowski and Hanzálek (2003) depict their model of a real-time operating
system with timed automata. They claim that the timed automata theory is not suitable for
modeling preemption; therefore they focus on cooperative scheduling. The formal description
includes for instance inter-process communication via semaphores or context switching time.
In Krákora et al. (2004) the combination of the real-time operating system with communica-
tion via Control Area Network (CAN) is utilized for the verification of a distributed control
application.
Real-time reconfiguration runtime environment18: The IEC 61499 runtime environment is
executed as a set of tasks within the operating system. There are several aspects that need to
be modeled within the runtime environment: (i) the event propagation within FB networks,
(ii) the execution of the different types of FBs, and (iii) the interface to external event sources
and the handling of these external events within the runtime environment. These aspects can
be summarized as stated in Requirement (2) as “Execution semantics”. In case of the R3E the
event propagation is implemented by using an event dispatcher, as depicted in Sections 6.1.2
and B.1. The external events are handled by the external event manager, which introduces a
notification for the invocation of SIFBs into the event dispatcher, too. The different parts of
the runtime environment need a certain execution time, which has to be incorporated to the
models in order to model real-time behavior, too. The R3E additionally implements a concept
for real-time execution within the control application based on the event chain concept.
According to the initial origin of event propagation (these are SIFBs that are capable to
introduce events into the control application) the different event chains are executed as
separate tasks within the RTOS. The use of basic reconfiguration services within SIFBs is
described below within the ECA.
Additional tasks: Although IEC 61499 provides very general means for the implementation
of control applications as well as additional functionality, several other programs will be
available within the control device. For instance, a web server for simple access to diagnostic
and supervisory data may be part of the control device, too. On the other hand additional tasks
are also necessary for services within the control device that will be used by IEC 61499

18 In general any runtime environment may be used within the control device. But as no equivalent runtime
environment exists that provides the necessary basic reconfiguration services we directly mention R3E.

EVALUATION OF PROPERTIES BY MODEL CHECKING 117

applications, as for instance the interface to the communication networks. Such services are
usually handled in separate tasks. The purpose of an evaluation process is to prove the
behavior of the control application. But any additional task within the control device may
disturb the execution of the control application (at least by consuming execution time). The
effect on the execution behavior of the control application depends on the priority of these
tasks as well as their runtime behavior: the frequency of invocation and the duration of
operation. If no interrelations exist to the control application, a simple model for additional
tasks may be based on the occurrence models of external events mentioned in Section 6.1.1.
Otherwise a more detailed model of the functional and temporal behavior of these tasks as
well as their interrelation with other tasks of the control device has to be included in the
system model.
Control application: The IEC 61499 application which is effected by the DSE has to be
modeled within the element control application. Next to the execution of the FB network by
the runtime environment also interrelations exist with other applications (internal communica-
tion or by using the communication network) or the plant and additional tasks via SIFBs. The
model of the control application consists of different parts: On the one hand the FB network
has to be translated into the modeling language, and on the other hand all FB types and their
formal models have to be available. The models of the different FB types may be provided in
appropriate libraries if they are part of the initial setup of the runtime environment. Or they
are generated by the ACS customer itself. In this case an appropriate support for the automatic
transformation into the modeling language with only little manual work has to be available.
Other applications: This element includes IEC 61499 applications, too. But they are not
affected by the DSE and need not to be considered in all details. Of course, a similar model as
described for the control application may be established (also mainly automatically) including
a detailed behavioral description. But it may be also sufficient to include only a very abstract
behavioral description of these applications. As basis again the event occurrences of external
events (Section 6.1.1) can be used. The execution time of other applications may be further
determined by the WCET of event chains as described in Section 6.2.2. Based on these two
parameters, the characteristic of invocations of an application and the possible execution
times for these invocations (the disturbances to the execution of the control application and
the system evolution step) can be described rather simple. Based on the level of interrelation
between the control application and other applications an appropriate level of abstraction may
be used for the system model.
Evolution control application: The ECA is an IEC 61499 application, therefore the same
procedure as for control applications can be applied for the formal model of the ECA. But
some of the FBs within the ECA belong to a special type, because they incorporate
IEC 61499 management commands, the so-called basic reconfiguration services. These are
special types of SIFBs and are part of the runtime environment. Next to the formal model of
the FB itself also the effect of the management command to the control application has to be
described by using the modeling language. Based on the evolution engineering approach only
the reconfiguration sequence has to be taken into consideration, which is characterized as a
time-critical sequence which executes the switch from the old system state to the new system
state incorporating transition management. As depicted for instance in the closed-loop control
circuit (see Section 4.2.3) it is not necessary to create new resources or FB instances within
the reconfiguration sequence. The basic reconfiguration services may be restricted to actions
such as the creation of connections as well as the reading and writing of parameters. This
limited set of basic reconfiguration services needs to be represented in the system model in
order to be able to check the different properties of the evolution specification.

118 EVALUATION OF PROPERTIES BY MODEL CHECKING

7.2 Modeling real-time behavior
The real-time behavior of a control application is a very important aspect for the representa-
tion of the functionality of a control device and needs to be analysed in detail. The general
situation of timing analysis for real-time computer systems already was described in Sec-
tion 6.1.2 based on Kopetz (1997). For the incorporation of real-time behavior into the formal
model of a system we have to mention the results from the WCET analysis, because the time
values for the formal model have to be based on an appropriate analysis. Bouyssounouse and
Sifakis (2005, Section 7.3) state that “some analyses are only possible, once the machine-code
level is reached. Reliable and often precise upper bounds on the execution time of embedded
programs can be obtained when all the information about the hardware platform is known.”
The formal model of a system often represents an abstract behavior without the transforma-
tion of source code into a formal description. In recent years also model checking based on
source code (see also Section 3.6.3) is available for some programming languages such as C
or Java. But the scope of such a source code-based verification is limited to small portions of
a program. Overall system architectures, as for instance described for a control device in
Figure 24, with several programs and an operating system are still not possible up to now. The
concept for real-time modeling in formal descriptions proposed for this thesis can be de-
scribed as follows:

• Fragmentation of the overall system architecture into single units regarding the func-
tional behavior of the system. For instance a certain method or object within a soft-
ware program or a task within the operating system may be considered as a single unit.

• Extraction of the control flow between the different single units within the system
architecture.

• Measurement of the timing behavior of the different parts of the system architecture.
In contrast to a classical WCET where different scenarios have to be explored in order to
extract the longest execution path within a software program, the formal model of the system
will include all these different possibilities of execution paths based on the control flow
within the extracted single units. The different parts of the system architecture are interrelated
according to their functional behavior and additional timing parameters for their temporal
behavior. The formal model includes all possible paths that result in the different execution
time of a software program within the given system architecture, and of course also the
WCET and BCET as boundaries. But the ACS customer does not need to explore the different
execution paths of the overall system architecture by himself. All possible combinations of
execution paths and interrelations between the different parts of the system architecture will
be established automatically by the model checking algorithm.
Bouyssounouse and Sifakis (2005, Section 7.4) describe the problem of current practice in
WCET as follows: “Testing is often performed to measure real-time execution time and
response time e.g. to check resource utilization or obtain an estimation for the worst case
execution time. However, using this approach is very problematic because it is difficult to
obtain safe and accurate bounds.” By using the above described incorporation of real-time
measurements into the system model and appropriate model checking it is possible to achieve
more detailed checks for the temporal behavior of a real-time computer system.
A good example for the accessible benefits of this methodology can be considered based on
the calculation of the execution time of event chains as presented in Section 6.1.2. The
evaluation of the execution time is split up into two levels, the application level and the FB
level, whereas the application level is highly influenced by the FB level due to the generation
of output events based on the internal state of an FB. If we consider the different parts within
the Equations 7 to 12 as single units of the formal model, which are afflicated with an
execution time, the system model will include all possible execution paths of the event chain.

EVALUATION OF PROPERTIES BY MODEL CHECKING 119

An appropriate analysis of the system behavior will also provide the parameters WCET and
BCET of the event chain. But even more important is that both the temporal and functional
behavior of the event chain are incorporated in the same system model and can be used for
enhanced analysis, e.g., for DSE.

Timed model for single units of source code in NCES
The representation of the combined temporal and functional behavior of a single part of
source code depends on the modeling language and the possibilities based on the model
checking algorithm. Within this thesis we will use the modeling language NCES and the
model checker SESA, as described in Appendix C. In general the model of a single part of
source code has to fulfill three conditions:

• The functional behavior has to be modeled according to the temporal order of the
source code implementation.

• A time delay can be added to this sequence according to the execution time of this part
of source code.

• The execution time modeled in the system model has to be interruptable.
The first condition requests the modeling of a sequential execution flow in the formal model
similar to the execution of the source code. In most modeling languages the functional
behavior can be represented in a more parallel manner (e.g. in Petri nets or timed automata),
but due to the incorporation of timing behavior it is necessary to restrict these possibilities in
order to achieve a sequential behavior in the formal model. It is essential to model the
execution flow of the formal model in the same way as the execution flow of the source code.
The second condition for the representation of time is dependent on the concepts of the
modeling language. In case of NCES a timed flow arc is available, which is enabled by an
internal clock of a place. But this simple concept will not be sufficient when taking into
consideration also the third condition, an interruptable model of execution time. Of course
this condition is only necessary as soon as preemption is used within the system architecture
of the control device. In case of an RTOS this is typically the case for different tasks accord-
ing to the scheduling algorithm. But it will occur in very simple control devices without
operating systems, too. Sünder et al. (2007a) describe the formal model of a control device
based on a 16-bit microcontroller without operating system. But also in this case preemption
happens within the IEC 61499 runtime environment as soon as an interrupt occurs. The
microcontroller switches to the interrupt service routine and disrupts the execution of the
control application.
In order to model a disruption of the execution of one part of a NCES model it is sufficient to
connect each transition with a condition input which is only true as long as the corresponding
part of the model is executed. In case of preemption the condition input will be switched to
false and the execution of the model is blocked. Figure 25a depicts this situation for a module
with simple functional behavior. As soon as input event ‘ei’ occurs the marking flows from
place ‘p1’ to place ‘p2’. Here a delay of 10 time units is modeled before the output event ‘eo’
is issued and the marking flows back to place ‘p1’. The functional behavior of this ‘SimpleDe-
lay’ module is a delay of the event flow by 10 time units, which may be representative for a
certain part of the source code within the control device. The condition input ‘enable’
represents the model for preemption as described above. But what happens in case of
preemption? If the condition input ‘enable’ is false while the marking is in place ‘p2’ (e.g.,
because the execution of this part of source code may be preempted by an interrupt) the
internal clock of place ‘p2’ will still be increased, although another part of source code is
executed, because there is a marking within place ‘p2’. The temporal behavior will not be
correct if we use simple timed arcs with preemption in NCES.

120 EVALUATION OF PROPERTIES BY MODEL CHECKING

An appropriate solution for this problem is depicted in Figure 25b. Herein the same functional
behavior (a delay of the event flow) is modeled, but the time which elapses in the model is
represented as a number of markings. As soon as a marking is available in place ‘p2’ again the
internal clock starts counting. But after one time unit transition ‘t3’ clears and adds one
marking to place ‘p2’. As soon as the number of markings has reached 11 (after 10 time
units), the flow arc from place ‘p2’ to transition ‘t2’ is enabled and the output event ‘eo’ is
issued. If the condition input ‘enable’ is set to false while the time delay modeled by markings
in place ‘p2’ is active, also the increase of markings is stopped (the internal clock of place ‘p2’
will still be increased, but without effects to the temporal behavior), because transition ‘t3’ is
disabled via ‘enable’, too. By using such a model for time delays, the disruption of timed
system models can be used without the violation of the temporal behavior.

a) b)

Figure 25: NCES representation of a delay (a) by a timed arc and (b) by markings

7.3 Dynamic reconfiguration support in formal models
As most important enhancement of the formal models of a control device the support for basic
reconfiguration services within the system model has to be provided. As already discussed in
Section 3.6.3 no formalism exists in order to incorporate a dynamically changing system
model into the model checking algorithm. Based on a given specification and a given model
the state space of the system will be explored for model checking, but within this process the
model needs not to be changed. Different approaches in literature apply changes to models by
certain rules (which may be related to a dynamic reconfiguration process) and then use the
changed models for model checking. But for the verification of the reconfiguration sequence
by model checking it is necessary to incorporate the execution of basic reconfiguration
services during operation of the system into the model. The ECA itself can be modeled
similarly to any other IEC 61499 application, but the influence to the control application has
to be modeled, too.
The scope of DSE is very broad, and the inclusion of all possible basic reconfiguration
services into the system model seems to be not realistic due to the limitations of the model
checking approach. But as discussed in Section 5.2.2 the verification by model checking is
only necessary for the reconfiguration sequence within a system evolution step. Table 4 gives
an overview on the basic reconfiguration services which may be used within the different
sequences of a system evolution step:

• Download of the ECA and initialization sequence (RINIT): Both sequences are used
in order to prepare the DSE. The used basic reconfiguration services add new applica-
tion parts without changing the functional behavior of the control application.

• Reconfiguration sequence (RECONF): The current system state is still operated, but
all new elements of the new system state are already available. Based on the classifica-
tion from Walsh et al. (2007b)—see Section 3.4.1 and especially Section 4.2.2—no

EVALUATION OF PROPERTIES BY MODEL CHECKING 121

structural changes are necessary within the reconfiguration sequence. Only topological
changes (creation or deletion of connections as well as writing of parameters) as well
as internal changes (writing of internal variables) are possible apart from the execution
control services for starting and stopping FB instances.

• Deinitialization sequence (RDINIT) and deletion of the ECA: These sequences be-
long to the post-processing of a system evolution step and are used to delete those
parts which will not be used any more in the new system state. The functional behav-
ior of the control application will not be changed.

Command Object Download
ECA RINIT RECONF RDINIT Deletion

ECA

Resource / FB Yes Yes — — —
CREATE

Connection Yes Yes Yes — —

Resource / FB — — — Yes Yes
DELETE

Connection — — Yes Yes Yes

Parameter Yes Yes Yes — —
WRITE

Internal variable Perhaps Perhaps Yes — —

Input/output variable — — Yes — —
READ

Internal variable — — Yes — —

START FB Yes Yes Yes — —

STOP FB — — Yes Yes Yes

KILL FB — — — Yes Yes

RESET FB — — — — —

QUERY Anything Yes Yes — Yes Yes

Table 4: Basic reconfiguration services within the different execution phases of a system evolution step

According to this limited set of basic reconfiguration services, which neglects any structural
changes to the system model, an incorporation of these changes to the formal model can be
applied by using the available means of the modeling language. Four different classes of
changes to the system model have to be modeled:

• Manipulation of connections
• Execution control of FB instances
• Reading of input/output variables as well as internal variables
• Writing of input and internal variables

We will provide a detailed description of the modeling approach for these kinds of changes in
the system model during execution based on the modeling language NCES.

7.3.1 Manipulation of connections
We have to distinguish two different aspects when a basic reconfiguration service manipulates
a connection. On the one hand there are two types of connections, event and data connections,
which will be modeled in different ways according to their functionality within the IEC 61499
standard. On the other hand there are two different management commands available for the
manipulation of any connection: the CREATE and the DELETE management command. In
the following discussion we will provide models for the two different types of connections
(for data and events) that provide the possibility to create and delete the connection.

122 EVALUATION OF PROPERTIES BY MODEL CHECKING

Event connections
An event connection is used to trigger the execution of FBs in the IEC 61499 standard. Based
on the execution semantics of R3E described in Section 6.1.2 the the issue of of an output
event means that the connected input events will be put into the queue within the event
dispatcher. This behavior can be mapped to the formalisms of NCES by using event arcs,
which model the execution flow within the runtime environment. Based on the schematic of
the execution behavior of BFBs in Figure 23 an output event will be put into the event
dispatcher as part of an action. Afterwards, the execution within the BFB has to be continued.
The corresponding NCES interface of an FB will consist of an output event in order to put the
connected input event into the event dispatcher and an input event as notification that the
execution flow within the BFB can be continued.
An appropriate NCES model for the event connection is depicted in Figure 26 incorporating
the possibility to “create” and “delete” the event connection. The input event ‘IN’ receives an
event if the BFB executes the sending of an output event. Based on the internal state of the
event connection (represented by places ‘p1’ and ‘p2’), two different paths are available in
‘ManagedEventConnection’. If the event connection is enabled (the event connection has
been created), the output event ‘Trigger’ will be issued, which can be used to put the corre-
sponding input event into the event dispatcher. After a confirmation via the event input
‘Confirm’ the output event ‘OUT’ is triggered and the execution flow within the BFB will be
continued. But if the event connection is disabled (the event connection has been deleted),
nothing else will happen except that the output event ‘OUT’ is triggered. In terms of
IEC 61499 this means that the event connection does not exist, because no entry within the
event dispatcher is added.

Figure 26: Formal NCES model of a managed event connection19

The creation and deletion of the event connection is triggered by the input events ‘CREATE’
and ‘DELETE’, which are issued by the basic reconfiguration services within the ECA. The
model in Figure 26 describes an event connection that is initially created. By changing the
initial marking from ‘p1’ to ‘p2’ an initially deleted event connection can be modeled.

Data connections
The behavior of data connections is different to event connections. Based on the implementa-
tion of R3E a data connection includes a storage element. As soon as an output event occurs

19 The condition input ‘enable’ is neglected for the sake of clarity. As this module will be used within the model
of a task, each condition has to be connected to the ‘enable’ condition input, too.

EVALUATION OF PROPERTIES BY MODEL CHECKING 123

which is related to the data output via the WITH construct, the storage element of the data
connection is set according to the data output of the FB. If several data connections exist with
the same source (several connections from the same data output to several data inputs) only
one storage element will be used for all these data connections.
The formal model of a manageable data connection is based on a similar concept as for event
connections (see Figure 27 for a data connection for Boolean variables). The internal state
machine (places ‘p1’ and ‘p2’) defines the current state of the data connection, whether it
exists or not. This state is influenced by the corresponding basic reconfiguration service
within the ECA. The internal behavior is different to an event connection, as the internal
storage of the data connection has to be set as soon as the execution flow enters the data
connection via the ‘IN’ event input (according to the WITH construct this will happen during
the sending of an output event). The internal storage for Boolean variables is represented by
places ‘p5’ and ‘p6’. As this operation will take a certain amount of time, a time delay of
length ‘x’ is introduced at place ‘p4’. If the data connection does not exist (place ‘p2’ is
marked), no data sampling with time consumption will happen. In this case only the output
event ‘OUT’ is issued, which means in terms of IEC 61499 that the data connection does not
exist.

Figure 27: Formal NCES model of a managed data connection (Boolean type)19

The time delay modeled in Figure 27 depends on two conditions. On the one hand it will vary
according to the data type which has to be stored. For each different data type the specific
time value has to be measured. On the other hand this time will only occur if the data
connection is the first one which has been established for a certain data output. As stated
above, the implementation of the R3E uses only one storage element, although several data
connections exist with the same source. Accordingly only for one data connection the
execution time has to be mentioned, for all other data connections with the same source ‘x’
can be set to zero.
The initial state of the data connection (available or not) can be modeled via the initial
marking of places ‘p1’and ‘p2’, as already mentioned for event connections.

124 EVALUATION OF PROPERTIES BY MODEL CHECKING

7.3.2 Execution control of FB instances
The representation of the management commands START and STOP for FB instances can be
summarized as execution control. The concept is similar to the one used for the manipulation
of connections. Based on a state machine the execution flow within the FB instance may
trigger the operation of the FB (in terms of NCES models) or it will be ignored and handed
over to the next element in the execution flow. As basis for the internal state machine the
operational state machine for managed FBs (see Figure 63) has to be used. As we will not
consider the management commands KILL and RESET, a simplified state machine is
modeled by the places ‘p1’ to ‘p3’ and transitions ‘t1’ to ‘t3’ in Figure 28. As simplified
representation of the different triggers for the execution of an FB instance—this will be the
request by the occurrence of an input event, see Section 7.4.3—we use only one input event
‘IN’. Based on the state of the managed FB instance, the execution of the internals of the FB
will be triggered (denoted by the dotted rectangle). Or the execution flow will be passed over
to the next element within the system architecture by the issue of the output event ‘OUT’. The
state of the FB instance will be influenced via the input event ‘START’ and ‘STOP’, which
represent the triggers sent from the corresponding basic reconfiguration services within the
ECA. The current state of the FB instance is additionally available via the condition outputs
‘FBSidle’, ‘FBSrunning’, and ‘FBSstopped’.

Figure 28: Formal NCES model of a managed FB instance19

This simple model also incorporates the correct behavior in the case of stopping the FB
instance during its operation (the ECA may preempt the execution exactly during operation of
the FB instance). According to IEC 61499-1 (2005, Table 9) the currently active execution of
the BFB will be completed without the generation of output events. If the execution control is
passed back to the FB instance after being stopped, the execution flow will continue the
execution of the FB and the algorithms will be finished. For the the issue of of output events
an appropriate condition for sending the output events based on place ‘p2’ has to be incorpo-
rated in the model of the FB (not included in Figure 28).

EVALUATION OF PROPERTIES BY MODEL CHECKING 125

Based on a similar concept also the CREATE and DELETE management commands for FBs
may be incorporated in the formal NCES models by using an enhanced state machine of the
FB instance. Only the KILL management command is problematic, as the operations of the
FB instance have to be stopped immediately. If this happens, the execution flow within the
formal NCES model of the control device will be stopped, too, which does not model the
correct behavior of the implementation.

7.3.3 Reading of input/output variables as well as internal variables
The READ management command can be modeled without any additional effort in the NCES
models. Any variable is represented by a set of places within the formal model, as for instance
depicted for the storage element of a data connection in Figure 27 (places ‘p5’ and ‘p6’). The
corresponding basic reconfiguration service within the ECA has to be connected to these
places via condition arcs. As soon as the basic reconfiguration service is executed it will
gather the current value of the variable. The necessary execution time for reading the variable
has to be incorporated within the basic reconfiguration service.
In principle any data type may be modeled by using places representing Boolean values. But
the effort within the formal models grows to a high extend already for integer variables, as a
16-bit variable has to be represented by 32 places in the model. Consequently a read com-
mand (or any data connection, too) will consist of 32 condition arcs. The situation will be
even worse for structured data types or character strings.

7.3.4 Writing of input and internal variables
The influence of the WRITE management command has to be modeled in a similar way as the
assignment of a value to a variable, which is used within any kind of storage element. The
only difference is that there may be several sources of values for a variable, but this may be
necessary for the formal model of an algorithm, too. The NCES model depicted in Figure 29
may be used to model also other aspects than only the influence of the WRITE management
command to a variable. In general the assignment of a value to a storage element from
different sources is represented by this NCES model.

Figure 29: Formal NCES model of WRITE for two different values19

The concrete example of Figure 29 provides the possibility to write two different values to a
storage element (again of Boolean type) by using different execution flows. These are
depicted by the interface ‘WRITE1’ and ‘Out1’ as well as ‘WRITE2’ and ‘Out2’. The

126 EVALUATION OF PROPERTIES BY MODEL CHECKING

different values of the WRITE management commands is provided via the condition inputs
‘InVar1’ and ‘notInVar1’ as well as ‘InVar2’ and ‘notInVar2’. If one of the two input events
is triggered, the value depicted by the related condition inputs is assigned in the storage
element. If the corresponding basic reconfiguration service is triggered, the new value for the
variable has to be issued to the model given in Figure 29 by using condition arcs. The
execution time for writing the value of the variable may be included also in the model in the
same way as depicted for data connections (see Figure 27). But it may be incorporated also in
the execution time of the basic reconfiguration service, as it is assumed in Figure 29.

7.4 Modeling architectural elements in NCES
Based on the representation of real-time behavior and the influence of basic reconfiguration
services to the system model the overall formal model for a given control device can be
designed. The following sections provide an overview on modeling approaches for a specific
control device, which will be used for demonstration also in Chapter 8. As main architectural
elements the Embedded Configurable Operating System (eCos) as described in Massa (2003)
(see also Appendix C) and R3E (see Appendix B) are used in the demonstration control
device. The overall system model emerges by the composition of the different parts based on
the given configuration, which depends apart from the main elements operating system and
runtime environment especially on the control application and the ECA. According to the
parameters of these applications the system model has to be configured, which will include
also structural effects on the NCES model. Another important parameter is the execution time
of the different single units within the system model, which have to be adapted according to
the given system architecture.

Modeling language
Before we will go into detail about the modeling of the architectural elements, a short analysis
of the proposed modeling language NCES should be provided. Many different modeling
languages exist with specific features and modeling opportunities. The modeling language
NCES is described in detail in Appendix C. The most important features for the evaluation of
DSE are:

• Modular modeling: The overall system architecture can be established and configured
in terms of modules in a hierarchical manner. Based on simple functionalities more
complex elements can be created by composition. The configuration of a control de-
vice is a composition of different parts by itself.

• Execution flow via events: The incorporation of real-time behavior is based on the
fragmentation of the overall source code and attaching execution time to these parts.
The overall system behavior is represented according to the execution flow within the
system model. The modeling elements events and event connections provide a power-
ful means for the modeling of the execution flow in NCES.

• Preemption: A real-time operating system is characterized by the scheduling algo-
rithm in order to achieve real-time constraints for the different tasks during interaction
with the environment mainly based on interrupts. A modeling language has to provide
the possibility to model preemption as consequence of these characteristics. Especially
in combination with the modeling of execution time preemption has to be supported
(an appropriate approach utilizing NCES is described in Section 7.2).20

20 A popular approach for the modeling of real-time systems is timed automata. According to Waszniowski and
Hanzálek (2003) timed automata is not suited for modeling preemption. Stanica (2005) uses timed automata in
order to model the behavior of IEC 61499 applications. His resource model is very simple with the only
constraint that only one algorithm may be executed at the same time. The temporal behavior of algorithms is

EVALUATION OF PROPERTIES BY MODEL CHECKING 127

But there are also some limitations based on the choice for NCES as modeling language. The
main restriction is that no continuous time may be used. NCES provides only means for
discrete models of time. According to the chosen smallest time unit a more or less accurate
model of the system will be available. A very small time unit additionally increases the state
explosion problem. A more detailed analysis about the comparison of discrete and continuous
time model checking is given in Clarke et al. (1999, Section 17). This situation may not be
problematic within a single control device, but based on a closed-loop modeling (the plant is a
continuous time system by nature) as well as the cooperation of several control devices within
the same control application (in general no synchronization of execution exist within different
control devices) a discrete time model may restrict the expressiveness of the system model. A
second drawback concerns the modeling of calculations with values aside from Boolean
variables. Any calculation may be modeled by Boolean relations, but this is no appropriate
means for the efficient modeling of calculation with non-Boolean variables, especially
algorithms in BFBs.
We will provide a rough overview of the main modeling approaches for the elements real-
time operating system, real-time reconfiguration runtime environment, control applications
and evolution control applications as depicted in Figure 24. In addition a general behavior
model for different elements such as additional tasks, other applications or the communication
network will be presented in Section 7.5.

7.4.1 Real-time operating system (eCos)
The RTOS provides the basis for the execution of different tasks within the control device and
the interaction between the tasks and the environment (based on interrupts). As a concrete
example the eCos real-time operating system [9] will be considered, which is described in
detail in Massa (2003) as well as in Appendix C. The models presented in this section are
based on the master thesis of Gosetti (2007), which has been conducted under supervision of
the author.
The main element of an RTOS is the scheduler, which provides the execution order of
different tasks based on a specific algorithm. eCos includes two different scheduling algo-
rithms, which both provide 32 priorities with task preemption. In case of the bitmap scheduler
one task can be handled per priority level. As soon as a task with a higher priority (the highest
priority is 0) than the currently executed task wants to become active, a task switch is
performed in order to execute the task with the highest priority. The second scheduling
algorithm is called Multilevel Queue (MLQ) scheduler and supports several tasks per priority
level. The active tasks within the same priority level are included in a queue, and based on a
time parameter the execution is switched between these tasks in a round robin procedure.
Again only the tasks which concern the highest active priority level will be executed.

RTOS configuration
In order to provide a component-based formal model of the operating system and its configu-
ration the different tasks as well as the scheduler of the RTOS will be considered as separate
NCES modules. Figure 30 depicts such an RTOS configuration with two priority levels,
whereupon the MLQ scheduler is used because there are two tasks related to priority level 1.
In order to model the execution behavior of these tasks the following interface is utilized
between the scheduler and a task (we will use the task perspective for explanation):

• Notification of task activation (‘Wakeup’): If a task wants to be come active, the
output event ‘Wakeup’ will be issued by the task. This may happen based on an exter-
nal interrupt, e.g., the timer or the network interface.

characterized by their execution time. But there are no concepts included in order to provide a more detailed
description of the temporal behavior of the overall system architecture, especially no preemption.

128 EVALUATION OF PROPERTIES BY MODEL CHECKING

• Notification of task suspension (‘Suspend’): If a task does not need to be executed
any more, the output event ‘Suspend’ will be issued by the task. A typical example is
the execution of event chains: as soon as there are no more events in the event dis-
patcher, the task corresponding to the event chain will suspend.

• Assigning execution control to a task (‘enable’ and ‘stopped’): As already described
in Section 7.2 preemption of the control flow within NCES models can be realized by
using an enabling condition input. The scheduler will use the ‘enable’ condition input
in order to assign the execution control to the task that should be executed. The condi-
tion input ‘stopped’ is inverse to ‘enable’.

Figure 30: RTOS configuration with three tasks and two priority levels

The NCES model of the scheduler (‘Scheduler’) provides this interface for each task within
the configuration of the control device. Based on the scheduling algorithm, the task with the
highest priority is executed by setting the input condition ‘enable’ to true. There is only one
task executed at the same time. If the scheduler has to perform an action (e.g., switching the
task context), only the module ‘Scheduler’ will be active.

Model of the scheduler
The formal model of the scheduler is split up into several components again. In detail each
priority level is handled by a distinct module, Figure 31 depicts the internal model of the
element ‘Scheduler’ mentioned before in Figure 30. The principal idea for modeling the
scheduling algorithm is that each priority level has information about the upper priority levels
as well as the task related to its own priority level. The module ‘IDLE’ represents the
situation that there is no active task within the system configuration. Initially ‘IDLE’ is active
within ‘Scheduler’. As soon as one priority level receives a ‘Wakeup’ event, the correspond-
ing module becomes active within the scheduler. It may be interrupted by a higher priority, or
the corresponding task suspends. In the second case the next lower priority level will become
active. If there are no more tasks ready for execution, the execution flow will reach ‘IDLE’
again.
The behavior of the NCES module ‘Scheduler’ outlined above results in an interface between
the different priority level modules which consists of the following elements:

• Execution flow (‘activate’, ‘nextPx’): A priority level receives the control for the
execution of its related tasks via the event input ‘activate’. If there is no task ready for
execution, the next lower priority will be activated via the event output ‘nextPx’. If
any higher priority level wants to execute its tasks, the corresponding event output

EVALUATION OF PROPERTIES BY MODEL CHECKING 129

‘nextPx’ will be triggered. A priority level has event outputs for every higher priority
level as well as the next lower priority level (simply denoted by ‘x’ in this descrip-
tion).

• Current state of priority levels (‘Px_suspend’, ‘Px_wakeup’): Based on the internal
modeling of the different priority levels a condition for the suspension of the priority
level (‘Px_suspend’) and a condition about the availability of tasks for execution
(‘Px_wakeup’) are sufficient to represent the current state of priority levels. In order to
provide each priority the necessary information on the current state of the higher prior-
ity levels as well as the next lower priority level, appropriate condition inputs are used
in the modules of the priority level.

In addition each priority level provides the interface to the tasks which are related to this
priority level, as described above.

Figure 31: Internal model of the module ‘Scheduler’ mentioned in Figure 30

Interrupt handling
The eCos operating system uses so-called callback functions in order to handle interrupts. As
soon as an interrupt occurs, the scheduler switches to the callback function, which includes
the functionality related to this interrupt (application dependent source code). In order to
model the interrupt handling the model of the scheduler can be used. A callback function is
represented as a task on a priority level higher than 0. If an interrupt occurs, the output event
‘Wakeup’ will be triggered.

Real-time behavior
The real-time behavior of the RTOS is mainly characterized by the scheduling of tasks. This
is given by three different times (quantitative measurements are documented in Section 8.1.1):

• Task switching time: The time necessary to switch from one active task to another
one. This time may vary according to the amount of data that has to be saved for
switching the context.

130 EVALUATION OF PROPERTIES BY MODEL CHECKING

• Task suspension and resumption: The transition between a priority level and the
‘IDLE’ state are characterized by separate time parameters.

• Task creation and deletion: The approach for the evaluation of DSE does not need to
model these aspects within the reconfiguration sequence. There will be a fixed set of
tasks within the operation system.

The different time parameters have to be incorporated in the model of the scheduler. For
instance the information about active tasks in the next lower priority level is used in order to
decide if the execution time of a task switch has to be included when a certain priority level
has no more active tasks.

7.4.2 Real-time reconfiguration runtime environment
The execution behavior of the R3E has been described in the context of the calculation of
execution times for event chains in Section 6.1.2 as well as in Appendix B. In order to provide
a model of the behavior of the R3E the event propagation mechanism by the use of the event
dispatcher as well as the separation of different event chains has to be taken into considera-
tion. Based on the description above of the representation of different tasks within the RTOS
(see Section 7.4.1) the different event chains have to be modeled within the different tasks.
Therefore we will investigate only the formal model of a single event chain.

FB interface
The basis for the transformation of an IEC 61499 FB into a NCES module is the representa-
tion of the FB interface within NCES. Both concepts (IEC 61499 and NCES) provide events
as means for the modeling of execution flow, but the NCES module has to take into consid-
eration the implementation method, too. Figure 32 depicts the IEC 61499 FB as an example in
both ways, a) as an IEC 61499 FB and b) as the corresponding NCES module.

a)

b)

Figure 32: Representation of FB E_CYCLE in a) IEC 61499 and b) NCES

Each IEC 61499 input event is directly mapped to NCES because it represents the call of the
FB and directly matches with the execution flow within R3E. The end of such an call is
depicted by the event output ‘FBready’, which signals that the execution control moves to the
next element. An IEC 61499 output event is visible in the NCES module interface, too. But in
addition to each output event an input event has to be incorporated, which signals that the
sending of the output event has finished and execution flow comes back to the model of the
FB (e.g., the output event ‘EO’ and the input event ‘readyEO’ relate to each other). Any data
inputs and outputs may be represented by condition inputs and outputs. In the example given
in Figure 32 the data input ‘DT’ is not visible in the NCES interface, because this value
parameterizes the timing service of the runtime environment and will be used directly in the
callback function of the timer. But instead an interface for the interaction between the timing
service and the E_CYCLE FB is included in the NCES module. The timing service can be
started (‘startTI’) or stopped (‘stopTI’). The NCES module includes an additional event input
‘TIinvoke’ as trigger from the timer as well as a confirmation (‘FBreadyTI’) in order to move

EVALUATION OF PROPERTIES BY MODEL CHECKING 131

the execution flow back after an interruption from the timer (see next paragraphs for more
details).

Event propagation within an event chain
Each real-time constrained event chain is executed in a separate task with a separate event
dispatcher. All unconstrained event chains within a resource are executed in one task with a
common event dispatcher. The concept and models for event propagation are the same in both
cases. Figure 33a depicts a simple FB network which will be used to describe the transforma-
tion of an IEC 61499 control application into a formal model. The corresponding NCES
model is given in Figure 33b, where each FB is represented by its NCES interface as men-
tioned above. The basic idea for the transformation is that each event input within the FB
network is modeled by a number, e.g. the ‘REQ’ event input of ‘simpleFB1’ has number two
(‘EV2’ in Figure 33a). By using this number the event dispatcher is able to distinguish
between different events that are inserted (‘inEVx’ and confirmation via ‘readyEVx’) and
fetched for calling of the corresponding NCES module (‘outEVx’ with feedback of execution
control via ‘endEVx’), where ‘x’ stands for the number of the input event. An event connec-
tion is modeled by a module similar to the one depicted already in Figure 26 and a data
connection according to Figure 27 (both without the capability of dynamic reconfiguration).

a)

b)

Figure 33: Representation of an FB network in a) IEC 61499 and b) NCES19

The introduction of the first event (which is the identification of the event source
‘E_CYCLE’, which again has a unique number) will be described in the next section. As soon
as this event is put into the event dispatcher, the corresponding task will issue for execution
time (output event ‘Suspend’) and then call ‘E_CYCLE’ via the ‘TIinvoke’ input event.
‘E_CYCLE’ sends the output event ‘EO’ which triggers the module ‘EventConn1’ represent-
ing the event connection between ‘EO’ and ‘REQ’. The input event ‘REQ’ is put into the
event dispatcher via the event input ‘inEV2’. After finishing the execution of ‘E_CYCLE’,
the next event will be fetched from the event dispatcher (‘outEV2’). The overall FB network
is executed based on this basic modeling approach. The FB network presented in Figure 26

132 EVALUATION OF PROPERTIES BY MODEL CHECKING

depicts only a sector within the overall task model. The open interface to the rest of the task
model is denoted by ‘…’.

Critical sections within R3E
One main challenge in real-time computer systems is the assignment of priorities and tasks in
order to avoid deadlocks. Different concepts exist for protection of such critical sections (see
also Appendix C) within an RTOS. One of the most important critical sections within R3E is
the event dispatcher. On the one hand each event input within the task will be put into the
event dispatcher. But on the other hand also the identification of an event source has to be put
into the event dispatcher. If the execution of an event chain is interrupted by the timer exactly
when an input event is put into the event dispatcher, the timer will not be able to use the event
dispatcher, too. In order to avoid a deadlock in this situation, R3E uses a mutual exclusion
methodology with priority inversion.
The NCES model for the protection of this critical section is depicted in Figure 34. The
modules ‘RegIn’ and ‘RegOut’ are used to capsule the critical region ‘EventDispatcher’. The
module ‘Semaphore’21 simply provides a storage element that is triggered as soon as the
execution flow enters or leaves the ‘EventDispatcher’. If an external event source (e.g., the
timer) wants to add an identification of an event source to the event dispatcher the input event
‘TRIG’ occurs. Before the issue of this request to the event dispatcher via ‘Insert’, the
availability of the critical resource ‘EventDispatcher’ is checked. If it is currently used, the
priority inversion protocol will be applied: The event dispatcher will be executed (‘enableEV’
set to true) as long as ‘EventDispatcher’ is free again, then the request from the external event
source will be handled.

Figure 34: Representation of mutual exclusion for the event dispatcher

Figure 34 provides again only a sector of the overall model of the FB network. For instance,
the confirmation of the insertion to the external event source is given by the event output
‘readyTRIG’. In the model of the overall RTOS configuration in Figure 30 appropriate
connections between the task representing the timer callback function and the event chain
have to be added. Concrete measurements for the real-time behavior at the application level
are presented in Section 8.1.1.

21 A means for the synchronization of tasks within an RTOS called semaphores exists, too. The NCES module
‘Semaphore’ may also be used for this purpose, too. But within the application depicted in Figure 34 it is part of
the mutual exclusion model.

EVALUATION OF PROPERTIES BY MODEL CHECKING 133

7.4.3 IEC 61499 applications
The above given description of event chain modeling provides one part of IEC 61499
applications. The second part belongs to the internal formal models of FBs, which will be
discussed in this section. Three different types of FBs exist within IEC 61499, whereupon we
will focus on the BFB. The CFBs can be modeled based on the above given description of an
event chain (the same event dispatcher as for the overall application will be used for a CFB),
and the SIFBs are not described by means of IEC 61499. For SIFBs the implementation
details need to be taken into consideration (see also Section 7.5).
Figure 35a depicts a very simple BFB example, which consists of an ECC with two states. If
the event input ‘REQ’ is issued to the FB in its initial state ‘State1’, the ECC switches to
‘State2’, executes an algorithm ‘Alg.’ and sends the output event ‘CNF’. The ECC will only
go back to ‘State1’ if the data input ‘DI’ is true.

a)

b)

Figure 35: Representation of a BFB in a) IEC 61499 and b) NCES19

The corresponding NCES model is given in Figure 35b. The execution flow within the formal
model is similar to the one given in Figure 23. If the BFB is called by an input event, at first
the input event is registered to an internal storage (‘InputEvent’) and the corresponding data
input is sampled (‘DataInput’). Both actions take some time, denoted by the time delays ‘x’
and ‘y’. The ECC is evaluated according to the procedure modeled in ‘TransitionEvalua-
tionSM’. After a certain time delay ‘z’, representing a constant time for evaluation, the
different transition conditions available within the currently active ECC state are evaluated.

134 EVALUATION OF PROPERTIES BY MODEL CHECKING

The ECC is represented in the module ‘ECC’. Herein, only ‘Transition1’ will be triggered as
‘State1’ is initially true. The evaluation result will be offered in two different ways. On the
one hand a storage element is used to represent the evaluation result. On the other hand, an
output event (the ‘Transition1’ module issues different output events according to the result of
the evaluation) is used to model the execution flow. As each evaluation will take some time, a
representative time delay ‘q’ is included in ‘Transition1’ and ‘Transition2’. In case of a
negative evaluation, the next transition will be triggered (not visible in Figure 35b). If the
evaluation was positive and a transition clears, the state in module ‘ECC’ will be changed and
the actions within the currently active state (‘Actions_State2’ in this case) will be triggered.
This includes also the sending of output events (‘event output ‘CNF’), whereas the insertion
of the connected input events is represented in the event chain model as depicted in Figure
33). Afterwards the transitions of the new active state are evaluated again. In case of a
negative evaluation, the event output ‘FBready’ is triggered, as no more actions have to be
performed within the BFB model. The sampling of data outputs, which do not concern any
event output, has to be represented within the event chain model (directly connected to the
event output ‘FBready’).

7.4.4 Evolution control application
An ECA is similar to any control application and can be modeled according to the concepts
presented in Section 7.4.2. The only difference is the use of special FBs, the basic reconfig-
ureation services. The formal model of a basic reconfiguration service is similar to the model
of any FB, as depicted in Section 7.4.3. The only difference is that a special interface is added
according to the IEC 61499 management command incorporated by the basic reconfiguration
service. The interfaces for the relevant management commands within the reconfiguration
sequence have been described already in Section 7.3:

• Manipulation of connections: CREATE or DELETE management commands are
executed in the NCES model by a single event.

• Execution control of FB instances: The operational state machine has to be added to
the NCES model according to Section 7.4.3. The START or STOP management
commands are executed in the NCES model by a single event.

• Reading of input/output variables as well as internal variables: The necessary data is
available within storage elements in the NCES model. The basic reconfiguration ser-
vices can access this data via condition arcs.

• Writing of input and internal variables: The basic reconfiguration service has to
provide the data via condition arcs. The WRITE management command is executed in
the NCES model by a single event.

7.5 Interrelation with the system environment
The description given above of formal models represent the core part for the evaluation of
DSE. The control application and the ECA are in the center of interest, but it is necessary to
include also the IEC 61499 runtime environment, the real-time operating system, and the
hardware (in terms of execution time for source code regions) to the formal description. But
according to the evaluation framework for DSE presented in Section 5.1.2 and especially the
architectural elements within a control device depicted in Figure 24 additional elements have
to be incorporated to the formal models. We summarize these elements by the term system
environment, because they are not directly involved in a system evolution step but do provide
important effects to the overall system model:

• Communication network: If there are control devices which are not part of the control
application (which will be adapted during operation) the behavior of the communica-
tion network can be used to integrate a brief description of the interaction with any

EVALUATION OF PROPERTIES BY MODEL CHECKING 135

other control device. The incentives from the communication network may be used
within any task of the control device, especially in any other IEC 61499 application.

• Additional tasks: Any task within the control device influences the execution behavior
of the control device at least due to the consumption of execution time according to
the scheduling algorithm and its own execution characteristics.

• Other applications: Any IEC 61499 application within the control device has to be
represented in the formal model, although it does not affect the functional behavior of
the control application. According to the mechanisms of R3E other applications are in-
corporated as tasks within the RTOS and therefore may be treated similar to additional
tasks.

A detailed description of all elements within the system environment will possibly cause
unacceptable effort in the engineering process. But for the evaluation of the evolution
specification properties it is essential to include also these side effects within the DSE in order
to provide significant results. As a possible solution, a very abstract behavior of these
elements may be used as an approximation. In any case it has to be evaluated if this abstract
behavior provides an over- or under-estimation of the real behavior of the element.

General behavior description
A general description of an element within the control device may be based on the occurrence
models of external events presented in Section 6.1.1. For the formal model these occurrences
may be used as triggers for some calculations within the different tasks of the RTOS or
directly as triggers from the communication system. In addition to the pure occurrence of an
event also the execution time of the element, e.g., a typical time necessary for a control
application, has to be included into the formal model. Herein the possibility of conflicts
within the formal model can be incorporated for the description of different execution times.
A conflict in NCES occurs for instance if a place is connected to several conditions via flow
arcs and there are more conditions enabled as markings are available within this place. In the
reachability graph of the system each possible combination of transitions that may clear based
on this situation will be incorporated. Accordingly different execution times of a given
element are included in the formal model.
We will consider different occurrence models for external events represented as NCES model
in order to give some examples. These modules may be used within the formal model of the
elements to describe an abstract representation of the element’s behavior. The first occurrence
model is the periodic occurrence model. The occurrence of events is characterized only by the
cycle time TP without taking into consideration any disturbances of this cycle. Figure 36
depicts the NCES model of a periodic occurrence model for the cycle time TP = 5.

Figure 36: Representation of periodic event occurrences (5 time units)

The module may be started and stopped by the input events ‘Start’ and ‘Stop’. As soon as the
module is started, the internal clock in place ‘p3’ modeled by markings starts counting and

136 EVALUATION OF PROPERTIES BY MODEL CHECKING

issues an event output ‘eo’ every 5 time units. Transition ‘t5’ is used to remove all markings
from place ‘p3’ in order to stop the emitting of output events.
A more complicated model is the periodic occurrence of events with jitter. Next to the precise
cycle time TP an event may occur already before or after the cycle time, bounded by the
jitter J. Figure 37 represents a model with cycle time TP = 5, whereupon a jitter J of one time
unit is incorporated, too. The module may be stopped and started as described already above.
Based on the time resolution Tres and the jitter time J, different paths are possible. The ‘Start’
event will add a marking to place ‘p3’, which represents the point in time exactly at the
beginning of the possible time window for emitting events. Accordingly an event may be
issued immediately (path over transition ‘t3’), or every next time unit until the end of the time
window (two times the jitter time J) is reached. In Figure 37 three different paths are possible,
because the jitter time and the time resolution are equal and set to one (J = Tres = 1). In order
to reach again the same point in time represented by place ‘p3’ in all possible paths, an
additional time delay after the issue of an output event ‘eo’ has to be added in each path. The
reachability graph of ‘Periodic_5_Jitter_1’ includes all possible occurrences of output events
‘eo’ according to the parameters cycle time TP, jitter time J, and time resolution Tres.

Figure 37: Representation of periodic event occurrences (5 time units) with jitter (1 time unit) 19

The last kind of occurrence model for external events presented here is the bounded model.
The bounded model is characterized by two bounds: the minimal and the maximal inter-
arrival times (Tmin and Tmax). Any time delay between these two bounds is possible for the
occurrence of two consecutive events. In the formal model of a bounded event occurrence
additionally the time resolution Tres used in the model has to be taken into consideration.
Figure 38 depicts a model with a minimal inter-arrival time of 3 time units (Tmin = 3), a
maximal inter-arrival time of 5 time units (Tmax = 5), and a time resolution of one time unit
(Tres = 1). Accordingly there are again three paths available within the module. Place ‘p3’
represents the point in time when an output event ‘eo’ has just been emitted. Each path
originated in place ‘p3’ describes a certain inter-arrival time for events, whereas transition ‘t3’
represents the minimal und transition ‘t5’ the maximal inter-arrival time. The reachability
graph of ‘Bounded_3_5’ will include any path based on the above mentioned parameters.

EVALUATION OF PROPERTIES BY MODEL CHECKING 137

Figure 38: Representation of bounded event occurrences with minimal (3 time units) and maximal (5 time

units) inter-arrival time19

7.6 Definition of evolution specifications
The description of the overall system architecture in terms of formal models is the first part
that has to be defined for the verification by model checking. The second part concerns to the
definition of the evolution specifications. According to the consideration of evaluation means
for the different system integrity characteristics and evolution specifications in Section 5.2
several properties need to be fulfilled by a system evolution step. In order to define these
properties two different tasks have to be handled:

• Specification of properties for DSE in temporal logic: The most important way in
order to define specification for model checking is the use of temporal logic. We will
discuss the use of specification patterns utilizing the representation of the elements
within the system architecture presented above. The ACS customer does not need to
be faced with specifications in temporal logic according to Requirement (8) “User-
friendly definition of specifications”.

• Definition of properties for DSE: The different system integrity characteristics that
need to be checked by model checking for the reconfiguration sequence have to be
analysed and appropriate general definitions need to be provided.

In addition we will investigate possible problems when restricting the scope for the verifica-
tion by model checking to the reconfiguration sequence, which may be used to restrict the
model of the plant and control application also only to a limited part of the overall life time of
the plant.

7.6.1 Specifications in natural language
The use of temporal logic is very challenging for ACS customers as they often lack an
appropriate background in the field of computer science. This situation has been highlighted
for instance in Dwyer et al. (1998) for the use of temporal logic in general. They propose
property specification patterns in order to simplify the usage of specifications in temporal
logic. A property specification pattern provides a general description for a specific problem,
which can be adapted to the specific property of the ACS customer.

138 EVALUATION OF PROPERTIES BY MODEL CHECKING

Property specification patterns
A categorization of property specification patterns may be applied according to different
characteristics. The following description follows Dwyer et al. (1998) and
Dwyer et al. (1999), which have been continuously adapted and improved online in [53].
Appendix E provides a more detailed description of the different specification patterns. The
main categorization is the so-called pattern hierarchy, which provides an order of patterns
according to their semantics (see Figure 39). The main differentiation is based on whether a
single item or an order of items is taken into consideration [53]:
Occurrence patterns: “Occurrence patterns talk about the occurrence of a given event/state
during system execution.”

• Absence property pattern: “To describe a portion of a system’s execution that is free
of certain events or states. Also known as never.”

• Universality property pattern: “To describe a portion of a system’s execution which
contains only states that have a desired property. Also known as henceforth and al-
ways.”

• Existence property pattern: To describe a portion of a system’s execution that con-
tains an instance of certain events or states. Also known as eventually.”

• Bounded existence property pattern: To describe a portion of a system’s execution
that contains at most a specified number of instances of a designated state transition or
event.”

Figure 39: Pattern hierarchy, Dwyer et al. (1999)

Order patterns: “Order patterns talk about relative order in which multiple events/states occur
during system execution.”

• Precedence property pattern: “To describe relationships between a pair of
events/states where the occurrence of the first is a necessary pre-condition for an oc-
currence of the second. We say that an occurrence of the second is enabled by an oc-
currence of the first.”

• Response property pattern: “To describe cause-effect relationships between a pair of
events/states. An occurrence of the first, the cause, must be followed by an occurrence
of the second, the effect. Also known as follows and leads-to.”

• Chain precedence property pattern (one cause two effects version): “To describe a
relationship between an event/state p and a sequence of events/states (s, t) in which the
occurrence of s followed by t within the scope must be preceded by an occurrence of
the sequence p within the same scope.”

• Chain response property pattern (one stimulus two responses version): “To describe
a relationship between a stimulus event (p) and a sequence of response events (s, t) in
which the occurrence of the stimulus event must be followed by an occurrence of the
sequence of response events within the scope.”

EVALUATION OF PROPERTIES BY MODEL CHECKING 139

Scope of patterns: In addition to these patterns the scope for each pattern may be constrained
according to different aspects. Dwyer et al. (1998) distinguish five different kinds of scopes
(see Appendix E for a more detailed description), as for instance the specification has to be
valid globally, before a certain condition or after a certain condition. Furthermore two
different variants for scopes that describe validity in between of different conditions are
mentioned.
Application for the ACS customer: Each pattern with a specific scope is represented by an
extensive description. The formula may be given in different kinds of temporal logic; a
description of the aim of the pattern in natural language as well as a different example for its
application can be included. The ACS customer is able to select the pattern which fits best to
the specification he wants to define and only has to provide the data to parameterize the
formula in temporal logic. According to the features provided by the engineering tool the
ACS customer may be supported by dialogs and selection wizards, as this has been proposed
for instance in Bitsch (2003) for the special purpose of safety requirement specifications.

Representing system architecture elements in specifications
In order to apply the above given property specification patterns for the evaluation of DSE,
the elements of the formal models (places and transitions) have to be used for parameteriza-
tion. In the best case the ACS customer does not need to mention any place or transition by
himself, instead he should use the same means he has already used for modeling control
applications: the elements of the IEC 61499 standard. Based on the models provided in
Section 7.4 the following mappings can be used in order to identify places and transitions in
the NCES models within the architectural elements of the control device:

• Activity of tasks: The scheduler provides a condition output in order to control the
execution of tasks via the ‘enable’ condition input (see Figure 30). The activation of a
task is represented by the place within the scheduler which is connected to this condi-
tion output. In order to check the activity of certain event chains, the activity of the re-
lated tasks has to be checked. As the callback function of an interrupt is also repre-
sented by a task, the same place within the scheduler may be used to describe the acti-
vation of interrupts.

• Usage of critical section within R3E: As depicted for the example event dispatcher a
critical section within the formal model is bounded by modules for the registration of
the execution flow. The corresponding storage element (e.g., places ‘p1’ and ‘p2’ in
module ‘Semaphore’ in Figure 34) can be used to address the usage of these critical
regions in the specifications.

• Sending of output events: The model of a connection can be used to address the send-
ing of an output event within the formal model. Place ‘p4’ in Figure 26 (managed
event connection) depicts exactly the situation when the connected input event is put
into the event dispatcher. The concrete type of the FB emitting the event can be ne-
glected in this case.

• Data outputs: A data output of an FB may be represented in the internal model of the
FB, but it can be addressed also by using the model of the data connection. The inter-
nal storage of the data connection (e.g., places ‘p5’ and ‘p6’ in Figure 27) can simply
be used to represent the data output of an FB without taking care of the internal repre-
sentation of the FB.

• Triggering of BFBs: The triggering of a BFB by a certain input event is registered
within a module (e.g., ‘InputEvent’ in Figure 35b) including a storage element for reg-
istration of the input event. The places of this storage element can be used to address
the triggering of a BFB in a specification.

140 EVALUATION OF PROPERTIES BY MODEL CHECKING

• ECC state: The states of a BFB according to its ECC are directly represented as places
in the model of a BFB. The module ‘ECC’ in Figure 35b includes a place for each
state of the ECC, therefore these places can be used to address the state of a BFB. A
state transition may be identified by the transitions mentioned in the modul ‘ECC’,
which directly represent the transitions of the ECC.

• Creation and deletion of connections: The models provided for data and event con-
nections include a state machine that defines the state of a connection, whether it is
available or not. The places within these modules (see Figure 26 and Figure 27) can be
used to address the current status of the connection. The transitions within the state
machine represent the moment in time when the management command is executed.

• Operational state of managed FBs: The operational state machine for managed FBs
is directly represented in the formal model of FBs (see Figure 28). The incorporation
of the operational state in the specification is provided by these states, the execution of
state changes is characterized by the appropriate transitions.

The interrelation of parameters within the specifications and the elements of the formal model
is a matter of support in the engineering tool. Based on the rules given above the ACS
customer will be able to define the variables within the property specification patterns without
being in touch with the formal model itself.

7.6.2 Evolution specifications
The various properties that need to be checked in order to achieve system integrity during the
execution of a system evolution step have been defined already in Section 5.2.1. According to
the discussion of evaluation means in Section 5.2.2, the following properties of the evolution
specification need to be checked by using verification by model checking:
Global consistency: Any specification that has been defined for the normal operation of the
ACS has to hold also during the execution of a system evolution step. The specifications for
normal operation have been split up in Section 5.1.1 into plant, process, and product specifi-
cations.
Local consistency: Similar to global consistency.
Active references: This properties aims at the check of interrelations between different parts
of the control application based on services within the underlying system configuration. In an
IEC 61499 based system these interrelations are based on the internals of SIFBs. If there are
any disruptions of such an interrelation the properties for normal operation (plant, process,
and product specification) will be violated. Based on the detailed model of these interrelations
and their manipulation during the system evolution step it is sufficient to check the properties
for normal operation.
State management: One main prerequisite for DSE is to disturb the operation of the plant as
little as possible. This is especially achieved by appropriate transition management policies as
described in Section 3.5 within the ECA. In order to check the integrity characteristic for state
management, the effect to the plant under operation has to be taken into consideration. There
are two different situations that need to be distinguished:

 The actions within the system evolution step commence a disturbance of a certain
amount into the system, which will disappear in a short time frame apart from the
execution of the DSE. Within the property specification patterns the absence pattern
for a specific time frame (which can be specified by a beginning and an end condition)
may be used (Appendix E, Equation 35). On the other hand it is possible to use timed
CTL for the proposed model checker SESA, which enables the restriction of temporal
parameters to a certain time frame. Accordingly the absence pattern for the considera-
tion of all paths after a certain condition may be adapted to

EVALUATION OF PROPERTIES BY MODEL CHECKING 141

AG (Q Ø AG[0, a](Ÿp)) (13)

where Q marks the start of the reconfiguration sequence,
 [0, a] is the time frame for the observation of disturbances, and
 p describes the occurrence of an exceeding disturbance.

Equation 13 uses the operator G with a time scope of a certain upper limit a, which
does represent a sufficient time frame for the DSE of the control application. Based on
restrictions of SESA the operator G is not supported with such a time scope. By using
equivalences within the temporal operators in CTL Equation 13 can be formulated as

AG (Q Ø ŸEF[0, a](p))22, (14)

which will be supported by the model checker SESA.
The open question for the application of Equation 14 is the selection of an appropriate
property for condition p that describes the occurrence of an exceeding disturbance.
This condition is highly application dependent. When we consider for instance the ex-
change of the controller within a closed-loop control circuit (see Section 4.2.3), we
may use the difference between the reference value and the control value to determine
condition p. If the ACS customer is aware of the concrete value of the control variable
(e.g., because the trigger for the reconfiguration sequence is based on this value) a
simple upper or lower limit for the control variable may be chosen as condition p. Of
course, also any other description using temporal logic may be used in order to define
condition p.

• The second possibility is that based on the DSE an incentive to the system is intro-
duced which leads to a continuously growing disturbance. A concrete example for a
closed-loop control example is that the controller becomes unstable. The transient will
be very small in the first time after the DSE, but will lead to high disturbances to the
overall system later on. Therefore a detection of this kind of fault will not be possible
in a given time frame after the start of the reconfiguration sequence. An infinite time
frame is not possible because for instance a high difference between reference value
and control value may be part of the normal operation of the plant (when the reference
value is changed stepwise). But as this kind of failure will lead to a permanent disrup-
tion of the normal plant behavior, it is possible to use the specifications for normal op-
eration (plant, process, and product specification) in order to check for continuously
growing disturbances commenced by the system evolution step.

Real-time constrained operation: The system integrity characteristic for real-time con-
strained operation aims at the execution of the ECA, which has to fulfill certain real-time
constraints, too, because it influences a control application with real-time constraints. Next to
the properties for the functional behavior of the ECA also the temporal behavior has to be
taken into consideration (see also Requirement (1) “Temporal behavior”). The reconfiguration
sequence will be executed only once and has to be finished in a certain amount of time
according to the control application. Based on the property specification patterns several
possibilities exist to check the real-time constrained operation of an ECA:

• The property of real-time execution may be related to the operation of the control
application. The existence pattern for a specific time frame (which can be specified by
a beginning and an end condition) may be used without taking care of the concrete
execution time of the ECA in the following way:

AG (Q v ŸR Ø A [ŸR W (p v ŸR)])23, (15)

22 Based on the equivalence AG f = ŸEF(Ÿf), see for instance Clarke et al. (1999, Section 3.2).

142 EVALUATION OF PROPERTIES BY MODEL CHECKING

where Q marks the start of the reconfiguration sequence,
 R marks a condition within the control application, when the
 reconfiguration sequence has to be finished, and
 p describes the end of operation of the reconfiguration sequence.

• The execution time of the reconfiguration sequence may be checked based on timed
CTL formulas, too. As basis the universality pattern after a certain condition (Appen-
dix E, Equation 39) may be enhanced by the application of a specific time frame. As
already depicted for Equation 13 the limitations of the model checker SESA require a
reformulation of this pattern to

AG (Q Ø ŸEF[a, b](Ÿp))22, (16)

where Q marks the start of the reconfiguration sequence,
 p describes the end of operation of the reconfiguration sequence,
 and
 [a, b] is the time frame when the operation of the ECA has to be
 finished (a may be set to zero).

• Based on the system behavior described in the system model it is possible to use veri-
fication by model checking not only to check some properties but additionally also
performance characteristics may be evaluated in order to provide additional informa-
tion for the ACS customer. Clarke et al. (1999, Section 16.4) describe two algorithms
that are able to calculate the minimal and maximal delay between a request and the
corresponding response. For the use of these algorithms the request could be marked
by the start of the reconfiguration sequence, and the corresponding response would be
the end of the reconfiguration sequence. The ACS customer receives the BCET and
WCET execution time of the reconfiguration sequence, which may be helpful for the
fine-tuning of the behavior of the system. The model checker SESA does not provide
such algorithms.

7.6.3 Evaluation of small portions of system behavior
DSE is a single action that influences the behavior of the overall system, as already depicted
in Section 1.1. Therefore the interesting part for verification by model checking is limited to
the execution of the reconfiguration sequence, which is related to a very small part of the
overall system behavior. Accordingly it may be possible to restrict the formal model of the
system to this small part in contrast to modeling the overall system behavior, which is
especially interesting for the model of the plant because it is a highly time consuming task
(other parts may be generated automatically). But on the other hand there are also some risks
that need to be evaluated for the restriction to a small portion of system behavior:

• The model of the plant may lack details that are important for the execution of DSE.
The system behavior may not include effects on the ECA in certain circumstances.

• The variety of paths from the initial state of the plant to the starting point of the recon-
figuration sequence may be very high. A limited system model can be enhanced by us-
ing different initial states in order to incorporate the high variety of the overall system
model. But it may be difficult to define the different initial states of the limited system
model.

• Several integrity characteristics within the evolution specifications are checked by
using the specifications for normal operation (plant, process, and product specifica-

23 A description of the weak until operator W is given in Appendix E.

EVALUATION OF PROPERTIES BY MODEL CHECKING 143

tion). Therefore, it is necessary that the model of the system provides all information
about these properties; otherwise the check for the evolution specifications will not be
possible in all details.

7.7 Summary
The evaluation of properties for the execution of a system evolution step by means of model
checking is restricted to the reconfiguration sequence. Only in this sequence the functional
behavior of the control applications will be actively changed. Based on the methodology for
model checking three tasks have to be taken into consideration: design of the system model,
definition of the specification, and execution of the model checking algorithm.
The system model has to incorporate two essential parts for DSE: the real-time behavior
within formal models and the dynamic reconfiguration of the model. The execution behavior
of elements within a control device is not only characterized by a model of time within the
modeling language. It is essential to provide models that are capable to model interruptible
time delays within the formal models, because a real-time computer system is characterized
by the preemption of tasks in the RTOS and external event sources. On the other hand, the
dynamic reconfiguration of models has been taken into consideration. No means exist in
modeling languages to directly include changes during the evaluation process, as the method-
ology of model checking is based on the assumption of a given model. But the existence of
different models can again be modeled within the execution flow of the formal model, which
has the same effect in the behavior of the overall system. The different basic reconfiguration
services that may be used within the reconfiguration sequence of a system evolution step can
be modeled in this way.
The definition of specifications is especially problematic for ACS customers. The usage of
property specification patterns provides a good basis, which enables the determination of
properties without directly using temporal logic. The necessary parameters for the different
patterns can be customized based on the formal model, which again may be abstracted by
means of the programming language for the control application. In addition, the definition of
a specification in terms of a pattern provides independence from a special dialect of a
temporal logic. The main prerequisite for DSE is that the normal operation of the plant will
not be disturbed. Accordingly, several integrity characteristics can be checked by using the
specification for the normal operation of the plant. In addition, the properties state manage-
ment and real-time constrained operation may be taken into consideration by explicit specifi-
cations in order to achieve additional information about the quality of the system evolution
step.

 145

8 Demonstration and Experiments

Chapter 8

Demonstration and Experiments

In order to provide a proof of the concept for the proposed methodology for the evaluation of
DSE it is necessary to provide the overall description of a control device, the control applica-
tion, and the modeled ECA. We will use a microcontroller platform, which is installed for
different purposes in the Odo Struger Laboratory at the ACIN. The given example represents
a typical situation for the exchange of some parts within a control application and has been
executed on this platform. The evaluation of the example will be structured into KAPPA-
based calculations, which have been integrated in an engineering tool, as well as verification
by model checking, whereas the generation of appropriate models has been done by hand.
Next to this example, two further experiments dedicated to the verification by model checking
are presented as a more detailed description of aspects for formal modeling within the
evaluation framework proposed within this work. Due to limitations of the used model
checking tool an integration of these aspects into the evaluation example was not possible. In
detail, the handling of the priority inversion policy for the access to the event dispatcher and
the integration of a plant model are taken into consideration.

8.1 Typical example on a specific test model
The demonstration is based on the engineering tool, which has been developed during the
research project εCEDAC [8]. This environment provides on the one hand an appropriate
framework for the engineering of IEC 61499 based control systems, and on the other hand has
been extended to integrate the proposed modeling methodology for DSE. The evaluation of
properties based on KAPPA-based calculations has been added to the engineering tool and
therefore represents an integral part of the engineering tool. The evaluation of properties by
model checking has been based on the tools Visual Verifier, Visual Editor and TNCES Editor
(see also Appendix C.3).

8.1.1 Demonstration control device
The demonstration control device is based on an evaluation board for a microcontroller and
would not be used in commercial applications in this configuration. But the missing elements
only concern external parts such as I/O interfaces and therefore do not restrict the functional
elements of the demonstration control device. According to the description about the architec-
tural elements of the system model used for verification by model checking (see Figure 24 in
Section 7.1) the concrete representation of the three gray shaded elements will be considered
in the following explanations.

Processing unit
The evaluation board phyCORE-AT91M55800A (Phytec, 2003) from the company Phytec
Messtechnik GmbH [43] utilizes an ATMEL AT91M55800A microcontroller, clock genera-
tion, memory modules as well as different interface peripherals (e.g., an Ethernet controller).

146 DEMONSTRATION AND EXPERIMENTS

The performance of the processing unit will be described by the measurements of parameters
for the RTOS and the R3E in the following paragraphs. These values are usable only for this
special configuration of the control device.

Real-time operating system
The RTOS eCos, which has been described briefly already in Section 7.4.1 represents the
basis for any program execution within the control device builds the. The various configura-
tion parameters for eCos have to be incorporated into the formal model. In addition, also the
execution time for explicitly recognizable actions within the operating system has to be
included according to the given processing unit. In case of the above mentioned evaluation
board phyCORE-AT91M55800A the measurements of these parameters are summarized in
Table 5 according to the work done by Ferhatbegovic (2007) under supervision of the author.

Time parameter Value

Task switching time 82,0 µs

Task suspension 10,1 µs

Task resumption 13,3 µs

Task creation 85,5 µs

Task deletion 96,0 µs

Table 5: Real-time behavior of eCos on the demonstration control device, Ferhatbegovic (2007)

Real-time reconfiguration runtime environment
The control device utilizes the IEC 61499 compliant runtime environment described in
Zoitl (2007) with some enhancements, which are related to additional functionality with
respect to basic reconfiguration services. A detailed description of the execution behavior of
R3E has been provided in Section 6.1.2 (execution time calculation for event chains) as well
as Sections 7.4.2 and 7.4.3 (with regard to the formal model of the elements of the runtime
environment and the control application). For both purposes time parameters for the real-time
behavior on a specific processing platform need to be provided in order to verify the different
properties for DSE. Table 6 depicts a set of parameters which are necessary for the evaluation
of control applications as well as FBs (as far as they are independent from a specific FB type),
enhanced by the work done by Mandl and Zhang (2008) under supervision of the author.

Time parameter Value

Insertion of an event Tentry (only 1 event, no data) 23,2 µs

Fetching of an event and triggering of the correspond-
ing FB Tinvoke

11,0 µs

Offset for data sampling TDS,offset 67,4 µs

Data sampling of INT data type Tsample,INT 6,8 µ,s

Evaluation of active ECC state TAS 0,8 µs

Evaluation of an ECC transition with
 “1” condition TCond,1

 Boolean condition TCond,bool
 event as condition TCond,event
 event and Boolean condition TCond,mix

6,9 µs
7,61 µs
7,02 µs
7,60 µs

Constant time for algorithm execution TAlg,const 6,4 µs

Table 6: Real-time behavior of R3E within the demonstration control device, Mandl and Zhang (2008)

DEMONSTRATION AND EXPERIMENTS 147

KAPPA vector of the demonstration control device
All information about the demonstration control device has to be provided in an appropriate
form to the engineering tool, in order to integrate it into the evaluation process. Next to the
above mentioned timing parameters for instance also memory consumption, FB types, or the
configuration parameters of eCos need to be included. Appendix F depicts a description file
representing the KAPPA vector of the demonstration control device (without any control
applications) based on FDCML, as already described in Section 5.3.2.
The description of a control device can be used within the engineering tool to provide a more
detailed view of the ACS. Figure 40 depicts the graphical representation of the IEC 61499
device ‘myDevice’ which is located on the demonstration control device within the εCEDAC
engineering tool. Based on the KAPPA vector information the communication interface and
the process interface of the device can be described according to the actual configuration.
Furthermore two IEC 61499 resources exist within ‘myDevice’: The resource ‘MGR’ is part
of each device according to the used compliance profile, ‘Res_App1’ is established during the
engineering process.

Figure 40: Demonstration control device within the εCEDAC engineering tool

8.1.2 Typical control example
In order to use a relevant practical example for the demonstration of DSE and its evaluation,
the following aspects have been taken into consideration:

• Internal variables of FB instances have to be involved in the evolution process in order
to check also state management characteristics.

• The control application should be independent of a plant as well as the network in
order to have the demonstration focused on the evolution process.

The resulting control application for the practical example adds a certain value to an internal
element. The periodic addition is triggered by the timer and ends after the internal variable
has exceeded a certain limit. A similar situation can be found for a closed-loop control circuit
whose controller has to be triggered (see the example given in Section 4.2.3), the exchange of
a filter in the feedback loop of a control circuit, or the exchange of an encryption algorithm of
a communication channel. Figure 41 depicts the initial state of the chosen typical control
application, and Figure 42 provides in the upper part the user interface in order to interact
with this control application. The control application uses the FB ‘TAKT’ in order to generate
the necessary trigger for the calculations. The user controls ‘TAKT’ via the check box
‘START’, which sends a Boolean value to the control application. This value is decoded by
the FB ‘E_SWITCH’, whose output events start or stop the FB ‘TAKT’. During each clock
cycle the FB ‘E_CTU’ is triggered, which increases a counter variable (‘E_CTU.CV) at each
call, starting from the value 0. This data output is used as input for the addition within the FB
‘ADD_INT_TO_INTERNAL’ (FB ‘CONV_UINT2INT’ is necessary for a type conversion
from the UINT to the INT data type). The output value ‘ADD_INT_TO_INTERNAL.OUT’

148 DEMONSTRATION AND EXPERIMENTS

represents the result of the addition of this value and the internal variable. Both values, the
data output ‘CV’ from ‘E_CTU’ and the data output ‘OUT’ from
‘ADD_INT_TO_INTERNAL’ are sent to the user interface at each cycle of the control
application. FB ‘CHECK_INT_GREATER’ provides the evaluation if the current value of
variable ‘ADD_INT_TO_INTERNAL.OUT’ exceeds the given limit, which is set to 100 in
Figure 41. If the condition ValA > ValB is fulfilled, the Boolean output
‘CHECK_INT_GREATER.Result’ is set to true and the FB ‘E_PERMIT’ will send an output
event ‘EO’ which stops ‘TAKT’.

Figure 41: Typical control application example (initial state)

Two different system evolution steps have been modeled for this control application. The
corresponding CECA is depicted in Figure 43, which includes two EECFBs:

• ‘Change_Threshhold’ will change the limit for the evaluation of the current value of
the integrating variable. ‘CHECK_INT_GREATER.ValB’ is changed to a different
value based on the execution flow of the control application. We will not go into detail
for this system evolution step.

• ‘Subtract’ includes a bigger evolution within the control application. The task of DES
is to exchange the summing up the ‘E_CTU’ output value by subtraction from the in-
ternal element. In order to stop the control application after exceeding a given limit,
also a different kind of check has to be applied, if the internal element falls below a
defined value. We will take into consideration this system evolution step and discuss
the application of the evaluation methodology.

Figure 42: Application and evolution user interface for the typical control example

The two EECFBs are executed sequentially, whereas the successful execution of a sequence
of the system evolution step is the precondition for starting the next sequence. The initial
trigger for the execution of each system evolution step is provided by the corresponding user
interface for the DSE as depicted in the lower part of Figure 42. Furthermore also a feedback
from the execution of the EECFBs is provided to the user: ‘CNF-EROIx’ signals that event

DEMONSTRATION AND EXPERIMENTS 149

output RDINITO has been emitted, and ‘Result-EROIx’ represents the value of the data
output ‘RDINIT_QO’ (x stands for 1 or 2). Each EECFB may be triggered independently by
the user by using the buttons ‘Start-EROIx’.

Figure 43: CECA including two system evolution steps for the typical control example

System evolution step Subtract
The ECA included within the EECFB ‘Subtract’ is given in Appendix G, Figure 72. We will
describe the actions within the EECFB based on the control application’s model. Figure 44
depicts a virtual view of the control application. Next to the initial system state (solid lines)
also the additional items of the final system state (dashed lines) are included. This situation
never occurs during the system evolution step. The real situation within the control applica-
tion after each of the three main sequences of the system evolution step is depicted in
Appendix G: Figure 73 provides the situation after the execution of the RINIT sequence,
Figure 74 after the RECONF sequence, and Figure 75 after the RDINIT sequence (which is
already the final system state from the control application’s point of view). The CECA itself
is located in a separate resource within the control device, therefore its download and deletion
is not visible within the control application.

Figure 44: Typical control application: mixed representation of initial and new system state

RINIT sequence
The RINIT sequence is responsible for the preparation of the necessary elements within the
control application for the new system state. The new functionality of subtracting the data
output ‘E_CTU.CV’ from an internal variable will be provided within the FB
‘SUB_INT_FROM_INTERNAL’, which is established during this phase. Furthermore also
the FB ‘CHECK_INT_LESS’ is necessary, because the new condition ValA < ValB has to be

150 DEMONSTRATION AND EXPERIMENTS

evaluated. Next to these two FB instances also the input connections for both FBs are created.
These are

• ‘CONV_UINT2INT.CNF’ to ‘SUB_INT_FROM_INTERNAL.REQ’,
• ‘CONV_UINT2INT.OUT’ to ‘SUB_INT_FROM_INTERNAL.IN’,
• ‘E_CTU.RO’ to ‘SUB_INT_FROM_INTERNAL.INIT’, as well as
• ‘SUB_INT_FROM_INTERNAL.CNF’ to ‘CHECK_INT_LESS.REQ’, and
• ‘SUB_INT_FROM_INTERNAL.OUT’ to ‘CHECK_INT_LESS.ValA’.

After starting the two new FB instances within the RINIT sequence the internal value within
‘SUB_INT_FROM_INTERNAL’ as well as the check for falling below the given limit are
calculated at each cycle of the control application. But these new calculations do not have any
impact to the behavior of the control application.

RECONF sequence
Within the RECONF sequence only the output connections of the marked application parts
within Figure 44 have to be changed. The ECA splits up these actions into two parts: the
connections within the logic part of the control applications and the connections to the user
interface. We will describe only the first part of actions, as herein also the transition manage-
ment has to take place:

• DELETE the connection from ‘CHECK_INT_GREATER.CNF’ to ‘E_PERMIT.EI’
• DELETE the connection from ‘CHECK_INT_GREATER.Result’ to

‘E_PERMIT.PERMIT’
• READ the internal variable of ‘ADD_INT_TO_INTERNAL’
• WRITE the internal variable of ‘SUB_INT_FROM_INTERNAL’
• CREATE the connection from ‘CHECK_INT_LESS.Result’ to

‘E_PERMIT.PERMIT’
• CREATE the connection from ‘CHECK_INT_LESS.CNF’ to ‘E_PERMIT.EI’

Based on the conditions within the plant there may be different real-time constraints for the
execution of these two parts, as the logic within the control application may be more impor-
tant than the correct update of the user interface. Within the ECA given in Appendix G,
Figure 72, there are no real-time constraints modeled. The control application and the ECA
are executed in different resources of the same device, but according to the point in time when
the ACS customer triggers the system evolution step, it may be possible to violate specifica-
tions of the application and introduce disturbances due to the DSE.

RDINIT sequence
Within the RDINIT sequence the roles between the two marked application parts within
Figure 44 have changed. The gray shaded part is now active, and the FBs
‘ADD_INT_TO_INTERNAL’ and ‘CHECK_INT_GREATER’ do not have any effect on the
application behavior (the output connections of ‘CHECK_INT_GREATER have been
deleted, but the FBs are still calculated). Within this sequence both FBs have to be stopped,
their input connections are deleted, and at the end both FBs are deleted.

8.1.3 KAPPA-based calculations
The evaluation of system integrity characteristics based on KAPPA-based calculations has
been identified as appropriate evaluation means in Section 5.2.2 for global and local consis-
tency, dependent operation, and requirements of resources. As basis for these evaluations a
wizard has been implemented in the εCEDAC engineering tool, which will be described in
general below. Furthermore the evaluation itself will be taken into consideration.

DEMONSTRATION AND EXPERIMENTS 151

Evaluation wizard within the εCEDAC engineering tool
The εCEDAC engineering tool is an IEC 61499 compliant software which has been enhanced
towards the modeling of DSE. For the description of control devices, which is out of the focus
of the IEC 61499 standard, the format depicted in Sections 5.3.2 and 8.1.1 is used within the
engineering tool to represent the current system state KAPPA. A given control device has to
be represented by using an XML description file (see Appendix F for an example) and can be
integrated in the type library of the engineering tool for further use within the engineering
process. Figure 45 shows a screenshot of the εCEDAC engineering tool in the background.
For the evaluation of evolution specifications based on KAPPA-based calculations an
evaluation wizard has been integrated into the engineering tool. The different pages of the
evaluation wizard are depicted in the foreground of Figure 45.

Figure 45: Screenshot of the eCEDAC engineering tool and the evaluation wizard

The evaluation wizard consists of five pages, which are related to the different sequences of a
system evolution step (except the deletion of the ECA which needs no evaluation):

• Page 1: Selection of the EECFB which should be verified within a CECA.
• Page 2: This step is related to the download of the ECA. As first step, the current sys-

tem state is evaluated. Herein the currently active IEC 61499 applications are queried
from the specified control devices. According to Figure 21 ‘KAPPA 1’ is now avail-
able within the evaluation wizard. The wizard page takes into consideration the overall
CECA, which needs to be downloaded, and evaluates the requirements of resources.
Furthermore, the KAPPA vector is enhanced with the CECA, which means that
‘KAPPA 2’ is created according to Figure 21, the initial situation for the RINIT se-
quence.

• Page 3: The RINIT sequence is handled within this wizard page. The FBs as well as
their execution order related to the RINIT sequence are identified. Based on this in-
formation, the properties requirements of resources and dependent operation are evalu-
ated. During the evaluation for dependent operation, the given system state is adapted
according to the basic reconfiguration services included in the RINIT sequence and
the initial system state for the RECONF sequence (‘KAPPA 3’ in Figure 21) is cre-
ated.

• Page 4: Similar to the RINIT sequence this wizard page identifies the FBs and their
execution order for the RECONF sequence, evaluates the properties requirements of

152 DEMONSTRATION AND EXPERIMENTS

resources and dependent operation, and finally provides the initial system state for the
RDINIT sequence (‘KAPPA 4’ in Figure 21).

• Page 5: The last wizard page is devoted to the RDINIT sequence. Again the similar
actions as already described above for RINIT and RECONF sequence are executed
within this wizard page. As final step the initial system state for the deletion of the
ECA is created (‘KAPPA 5’ in Figure 21).

Each system state, which is generated by the evaluation wizard, is available within the
engineering environment for documentation purposes. Since the last step, the deletion of the
ECA, does not need any evaluation, the evaluation wizard does not take this step into account.

Check for global and local consistency
The given typical example for DSE does not mention the real-time constrained execution of
the control application, therefore the evaluation for global and local consistency within the
preparation phase of the system evolution step is not necessary. But in order to give an
impression of the effort related to this property, we will describe the evaluation process
briefly. The evaluation has to be split up into the two sequences within the preparation phase:
download of the ECA and RINIT sequence.
For the download of the ECA, the runtime environment is expected to handle the download
procedure without influences on the control application. But the interrelations between the
ECA and the control application have to be taken into consideration, as there might be
additional FBs triggered within the context of the control application. For the above given
typical control example no additional interrelations between the control application and the
CECA (especially the EECFB ‘Subtract’) exist.
The RINIT sequence has to be considered in more detail, as there are new FBs which are
included into the control application. Figure 46 depicts the situation after the execution of the
RINIT sequence, yet only the relevant part for the evaluation is presented. The new FBs
‘SUB_INT_FROM_INTERNAL’ and ‘CHECK_INT_LESS’ as well as their input connec-
tions (marked by bold lines in Figure 46) are added and have to be executed in the same
context as the control application.

Figure 46: Relevant control application part for the evaluation of global and local consistency

There are two different event chains within the control application, which are affected by the
new FBs. The first one is the calculation of the overall application, which is triggered by
‘TAKT’ now has to additionally execute both new FBs. Secondly a possible interruption of
the operation by a stop command from the user interface has to be taken into consideration,
where only the new FB ‘SUB_INT_FROM_INTERNAL’ will be executed.

• The additional effort within the event chain triggered by ‘TAKT’ starts with the inser-
tion of the input event ‘SUB_INT_FROM_INTERNAL.REQ’. Of course, this event
will be fetched and the related FB is executed, which again sends an output event in-

DEMONSTRATION AND EXPERIMENTS 153

terrelated to ‘CHECK_INT_LESS.REQ’, and finally ends with the call of
‘CHECK_INT_LESS’. According to Equation 7 the additional time effort within this
event chain is

()
()

sT
ssssssT

REQTT
TREQTTTT

addEC

addEC

LESSINTCHECKinvoke

entryINTERNALFROMINTSUBinvokeentryaddEC

µ
µµµµµµ

8,456
5,1650,114,970,1670,119,4

,

,

__

2,___1,,

=

+++++=

++

++++=

. (17)

The first insertion of an event Tentry,1 is very fast because ‘CONV_UINT2INT’ already
includes one connected input event. Only the additional effort for the second con-
nected input event (see Mandl and Zhang (2008) for more details) needs to be taken
into consideration. Tentry,2 includes in contrast the overall effort for sending one event
as well as the latching of one data output. According to Table 6 this time can be calcu-
lated as Tentry,2 = Tentry + TDS,offset + Tsample,INT (the data types BOOL and INT need the
same time for sampling).

• For the second event chain, which is triggered by the user interface, the additional
effort within the control application can be calculated as

()

sT
sssT

INITTTTT

addEC

addEC

INTERNALFROMINTSUBinvokeentryaddEC

µ
µµµ

4,119
5,1030,119,4

,

,

___,2

=

++=

++=

. (18)

For the evaluation of global and local consistency of the control application the new time
consumptions for all event chains within the control device have to be calculated and the
synthetic utilization Usyn(t) needs to be checked with the boundary given from the scheduling
theory for the used scheduling algorithm within the control device (see Section 6.1.1).

Check for dependent operation
The system integrity characteristic dependent operation aims at the check for the applicability
of basic reconfiguration services within the ECA. Therefore, the current KAPPA vector needs
to be available for this evaluation for exactly that moment, when the corresponding FB has to
be executed. This property has to be checked for the RINIT, the RECONF, and the RDINIT
sequence, whereas the procedure for this check is the same for each sequence. As starting
point within the evaluation wizard, the initial system state of each sequence is available.
The different tasks for the evaluation are:

• Identification of basic reconfiguration services: Each of the relevant sequences is
free programmable by the user, therefore it is important to identify the execution order
for the involved basic reconfiguration services (based on the experiences of the author
a sequential execution is sufficient). The execution is based on the execution seman-
tics of the runtime environment, which has to be mentioned by the identification algo-
rithm. For each of the identified basic reconfiguration services, the following actions
have to be performed.

• Check for basic reconfiguration service type: First of all the type of the evaluated
basic reconfiguration service needs to be identified. The runtime environment within
the control device needs to be able to execute this type of service.

• Check for applicability: The parameters of the basic reconfiguration service need to
be valid within the current system state. If for instance a new connection should be es-
tablished, the source and destination of this connection need to be available within the
current system state. Additionally, further requirements need to be fulfilled: source

154 DEMONSTRATION AND EXPERIMENTS

and destination have to be of the same type (e.g. INT) and in case of a data connection
the destination needs not to be connected. Section 6.2.1 provides a detailed analysis of
the different IEC 61499 management commands and their dependencies.

• Update of current system state: The last step for each basic reconfiguration service is
the application to the current system state (only within the evaluation wizard), in order
to generate the correct new system state for the evaluation of the next command.

The evaluation wizard implemented within the εCEDAC engineering tool documents the
results of the evaluation of the dependent operation property in two different ways. On the
one hand, the final system state for each sequence is stored as separate project within the
engineering tool. The current state of the control application is depicted in Appendix G,
Figure 73 to Figure 75. On the other hand each check of a basic reconfiguration service is
documented in the status field of each wizard page. Herein the identified basic reconfiguration
services as well as all checks provided for the sequence of commands are described. The
output files for these checks are also incorporated in Appendix G, Table 7 to Table 9.

Check for requirements of resources
The requirements of resources belong to those properties, which may be changed during the
execution of a system evolution step. In Section 6.3 especially the FB types and the memory
consumption have been identified as important properties. The evaluation wizard includes a
check for both requirements, whereas some limitations have to be mentioned:

• Type library check: Based on the information about the incorporated basic reconfigu-
ration services within the ECA it is possible to identify the types which are claimed by
the ECA. The second part of this check concerns the evaluation of the available ele-
ments within the type library. In the evaluation wizard the data included in the de-
scription file of the control device are used. It is also possible to get this data by using
the QUERY management command directly from the control device.

• Available memory check: In order to apply the check for sufficient available memory
within the control device it is necessary to get this data from the control device. The
demonstration control device does not provide this possibility. Therefore, the evalua-
tion wizard only sums up the necessary memory based on the basic reconfiguration
services included in the ECA.

8.1.4 Verification by model checking
The system integrity characteristics global and local consistency, active references, state
management, and real-time constrained operation need to be evaluated by using verification
by model checking for the reconfiguration sequence according to the results presented in
Section 5.2.2. The procedure for model checking starts with the design of the appropriate
models, then the formulation of specifications, and at last the verification by executing the
model checking algorithm. This will be the guideline for the application of the check for
above mentioned properties within the reconfiguration sequence.

Design of the system model
The basic elements of the system model need to represent the configuration of the control
device, as described in Section 7.1. The top-level view of the system model used for verifica-
tion is given in Appendix G, Figure 76. For the typical control example the control applica-
tion is located within one thread (‘Thread_APP’), as there are no real-time constraints
mentioned in the application. Furthermore the control application makes use of the timer;
accordingly the callback function has to be included in to the model (‘TimerTHREAD’). The
ECA is located within a separate resource of the control device, which is modeled by another
application thread in the system model (‘Thread_RECONF’). As there are no real-time
constraints used in the ECA, too, the two threads including IEC 61499 control logic are

DEMONSTRATION AND EXPERIMENTS 155

located on the same priority level. The module ‘Scheduler’ is capable to handle five different
priority levels, whereas on the lowest priority three different threads may be located.

Modeling of non-Boolean variables
The model of the control application is given in Appendix G, Figure 77. As prerequisite for
the given functionality in the typcial control example it is necessary to provide means for the
handling of integer variables in NCES. Two possibilities exist for this purpose: the value of
the integer variable may be represented as a number of tokens within a place or a set of places
is used to represent the integer value. The first possibility has been chosen in Pang and
Vyatkin (2007). An unsigned integer value is represented by the number of tokens and models
for all basic numeric operations as well as comparison are described, whereupon a variable
and a fixed number are taken into consideration for these operations. The identification of a
certain value within a place is based on condition arcs with weights according to the value
which needs to be detected. This fact is problematic for the modeling of the typcial control
example, as it is necessary to model connections with arbitrary values of integer variables.
Therefore for each possible value a condition with the appropriate weight would be necessary.
Furthermore also signed values of integers should be possible. Therefore this work uses a
representation of non-Boolean variables in a binary format. An integer variable with a range
of values according to a 16 bit binary format is represented by 32 places. For each bit two
places are used in order to model the values true and false. Based on this information any
operation for such a variable can be modeled in the same manner as this is done within any
microcontroller or binary processing unit. For the typical control example addition and
subtraction as well as comparison operations were modeled for this kind of representation. As
a consequence it is not possible to represent an integer data connection by only one condition
arc. For each data input/output in IEC 61499 32 condition inputs/outputs have to be modeled
in the NCES representation. These sets of condition inputs/outputs increase the effort for
modeling, especially without the support for automatic NCES model generation, and result in
extensive and bulky NCES models. But the complexity does not increase, since any operation
can be based on well known principles of digital data processing.

Model of the initial state of the control application before the RECONF sequence
The model of the control application for the verification of the RECONF sequence has to
include the initial state for the RECONF sequence. This situation is presented in Figure 73
and includes apart from the original control application also the FBs
‘SUB_INT_TO_INTERNAL’ and ‘CHECK_INT_LESS’ as well as their input connections.
The event and data flow is modeled according to the guidelines presented in Sections 7.4.2
and 7.4.3. Each input event is assigned to a specific number, and the event dispatcher needs to
differentiate between each of these numbers. The model of the event dispatcher is capable to
distinguish 30 different events, which is sufficient for the given control application. As
mentioned above, the influence of the network was not targeted for this evaluation attempt. In
order to simulate a certain network behavior, the internal timer functionality is used. There-
fore three different interfaces to the callback function ‘TimerTHREAD’ are part of the model.
One interface is necessary for the FB ‘TAKT’ which triggers the execution of the control
application. The other two are used to provide a start and a stop command (which would be
received from the user interface) in order to model a certain start and stop time for the
verification process. The necessary NCES modules have been incorporated into the model of
the FB ‘Start_sub’24. For the evaluation of the DSE this does not have an effect, as the

24 This is only a choice of the author for modeling such a behavior. It would be possible to simply use the means
provided by NCES to simulate points in time when the FB ‘Start_Sub’ does invoke an output event. In a more
comprehensive model of the control device, a thread dedicated to the network interface would be included,
which would introduce external events and the SIFB-ID of the corresponding SIFB into the event dispatcher. By

156 DEMONSTRATION AND EXPERIMENTS

verification will be focused on the time in between the starting and the stopping of the
calculations within the control application. The second part of the interrelation with the user
interface, the FB ‘CurrentVal_pub’, is only represented by its execution time. The data
connection is modeled as storage element, but the condition arcs from this storage element to
‘CurrentVal_pub’ is neglected for the sake of a better clarity in the NCES representation. As
this data will not be used in a model of the user interface, this simplification does not have
any effect on the evaluation of the DSE.

Model of dynamic reconfiguration within the control application
The model presented in Appendix G, Figure 77, includes the models for dynamic reconfigura-
tion for the first part of the RECONF sequence which is related to the control logic (see the
description given above in Section 8.1.2). This part is crucial for the correct behavior of the
application. The second part is dedicated to the correct representation of data in the user
interface and will be neglected. The following commands need to be represented:

• Deletion of the event connection ‘CHECK_INT_GREATER.CNF’ to
‘E_PERMIT.EI’: The module representing this event connection is of the type man-
aged event connection (see Figure 26) which is initially enabled.

• Deletion of the Boolean data connection ‘CHECK_INT_GREATER.Result’ to
‘E_PERMIT.PERMIT’: The module representing this data connection is of the type
managed data connection (see Figure 27) which is initially enabled.

• Reading of the internal variable within ‘ADD_INT_TO_INTERNAL’: The interface
of the NCES model of this FB is enhanced by condition outputs connected to the
places representing the internal variable. At any time the current value of the internal
variable can be used.

• Writing of the internal variable within ‘SUB_INT_FROM_INTERNAL’: The inter-
nals of the NCES model of the FB is enhanced in order to provide the possibility to set
the value of the internal variable by an additional source. This source is the enhanced
interface of the FB, which provides condition inputs for another integer variable. Fur-
thermore an input event for setting the internal variable to this value is used.

• Creation of the Boolean data connection ‘CHECK_INT_LESS.Result’ to
‘E_PERMIT.PERMIT’: On the one hand the module representing this data connec-
tion is of the type managed data connection (see Figure 27) which is initially disabled.
But another enhancement is necessary, because the old data connection and the new
data connection are connected to the same data input. Within NCES it is not possible
to connect several condition outputs to the same condition input (similar to
IEC 61499), because the value of the condition input would not be specified unambi-
guously. Due to the procedure defined in the ECA (which has been already proved to
be correct in the system integrity characteristic dependent operation) there is always
only one data connection active at the same time. An additional module only has to
copy the currently active value of the data connection to the condition outputs which
are connected to ‘E_PERMIT.PERMIT’.

• Creation of the event connection ‘CHECK_INT_LESS.CNF’ to ‘E_PERMIT.EI’:
In contrast to the above mentioned data connection, it is sufficient to model this event
connection by a module which belongs to the type of managed data connection (see
Figure 26) which is initially disabled. Only those event connections which are enabled
will insert the input event to the event dispatcher.

using the timer for simulating these external events, the procedure of calling the event dispatcher is the same as
with a separate thread for the network interface.

DEMONSTRATION AND EXPERIMENTS 157

Each of the models for dynamic reconfiguration (except the reading of the internal variable) is
triggered by an event signal, which has to be provided by the model of the ECA. For the
READ command, the time when the basic reconfiguration service latches the internal variable
determines the value which will be read.

Model of the RECONF sequence within the ECA
The ECA is modeled within the module ‘Thread_RECONF’, which is depicted in Appen-
dix G, Figure 78. As the verification by model checking is restricted to the reconfiguration
sequence, only the relevant parts are included in the NCES model. Each FB representing a
basic reconfiguration service is modeled as discussed in Section 7.4.3 for any IEC 61499 FB,
but with the difference that an event output for triggering the corresponding dynamic recon-
figuration is added (except for the READ command). The transition of the state from
‘ADD_INT_TO_INTERNAL’ to ‘SUB_INT_FROM_INTERNAL’ should be done within
the ECA, but for the sake of clearness this is modeled directly by interconnecting the output
conditions representing the internal variable of ‘ADD_INT_TO_INTERNAL’ with the
condition inputs dedicated for writing the internal variable of ‘SUB_INT_FROM INTER-
NAL’25. Only the point in time when the write command happens is provided by the execu-
tion of the ECA. As trigger for the RECONF sequence we will use again the timer of the
control device. This trigger may vary in order to include different system behaviors. For a
more detailed analysis it can be represented by a general event occurrence behavior as already
described in Section 7.6.3.

Specifications and evaluation
The following sections will provide an overview on the different specifications which have to
be considered for the check of the reconfiguration sequence. Several possibilities exist for this
evaluation according to the used tool framework Visual Verifier (ViVe) [61] (see also
Section C.3):

• Use of the internal model checker: This model checker only enables specifications
based on first order predicates (no temporal logic). In addition it is capable to provide
the set of states which fulfills a given property (e.g., all state of the reachability graph
where a specific transition fires).

• Use of SESA: The model checker SESA may be used to check specifications in tem-
poral logic according to CTL, which also includes the possibility to use time intervals
for the temporal operators X, F, and U.

• Visual verification: Based on the timing diagrams for paths within the reachability
graph it is possible to visually verify if certain conditions are fulfilled by simply dis-
playing the relevant places and transitions.

It has to be noted that during the evaluation with the given tool framework a limiting behavior
of the model checkers has been found. Due to the comprehensive modeling approach, the
number of states and transitions within the models (6672 states and 10563 transitions for the
typical control example as described above) is rather high. On the other hand also the use of
discrete time increases the number of states in the reachability graph. For a very accurate
model of the system a time step of 0,1 µs is a necessary choice for one NCES time unit, but
on the other hand the total length that needs to be taken into consideration depends on the
control application. For the typical control example at least three cycles of computation
should be incorporated, which results at least in a length of 0,9 s and 0,9 million states in the
reachability graph for only one path within the reachability graph (no idle time of the

25 It has to be mentioned that this simplification neglects the latching of the internal variable which is read by the
ECA. If also real-time critical behavior should be evaluated, the value of the internal variable has to be latched
by the basic reconfiguration service.

158 DEMONSTRATION AND EXPERIMENTS

microcontroller assumed), and without those states which are based on the modeled function-
ality). This big amount of states in the reachability graph, where each state consumes a not
inconsiderable amount of memory due to the big amount of states and transitions in the
model, results in the requirement that the model checking tool needs a very big amount of
memory. This is not the case for the current version of ViVe and SESA, therefore the
experiments with the typical example have to be restricted to a manageable volume of states
for the model checking tool. The following restrictions have been formulated for the typical
control example:

• Non-consideration of exact real-time behavior: The principle temporal order of ac-
tions has to be incorporated in the system model, but the exact time delay of actions
will be substituted by virtual values in order to reduce the number of states in the
reachability graph.

• Single execution path: The use of non-determinism in the system model provides the
possibility to include a high variety of system behavior into the model checking proc-
ess, which is one of the main advantages of the evaluation by model checking. But this
also increases the reachability graph to a high extent; therefore we will consider only
one single path within the system model.

In order to provide the verification of the given typical control example, we will use the
internal model checker of the tool framework together with the possibility for visual verifica-
tion. The reachability graph includes 11116 states when using the option “Maximum set of
spontaneous” as firing rule (see Section C.3 for details about this setting). By using the
following checks the correctness of the DSE has been proven. Even if we have restricted our
considerations to a very limited model, we will describe the evaluation process in a compre-
hensive way.

Global and local consistency
The check for global and local consistency aims at the verification of the specifications of the
control application (without taking care of the DSE). According to Hanisch (2004) we have to
distinguish plant, process, and product specifications. As our typical control example does not
use a plant and accordingly does not produce anything that may be specified, we only have
process specifications which have to be checked. Different examples for process specifica-
tions related to the typcial control example are:

• “If the user interface sends a start command, the FB ‘TAKT’ has to send at least one
output event some time afterwards.” This property may be formulated based on the re-
sponse property pattern (see Section E.2.2, Equation 57) as

AG (p1251 Ø AF (p1267),
where p1251 is marked during the issue of ‘E_SWITCH.EO1’ and
 p1267 is marked during the issue of ‘TAKT.EO’.

(19)

• “If the user interface sends a stop command, the FB ‘TAKT’ has to be set to its idle
state some time afterwards.” This property may be formulated in a similar manner
based on the response property pattern as

AG (p1245 Ø AF (p1254),
where p1245 is marked during the issue of ‘E_SWITCH.EO0’ and
 p1254 marks the idle state of ‘TAKT’.

(20)

• “Each start of FB ‘TAKT’ has to be followed either by a regular stop due to a success-
ful evaluation of the stop criterion (FB ‘E_PERMIT’ sends an output event) or a stop
command from the user interface.” Again the response property pattern may be used
to formulate this property as

DEMONSTRATION AND EXPERIMENTS 159

AG (p1256 Ø AF (p3455 w p1245),
where p1256 marks the active state of ‘TASK’,
 p3455 is marked during the issue of ‘E_PERMIT.EO’, and
 p1245 is marked during the issue of ‘E_SWITCH.EO0’.

(21)

The normal operation of the typical control example has been evaluated by model checking
based on the model given in Appendix G, Figure 79, which includes the same models but no
ECA, by visual verification. For the model including DSE this has been done by visual
verification, too.

Active references
Within the typical control example only references to the underlying services timer function-
ality and communication interface are included. As the DSE is not related to these elements,
no special consideration of this system integrity characteristic is necessary. If these elements
would have been involved, a check for the properties of the plant, product, or process would
be sufficient, which has been provided already above.

State management
Within the control application the internal state of FB ‘ADD_INT_TO_INTERNAL’ has to
be transferred to FB ‘SUB_INT_FROM_INTERNAL’ without any additional calculations (as
this may be necessary for changes related for instance to a closed-loop controller). In general
the transition management policy may be evaluated according to the influences on the plant.
But as the typcial control example does not use a model of the plant, the evaluation of the
system integrity characteristic state management has to be focused on the control application
itself. The following criteria may be used:

• “After the execution of the ECA the internal variables of the two FBs
‘ADD_INT_TO_INTERNAL’ and ‘SUB_INT_FROM_INTERNAL’ need to have the
same value”. The point in time when this criterion has to be fulfilled should be exactly
after the execution of the corresponding basic reconfiguration service, in detail the fin-
ishing of the WRITE command within the ECA. A possible formulation would be

AG (p6436 Ø AX ((p2421 = p3593) v … v (p2452 = p3624)),
whereas p6436 is marked during the issue of ‘SET_FBINTVAR_INTER
 NAL.CNF’, p2421 to p2452 represent the internal variable
 within ‘ADD_INT_TO_INTERNAL’, and
 p3593 to p3624 represent the internal variable within
 ‘SUB_INT_FROM_INTENRAL’.

(22)

The property has been proved by visual verification.

Real-time constrained operation
The execution of the control application as well as the ECA in time is essential for correct-
ness. In the given typical control example we have not included concrete real-time parameters
in order to limit the number of states in the reachability graph. But the temporal order of
commands was introduced by virtual values. An exact evaluation of the system integrity
characteristic real-time constrained operation thus does not lead to the desired results.
Nevertheless, a list of possible specifications regarding this property should be presented:

• “The execution of the calculations within the control application has to be finished
before a new trigger occurs.” This property would be part of the global and local con-
sistency properties if a real-time constrained execution would have been modeled with
the event source ‘TAKT.EO’. This property may be formulated based on the absence
pattern (see Section E.1.1, Equation 35) as

160 DEMONSTRATION AND EXPERIMENTS

AG (p1267 v Ÿ p3376 Ø A [(Ÿ p1257 w AG (Ÿ p3376)) W p3376]),
where p1267, which is marked during the issue of ‘TAKT.EO’,
 represents the starting point of the considered time frame,
 p3376, which marks the triggering of ‘E_PERMIT’ with the
 input event ‘EI’, represents the end point of the considered
 time frame, and
 p1257 marks the triggering of ‘TAKT’ by the timer.

(23)

This property is not very sharp because the end of the execution differs according to
the current value of the internal variable. If the result of the evaluation within
‘CHECK_INT_GREATER’ or ‘CHECK_INT_LESS’ is true, FB ‘E_PERMIT’ will
send an output event in order to stop ‘TAKT’. But if this is not the case, the execution
will stop at ‘E_PERMIT’.

• “The execution of the event chain triggered by ‘TAKT.EO’ has to be finished in a
certain amount of time”. Herein the same problem as described for the previous prop-
erty occurs, a possible formulation would be (see also Equation 14)

AG (p1267 Ø ŸEF[0, a](p3376)),
where p1267 is marked during the issue of ‘TAKT.EO’,
 p3376 marks the triggering of ‘E_PERMIT’, and
 α represents the end of the time frame, e.g. 250000 as
 equivalent to 250 ms (0,1 µs = 1 NCES time step).

(24)

• “The execution of the RECONF sequence within the ECA has to happen within a
given time frame.” This property may be formulated similar to Equation 24 as

AG (p5962 Ø ŸEF[0, a](p6565)),
where p5962 marks the insertion of the event
 ‘DEL_CONN_CNFEI.REQ’ to the event dispatcher, which is
 the starting point for the execution of the RECONF sequence,
 p6565 marks the end of execution of the FB
 ‘CREATE_CONN_CNFEI’, the last FB of the modeled
 RECONF sequence, and
 α represents the end of the time frame, e.g. 100000 as
 equivalent to 100 ms (0,1 µs = 1 NCES time step).

(25)

Further improvements of the modeling precision
The above given description of the verification process for the reconfiguration sequence of the
typical control example has been limited to only one single execution path within the
reachability graph. Figure 47 depicts the execution of the different threads within the control
device in the first three time diagrams. Every millisecond the callback function for the timer
(‘TimerTHREAD’) is triggered and evaluates the actually registered timer FBs. If the counter
value for the FB ‘TAKT’ has elapsed, the SIFB-ID of ‘TAKT’ is put into the event dispatcher
of the thread corresponding to the control application (‘Thread_APP’), which takes place
every 300 ms as configured in Figure 41. The trigger for the reconfiguration sequence may be
provided within any time, as there is no special event dedicated as starting point. Within the
above described model, the reconfiguration sequence is executed between two execution
triggers for the control application.
In order to improve the quality of the verification process, several aspects may be considered
in more detail. For instance, the trigger for the reconfiguration sequence may vary according
to its prerequisites: It may happen at any time during the execution of the control application,

DEMONSTRATION AND EXPERIMENTS 161

because it is triggered via the user interface. Furthermore any other threads which may belong
to the control device (Figure 47 mentions for instance additional programs in the forth timing
diagram) may vary in their occurrence (see the general behavior patterns in Section 7.5) as
well as the time consumption of the related actions. All these situations and their combina-
tions can be incorporated into the system model for the verification, which will be used to
check whether the reconfiguration sequence will be executed successfully or not. This
situation matches with the introductory comments described in Section 1.1, whereas there is a
high variety of situations which has to be taken into consideration for deciding whether a DSE
may be successful or not. The above described modeling approach provides the basis to
incorporate this variety into the system model and therefore represents a basis for a well-
grounded decision.

Figure 47: Overview on the execution of threads in the typical control example

8.2 Experiments with selected architectural elements
In order to give a more detailed description of the chosen modeling approach for the system
architecture of a control device, we will present two examples of special situations that are
considered without DSE. As mentioned within the last paragraph, the system model incorpo-
rates a high variety of possible system behavior. We will focus in the following two sections
on the event dispatcher as the critical section as well as the model of a linear axis as the plant.

8.2.1 Event dispatcher as critical section
A very important concept within the implementation of R3E is the event dispatcher and the
insertion of events from different sources (FBs within the thread as well as external event
sources). Therefore, the area of the event dispatcher has to be handled as a critical section
within R3E (see also Appendix B or Section 7.4.2). In order to verify the system behavior in
the case of access to this critical section a simple experiment taking this aspect into considera-
tion will be presented here. This example has been presented also in Sünder et al. (2008).
The control application for this experiment is depicted in Figure 48b. There are four event
sources included in this small FB network: the ‘E_RESTART’ FB which provides the initial
event for the application; the timed FBs ‘E_CYCLE’ and ‘E_DELAY’, and the ‘SUB-
SCRIBE’ FB. As there are no real-time constraints mentioned in the application, the whole
application is mapped onto one single thread.

162 DEMONSTRATION AND EXPERIMENTS

The computational architecture of the control device is provided in a simplified schematic in
Figure 48a. The IEC 61499 control application is located in ‘THREAD3’ on the lowest
priority of the operating system. There are two external events, which can be recognized by
the control device: the timer interrupt and the network interrupt. Both are implemented as
callback functions and are located on the highest priorities of the scheduler. Additionally, we
assume two further threads that may be active on the control device. They are located in
between of the external events and the IEC 61499 application in ‘THREAD1’ and
‘THREAD2’. The behavior of these two threads is modeled in a very abstract way by a
typical execution time and activation behavior. We will consider especially the event dis-
patcher within ‘THREAD3’, which is interrelated with both external event source timer and
network according to the control application.

a)

b)

Figure 48: Example configuration a) of the control device and b) the control application in 'THREAD3'

Figure 49 depicts a shortened form of a path in the generated reachability graph. We have
again mentioned only virtual values for the computation time of actions within the control
device, but the temporal order of these actions is correct26. The path starts in the state when
‘FB1’ is executed because the timer interface has triggered the FB ‘E_CYCLE’. At this time
also the external event network becomes active and interrupts the execution of ‘THREAD3’.
Accordingly, the SIFB-ID for the ‘SUBSCRIBER’ FB is put into the event dispatcher.
Exactly at the same time the event dispatcher is already in use (event ‘REQ’ of ‘FB2’ is put
into the queue), ‘TREAD3’ is executed in the context of the network interrupt as long as the
event dispatcher is free again. After the execution of ‘FB1’ has been finished, ‘FB2’, ‘SUB’
and then ‘FB3’ are executed. This is a notable result, since ‘FB2’ and ‘FB3’ are triggered by
the same event – one can see that our NCES model correctly implements the sequential
execution model of R3E. During the execution of ‘FB3’, the timer interrupt has to be exe-
cuted, but as no timed FB is ready to be triggered, this does not influence the execution of
‘THREAD3’. The event dispatcher includes now the input events ‘REQ’ from ‘FB4’, ‘FB3’,
‘FB5’ and ‘FB6’. During the execution of ‘FB6’, the timer interrupt occurs again and disrupts
the execution of ‘THREAD3’.

26 The time values in Figure 49 have to be considered as simplified values from different measurements with the
demonstration control device.

DEMONSTRATION AND EXPERIMENTS 163

Figure 49: Excerpt of a path within the reachability graph of the control application within 'THREAD3'

8.2.2 Modeling the plant behavior
A very important part of the system model is the behavior of the plant which needs to be
incorporated into the models of the control device. As an example for a plant model we will
use a linear axis, which has been described in contrast to the application of DSE in
Hanni (2007). In detail, the exchange of the closed-loop position controller was demonstrated
in this thesis, which has been supervised by the author. Accordingly, the formal model of the
plant has to describe the temporal behaviour of the movement of the axis. Herein appropriate
descriptions, which usually already exist for the design of the closed-loop control circuit, need
to be modeled by means of NCES. The linear axis used for this automation object can be
described by the transfer function

824 102,51066,41
1)(−− ⋅⋅+⋅⋅+

=
ss

sG , (26)

which uses the current reference value as input and the force applied to the linear axis as
output. As we are interested especially at the position control of the linear axis, we are able to
simplify the overall model architecture by neglecting the details of the velocity control
application. The model of the plant is enhanced by the velocity closed-loop control and has
the velocity reference value as input and the current position of the axis as output. The
introduction of this behavior into the NCES model can be achieved by a transformation into
discrete time, as it is usual for sampled-data control systems.
Appendix F, Figure 80, depicts the NCES model used for testing the behavior of the plant
model together with the closed-loop position control27. The model of the control device itself
is neglected, and based on a clock which is used for calculating the current value of the plant
model also the position control is calculated. The representation of the non-Boolean values for
velocity and position of the linear axis has been chosen according to the description given
above, as set of places. The NCES model of the position closed-loop circuit provides the same
step response which has been simulated by using an appropriate model in the tool Matlab
simulink. This result is depicted in Figure 50.

27 The use of a simple model of the control device, including only the timer callback function as well as one
thread for the control application (position closed-loop control) already exceeds the memory limits of the tool
framework.

164 DEMONSTRATION AND EXPERIMENTS

Figure 50: Result of the NCES model of a position closed-loop control

8.3 Summary
The proposed methodology for the modeling and evaluation of DSE has been demonstrated
by using a typical control example within this chapter. Therefore, several preconditions have
been described as starting point for the demonstration:

• The control application, which includes a simple integration of a given value. This
value changes every cycle of the execution. This is a usual situation for any closed-
loop control circuit.

• An evolution scenario, which includes the exchange of the addition of the given value
by a subtraction, whereas also transition management has to be taken into considera-
tion for the preservation of the integration variable. The same procedure has to be ap-
plied for the exchange of a controller or a filter in the feedback loop of a closed-loop
control circuit.

• The representation of the demonstration control device by its KAPPA vector, which
has been provided as a FDCML-based description file.

• The formal models for the different parts of the control device as well as the control
application, whereas special attention has been paid to the representation of integer
variables within NCES.

The evaluation of all system integrity characteristics has been described for the given typical
control example. The KAPPA-based calculations have been incorporated into an evaluation
wizard within the εCEDAC engineering tool. The verification by model checking has been
based on a tool framework without the automatic generation of models. Herein as important
requirement for the model checking tool the high amout of necessary memory has been
pointed out. The given tool framework was not capable to handle both, the detailed models of
the control device and the representation of real-time behavior with a fine grain time scale.
Therefore, the evaluation results with respect to real-time behavior have only principal
character. Based on the system model a high variety of scenarios for the execution of DSE
can be taken into consideration (especially the various combinations of these scenarios) which
will provide a significant basis for the evaluation process.

DEMONSTRATION AND EXPERIMENTS 165

The described typical example of a DSE has been implemented and executed on the given
demonstration control device in the Odo Struger Laboratory at ACIN. The successful
evaluation of the DSE has been proved by its execution on the physical hardware, which has
been applied successfully, too. Further different failure scenarios have been occurred during
the engineering of the demonstration example, which have been detected during the evalua-
tion process. For instance, type mismatch of FB instance names within the ECA have been
detected during the check for dependent operation. Although the set of test scenarios has been
very small, the demonstration example shows that the successful evaluation corresponds with
the successful execution of a DSE. Further tests need to be applied in order to prove this new
methodology in more detail.
In order to give also an impression of details within the system model of the control device,
further experiments regarding the access to the critical section event dispatcher and the plant
model of a linear axis are taken into consideration.

 167

9 Discussion of Industrial Application

Chapter 9

Discussion of Industrial Application

This thesis proposes a new methodology for modeling DSE within an ACS and provides the
evaluation process in order to check that the system will not produce disturbances to the
process under control or even break down. A crucial point for DSE is the application in
industrial practice, whereupon especially the ACS customer has to be taken into consideration
(see also the introductory comments in Chapter 1).
We will split up our considerations into two parts, which are motivated by the following
questions:

• How can the additional effort necessary for DSE be introduced without enormous
endeavors?

• What kind of engineering can be established based on the possibility to use DSE in
ACSs?

The first question is highly related to the kind of knowledge, which the engineers have within
the different parties of an ACS. If an ACS customer has to create the formal description of
e.g. the operating system, which is part of the control devices within the ACS, this methodol-
ogy will not be used in industrial practice, because the additional effort as well as the
principal feasibility is ignored. Therefore, we will discuss the interrelation of DSE and its
evaluation in regard with the general structure and roles of vendors in ACSs in Section 9.1.
The second question aims at a more general consideration of the possibilities provided by
DSE. We will consider a methodology well-known in computer science, which takes continu-
ous changes and early operating software as basis for the engineering process in Section 9.2.

9.1 Value-added chain for total evaluation
DSE provides the capability to keep a plant in operation even if changes have to be applied.
There is no need for often highly expensive ramp down and up procedures within the plant,
because the plant will stay operational all the time. But these benefits have to be paid with
additional effort in the engineering process. On the one hand the ACS needs to have the
capability to model and execute these changes during operation. And of course it is on the
other hand of eminent importance to check if a system evolution step will not produce errors,
which may create even more costs than the ramp down and up procedure.
In order to discuss the responsibilities for the establishment of the basis for the evaluation
process, the exhaustive description of the different parts of the control device and its integra-
tion into the engineering cycle, we will recall the general structure and roles of vendors in
ACSs, which has been already introduced in Section 3.1 based on Vyatkin et al. (2005). The
basic idea of this so-called value-added chain is that each of the companies provides its
specific expertise to the ACS. Of course, the added value represents the basis for the business
model of these companies, but on the other hand also a highly efficient engineering cycle is
possible based on this structure. The company, which is most related to a topic, provides the

168 DISCUSSION OF INDUSTRIAL APPLICATION

solution for problems related to this topic. For instance, the component vendors provide the
software for the control of their components, which are typically actuators and sensors. The
machine vendor has its special expertise in the overall machine and the concepts for its
operation, and does not need to take care about the control for each single sensor or actuator.
This model holds also for the overall industrial enterprise, which coordinates different
systems provided by system integrators (see also Figure 3).
If we put this structure as basis for the question: “How can the additional effort necessary for
DSE be introduced without enormous endeavors?”, the answer is simple. Those companies
within an ACS, which are closely related to the necessary information for the evaluation of
DSE, will incorporate this effort into their business activities. Figure 51 depicts this value-
added chain for total evaluation, whereupon the effort for the different roles in an ACS is
described briefly. The ACS customers, which are part of the roles component vendor,
machine vendor, system integrator, and industrial enterprise, have to provide only the
information which is related to their special expertise:

• Description of the software functionality: Each of the companies within the different
levels adds functionality to the overall ACS. This functionality is represented in soft-
ware and hardware behavior. The software functionality has to be described according
to the rules given by the architecture of the used control device. According to Figure
24 especially the control and other applications, additional tasks, and their parameteri-
zation with real-time behavior have to be provided in terms of formal models and en-
hancements to the KAPPA vector of the related control devices. These companies cre-
ate the software functionality; correspondingly they also have the responsibility to
provide the necessary information for the evaluation process about these parts.

Figure 51: The DSE expertise of the different roles in ACS: the value-added chain for total evaluation

• Description of the behavior: Next to the pure software functionality also the behavior
of the component, machine, system or even enterprise has to be described as input for
the evaluation of DSE. Herein especially the hardware in terms of parts of the plant is
taken into consideration together with the related plant behavior. For instance, the
model of the linear axis described in Section 8.2.2 has to be provided by a component
vendor. A machine vendor may use these models and adds the behavior of the ma-
chine which is in conjunction with the linear axis.

In order to efficiently use such a modular engineering approach for the description of
components it is necessary to standardize the interfaces between the different components. As
an example the interface for different tasks within the formal model of the operation system
has been defined in Section 7.4.1, so different companies may put together their software
functionalities in terms of tasks without taking care of each other (except interrelations exist

DISCUSSION OF INDUSTRIAL APPLICATION 169

between tasks, as for instance in the case of external event sources, which again may be
standardized).

The special role of tool, controller, and service vendors
The main part of the control device description for the evaluation of and support for DSE has
to be provided by tool vendors, controller vendors and service vendors. They take the central
role within the application of this new methodology in industrial practice. Their responsibili-
ties can be summarized as follows:

• Engineering tool support for modeling DSE: The basic prerequisite for DSE is an
engineering tool that provides this new engineering methodology. The general de-
scription of the concept for modeling DSE has been given in Chapter 4. Next to the
basic capability to model ECAs the tool support is one of the most important aspects
for the acceptance by ACS customers. The detailed information represented in the
KAPPA vector of the system can be used as basis for enhanced engineering support
for DSE as well as modeling of control applications, e.g., automatic communication
configuration, provision of template libraries, and support for the selection of the most
appropriate template for a given change within the control application.

• Engineering tool support for the evaluation of DSE: Next to the overall engineering
cycle for DSE especially the integration of the evaluation process plays an important
role. The evaluation of properties for both KAPPA-based calculations and model-
checking should be available in the same environment as the modeling of a system
evolution step. For instance, the specification of properties may be enabled in terms of
the programming language, e.g. events and data of IEC 61499 FBs.

• Operating system description: The exhaustive description of the operating system
belongs to the provider of the RTOS. Herein next to models for the formal description
of the RTOS also the basics for the KAPPA-based calculations concerning scheduling
bounds, parameterization, and memory management have to be part of this descrip-
tion.

• Runtime environment description: Similar to the operating system the exact behavior
description of the concepts implemented in the runtime environment regarding to the
execution and dynamic reconfiguration of control logic need to be provided by the
company who sells the runtime environment (in most cases this is the same company
which provides also the engineering tool).

• Control device description: The control device is created from the different architec-
tural elements as for instance the operating system or the runtime environment. The
overall description of these elements, which have to be parameterized and enhanced
according to the special configuration of the control device, has to be provided as a
description file. The engineering tool should be capable to handle these type descrip-
tions of the control device and utilize the information in the KAPPA vector, which in-
cludes the concrete instances of the different control devices.

As a unifying element for the different elements and companies the engineering tool acts as
common basis. There will be companies who provide single parts that are composed to
overall descriptions by other companies (e.g., the operating system vendor and the control
device vendor), which is related to the development of the basic infrastructure of ACSs. And
on the other hand there will be companies utilizing the given information in order to design
more complex ACSs, e.g. the component and machine vendors. These companies are the
applicants of ACS technology. Based on these two different viewpoints within a system, the
occurrence of the engineering environment and the support of the engineering tool may differ.

170 DISCUSSION OF INDUSTRIAL APPLICATION

9.2 Automation Extreme Programming
The possibility of keeping the system always running with the flexibility to adapt the system’s
functionality at any time is a big advantage of DSE. In order to utilize this advantage it is
necessary to apply this new methodology according to certain rules, otherwise the system may
become unmanageable (see also the discussion about software evolution in Section 3.4).
From the field of computer science many different concepts and paradigms for software
development have been proposed. One of these concepts is eXtreme Programming (XP),
which concentrates on a highly flexible design flow and changes of program functionality at
any time in the engineering cycle. But it is not intended for applying changes during opera-
tion. Based on the principles of XP and the capabilities of DSE, we will develop a new
paradigm for system design in ACSs.

Extreme programming
XP was developed by Kent Beck and does not introduce new concepts of software design. It
represents a summary of common sense principles of software development, trying to
strengthen their individual benefits on the one hand and to diminish the drawbacks by a
compensation with capabilities of other principles on the other hand. A comprehensive
introduction to XP is provided in Beck (2000). The different practices summarized within XP
are listed in Beck (2000, Chapter 10) in the following way:

• “The planning game—Quickly determine the scope of the next release by combining
business priorities and technical estimates. As reality overtakes the plan, update the
plan.”

• “Small releases—Put a simple system into production quickly, then release new ver-
sions on a very short cycle.”

• “Metaphor—Guide all development with a simple shared story of how the whole
system works.”

• “Simple design—The system should be designed as simple as possible at any given
moment. Extra complexity is removed as soon as it is discovered.”

• “Testing—Programmers continually write unit tests, which must run flawlessly for
development to continue. Customers write tests demonstrating that features are fin-
ished.”

• “Refactoring—Programmers restructure the system without changing its behavior to
remove duplication, improve communication, simplify, and add flexibility.”

• “Pair programming—All production code is written with two programmers at one
machine.”

• “Collective ownership—Anyone can change any code anywhere in the system at any
time.”

• “Continuous integration—Integrate and build the system many times a day, every
time a task is completed.”

• “40-hour week—Work no more than 40 hours a week as a rule. Never work overtime
a second week in a row.”

• “On-site customer—Include a real, live user on the team, available full-time to answer
questions.”

• “Coding standards—Programmers write all code in accordance with rules emphasiz-
ing communication through the code.”

As a summary, “XP is a lightweight methodology for small-to-medium-sized teams develop-
ing software in the face of vague or rapidly changing requirements” (Beck, 2000, Preface).
Change is a common element within the methodology. As soon as e.g. simplification is

DISCUSSION OF INDUSTRIAL APPLICATION 171

possible, the corresponding part of the software will be changed. This has to be considered
also from the economical point of view, as typically the cost of changing a program is
expected to rise exponentially over time (Figure 52, upper part). As a consequence of this
schematic, changes will be applied only in the early development phase because of the high
costs in the later ones. XP expects a very different schematic for the cost of change, as
depicted in the lower part of Figure 52. The cost of change rises much slower over time,
eventually reaching an asymptote. “If the cost of change rose slowly over time, you would act
completely different from how you do under the assumption that costs rise exponentially. You
would make big decisions as late in the process as possible, to defer the cost of making the
decisions and to have the greatest possible chance that they would be right. You would only
implement what you had to, in hopes that the needs you anticipate for tomorrow wouldn’t
come true. You would introduce elements to the design only as they simplified existing code
or made writing the next bit of code simpler.” (Beck, 2000, Chapter 5). The different practices
summarized in XP make this vision possible.

Figure 52: Cost of change in classical software project (top) and as premises of XP (bottom),

Beck (2000, Figures 1 and 3)

Automation extreme programming
If we consider the typical engineering practice in ACSs, there seems to be only little similari-
ties with software development known from computer science. Apart from completely
different programming languages especially the interaction with real hardware is the most
important aspect that has to be taken into account in ACSs. The functionality is dictated by
the plant and its hardware capabilities; the control logic is responsible to keep the process
under control. Of course, the software becomes an even more important part of the overall
system, as for instance depicted in Bouyssounouse and Sifakis (2005, Section 28.2) for the
mechatronics industry. Changes to the control application and also the hardware of the plant
are related to high costs since the plant has to be stopped during the application of these
changes usually. Each stop has to be scheduled and is often related to a significant time
consumption for ramping down and up the plant.
The methodology of DSE changes the general assumption for the engineering of ACSs:
changes to the system are applied during operation of the plant and (in the best case) with no
disturbances to the process under control. The main hindering reason, high costs related to
changes to the system, are neglected since there is no need to stop the operation of the plant.
As an extension to pure dynamic reconfiguration, DSE incorporates also hardware into the
scope of changes. The engineering cycle provides a clear guideline as well as a methodology
for the evaluation of these changes. But the overall engineering cycle of the system design has
to be adapted to these new possibilities, too. For this reason, the practices of XP may be used
as basis for a new kind of engineering paradigm, the so-called Automation eXtreme Pro-

172 DISCUSSION OF INDUSTRIAL APPLICATION

gramming (AXP). The following aspects of XP have to be adapted (all other practices should
be used, too):

• Small releases—Due to the possibility to apply changes at any time, the simplest ver-
sion of a system can be the starting point for operation. Of course, due to the interrela-
tion of hardware and software the volume of the first operating plant highly depends
on the kind of process under control, but it is possible that also the hardware itself may
be changed (and enhanced up to the final configuration) during operation. Typically
any plant will be optimized to a high extend during the first phase of operation. The
practice of small releases brings the engineer to think of the most important function-
alities at first, receiving feedback from its operation already before all details of the
plant (hardware and software) are designed. Therefore, optimization is done naturally
during the development of the system by establishing the final configuration based on
small releases during operation.

• Continuous integration—Based on the engineering cycle for DSE each change of the
system functionality will be applied immediately to the overall system.

• Simple design and refactoring—There is no need to think about highly sophisticated
functionalities until the point in time when this functionality should be incorporated in
the next release. Therefore, the design will be kept as simple as possible. In addition,
feedback from the operating system is available during the whole engineering process.
The optimization of the plant is already part of the engineering process instead of an
extra part afterwards. This feedback has to be used to reduce unnecessary complexity
within the plant.

• Testing—For software development the impact of testing is very high since in most
cases it is simple to execute these tests automatically. For ACS the interrelation with
hardware makes testing more complex or even not possible without information on the
hardware behavior. Anyway it is important to follow the main idea of testing: describe
the proposed functionality before starting programming. For DSE in addition it is nec-
essary to define the disturbances to the system which should be neglected during the
execution of a system evolution step. The scope for testing and the specification of
tests will be enhanced: from testing of functionality to a definition of properties for the
plant under operation as well as the system evolution steps. According to the engineer-
ing cycle for DSE, testing is necessary for both, the proposed new system state and the
ECA.

By the use of this new methodology for the overall system design, the sketch for the engineer-
ing of ACSs with DSE depicted in Figure 9 gets more substance and clear guidelines for its
application. AXP clearly states that the first version of the plant, which will be put in opera-
tion, is the simplest version with reduced functionality. Only the most important features will
be part of this first version. Any further steps towards more functionality and the final version
of the plant, the single releases, will be planned incorporating both the new system state and
the ECA in order to reach this new state. AXP provides guidelines about the volume of
changes and the procedure to define the priorities of changes. By evolving the plant from this
very simple initial state to the fully functional final state of the plant (whereas it has to be
stated that the evolution will take place over the whole life cycle of the plant), the total
engineering time should be decreased to a large extent. Additionally, since the cost of change
does not rise exponentially, the overall system costs will be low, too. Adaptive manufacturing
becomes the normal situation, as already the initial engineering of the plant is based on the
principle “change during operation at low costs”.

DISCUSSION OF INDUSTRIAL APPLICATION 173

9.3 Summary
The acceptance in industrial practice is of crucial importance for new concepts in ACSs. We
have considered two different aspects for the industrial application of DSE.
The provision of the necessary information concerning all elements within the ACS, the
control devices, the plant, and the internals of each architectural element imposes additional
effort to the engineering process. According to the role of the different companies within
ACSs, a clear relation of responsibilities for the different aspects of descriptions can be
established. As main guideline, those parties which are concerned with a topic also have to
provide the necessary additional information for the DSE methodology.
Another aspect is the incorporation of the capabilities from DSE for the engineering of the
overall plant. It is necessary to interrelate the new functionality of changes during operation to
clear guidelines for its application within the engineering of the overall plant. The concepts of
XP, which already put change into the center of engineering, have been adapted to the
prerequisites of ACS with DSE. As a result, an improved engineering of ACSs with operation
of a first version of the plant as early as possible and continuous enhancements during
operation has been established.

 175

10 Towards Evaluation of logi.CAD εCEDAC Instant reload

Chapter 10

Towards Evaluation of logi.CAD εCEDAC Instant reload

The evaluation of DSE has been discussed based on the IEC 61499 standard and the basic
reconfiguration services provided by R3E. But the industrial practice is dominated by control
devices based on the IEC 61131-3 standard. As already depicted in Section 3.2.1 no dedicated
interface exists in order to modify control applications during operation for IEC 61131-3
(2003). Many IEC 61131-3 based engineering tools and runtime environments provide a
proprietary interface based on the principle of changing the control logic between execution
cycles (see Section 3.4.3). The procedure of changing the control logic during operation
works almost automatically, but without any possibility to apply transition management
policies. Typically only the internal states of POUs, which have not been changed between
the current system state and the new system state, will be restored.
The company logi.cals Austria (former kirchner SOFT GmbH) [29] provides the IEC 61131-3
compliant engineering tool logi.CAD which includes the possibility to change the control
logic during operation by using of the function Instant reload. Based on the results of the
research project εCEDAC [8], where kirchner SOFT GmbH has been a consortium member,
the existing functionality of Instant reload has been enhanced in order to achieve also DSE
(called εCEDAC Instant reload). We will provide a short overview on the functionality of
these two kinds of exchange of the control logic within this IEC 61131-3 based control
system and discuss the application of the evaluation method proposed within this thesis for
logi.CAD with εCEDAC Instant reload28. The information about the logi.CAD internal
functionality is based on personal discussions with Thomas Baier, Heinrich Steininger, and
Mario Semo from the company logi.cals Austria.

10.1 logi.CAD Instant reload
The Instant reload functionality of logi.CAD provides the possibility to change any element
within the IEC 61131-3 control logic (functions, function blocks, programs, data types, tasks,
resources) within a given project. The changes are applied abruptly in between the execution
cycles of the different tasks at the runtime environment. But the granularity for changes
modeled in the engineering tool and those parts exchanged within the runtime environment
may differ. Within the runtime environment only the binary deployment of a resource is taken
into consideration. For instance, if the only change within the current system state and the
new system state is a new data connection, the overall binary deployment of the resource will
be exchanged. From the ACS customer’s point of view this behavior is not visible, because
the Instant reload mechanism takes care of internal states of the elements within the resource.
If the same element exists in the new system state all internal states will be restored (internal

28 Within this chapter we will use only the terminology of IEC 61131-3. If we use the terms resource or function
block, they are used as defined within IEC 61131-3. This is in contrast to the previous chapters which use the
meaning based on the IEC 61499 standard.

176 TOWARDS EVALUATION OF LOGI.CAD ΕCEDAC INSTANT RELOAD

states may be variables or active states within an SFC). A rough description of the Instant
reload functionality within logi.CAD is provided in logi.cals Austria (2008).
Figure 53a depicts the procedure executed within the runtime environment during the Instant
reload. First the binary deployment of the new resource is loaded and its feasibility is
checked. The engineering tool generates special code based on the current system state in
order to perform a change during operation; therefore the consistency with the current
resources operated in the runtime environment has to be evaluated. Up to this point in time
the old resource is still executed. Then the old resource is stopped, the internal states will be
restored and the new resource will be started. The point in time when these actions are
performed is determined based on the execution cycles of the different tasks within the
resource. Between the actions ‘Stop old resource’ and ‘Start new resource’ no control logic is
executed, neither the old nor the new resource. This time is crucial for the disturbances to the
execution behavior of the control device.

a)

b)

Figure 53: Comparison of a) Instant reload and b) εCEDAC Instant reload mechanisms within logi.CAD

10.2 logi.CAD εCEDAC Instant reload
The enhancement of the above given procedure according to the engineering cycle developed
within the εCEDAC project is based on the different execution phases of a system evolution
step, whereas the incorporated actions may be different. As depicted in Figure 53b the
mechanism for applying changes has been enhanced by further steps that enable additional
calculations for a DSE. Next to the new resource also an ECA is downloaded, which includes
three different parts of the control logic: εRINIT, εRECONF, and εRDINIT logic. The
execution of these three parts is sequential and in addition related to the actions provided for
an Instant reload. After checking the feasibility of the new resource and the code for recover-
ing the internal states from the old resource, the εRINIT logic is executed in parallel to the old
resource. The set of commands in order to interact with the current system state is limited to
READ and WRITE FBs (from the runtime’s point of view apart from the exchange of the
resource not more basic reconfiguration services are possible than READ and WRITE).
Accordingly this sequence can be used to fetch any internal state of the old resource and also
to provide some calculations for the transition management. Then the already described

TOWARDS EVALUATION OF LOGI.CAD ΕCEDAC INSTANT RELOAD 177

Instant reload operations ‘Stop old resource’ and ‘Restore internal states’ are applied. But
before ‘Start new resource’, the εRECONF logic is executed. Herein user-defined algorithms
can be executed in addition to the already restored internal states of the resource, which is
especially necessary for new elements within the new resource (the automatic restoring of
internal states only includes unchanged elements). When the εRECONF logic has been
executed (signaled by a Boolean value) the new resource is started and the critical phase
where no control logic is executed is finished. The εRDINIT logic is executed next (in
parallel to the new resource), providing the possibility to do some user-defined actions after
the change. The εCEDAC Instant reload procedure is finished by the deletion of the ECA.
Figure 54 depicts a screenshot from an ECA within the logi.CAD engineering tool for a
simple example of the exchange of a controller of a closed-loop control circuit (similar to the
example presented in Section 4.2.3). The controller ‘SpeedCtrl’ within the program ‘CTRL’
will be changed during operation by another controller of a different type with the same name
(it is assumed that a controller with a proportional part is exchanged by an enhanced control-
ler including also an integral part). In contrast to the description given above it is possible to
use similar names for the controller, because they belong to different resources within the
εCEDAC Instant reload mechanism. The three parts of the ECA provide the following
functionality:

• Within the εRINIT logic the current values of the gain ‘Kp’ and the control deviation
‘Inp’ are read and stored in the local variables ‘KpOld’ and ‘InpOld’. This happens
while the old resource is still executed. The ECA is triggered by using the FB
‘εRINIT’, which provides a Boolean output set to true as soon as the εRINIT logic has
to be executed. The finishing of the εRINIT logic is signaled by a Boolean input value
of the FB ‘εRECONF’ set to true.

• Based on the input value of the FB ‘εRECONF’ the internal procedure of stopping the
old resource and restoring the internal states is triggered. Afterwards the output value
of ‘εRECONF’ is set to true and the εRECONF logic is executed. Herein the integral
parts of the new controller ‘SpeedCtrl’ for the previous cycle ‘IOLD’ as well as for the
current cycle ‘I’ incorporating an adaptation of the controller gain ‘KpNew’ are set.
By the issue of a true value to the input of FB ‘εRDINIT’ the εRECONF logic is fin-
ished.

• Within the εRDINIT logic (triggered by a true value at the output of FB ‘RDINIT’)
nothing happens and the ECA is finished by the issue of a true value to the input of FB
‘εDONE’.

Figure 54: Example of an ECA in logi.CAD

178 TOWARDS EVALUATION OF LOGI.CAD ΕCEDAC INSTANT RELOAD

10.3 Evaluation approach for the logi.CAD εCEDAC Instant reload
The application of an evaluation for DSE for an IEC 61499 based system environment has
been presented in this thesis. In order to apply the evaluation methodology for a different
system environment, as for instance the IEC 61131-3 based logi.CAD, the same steps need to
be achieved:

• Analysis of the system properties in order to identify the possible change types ac-
cording to Walsh et al. (2007b).

• Mapping the evolution modeling methodology.
• Identification of evaluation means necessary to check the involved system integrity

characteristics.
• Formulation of algorithms and formal models for the different evaluation means.

We will discuss the first three tasks for the logi.CAD εCEDAC Instant reload within this
section. A concrete formulation of the evaluation means need a detailed analysis of the
internals of the system environment.

Analysis of system properties
The theory presented in Walsh et al. (2007b) is based on a component-based software
development policy and the different change types are related to a component framework. As
discussed in Section 3.2.1 it is not possible to consider the elements of IEC 61131-3 as
software components apart from the element function. The most important hindering reason is
the use of an interface description which only defines variables without details about the
behavior of this interface. This is especially problematic for dynamic reconfiguration within
an IEC 61131-3 based system such as logi.CAD.
According to the short introduction of the mechanisms logi.CAD Instant reload and logi.CAD
εCEDAC Instant reload two different levels of changes exist that need to be taken into
consideration. On the one hand the ACS customer may change any kind of element within a
configuration and define adaptations to the system with fine granularity. On the other hand
the runtime environment provides only changes of resources. If any adaptation is applied to
the system under operation, always the overall resource will be exchanged. We will consider
the change types of logi.CAD based on the capabilities of the runtime environment, because
the evaluation of DSE should be as close as possible to the real implementation. Figure 55
depicts the interrelation of different change types according to the capabilities of the
logi.CAD runtime environment. The main element is the substitution of resources, which may
use any internal change defined in the engineering tool for any element of the resource. The
interface of a resource is described especially by VAR_EXTERNAL, and based on the
substitution of a resource also the interface may be changed. The overall change of configura-
tions can be described as architectural changes.

Figure 55: Change types within logi.CAD εCEDAC Instant reload

TOWARDS EVALUATION OF LOGI.CAD ΕCEDAC INSTANT RELOAD 179

The dashed arrows in Figure 55 represent logical dependencies between change types (as
described in Section 3.4.1), but as the basis for dynamic reconfiguration is the exchange of
resources they can not be used for modeling an ECA directly. The runtime environment
provides only a small set of basic reconfiguration services, with limited possibilities for the
usage within an ECA. But based on the concept of exchanging resources, this small set is
sufficient for any change within the system:

• Exchanging resources: This command is integrated into the engineering tool and is
not available as FB within control logic.

• Read: A separate FB for reading any variable within a resource may be used within
the ECA.

• Write: A separate FB for writing any variable within a resource may be used within
the ECA.

• Evolution Control FBs: Furthermore the FBs εRINIT, εRECONF, εRDINIT, and
εRDONE exist which are used to define the borders of the different parts of the ECA
in terms of defining the start and end point of the execution (see Figure 54 mentioned
above).

Mapping the evolution modeling method
The evolution modeling method presented in Chapter 4 describes the use of an ECA for the
modeling of a system evolution step. In addition, different ECAs may be encapsulated within
an EECFB and so-called CECAs may be modeled in order to define the synchronization
between different system evolution steps. The implementation of the logi.CAD εCEDAC
Instant reload provides the possibility to model ECAs, CECAs are not supported. The
different execution sequences within a system evolution step described in Section 5.2 can be
mapped to the logi.CAD εCEDAC Instant reload methodology as follows:

• Download ECA: This step is similar in the logi.CAD εCEDAC Instant reload.
• Initialization sequence: The concept of the logi.CAD εCEDAC Instant reload is

based on the exchange of a resource. There will be no actions performed within the
ECA to change the old resource. The initialization sequence is executed by the engi-
neering tool by downloading the new resource to the runtime environment.

• Reconfiguration sequence: The reconfiguration sequence is split up into two parts,
the εRINIT logic and the εRECONF logic. The first one is able to work on the old re-
source, and the second is only capable to influence the new resource. Any transfer of
state information for new elements of the resource is modeled within the ECA. All
other state information is recovered automatically by the mechanism already used for
the logi.CAD Instant reload.

• Deinitialization sequence: The εRDINIT logic provides the possibility to edit the new
resource after the reconfiguration sequence. But based on the limited set of basic re-
configuration services only states within the new resource may be influenced. The de-
letion of the old resource is done automatically.

• Delete ECA: Together with the deletion of the old resource also the ECA is deleted
automatically in the logi.CAD εCEDAC Instant reload mechanism.

Identification of evaluation means
The above given mapping of the logi.CAD εCEDAC Instant reload approach to the five
execution sequences of a system evolution step implies that it will not be necessary to
consider each execution sequence by itself for evaluation. The download of the ECA and the
initialization sequence will be considered together as preparation sequence, and the deinitiali-
zation sequence and the deletion of the ECA will be summarized as post-processing sequence
(see also Section 5.2).

180 TOWARDS EVALUATION OF LOGI.CAD ΕCEDAC INSTANT RELOAD

Preparation sequence: There are several aspects that have been mentioned within the
preparation of the ECA. In contrast to the considerations in Section 5.2.2 no free-
programmable part exists in the initialization sequence. Nevertheless, it is necessary that the
runtime environment provides appropriate means to download the ECA and the new resource
without causing disturbances in the currently executed resources. Furthermore the require-
ments of resources need to be taken into consideration in advance. No actions within the
execution of the ECA exist that influence the necessary amount of memory, but the download
of the ECA and the new resource has to be considered. The type library for the new resource
is an integral part of the source code, therefore this element of requirements of resources will
not be violated due to the principles of the logi.CAD εCEDAC Instant reload. The check for
dependent operations is also unnecessary, because no actions will be executed that are
modeled by the ACS customer.
Reconfiguration sequence: The main evaluation means for the reconfiguration sequence is
model checking, because the interaction of the ECA and the control application have to be
checked in relation to the plant, possible network interactions, and other disturbances within
the control device. For the logi.CAD εCEDAC Instant reload the situation is similar, because
the changes within the runtime environment are related to user-defined logic within the
εRECONF logic. The necessary formal model for a control device has to include the proce-
dure mentioned in Figure 53b, but in contrast to the models especially for dynamic reconfigu-
ration (see Section 7.3) only a switch between two resource models has to be modeled apart
from the READ and WRITE commands. Furthermore it has to be evaluated if the included
algorithm for transition management does not cause disturbances in the overall plant.
According to the different system integrity characteristics, the following checks have to be
fulfilled for a system evolution step:

• Global and local consistency: The plant, process, and product specifications need to
be fulfilled also for the system model including the system evolution step.

• Active references: The IEC 61131-3 standard especially provides active references in
terms of global variables. The influence between different algorithms connected by
global variables has to be analyzed carefully in order to do not violate specifications
for the normal operation. Next to verification by model-checking the interrelation be-
tween algorithms may be evaluated also by an appropriate calculation. Whisnant et al.
(2003) present an approach for dynamically reconfigurable software (in general, not
focused on embedded systems) where the existing dataflow dependencies are analyzed
based on the current system state and the new configuration. This methodology may
be applied for IEC 61131-3 based systems, too.

• State management: The evaluation of the chosen transition management policy pro-
vides information about the possible disturbances caused by the system evolution step.

• Real-time constrained operation: The execution of the reconfiguration sequence
within a certain time limit is of special interest for the logi.CAD εCEDAC Instant re-
load because the execution of the resource is interrupted. During the execution of the
εRECONF logic the operation of the resource is stopped, therefore in any case it is
necessary that this part signals its successful execution. The operation of the resource
would not be continued otherwise. Further effects of the disruption of operation for
any control application within the control device need to be evaluated.

In addition to model checking, also KAPPA-based calculations are mentioned for the
reconfiguration sequence. For the logi.CAD εCEDAC Instant reload only dependent opera-
tion has to be taken into consideration. It has to be checked if the εRINIT logic does only
include access to the old resource and the εRECONF logic to the new resource. No further
checks for requirements of resources are necessary.

TOWARDS EVALUATION OF LOGI.CAD ΕCEDAC INSTANT RELOAD 181

Post-processing sequence: Within Section 5.2.2 only dependent operation has been identified
as a necessary property of the evolution specification. In the logi.CAD εCEDAC Instant
reload approach, the εRDINIT logic has to be evaluated if situations with erroneous usage of
basic reconfiguration services exist. In general it is necessary that the εRDINIT logic can be
executed successfully.

10.4 Summary
The Instant reload mechanism provided by the IEC 61131-3 based engineering tool logi.CAD
represents the current state of the art for the dynamic reconfiguration of ACSs. The control
logic is changed in between the cyclic execution, whereupon the internal states of unchanged
elements are restored. By enhancing this mechanism with the engineering approach developed
in the εCEDAC project (the logi.CAD εCEDAC Instant reload mechanism) also DSE is
possible.
As main differences to the approach described in this thesis only read and write commands
exist within the ECA, because the main principle is based on the exchange of a resource. The
new resource is deployed as an entity, in contrast to changing single connections or FBs
within the existing resource. But on the other hand this principle is characterized by only little
effort for the ACS customer, because he has to model only the reconfiguration sequence as
well as some post-processing.
As a consequence the evaluation is focused on the reconfiguration sequence, which is
especially critical because no control logic is operated during the execution of εRECONF
logic. This part of the ECA is modeled by the ACS customer and has to be checked if there
will be no influence to the specifications for normal operation and real-time constrained
operation. In addition, active references caused by the use of global variables according to the
concepts of IEC 61131-3 have to be taken into consideration.

 183

11 Outlook

Chapter 11

Outlook

The use of DSE and its evaluation is an important step towards agile manufacturing. The
potential of time reduction for the reconfiguration and change based on the overall time-to-
market for process and production plants, as described in Figure 1, provides a high incentive
to utilize this new methodology within future ACSs. Next to the dramatically decrease of
costs of change the paradigm of agile manufacturing will be put to a new level of quality: the
continuous execution of changes during the overall evolution of a production plant according
to the principles of AXP (see Section 9.2) without any shutdown has the potential to revolu-
tionize the ACS industry.
This work sets a starting point by formulating a new engineering methodology and a new
concept for the evaluation of DSE. But there is still work left, which is related to the practical
realization as well as further theoretical investigations. We will discuss different aspects for
further enhancements, starting with logical next steps based on the work presented here and
ending up in visionary considerations about future application of DSE.

Standards for device description and parameters
The representation of the current system state, the KAPPA vector, is the basis for an im-
proved engineering support in general and the evaluation process especially for DSE. Within
this thesis the use of an open standard, FDCML, in conjunction with the models of IEC 61499
has been demonstrated. For the use of such a device description in industrial practice a
common sense on the format and the usage of parameters needs to be established. FDCML
provides a very general basis and does not define concrete parameters. Therefore it is highly
flexible for the description of various situations, even if they are not known up to now. But on
the other hand an engineering tool needs clear definitions of parameters and their semantics in
order to automatically operate the information of a device description.
Based on the current status in ACSs detailed definitions of enhancements for standards are
generated by user organizations such as PLCopen [44], OPC Foundation [41], or CiA [6].
Based on a standardized description format such as FDCML these organizations should
provide detailed definitions for device descriptions, which may be used as common basis for
engineering tools and the exchange of data between different companies.
Another aspect is related to the definition of parameters for the description of real-time
behavior, e.g., the architectural elements of a control device or the communication network. A
satisfactory situation within typically heterogeneous ACSs can only be achieved by a
common sets of parameters and measurement specifications for their obtainment. This is an
important prerequisite for both KAPPA-based calculations as well as formal models, and in
addition provides the possibility to compare different platforms by standardized parameters,
as proposed in Sünder et al. (2007d) for benchmarking IEC 61499 runtime environments.

184 OUTLOOK

System model for verification
A critical point for the evaluation of DSE is the provision of appropriate models of the control
devices. Within this thesis the principles for modeling the most important architectural
elements of a control device have been discussed based on NCES. For a practical application,
these models should be generated and assembled to the overall system model with only little
(or in the best case no) interaction with the user. First approaches exist already in this
direction, as for instance presented in Pang and Vyatkin (2008) with a special focus on the
IEC 61499 standard. Based on the exhaustive description of the current system state KAPPA
an algorithm should be capable to put together the different fragments from the different
architectural elements.
A principal problem in the application of NCES has been detected for the modeling of non-
Boolean variables. The proposed solution for the representation of integer variables as a set of
places enables simple calculations within the system model. But it should not be necessary to
model arithmetic operations by NCES. An extension of the NCES formalism towards the use
of data types would enhance the usability of formal methods in general and especially for the
evaluation process of DSE.
A special problem for the design of the system model is related to the model of the plant. The
ACS customer has to provide these models which are highly related to the concrete produc-
tion plant. Of course, based on any formalized description, the appropriate models may be
generated automatically, as for instance described in Lobov et al. (2006a) for UML. But the
ACS customers normally use their own description formats, which are usually not related to
UML. Therefore, it would highly decrease the effort for designing the plant model, if existing
description formats, which are highly specific to a given application domain, would be
supported by algorithms for the automatic generation of the plant model.

Enhanced system analysis and behavior
The basis for the evaluation of DSE, an exhaustive description of the KAPPA vector and a
system model incorporating functional as well as temporal behavior of the overall configura-
tion of a control device, may be used also for investigations in completely different fields, as
for instance the design of control devices in general. The current situation in the design of
real-time computer systems, for instance WCET analysis, is unsatisfactory as depicted in
Bouyssounouse and Sifakis (2005, Section 7.3). The incorporation of real-time behavior to
the formal model of the system provides the necessary information for such analysis by using
model checking algorithms. Clarke et al. (1999, Chapter 16) describe algorithms for quantita-
tive temporal analysis, which may be enhanced for a detailed consideration of the temporal
behavior of real-time computer systems.
This work has presented an approach for DSE of an ACS. The laws of software evolution
from Lehmann and Ramil (2000) as well as emerging challenges for software evolution as
depicted in Mens et al. (2005) discuss this topic in a very general scope. All their statements
are related to computer science and component-based software engineering. But the special
needs and environmental conditions of ACSs need some more investigations to adapt these
laws and challenges correspondingly to the industrial practice in ACSs. A set of laws directly
related to DSE of ACSs would be an important input for further developments of engineering
paradigms such as AXP.

Intelligent tool support
The acceptance of new technologies especially in the field of ACSs is highly related to an
appropriate tool support, as outlined for instance in Hall et al. (2007). Of course many
possibilities exist for tool support, especially based on the information related to the KAPPA
vector. We will focus on possibilities related to DSE and the evaluation by model checking:

OUTLOOK 185

• As already described in Section 7.6.1 a simple mapping of elements of the program-
ming language and the model language can be defined. An engineering tool, incorpo-
rating both the modeling of the control applications and the verification tool may pro-
vide the possibility to use only the elements of the programming language within
specifications (which may be established by using patterns or wizards).

• The analysis of results for the verification by model checking may be difficult for
ACS customers, because the formal model will not be familiar to them. Therefore, an
intelligent engineering tool should be possible to visualize the verification results in
terms of the control application. This aims at the representation of different paths
within the reachability graph of a system (e.g. for visual verification) or the inspection
of counter examples in case of the violation of some specifications. The VEDA tool
presented in Vyatkin and Hanisch (2001a) already incorporated such capabilities.

• The continuous evolution of a plant sets high demands to the revision management for
the different KAPPA vectors. Next to the pure documentation of the system’s changes
over time, the engineering tool may provide further possibilities for the ACS customer
to browse the various configurations of the plant (the past and the already engineered
future) in order to analyze the previous evolutions and to plan the next steps.

Automatic generation of ECAs
The engineering of DSE is of course a time consuming activity, which accompanies addi-
tional effort for its evaluation. Accordingly an advantageous enhancement may aim at the
reduction of this effort by the automatic generation of at least parts of the ECA. The clear
structure of the ECA provides a good basis for such automatisms. Based on the difference
between the current system state and the new system state for instance the RINIT and
RDINIT sequence may be generated automatically by analyzing the new and the deleted
elements. Available templates for predefined evolutions, e.g., the exchange of an FB, may be
adapted automatically by the engineering tool. The properties for the evaluation of the ECA
may be used by such an algorithm in order to generate correct ECAs a priori.
But there is also a more visionary application for the automatic generation of ECAs, if we
think of a production plant which is capable to autonomously react on disturbances and
optimize its processes according to the current production order. Such a system may also be in
the position to apply changes to the plant according to the current needs. The system would
calculate the necessary changes in the control applications, generate the necessary ECAs for
these changes, and apply them to the plant at run-time. This would increase the flexibility of
agile manufacturing systems to a high extend, since the reconfigurability of the system is
increased from the upper coordination level down to the low level control logic. Combined
with further possibilities of physical dynamic reconfiguration (see next item) this would be a
possible next step to autonomous RMSs.

Physical dynamic reconfiguration
The capabilities of DSE are highly related to the capabilities of the underlying system
environment for dynamic reconfiguration. This work is focused on changes to control
applications, triggered by basic reconfiguration services. The incorporation of changes to the
hardware are related to additional human interaction in Section 4.4. But if also capabilities
exist for changing the hardware configuration by using services, the methodology for DSE
will become more powerful. There are two kinds of services possible as next steps:

• Physical reconfiguration within control devices: A control device may be capable to
change its hardware configuration triggered from any service within the software ar-
chitecture. This may be possible if a certain hardware part provides different configu-
rations which may be changed during operation. But there may also be the possibility

186 OUTLOOK

to freely change hardware functionality for instance based on reconfigurable Field
Programmable Gate Arrays.

• Physical reconfiguration within a plant: The different components of a plant may be
arranged automatically and therefore provide services for the reconfiguration of the
hardware components of a plant. Already existing examples are CNC machines, which
do change the tool according to the current production order. If the concept of automa-
tion objects becomes practically relevant, a hardware component will incorporate
software components, too. An exchange of a component, which is not only related to
the tool of a machine but also a modification of the overall hardware configuration,
provides a new kind of flexibility for production plants. The DSE methodology may
be enhanced by services which trigger the dynamic reconfiguration of hardware
components.

Vision for future practical applications
How to apply the methodology of DSE in a future practical example? We will consider a
virtual plant which is inspired by the testbed available in the Odo Struger Laboratory at the
ACIN. The main element is a transfer system, which consists of autonomous components
such as switches, crossings, index stations, and conveyor belts. These components are
provided by a component vendor and include basic software functionalities. The transfer
system is manufactured by a machine vendor, who does additionally includes functionality for
control and scheduling. Finally, different machines are connected via the transfer system; the
coordination of the whole plant is designed by a system integrator. What kind of scenarios for
DSE may be possible within this virtual plant?

• Firmware update: The component vendor improves the basic functionality for in-
stance of the crossings. He models an ECA in order to evolve existing components to
the new firmware version and provides it to his customers. The machine vendor will
check the correctness of the DSE within the transfer system and evolves the system af-
terwards. Based on the new functionality also the control functionality for the machine
can be improved. The machine vendor models the appropriate ECAs and evolves the
operating transfer system.

• Transfer system enlargement: Due to experiences from the operation of the transfer
system new paths should be included. After designing the mechanical enlargements,
the machine vendor engineers the evolution of the control functionality of the related
components (switches and crossings). Now first tests with the new configuration are
possible, which lead to enhancements within the scheduling functionality of the trans-
fer system: the machine vendor provides appropriate ECAs and evolves the transfer
system during operation.

• Autonomous system control: We assume an autonomously acting system control,
which is responsible for the coordination within the plant, for this scenario. A failure
happens within the system (e.g., a machine breaks down), and the system control cal-
culates a new system configuration for the optimal plant operation. Therefore, changes
in some machine functionalities are necessary. The system control calculates the nec-
essary changes within the software functionality of the machines, generates the ECAs
and applies the changes. Then the new control strategy is applied within the system
control, by the execution of automatically generated ECAs.

 187

12 Conclusion

Chapter 12

Conclusion

The capability of changing functionalities without interrupting the operation will become one
of the main features of next generation automation and control systems. Different studies such
as Favre-Bulle (2005) or the European High-Level Group Manufuture drastically point out,
that ACSs have to become easily changeable in terms of software and hardware functionality.
But the current state of the art is not able to satisfy these needs. The time-to-market for
process and producting plants in case of reconfiguration and change (based on an existing
plant) increases the time effort especially for the production process (see Figure 1). The
paradigm of agile manufacturing, which claims highly flexible production facilities which are
capable to adapt themselves to the fast changing markets and product portfolios, does not
provide the promised efficiency in real-world applications up to now. Concepts for the
dynamic reconfiguration especially focus on the pure capability to apply changes, but without
considering of the necessary engineering process in behind.
This thesis focuses on the engineering process and introduces the new methodology of
downtimeless system evolution, which uses dynamic reconfiguration capabilities as basis
input and sets up new concepts for their application. The term DSE may be explained as
follows:

• Downtimeless: Changes have to be applied to the running system with as little distur-
bances to the process under control as possible, in the best case without any distur-
bances.

• System: Although software is considered to be the central element that is changed,
also changes to hardware—or more general changes to the overall system—are taken
into consideration.

• Evolution: Changes of a system become normal operations within the plant, which are
applied continuously as soon as any change is necessary. The overall system evolves
during its life-cycle according to the changing requirements.

The engineering of DSE does not only describe the transition from the current system state to
a new system state. We have to proof also the correctness of each system evolution step,
because the main prerequisite for changes within this methodology is the execution during
operation of the plant without disturbances. The three main topics, which have been devel-
oped in the scope of DSE, can be characterized by the following three questions:

How to model the transition of the system without disturbing its operation?
The starting point for DSE is a new engineering methodology, which puts change into the
center of considerations. A plant is in most cases a unique part and the different processes
within the plant are highly heterogeneous. We proposed a new kind of application, the
evolution control application, which models the transition to the new system state freely
programmable for the user. The different possibilities for dynamic reconfiguration, the so-
called basic reconfiguration services, represent the basic building blocks for ECAs. The

188 CONCLUSION

effects of dynamic reconfiguration have been structured in five sequences, which are executed
sequentially: download of the ECA, initialization sequence, reconfiguration sequence,
deinitialization sequence, and deletion of the ECA. The engineer follows a clear outline for
modeling single system evolution steps as well as the interconnection of several steps to
enable also the synchronization between different areas of the reconfiguration within the
control application. Changes to the hardware configuration are possible by integrating human
interaction into the execution of system evolution steps.

How to decide if this transition is free of failures?
The interruption of production processes or even break downs are very expensive and time
consuming, therefore DSE promises high financial benefits by keeping the system running
also during the execution of changes. But the transition to the new system state has to be
correct, too. In order to evaluate the absence of failures within ECAs, we have analyzed the
capabilities for dynamic reconfiguration based on the reference model of
Walsh et al. (2007b), which provides also a list of system integrity characteristics according
to the different change types. Due to the structured engineering approach for DSE and the
different properties of system integrity, the five sequences for the execution of a system
evolution step have been interrelated in order to identify the most appropriate evaluation
means. As a result, two kinds of evaluation means were presented:

• Verification by model checking: This methodology provides due to its automatic
character, the result as true/false decision with counter example, and the incorporation
of a detailed system description into the formal model the best methodology for the
evaluation of the reconfiguration sequence. This sequence includes the active change
of the current system state and needs to be taken into consideration very carefully.

• KAPPA-based calculations: Several properties can be evaluated by calculations based
on the current system state. The calculations are based on rules concerning resource
properties. As there will be no active adaptations to the functional behavior of the con-
trol application within the preparation and post-processing of a system evolution step,
these calculations are sufficient for the evaluation of DSE apart from the reconfigura-
tion sequence, which is mainly evaluated by model checking.

How to model the system in order to provide the basis for the evaluation process?
Apart from the means and properties for the evaluation of DSE the representation of the
system behavior within appropriate models has to be defined. Herein the system state, the so-
called KAPPA vector, was the basis for an exhaustive description of the system and the
control devices. We have used the general description format of FDCML and provided
enhancements related to the IEC 61499 standard as well as parameters for the evaluation
process.
Within the evaluation by KAPPA-based calculations especially the adaptations of the KAPPA
vector during the evaluation process has to be pointed out. As DSE aims at changes to the
system during operation, the KAPPA vector needs to be changed accordingly during the
evaluation process.
For the verification by model checking, the representation of two important topics has to be
taken into consideration in detail. On the one hand any ACS is characterized by its functional
and temporal behavior. Therefore, especially the consideration of temporal behavior has taken
an important role within the system model for model checking. The second topic is again
dynamic reconfiguration, which is not part of typical verification means. Based on the
restriction of verification by model checking to the reconfiguration sequence and the possible
set of basic reconfiguration services in this area the effects of dynamic reconfiguration have
been modeled by means of the chosen formal description language NCES.

CONCLUSION 189

Reconsideration of requirements
The analysis of requirements for DSE in Chapter 2 resulted in a set of eight claims that need
to be fulfilled by the new methodology for the engineering and evaluation of changes to an
ACS during its operation. We will reconsider these requirements and describe their fulfill-
ment by the concepts of this thesis roughly:

• (1) Temporal behavior: A detailed analysis of the temporal behavior of the control
device’s elements were incorporated in both the KAPPA-based calculations and the
formal model of the system.

• (2) Execution semantics: The execution semantics of the R3E were analyzed and
incorporated to evaluations by KAPPA-based calculations as well as the functional
behavior of control logic execution within the system model.

• (3) Underlying system configuration: A control device was considered with all archi-
tectural elements, starting from the interaction with the environment (plant and com-
munication network), the hardware platform, operating system, any kind of applica-
tions and programs, up to the ECA.

• (4) Modeling dynamic reconfiguration: A model for the effects of basic reconfigura-
tion services within the reconfiguration sequence were specified in order to incorpo-
rate changes of the system within the verification by model checking. The KAPPA
vector is a dynamically changing quantity during the evaluation of DSE.

• (5) Free programmable downtimeless system evolution: The new engineering meth-
odology for DSE enables free programmable ECAs based on basic reconfiguration
services and uses the programming languages common to the ACS customers.

• (6) Extensive engineering support: Any concept that was presented in this work is
applicable by an engineering tool. Furthermore, the introduction of an exhaustive de-
scription of the current system state KAPPA represents the basis for this extensive
support of the engineer.

• (7) Provision of formal models: The overall architecture of a control device was ex-
emplarily provided with formal models in the modeling language NCES. Based on the
concept of a value-added chain for total evaluation the ACS customer receives the
necessary models by the different vendors or they may be generated by the engineer-
ing tool according to the presented transformations.

• (8) User-friendly definition of specifications: The different properties for the evalua-
tion of DSE were simplified by separation to the most appropriate evaluation means.
Therefore, many properties can be checked by simple definitions within rules based on
the current system state. For the use of temporal logics the property specification pat-
terns system was used, whereas the mapping to the elements of the programming lan-
guage to the formal model has been explained exemplarily, which can be used to pro-
vide specifications by means of the programming language used for the control appli-
cation.

 191

A Field Device Configuration Markup Language

Appendix A

Field Device Configuration Markup Language

The FDCML has been developed as a markup language for the description of ACS compo-
nents. Information about the consortium and further information are available at [10]. The
following description of the main elements of FDCML is based on the specification
FDCML.org (2002), which provides the description of the XML Schema.
The requirements for the establishment of FDCML are defined as given in (FDCML.org,
2002, Chapter 2):

• Network independence: “FDCML is able to describe network components in a net-
work/bus independent manner without loosing the ability to describe network specific
properties.”

• Multi language support: “FDCML is able to support descriptive text elements in
multiple languages in one XML file.”

• Extensibility: “FDCML is able to store more information as defined in “ its specifica-
tion “without the need to change the format of the device description.”

The most important aspect for this work is extensibility, as it provides the basis to use
FDCML for a device description that includes especially parameters necessary for the
evaluation of DSE. Multi language support is achieved by the use of appropriate attributes
within the XML schema elements that define the used language. Network independence is
especially interesting for current ACS applications, since this is the field where device
descriptions are used in most cases. Herein a very basic structure is defined that (similar to the
elements that provide extensibility) provides a framework for the declaration and description
of any parameters.

A.1 Basic elements of the FDCML schema definition
The FDCML schema definition is closely related to ISO 15745-1 (2003), which consists of
the four elements device identity, device manager, device function, and application process
(see also Section 3.3). The device model provides a modular structure. On the one hand single
devices may be described according to these four elements. On the other hand a composition
of single elements and their interrelation by connections can be incorporated, too.
Figure 56 depicts the basic structure of the FDCML schema definition and its main elements
in a simplified manner29. The root element is ‘ISO14745Profile’, depicting the relation of
FDCML to the ISO 15745 standard. ‘ProfileHeader’ includes information about the device

29 The figures in this chapter show the structure of the XML schema and also incorporate multiplicities. Each
rectangle depicts an element, whereas attributes of elements are neglected. A drawn through line represents
mandatory elements, and a shadow depicts multiplicity. A dotted line represents optional elements. A switch
represents a choice between elements, whereas also this choice may have multiplicity (represented as double
switch in Figure 58b).

192 FIELD DEVICE CONFIGURATION MARKUP LANGUAGE

description file itself, since FDCML is a markup language and may be used in different kinds.
It is possible to describe one single device or composite devices, according to the choice
‘ProfileBody’ (single device) or ‘ProfilesBody’ (composite devices).
If we consider a single device description, the four elements already mentioned above are
available as schema elements. ‘DeviceIdentity’ includes a list of fixed elements which
provide information about the device vendor or the product name, just to give two examples.
‘DeviceFunction’ as well as ‘ApplicationProcess’ are not within the scope of the FDCML
definition and refer to any external schema that may be added. Additionally also a non-
standardized extension to ‘ProfileBody’ is included by the element ‘nonStandardizedExten-
sion’. The element that is investigated in more detail is ‘DeviceManager’, that contains all
information concerning to network configuration and device structure.
Figure 56 depicts the most important elements within ‘DeviceManager’, namely ‘DeviceS-
tructure’, ‘communicationEntity’, and ‘resourceEntity’. Next to these elements additional
elements for documentation but also for arbitrary information (e.g., the link to an external
XML schema definition) are included.

• ‘DeviceStructure’: This element describes the physical structure of a device. Next to
the elements ‘channelList’(including physical and logical channels) and ‘MAUList’(a
collection of network interfaces) also indicators and slots are mentioned.

• ‘communicationEntity’: This element describes a network facility within a device. A
device may have different communication entities as this is common for ACSs. As one
of the requirements for FDCML is network independence the ‘communicationEntity’
element includes a framework for the declaration of parameters concerning the com-
munication facitiy. This is for instance a list of configuration items or process data de-
scriptions. Further the association to a network interface is included next to arbitrary
additional information (see Section A.2 below).

• ‘resourceEntity’: This element is the counterpart of ‘communicationEntity’ as it de-
scribes facilities within a device that perform functionalities which are not related to
network communication. The different elements within ‘resourceEntity’ include next
to configuration items also logical connection points as well as arbitrary additional in-
formation.

Figure 56: Basic structure of the FDCML Schema

A composite device is defined by the ‘ProfilesBody’ element, which again may include a
‘DeviceIdentity’ element in order to provide general information of the overall device. In this
case ‘ProfileBody’ elements are used in order to define the components within the composite

FIELD DEVICE CONFIGURATION MARKUP LANGUAGE 193

device. For the interrelation between these components a list of connections (‘connec-
tionList’) is defined, which consists of ‘connection’ elements that provide information about
source and destination of the interrelation as well as specific properties of the connection (see
description below).

A.2 Elements that provide extensibility in FDCML
The FDCML schema includes different elements in order to achieve extensibility of the
device description. Within the discussion above we have already mentioned the use of
external schemas, the element ‘nonStandardizedExtension’ within ‘ProfileBody’, as well as
configuration item lists that can be handled in a very free manner. Additionally there are two
kinds of elements that further provide open space for arbitrary information within the
elements of the FDCML schema: specific properties and additional items.

The ‘specificProperty’ element
A specific property is a pair consisting of a name and a value. Both are depicted in Figure 57
in detail. The name of a ‘specificProperty’ is given as a group (‘g_naming’) that may consist
of a label (‘label’) with an reference for this label (‘labelRef’) and appropriate help informa-
tion (‘help’, ‘helpRef’, and ‘helpFileRef’). The value of a specific property is given by the
group ‘g_values’ and provides a set of possibilities in order to define the value of an element.
Corresponding to the elements depicted in Figure 57 the following possibilities are provided:

• Constant values (‘const’).
• Editable element values (‘edit’).
• A set of valid element values or names for these values as enumeration (‘enumera-

tion’).
• A set of ranges for valid element values (‘range’).
• Boolean element values (‘yes’ and ‘no’).
• References to other elements within the device description (‘reference’).
• The value of an instance (‘instanceValue’).

Figure 57: The FDCML element 'specificProperty'

The ‘additionalItem’ element
A more powerful means for describing any arbitrary information within the framework of
FDCML schema elements is provided by ‘additionalItem’. The element is depicted schemati-
cally in Figure 58a. Next to the elements already mentioned for ‘specificProperty’ above,

194 FIELD DEVICE CONFIGURATION MARKUP LANGUAGE

‘g_naming’ and ‘g_values’, further information can be included as properties (‘specificProp-
erty’) or further additional items (‘additionalItem’). This offers the possibility to describe data
in a hierarchical manner. Further elements such as ‘picutureList’ or ‘instances’ (information
how to instantiate a certain element) are provided, too.

Figure 58: The FDCML elements a) ‘additionalItem’ and b) ‘additionalItemList’

Based on the element ‘additionalItem’ FDCML provides also a collection of additional items
as ‘additionalItemList’ (see Figure 58b). Next to the group ‘g_naming’ an arbitrary number of
choices between ‘additionalItemCategory’ and ‘additionalItem’ are possible. ‘additionalItem-
Category’ provides a means in order to define a vendor specific category of ‘additionalItem’
elements.

 195

B Real-time Reconfiguration Runtime Environment

Appendix B

Real-time Reconfiguration Runtime Environment

The runtime environment which is taken as concrete example for the considerations within
this thesis is characterized by three main features:

• IEC 61499 runtime environment: The R3E is compliant to the definitions of
(IEC 61499-1, 2005) as well as the additional definition of the IEC 61499 compliance
profile for feasibility demonstration [17].

• Real-time execution: The R3E is capable to execute FB networks with regard to real-
time constraints. Therefore special SIFB types for the encapsulation of different
sources of events are defined, which are the user interface for the runtime capability to
separate between different event flows and match them to the scheduling algorithm of
the operating system.

• Reconfiguration support: The R3E further provides enhanced capabilities for the
reconfiguration of control logic during execution. The management commands de-
fined in (IEC 61499-1, 2005) are fully supported as well as additional commands nec-
essary for DSE are part of the runtime environment.

The development of this runtime environment has been pushed by different parties within
different research projects, but its main developer is Alois Zoitl from ACIN. The fundataion
of the runtime environment has been established during the µCrons research project [36].
Zoitl (2007) gives a very detailed description of the internals of the runtime environment
which will be used as main source for the following description. Additional enhancements
and specializations have been added during the εCEDAC research project [8], especially
within the set of basic reconfiguration services as depicted below. In parallel to this the
runtime environment has been made public as an open source project called 4DIAC [12].
According to this history there exist different versions of the runtime environment which
provide different sets of features and functionality. We will use the version of the runtime
environment which was the result of the adaptions within the εCEDAC project for the
considerations and experiments within this thesis. There may be discrepancies with other
versions (e.g., the 4DIAC runtime environment). In the following we will describe the two
aspects of the R3E real-time execution and reconfiguration support.

B.1 Real-time execution of IEC 61499 applications
In order to provide real-time execution for FB networks according to IEC 61499 it is neces-
sary to provide a mapping between the elements of IEC 61499 and the elements of a real-time
system. The elements of IEC 61499 have been depicted already in Section 3.2.2 which are the
models for system, device, resource, FBs and so on. The basic theory for real-time execution
will be described roughly based on Douglass (1999, Chapter 2). As already depicted a real-
time computer system has to execute programs under certain time constraints. Only if the
results can be provided in time, the computation has been successful. The execution of
different programs has to be performed concurrently in order to meet the requirements. Herein

196 REAL-TIME RECONFIGURATION RUNTIME ENVIRONMENT

a lot of work is available that describes scheduling algorithms for concurrent programs. There
exist different terms for the context of execution. We have used the word program in the
previous description, but also thread or task may be used. For this work we will use task as
key word for an execution context. The scheduling of concurrent tasks may be done very
simple as for instance cyclic executive (the tasks are statically ordered and executed according
to a fixed, cyclic schedule) or time-slicing round robin (tasks are preempted when they exceed
a certain time, always the highest priority waiting task is executed, and different waiting tasks
on the same priority are executed alternately based on time slices). The different tasks may
communicate to each other via special means or share similar resources during their execu-
tion. Especially the second case is very challenging since the execution may be locked
(deadlock) if a low priority task uses a resource which is necessary for the execution of a high
priority task. Herein concepts such as semaphores or mutual exclusion are applied in order to
avoid deadlocks.
Zoitl (2007) discusses the mapping of IEC 61499 elements to real-time scheduling theory in
detail in Chapter 4. As a result he proposes the so-called event chain concept as appropriate
realation ship of IEC 61499 execution and tasks within a RTOS. The following considerations
are provided within this theory:

• Event sources: The most interesting elements within an application are those FBs
which are capable to generate events. These are always SIFBs, as for instance
E_CYCE which provides a cyclic event based on the timer functionality of the under-
lying system. Every execution within the FB network starts at this kind of FBs which
receive an important rule for the real-time execution concept.

• Event sinks: The opposite of event sources are event sinks, simply speaking the end of
execution within an application. This can be represented by an output event that is not
connected or based on the internals of an FB, e.g., based on the current state of the
ECC there is no event emitted.

• Event chains: Based on the sources and sinks of execution Zoitl (2007, Section 4.2.3)
defines “an event chain as the chain of FB executions started through an even occur-
ence at one event source FB and ending in an event sink”. The event chain serves as
the execution context that will be mapped to tasks within the operating system. Ac-
cordingly it is possible to add real-time constraints to event chains, in detail single cal-
culations within the overall event driven FB network.

Figure 59 depicts the overall situation for the R3E architecture deviding into two different
aspects. Within the application level the FB network is visible and the different event source
FBs (‘ES 1’, ES 2’ and ‘ES x’) are visible as the anchor points for the user for the definition
of event chains. Of course the event chains are not statically visible and may change based on
the current state of the application (e.g., whether an FB will produce an output event or not)
and the FB network may be interrelated between different event sources. But from the
execution point of view the correlation of FBs and tasks is clearly defined: each event that is
triggered based on a certain event source belongs to the execution context (event chain) of this
event source. On the execution level there exist two different elements. On the one hand the
underlying services for the event source have to be handled appropriately (one external event
source may be related to different event source FBs). As the event sources are a critical part
for the execution and especially an overload situation within the runtime environment, Zoitl
(2007) proposes the use of a guarding of external events (suppress external events if they do
not occure according to their specification). On the other hand the execution of tasks within
the operating system has to be handled by appropriate scheduling algorithm. The execution of
FBs within such a task is proposed according to the event dispatcher concept: Each FB that
needs to be executed is inserted in a list by the input event which receives the event. The FBs

REAL-TIME RECONFIGURATION RUNTIME ENVIRONMENT 197

are executed in a sequential manner according to this list, which is handled as first-in-first-out
buffer.

Figure 59: Interrelation of external events, event chains and tasks within the operating system

(Zoitl, 2007, Figure 4.3)

The critical point for the real-time execution of FB networks is to prove whether an applica-
tion will be schedulable (it is possible to fulfill all real-time constraints) or not. Zoitl (2007)
provides a detailed analysis of schedulablity based on results from real-time scheduling theory
based on the occurrence specification of the external event sources, a limited execution time
of event chains, and the structure of the event chain itself. To give an example, there exist
dependencies between different event chains based on a special class of event sources, the so
called event chain couplers. Typical IEC 61499 applications will be interrelated by event and
data connections. In terms of event chains this situation is not very satisfying as huge parts of
the application will be executed within the same execution context. But in many cases the
real-time constraints can be limited to rather small portions of the application. An event chain
coupler can be used in order to change the execution context within a chain of executing FBs.
Figure 60 depicst this situation schematically. Within the FB network there exists only one
event source triggered by some external event (‘ES’). In order to separate the overall execu-
tion into different portions with different real-time constraints (‘deadline1’, deadline2’ and
unconstrained execution) event chain coupler FBs (‘EC coupler’) are used.

Figure 60: Separation of execution contexts within a chain of executing FBs (Zoitl, 2007, Figure 4.9)

You can imagine that there exists a high variety of different FBs that serve as event sources or
as coupling element in order to separate execution contexts within an application. Zoitl (2007,

198 REAL-TIME RECONFIGURATION RUNTIME ENVIRONMENT

Appendix C) provides a list based on the event function blocks that are defined in
(IEC 61499-1, 2005, Annex A). Among these FBs there are for instance the cyclic execution
under real-time constraints as depicted in Figure 61a (‘RT_E_CYCLE’). An interesting FB
emerges from the enhancement of an ‘E_SWITCH’ FB with real-time constraints
(‘RT_E_SWITCH’ in Figure 61b). Based on the Boolean value ‘G’ different execution paths
with different execution contexts will be triggered. The already describe coupler for the
separation of one execution path into two execution contexts is presented in Figure 61c
(‘RT_E_EC_COUPLER’).

a)

b)
c)

Figure 61: Different event source FBs a) real-time constrained cyclic execution b) data dependend
splitting of an execution chain c) coupler FB for changing the execution context within an application

(Zoitl, 2007, Appendix C)

B.2 Basic reconfiguration services
The reconfiguration approach described in Zoitl (2007) is based on the most important work
on dynamic reconfiguration from Kramer and Magee (1985). But in contrast to the original
definition of a configuration manager, which is responsible for the application of the configu-
ration changes to the current system state in order to change from one configuration specifica-
tio not another, Zoitl declares that the reconfiguration should be applied by a special applica-
tion, the so called reconfiguration application. Herein the functionality for changing the
current system state is incorporated as special FBs and the way how to change the system
state can be used to model application specific (this concept has been discussed also in
Section 4.2.1 for DSE).
The main elements are the basic reconfiguration services, which provide the necessary
functionality for changing the current system state and are encapsulated as SIFBs. Zoitl
(2007, Section 3.2.2) defines five categories of basic reconfiguration servces which are
necessary for dynamic reconfiguration:
Structural services: The structural reconfiguration services provide mechanisms for changes
to the structure of the control application. The device cannot be created by an appropriate
service as it is the element which provides the basis for the application of these services (in
detail the management application in order to access a device). But all elements within a
device are affected by structural services:

• “CREATE resources within devices, FBs within resources, and connections (event and
data) between them.”

• “DELETE resources, FBs, and connections.”
• “WRITE parameter values to device data inputs, resource data inputs, and FB data

inputs.”
Zoitl (2007) defines a generic interface for the different FBs incorporating basic reconfigura-
tion services in (Zoitl, 2007, Annex A). Figure 62a depicts the interface of the FB that is
capable to create a (data or event) connection. The FB interface provides as input values the

REAL-TIME RECONFIGURATION RUNTIME ENVIRONMENT 199

necessary parameters for the management command CREATE. These are the destination
‘DST’ (which resource is concerned) as well as the source ‘SOURCE’ and destination
‘DESTINATION’ of the connection. These parameters are provided as dot-seperated list as
defined in (IEC 61499-1, 2005). In order to minimize the execution time of FB during the
execution of an evolution step, this FB has been adapted as depicted in Figure 62b (similar
adaptions have been applied also for other basic reconfiguration services). On the one hand an
initialization of the FB has been added in order to move decoding of strings to a not time
critical phase. Further the parameters have been split up, as for instance the instance name and
the input/output name for the source and the destination of the connection.

a)
b)

Figure 62: Interface of basic reconfiguration services for the creation of a connection a) as defined in
Zoitl (2007, Appendix A) and b) as available in R3E

Library services: The library reconfiguration services influence the library available within a
device. Zoitl (2007) does not provide FBs in order to incorporate these basic reconfiguration
services since library services are tightly coupled with the engineering tool and can be applied
via the management application. The establishment of a library which is dynamically
adaptable during runtime is a challenge especially for resource-limited devices. Zoitl (2007)
proposed the use a virtual machine approach. The engineering tool transforms the type
definition of a BFB into the machine code of this virtual machine, and the runtime environ-
ment interprets the machine code and simulates a situation as the virtual machine would be
physically present.
Execution control services: The execution control reconfiguration services set the state of a
managed FB or resource. These services are based on the state machine for managed FBs,
which is defined in (IEC 61499-1, 2005, Section 3.3). There may exist also FBs that cannot be
managed as they are fundamental part of the runtime environment. For instance the resource
that includes the management application within a device is of such a type. But in common
the FB networks and also resource within a device are established by management commands
and therefore their behavior belongs to this state machine (see Figure 63). A transition within
the state machine corresponds to the execution of the mentioned management command.
Therefore, also structural services for the creation and the deletion of an FB instance are part
of the state machine. The execution control services influence the FB instance during its
execution:

• “START puts the FB in the running state. Input events are processed.”
• “STOP” stops the processing of input events. No further input events are processed.”

If the management command occurs during the execution of an algorithm of the af-
fected FB, then this algorithm will be completed.

• “KILL aborts the processing of input events. No further input events are processed.”
In this case an algorithm that is just executed will not be completed and the FB may be
in an inconsistent state.

• “RESET puts the FB back into the initial state.”

200 REAL-TIME RECONFIGURATION RUNTIME ENVIRONMENT

Figure 63: Operational state machine of a managed function block (IEC 61499-1, 2005, Figure 24)

State interaction services: The state interaction reconfiguration services provide access to the
internals of an FB by the use of the management command READ and WRITE. This is an
enhancement to the definitions of the IEC 61499 standard which claims this functionality only
for input and output data. Zoitl (2007) defines a very simple FB interface for this basic
reconfiguration service capable to handle input, output, and internal variables (see Figure
64a). Due to similar reasons as discussed already for above the R3E uses a more specialized
FB interface (and therefore also a higher number of different FB instances in the basic
reconfiguration services library). Figure 64b depicts an FB for reading an internal variable of
an FB instance. Again the parameters of the management command are already analyized
during initialization of the FB. A further possibility to enhance execution speed of this kind of
FB is the output variable ‘VALUE’. Zoitl (2007) uses a string in order to provide any kind
variable type. But encoding and (in case of transition management) calculation and again
decoding of a certain data type from and to string data type can be omitted by provided
specialized FB types based on the type of the internal variable.

a)
b)

Figure 64: Interface of basic reconfiguration services for reading of values a) as defined in
Zoitl (2007, Appendix A) and b) as available for internal variables in R3E

Query services: The query reconfiguration services can be used to establish the current
system state by interaction with the control devices. The following commands are mentioned
in (Zoitl, 2007):

• “QUERY resources returns a list of the instantied resources within a device or for a
resource’s instance name the resource type name can be retrieved.”

• “QUERY FBs returns a list of the instanced FBs within a resource or for an FB’s in-
stance name the FB type name can be retrieved.”

REAL-TIME RECONFIGURATION RUNTIME ENVIRONMENT 201

• “QUERY FB state returns the current execution state of the FB.” As depicted in the
state machine in Figure 63 the possible states are ‘IDLE’, ‘RUNNING’, ‘STOPPED’,
and ‘KILLED’.

• “QUERY connections returns a list of all connections within a device or resource or
retrieve the corresponding end point of a connection for a given connection’s source
or destination specification.”

• “QUERY type returns the type definition of the queried type (resource, FB, data
type).”

These basic reconfiguration services are mainly useful for an engineering tool, as the re-
quested data will become very large in some cases. For instance, these query services provide
a big amount of data necessary to acquire the current system state. This is the first step within
the engineering cycle for DSE (see Section 4.1).
But query service may be useful also for the modeling of the ECA itself. For instance it
provides the possibility to check in some aspects whether the different sequences of a system
evolution step have been applied correctly. Another opportunity is modeling of failure
handling procedures.

B.3 Measurement results
Zoitl (2007, Chapter 5) provides a detailed experimental analysis of the behavior of the
implemented runtime environment. As there have been no changes to these parts of the
runtime environment within R3E, his results are applicable also for this thesis. The concepts
have been applied on three different embedded hardware platforms in order to quantify also
dependencies between the underlying system configurations.
The results for the pure real-time execution model of IEC 61499 applications can be summa-
rized as follows:

• The concept of real-time execution holds for the different runtime platforms. If the
schedulability bounds given in Equations 5 and 6 are fulfilled, the real-time con-
straints of the control application will be met.

• Because the test platforms used are very limited in memory usage and processing
power it was possible to apply situations where the schedulability bounds are violated.
“Even in these overload situations the runtime environment provided a deterministic
execution of control applications. Furthermore the most important event chains (i.e.
the event chains with the shortest deadlines) met their real-time constraints in this
critical situation” (Zoitl, 2007, Section 5.2.3).

• A special target of the runtime design mentioned in Zoitl (2007) is independent execu-
tion behavior from the underlying systm confinguration, especially the RTOS. The
experiments with three different test platforms showed that the runtime environment is
not able to abstract all RTOS characteristics. But it was possible to observe general
similarities in the execution behavior of the different test platforms.

Further Zoitl (2007) provides experiments which aim at the consideration of the execution of
basic reconfiguration services during operation of real-time constrained event chains.

• The download of an application via the management application during execution of
real-time constrained event chains does not influence the real-time constraints of the
control application.

• A separated consideration has been applied for QUERY commands, because they have
to be replied big amount of data as answer (e.g., a list of FB types or connections).
Also for QUERY commands the operation of real-time constrained event chains has
not been influenced.

202 REAL-TIME RECONFIGURATION RUNTIME ENVIRONMENT

• A simple ECA without real-time constraints, which acts on a real-time constrained
event chain, does influence the execution behavior of the control application to an ex-
tent of one to ten percent of the deadline (based on a rather small application and
deadline). It is important that there exists some spare execution time in order to pro-
vide the capability of execution of basic reconfiguration services within the prepara-
tion and the post-processing of a system evolution step.

• The disturbance of an ECA which is executed with real-time constraints has not been
considered in detail as Zoitl (2007) states that therefore a careful planning and adjust-
ment of the control application and the ECA is necessary. The content of this thesis
provides exactly the missing context.

 203

C Net Condition/Event Systems

Appendix C

Net Condition/Event Systems

The formalism of Net Condition/Event Systems (NCESs) has been introduces in Rausch and
Hanisch (1995) as a formal, modular modeling approach that is based on two concepts
already known in literature:

• Sreenivas and Krogh (1991) introduced “condition/event systems as a class of con-
tinuous-time discrete event dynamic systems with two types of discrete-valued input
and output signals: condition signals and event signals”.

• Petri (1961) introduced his modeling approach for asychronous communication in
computer systems based on places, transitions, their interconnection, and the token
flow within the graph (see also Section 3.6.3). There exist many different dialects of
so-called Petri nets.

The main idea of NCES is to combine these concepts in the following way. The dynamic
behavior of modules is described as Petri net, which are extended with condition and event
signals. Based on these modules composition can be modeled as condition/event systems by
interconnecting the event and condition interfaces of the different modules. In this way a
hierarchical model architecture can be established. In order to provide model checking for this
kind of modeling approach, the overall system can be reduced into one single system without
modules (flattening of the hierarchy). According to Starke and Roch (2002) such a system
without inputs and outputs (so-called autonomous systems) are called Signal-Net Systems
(SNSs), and an appropriate model checking algorithm is described. We will focus our
considerations on a certain type of NCES, which provide the usage of timed arcs as well as
multiple tokens within arcs. Further enhancements such as distinguishable tokens (coloured
tokens) as described in Starke and Roch (2002, Section 3) or the combination of NCES with
extended timestamp nets (a high-level Petri net class with tokens that may carry timestamps
and additionally an arbitrary number of other elements—which may be especially continuous
state variables for modeling of dynamic behavior) as depicted for instance in Ha-
nisch et al. (2000) will not be taken into consideration.

C.1 Timed net condition/event systems
The above given extension of NCES with timed arcs is called Timed Net Condition/Event
Systems (TNCES) and has been introduces in Hanisch et al. (1997). TNCES provide the basis
for different applications of the modeling approach of NCES as for instance depicted in
Hanisch et al. (2006) or Lobov et al. (2006a). Within this thesis we will always use timed
NCES models. A graphical representation of a timed NCES model is depicted in Figure 65.
The main elements are places (which may contain a certain number of indistinguishable
tokens), transitions, and arcs between places and transitions. These arcs are called flow arcs as
they enable the flow of tokens from places to transistions and transitions to places. The
interface of a module is given by input and output events as well as input and output condi-
tions. An event represents the firing of a transition (dynamic property); a condition represents

204 NET CONDITION/EVENT SYSTEMS

the incorporation of tokens within a place (static property). Accordingly there exist two
further kinds of arcs within a NCES module, the event arcs and the condition arcs. The first
one is able to transmit events between conditions (or the interface of the NCES module), the
second one provide the static property of tokens incorporated within a state from places to
transitions. A condition represents a Boolean value, whether there exists a token in the related
state (true) or not (false).

Figure 65: A timed Net Condition/Event Systems module

The behavior of a model represented as NCES is depicted by firing rules which describe when
a transition is evaluated true. There exist two different types of transitions:

• Spontaneous transitions: A spontaneous transition does not have any incoming event
signal. The transition clears if all incoming transition arcs are true and the incoming
flow arcs do have a marking within the related place. Only if all incoming condition
and flow arcs are evaluated true (logical AND relation), the transition may fire. The
token flow via the transition is given by the flow arcs. If the transition fires an event is
issued to every outgoing event arc.

• Forced transitions: A forced transition has at least one incoming event arc. Addition-
ally there may be incoming condition and flow arcs as depicted for spontaneous transi-
tions. The transition will be evaluated only if an event is issued to the transition via the
incoming event arc. There may be several incoming event arcs, too, whereas a logical
OR or AND relation may be used within the firing rule.

In addition to the firing rules described above two further situations have to be distinguished:
• Number of tokens: As there may be several tokens within a place (denoted by dots or

a number within the place) also the condition represented via a condition arc can be
separated according to the number of tokens. A condition arc may have a weight,
which means an integer number which describes the threshold when the condition arc
will issue a true condition to the related transition. Only if there are equal or more to-
kens within a place than given by the condition are weight, the condition arc will issue
a true value. The situation is similar for flow arcs. Herein also a flow arc weight may
be defined, which has two effects to the behavior of the NCES model. On the one
hand a transition may fire only if there are equal or more tokens within a place as de-
noted in the flow are weight. But on the other hand the flow arc weight also gives the
number of tokens that are removed from the place when the transition fires. A flow arc
weight may be used also for arcs that interconnect a transition and a place. In this case
the flow arc weight defines the number of tokes that are added to the place when the
transition fires.

• Timed arcs: Time is represented as an integer value related to clocks within places. As
soon as a place includes a token the clock is enabled. The execution of a NCES model
is stepwise, which means based on the current situation (tokens within places) the

NET CONDITION/EVENT SYSTEMS 205

transitions are evaluated. Spontaneous transitions fire if the conditions given by in-
coming condition and flow arcs are fulfilled. A forced transition is evaluated as soon
as it is enabled. Therefore a stepwise execution emerges, because as soon as all transi-
tions have been evaluated once no more action is possible within the NCES model. As
soon as this situation has been reached the enabled internal clocks within the places
are increased by one and the next step is executed. The timed behavior within NCES
modules is incorporated by the use of permeability intervals to flow arcs that connect
places with transitions. The permeability interval provides a lower and upper bound
for the value of the clock within the place. Only if the clock value is within this range,
the corresponding flow arc will be evaluated true.

According to Hanisch et al. (1997) “a Timed Net Condition/Event System (TNCES) is a tuple

TNCES = { P, T, F+, F- , M0, y, CN, EN, DC } (27)

with: P finite, ordered set of n places p
 T finite, ordered set of m transitions t
 F+ n µ m - matrix of input arcs
 F- n µ m - matrix of output arcs
 M0 initial marking, vector of dimension
 y input/output structure
 CN Condition signal matrix of dimension n µ m
 EN Event signal matrix of dimension m µ m.

The input/output structure y is defined as follows:

y = { Cin, Ein, Cout, Eout, Bc, Be, Cs, Dt } (28)

with: Cin finite, ordered set of r Condition input signals
 Ein finite, ordered set of s Event input signals
 Cout finite, ordered set of p Condition output signals
 Eout finite, ordered set of q Event output signals
 Bc Condition input matrix of dimension r µ m
 Be Event input matrix of dimension s µ m
 Cs Condition output matrix of dimension n µ p
 Dt Event output matrix of dimension m µ q.

The time extension of a TNCES (…) is defined as follows:

DC = { DR, DL, D0 } (29)

with: DR n µ m – matrix of delay time
 DL n µ m – matrix of limitation time
 D0 initial state of local clocks associated to the places.

The elements DR(i, j) and DL(i, j) of matrices DR and DL denote the associated delay and
limitation times of the permeability of the arc from place i to transition j.”
Next to this definition of basic NCES modules there exist also so-called composite NCES
modules which are characterized by the component NCES modules interrelated via event and
condition arcs (similar to condition/event systems). Vyatkin et al. (2003a) provides a descrip-
tion of problems and their solution by enhancements to the classical NCES formalism. Such a
restriction has occurred for instance for interconnections of modules with arc weights of input
and output condition arcs or the behavior of open (unconnected) event and condition inputs.

206 NET CONDITION/EVENT SYSTEMS

The solution may differ depending on the used model checking tool and algorithm. For this
thesis we utilize the visual framework for verification of function blocks [61] with the
following solution provided:

• The chain of condition arcs with different arc weight will be defined by the smallest
arc weight within this chain.

• Every open input is considered as inactive. An open event input never receives an
event and an open condition input is always false.

The use of a hierarchical engineering by the use of NCES is depicted for instance in Vyatkin
and Hanisch (2003b). Figure 66a shows a simple situation of two different NCES modules
interconnected as composite NCES module.

Figure 66: (a) Composition of NCES modules and (b) the corresponding SNS model

C.2 Signal net systems
The analysis of NCES is based on a flat model of the overall model without external inputs,
the so-called Signal Net Systems. SNSs are described in detail in Starke and Roch (2002),
which take into consideration different variants of SNS. For this thesis we use SNS under
time constraints, which utilize a similar model of time as depicted above for TNCES. A SNS
is generated based on a NCES model as depicted in Figure 66. The composite NCES models
in the upper part of the figure are transformed into a SNS model by resolving the borders of
the NCES modules.
According to Starke and Roch (2002, Section 1.1) a SNS (without timing constraints) can be
described as

N = { P, T, F, V, B, W, S, M, m0 } (30)

where 1. P is a non-empty finite set (of places),
 2. T is a non-empty finite set (of transitions), disjoint with P,
 3. F is a subset of (P µ T) » (T µ P) (the flow relation, the set of flow

arcs),
 4. V is a mapping which atteches a positive integer to every arc (the arc

weight, V : FØÕ),
 5. B is a subset of P µ T (the set of condition arcs)

NET CONDITION/EVENT SYSTEMS 207

 6. W is a mapping which attaches a positive integer to every condition
arc (the condition arc weight, W : FØÕ),

 7. S is a subset of (T µ T) \ idT, the irreflexive signal (flow) relation,
 8. M is a mapping which attaches a (signal-processing) mode to every

transition (M : TØ{ -, / }, and, finally,
 9. m0 is a marking of P called the initial marking or the initial state of

N.
In constrast to the definition of NCES herein the arc weights of flow arcs and condition arcs
are especially mentioned within V and W, whereas in Equation 27 the matrices F+, F-
(represented as F in Equation 30), and CN include this information as intereger values
directly. In addition the parameter for the processing of events in forced arcs is also repre-
sented explicitely in M. The representation of time is added in a similar manner to SNSs as
described above for NCES in Equation 29. A formal definition for timed SNSs is given in
Starke and Roch (2002, Section 2, Definition 2.1).
The analysis of any modeling language is based on the possibilities incorporated within the
model checking algorithm provided by an appropriate tool. In case of SNSs the model
checker SESA, which has been developed at Humbold-Universität zu Berlin, is available.
Starke and Roch (2002) provide a detailed description of the theory that provides the basis for
SESA as well as a short tool description. SESA is part of the visual framework for verifica-
tion of function blocks [61]. According to Starke and Roch (2002, Section 5) the following
methods are incorporated within SESA: “Once we know that an SNS is bounded, we can (at
least in principle) decide all further questions by construction of a reachability graph30. But
the state explosion problem urges us to look for methods which, depending on the question at
hand, avoid unnecessary computations, i.e. which compute only a subgraph of the reachability
graph:

• restrict the depth of the computed graph (applicable in the unbounded case too),
• use a ‘bad’ predicate; only states (markings) not satisfying the predicate will be devel-

oped further while state satisfying the predicate will be included as dead states into the
computed graph,

• use a CTL-formula: compute only that part of the reachability graph needed to check
the formula,

• reduce the number of arcs by avoiding simultaneous firing of steps,
• use the stubborn set method to compute a reduced reachability graph,
• use symmetries of the net.”

The SESA model checker provides different variants of CTL in order to define specifications.
• Pure CTL as described in Section 3.6.2.
• Extend CTL which utilizes so-called transition formulae that are able to contain cer-

tain state transitions between states (which is complicated in CTL). The transition in-
formation is based on the edges of the reachabilty graph. A detailed description of ex-
tend CTL is given in Starke and Roch (2002, Section 12), but as we will not use ex-
tend CTL within this thesis we lack for a more detailed description.

• Timed CTL is introduced in a similar manner as RTCTL described in Section 3.6.2,
based on the structure of the reachability graph enhanced by a state delay. This delay

30 The reachability graph is the state graph of a signal net system. It incorporates all possible states a system may
have as well as the possible transitions between these states. In contrast to the unwinded Kripke structure
mentioned in Section 3.6.1 each state of the system is only mentioned once.

208 NET CONDITION/EVENT SYSTEMS

describes the number of time units that have to elaps before a step can be executed.
The satisfaction relation Ö is defined in Starke and Roch (2002, Section 13, Definition
13.3) for timed CTL in SESA by the use of intervals that refer to the state delay. An
interval [l, h] with 0 # l # h may be used as time constraint for the operators X, F, and
U.

C.3 Tool framework
As already mentioned above we will use the tool framework “visual framework for verifica-
tion of function blocks” [61] provided by Valeriy Vyaktin within this thesis. The framework
incorporates a model editor as well as a verification tool, the so-called Visual Verifier (ViVe).
The model checking tool used in ViVe is on the one hand SESA and on the other hand a
simple built-in model checker. Another framework for the use of TNCES is the MOVIDA
tools framework [33] provided by Tampere Univeristy of Technology, which also uses SESA
as model checking tool. For pure modeling of TNCES, also the TNCES editor developed
from Martin-Luther-Universty Halle-Wittenberg [32] is available and has been used also for
this work partially.
A detailed description of the functionality of the tool framework is available via [61]. We will
provide a short description of the different options for model checking, as the creation of the
reachability graph and therefore the system’s behavior are influence by these options to a high
extent.
Figure 67 depicts a screeshot of the current version of ViVe with the appropriate pane for the
use of the model checking tools. The elements summarized as ‘Checker of CTL formulae’
provide the interface for the SESA model checker, whereas the elements summarized as
‘Checker of predicates’ are related to the built-in model checker.
SESA provides many different options for the analysis of SNS as described in Starke and
Roch (2002, Appendix). For the generation of the reachability graph especially the firing rule
has to be taken into consideration as described in Starke and Roch (2002, Section 1.3). The
following two settings can be used within ViVe:

• Single spontaneous: SESA computes a list of all executable steps at a given state
within the reachability graph, including all combinations of enabled spontaneous tran-
sitions as well as all possible forced transitions. If ‘Single spontaneous’ is active this
list will be reduced to only those steps that contain only one spontaneous transitions.

• Maximal steps: If ‘Maximal steps’ is active all elements within the list of executable
steps at a given state will be included for the calculation of the reachability graph.

The options of the built-in model checker of ViVe are described in Vyatkin (2007b), which is
part of the documentation of ViVe. The firing rules supported by this model checker are
slightly different to SESA:

• Single spontaneous: The reachability graph is created taking into account only one
single spontaneous transition (and as much as possible forced transitions) between two
states of the system. This option is similar to the ‘Single spontaneous’ option men-
tioned above for SESA.

• All combinations: Herein any kind of combination of enabled spontaneous transitions
(again with all possible forced transitions) is included in the reachabilty graph calcula-
tion. This option is similar to the ‘Maximal steps’ option mentioned above for SESA.

• Maximum set of spontaneous: This option provides a reachability graph where only
the maximal set of spontaneous transitions enabled in a given state is incorporated.

NET CONDITION/EVENT SYSTEMS 209

Figure 67: Screenshot of the ViVe tool with the check pane

 211

D Embedded Configurable Operating System (eCos)

Appendix D

Embedded Configurable Operating System (eCos)

There are many different RTOSs available within the field of embedded system. Within this
thesis we will utilize eCos, which is an open source and royalty-free RTOS available since
1998. Detailed information about the current status of eCos is available in [9]. Further the
overall architecture of eCos has been described in Massa (2003), which will provide the basis
for the following descriptions.
The main characteristics of eCos are:

• Low requirements for necessary memory and processing power
• Availability for various embedded platforms based on a hardware abstraction layer
• Configurability of the overall system (see Section D.1)
• Deterministic behavior for task scheduling and handling of interrups (see Section D.2)

D.1 Configurability
“In order to get an understanding of the eCos architecture, it is important to appreciate the
component framework that makes up the eCos system. This component framework is
specifically targeted at embedded systems and meeting the requirements associated in
embedded design. Using this framework, an enormous amount of functionality for an
application can be built from reusable software components or software building blocks. (…)
Most embedded software today provides more functionality than what might actually be
needed for a particular application. Often, extra code is included in a software system that
gives generic support for functionality that embedded developers are not concerned with and
is not needed. (…) eCos gives the developer ultimate control over run-time components
where functionality that is not needed can easily be removed. eCos can be scaled from a few
hundred bytes up to hundreds of kilobytes when features such as networking stacks are
included and third-party contributions such as Web servers are used. Developers are able to
select components that satisfy basic application needs, and configure that particular compo-
nent for the specific implementation requirements for the application. This could mean
enabling or disabling a particular feature within a component, or selecting a particular
implementation for the component. An example of this is in the kernel scheduler configura-
tion. eCos offers the developer options such as the ability to select the number of priority
levels and whether time slicing is used. Any code unnecessary to meeting the developer’s
requirements is eliminated in the final image of the application.” (Massa, 2003, Section 1.2.1)
“Figure 68 shows a portion of the eCos Kernel package from the Configuration Tool. The
figure shows how the building blocks are encapsulated within each other to create a complete
and independent package. We can see the hierarchy of the configuration from packages to
components to configuration options to suboptions. Building blocks are grouped together in a
package based on the functionality they include. In Figure 68, we see the ‘eCos kernel’
package, which contains the ‘Exception handling’ component and the ‘Kernel Schedulers’

212 EMBEDDED CONFIGURABLE OPERATING SYSTEM (ECOS)

component; the other eCos Kernel components are not shown in this figure. We can see in
Figure 68 the nesting of configuration options, such as ‘Scheduler timeslicing’, and subop-
tions that compose the components.” (Massa, 2003, Section 1.3.1.2)

Figure 68: Configuration tool options, (Massa, 2003, Figure 1.2)

D.2 The kernel component
The core of the eCos architecture is the kernel component, which includes different schedul-
ing policies for tasks31, mechanisms for synchronization of tasks, and the effect of interrupts
on task execution. We will focus our consideration on the elements that have been mentioned
for the formal model of a control device (see Section 7.4.1), which are the scheduling policies
and the synchronization mechanisms.

Multilevel queue scheduler (MLQ)
eCos supports two different scheduling policies for tasks. “The multilevel queue scheduler
allows the execution of multiple tasks at each of its priority levels. The number of priority
levels is a configuration option from 1 to 32, corresponding to priority numbers 0 (highest
priority) to 31 (lowest priority). The scheduler allows preemption between the different
priority levels. (…) Preemption is a context switch halting execution of a lower priority task,
thereby allowing a higher priority task to execute. The multilevel queue scheduler also allows
timeslicing within a priority level. Timeslicing allows each thread at a given priority to
execute for a specified amount of time, which is controlled by a configuration option. The
queue implementation for the multilevel scheduler uses double linked circular lists to chain
together threads within a priority level and threads at different priority levels.
In Figure 69, we see the multilevel scheduling queue representation along with an example of
task execution using this scheduler. In the scenario shown in Figure 69, three tasks—
‘Task A’, ‘Task B’, and ‘Task C’—are configured during creation of the tasks at priority
levels 0, 0, and 30, respectively. The state of the scheduler queue after thread creation is
shown in Figure 69. For this scenario, timeslicing is enabled. The timeline is a snapshot that
starts with ‘Task C’ executing. Next, ‘Task A’ becomes able to run, causing ‘Task C’ to be
preempted and a context switch occurs. During the execution of ‘Task A’, ‘Task B’ also
becomes able to run. ‘Task A’ continues until its timeslice period expires. Then, another
context switch occurs allowing ‘Task B’ to run. ‘Task B’ completes within its given timeslice
period. The descheduling of a thread can happen for various reasons; for example, by waiting
on a mutex that is not free or delaying for a specified amount of time. Since ‘Task A’ has the
highest priority of tasks waiting to execute, a context switch occurs and it runs next. After
‘Task A’ has completed, a context switch takes place allowing ‘Task C’ to execute.” (Massa,
2003. Section 5.1.3.1)

31 Massa (2003) uses the term thread in order to describe execution contexts, which is defined as „a single flow
of execution through a program“ which contains „its own context or workspace to perform its operations“
(Massa, 2003, Section 6.1). This definition is similar to the term task which is used for independent exeuction
contexts within this thesis. In order to provide a common terminology also citations from Massa (2003) will be
changed to use the term task instead of thread.

EMBEDDED CONFIGURABLE OPERATING SYSTEM (ECOS) 213

Figure 69: Execution example for MLQ scheduler, (Massa, 2003, Figure 5.3)

Bitmap scheduler
“The bitmap scheduler allows the execution of tasks at multiple priority levels; however, only
a single task can exist at each priority level. This simplifies the scheduling algorithm and
makes the bitmap scheduler very efficient. The number of priority levels is a configuration
option from 1 to 32, corresponding to priority numbers 0 (highest priority) to 31 (lowest
priority).
Figure 70 illustrates an example of task execution using the bitmap scheduler. In Figure 70,
there are three tasks created at different priority levels: ‘Task A’—priority 0 (highest),
‘Task B’ —priority 1, and ‘Task C’—priority 30 (lowest). The state of the bitmap scheduler
queue after the tasks are created is shown left to the task execution timeline. The timeline is a
snapshot of task execution starting with ‘Task C’ running. Next, ‘Task A’ and ‘Task B’ are
able to run, causing a context switch and ‘Task C’ is preempted. ‘Task A’ executes next
because it has the highest priority of the waiting tasks. When ‘Task A’ completes, a context
switch takes place, enabling ‘Task BA’ to execute. After ‘Task B’ completes, ‘Task C’ can
finish its processing.” (Massa, 2003, Section 5.1.3.2)

Figure 70: Execution example for bitmap scheduler, (Massa, 2003, Figure 5.4)

Task synchronization mechanisms
eCos supports different mechanisms for tasks in order to communicate with each other and
synchronize access to common resources (as for instance the event dispatcher mentioned in
Section 7.4.2). We will roughly mentioned the most important ones for the establishment of
the formal model.
Mutexes: “A mutex (mutual exclusion object) allows multiple tasks to share a resource
serially. The resource can be an area of memory or a piece of hardware, such as a direct
memory access controller. A mutex is similar to a binary semaphore in that it only has two
states—locked and unlocked. However, there are a couple of differences between a binary
semaphore and a mutex. A mutex provides protection against priority inheritance, whereas a
binary semaphore does not. (…) A mutex also has the concept of an owner, and only the
owner can unlock the mutex. (…) A thread that attempts to lock a mutex that is currently
owned by another thread will block until the owner unlocks the mutex.

214 EMBEDDED CONFIGURABLE OPERATING SYSTEM (ECOS)

One issue that arises in real-time systems when using mutexes is priority inversion. Priority
inversion occurs when a high priority task is incorrectly prevented from executing by a low
priority task. (…) eCos provides two solutions to the priority inversion problem that are
selectable as configuration options. The first solution is a priority ceiling protocol. In the
priority ceiling protocol, all tasks that acquire the mutex have their priority level raised to a
preconfigured value. (…) A more elegant solution eCos provides is a priority inheritance
protocol. The priority inheritance protocol allows a task that owns the mutex to be raised to
the priority level equal to the highest level of all tasks waiting for the mutex. The priority
inheritance protocol is only used when a higher priority task is waiting for the mutex.”
(Massa, 2003, Section 6.2.1)
Semaphores: “A semaphore is a synchronization mechanism that contains a count indicating
whether a resource is locked or available. There are two types of semaphores, counting and
binary. Binary semaphores are similar to counting semaphores; however, their count is never
incremented past a value of one. Binary semaphores are in either a locked or unlocked state.
Counting semaphores can be in multiple states depending on their count value. Counting
semaphore objects contain a value that is incremented when a task posts to a semaphore, and
the value is decremented when a tasks completes a wait for the semaphore. Only the highest
priority waiting task is executed when the semaphore count is above zero. Counting sema-
phores are often used when a higher priority task (…), which received data, needs to signal
another thread to continue processing the data at a lower priority.” (Massa, 2003, Sec-
tion 6.2.2)
Condition variables: “Another available synchronization mechanism is the condition
variable. Condition variables are used with mutexes that allow multiple tasks access to shared
data. Typically, there is a single task producing the data, and one or more tasks waiting for the
data to be available. The task producing the data can either signal a single task to wake up or
all tasks to wake up, with a broadcast signal, when the data is available. The waiting tasks can
then process the data as needed.” (Massa, 2003, Section 6.2.3)
In addition to the above mentioned task synchronization mechanisms eCos provides the
mechanisms flags, message boxes, and spinlocks.

 215

E Property Specification Patterns

Appendix E

Property Specification Patterns

Dwyer et al. (1998) introduce the idea of patterns for specifications in order to simplify the
usage of temporal logic. “A property specification pattern is a generalized description of a
commonly occurring requirement on the permissible state/event sequences in a finite-state
model of a system. A property specification pattern describes the essential structure of some
aspects of a system’s behavior and provides expressions of this behavior in a range of
common formalisms.” Dwyer et al. (1998, Section 3)
A refined version of the property specification pattern system has been presented in
Dwyer et al. (1999) based on a survey of specifications that have been published in literature.
As a result of the survey on 555 example specifications collected, 511 specifications (92%)
matched with one of the patterns mentioned by the authors. The pattern system has been made
public available in [53] and has been adapted continuously. In order to provide a snapshot of
the current state of the pattern system, this appendix reproduces the content of [53] with
special focus on CTL as temporal logic for the formulation of patterns.

Pattern hierarchy
There exist different possibilities for a categorization of patterns. As already presented in
Section 7.6.1 a classification in terms of the kinds of system behavior the pattern describe can
be represented as pattern hierarchy (see Figure 39). We will use this kind of categorization in
the following paragraphs. An alternative organization may be based on the formalisms used
for the description in temporal logic. [53] provides a formulation of the patterns in LTL, CTL,
Graphical Interval Logic, Quantified Regular Expressions, INCA Queries, Action Computa-
tion Tree Logic, and Regular Alternation-Free-Mu-Calculus. We will only provide the
formulation in CTL in this appendix, because this is the kind of temporal logic that can be
used with the model checking tool SESA (see Appendix C).

Property specifications scope
“Each pattern has a scope, which is the extent of the program execution over which the
pattern must hold. There are five basic kinds of scopes: global (the entire program execution),
before (the execution up to a given state/event), after (the execution after a given state/event),
between (any part of the execution from one given state/event to another given state/event)
and after-until (like between but the designated part of the execution continues even if the
second state/event does not occur). The scope is determined by specifying a starting and an
ending state/event for the pattern: the scope consists of all states/events beginning with the
starting state/event and up to but not including the ending state/event.
Figure 71 illustrates the portions of an execution that are designated by the different kinds of
scopes. We note that a scope itself should be interpreted as optional; if the scope delimiters
are not present in an execution then the specification will be true.

216 PROPERTY SPECIFICATION PATTERNS

Figure 71: Pattern Scopes, [53]

Before and after scopes for our patterns are interpreted relative to the first occurrence of the
designated state/event. We have done this because it matches our experience with real
specifications. Note, however, that we could just as easily interpret these scopes relative to the
last occurrence of the designated state/event (the mappings given in the patterns are easily
transformed to match this interpretation). At present we do not see the need for supporting
both first and last occurrence scopes, but as we gain experience applying the patterns we may
wish to extend scopes in this way.”

Weak until operator (W)
Within the formulation of the patterns in temporal logic the weak until operation W is used
instead of the until operator U. The difference will become visible based on the definition of
the two operators:

• p U q means that p is true until q is true, with q is true somewhere.
• p W q means that at all states p is true until q is true.

The same formula using W instead of U will be evaluated true even if q is never true. This
can be simple expressed as p W q = p U q w G p. As equivalence [53] provides the following
formulae:

A [x W y] = ŸE [Ÿy U (Ÿx v Ÿy)]
E [x U y] = ŸA [Ÿy W (Ÿx v Ÿy)]

(31)

E.1 Occurrence specification patterns
“Occurrence patterns are used to express requirements related to the existence or lack of
existence of certain states/events during well-defined regions of system execution. As with
our other patterns, the regions are defined using scopes.
There are four occurrence patterns:

• Absence, aka never
• Universality, aka globally, henceforth
• Existence, aka eventually, future
• Bounded existence”

E.1.1 Absence property pattern
“Intent: To describe a portion of a system's execution that is free of certain events or states.
Also known as never.
Mappings for CTL:
p is false:

PROPERTY SPECIFICATION PATTERNS 217

Globally AG (Ÿp) (32)

Before R A [(Ÿp w AG (ŸR)) W R] (33)

After Q AG (Q Ø AG (Ÿp)) (34)

Between Q and R AG (Q v ŸR Ø A [(Ÿp w AG (ŸR)) W R]) (35)

After Q until R AG (Q v ŸR Ø A [Ÿp W R] (36)

Examples and known uses: The most common example is mutual exclusion. In a state-based
model, the scope would be global and p would be a state formula that is true if more than one
process is in its critical section. For an event-based model, the scope would be a segment of
the execution in which some process is in its critical section (i.e., between an enter section
event and a leave section event), and p would be the event that some other process enters its
critical section.
Relationships: This pattern is the dual of the existence pattern. In fact, in many specification
formalisms negation and explicit queries for existence will be used to formulate an instance of
the absence pattern, as seen in the examples above.
Note that between scopes in this pattern (with a false proposition or empty event symbol)
appear to be able to specify the same thing as a response pattern with global scope. This is not
the case, however, since the cause-effect relationship is required for the response whereas the
scope for this pattern is optional.
If one wishes to exclude states characterized by multiple propositions or multiple events one
can do this by defining p appropriately. One common use is to fill the role of p in the above
mappings with disjunctions of propositions or event symbols. For other parameterizations of
patterns consult the pattern notes” (see Section E.3).

E.1.2 Universality property pattern
“Intent: To describe a portion of a system’s execution which contains only states that have a
desired property. Also known as henceforth and always.
Mappings for CTL:
p is true:

Globally AG (p) (37)

Before R A [(p w AG (ŸR)) W R] (38)

After Q AG (Q Ø AG (p)) (39)

Between Q and R AG (Q v ŸR Ø A [(p w AG (ŸR)) W R]) (40)

After Q until R AG (Q v ŸR Ø A [p W R] (41)

Examples and known uses: This pattern can be applied in most situations where the absence
pattern can be applied. This is especially true for state-based formalisms, e.g., where mutual
exclusion could be formulated as absence or universality with a between scope.
Relationships: This pattern is closely related to the absence and existence patterns. Universal-
ity of a state can be viewed as absence of its negation. For event-based formalisms, we look
for the existence of the positive event and absence of the negative event.”

E.1.3 Existence property pattern
“Intent: To describe a portion of a system’s execution that contains an instance of certain
events or states. Also known as eventually.
Mappings for CTL:

218 PROPERTY SPECIFICATION PATTERNS

p becomes true:

Globally AF (p) (42)

Before R A [ŸR W (p v ŸR)] (43)

After Q A [ŸQ W (Q v AF (p))] (44)

Between Q and R AG (Q v ŸR Ø A [ŸR W (p v ŸR)]) (45)

After Q until R AG (Q v ŸR Ø A [ŸR U (p v ŸR)]) (46)

Examples and known uses: The classic example of existence is specifying termination, e.g.,
on all executions do we eventually reach a terminal state.
Relationships: This pattern is the dual of the absence pattern. In fact, in many specification
formalisms negation and explicit queries for existence will be used to formulate an instance of
the absence pattern.
We may wish to specify that a state/event occur at most some bounded number of times. The
bounded existence pattern handles that case.
If one wishes to require the existence of a state characterized by multiple propositions or
multiple events one can do this by defining p appropriately. One common use is to fill the role
of p in the above mappings with disjunctions of propositions or event symbols. For other
parameterization of patterns consult the pattern notes” (see Section E.3).

E.1.4 Bounded existence property pattern
“Intent: To describe a portion of a system’s execution that contains at most a specified
number of instances of a designated state transition or event.
Mappings for CTL: In these mappings we illustrate one instance of the bounded existence
pattern, where the bound is at most 2 designated states. Other bounds can be specified by
variations on this mapping.
Transitions to p-states occur at most 2 times:

Globally ŸEF (Ÿp v EX (p v EF (Ÿp v EX (p v EF (Ÿp v EX (p)))))) (47)

Before R ŸE [(ŸR U (Ÿp v ŸR v EX (p v …
 E [(ŸR U (Ÿp v ŸR v EX (p v …
 E [(ŸR U (Ÿp v ŸR v EX (p v ŸR))]))]))]

(48)

After Q ŸE [ŸQ U (Q v EF (Ÿp v EX (p v …
 EF (Ÿp v EX (p v EF (Ÿp v EX (p)))))))] (49)

Between Q AG (Q Ø ŸE [ŸR U (Ÿp v ŸR v EX (p v …
and R E [ŸR U (Ÿp v ŸR v EX (p v …
 E [ŸR U (Ÿp v ŸR v EX (p v ŸR v EF (R)))]))]))])

(50)

After Q AG (Q Ø ŸE [ŸR U (Ÿp v ŸR v EX (p v …
until R E [ŸR U (Ÿp v ŸR v EX (p v …
 E [ŸR U (Ÿp v ŸR v EX (p v ŸR))]))]))])

(51)

Examples and known uses: Bounded overtaking properties can naturally be expressed using
instances of this pattern. For example, if we wish to say that process 1 can enter its critical
region at most twice while process 2 is waiting to enter its region we would use a between
scope (delimited by process 2 entering and exiting its waiting region) with 2-bounded
existence for process 1 entering its critical region.

PROPERTY SPECIFICATION PATTERNS 219

Mappings of bounds other than two can be constructed relatively simple from the given
mappings. (…) For LTL and CTL we simply add additional copies of the nested until
structures.
Relationships: This pattern is related to existence and chains. Note that this pattern does not
require the occurrence of any number of instances of the given states/events (rather it bounds
the number of instances). Single instances can be required with existence patterns. Multiple
instances can be required with a slight variant to the above mappings.
Note that response chain patterns are different than bounded existence in two ways: response
chains require the responding sequence to be of the designated length (whereas here we only
bound a sequence length), and the notion of an instance of a state/event differs between the
two. In particular, a stuttered instance (i.e., in consecutive states on a path) counts as multiple
instances with the chain whereas it is a single instance with bounded existence.”

E.2 Order specification patterns
“Order patterns are used to express requirements related to pairs of states/events during well-
defined regions of system execution. As with our other patterns, the regions are defined using
scopes.
There are two basic order-related patterns:

• Precedence
• Response, aka follows, leads-to

Chain patterns are used to express requirements related to complex combinations of individ-
ual state/event relationships. These include precedence/response relationships consisting of
sequences of individual states/events. We call these chain patterns.
There are two variations of chain patterns:

• Response chains
• Precedence chains

A variation of the chain patterns is to constrain the regions between the state/events that
constitute the chain sequence.” The constrained chain property pattern will not be mentioned
in the following discussion (see [53] for more details).

E.2.1 Precedence property pattern
“Intent: To describe relationships between a pair of events/states where the occurrence of the
first is a necessary pre-condition for an occurrence of the second. We say that an occurrence
of the second is enabled by an occurrence of the first.
Mappings for CTL:
In these mappings p is the consequent and s is the enabling state/event.

Globally A [Ÿp W s] (52)

Before R A [(Ÿp w AG (ŸR)) W (s w R)] (53)

After Q A [ŸQ W (Q v A [Ÿp W s])] (54)

Between Q and R AG (Q v ŸR Ø A [(Ÿp w AG (ŸR)) W (s w R)]) (55)

After Q until R AG (Q v ŸR Ø A [Ÿp W (s w R)]) (56)

Examples and known uses: Precedence properties occur quite commonly in specifications of
concurrent systems. One common example is in describing a requirement that a resource is
only granted in response to a request.

220 PROPERTY SPECIFICATION PATTERNS

Relationships: Note that a precedence property is like a converse of a response property.
Precedence says that some cause precedes each effect, and response says that some effect
follows each cause. They are not equivalent, because a response allows effects to occur
without causes (precedence similarly allows causes to occur without subsequent effects).
Note that this pattern does not require that each occurrence of a consequent will have its own
occurrence of an enabling condition.”

E.2.2 Response property pattern
“Intent: To describe cause-effect relationships between a pair of events/states. An occurrence
of the first, the cause, must be followed by an occurrence of the second, the effect. Also
known as follows and leads-to.
Mappings for CTL:
In these mappings p is the cause and s is the effect.

Globally AG (p Ø AF (s)) (57)

Before R A [((p Ø A [ŸR U (s v ŸR)]) w AG (ŸR)) W R] (58)

After Q A [ŸQ W (Q v AG (p Ø AF (s))] (59)

Between Q and R AG (Q v ŸR Ø A [((p Ø A [ŸR U (s v ŸR)]) w …
 AG (ŸR)) W R]) (60)

After Q until R AG (Q v ŸR Ø A [(p Ø A [ŸR U (s v ŸR)]) W R]) (61)

Examples and known uses: Response properties occur quite commonly in specifications of
concurrent systems. Perhaps the most common example is in describing a requirement that a
resource must be granted after it is requested.
Relationships: Note that a response property is like a converse of a precedence property.
Precedence says that some cause precedes each effect, and response says that some effect
follows each cause. They are not equivalent, because a response allows effects to occur
without causes (precedence similarly allows causes to occur without subsequent effects).
Note that this pattern does not require that each occurrence of a cause will have its own
occurrence of an effect.”

E.2.3 Response chain property pattern
“Intent: This is a scalable pattern. We describe the intent of the 1 stimulus – 2 response
version here.
To describe a relationship between a stimulus event (p) and a sequence of two response
events (s, t) in which the occurrence of the stimulus event must be followed by an occurrence
of the sequence of response events within the scope. In state-based formalisms, the states
satisfying the response must be distinct (i.e., s and t must be true in different states to count as
a response), but the response may be satisfied by the same state as the stimulus (i.e., p and s
may be true in the same state).
Mappings for CTL:
s, t responds to p:

Globally AG (p Ø AF (s v AX (AF (t)))) (62)

Before R ŸE [ŸR U (p v ŸR v (E [Ÿs U R] w
 E [ŸR U (s v ŸR v EX (E [Ÿt U R]))]))] (63)

After Q ŸE [ŸQ U (Q v EF (p v (EG (Ÿs) w EF (s v EX (EG (Ÿt))))))] (64)

PROPERTY SPECIFICATION PATTERNS 221

Between Q and R AG (Q Ø ŸE [ŸR U (p v ŸR v (E [Ÿs U R] w
 E [ŸR U (s v ŸR v EX (E [Ÿt U R]))]))]) (65)

After Q until R AG (Q Ø ŸE [ŸR U (p v ŸR v (E [Ÿs U R] w
 EG (Ÿs v ŸR) w E [ŸR U (s v ŸR v EX (E [Ÿt U R] w
 EG (Ÿt v ŸR)))]))])

(66)

Examples and known uses: If a resource allocator grants a process access to a resource
(GrantRes), the process will start using the resource (BeginRes) and finish using the resource
(EndRes).
Relationships: This pattern is a generalization of the response pattern. If you wish to restrict
the occurrence of states/events between stimuli or responses use the constrained response
chain pattern.”

E.2.4 Precedence chain property pattern
“Intent: This is a scalable pattern. We describe the intent of the 1 stimulus – 2 response
version here.
To describe a relationship between an event/state p and a sequence of two events/states (s, t)
in which the occurrence of s followed by t within the scope must be preceded by an occur-
rence of the sequence p within the same scope. In state-based formalisms, the beginning of
the enabled sequence (s, t) may be satisfied by the same state as the enabling condition (i.e., p
and s may be true in the same state).
Mappings for CTL:
p precedes s, t:

Globally ŸE [Ÿp U (s v Ÿp v EX (EF (t)))] (67)

Before R ŸE [(Ÿp v ŸR) U (s v Ÿp v ŸR v EX (E [ŸR U (t v ŸR)]))] (68)

After Q ŸE [ŸQ U (Q v E [Ÿp U (s v Ÿp v EX (EF (t)))])] (69)

Between Q and R AG (Q Ø ŸE [(Ÿp v ŸR) U (s v Ÿp v ŸR v …
 EX (E [ŸR U (t v ŸR v EF (R))]))]) (70)

After Q until R AG (Q Ø ŸE [(Ÿp v ŸR) U (s v Ÿp v ŸR v …
 EX (E [ŸR U (t v ŸR)]))]) (71)

Examples and known uses: An example of this pattern, assuming reliable communication
between client and server, is that ‘If a client makes a request and there is no response, then the
server must have crashed.’ This would be expressed by parameterizing the constrained variant
of the 1-2 precedence chain pattern as: ServerCrash precedes ClientRequest, G ŸResponse
without Response in LTL.
Relationships: Note that this pattern does not require that each occurrence of the enabled
sequence will have its own occurrence of the enabling condition.”

E.3 Property specification pattern notes
“The patterns provided in this system cover a broad range of requirements for real systems.
Your requirement, however, may require you to adapt existing patterns slightly to better
express your intended property. There are a number of ways in which this variation can take
place, e.g., parameterization of patterns, combination of patterns, and variation in pattern
scopes.

222 PROPERTY SPECIFICATION PATTERNS

Pattern parameterization
“Pattern mappings are presented in terms of place-holder symbols (e.g., p, Q, R, s) that are to
be replaced by users when writing actual specifications. These place holders are filled with
descriptions of specific system states or event of interest. These descriptions can be more
complex than just a single proposition or event name. Here are a few examples (for logics,
e.g., CTL, LTL):

• Purely propositional formula can always be used to describe a state. This includes
simple negations, disjunctions, conjunctions, and implications.

• State-formulae that include temporal operators can also be used (…). Care must be
taken in using such state-formulae, since the meaning of the resulting specification can
be quite subtle. This is especially true when using scopes that may have an end point,
i.e., before, between, and after-until.”

Pattern combinations
“A system’s specification usually consists of a collection of property specifications.
Conjunctions: It is most often the case that all such property specifications should hold. In
this case, one could simply check all specifications individually and require that all are
successful. For the logical formalisms, an alternative is to conjoin the individual specifica-
tions into a single larger specification. While this is semantically equivalent, it may be the
case that a larger specification is less efficient to verify (e.g., the cost of LTL in Buchi
automaton construction can be large for automata-based model checkers). For this reason,
preserving, and verifying, the individual property specifications is suggested.
Disjunctions: There are two views of pairs (or more generally a collection) of alternative
individual property specifications:

• System behaviors all correspond to one specification or they all correspond to the
other specification.

• Some of the system behaviors correspond to one specification and the rest of the be-
haviors correspond to the other specification.

The first of these alternatives corresponds to the checking of individual property specifica-
tions independently and disjoint the results. This is true for all specification formalisms. The
latter situation can be achieved in formalisms that allow specifications to be disjoined under
the same universal path qualifier.
For LTL and Quantified Regular Expression there is an implicit outer universal path qualifier,
thus checking of a top-level disjunction of specifications will achieve these semantics. To
achieve the first alternative (above) one must check LTL and Quantified Regular Expression
specifications separately.
This is not the case for CTL, where two specifications cannot be disjoined directly under the
same path quantifier. A top-level disjunction CTL achieves the first alternative and the second
cannot be achieved directly (although one might be able to rewrite a combined version of the
two specifications).”

Scope variations
“Most event-based formalisms use some version of an interleaved model of concurrent
computation. In such formalisms, two events cannot coincide. Event-delimited scopes are thus
open at both ends: an event that occurs within the scope cannot occur at the same time as an
event that marks the beginning or end of the scope. For state-based formalisms, the situation
is different. Consider, for instance, a scope that begins with a state in which proposition Q
holds and ends with the next state in which R holds. If we want to specify that proposition p
does not hold within the scope, we have to decide what should happen if p is true at either of
the states marking the endpoints of the scope.”

 223

F FDCML-based description of the demonstration control
device

Appendix F

FDCML-based description of the demonstration control device

The basis for the evaluation of DSE is a very detailed description of the current system state.
Appropriately, also each control device needs to be described with all its parameters. In order
to support the engineering process, a device description based on the FDCML format has
been proposed in Section 5.3. The following listing includes excerpts of the device descrip-
tion of the demonstration control device (see also Section 8.1.1) without any control applica-
tions already included. If an ACS customer buys a new control device, a similar situation
occurs and the device vendor would provide an analogue device description file as presented
above for the demonstration control device.

<?xml version="1.0" encoding="UTF-8"?>
<hcd:ISO15745Profile xmlns:hcd="http://www.ecedac.org/61499/hcd" xmlns:data="http://www.ecedac.org/61499/data"
 xmlns:lib="http://www.ecedac.org/61499/lib" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ecedac.org/61499/hcd eCEDAC_HCD.xsd http://www.ecedac.org/61499/data
DataType_elements_cs.xsd http://www.ecedac.org/61499/lib LibraryElement_elements_cs.xsd ">

 <hcd:ProfileHeader>
 <ProfileIdentification>eCEDAC HCD</ProfileIdentification>
 <ProfileRevision>V 0.1</ProfileRevision>
 <ProfileName> eCEDAC Hardware Capability Description </ProfileName>
 <ProfileSource>eCEDAC Consortium</ProfileSource>
 <ProfileDate>2006-11-14</ProfileDate>
 </hcd:ProfileHeader>

 <hcd:ProfileBody fileCreationDate="2007-05-30" fileCreator="Christoph Suender" fileModificationDate="2007-05-30"
 fileName="DevBoard_ARM7.xml" fileVersion="V0.1">

 <hcd:DeviceIdentity>
 <hcd:vendorName>
 <hcd:label>PHYTEC Messtechnik GmbH</hcd:label>
 </hcd:vendorName>
 <hcd:productName>
 <hcd:label>phyCORE-AT91M55800A</hcd:label>
 </hcd:productName>
 <hcd:productText>
 <hcd:label> phyCORE Development Board HD200 mit phyCORE-AT91M55800A </hcd:label>
 </hcd:productText>
 </hcd:DeviceIdentity>

 <hcd:DeviceManager>
 <hcd:deviceStructure>
 <hcd:channelList>
 <hcd:channel uniqueID="Supply.VCC" channelType="Supply" direction="I">
 <hcd:label>X1</hcd:label>

224 FDCML-BASED DESCRIPTION OF THE DEMONSTRATION CONTROL DEVICE

 <hcd:help>Controller Supply Voltage</hcd:help>
 <hcd:specificProperty propertyType="Voltage">
 <hcd:label>nomVoltage [V]</hcd:label>
 <hcd:help> Nominal supply voltage of the controller measured in Volts [V] </hcd:help>
 <hcd:instanceValue>5</hcd:instanceValue>
 </hcd:specificProperty>
 <hcd:specificProperty propertyType="Current">
 <hcd:label>maxCurrent [mA]</hcd:label>
 <hcd:help> Maximum current consumption of the cntroller measured in Miliamperes [mA] </hcd:help>
 <hcd:instanceValue>500</hcd:instanceValue>
 </hcd:specificProperty>
 </hcd:channel>
List of further channels listed here in the original description file.
 </hcd:channelList>
 <hcd:MAUList>
 <hcd:MAU uniqueID="TP1" interfaceType="RJ45" protocol="10BaseT Ethernet IEEE 802.3">
 <hcd:label>TP</hcd:label>
 <hcd:help>Ethernet network connector</hcd:help>
 <hcd:specificProperty
 propertyType="DataTransmissionSpeed">
 <hcd:label>maxDataSpeed [MBit/s]</hcd:label>
 <hcd:help> Maximum data transmission speed measured in [MBit/s] </hcd:help>
 <hcd:instanceValue>10</hcd:instanceValue>
 </hcd:specificProperty>
 <hcd:specificProperty
 propertyType="MACAddress">
 <hcd:label>MAC Address</hcd:label>
 <hcd:help> printed on the bar code sticker attached to the phyCORE module </hcd:help>
 <hcd:instanceValue> 00:00:00:00:00:00 </hcd:instanceValue>
 </hcd:specificProperty>
 <hcd:specificProperty
 propertyType="MediaType">
 <hcd:label>full/half duplex</hcd:label>
 <hcd:instanceValue> needs to be defined </hcd:instanceValue>
 </hcd:specificProperty>
 </hcd:MAU>
List of further MAUs listed here in the original description file.
 </hcd:MAUList>
 <hcd:indicatorList>
 <hcd:LEDList>
 <hcd:LED LEDType="DeviceStatus" uniqueID="PowerON">
 <hcd:label>D2 - PowerON</hcd:label>
 <hcd:specificProperty propertyType="Colors">
 <hcd:label>LED Colors</hcd:label>
 <hcd:instanceValue> red </hcd:instanceValue>
 </hcd:specificProperty>
 <hcd:specificProperty
 propertyType="Programmable">
 <hcd:label> LED's ability to be programmable </hcd:label>
 <hcd:instanceValue> false </hcd:instanceValue>
 </hcd:specificProperty>
 </hcd:LED>
List of further LEDs listed here in the original description file.
 </hcd:LEDList>
 </hcd:indicatorList>
 </hcd:deviceStructure>

 <hcd:communicationEntity protocol="TCP/IP" uniqueID="TCP" enabled="YES">
 <hcd:label>TCP/IP</hcd:label>
 <hcd:identity>

FDCML-BASED DESCRIPTION OF THE DEMONSTRATION CONTROL DEVICE 225

 <hcd:vendorName> <hcd:label>Beck</hcd:label> </hcd:vendorName>
 <hcd:typeName> <hcd:label>TCP Stack</hcd:label> </hcd:typeName>
 </hcd:identity>
 <hcd:cfgItemList>
 <hcd:label>Protocol Settings</hcd:label>
 <hcd:dedicatedCfgItem uniqueID="TCP_IPAddress" dedicatedCfgItemType="IPAddress">
 <hcd:label>IP Address</hcd:label>
 <hcd:instanceValue> 128.130.200.162 </hcd:instanceValue>
 </hcd:dedicatedCfgItem>
 <hcd:dedicatedCfgItem uniqueID="TCP_SubnetMask" dedicatedCfgItemType="SubnetMask">
 <hcd:label>Subnet Mask</hcd:label>
 <hcd:instanceValue> 255.255.255.128 </hcd:instanceValue>
 </hcd:dedicatedCfgItem>
 </hcd:cfgItemList>
 <hcd:MAUUsageList>
 <hcd:MAUUsage ref="TP1"></hcd:MAUUsage>
 </hcd:MAUUsageList>
 </hcd:communicationEntity>
List of further communicationEntity elements listed here in the original description file.

 <hcd:resourceEntity resourceType="ComputationUnit" uniqueID="cpu0">
 <hcd:label>phyCORE-AT91M55800A</hcd:label>
 <hcd:help>single board computer module</hcd:help>
 <hcd:identity>
 <hcd:vendorName> <hcd:label>Phytec</hcd:label> </hcd:vendorName>
 <hcd:typeName> <hcd:label>L-618e_3</hcd:label> </hcd:typeName>
 </hcd:identity>
 <hcd:additionalItemList
 additionalItemsType="ProcessingUnit">
 <hcd:label>ProcessingUnit</hcd:label>
 <hcd:additionalItem additionalItemType="Processor" uniqueID="Processor0">
 <hcd:label>Processor0</hcd:label>
 <hcd:instanceValue> AT91M55800A </hcd:instanceValue>
 <hcd:specificProperty propertyType="Vendor">
 <hcd:label>Vendor</hcd:label>
 <hcd:instanceValue>ATMEL</hcd:instanceValue>
 </hcd:specificProperty>
 <hcd:specificProperty
 propertyType="ClockRate">
 <hcd:label>ClockRate</hcd:label>
 <hcd:help> The processor's clock rate measured in [MHz] </hcd:help>
 <hcd:instanceValue> 32 MHz </hcd:instanceValue>
 </hcd:specificProperty>
List of further specificProperty elements listed here in the original description file.
 </hcd:additionalItem>
 </hcd:additionalItemList>
 <hcd:additionalItemList
 additionalItemsType="MemoryUnit">
 <hcd:label>MemoryUnit</hcd:label>
 <hcd:additionalItem additionalItemType="Memory" uniqueID="Memory0">
 <hcd:label>Memory0</hcd:label>
 <hcd:instanceValue>U6</hcd:instanceValue>
 <hcd:specificProperty propertyType="Type">
 <hcd:label>Type</hcd:label>
 <hcd:instanceValue>Flash</hcd:instanceValue>
 </hcd:specificProperty>
 <hcd:specificProperty
 propertyType="MemorySize">
 <hcd:label>MemorySize</hcd:label>
 <hcd:help> Memory size measured in [KB] </hcd:help>

226 FDCML-BASED DESCRIPTION OF THE DEMONSTRATION CONTROL DEVICE

 <hcd:instanceValue> 4096 KB </hcd:instanceValue>
 </hcd:specificProperty>
List of further specificProperty elements listed here in the original description file.
 </hcd:additionalItem>
 <hcd:additionalItem additionalItemType="Memory" uniqueID="Memory1">
 <hcd:label>Memory1</hcd:label>
 <hcd:instanceValue> U14, U15, U16, U17 </hcd:instanceValue>
 <hcd:specificProperty propertyType="Type">
 <hcd:label>Type</hcd:label>
 <hcd:instanceValue>SRAM</hcd:instanceValue>
 </hcd:specificProperty>
 <hcd:specificProperty propertyType="MemorySize">
 <hcd:label>MemorySize</hcd:label>
 <hcd:help> Memory size measured in [KB] </hcd:help>
 <hcd:instanceValue> 2048 KB </hcd:instanceValue>
 </hcd:specificProperty>
List of further specificProperty elements listed here in the original description file.
 </hcd:additionalItem>
 </hcd:additionalItemList>
 </hcd:resourceEntity>
List of further resourceEntity elements listed here in the original description file.
 <hcd:resourceEntity resourceType="OperatingSystem" uniqueID="os0">
 <hcd:label>eCos</hcd:label>
 <hcd:identity>
 <hcd:vendorName> <hcd:label>Open Source</hcd:label> </hcd:vendorName>
 <hcd:typeName> <hcd:label>Realtime OS</hcd:label> </hcd:typeName>
 </hcd:identity>
 <hcd:additionalItemList additionalItemsType="OSCharacteristics">
 <hcd:label>OSCharacteristics</hcd:label>
 <hcd:additionalItem additionalItemType="Scheduler" uniqueID="Scheduler0">
 <hcd:label>Scheduler0</hcd:label>
 <hcd:instanceValue> Bitmap Scheduler </hcd:instanceValue>
 <hcd:specificProperty propertyType="Type">
 <hcd:label>Type</hcd:label>
 <hcd:instanceValue> Bitmap Scheduler </hcd:instanceValue>
 </hcd:specificProperty>
 <hcd:specificProperty propertyType="numberPriorities">
 <hcd:label>numberPriorities</hcd:label>
 <hcd:instanceValue>32</hcd:instanceValue>
 </hcd:specificProperty>
 <hcd:specificProperty propertyType="numberThreadsperPriority">
 <hcd:label> numberThreadsperPriority </hcd:label>
 <hcd:instanceValue>1</hcd:instanceValue>
 </hcd:specificProperty>
 </hcd:additionalItem>
 <hcd:additionalItem additionalItemType="Scheduler" uniqueID="Scheduler1">
 <hcd:label>Scheduler1</hcd:label>
 <hcd:instanceValue> Multi Level Queue Scheduler </hcd:instanceValue>
 <hcd:specificProperty propertyType="Type">
 <hcd:label>Type</hcd:label>
 <hcd:instanceValue>MLQ</hcd:instanceValue>
 </hcd:specificProperty>
 <hcd:specificProperty
 propertyType="numberPriorities">
 <hcd:label>numberPriorities</hcd:label>
 <hcd:instanceValue>32</hcd:instanceValue>
 </hcd:specificProperty>
 <hcd:specificProperty propertyType="numberThreadsperPrioritiy">
 <hcd:label> numberThreadsperPriority </hcd:label>
 <hcd:instanceValue> infinity </hcd:instanceValue>

FDCML-BASED DESCRIPTION OF THE DEMONSTRATION CONTROL DEVICE 227

 </hcd:specificProperty>
 </hcd:additionalItem>
 <hcd:additionalItem
 additionalItemType="CompilerOptions"
 <hcd:additionalItemList
 additionalItemsType="OSConfiguration">
 <hcd:label>OSConfiguration</hcd:label>
 <hcd:additionalItem additionalItemType="Scheduler" uniqueID="Scheduler_current">
 <hcd:label>Scheduler_current</hcd:label>
 <hcd:instanceValue> Scheduler1 </hcd:instanceValue>
 </hcd:additionalItem>
 </hcd:additionalItemList>
 <hcd:additionalItemList
 additionalItemsType="ModelExecutionTime">
 <hcd:label>ModelExecutionTime</hcd:label>
 <hcd:additionalItem additionalItemType="TaskSwitch" uniqueID="TaskSwitch">
 <hcd:label>TaskSwitch</hcd:label>
 <hcd:instanceValue>820</hcd:instanceValue>
 </hcd:additionalItem>
 <hcd:additionalItem
 additionalItemType="ThreadSuspension" uniqueID="ThreadSuspension">
 <hcd:label>ThreadSuspension</hcd:label>
 <hcd:instanceValue>101</hcd:instanceValue>
 </hcd:additionalItem>
 <hcd:additionalItem
 additionalItemType="ThreadResumption" uniqueID="ThreadResumption">
 <hcd:label>ThreadResumption</hcd:label>
 <hcd:instanceValue>133</hcd:instanceValue>
 </hcd:additionalItem>
 </hcd:additionalItemList>
 <hcd:internalConnectionPointList>
 <hcd:internalConnectionPoint ref="cpu0" uniqueID="os0_with_cpu0" enabled="YES">
 </hcd:internalConnectionPoint>
 </hcd:internalConnectionPointList>
 </hcd:resourceEntity>

 <hcd:resourceEntity resourceType="IEC61499Runtime" uniqueID="rt1499_0">
 <hcd:label>MARTE</hcd:label>
 <hcd:identity>
 <hcd:vendorName> <hcd:label> Alois Zoitl </hcd:label> </hcd:vendorName>
 <hcd:typeName>
 <hcd:label> IEC 61499 Runtime Environment </hcd:label>
 </hcd:typeName>
 </hcd:identity>
 <hcd:additionalItemList
 additionalItemsType="ModelExecutionTime">
 <hcd:label>ModelExecutionTime</hcd:label>
 <hcd:additionalItem
 additionalItemType="DispatcherParams" uniqueID="DispatcherParams">
 <hcd:label>DispatcherParams</hcd:label>
 <hcd:instanceValue> DispatcherParams </hcd:instanceValue>
 <hcd:specificProperty
 propertyType="VerificationParam">
 <hcd:label>T_FETCH</hcd:label>
 <hcd:help>Ticks in 0.1 µs</hcd:help>
 <hcd:instanceValue> 29,6 µs </hcd:instanceValue>
 </hcd:specificProperty>
 <hcd:specificProperty
 propertyType="VerificationParam">
 <hcd:label>T_EV_OUT</hcd:label>
 <hcd:help>Ticks in 0.1µs</hcd:help>
 <hcd:instanceValue> 27,4 µs </hcd:instanceValue>

228 FDCML-BASED DESCRIPTION OF THE DEMONSTRATION CONTROL DEVICE

 </hcd:specificProperty>
 </hcd:additionalItem>
List of further additionalItem elements listed here in the original description file.
 </hcd:additionalItemList>
 <hcd:additionalItemList additionalItemsType="TypeLibraryParameters">
 <hcd:label>TypeLibraryParameters</hcd:label>
List of additionalItem elements listed here in the original description file, e.g. FB Types, Data
Types, Resource Types.
 </hcd:additionalItemList>
 <hcd:additionalItemList additionalItemsType="ComplianceProfiles">
 <hcd:label> supported IEC 61499 Compliance Profiles </hcd:label>
 <hcd:additionalItem additionalItemType="ComplianceProfile" uniqueID="CPFD">
 <hcd:label>CPFD</hcd:label>
 <hcd:instanceValue> IEC 61499 Compliance Profile for Feasibility Demonstration </hcd:instanceValue>
 </hcd:additionalItem>
 </hcd:additionalItemList>

 <hcd:IEC61499TypeLibrary>
List of type definitions available within the control device according to the XML format
defined in IEC 61499-2 (2005, Annex A).
 </hcd:IEC61499TypeLibrary>

 <hcd:internalConnectionPointList>
 <hcd:internalConnectionPoint ref="cpu0" uniqueID="rt1499_0_with_cpu0" enabled="YES">
 </hcd:internalConnectionPoint>
 </hcd:internalConnectionPointList>
 </hcd:resourceEntity>

 </hcd:DeviceManager>

 </hcd:ProfileBody>

</hcd:ISO15745Profile>

 229

G Additional information for demonstration example

Appendix G

Additional information for demonstration example

This appendix includes additional information for the demonstration example used in
Section 8.1. The following aspects will be depicted in the figures presented here without
further detailed explaination:

• Figure 72: Internal model of 'Subtract' depicted in Figure 43
• Figure 73: Control application after execution of RINIT sequence
• Figure 74: Control application after execution of RECONF sequence
• Figure 75: Control application after execution of RDINIT sequence
• Table 7: Status output of dependent operation check within Page 3 (RINIT sequence)
• Table 8: Status output of dependent operation check within Page 4 (RECONF se-

quence)
• Table 9: Status output of dependent operation check within Page 5 (RDINIT se-

quence)
• Figure 76: NCES model for practical example (Addition/Subtracion)
• Figure 77: NCES module 'Thread_APP', the control application of Addi-

tion/Subtraction example at the beginning of the RECONF sequence
• Figure 78: NCES module 'Thread_RECONF', the RECONF seqeunce of ECA within

Addition/Subtraction example
• Figure 79: NCES model of Addition/Subtraction example without downtimeless sys-

tem evolution
• Figure 80: NCES model for position controller including plant model (velocity closed-

loop control)

230 ADDITIONAL INFORMATION FOR DEMONSTRATION EXAMPLE

Figure 72: Internal model of 'Subtract' depicted in Figure 43

ADDITIONAL INFORMATION FOR DEMONSTRATION EXAMPLE 231

Figure 73: Control application after execution of RINIT sequence

Figure 74: Control application after execution of RECONF sequence

232 ADDITIONAL INFORMATION FOR DEMONSTRATION EXAMPLE

Figure 75: Control application after execution of RDINIT sequence

Initial RINIT system state calculated!

List of FBs contained in RINIT sequence:

IN_EROI2
CREATE_SUB_INT
CREATE_CHECK
CREATE_CNF_REQ
CREATE_OUT_ValA
PARAM_ValB
CREATE_CNF_REQ_2
CREATE_RO_INIT
CREATE_OUT_IN
START_SUB_INT
START_CHECK

CALCULATE Logical order rule:

Param: CREATE_SUB_INT.FB_NAME = SUB_INT_FROM_INTERNAL
Param: CREATE_SUB_INT.FB_TYPE = SUB_INT_FROM_INTERNAL
Param: CREATE_SUB_INT.DST = Res_App1
Destination resource Res_App1 is valid.
FB type SUB_INT_FROM_INTERNAL is present.

Param: CREATE_CHECK.FB_NAME = CHECK_INT_LESS
Param: CREATE_CHECK.FB_TYPE = CHECK_INT_LESS
Param: CREATE_CHECK.DST = Res_App1
Destination resource Res_App1 is valid.
FB type CHECK_INT_LESS is present.

Establish a copy of the system state.

Extract a list of FBs that are executed
within the RINIT sequence.

First basic reconfiguration service:

• CREATE FB
• Target resource available
• Type available

Second basic reconfiguration service:

• CREATE FB
• Target resource available
• Type available

ADDITIONAL INFORMATION FOR DEMONSTRATION EXAMPLE 233

Param: CREATE_CNF_REQ.SRC_FB = SUB_INT_FROM_INTERNAL
Param: CREATE_CNF_REQ.SRC_FB_OUT = CNF
Param: CREATE_CNF_REQ.DST_FB = CHECK_INT_LESS
Param: CREATE_CNF_REQ.DST_FB_IN = REQ
Param: CREATE_CNF_REQ.DST = Res_App1
Destination resource Res_App1 is valid.
Both connection points SUB_INT_FROM_INTERNAL.CNF,
CHECK_INT_LESS.REQ are valid.

Param: CREATE_OUT_ValA.SRC_FB = SUB_INT_FROM_INTERNAL
Param: CREATE_OUT_ValA.SRC_FB_OUT = OUT
Param: CREATE_OUT_ValA.DST_FB = CHECK_INT_LESS
Param: CREATE_OUT_ValA.DST_FB_IN = ValA
Param: CREATE_OUT_ValA.DST = Res_App1
Destination resource Res_App1 is valid.
Both connection points SUB_INT_FROM_INTERNAL.OUT,
CHECK_INT_LESS.ValA are valid.

Param: PARAM_ValB.ELEM_NAME = CHECK_INT_LESS
Param: PARAM_ValB.ELEM_DATA_IN = ValB
Param: PARAM_ValB.PARM_VAL = -100
Param: PARAM_ValB.DST = Res_App1
Destination resource Res_App1 is valid.
Destination FB CHECK_INT_LESS is valid.
Destination ELEM_DATA_IN ValB is valid.

Param: CREATE_CNF_REQ_2.SRC_FB = CONV_UINT2INT
Param: CREATE_CNF_REQ_2.SRC_FB_OUT = CNF
Param: CREATE_CNF_REQ_2.DST_FB =
SUB_INT_FROM_INTERNAL
Param: CREATE_CNF_REQ_2.DST_FB_IN = REQ
Param: CREATE_CNF_REQ_2.DST = Res_App1
Destination resource Res_App1 is valid.
Both connection points CONV_UINT2INT.CNF,
SUB_INT_FROM_INTERNAL.REQ are valid.

Param: CREATE_RO_INIT.SRC_FB = E_CTU
Param: CREATE_RO_INIT.SRC_FB_OUT = RO
Param: CREATE_RO_INIT.DST_FB = SUB_INT_FROM_INTERNAL
Param: CREATE_RO_INIT.DST_FB_IN = INIT
Param: CREATE_RO_INIT.DST = Res_App1
Destination resource Res_App1 is valid.
Both connection points E_CTU.RO, SUB_INT_FROM_INTERNAL.INIT
are valid.

Param: CREATE_OUT_IN.SRC_FB = CONV_UINT2INT
Param: CREATE_OUT_IN.SRC_FB_OUT = OUT
Param: CREATE_OUT_IN.DST_FB = SUB_INT_FROM_INTERNAL
Param: CREATE_OUT_IN.DST_FB_IN = IN
Param: CREATE_OUT_IN.DST = Res_App1
Destination resource Res_App1 is valid.
Both connection points CONV_UINT2INT.OUT,
SUB_INT_FROM_INTERNAL.IN are valid.

Param: START_SUB_INT.ELEM_NAME =
SUB_INT_FROM_INTERNAL
Param: START_SUB_INT.DST = Res_App1
Destination resource Res_App1 is valid.
Destination FB SUB_INT_FROM_INTERNAL is valid.

Param: START_CHECK.ELEM_NAME = CHECK_INT_LESS

Third basic reconfiguration service:
• CREATE connection
• Target resource available
• Source and destination avail-

able

Fourth basic reconfiguration service:

• CREATE connection
• Target resource available
• Source and destination avail-

able

Fifth basic reconfiguration service

• WRITE parameter
• Target resource available
• Target FB available
• Target parameter available

Sixth basic reconfiguration service:

• CREATE connection
• Target resource available
• Source and destination avail-

able

Seventh basic reconfiguration service:

• CREATE connection
• Target resource available
• Source and destination avail-

able

Eighth basic reconfiguration service:

• CREATE connection
• Target resource available
• Source and destination avail-

able

Nineth basic reconfiguration service:

• START element
• Target resource available
• FB available

Tenth basic reconfiguration service:

• START element

234 ADDITIONAL INFORMATION FOR DEMONSTRATION EXAMPLE

Param: START_CHECK.DST = Res_App1
Destination resource Res_App1 is valid.
Destination FB CHECK_INT_LESS is valid.

• Target resource available
• FB available

Table 7: Status output of dependent operation check within Page 3 (RINIT sequence)

Initial RECONF system state calculated!

List of FBs contained in RECONF sequence:

IN_EROI2
START_RECONF
Cross_EROI2_RECONF
DEL_CNF_EI
DEL_Result_PERMIT
GET_INTERNAL
SET_INTERNAL
CREATE_Result_PERMIT
CREATE_CNF_EI
DEL_INITO_REQ
DEL_CNF_REQ
DEL_OUT_SD2
CREATE_OUT_SD2
CREATE_CNF_REQ1
CREATE_INITO_REQ

CALCULATE Logical order rule:
Param: DEL_CNF_EI.SRC_FB = CHECK_INT_GREATER
Param: DEL_CNF_EI.SRC_FB_OUT = CNF
Param: DEL_CNF_EI.DST_FB = E_PERMIT
Param: DEL_CNF_EI.DST_FB_IN = EI
Param: DEL_CNF_EI.DST = Res_App1
Destination resource Res_App1 is valid.
Both connection points CHECK_INT_GREATER.CNF, E_PERMIT.EI
are valid.
Connection CHECK_INT_GREATER.CNF-E_PERMIT.EI is present.

Param: DEL_Result_PERMIT.SRC_FB = CHECK_INT_GREATER
Param: DEL_Result_PERMIT.SRC_FB_OUT = Result
Param: DEL_Result_PERMIT.DST_FB = E_PERMIT
Param: DEL_Result_PERMIT.DST_FB_IN = PERMIT
Param: DEL_Result_PERMIT.DST = Res_App1
Destination resource Res_App1 is valid.
Both connection points CHECK_INT_GREATER.Result,
E_PERMIT.PERMIT are valid.
Connection CHECK_INT_GREATER.Result-E_PERMIT.PERMIT is
present.

Param: GET_INTERNAL.FB_NAME = ADD_INT_TO_INTERNAL
Param: GET_INTERNAL.FB_INTVAR = INTERNAL
Param: GET_INTERNAL.DST = Res_App1
Destination resource Res_App1 is valid.
Destination FB ADD_INT_TO_INTERNAL is valid.
Internal Variable INTERNAL is valid.

Param: SET_INTERNAL.FB_NAME = SUB_INT_FROM_INTERNAL
Param: SET_INTERNAL.FB_INTVAR = INTERNAL
Param: SET_INTERNAL.DST = Res_App1
Destination resource Res_App1 is valid.

Establish a copy of the system state.

Extract a list of FBs that are executed
within the RINIT sequence.

First basic reconfiguration service:

• DELETE connection
• Target resource available
• Source and destination avail-

able

Second basic reconfiguration service:

• DELETE connection
• Target resource available
• Source and destination avail-

able

Third basic reconfiguration service:

• READ variable
• Target resource available
• FB and variable available

Fourth basic reconfiguration service:

• WRITE variable
• Target resource available

ADDITIONAL INFORMATION FOR DEMONSTRATION EXAMPLE 235

Destination FB SUB_INT_FROM_INTERNAL is valid.
Internal Variable INTERNAL is valid.

Param: CREATE_Result_PERMIT.SRC_FB = CHECK_INT_LESS
Param: CREATE_Result_PERMIT.SRC_FB_OUT = Result
Param: CREATE_Result_PERMIT.DST_FB = E_PERMIT
Param: CREATE_Result_PERMIT.DST_FB_IN = PERMIT
Param: CREATE_Result_PERMIT.DST = Res_App1
Destination resource Res_App1 is valid.
Both connection points CHECK_INT_LESS.Result, E_PERMIT.PERMIT
are valid.

Param: CREATE_CNF_EI.SRC_FB = CHECK_INT_LESS
Param: CREATE_CNF_EI.SRC_FB_OUT = CNF
Param: CREATE_CNF_EI.DST_FB = E_PERMIT
Param: CREATE_CNF_EI.DST_FB_IN = EI
Param: CREATE_CNF_EI.DST = Res_App1
Destination resource Res_App1 is valid.
Both connection points CHECK_INT_LESS.CNF, E_PERMIT.EI are
valid.

Param: DEL_INITO_REQ.SRC_FB = ADD_INT_FROM_INTERNAL
Param: DEL_INITO_REQ.SRC_FB_OUT = INITO
Param: DEL_INITO_REQ.DST_FB = CurrentVal_pub
Param: DEL_INITO_REQ.DST_FB_IN = REQ
Param: DEL_INITO_REQ.DST = Res_App1
Destination resource Res_App1 is valid.
At least one of the connection points
ADD_INT_FROM_INTERNAL.INITO, CurrentVal_pub.REQ is invalid.

Param: DEL_CNF_REQ.SRC_FB = ADD_INT_TO_INTERNAL
Param: DEL_CNF_REQ.SRC_FB_OUT = CNF
Param: DEL_CNF_REQ.DST_FB = CurrentVal_pub
Param: DEL_CNF_REQ.DST_FB_IN = REQ
Param: DEL_CNF_REQ.DST = Res_App1
Destination resource Res_App1 is valid.
Both connection points ADD_INT_TO_INTERNAL.CNF, Current-
Val_pub.REQ are valid.
Connection ADD_INT_TO_INTERNAL.CNF-CurrentVal_pub.REQ is
present.

Param: DEL_OUT_SD2.SRC_FB = ADD_INT_TO_INTERNAL
Param: DEL_OUT_SD2.SRC_FB_OUT = OUT
Param: DEL_OUT_SD2.DST_FB = CurrentVal_pub
Param: DEL_OUT_SD2.DST_FB_IN = SD_2
Param: DEL_OUT_SD2.DST = Res_App1
Destination resource Res_App1 is valid.
Both connection points ADD_INT_TO_INTERNAL.OUT, Current-
Val_pub.SD_2 are valid.
Connection ADD_INT_TO_INTERNAL.OUT-CurrentVal_pub.SD_2 is
present.

Param: CREATE_OUT_SD2.SRC_FB = SUB_INT_FROM_INTERNAL
Param: CREATE_OUT_SD2.SRC_FB_OUT = OUT
Param: CREATE_OUT_SD2.DST_FB = CurrentVal_pub
Param: CREATE_OUT_SD2.DST_FB_IN = SD_2
Param: CREATE_OUT_SD2.DST = Res_App1
Destination resource Res_App1 is valid.
Both connection points SUB_INT_FROM_INTERNAL.OUT, Current-
Val_pub.SD_2 are valid.

Param: CREATE_CNF_REQ1.SRC_FB = SUB_INT_FROM_INTERNAL

• FB and variable available

Fifth basic reconfiguration service:

• CREATE connection
• Target resource available
• Source and destination avail-

able

Sixth basic reconfiguration service:

• CREATE connection
• Target resource available
• Source and destination avail-

able

Seventh basic reconfiguration service:

• DELETE connection
• Target resource available
• Source and destination avail-

able

Eighth basic reconfiguration service:

• DELETE connection
• Target resource available
• Source and destination avail-

able

Ninth basic reconfiguration service:

• DELETE connection
• Target resource available
• Source and destination avail-

able

Tenth basic reconfiguration service:

• CREATE connection
• Target resource available
• Source and destination avail-

able

236 ADDITIONAL INFORMATION FOR DEMONSTRATION EXAMPLE

Param: CREATE_CNF_REQ1.SRC_FB_OUT = CNF
Param: CREATE_CNF_REQ1.DST_FB = CurrentVal_pub
Param: CREATE_CNF_REQ1.DST_FB_IN = REQ
Param: CREATE_CNF_REQ1.DST = Res_App1
Destination resource Res_App1 is valid.
Both connection points SUB_INT_FROM_INTERNAL.CNF, Current-
Val_pub.REQ are valid.

Param: CREATE_INITO_REQ.SRC_FB = SUB_INT_FROM_INTERNAL
Param: CREATE_INITO_REQ.SRC_FB_OUT = INITO
Param: CREATE_INITO_REQ.DST_FB = CurrentVal_pub
Param: CREATE_INITO_REQ.DST_FB_IN = REQ
Param: CREATE_INITO_REQ.DST = Res_App1
Destination resource Res_App1 is valid.
Both connection points SUB_INT_FROM_INTERNAL.INITO,
CurrentVal_pub.REQ are valid.

Eleventh basic reconfiguration service:
• CREATE connection
• Target resource available
• Source and destination avail-

able

Twelfth basic reconfiguration service:

• CREATE connection
• Target resource available
• Source and destination avail-

able

Table 8: Status output of dependent operation check within Page 4 (RECONF sequence)

Initial RDINIT system state calculated!

List of FBs contained in RDINIT sequence:

IN_EROI2
Cross_EROI2_RDINIT
DEL_CNF_REQ1
DEL_RO_INIT
DEL_OUT_IN
STOP_ADD_INT
STOP_CHECK
DEL_ADD_INT
DEL_CHECK

CALCULATE Logical order rule:

Param: DEL_CNF_REQ1.SRC_FB = CONV_UINT2INT
Param: DEL_CNF_REQ1.SRC_FB_OUT = CNF
Param: DEL_CNF_REQ1.DST_FB = ADD_INT_TO_INTERNAL
Param: DEL_CNF_REQ1.DST_FB_IN = REQ
Param: DEL_CNF_REQ1.DST = Res_App1
Destination resource Res_App1 is valid.
Both connection points CONV_UINT2INT.CNF,
ADD_INT_TO_INTERNAL.REQ are valid.
Connection CONV_UINT2INT.CNF-ADD_INT_TO_INTERNAL.REQ is
present.

Param: DEL_RO_INIT.SRC_FB = E_CTU
Param: DEL_RO_INIT.SRC_FB_OUT = RO
Param: DEL_RO_INIT.DST_FB = ADD_INT_TO_INTERNAL
Param: DEL_RO_INIT.DST_FB_IN = INIT
Param: DEL_RO_INIT.DST = Res_App1
Destination resource Res_App1 is valid.
Both connection points E_CTU.RO, ADD_INT_TO_INTERNAL.INIT are
valid.
Connection E_CTU.RO-ADD_INT_TO_INTERNAL.INIT is present.

Param: DEL_OUT_IN.SRC_FB = CONV_UINT2INT
Param: DEL_OUT_IN.SRC_FB_OUT = OUT

Establish a copy of the system state.

Extract a list of FBs that are executed
within the RINIT sequence.

First basic reconfiguration service:

• DELETE connection
• Target resource available
• Source and destination avail-

able

Second basic reconfiguration service:

• DELETE connection
• Target resource available
• Source and destination avail-

able

Third basic reconfiguration service:

• DELETE connection

ADDITIONAL INFORMATION FOR DEMONSTRATION EXAMPLE 237

Param: DEL_OUT_IN.DST_FB = ADD_INT_TO_INTERNAL
Param: DEL_OUT_IN.DST_FB_IN = IN
Param: DEL_OUT_IN.DST = Res_App1
Destination resource Res_App1 is valid.
Both connection points CONV_UINT2INT.OUT,
ADD_INT_TO_INTERNAL.IN are valid.
Connection CONV_UINT2INT.OUT-ADD_INT_TO_INTERNAL.IN is
present.

Param: STOP_ADD_INT.ELEM_NAME = ADD_INT_TO_INTERNAL
Param: STOP_ADD_INT.DST = Res_App1
Destination resource Res_App1 is valid.
Destination FB ADD_INT_TO_INTERNAL is valid.

Param: STOP_CHECK.ELEM_NAME = CHECK_INT_GREATER
Param: STOP_CHECK.DST = Res_App1
Destination resource Res_App1 is valid.
Destination FB CHECK_INT_GREATER is valid.

Param: DEL_ADD_INT.FB_NAME = ADD_INT_TO_INTERNAL
Param: DEL_ADD_INT.DST = Res_App1
Destination resource Res_App1 is valid.
Destination FB ADD_INT_TO_INTERNAL is valid.

Param: DEL_CHECK.FB_NAME = CHECK_INT_GREATER
Param: DEL_CHECK.DST = Res_App1
Destination resource Res_App1 is valid.
Destination FB CHECK_INT_GREATER is valid.

• Target resource available
• Source and destination avail-

able

Fourth basic reconfiguration service:

• STOP element
• Target resource available
• FB instance available

Fifth basic reconfiguration service:

• STOP element
• Target resource available
• FB instance available

Sixth basic reconfiguration service:

• DELETE FB
• Target resource available
• FB instance available

Seventh basic reconfiguration service:

• DELETE FB
• Target resource available
• FB instance available

Table 9: Status output of dependent operation check within Page 5 (RDINIT sequence)

238 ADDITIONAL INFORMATION FOR DEMONSTRATION EXAMPLE

Figure 76: NCES model for practical example (Addition/Subtracion)

ADDITIONAL INFORMATION FOR DEMONSTRATION EXAMPLE 239

Figure 77: NCES module 'Thread_APP', the control application of Addition/Subtraction example at the

beginning of the RECONF sequence

240 ADDITIONAL INFORMATION FOR DEMONSTRATION EXAMPLE

Figure 78: NCES module 'Thread_RECONF', the RECONF seqeunce of ECA within Addi-

tion/Subtraction example

ADDITIONAL INFORMATION FOR DEMONSTRATION EXAMPLE 241

Figure 79: NCES model of Addition/Subtraction example without downtimeless system evolution

242 ADDITIONAL INFORMATION FOR DEMONSTRATION EXAMPLE

Figure 80: NCES model for position controller including plant model (velocity closed-loop control)

 243

Used terms and abbreviations

New terms introduced in the thesis
Automation and Control System (ACS). ACS is used as an umbrella term for any kind of

system32 that is able to control some kind of process. This thesis uses this term for
equipment for production automation (in contrast to product automation, see Favre-
Bulle (2004). In common, such a system is programmable and flexible configurable to
fit to the process under control. A typical kind of ACS is a PLC. An ACS may be any
kind of feedforward or feedback system. Due to the intensive usage of sensor systems
as input for the control logic, we commonly consider an ACS as a feedback system.

Automation extreme programming (AXP): Following the idea of extreme programming
stated in Beck (2000) the application for ACS with regard to the possibilities of DSE
leads to automation extreme programming. As changes can be applied during operation
of the plant and the cost of change is limited although for late changes in the engineer-
ing cycle a continuous evolution of the plant will take place starting from a very simple
first version.

Basic reconfiguration services. A set of basic services that allows all necessary modifica-
tions of control logic in order to conduct any system evolution. The basic reconfigura-
tion services are based on the management commands from (IEC 61499-1, 2005) and
can be categorized in five groups: structural services, library services, execution control
services, state interaction services, and query services. More detailed information can
be found in Zoitl (2007).

Composite Evolution Control Application (CECA). An ECA which includes several
system evolution steps can be represented in a simplified manner by the use of EECFBs
for each system evolution step. Such an ECA is called CECA.

Downtimeless system evolution (DSE). The term downtimeless system evolution describes
the combination of software evolution and dynamic reconfiguration for automation and
control systems. Its characteristics are that it faces the adaptation of system at run-time
with at less disturbances as possible, it aims at overall system configurations, and it
claims for a continuous evolution process for the overall life cycle of ACSs.

Dynamic reconfiguration. Dynamic reconfiguration is used as an umbrella term for method-
ologies and techniques for the change of software architectures at run-time. Wermelin-
ger (1999) provides an overview on three different approaches to dynamic reconfig-
ureation, an reference architecture for dynamic reconfiguration is presented in
Walsh et al. (2007b) who define a categorization of change types as well as various in-
tegrity characteristics.

32 The term system is widely used in literature as the interconnection of parts that exhibit as a whole one or more
properties. If these properties are not obvious from the properties of the individual parts, a complex system is
described. ACS are considered as complex systems in this thesis.

244 USED TERMS AND ABBREVIATIONS

Evolution Control Application (ECA): An ECA describes the transition from a current
system state to a new system state by the use of an IEC 61499 application. Herein spe-
cial function blocks that provide access to the device management of the IEC 61499
device are used. As the ECA is free programmable, the DSE can be adapted to the spe-
cial needs of an ACS: wide range of application, transition management, and the in-
complete representation of ACS programming languages as software components. The
use of ECAs in an IEC 61131-3 based system environment is described in Chapter 10.

Evolution Execution Control Function Block (EECFB). This special kind of FB includes
an ECA and provides a separate interface for each of the three sequences within the
ECA. Therefore, an ECA can be simply combined with other ECAs in order to model
enhanced DSE scenarios again by means of IEC 61499 standard.

Evolution Region Of Interest (EROI). The EROI defines the region within an control
application that will be changed during a system evolution step. As the ECA of a sys-
tem evolution step is represented as EECFB, the EROI depicts the corresponding area
within the control application that is related to the EECFB.

Evolution specification. Evolution specifications are a list of properties that specially aim at
the execution of DSE. Next to the preservation of the properties of system without evo-
lution (plant, process, and product specifications) these properties include active refer-
ences to underlying services, state management within the control application, depend-
ent operation of basic reconfiguration services, real-time constrained operation, and re-
quirements of resources.

KAPPA calculus. The term KAPPA calculus is used as umbrella term and represents any
calculation that is based on the current system state (respectively the KAPPA vector).
This is a very broad field of calculations since many aspects of engineering support can
be described as KAPPA calculus as for instance depicted in Sünder et al. (2007c). In
terms of evaluation of DSE especially the evaluation of the properties of the evolution
specification by the use of calculations based on the KAPPA vector are summarized as
KAPPA calculus.

KAPPA vector. The KAPPA vector is the representation of the current system state. It is a
structured list of parameters that can be devided according to their dependency in ap-
plication dependent and/or device dependent elements. During normal operation the
KAPPA vector is static, but during the execution of DSE the KAPPA vector is a highly
versaticle quantity as it changes due to each execution of a basic reconfiguration ser-
vice.

Physical reconfiguration. This term depicts dynamic reconfiguration of hardware configura-
tions. During a system evolution step software as well as hardware may be changed. As
there exist no automatisms for changes to the hardware configuration, the necessary
tasks (addition or removal of hardware) need to be executed manually during the DSE.

Real-time Reconfiguration Runtime Environment (R3E). The R3E is the IEC 61499
runtime environment which provides the basis for the execution of DSE within this
work. Its main principles are described in Zoitl (2007), although several minor changes
and enhancements have been applied to it during the εCEDAC project.

Value-added chain for total evaluation: The provision of the exhaustive description for all
elements within the architecture of a control device can be based on roles of the differ-
ent companies involved in ACSs. Each company adds a special expertise to the ACS,
therefore the necessary information for the evaluation of DSE regarding to this exper-
tise, has to be provided by this company, too. As a result, the effort for providing DSE
support is reduced and spread up between the different roles in ACS and the application
of DSE will achieve high benefits related to the necessary effort.

USED TERMS AND ABBREVIATIONS 245

General terms and abbreviations
Accompanying Measure on Advanced Real-Time Systems (ARTIST). The ARTIST

project [1] was funded by the European Union in Frame Program 5. ARTIST gathered
together 30 leading European research institutes in the area of embedded systems de-
sign. One major output was a roadmap on future directions in advanced real-time sys-
tems (Bouyssounouse and Sifakis, 2005).

Ambigrams. Ambigrams can be letters, words, or numbers that are ambiguous. Some
ambigrams are mirror reversible, others can be read inverted, others have two meanings
hidden in the word.

Automation and Control Institute (ACIN). ACIN is located in the faculty for electro
technique and information technology at Vienna University of Technology, [2]

Automation object. Following the idea of Vyatkin et al. (2005, Section 3), “an automation
object is an abstraction for a mechanical device associated with its embedded intelli-
gence, i.e., software components of different functional domains. For example, the lay-
out of a component is related to its appearance on its visualization screen (View). The
View component can receive data about the dynamic state of the object either from ac-
tual process interface or from a simulation model. Control functions can refer directly
to the process interface of the object or to the low-level control functions. The HMI
component communicates with both process and controller.”

Basic Function Block (BFB). A BFB type is defined in (IEC 61499-1, 2005, Section 3.8) as
“function block type that cannot be decomposed into other function blocks and that
utilizes an execution control chart (ECC) to control the execution of its algorithms”.

Best Case Execution Time (BCET): Analogous to the definition of WCET given in (Kopetz,
1997, Section 4.5) the BCET of a task is a lower bound for the time between task acti-
vation and task termination.

CAN in Automation (CiA). CiA [6] is the international users’ and manufactures’ group that
develops and supports CANopen and other CAN-based higher-layer protocols. Espe-
cially for CANopen a very broad range of specifications for different devices profiles
have been developed.

Component framework. “A component framework is a dedicated and focused architecture,
usually around a few key mechanisms, and a fixed set of policies for mechanisms at the
component level. Component frameworks often implement protocols to connect par-
ticipating components and enforce some of the policies set by the framework.”
(Szyperski, 2005, Section 20.3)

Component system architecture. “A component system architecture consists of a set of
platform decisions, a set of component frameworks, and an interoperation design for
the component frameworks. A platform is the substrate that allows for installation of
components and component frameworks, such that these can be instanced and acti-
vated. (…) An interoperation design for component frameworks comprises the rules of
interoperation among all the frameworks joined by the system architecture.” (Szyper-
ski, 2005, Section 20.3)

Composite Function Block (CFB). A CFB type is defined in (IEC 61499-1, 2005, Sec-
tion 3.16) as “function block type whose algorithms and the control of their execution
are expressed entirely in terms of interconnected component function blocks, events,
and variables”.

Computability. The theory of computability can be described by two questions (Hop-
craft et al. , 2001, Section 1.1.3): „What can a computer do at all?“ and „What can a
computer do efficiently?“. Herein abstract models such as finite automata and formal

246 USED TERMS AND ABBREVIATIONS

grammars are used in design and construction of software. Other concepts like Turing
machines are used to understand what we can expect from a software program.

Computation Tree Logic (CTL). CTL is a temporal logic is a temporal logic that utilizes a
model of time that is a tree-like structure. “The future is not determined; there are dif-
ferent paths in the future, any one of which might be the ‘actual’ path that is realized.”
(Huth and Ryan, 2004, Section 3.4.1) There exist different dialects such as CTL*, CTL,
ACTL, TCTL, or RTCTL in literature.

Computer Numerical Control (CNC) machines. The combination of a machine tool, an
actuator system to force the axis of the machine tool, and an integrated numerical con-
trol by a computer is called CNC machine. These machines are specialized to opera-
tions on a workpiece, e.g. drilling, milling, turning, or grinding, and provide means for
coordinated motion of the tool center point. (Favre-Bulle, 2004, Section 2.4.5)

Continuous Stochastic Logic (CSL). The logic CSL is a stochastic version and variant of the
temporal logic CTL. It permits expessing steady-state probabilities. CSL properties are
verified at the state-space level using model checking. A detailed definition of CSL is
given for instance in D’Aprile et al. (2004, Section 2).

Control Area Network (CAN): The CAN network has been developed especially for the
automotive sector in order to connect typically sensors, actuators, and control devices.
Each node is able to send and receive messages, conflicts are resolved by the identifica-
tion of each node which represents the header of a message.

Deductive verification. Deductive verification is a technique for validation of the functional-
ity of a system and usually refers to the use of axioms and rules to prove the correctness
of systems. It requires expert knowledge and is applied to highly sensitive systems such
as security protocols.

Document Type Definition (DTD). “The XML document type declaration contains or points
to markup declarations that provide a grammar for a class of documents. This grammar
is known as a document type definition, or DTD. The document type declaration can
point to an external subset (a special kind of external entity) containing markup decla-
rations, or can contain the markup declarations directly in an internal subset, or can do
both. The DTD for a document consists of both subsets taken together.” [64], Sec-
tion 2.8

Electronic Device Description Language (EDDL). EDDL has been standardized in
(IEC 61804-3, 2006) and is a generic description language for ACS components.
EDDL is used to create an Electronic Device Description, which is a textual file includ-
ing the properties of an ACS components in terms of the EDDL, such as device pa-
rameters and their dependencies, device functions, graphical representations, interac-
tion with control devices, and persistent data store.

Enterprise Resource Planning (ERP). A ERP system is a information system, that takes
care on all business processes within an enterprise in trans-sectoral way. The informa-
tion processes are at least partly automated. (Favre-Bulle, 2004, Section 3.5.3)

Event-Condition-Action (ECA). Dynamically reconfigurable software systems such as
active databases or expert systems are often specified by ECA rules. Almeida et al.
(2007) describes an approach to use ECA rules for modeling reconfigurable logic con-
trollers. The elements of an ECA rule are the event, which is used to trigger evaluation
of the condition of the rule, and in case of positive evaluation the action that is exe-
cuted.

Embedded Configurable Operating System (eCos): eCos is an open source, royalty-free,
real-time operating system intended for embedded applications. There exists a high va-
riety of different hardware platforms which are already supported by eCos (see [9]).

USED TERMS AND ABBREVIATIONS 247

Based on the highly configurable nature eCos can be adapted to the requirements of a
given application very flexible. A detailed description of the concepts implemented by
eCos is provided in Massa (2003).

Embedded systems. “We will refer to embedded systems as electronic programmable sub-
systems that are generally an integral part of a larger heterogeneous system. An em-
bedded system acts within—and in many cases on—the physical environment. Embed-
ded systems are, by nature, inherently real-time computer systems.” (Bouyssounouse
and Sifakis, 2005)

Evolution Control Environment for Distributed Automation Components (εCEDAC).
The εCEDAC project aims at a fundamentally new application centered engineering
method for efficient component based modeling of applications for controlled, fault-
tolerant and safe system evolution in order to overcome the limitations of current em-
bedded industrial automation and control engineering methods.
The εCEDAC project has been funded by the Austrian government within the FIT-IT
embedded systems program under contract number FFG-809447/7126. The project
lasted from May 2005 to July 2007. The project consortium consists of the companies
Bachmann electronic [3], kirchner SOFT33 [29], Loytec electronics [28], and Siemens
VAI [49], as well as the research institutes Profactor [45] and ACIN [1]. More detailed
information is available on the corresponding web page [3].

Execution Control Chart (ECC). The ECC is defined in (IEC 61499-1, 2005, Section 3.40)
as “graphical or textual representation of the causal relationships among events at the
event inputs and event outputs of a function block and the execution of the function
block’s algorithms, using execution control states, execution control transitions, and
execution control actions”.

Field bus. A common means for communication in ACS are field bus systems. They fulfill
special requirements such as real-time characteristics, reliability, and rough ambient
conditions. There exists a huge variety of field bus systems as describe by Favre-Bulle
(2004, Section 2.7). In recent years especially the introduction of Ethernet networks for
industrial communication tremendously increase the variety of available systems.

Field Device Configuration Markup Language (FDCML). FDCML (FDCML.org, 2002)
has been developed by DRIVECOM User Group e.V. [24] and Interbus Club [6] as a
general markup language for device description files based on XML. It is based on the
(ISO 15745-1, 2003) basic elements and fulfills the basic requirements network inde-
pendence, multi language support, and extensibility. Further information is available
via [10].

Field Device Tool (FDT). The FDT concept defines the interface between device-specific
software components provided by the device supplier and the engineering tool of the
control system manufacturer. The focus of the FDT technology lies on engineering,
commissioning, diagnostics and documentation of field bus-based ACSs. The engi-
neering tool is able to interact actively with the field bus device. FDT has been speci-
fied by the FDT Group [11], where further information is available.

Framework for Distributed Automation and Control (4DIAC). The general aim of the
4DIAC initiative is to provide an open, IEC 61499 standard compliant basis, that gives
the opportunity to establish an automation and control system based on the targets
portability, configurability and interoperability. The open source project includes a
runtime environment as well as an engineering tool. Further information is available
via [12].

33 Company kircher SOFT has changed its name to „logi.cals Austria“ in 2008.

248 USED TERMS AND ABBREVIATIONS

Function Block (FB). The term function block is used in several standards, for this work
especially the definitions of IEC 61131-3 (2003) and IEC 61499-1 (2005) are of special
interest.

Function Block Diagram (FBD). FBD is a graphical programming language defined in
(IEC 61131-3, 2003). FBs or functions are interconnected via flow lines, the signal
flow shall be from the output (right-hand) side to the input (left-hand) side. The exec-
tion of FBD is defined so that an element is evaluated only if its predecessor elements
are evaluated. Additionally, implementation dependent rules can be applied.

Function Block Development Kit (FBDK). The FBDK [15] has been developed by James
H. Christensen in parallel to the development of the IEC 61499 standard. It consists of
two parts, an engineering tool as well as a runtime environment (FBRT) for the ele-
ments of IEC 61499 standard. It is the first IEC 61499 engineering tool and still en-
hanced by James H. Christensen.

Function Block Run Time (FBRT). The FBRT is the runtime environment within the FBDK
engineering tool. It is implemented in Java and is characterized by its implementation
of the event propagation by direct function call. The detailed execution semantics of the
FBRT are described in Sünder et al. (2006a).

Function Block Execution Runtime (FUBER). This IEC 61499 runtime environment has
been published as open source project [13] by Goran Čengić (Automation Research
Group, Chalmers University of Technology). A description of FUBER can be found in
Čengić et al. (2006).

Generalized Stochastic Petri Nets (GSPN). “Generalized Stochastic Petri Nets (…) have
two different classes of transitions: immediate transitions and timed transitions. Once
enabled, immediate transitions fire in zero time. Timed transitions fire after a random,
exponentially distributed enabling time as in the case of Stochastic Petri Nets.” (Bause
and Kritzinger, 1996, Chapter 8)

Holonic Manufacturing Systems (HMS). A HMS is “a holarchy (a system of holons—
autonomous and cooperative building blocks of a manufacturing system—which can
cooperate to achieve a goal or objective) which integrates the entire range of manufac-
turing activities from order booking through design, production and marketing to real-
ize the agile manufacturing enterprise” (Christensen, 1994). The HMS project [22]
took place within the Intelligent Manufacturing Systems initiative [23] from 1991 to
2004.

Human Machine Interface (HMI). The HMI is the interface between a machine and a
human being. Generally the system state of the machine is displayed in some kind, e.g.
by some graphics, and there exists the possibility to influence the machine by the use of
buttons or textual inputs.

Instruction List (IL). IL is a textual programming language defined in (IEC 61131-3, 2003).
IL is composed of a sequence of instruction, whereas each instruction shall begin on a
new line. A line may consist of an optional label, an operator, optional operands, and an
optional comment. The operators are very simple such as load, Boolean operations as
well as mathematical operations. Further, jump operators to labels and FB/function
calls are possible.

International Electrotechnical Commission (IEC). International Organization [25] that
provides international standards and conformity assessment for government, business,
and society for all electrical, electronic, and related technologies.

Intellectual Property (IP). IP is a used in law as umbrella term for a bundle of exclusive
rights concerning information, ideas, and so on. In the contrast of ACS, IP means the
special knowledge of a vendor concerning his products. It is necessary to provide

USED TERMS AND ABBREVIATIONS 249

means for the protection of a vendor’s IP to build an open, knowledge-based economy
in industrial automation. (Vyatkin et al., 2005)

Industrial Personal Computer (IPC). An IPC is in general a personal computer that fulfills
special requirements according to is use as replacement for PLCs in ACSs. The addi-
tional features are robustness, use of standards, type of protection, operating system,
and communication with other system components. (Favre-Bulle, 2004, Section 2.4.4)

Kripke structure. “A Kripke structure consists of a set of states, a set of transitions between
states, and a function that labels each state with a set of properties that are true in this
state. Paths in a Kripke structure model computations of the system. Although these
models are very simple, they are sufficiently expressive to capture those aspects of
temporal behavior that are most important for reasoning about reactive systems.”
(Clarke et al., 1999, Chapter 2)

Ladder Diagram (LD). LD is a graphical programming language defined in (IEC 61131-3,
2003). The symbols are laid out in a similar manner to a rung of a relay ladder logic
diagram. The LD network is located between the left and right power rail. The used
symbols are contacts, coils as well as functions and FBs (by the use of the EN/ENO
construct). The execution order is rung by rung from top to bottom. Within a rung, an
element is evaluated only if its predecessor element has been already evaluated.

Linear-time Temporal Logic (LTL). “LTL is a temporal logic (…) that models time as a
sequence of states, extending infinitely into the future. (…) In general, the future is not
determined, so we consider several paths, representing different possible futures.”
(Huth and Ryan, 2004, Section 3.2) LTL consists “of formulas that have the form A f
where f is a path formula in which the only state subformulas permitted are atomic
propositions.” (Clarke et al., 1999, Section 3.2)

Middleware. “Category of software that is neither dedicated to the operation of a specific
system (handled by the operating systems) nor to the functionality of specific applica-
tions. Middleware typically addresses cross-system concerns, such as communication,
synchronization, and coordination, that are of importance to multiple applications.”
(Szypersky, 2005, Glossary)

Micro Holons for Next Generation Distributed Embedded Automation and Control
Systems (µCrons). The aim of the µCrons project is to overcome limitations of state of
the art PLC-based automation technology and provide an embedded system computing
infrastructure (middleware) for µCrons that supports predictable dynamic reconfigura-
tion of real-time application software that is distributed on µCrons. A µCron is the
mechatronic assembly of mechanic, hydraulic, pneumatic, etc. parts with electric, com-
puting, networking and software level components to an intelligent, reconfigurable,
user-programmable device of fine granularity (similar to an automation object).
The µCrons project has been funded by the Austrian government within the FIT-IT
embedded systems program under contract number FFG-808205/7126. The project
lasted from May 2004 to November 2006. The project consortium consists of the com-
panies Festo GmbH [19] and Fronius International AG [20], as well as the research in-
stitutes Profactor [45], ACIN [1], and University of Applied Science, Upper Austria
[57]. More detailed information is available on the corresponding web page [36].

Model checking. Model checking is a technique for validation of the functionality of a
system for finite state concurrent systems. Based on the model of a system, a model
checking tool verifies whether the state space of the system fulfils a given specification
or not. If the model violates some property of the specification, a counterexample as a
path within the state space is given.

250 USED TERMS AND ABBREVIATIONS

Mulitlevel Queue (MLQ). The MLQ scheduling policy is part of the eCos kernel component.
It provides the use of several threads within the same priority level, with a maximum
number of 32 priorities. All tasks within one priority level are held within a queue, and
the execution time of a task may be limited by a timeslicing period. A detailed descrip-
tion of the MLQ scheduler is provided in Massa (2003, Section 5.1.3.1).

Net Condition/Event Systems (NCES). NCES are a modeling approach that is a combina-
tion of Condition/Event systems and Petri nets. There exist modules utilizing events
and conditions as interfaces that can be interrelated to composite modules. Internals of
a module are described Petri nets, whereas incoming conditions as well as events may
be used for the firing condition of a transition. If a NCES has no inputs it is called Sig-
nal-Net System (SNS). A description of NCES and their use for verification of distrib-
uted control systems is given for instance in Vyatkin and Hanisch (2003b).

Object Management Group (OMG). The OMG is an international, open membership, not-
for-profit computer industry consortium. The different task forces develop enterprise
integration standards for a wide range of technologies, and an even wider range or in-
dustries. The most important specification developed by the OMG is UML. [38]

Open, Object-Oriented Knowledge Economy for Intelligent Industrial Automation
(O3neida). The O3neida organization [28] operates as a network of networks focused
on fostering distributed industrial automation based upon open standards. The basic
idea of the O3neida organization is describe in Vyatkin et al. (2005).

OPC Unified Architecture (OPC UA). OPC UA has been defined by the OPC Foundation
[41], which is a user driven organization that has released several specifications for the
access of data from various devices in a unified manner. OPC stems from OLE for
Process Control, which is derived from the technology Object Linking and Embedding
used in Microsoft Windows operating systems. OPC UA defines a Client/Server archi-
tecture based on standardized web technologies (such as XML defined by W3C [63]).

Ordered Binary Decision Diagram (OBDD). OBDDs (Clarke et al., 1999, Chapter 5) are a
canonical form representation for Boolean formulas. They can be calculated from cal-
culated from binary decision trees simply speaking by eliminating redundancy. A ca-
nonical form can be achieved by two restrictions: (i) a similar order of variables along
each path and (ii) no isomorphic subtrees or redundant vertices. One challenge in the
use of OBDDs is that the size of the OBDD depends critically on the variable order.
Therefore techniques such as dynamic reordering have been developed.

PLCopen. PLCopen [44] was founded as an independent worldwide association for industrial
suppliers and users resolving topics related to industrial control programming. PLCo-
pen members have concentrated on technical specifications around IEC 61131-3, creat-
ing specifications and implementations in order to reduce cost in industrial engineering.
Examples are the specifications for motion control and safety function blocks, and the
XML schemes for an unified data format for control logic.

Predicate transformer. A predicate transformer is a function τ : Pred(S) 6 Pred(S) with the
attributes (i) τ is monotonic, (ii) τ is c-continuous and (iii) τ is 1-continuous. Pred(S) is
denoted as a lattice under the set inclusion ordering from the states S of a Kripke struc-
ture M (3). These properties are used for symbolic model checking to utilize fixpoint
calculations. A detailed description is given for instance in Clarke et al. (1999, Chap-
ter 6).

Priority inheritance protocol. A RTOS provides different means for synchronization of
different tasks. The mutual exclusion method allows multiple tasks to share a resource
serially. If a resource is occupied by a low priority task, and a high priority task wants
to access the resource, different protocols can be used to resolve this situation. “The

USED TERMS AND ABBREVIATIONS 251

priority inheritance protocol allows a task that owns the mutual exclustion object to be
raised to the priority level equal to the highest level of all threads waiting for the mu-
tual exclusion object. The priority inheritance protocol is only used when a higher pri-
ority task is waiting for the mutual exclusion object.” (Massa, 2003, Section 6.2.1)

Programmable Logic Controller (PLC). The term PLC is an umbrella term for control
devices based on the IEC 61131 standard. Although the term is used more generally in
literature, we will use this term for control devices that are programmable according to
the concepts of (IEC 61131-3, 2003).

Program Organization Unit (POU). The standard IEC 61131-3 defines POU as an software
element which may be either a program, function block or function. (IEC 61131-3,
2003)

Production planning and scheduling (PPS). A PPS system is used for computer based
planning, ordering, and supervision of production flows. The main tasks are the coordi-
nation of the production program, quantities, schedules, and capacities. (Favre-Bulle,
2004, section 3.5.1)

Property Specification Pattern. “A property specification pattern is a generalized descrip-
tion of a commonly occurring requirement on the permissible state/event sequence in a
finite-state model of a system. A property specification pattern describes the essential
structure of some aspect of a system’s behavior and provides expressions of this behav-
ior in a range of common formalisms.” (Dwyer et al., 1998, Section 3, first paragraph)

Real-time computer system. “A real-time computer system is a computer system in which
the correctness of the system behavior depends not only on the logical results of the
computation, but also on the physical instant at which these results are produced.” (Ko-
petz, 1997, Section 1.1, first paragraph)

Real-time operating system (RTOS). A RTOS is an operating system, which provides
support for concurrent programming via processes and/or threads, real-time scheduling
services with predictable timing behavior, preemption, predictable synchronization
mechanisms, mutual exclusion, and time management services. (Bouyssounouse and
Sifakis, 2005, Section 21.1)

Reconfigurable Manufacturing System (RMS). “A reconfigurable manufacturing system is
designed at the outset for rapid change in structure, as well as in hardware and software
components, in order to quickly adjust production capacity and functionality within a
part family in response to sudden changes in the market or in regulatory requirements.”
(Koren et al., 1999, Section 2)

Simulation. Simulation is a technique for validation of the functionality of a system by
providing certain inputs and observing the outputs. The tests are performed on an ab-
straction or a model of the real product. Typical PLC engineering tools support the
simulation on the engineering computer without the real PLC.

Sequential Function Chart (SFC). SFC is defined in (IEC 61131-3, 2003) as a means for
partitioning POUs written in one of the languages defined by the standard, for the pur-
pose of performing sequential control functions. It consists of steps and transitions in-
terconnected by direct links. A step may have a set of actions associated, which are
executed if the step is activated and according to the used action qualifier (for instantce
time limited or rising edge). Each transition is associated with a transition condition.
The initial situation of a SFC network is characterized by the initial state which is the
active state. Evolution of the active states of steps shall take place along the directed
links when caused by the clearing of one or more transitions.

Service Interface Function Block (SIFB). A SIFB is defined in (IEC 61499-1, 2005,
Section 3.89) as “function block which provides one or more services to an application,

252 USED TERMS AND ABBREVIATIONS

based on a mapping of service primitives to the function block’s event inputs, event
outputs, data inputs, and data outputs”.

Signal-Net Systems (SNSs). SNSs are autonomous systems of NCES modules, that are
systems with no external inputs. For such systems analysis is possible. Starke and Roch
(2002) describe analysis techniques for SNS in detail, such as dynamic properties,
structural properties, Invariants and model checking. The appropriate model checker
for SNS is called SESA and has been developed at Humboldt-University Berlin. It is
available next to a graphical NCES tool in [61].

Software component: There exist several definitions for software components in literature.
Within this work we use (Szyperski, 2002, Section 4.1.5): “A software component is a
unit of composition with contractually specified interfaces and explicit context depend-
encies only. A software component can be deployed independently and is subject to
composition by third parties.” Its main characteristics are that a software component is
a unit of independent deployment, it may be used for composition by third-parties and
it has no (externally) observable states.

Software maintenance. The term software maintenance is defined in (IEEE 14764, 2006,
Section 3.10 “the totality of activities required to provide cost-effective support to a
software system. Activities are performed during the pre-delivery stage as well as the
post-delivery stage.” The predecessor IEEE 1219 (1998) focuses more on the modifica-
tion of a software product after delivery, whereas pre-delivery activities are necessary
such as a the planning for post-delivery activities.

Software evolution. The term software evolution lacks for a concrete definition but became
very famous due to the so called ‘laws of software evolution’ as for instance claimed by
Lehmann and Ramil (2000) for component-based software. It is stated that a software
product needs to be continuously adapted in order to kept satisfactory. There are differ-
ent challenges of software evolution stated in Mens et al. (2005) including sufficient
engineering support as well as runtime environments enabling adaptations at run-time.

Structured Text (ST). ST is a graphical programming language defined in (IEC 61131-3,
2003). ST consists of a list of statements, which may include assignments, FB/function
calls, selections (IF construct), and iterations (FOR, WHILE, and REPEAT construct).
Within the statements expressions are used, which are composed of operators and oper-
ands. The evaluation of expressions consists of applying the operators to the operands
according to the operator precedence. In order equal precedence, evaluation shall be
applied from left to right.

Subapplication. A subapplication type is defined in (IEC 61499-1, 2005, Section 3.95) as a
“functional unit whose body consists of interconnected component function blocks or
component subapplications”. In the note to (IEC 61499-1, 2005, Section 3.94) it is
stated that “a subapplication instance may be distributed among resources, i.e. its com-
ponent function blocks or the content of its component subapplications may be as-
signed to different resources”.

Symbolic Model Verifier (SMV). SMV was the first tool for checking finite-state systems by
the use of symbolic model checking algorithms using OBDDs. It has been developed
by Ken McMillan (1993) in his PhD thesis and provided important results to the state
explosion problem. SMV uses its own input language, which is based on modules and
their interaction. There are several tools available based on the original SMV, the most
relevant one is the open source NuSMV [35].

Testing. Testing is a technique for validation of the functionality of a system by providing
certain inputs and observing the outputs. The tests are performed on the real product.

USED TERMS AND ABBREVIATIONS 253

Timed Net Condition/Event Systems (TNCES). TNCES is the extension of the strictly
causual, untimed model of NCES to a timed model as introduces in Ha-
nisch et al. (1997).

Tool Calling Interface (TCI). TCI specifies a concept that defines a calling interface for the
device engineering tool and the automation system engineering tool. It provides param-
eterization and diagnostics over network boundaries, data storage, and reloading of set
parameters when a device is replaced. TCI has been specified by the Profibus and Pro-
finet International organization [48], where further information is available.

Total life cycle web-integrated control (TORERO). The TORERO project has focused on
creating a total life cycle web-integrated control design architecture and methodology
for distributed control systems in factory automation. It lasted from 1998 to 2002 and
was funded by the European Union. Schwab et al. (2005) describe the TORERO ap-
proach in detail, further information is also available at [54].

Unified Modeling Language (UML). UML [56] is a visual language for the specification,
visualization, construction and documentation of models for software systems. It has
been specified by the OMG and represents the de facto standard used by software engi-
neers. It includes for instance use case diagrams, class diagrams, and state charts.

Verification Environment for Distributed Applications (VEDA). The tool VEDA has been
developed by Valeriy Vyatkin and provides a framework for the verification of distrib-
uted applications according to IEC 61499. The model of the IEC 61499 application is
generated automatically, the validation is supported by visualization of the process
along selected trajectories within the reachability graph. Details are given for instance
in Vyatkin and Hanisch (2001a), actually VEDA is no more supported and developed.
Related projects can be found in [14].

Visual Verifier (ViVe). ViVe is a verification tool for TNCES. The model checking is done
via SESA and a simple built-in model checking algorithm. The models, reachability
graph, and sequence diagrams of paths within the reachability graph are available in a
graphical representation. ViVe is part of the visual framework for verification of func-
tion blocks [61] provided by Valeriy Vyaktin.

World Wide Web Consortium (W3C). The W3C [63] has been created as industry consor-
tium dedicated to building consensus around web technologies in 1994. It develops in-
teroperable technologies (specifications, guidelines, software, and tools) to lead the
web to its full potential. XML is one of the most important standards developed by
W3C.

Worst Case Active Task Set (WCATS): The WCATS is defined in (Zoitl, 2007) as “the task
set that needs the most execution resources of all possible task sets”. It has to be con-
sidered for the proof of schedulability of real-time constrained control applications
based on event chains.

Worst Case Execution Time (WCET): “The WCET of a task is an upper bound for the time
between task activation and task termination. It must be valid for all possible input data
and execution scenarios of the task, and should be a tight bound.” (Kopetz, 1997, Sec-
tion 4.5)

XML Interface for Robots and Peripherals (XIRP). The XIRP specification (VDMA
66430-1, 2006) provides an XML based description for the interaction between robots
and processor based peripherals (e.g. a vision system). The communication protocol de-
fines the machine-to-machine exchange of commands. XIRP is an german initiative
and has been specified by VDMA [59].

eXtended Markup Language (XML). XML [64] is a text format that consists of markup
codes and raw data. By the use of the markup codes the raw data is structured and se-

254 USED TERMS AND ABBREVIATIONS

mantic information is added. XML has been developed by the World Wide Web Con-
sortium (W3C) and is widely used in computer systems and for data exchange be-
tween computer systems. The structure of a XML file can be defined through a DTD
file or a XML schema.

XML schema. The purpose of a XML schema is to define a class of XML documents. It can
be viewed as a collection (vocabulary) of type definitions and element declarations
whose names belong to a particular namespace. Different namespaces can be managed
within an XML document. [65]

eXtreme Programming (XP). XP has been developed by Kent Beck as a summary of well
known practices from computer science such as pair programming, testing, simplicity
of design, short iterations, refactoring and so on. The design process becomes highly
adaptive as changes are applied as soon as they have been identified, starting with a
simple first version of the program. A detailed description of XP is given in
Beck (2000).

 255

Bibliography

In order to provide a better overview within the bibliography, we will use the following
classification of references: “**” means that this reference is directly used for the new
contribution of this work, and “*” means that this reference is interesting in the context of this
work. Any other references regard to state-of-the-art.

* Alcaraz-Mejía, M., López-Mellado, E. (2006) Petri Net Model Reconfiguration of

Discrete Manufacturing Systems. In: Proceedings of 12th IFAC Symposium on In-
formation Control Problems in Manufacturing (INCOM’06), vol. 1, Saint-Etienne
(France), May 2006, pp. 547-552

* Almeida, E. E., Luntz, J. E., Tilbury, D. M. (2007) Event-Condition-Action Systems For
Reconfigurable Logic Control. IEEE Transactions on Automation Science and En-
gineering, vol. 4, nb. 2, ISSN 1545-5955, pp. 167-181

 Alur, R. Courcoubetis, C., Dill, D. (1990) Model-checking for real-time systems. In:
Proceedings of 5th Annual IEEE Symposium on Logic in Computer Science
(LICS’90), Philadelphia (PA, USA), June 1990, pp. 414-425

 Alur, R., Dill, D. (1992) A Theory of Timed Automata. Lecture Notes in Computer
Science (LNCS 600), Real-Time: Theory in Practice, Springer Verlag Berlin Hei-
delberg, pp. 45-73

* Angelov, C., Sierszecki, K., Marian, N. (2005) Design Models for Reuseable and
Reconfigureable State Machines. Lecture Notes in Computer Science (LNCS 3824):
Proceedings of International Conference on Embedded and Ubiquitous Computing
(EUC’05), Nagasaki (Japan), December 2005, pp. 152-163

 Angelov, C., Ke, X., Sierszecki, K. (2006) A Component-Based Framework for Distrib-
uted Control Systems. In: Proceedings of 32nd EUROMICRO Conference on Soft-
ware Engineering and Advanced Applications (EUROMICRO-SEAA'06), Dubrov-
nik (Croatia), August/September 2006, pp. 20-27

* Appavoo, J., Hui, C., Soules, C. A. N., Wisniewski, R. W., Da Silva, D. M., Krieger, O.,
Auslander, M. A., Edelsohn, D. J., Gamsa, B., Ganger, G. R., McKenney, P., Os-
trowski, M., Rosenburg, B., Stumm, M., Xenidis, J. (2003) Enabling automatic be-
havior in systems software with hot swapping. IBM Systems Journal, vol. 42, nb. 1,
pp. 60-76, ISSN 0018-8670

** Baier, T., Fritsche, J., Keintzel, G., Loy, D., Schranz, R., Steininger, H., Strasser, T.,
Sünder, C. (2007) Future scenarios for application of downtimeless reconfiguration
in industrial practice. In: Proceedings of the 5th IEEE International Conference on
Industrial Informatics (INDIN’07), Vienna ‘(Austria), July 2007, pp. 1129-1134

* Bani Younis, M., Frey, G. (2003) Formalization of Existing PLC Programs: A Survey. In:
Proceedings of IEEE/IMACS Multiconference on Computational Engineering in
Systems Applications (CESA’03), Lille (France), July 2003, 6 pp.

256 BIBLIOGRAPHY

 Bauer, N., Engell, S., Huuck, R., Lohmann, S., Lukoschus, B., Remelhe, M., Stursberg, O.
(2004) Verification of PLC Programs Given as Sequential Function Charts. Lecture
Notes on Computer Science (LNCS 3147), Integration of Software Specification
Techniques for Applications in Engineering, Springer Verlag Berlin Heidelberg, pp.
517-540, ISBN 3-540-23135-8

 Bause, F., Kritzinger, P. S. (1996) Stochastic Petri Nets: An Introduction to the Theory.
Advanced Studies in Computer Science, Verlag Vieweg, Wiesbaden (Germany),
ISBN 3-528-05535-9

** Beck, K. (2000) Extreme Programming Explained: Embrace Change. Addison-Wesley,
USA, ISBN 201-61641-6

 Bender, K., Großmann, D., Danzer, B. (2007) FDT+EDD+OPC UA=FDD UA: Die
Gleichung for eine einheitliche Gerätebeschreibung? atp—
Automatisierungstechnische Praxis, Oldenbourg-Industrieverlag, Munich (Ger-
many), vol. 49, nb. 2, pp. 48-54, ISSN 0178-2320

 Bengtsson, J., Wang, Y. (2004) Timed Automata: Semantics, Algorithms and Tools.
Lecture Notes in Computer Science (LNCS 3098), In: Proceedings of 4th Advanced
Course on Petri Nets (ACPN’03), Eichstätt (Germany), September 2003, pp. 87-124

** Bennet, K. H., Rajlich, V. T. (2000) Software Maintenance and Evolution: a Roadmap. In:
Finkelstein (Ed.) The Future of Software Engineering. ACM Press, ISBN 1-58113-
253-0

* Bitsch, F. (2001) Saftey Patterns—The Key to Formal Specification of Safety Require-
ments. Lecture Notes in Computer Science (LNCS 2187), In: Proceedings of 20th In-
ternational Conference on Computer Safety, Reliability and Security (SAFE-
COM’01), Budapest (Hungary), September 2001, pp. 176-189

* Bitsch, F. (2003) A Way For Applicable Formal Specification Of Safety Requirements By
Tool-Support. In: Proceedings of Symposium on Formal Methods for Railway Op-
eration and Control Systems (FORMS’03), Budapest (Hungary), May 2003, 11 pp.

* Blunden, B. (2003) Memory Management: Algorithms and Implementation in C/C++.
Wordware Publishing, Inc., Plano (TX, USA), ISBN 1-55622-347-1

* Bonfe, M., Fantuzzi, C. (2003) Design and Verification of Mechatronic Object-Oriented
Models for Industrial Control Systems. In: Proceedings of 9th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA ’03), Lisbon
(Portugal), September 2003, pp. 253-260

* Bouyssounouse, B., Sifakis, J. (Eds.) (2005) Embedded Systems Design: The ARTIST
Roadmap for Research and Development. Lecture Notes in Computer Science
(LNCS 3436), Springer Verlag, Berlin/Heidelberg, ISBN 978-3-540-25107-1

** Brennen, R. W., Zhang, X., Xu, Y., Norrie, D. H. (2002a) A reconfigurable concurrent
function block model and its implementation in real-time Java. Integrated Computer-
Aided Engineering, IOS Press, vol. 9, nb. 3. ISSN 1069-2509, pp.263-279

* Brennan, R. W., Fletcher, M., Norrie, D. H. (2002b) An Agent-Based Approach to
Reconfiguration of Real-Time Distributed Control Systems. IEEE Transactions on
Robotics and Automation, vol. 18, nb. 2, ISSN 1070-9932, pp.444-451

** Brunnenkreef, J. (2006) Design and implementation of a demonstrator / testbed for
IPMCS with respect to physical and logical reconfiguration of mechatronic parts.
Technical report on external training at Profactor GmbH, University of Twente, En-
schede (The Netherlands), December 2006

 CiA DSP 311 (2007) CANopen device description—XML schema definition. Draft
Standard Proposal, Version 1.0, CAN in Automation (CiA) e.V., 8th March 2007

BIBLIOGRAPHY 257

 Christensen, J. H. (1994) Holonic Manufacturing Systems: Initial architecture and
standards directions. In: Proceedings of 1st European Conference on Holonic Manu-
facturing Systems, Hannover (Germany), December 1994, 20 pp.

* Čengić, G., Ljungkrantz, O., Akesson, K. (2006) Formal Modeling of Function Block
Applications Running in IEC 61499 Execution Runtime. In: Proceedings of the 11th
IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA’06), Prague (Czech Republic), September 2006, pp. 1269-1276

* Chaki, S., Clarke, E., Groce, A., Jha, S., Veith, H. (2004) Modular Verification of
Software Components in C. IEEE Transactions on Software Engineering, vol. 30,
nb. 6, pp. 388-402, ISSN 0098-5589

 Clarke, E. M., Emerson, I. A. (1981) Design and synthesis of synchronization skeletons
using branching time temporal logic. Lecture Notes in Computer Science (LNCS
131), In: Proceedings of Workshop on Logics of Programs, May 1981, Yorktown
Heights (NY, USA), pp. 52-71

* Clarke, E. M., Grumberg, O., Peled, D. A. (1999) Model Checking. The MIT Press,
Cambridge (MA, USA), ISBN 0-262-03270-8

* Cofer, D. D., Rangarajan, M. (2003) Event-triggered Environments for Verification of
Real-time Systems. In: Proceedings of 35th Winter Simulation Conference
(WSC’03), December 2003, New Orleans (LA, USA), pp. 915-922

* Corbett, J. C. (1996) Timing Analysis of Ada Tasking Programs. IEEE Transactions on
Software Engineering, vol. 22, nb. 7, July 1996, ISSN 0098-5589, pp. 461-483

 D’Aprile, D., Donatelli, S., Sproston, J. (2004) CSL Model Checking for the GreatSPN
Tool. Lecture Notes in Computer Science (LNCS 3280), In: Proceedings of 19th In-
ternational Symposium on Computer and Information Sciences (ISCIS’04), Kemer-
Antalya (Turkey), October 2004, pp. 543-553

** Demmelmayr, F., Zafari, S. (2007) Evolution von Steuerungssystemen. (in German),
Final documentation, university course “Leittechnik Vertiefung”, Vienna University
of Technology, 8th February 2007

* Douglas, D. P. (1999) Doing Hard Time: Developing Real-Time Systems with UML,
Objects, Frameworks, and Patterns. Addison-Wesly, Boston (USA), ISBN 0-201-
49937-5

* Dubinin, V., Vyatkin, V., Hanisch, H.-M. (2006) Modelling and Verification of
IEC 61499 Applications using Prolog. In: Proceedings of the 11th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA’06), Prague
(Czech Republic), September 2006, pp. 774-781

** Dwyer, M. B., Avrunin, G. S., Corbett, J. C. (1998) Property Specification Patterns for
Finite-State Verification. In: Proceedings of the 2nd Workshop on Formal Methods
in Software Practice (FMSP’98), Clearwater Beach (FL, USA), March 1998, pp. 7-
15

** Dwyer, M. B., Avrunin, G. S., Corbett, J. C. (1999) Patterns in Property Specifications for
Finite-State Verification. In: Proceedings of the 21st International Conference on
Software Engineering (ICSE’99), Los Angeles (CA, USA), May 1999, pp. 411-420

* European Commission (2006) MANUFUTURE: Strategic Research Agenda, Assuring the
future of Manufacturing in Europe. Report of the High-Level Group, September
2006, ISBN 92-79-01026-3

 Favre-Bulle, B. (2004) Automatisierung komplexer Industrieprozesse: Systeme, Ver-
fahren und Informationsmanagement. Springer Verlag, ISBN 3-211-21194-2

258 BIBLIOGRAPHY

* Favre-Bulle, B. (2005) Zukunft der Forschung in den Produktionswissenschaften.
Technical Report, Verein zur Förderung der Modernisierung der Produktionstech-
nologien in Österreich (VPTÖ), Steyr–Gleink

** FDCML.org (2002) FDCML 2.0 Specification, Version 1.0, 8th November 2002
** Ferhatbegovic, T. (2007) Echtzeitbetriebssysteme—Vergleich. (in German), Final

documentation, university course “Leittechnik Vertiefung”, Vienna University of
Technology, March 2007

 Ferrarini, L., Veber, C., Lorentz, K. (2003) A case study for modelling and design of
distributed automation systems. In: Proceedings of IEEE/ASME International Con-
ference on Advanced Intelligent Mechatronics (AIM’03), Kobe (Japan), July 2003,
pp. 1043-1048

 Frey, G., Litz, L. (2000) Formal methods in PLC programming. In: Proceedings of IEEE
International Conference on Systems, Man and Cybernetics (SMC’00), vol. 4, Nash-
ville (TN, USA), October 2000, pp. 2431-2436

* Frey, G., Hussain, T. (2006) Modeling Techniques for Distributed Control Systems based
on the IEC 61499 Standard—Current Approaches and Open Problems. In: Proceed-
ings of 8th International Workshop on Discrete Event Systems, Ann Arbor (MI,
USA), July 2006, pp. 176-181

** Gosetti, I. (2007) Formale Beschreibung einer IEC 61499-Laufzeitumgebung unter
Berücksichtigung von Echtzeitanforderungen und dem unterlagerten Betriebssystem.
(in German), Master thesis, Vienna University of Technology, Automation and Con-
trol Institute, September 2007

 Greifender, J., Frey, G. (2007) Probabilistic Timed Automata for Modeling Networked
Automation Systems. In: Proceedings of 1st IFAC Workshop on Dependable Control
of Discrete Systems (DCDS’07), Cachan (France), June 2007, pp. 143-148

** Guler, M., Clements, S., Wills, L. M., Heck, B. S., Vachtsevanos, G. J. (2003) Transition
Management for Reconfigurable Hybrid Control Systems. IEEE Control Systems
Magazine, vol. 23, nb. 1, February 2003, pp. 36-49, ISSN 0272-1708

** Hall, K. H., Staron, R. J., Zoitl, A. (2007) Challenges to Industry Adoption of the
IEC 61499 Standard on Event-based Function Blocks. In: Proceedings of the 5th
IEEE International Conference on Industrial Informatics (INDIN’07), Vienna (Aus-
tria), July 2007, pp. 823-828

* Hanisch, H.-M., Thieme, J., Lüder, A., Wienhold, O. (1997) Modeling of PLC Behavior
by Means of Timed Net Condition/Event Systems. In: Proceedings of 6th IEEE In-
ternational Conference on Emerging Technologies and Factory Automation
(ETFA’97), Los Angeles (CA, USA), September 1997, pp. 391-396

 Hanisch, H.-M., Thieme, J., Lautenbach, K., Simon, C. (2000) A Modular Modeling
Approach for Hybrid Systems Based on C/E-systems and Extended Timestamp
Nets. In: Proceedings of 4th International Conference on Automation of Mixed Proc-
esses (ADPM’00), Dortmund (Germany), September 2000, pp. 363-368

** Hanisch, H.-M. (2004) Closed-Loop Modeling and Related Problems of Embedded
Control Systems in Engineering. Lecture Notes on Computer Science (LNCS 3052):
Proceedings of 11th Int. Workshop on Abstract State Machines (ASM’04), Luther-
stadt Wittenberg (Germany), May 2004, Springer Verlag Berlin Heidelberg, pp. 6-
19

* Hanisch, H.-M., Lobov, A., Martinez Lastra, J. L., Tuokko, R., Vyatkin, V. (2006) Formal
validation of intelligent-automated production systems: towards industrial applica-
tions. International Journal on Manufacturing Technology and Management

BIBLIOGRAPHY 259

(IJMTM), vol. 8, nb. 1/2/3, Inderscience Enterprise Ltd., pp. 75-106, ISSN 1368-
2148

** Hanni, C. (2007) Baukasten für die Evolution von Regelkreisen im laufenden Betrieb auf
Basis des εCEDAC Ansatzes (in German), Master thesis, Vienna University of
Technology, Automation and Control Institute, September 2007

 Hopcraft, J. E., Motwani, R., Ullman, J. D. (2001) Introduction to automata theory,
languages, and computation. Second edition, Addison-Wesely (USA), ISBN 0-201-
44124-1

** Hummer, O., Sünder, C., Zoitl, A., Strasser, T., Rooker, M. N., Ebenhofer, G. (2006)
Towards Zero-downtime Evolution of Distributed Control Applications via Evolu-
tion Control based on IEC 61499. In: Proceedings of the 11th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA’06), Prague
(Czech Republic), September 2006, pp. 1285-1292

** Hummer, O., Sünder, C., Strasser, T., Rooker, M. N., Kerbleder, G. (2007) Downtimeless
System Evolution: Current State and Future Trends. In: Proceedings of the 5th IEEE
International Conference on Industrial Informatics (INDIN’07), Vienna (Austria),
July 2007, pp. 1123-1128

 Huth, M., Ryan, M. (2004) Logic in Computer Science: Modelling and Reasoning about
Systems. Second Edition, Cambridge University Press, New York, ISBN 0-521-
54310-X

* Iacooca Institute (1991), 21st Century Manufacturing Enterprise Strategy: An Industry-
Led View. Lehigh University Press, ISBN 0-9624866-3-9

 IEC 61131-1 (2003) Programmable Controllers—Part 1: General information. Interna-
tional Standard, International Electrotechnical Commission, Second Edition, Geneva

* IEC 61131-3 (2003) Programmable Controllers—Part 3: Programming languages.
International Standard, International Electrotechnical Commission, Second Edition,
Geneva, ISBN 2-8318-6653-7

 IEC 61131-5 (2000) Programmable Controllers—Communications. International Stan-
dard, International Electrotechnical Commission, First edition, Geneva

** IEC 61499-1 (2005) Function blocks—Part 1: Architecture. International Standard,
International Electrotechnical Commission, First Edition, Geneva

** IEC 61499-2 (2005) Function blocks—Part 2: Software tools requirements. International
Standard, International Electrotechnical Commission, First edition, Geneva

** IEC 61499-3 (2004) Function blocks for industrial-process measurement and control
systems—Part 3: Tutorial information. Technical report, International Electrotechni-
cal Commission, First edition, Geneva

** IEC 61499-4 (2005) Function blocks—Part 4: Rules for compliance profiles. International
Standard, International Electrotechnical Commission, First edition

 IEC 61804-3 (2006) Function blocks (FB) for process control—Part 3: Electronic Device
Description Language (EDDL). International Standard, International Electrotechni-
cal Commission, First edition, Geneva

 IEC 62390 (2005) Common automation device—Profile guideline. Technical report,
International Electrotechnical Commission, First edition, Geneva

* IEEE 1219 (1998) IEEE standard for software maintenance, IEEE—The Institute of
Electrical and Electronics Engineergs, Inc., USA, ISBN 0-7381-0336-5

 IEEE 1451.3 (2003) IEEE Standard for a Smart Transducer Interface for Sensors and
Actuators—Digital Communication and Transducer Electronic Data Sheet (TEDS)
Formats for Distributed Multidrop Systems. IEEE Instrumentation and Measurement

260 BIBLIOGRAPHY

Society, IEEE—The Institute of Electrical and Electronics Engineers, Inc., USA,
ISBN 0-7381-3823-1

** ISO 15745-1 (2003) Industrial automation systems and integration—Open systems
application integration framework—Part 1: Generic reference description. Interna-
tional Organisation for Standardization, Geneva

 ISO/IEC 14764-IEEE Std 14764 (2006) Software Engineering—Software Life Cycle
Processes—Maintenance. International Standard, ISO/IEEE, USA, ISBN 0-1381-
4961-6 SS95534

 John, K.-H., Tiegelkamp, M. (2000) SPS-Programmierung mit IEC 61131-3: Konzepte
und Programmiersprachen, Anforderungen an Programmiersysteme, Entscheidung-
shilfen. Third, revised edition, Springer Verlag, ISBN 3-540-66445-9

 John, K.-H., Tiegelkamp, M. (1995) IEC 61131-3: Programming Industrial Automation
Systems: Concepts and Programming Languages, Requirements for Programming
Systems, Aids to Decision-Making Tools. Springer Verlag, ISBN 3-540-67752-6

 Kaiser, J., Piontek, H. (2005) Self-describing devices in COSMIC. In: Proceedings of the
10th IEEE International Conference on Emerging Technologies and Factory Automa-
tion (ETFA’05), vol. 1, Catania (Italy), September 2005, 4 pp.

* Kalita, D., Khargonekar, P. P. (2002) Formal Verification for Analysis and Design of
Logic Controllers for Reconfigurable Manufacturing Systems. IEEE Transactions on
Robotics and Automation, vol. 18, nb. 4, pp. 463-474

* Khalgui, M., Rebeuf, X., Simonot-Lion, F. (2004) A behavior model for IEC 61499
function blocks. In: Proceedings of 3rd Workshop on Modelling of Objects, Compo-
nents, and Agents, Aarhus (Denmark), October 2004, pp. 71-88

* Khalgui, M., Rebeuf, X., Simonot-Lion, F. (2006) Component based deployment of
industrial control systems: a hybrid scheduling approach. In: Proceedings of the 11th
IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA’06), Prague (Czech Republic), September 2006, pp. 1293-1300

** Kopetz, H. (1997) Real-Time Systems: Design Principles of Distributed Embedded
Applications. Kluwer Academic Publisher, Boston, ISBN 0-7923-9894-7

* Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritschow, G., Ulsoy, G., Van Brussel, H.
(1999) Reconfigurable Manufacturing Systems. Annals of the CIRP, vol. 48, nb. 2,
pp. 527-540

** Kovácsházy, T., Péceli, G., Simon, G. (2001) Transients in Reconfigureable Signal
Processing Channels. IEEE Transactions on Instrumentation and Measurement,
vol. 50, nb. 4, pp. 936-940

* Krákora, J., Waszniowski, L., Píša. P., Hanzálek, Z. (2004) Timed Automata Approach to
Real Time Distributed System Verification. In: Proceedings of 5th IEEE Interna-
tional Workshop on Factory Communication Systems (WFCS’04), Vienna (Austria),
September 2004, pp. 407-410

** Kramer, J., Magee, J. (1985) Dynamic Configuration for Distributed Systems. IEEE
Transactions on Software Engineering, vol. SE-11, nb. 4, April 1985, pp. 424-436

* Kramer, J., Magee, J. (1990) The Evolving Philosophers Problem: Dynamic Change
Configuration. IEEE Transactions on Software Engineering, vol. 11, nb. 11, No-
vember 1990, pp. 1293-1306

 Kropik, M. (2005) Distributed Automation in Automotive Manufacturing: Current Status
and Strategies. 18th International Cooperation Symposium Industry—Research, Sep-
tember 13th, 2005, Vienna (Austria)

BIBLIOGRAPHY 261

 Lee, S.-M., Harrison, R., West, A. A. (2004) A Component-based Distributed Control
System for Assembly Automation. In: Proceedings of 2nd IEEE International Con-
ference on Industrial Informatics (INDIN’04), Berlin (Germany), June 2004, pp. 33-
38

** Lehmann, M. M., Ramil, J. F. (2000) Software evolution in the age of component-based
software engineering. IEE Proceedings Software, vol. 147, nb. 6, ISSN 1462-5970

 Lewis, R. W. (1998) Programming industrial control systems using IEC 1131-3, Revised
edition. IEE-The Institution of Electrical Engineers, London (United Kingdom),
ISBN 0-85296-950-3

 Lewis, R. W. (2001) Modelling control systems using IEC 61499: Applying function
blocks to distributed systems. IEE-The Institution of Electrical Engineers, London
(United Kingdom), ISBN 0-85296-796-9

* Li, J., Dai, X., Meng, Z. (2005) Dynamic Reconfiguration of Petri Net Logic Controllers
Based on Modified Net Rewriting Systems. In: Proceedings of IEEE International
Conference on Mechatronics and Automation, vol. 2, Niagara Falls (Canada), July
2005, pp. 592-567

* Lobov, A., Popescu, C., Martinez Lastra, J. L. (2006a) A Framework for Validation of
Reconfigurable Manufacturing Systems. In: Proceedings of 12th IFAC Symposium
on Information Control Problems in Manufacturing (INCOM’06), vol. 1, Saint-
Etienne (France), May 2006, pp. 529-534

 Lobov, A., Popescu, C., Martinez Lastra, J. L. (2006b) An Algorithm for Siemens STL
representation in TNCES. In: Proceedings of 11th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA’06), Prague (Czech Repub-
lic), September 2006, pp. 641-647

** logi.cals Austria (2008) logi.CAD Help. Documention for logi.CAD 5.0,
 Lopez Orozco, O. J., Martinez Lastra, J. L. (2007) Agent-Based Control Model for

Reconfigurable Manufacturing Systems. In: Proceedings of 12th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA’07), Patras
(Greece), September 2007, pp. 1233-1238

 Lüder, A., Schwab, C., Tangermann, M., Peschke, J. (2005) Formal models for the
verification of IEC 61499 function block based control applications. In: Proceedings
of 10th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA’05), Catania (Italy), September 2005, pp. 105-112

** Mandl, R., Zhang, W. (2008) Charakterisierung von Embedded Software. (in German),
Final documentation, university course “Leittechnik Vertiefung”, Vienna University
of Technology, May 2008

** Massa, A. J. (2003) Embedded Software Development with eCosTM. Prentice Hall-
Professional Technical Reference, Pearson Education, Inc., Upper Saddle River (NJ,
USA), ISBN 0-13-035473-2

 McMillan, K. L. (1993) Symbolic Model Checking: An Approach to the State Explosion
Problem. Kluwer Academics Publishers, ISBN 0-7923-9380-5

** Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfeld, R., Jazayeri, M. (2005)
Challenges in Software Evolution. In: Proceedings of 8th IEEE Int. Workshop on
Principles of Software Evolution (IWPSE’05), September 2005, Lisbon (Portugal),
pp. 13-22

* Meolic, R., Kapus, T., Brezočnik, Z. (2001) CTL and ACTL patterns. In: Proceedings of
International Conference on Trends in Communications (EUROCON’2001), vol. 2.
IEEE, Bratislava (Slovak Republic), July 2001, pp. 540-543

262 BIBLIOGRAPHY

 Niemann, K.-H. (2007) Stand der Integration intelligenter Systemkomponenten in der
Prozessleittechnik. (in German), atp—Automatisierungstechnische Praxis, Olden-
bourg-Industrieverlag, Munich (Germany), vol. 49, nb. 5, pp. 15-20, ISSN 0178-
2320

* Pang, C., Vyatkin, V. (2007) Towards Formal Verification of IEC61499: modeling of
Data and Algorithms in NCES. In: Proceedings of the 5th IEEE International Confer-
ence on Industrial Informatics (INDIN’07), Vienna (Austria), July 2007, pp. 879-
884

** Pang, C., Vyatkin, V. (2008) Automatic Model Generation of IEC 61499 Function Blocks
Using Net Condition/Event Systems. In: Proceedings of the 6th IEEE International
Conference on Industrial Informatics (INDIN’08), Daejeon (Korea), July 2008,
pp. 1133-1138

 Park, E., Tilbury, D. M., Khargonekar, P. P. (2001) A Modeling and Analysis Methodol-
ogy for Modular Logic Controllers of Machining Systems Using Petri Net Formal-
ism. IEEE Transactions on Systems, Man, and Cybernetics—Part C: Applications
and Reviews, vol. 31, nb. 2, pp. 168-188

 Peschke, J., Lüder, A. (2005) The JAKOBI architecture—a distributed dynamic execution
environment in Java. In: Proceedings of 3rd IEEE International Conference on In-
dustrial (INDIN’05), Perth (Australia), August 2005, pp. 25-31

 Peterson, J. L. (1981) Petri Net Theory and the Modeling of Systems. Prentice-Hall, Inc.,
Englewood Cliffs (NJ, USA), ISBN 0-13-661983-5

 Petig, M. (2000) The way to distributed PLCs. Dedicated Systems Magazine, vol. 1, nb.2,
April/May/June 2000, pp. 30-32

 Petri, C. A. (1962) Kommunikation mit Automaten. (in german), Dissertation, Institut für
Instrumentelle Mathematik der Universität Bonn.

** Phytec Messtechnik GmbH (2003) phyCORE-AT91M55800A, Hardware Manual,
Edition February 2003

 Priese, L., Wimmel, H. (2003) Theoretische Informatik: Petri-Netze. (in german),
Springer Verlag, Berlin (Germany), ISBN 3-540-44289-8

 Queille, J. P., Sifakis, J. (1981) Specification and verification of concurrent systems in
CESAR. Lecture Notes in Computer Science (LNCS 137), In: Proceedings of 5th In-
ternational Symposium on Programming, April 1981, Turin (Italy), pp. 337-351

* Rasche, A, Polze, A. (2005) Dynamic Reconfiguration of Component-based Real-time
Software. In: Proceedings of the 10th IEEE International Workshop on Object-
Oriented Real-Time Dependable Systems (WORDS’05), Sedona (AZ, USA), Febru-
ary 2005, pp. 347-354

** Rausch, M., Hanisch, H.-M. (1995) Net Condition/Event Systems with Multiple Condi-
tion Outputs. In: Proceedings of INRA/IEEE Symposium on Emerging Technolo-
gies and Factory Automation, vol. 1, Magdeburg (Germany), October 1995, pp. 592-
600

 Recalde, L., Silva, M., Ezpeleta, J., Teruel, E. (2003) Petri Nets and Manufacturing
Systems: An Examples-Driven Tour. Lecture Notes in Computer Science (LNCS
3098), Lectures on Concurrency and Petri Nets, Advances in Petri Nets, Tutorial
volume of 4th Advanced Course on Petri Nets (ACPN’03), Eichstadt (Germany),
September 2003, Springer Verlag Berlin Heidelberg, pp. 742-788

** Rooker, M. N., Sünder, C., Strasser, T., Zoitl, A., Hummer, O., Ebenhofer, G. (2007) Zero
Downtime Reconfiguration of Distributed Automation Systems: The εCEDAC Ap-
proach. Lecture Notes in Computer Science (LNCS 4659), In: Proceedings of 3rd In-

BIBLIOGRAPHY 263

ternational Conference on Industrial Applications of Holonic and Multi-Agent Sys-
tems (HoloMAS’07), Regensburg (Germany), September 2007, Springer Verlag
Berlin Heidelberg, pp. 326-337

 Schnakenbourg, C., Faure, J.-M., Lesage, J.-J. (2002) Towards IEC 61499 Function
Blocks Diagrams Verification. In: Proceedings of IEEE International Conference on
Systems, Man and Cybernetics (SMC’02), vol. 3, Yasmine Hammamet (Tunisia),
October 2002, 6 pp.

 Schwab, C., Tangermann, M., Ferrarini, L. (2005) Web based Methodology for Engineer-
ing and Maintenance of Distributed Control Systems: The TORERO Approach. In:
Proceedings of 3rd IEEE International Conference on Industrial Informatics
(INDIN’05), Perth (Australia), August 2005, pp. 32-37

* Setchi, R. M., Lagos, N. (2004) Reconfigurability and Reconfigurable Manufacturing
Systems—State-of-the-art Review. In: Proceedings of the 2nd IEEE International
Conference on Industrial Informatics (INDIN’04), Berlin (Germany), June 2004, pp.
529-535

* Simon, G., Kovácsházy, T., Péceli, G. (2000a) Transient Management in Reconfigurable
Systems. Lecture Notes in Computer Science (LNCS 1936), In: Proceedings of First
International Workshop on Self-Adaptive Software (IWSAS’00), Oxford (UK),
April 2000, Springer Verlag Berlin Heidelberg, pp. 90-98

* Simon, G., Kovácsházy, T., Péceli, G. (2000b) Transients in Reconfigurable Control
Loops. In: Proceedings of the 17th IEEE Instrumentation and Measurement Technol-
ogy Conference (IMTC’00), Baltimore (MD, USA), May 2000, pp. 1333-1337

* Simon, G., Kovácsházy, T., Péceli, G. (2001) Transient Reduction in Control Loops in
Case of Joint Plant-Controller Reconfiguration. In: Proceedings of the 18th IEEE In-
strumentation and Measurement Technology Conference (IMTC’01), Budapest
(Hungary), May 2001, pp. 1172-1176

 Sproston, J. (2004) Model Checking for Probabilistic Times Systems. Lecture Notes on
Computer Science (LNCS 2925), Validation of Stochastic Systems: A Guide to Cur-
rent Research, Springer Verlag Berlin Heidelberg, pp. 189-229, ISBN 978-3-540-
22265-1

* Sreenivas, R. S., Krogh, B. H. (1991) On condition/event systems with discrete state
realizations. Discrete Event Dynamic Systems, vol. 1, nb. 2, September 1991,
Springer Netherlands, pp. 209-236, ISSN 0924-6703

* Stanica, M.-P. (2005) Behavioral Modeling of IEC 61499 Control Applications. PhD
thesis, Universite de Rennes, Institut D’Electronique et de Telecommunications de
Rennes, Rennes (France)

** Starke, P. H., Roch, S. (2002) Analysing Signal-Net Systems. Technical report, Hum-
boldt-Universität zu Berlin, Institut für Informatik, September 2002

* Steffen, T. (2005) Control Reconfiguration of Dynamical Systems. Lecture Notes in
Control and Information Sciences (LNCIS 320), Springer Verlag Berlin Heidelberg,
ISBN 3-540-25730-6

* Stewart, D. B., Volpe, R. A., Khosla, P. K. (1997) Design of Dynamically Reconfigurable
Real-Time Software Using Port-Based Objects. IEEE Transactions on Software En-
gineering, vol. 23, nb. 12, ISSN 0098-5589, pp. 759-776

** Strasser, T., Zoitl, A., Auinger, F., Sünder, C. (2005) Towards Engineering Methods for
Reconfiguration of Distributed Real-Time Control Systems Based on the Reference
Model of IEC 61499. Lecture Notes in Computer Science (LNCS 3593), In: Pro-
ceedings of 2nd International Conference on Industrial Applications of Holonic and

264 BIBLIOGRAPHY

Multi-Agent Systems (HoloMAS’05), August 2005, Copenhagen (Denmark),
Springer Verlag Berlin Heidelberg, pp. 165-175

** Strasser, T., Sünder, C., Rooker, M. N., Hummer, O., Zoitl, A., Müller, I. (2007) En-
hanced IEC 61499 System Model for Evolution of Control Applications in Distrib-
uted Industrial-Process Measurement and Control Systems. In: Proceedings of the
European Control Conference (ECC’07), Kos (Greece), July 2007, pp. 1356-1363

 Sünder, C., Zoitl, A., Christensen, J.H., Vyatkin, V., Brennan, R.W., Valentini, A.,
Ferrarini, L., Strasser, T., Martinez-Lastra, J.L., Auinger, F. (2006a) Interoperability
and Useablity of IEC 61499. In: Proceedings of the 4th IEEE International Confer-
ence on Industrial Informatics (INDIN’06), Singapore (Singapore), July 2006, pp.
31-37

 Sünder, C., Zoitl, A., Dutzler, C. (2006b) Functional structure-based modelling of
automation systems. International Journal of Manufacturing Research (IJMR),
vol. 1, no. 4, pp. 405-420

** Sünder, C., Zoitl, A., Favre-Bulle, B., Strasser, T., Steininger, H., Thomas, S. (2006c)
Towards Reconfiguration Applications as basis for Control System Evolution in
Zero-downtime Automation Systems. In: Innovative Production Machines and Sys-
tems, Proceedings of 2nd I*PROMS Virtual International Conference, July 2006,
pp. 523-528

** Sünder, C., Rofner, H., Vyatkin, V., Favre-Bulle, B. (2007a) Formal description of an
IEC 61499 runtime environment with real-time constraints. In: Proceedings of the
5th IEEE International Conference on Industrial Informatics (INDIN’07), Vienna
(Austria), July 2007, pp. 853-859

* Sünder, C., Zoitl, A., Christensen, J. H., Colla, M., Strasser, T. (2007b) Execution Models
for the IEC 61499 elements Composite Function Block and Subapplication. In: Pro-
ceedings of the 5th IEEE International Conference on Industrial Informatics
(INDIN’07), Vienna (Austria), July 2007, pp. 1169-1175

** Sünder, C., Hummer, O., Favre-Bulle, B. (2007c) Enhanced Engineering of Downtimeless
System Evolution by use of Hardware Capability Descriptions within the εCEDAC
Approach. In: Proceedings of 12th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA’07), Patras (Greece), September
2007, pp. 764-767

* Sünder, C., Zoitl, A., Rofner, H., Strasser, T., Brunnenkreef, J. (2007d) Benchmarking of
IEC 61499 runtime environments. In: Proceedings of 12th IEEE International Con-
ference on Emerging Technologies and Factory Automation (ETFA’07), Patras
(Greece), September 2007, pp. 474-481

** Sünder, C., Gosetti, I., Vyatkin, V., Favre-Bulle, B. (2008) Comprehensive Formal
Description of IEC 61499 Control Devices. In: Proceedings of the 6th IEEE Interna-
tional Conference on Industrial Informatics (INDIN’08), Daejeon (Korea), July
2008, pp. 1166-1172

* Szyperski, C. (2002) Component Software: Beyond Object-Oriented Programming.
Second Edition, Addison-Wesley, ACM Press New York, ISBN 0-201-74572-0

* Tešanović, A., Nadjm-Tehrani, S., Hansson, J. (2005) Modular Verification of Recon-
figurable Components. Lecture Notes in Computer Science (LNCS 3778), Compo-
nent-Based Software Development for Embedded Systems, Springer Verlag Berlin
Heidelberg, pp. 59-81, ISBN 978-3-540-30644-3

 Thramboulidis, K., Prayati, A. (2001) Field Device Specification for the Development of
Function Block Oriented Engineering Support Systems. In: Proceedings of 8th IEEE

BIBLIOGRAPHY 265

International Conference on Emerging Technologies and Factor Automation
(ETFA’01), Nice (France), September 2001, vol. 1, pp. 581-587

 Thramboulidis, K. (2005) Model-Integrated Mechatronics—Toward a New Paradigm in
the Development of Manufacturing Systems. IEEE Transactions on Industrial In-
formatics, vol. 1, no. 1, pp. 54-61

* Thramboulidis, K., Zoupas, A. (2005) Real-Time Java in Control and Automation: A
Model Driven Development Approach. In: Proceedings of 10th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA’05), Catania
(Italy), September 2005

* Thramboulidis, K., Papakonstantinou, N. (2006) An IEC61499 Execution Environment
for an aJile-based Field Device. In: Proceedings of 11th IEEE International Confer-
ence on Emerging Technologies and Factory Automation (ETFA’06), Prague
(Czech Republic), September 2006, pp. 989-992

 VDMA 66430-1 (2006) XML-basiertes Kommunikationsprotokoll für Industrieroboter
und prozessorgesteuerte Peripheriegeräte (XIRP), Teil 1: Allgemeine Vereinbarun-
gen. VDMA Einheitsblatt, Verband Deutscher Maschinen- und Anlagenbauer e.V.
(VDMA), Germany

* Vyatkin, V., Hanisch, H.-M. (1999) A Modeling approach for Verification of IEC1499
function blocks using Net Condition/Event Systems. In: Proceedings of the 7th IEEE
International Conference on Emerging Technologies and Factory Automation
(ETFA’99), Barcelona (Spain), September 1999, pp. 261-270

* Vyatkin, V., Hanisch, H.-M. (2001a) Formal Modeling and Verification in the Software
Engineering Framework of IEC61499: a Way to Self-verifying Systems. In: Pro-
ceedings of 8th IEEE International Conference on Emerging Technologies and Fac-
tor Automation (ETFA’01), Nice (France), September 2001, vol. 2, pp. 113-118

* Vyatkin, V., Hanisch, H.-M. (2001b) Application of Visual Specifications for Verification
of Distributed Controllers. In: Proceedings of IEEE International Conference on
Systems, Man, and Cybernetics (SMC’01), vol. 1, Tucson (AZ, USA), October
2001, pp. 646-651

* Vyatkin, V. (2003) Intelligent Mechatronic Components: Control System Engineering
using an Open Distributed Architecture. In: Proceedings of 9th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA ’03), Lisbon
(Portugal), September 2003, pp. 277-284

 Vyatkin, V., Hanisch, H.-M., Pfeiffer, T. (2003a) Object-oriented Molular
Place/Transition Formalism for Systematic Modeling and Validation of Industrial
Automation Systems. In: Proceedings of 1st IEEE Int. Conference on Industrial In-
formatics (INDIN’03), Calgary (Canada), August 2003, pp. 224-232

 Vyatkin, V., Hanisch, H.-M. (2003b) Verification of distributed control systems in
intelligent manufacturing. Journal of Intelligent Manufacturing, vol. 14, nb. 1,
Springer Netherlands, pp. 123-136, ISSN 0956-5515

** Vyatkin, V., Christensen, J. H., Martinez Lastra, J. L. (2005) OOONEIDA: An Open,
Object-Oriented Knowledge Economy for Intelligent Industrial Automation. IEEE
Transactions on Industrial Informatics, vol. 1, no. 1, pp. 4-17

* Vyatkin, V. (2006) Execution Semantic of Function Blocks based on the Model of Net
Condition/Event Systems. In: Proceedings of the 4th IEEE International Conference
on Industrial Informatics (INDIN’06), Singapore (Singapore), July 2006, pp. 874-
879

266 BIBLIOGRAPHY

* Vyatkin, V. (2007a) IEC 61499 Function Blocks for Embedded and Distributed Control
System Design. ISA—The Instrumentation, Systems, and Automation Society,
ISBN 978-0-9792343-0-9

** Vyatkin, V. (2007b) Modelling and Verification of Discrete Control Systems with Net
Condition/Event Systems and Visual Verification Framework, Working draft, Ver-
sion 13/11/2007 (contained in [61])

* Vyatkin, V., Bouzon, G. (2008) Using Visual Specification in Verification of Industrial
Automation Controllers. EURASIP Journal of Embedded Systems, Hindawi Pub-
lishing Coorporation, 9 pp., ISSN 1687-3955

* Walsh, J. D., Bordeleau, F., Selic, B. (2007a) A Constrained Executable Model of
Dynamic System Reconfiguration. In: Proceedings of the 40th Annual Hawaii Inter-
national Conference on System Sciences (HICSS’07), Waikoloa (HI USA), January
2007, pp. 257c-257c

** Walsh, J. D., Bordeleau, F., Selic, B. (2007b) Domain analysis of dynamic system
reconfiguration. Software and Systems Modeling, vol. 6, no. 4, Springer Verlag, pp.
355-380, ISSN 1619-1366

* Waszniowski, L., Hanzalek, Z. (2003) Analysis of Real Time Operating System Based
Applications. Lecture Notes in Computer Science (LNCS 2791), In: Proceedings of
First International Workshop on Formal Modeling and Analysis of Timed Systems
(FORMATS’03), Marseille (France), September 2003, Springer Verlag Berlin Hei-
delberg, pp. 219-233

 Wermelinger, M. A. (1999) Specification of Software Architecture Reconfiguration. PhD
thesis, Universidade Nova de Lisboa, Departamento de Informatica, Lisbon (Portu-
gal)

* Whisnant, K., Kalbarczyk, Z. T., Iyer, R. K. (2003) A system model for dynamically
reconfigurable software. IBM Systems Journal, vol. 42, no. 1, pp. 45-59, ISSN
0018-8670

* Wind River Inc. (2007) Wind River Workbench 3.0, Technical Note, 17 pp.
 Wollschlaeger, M., Wenzel, P. (2005) Common Model and Infrastructure for Application

of XML within the Automation Domain. In: Proceedings of 3rd IEEE International
Conference on Industrial Informatics (INDIN’05), Perth (Australia), August 2005,
pp. 246-251

 Wurmus, H., Wagner, B. (2000) IEC 61499 konforme Beschreibung verteilter Steuerun-
gen mit Petri-Netzen. (in German), In: Proceedings of Fachtagung Verteilte Auto-
mation, Magdeburg (Germany), 8 pp.

* Yu, L., Shoja, G. C., Müller, H. A., Srinivasan. A. (2002) A Framework for Live Software
Upgrade. In: Proceedings of 13th IEEE International Symposium on Software Reli-
ability Engineering (ISSRE’02), Annapolis (MD USA)November 2002, pp. 149-158

 Zeichen, G., Fürst, K. (2000) Automatisierte Industrieprozesse (in German). Springer
Verlag, Vienna (Austria), ISBN 3-211-83560-1

 Zhang, W., Diedrich, C., Halang, W. A. (2004) Module and Integration Verification for
Function Block-based Safety-Related System Development. In: Proceedings of the
2nd IEEE International Conference on Industrial Informatics (INDIN’04), Berlin
(Germany), June 2004, pp. 210-215

 Zhang, W., Halang, W. A., Diedrich, C. (2005) Specification and Verification of Applica-
tions Based on Function Blocks. Lecture Notes in Computer Science (LNCS 3778),
Component-Based Software Development for Embedded Systems, Springer Verlag
Berlin Heidelberg, pp. 8-34, ISBN 978-3-540-30644-3

BIBLIOGRAPHY 267

** Zoitl, A., Sünder, C., Terzic, I. (2006) Dynamic Reconfiguration of Distributed Control
Applications with Reconfiguration Services based on IEC 61499. In: Proceedings of
the IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence and
Its Applications (DIS’06), Prague (Czech Republic), June 2006, pp. 109-114

** Zoitl, A. (2007) Basic Real-Time Reconfiguration Services for Zero Down-Time Automa-
tion Systems. PhD thesis, Vienna University of Technology, Automation and Con-
trol Institute, Vienna (Austria)

 269

Webiography

[1] ARTIST FP5, Online available: http://www.artist-
embedded.org/artist/ARTIST-FP5.html, January 2008

[2] Automation and Control Institute. Vienna University of Technology, Online available:
http://acin.tuwien.ac.at, November 2007

[3] Bachmann electronic. Online available: http://www.bachmann.at, November
2007

[4] BANDERA, SAnToS laboratory, Online available:
http://bandera.projects.cis.ksu.edu/, March 2008

[5] BLAST: Berkeley Lazy Abstraction Software Verification Tool, Online available:
http://mtc.epfl.ch/software-tools/blast/, March 2008

[6] CAN in Automation (CiA): Controller Area Network (CAN). Online available:
http://www.can-cia.org/, February 2008

[7] DRIVECOM User Group e.V. Online available: http://www.drivecom.org/,
Febrary 2008

[8] The εCEDAC project. Profactor Produktionsforschungs GmbH. Online available:
http://www.ecedac.org, November 2007

[9] Ecos Homepage. Online available: http://ecos.sourceware.org/ecos/,
May 2008

[10] FDCML.org. Online available: http://www.fdcml.org/, February 2008
[11] FDT Group, Online available: http:/www.fdtgroup.org/en/home-

en.html, February 2008
[12] 4DIAC, Framework for Distributed Industrial Automation and Control. Profactor

Produktionsforschungs GmbH, Online available: http://www.fordiac.org,
March 2008

[13] Fuber, Function Block Execution Runtime. Online available:
http://sourceforge.net/projects/fuber, January 2008

[14] Function Blocks – IEC 61499 Standard, Engineering Distributed Embedded Automa-
tion Systems with the New Generation Component Architecture. Valeriy Vyatkin,
Block Design. Online available: http://www.fb61499.com, January 2008

[15] James H. Christensen. Holobloc Inc. Function Block Development Kit. Online
available: http://www.holobloc.com/doc/fbdk/index.htm, January
2008

270 WEBIOGRAPHY

[16] James H. Christensen, Holobloc Inc. Online available:
http://www.holobloc.com, November 2007

[17] James H. Christensen, IEC 61499 Compliance Profile for Feasibility Demonstration.
Online available: http://www.holobloc.com/doc/ita/index.htm, No-
vember 2007

[18] ETMCC: Erlangen Twente Markov Chain Checker, Online available:
http://www7.informatik.uni-erlangen.de/etmcc/, March 2008

[19] FESTO Gesellschaft m.b.H. Online available: http://www.festo.at, March
2008

[20] Fronius International AG. Online available: http://www.fronius.com, March
2008

[21] GreatSPN 2.0, Dipartimento di Informatica, Universita die Torino, Online available:
http://www.di.unito.it/~greatspn/index.html, March 2008

[22] HMS Holonic Manufacturing Systems. Online available: http://hms.ifw.uni-
hannover.de, January 2008

[23] Intelligent Manufacturing Systems. Online available: http://www.ims.org,
January 2008

[24] INTERBUS Club. Online available: http://www.interbusclub.com/,
February 2008

[25] International Electrotechnical Commission. Online available:
http://www.iec.ch, December 2007

[26] ICS Triplex, ISaGRAF v.5, IEC 61131 and IEC 61499 Software. Online available:
http://www.isagraf.com, January 2008

[27] Java PathFinder, Online available:
http://javapathfinder.sourceforge.net/, March 2008

[28] Loytec electronics. Online available: http://www.loytec.com, November 2007
[29] kichner SOFT GmbH, also logi.cals Austria. Online available:

http://www.kirchnersoft.com, http://www.logicals.com, May
2008

[30] KRONOS, Online available: http://www-
verimag.imag.fr/TEMPORISE/kronos/, March 2008

[31] MAGIC: Modular Analysis of programs In C, Online available:
http://www.cs.cmu.edu/~chaki/magic/, March 2008

[32] Martin-Luther-Universität Halle-Wittenberg, Fachbereich Mathematik und Informatik,
Institut für Informatik, Lehrstuhl Automatisierungstechnik. Online available:
http://www.aut.informatik.uni-halle.de/, July 2008

[33] The MOVIDA Tools Framework, Online available:
http://www.pe.tut.fi/movida3/tools, March 2008

[34] MSDN, .NET Framework Developer Center. Online available:
http://msdn2.microsoft.com/en-
us/netframework/default.aspx, February 2008

[35] NuSMV: a new symbolic model checker, Online available:
http://nusmv.irst.itc.it/, March 2008

WEBIOGRAPHY 271

[36] The µCrons project. Profactor Produktionsforschungs GmbH. Online available:
http://www.microns.org, March 2008

[37] Scott Kim puzzlemaster. Online available: http://www.scottkim.com, January
2008

[38] Object Management Group. Online available: http://www.omg.org/, January
2008

[39] O3neida—An Open, Object-Oriented Knowledge Economy for Intelligent Industrial
Automation. Online available: http://www.oooneida.info, November 2007

[40] O3neida Workgroup on Execution Models of IEC 61499 Function Block Applications.
Online available: http://www.oooneida.org/standards
_development_Compliance_Profile.html, February 2008

[41] OPC Foundation—Dedicated to interoperability in automation. Online available:
http://www.opcfoundation.org/, February 2007

[42] Petri Nets World, University of Hamburg. Online available:
http://www.informatik.uni-hamburg.de/TGI/PetriNets/. March
2008

[43] Phytec Messtechnik GmbH, Online available: http://www.phytec.de. June
2008

[44] PLCopen—for efficiency in automation. Online available:
http://www.plcopen.org, January 2008

[45] PLCopen Newsletter December 2007. Online available:
http://www.plcopen.org/pages/promotion/publications/downlo
ads/newsletter/ezine_dec_07.htm, December 2007

[46] PRISM Model Checker, Online available:
http://www.prismmodelchecker.org/, March 2008

[47] Profactor Produktionsforschungs GmbH. Online available:
http://www.profactor.at, November 2007

[48] PROFIBUS & PROFINET International (PI), Online available:
www.profibus.com/pi/, February 2008

[49] Siemens VAI. Online available: http://www.siemens.com, November 2007
[50] SLAM, Online available: http://research.microsoft.com/slam/, March

2008
[51] SPIN: On-the-fly, LTL model checking with SPIN, Online available:

http://spinroot.com/spin/whatispin.html, March 2008
[52] The SMV System, Model Checking @CMU, Carnegie Mellon, Online available:

http://www.cs.cmu.edu/~modelcheck/smv.html, March 2008
[53] Spec Patterns, SAnToS laboratory. Online available:

http://patterns.projects.cis.ksu.edu/, March 2008
[54] TORERO, Total life cycle web-integrated control. Online available:

http://www.uni-magdeburg.de/iaf/cvs/torero/, February 2008
[55] TSMV: TCTL Symbolic Model Checking of Simply-Timed Systems, Online available:

http://www.lsv.ens-cachan.fr/~markey/TSMV/, March 2008

272 WEBIOGRAPHY

[56] UML Resource Page. Online available: http://www.omg.org/uml/, January
2008

[57] University of Applied Science, Upper Austria. Online available: http://www.fh-
ooe.at, March 2008

[58] UPPAAL, Online available; http://www.uppaal.com/, March 2008
[59] VDMA - Verband Deutscher Maschinen- und Anlagenbauer e.V., Online available:

http://www.vdma.org, February 2008
[60] VeriSoft, Bell Laboratories, Lucent Technologies, Online available:

http://cm.bell-labs.com/who/god/verisoft/, March 2008
[61] Visual Framework for Verification of Function Blocks. Valeriy Vyatkin, Block

Design. Online available: http://www.fb61499.com/valid.html, March
2008

[62] Wind River VxWorks. Online available:
http://www.windriver.com/products/vxworks/, May 2008

[63] World Wide Web Consortium. Online available: http://w3c.org, January 2008
[64] Extensible Markup Language (XML) 1.0 (Fourth Edition). Online available:

http://www.w3c.org/TR/2006/REC-xml-20060816/, January 2008
[65] W3C XML Schema. Online available: http://www.w3.org/XML/Schema/,

February 2008

 273

Index of Figures

Figure 1: Minimal and maximal time for reconfiguration of manufacturing
execution.. 2
Figure 2: "TRUE/FALSE", Scott Kim, 1981 ... 5
Figure 3: General structure and roles of vendors in ACSs, based on (Vyatkin et al.,
2005, Fig. 1) .. 12
Figure 4: IEC 61131 Software model, (IEC 61131-3, 2003, Figure 3).................................. 17
Figure 5: IEC 61499 architecture, based on (IEC 61499-1, 2005).. 21
Figure 6: IEC 61499 FB model and FB types .. 22
Figure 7: Change types and dependencies, based on Walsh et al. (2007b) 31
Figure 8: Conceptual model for configuration/reconfiguration, (Brennan et al.,
2002a, Fig. 5c) .. 37
Figure 9: Engineering of ACSs (a) without and (b) with downtimeless system
evolution .. 54
Figure 10: Engineering cycle for downtimeless system evolution.. 55
Figure 11: Change types within R3E... 59
Figure 12: Different access modes to the device management of an IEC 61499
control device .. 60
Figure 13: Downtimeless system evolution of a closed-loop control application 63
Figure 14: Evolution Execution Control Function Block type (implemented as CFB) 66
Figure 15: Composite ECA and its influence to the EROIs within the control
application... 67
Figure 16: Downtimeless system evolution with physical reconfiguration 69
Figure 17: Classical situation for evaluation of control applications.................................... 72
Figure 18: Framework for the evaluation of downtimeless system evolution 74
Figure 19: Execution phases of a system evolution step... 76
Figure 20: Incorporation of IEC 61499 into FDCML in order to represent the
KAPPA vector ... 88
Figure 21: Execution of a system evolution step with regard to the KAPPA vector 89
Figure 22: Execution behavior of control applications within R3E...................................... 100
Figure 23: Execution behavior of BFBs within R3E ... 101
Figure 24: Architectural elements of the system model.. 114
Figure 25: NCES representation of a delay (a) by a timed arc and (b) by markings........... 120
Figure 26: Formal NCES model of a managed event connection .. 122
Figure 27: Formal NCES model of a managed data connection (Boolean type)19 123
Figure 28: Formal NCES model of a managed FB instance19 ... 124
Figure 29: Formal NCES model of WRITE for two different values19 125
Figure 30: RTOS configuration with three tasks and two priority levels 128
Figure 31: Internal model of the module ‘Scheduler’ mentioned in Figure 30.................... 129
Figure 32: Representation of FB E_CYCLE in a) IEC 61499 and b) NCES........................ 130
Figure 33: Representation of an FB network in a) IEC 61499 and b) NCES19.................... 131

274 INDEX OF FIGURES

Figure 34: Representation of mutual exclusion for the event dispatcher 132
Figure 35: Representation of a BFB in a) IEC 61499 and b) NCES19 133
Figure 36: Representation of periodic event occurrences (5 time units).............................. 135
Figure 37: Representation of periodic event occurrences (5 time units) with jitter (1
time unit) 19 .. 136
Figure 38: Representation of bounded event occurrences with minimal (3 time
units) and maximal (5 time units) inter-arrival time19 .. 137
Figure 39: Pattern hierarchy, Dwyer et al. (1999)... 138
Figure 40: Demonstration control device within the εCEDAC engineering tool 147
Figure 41: Typical control application example (initial state)... 148
Figure 42: Application and evolution user interface for the typical control example.......... 148
Figure 43: CECA including two system evolution steps for the typical control
example.. 149
Figure 44: Typical control application: mixed representation of initial and new
system state.. 149
Figure 45: Screenshot of the eCEDAC engineering tool and the evaluation wizard 151
Figure 46: Relevant control application part for the evaluation of global and local
consistency .. 152
Figure 47: Overview on the execution of threads in the typical control example 161
Figure 48: Example configuration a) of the control device and b) the control
application in 'THREAD3' .. 162
Figure 49: Excerpt of a path within the reachability graph of the control
application within 'THREAD3'.. 163
Figure 50: Result of the NCES model of a position closed-loop control.............................. 164
Figure 51: The DSE expertise of the different roles in ACS: the value-added chain
for total evaluation .. 168
Figure 52: Cost of change in classical software project (top) and as premises of XP
(bottom), Beck (2000, Figures 1 and 3) .. 171
Figure 53: Comparison of a) Instant reload and b) εCEDAC Instant reload
mechanisms within logi.CAD .. 176
Figure 54: Example of an ECA in logi.CAD... 177
Figure 55: Change types within logi.CAD εCEDAC Instant reload..................................... 178
Figure 56: Basic structure of the FDCML Schema .. 192
Figure 57: The FDCML element 'specificProperty'.. 193
Figure 58: The FDCML elements a) ‘additionalItem’ and b) ‘additionalItemList’ 194
Figure 59: Interrelation of external events, event chains and tasks within the
operating system (Zoitl, 2007, Figure 4.3).. 197
Figure 60: Separation of execution contexts within a chain of executing FBs (Zoitl,
2007, Figure 4.9)... 197
Figure 61: Different event source FBs a) real-time constrained cyclic execution b)
data dependend splitting of an execution chain c) coupler FB for changing the
execution context within an application (Zoitl, 2007, Appendix C)...................................... 198
Figure 62: Interface of basic reconfiguration services for the creation of a
connection a) as defined in Zoitl (2007, Appendix A) and b) as available in R3E................ 199
Figure 63: Operational state machine of a managed function block (IEC 61499-1,
2005, Figure 24).. 200
Figure 64: Interface of basic reconfiguration services for reading of values a) as
defined in Zoitl (2007, Appendix A) and b) as available for internal variables in R3E........ 200
Figure 65: A timed Net Condition/Event Systems module .. 204
Figure 66: (a) Composition of NCES modules and (b) the corresponding SNS model 206
Figure 67: Screenshot of the ViVe tool with the check pane .. 209

INDEX OF FIGURES 275

Figure 68: Configuration tool options, (Massa, 2003, Figure 1.2) 212
Figure 69: Execution example for MLQ scheduler, (Massa, 2003, Figure 5.3)................... 213
Figure 70: Execution example for bitmap scheduler, (Massa, 2003, Figure 5.4) 213
Figure 71: Pattern Scopes, [53] ... 216
Figure 72: Internal model of 'Subtract' depicted in Figure 43 ... 230
Figure 73: Control application after execution of RINIT sequence 231
Figure 74: Control application after execution of RECONF sequence................................ 231
Figure 75: Control application after execution of RDINIT sequence 232
Figure 76: NCES model for practical example (Addition/Subtracion)................................. 238
Figure 77: NCES module 'Thread_APP', the control application of
Addition/Subtraction example at the beginning of the RECONF sequence.......................... 239
Figure 78: NCES module 'Thread_RECONF', the RECONF seqeunce of ECA
within Addition/Subtraction example .. 240
Figure 79: NCES model of Addition/Subtraction example without downtimeless
system evolution .. 241
Figure 80: NCES model for position controller including plant model (velocity
closed-loop control) .. 242

 277

Index of Tables

Table 1: Requirements for the evaluation of DSE for this thesis .. 10
Table 2: Evaluation means for the proof of system integrity characteristics 84
Table 3: Dependencies of IEC 61499 management commands.. 107
Table 4: Basic reconfiguration services within the different execution phases of a
system evolution step... 121
Table 5: Real-time behavior of eCos on the demonstration control device,
Ferhatbegovic (2007).. 146
Table 6: Real-time behavior of R3E within the demonstration control device, Mandl
and Zhang (2008) .. 146
Table 7: Status output of dependent operation check within Page 3 (RINIT
sequence)... 234
Table 8: Status output of dependent operation check within Page 4 (RECONF
sequence)... 236
Table 9: Status output of dependent operation check within Page 5 (RDINIT
sequence)... 237

 279

Curriculum Vitae

Personal data

Name: Christoph Sünder
Date of birth: February 2nd 1979
Address: Korneuburgerstraße 2
 2003 Wiesen, Austria

Current Occupation (since August 2008)

Thales Rail Signalling Solutions GesmbH
Safety Manager

Education

July 2004 – June 2008 Research assistant at the Automation and Control Institute
Vienna University of Technology
Research fields: Distributed Control
 Reconfiguration at run-time
 Verification of control programs
 Motion Control

October 1999 – June 2004 Vienna University of Technology
Master of Electrical Engineering
Major: Automation and Control Engineering
(graduation with distinction)

September 1993 – June 1998 Technical High School for Electrical Engineering
TGM, 1200 Vienna
(graduation with distinction)

1990 – 1998 Elementary and Middle School

280 CURRICULUM VITAE

Publications

Sünder, C., Vyaktin V. (2008) Functional and temporal formal modelling of embedded

controllers for intelligent mechatronic systems. Accepted for International Journal
for Mechatronics and Manufacturing Systems, Inderscience Publishers, ISSN: 1753-
1039

Sünder, C., Wenger, M., Hanni, C., Gosetti, I., Steininger, H., Fritsche, J. (2008) Transforma-
tion of existing IEC 61131-3 automation projects into control logic according to IEC
61499. Accepted for 13th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA’08), Hamburg (Germany), September 2008

Strasser, T., Rooker, M. N., Ebenhofer, G., Zoitl, A., Sünder, C., Valentini, A., Martel, A.
(2008) Structuring of Large Scale Distributed Control Programs with IEC 61499
Subapplications and a Hierarchical Plant Structure Model. Accepted for 13th IEEE
International Conference on Emerging Technologies and Factory Automation
(ETFA’08), Hamburg (Germany), September 2008

Strasser, T., Rooker, M. N., Ebenhofer, G., Hegny, I., Wenger, M., Sünder, C., Valentini, A.,
Martel, A. (2008) Multi-Domain Model-Driven Design of Industrial Automation and
Control Systems. Accepted for 13th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA’08), Hamburg (Germany), September
2008

Brennan, R., Vrba, P., Tichy, P., Zoitl, A., Sünder, C., Strasser, T., Marik, V. (2008) Devel-
opments in dynamic and intelligent reconfiguration of industrial automation. Com-
puters in Industry, Elsevier, ISSN: 0166-3615 vol. 59, 15 pp.

Fritsche, J., Steininger, H., Sünder, C., Zoitl, A. (2008) Kein Entweder-Oder! (in German).
Computer&Automation, Control Guide S2, WEKA Fachmedien GmbH, ISSN:
1615-8512, pp. 16-21

Sünder, C., Gosetti, I., Vyatkin, V., Favre-Bulle, B. (2008) Comprehensive Formal Descrip-
tion of IEC 61499 Control Devices. In: Proceedings of the 6th IEEE International
Conference on Industrial Informatics (INDIN’08), Daejeon (Korea), July 2008,
pp. 1166-1172

Sünder, C., Zoitl, A., Christensen, J. H., Steininger, H., Fritsche, J. (2008) Considering
IEC 61131-3 and IEC 61499 in the context of Component Frameworks. In: Proceed-
ings of the 6th IEEE International Conference on Industrial Informatics (INDIN’08),
Daejeon (Korea), July 2008, pp. 277-282

Strasser, T., Rooker, M. N., Ebenhofer, G., Zoitl, A., Sünder, C., Valentini, A., Martel, A.
(2008) Framework for Distributed Industrial Automation and Control (4DIAC). In:
Proceedings of the 6th IEEE International Conference on Industrial Informatics
(INDIN’08), Daejeon (Korea), July 2008, pp. 283-288

Strasser, T., Sünder, C., Valentini, A. (2008) Model-Driven Embedded Systems Design
Environment for the Industrial Automation Sector. In: Proceedings of the 6th IEEE
International Conference on Industrial Informatics (INDIN’08), Daejeon (Korea),
July 2008, pp. 1120-1125

Sünder, C., Zoitl, A., Steininger, H., Fritsche, J. (2008) Symbiose von IEC 61131-3 und
IEC 61499: Integration von scheinbar sehr unterschiedlichen Welten (in German).
In: Proceedings of 10. Fachtagung Entwurf komplexer Automatisierungssysteme
(EKA’08), Magdeburg (Germany), April 2008, pp. 185-196

CURRICULUM VITAE 281

Sünder, C., Zoitl, A., Hummer, O., Strasser, T., Ebenhofer, G., Rooker, M. N., Kerbleder, G.
(2008) 4DIAC—Framework for Distributed Industrial Automation Control. In: Pro-
ceedings of 10. Fachtagung Entwurf komplexer Automatisierungssysteme
(EKA’08), Magdeburg (Germany), April 2008, pp. 163-174

Sünder, C., Fritsche, J., Steininger, H., Strasser, T. (2007) Evolution Control Engineering of
Distributed Automation Components: Der εCEDAC Ansatz (in German). In: Pro-
ceedings of SPS/IPC/DRIVES Elektrische Automatisierung, Nürnberg (Germany),
November 2007, pp. 297-306

Steininger, H., Strasser, T., Sünder, C., Zoitl, A. (2007) Die rekonfigurierbare Fertigung (in
German). Computer&Automation, WEKA Fachmedien GmbH, 11/2007, ISSN
1615-8512, pp. 54-60

Sünder, C., Zoitl, A., Rofner, H., Strasser, T., Brunnenkreef, J. (2007) Benchmarking of
IEC 61499 runtime environments. In: Proceedings of 12th IEEE International Con-
ference on Emerging Technologies and Factory Automation (ETFA’07), Patras
(Greece), September 2007, pp. 474-481

Sünder, C., Hummer, O., Favre-Bulle, B. (2007) Enhanced Engineering of Downtimeless
System Evolution by use of Hardware Capability Descriptions within the εCEDAC
Approach. In: Proceedings of 12th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA’07), Patras (Greece), September
2007, pp. 764-767

Weehuizen, F., Brown, A., Sünder, C., Hummer, O. (2007) Implementing IEC 61499
Communication with the CIP Protocol. In: Proceedings of 12th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA’07), Patras
(Greece), September 2007, pp. 498-501

Zoitl, A., Strasser, T., Hall, K., Staron, R., Sünder, C., Favre-Bulle, B. (2007) The Past,
Present, and Future of IEC 61499. Lecture Notes in Computer Science (LNCS
4659), In: Proceedings of 3rd International Conference on Industrial Applications of
Holonic and Multi-Agent Systems (HoloMAS’07), Regensburg (Germany), Sep-
tember 2007, Springer Verlag Berlin Heidelberg, pp. 1-14

Rooker, M. N., Sünder, C., Strasser, T., Zoitl, A., Hummer, O., Ebenhofer, G. (2007) Zero
Downtime Reconfiguration of Distributed Automation Systems: The εCEDAC Ap-
proach. Lecture Notes in Computer Science (LNCS 4659), In: Proceedings of 3rd In-
ternational Conference on Industrial Applications of Holonic and Multi-Agent Sys-
tems (HoloMAS’07), Regensburg (Germany), September 2007, Springer Verlag
Berlin Heidelberg, pp. 326-337

Sünder, C., Rofner, H., Vyatkin, V., Favre-Bulle, B. (2007) Formal description of an
IEC 61499 runtime environment with real-time constraints. In: Proceedings of the
5th IEEE International Conference on Industrial Informatics (INDIN’07), Vienna
(Austria), July 2007, pp. 853-859

Sünder, C., Zoitl, A., Christensen, J. H., Colla, M., Strasser, T. (2007) Execution Models for
the IEC 61499 elements Composite Function Block and Subapplication. In: Proceed-
ings of the 5th IEEE International Conference on Industrial Informatics (INDIN’07),
Vienna (Austria), July 2007, pp. 1169-1175

Hummer, O., Sünder, C., Strasser, T., Rooker, M. N., Kerbleder, G. (2007) Downtimeless
System Evolution: Current State and Future Trends. In: Proceedings of the 5th IEEE
International Conference on Industrial Informatics (INDIN’07), Vienna (Austria),
July 2007, pp. 1123-1128

Baier, T., Fritsche, J., Keintzel, G., Loy, D., Schranz, R., Steininger, H., Strasser, T., Sünder,
C. (2007) Future scenarios for application of downtimeless reconfiguration in indus-

282 CURRICULUM VITAE

trial practice. In: Proceedings of the 5th IEEE International Conference on Industrial
Informatics (INDIN’07), Vienna (Austria), July 2007, pp. 1129-1134

Zoitl, A., Sünder, C., Strasser, T., Colla, M. (2007) A Device and Resource Execution Model
for IEC 61499 Control Devices. In: Proceedings of the 5th IEEE International Con-
ference on Industrial Informatics (INDIN’07), Vienna (Austria), July 2007, pp.
1143-1149

Strasser, T., Sünder, C., Zoitl, A., Rooker, M. N., Ebenhofer, G. (2007) Enhanced IEC 61499
Device Management Execution and Usage for Downtimeless Reconfiguration. In:
Proceedings of the 5th IEEE International Conference on Industrial Informatics
(INDIN’07), Vienna (Austria), July 2007, pp. 1163-1168

Strasser, T., Sünder, C., Rooker, M. N., Hummer, O., Zoitl, A., Müller, I. (2007) Enhanced
IEC 61499 System Model for Evolution of Control Applications in Distributed In-
dustrial-Process Measurement and Control Systems. In: Proceedings of the Euro-
pean Control Conference (ECC’07), Kos (Greece), July 2007, pp. 1356-1363

Sünder, C., Zoitl, A., Dutzler, C. (2006) Functional structure-based modeling of automation
systems. International Journal of Manufacturing Research (IJMR), Inderscience
Publishers, vol. 1, nb. 4, ISSN: 1750-0591, pp. 405-420

Sünder, C., Favre-Bulle, B., Vyatkin, V. (2006) Towards an Approach for the Verification of
Downtimeless System Evolution. In: Proceedings of 11th IEEE International Confer-
ence on Emerging Technologies and Factory Automation (ETFA’06), Prague
(Czech Republic), September 2006, pp. 1133-1136

Hummer, O., Sünder, C., Zoitl, A., Strasser, T., Rooker, M. N., Ebenhofer, G. (2006)
Towards Zero–downtime Evolution of Distributed Control Applications via Evolu-
tion Control based on IEC 61499. In: Proceedings of 11th IEEE International Con-
ference on Emerging Technologies and Factory Automation (ETFA’06), Prague
(Czech Republic), September 2006, pp. 1285-1292

Sünder, C., Zoitl, A., Christensen, J.H., Vyatkin, V., Brennan, R.W., Valentini, A., Ferrarini,
L., Strasser, T., Martinez-Lastra, J.L., Auinger, F. (2006) Interoperability and Use-
ablity of IEC 61499. In: Proceedings of the 4th IEEE International Conference on
Industrial Informatics (INDIN’06), Singapore (Singapore), July 2006, pp. 31-37

Sünder, C., Zoitl, A., Rainbauer, M., Favre-Bulle, B. (2006) Hierarchical Control Modelling
Architecture for Modular Distributed Automation Systems. In: Proceedings of the
4th IEEE International Conference on Industrial Informatics (INDIN’06), Singapore
(Singapore), July 2006, pp. 12-17

Favre-Bulle, B., Sünder, C., Zoitl, A. (2006) Verteilt automatisieren (in German). Com-
puter&Automation, WEKA Fachmedien GmbH, 3/2006, ISSN: 1615-8512, pp. 32-
36

Strasser, T., Müller, I., Zoitl, A., Sünder, C., Grabmair, G. (2006) Verteilte, rekonfigurierbare
Automatisierungssysteme im Produktionsbereich (in German). Industrie Magazin,
Industriemagazin Verlag GmbH, 03/2006, pp. 33-36

Sünder, C., Zoitl, A., Strasser, T., Favre-Bulle, B. (2005) Intuitive Control Engineering for
Mechatronic Components in Distributed Automation Systems based on the reference
model of IEC 61499.

Sünder, C., Zoitl, A., Favre-Bulle, B., Strasser, T., Steininger, H., Thomas, S. (2006)
Towards Reconfiguration Applications as basis for Control System Evolution in
Zero-downtime Automation Systems. In: Innovative Production Machines and Sys-
tems, Proceedings of 2nd I*PROMS Virtual International Conference, July 2006,
pp. 523-528

CURRICULUM VITAE 283

Strasser, T., Müller, I., Schüpany, M., Ebenhofer, G., Mungenast, R., Sünder, C., Zoitl, A.,
Hummer, O., Thomas, S., Steininger, H. (2006) An Advanced Engineering Envi-
ronment for Distributed & Reconfigurable Industrial Automation & Control Systems
based on IEC 61499. In: Proceedings of 2nd I*PROMS Virtual International Confer-
ence on Innovative Production Machines and Systems, July 2006, pp. 493-498

Sünder, C., Zoitl, A., Mehofer, F., Favre-Bulle, B. (2006) Advanced use of PLCopen Motion
Control Library for autonomous Servo Drives in IEC 61499 based automation and
control systems. Elektronik und Informa-tionstechnik (e&i), vol. 123, nb. 5, May
2006, Springer Verlag Wien New York, ISSN: 0932-383X, pp. 191-196

Zoitl, A., Sünder, C., Terzic, I. (2006) Dynamic Reconfiguration of Distributed Control
Applications with Reconfiguration Services based on IEC 61499. In: Proceedings of
the IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence and
Its Applications (DIS’06), Prague (Czech Republic), June 2006, pp. 109-114

Strasser, T., Müller, I., Sünder, C., Hummer, O., Uhrmann, H. (2006) Modeling of Recon-
figuration Control Applications based on the IEC 61499 Reference Model for Indus-
trial Process Measurement and Control Systems. In: Proceedings of the IEEE Work-
shop on Distributed Intelligent Systems: Collective Intelligence and Its Applications
(DIS’06), Prague (Czech Republic), June 2006, pp. 127-132

Zoitl, A., Smodic, R., Sünder, C., Grabmair, G. (2006) Enhanced Real-Time Execution of
Modular Control Soft-ware based on IEC 61499, In: Proceedings of IEEE Interna-
tional Conference on Robotics and Automation (ICRA’06), Orlando (FL, USA),
May 2006, pp. 327-332

Sünder, C., Zoitl, A., Strasser, T., Favre-Bulle, B. (2005) Intuitive Control Engineering for
Mechatronic Components in Distributed Automation Systems based on the reference
model of IEC 61499. In: Proceedings of 3rd International IEEE Conference on Indus-
trial Informatics (INDIN’05), Perth (Australia), July 2005, pp. 50-55

Zoitl, A., Grabmair, G., Auinger, F., Sünder, C. (2005) Executing real-time constrained
Control Applications modelled in IEC 61499 with respect to Dynamic re-
configuration. In: Proceedings of 3rd International IEEE Conference on Industrial In-
formatics (INDIN’05), Perth (Australia), July 2005, pp. 62-67

Strasser, T., Müller, I., Zoitl, A., Sünder, C., Grabmair, G. (2005) A Distributed Control En-
vironment for Reconfigurable Manufacturing. In: Proceedings of 1st I*PROMS Vir-
tual International Conference on Innovative Production Machines and Systems, July
2005, 6 pp.

Strasser, T., Zoitl, A., Auinger, F., Sünder, C. (2005) Towards Engineering Methods for
Reconfiguration of Distributed Real-Time Control Systems Based on the Reference
Model of IEC 61499. Lecture Notes in Computer Science (LNCS 3593), In: Pro-
ceedings of 2nd International Conference on Industrial Applications of Holonic and
Multi-Agent Systems (HoloMAS’05), August 2005, Copenhagen (Denmark),
Springer Verlag Berlin Heidelberg, pp. 165-175

Sünder, C. (2004) Integration of Motion Control in Distributed Automation Systems accord-
ing to IEC 61499. Master thesis, Vienna University of Technology, Automation and
Control Institute, June 2004

Oberhauser, K., Nemecek, A., Sünder, C., Zimmermann, H. (2004) Universal Integrated PIN
Photodetector. In: Proceeding of 34th European Solid-State Device Research Confer-
ence (ESSDERC’04), Leuven (Belgium), September 2004, pp. 349-352

	Evaluation of Downtimeless System Evolution in Automation and Control Systems
	Abstract
	Kurzfassung
	Acknowledgement
	Content

	1 The general tasks for downtimeless system evolution
	1.1 Motivation
	1.2 Purpose of this thesis
	1.3 Guideline through the thesis

	2 Analysis of Requirements
	2.1 Execution requirements for control devices
	2.2 Requirements for downtimeless system evolution
	2.3 Usability requirements
	2.4 Summary

	3 State of the Art
	3.1 Automation and control systems
	3.2 Programming languages
	3.2.1 IEC 61131-3
	3.2.2 IEC 61499

	3.3 Description languages
	3.4 Software evolution and dynamic reconfiguration
	3.4.1 Reference architecture for dynamic reconfiguration
	3.4.2 Further approaches to dynamic reconfiguration
	3.4.3 Dynamic reconfiguration in automation and control systems

	3.5 Transition management
	3.6 Verification by model checking
	3.6.1 Enhanced model checking techniques
	3.6.2 Formal specification by temporal logic
	3.6.3 Approaches to model checking

	3.7 Summary

	4 New Engineering method for Downtimeless System Evolution
	4.1 Evolution engineering method
	4.2 Basic evolution control engineering
	4.2.1 Why is it necessary to freely program evolution control applications?
	4.2.2 Basic reconfiguration services
	4.2.3 Modeling evolution control applications

	4.3 Enhanced evolution control engineering
	4.4 Downtimeless system evolution with physical reconfiguration
	4.5 Summary

	5 New Concept for the Evaluation of Downtimeless System Evolution
	5.1 Specification of the evaluation framework
	5.1.1 Evaluation of ACSs operating control applications
	5.1.2 Evaluation of ACSs incorporating downtimeless system evolution

	5.2 Concept formulation
	5.2.1 System integrity characteristics
	5.2.2 Evaluation means for a system evolution step
	5.2.3 Evaluation of CECAs

	5.3 The current system state: KAPPA vector
	5.3.1 Characterization of KAPPA vector elements
	5.3.2 FDCML as basis for a KAPPA vector representation
	5.3.3 KAPPA vector during execution of a system evolution step

	5.4 Summary

	6 Evaluation of properties by KAPPA-based calculations
	6.1 Influences to temporal control application properties
	6.1.1 Scheduling theory of R3E
	6.1.2 Calculation of event chain execution time
	6.1.3 Evaluation of ECA influences on control applications

	6.2 Check for dependent operation
	6.2.1 Dependencies of IEC 61499 management commands
	6.2.2 Correct order of basic reconfiguration services
	6.2.3 Creation and deletion of applications/application parts

	6.3 Check for requirements of resources
	6.3.1 Type library check
	6.3.2 Available memory check

	6.4 Summary

	7 Evaluation of properties by model checking
	7.1 Architectural elements of the system model
	7.2 Modeling real-time behavior
	7.3 Dynamic reconfiguration support in formal models
	7.3.1 Manipulation of connections
	7.3.2 Execution control of FB instances
	7.3.3 Reading of input/output variables as well as internal variables
	7.3.4 Writing of input and internal variables

	7.4 Modeling architectural elements in NCES
	7.4.1 Real-time operating system (eCos)
	7.4.2 Real-time reconfiguration runtime environment
	7.4.3 IEC 61499 applications
	7.4.4 Evolution control application

	7.5 Interrelation with the system environment
	7.6 Definition of evolution specifications
	7.6.1 Specifications in natural language
	7.6.2 Evolution specifications
	7.6.3 Evaluation of small portions of system behavior

	7.7 Summary

	8 Demonstration and Experiments
	8.1 Typical example on a specific test model
	8.1.1 Demonstration control device
	8.1.2 Typical control example
	8.1.3 KAPPA-based calculations
	8.1.4 Verification by model checking

	8.2 Experiments with selected architectural elements
	8.2.1 Event dispatcher as critical section
	8.2.2 Modeling the plant behavior

	8.3 Summary

	9 Discussion of Industrial Application
	9.1 Value-added chain for total evaluation
	9.2 Automation Extreme Programming
	9.3 Summary

	10 Towards Evaluation of logi.CAD εCEDAC Instant reload
	10.1 logi.CAD Instant reload
	10.2 logi.CAD εCEDAC Instant reload
	10.3 Evaluation approach for the logi.CAD εCEDAC Instant reload
	10.4 Summary

	11 Outlook
	12 Conclusion
	A Field Device Configuration Markup Language
	A.1 Basic elements of the FDCML schema definition
	A.2 Elements that provide extensibility in FDCML

	B Real-time Reconfiguration Runtime Environment
	B.1 Real-time execution of IEC 61499 applications
	B.2 Basic reconfiguration services
	B.3 Measurement results

	C Net Condition/Event Systems
	C.1 Timed net condition/event systems
	C.2 Signal net systems
	C.3 Tool framework

	D Embedded Configurable Operating System (eCos)
	D.1 Configurability
	D.2 The kernel component

	E Property Specification Patterns
	E.1 Occurrence specification patterns
	E.1.1 Absence property pattern
	E.1.2 Universality property pattern
	E.1.3 Existence property pattern
	E.1.4 Bounded existence property pattern

	E.2 Order specification patterns
	E.2.1 Precedence property pattern
	E.2.2 Response property pattern
	E.2.3 Response chain property pattern
	E.2.4 Precedence chain property pattern

	E.3 Property specification pattern notes

	F FDCML-based description of the demonstration control device
	G Additional information for demonstration example
	Used terms and abbreviations
	Bibliography
	Webiography
	Index of Figures
	Index of Tables
	Curriculum Vitae

