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Abstract 

This thesis concentrates on downtimeless evolution of the functionality of automation and 
control systems for production processes. These processes have to be adapted during the 
whole life cycle of the plant because of changing requirements, for instance new products or 
product variants. In addition, the free competition forces the companies to do not stop their 
production during the application of such changes. During operation the whole production 
plant has to be continuously adapted. These changes are introduced as downtimeless system 
evolution of automation and control systems in this thesis. 
Current state of the art automation and control systems already provide the possibility to 
apply changes during operation to some extent. But these changes of the control logic 
introduce disturbances to the production processes, which may lead to reduced product 
quality or even damage of the plant machinery. In order to avoid these failures, the engineer 
has to be in the position to explicitly coordinate the evolution of the automation and control 
system to the special needs of the application. 
Within this thesis we introduce a new engineering cycle for downtimeless system evolution. 
Thus the user is capable to freely program the kind of changes which will be applied during 
the evolution execution. Therefore, existing programming languages will be used, which 
additionally include the possibility for dynamic reconfiguration. Due to these applications, the 
so called evolution control applications, it is possible to change the current control logic 
during its operation. By additional interaction of the user also hardware components may be 
changed during operation. 
The most important aspect for the execution of system evolution is the question regarding 
correctness. The new system state of the plant may be checked by conventional methods. But 
the check for the transition to the new system state needs a new methodology, as there is no 
concept available in literature up to now. This work provides as its main contribution an 
evaluation method for downtimeless system evolution. 
The new methodology combines the engineering method and the basic properties of a correct 
downtimeless system evolution, which leads to a set of necessary measures for the evaluation. 
As main concept the current system state—a comprehensive description of all involved 
elements called KAPPA vector—is put into the center of investigations. The dynamically 
changing character of the system state during execution of the evolution control application is 
the basis for the overall evaluation method. As evaluation means two different concepts are 
applied: rule-based calculations and verification by model checking. Both concepts are based 
on the information provided in the KAPPA vector. Therefore the evolution of an automation 
and control system can be checked sufficiently and the new methodology of downtimeless 
system evolution can be applied to real systems. 
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Kurzfassung 

Diese Arbeit beschäftigt sich mit der unterbrechnungsfreien Änderung der Funktion von 
Automatisierungssystemen für Produktionsprozesse. Diese müssen über den ganzen Lebens-
zyklus einer Anlage an die ständig veränderlichen Anforderungen wie etwa neue Produkte 
oder Produktvarianten angepasst werden. Da Änderungen aber durch den hohen Druck des 
freien Wettbewerbs zu keinem Stillstand der Anlage führen dürfen, muss das gesamte System 
kontinuierlich während des Betriebs adaptiert werden. Diese Änderung des Automatisierungs-
systems wird hier mit unterbrechungsfreier Systemevolution bezeichnet. 
Aktuelle Automatisierungssysteme bieten zwar großteils die Möglichkeit, Umschaltungen der 
Steuerungslogik während des Betriebs durchzuführen, dabei werden aber Störungen in das 
System eingebracht, die z.B. zu verminderter Produktqualität oder auch Beschädigung der 
Anlage führen können. Um dies verhindern zu können, muss der Anwender in der Lage sein, 
die Evolution des Automatisierungssystems explizit auf die jeweilige Situation abzustimmen. 
Diese Arbeit führt einen neuen Engineering-Zyklus für die Evolution von Steuerungssyste-
men ein, der es dem Anwender erlaubt, die Art und Weise der Durchführung einer Evolution 
frei zu programmieren. Dazu werden die vorhandenen Programmiersprachen genutzt und um 
die Möglichkeit zur dynamischen Rekonfiguration erweitert. Durch die Ausführung dieses 
sogenannten Evolutionssteuerungsprogramms kann das aktuelle Steuerungsprogramm (und 
unter Mitwirkung des Anwenders auch die dazugehörige Hardware) während des Betriebes 
verändert werden. 
Die wichtigste Fragestellung in diesem Zusammenhang ist die Korrektheit des Evolutions-
steuerungsprogramms. Ein neuer Zustand des Steuerungsprogramms kann mit herkömmli-
chen Mitteln auf Richtigkeit geprüft werden, aber für die Übergangsphase während der 
Änderung des Systems im laufenden Betrieb gibt es derzeit noch keine adäquate Überprü-
fungsmethode. Deshalb legt diese Arbeit ihren Schwerpunkt auf die Evaluierung von 
unterbrechungsfreien Systemevolutionen von Automatisierungssystemen. 
In dem neuartigen Ansatz wird die Engineeringmethode mit den Eigenschaften für eine 
fehlerfreie Evolution in Zusammenhang gebracht und daraus die notwendigen Maßnahmen 
zur Evaluierung abgeleitet. Als wesentliches Grundkonzept wird der aktuelle, umfassend 
dargestellte Systemzustand hervorgehoben, der KAPPA Vektor genannt wird. Diese sich 
entsprechend der Evolution ändernde Größe ist die Grundlage für den gesamten Evaluie-
rungsprozess. Auf Basis dieser Systembeschreibung werden zwei Arten von Überprüfungen 
durchgeführt: regelbasierte Berechnungen und Verifikation durch Model Checking. Beiden 
Fällen liegen die umfassenden Informationen aus dem KAPPA Vektor zugrunde. Dadurch 
kann die Veränderung des Automatisierungssystems vollständig überprüft und somit erst die 
neue Methodik der unterbrechungsfreien Evolution in der Praxis angewendet werden. 
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1 The general tasks for downtimeless system evolution 

Chapter 1 

The general tasks for downtimeless system evolution 

An automation and control system (ACS) for plant automation consists of different compo-
nents such as actuators, sensors, communication systems, and appropriate control devices, as 
for instance depicted in Favre-Bulle (2004, Chapter 2). The most important type of control 
devices, which will be considered within this thesis, are programmable logic controllers 
(PLCs). Since its invention 40 years ago [45] many technologies have been added to the 
classical design of a PLC, their foundations have been defined by the International Electro-
technical Commission (IEC) in the IEC 61131 standard. Especially the software architecture 
and the programming languages of part 3 (IEC 61131-3, 2003) build the fundamentals of each 
PLC. The application fields for PLCs are manifold—the process under control concerns any 
kind of continuous, discrete, or mixed plant—and the ACS customers have very different 
background knowledge according to their role in the ACS industry: plant operator, field 
engineer, electrician, computer scientist.  
The needs of the ACSs customers have been the topic of various studies and surveys. In order 
to give an impression of upcoming and new technologies in this field some key studies will be 
mentioned. A study has been conducted by the Iacocca Institute (1991), which identified 
nowadays well known requirements such as “production to order” or “lot/batch size equal or 
greater than one” as future demands for manufacturing systems. It has been stated that ACSs 
will be information intensive, reprogrammable, reconfigurable, and continuously changeable. 
These requirements can be summarized by the key word agile manufacturing, which means 
highly flexible adaptations to the current needs. The study also triggered standardization work 
within the IEC, and since 2005 the IEC 61499 standard is available as international standard, 
providing a basis for the requirements stated in this early study. A more recent study has been 
done by Favre-Bulle (2005) concerning the future directions in manufacturing science in 
Europe. Within this study a large number of European experts from industry and academia 
have been interviewed. The different views have been interrelated with existing international 
studies, and six future key technologies have been extracted. Three of them are directly 
related to ACSs, namely simultaneous production, 100% reconfigurable adaptive production 
systems, and semantic systems (introduction of reasoning and self-learning into control 
devices). Without going into detail about the results of this study it can be seen that these 
directions are very close to the vision of the early study of the Iacocca Institute. Even more 
impressive is the strategic research agenda of the European High-Level Group Manufuture 
(European Commission, 2006). This industry driven platform provides future research 
directions within the European Union frame programs in the field of ACSs. The report 
identifies advanced manufacturing engineering as one of the future challenges, with the topics 
reconfigurable technical systems and integrated processes/systems as important pillars. 
The current situation of the overall time-to-market cycle within a process or production plant 
is depicted in the schematic in Figure 1. The bar diagram in the middle of this figures shows 
an average production process, starting from enterprise control until sales and after sales 
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activities. The main time consumption is related the production process, which is denoted as 
standard production time TPSt. In case of changing production requirements (e.g., new 
variants of products) the capabilities of the production plant and especially the production 
automation in order to support these changes significantly influence the resulting time-to-
market for the reconfiguration. The worst case situation is given in the top bar diagram. After 
using rapid prototyping and digital engineering for dynamic changes in product development 
functions of an enterprise the time for reconfiguration of manufacturing execution TPC is the 
bottle neck for quicker time-to-market.  

 
Figure 1: Minimal and maximal time for reconfiguration of manufacturing execution1 

With downtimeless system evolution (DSE), as it will be introduced in this thesis, we purpose 
to reduce the time for production to a minimum (see TPCmin in the third bar diagram of Figure 
1). DSE aims at reconfiguration and changes to a system without the need to stop its opera-
tion. It enables the engineering of smooth transitions to new system states, whereas these 
changes are not limited to functionalities for the pure exchange of software parts. In literature, 
the term dynamic reconfiguration is used for changes of software during run-time. DSE does 
have a more comprehensive view, as a plant does consist of hardware and software. The plant 
evolves in its overall system characteristics over time and the ACS customer needs an 
appropriate means to model this behavior. As most important aspect of this new methodology, 
the evaluation of DSE will be developed: as means for the ACS customer to decide whether it 
will be downtimeless or cause a system break down (or something in between). 
In order to make the challenges of DSE more descriptive, application scenarios from current 
industrial practice can be considered as for instance presented in Baier et al. (2007). One 
common prerequisite is that the plant has to be fully functional all the time, although the plant 
requires permanent maintenance like fault analysis and repair, incorporation of new function-
ality, or refactoring in reaction to environmental or changed requirements. For instance 
production plants for steel (e.g. rolling mills, hot dip galvanization lines) need to be operated 
continuously due to requirements of the process. A line stop would cause a lot of scrap and 
costs. A typical scenario for program changes is the optimization of the production process. 
Or a wind mill as example for an energy production plant, which cannot be shut down easily 
as this needs to be managed within the overall wind farm and wears out the mechanics of the 
wind turbine, too. Updates of erroneous software parts or added/changed functionality of the 
control program needs to be applied without downtime. Another application field of DSE is 

                                                 
1 The different tasks and their correlation within the time-to-market cycle are based on Zeichen and Fürst (2000). 
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building automation. A modern building consists of a network of hundreds or even thousands 
of controllers. And the building changes its functions for instance when new tenants are 
moving in and out, when special events take place, or due to energy saving programs. The 
special challenge of such a building is the event triggered character of the usage of the 
building. A reconfiguration within the control program cannot be scheduled reliably to an 
uncritical time, since a switch-on of a light or a fire alarm may occur at any time. 
The critical question of this thesis “How to decide whether a system under operation can be 
changed without disturbances?” aims at the use of basic means for evaluation of complex 
systems32 applied especially for the methodology of DSE. According to the introductory 
chapter of Clarke et al. (1999), there are four principal methods available for complex 
systems: simulation, testing, deductive verification and model checking.  

• Simulation means making experiments on a model of the system. 
• Testing means making experiments on the real system. 

Simulation and testing are well known and often applied for ACSs. In both cases it is rarely 
possible to check all possibilities of interactions and pitfalls. 

• Deductive verification means the use of axioms and proof rules to check the correct-
ness of the system. 

• Model checking means the automatic and exhaustive search of the state space of the 
model of a system in order to determine the behavior of the system. 

Deductive verification and model checking are known as formal methods, as their foundations 
are based on mathematical principles. Deductive verification is done by verification experts 
(usually mathematicians or logicians) with considerable experience. Although there is some 
support by software tools, this kind of verification is very extensive, takes long time and is 
only used for highly sensitive systems such as security or safety-relevant systems. Model 
checking is applicable also for non-experts due to its automatic character. Model checking 
consists of three tasks. First of all a model of the system has to be generated. Many different 
kinds of formalisms are available for this purpose. In a second step, the specification needs to 
be defined which describes the properties of the system under observation. Typically, a 
specification is expressed in any logical formalism. The use of temporal logics enables the 
definition of the system’s behavior evolving over time. The third and last step within the 
process of model checking is the verification itself. Ideally this step is done completely 
automatic in ideal. The result is a Boolean value that states whether the model of the system 
fulfills the specification or not. If not, a counterexample is given which describes a path 
within the state space of the system where the specification is violated. 
Based on these introductory comments on ACS, the DSE requirement and the current state of 
evaluation methods—especially model checking—the upcoming question is: How do these 
different topics fit together? The subsequent section describes the motivation for this work. 

1.1 Motivation 
The engineering process of an ACS is error-prone, as depicted by the statistics presented in 
Kropik (2005). By the use of extensive testing and simulation with existing engineering tools, 
the error rate can be kept rather low. Although, outstanding applications as depicted for 
instance in Bani Younis and Frey (2003) already require the use of more powerful methods 
such as verification by model checking in order to avoid failures of the system. The special 
parameters of DSE add further demands to the evaluation in contrast to “standard” applica-
tions: 

• The DSE process happens only at once. There are no iterations that lead to a succes-
sive transition from the old system state to the new one. DSE means a hard switch to a 
new application. 
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• Therefore, DSE means an interruption of the control program’s execution. Even when 
the new system state has been checked for correctness successfully, the transition to 
the new system state may cause a failure in the plant. 

• DSE has to be performed without any—or at least as few as possible—disturbances to 
the total process, because any disturbance may lead to bad product quality or damage 
to the plant and its machinery. Even if it may be unlikely, the worst case is a break 
down of the plant. 

• The single action “downtimeless system evolution” and the requirement of negligible 
disturbances faces the engineer with the challenge to think of all possible environ-
mental conditions for the application of a DSE at any time in the production cycle of 
the plant. 

The engineer has to decide, whether he wants to apply the changes by triggering the DSE at a 
certain time or not. This means that the engineer is responsible for a very complex operation 
to the operating plant and needs some means to support this decision. The choice of one of the 
above discussed evaluation methods may provide such kind of support. If we do have a closer 
look to the prerequisites of the different methods, a clear situation appears: 

• Testing cannot be applied because the plant generally is not available for any experi-
ences as it is in operation. 

• Simulation is possible and may give an impression on the effects of the DSE. But it is 
not able to incorporate all possible scenarios and different situations that may happen 
in the plant. 

• Deductive verification lacks the usability for ACS customers for different reasons, for 
example knowledge of the engineers as well as time consumption of the method. 

• Model checking offers an automatic methodology that leads to a true/false decision. If 
an appropriate model of the control program and the plant is available, the engineer 
can decide about the system evolution by defining the specification. The model check-
ing tool verifies the correctness of the specification for the whole state space of the 
model, and gives a counterexample in the case of a violation. 

Verification by model checking promises to be the basic methodology that successfully 
provides support for the engineer when considering the application of DSE to the operating 
plant. But model checking does only provide answers with regard to the given specification. 
The engineer is responsible to define an appropriate specification in order to decide whether 
the DSE will be successful or not. This work has to provide a guideline on what are the 
important aspects that need to be incorporated in the specification, in order to make a decision 
about the correctness of a DSE. Because if necessary aspects are missing within the specifica-
tion, the model checking tool will reply that the model may satisfy these requirements. But 
the system may produce failures during the DSE. 
The problem itself may be examined in a more abstract way as depicted in Figure 2. Herein, 
an ambigram of Scott Kim is presented, which includes both the words true (written in lower 
case letters) and false (written in capital letters) in the same word. Depending on the perspec-
tive of the viewer, one of the two words appears (in Figure 2 this is clarified by different 
shadings of the words). In the case of system evolution, the engineer is in a very similar 
situation. He has to ask the right questions in order to receive a satisfactory answer. Even if 
all possible behaviors of the plant and the control program are taken into account for the 
execution of DSE, the result of the evaluation process will be the wrong answer (depending 
on the view point, which is given by the specification for successful DES defined by the 
engineer).  
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Figure 2: "TRUE/FALSE", Scott Kim, 19812 

1.2 Purpose of this thesis 
This thesis aims at the providing of a methodology for the engineering process of DSE. 
Therefore, three topics have to be addressed: 

• A new methodology for modeling of DSE, the transition from a current system state to 
a new system state during operation of the plant, without any disturbances to the plant. 

• A new methodology for checking the correctness of DSE, if the modeled changes to 
the system under operation do not violate the plant’s operation. This part represents 
the main novelity, which has to investigate the different aspects that need to be taken 
into consideration in terms of specifications for DSE. The ACS customer has to be 
guided for his decision on applying DSE to the system under operation. Clear and 
concise properties need to be developed in accordance with the means necessary for 
their evaluation. Model checking has been the first choice, but it does not have to be 
the best fitting means for all kind of properties. 

• Provision of models of the system incorporating DSE for appropriate evaluation 
means. Next to a detailed specification also the detailed model as basis for verification 
by model checking has to be developed. Only if all relevant aspects are part of the 
model, the check for specifications can be executed satisfactory. 

The presented methodology requires a system environment which provides basic means of 
dynamic reconfiguration. Further it has to be applicable for the specific standards used in 
ACSs. These are IEC 61131 and IEC 61499, whereas only IEC 61499 does provide a defined 
interface for dynamic reconfiguration. Consequently this work will use IEC 61499 as basis, 
but the use of IEC 61131 based systems needs to be supported, too (see Chapter 10 for this 
purpose). 
Next to the list of aims for this work some excluded targets need to be mentioned clearly also. 
First of all, we will not investigate on a new formal modeling language or a new algorithm for 
model checking. Several modeling languages and model checking algorithms already exist, 
which have proved their benefits for certain application fields. We will utilize existing 
approaches and focus on an methodology for the application of these means for DSE. 
Additionally, this work does not aim at the development of a fully functional automatic 
verification tool. An appropriate tool framework needs to be based on the specific characteris-
tics of a concrete system environment. The variety of ACSs is very broad, therefore we will 
concentrate on general considerations which may be applied to a concrete system environ-
ment and then integrated into the engineering tool. 

                                                 
2 Copyright ©2007 Scott Kim [37] 



6 THE GENERAL TASKS FOR DOWNTIMELESS SYSTEM EVOLUTION 

1.3 Guideline through the thesis 
We will start the discussion about the new methodology for evaluation of DSE with an 
analysis of requirements in Chapter 2. Herein the aim of the thesis is presented in more detail 
by definition of concrete tasks which have to be faced. The discussion about related work in 
this field as well as the state of the art concerning this work in Chapter 3 will provide the 
necessary background knowledge for this thesis. Furthermore the novelty of the approach will 
be described. 
As starting point for our investigations we will introduce a new modeling method for DSE in 
Chapter 4. This is the necessary starting point, which provides a structured methodology 
based on the use of dynamic reconfiguration within a system environment for DSE. 
Chapters 5 to 7 present the new methodology for evaluation of DSE. First of all, we will 
describe the general framework for evaluation in ACSs with DSE. According to the engineer-
ing methodology, the evaluation concerns will be split up into two parts: calculations based 
on the current system state and verification by model checking. The reason for this is on the 
one hand that many questions concerning the success of a DSE can be checked by rules with 
detailed knowledge of the system and its characteristics. On the other hand, the scope for the 
verification by model checking will be cut down and complexity is decreased for the ACS 
customer. Next to the definition of properties for the specification of DSE, also appropriate 
models for the evaluation process will be presented. 
The results of the evaluation methodology are discussed in Chapters 8 to 10. In order to give a 
more practical impression of the evaluation process, different examples are given for demon-
stration. Another interesting aspect is the effect of DSE and its evaluation to industrial 
practice. Herein two concrete implications are discussed: the role of companies in the value-
added chain of ACSs on the one hand and a new paradigm for engineering of ACSs on the 
other hand. These investigations will be concluded by the consideration of an industrial 
engineering tool based on IEC 61131 and the application of the proposed modeling and 
evaluation methodology to this system. 
An outlook on further enhancements and developments of this thesis is given in Chapter 11. 
The work is summarized in Chapter 12. Some interesting topics are prepared in the appendix, 
as they would overload the main content of this work. 
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2 Analysis of Requirements 

Chapter 2 

Analysis of Requirements 

The overall reasons of providing a methodology for the evaluation of DSE have been 
described above. When we take a closer look at such an evaluation method, we will find 
several requirements that need to be satisfied. An important prerequisite for this analysis is 
the situation in ACSs. The customers in ACSs are commonly only skilled in those fields 
which are related to the process under control, but they have to use programming languages as 
interfaces to the ACS components. The means of ACSs component providers need to be 
adapted to this special situation, and usability for the ACS customer has to be kept in mind in 
general. On the other hand, an ACS component is a highly sophisticated, programmable 
device that interacts steadily with its environment. 
We start our consideration with very general requirements which are related to any kind of 
control device, even if pure control logic needs to be verified. Secondly we will give a list of 
additional requirements for the evaluation of DSE. As a third view point we will investigate 
the needs of the ACS customer. Herein, some issues concerning the usability of such a new 
methodology are taken into consideration. 

2.1 Execution requirements for control devices 
The practical work with ACSs is dominated by testing and simulation as means for evaluation 
of the functionality of a control device. When we think of verification by model checking for 
the pure control functionality of a control device, the following requirements have to be 
handled. 
(1) Temporal behavior: In an ACS each control device typically is a real-time computer 
system. According to Kopetz (1997) such systems are characterized by functional require-
ments (these belong to the task that is solved by the control device), temporal requirements 
(correctness of the calculated results and actions), and dependability requirements (herein 
reliability, safety, maintainability, availability, and security are summarized). The main goal 
of an evaluation method is to prove the correctness of the computations of a given system. 
This belongs to the first item, functional requirements. Additionally, it is very important to 
take into consideration the temporal behavior of the control device, too. Only if both items are 
mentioned together, appropriate evaluation results will be achieved. When we apply this 
temporal behavior to verification by model checking, different specialized requirements 
emerge: 

• Modeling: The modeling language needs to provide appropriate means for character-
izing temporal behavior of the system. 

• Specification: The use of temporal logic for the definition of specifications already 
includes temporal behavior. Nevertheless, there are different extensions available for 
improved handling of real-time behavior in specifications as discussed for instance in 
Clarke et al. (1999, Chapters 16 and 17). 
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• Model checking algorithm: Obviously, the algorithms and techniques for model 
checking must be able to handle these specializations for temporal behavior. 

Dependability requirements of the control system as declared above will not be mentioned in 
this work. Of course, evaluation methods will also be useful for evaluation of safety or 
security of a control device. But this is not relevant for the process of DSE at a first glance. 
Further investigations (see outlook in Chapter 11) may be started as a next step based on the 
initial results of this work. 
(2) Execution semantics: The way of executing control logic, which is implemented in a 
given control device, needs to be modeled exactly. The behavior of the control device 
obviously depends on the concrete implementation of the control logic and the runtime 
environment. This also applies when the runtime environment is compliant to a specific 
standard. For instance, early approaches for the verification of the IEC 61499 standard—
Vyatkin and Hanisch (1999) presented a modeling approach for IEC 61499 function block 
applications the first time —purely concentrated on the definitions of the standard. Implemen-
tation details have not been considered and the approach was applicable for any kind of 
runtime environment. But in recent publications diverse examples are given that the concrete 
implementation of the standard, the so-called execution semantics, definitely influences the 
behavior of the control device in certain cases. Sünder et al. (2006a) discuss different 
questions about the execution semantics of the IEC 61499 standard in general, a precise 
answer is only possible with respect to a given implementation. Sünder et al. (2006a) 
especially focus on the Function Block Run-Time (FBRT), which is included in the Function 
Block Development Kit (FBDK), the first IEC 61499 engineering tool. Another impressive 
example is given by Čengić et al. (2006) by a comparison of the Function Block Execution 
Runtime (FUBER) and the ISaGRAF engineering tool [26]. The described situation of so-
called contiguous events shows that events may be lost depending on the used runtime 
environment. 
(3) Underlying system configuration: The consideration of implementation issues of a 
runtime environment may be obvious, because there may be different demands according to 
the wide application field within ACSs. But the situation is even worse, if we assume one 
runtime environment in different system configurations. The underlying system configuration 
has to be taken into consideration for the evaluation process, too. The most important aspects 
are the operating system and the computational power of the hardware platform. Zoitl (2007) 
describes a runtime environment for IEC 61499 standard, which enables real-time execution 
of control logic. The implementation includes an abstraction layer for the underlying operat-
ing system in order to provide similar behavior on various platforms. As proof of concept, the 
runtime environment was adapted to three different operating systems. By the use of diverse 
scenarios and appropriate measurements Zoitl concludes that characteristics of the operating 
system influence the execution behavior of the runtime environment, and therefore also the 
behavior of the control logic. 

2.2 Requirements for downtimeless system evolution 
The evaluation process for changes during operation of ACSs adds further specific require-
ments the above mentioned general claims to control logic evaluation. These aspects concern 
to the overall system evolution process—the engineering—and especially the evaluation 
process. 
(4) Modeling dynamic reconfiguration: DSE tends to changes of the ACS in a bigger 
context, utilizing dynamic reconfiguration as one basic methodology. It is necessary to define 
these basic actions of dynamic reconfiguration in detail for the implementation within a 
runtime environment as well as for a formal description. Zoitl et al. (2006) provide a catego-
rization of such so-called basic reconfiguration services, which are necessary to model any 
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kind of changes in the control logic of a control device. As a basis the management com-
mands of the IEC 61499 standard, defined in (IEC 61499-1, 2005), are used and enhanced 
compliant to the standard. The above mentioned runtime environment discussed in Zoitl 
(2007) implements a full set of basic reconfiguration services and provides a detailed 
description of their behavior. 
(5) Free programmable downtimeless system evolution: Many different reasons exist for the 
development of DSE in ACSs, and the changes may influence even large parts of the control 
logic. Baier et al. (2007) describe also situations where the DSE is spread over several control 
devices within the distributed ACS. As concrete example the reconfiguration of a communi-
cation channel is given. The scope of a DSE—and correspondingly also the scope for the 
evaluation of the DSE—needs not to be restricted to any kind of area in the control logic or in 
its size. Furthermore it is an important aspect to be able to freely program the process of DSE 
because of the widespread application fields in ACSs. This is in contrast to other approaches. 
For instance Steffen (2005) claims minimal invasiveness as one main requirement for the 
reconfiguration of control systems at run-time. As this approach is focused on closed-loop 
control systems such a restriction is possible to reduce the complexity problem. 
(6) Extensive engineering support: The acceptance of new technologies by the ACS cus-
tomer is a very difficult process as already denoted above. Hall et al. (2007) consider the very 
slow adaptation of the IEC 61499 standard by ACS vendors and describe challenges that must 
be met in order to encourage more active use and support. One of the main points is the 
availability of appropriate engineering tools. On the one hand, ACS customers need good 
tools to use the standard in industrial practice. On the other hand, it is hard to provide a tool 
without appropriate market response. For the methodology of DSE and especially its evalua-
tion, one very important requirement is the extensive engineering support for this new 
technique. Of course, this work does not aim at the development of such an engineering tool. 
But the methodology for evaluation of DSE needs to be based on mechanisms which enable 
simple integration to an engineering tool. Especially, there should not be any principal 
hindering reason for this integration. 

2.3 Usability requirements 
The last mentioned requirement already suggests that the usability for the ACS customer 
needs to be kept in mind for the whole approach. The situation is very complicated due to the 
different kinds of ACS customers—see the discussion in (Hanisch, 2004)—, which are skilled 
very differently. And especially the necessary skills for evaluation and mathematics are very 
often not present. 
(7) Provision of formal models: The ACS customer is not able to provide the formal models3 
for the overall system. There are various hindering reasons, for instance lack of knowledge, 
time effort, and unknown details about the underlying system. Therefore it is necessary to 
provide the formal models to the ACS customer in such a way that they can be easily used 
within the engineering process. Vyatkin and Hanisch (2001a) give an example for such an 
integrated engineering support in the Verification Environment for Distributed Applications 
(VEDA) tool. Herein, the IEC 61499 application is automatically transformed into formal 
models. Furthermore the model of the plant is an integral part of the tool. This enables VEDA 
to easily generate the model of the overall system. Validation of single traces within the state 
space of the system is animated in a graphical visualization of the plant. According to the 
above given Requirements (1) “Temporal behavior”, (2) “Execution semantics”, and (3) 
“Underlying system configuration”, this process of automatic generation of formal models is 

                                                 
3 We will use the term formal model for a mathematical description, which is necessary for instance as input for 
a model checking algorithm. 
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much more complicated than realized in VEDA, but there needs to be a methodology for the 
generation of the formal models with only very little interaction by the ACS customer. 
Provision of formal models by the different ACS vendors included in the overall system is 
necessary. 
(8) User-friendly definition of specifications: Verification by model checking is a technology 
used in research, but the transition of this technology to practice has been slow even in the 
field of computer science. Dwyer et al. (1998) state that one of the main reasons is that 
practitioners are not familiar with the specification processes, notations and strategies. As a 
consequence, they propose Property Specification Patterns as a generalized description of the 
specification for a certain property. Dwyer et al. (1999) present a survey on specifications 
used in literature, which reports that 92 percent of the specifications can be categorized in 
their system of property patterns. As the background knowledge of people working with 
ACSs concerning verification by model checking is even less, the use of a user-friendly 
definition of specifications is necessary. A pattern may be described using natural language 
which is automatically adapted to a temporal language. As a consequence also ACS custom-
ers may be able to define also complex properties of the system evolution process without 
being faced with any kind of temporal language. For successful application of a property 
specification pattern system for the evaluation of system evolution it is necessary to adapt the 
general patterns to the special needs of DSE. 

2.4 Summary 
This chapter provides a detailed analysis of the requirements which need to be satisfied by a 
methodology for evaluation of DSE. This is part of an overall engineering methodology for 
DSE. These requirements build also the basis for modeling of DSE. Table 1 gives a short 
overview on the different requirements. 
 

(1) Temporal behavior In addition to functional behavior it is very important to recognize 
also temporal behavior for evaluation. 

(2) Execution semantics Implementation details about the execution semantics of the used 
runtime environment must be mentioned. 
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(3) Underlying system 
configuration 

The overall system configuration has to be considered for a full 
featured model of the control device. 

(4) Model dynamic reconfigu-
ration 

The basic actions of dynamic reconfiguration have to be described 
and modeled in detail. 

(5) Free programmable DSE DSE must not be restricted in order to enable its use in any 
application field of ACSs. 
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(6) Extensive engineering 
support 

Evaluation of DSE needs to be accompanied by extensive 
engineering support. 

(7) Provision of formal models Formal models of the overall system need to be generated 
automatically or provided by ACS vendors. 
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(8) User-friendly definition of 
specifications 

Specifications have to be defined by ACS customers in natural 
language (without knowledge in temporal logics). 

Table 1: Requirements for the evaluation of DSE for this thesis 
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3 State of the Art 

Chapter 3 

State of the Art 

Already the introduction of this thesis in Chapter 1 gives a very brief description of the related 
fields of technology. This chapter will provide more detailed information about the three main 
topics: 

• A general view on automation and control systems is depicted with particular interest 
on the lower levels of control in production industries, their programming languages, 
and description languages. 

• Dynamic reconfiguration, as outstanding feature of these systems, will be considered 
within various architectures. Based on a more general view on methodologies known 
from computer science and embedded systems design, the usage within ACSs is em-
phasized in detail. This includes also the way of how to manage the transition from 
one system state to another. 

• The aspect of evaluating the functionality of a given system is discussed with respect 
to the model checking methodology. There has been very much progress in this field 
in the past decades. Although practical relevance is rather low for industrial applica-
tions—this especially applies for ACSs—several approaches exist for the use of veri-
fication by model checking in the current state of the art. 

There is no claim for completeness of the presented material, since the variety of possible 
methodologies and technologies is overwhelming. Researchers have been active in many 
fields of ACSs to face the challenges of industry, and as already depicted by different studies 
(e.g., European Commission, 2006) investigating new solutions for today and future challeng-
ing requirements will continue. 

3.1 Automation and control systems 
The initial aim of an automation and control system is to provide control over a physical 
process by the use of some control devices. As a general source of information concerning 
ACSs we will use Favre-Bulle (2004). Herein a principal differentiation between product 
automation and plant automation is given. The first one is related to the control of physical 
processes within a product, the latter investigates complex technical processes within a plant. 
Our focus is clearly on plant automation, although similar or equal methodologies may be 
used for product automation, too. 
The general structure of an ACS for plant automation is given in Figure 3 as a very abstract 
schematic. There are different roles of vendors that can be identified. This kind of illustration 
stems from Vyaktin et al. (2005), who argue that this structure characterizes both manufactur-
ing plants as well as process plants. The responsibilities of the different players can be 
described roughly as follows: 

• Component vendors: The basic building blocks of an ACS are actuators and sensors. 
These are the direct interfaces to the process under control. The range of these ele-
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ments is very wide according to the large application field of ACSs. For integration of 
components into the overall ACS, a defined interface is applied for instance by the use 
of a field bus as communication system. 

• Machine vendors: Based on the various components machine vendors build function-
ally complete production machines. Herein also handling of products as well as logis-
tics infrastructure is included. The integration of a machine may be based again on 
field buses, but also more complex communication is possible. 

• System integrators: The overall production plant is assembled by a system integrator, 
who takes care of coordination of machines, production flow, and supervision. 

• Industrial enterprises: The industrial enterprise integrates the production plant into 
the overall enterprise. Herein various aspects like product life cycle planning, cus-
tomer requirements, or customization of products are taken into consideration. 

• Tool/Controller vendors: All levels mentioned above use different tools, runtime 
environments, or complete control devices in order to fulfill the required functionality. 
On the lower levels of Figure 3 simple microcontrollers or PLCs will be used for in-
stance as control devices for components and machines. On the upper levels Industrial 
Personal Computer (IPC) will provide the necessary computational power for Produc-
tion Planning and Scheduling (PPS) or Enterprise Resource Planning (ERP). 

• Service vendors: In addition, service vendors exist who are specialized on specific 
topics within the life cycle of the ACS, for instance diagnostics, maintenance, or opti-
mization. 

 
Figure 3: General structure and roles of vendors in ACSs, based on (Vyatkin et al., 2005, Fig. 1) 

Figure 3 also indicates the basic business model of the different vendors within an ACS. For 
instance, a component vendor provides his special expertise on the component. The machine 
vendor creates additional value as he appends his expertise on the machine and its behavior 
and so on. Vyaktin et al. (2005) claim that if each of the different players is able to add his 
knowledge to his product on the particular level of the ACS in an open manner, a new level of 
increased efficiency and simplified engineering can be achieved. The main requirements for 
such a new open knowledge economy in the ACS are encapsulation and protection of 
Intellectual Property (IP) in software components, an open architecture of interoperable 
control devices, and open software tool integration platforms. 
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Automation objects 
One main concept presented in (Vyaktin et al. 2005) is characteristic for current research in 
ACSs, the so-called automation object. A proper description of an automation object includes 
apart from the control logic also information concerning layout, electric wiring, diagnostics, 
visualization, simulation, and so on. Therefore an automation object represents mechanical 
devices associated with software functionality and additional data. Also a computational unit 
is part of the mechatronic devices, and these basic building blocks are used to establish 
machines and systems in a hierarchical manner. The concept of a component, that includes 
mechanics and electronics, is well known as mechatronic device (e.g., a sensor or actor with a 
field bus interface). The idea of free programmable mechatronic devices with an extensive 
description of the different aspects of the device is the topic of new work presented in recent 
years. Vyatkin (2003) gives a description of such an automation object as a product that 
unifies three items: 

• Mechatronic component: A physical functional device with sensors, actuators and 
electronic circuits. 

• Embedded control device: A computing device with interfaces to the sensors and 
actors as well as to the network. 

• Software component: A set of data and control logic implementing various automa-
tion functions. These elements provide the autonomy and cooperation of the automa-
tion object. 

There are several reasons for the definition of such an automation object. Sünder et al. 
(2006b) describe the composition of ACSs based on these elements (the work uses the term 
automation component as it does not include all views of an automation object) for simplifica-
tion in engineering. The aspects logic, diagnostics, and Human Machine Interface (HMI) are 
mentioned explicitly. The structure for all these elements is oriented to the functional 
structure of the ACS, which is commonly already consistent with the hardware structure. This 
unified hierarchical architecture increases efficiency for both engineering and maintenance. 
Each automation component is represented by a universal interface towards the system, which 
additionally increases exchangeability of components. This provides the basis for reconfigura-
tion of the ACS on the level of automation objects, as it is also discussed by Vyatkin (2003). 
Ferrarini et al. (2003) describe a very similar approach. Herein the motivation is to deal with 
complex systems by a hierarchical decomposition of the system behavior and possible 
modularization. The overall system is considered as an object, with the expected behavior as 
its main method. This method makes use of the functionality (again methods) of sub-modules. 
Ferrarini et al. (2003) refer to these elements as intelligent mechatronic modules, similar to 
the definition of automation objects. For further work in this field the reader may consider for 
instance also Lee et al. (2004), which present a component-based distributed control systems 
for assembly automation, or Thramboulidis (2005), which additionally includes the analysis 
and design phases of the development process to establish so called model-integrated 
mechatronics. 
Another interesting aspect—especially for this work—is included in the approach presented 
by Bonfe and Fantuzzi (2003), the evaluation of mechatronic object-oriented models. The 
basic elements for the design of ACSs are again similar to the above given definition of 
automation objects, although they are called mechatronic objects in this work. These objects 
are modeled by the use of adapted class diagrams and state charts from the Unified Modeling 
Language (UML). For each mechatronic object the control action as well as the hardware 
behavior (the uncontrolled plant) are modeled. The interaction of the mechatronic objects is 
described by means of collaboration diagrams (also specified by the UML). The authors 
present the transformation of these models into the input language of the verification tool 
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Symbolic Model Verifier (SMV) in order to provide verification by model checking. We will 
refer to this aspect of the work in more detail in section 3.6.4. 

Reconfigurable manufacturing systems 
The aspect of reconfigurability in ACS is also topic of a new type of manufacturing systems, 
the Reconfigurable Manufacturing Systems (RMSs). Koren et al. (1999) claim that RMSs are 
needed for cost-efficient response to the fast changing market. In contrast, dedicated manufac-
turing systems have a fixed machine structure and are able to produce high volumes at low 
prices, but they lack fast response to market changes. Flexible manufacturing systems are 
limited due to the use of universal machines, e.g. Computer Numerical Control (CNC) 
machines, and they lack high throughput. Setchi and Lagos (2004) also mention cellular 
manufacturing systems, that are also inflexible to market changes. According to the definition 
of RMSs in Koren et al. (1999, Section 2), RMSs “are designed at the outset for rapid change 
in structure, as well as hardware and software components”. The use of automation objects, 
herein defined as the elements of a modular machine, achieves the ultimate goal of RMSs: “a 
systems approach in the design of the manufacturing process that allows simultaneous 
reconfiguration of (1) the entire system, (2) the machine hardware, and (3) the control 
software.“ (Koren et al., 1999, Section 3). 
This work will focus especially on the third goal of RMS on the lower levels of control logic. 
This is in contrast to other approaches related to the upper levels of a machine or system. 
Herein often agent-based approaches are introduced. To give an example, Lopez Orozco and 
Lastra (2007) describe their approach of a control model for RMSs, that utilizes so called 
mechatronic modules as basic building blocks (these are again similar to automation objects). 
They differentiate between two types of control for a system based on mechatronic modules, 
the logic control application and the coordination control. The logic control encapsulates the 
interaction with the hardware, its functionality is fixed. The coordination control is realized 
by the use of agent technology, which is responsible for communication and coordination of 
the mechatronic modules in order to fulfill the overall task of the RMS. Reconfigurability of 
the RMS is achieved by the coordination logic. 

Software components in computer science 
The above discussion about the use of components in ACSs needs to be examined also from 
the viewpoint of methodologies from computer science. An important source for an insight 
into component-based software development is Szyperski (2002). The situation about terms 
and definitions is even worse for software components as already described for the idea of 
automation objects. In order to structure the following discussion, we will refer to the 
definition given by Szyperski (2002, Section 4.1.5): “A software component is a unit of 
composition with contractually specified interface and explicit context dependencies only. A 
software component can be deployed independently and is subject to composition by third 
parties.”4 There are three main characteristic properties of a software component according to 
this definition (Szyperski, 2002, Section 4.1.1): 

• Unity of independent deployment: This property aims at a clear separation between 
the software component’s environment and other software components. Further, a 
software component will never be deployed partially. 

• Unity of third-party composition: A third party means someone who has no access to 
the construction details of all the components involved. Nevertheless, a third party has 

                                                 
4 This definition is not in conflict with the definition of an automation object or its software components in 
general. It strongly depends on the used programming languages and methods in order to decide this question. 
We will discuss this aspect in more detail in Section 3.2. 
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to be able to combine a software component with other software components. There-
fore, a software component needs to be self-contained.5 

• No (externally) observable state: It is required that a software component cannot be 
distinguished from copies of its own. 

The component-oriented approach is very popular in information technologies and represents 
a main technology for current software architectures. This also applies for a special class of 
computer systems related to ACSs, the so-called embedded systems. The term embedded 
systems is again widely used and—expectedly—even contradicting definitions are mentioned 
in literature. We will follow the definition used within the European Union funded project 
Accompanying Measure on Advanced Real-Time Systems (ARTIST). Herein Bouyssounouse 
and Sifakis (2005, Section 1.2) refer to embedded systems as “electronic programmable sub-
systems that are generally an integral part of a larger heterogeneous system”. The interaction 
with the physical plant is the source of the real-time constraints, therefore embedded systems 
in general belong to the class of real-time computer systems (as already mentioned in 
Section 2.1). Consequently, any kind of computer controlled device within ACSs, for instance 
PLCs or automation objects, is an embedded system. But the application field of embedded 
systems is very broad and includes for example also automotive, aeronautics, consumer 
electronics, or telecommunications. This has an important impact to the techniques that are in 
use for the design and development of embedded systems. The programmer of an embedded 
system, for example a specific controller for a car or an airplane, is in common a specialist in 
computer science. At least the tools and proposed methods require distinctive skills in this 
area. For ACS this is only true for those people who are involved in the design of a control 
device such as a PLC. The end-user or customer of ACSs has skills concerning the process 
under control, but typically not in computer science as described by Hanisch (2004). The 
interface visible for the customer of an ACS control device is a programming language, 
whereas for embedded systems in general the interface is described by a set of parameters or 
some kind of HMI, if at all. 
Another aspect that needs to be mentioned is the design of distributed embedded systems. 
Within all topics mentioned in the ARTIST roadmap (Bouyssounouse and Sifakis, 2005) it is 
obvious that a system consists of more than one single embedded system. Even more a large 
number of embedded systems have to cooperate in order to fulfill the system requirements. 
Kopetz (1997) presents the time-triggered architecture as main element for such a distributed 
real-time system. Herein, the communication between the different single embedded systems 
is determined by a schedule fixed at design time. In ACSs different means for handling this 
problem are available according to the special requirements. We will discuss these solutions 
in the following section. 

3.2 Programming languages 
The majority of ACS customers uses programming languages that are based on the standard 
IEC 61131-3 (2002). Herein four different languages for programming as well as one 
modeling language are defined, that can be found (at least in some dialects) in any PLC 
system. In addition, the IEC has defined the standard IEC 61499 in 2005, which is expected to 
become the successor of IEC 61131-3. Nevertheless, the practical usage of IEC 61499 is at 
the moment very low. Next to these two IEC standards, there may be used also any kind of 
programming or modeling approach from the wide field of embedded systems and computer 

                                                 
5 The claim for protection of IP from Vyaktin et al. (2005) fits exactly with the claim for third-party composi-
tion. In detail the general structure of ACSs presented in Figure 3 requests such a property as there are several 
players involved for the establishment of production plants. 
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science. But from an overall perspective, these approaches are insignificant, as this is 
reflected also by Bouyssounouse and Sifakis (2005). 
We will discuss these two IEC standards in contrast to the definitions of software components 
in order to bring them in the context of the component-oriented programming paradigm. This 
is especially useful, as for the purpose of dynamic reconfiguration the use of software 
components is very advantageous due to its characteristic properties. Additionally, the 
following definitions from Szyperski (2002, Section 20.3) may support the discussion: 

• “A component framework is a dedicated and focused architecture, usually around a 
few key mechanisms, and a fixed set of policies for mechanisms at the component 
level.” 

• “A component system architecture consists of a set of platform decisions, a set of 
component frameworks, and an interoperation design for the component frameworks.” 

The first definition points out clearly that it is very important to mention also the component 
framework when considering software components. We will discuss this topic in detail for the 
programming languages of ACSs. The second definition aims at the overall configuration of a 
system, in our case a control device. As already mentioned in Requirement (3) in Section 2.1, 
the underlying system configuration needs to be taken into consideration for the evaluation of 
control logic. In detail, typical control devices are based on a real-time operating system, 
which represents a component framework itself. Additionally, some kind of middleware may 
be integrated (again a component framework), and on top of this the component framework 
for a programming language may be applied. Bouyssounouse and Sifakis (2005) provide an 
overview on current available real-time operating systems and middleware architectures, 
which is representative also for ACS control devices. 

3.2.1 IEC 61131-3 
The international standard IEC 61131 provides a set of eight parts concerning PLCs and their 
associated peripherals. Part one (IEC 61131-1, 2003) defines the principal characteristics of a 
PLC as digital, electronic system designed for industrial environments, which uses internal 
memory and user-oriented instructions in order to control and command machines and 
industrial processes. The most important part is IEC 61131-3 (2003), which defines pro-
gramming languages and data types as well as a software architecture for PLCs. There are 
several sources for detailed information available. The most important one is the standard 
itself, next to several books as for instance Lewis (1998) or John and Tiegelkamp (1995). To 
the author’s best knowledge there exists no book that is related to the actually valid, second 
edition of IEC 61131-3, although John and Tiegelkamp (2000) provide an outlook on 
upcoming changes to the first version of the standard. 
The programming languages of IEC 61131-3 are widely used in industry. This is also a result 
of the work of the PLCopen organization, which is a user and vendor-driven platform to 
support the usage of IEC 61131-3 in industry. In recent years some specifications for add-ons 
in form of explicitly defined function blocks (e.g. motion control or safety) have been 
published that have strengthened unified usage of the IEC 61131-3 for certain application 
fields. 

Software model 
The main elements of the software architecture defined in IEC 61131-3 are given in Figure 4. 
The top element is called configuration and represents a programmable controller (this term is 
used in the standard for a PLC). A configuration consists of one or more resources, which 
represent a signal processing function. A resource consists of tasks and programs. A task is an 
execution control element that provides periodic or triggered execution of associated program 
organization units (POUs). This association is depicted by the execution control paths in 
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Figure 4. In general POUs may be programs, function blocks (FBs), or functions. Programs 
can only be instanced within resources, while FBs can be instanced within programs and FBs. 
The difference between functions and FBs is that functions shall not contain internal state 
information. 

 
Figure 4: IEC 61131 Software model, (IEC 61131-3, 2003, Figure 3) 

Data types 
(IEC 61131-3, 2003) defines a set of elementary data types, such as integers, strings, or real 
numbers, a hierarchy of generic data types in order to enable overload mechanisms, and so-
called derived data types. The last one describes user-defined data types that are derived from 
the existing data types, for instance an enumeration or a structure. 

Variables 
Variables are data objects associated with the inputs, outputs, or memory of the PLC. A 
variable can be declared to be one of the elementary or derived data types. There exist several 
variants of variables, which have important influence on the way of how to program a PLC. A 
detailed list is given in (IEC 61131-3, 2003, Table 16). 

• Directly represented variables provide access to data elements with physical or logical 
locations in the PLC’s input, output, or memory structure. 

• VAR and VAR_TEMP identify internal variables (the second one means temporary 
storage). 

• VAR_INPUT, VAR_OUTPUT, and VAR_IN_OUT define the interface of a POU, 
whereas the last one can be seen as a reference instead of a storage element. 

• VAR_GLOBAL defines variables that can be used within the whole scope of a con-
figuration or resource. By the use of the VAR_EXTERNAL construct a POU can 
yield access to a globally defined variable. 

• VAR_ACCESS defines variables that can be used for remote access via the communi-
cation services specified in (IEC 61131-5, 2000). An access path associates each such 
variable with a global variable, directly represented variable, or input, output, or inter-
nal variable of a program or FB. The direction of the access path can be specified (i.e., 
read/write or read only). 
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• VAR_CONFIG is used to provide a means to assign a location or an initial value to 
symbolically represented variables. For this special case the use of an asterisk notation 
is possible, which enables the utilization of a “*” in a type definition. The full specifi-
cation for an asterisk notation has to be expressed in the configuration which uses an 
instance of this type. 

Structuring of programs and FBs 
A POU is considered as a single action which is executed under control of the invoking entity. 
Additional structuring of programs and FBs is possible by means of the Sequential Function 
Chart (SFC) construct. Herein actions are associated with states, and the active state evolves 
according to interrelation of states via transitions and evaluation of the transition conditions. 
SFC represents a kind of state machine, with the possibility of several active states at the 
same time. The execution of actions is additionally parameterized by action qualifiers, so that 
for instance an action may only be executed once when the corresponding state becomes 
active. As a result programs and FBs can be structured in a sequential manner. 

Programming languages 
The programming languages of the IEC 61131-3 standard are defined in order to describe the 
control behavior of a POU. Nevertheless, any other programming language may be used 
instead. The standard defines two textual languages, Instruction List (IL) and Structured Text 
(ST), and two graphical languages, Ladder Diagram (LD) and Function Block Diagram 
(FBD). LDs come from the relay ladder logic diagrams, which have been replaced by the 
PLC. This programming concept provides a similar visual interface with additional features 
such as calls of FBs and functions. IL is very similar to the assembler language and provides a 
very simple instruction set. In contrast ST is similar to a higher level programming language 
such as Pascal or ADA, but with limited functionality (e.g., restricted specification of 
procedures or no use of pointers and memory access). The FBD programming language stems 
from Boolean logic diagrams, but additionally supports non-Boolean data types. A general 
difference to programming languages from computer science that needs to be kept in mind for 
all IEC 61131-3 programming languages is their execution behavior. The execution element 
is a task which can be triggered cyclical (which is typically the case) or by occurrence of an 
event, and POUs are executed in the context of these tasks. 

Concepts for distribution 
Although the IEC 61131-3 standard is defined for one PLC, also the cooperation of PLCs is a 
matter of fact in real world applications. There are two means that have to be mentioned when 
considering programming of two or more PLCs within one application: 

• Network variables: Many providers of runtime environments according to IEC 61131-
3 have introduced the concept of network variables, which is based on global vari-
ables. The only difference is that a network variable is valid for several configurations 
which may be located on different PLCs. The mechanism for synchronization of the 
local representations of a network variable is implemented vendor specific. Petig 
(2000) describes this methodology in more detail. 

• Communication function blocks: Part five of the IEC 61131 standard (IEC 61131-5, 
2000) defines communication FBs for access to variables that are identified via the 
VAR_ACCESS construct from outside the configuration (see also Figure 4). Addi-
tionally, status information can be requested from a PLC. Although this standardized 
concept for communication exists it is not used in practical realizations of PLCs. 

Software components within IEC 61131-3 
In order to find a relationship of the IEC 61131-3 constructs and the paradigm of component-
based software development we will consider different scenarios for a mapping with the 



STATE OF THE ART 19 

above mentioned definitions for software components and component frameworks. A first 
idea is provided by Bouyssounouse and Sifakis (2005, Section 12.2, Example 3), which states 
that “function blocks can be viewed as components and interfaces between blocks are released 
by connecting in-ports and out-ports”. In this context especially the definition of interfaces 
and their descriptions are very important. The interface has to be defined in a clear manner 
and (as denoted in the definition for a software component) represents a contract in order to 
separate the software component from the component framework and other components. 
There should not exist any hidden interface that influences the behavior of a software 
component. Kopetz (1997, Sections 4.3.1 and 5.5.1) describes such hidden interfaces for a 
component-based distributed real-time system. He claims that they lead to incorrect results 
when reasoning about the correctness of a composition. 

• Function as software component: A function is the most restricted element within the 
IEC 61131-3 software model. It does not include state information and is not allowed 
to use the VAR_EXTERNAL construct. Its interface and behavior is clearly described 
and a function can be seen as a software component. 

• FB as software component: An FB is able to have state information, which is not 
contradicting the mapping as a software component. But there exists additionally the 
VAR_EXTERNAL construct, which enables the relation to any other element within a 
configuration or resource. The interface is only described by the use of a data element 
without any further description of the behavior of this interface. If the counterpart (and 
even the number of these counterparts is not limited) is related to another task with 
different execution settings, the behavior of an FB is in conflict with the principles of 
a software component. 

• Program as software component: Roughly speaking there is no difference between a 
program and an FB aside from the reusability of FB types. Therefore, the same argu-
ment concerning the VAR_EXTERNAL construct applies also for programs. Another 
problem occurs from the execution control of FBs within programs. As depicted also 
in Figure 4 an FB may be related to another task than the overall program, which is 
specified within the resource. This results in another problematic situation concerning 
the definition of software components, as the behavior of two program instances will 
be different. 

• Resource as software component: A resource includes information about the control 
logic depending on the used program instances as well as the execution behavior—the 
included tasks and their parameters. The result is a rich description of a resource as a 
software component. Nevertheless, there exists also the VAR_EXTERNAL construct 
which enables the use of an interface without behavior description in the resource. 
Therefore a resource cannot be considered as a software component. 

• Configuration as software component: The configuration is the highest level in the 
software model of IEC 61131. A global variable within the configuration depicts an 
internal state of a software component and would fulfill the requirements for a soft-
ware component. The interface of a configuration is given by the VAR_ACCESS 
definition. In case of a read-only restriction for such an access path the output of a 
software component is defined. But an input is defined without clear behavior descrip-
tion, which is again a problem when considering the mapping to a software compo-
nent. This is especially problematic when thinking of the use of network variables in 
order to establish communication between configurations. 

3.2.2 IEC 61499 
The aim of the IEC 61499 standard is to provide “a generic architecture (…) for the use of 
function blocks in distributed industrial-process measurement and control systems. This 
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architecture is presented in terms of implementable reference models, textual syntax and 
graphical representations” (IEC 61499-1, 2005, Section 1). The trigger for this new standardi-
zation work for ACSs (standardization work started 1992 when the IEC 61131-3 standard has 
just been finished) came from visionary studies of the Iacocca Institute (1992) and research 
programs. Especially the Holonic Manufacturing Systems (HMS) project is very important in 
this context, as depicted for instance by Christensen (1994). Key requirements that have been 
considered during the development are next to distribution and reconfigurability: 

• Portability: The ability of software tools to accept and correctly interpret library ele-
ments produced by other software tools. 

• Configurability: The ability of devices and their software components to be config-
ured (selected, interconnected, parameterized, and assigned to locations) by multiple 
software tools. 

• Interoperability: The ability of devices to operate together in order to perform the 
functions specified by one or more distributed applications. 

The standard consists of four parts. Part one (IEC 61499-1, 2005) includes all definitions and 
models which are required to describe the architecture of the standard. Part two (IEC 61499-2, 
2005) aims at software tool requirements and includes a Document Type Definition (DTD) for 
the representation of data types and library elements. Part three (IEC 61499-3, 2004) is a 
technical report which contains explanations on the elements and methodologies of the 
standard. Part four (IEC 61499-4, 2005) provides rules for compliance profiles, which are the 
means of the standard to cope with implementation depended details that are neglected in the 
standard itself. Next to the standard there are up to now two books available that describe 
IEC 61499 in more detail. Lewis (2001) gives a good introduction to the aims of the standard, 
but due to its early publication date it is not conform to the current standard. However, this is 
the case for Vyatkin (2007a), which is the teaching material of a university course and 
introduces the concepts of IEC 61499 by the use of the FBDK tool. 
The Open, Object-Oriented Knowledge Economy for Intelligent Industrial Automation 
(O3neida) organization pays attention to the further development and industrial application of 
the IEC 61499 standard. Next to several other activities especially a working group [40] on 
the development of compliance profiles has been founded in order to specify open issues 
within the definitions in the IEC 61499 standard. Actually, the topics of the working group 
are concentrated on execution semantic issues in order to provide similar execution behavior 
in heterogeneous system environments (IEC 61499 devices from different vendors). In 
addition also a compliance profile for the communiation via the CIP protocol has been 
established in a first version. 

Basic architecture 
The architecture of the IEC 61499 standard is described as a list of models. Figure 5 includes 
several of these models which can be considered as basic architecture of the IEC 61499 
standard: 

• System model: A system consists of devices, which are interrelated by some commu-
nication network, and applications. 

• Device model: A device includes resources and interfaces to the process and/or the 
communication network. 

• Resource model: The resource6 is the element which executes FBs independently. It 
makes use of the interfaces from the device. 

                                                 
6 The definition of a resource in IEC 61499 is not equivalent to the one of IEC 61131-3. 
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• Application model: An application consists of an FB network, which is composed of 
FB instances, their parameters and connections between the FBs. The execution of ap-
plications is determined by the event and the data flow within the FB network. 

• Distribution model: An application can be distributed to different resources, which 
may be located on different devices. In Figure 5 ‘Application A’ is distributed to dif-
ferent devices, ‘Application C’ is distributed to two resources within the same device. 
‘Application B’ is distributed to ‘Device 2’ and ‘Resource X’ in ‘Device 3’. The FB 
network visible in Figure 5 is allocated to ‘Resource X’ only, the communication 
within ‘Application B’ is capsulated in FBs. As the execution flow of an application is 
given by events, a distributed application will behave in the same manner as if it is lo-
cated within one resource (delays due to communication neglected). 

 
Figure 5: IEC 61499 architecture, based on (IEC 61499-1, 2005) 

Function block model 
The most important element of the IEC 61499 standard is the function block. In contrast to an 
FB defined by (IEC 61131-3, 2003) the interface is not only defined by variables but also by 
events. Figure 6 (a) depicts the graphical representation of an FB according to (IEC 61499-1, 
2005). The upper part of the FB includes the event inputs (‘EV1’ and ‘EV2’) and event 
outputs (‘EV3’ and ‘EV4’), the lower part contains the data inputs (‘DI1’ to ‘DIx’) and the 
data outputs (‘DO1’ to ‘DOy’). The FB is executed as soon as it receives an event. In this case 
the data inputs related to this event are sampled. The means of the standard for the association 
of events and data is called WITH construct. Graphically the WITH construct is displayed as 
vertical line for an FB type, as for instance between ‘EV1’ and ‘DI1’ in Figure 6 (a). 
IEC 61499 does not define its own data types but makes use of the ones defined in 
(IEC 61131-3, 2003). After the execution of the internals of the FB output events may be 
initiated. There exists also an association between output events and output data, which 
denotes that these data outputs have been updated according to the FB execution before the 
corresponding output event has been produced. Therefore, the connection of an input event 
with an output event (including the corresponding data connections) will lead to a stable 
execution of FB networks with the latest data values. As an additional means the so-called 
adapter concept is introduced in the IEC 61499 standard. Herein, a bidirectional interface 
consisting of events and data can be specified and used as input or output for an FB. This can 
be used for simplification for instance if a specific interface is defined for some special 
purpose. 
The internals of an FB can be categorized in three main types, which are called Basic FB 
(BFB), Composite FB (CFB), and Service Interface FB (SIFB): 



22 STATE OF THE ART 

• Basic function block: The behavior of a BFB is defined as event driven state machine, 
the so-called Execution Control Chart (ECC). Figure 6 (b) provides an example of an 
ECC. The ECC consists of states, that are connected via transitions. The transition 
condition can be an input event (e.g., ‘EV1’), a Boolean expression (e.g., ‘1’), or the 
conjunction of both. When an input event triggers a BFB, all transitions from the ac-
tive state are evaluated. There can only be one transition that fires (there exists an or-
der for evaluation) and the active state of the ECC changes (there is only one active 
ECC state at one time possible). When a new state is entered, the corresponding ac-
tions are executed. An action consists of an algorithm, an output event (e.g., the action 
with ‘EV3’), or both (e.g., the action consisting of ‘Alg’ and ‘EV4’). There is more 
than one action possible for one state, and they are executed in a given order. If all ac-
tions of the active state have been executed, the transitions of the active state are 
evaluated. When a transition fires (e.g., ‘1’), than the ECC state changes and the cor-
responding actions are executed. Otherwise the execution of the BFB has finished. An 
algorithm within a BFB can be written in any programming language, but the 
IEC 61499 standard especially mentions the languages defined in (IEC 61131-3, 
2003). An algorithm can use only input data, output data, and internal data of the FB 
type, therefore a BFB defines a very strong encapsulation of algorithms. 

 
Figure 6: IEC 61499 FB model and FB types 

• Composite function block: The behavior of a CFB is defined by an FB network. The 
FBs within a CFB are called component FBs, and there is no restriction to a special 
FB type. For instance, hierarchical structures can be designed by reuse of existing 
CFBs. The execution of a CFB is defined according to the event and data connections 
of the component FB network. A CFB cannot have internal data, since there is no pos-
sibility to use them within the component FB network. Figure 6 (c) depicts an example 
for a component FB network. In order to use the events and data from the CFB inter-
face, their name can be used directly as inputs or outputs of the component FBs (e.g., 
‘EV1’ or ‘EV3’). 

• Service interface function block: The SIFB is a concept for the encapsulation of the 
interaction with external elements, that are not in the scope of the definitions of the 
IEC 61499 standard. Examples are interaction with the process or communication in-
terface of a device, but also internal functionality of the underlying system (e.g., the 
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timer). In more general, within a SIFB any kind of functionality may be hidden. But 
the interface is equal to a BFB or CFB. In order to provide more information about the 
hidden functionality, a sequence diagram is defined by the standard. Figure 6 (d) de-
picts a simple example for one operational mode of a SIFB. If the event input ‘EV1’ is 
triggered, the SIFB will execute ‘Some action’ and emits the output event ‘EV3’ af-
terwards. 
The IEC 61499 standard distinguishes two different types of SIFBs, the responder 
type and the requester type. The differentiation is based on the way the interaction be-
tween the FB network and the encapsulated functionality (which is called service) 
takes place. If the interaction is triggered by the FB network, then the SIFB is of re-
quester type, and the interaction is called application triggered. This is the case for in-
stance when outputs of the device can be written by the use of a SIFB. The sequence 
diagram in Figure 6 (d) describes exactly such an interaction. If the interaction is trig-
gered by the service, then the SIFB is of responder type, and the interaction is called 
resource triggered. A typical example are time FBs, which are defined in (IEC 61499-
1,2005, Annex A). For instance an E_CYCLE is triggered only once by the FB net-
work to start its operation. Afterwards it emits events periodically triggered by the 
timing service. 

Next to these FB types, the IEC 61499 standard defines the element subapplication. This 
element is similar to a CFB, but there exists no WITH construct and the component FBs and 
component subapplications may be distributed to different resources.  

Management model 
The IEC 61499 standard also includes a model for the management of resources and devices. 
It is stated that a management application may be modeled in order to facilitate the manage-
ment of a device or resource. The management application itself is left open as an implemen-
tation-dependent part using SIFBs for communication and management. For the management 
SIFB a generic FB definition is included with a description of its functionality. The following 
management commands, see (IEC 61499-1, 2005, Table 6), are given based on a state 
machine for managed FBs, see (IEC 61499-1, 2005, Figure 24). Examples are provided in 
order to illustrate the management commands: 

• CREATE: Creates an object such as an FB instance, resource instance, data connec-
tion, or event connection. 

• DELETE: Deletes an object such as an FB instance, resource instance, data connec-
tion, or event connection. 

• START: Starts an object such as an FB instance or an application. 
• STOP: Stops an object such as an FB instance or an application. 
• READ: Reads data from an access path7, e.g., the data output of an FB instance. 
• WRITE: Writes data to an access path such as the data inputs of an FB instance or 

resource instance. 
• KILL: Makes an object unrunnable such as an FB instance. 
• QUERY: Request for information on an object such as the FB types of a device, the 

FB instances of a resource or connections within a resource. 

                                                 
7 An access path in IEC 61499 is a little bit different to the one defined in IEC 61131-3. It is defined as the 
association of a symbolic name with a variable, which is based on the concatenation of the instance names of the 
hierarchical elements, e.g., DEVICE_NAME.RESOURCE_NAME.FB_NAME.DATA_OUTPUT. 
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Compliance Profiles 
A very important element of the IEC 61499 standard is the use of compliance profiles 
(IEC 61499-4, 2005) in order to specify open issues. The standard does not claim for com-
pleteness, but provides this element to unfold details of an implementation. A compliance 
profile is organized in three parts, which have been already mentioned above: portability, 
configurability, and interoperability. 
Two practically relevant compliance profiles exist at the moment. The first one has been 
defined by James H. Christensen for his IEC 61499 implementation FBDK. It was the basis 
for the first inter-vendor feasibility demonstration of IEC 61499 within the HMS project and 
is called IEC 61499 Compliance Profile for Feasibility Demonstration [17]. Further 
IEC 61499 implementations have used this compliance profile, too, instead of using their own 
definitions. One example for a definition used in the compliance profile is the management 
application. The standard defines a generic management FB, but this compliance profile adds 
a concrete implementation of a management FB and its communication to a software tool. 
Also the semantics of this interface are defined as DTD for management commands. Commu-
nication FBs are another example, which are proposed in their interface within the standard. 
The compliance profile adds a definition for serialization of data streams in order to use 
simple Ethernet protocols for data exchange between devices. The second compliance profile 
has been established for the ISaGRAF tool [26], but it is not publically available. 

Software components within IEC 61499 
The main element of the IEC 61499 standard is the FB, which is treated very different in 
contrast to the ones discussed for the IEC 61131-3 standard. The first element for the 
discussion about software components within the IEC 61499 standard is therefore the FB in 
its different occurrences: 

• Basic FB as software component: The interface of an IEC 61499 FB includes both 
data and events. Therefore also the execution of an FB is included in the FB interface. 
The behavior is given by the ECC and is well defined. There exist no hidden inter-
faces, as a BFB is only allowed to use input, output and internal data. A BFB can be 
considered as a software component. 

• Service Interface FBs as software component: The SIFB hides its concrete imple-
mentation. But the IEC 61499 standard defines sequence diagrams in order to describe 
the functionality of a SIFB. If a SIFB is well described by the use of sequence dia-
grams, the SIFB can be considered as a software component. This is independent from 
the concrete type of SIFB. In case of a requester type SIFB, the execution behavior is 
defined by the interface as this type does not become active by itself. For the re-
sponder type SIFB, execution is triggered by the underlying services. 

• There are two possibilities to undermine the representation of a SIFB as a software 
component. The first one depends on the underlying functionality encapsulated by the 
SIFB. There are no restrictions mentioned in the IEC 61499 standard for these ser-
vices. Therefore it is possible to implement also some hidden interfaces, e.g. a similar 
construct as global variables. The second restriction concerns to the definition of the 
SIFB behavior by the use of sequence diagrams. This means may be not powerful 
enough to describe the SIFB behavior in all details (e.g., temporal order) or it is not 
used sufficiently. 

• Composite FB as software component: The behavior of a CFB is defined by its com-
ponent FB network. But the IEC 61499 standard lacks a concrete definition of the 
execution of FB networks, as this is discussed by the O3neida working group [40] in 
general and especially for CFBs by Sünder et al. (2007). Another problem occurs by 
the use of SIFBs as component FBs within a CFB. If such a SIFB cannot be consid-
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ered as a software component, then this is also true for the CFB. But also if each com-
ponent SIFB fulfills all requirements of a software component, the CFB may lack a 
good description of its interface and behavior. The reason may be the hierarchy of 
composition levels within the CFB. A SIFB on the lower levels is hardly visible at the 
interface of the CFB, and only detailed analysis of the overall structure of the compo-
nent FB network will clarify this situation. 

• Subapplication as software component: A subapplication is very similar to a CFB 
and provides the possibility of distribution in addition. Already the considerations 
about CFBs have yield to the result that a CFB may be considered as a software com-
ponent only in certain situations. The same can be stated for subapplications, if we ne-
glect the impact of communication in case of a distributed subapplication. 

• Application as software component: An application has no separate interface in form 
of an FB shape. Its interface emerges from the FBs used within the FB network, and 
especially by the SIFBs used. This fact and the above reflections about SIFBs within 
FB networks yield to the conclusion that an application cannot be considered as a 
software component. 

The elements resource, device and even system may also not be considered as software 
components. For all these elements exist no separate interface descriptions as this is based on 
the FB network included. 

3.3 Description languages 
During the development of ACSs and especially PLC-based systems, a major improvement 
was achieved by the introduction of field buses. In the beginning, only very simple in-
put/output field bus devices have been used, but their functionality increased more and more 
up to the point that nowadays each of such a component can be considered as a control device 
(see also the discussion about automation objects above). In order to handle the information 
about the various field bus devices, description languages have been developed for the 
engineering and operation of ACSs. We distinguish two different types of description 
languages—for simple field bus devices and enhanced system components. This determina-
tion is not very sharp because the functionality of also simple field bus devices increases. 
With regard to the requirements stated in Chapter 2 there are two aspects that are strongly 
based on the description of control devices. Requirement (3) “Underlying system confiugra-
tion” aims at the intensive use of information about the overall control device and especially 
the system configuration. Therefore, these parameters need to be available in an appropriate 
manner by the use of a description language. Requirement (5) “Free programmable DSE” 
targets at the engineering support for DSE, which is the origin for description languages in 
general. The more information concerning a device is available in a standardized manner the 
more support can be included within the engineering tool by applying sophisticated algo-
rithms on the available data. 

Description of field bus devices 
Many field bus systems, which have been developed in recent years, provide their own 
description language for the appropriate field bus devices. But there are also efforts for 
standardization of the description and integration of devices as for instance summarized in 
Niemann (2007), such as the Electronic Device Description Language (EDDL), Field Device 
Tool (FDT), and Tool Calling Interface (TCI). EDDL is defined in IEC 61804-3 (2006) and 
provides a generic language for describing the properties of ACS components. The main 
elements of EDDL concern device parameters, device functions, graphical representation, and 
interactions with control devices. The other two standards are defined by user organizations, 
in detail the FDT Group [11] and the Profibus and Profinet International organization [48]. 
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Next to the description of the field device, which may again be based on the EDDL defini-
tions, FDT aims at the integration of dedicated software for interaction with the field device 
into the engineering tool. Also the communication to the field device is part of the FDT 
specification, in order to achieve the flexibility of field device specific software elements 
within the engineering tool. The TCI specification concentrates on the integration of whole 
configuration tools into the engineering process of ACSs. Another important approach of a 
user organization is OPC Unified Architecture (OPC UA), specified by the OPC Foundation 
[41]. OPC UA defines the relations between clients and servers in order to achieve platform 
independence in spite of various kinds of systems and devices. One main aspect of OPC UA 
is the definition of information models, which define structure and semantics of data within 
the address space of the OPC UA server. Bender et al. (2007) present a concept based on 
OPC UA that integrates also the specific advantages of EDDL and FDT. This work shows 
that no description language exists that fulfills all needs of the customer. 
The discussion above was driven mainly by specifications from user organizations that are 
often used in parallel for different types of applications. But there is also some more stan-
dardization work available in this field. A very basic definition of the elements of a device 
description is given in ISO 15745-1 (2003) next to more general rules on an application 
integration framework. The four elements of a device profile according to ISO 15745-
1 (2003) are: 

• Device identity: “The device identity object contains attributes which uniquely iden-
tify the device. Examples of such attributes are the manufacturer’s identification, part 
number (…) and indication of the number and type of additional objects within the 
device.” 

• Device manager: “The device manager object represents the set of attributes (e.g., 
revision of the device identity object) and services (e.g., reset, configuration/run mode, 
retrieval of device manager objects’ attributes) used to configure and to monitor a de-
vice integrated into the application system.” 

• Device function: “The device function object describes intrinsic function of a device 
in terms of its technology (e.g., mechanical limit switch, proximity sensor, ultrasonic 
sensor). The device function object differentiates the technology of the device from 
the application of the device. Examples of device function objects are analogue current 
inputs in milliamps, and discrete voltage outputs in volts.” 

• Application process: “The application process object represents a set of attributes and 
services that correspond to the application requirements captured in the attributes and 
services of the associated process profile. The application process object describes the 
behavior of the device in terms of the application, independent of the device technol-
ogy.” 

The technical report IEC 62390 (2005) aims at the “development of device profiles for 
industrial field device and control devices, independent of their complexity”. The basis is 
given by ISO 15745-1 (2003), whereas IEC 62390 provides a guideline for the profile 
development process. It is clearly mentioned that the scope is not limited to simple field bus 
devices. For instance programmable controllers and HMI devices are also targeted by this 
report. As general means for the establishment of a device description the eXtensible Markup 
Language (XML) [64] is recommended. XML is widely used also in ACSs during the last 
years, the two main application fields are given by Wollschlaeger and Wenzel (2005) as data 
exchange (e.g., within the OPC UA specification) and device description. Several user 
organizations have already proposed XML Schemas for the second purpose based on 
ISO 15745. Some are mentioned here briefly: 

• XML@Profibus: This specification provides a technical guideline for the use of XML 
within the field buses Profibus and Profinet. Wollschlaeger and Wenzel (2005) de-
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scribe its concepts as a common model that is able to integrate existing XML formats 
(from the various field buses covered by Profibus and Profinet International [48]) into 
this framework. 

• CANopen: CANopen is one of the networks promoted by the user group CAN in 
Automation (CiA). Device descriptions have been originally developed on a textual 
basis, since 2007 a specification for the use of an XML schema for CANopen device 
descriptions (CiA DSP 311, 2007) has been published. 

• Field Device Configuration Markup Language (FDCML): The FDCML specifica-
tion (FDCML.org, 2002) follows a more general approach. It defines an XML schema 
which is again a markup language, but specialized for the description of field devices. 
(for a detailed description see also Appendix A) 

Enhanced description of system components 
The above considerations mainly concentrate on the communication aspects of a system 
component, more specifically field bus devices. But for an ACS consisting of several different 
components or automation objects it is important to yield an even more comprehensive 
description of these system components. The communication aspect is an important item 
within this enhanced description. But further topics need not to be neglected, too. The 
following discussion gives examples for an enhanced description of system components. 
The Total life cycle web-integrated control (TORERO) project is next to the HMS project an 
example for the application of the IEC 61499 standard. The idea is based on devices that are 
capable to be self-configuring and self-maintaining. For example, a device can be introduced 
into the ACS by automatic plug and play mechanisms or it may be updated automatically by 
using information from a server of its manufacturing company. A basis for these capabilities 
is constituted by the TORERO device description, which includes all hardware and software 
information concerning the device. As described by Schwab et al. (2005) the predecessor of 
the FDCML specification, which is based on the same principles, has been used for the 
TORERO device description. Also in the case of the Evolution Control Environment for 
Distributed Automation Components (εCEDAC) project [8], which is closely related to this 
work, FDCML represents the basis for an extensive description of devices. Further details 
will be presented in Section 5.3 or are available in Strasser et al. (2007). Next to the support 
for the engineering process especially information concerning the properties of the hardware 
and software have been added to the device description in order to provide the basis for an 
enhanced engineering of systems, incorporating also the evaluation process. 
Thramboulidis and Prayati (2001) analyze the current state of device description languages 
and argue, that there is no common model for the device specification which enables dynamic 
aspects and system management. Therefore they propose a field device specification based on 
IEC 61499 and IEC 61804 that adds the missing aspects and provides the basis for their 
function block oriented engineering support system. Their model is oriented to support both 
the development and the operational phase and consists of the main items network interface 
unit, resources, industrial process entity, and application management entity. 
A very interesting approach is given in (VDMA 66430-1, 2006), the so-called XML Interface 
for Robots and Peripherals (XIRP). For the special application scenario of interaction 
between robots and processor-based peripherals (e.g., a vision system) XIRP defines a device 
description as well as a communication protocol, which specify a machine-to-machine 
interface and the rules for interaction. Several components (based on the discussion in Section 
3.1 these are automation objects) are able to interact autonomously and provide a given 
functionality. 
A device description is also an elementary part for sensor and actuator networks as addressed 
by the IEEE 1451 standard. Herein especially in part 3 (IEEE 1451.3, 2003) the plug and play 
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aspect at the transducer level is depicted by the use of a common communication interface 
with an appropriate description file (the so called transducer electronic data sheet). Transduc-
ers according to this standard may be plugged into a compatible system and may be used 
without additional specific drivers, profiles or changes to the system. A similar approach is 
described in Kaiser and Piontek (2005), who investigate self-describing devices, which means 
that all information necessary for the use of such a device is stored within the device itself. 
The proposed device description includes three categories of information: general informa-
tion, information about the physical connections and the temporal properties of the network, 
and information about the semantics of data provided by the device. 

3.4 Software evolution and dynamic reconfiguration 
The life-cycle of a software product consists next to the initial phase of software creation 
(programming) also of two further important activities: Software Maintenance and Software 
Evolution. Whereas software maintenance is defined by the IEEE 1219 (1998) standard8 as 
“the modification of a software product after delivery to correct faults, to improve perform-
ance or other attributes, or to adapt the product to a modified environment”, there is no 
equivalent definition available for software evolution. Bennett and Rajlich (2000, Section 1.1) 
argue, that—although sometimes these terms are used interchangeably—“we shall use 
maintenance to refer to general post-delivery activities, and evolution to refer to a particular 
phase in the staged model” of the software lifecycle. “Software evolution takes place only 
when the initial development has been successful. The goal is to adapt the application to the 
ever-changing user requirements and operating environment.” (Bennett and Rajlich, 2000, 
Section 2.2). 
Several studies in the last 30 years concerning software evolution in computer science have 
yielded to the so-called laws of software evolution, which are discussed with respect to 
component-based software engineering in Lehmann and Ramil (2000). “The laws provide a 
phenomenology, a description of systematically observed patterns. The term ‘laws’ was used 
to indicate that they emerge from sociological, organizational and cognitive phenomena 
which appear to be to a large extent beyond the control of individual software developers and 
even managers.” (Lehmann and Ramil, 2000, Section 2). In the following some laws with 
special relevance for this thesis are given: 

• “Continuing change (I): An E-type9 system that is used must be continually adapted 
else it becomes progressively less satisfactory.” (Lehmann and Ramil, 2000, Sec-
tion 4.2) 

• “Increasing complexity (II): As an E-type system evolves its complexity increases 
unless work is done to maintain or reduce it.” (Lehmann and Ramil, 2000, Section 4.3) 

• “Continuing growth (VI): The functional capability of an E-type system must be 
continually increased to maintain user satisfaction over its lifetime; where, in the con-
text of the present paper, the term user applies to both component customers and end-
users.” (Lehmann and Ramil, 2000, Section 4.2) 

• “Declining quality (VII): Unless rigorously adapted to take into account changes in 
the operational environment, the quality of E-type systems will appear to be declin-
ing.” (Lehmann and Ramil, 2000, Section 4.6) 

                                                 
8 This standard has been superseded by ISO/IEC 14764-IEEE 14764 (2006), which focuses in more detail on the 
software life cycle process. Maintenance is considered in much more facets and its definition is more compre-
hensive accordingly. For our purpose the definition of IEEE 1219 (1998) is more useful. 
9 „An E-type program may, for simplicity, be defined as one whose acceptability depends on the perception, 
judgment and degree of satisfaction of appropriate stakeholder(s). Software used to solve a problem or address 
an application in a real world domain is in general of this type.“ (Lehmann and Ramil, 2000, Section 3.1) 
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Although these laws have been stated already long time ago, and the process of evolution was 
intended as an interception of operation of the software program (e.g., an update to a newer 
version), they are also applicable to today’s practice in software engineering. Nowadays the 
need for software systems that are available without any downtimes is more and more 
claimed. Herein, the situation is equal for business software as well as control logic used in 
ACSs. The challenges for software evolution have been summarized in Mens et al. (2005) 
with the main statement that “the only way to overcome or avoid the negative effects of 
software aging is by placing change and evolution in the center of the software development 
process” (Mens et al., 2005, Section 1). In the following some of these challenges with 
special relevance for this thesis are given: 

• Preserving and improving software quality: “The challenge is to provide tools and 
techniques that preserve or even improve the quality characteristics of a software sys-
tem, whatever its size and complexity.” (Mens et al., 2005, Section 3.A) 

• Supporting model evolution: “Software evolution techniques should be raised to a 
higher level of abstraction, in order to accommodate not only evolution of programs, 
but also evolution of higher-level artifacts such as analysis and design models, soft-
ware architectures, requirement specifications, and so on.” (Mens et al., 2005, Sec-
tion 3.C) 

• Formal support for evolution: “In order to become accepted as practical tools for 
software developers, formal methods need to embrace change and evolution as an es-
sential fact of life”. (Mens et al., 2005, Section 3.E) 

• Evolution as a language construct: “Programming (or even modeling) languages 
should provide more direct and explicit support for software evolution.” (Mens et al., 
2005, Section 3.F) 

• Need for better versioning systems: “Version control is a crucial aspect in software 
evolution, especially in a collaborative and distributed setting. (…) Therefore, the 
challenge is to develop new ways of recording the evolution of software that over-
come the shortcomings of the current state-of-the-art tools.” (Mens et al., 2005, Sec-
tion 3.J) 

• A theory of software evolution: “It is necessary to develop new theories and mathe-
matical models to increase understanding of software evolution.” (Mens et al., 2005, 
Section 3.Q) 

• Post-deployment runtime environment: “There is an urgent need for proper support 
of runtime adaptations of systems while they are running, without the need to pause 
them, or even to shut them down.” (Mens et al., 2005, Section 3.R) 

Dynamic reconfiguration 
Especially the last noted challenge above, post-deployment runtime environment, has been 
the topic of research in the last years, called Dynamic Reconfiguration. This term is especially 
used for the change of architectures at run-time. Following the discussion presented by 
Wermelinger (1999), different issues need to be taken into consideration. By focusing 
especially on dynamic reconfiguration, the issue time is already defined to be meaning of “at 
run-time” (in contrast to off-line). 

• Source: We distinguish between a change that may be triggered by the current state of 
components, topology of the architecture, or it may be asked for by the user. 

• Operations: The fundamental operations of dynamic reconfiguration are adding and 
removing components and connections as well as querying relevant system properties 
at run-time.  
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• Constraints: Dynamic reconfiguration is constrained by any kind of property if it has 
to be preserved during the change process. 

• Specification: The process of dynamic reconfiguration should be verifiable against the 
constraints. 

• Management: The reconfiguration process may be managed in an explicit and central-
ized manner or management is implicit and distributed among the components. 

Downtimeless System Evolution 
This thesis aims at a combination of the above described topics software evolution and 
dynamic reconfiguration. Therefore, the term Downtimeless System Evolution is introduced, 
which explicitly faces the challenges of software evolution at run-time for the wide range of 
ACSs.  

• Downtimeless: Changes have to be applied to the running system with as less distur-
bances to the process under control as possible. 

• System: Although software is considered to be the central element that is under 
change, also changes in hardware—or more general changes of the overall system—
are taken into account. 

• Evolution: In order to keep a system satisfactory, the system has to be changed con-
tinuously during the whole life-cycle. 

The remaining section presents a reference architecture for dynamic reconfiguration, which 
can be used to distinguish different scenarios that may take place within a component-based 
system and describes their interdependencies. Furthermore, several existing approaches of 
frameworks for dynamic reconfiguration with special focus on embedded systems and ACSs 
are briefly summarized. 

3.4.1 Reference architecture for dynamic reconfiguration 
In order to provide an almost general view on dynamic reconfiguration it is valuable to 
examine a reference architecture. We will use the conceptual framework presented by 
Walsh et al. (2007b) for this purpose, who systematically and consistently address problems 
and solutions related to dynamic reconfiguration. Although this work comes from classical 
computer science as their case study is a financial analysis system, the architecture is useful 
also for embedded systems and especially ACSs. The work is based on component-based 
system development, as it has been mentioned in Section 3.1. 

Change types 
The action of dynamic reconfiguration can be categorized into different change types, which 
describe how a system is adapted to the new situation. An evolution of a system may be 
conform to one or more of these change types. Walsh et al. (2007b) distinguish six different 
types of changes. Figure 7 depicts these change types and their interdependencies. There are 
two significant determinations for these change types: 

• Effect on the component interdependency: For the characteristic of a change type it is 
important to separate inter-component change and intra-component change. 

• Effect on the system signature: A change type may affect a structural change, a be-
havioral change, or both, with respect to the signature of the system. 

The change types are defined by Walsh et al. (2007b) in general. In the following also their 
relevance for the application in ACSs is mentioned: 
Internal change: Changes are applied to the internals of a software component. This ad-
dresses clearly intra-component changes and does not require any other types of change. A 
component may be changed regarding to its internal operations or state elements. Although 
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the elements of ACS programming languages do not fit in all details to the software compo-
nent paradigm, internal change can be applied equally. 

 
Figure 7: Change types and dependencies, based on Walsh et al. (2007b) 

Interface change: Interface change is defined as “changing the interface of a component and 
therefore means changing provided and/or required services” (Walsh et al., 2007b, Sec-
tion 3.1.5). It affects only the behavior of a component and is an intra-component change. 
With regard to ACSs, the term services is limited to data and/or event interfaces as well as 
SIFBs within a component. An interface change needs to be considered always in the context 
with the protocol change, mentioned below. An internal change may be required due to the 
interface change. 
Protocol change: A protocol change concerns the control and/or data flow between compo-
nents. In the terminology of computer science this means change to service protocols. Again 
this kind of change affects only the behavior, but it affects at least two components and 
belongs to an inter-component change. The interconnection of components is the way of 
modeling control applications in IEC 61499 and at least for graphical languages also in 
IEC 61131-3. Therefore protocol change does not mean changes in communications of for 
instance a field bus, as this would match better with the terminology in ACSs, but of control 
applications themselves and changes to their behavior. According to the level of consideration 
within the elements of ACS programming languages, it has to be considered whether changes 
of interconnections belong to an internal change (e.g., in case of the component FB network 
of a CFB) or to protocol change (e.g., for applications in an IEC 61499 system). 
Protocol change may require interface change and/or topology change. For the second issue 
this may be the case also in the other direction. Protocol change may be required also due to 
an architectural change. 
Substitution: A substitution means the exchange of one component by another one. Therefore 
it belongs to structural changes, as the type of one component is changed. But it does not 
belong to inter-component changes, as there are no other components influenced. One 
component is removed and another one is added in order to fulfill similar requirements. 
Substitution may be required due to a topology change. Substitution can be considered 
equally also for ACS programming languages. 
Topology change: The addition and/or removal of components is defined as topology change. 
Therefore this type of change is characterized by structural change and inter-component 
change. For topology change also substitution or protocol change may be necessary. Topol-
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ogy change may be part of an architectural change. The meaning of topology change can be 
projected in an equal manner also to ACSs. 
Architectural change: “Architectural change means changing global or local system proper-
ties. A change to global or local properties can imply pervasive behavioral and/or structural 
system evolution to conform to these changed properties. This may mean changing whole 
configurations of components of a greater system.” (Walsh et al., 2007b, Section 3.1.1) 
If we apply this definition to ACSs, the content can be transferred without adaptations. An 
architectureal change correspondingly means changing the control application of the ACS in 
general. 

Integrity characteristics 
A second important item of a reference architecture for dynamic reconfiguration concerns the 
management of integrity during the process of dynamic reconfiguration. Walsh et al. (2007b, 
Section 3.2) mention different kinds of integrity characteristics: 
Global consistency: Any global property defined for a system (e.g. implied by its specifica-
tion) needs to be preserved during dynamic reconfiguration. 
Local consistency: If local properties of a system are defined they need to be preserved for 
the application of dynamic reconfiguration. Local properties need to be reconciled with global 
properties. 
Active references: A component may have established communication paths as bindings of 
services. If these bindings are affected during dynamic reconfiguration, they need to be 
managed accordingly to do not violate any local or global consistency specification. 
Dependent operation: There may occur dependencies between the operation of different 
components due to data flow interrelation. A change to an operation needs to be considered 
with regard to such dependencies. 
Composite component: Similar to dependent operation, also the composition of components 
is affected by changes to one component. It has to be taken care that a changed component 
does not violate properties of composite components. 
Constrained operation: A change to a component may be constrained by a dependency to the 
state of another component. Therefore, the process of dynamic reconfiguration has to be 
managed according to such constraints. 
State management: In case of changes to or substitution of a component, a synchronization of 
the state within the components may be necessary. 

Dynamically reconfigurable component-based system 
Walsh et al. (2007b) also describe how to design a dynamically reconfigurable component-
based system in order to fulfill the above mentioned change types and integrity characteris-
tics. A domain model of dynamic reconfiguration needs to be set up, defined in three steps: 
(1) model of the primary concepts of the component-based system, (2) model of primary 
concepts of the context of dynamic change, and (3) combination of these two models in order 
to achieve the desired domain model of dynamic reconfiguration. As a very important item of 
the domain model also fault tolerance modes are introduced. 
Walsh et al. (2007a) present the implementation of the above described model of dynamic 
reconfiguration by the use of explicit metaclass programming techniques. It is illustrated how 
global and local properties can be encoded and reconciliation of existing system properties 
and new change properties can then be resolved through a constraint solver. 
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3.4.2 Further approaches to dynamic reconfiguration 
Many different approaches exist for dynamic reconfiguration. As a brief overview, only a few 
are mentioned. The first approach towards dynamic reconfiguration known to the author has 
been presented by Kramer and Magee (1985), who used the term dynamic configuration for 
“the ability to modify and extend a system while it is running”. They present the CONIC 
system, which consists of a configuration language (describing systems consisting of inter-
connected modules), a programming language (for module types), and a distributed operating 
system. Their model for dynamic reconfiguration is based on a configuration manager, which 
is capable to translate requests for configuration changes expressed in the CONIC configura-
tion language into commands to the operating system. The configuration manager is part of 
the target system and validates the change specifications against the current system configura-
tion specification. In Kramer and Magee (1990) they enhance their methodology by separa-
tion between structural concerns and application concerns. They claim that in order to 
perform configuration changes it is important to do not lose application information and leave 
the application in a consistent state. For consistency during the change they introduce the 
quiescence property, which expresses that a node is both passive and has no outstanding 
transactions which it must accept or service. This is the basis to decide whether a change can 
be applied or not. 
Appavoo et al. (2003) use the technique of hot swapping in order to support self-diagnosing 
and self-healing abilities of autonomous computer systems. Hot swapping is known also for 
dynamic reconfiguration in general and is accomplished either by the interposition of code 
(inserting a new component between two existing) or by a replacement of code (switching an 
active component to a new implementation). The infrastructure for hot swapping has to take 
different actions into consideration in order to perform a hot swap, namely triggering, 
choosing the target, swapping components, transferring the state, and potentially adding 
object types. Appavoo et al. (2003) depict a general description of such an infrastructure and 
the involved methodologies as well as a reference implementation in the open source research 
kernel K42. 
Whisnant et al. (2003) describe a methodology for formally expressing the dependencies 
among processes in order to analyze whether dynamic reconfigurations are compatible with 
the existing configuration or not. Their system model consists of code blocks (they perform a 
computation triggered by events called operations), state variables (only accessed via 
executing code blocks), and threads (execute sequentially invoking code blocks). Recon-
figurability is achieved by either adding or removing single operation bindings. The decision 
whether a reconfiguration will lead to a failure or not is based on the analysis of the dataflow 
within the system model. If an unsafe situation occurs due to the reconfiguration, the user is 
notified of the existing broken dataflow dependency. 

Dynamic reconfiguration in embedded systems 
Especially in the field of embedded systems, the topic of dynamic reconfiguration has been 
investigated by various researchers. The following list is again only a small excerpt of this 
very active field. 
Yu et al. (2002) present a framework for a so-called live software update (this exactly 
matches with dynamic reconfiguration) in order to support mission- and safety-critical 
software applications. Their dynamic architecture is characterized by indirect addressing of 
modules and flexible communication via the publisher and subscriber model. The module 
proxy is essential for dynamic reconfiguration, as it is responsible for the management of e.g. 
the substitution of a module. For substitution, the upgrade protocol defines three phases: (1) 
uploading the new module, (2) switching operation to the new module implementation, and 
(3) removing the old module. Herein also the state of the module can be transferred, which 
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must be implemented in the module by itself. By the use of a software upgrader element, the 
coordination of reconfiguration requests via a command line interface and the module proxies 
is achieved. The software upgrader is also used to synchronize the dynamic reconfiguration of 
several modules in parallel. 
Rasche and Polze (2005) describe a framework for the run-time adaptation of component-
based applications—Adapt.NET—based on the commercial component framework .NET 
[34]. In order to achieve reconfigurability, each component has to comprise a specific 
interface containing methods for connecting components, setting component parameters, or 
transferring the component state. Additionally they use an XML-based configuration descrip-
tion language to describe components in order to be able to identify components and connec-
tions involved in the reconfiguration process and to perform appropriate reconfiguration 
commands. The realization of adaptive applications, which can be adapted to certain envi-
ronmental settings (e.g., state or attributes of components), is based on so-called adaptation 
policies. An adaptation policy defines the mapping of a monitored parameter and application 
configurations. If significant changes are detected, a reconfiguration request is generated and 
the framework executes the related dynamic reconfiguration. The Adapt.NET framework is 
able to achieve application consistency and furthermore also deadlines of application tasks 
can be met when necessary processor resources for potential reconfiguration commands are 
provided. Rasche and Polze (2005) demonstrate how the required resources can be calculated 
before run-time and included into the design and implementation of applications. 
Angelov et al. (2006) present two versions of the COMDES framework for distributed 
embedded systems. The frameworks are defined as a set of executable models, whereas 
executable models are ultimately implemented as reusable and reconfigurable components. 
The second version has been improved especially in order to support statically allocated 
function units onto network nodes and hybrid timed event-driven state machines. Communi-
cation is based on signals that are exchanged at precisely specified time instants. Ange-
lov et al. (2005) especially describe their implementation approach for components that 
include a reconfigurable state machine. By separating the executable code of such a compo-
nent from the transition state table (represented as multiple-output binary decision diagram) 
reconfiguration is possible without re-programming. Therefore, internal change of a compo-
nent is achieved on basis of the reconfiguration of state machines. 
Stewart et al. (1997) developed dynamically reconfigurable real-time software in order to 
support reconfigurable robots based on port-based objects. A port-based object is an inde-
pendent concurrent process whose functionality is defined by methods. The interface of a 
port-based object is given by input and output ports (used for the interconnection between 
port-based objects), resource ports (for the communication with sensors and actors), and 
configuration constants (used for the reconfiguration of generic components for specific 
hardware or applications). An application is modeled in the same way as a control engineer 
configures a system using transfer functions and block diagrams. Strictly speaking this was 
the original idea of port-based objects, in order to provide a simple modeling method for real-
time software for control engineers. Communication between port-based objects is achieved 
by state variables that are synchronized by using local and global tables. Dynamic reconfigu-
ration is supported by the framework, but it is clearly stated by Stewart et al. (1997) that there 
are no mechanisms integrated to perform a safe reconfiguration. It is mentioned that policies 
that ensure a stable execution during the reconfiguration are usually application specific. In 
their experiments they used a conservative approach for dynamic reconfiguration, namely the 
robot was temporally set at rest (velocity and acceleration are both zero) before the dynamic 
reconfiguration started. 
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3.4.3 Dynamic reconfiguration in automation and control systems 
For the special purpose of dynamic reconfiguration in ACSs the above described approach 
cannot be applied directly as there are different means for system’s programming in use. It is 
important to distinguish between vendors of ACS components and users of ACSs, as depicted 
for instance in Bouyssounouse and Sifakis (2005, Section 19.2). The first one face the 
problem of providing tools and runtime environments that are adequate also for dynamic 
reconfiguration, but with the restriction of an interface to the user in form of the programming 
languages mentioned in Section 3.2. None of the above mentioned approaches can be applied 
directly for ACSs. We will survey the approaches for dynamic reconfiguration based on the 
ACS programming languages: 

IEC 61131-3 
The IEC 61131-3 standard does not provide any means for dynamic reconfiguration. Never-
theless, nearly each IEC 61131-3 compliant runtime environment and engineering tool 
provides the possibility to change the elements of the IEC 61131-3 software model during 
operation. Of course, there are differences depending on the implementation of the runtime 
environment as well as the granularity of the reconfiguration, but commonly POUs can be 
changed dynamically. Hummer et al. (2007, III.B-1) give a description of the used methodol-
ogy. The main idea is to use the cyclic execution of the control logic, which is the common 
way to program a PLC (although IEC 61131-3 enables also the triggering of tasks via the 
rising edge of a Boolean signal). There is a point in time when it is possible to change a POU 
without influencing the current execution of the control logic: This is between the finishing of 
the current cycle and the trigger for a new cycle of execution. Simply speaking this is 
equivalent to the quiescence property introduced by Kramer and Magee (1990). Based on the 
ratio between cycle time and execution time, there may be a big amount of time to execute the 
dynamic reconfiguration, which can be reduced to a readjustment of the pointer to the start 
address, if the new POU is already available. A typical methodology for state recovery is that 
the value of similar variables is copied to the new POU. Otherwise the variables of the new 
POU are set to their default values. Considering the approaches mentioned above this 
methodology for dynamic reconfiguration in IEC 61131-3 compliant systems is very similar 
to hot swapping. 
There are several problems that occur when dynamically reconfiguring an IEC 61131-3 
control logic without mentioning an appropriate engineering methodology (see Chapter 10 for 
an IEC 61131-3 system utilizing the εCEDAC methodology for dynamic reconfiguration), 
which have been depicted by Sünder et al. (2006c, Section 1). Fundamental problems exist 
based on the IEC 61131-3 software model: 

• “The switching point in time cannot be determined because of the cyclic way of exe-
cution and the lack of information about the state of the system or application.” 

• “The reconfiguration of one task of an application interferes with all tasks of this ap-
plication since all tasks have to be stopped because of the asynchronous cyclic execu-
tion of tasks. This leads to jittering effects.” 

• “The lack of fine granularity (task level) introduces high complexity in communica-
tion, memory management and re-initialization.” 

• “The reconfiguration of elements may lead to inconsistent states, e.g. deadlocks or 
token-proliferation in Sequential Function Charts (SFC).” 

• “New elements start with their cold start initial value.” 

IEC 61499 
The management model of the IEC 61499 standard directly addresses dynamic reconfigura-
tion. There are of course no implementation techniques included in the standard, but the 
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interface as well as the behavior for dynamic reconfiguration are mentioned. According to the 
short description of the management model in Section 3.2.2, the standard defines a state 
machine for managed FBs (Appendix B, Figure 63). Correspondingly, an FB is in an idle state 
after its creation. The START management command forces the FB into the running state, 
which means that the FB is operating input events. The FB may be stopped or killed by a 
management command, depending on whether a possible active operation should be finished 
or not when the management command occurs. By the use of an IEC 61499 compliant 
runtime environment such as the FBDK [15] and a compliance profile describing the concrete 
interface of the management application [17] an IEC 61499 control logic can be dynamically 
reconfigured. Hummer et al., (2007, III.B-2) depict a test application which provides the 
possibility to simple send management commands to an IEC 61499 device. Demmelmayr and 
Zafari (2007) have used the FBDK for dynamic reconfiguration of a simple application under 
supervision of the author. In detail, the well-known programming exercise “Towers of Hanoi” 
has been adapted during operation by simply using management commands via an engineer-
ing station. These results have shown that dynamic reconfiguration can be achieved with the 
IEC 61499 standard, although the handling of pure management commands was very 
complex and means for state recovery are missing. 
There are some approaches available that implement and enhance the dynamic reconfigura-
tion capabilities of the IEC 61499 standard, which are mentioned chronological. 
Brennan et al. (2002a) examine reconfiguration based on IEC 61499 already in a very early 
state of the standard during the HMS project. Their work is based on a draft version of 
IEC 61499, nevertheless their work can be applied in a similar way also to the final version. 
Brennan et al. (2002a) describe an enhanced model for function blocks that enables also the 
modeling of reconfiguration. Figure 8 depicts the general idea of two different kinds of 
control paths within an IEC 61499 application. Horizontally there exists the execution path 
which is responsible for operating the normal control flow modeled via the event and data 
connections of FBs. Vertically there is a configuration control path that can be used to model 
the reconfiguration of the control application. For the implementation of these two paths, they 
introduce two agent types: (1) the execution agent is primarily concerned with the FB 
execution and (2) the configuration agent is primarily responsible for implementing recon-
figuration plans. In order to synchronize the execution of these two agents, a state machine is 
proposed. An FB therefore does not only provide an interface for data und events for control 
execution but also for reconfiguration execution. The configuration management application 
mentioned in Figure 8 again can be considered as an FB application. Brennan et al. (2002a) 
mention two different kinds of configuration management applications as the key to achieve 
an reconfiguration, which are discussed in more detail in Brennan et al. (2002b): 

• Contingencies approach: “Within this form of reconfiguration control, contingencies 
are made for all possible changes that may occur. In other words, alternate configura-
tions are pre-programmed based on the system designer’s understanding of the current 
configuration, possible faults that may occur, and possible means for recovery.” 
(Brennan et al. , 2002b, Section IV.B) 

• Soft-wiring approach: “The basic idea behind this approach to reconfiguration is to 
enable higher layers to use higher-level reasoning to analyze the current configuration 
and plan for reconfiguration when required.” (Brennan et al. , 2002b, Section IV.C) 

For both cases, the configuration management application has to take care for a smooth 
transition from one configuration to another. For the contingencies approach this has to be 
modeled by the system designer. In the soft-wiring approach the higher layers reasoning about 
the reconfiguration also need to take care of the transition. The authors propose the use of 
agents for these higher layers. An implementation of this model for reconfiguration has been 
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described by the use of real-time Java in Brennan et al. (2002a) and an FB operating system 
in Brennan et al. (2002b). 
Thramboulidis and Zoupas (2005) present an implementation of an IEC 61499 runtime 
environment also based on real-time Java. This framework provides support for dynamic 
reconfiguration according to the interface defined by the standard. For the process of recon-
figuration two different phases are proposed: In the first phase (low priority) all actions for 
the preparation of the dynamic reconfiguration should be included. These are for instance the 
download of a new FB type and the creation of a new FB instance. The second step has to be 
executed with high priority. Herein all actions that directly influence the active application 
have to be executed. The authors also provide timing characteristic measurements for the 
execution of management commands for different platforms. Thramboulidis and Zoupas 
(2005) present data for two different configurations of a personal computer, and Thram-
boulidis and Papakonstantinou (2006) mention data for an embedded platform. This is of 
special interest as the temporal behavior of reconfiguration is as important as its functional 
behavior, as already stated in Requirement (1) “Temporal behavior”. 

 
Figure 8: Conceptual model for configuration/reconfiguration, (Brennan et al., 2002a, Fig. 5c) 

Zoitl (2007) investigates an IEC 61499 runtime environment utilizing two major characteris-
tics: real-time execution of IEC 61499 applications and enhanced support for dynamic 
reconfiguration. The first one, real-time execution, is a necessity to provide full support for 
dynamic reconfiguration, as the control logic is constrained by the real-time characteristics of 
the process under control. Therefore, also the dynamic reconfiguration needs to be executed 
with appropriate real-time constraints in order to do not disturb control applications. Zoitl 
(2007) develops his concept on the basis of Kramer and Magee (1985). The interface to the 
device management is given by FBs which represent a certain management command. Similar 
to the idea of Brennan et al. (2002a) an FB application can be modeled in order to program a 
dynamic reconfiguration process. This runtime environment builds the basis for the imple-
mentation of the modeling approach for DSE and will be discussed in more detail in Sec-
tion 4.2 and Appendix B.  
The modeling of dynamic reconfiguration by using the above mentioned FBs has been 
described in Hummer et al., (2007) as next steps towards downtimeless ACSs. The author of 
this thesis was part of the related research project εCEDAC [8]. A general description of the 
idea and a requirements analysis for the εCEDAC project is given for instance in 
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Strasser et al. (2005). The results have been described in a brief overview for instance in 
Rooker et al. (2007). The modeling method for DSE from the εCEDAC project will provide 
the general framework for this thesis (see Chapter 4 for a detailed discussion). 

Programming language independent approach 
Almeida et al. (2007) present a different approach in order to program ACSs. They utilize 
Event-Condition-Action (ECA) rules as formal method for defining the reconfigurable logic 
control. Almeida et al. (2007, Section I) describe the way of executing an ECA system as 
follows: “The occurrence of the event triggers the rule, which will start a query to check the 
condition, which determines if the system is in a particular state. The actions will fire if the 
conditions are satisfied.” A monolithic structure of ECA rules is similar to a program 
consisting of a list of if-statements. Almeida et al. (2007) propose modular structures of ECA 
rules and trees (an enhanced rule with several conditions that build a tree). By applying 
changes to the ECA system, reconfigurability can be achieved. An important aspect for the 
reconfiguration as well as execution of ECA systems in general is the synchrony hypothesis, 
which states that the reaction of the controller takes negligible time with respect to the plant. 
The ECA system is independent of a programming language. Almeida et al. (2007) provide 
two examples for the implementation: modular finite state machines and IEC 61499 applica-
tions. 

3.5 Transition management 
A very important point in the above given description of the reference architecture for 
dynamic reconfiguration discussed in Section 3.4.1 are integrity characteristics. There are 
certain properties that need to be achieved during the process of dynamic reconfiguration in 
order to do not disturb the control logic during operation. These can be split up into two 
different kind of properties: 

• General properties of the overall system: Commonly there are several applications 
running on a control device, and dynamic reconfiguration is applied only to a limited 
part of these applications. This kind of properties refers to those parts of the applica-
tions that are not affected by the reconfiguration. Therefore, the system environment 
as well as the dynamic reconfiguration’s implementation need to take care that the in-
tegrity characteristics of the unaffected application parts are preserved. 

• Properties of the application under reconfiguration: There are also integrity charac-
teristics that apply to those parts of the application that are changed by dynamic recon-
figuration. Therefore it is very important to integrate special mechanisms in order to 
retain these properties also when changes happen. These special mechanisms are usu-
ally called transient or transition management. 

As already mentioned for instance by Stewart et al. (1997) the policy for ensuring a stable 
execution and as little disturbances as possible to the process is application specific. There-
fore, a transition management policy cannot be stated generally and needs to be considered 
always in combination with the application. A field with a big amount of literature for such 
policies is control theory, where adaptive structures of controllers and plants are the topic of 
research since many years. The following discussion is affected by the methodologies from 
control theory, which may be adapted also to other application fields. As a starting point, we 
use the definition of transients from Kovacshazy et al. (2001) as 
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)()()( nfnfnf idtr −= , (1) 

where )(nftr  transient of the variable; 

 )(nf  observed variable in the investigated reconfigurable system; 

 )(nfid  same variable observed in an ideal reconfigurable system. 

 

For control loops the observed variable would be for instance the plant output. The ideal 
reconfigurable system would match with the plant output when the new controller has been 
used already for a long time. Kovacshazy et al. (2001) also provide measures in order to 
quantify the efficiency of a transition management policy based on Equation 1 as for instance 
the average energy of the transient or the absolute maximum of the transient. 
Guler et al. (2003) provide an overview on different transition management policies, which 
can be summarized in four main topics. The principle idea is based on the substitution of a 
component (e.g., the controller): 

• Output blending: Herein the old and the new component work in parallel, and their 
outputs are merged by some functional relations, whereas the transition starts with the 
old configuration and ends with the new configuration. The functional relation can be 
arbitrarily complex, a simple example would be a linear function. The method is 
meaningless especially for the substitution of controllers, as during the transition both 
controllers are not fully integrated in the closed loop. 

• Parameter blending: This method concerns internal change, especially of a controller. 
When the new controller’s structure is very similar to the old one, the parameters of 
the controller can be blended during the transition. Therefor, a functional relation be-
tween the parameter settings of the two controller settings is applied (similar to output 
blending). 

• Transient management: Simon et al. (2001) provide a methodology in order to add a 
so-called anti-transient signal to the controller’s output (similar to disturbance variable 
compensation), which is calculated based on the models of the plant and the control-
ler. They claim that transient management can compensate both changes—of the con-
troller as well as the plant. Simon et al. (2001) strongly restrict this approach to the 
prerequisites steady state of the control loop and a constant reference signal. 

• State initialization: This methodology calculates the initial state of the new controller 
according to special algorithms in order to reduce transients during dynamic recon-
figuration. Simon et al. (2000b) describe several approaches. Two very simple strate-
gies have been already mentioned in Section 3.4.3 for IEC 61131-3 compliant sys-
tems. In the state zeroing method all state variables are set to zero, and in the state pre-
serving method similar state variables are copied from the old controller to the new 
one. A more sophisticated method with a significantly higher reduction of transients is 
the output fitting method. Herein the state variables of the new controller are calcu-
lated so that it produces the same output as the old controller. An analytic solution for 
this problem may also include deviations of the output signal. Simon et al. (2000a) 
provide considerable simulation results of these different strategies by using a two link 
planar robot. 

There are manifold results available from the field of transition management research. For 
instance Simon et al. (2000a) investigate the influence of the control logic’s structure 
regarding to the occurrence of transients and show that there is a significant effect during the 
execution of similar dynamic reconfigurations within different structures. Kovac-
shazy et al. (2001) apply similar methodologies for transition management to reconfigurable 
signal processing channels. Guler et al. (2003) provide a generic pattern for transition 
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management as well as graphical modeling for the above mentioned scenarios. These patterns 
may also be structured hierarchically enabling the coordination of several dynamic reconfigu-
ration processes as well as transition management in distributed systems. Steffen (2005) 
investigates reconfiguration based on failures of actors and sensors in control loops. He 
introduces a so-called reconfiguration block which is in between the nominal controller and 
the faulty plant. The purpose of the reconfiguration block is twofold: On the one hand the 
faulty plant faces a reconfigured controller and on the other hand the nominal controller faces 
a reconfigured plant (the faulty plant including the reconfiguration block models the nominal 
plant). 

3.6 Verification by model checking 
The technique of verification by using model checking has been invented independently in the 
early 1980’s by Clarke and Emerson (1981) in the United States and Queille and Sifakis 
(1981) in France. Both approaches utilize temporal logic (in detail branching time) in order to 
specify the desired system behavior. Since that, a lot of research and progress has been 
achieved in order to improve the capabilities of verification by model checking. First indus-
trial applicable results have been presented for verification of hardware design and communi-
cation protocols, as the complexity in these fields is quite limited. Nowadays research is 
focused on software design and code, or also on the combination of software and hardware 
design. 
A lot of literature exists about the field of verification by model checking. We will use two 
references for this work, Clarke et al. (1999) and Huth and Ryan (2004). There is a big variety 
of symbols and notations in use within the literature, and also the two works mentioned use 
different nomenclatures. We will follow the symbols and notations used in 
Clarke et al. (1999). 
Model checking is a process that consists of three main steps: modeling, specification, and 
verification. These steps can be described briefly as follows: 

• Modeling: The basis for model checking is a model of the system, which can be given 
in any description language of a model checker. Generally the model is given in some 
sort of transition system. The model may be compiled from a given design, but due to 
limitations in time and memory abstraction may be used to eliminate irrelevant or un-
important details. 

• Specification: Model checking is based on temporal logic. In detail the combination 
of temporal logic with automatic algorithms for verification of a given model was the 
starting point for the research in model checking. A specification is the summary of 
properties that need to be comprised by the model. A high number of various dialects 
and languages of temporal logic exist (see Section 3.6.2), whereas in practice their use 
is restricted to the given model checker. 

• Verification: Verification means the execution of a model checking algorithm with 
the specification and the model as input. The result is the answer, whether the model 
satisfies the specification or not. If the answer is no, the model checker provides the 
user in most cases with an error trace. The error trace is a counterexample for a 
checked property; a path in the state space of the model where the specification is vio-
lated. The generation of a counterexample is an important aspect for the (re-)design 
and debugging of a system. 

The model checking problem (Clarke et al., 1999, Chapter 4) can be described as follows. 
Given is a model M that represents a finite-state concurrent system. The model includes a set 
of states S. A specification that is given as temporal logic formula f expresses some desired 
properties of the model. Then model checking aims at finding the set of states in S that 
satisfies f: 
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{ s 0 S | M , s Ö f }. (2) 

Normally some states exist within the model that are designated as initial states. Then the 
model satisfies the specification if all initial states are in the set. The definition of the 
satisfaction relation Ö depends on the used temporal logic and is given for CTL* (see 
Section 3.6.2) for instance in (Clarke et al., 1999, Section 3.1). 
Following the classification criteria given in (Huth and Ryan, 2004, Section 3.1) for the 
determination of the verification approach, model checking fulfills the following characteris-
tics: 

• Model-based: The system description is represented by a model M. This is in contrast 
to proof-based approaches, where the system description is given as a set of formulas. 

• Automatic: The degree of automation is another criteria for verification approaches. 
Model checking can be executed completely automatic. 

• Property-verification: Model checking verifies whether a given system satisfies a 
given specification or not. But it does not determine whether the given system covers 
all the properties the system should satisfy (this would be called full-verification).  

• Concurrent, reactive systems: The intended application fields for model checking are 
systems that may be hardware and/or software. Their characteristics are concurrent 
(instead of sequential) and reactive (instead of terminating) behavior. 

• Post-development: The earlier verification is used in the course of system develop-
ment, the greater are the benefits in terms of reduced rectification costs. Model check-
ing is a post-development methodology, that means the model is built from a given 
design. 

A general model: Kripke structures 
Many possibilities exist to model concurrent, reactive systems. Concurrent systems are often 
given by the text of a program, utilizing shared variables and communication via message 
passing. They may be of synchronous or asynchronous type. Reactive systems are character-
ized by frequent interaction with the environment. They usually do not terminate. For both 
kinds of systems Clarke et al. (1999) propose to use a general type of state transition system 
called Kripke structure in order to capture this behavior. The general characteristics of such 
Kripke structures are that states exist (a snapshot of the system that captures values of 
variables at a particular instant of time), changes of the state are described by transitions, and 
computations within the system are depicted as an infinite sequence of states (the change from 
the previous state is given by some transition). A formal description of a Kripke structure is 
given in (Clarke et al., 1999, Section 2.1) as follows: 
“Let AP be a set of atomic propositions. A Kripke structure M over AP is a four tuple 

M = ( S, S0, R, L ) (3) 

where 1. S is a finite set of states. 
 2. S0 f S is the set of initial states. 
 3. R f S H S is a transition relation that must be total, that is, for every 

state s 0 S there is a state s’ 0 S such that R ( s , s’ ). 
 4. L : S 6 2AP is a function that labels each state with the set of atomic 

propositions true in that state. 

 

Sometimes we will not be concerned with the set of initial states S0. In such cases, we will 
omit this set of states from the definition. A path in the structure M from a state s is an infinite 
sequence of states π = s0s1s2… such that s0 = s and R ( si , si+1 ) holds for all i $ 0.” 
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State explosion problem 
When we think of an automatic algorithm for deciding on a given problem, the theory of 
computability needs to be kept in mind. “In particular, it shows that there cannot be an 
algorithm that decides whether an arbitrary computer program (written in some programming 
language like C or Pascal) terminates. This immediately limits what can be verified automati-
cally.” (Clarke et al., 1999, Section 1.2) But as model checking is a technique for verifying 
finite state concurrent systems, an appropriate algorithm will terminate (theoretically). In 
order to determine a given specification, an exhaustive search of the state space of the system 
has to be performed by such an algorithm. The efficiency of the algorithm is an important 
measure for the applicability of model checking to practical problems (see the discussion 
below on enhanced model checking techniques in Section 3.6.1). 
Nevertheless, the size of the model is a critical issue in model checking. Herein also the 
number of variables as well as the number of components of the system which execute in 
parallel are important measures. “The tendency of state space to become very large is known 
as the state explosion problem.” (Huth and Ryan. 2004, Section 3.6.1). 
This especially applies for the application of model checking in embedded systems design. 
Boyounnouse and Sifakis (2005, Section 1.4) state that “formal methods have scaled up 
drastically in the last decade, and this process is going to continue even faster. (…) Still, 
skilled engineers managed to use them by properly phrasing or decomposing their validation 
or analysis problems into traceable parts. Nevertheless, it is a constant and stringent need that 
formal methods and tools scale up to follow the increasing complexity of designs.” 

3.6.1 Enhanced model checking techniques 
A common methodology for human beings to visualize the model checking problem is 
unwinding the given Kripke structure, which means starting from the initial state of the model 
and representing the overall system behavior by an infinite tree of all computation paths. The 
first model checking algorithms used such an explicit representation of the Kripke structure, 
but obviously these approaches lack efficiency in contrast to the state explosion problem. 
Many enhanced algorithms for model checking have been developed in recent years. We will 
give a brief overview describing the main ideas in improving the performance of model 
checking algorithms. 

Efficient data structures—symbolic model checking 
A key step in increasing the possible number of states in model checking was done by a 
symbolic representation of the state transition graphs. In detail, such a representation has been 
proposed by using Ordered Binary Decision Diagrams (OBDDs). OBDDs provide a very 
compact, canonical form for Boolean formulas. As a simple example, the transition relation 
can be expressed as a Boolean formula using two sets of variables, one for the old state and 
the other encoding the new one, which is represented by an OBDD. The model checking 
algorithm is based on computing fixpoints of predicate transformers that are obtained from 
the transition relation. 

Abstraction 
The technique of abstraction is described in Clarke et al. (1999, Chapter 13) as a methodology 
applied before the model of a system is constructed. In detail it aims at a reduction of states 
on a high level description of the system. There are two concrete techniques mentioned: cone 
of influence reduction and data abstraction. The cone of influence reduction analyses the 
influence of variables to the ones mentioned in the specification. If the influence of variables 
can be neglected, they can be eliminated for the creation of the model of the system. Data 
abstraction aims at a mapping from actual data values to abstract data values. For instance, a 
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real number may be represented by three attributes: smaller than zero, equal to zero, or greater 
than zero. Again, a reduction in size of the original system can be achieved. 

Simulation 
In the sense of modeling a system, the simulation relation is an important means in decreasing 
the number of states. Clarke et al. (1999, Chapter 11) define that two given Kripke structures 
M and M’ according to Equation 3—we say that M’ simulates M (denoted by M ˜ M’)—if a 
simulation relation exists which associates each state in M a corresponding state in M’. 
Furthermore it can be shown that simulation is a preorder and given an ACTL* formula f (a 
detailed description of ACTL* is given in Section 3.6.2), M’ Ö f implies M Ö f. The model 
checking problem can be solved with the reduced structure M’ instead of the original struc-
ture M. 

Partial order reduction 
This technique especially focuses on the verification of software. Concurrent software often 
consists of different processes which are performed independently—that is also called 
asynchronous (without global synchronization clock). This property often can be used to 
substantially reduce the size of the model. In detail, “it exploits the commutativity of concur-
rently executed transitions, which result in the same state when executed in different orders.” 
(Clarke et al., 1999, Chapter 10) 

On-the-fly model checking 
This technique is used in conjunction with model checking with automata (Clarke et al., 1999, 
Chapter 9). Herein the automaton for both the model and the negation of the specification are 
generated and the emptiness of the intersection is checked. If the intersection is empty, the 
model satisfies the specification. On-the-fly model checking only generates the automaton for 
the specification. This automaton is used to guide the generation for the system automaton. It 
has been shown that this often leads to the construction of only a small portion of the state 
space before finding a counterexample for the properties being checked. 

Bounded model checking 
This technique uses the construction of a Boolean formula that is satisfiable if a counterexam-
ple exists. For the counterexample the length of the path is bounded. Starting from length 0 it 
is incremented until a proof is found. In certain cases the number of iterations of this proce-
dure can be bounded for instance by the diameter of the finite state systems in case of safety 
properties. 

Compositional reasoning 
In many cases the overall model is represented by a composition of smaller parts. If it is 
possible to decompose the specification of the overall system into properties that describe the 
behavior of such smaller parts, model checking can be applied to much larger systems. 

3.6.2 Formal specification by temporal logic 
Model checking is used to verify properties of concurrent and reactive systems. Therefor it is 
necessary to specify also the dynamic aspects of these properties. It is not sufficient to 
investigate only fixed properties of the model, as this would be possible by using proposi-
tional and predicate logic. An appropriate means for specifiying dynamic system properties is 
temporal logic. Various dialects of temporal logic exist that differ in the provided operators 
and the semantics of these operators. We will start our considerations with a very powerful 
logic called Computation Tree Logics (CTL) CTL*, which can be seen as superset for the 
most common temporal logics CTL and Liner-time Temporal Logic (LTL). In addition we 
will investigate further derivatives such as ACTL*, real-time and stochastic time temporal 
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logic. Next to various dialects of temporal logic there are also investigations on simplified 
understanding and application of temporal logics available, which are of special interest for 
ACS customers who are in common no experts in computer science. 

The Computation Tree Logic CTL* 
There are two different kinds of temporal logic that can be distinguished, branching-time 
logic and linear temporal logic. Branching time means that the model of time has a tree-like 
structure. There are several paths possible within this structure and the path that is realized in 
the future is not determined. In linear temporal logic the model of time is a sequence of states, 
extending infinitely often in the future. As the future is not determined in general, several 
paths are taken into consideration representing different possible futures. 
CTL* combines both models of time. The following description is based on Clarke et al. 
(1999, Section 3.1). In CTL* formulas can use two different kinds of quantifiers: path 
quantifiers and temporal quantifiers. As principle model for reasoning with CTL* a computa-
tion tree is examined, which represents the unwinded Kripke structure with one state desig-
nated as the initial state. Path quantifiers can be used in a particular state to specify whether 
all or some of the paths starting in that state have a given property. The two path quantifiers 
are 

• A which means “for all paths” and  
• E which means “for some paths”. 

Temporal quantifiers describe properties of a path through the computation tree. Five basic 
operators exist: 

• X (next time) specifies that the property holds in the second state of the path. 
• F (future or eventually) specifies that the property will hold at some state on the path. 

This may be also the first state of the path. 
• G (globally or always) specifies that a property holds at all states on the path. 
• U (until) is based on two properties of a path. If the second property holds at some 

state of the path, the first property has to hold at every preceding state. 
• R (release) is dual to U. The second property has to hold along the path up to and 

including the first state where the first property holds. The first property is not re-
quired to hold eventually.  

The precise definition of CTL* formulas is split up into two kinds of formulas: state formulas 
(for a specific state) and path formulas (for a specific path). According to the definition of a 
Kripke structure in Equation 3 we assume AP to be a set of atomic propositions. Then the 
syntax of CTL* is given by the following rules (Clarke et al., 1999, Section 3.1): 

1. “If p 0 AP, then p is a state formula.” 
2. “If f and g are state formulas, then 5f, f w g and f v g are state formulas.” 
3. “If f is a path formula, then E f and A f are state formulas.” 
4. “If f is a state formula, then f is also a path formula.” 
5. “If f and g are path formulas, then 5f, f w g, f v g, X f, F f, G f, f U g, and f R g are path 

formulas”. 

The Computation Tree Logic CTL 
Whereas CTL* included both branching-time and linear-time, CTL as a subset of CTL* only 
focuses on branching-time logic. In CTL each temporal operator has to be immediately 
succeded by a path quantifier. This means that there exist always pairs of one path quantifier 
and one temporal quantifier. CTL can be defined by exchange of the fifth rule of CTL* by the 
following restricted rule (Clarke et al., 1999, Section 3.2): 
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5. “If f and g are state formulas, then X f, F f, G f, f U g, and f R g are path formulas”. 
Next to this basic definition also different extensions of CTL exist, for instance Starke and 
Roch (2002) include especially state transition information (see also Appendix C.2). 

Linear-time Temporal Logic LTL 
LTL is also a subset of CTL*, but in contrast to CTL it is focused on linear time. An LTL 
formula has the form A f, where f is a path formula whereas only subformulas are permitted 
that consist of atomic propositions. In detail a LTL path formula can be defined according to 
(Clarke et al., 1999, Section 3.2) by two rules: 

1. “If p 0 AP, then p is a path formula.” 
2. “If f and g are path formulas, then 5f, f w g, f v g, X f, F f, G f, f U g, and f R g are path 

formulas”. 
A very important aspect of temporal logic is the expressiveness of a given language. It is not 
possible to express any LTL specification in CTL and vice versa. For instance the LTL 
formula A(FG p) cannot be expressed in CTL, and the CTL formula AG(EG p) cannot be 
expressed in LTL. The disjunction A(FG p) w AG(EG p) is a CTL* formula that is expressi-
ble neither in CTL nor in LTL. The choice of a specific temporal logic may be motivated also 
by its expressive power. 

ACTL* and ACTL 
An often used subset of CTL* is when only the path quantifier A is allowed. The restriction of 
CTL* to only utilize the A path qualifier is called ACTL*, and accordingly the same restric-
tion of CTL is called ACTL. 

Derivatives of CTL for real-time systems 
Sveral extensions to temporal logics exist in order to support mentioning of time directly in 
the specification. Clarke et al. (1999, Section 16.3) mention for instance RTCTL which uses 
bounded operators such as U[a,b], where [a, b] defines the time interval in which the property 
has to be true. Another approach called TCTL has been introduced by Alur et al. (1990). In 
contrast to CTL the next operator X is omitted and all other temporal operators are extended 
by a timing condition such as <c, #c, 'c, $c, and >c (c as time value). 

Derivatives for stochastic time 
Another extension of temporal logics is the introduction of stochastic time. Again several 
approaches exist in this field as for instance probabilistic temporal logic PCTL, “in which a 
probabilistic quantifier of the form P®λ is used in place of a path quantifier of CTL, where 
® 0 {<, #, ', $, >} is a comparison operator and λ 0 [0, 1] is a probability” (Sproston, 2004, 
Section 5.4). D’Aprile et al. (2004) discuss the use of Continuous Stochastic Logic (CSL) in 
model checking. CSL comprises the ability to specify qualitative and quantitative properties. 

User friendly representation of temporal logic 
The use of temporal logic for specification in the model checking process is highly supported 
by the various model checking approaches (see Section 3.6.3). But also a problem occurs due 
to the lack of good understanding of the expressiveness of temporal logics by engineers. 
There are two trends that can be observed in order to simplify the use of temporal logics: 

• Timing diagrams: In Clarke et al. (1999, Chapter 18) the use of timing diagrams in-
stead of temporal logic is mentioned for the specification of hardware design. Typi-
cally circuit designs are considered and timing diagrams are the natural way to express 
the behavior of the system. The timing diagram as specification may be used directly 
by adapted model checking algorithms or they are translated into temporal logic auto-
matically. Vyatkin and Hanisch (2001b) and Vyatkin and Bouzon (2008) depict the 
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use of timing diagrams for the specification in ACSs. In detail, they develop a specifi-
cation language for timing diagrams which is used to generate a model of possible in-
put behavior for a given system. 

• Pattern: Similar to patterns used in software engineering for recurrent problems also 
patterns may be used for recurrent types of specifications. Dwyer et al. (1998, Sec-
tion 3) introduced the term property specification pattern, which “is a general descrip-
tion of a commonly occurring requirement on the permissible state/event sequences in 
a finite-state model of a system”. They set up a hierarchy of such patterns with addi-
tional characterization of the pattern scope. Each pattern consists of a textual descrip-
tion, temporal logic formulas for different languages, examples, and the relationship to 
other patterns. Dwyer et al. (1999) present a study on available specifications in litera-
ture whereas most of them have been instances of their proposed patterns. The patterns 
are publicly available via [53]. Another survey of patterns has been presented also in 
Meolic et al. (2001). A special kind of patterns for safety requirements with different 
classification scheme is presented in Bitsch (2001). Herein a selection process is pro-
posed which leads to the selection of the best fitting pattern. 

3.6.3 Approaches to model checking 
Concerning the wide field of applications for verification by model checking and the different 
kinds of problems that may be evaluated, many different model checkers and model checking 
algorithms exist. This section aims at a brief overview by spotlighting some of these ap-
proaches. A more comprehensive overview is given for instance in Boyounnouse and Sifakis 
(2005, Chapter 7). 

Finite state model checking 
As described above model checking initially is concentrated on finite state models. The first 
model checker that was capable to manage a large amount of states for a practical application 
was developed in the PhD thesis of Ken McMillan (1993) and is called SMV. It is based on 
OBDD symbolic model checking and uses an input language that is based on the decomposi-
tion of a system into modules. Hierarchically structured designs are possible. The modules 
can be composed synchronously or using interleaving, and state transitions can be modeled 
either as deterministic or nondeterministic. The principles of SMV as well as an application 
are presented for instance in Clarke et al. (1999, Chapter 8). SMV supports the specification 
in CTL, LTL as well as further dialects of temporal logics. There are several versions 
available as for instance the original version from Carnegie Mellon University [52], a re-
implementation with extensions as an open source project NuSMV [35], or TSMV [55] for 
the verification of timed Kripke structures by using TCTL. 
A second important approach in finite state model checking is based on the application of 
model checking algorithms in the framework of automata. Herein an automaton is used as the 
model, and by using LTL formulas again in the form of automata very efficient on-the-fly 
model checking algorithms can be applied as depicted in Clarke et al. (1999, Chapter 9). The 
corresponding tool is called SPIN [51] which uses its own input language PROMELA in 
order to build formal models. 

Continuous time model checking 
There are different approaches available in order to use time within models. The notion of 
time has to be distinguished, whether discrete or continuous time is utilized. For discrete time 
model checking existing finite state model checkers can be utilized and enhanced such as for 
instance in TSMV. In case of a continuous time, the use of so-called timed automata as 
introduced by Alur and Dill (1992) has become the standard methodology. A timed automa-
ton is a finite automaton augmented with a finite set of real-valued clocks. The automaton 
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consists of locations (set of states) and labeled edges (set of transitions). Clock constraints can 
be used as guards on edges, and when a transition is taken clocks may be reset. A recent 
survey on the semantics and algorithms for model checking with timed automata is given for 
instance in Bengtsson and Wang (2004). 
The UPPAAL tool [58] is one of the most notable approaches to model checking with timed 
automata. The UPPAAL modeling language comprises networks of timed automata with 
some extensions such as integer values (in addition to clocks) or urgent channels (for 
synchronization). Specifications are expressed in TCTL in general. The UPPAAL framework 
provides a rich featured environment for modeling, simulation and verification of timed 
automata. Another important tool for verification of timed automata is KRONOS [30]. 

Petri net based model checking 
The theory of Petri nets has been established in the PhD thesis of Carl Petri (1962) in order to 
model the communication between asynchronous components in computer systems. As 
depicted in Peterson (1981) a big amount of research work was already available before 
model checking has been invented. Moreover, Queille and Sifakis (1981) used a special class 
of Petri nets, so called interpreted Petri nets, as the internal representation of the model in 
their first approach to model checking. A basic Petri net consists of four parts: a set of places, 
a set of transitions, an input function that represents edges from transitions to places, and an 
output function that represents edges from places to transitions. The dynamic behavior of a 
Petri net is represented by markings and their flow due to rules defined via the edges between 
places and transitions. Popular extensions of these models are colored Petri nets, that include 
different colors in order to distinguish markings. A recent survey on the Petri net theory is 
given for instance in Priese and Wimmel (2003), a collection of online services such as a tool 
database is available in [42]. Next to the analysis methodologies developed within the Petri 
net theory also model checking has been incorporated by some tools. 
One special extension of Petri nets are Net Condition/Event Systems (NCES), which are a 
module based modeling approach introduced by Rausch and Hanisch (1995). A module 
interface utilizes event and condition inputs/outputs, the internal behavior is represented as 
Petri net. A detailed description of NCES is provided in Appendix C, an appropriate tool 
chain capable to provide model checking based on NCES is available in [61]. 

Probabilistic model checking 
Based on the different approaches to model checking different extensions exist in order to 
incorporate also stochastic models into the model checking algorithms. Bause and Kritzinger 
(1996) discuss additions to the Petri net theory, in detail they discuss the introduction of 
Markov processes and queuing theory, which is the basis for Stochastic Petri Nets, General-
ized Stochastic Petri Nets (GSPN), and Queuing Petri Nets. D’Aprile et al. (2004) depict the 
use of several tools for model checking of a GSPN model. These are ETMCC [18] (model 
checker for Continuous Time Markov Chains), PRISM [46] (a tool for analysis and model 
checking of different types of stochastic models), and GreatSPN [21] (a graphical editor and 
analyzer for timed and stochastic Petri nets). A survey on different approaches to model 
schekcing of probabilistic timed automata is presented in Sproston (2004). 
An application of probabilistic model checking in ACS has been presented in Greifeneder and 
Frey (2007). Herein especially the situation in networked automation systems is taken into 
consideration, which consists of cyclic executed PLCs and sensors and actuators connected 
via some communication network. 

Source code model checkers 
For the model checking of software, the source code is the initial representation of the system. 
Several approaches exist already that are capable to handle source code of different program-
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ming languages as an input. For instance, Bandera [4] enables model checking of concurrent 
Java software by automatic conversion into the input languages of SMV or SPIN. A different 
approach is implemented in Java PathFinder [27], which provides a systematical exploration 
of all potential execution paths of a Java program in order to verify a given specification. A 
similar approach is used by VeriSoft [60] but without the restriction to a certain programming 
language. The C programming language is the basis for the tool SLAM [50] which is used for 
the verification of device drivers for Microsoft Windows. Herein the behavior according to 
the description of the application programming interface is checked. A more general approach 
for C programs is given in BLAST [5], which uses a counterexample-driven automatic 
abstraction refinement in order to construct an abstract model of the C source code for model 
checking. A similar approach is also utilized in the MAGIC framework [31] described for 
instance in Chaki et al. (2004). The abstract model simulates the model of the source code. If 
the specification is satisfied in the abstract model, the properties hold also for the original 
model. Otherwise, a refinement of the abstract model is calculated based on the information 
from the counterexample. 

Model checking and dynamic reconfiguration 
The discussion on model checking given above has one main prerequisite: there is a static 
model of the system in order to check whether it fulfills the specification or not. But also 
approaches exist that focus on dynamic reconfiguration of systems and therefore also dynamic 
reconfiguration of the model. We will concentrate our discussion of approaches to the field of 
embedded systems and especially ACSs. 
Tešanović et al. (2005) present a model checking algorithm that is capable to verify properties 
of reconfigurable components. In detail, their approach is based on aspect-oriented software 
development which modifies given components during the establishment of a system by 
applying certain aspects. A component incorporates a set of reconfiguration locations where 
code may be changed during the aspect weaving. The verification is based on timed automata 
and the presented model checking algorithm checks whether properties of components are 
preserved upon the reconfiguration or not. 
In ACSs especially the field of RMS initiated different approaches for the verification of 
dynamic reconfiguration. Herein formal models are used in the design process in order to 
generate the control logic based on these models. Kalita and Khargonekar (2002) present a 
methodology that combines both theorem proving and model checking based on timed 
transition models. The reconfiguration is described as the change of configurations which 
include models of the plant and the controller. Li et al. (2005) aim at the design of reconfigur-
able logic controllers by rewriting Petri net based controllers. Instead of carrying out a 
redesign and a new verification a method for rewriting the existing Petri net based controller 
is presented. A similar approach with Petri net rewriting rules is given in Alcaraz-Mejía and 
López-Mellado (2006). The dynamic reconfiguration is expressed directly as rewriting of the 
model. 
A very important aspect within the process of dynamic reconfiguration is the behavior of the 
system during the execution of the changes. In Park et al. (2001) this is also taken into 
consideration for a controller capable to change within three pre-given modes. As a conse-
quence next to the formal model of the different controllers and their control modes also the 
mode-switching logic needs to be included into the model of the system. This approach is 
based on Petri nets and automatic code generation from these models. The formal models of 
changes induced by dynamic reconfiguration are main elements of this work, as already stated 
in Requirements (4) “Modeling dynamic reconfiguration and (5) “Free programmable 
downtimeless system evolution” in Section 2.2. 
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3.6.4 Model checking in automation and control systems 
The model checking problem in ACSs has to be enlarged especially due to the close intercon-
nection to the plant and its requirements of controlled behavior. Hanisch (2004) describes this 
situation of a closed-loop modeling of the plant and the controller in more detail. The plant 
behavior dictates the design of the control logic. The interface between plant and controller is 
given by actuator and sensor signals. An integrated approach for the modeling of plant and 
control logic based on automation objects (the authors use the term mechatronic objects) is 
given in Bonfe and Fantuzzi (2003). Herein an automatic transformation into the input 
language of SMV is included and also the execution semantics of the control logic (the 
synchronous execution model of IEC 61131-3 and the asynchronous execution model of 
IEC 61499) are taken into consideration. 
In the following we will survey several approaches for the analysis of existing code from the 
ACS programming languages IEC 61131-3 and IEC 61499 by model checking, with special 
focus on IEC 61499. According to Frey and Litz (2000) further reasons for the use of formal 
methods in PLC programming are the design of the control logic (with integrated automatic 
code generation) and the re-implementation of existing code on different platforms. They 
include also a survey on examples for the application of evaluation in ACSs. Further reasons 
for the use of formal models in ACSs are coordination activities and scheduling in manufac-
turing systems. Herein the high-level control is modeled and analyzed. Recalde et al. (2003) 
provide an overview on the use of Petri nets for this field of application as for instance a car 
manufacturing plant. 

IEC 61131-3 
The various elements of the IEC 61131-3 standard may be part of a verification approach by 
model checking. One important element with regard to verification is the structuring of POUs 
by the use of the SFC modeling languages. As described in IEC 61131-3 (2003, Section 2.6.5) 
the rules for the execution of SFC elements do not exclude failure situations such as unsafe 
SFCs (for instance uncontrolled behavior due to proliferation of tokens) or unreachable SFCs 
(the token may be locked and parts of the SFC may be unreachable). As the usual methods for 
validation—testing and simulation—cannot be applied easily in order to detect such situations 
also in complex SFCs, the method of verification by model checking has been used in 
different situations. As an example, Bauer et al. (2004) describe the translation of untimed 
SFCs into the SMV input languages and timed SFCs into Timed Automata. Based on these 
models and the dynamic model of the plant Bauer et al. (2004) depict the identification of 
errors in the control program by the use of model checking. 
As this work utilizes NCES as modeling language we will concentrate on approaches in this 
field. One of the first applications is given in Hanisch et al. (1997) for the IEC 61131-3 
programming language LD. The structure of LD is analyzed and a transformation into NCES 
models is presented. This transformation also incorporates timer function blocks. A more 
recent approach is presented in Hanisch et al. (2006) on basis of the practical example of a 
lifter. There are two different implementations of this example taken into consideration: by 
the use of LD control logic and visual flowcharts (a proprietary PLC programming language). 
They describe in detail the modeling of the plant in a hierarchical architecture of NCES 
modules and especially take into account the execution behavior of a PLC by execution 
cycles. Furthermore this approach uses data abstraction in the models in order to handle non-
Boolean values by utilizing discrete thresholds. Lobov et al. (2006b) describe the translation 
of the IL dialect from the company Siemens (the language is called statement list) into NCES. 
Next to the fundamental transformation of IL commands into NCES models this approach 
takes into account also a very detailed model of the execution behavior of the PLC such as the 
scheduler of the operating system or organization blocks. Comprising also a model of the 
plant detailed analysis is possible. The modeling of the plant is done in a special manner, 
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which is described in more detail in Lobov et al. (2006a). Here again a transformation is used 
for generating NCES models from plant models given in UML. Therefore a very powerful 
framework is established in order to simplify a closed-loop modeling of an ACS application. 

IEC 61499 
There are also many approaches available for the verification of IEC 61499. A survey on 
these approaches is given for instance in Frey and Hussain (2006, Section III) or 
Sünder et al. (2007, Section II). We will focus in the following brief introduction to the state 
of the art in formal modeling of IEC 61499 especially on the Requirements (1) “Temporal 
behavior”, (2) “Execution semantics”, and (3) “Underlying system configuration” mentioned 
in Section 2.1. 
The first approach for a formal description of FBs according to IEC 61499 has been published 
by Vyatkin and Hanisch (1999). They use NCES which has a number of direct similarities 
with IEC 61499. NCES modules can be interconnected by event and condition arcs to bigger 
modules. The formal model of BFBs is based on the IEC 61499 standard, without taking into 
consideration the execution semantics of a given runtime environment. Event propagation is 
modeled directly by event arcs, the runtime scheduling is assumed to be concurrent and 
instantaneous. Further work based on this approach uses closed-loop verification of the 
controller and the plant. Enhancements of this early approach are for instance given in 
Vyatkin (2006), who describes especially the modeling of execution semantics of IEC 61499 
FBs. In detail, the correct order of actions within an FB as well as the propagation of events 
over the network by the use of a scheduler which provides sequential operation of events is 
incorporated in the formal models. Pang and Vyatkin (2007) investigate on the representation 
of data and algorithms in NCES for the formal verification of IEC 61499. The work from 
Lüder et al. (2005) is based also on the concepts of Vyatkin and Hanisch (1999). 
Wurmus and Wagner (2000) depict a formal description of IEC 61499 FBs and FB networks 
by using Petri nets. The event flow is represented by the flow of tokens, and especially the 
representation of the ECC within BFBs is taken into account. The approach also incorporates 
SIFBs utilizing timing services in a very simple manner, but all considerations are based 
directly on the standard without regard to a concrete runtime implementation. 
Schnakenbourg et al. (2002) propose to model FBs using the synchronous language SIGNAL. 
They use clocks in order to assure the synchronization between the Execution Control Chart 
(ECC) and the input events. There is no model included for the propagation of events 
according to a concrete runtime implementation. Physical time is also not included, but the 
authors claim that this can be overcome by giving a value to the gap between two instances of 
a clock. 
Khalgui et al. (2004) propose a state machine model compliant to the standard IEC 61499. To 
avoid unpredictable behavior in the case of a simultaneous occurrence of events, they propose 
to design an offline scheduling of an FB execution. They verify the scheduling correctness 
using a state machine model. By using this scheduler, a hard-coded execution model of a 
runtime environment can be implemented. Khalgui et al. (2006) include considerations also 
for distributed applications based on a temporal specification of exchanged messages between 
devices. 
Zhang et al. (2004) consider the verification of IEC 61499 applications in contrast of safety-
related system development. They propose a transformation of the IEC 61499 standard into 
finite state models without a concrete runtime environment or the physical time in mind. 
Based on the verification of BFBs, the verification of FB networks and CFBs is reduced to the 
verification of the connections between the pre-checked elements. In Zhang et al. (2005) the 
formal language for the overall specification of the software design cycle is UML. Herein, the 
special focus is on an integrated approach starting from system requirements till code 
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implementation by using similar means, in detail the different UML models. For the verifica-
tion a transformation from UML into finite state machines is given. 
Stanica (2005) provides a study on modeling BFBs and FB networks together with a very 
simple model of the run-time behavior of a virtual IEC 61499 execution platform. His 
approach is based on Timed Automata and takes into account the physical time of algorithm 
execution. The formal description restricts the execution of algorithms to only one algorithm 
at the same time. But there are no models included to describe the propagation of events and 
further runtime behavior. 
A rather new approach has been presented by Dubinin et al. (2006) using the verification 
engine of Prolog language, whose implementations contain a built-in deductive inference 
engine. Therefore, the class of properties that can be checked is extended to more substantial 
queries providing in return not only “yes” or “no”, but also the parameters explaining the 
reasons. For instance, questions like “at which values of parameter X does parameter Y belong 
to the interval [a, b]” can be formulated and checked. This approach is limited to BFBs in the 
current version. 
Čengić et al. (2006) describe their formal model of the runtime environment FUBER [13], 
which they have developed based on interacting finite automata in Supremica. In this case the 
formal description includes many aspects of the runtime behavior. For instance, the event 
execution model specifies that each FB instance must wait for another instance to finish its 
event handling before it can begin its own event handling. Incoming events of an FB instance 
are stored in a queue; all FB instances waiting for execution are also handled in another 
queue. By the use of such a detailed formal description of the runtime behavior, they are able 
to prove in many details the behavior of the FUBER implementation. Physical time is not 
mentioned in their approach. As the implementation of FUBER is based on Java, the virtual 
machine as well as the underlying operating system need to be included to the models for the 
consideration of physical time. 

3.7 Summary 
The state of the art for this thesis consists of three main parts. First a general description of 
computer-based systems for automation and control purposes is presented, which can be 
characterized as embedded, real-time systems. The ACS customer is skilled in the abilities 
necessary for the operation of the plant and uses special programming languages (the widely 
used IEC 61131-3 standard and its successor IEC 61499) in order to operate the plant. 
General means from computer science are in use within the products of ACS component’s 
suppliers, but these cannot be anticipated to be used by ACS customers. The analysis of ACS 
programming languages shows that their concepts are quite different from modern program-
ming disciplines, in detail software components and the appropriate software development 
cannot be matched directly, which is a problem for the generalization of approaches from 
embedded systems design. 
Dynamic reconfiguration describes the changes of software during operation, whereas the 
new concept of DSE incorporates the overall configuration of hardware and software over the 
lifecycle of a plant. For computer science and especially component-based software develop-
ment a reference architecture gives an overview on interdependencies of the different types of 
changes as well as the influence to integrity characteristics. To some extent dynamic recon-
figuration is already possible in ACS. Special work has to be done in order to minimize 
disturbances to the plant during dynamic reconfiguration. Appropriate means for such a 
transition management are currently available especially for closed-loop control systems. 
Verification by model checking has been successfully applied to hardware design and is in 
recent years also used in software design. The main problem is to decide whether a given 
system satisfies some specifications. Therefore the system as well as the specification have to 
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be transformed into the input language of a model checking tool. Various means exist for the 
description of a system as a formal model. Specifications are expressed in some kind of 
temporal logic. In order to apply model checking in ACSs the model of the system needs to be 
generated as much as possible automatically (according to a closed-loop modeling paradigm 
the system comprises the plant and the controller) and the specifications have to be encapsu-
lated in some user friendly format such as patterns or signal diagrams. Next to these prerequi-
sites a concept for the evaluation of the effect of the execution of dynamic reconfiguration is 
missing in the current state of the art. 
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4 New Engineering method for Downtimeless System 
Evolution 

Chapter 4 

New Engineering method for Downtimeless System Evolution 

An appropriate engineering method is the basis of an evaluation approach for DSE. This is a 
very critical part especially for ACSs. Vyatkin et al. (2005, Section IV.A) state as an addi-
tional restriction for the software architecture of new systems: “Maintainability of automation 
systems is determined by the training level of the factory floor personal. For this reason, the 
human interface (which also includes means for re-programming) should not be radically 
different from what is used in the field now.” Due to the special situation of ACS customers it 
is not feasible to apply highly sophisticated approaches such as presented in Section 3.4 
directly. 
This chapter starts with the definition of an engineering cycle for DSE, which is based on a 
special application in order to model the transition from a current system state to a new 
system state. This application can be split up into three sequences, providing a clear structure 
for an evolution step. For practical use different evolution steps need to be coordinated, which 
is again modeled in an application. Up to now this process only focuses on changes to the 
control logic of an ACS at run-time. But also hardware changes can be integrated into the 
engineering cycle, as depicted in Section 4.4. 

4.1 Evolution engineering method 
The process of engineering in ACSs can be described in a very simplified manner as depicted 
in Figure 9a in three steps: 

1. Planning new ACS: First of all the requirements for the new ACS as well as a rough 
schematic of the planned functionality need to be set up. 

2. Application engineering: Then an appropriate application is modeled and tested in 
order to fulfill the specified requirements. 

3. Start of operation: At last the engineer has to download the application to the control 
devices and start the operation of the ACS. This phase may last for months especially 
for complex plants and manufacturing systems. 

This very rough representation can be used for an overall plant as well as small parts of an 
ACS. The characteristic item is that when new requirements need to be added or requirements 
are changing, the process starts again from the first step (dotted arrow in Figure 9a). The plant 
or single control devices need to be stopped in order to download the new application. Then 
the ACS has to be started again. 
In case of an engineering process with DSE, the initial steps are similar to those stated above. 
But as soon as the operation of the ACS has started, the process changes (see arrow from 
Figure 9a to Figure 9b). From now on the engineering process is characterized by the 
following steps (Figure 9b): 
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4. Planning system evolution: If new requirements exist or the requirements are chang-
ing, the new situation is planned. This is rather similar to the application engineering 
mentioned above. 

5. Evolution engineering: In contrast of modeling the new application, the transition 
from the current system state to the new system state needs to be modeled. Herein it 
may be necessary to split up the overall system evolution into smaller steps. 

6. Downtimeless system evolution: In contrast to the start of operation of a new applica-
tion the actions for the transition to the new system state need to be executed at run-
time of the overall plant. 

 
Figure 9: Engineering of ACSs (a) without and (b) with downtimeless system evolution 

New or changed requirements can be handled by repeating steps 4 to 6 again and again. The 
engineering process for such an incremental enhancement of the overall functionality of the 
ACS is depicted in Figure 10.  
Step 4, planning system evolution, is spilt up into two subtasks. First of all it is a prerequisite 
to have a detailed depiction of the current system state. Secondly the new application (the 
changed application) will be modeled rather similar to the application engineering mentioned 
in Figure 9a. There should be no difference for the ACS customer whether he models the 
initial application or a changed application. Then the evolution engineering takes into account 
the differences between the current system state and the proposed new system state. It is 
necessary to especially model the transition management in order to minimize the distur-
bances to the operating plant. The last step refers to the execution of the downtimeless system 
evolution. These steps describe the engineering process for one system evolution step, and as 
already depicted in Figure 9b the overall engineering process for an ACS consists of the 
recurrent application of these steps. A more detailed look at the tasks that have to be consid-
ered within this engineering cycle is given by the following description: 

Acquire existing application 
This first activity can be summarized as collecting all data available for describing the current 
system state. The used method depends on the possibilities of the used engineering tools and 
runtime platforms. For instance, all data of the ACS may be stored in some kind of data base 
or simply in the project file of the engineering tool. But as especially for bigger ACSs 
engineering takes place in larger teams, it may be necessary to countercheck these descrip-
tions by directly interacting with the control devices. The collected data is used as input for 
the next step, the application modeling. In terms of an ACS based on the IEC 61499 standard 
the data consists of the system model including applications currently running in the system, 
the hardware configuration of the system (used devices and network structure), the mapping 
of the applications to the different devices and in addition a description of the hardware 
capabilities of the control devices. 
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Figure 10: Engineering cycle for downtimeless system evolution 

Application modeling 
The ACS customer models the new control application based on the existing application by 
adding/removing components and their interconnections. According to the application 
centered engineering paradigm of the IEC 61499 standard the application modeling consists 
of four steps: 

• Application control engineering: The modeling of the control application is based on 
the existing application and focuses on the satisfaction of the new or changed re-
quirements of the ACS. Furthermore the ACS customer has to specify application 
properties like real-time constraints. 

• Hardware specification: As DSE focuses on both changes in hardware and software 
also the hardware configuration may be changed. 

• Control mapping: The procedure of allocating applications or application parts to the 
available control devices is called mapping. A DSE may be also the relocation of ap-
plication parts without changed software and hardware specifications. 

• Evaluation: The evaluation process of the new application aims at checking the prop-
erties of the new system state. It is supposed that there is no DSE and only the proper-
ties of the new system state are examined. Based on the four evaluation methods pre-
sented in Chapter 1 especially simulation is used in industrial practice. Testing cannot 
be applied since the plant is still in operation, but is often used for the engineering of 
ACSs without DSE (Figure 9a). Deductive verification and model checking may be 
used as well. 

Evolution engineering 
The third step aims at the description of the transition from the current system state to the new 
system state. The main idea is that the ACS customer uses an application in order to model 
this transition. In detail, this evolution control application will be modeled utilizing the 
IEC 61499 standard. There are again four tasks that need to be applied: 

• Analyze the ∆ (Delta): The starting point for the evolution engineering is an analysis 
of the changes that have been modeled. A simple implementation may protocol all 
changes that have been applied to the current system state during the application mod-
eling step. But there may be also more sophisticated algorithms that provide additional 
information in order to simplify the following tasks. 

• Evolution control engineering: The ACS customer can use the same means for mod-
eling the Evolution Control Application (ECA) as well as the control application. The 
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most important aspect is the provision of management commands in the shape of func-
tion blocks. The control properties and parameters for the DSE (especially for transi-
tion management) are specified in the same manner as control application properties. 

• Evolution control mapping: Similar to the application centered engineering paradigm 
also the ECA is not restricted to a specific control device. It may be split up into parts 
and executed as a distributed application similar to a control application. This is espe-
cially important for synchronizing of changes on different control devices. 

• Evaluation: Up to now no changes have been applied to the current system state. 
Within the next step, the DSE will be executed. In order to guarantee that the ACS 
will not break down due to the changes that will be applied, it is necessary to evaluate 
the process of DSE. As already discussed in Section 1.1 model checking is used for 
the evaluation process. 

Execution of downtimeless system evolution 
The execution of DSE consists of three tasks. Firstly the ECA has to be downloaded to the 
control devices. This is similar to the download of any control application. Secondly, the ECA 
has to be started, which means that it will execute the changes according to the constraints 
that have been modeled by the ACS customer. After the ACS has changed into the new 
system state, the ECA is useless and it can be deleted in order to leave the system in a clean 
state. 

4.2 Basic evolution control engineering 
As a first step we will investigate on an ECA as an IEC 61499 application for one system 
evolution step. As already depicted above, the process of DSE sets high demands on the 
underlying concepts and methodologies: Applications within the ACS have to be executed 
without disturbances. The system evolution has to be adapted to the special environmental 
conditions of the affected application part. Any failure during the evolution process has to be 
managed at least to such a degree, that the system is left in a defined state. The standard 
IEC 61499 already includes management commands for the configuration and reconfiguration 
of applications. But the standard lacks an engineering methodology for dynamic reconfigura-
tion or even DSE. 
The use of an application for modeling the DSE is closely related to the work of Bren-
nan et al. (2002a), whereas we will use an IEC 61499 application utilizing basic reconfigura-
tion services as described in Zoitl (2007) in order to model the interaction of the ECA with 
the control application. This topic has been presented in Sünder et al. (2006c), which provides 
the basis for this section. 

4.2.1 Why is it necessary to freely program evolution control applications? 
Before we start our detailed analysis of an ECA it may be helpful to reconsider the reasons for 
the need of a free programmable ECA. The Requirement (5) “Free programmable DSE” 
mentions that the scope of the system evolution may be very large and it is not restricted to 
any special field of applications. Based on the state of the art review presented in Chapter 3 
there are two more reasons for this requirement: 

• Transition management: One main requirement is the use of appropriate transition 
management strategies in order to minimize the disturbances to the control applica-
tions. As depicted in Section 3.5 various techniques especially exist for the field of 
closed-loop control. But the scope of dynamic reconfiguration in ACS is very broad as 
described for instance in Baier et al. (2007). Therefore, it is not sufficient to provide a 
defined set of transition management techniques in order to satisfy the ACS customer 
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needs. The transition management strategy has to be modeled based on the special pre-
requisites of the concrete DSE. 

• The nature of ACS programming languages: The component-based software devel-
opment paradigm provides a good basis for dynamic reconfiguration as the different 
software components represent independent operational units. The rules for the inter-
action of software components within a given component framework can be used as 
basis for automatic scenarios of dynamic reconfiguration especially for inter-
component changes (see the reference architecture in Section 3.4.1). Intra-component 
changes may be handled by using strict interfaces and software component specific 
implementations as mentioned in Section 3.4.2. But as the analysis of the program-
ming languages in ACS with respect to the definitions of a software component have 
indicated, it is not possible to apply these concepts directly. As a consequence, the 
ECA cannot be established automatically and needs to be modeled freely according to 
the given control application. 

4.2.2 Basic reconfiguration services 
IEC 61499 already defines a basic set of commands to the enable management of resources, 
function blocks or connections. Based on the generic interface of the management function 
block a set of specialized function blocks should be available for modeling ECAs. But this set 
is not sufficient and has to be enlarged. The following gives an overview of missing instruc-
tions: 

• Query of all internals of FBs: For instance the currently active Execution Control 
Chart (ECC) state or the value of an internal variable may be needed. 

• Setting of all internals of FBs: A management FB should be able to set internal vari-
ables or to force the ECC to a dedicated state. In case of the latter action it must be 
possible to choose whether the corresponding algorithms or output events should be 
executed or not. 

• Generation of events: The occurrence of an event at an FB input has to be controlled 
by a command for selective operation sequences. Such functionality may be simply 
modeled by using an event connection, but for engineering purposes also an appropri-
ate FB may be useful. 

• Sniffing of events: In order to synchronize the ECA with the control application 
events from the control application are an important input for the ECA. This function-
ality can be simply modeled by an event connection, but as already mentioned above it 
may be useful for engineering to provide a special function block for sniffing of 
events. 

• Real-time execution of specific ECA parts: This is a general prerequisite also for the 
execution of control applications, as control applications are always constrained by the 
process under control. Any changes to the control application (modeled within the 
ECA) need to fulfill real-time constraints, too. 

• Resolving of timing conflicts: In the best case no conflict will ever occur during the 
execution of control applications and ECAs. But this may not be possible in every 
situation, since for instance control devices have a limited amount of computational 
power. There has to be a means in order to define the procedure of execution for the 
competing application parts. 

For this thesis we will use the IEC 61499 runtime environment which is described in 
Zoitl (2007). This runtime environment, we will use the term Real-time Reconfiguration 
Runtime Environment (R3E), has been developed during the research project Micro Holons 
for Next Generation Distributed Embedded Automation and Control Systems (µCrons), which 
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focuses on dynamic reconfiguration and real-time execution of IEC 61499. This runtime 
environment has been adapted in some special topics within the εCEDAC project and is 
available as part of the open source project Framework for Distributed Industrial Automation 
and Control (4DIAC). A more detailed description of the runtime environment is given in 
Appendix B, for our considerations we will use the terminology from Zoitl (2007). 
The open points mentioned above can be summarized in two categories. On the one hand the 
real-time constrained execution of FB applications has to be included in general. Therefore 
Zoitl (2007) investigates the identification of event sources within an application. These event 
sources are always SIFBs, which are triggered by some external sources such as the timer or 
the network. In order to integrate a real-time execution concept, so called real-time event FBs 
(Zoitl, 2007, Appendix C), which provide parameters in order to define real-time constraints 
for the FB network that is triggered by these sources, have been defined. This concept enables 
the modeling of real-time execution within the control application without violating the 
concepts of the IEC 61499 standard. 
The second enhancement is represented by basic reconfiguration services, which provide full 
access to the device management in order to control dynamic reconfiguration. The basic 
reconfiguration services are described in detail in Zoitl, (2007, Appendix A). Five categories 
of basic reconfiguration services exist: 

• Structural services: The structural reconfiguration services provide mechanisms for 
changes to the structure of the control application. Herein creation and deletion of re-
sources, FBs and connections as well as writing of parameters is summarized. 

• Library services: The library reconfiguration services influence the library available 
within a device. The library includes resource, FB, and data types. 

• Execution control services: The execution control reconfiguration services set the 
state of a managed FB or resource. The corresponding management commands are 
START, STOP, KILL and RESET. 

• State interaction services: The state interaction reconfiguration services provide ac-
cess to the internals of an FB by using the management command READ and WRITE 
(herein an enhanced functionality is necessary in contrast to the IEC 61499 standard). 

• Query services: The query reconfiguration services can be used to establish the cur-
rent system state by interacting with the control devices. For instance, lists of in-
stanced FBs or connections can be polled. 

In order to describe the interrelation between these basic reconfiguration services and the 
reference architecture for dynamic reconfiguration presented in Section 3.4.1, we have to 
define the association of the models defined in the IEC 61499 standard and a software 
component. For this thesis we will consider an FB as a software component10. The resulting 
types of changes and their dependencies are depicted in Figure 11. In comparison to Figure 7 
all types of inter-component changes are available, as the IEC 61499 standard defines each 
FB as an entity. But for intra-component changes only internal changes are possible with the 
restriction to behavioral changes, as only state elements may be changed by their value. No 
basic reconfiguration services exist in order to change the type of an FB. In this case a new 
FB type needs to be created. Also substitution is not possible by using the basic reconfigura-
tion services as single command. But it can be modeled within an ECA (see also the example 
presented in Section 4.2.3). The different basic reconfiguration services can be mapped to the 
possible change types as follows: 

                                                 
10 Any kind of FB type will be considered as basic FB, although the analysis in Section 3.2.2 has identified 
different problems for CFBs and SIFBs. 
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• Protocol change: With respect to IEC 61499 a protocol change can be applied by 
changing connections and parameters within an application. The software components 
(FB instances) themselves will not be changed. 

• Topology change: In contrast to protocol change, the topology change aims at modifi-
cations to the software components, the FB instances. Without influencing the behav-
ior of the application there are two different kinds of changes possible: the substitution 
of an FB type without changing the interface and the relocation of application parts. 

• Architectural change: The combination of both protocol and topology change yields 
to architectural change, which means any changes to an application within the ACS. 

• Internal change: Based on the enhancement of R3E in order to access also internal 
variables of an FB internal change is provided. But it is limited to behavioral change 
of the software component. 

 
Figure 11: Change types within R3E 

Access to the device management 
The interface to the device management is defined in the IEC 61499 standard by using a 
generic FB, which has been adapted within the IEC 61499 compliance profile for feasibility 
demonstration [17] as DEV_MGR FB type. This FB type is incorporated within a manage-
ment application which simply defines a communication channel to the device management. 
A compliant engineering tool uses this communication channel in order to download applica-
tions to the device. Examples are the FBDK [15] or the 4DIAC platform [12], which utilize 
these definitions for the engineering tool as well as the runtime environment. Only one access 
mode to the device management of an IEC 61499 device exists: via the management applica-
tion defined in the IEC 61499 compliance profile for feasibility demonstration. 
The use of basic reconfiguration services sets much higher demands to the device manage-
ment of an IEC 61499 control device. Each FB instance that represents a basic reconfigura-
tion service includes an access mode to the device management. Figure 12 depicts this 
situation for an example device. The device includes several resources (‘MGR’, ‘Resource A’, 
‘Resource B’) that execute function block networks. The management application described 
above is included within the ‘MGR’ resource (this is defined also in the IEC 61499 compli-
ance profile for feasibility demonstration). The dotted arrows describe the access modes. For 
instance, the engineering tool uses the communication channel to send commands to the 
‘DEV_MGR’ FB instance, which is an interface to the device management. According to the 
management commands sent to the device the device management acts within the resources 
of the device. Within ‘Resource A’ there is also an evolution control application which 
includes FB instances incorporating basic reconfiguration services. According to the execu-
tion of the ECA again the device management acts within the resources of the device. But 
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now the device management is part of the execution of applications (in detail the ECA) and 
has to fulfill real-time constraints based on control applications the ECA acts on (‘Applica-
tion 1’ and ‘Application 2’ are control applications). 

 
Figure 12: Different access modes to the device management of an IEC 61499 control device 

4.2.3 Modeling evolution control applications 
The main idea of this methodology is to control the DSE of control applications by an 
application, the evolution control application. This special application should make use of 
basic reconfiguration services in order to control another application. Furthermore the 
reconfiguration application can use any event and data flow in order to recognize the current 
system state of the application. For instance, the ECA may realize that the process has 
reached an idle state and would start the DSE. The event driven approach of IEC 61499 
supports such a kind of synchronization with the control application in a very good manner. 
From a general point of view the following aspects should be mentioned for modeling ECAs: 

• The ECA can be located on the local device. This enables a direct interaction to the 
concerned device/application without time delays due to communication networks. 
Real-time requirements of the system evolution can be fulfilled. 

• The reconfiguration application has to interact directly with the corresponding applica-
tion in order to react on the current system state and to coordinate the evolution proc-
ess with the application behavior. By using event and data connections the ECA can 
be tightly coupled with the control application. 

• Failure handling may be integrated directly within the ECA. A main requirement to 
the system evolution process is to leave the system within a defined state, even in the 
case of unexpected failures during the reconfiguration process, as otherwise the further 
operation of the ACS may be not possible. 

• The system evolution process can be split up into characteristic sequences that repre-
sent typical sections within the execution of a system evolution step. Based on these 
sections patterns and libraries may be developed which will help the ACS customer to 
simplify the use of ECAs. 

• Distributed ECAs are needed to model the interaction of the engineering tool and the 
devices and of course to synchronize the system evolution steps that need to be exe-
cuted on several devices concurrently. 



NEW ENGINEERING METHOD FOR DOWNTIMELESS SYSTEM EVOLUTION 61 

This general description provides some abstract guidelines for the modeling of ECAs. The 
concrete ECA highly depends on the control application and the required changes to this 
control application. In order to give a more detailed depiction of an ECA, we will use a 
closed-loop control circuit as an example for a typical control application. The proposed 
change to the control application is the exchange of the controller without disturbances to the 
process under control, which was a linear axis as described in Hanni (2007). Based on a short 
description of the control application we will describe the actions within the ECA in detail. 

Example: Closed-loop control circuit 
The control application is marked as grey shaded FBs within Figure 13 (lower part). The 
control cycle consists of four steps: write the output value from the previous cycle to the 
physical process (‘Set_Value’), read the current value of the control variable (‘Get_Value’), 
build the difference of current value and set point (‘Summing_point’), and calculate the 
control algorithm (‘Controller’). The additional FBs are used for the generation of the control 
clock (‘Clock’), receiving the set point (‘Get_Setpoint’) and the generation of the initial event 
for initialization (‘START’). The controller calculates the output value based on a propor-
tional part and an integral part. The task for the DSE is to exchange the controller with a new 
type which includes also a limitation of the output value. This exchange should use appropri-
ate transition management methods in order to minimize the disturbances to the control value. 

Evolution control application 
The appropriate evolution control application for this task is depicted in Figure 13 (upper 
part). The ECA consists of three typical sequences, which are available in any ECA. In order 
to execute the ECA, first of all the ECA has to be downloaded to the control device and all FB 
instances of the ECA need to be started (management command START) and, if necessary, 
they are initialized by the ‘INIT event’. After these actions have been executed successfully, 
the ECA is ready for the execution of the DSE. 
Initialization sequence: The first sequence within the execution of the ECA is called 
initialization sequence and is responsible for preparation purposes. In detail no action within 
the initialization sequence should affect the execution of the current application. As a 
consequence these actions are not time critical and may be executed whenever there is spare 
execution time within the control device. The initialization sequence is started by ‘Start event’ 
mentioned schematically in Figure 13. 
For the example given in Figure 13 the following actions are summarized within the FB 
instance ‘Initialization’. As the system evolution process dynamically changes the current 
application, Figure 13 does not depict a special situation within the system evolution step but 
a schematic of the overall process. All FBs or connections which are created within the 
system evolution step are drawn with dotted lines. Deletion of FBs or connections is not 
shown in Figure 13. 

• Creation of the new controller (‘NewController’) as well as its input connections. The 
latter are the connections to the event inputs ‘INIT’ and ‘REQ’ as well as the data in-
put ‘Delta’. 

• Writing of the input parameters of the FB ‘NewController’. 
• Starting of the FB ‘NewController’. This action influences the control application as 

the new FB needs to be executed as soon as a ‘REQ’ event is issued to the FB (this 
happens each control cycle).11 

                                                 
11 In general the influence on the current application needs to be considered carefully. If it is not possible or 
intended to execute the new FBs the creation of the input connections or the START management command for 
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• The issue of the ‘INIT’ event to the ‘NewController’ FB. This action depends on the 
internal implementation of the FB. For the ‘NewController’ FB we expect that a 
‘REQ’ event will only lead to a proper calculation if the FB has been initialized. 

The second FB within the initialization sequence is called ‘Check_RINIT’ and has two 
responsibilities. On the one hand it checks whether all previous actions have been executed 
successfully. This can be done simply by the input qualifier ‘QI’, which is commonly defined 
to be true if the operation should be performed. On the other hand ‘Check_RINIT’ generates 
the starting event for the next sequence within the system evolution step. Information from 
the control application is necessary in order to synchronize the following actions with the 
execution of the system evolution. In case of a closed-loop control circuit a good starting 
point is the finishing of an execution cycle. The connection from ‘Controller.CNF’ to 
‘Check_RINIT.CLK’ has been established during the download of the ECA. When all actions 
within the initialization phase have been executed correctly and the next execution cycle of 
the control application occurs, the output event ‘Check_RINIT.CNF’ will be fired in order to 
start the next sequence within the DSE. 
Reconfiguration sequence: The second sequence within the execution of the ECA is called 
reconfiguration sequence and is responsible for the changes to the current application. Based 
on the preparations of the initialization sequence the current application is changed to the new 
application. Accordingly the actions within the reconfiguration sequence are time critical. 
For the example of the closed-loop control circuit within the reconfiguration sequence the 
new controller ‘NewController’ needs to be initialized according to a transition management 
method. In this example the output fitting method (see also Section 3.5) is utilized. The 
following actions need to be performed: 

• Reading of the internal state of the old controller ‘Controller’. The only value that 
needs to be considered for this kind of controller is the integral part, denoted as ‘Con-
troller.I’. 

• Then this value is used to calculate the appropriate internal value of the new controller 
‘NewController’ in such a way that the new controller will produce the same output 
value for the current execution cycle. The FB ‘Transition’ performs this calculation by 
using data from the application. In detail the current output value (‘Controller.U’) and 
the current deviation (‘Summing_point.DELTA’) are used apart from the integral part 
of the old controller and the parameters of the new controller. 

• Writing of the internal state of the new controller ‘NewController’. The WRITE man-
agement command in the ‘Set_Internal’ FB is used to provide this action. 

• The FB ‘Rewire’ again includes several management commands for the purpose of 
moving the output connections from the old controller ‘Controller’ to the new control-
ler ‘NewController’. By executing these actions the current application is changed to 
the new application as from now on the new controller ‘NewController’ calculates the 
output value ‘U’. In detail the connection from ‘Controller.U’ to ‘Set_Value.VALUE’ 
needs to be deleted and correspondingly a connection from ‘NewController.U’ to 
‘Set_Value.VALUE’ has to be created. Additionally the INITO output event needs to 
be rewired. 

The last FB ‘Check_RECONF’ again provides a check for the correctness of previous actions 
within the reconfiguration sequence. Next to a simple check of the ‘QI’ data input now also 
the correctness of the changed application needs to be taken into consideration. For the 
closed-loop control circuit the ‘Check_RECONF’ FB considers the current control value as 

                                                                                                                                                         
the new FBs may be moved to the second sequence, the reconfiguration sequence. If there is an initialization 
necessary for the new FBs the former option should be preferred. 
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well as the set point for a given number of cycles in order to recognize whether the new 
application is in a stable state. If yes, the output event ‘Check_RECONF.CNF’ will be fired in 
order to start the next sequence within the DSE. 

 
Figure 13: Downtimeless system evolution of a closed-loop control application 

Deinitialization sequence: The third sequence within the execution of the ECA is called 
deinitialization sequence and is responsible for bringing the system into a clean state. As the 
reconfiguration sequence needs to be executed under real-time constraints, there is no time to 
delete FBs or connections which are not in use any longer and do not influence the behavior 
of the new application. These elements will be deleted within the deinitialization sequence. 
As the system is already in the new state, the actions within this sequence do not influence the 
behavior of the control application. The deinitialization sequence is not time critical. 
The situation in the closed-loop control circuit at the beginning of this sequence is similar to 
the finishing state after the initialization sequence. Only the new controller ‘NewController’ 
and the old controller ‘Controller’ change their roles. Now the new controller is in operation, 
and the old controller is just present and of course also executed, but its output value is not 
used anymore. Therefore the actions within the deinitialization sequence are the same as for 
the initialization sequence, but with inverted order: 

• Stopping of the old controller ‘Controller’. 
• Deleting the input and output connections of ‘Controller’. It is not necessary to delete 

input parameters, but there may be some output connections that are still available and 
need to be deleted, too. For the example in Figure 13 this is true for the output connec-
tion of ‘Controller.CNF’, which has been used for the synchronization with the ECA. 

• Deleting the FB instance ‘Controller’. 
After the successful execution of the deinitialization sequence the new system state has been 
established without any unused elements from the old system state. The only thing that has to 
be done furthermore is to delete the ECA itself. This is again not time critical, as the ECA has 
no active interrelations with the current application. 
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Failure handling 
As indicated in Figure 13, the ECA uses check points in order to trigger the different se-
quences. At these check points failure handling mechanisms can be applied, too. Depending 
on the application behavior, different algorithms are needed for failure handling. In this 
example ‘ErrorHandling1’ includes countermeasures if an error occurs during the initializa-
tion sequence, ‘ErrorHandling2’ reacts on a failure during the reconfiguration sequence. A 
failure may happen also during the deinitialization sequence. An appropriate FB is not 
depicted in Figure 13, also the two failure handling FBs are only indicated schematically. The 
actions that may be performed after each of the three sequences can be summarized roughly 
as follows: 

• Failure during the initialization sequence: As at this point the current application has 
not been influenced the simplest action for error handling is to stop the ECA. A more 
sophisticated method may analyze the initialization sequence and retry those actions 
that have not been executed successfully. If the ECA is aborted, then those elements 
that have been already executed need to be canceled. 

• Failure during the reconfiguration sequence: This is a very critical point within the 
ECA since the application is just in change. In most cases the error handling method 
needs to return the current status of the application into the old application. This may 
happen with some kind of transition management policy or without, depending on the 
kind of failure. Another possibility is to implement a retry for unsuccessful actions, 
but due to the real-time constrained execution of the reconfiguration sequence this 
may be critical. 

• Failure during the deinitialization sequence: The DSE has successfully changed the 
ACS to the new application at this point. A failure influences only the process of 
cleaning up the old application. An error handling method may retry those actions that 
have not been successful. 

Within this thesis we will investigate on a method in order to check that an ECA will not 
produce a failure during its execution. Therefore, we will not consider failure handling built 
within the ECAs. 

4.3 Enhanced evolution control engineering 
The above described methodology for establishing an evolution control application fulfills 
many requirements of a DSE. But there are some open aspects especially usability and 
clearness of this basic approach: 

• The simple example of a controller exchange depicted in Figure 13 already visualizes 
the most important hindering reason for the application of such a methodology by the 
ACS customer: The ECA is rather big in contrast to the control application and adds 
considerable complexity to the overall ACS. The basic reason for this is of course that 
the DSE is a highly sophisticated action and changes without disturbances to the con-
trol application need significant efforts. 

• The assignment of an ECA and the control application it concerns is not presented in a 
clear manner. The example given in Figure 13 shows a very simplified situation since 
only the interesting part of the overall ACS application is visible. Within control ap-
plications in industrial practice it may be much more complicated to consider a single 
system evolution step. 

• The above described situation takes only one system evolution step into account. But 
it is necessary to coordinate several system evolution steps in their order or synchro-
nize them in order to apply changes to different control applications simultaneously. 
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• The coordination and synchronization of system evolution steps needs to be possible 
also in distributed systems. The above described evolution modeling method does not 
limit the user to systems consisting only of one single device. But the introduction of a 
distributed ECA will again increase complexity. 

In order to overcome these problems an enhanced evolution control engineering method has 
been developed which is based on the above presented basic methodology. This approach has 
been described for instance in Hummer et al. (2006). 

Encapsulation of single ECAs 
The execution of an ECA can be split up into three characteristic sequences: initialization, 
reconfiguration, and deinitialization. These sequences represent independent parts within the 
execution of a system evolution step. They are triggered at certain points in time and need 
separate consideration of successful execution and also failure handling. A first step within 
the enhanced evolution control engineering is to encapsulate these single ECAs within a 
defined containment. We call this containment the Evolution Execution Control Function 
Block (EECFB). Each of the three sequences should be operated and represented by the 
interface in an independent manner. The generic interface of an EECFB is depicted in Figure 
14. A separate event input and output exists for each sequence as well as an input and output 
qualifier in order to represent status information. The generic interface can be described as 
follows: 

• FB Initialization: As it is defined by the IEC 61499 standard SIFBs provide an inter-
face for the initialization/deinitialization of the underlying services. The event input 
‘INIT’ together with the data input ‘QI’ are used in order to start the initialization 
(‘QI’ is true) or deinitialization (‘QI’ is false) of the SIFB. The corresponding outputs 
are ‘INITO’ and ‘QO’, which state the end of the FB initialization together with its 
status (‘QO’ true for successful initialization and vice versa). As each basic reconfigu-
ration service is a SIFB, the EECFB needs to provide such an interface, too. 

• Initialization sequence (RINIT): The first sequence within the ECA is responsible for 
the preparation of the control application in order to reduce the effort for dynamic re-
configuration. This sequence has an interface similar to FB initialization, that is char-
acterized by the key word RINIT (in order to describe that it represents the initializa-
tion sequence for the dynamic reconfiguration). Accordingly, the event input ‘RINIT’ 
and the data input ‘RINIT_QI’ can be used for starting the initialization sequence, and 
‘RINITO’ and ‘RINIT_QO’ issue its result. 

• Reconfiguration sequence (RECONF): The second sequence of an ECA includes the 
time critical dynamic reconfiguration. We use the key word RECONF in order to iden-
tify this sequence. The interface for starting and issuing its results is similar: event in-
put ‘RECONF’ and data input ‘RECONF_QI’ as well as the event output ‘RE-
CONFO’ and data output ‘RECONF_QO’. 

• Deinitialization sequence (RDINIT): The third sequence aims at the clean-up of the 
control application in order to remove unused FBs and connections. We use the key 
word RDINIT (deinitialization of dynamic reconfiguration). The interface is again 
similar and includes the event input ‘RDINIT’ and the data input ‘RDINIT_QI’ as 
well as the event output ‘RINITO’ and the data output ‘RDINITO’. 

This generic interface of an EECFB needs to be extended with parameters that may be useful 
for the ECA and of course also the event and data connections in between the control 
application and the ECA. It has to be mentioned that in contrast to an ECA modeled accord-
ing to the basic evolution control engineering the EECFB does not include all elements 
necessary to execute the ECA. Each of the sequences is included as a separate part within the 
EECFB, but their interconnection to each other needs to be modeled outside of the EECFB. 
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This especially influences the ‘CHECK_RINIT’ FB within Figure 13, which has two different 
purposes. On the one hand it checks the correctness of the initialization sequence execution, 
which belongs to the internals of the EECFB. But on the other hand it is responsible to trigger 
the reconfiguration sequence, which now belongs to the external “wiring” of the EECFB, as 
otherwise there would be a dependency between the different sequences. But for the estab-
lishment of the EECFB there has to be taken care that such an dependency does not exist. 
Another important aspect of the EECFB is its implementation. As far as we have described 
the EECFB it simply represents a containment for an FB network. Although we have used the 
word function block, the IEC 61499 standard provides two different means for such a 
containment: CFB and subapplication. It is a matter of the implementation, which version will 
be preferred (in Figure 14 the CFB version is depicted due to the used WITH construct). If the 
ECCFB is realized as a CFB, this FB type has to be available for execution within the runtime 
environment. This means, a CFB type declaration has to be created during operation. If the 
ECCFB is realized as a subapplication, only the component FBs have to be available for 
execution within the runtime environment. Although it can be assumed that most of the FBs 
used within the ECA are available (e.g., the basic reconfiguration services), there may be 
some FB types missing as for instance in order to provide an appropriate transition manage-
ment method. These FB types need to be created within the runtime environment during its 
operation anyway. 

 
Figure 14: Evolution Execution Control Function Block type (implemented as CFB) 

Region of interest taken into consideration within an EECFB 
The second step for enhancing the evolution control engineering approach concerns to the 
association of an ECCFB to an application area it concerns. We call this application area 
Evolution Region of Interest (EROI), as it includes exactly those parts of the control applica-
tion that will be affected by the EECFB. During the process of establishing the new applica-
tion, the different EROIs occur based on the changes that are modeled within the current 
application. The following rules define the borders of the EROI: 

• Creating/Deleting a function block: The EROI consists of the function block itself 
plus the corresponding halves12 of the surrounding FBs it is connected with, because a 
significant temporal order of operations exists within the ECA, as for instance a dele-
tion of an FB incorporates all connections of this FB. 

• Creating/Deleting a connection: The EROI consists of the corresponding halves of 
source and target function blocks of the connection as well as the connection itself. 

                                                 
12 For the consideration of the EROI we split up FBs into one half consisting of all event and data inputs and 
another half incorporating all event and data outputs. 



NEW ENGINEERING METHOD FOR DOWNTIMELESS SYSTEM EVOLUTION 67 

• Creating/Deleting a parameter: The EROI consists only of the input half of the target 
FB and the parameter itself. 

This association is very helpful for structuring the evolution engineering process. The 
different areas of DSE within the control application get their own EECFB that includes the 
necessary ECA for the intended changes. Figure 15b depicts this situation schematically. 
During the engineering process of DSE the ACS user may examine the control application 
and mark the changes that are necessary. These markings correspond to the EROIs (grey 
shaded circles) and as the next step the user designs an appropriate ECA in terms of an 
EECFB. Finally the coordination and synchronization of the changes to the different EROIs 
need to be modeled, which will be described below. 

 
Figure 15: Composite ECA and its influence to the EROIs within the control application 

The definition of EROIs opens up another important possibility for the simplification of 
evolution control engineering: the usage of templates for certain changes. It is obvious to 
design standardized procedures for recurrent activities such as the exchange of a controller FB 
with a distinct internal algorithm, or the exchange of an FB without transition management. 
This template EECFB needs to be adapted to the concrete control application, but most parts 
within the EECFB can be defined in advance. This is also an interesting aspect for companies 
which provide control applications or FB types to their customers. In order to update to a new 
version they are able to prepare an EECFB which may be applied by their customer without 
high work load. 

Coordination of single ECAs 
The third step for improving the evolution control engineering approach is the modeling of a 
Composite Evolution Control Application (CECA). The CECA consists of single ECAs as its 
main parts with an additional control logic in order to coordinate and synchronize their 
execution. Again the CECA is an IEC 61499 application and can be modeled with the same 
means as the control application. In detail the coordination is based on the three sequences 
within each ECA. The initialization and deinitialization sequences are not important since 
they do not influence the control application. But the reconfiguration sequence directly 
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changes the control application and the actions within the reconfiguration sequence have to be 
taken into account. Additional interfaces (especially events for synchronization) may be 
necessary for a fine-grain synchronization between two EECFBs. The event FBs which are 
defined in (IEC 61499, 2005, Annex A) provide a first set of FBs that can be used within this 
synchronization. 
Figure 15b depicts a CECA incorporating three EECFBs. Within these EECFBs no interde-
pendencies exist, but their execution is modeled in a special temporal order. After the issue of 
‘COLD’ or ‘WARM’ events from the ‘Evo_Start’ FB all three EECFBs are initialized 
sequentially. When this initialization has been successful (due to the connections of the input 
and output qualifiers the DSE will be stopped as soon as any action within the EECFBs is not 
executed successfully) the first EECFB ‘EROI1’ is executed. Herein all three sequences are 
executed sequentially without any further external synchronization mechanism. When this 
first system evolution step has been performed successfully, ‘EROI2’ and ‘EROI3’ execute 
their initialization sequence sequentially. As soon as both system evolution steps are ready for 
their reconfiguration sequence, the changes within both EROIs are applied simultaneously. 
When the reconfiguration sequence of these EECFBs has been executed successfully, 
deinitialization sequence will be executed independent from each other. 
The execution order of EECFBs within a CECA can be easily visualized as depicted in Figure 
15a. As already mentioned above only the reconfiguration sequences of the EECFBs within 
the CECA are of special interest for the execution order. The initialization and deinitialization 
sequences are necessary, too, but they do not influence the control application. The very 
simple schematic in Figure 15a provides a very good overview of the execution order and 
increases the usability of the evolution control engineering approach. 
The modeling of distributed CECAs can be added in a simple manner based on the enhanced 
evolution control engineering method. When we assume that an EECFB and its associated 
EROI are related to only one device, a distributed CECA can be modeled by using communi-
cation FBs in order to spread the coordination and synchronization events and data connec-
tions via the communication network. In case of very tight coupled EECFBs this has to be 
handled appropriately. 

4.4 Downtimeless system evolution with physical reconfiguration 
The previous investigations for a modeling method for DSE have been focused on the control 
logic. But as stated in Section 3.4 we want to take dynamic reconfiguration of both software 
and hardware into consideration. This dynamic reconfiguration of hardware, in short physical 
reconfiguration, can be easily applied within the engineering cycle for DSE. But the ACS 
customer has to be involved into the execution of a physical reconfiguration since up to now it 
is not possible to provide basic reconfiguration services for hardware (this possibility may 
arise in highly flexible and self-adapting ACSs in the future).  
Figure 16 depicts the enhanced engineering cycle for DSE of hardware and software within an 
ACS. The main elements remain identically to the description given in Section 4.1 (Figure 16 
only includes the main elements). In the lower part of Figure 16 an example for the removal 
of a device is given from the system’s perspective. This example will be used for explaining 
of the necessary tasks in order to provide also physical reconfiguration within the engineering 
cycle: 

• Acquire existing application: The first step remains similar as it already includes the 
acquisition of the existing software as well as the hardware configuration. For the ex-
ample given in Figure 16 only one device ‘Dev1’ exists which includes one control 
application ‘Application’. 

• Application modeling: The application modeling already includes one task which 
aims at the configuration of the hardware. Herein it is necessary to include new hard-
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ware devices into the overall hardware configuration. Depending on the possibilities 
of the engineering tool and runtime environment it may be sufficient to add the physi-
cal device into the ACS and it will be recognized automatically by using plug-and-
play mechanisms. In any case it is necessary to add the new hardware before the exe-
cution of the DSE. 

• Evolution engineering: The task of modeling the ECA in order to achieve a smooth 
transition from the current system state to the new system state remains the same since 
there cannot be assumed any automatisms for changes of the hardware configuration. 
In the example depicted in Figure 16 the mapping of ‘Application’ is changed from 
‘Dev1’ to the new device ‘Dev2’. 

• Execution of downtimeless system evolution: Also for the execution of DSE there are 
no changes necessary to the description given above. The only prerequisite is that any 
new hardware that has been specified needs to be available within the ACS. In the 
given example ‘Application’ moves to ‘Dev2’ and ‘Dev1’ remains unused. 

• Removal of unused hardware: This task is necessary only for a physical reconfigura-
tion. As due to the system evolution step some hardware may not be necessary within 
the ACS any more, these devices can now be removed.  

 
Figure 16: Downtimeless system evolution with physical reconfiguration 

The description of the engineering cycle for physical reconfiguration incorporates both 
possible scenarios, the addition and the removal of hardware. In both cases DSE needs 
manual support from the ACS customer in terms of adaptations to the hardware configuration 
of the ACS. But these manual actions can be integrated into the engineering cycle for DSE as 
unobstructed enhancement without changes to the above described methodology. Only in case 
of CECAs with physical reconfiguration within several EECFBs the execution of the DSE 
needs to be planned carefully in order to synchronize the manual actions with the CECA. 

4.5 Summary 
The modeling methodology for DSE represents the basic framework in order to enable ACS 
customers to describe changes within a system at run-time. The essential part within this 
engineering cycle is the evaluation of the DSE since any failures during the execution of a 
system evolution step may lead to a break-down of the overall ACS. Additionally the ACS 
customer is able to define appropriate failure handling mechanisms within the ECA. Physical 
reconfiguration is an unobstructed enhancement to the engineering cycle which focuses on 
changes to the control application mainly. In this case manual support by the ACS customer is 
necessary as there exist no means in order to automatically change hardware configurations. 
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In order to summarize the main ideas of this engineering methodology for downtimeless 
system evolution, we will consider the challenges for software evolution from 
Mens et al. (2005) presented in Section 3.4: 

• Preserving and improving software quality: The clear structure for a single system 
evolution preserves high quality of the reconfiguration process itself and also of the 
overall system. 

• Supporting model evolution: The methodology for modeling the DSE is based on a 
clear engineering cycle, therefore different versions and steps of the evolution process 
can be separated and planned in detail. 

• Formal support for evolution: The evaluation of DSE is an integral part of the model-
ing approach. The details about the evaluation approach will be described in the fol-
lowing chapters. 

• Evolution as a language construct: DSE is modeled with the elements of the 
IEC 61499 standard, enhanced by special FB types for dynamic reconfiguration (the 
basic reconfiguration services). 

• Need for better versioning systems: The engineering cycle for DSE provides the 
means for the documentation of the different system states as well as the transition 
process in between. This can be used as basis for versioning systems. 

• A theory of software evolution: The reference architecture for dynamic reconfigura-
tion presented by Walsh et al. (2007b) has been presented as a basis with restrictions 
according to the special needs of DSE and the IEC 61499 standard. 

• Post-deployment runtime environment: DSE is based on a runtime environment ca-
pable to change the control logic during operation. We will use the R3E within this ap-
proach, which is an IEC 61499 compliant runtime environment with special adapta-
tions to real-time execution and dynamic reconfiguration as presented in Zoitl (2007). 

 



 71 

5 New Concept for the Evaluation of Downtimeless System 
Evolution 

Chapter 5 

New Concept for the Evaluation of Downtimeless System 
Evolution 

The evaluation of DSE is depicted in the total engineering cycle as the fourth step within 
evolution control engineering (see Figure 10). But the evaluation is of outstanding importance 
for the application of DSE, because the main target next to the application of changes to the 
control application is the operation of the plant without disturbances. The concept for the 
evaluation needs to provide the necessary means for the proof of a system evolution step in 
such a way that it may be used also by ACS customers. The basis for this concept is repre-
sented by the structure of a system evolution step within the engineering methodology 
presented in the previous chapter. 
The formulation of the concept for DSE will be split up into three items: 

• First of all we will investigate the framework for the evaluation in an ACS, starting 
fromthe evaluation of control applications and as an additional task the evaluation of 
DSE. 

• The formulation of the concept for the evaluation of DSE provides the main guideline 
within this work. The means will be different according to the necessary properties 
and different sequences within a system evolution step. 

• A very important aspect for the evaluation process is the availability of a comprehen-
sive description of the current system state. We will describe a possible scenario for 
the representation of this information that is based on the description of control de-
vices. 

5.1 Specification of the evaluation framework 
The scope for the evaluation of control applications in general can vary in big extents. Bani 
Younis and Frey (2003) distinguish three different levels for the evaluation of control 
applications: some parts of the algorithm, the whole control application, or the whole system 
configuration. Based on the requirements that have been stated in Section 2.1, we need to take 
into account the overall control device and its configuration. This is stated especially by 
Requirement (3) “Underlying system configuration”. 
In order to provide a structured analysis of the evaluation framework, we will start our 
considerations with ACSs operating only control applications and extend these considerations 
in a second step for DSE. 

5.1.1 Evaluation of ACSs operating control applications 
The classical situation of a control application that is used to control some kind of process or 
plant is depicted with respect to evaluation for instance in Hanisch (2004). The evaluation 
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proves or falsifies if the system’s behavior complies with the specifications of the desired or 
prohibited behavior. The control application as well as the process under control have to be 
considered in combination. Both have to be modeled in an appropriate formal description in 
order to provide the necessary system model for model checking. This way of system 
modeling is called closed-loop modeling. In the overall system, the control application acts on 
the measurement signals from the process under control and generates control signals that 
again influence the process. Therefore, a closed circuit of signals emerges that are exchanged 
between control application and process. Figure 17 depicts this classical situation of the 
evaluation framework for ACSs that operate control applications. 

 
Figure 17: Classical situation for evaluation of control applications 

The different elements involved in this closed circuit are characterized as follows: 
• Process under control: In most cases no model of the process under control is neces-

sary, when we consider the current practice of testing and simulation as main methods 
for the evaluation in ACSs. The ACS customer is not used to specify the process in 
advance and uses either the plant itself or a simulation model of some plant aspects for 
the development of the control application. Nevertheless, in specialized areas such as 
control theory high efforts are put into such a model in order to achieve highly effi-
cient control strategies. But in general the design of a model of the process is an addi-
tional task that is necessary to permit also model checking for the evaluation. Hanisch 
(2004) considers this situation in more detail. As soon as any description of the proc-
ess exists this can be used to generate the model in an appropriate input language for 
the model checking tool, as this is for instance described by Lobov et al. (2006a) for 
UML as the description of the plant and NCES for the input language for the model 
checking tool. 

• Control application: The algorithms necessary to control the process are included in 
the control application, which is written in any kind of programming language as de-
picted in Section 3.2. Within this work we focus on the IEC 61499 standard. The FB 
networks can be used as input in order to generate the appropriate model of the control 
application in the input language of the model checker. Herein especially the Re-
quirement (2), “Execution semantics”, has to be treated carefully, as the implementa-
tion of the runtime environment used for the execution of the control application has 
significant influence on the behavior of the control application. 

• Control signals: Control signals describe the interaction interface from the control 
application to the process under control. This interface is visible within the control ap-
plication by means of SIFBs, that are the elements within IEC 61499 standard which 
are capable to integrate any kind of interaction with the environment. 

• Measurement signals: These signals describe the counterpart of the overall interface 
to the process, the direction from the process to the control application. Again this in-
terface is visible within the control application by means of SIFBs. As stated in Ha-
nisch (2004) this interface usually does not provide access to all state variables within 
the process. 

These four elements describe the models that need to be built on the information about the 
structure and internals of the ACS. Additionally, there are two aspects that have to be 
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integrated into the evaluation process in order to evaluate the operational behavior of the ACS 
during the life cycle of the plant: 

• Disturbances: An initial requirement of evaluation is to check whether the specifica-
tion of a plant holds for all possible scenarios or not. The model of the process pro-
vides a variety of scenarios based on its modeled behavior. But additionally different 
disturbances may be modeled in order to describe for instance failures within the 
plant. These disturbances need to be modeled separately and are important for proving 
the behavior in unusual situations. 

• Hardware capability: Another kind of disturbances belongs to the control application, 
in more detail to the underlying system configuration. In most cases a control device 
includes different software in order to provide the needed functionality of the ACS. A 
typical example is a web server, which does not influence the control application as it 
only reads the current status of the control device and offers this information within a 
web page. But it influences the execution behavior of the control application and may 
lead to violations of real-time constraints. Computational power of the control device 
needs to be considered, too. As the operation of control applications is constrained by 
time constraints, the speed of execution is an important source of disturbances within a 
given control device. Therefore these influences to the hardware capabilities need to 
be taken into consideration as additional disturbances within the evaluation process. 

The above described elements of the framework for the classical evaluation situation have to 
be taken into consideration for the model of the system. Additionally, there are different 
categories of specifications that may occur, depending on the concrete system. Hanisch (2004, 
Section 4) mentions that at least three different groups of specifications exist: 

• Plant specifications: “Plant specifications can often be formalized as forbidden state 
problems, but they might also specify forbidden sequences of states or state transi-
tions.” 

• Process specifications: “Process specifications can be formalized as a set of partially 
ordered states or state transitions, sometimes even with time or hybrid dynamics.” 

• Product specifications: “Numerous product specifications cover an extremely wide 
range. Specifications of substances in process industries define chemical or physical 
properties of the products. (…) Product specifications in the manufacturing industry 
focus on geometrical or mechanical properties, color, surface properties etc.” 

5.1.2 Evaluation of ACSs incorporating downtimeless system evolution 
When we consider ACSs that provide the possibility of DSE the framework for evaluation 
needs to be extended. All elements that have been mentioned above are valid also for the 
evaluation of DSE. But there are additional elements that need to be taken into account. 
Figure 18 provides a schematic of the overall framework for the evaluation of an ACS with 
DSE (additional elements are marked with gray color). Another closed circuit exists in 
between the control application and the ECA. The basic reconfiguration services used within 
the ECA are the appropriate means to influence the control application. On the other hand the 
current system state is the basis for the ECA in order to synchronize its actions with the 
control application. This second closed circuit is put on top of the above described closed-
loop modeling of the process under control and the control application. 
The additional elements within the framework for the evaluation of DSE are characterized as 
follows: 

• Evolution control application: The ECA takes care of the execution of the DSE. 
Based on the EECFBs involved in the ECA different areas within the control applica-
tion are related to the DSE. As the ECA can be modeled by the same means as the 
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control application, namely as IEC 61499 application, the same prerequisites have to 
be taken into account for the ECA as for the control application (e.g., execution se-
mantics). Further special requirements for the evaluation of the ECA are the incorpo-
ration of basic reconfiguration services which are represented as SIFBs.  

• Basic reconfiguration services: The control flow from the ECA to the control applica-
tion is represented by basic reconfiguration services. These incorporate management 
commands that are issued to the IEC 61499 device management in order to execute 
changes within the control application. Herein especially Requirement (4), “Modeling 
dynamic reconfiguration”, has to be mentioned which demands the representation 
within the model of the ECA as well as within the model of the control application. 
The first aspect is simply defined by the interface of the SIFB and the sequence dia-
grams in order to describe the external interface behavior. The second task is much 
more complicated as formal models do not provide means for applying changes to the 
model during model checking. The approaches presented in Section 3.6.3 which inves-
tigate also dynamic reconfiguration provide possibilities to change the models based 
on given rules, but they do not incorporate changes to the model during evaluation. 
The modeling of basic reconfiguration services is one of the key tasks for the evalua-
tion of DSE. 

• Current system state: The ECA interacts with the control application by using event 
and data connections in order to get the necessary information about the current sys-
tem state and coordinate its execution accordingly. The model of these event and data 
connections is the same as for the control application or the ECA. But additionally 
also basic reconfiguration services need to be used in order to achieve more detailed 
information on the current system state. As depicted in the example “closed-loop con-
trol circuit” in Section 4.2.3 for instance internal variables are necessary for certain 
transition management methods. Further simplifications of engineering such as a snif-
fer for events may be encapsulated as basic reconfiguration service and provides in-
formation of the current system state to the ECA. Accordingly, also basic reconfigura-
tion services that provide information of the control application (instead of influencing 
its current state) need to be modeled for the evaluation of DSE. 

 
Figure 18: Framework for the evaluation of downtimeless system evolution 

Also for the evaluation of DSE additional sources of disturbances exist next to those men-
tioned already in Section 5.1.1.  

• Other applications: From the ECA’s point of view only those parts of the control 
application that are included in the EROI are of special interest. In order to incorporate 
an appropriate behavior of the control application itself the areas of the EROIs need to 
be enlarged to the applications that incorporate these EROIs. But the overall control 
application, which usually consists of various IEC 61499 applications, is not com-
pletely part of the control application that needs to be modeled for the evaluation of 
DSE. From the point of view of DSE, a control application refers only to those 
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IEC 61499 applications that are affected by the EECFBs. All other IEC 61499 applica-
tions will be denoted as other applications. But as these other applications may pro-
vide some inputs also for the control application, the interaction between the control 
application and other applications can be taken into consideration as disturbances. 
Similar to disturbances to the process, other applications do not need to be modeled in 
detail. But their behavior and especially the interface behavior to the control applica-
tion have to be incorporated into the evaluation process. 
The influence of other applications is also important from the viewpoint of hardware 
capabilities mentioned for the control application. They have the same influence as the 
web server depicted above. Since they may need computational power for execution 
they also influence the execution of the DSE which e.g. may yield to violated real-
time constraints. 

• Hardware capability: On the level of ECA again hardware capabilities occur as dis-
turbances to the evaluation process. But in this case they concern the actions that 
should be performed by the ECA, especially the basic reconfiguration services. 
Unlimited resources do not exist, e.g., memory, in order to execute any request from 
the ECA. These limitations of the hardware capability have to be considered apart 
from the general hardware capabilities described in Section 5.1.1. 

The overall target of DSE is to change the current control application without causing 
disturbances to the process. The three different categories for specifications (plant, process, 
and product specification) need to be fulfilled for the system also during DSE (according to 
the reference model described in Section 3.4.1 these may belong to global and local consis-
tency characteristics). Additionally, the ECA itself has to fulfill certain properties, which are 
summarized as fourth category of specifications: 

• Evolution specification: Evolution specifications describe the properties of the ECA 
that additionally may be specified for the execution of DSE (e.g., preserving the con-
sistent state of components that are exchanged). 

5.2 Concept formulation 
The evaluation of DSE has to prove whether the ECA violates any properties of the plant, 
process, product, or evolution specification. Therefore the execution of the ECA has to be 
taken into consideration. Figure 19 depicts the different phases for the execution of a single 
system evolution step. We will concentrate at the beginning on the basic evolution control 
engineering method, as within the enhanced methodology only the engineering process is 
simplified. The main characteristics of an ECA do not change and for the sake of concentra-
tion on the important aspects of the execution of an ECA we will neglect CECAs in a first 
step. 
Five different phases can be distinguished during the execution of a single system evolution 
step, which will be discussed according to their impact on the execution of the control 
application: 

• Download ECA: First of all it is necessary to download the evolution control applica-
tion to the control device(s). This step is similar to the download of any application. 
From the control applications point of view it has no influence with the exception of 
one special case: The creation of connections between the control application and the 
ECA. When such a connection is an event connection, then events will be passed to 
the ECA and the ECA has to be operated already after this phase (before the system 
evolution step itself has been started). 

• RINIT sequence: The initialization sequence includes actions for the preparation of 
the changes within the control application. As depicted in the example given in Sec-
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tion 4.2.3 new FBs as well as their input connections are created and parameters of 
these FBs are written. As the input connections of the FBs may include also event con-
nections the control application will trigger the execution of the new generated FBs 
which may influence the execution of the control application (in general by consumed 
execution time from the control device). 
Both phases do not produce changes to the functionality of the control application. In-
fluences happen based on side effects due to the interconnection of the ECA and the 
control application, but there are no active adaptations of the control application in-
cluded concerning its behavior. These two phases provide the same characteristic and 
may be considered as preparation for the dynamic reconfiguration of the control 
application. 

 
Figure 19: Execution phases of a system evolution step 

• RECONF sequence: The reconfiguration sequence includes the active interaction of 
the ECA and the control application in order to change the control application. Any 
kind of adaptations to the control application may be applied based on the basic recon-
figuration services and produce changes to the behavior of the control application.  

• RDINIT sequence: The deinitilization sequence is responsible for cleaning up the 
control application, which aims at the deletion of FBs and connections from the old 
system state that are not used any longer in the new system state. The actions within 
the RDINIT sequence do not influence the behavior of the control application, but 
they provide changes in the execution behavior since the “old” FBs will be executed 
until they have been stopped or their input connections have been deleted. As depicted 
in the example given in Section 4.2.3 the parallel execution of the old and the new 
control application can be used in order to provide failure handling if the new control 
application produces errors. 

• Delete ECA: The last phase in the execution of an ECA is the deletion of the ECA 
itself. The elements of the ECA themselves do not produce any disturbances to the be-
havior of the control application, but connections may exist between the ECA and the 
control application. As long as the ECA is available on the control device, the event 
connections will trigger the execution of FBs within the ECA and influence the execu-
tion behavior of the control application. 
The two last phases within the execution of a system evolution step again handle very 
similar actions and can be considered as post-processing. The unnecessary parts within 
the control device (from the old control application as well as the ECA that has been 
executed) are deleted and the system is left in a clean new system state. 
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Based on this discussion the related approach for dynamic reconfiguration in ACSs presented 
in Zoitl (2007) can be classified. Zoitl (2007) describes the basic features real-time execution 
and reconfigurability of an IEC 61499 runtime environment (see Appendix B). The execution 
of dynamic reconfiguration is proposed by using an application that utilizes basic reconfigura-
tion services. Furthermore Zoitl (2007, Section 3.5) identifies three different phases for the 
execution of a so-called reconfiguration application (similar to the ECA): the setup phase (for 
the preparation of the control application for reconfiguration), the execution phase (for the 
switch to the new application parts), and the shut-down phase (for cleaning up the remaining 
part of the original application). These sequences are compatible with the preparation of the 
system evolution step (download of ECA and RINIT sequence), the application of the system 
evolution step (RECONF sequence), and the post-processing of the system evolution step 
(RDINIT sequence and deletion of ECA). The main difference in Zoitl (2007) is that only the 
execution phase (in our terminology the RECONF sequence) should be represented within the 
reconfiguration application on the control device. The other two phases are executed by using 
the management application and the engineering tool. 
Based on the engineering methodology for the modeling of DSE the approach presented by 
Zoitl (2007) can be included, too. The only difference is the design of an ECA that includes 
also the RINIT and RDINIT sequence within the control device. The additional possibility of 
modeling these two sequences as an application may not be necessary. In general the included 
actions will be executed almost sequentially. And by using the management application as a 
remote interface to the engineering tool exactly the same functionality is offered. The 
differences are on the one hand additional time consumption due to the communication 
between engineering tool and control device and on the other hand additional storage usage 
due to the representation of the RINIT and RDINIT sequence as IEC 61499 applications. 
When we consider also CECAs the situation is a little bit different, since the coordination of 
different system evolution steps needs additional means which are provided as IEC 61499 
applications within this approach. Synchronization or influences between the different 
EECFBs need to be handled appropriately, which will be complicated if the engineering tool 
has to take care for the different RINIT and RDINIT sequences. 

5.2.1 System integrity characteristics 
The reference architecture for dynamic reconfiguration described in Section 3.4.1 includes a 
hierarchy of change types and their dependency as well as the different types of integrity 
management during the application of these changes. These integrity characteristics have to 
be considered for DSE in an appropriate way, as the concentration on ACSs and especially the 
IEC 61499 standard as programming language need tailoring of the general architecture. The 
change types that fit to the models of the IEC 61499 standard and which are supported by 
using basic reconfiguration services are protocol change, topology change, architectural 
change, and to some extent internal change (see Section 4.2.2). 
We will consider the different characteristics and discuss their applicability for DSE. As 
changes to the internals of a software component (we have decided to consider an FB as a 
software component in Section 4.2.2) are only possible by changing the value of internal 
variables and ECC states, only three categories of system integrity remain based on the 
investigation of Walsh et al. (2007b): 

• Global consistency: In terms of DSE global consistency aims at the preservation of 
the specifications of the control application and the process under control. These 
specifications are split up into plant, process, and product specifications in Sec-
tion 5.1.1. 
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• Local consistency: Global integrity characteristics may be split up into local aspects 
that are mentioned within local consistency. Herein special issues for the different 
specifications of plant, process, or product are included. 

• Active references: System integrity with respect to active references targets especially 
at SIFBs. A SIFB may encapsulate any kind of service which may include also de-
pendencies to other SIFBs (for instance SIFBs for communication purposes). If the 
changes within the control application influence such an active reference to an under-
lying service, the behavior of the control application may produce failures. In detail 
this integrity characteristic has to be split up into two aspects: On the one hand such a 
dependency may be violated in the new system state and therefore has to be detected 
during the evaluation of the new application (see Section 4.1). On the other hand the 
dependency may be violated during the system evolution step temporarily (e.g. due to 
a disorder of basic reconfiguration services) which has to be proved by the evaluation 
of DSE. 

Next to the given system characteristics there are further aspects that include especially 
evolution specifications. One of the above mentioned aspects, the active references consis-
tency, already represents such an evolution specification for the dependencies that have to be 
kept in mind during a system evolution step. Further elements of the evolution specification 
can be derived also from the reference architecture in Section 4.2.2 as well as the from basic 
work Kramer and Magee (1985): 

• State management: Although no basic reconfiguration service exists in order to ex-
change an FB instance it is possible to model such an exchange by a sequence of 
commands. The example given in Section 4.2.3 especially depicts this situation with 
an appropriate transition management for a controller. For this special case of FB ex-
change but also for the substitution of whole FB networks the requirement of state 
management has to be proved as property within the evolution specifications. 

• Dependent operation: In contrast to the definition used in the reference architecture 
for dynamic reconfiguration, dependent operations may be recognized within the 
ECA. The data flow interrelation is based on the parameters of the basic reconfigura-
tion services and hence on their effects to the control application. As already depicted 
for active references consistency above, a disorder within the execution of basic recon-
figuration services of a system evolution step may not only produce failures within 
underlying services of SIFBs. For instance, a very simple dependency occurs if a con-
nection should be established to a new FB instance which is created later during the 
execution of the ECA. Dependent operation consistency is an important property 
within the evolution specifications. 

• Real-time constrained operation: A very important requirement within DSE is real-
time constrained execution, which has its origin in the process under control and has 
to be fulfilled by the control application. As the ECA reconfigures the control applica-
tion the changes to the control application are liable to appropriate real-time con-
straints. For the example of controller exchange mentioned in Section 4.2.3 the recon-
figuration sequence starts as soon as one control cycle has been finished. But it will be 
executed successfully only when the reconfiguration sequence has been finished be-
fore the next control cycle is triggered (in detail as soon as the controller is triggered 
for execution). The time slot between two execution cycles of the closed-loop control 
circuit constrains the execution of the ECA and represents another property within the 
evolution specification.  
Real-time constrained operation is also included in the global and local consistency 
characteristics with respect to the ECA. Any execution phase of a system evolution 
step influences the execution of a control application since the same computational re-



NEW CONCEPT FOR THE EVALUATION OF DOWNTIMELESS SYSTEM EVOLUTION 79 

sources are used. Therefore, real-time constrained operation is part of these integrity 
characteristics, which have to be fulfilled although DSE is applied to the ACS. The 
real-time constraints should be modeled by the ACS customer during the engineering 
of the control application as well as the ECA. But also if the runtime environment is 
configured correctly in order to fulfill these constraints properly the influence of dis-
turbances (see the discussion above) has to be evaluated. 

• Requirements of resources: Already Kramer and Magee (1985) mentioned that re-
quirements of resources are a desirable property for dynamic configuration (in this 
work we use dynamic reconfiguration instead of dynamic configuration). In detail they 
claim that it is necessary that the control devices provide enough free storage for the 
changes that should be applied. For DSE two different aspects have to be considered: 
the storage necessary for the ECA as well as the storage for the changes that are ap-
plied to the control application by the ECA. In both cases the system evolution step 
will only be satisfactory if enough free storage is available. If we consider also the 
computational power of the control device as a resource, the above mentioned real-
time constrained operation characteristics also concerning the requirements of re-
sources. Two similar applications with similarly applied DSE on different hardware 
platforms (with different computational power) may result in a successful execution of 
the system evolution step in the case of enough computational power and failure in the 
other case. Additional requirements of resources may emerge based on the type library 
of the control device. As a new FB instance can only be created if the proposed FB 
type is available in the type library of the control device, it is necessary to check the 
type library in regard with the actions within the ECA. 

5.2.2 Evaluation means for a system evolution step 
This work has identified evaluation of DSE based on model checking as basic methodology 
already in the introduction and especially in Section 1.1. But on the other hand an important 
aspect is the application field of ACSs, which especially has been stated in Requirement (6) to 
(8), namely “Extensive engineering support”, “Provision of formal models”, and “User-
friendly definition of specifications”. The discussion above provides the different kinds of 
properties that are included especially in the evolution specifications. The different properties 
refer to very different questions concerning the execution of a system evolution step and may 
lead to even more simple evaluation methods than model checking in certain cases. 
We will investigate each of the five execution phases with respect to the system integrity 
characteristics and their tasks during a system evolution step in order to identify the most 
appropriate evaluation means. 

Download ECA 
The download of the IEC 61499 application within the ECA is a time uncritical action with 
respect to the control application. The execution of the involved basic reconfiguration 
services needs not to be constrained by timing bounds. Based on an appropriate scheduling of 
the control application within the runtime environment of the control device no reason exists 
for a detailed analysis of this first phase within the execution of a system evolution step (we 
will take into consideration the R3E in Chapters 6 and 7). But based on the connections 
between the control application and the ECA the execution behavior is influenced. This may 
be investigated by using model checking and appropriate specifications. On the other hand the 
influence on the control application is clearly arranged due to a very limited number of such 
connections and the clearly described influence within the ECA. Based on a comprehensive 
description of the current system state a rather simple valuation of the execution time 
necessary for the execution of the ECA in this phase is possible and the successful execution 
of the control application can be checked. 
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The different system integrity characteristics for the download of the ECA can be summarized 
as follows: 

• Global consistency: The ECA does not influence the behavior of the control applica-
tion. Only the effect based on the execution of new FBs due to connections to the 
ECA within the context of the control application has to be checked. This can be done 
by calculating the impact on the execution time of the control application. 

• Local consistency: Similar to global consistency. 
• Active references: This property is not influenced by the download of the ECA. 
• State management: This property is not influenced by the download of the ECA. 
• Dependent operation: The download of any application has to follow appropriate 

rules in order to do not violate the dependent operation property. These rules have to 
be followed also for the download of the ECA and do not need an additional verifica-
tion. 

• Real-time constrained operation: No real-time constraints exist due to the nature of 
this execution phase for the download of the ECA. Therefore, the runtime environ-
ment may execute the necessary management commands for the download of the ECA 
during spare time. When we assume appropriate concepts within the runtime environ-
ment, there is no need to investigate on this property. 

• Requirements of resources: As the resource computational power is already included 
within the evaluation of global and local consistency, only storage and type libraries as 
well as their requirements of resources during the download of the ECA have to be 
verified. As appropriate means the calculation of the interaction of the current system 
state and the memory management policy of the control device is sufficient in order to 
check this property. 

The different system integrity characteristics for the download of the ECA can be checked for 
correctness without using model checking algorithms. Nevertheless, detailed knowledge 
about the current system state and the internal policies of the control device and the runtime 
environment can be used to provide an evaluation of the different evolution specifications. 

RINIT sequence: 
The initialization sequence provides the necessary preparation actions within the control 
application for the dynamic reconfiguration of the control application. Based on the approach 
presented in Chapter 4 this part of the ECA will be executed by the control device and 
appropriate computational resources are necessary. But the initialization sequence is also time 
uncritical and the influence to the control application is limited based on the scheduling policy 
of the IEC 61499 runtime environment. The establishment of the new FBs and connections 
for the new system state provide also an additional influence on the control application, as 
these FBs may be executed within the context of the current control application. The example 
given in Section 4.2.3 describes the final situation after executing the RINIT sequence as 
parallel execution of both the old and the new controller. But the new controller does not 
influence the behavior of the control application, which is a general prerequisite to the actions 
within the initialization sequence. Again only the execution time necessary for the new FBs 
has to be evaluated. Together with the information about the current system state the evalua-
tion of the influences of actions within the RINIT sequence to the temporal behavior of the 
control application can be examined. 

• Global consistency: The execution of the RINIT sequence does not influence the be-
havior of the control application. The additional FBs and connections which are added 
to the control application can be evaluated according to their necessary execution time. 

• Local consistency: Similar to global consistency. 



NEW CONCEPT FOR THE EVALUATION OF DOWNTIMELESS SYSTEM EVOLUTION 81 

• Active references: This property is not influenced by the RINIT sequence. 
• State management: This property is not influenced by the RINIT sequence. 
• Dependent operation: The correctness of the different basic reconfiguration services 

within the execution of the RINIT sequence can hardly be proved by model checking 
as no means exists for the dynamic changes to the model. But based on the representa-
tion of the current system state (especially including the changes applied during the 
system evolution step) the dependencies between the different operations can be 
checked rather easily. 

• Real-time constrained operation: According to the scheduling policy of the runtime 
environment the execution of this sequence will be constrained in an appropriate man-
ner. The prerequisites for these influences need to be evaluated according to the under-
lying scheduling theory. 

• Requirements of resources: The resources memory and type library within the control 
device need to be taken into consideration based on the actions within the RINIT se-
quence and the current system state. 

As the characteristics of the RINIT sequence and the download of the ECA are very similar 
(preparation of the system evolution step) also the used evaluation means are similar or even 
the same. Again it is not necessary to apply model checking for the verification of this 
execution phase. The evaluation process uses the information of the current system state and 
the actions within the initialization sequence for calculations in order to prove the different 
system integrity characteristics. 

RECONF sequence: 
The reconfiguration sequence represents the most important phase during the execution of a 
system evolution step. The control application is actively adapted to the new system state, 
which implies the time critical execution of the basic reconfiguration services and calculations 
included. This situation needs a very careful investigation on the influences between the 
control application and the ECA, which will be applied by the model checking technique. As 
already stated above no appropriate means exists for the dynamic adaptation of the system 
model for model checking. But at this point the preparation of the system evolution step has 
been finished and at least a static configuration of FBs can be considered. The changes to the 
control application are restricted to changes of connections and parameters (especially internal 
variables). The example in Section 4.2.3 for the exchange of the controller of a closed-loop 
control circuit includes the reading and writing of internal variables as well as the deletion 
and creation of connections. The scope of possible actions for dynamic reconfiguration is very 
limited for the consideration of the RECONF sequence and will be integrated into the model 
of the system. Additionally also properties exist that may be evaluated by using calculations 
within the information about the current system state. 

• Global consistency: The properties within the plant, process and product specifica-
tions of the control application have to be considered based on the adaptations to the 
control application during the reconfiguration sequence. An appropriate model of all 
elements within the evaluation framework has to be established in order to apply 
model checking for proving these specifications. 

• Local consistency: Similar to global consistency. 
• Active references: The interrelation of different control application parts due to under-

lying services encapsulated in SIFBs is considered within the active references prop-
erty. Especially the temporal interruption of references needs to be considered during 
the execution of the reconfiguration sequence. The proof of this property within the 
evolution specification requires a detailed description of the mentioned underlying 
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services in order to provide the necessary information for the model checking proce-
dure. 

• State management: State management has to be modeled within the reconfiguration 
sequence of the ECA. The behavior of the control application (global and local consis-
tency) is directly influenced by the used transition management method, but even if 
the transition management fails the disturbances to the process may be tolerated by the 
plant, process, and product specifications. As the target of DSE is the reduction of 
such disturbances, state management is added as a special property of the evolution 
specification and has to be checked by model checking. 

• Dependent operation: For the reconfiguration sequence we have to design an appro-
priate system model that includes also the dynamic reconfiguration of the control ap-
plication. This could be used also for checking the dependencies between the actions 
within the RECONF sequence, too. But on the other hand the incorporation of dy-
namic adaptations to the model will be based on a correct order of basic reconfigura-
tion services as the appropriate means for modeling changes are not intrinsic function-
alities of the modeling language. Similar to the RINIT sequence the calculation of the 
different basic reconfiguration services based on the current system state will be util-
ized for the reconfiguration sequence, too. This evaluation of the correct order of basic 
reconfiguration services provides a good basis for the generation of the system model 
used for model checking of the different other system integrity properties. 

• Real-time constrained operation: As the reconfiguration sequence is deeply involved 
with the execution of the control application and the time critical aspect of this execu-
tion phase it is necessary to include this aspect in the model checking procedure. The 
temporal properties are as important as the functional properties within the evolution 
specification. 

• Requirements of resources: Although the reconfiguration sequence concentrates on 
the adaptations of connections and parameters/variables also such kind of basic recon-
figuration services may influence the memory of the control device. Similar calcula-
tions as already depicted above for the RINIT sequence and download of ECAs can be 
applied in order to evaluate the satisfaction of the requirements of resources of the 
RECONF sequence. 

The reconfiguration sequence is the most critical part within the execution of a system 
evolution step and needs to be considered in all details by model checking techniques. 
Additionally also calculations based on the current system state are applied for certain 
properties, which will help to simplify especially the modeling of basic reconfiguration 
services. 

RDINIT sequence: 
The deinitialization sequence starts the post processing of the system evolution step and 
focuses especially on the deletion of the old parts within the control application. Based on the 
general idea of the engineering methodology for DSE this phase will only remove elements of 
the unused control application and should apply no influences in terms of additional execution 
time for new FBs to the control applications. In contrast the old application parts which are 
still part of the control application and consume execution time in the context of the control 
application will be removed and the total necessary execution burden for the control applica-
tion will be decreased. As the deinitialization sequence does not influence the behavior of the 
control application itself and its execution is time uncritical, the influence to the control 
application can be neglected based on an appropriate scheduling policy of the runtime 
environment. 
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• Global consistency: No additional influence exists to the control application during 
the execution of the RDINIT sequence. Any connection between the ECA and the 
control application, which may exist from previous execution phases, has been already 
investigated during the corresponding execution phases. 

• Local consistency: Similar to global consistency. 
• Active references: This property is not influenced by the RDINIT sequence. 
• State management: This property is not influenced by the RDINIT sequence. 
• Dependent operation: Similar to the creation of FBs and connections also the deletion 

of these elements may be executed in disorder. The consequences of such a disorder 
vary according to the concrete implementation of the IEC 61499 runtime environment 
and consequently should be avoided, too. The correct execution of the basic reconfigu-
ration services can be evaluated based on the representation of the current system state 
during the sequence of commands. 

• Real-time constrained operation: The scheduling policy of the runtime environment 
provides the basic framework for the evaluation of the real-time constrained operation 
of the RDINIT sequence. The RDINIT sequence has to be scheduled appropriately in 
order to do not disturb the execution of control applications. 

• Requirements of resources: The RDINIT sequence will free allocated memory ac-
cording to the deletion of unused FBs and connections. This property needs not to be 
checked in detail. A similar calculation as provided above can be used to update the 
current system state with respect to the requirements of resources. 

The deinitialization sequence includes also no verification by model checking. Many proper-
ties do not need to be checked at all. The remaining properties can be evaluated based on the 
current system state. 

Delete ECA: 
The last phase within the execution of the ECA concerns to the deletion of the ECA itself by 
using the management application under control of the engineering tool. This sequence is of 
course time uncritical and will not influence the behavior of the control application. The 
execution of the different management commands has to be handled by the runtime environ-
ment similar to the download of any IEC 61499 application in order to delete the ECA 
without disturbances of the execution of control applications. 

• Global consistency: This property is not influenced by the deletion of the ECA. The 
scheduling policy of the runtime environment has to handle any request by the man-
agement application without disturbances to the control application’s execution. 

• Local consistency: Similar to global consistency. 
• Active references: This property is not influenced by the deletion of the ECA. 
• State management: This property is not influenced by the deletion of the ECA. 
• Dependent operation: The deletion of any application has to follow appropriate rules 

in order to leave the control device in a clean system state. Based on the implementa-
tion of the runtime environment it may lead to an erroneous situation if for instance an 
FB is deleted although connections exist from or to this FB. The engineering tool has 
to implement appropriate rules, which do not need an additional check by some 
evaluation means. 

• Real-time constrained operation: Similar to the download of the ECA also the dele-
tion of the ECA does not have any real-time constraints. The runtime environment will 
execute the necessary management commands during spare time. An additional check 
for this property is not necessary. 
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• Requirements of resources: The deletion of the ECA does not require additional 
memory but relieves the amount of used memory. Accordingly this property does not 
need to be checked separately. A similar calculation as already mentioned during the 
previous execution phases may be used in order to provide the current system state af-
ter the deletion of the ECA. 

The deletion of the ECA does not need any evaluation means to prove its correctness, when 
we assume an appropriate scheduling policy for the management application within the 
runtime environment and a structured sequence of management commands generated by the 
engineering tool. 

Overview of evaluation means 
The above discussion of appropriate evaluation means in order to prove the different system 
integrity characteristics for a system evolution step are summarized in Table 2. The different 
evaluation means have been simplified according to the following conventions: 

• ‘Verify’ means prove of the property by using model checking. 
• ‘Check’ means the evaluation of the property based on calculation especially by using 

the current system state. 
• ‘Engineering tool’ refers to the necessity of appropriate rules within the engineering 

tool. 
• Any prerequisites according to the scheduling policy of the IEC 61499 runtime envi-

ronment have not been mentioned. 
 Download ECA RINIT RECONF RDINIT Delete ECA 

Global consistency Check Check Verify — — 

Local consistency Check Check Verify — — 

Active references — — Verify — — 

State management — — Verify — — 

Dependent operation Engineering tool Check Check Check Engineering tool 

Real-time constrained 
operation — — Verify — — 

Requirements of resources Check Check Check — — 

Table 2: Evaluation means for the proof of system integrity characteristics 

This overview provides a clear classification of the different evaluation means necessary for 
the evaluation of the five execution phases of a system evolution step. Only for the 
reconfiguration sequence verification by model checking is applied. All other sequences can 
be handled by using appropriate calculations in order to evaluate the effect of the ECA on the 
control application. This also improves the usability of this method for ACS customers as the 
complex method of model checking is concentrated only on one sequence and also its scope is 
very limited.  
The detailed consideration of the different calculations based on the current system state will 
be discussed in Chapter 6. The verification of the RECONF sequence by model checking is 
depicted in Chapter 7. The following section will investigate the necessary enhancements for 
CECAs as well as the representation of the current system state as it provides the necessary 
information in order to apply the different calculations and model checking. 
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5.2.3 Evaluation of CECAs 
The enhanced evolution control engineering described in Section 4.3 is based on the encapsu-
lation of the three sequences of an ECA (initialization, reconfiguration, and deinitialization) 
within EECFBs which may be modeled in order to coordinate and synchronize the execution 
of different system evolution steps within a CECA. Herein the reconfiguration sequence is of 
special interest, as it describes the coordination of changes applied to the control applications. 
When we consider the evaluation means necessary for CECAs we can apply the previous 
system integrity characteristics to each single system evolution step within the CECA. Based 
on the five execution sequences of a system evolution step the situation can be described for 
CECAs as follows: 

• Download CECA: The situation can be handled similar as depicted for an ECA. Only 
the overall CECA has to be taken into consideration and respectively each EECFB and 
its interactions with the control application has to be checked. 

• RINIT sequences: Each initialization sequence within the EECFBs of a CECA can be 
treated separately in the same manner as for a single evolution step. 

• RECONF sequences: The reconfiguration sequences of the different EECFBs have to 
be analyzed according to their interrelations as already depicted in Figure 15a in the 
overview schematic of a CECA. For the execution of CECAs this is the most impor-
tant aspect and has to be treated appropriately for the evaluation of the reconfiguration 
sequence. If for instance the RECONF sequences of two EECFBs are started synchro-
nously (as this is depicted in Figure 15 for ‘EECFB2’ and ‘EECFB3’) the evaluation 
process has to incorporate both sequences for the proof of the different integrity char-
acteristics. If no interrelation exists between the different EECFBs (as for instance in 
the case of ‘EECFB1’ in Figure 15) the reconfiguration sequences of such EECFBs 
can be verified independently. 

• RDINIT sequences: Each deinitialization sequence within the EECFBs of a CECA 
can be treated separately in the same manner as for a single evolution step. 

• Delete CECA: The situation can be handled similar as depicted for an ECA. The over-
all CECA has to be taken into consideration instead of a single evolution step. 

The main prerequisite for the evaluation of a CECA is that even if the different sequences 
may be considered independently at least the current system state incorporates the whole 
CECA (e.g. for the consideration of requirements of resources). 

5.3 The current system state: KAPPA vector 
The discussion about the evaluation of system integrity characteristics as properties of the 
evolution specifications above mentioned many times the link to the current system state in 
order to provide the necessary information for the different evaluation means. The different 
kinds of calculations and verification by model checking make high demands for the descrip-
tion of the current system state. Therefore this element becomes an important aspect within 
the concept for the evaluation of DSE. 
In order to provide a comprehensive description of the current system state we will use the 
term KAPPA vector as synonym for the different kinds of information related to the current 
system state. In detail all information concerning the different applications, the system 
configuration as well as the interrelation between different control devices has to be included 
into the KAPPA vector. The calculations based on the KAPPA vector mentioned above for 
the evaluation of different system integrity properties will be summarized as KAPPA calculus 
(see Chapter 6).  
The KAPPA vector characterizes the current system state. This means KAPPA is a structured 
list of parameters that describe the current system state. The classification of parameters of the 
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KAPPA vector can be provided by using different aspects. One aspect is the changeability of 
parameters according to the dependencies of applications and devices. This will be investi-
gated in Section 5.3.1. Another aspect is the structure of the automation and control system 
and will be discussed in Section 5.3.2. Finally the temporal behavior of the KAPPA vector 
during the execution of a system evolution step will be depicted in Section 5.3.3. 

5.3.1 Characterization of KAPPA vector elements 
The parameters within the KAPPA vector (respectively the KAPPA vector elements) aim at 
the description of the hardware and the software within an ACS. These elements may be 
characterized according to the dependency of what may be changed during the process of 
DSE. This belongs on the one hand to the applications (as primary target of a system evolu-
tion step) and to the devices on the other hand. 

• Applications: This category includes the software part within the ACS that may be 
changed during the DSE. It includes the control applications as well as the ECAs. 

• Devices: This category includes the hardware in terms of control devices within the 
ACS as well as those software parts that will not be changed within a DSE. Herein es-
pecially the operating system and the runtime environment have to be mentioned as 
parts of the device. This is based on the fact that these elements of the software within 
a control device will only change in case of a physical reconfiguration (addition or 
removal of a control device). 

According to these categories four combinations of parameters would be possible, whether 
the parameters are changeable or not concerning the application or the device. As the 
application will not be of interest in case of independent parameters from the device, only 
three different kinds of parameters can be distinguished. 

Device dependent & application independent parameters 
Within a heterogeneous system the fundamental parameters of a control device like available 
memory, processing capability, input/output interfaces or supported network communications 
have to be mentioned within this group. Further parameters within this group concern the 
features of the system configuration within the software part of the control device (e.g., 
operating system, runtime environment). Examples for these parameters may be the set of 
supported commands, the functionality of the runtime environment, processing time for 
atomic control operations, capability of the scheduling algorithm, etc. But also those applica-
tions that will not be changed (e.g., the web server mentioned in previous discussions) have to 
be incorporated. 

Device dependent & application dependent parameters 
Due to the relation of applications to control devices, any parameter dependent on the 
application is also a parameter dependent on the device. But within this group we especially 
focus on information about the currently available applications within the control device. This 
includes information about the currently available free memory space and processing power 
as well as the mapping of the control applications and ECAs and their actions (e.g., instantia-
tion of function blocks). Within this group also the behavior of control applications has to be 
described, which is based on the one hand on the event connections within the control 
application and on the other hand on the behavior of the external triggers for execution 
(incorporated in SIFBs). 

Device independent parameters 
There may be also a third group, which is independent of both the device and the application. 
These parameters describe for instance the position of a device within the network. This 
information is necessary if network communications will be used within DSE. For instance, 
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the number of switches within the communication of two devices has a major impact on the 
latency time of an Ethernet network. 

5.3.2 FDCML as basis for a KAPPA vector representation 
The concrete representations of the different parameters which are necessary for the evalua-
tion of DSE are dependent on the implementation that provides the basis for the evaluation 
method. In order to provide an example for the representation of the KAPPA vector we will 
utilize the device description based on FDCML, which is depicted in more detail in Appen-
dix A. As FDCML provides a framework for the description of any parameters for control 
devices it is capable to integrate the necessary parameters for the evaluation process. A brief 
overview on this kind of representation of a KAPPA vector is given also in 
Sünder et al. (2007c). 
The general aim of the FDCML specification (FDCML.org, 2002) is to provide a meta 
language for the description of control devices. There is only a small amount of parameters 
(e.g., for device identification) that are defined within the specification. The majority of 
elements within the XML schema aim at a framework in order to define further parameters. 
Examples are for instance ‘specificProperty’ or ‘additionalItem’, as described in detail in 
Appendix A. Furthermore the topics ‘DeviceFunction’ and ‘ApplicationProcess’, which 
represent an important part of parameters especially concerning the group of parameters that 
are dependent on the device and the application are completely left open by the specification. 
A first step for the adaptation of the FDCML specification for the use as representation of a 
KAPPA vector has to investigate the usage of an appropriate description of applications. 
Herein the data model of the IEC 61499 standard, especially the definition of the XML 
representation of its elements given in IEC 61499-2 (2005), provides a good starting point. 
Figure 20 depicts the general structure of the XML schema for FDCML (lower part) and the 
DTD of an IEC 61499 system (upper part). As the XML schema for FDCML is explained 
already in Section A.1, only the elements of the IEC 61499 system will be introduced 
roughly. The DTD represents the definitions of the system model which has been provided 
already in Section 3.2.2. A system consists of applications (depicted by the element ‘Applica-
tion’), devices (depicted by the element ‘Device’), and the communication systems (depicted 
by the elements ‘Segment’ and ‘Link’). The element ‘Mapping’ is responsible for the 
description of the interrelation between an FB instance in ‘Application’ and ‘Device’. 
Additionally appropriate DTDs exist in order to describe libraries, especially ‘LibraryEle-
ment’ for FB types, adapter types, or subapplication types and ‘DataType’ for the declaration 
of user defined data types. In general the parameters included in these DTDs provide a 
mixture of structural information about the different devices and their connections via the 
communication networks and application information in terms of FB networks. 
The bold arrows used in Figure 20 depict the strategy for incorporating the contents of the 
IEC 61499 models into the framework of the FDCML XML schema. FDCML provides a very 
detailed description of the structural elements of a control device, which is not part of the 
IEC 61499 standard and expands the relatively simple overview of a system configuration. On 
the other hand, the representation of applications is completely missing in FDCML. The 
following list provides an overview on the principle methodology of merging the two 
different representations on the basis of the FDCML XML schema. 

• The most important enhancement of FDCML is the use of the element ‘Device’ as 
child element of ‘ApplicationProcess’. As the FDCML representation is focused on a 
control device, the mapping as well as applications within the system will be repre-
sented by the appropriate application parts within the ‘Device’ elements. A control 
device may have several devices (there are different runtime environments possible 
within one control device), which may include several ‘Resource’ elements as well as 
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control applications and ECAs in terms of ‘FBNetwork’. The reason for the usage of 
‘FBNetwork’ within ‘Resource’ and ‘Device’ comes from the definition of 
IEC 61499-1 (2005, Section 1.4.2) that a device which does not contain a resource 
should be functional equivalent to a resource. 

• The type definitions included in ‘LibraryElement’ and ‘DataType’ describe the capa-
bilities of the runtime environment within the control device. A runtime environment 
is a special kind of ‘resourceEntity’ following the definitions of FDCML. The ‘resour-
ceEntity’ element has to be enhanced by these two kinds of elements in order to de-
scribe the type library within a runtime environment. 

 
Figure 20: Incorporation of IEC 61499 into FDCML in order to represent the KAPPA vector 

• Another aspect representing a completely open point within the FDCML is the ele-
ment ‘DeviceFunction’. Herein the “intrinsic function of a device in terms of its tech-
nology” (ISO 15745-1, 2003) should be included. The sequence diagrams within the 
declaration of SIFBs provide some aspects of ‘DeviceFunction’, as SIFBs are the in-
terface to the intrinsic functions of the device within the runtime environment. Ac-
cordingly the DTD elements representing the declaration of SIFBs may be used also 
within ‘DeviceFunction’. 

• The representation of communication networks and the connections of devices via 
communication are described very roughly in IEC 61499. FDCML includes a more 
detailed description of the interfaces within a control device (‘MAUList’) as well as 
the communication aspects (‘communicationEntity’). This information can be used to 
improve the brief description within IEC 61499. In terms of elements within FDCML 
the cooperation of different control devices is given within the element ‘Profiles-
Body’. In detail, a list of control devices (‘ProfileBody’) and their connections (‘con-
nectionList’) are depicted based on the information about the internal structure of a 
control device. 
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The FDCML device description needs additional enhancements in order to provide a compre-
hensive representation of the KAPPA vector. One important aspect concerns to the element 
‘resourceEntity’ within the element ‘DeviceManager’. Up to now we have discussed the use 
of the description of library elements within the runtime environment. But there are different 
aspects that need to be incorporated within the ‘resourceEntity’ element, too: 

 Computational unit and available memory storage 
• Operating System: The description of the operating system may start with general 

parameters such as information about the scheduling of tasks (e.g., number of priori-
ties) as well as further aspects such as the behavior of the operating system for admin-
istrative activities (e.g., amount of time and frequency for such activities). The tempo-
ral behavior is of special interest for the formal description and has to include time pa-
rameters for instance for a task switch. 

• Runtime environment: Next to the library elements available within the runtime envi-
ronment further parameters such as the memory consumption or the set of accepted 
management commands may be part of the description. With regard to the temporal 
behavior, the different timing parameters are of special interest for a detailed analysis 
of the execution behavior. 

• Formal models: A very detailed description of a control device may also include the 
formal models of its elements such as operating system, runtime environment, or FB 
types. FDCML provides the possibility to include this kind of information by using 
external XML schemas, too. 

5.3.3 KAPPA vector during execution of a system evolution step 
The current system state which is represented by the KAPPA vector is a constant representa-
tion of parameters during the normal operation of the ACS. But especially for DSE the 
KAPPA vector is changing according to the applied changes to the ACS. This has to be 
pointed out as a very important aspect during the evaluation of a system evolution step. Figure 
21 depicts the situation during the execution of a system evolution step.  

 
Figure 21: Execution of a system evolution step with regard to the KAPPA vector 

We can distinguish the five different sequences that provide changes to the current system 
state: download of the ECA (denoted by ‘Downl. ECA’), RINIT sequence, RECONF 
sequence, RDINIT sequence, and deletion of the ECA (denoted by ‘Del. ECA’). In a very 
brief overview two different KAPPA vectors exist: ‘KAPPA 1’ for the current system state 
and ‘KAPPA 6’ for the new system state. These two KAPPA vectors represent the stable 
system configuration before and after the DSE. But after each of the different execution 
sequences within a system evolution step we can characterize the system state again by using 
KAPPA vectors. Figure 21 exactly describes this situation mentioning also ‘KAPPA 2’ up to 
‘KAPPA 5’ in between the stable system states. And if we again have a more detailed look at 
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the five execution sequences, we can split up the changes to the KAPPA vector into the 
smallest part of basic reconfiguration services which are applied to the system state. There-
fore, the KAPPA vector provides only a snapshot of the system state. Especially for the 
calculations based on the KAPPA vector mentioned for the evaluation of system integrity 
properties it is important to provide the evaluations on the currently valid KAPPA vector. 
This situation includes high requirements to the engineering tool which incorporates DSE and 
especially its evaluation, since the overall process of the execution of a system evolution step 
has to be verified before its actual execution. 
The situation can be adapted accordingly also to the combination of system evolution steps 
within a CECA. Special attention has to be paid to the situation of physical reconfiguration as 
described in Section 4.4. Herein the interaction of the ACS customer is mentioned in terms of 
changes to the hardware configuration also for DSE. This represents also a change to the 
KAPPA vector and has to be coordinated with the actions within the (C)ECA and accordingly 
also with its evaluation. 

5.4 Summary 
The concept for the evaluation of DSE has to take into consideration the different elements 
and especially disturbances within the evaluation framework as well as the properties 
mentioned as evolution specifications for the proof of a system evolution step. 
The evaluation framework is characterized by two closed circuits. On the one hand the control 
application and the process under control are modeled as a closed circuit via the control and 
measurements signals. On the other hand, the ECA and the control application are modeled 
also in a closed circuit via the basic reconfiguration services and the current system state. 
Apart form the usual sources (disturbances to the process and hardware capabilities) also any 
other applications that request computational power as well as hardware capabilities for the 
execution of the ECA act as disturbances to the overall system. 
The evolution specifications which have to be fulfilled by the ECA can be split up into 
different properties according to the system integrity characteristics with special tailoring to 
the field of ACSs and IEC 61499: 

• Global and local consistency: Preserving the properties of the product, plant, or proc-
ess during execution of DSE. 

• Active references: Incorporation of dependencies based on underlying services which 
are utilized via SIFBs. 

• State management: Inspecting the effects to the process under control and the effi-
ciency of modeled transition management methods. 

• Dependent operation: Checking the correct temporal order of basic reconfiguration 
services. 

• Real-time constrained operation: Investigating the temporal behavior of operations is 
as important as the functional behavior for the correctness of DSE. 

• Requirements of resources: Evaluation of basic properties such as sufficient resources 
in terms of memory and type libraries. 

The analysis of the different properties of the evolution specification in terms of appropriate 
evaluation means results in the use of model checking only in the reconfiguration sequence of 
DSE. Many properties can be evaluated by calculations based on the current system state. 
Therefore, applicability for the ACS customer is increased as the complex method of model 
checking can be restricted to a small portion within the overall evaluation method. 
The current system state, denoted as KAPPA vector, is of special interest for the evaluation 
method because it includes all necessary information for the evaluation based on calculations 
and model checking. In contrast to normal operation, where the KAPPA vector can be 
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assumed as static, the current system state is changed due to the execution of each single basic 
reconfiguration service and therefore it is a highly versatile quantity (in detail a structured set 
of parameters) during the evaluation of DSE. 
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6 Evaluation of properties by KAPPA-based calculations 

Chapter 6 

Evaluation of properties by KAPPA-based calculations 

This thesis proposes the use of verification by model checking in order to prove the correct-
ness of DSE. Already in the introduction model checking has been identified as the best 
fitting means available for evaluation. The considerations about the different system integrity 
characteristics in the previous chapter give a detailed description of the necessity of model 
checking within the most critical phase of a system evolution step, the reconfiguration 
sequence. But the discussion also provides the important result that many properties can be 
simply evaluated by some calculations based on the current system state, the KAPPA vector. 
Especially the preparation of DSE, the download of ECA and the initialization sequence, as 
well as the post-processing, which includes the deinitialization sequence and the deletion of 
the ECA, can be sufficiently evaluated by KAPPA-based calculations. 
The different properties of the evolution specification have to be treated by different types of 
calculations. The following three categories will be distinguished within this chapter: 

• Influences to temporal control application properties: The global and local properties 
of control applications are influenced only in their temporal properties due to the addi-
tional execution of the system evolution step. Therefore it is not necessary to verify 
functional properties. But the disturbances to the execution of control applications 
have to be taken into consideration in order to prove whether the control logic will be 
executed in time or not. 

• Check for dependent operation: The order of the basic reconfiguration services 
within all phases of a system evolution step is part of these calculations. Two different 
situations have to be distinguished. On the one hand the three phases of the execution 
of an ECA need to be considered for any disorder in basic reconfiguration services. 
On the other hand the download and the deletion of the ECA are executed by the engi-
neering tool, whereas certain rules need to be followed in order to do not be in conflict 
with the dependent operation characteristic. 

• Check for requirements of resources: Two kinds of resources are of special interest 
within the process of DSE: the library elements of the runtime environment and the 
available memory. 

6.1 Influences to temporal control application properties 
The preparation of a system evolution step includes two phases: the download of the ECA and 
the initialization sequence. Both phases are characterized as not time critical because the 
control applications are not changed in their functional behavior. Nevertheless, the temporal 
behavior may be changed and therefore in this context the global and local properties of the 
control applications may be violated. The evaluation of the influence to these properties will 
be based on the KAPPA vector, which includes the characteristics for the execution of the 
control applications as well as the basic theory of scheduling within the runtime environment. 
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There are two different aspects that need to be checked: 
• Control applications which are not part of the EROI: A control application which is 

not involved in the DSE is considered as disturbance to the execution of the system 
evolution step. But on the other hand, these applications may be influenced by the 
DSE, too. The reason is the same in both cases: each execution within the control de-
vice needs computational power, and if certain limits are exceeded the temporal be-
havior of applications will be violated.  

• Control applications under control of the ECA: A control application which is influ-
enced by the ECA will not be changed in its functional behavior, too. But during the 
download of the ECA also event and data connections between the control application 
and the ECA are created. These connections are necessary for the synchronization dur-
ing the execution of the system evolution step. In addition to the above mentioned in-
terrelation based on the computational power of the control device the control applica-
tion will include further executed FBs based on the new connections. The effect to the 
temporal behavior of the control application has to be checked. The situation is even 
more complicated during the initialization sequence. Herein new FBs and connections 
are added to the control application itself (e.g., the new controller in the example 
given in Section 4.2.3). From the viewpoint of temporal behavior the influence to the 
control application is the same: additional FBs need to be executed in the context of 
the control application. 

For a general consideration of an appropriate calculation for the estimation of the influence to 
the temporal behavior of a control application it may not be possible to evaluate this property 
in a satisfactory manner. The reason for this is the dependency of the control application 
behavior on the process under control, which may provide triggers for the execution at any 
time (if we include erroneous behavior, too). For the general case the use of verification by 
model checking (see Chapter 7) will be necessary in order to prove the global and local 
consistency of the control application during the download of the ECA and the initialization 
sequence. But under certain prerequisites, which depend also on the characteristics of the 
runtime environment, it is possible to use theoretical results of scheduling theories and 
approximations for an evaluation of the temporal behavior of the control applications. 
We will investigate two different situations. First of all we will provide a short description of 
the evaluation for a cyclic execution of control applications. Secondly we will follow the 
investigation depicted in Zoitl (2007), which is the basis for the R3E. 

Consideration of cyclic execution 
Cyclic execution of control applications is widely used in ACSs and also manifested in the 
principle architecture of IEC 61131-3 (2003). If we neglect the possibility to trigger an 
execution by an external event, the situation gets very simple concerning the evaluation of 
temporal behavior. The influences from outside are incorporated only within the cyclic 
execution. Based on an analysis of the current system state, it is easy to evaluate whether 
there will be an influence to the control applications or not. 
In order to provide a more detailed example we can examine industrially used operating 
systems and their development tools, as for instance (Wind River, 2007). Herein the work-
bench for the real-time operating system VxWorks [62] is depicted, which includes so-called 
run-time analysis tools. These tools provide a visualization of the tasks of the operating 
system during operation of the system, which includes for instance the dynamic interaction of 
the target hardware, the operating system, and the different programs. Another aspect is 
especially important for an estimation of the influence to the temporal behavior of control 
applications: the so-called performance profiler. The system displays the execution time of 
each control application (minimal and maximal execution time). Based on such a detailed 
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information about the current system state and the settings of priorities and cycle times for the 
control algorithms it is possible to estimate whether the preparation of a system evolution step 
influences the control applications or not. 
The paradigm of cyclic execution can be utilized also for a performance analysis in ACSs 
which is based on IEC 61499. The IEC 61499 standard is purely event driven, but by the 
restriction of external events to cyclic occurrence the execution within the event-driven FB 
network will have cyclic behavior, too. This prerequisite has been used in Khal-
gui et al. (2004) for the development of a scheduling design that does not violate temporal 
properties of control applications. In more detail each input event of an FB is considered to 
occur periodic. The behavior of the resource and the FBs is given as state machine imple-
mented in timed automata (see Section 3.6.3). Based on a characterization of the input event 
occurrences (period and jitter) and the execution time for algorithms the behavior of output 
events and the composition of FBs can be evaluated. Khalgui et al. (2004) use this informa-
tion in order to construct a non-preemptive offline scheduling which avoids simultaneous 
event occurrences for a given FB. The evaluation of a given system state as well as the 
execution of the first two phases of a system evolution step can be done by using the sched-
ulability conditions defined by Khalgui et al. (2004). The first schedulability condition 
examines if occurrences exist, and the second condition proves the assumption of periodic 
output events. 

Consideration for pure event-based execution 
The assumption of periodic input events of FBs based on the IEC 61499 standard is a very 
limiting prerequisite for the execution behavior. And it neglects one of the most important 
aspects of IEC 61499, the event-based execution. Within this thesis we especially focus on a 
concrete implementation of an IEC 61499 runtime environment, the R3E. This runtime 
environment is based on the fundamental theory given in Zoitl (2007), which provides a 
concept for the real-time constrained execution of pure event-based control applications. 
Appendix B provides a more detailed description of the basic idea for the real-time execution 
of FB networks, which uses the event sources as the initial points of execution paths within 
the control application. But in contrast to Khalgui et al. (2004) there is no prerequisite of 
periodic occurrence for event sources. 
We will give a short description of the scheduling theory developed in Zoitl (2007) in order to 
identify the important parameters which are necessary for the evaluation of real-time execu-
tion within the R3E. Then we will depict the extraction of the necessary parameters based on 
the KAPPA vector. Finally, we will examine the situation of influences to the temporal 
control application behavior during the preparation of a system evolution step. 

6.1.1 Scheduling theory of R3E 
Zoitl (2007) takes into consideration the combination of real-time execution and dynamic 
reconfiguration within an IEC 61499 runtime environment. This section gives a rough 
overview on the scheduling theory that is given in Zoitl (2007, Chapter 4), which defines the 
following requirements for the real-time execution model of IEC 61499: 

• The number of tasks within the control device may change during operation. 
• The execution time of tasks, which includes the execution of event chains, may 

change based on adaptations incorporated as basic reconfiguration services to the con-
trol application. 

• Control applications and ECAs may be connected via data and event connections. 
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Occurrence of external events 
The initial elements of execution are the event sources, which are triggered by external 
events. These provide the incentives for any execution within the control application. 
Accordingly real-time constraints are related to event sources. In order to provide parameters 
for the occurrence of external events, Zoitl (2007, Section 2.3.3) takes into consideration 
different process models which are known in literature: 

• Periodic occurrence model: A very strict periodic model can be simply characterized 
by the cycle time TP and does not take into consideration deviations in the occurrence 
of the external event. 

• Periodic occurrence with jitter: Additionally the occurrence of a periodic event may 
vary by a small amount of time. The occurrence of the external event is mainly de-
fined by the cycle time TP, but a variation in the magnitude of two times J is incorpo-
rated, too. 

• Irregular arrival patter: Herein a varying sequence of time intervals which is known 
in advance is characterized. TS is the bounded sequence of time intervals. Furthermore 
this sequence will reoccur based on an overall period TP. 

• Bursty arrival pattern: This pattern characterizes a group of n events (burst) which 
may occur with a minimal inter-arrival time Tmin of two consecutive events. A time in-
terval TP exists that describes the cycle time or a minimal inter-arrival time of the dif-
ferent bursts. 

• Bounded model: The bounded model limits the occurrence of consecutive events by a 
lower bound, the minimal inter-arrival time Tmin, and an upper bound, the maximal in-
ter-arrival time Tmax. The upper bound may be neglected. 

• Bounded average rate model: This occurrence model is based on a statistical descrip-
tion of event occurrences by using an average minimal inter-arrival time Tmin and a 
distribution function such as a Gaussian distribution with the standard deviation σ. 

• Unbounded arrival pattern: The sequence of events is not known and cannot be used 
as external event for the real-time constrained execution. 

These parameters can be used in two different manners. First of all they provide the basis for 
the calculation of scheduling criteria which provide a check whether real-time constraints can 
be met or not. On the other hand this information can be used also within the runtime 
environment in order to limit the invocation of executions based on external events. As the 
ACS customer knows in detail the assumed behavior of the process under control he can 
specify also the appropriate parameters for the occurrence of external events during applica-
tion engineering. Based on Zoitl (2007, Section 4.5) this can be incorporated in the runtime 
environment as filters of unexpected external events, e.g., in case of erroneous behavior of the 
plant. 

Execution time of event chains 
Each execution of FBs within an event source and an event sink is called event chain. These 
event chains may be constrained by real-time parameters. If a real-time constraint is issued to 
an event chain, a separate task is established within the runtime environment. A resulting set 
of tasks can be derived from the current configuration of the control device. Unconstrained 
event chains are executed within so-called background tasks, which do not need to be 
considered for the evaluation of real-time constrained execution. The execution time of event 
chains is characterized by two parameters: 

• Worst Case Execution Time (WCET): The longest time which is necessary for the 
execution of the event chain. 
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• Best Case Execution Time (BCET): The shortest time which is possible for the exe-
cution of the event chain. 

In case of event chain execution the differences in the execution time come from the internals 
of the event chain, the FB network. An FB may issue an output event only if the control 
application is in a certain state, and consequently different execution times occur for different 
triggers of the event chain. Another possibility for changing execution times is the application 
of DSE to the control application, e.g., during the execution of the initialization sequence. We 
will consider the extraction of WCETs and BCETs for given control applications in the next 
section. 

The set of active tasks 
Zoitl (2007, Section 4.6.2) introduces the Worst Case Active Task Set (WCATS) as basis for 
schedulability rules in the following way. The WCATS describes “the set of active tasks 
which requests the highest demand of processor execution capacity of all possible active task 
sets”. In case of pure cyclic execution this set can be identified rather easily based on the 
cycle times and their starting times, and appropriate evaluations about the real-time execution 
can be applied rather easily. For the derivation of the WCATS in case of mixed periodic and 
acyclic tasks Zoitl (2007) defines the following rules: 

• Only tasks with real-time constraints need to be considered. 
• Arrival times of all tasks are not synchronized or harmonic to each other. 
• The bounded model, which provides an upper boundary on the occurrence frequency 

of a task, is assumed as general model for real-time constrained tasks. 
• Periodic tasks are a special case within the bounded model where the minimal and 

maximal inter-arrival times are equal to the cycle time: Tmin = Tmax = TP. 
• For each task the relation iii TDWCET min,≤≤  has to be fulfilled, where Di is the dead-

line of the i-th task. 
Following these rules the WCATS consists of all tasks that may be triggered within the 
control device and it is assumed that all tasks are activated at the same time. But as depicted 
in Appendix B event chains may be coupled to each other by special SIFBs. Based on the 
parameters of the different coupled event chains a more concrete WCATS can be derived. If 
for instance the sum of all deadlines Di of the coupled event chains is smaller or equal to the 
minimal inter-arrival time of the initial external event, only one task of this event chain can be 
active at the same time. Accordingly the WCATS is not a single set of tasks but different 
WCATSs exist. In the example given above a separate WCATS has to be considered for each 
task within the coupled event chain. 

Bounds for real-time constrained execution 
In order to provide schedulability rules for a given WCATS Zoitl (2007) determines two 
different situations: static priority scheduling and dynamic priority scheduling. In both cases a 
general task set based on the bounded model is taken into consideration. If the different 
WCATSs of a given configuration of a control device fulfill the schedulability rules all real-
time constraints within the control application will be met. 
Static priority scheduling (Zoitl, 2007, Section 4.6.3): The basic prerequisite for the static 
priority scheduling is the use of a deadline monotonic priority assignment as it has been 
checked that this is optimal for static priority scheduling of aperiodic task sets. Deadline 
monotonic means that the task with the shortest deadline gets the highest priority. The basis 
for the schedulability boundary is the so-called synthetic utilization Usyn(t). For each WCATS 
the synthetic utilization can be derived over the set of active tasks S(t) according to 
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If Equation 5 holds for all WCATSs, the control application will meet all real-time con-
straints. For large numbers of n the bound for the synthetic utilization UB(t) will reach the 
value 58,3%. 
Dynamic priority scheduling (Zoitl, 2007, Section 4.6.4): If we assume that the priority of a 
task may be changed during operation, dynamic priority scheduling will be considered. 
Herein the most important scheduling policy is earliest deadline first, which assigns the task 
with the shortest absolute deadline the highest priority. The scheduling boundary for dynamic 
priority scheduling is according to Zoitl (2007) given by 

1)(: ≤∀ tUt syn . (6) 

All tasks within the configuration of a control device will meet their real-time constraints, if 
Equation 6 holds for the WCATSs at t = 0. 

6.1.2 Calculation of event chain execution time 
For the evaluation of real-time execution for the control applications based on the schedula-
bility rules given above it is necessary to define the WCET of the event chains within the 
control application. Based on Equation 4 the synthetic utilization of the WCATS can be 
calculated by using the WCET WCETi and the deadline Di of the different event chains. We 
will describe a methodology for the calculation of the execution time of any event chain based 
on models of the IEC 61499 standard as well as the runtime environment R3E. Both aspects 
are necessary because this evaluation has to fulfill the Requirements (2) “Execution seman-
tics” and (3) “Underlying system configuration”, which describe the dependency of the 
behavior of control applications on implementation details of the control device. 
Different approaches exist for the calculation of WCET especially in the field of real-time 
computer systems, because it is an important measure for guaranteeing whether a system 
fulfills its real-time constraints or not. Kopetz (1997, Section 4.5) describes the analytic 
calculation of the WCET for different types of tasks within an operating system and states 
that “at present, the systematic analysis of all the effects that determine the WCET of C-
tasks13 is still in its infancy”. The current state of practice is described as the combination of 
diverse techniques, which are based on measurements of the real implementation (all involved 
parts such as tasks, operating system, or internal services), restriction of architectural ele-
ments within the control device, generation of an effective set of test cases, and extensive 
testing of the complete implementation. 
The evaluation of the execution time of an event chain can be based on the characteristics of 
the models of IEC 61499-1 (2005). Herein the execution of an FB network is defined by the 
                                                 
13 A C-task is defined in Kopetz (1997, Section 4.5.3) as a preemptive complex task which has access to 
protected shared objects. 
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event connections in between the FB instances. The FB type gives a more detailed insight into 
the behavior of the event chain, as for instance the ECC can be used to analyze which events 
are emitted by a BFB in certain situations. Additionally the execution semantics of the 
runtime environment have to be incorporated because this is of special interest for the 
execution order of FBs within the event chain and therefore it may have an impact on the 
execution behavior, too. The exercise of WCET analysis is to determine which path of an 
event chain, i.e., which sequence of FBs, will take the longest time for execution14. Analogous 
the BCET of an event chain can be defined as the path of an event chain which will take the 
shortest time for execution. As a result the minimal and maximal execution times of an event 
chain represents the two bounds of the execution time of an event chain. 
The following analysis is based on the work presented in (Sünder et al., 2007a), which takes 
into consideration a previous version of a runtime environment developed at the ACIN. 
Continuative considerations with different versions of the R3E have been provided by 
Brunnenkreef (2006) within the εCEDAC project (supervised by Thomas Strasser) and Mandl 
and Zhang (2008) under the supervision of the author, which provide also measurement 
values for the different parameters of a given control device configuration. 

Calculation of execution time at application level 
The WCET analysis of an event chain can be spilt up into two parts: Firstly the FB network is 
analyzed only taking into consideration the information available at the application level. 
Second the internals of FBs are analyzed. The first step is depicted in Figure 22 by using 
simple FBs with only one event output. The execution semantics within an event chain of the 
R3E implementation can be simply defined as follows: 

• If an output event is sent by an FB instance, each connected FB input is put into the 
first-in first-out queue within the event dispatcher. 

• If there are several input events connected to an output event, each input event is put 
into the event dispatcher (the order is given by the creation of the event connections 
during the download of the control application). 

• As soon as the execution of an FB instance has finished, the eldest input event is taken 
from the queue and issued to the corresponding FB instance. 

• There is only one FB executed at the same time (no preemption of FBs). In case of 
CFBs the component FBs are considered as non-preemptive (except a component FB 
is again of CFB type). 

• If an external event occurs, the external event handler puts an identification, which 
corresponds to the registered SIFB, into the event dispatcher. The invocation of the 
SIFB is treated in the same manner as the invocation of any other FB by the issue of 
an input event. 

As a consequence of these execution semantics, the execution within an event chain can be 
characterized as sequential. The depicted execution flow given in Figure 22 starts with the 
introduction of the ‘SIFB-ID’ into the event dispatcher as a result of the occurrence of an 
external event. As soon as the ‘SIFB-ID’ is the eldest entry in the event dispatcher, ‘SIFB’ 
will be invoked for execution (bold arrow). The ‘SIFB’ instance emits an output event, which 
is connected to event input ‘EI1’ of ‘FB1’. Accordingly this input event is put into the event 
dispatcher queue (dotted arrow). At this point in time there is no further entry visible within 
the event dispatcher, as the SIFB is just executed and no other event has been emitted (the 
figure includes a virtual situation within the queue). As soon as ‘SIFB’ has finished its 
                                                 
14 See analogous definition in Kopetz (1997, Section 4.5.1): “The WCET analysis of a program which is written 
in a high-level language must determine which program path, i.e., which sequence of instructions, will be 
executed in the worst-case scenario. The longest path is called the critical path.” 
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execution ‘FB1.EI1’ is taken from the event dispatcher and ‘FB1’ is invoked with ‘EI1’ as 
input event. This procedure is continued for the FB network in a similar manner. The 
execution stops as soon as there are no more input events within the event dispatcher.  

 
Figure 22: Execution behavior of control applications within R3E 

According to this procedure a calculation of the execution time of the event chain can be 
based on a small set of parameters. Firstly the time needed to execute the external event 
handler TEEH has to be considered. Herein an entry to the event dispatcher has to be added. 
The time needed for this insertion of an entry Tentry is considered separately, because it occurs 
in a similar way for each issued input event. Each FB within the event chain has a certain 
execution time TFB,i. The invocation of an FB is characterized by the time Tinvoke. As a 
consequence the execution time of the event chain TEC with n FB instances (this number 
counts each FB instance as often as it is invoked as well as the SIFB which starts the execu-
tion) is 
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The WCET of an event chain WCETEC is the maximal time necessary for the execution of the 
event chain. TEC varies especially because of the internal behavior of the FB instances, which 
will be considered in a second step. There may be differences according to the issued input 
event, the current state of the FB instance, or the issued data, which is denoted as TFB,i(data) 
in Equation 7. The event outputs which are emitted by the FB instance are also depending on 
these parameters. So the FB instances influence the event chain execution time twofold: TFB,i 
may vary and the event flow depends on the FB instances. 

Calculation of execution time of FB instances 
The execution time of an FB instance depends on the FB type. For each type a unified 
calculation method can be provided which may be applied to a concrete FB type. We will 
start our consideration with the BFB type, which is characterized by the ECC structure and 
the algorithms. The CFB will be calculated based on the previous considerations. A SIFB 
needs to be considered based on the specified input behavior. 
Basic FB: The procedure of executing a BFB is depicted schematically in Figure 23. If an 
event input is issued to the FB instance, first the associated data inputs have to be sampled. 
Then the ECC is evaluated and if a transition clears the active state of the FB changes and the 
associated actions will be executed. The execution of an action is split up into two parts: the 
algorithm (the execution time of an algorithm may depend on the current input and internal 
data) and the emitting of an output event. The emitting of an output event is again split up into 
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two parts, the sampling of the associated output data and the event sending itself. As the FB 
instance does not have any information about the number of connected input events, the time 
necessary for event sending cannot be included in the calculation of the FB instance execution 
time. This part is already incorporated in Equation 7. The different actions within the active 
ECC state are executed one by one. If all actions have been executed, the ECC is evaluated 
again. At this time the issued input event has been cleared and only those transitions can be 
evaluated positively which consist of a Boolean condition only. If again a transition clears, the 
ECC will change its active state. The new active state is executed as already described above. 
If there is no more operation possible within the ECC, the execution of the FB is finished with 
the sampling of those data outputs which are not associated with any output event.15 

 
Figure 23: Execution behavior of BFBs within R3E 

The different parts of the execution time of a BFB type can be summarized as follows: 
• Data sampling: There are three different situations where data has to be sampled: 

when the input event is issued, when an output event is sent and when the execution of 
the FB is finished. In all three cases the time necessary for this step may be calculated 
in a similar manner. An offset time TDS,offset exists which describes some effort inde-
pendent of the data which is sampled. And for each data value (the number of data 
values is denoted generally by dvalues) which has to be sampled an appropriate time 
Tsample (dependent on the type of data DT) must be included. The time for data sam-
pling TDS can be described generally as 
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• ECC evaluation: The time necessary to evaluate the ECC TECC,eval depends on the 
currently active ECC state and the sequence of transitions that need to be evaluated. It 
may take some time TAS in order to find the currently active state and for the active 
state all outgoing transitions need to be evaluated as soon as a transition clears. Based 
on the definitions of a transition condition in IEC 61499-1 (2005) such a condition 
may be a single input event, a Boolean expression, or an AND relation of both. Ac-
cordingly the time necessary for a transition varies on the type of condition transition. 
As soon as a transition clears, no more transitions need to be evaluated. Equation 9 de-

                                                 
15 IEC 61499-1 (2005, Section 5.2.1.2) especially refers to this situation in note 7. As there is no information 
available when these output events are changed, the implementation of R3E updates these output values each 
time the FB is executed. 
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scribes a general calculation of TECC,eval which uses the variable TCond,i in order to 
symbolize the different execution times for the different transition types. The addition 
ends if either one transition clears or no more outgoing transitions can be evaluated in 
the active ECC state (denoted by cleared). 

∑
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• Action execution: An action consists of an algorithm, or an output event, or both. For 
each of these items an appropriate execution time has to be taken into consideration. 
The time for executing an algorithm TAlg,i has to be evaluated for each algorithm se-
perately. As an algorithm may be any kind of source code, a WCET analysis for this 
part of the code should be provided. The analysis will be rather simple, because the 
containment for the algorithm is fixed by the FB instance and for example preemption 
is not allowed. As the sampling of output data is already given as TDS,i and the sending 
of an output event will be incorporated at the application level, the time necessary to 
execute an action Taction,i is given by 

iDSiAiaction TTT ,lg,, += . (10) 

The overall execution time for a BFB instance TBFB consists of the above mentioned elements 
according to the execution path depicted in Figure 23. The number of cleared transitions 
within the ECC will be denoted as x, and the number of actions within a state will be denoted 
as y. In addition to the above given parameters there may be a time for changing the active 
ECC state necessary, which is denoted as TCS. The BFB execution time TBFB depends on the 
issued input event, the internal data and the input data, depicted as TBFB(data). 
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Composite FB: The execution of a CFB is similar to the execution of an FB network. The 
only difference is that an additional data sampling exists at the interface of the CFB. Based on 
Equation 7 and 8, the execution time for a CFB TCFB(data), which depends on the issued input 
event and the input data, is 
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The number of component FBs which are invoked during the execution of the CFB is denoted 
by m. The number of output events, which are emitted by the CFB is given by the variable u. 
Again it is not necessary to take into consideration the insertion of those output events which 
are emitted by the CFB. Therefore the term (m-u) is used for the execution of the component 
FB network (depicted by the outer brackets within Equation 12). The use of a sampling time 
for those data outputs which are not associated with an output event is not necessary, as 
IEC 61499-1 (2005, Section 5.3.1) states that those data outputs are represented by the 
component FB data outputs. 
Service Interface FB: The execution of a SIFB is not defined by elements of the IEC 61499 
standard. But sequence diagrams exist in order to describe the behavior of these FB type. An 
analysis of the execution time of an SIFB has to provide appropriate measurements for each 
of these different actions within the sequence diagram. A WCET analysis may become 
complicated as the internals of a SIFB are typically deeply involved in the internals of the 
runtime environment, the operating system, or the low level programming of the control 
device peripherals. A prerequisite for the incorporation of SIFBs into the execution time 
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calculation of event chains is that all possible scenarios of SIFB invocation (this includes also 
a detailed description of the output events and the possible output data) are characterized by 
their functionality and timing behavior. 

6.1.3 Evaluation of ECA influences on control applications 
The evaluation of control applications regarding their real-time constraints consists of two 
tasks: the WCET analysis of the different event chains incorporated in the WCATS (herein 
only real-time constrained event chains are included) and the calculation of the synthetic 
utilization of the WCATS according to Equation 4. If the schedulability rules given in 
Equations 5 and 6 (depending on the scheduling policy applied in the runtime environment) 
are fulfilled, the control application will be executed without a violation of real-time con-
straints. 
The influences of the first two phases within a system evolution step to the real-time behavior 
of the control application will be considered separately. 

Download ECA 
There are two things that need to be considered during the download of the ECA. On the one 
hand the download process itself may influence the execution behavior of the control 
applications. And on the other hand also connections between the control application and the 
ECA may be created, which lead to additional execution effort within the control application 
in the case of event connections. 

• Download process: A main prerequisite for the use of DSE is a runtime environment 
which provides the ability to change the control logic during operation. The simplest 
case is the addition of further control applications which are not related to the existing 
ones. In this case no special engineering methodology is necessary, but the runtime 
environment needs to support the download of further applications without distur-
bances of currently executed applications. The R3E provides this feature which has 
been proved by experimental measurements in Zoitl (2007). A short summary of these 
results is given in Appendix B.3. The download of an ECA will be applied without 
disturbances to the real-time constrained event chains within the control application. 

• Interrelation of control applications and the ECA: If event connections exist be-
tween any part of real-time constrained event chains within the control application and 
the ECA, the WCET analysis of these event chains within the WCATS has to be re-
peated based on the changed situation. The enhancements to the execution paths 
within the event chains will be very simple, because the purpose of these connections 
is the synchronization of the ECA with the control application. In the initial state of 
the ECA there should be no actions within the ECA that are executed based on an 
event from the control application. The influence on the execution time of the control 
application will be limited to the invocation of in most cases one FB instance within 
the ECA which does not issue an output event. This can be stated as a design rule for 
the ECA. In addition there should be some spare execution time available because the 
addition of connections during the execution of a real-time constrained event chain 
provides some (according to Appendix B.3) limited additional effort.16 

                                                 
16 Zoitl (2007, Section 5.3) has quantified the impact of a single management command (e.g., creation of an 
event connection to a started FB) on the real-time execution by an increase of execution time by one to ten 
percent. This is of course dependent on the size of the real-time constrained event chain, whereas Zoitl (2007) 
has taken into consideration a rather small test application. For a given system configuration appropriate test 
cases have to be provided in order to determine the necessary spare execution time. For instance Rasche and 
Polze (2005) describe a method for the calculation of processor resources that have to be reserved in order to 
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Initialization sequence 
The initialization sequence within the ECA adds new elements to the control application 
without influencing the functional behavior. As depicted for instance in the example of a 
closed-loop control circuit (Section 4.2.3) the new controller as well as the input connections 
are added to the existing control application. Therefore, these parts are executed additionally 
within the context of the control application. In order to prove the influence on the real-time 
behavior of the control application, the worst case scenario has to be considered. As the main 
purpose of the initialization sequence is the addition of new FBs, connections, and parameters 
to the existing control application, the worst case is the final situation after the execution of 
the initialization sequence. Each new FB which is connected to a real-time constrained event 
chain has to be included in the WCET analysis of the event chain. The new WCATS has to 
fulfill the schedulability rules given in Equations 5 and 6. As already depicted above also in 
the initialization sequence a real-time constrained event chain is adapted during operation, 
which results in additional execution time within the event chain because of the influence of 
the basic reconfiguration service. A certain amount of spare execution time (see footnote 16) 
has to be available in order to operate the initialization sequence, too. 
There is also another aspect which may violate real-time constraints of the control application 
and can be avoided by a further design rule for ECAs. During the execution of the system 
evolution step, events from the control application may be used to trigger the ECA execution. 
If these events stem from a real-time constrained event chain, a decoupling of these event 
paths is necessary in order to protect the control application’s real-time constraints. The 
means for this decoupling have been described in Appendix B. Next to the initialization 
sequence this design rule should be applied for the reconfiguration sequence and the deini-
tialization sequence as well. If an additional execution of parts of the ECA exists based on 
such synchronization events a detailed WCET analysis of the control application has to be 
applied additionally. 

Reconfiguration sequence 
The reconfiguration sequence is the only time critical execution phase within the ECA. The 
proof of matching global and local consistency properties of the control application will be 
done by using verification by model checking. But based on the previous discussion the check 
for real-time behavior may be supported also by a WCET anaylsis. The WCATS will include 
the real-time constrained event chains within the ECA additionally. But it has to be stated that 
as depicted in Zoitl (2007, Section 5.3.3) the influence of basic reconfiguration services 
within a real-time constrained event chain, that influence another real-time constrained event 
chain, violates the consideration of independent tasks. The WCET analysis may be used to 
provide a rough estimation of the spare execution time within the control device, but it can 
not be used as sufficient check (see also the discussion of measurement results of R3E in 
Appendix B.3). 

6.2 Check for dependent operation 
The dependent operation integrity characteristic has to be checked by some KAPPA-based 
calculations within all phases of the execution of a system evolution step. The download and 
the deletion of the ECA will be controlled by the engineering tool, which has to apply 
appropriate rules for the sequence of management commands in order to fulfill the dependent 
operation criterion. The other three phases are modeled by the ACS costumer in a free 
manner; therefore a check of consistency with respect to the sequential order of basic 
reconfiguration services is necessary. 
                                                                                                                                                         
apply dynamic reconfiguration without the violation of deadlines of real-time applications (it has to be stated that 
their model is based on cyclic execution of real-time applications). 
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As common element for both categories of dependent operation checks the dependencies of 
IEC 61499 management commands are taken into consideration. Based on these dependen-
cies, the mechanisms for checking the initialization, reconfiguration, and deinitialization 
sequence as well as rules for the engineering tool for the download and deletion of applica-
tions are investigated. These rules may be applied also for algorithms which provide a 
skeleton of the FB network within the initialization, reconfiguration, and deinitialization 
sequence. 

6.2.1 Dependencies of IEC 61499 management commands 
IEC 61499 management commands are defined on the one hand in IEC 61499-1 (2005, 
Chapter 6.3) and on the other hand within the compliance profile of a runtime environment (if 
extensions or changes exist). The third possibility is that no standard compliant documenta-
tion exists, as it is the case for the enhancements of management commands within R3E. Zoitl 
(2007) includes a detailed description of the supported commands which will provide the 
basis for this analysis. As the different basic reconfiguration services incorporate a manage-
ment command we do have to take into consideration these different management commands 
and their dependencies for the check of dependent operation within the ECA. 

CREATE 
The CREATE management command is responsible for the creation of different kinds of 
elements. 

• Create a resource or FB instance: A resource instance may be created within a de-
vice, if this device is available (which needs to be ensured by the ACS customer). An 
FB instance may be created within a valid resource instance or a device. In any case 
the type of the created element (resource or FB) needs to be available within the type 
library of the control device. 

• Create a connection: A connection is defined by a source (event or data output of an 
FB) and a destination (event or data input of an FB). Source and destination need to be 
within the same resource (if no resource exists they need to be within the same device) 
and of the same type (different types are possible for event and data connections). In 
case of an adapter connection source and destination additionally need to have opposi-
tional interfaces (a connection is only possible between a plug and a socket). 

• Create a library element: A library element can be added to the control device’s type 
library if the appropriate device is available and the format of the library element is 
provided in an appropriate manner. 

DELETE 
The DELETE management command provides the opposite functionality of the CREATE 
command. Correspondingly the following elements may be deleted: 

• Delete a resource or FB instance: In order to delete a resource or FB instance the 
corresponding element has to be manageable. The possibility exists to use for example 
FB instances within the type definition of a resource type. Such an FB instance may 
not be deleted by a management command. Furthermore the operational state machine 
for managed FBs has to be considered, which defines that a DELETE command is 
only possible if the FB instance is in the states STOPPED and KILLED (see Figure 
63). In case of a managed resource instance there should not be any active FB instance 
within the resource; all FB instances should be stopped before deleting the resource 
instance. 

• Delete a connection: The only prerequisite for the deletion of a connection is that the 
connection is available within the control device. 
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• Delete a library element: A library element may be deleted within the control device’s 
type library if it is available and no instances of this type are used within the control 
device. 

WRITE 
The WRITE management command provides the possibility to put a parameter to a data input 
or to an internal variable. In both cases the destination of the WRITE command has to be 
valid and the value of the parameter/variable has to be provided in the data type format of the 
destination. The opportunity of using the WRITE command also for internal variables is an 
enhancement of the R3E. 

READ 
The READ management command provides the possibility to read any data input, data 
output, or internal variable (enhancement of R3E). The prerequisites for the READ command 
are on the one hand that the source of the variable is valid and on the other hand that the 
expected data type format complies with the source format, e.g., a specific basic reconfigura-
tion service for reading a variable of the type integer may be used. 

START 
According to the operational state machine for managed FBs (see Figure 63) the START 
command may be applied only if the FB instance is in the states IDLE or STOPPED. Within 
the IEC 61499 standard the START command is also mentioned to be used for applications, 
which is not supported by R3E. This functionality has to be implemented within the engineer-
ing tool, which would have to start every FB instance within the application. The only 
restriction of such a sequence of START commands for FB instances is that the FB instance 
of type E_RESTART should be started at last, because the START command issues the initial 
event for the operation of the application. Otherwise the correct operation of the application 
may be violated because an input event may be issued to FB instances which are still in the 
IDLE state. 

STOP 
The STOP management command may be applied to a managed FB if it is in the state 
RUNNING (see Figure 63). Also the STOP command can be used for applications according 
to the IEC 61499 standard. This functionality is not directly available within R3E and may 
again be implemented within the engineering tool. But as there may be instances of SIFBs 
within an application the STOP command should be applied to FB instances of the type 
E_RESTART at first, since a deinitialization of the application may be necessary. The main 
problem for the stopping of an application is that the engineering tool has to take care that the 
deinitialization is finished before all other FB instances are applied with the STOP command. 

KILL 
An FB instance may be applied with the KILL management command if it is in the state 
RUNNING (see Figure 63). 

RESET 
According to the operational state machine for managed FBs (see Figure 63) the RESET 
management command may be applied to FB instances if they are in the states STOPPED or 
KILLED. 

QUERY 
The QUERY management command does not have any consequences for the execution 
behavior of the control device and its applications. Therefore no prerequisites have to be 
stated for the application of the QUERY command. If the control device is available any 
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information provided by the runtime environment may be asked for via the management 
application or by using an appropriate basic reconfiguration service. 

Summary 
The different dependencies for the IEC 61499 management commands are summarized 
roughly in Table 3. Herein the functionality for manipulating the type library of a control 
device as well as the starting and stopping of whole applications is neglected, as these 
managemant commands are not relevant within the execution of a system evolution step. 

Command Object Dependency 
Resource The device has to be valid; resource type has to be available. 

FB The device or resource has to be valid; FB type has to be available. CREATE 
Connection Source and destination have to be valid; type of source and destination need 

to fit to each other. 

Resource The resource instance is deletable; any managed FB instance should be 
stopped within the resource. 

FB The FB instance is deletable; it should be in the states IDLE or STOPPED. DELETE 

Connection The connection should be available. 

Parameter The target (data input) should be valid; the format has to comply with the 
data type of the data input. 

WRITE 
Internal 
variable 

The target (internal variable) should be valid; the format has to comply 
with the data type of the internal variable. 

input or output 
variable 

The target (data input or output) should be valid; the expected format has to 
comply with the data type of the data input or output. 

READ 
Internal 
variable 

The target (internal variable) should be valid; the expected format has to 
comply with the data type of the internal variable. 

START FB The FB instance should be in the states IDLE or STOPPED. 

STOP FB The FB instance should be in the state RUNNING. 

KILL FB The FB instance should be in the state RUNNING. 

RESET FB The FB instance should be in the states STOPPED or KILLED. 

QUERY Anything The device has to be available. 

Table 3: Dependencies of IEC 61499 management commands 

6.2.2 Correct order of basic reconfiguration services 
In order to check the dependent operation integrity characteristic within the initialization, 
reconfiguration, and deinitialization sequence within the execution of a system evolution step 
different aspects of the above described dependencies need to be taken into consideration. 

• Static dependency check: Different dependencies mentioned above can be checked 
without information about the use of the basic reconfiguration service within the ECA. 
These are for instance the data type of a variable which should be read/written or the 
availability of an FB type within the control device. These dependencies may be 
checked during the modeling of the ECA automatically by the engineering tool. 

• Dynamic dependency check: All other dependencies are related to the position of the 
basic reconfiguration service within the execution of the ECA. Only if the basic recon-
figuration services are applied in the correct order, a successful execution of the sys-
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tem evolution step can take place. As a consequence the check for these dynamic de-
pendencies has to be based on a dynamically adapted KAPPA vector within the 
evaluation framework. According to the execution sequence of basic reconfiguration 
services within the ECA the appropriate changes have to be applied to a virtual 
KAPPA vector in order to provide the basis for the check of the above given depend-
encies. 

The final result of the execution of a system evolution step (the situation after finishing the 
deinitialization sequence) can be checked additionally by a comparison with the envisaged 
new system state. The check for the dependent operation integrity characteristic cannot 
provide an answer to the question if the system evolution will be executed without distur-
bances to the control application. But it checks if the used basic reconfiguration services are 
in principle able to reach the new system state. An analog comparison of the situation after 
the execution of the initialization sequence may be very helpful, too, as the evaluation of the 
reconfiguration sequence by model checking will be simplified (principle failures due to 
missing elements are neglected). Herein the ACS customer has to define the envisaged initial 
situation for the reconfiguration sequence during the engineering process. 
Based on the dependencies of basic reconfiguration services and a description of the KAPPA 
vector at the initial and the final state of a sequence within a system evolution step the 
principal order of the basic reconfiguration services can be generated by an appropriate 
algorithm within the engineering tool. This would support the ACS customer to a high extent 
and simplify the usage of the engineering methodology for DSE. This algorithm will be 
similar to the download and deletion of applications, as it is depicted in the next section. 

6.2.3 Creation and deletion of applications/application parts 
There are several parts within the engineering process for DSE which can utilize automatic 
mechanisms for the creation or deletion of applications or application parts. On the one hand 
these are the download and the deletion of the ECA (the rules given within the following 
description can be applied for any application). Within the other three phases of a system 
evolution step, the automatic generation of the ECA for the initialization, reconfiguration, and 
deinitialization sequences (at least a basis for a detailed modeling by the ACS customer) may 
benefit of such an automatism. We will consider the principle mechamism for the creation 
and the deletion of applications or application parts. The initial and the final KAPPA vector 
(in detail the differences within the application model) are used as input for this algorithm. If 
elements are mentioned in the algorithm which are not necessary for the concrete difference 
in the KAPPA vector, the appropriate line may be neglected. 

Creation of applications/application parts 
• Create resource instances 
• Write parameters of the resource instances 
• Create FB instances 
• Write parameters of FB instances 
• Create data connections 
• Option for application parts (if they are involved in an existing application which is 

already in operation): 
o Start FB instances which need an initialization event (these are in most cases 

of SIFB type) 
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o Prepare necessary input parameters for the initialization as well as issue the in-
put event for the initialization.17 

o Check if the initialization was successful. 
o Rewrite those parameters which have been changed for initialization. 

• Create event connections 
• Start FB instances: In order to avoid problems based on the event flow in between the 

FB instances the order of the issued start commands to FB instances should be in in-
verse sequence to the execution flow. For an independent application this rule leads to 
the above proposed situation that the last FB instance which receives a START com-
mand is the E_RESTART FB. 

Deletion of applications/application parts 
For the deletion of an application the above mentioned order can be inverted (without the 
mentioned option). Only two differences exist: 

• The STOP commands issued to the FB instances are now ordered according to the 
execution flow. The first FB is of the type E_RESTART, which will issue a STOP 
event. The execution flow based on this STOP event should trigger the deinitialization 
of the application. 

• Parameters do not need to be deleted separately. 
If application parts or applications without an explicitly modeled deinitialization have to be 
deleted, a slightly different procedure has to be applied: 

• Stop all FB instances which do not need a deinitialization (again the order of the exe-
cution flow may be followed). 

• Delete event connections. 
• Prepare necessary input parameters for the deinitialization as well as issue the input 

event for the deinitialization (see footnote 17). 
• Check if hte deinitialization was successful. 
• Stop all FB instances which are in the state RUNNING. 
• Delete data connections. 
• Delete FB instances. 
• Delete resource instances. 

6.3 Check for requirements of resources 
The last category of properties which may be evaluated by KAPPA-based calculations 
concerns the requirements of resources. Such resources may be any functionalities within the 
control device that are necessary as basis for the use of DSE. For instance, the set of basic 
reconfiguration services, which may vary between different runtime environments, has to be 
checked in advance before modeling an ECA. For our considerations we will focus on the 
requirements of resources which may change dynamically during the execution of a system 
evolution step. These are the type library and the available memory. 

                                                 
17 IEC 61499-1 (2005, Section 6.1) defines different standard inputs and outputs for SIFBs, which represent the 
necessity of initialization and deinitialization. As inputs the event input INIT and the data input QI (true in case 
of initialization, false in case of deinitialization) are forseen. The success of a (de)initialization is documented by 
the event output INITO and the data outputs QO and STATUS. 
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6.3.1 Type library check 
The set of types within the type library of a control device will not be changed within the 
ECA itself, therefore it can be considered as static for one system evolution step. But as an 
ACS is typically engineered by different ACS customers it is necessary to check if the current 
situation within the type library satisfies the needs of the system evolution steps. If any 
violation is detected, the necessary element types may be added by the engineering tool 
before the execution of the system evolution step is triggered. 
The following element types are supported within an IEC 61499 control device: 

• Data types (a data type may have any other data type as prerequisite) 
• Adapter types (an adapter type may have any data type as prerequisite) 
• FB types (an FB type may have any data or adapter type as prerequisite, in case of 

CFBs also any FB type may be necessary) 
• Resource types (a resource type may have any data, adapter, or FB type as prerequi-

site) 
• Subapplication type (the R3E does not support this element type, as a subapplication is 

handled only within the engineering tool) 

6.3.2 Available memory check 
The second type of requirements of resources is the available memory within the control 
device. For a very abstract consideration of this topic the rule seems to be very simple, as the 
amount of available memory has to be compared to the amount of necessary memory 
requested within the different phases of a system evolution step. But when taking a closer 
look to the practice of memory management within a computer system we will find highly 
sophisticated concepts. Douglass (1999, Section 2.6.1) describes this situation regarding 
predictability for operations that influence the memory of a real-time computer system. He 
subdivides the problem into different aspects: 

• “Execution memory, where the executable code resides” 
• “Data memory: 1. stack, 2. heap, 3. static” 

Orthogonal to this view on the usage of memory, also the persistence of memory has to be 
considered, which may be distinguished in non-writeable persistent, writeable persistent, and 
volatile. Additionally modern operating systems implement different memory management 
policies such as paging or virtual memory as for instance described in Blunden (2003). A very 
problematic situation occurs in addition due to the dynamic changes in memory consumption, 
as it is the case especially for DSE. The memory segments will be fragmented as different 
areas within the memory will be freed for instance due to the deletion of FB instances within 
a system evolution step. 
In order to provide a sufficient check whether the necessary memory is available within the 
control device three aspects have to be taken into consideration: 

• The memory consumption of the different basic reconfiguration services, which of 
course depends on the concrete element that should be created or deleted. 

• The memory management policy of the control device as well as the overall memory 
configuration (which kind of memory segments are available). 

• The current state of memory usage within the control device, which is again part of the 
KAPPA vector. 

The last aspect is the most critical one in order to apply the check for available memory, as 
the current situation of the overall memory has to be visible within the engineering tool. It is 
not sufficient to know the overall amount of available memory, since due to fragmentation 
there may be not enough atomic free space (a piece of free memory without fragmentation) 



EVALUATION OF PROPERTIES BY KAPPA-BASED CALCULATIONS 111 

for the creation of an FB instance although the overall free memory is much bigger. Currently 
only development tools for certain RTOSs deliver such a detailed insight into the memory 
usage of the system, as for instance described in (Wind River, 2007). Within the so-called 
run-time analysis tools also a tool exists which provides information about the memory usage 
in all details and therefore it may be used in the engineering tool for DSE in order to check 
the available memory for a system evolution step. 

6.4 Summary 
The different properties of the evolution specification are verified by two different means. On 
the one hand verification by model checking has to be provided for the reconfiguration 
sequence. But on the other hand the evaluation of properties based on KAPPA-based calcula-
tions is sufficient for all other phases within a system evolution step. It can be used to fulfill 
the requirements of verifying the download of the ECA, the initialization sequence, the 
deinitialization sequence, and the deletion of the ECA. 
The three different types of calculations have been described as follows (see also Table 2): 

• The global and local consistency of the control application can be reduced to the 
evaluation of the temporal behavior within the download of the ECA and the initiali-
zation sequence. Herein the mechanisms of the runtime environment as well as the op-
erating system have to be considered. Based on schedulability rules and an appropriate 
method for the calculation of the necessary execution time of the contol application it 
can be checked whether the real-time constraints will be met or not. 

• The consistency of the ECA regarding the dependent operation property leads to the 
consideration of the temporal order of execution of basic reconfiguration services or 
more general the IEC 61499 management commands. As these commands change the 
current system state (KAPPA vector) it is necessary to determine their dependabilities, 
as for instance a connection to a new FB instance may be created only if the FB in-
stance has been created in advance. As a consequence of these dependabilities espe-
cially the download and deletion process can be described by an appropriate order of 
management commands. But also for the freely programmable ECA the order of basic 
reconfiguration services can be established automatically based on the information of 
the initial and final states of a given sequence in the system evolution step. The 
evaluation checks if the dependencies of a management command are fulfilled based 
on the current KAPPA vector, which is changed as soon as a management command is 
applied to the control device. 

• The evalution of requirements of resources is the last aspect which has to be consid-
ered by KAPPA-based calculations. The complexity of this property depends on the 
concrete resource which is taken into consideration. A check for elements within the 
type library of a control device can be performed very easily. But the evaluation of the 
available memory within a control device becomes very complicated due to sophisti-
cated memory management policies and the fragemtation of memory because of dy-
namic changes within the configuration of the control device. 
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7 Evaluation of properties by model checking 

Chapter 7 

Evaluation of properties by model checking 

Verification by model checking has been identified as the appropriate means for the evalua-
tion of the core part of DSE. Based on the discussion in Section 5.2.2 only the reconfiguration 
sequence has to be taken into consideration by model checking, in detail the system integrity 
properties for 

• Global and local consistency, 
• Active references, 
• State management, and 
• Real-time constrained operation. 

In addition KAPPA-based calculations for dependent operation and requirements of resources 
have to be applied in order to evaluate all properties within the evolution specification for the 
reconfiguration sequence (see Chapter 6) 
The process of model checking can be split up into three parts (see Section 3.6). Firstly a 
formal model of the system has to be established in the modeling language of the model 
checking tool. Secondly the specification has to be defined, in most cases temporal logic is 
used for this purpose. The third and last part is the evaluation whether the system model 
satisfies the given specification or not. Herein a model checking algorithm is applied and 
automatically checks the given properties. We will investigate the first two parts of the model 
checking process within this chapter. On the one hand a detailed description of the different 
architectural elements within a control device are given, in order to fulfill the Requirements 
(1) “Temporal behavior”, (2) “Execution semantics”, (3) “Underlying system configuration”, 
and (4) “Modeling dynamic reconfiguration”. On the other hand the necessary properties of 
the evolution specification as well as their formulation are examined, with special respect for 
Requirement (8) “User-friendly definition of specifications”. 
The formal models for different aspects of the control device will be discussed on a concrete 
example, the demonstration control device used also in Chapter 8. As modeling language 
NCES (see Appendix C) will be used in order to provide concrete examples. 

7.1 Architectural elements of the system model 
The formal model of the system is the starting point for the model checking process. Based on 
the evaluation framework for DSE already depicted in Section 5.1.2 we have to consider at 
least three elements: the process under control, the control application, and the evolution 
control application. Additionally several sources of disturbances exist, which need to be taken 
into consideration for the evaluation of the specification properties. These are on the one hand 
explicitly modeled disturbances (e.g., a special condition within the model of the process 
under control) and on the other hand aspects that come from details within the implementation 
of the control device (e.g., hardware capabilities or other applications).  
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In order to incorporate the different aspects of the system model and to provide an appropriate 
model to fulfill the different Requirements (1) “Temporal behavior”, (2) “Execution seman-
tics”, (3) “Underlying system configuration”, and (4) “Modeling dynamic reconfiguration” we 
have to consider a control device as the smallest part within the system model. It is not 
sufficient to model only some aspects such as the control application and the ECA without 
taking into consideration also all other elements within the control device. In addition to the 
control device the process under control (at least the portion which is relevant for the control 
application and disturbances to the process) and the communication network may be neces-
sary. The communication network provides the possibility to extend the overall system model 
to several control devices. 
A schematic of the architectural elements within the system model, when only one single 
control device is taken into consideration, is depicted in Figure 24. The gray shaded elements 
represent the intrinsic parts of the control device, which are independent from the application 
scenario. On the one hand the process under control and on the other hand the communication 
network are included as interfaces of the control device to the environment. Within the 
control device the control application and the ECA represent those parts which are of special 
interest for DSE: the model of the application, which will be changed during operation, and 
the model of the application which executes these changes. The elements additional tasks and 
other applications represent disturbances in terms of influences on the execution behavior 
(especially the temporal behavior) within the control device. 

 
Figure 24: Architectural elements of the system model 

The different elements of the system model architecture will be described in a general manner 
in the following paragraphs. An arbitrary modeling language may be used for these elements, 
according to the model checking tool that should be used for the evaluation of DSE. A more 
detailed description of several elements based on the modeling language NCES will be 
provided in the following sections. 
Process under control: The model of the process under control (the plant) is the basis for a 
closed-loop modeling as described in Section 5.1.1. The model creation for this element is 
highly manual, because no predefined structures exist within a general ACS. Of course, 
libraries of model parts (pre-given or typical elements in the plant) may be available in an 
engineering environment, but the ACS customer has to establish the model of the process 
under control for each particular plant by hand. Examples for the modeling of processes are 
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available in different publications: Vyatkin and Hanisch (2003) describe a model for a drilling 
station or Hanisch et al. (2006) present the model of a lifter. By using a transformation from 
UML to NCES Lobov et al (2006a) provide a framework that may utilize already existing 
descriptions of a plant in order to generate the model of the process under control. In addition 
to the nominal behavior of the plant it is also important to include failure situations to the 
models, as depicted for instance in Vyatkin and Hanisch (2003) by exceptions within the 
process. The more failure situations are incorporated in the model of the process the better 
and more realistic results will be achieved via verification by model checking. 
Communication network: An ACS based on the ideas presented in Section 3.1 typically 
consists of several control devices and HMI devices which cooperate via a communication 
network. The influence of the communication network on the model of the system can be 
described in two different ways, depending on the target of the evaluation: (i) the communica-
tion network may be used as boundary of the system model and (ii) it may provide the 
interaction channel between models of different control devices. The first possibility is 
important in order to focus on the relevant parts for the DSE within the system model. If only 
one control device is involved in the system evolution step, all other control devices may be 
incorporated only by a model of the messages sent to the relevant control device. The second 
possibility is used for situations where several control devices are included within a DSE. 
Herein apart from a pure data exchange between the control devices also the temporal 
behavior of the communication network may be included into the system model, as this is also 
some kind of disturbance to the process of DSE (especially for temporal properties as there 
may be at least some latency due to communication). 
Processing unit: This item represents all elements of the control device which provide the 
basis for the execution of source code. Generally speaking, this item includes the microproc-
essor and the memory of the device. Of course, a detailed formal model of the microprocessor 
may not be useful for the evaluation of a control device, because too much information is 
necessary and the details of the model would require an enormous effort for their design. But 
for the description of real-time behavior, this element is of special interest. The computational 
power of the processing unit will be abstracted in terms of execution time of different portions 
of the source code (see also the calculation of the WCET of an event chain in Section 6.1.2). 
If the different parts of the source code within a control device are characterized by their 
execution times, the real-time behavior will be included in the formal models because it is 
possible to sum up and measure the overall execution time along paths within the system 
model. But it has to be noted, that this simple model for the effect of the processing unit is 
limited by the structure of the microcontroller. It has to be evaluated if this model may be 
applied for a concrete example. For instance, in the case of multi-core processors or sophisti-
cated algorithms for branch prediction, a more detailed consideration may be necessary. 
The topic of predictable execution time is in general very important for the development of 
real-time computer systems. Bouyssounouse and Sifakis (2005, Section 7.3) state as relevant 
challenge and work direction also the WCET analysis: “The determination of precise bounds 
on the execution times of real-time software critically depends on the predictability of the 
processor architecture. They are the more precise, the more predictable the processor architec-
ture is. Processor architectures started to being used today reach the limit of non-deterministic 
behaviour that makes computation of precise upper bounds possible. An interesting research 
direction is to identify principles for the design of processors that perform well both in the 
average and in the worst case.” 
Real-time operating system: The basis for the software architecture of a computer system is 
given by the operating system. As control devices belong to the class of real-time computer 
systems, real-time operating systems are in use. An RTOS provides a deterministic behavior 
for the execution of different tasks (in general execution contexts) according to a scheduling 
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policy. Furthermore the interaction between processes and resources within the control device 
are under control of the RTOS. A very important point for ACSs is also the usage of inter-
rupts, which are the sources of external events based on a state change in the plant (e.g., a 
rising edge of a sensor signal) or also within the control device (e.g., the timer). If the 
mechanisms of the RTOS are incorporated in the model of the control device, the interaction 
between different parts of the control application, the external events, and other programs can 
be modeled in detail. The description of the RTOS has to include two aspects, the functional 
as well as the temporal behavior. The different actions within the RTOS, as for instance the 
switching time between different tasks in the case of preemption, have to be measured and the 
execution times need to be added to the formal model. 
The topic of formal description of real-time applications and especially real-time operating 
systems and their applications has been discussed in several applications. Corbett (1996) aims 
at the formal description of Ada programs, with special attention to its concurrency and real-
time constructs. For the scheduling of tasks the task dispatching policy has been modeled. The 
formal description is based on a constant slope hybrid automata, whereas a transition repre-
sents a code region and execution time is modeled with an appropriate delay before its 
(instantaneous) transition. Cofer and Rangarajan (2003) describe the verification of the DEOS 
real-time operating system by using SPIN model checker. In detail, the rate monotonic 
scheduler policy is implemented and analyzed in contrast to an event-triggered system 
environment. Waszniowski and Hanzálek (2003) depict their model of a real-time operating 
system with timed automata. They claim that the timed automata theory is not suitable for 
modeling preemption; therefore they focus on cooperative scheduling. The formal description 
includes for instance inter-process communication via semaphores or context switching time. 
In Krákora et al. (2004) the combination of the real-time operating system with communica-
tion via Control Area Network (CAN) is utilized for the verification of a distributed control 
application. 
Real-time reconfiguration runtime environment18: The IEC 61499 runtime environment is 
executed as a set of tasks within the operating system. There are several aspects that need to 
be modeled within the runtime environment: (i) the event propagation within FB networks, 
(ii) the execution of the different types of FBs, and (iii) the interface to external event sources 
and the handling of these external events within the runtime environment. These aspects can 
be summarized as stated in Requirement (2) as “Execution semantics”. In case of the R3E the 
event propagation is implemented by using an event dispatcher, as depicted in Sections 6.1.2 
and B.1. The external events are handled by the external event manager, which introduces a 
notification for the invocation of SIFBs into the event dispatcher, too. The different parts of 
the runtime environment need a certain execution time, which has to be incorporated to the 
models in order to model real-time behavior, too. The R3E additionally implements a concept 
for real-time execution within the control application based on the event chain concept. 
According to the initial origin of event propagation (these are SIFBs that are capable to 
introduce events into the control application) the different event chains are executed as 
separate tasks within the RTOS. The use of basic reconfiguration services within SIFBs is 
described below within the ECA. 
Additional tasks: Although IEC 61499 provides very general means for the implementation 
of control applications as well as additional functionality, several other programs will be 
available within the control device. For instance, a web server for simple access to diagnostic 
and supervisory data may be part of the control device, too. On the other hand additional tasks 
are also necessary for services within the control device that will be used by IEC 61499 

                                                 
18 In general any runtime environment may be used within the control device. But as no equivalent runtime 
environment exists that provides the necessary basic reconfiguration services we directly mention R3E. 
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applications, as for instance the interface to the communication networks. Such services are 
usually handled in separate tasks. The purpose of an evaluation process is to prove the 
behavior of the control application. But any additional task within the control device may 
disturb the execution of the control application (at least by consuming execution time). The 
effect on the execution behavior of the control application depends on the priority of these 
tasks as well as their runtime behavior: the frequency of invocation and the duration of 
operation. If no interrelations exist to the control application, a simple model for additional 
tasks may be based on the occurrence models of external events mentioned in Section 6.1.1. 
Otherwise a more detailed model of the functional and temporal behavior of these tasks as 
well as their interrelation with other tasks of the control device has to be included in the 
system model. 
Control application: The IEC 61499 application which is effected by the DSE has to be 
modeled within the element control application. Next to the execution of the FB network by 
the runtime environment also interrelations exist with other applications (internal communica-
tion or by using the communication network) or the plant and additional tasks via SIFBs. The 
model of the control application consists of different parts: On the one hand the FB network 
has to be translated into the modeling language, and on the other hand all FB types and their 
formal models have to be available. The models of the different FB types may be provided in 
appropriate libraries if they are part of the initial setup of the runtime environment. Or they 
are generated by the ACS customer itself. In this case an appropriate support for the automatic 
transformation into the modeling language with only little manual work has to be available. 
Other applications: This element includes IEC 61499 applications, too. But they are not 
affected by the DSE and need not to be considered in all details. Of course, a similar model as 
described for the control application may be established (also mainly automatically) including 
a detailed behavioral description. But it may be also sufficient to include only a very abstract 
behavioral description of these applications. As basis again the event occurrences of external 
events (Section 6.1.1) can be used. The execution time of other applications may be further 
determined by the WCET of event chains as described in Section 6.2.2. Based on these two 
parameters, the characteristic of invocations of an application and the possible execution 
times for these invocations (the disturbances to the execution of the control application and 
the system evolution step) can be described rather simple. Based on the level of interrelation 
between the control application and other applications an appropriate level of abstraction may 
be used for the system model. 
Evolution control application: The ECA is an IEC 61499 application, therefore the same 
procedure as for control applications can be applied for the formal model of the ECA. But 
some of the FBs within the ECA belong to a special type, because they incorporate 
IEC 61499 management commands, the so-called basic reconfiguration services. These are 
special types of SIFBs and are part of the runtime environment. Next to the formal model of 
the FB itself also the effect of the management command to the control application has to be 
described by using the modeling language. Based on the evolution engineering approach only 
the reconfiguration sequence has to be taken into consideration, which is characterized as a 
time-critical sequence which executes the switch from the old system state to the new system 
state incorporating transition management. As depicted for instance in the closed-loop control 
circuit (see Section 4.2.3) it is not necessary to create new resources or FB instances within 
the reconfiguration sequence. The basic reconfiguration services may be restricted to actions 
such as the creation of connections as well as the reading and writing of parameters. This 
limited set of basic reconfiguration services needs to be represented in the system model in 
order to be able to check the different properties of the evolution specification. 
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7.2 Modeling real-time behavior 
The real-time behavior of a control application is a very important aspect for the representa-
tion of the functionality of a control device and needs to be analysed in detail. The general 
situation of timing analysis for real-time computer systems already was described in Sec-
tion 6.1.2 based on Kopetz (1997). For the incorporation of real-time behavior into the formal 
model of a system we have to mention the results from the WCET analysis, because the time 
values for the formal model have to be based on an appropriate analysis. Bouyssounouse and 
Sifakis (2005, Section 7.3) state that “some analyses are only possible, once the machine-code 
level is reached. Reliable and often precise upper bounds on the execution time of embedded 
programs can be obtained when all the information about the hardware platform is known.” 
The formal model of a system often represents an abstract behavior without the transforma-
tion of source code into a formal description. In recent years also model checking based on 
source code (see also Section 3.6.3) is available for some programming languages such as C 
or Java. But the scope of such a source code-based verification is limited to small portions of 
a program. Overall system architectures, as for instance described for a control device in 
Figure 24, with several programs and an operating system are still not possible up to now. The 
concept for real-time modeling in formal descriptions proposed for this thesis can be de-
scribed as follows: 

• Fragmentation of the overall system architecture into single units regarding the func-
tional behavior of the system. For instance a certain method or object within a soft-
ware program or a task within the operating system may be considered as a single unit. 

• Extraction of the control flow between the different single units within the system 
architecture. 

• Measurement of the timing behavior of the different parts of the system architecture. 
In contrast to a classical WCET where different scenarios have to be explored in order to 
extract the longest execution path within a software program, the formal model of the system 
will include all these different possibilities of execution paths based on the control flow 
within the extracted single units. The different parts of the system architecture are interrelated 
according to their functional behavior and additional timing parameters for their temporal 
behavior. The formal model includes all possible paths that result in the different execution 
time of a software program within the given system architecture, and of course also the 
WCET and BCET as boundaries. But the ACS customer does not need to explore the different 
execution paths of the overall system architecture by himself. All possible combinations of 
execution paths and interrelations between the different parts of the system architecture will 
be established automatically by the model checking algorithm. 
Bouyssounouse and Sifakis (2005, Section 7.4) describe the problem of current practice in 
WCET as follows: “Testing is often performed to measure real-time execution time and 
response time e.g. to check resource utilization or obtain an estimation for the worst case 
execution time. However, using this approach is very problematic because it is difficult to 
obtain safe and accurate bounds.” By using the above described incorporation of real-time 
measurements into the system model and appropriate model checking it is possible to achieve 
more detailed checks for the temporal behavior of a real-time computer system. 
A good example for the accessible benefits of this methodology can be considered based on 
the calculation of the execution time of event chains as presented in Section 6.1.2. The 
evaluation of the execution time is split up into two levels, the application level and the FB 
level, whereas the application level is highly influenced by the FB level due to the generation 
of output events based on the internal state of an FB. If we consider the different parts within 
the Equations 7 to 12 as single units of the formal model, which are afflicated with an 
execution time, the system model will include all possible execution paths of the event chain. 



EVALUATION OF PROPERTIES BY MODEL CHECKING 119 

An appropriate analysis of the system behavior will also provide the parameters WCET and 
BCET of the event chain. But even more important is that both the temporal and functional 
behavior of the event chain are incorporated in the same system model and can be used for 
enhanced analysis, e.g., for DSE. 

Timed model for single units of source code in NCES 
The representation of the combined temporal and functional behavior of a single part of 
source code depends on the modeling language and the possibilities based on the model 
checking algorithm. Within this thesis we will use the modeling language NCES and the 
model checker SESA, as described in Appendix C. In general the model of a single part of 
source code has to fulfill three conditions: 

• The functional behavior has to be modeled according to the temporal order of the 
source code implementation. 

• A time delay can be added to this sequence according to the execution time of this part 
of source code. 

• The execution time modeled in the system model has to be interruptable. 
The first condition requests the modeling of a sequential execution flow in the formal model 
similar to the execution of the source code. In most modeling languages the functional 
behavior can be represented in a more parallel manner (e.g. in Petri nets or timed automata), 
but due to the incorporation of timing behavior it is necessary to restrict these possibilities in 
order to achieve a sequential behavior in the formal model. It is essential to model the 
execution flow of the formal model in the same way as the execution flow of the source code. 
The second condition for the representation of time is dependent on the concepts of the 
modeling language. In case of NCES a timed flow arc is available, which is enabled by an 
internal clock of a place. But this simple concept will not be sufficient when taking into 
consideration also the third condition, an interruptable model of execution time. Of course 
this condition is only necessary as soon as preemption is used within the system architecture 
of the control device. In case of an RTOS this is typically the case for different tasks accord-
ing to the scheduling algorithm. But it will occur in very simple control devices without 
operating systems, too. Sünder et al. (2007a) describe the formal model of a control device 
based on a 16-bit microcontroller without operating system. But also in this case preemption 
happens within the IEC 61499 runtime environment as soon as an interrupt occurs. The 
microcontroller switches to the interrupt service routine and disrupts the execution of the 
control application. 
In order to model a disruption of the execution of one part of a NCES model it is sufficient to 
connect each transition with a condition input which is only true as long as the corresponding 
part of the model is executed. In case of preemption the condition input will be switched to 
false and the execution of the model is blocked. Figure 25a depicts this situation for a module 
with simple functional behavior. As soon as input event ‘ei’ occurs the marking flows from 
place ‘p1’ to place ‘p2’. Here a delay of 10 time units is modeled before the output event ‘eo’ 
is issued and the marking flows back to place ‘p1’. The functional behavior of this ‘SimpleDe-
lay’ module is a delay of the event flow by 10 time units, which may be representative for a 
certain part of the source code within the control device. The condition input ‘enable’ 
represents the model for preemption as described above. But what happens in case of 
preemption? If the condition input ‘enable’ is false while the marking is in place ‘p2’ (e.g., 
because the execution of this part of source code may be preempted by an interrupt) the 
internal clock of place ‘p2’ will still be increased, although another part of source code is 
executed, because there is a marking within place ‘p2’. The temporal behavior will not be 
correct if we use simple timed arcs with preemption in NCES. 
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An appropriate solution for this problem is depicted in Figure 25b. Herein the same functional 
behavior (a delay of the event flow) is modeled, but the time which elapses in the model is 
represented as a number of markings. As soon as a marking is available in place ‘p2’ again the 
internal clock starts counting. But after one time unit transition ‘t3’ clears and adds one 
marking to place ‘p2’. As soon as the number of markings has reached 11 (after 10 time 
units), the flow arc from place ‘p2’ to transition ‘t2’ is enabled and the output event ‘eo’ is 
issued. If the condition input ‘enable’ is set to false while the time delay modeled by markings 
in place ‘p2’ is active, also the increase of markings is stopped (the internal clock of place ‘p2’ 
will still be increased, but without effects to the temporal behavior), because transition ‘t3’ is 
disabled via ‘enable’, too. By using such a model for time delays, the disruption of timed 
system models can be used without the violation of the temporal behavior. 

a)  b)  

Figure 25: NCES representation of a delay (a) by a timed arc and (b) by markings 

7.3 Dynamic reconfiguration support in formal models 
As most important enhancement of the formal models of a control device the support for basic 
reconfiguration services within the system model has to be provided. As already discussed in 
Section 3.6.3 no formalism exists in order to incorporate a dynamically changing system 
model into the model checking algorithm. Based on a given specification and a given model 
the state space of the system will be explored for model checking, but within this process the 
model needs not to be changed. Different approaches in literature apply changes to models by 
certain rules (which may be related to a dynamic reconfiguration process) and then use the 
changed models for model checking. But for the verification of the reconfiguration sequence 
by model checking it is necessary to incorporate the execution of basic reconfiguration 
services during operation of the system into the model. The ECA itself can be modeled 
similarly to any other IEC 61499 application, but the influence to the control application has 
to be modeled, too. 
The scope of DSE is very broad, and the inclusion of all possible basic reconfiguration 
services into the system model seems to be not realistic due to the limitations of the model 
checking approach. But as discussed in Section 5.2.2 the verification by model checking is 
only necessary for the reconfiguration sequence within a system evolution step. Table 4 gives 
an overview on the basic reconfiguration services which may be used within the different 
sequences of a system evolution step: 

• Download of the ECA and initialization sequence (RINIT): Both sequences are used 
in order to prepare the DSE. The used basic reconfiguration services add new applica-
tion parts without changing the functional behavior of the control application. 

• Reconfiguration sequence (RECONF): The current system state is still operated, but 
all new elements of the new system state are already available. Based on the classifica-
tion from Walsh et al. (2007b)—see Section 3.4.1 and especially Section 4.2.2—no 
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structural changes are necessary within the reconfiguration sequence. Only topological 
changes (creation or deletion of connections as well as writing of parameters) as well 
as internal changes (writing of internal variables) are possible apart from the execution 
control services for starting and stopping FB instances. 

• Deinitialization sequence (RDINIT) and deletion of the ECA: These sequences be-
long to the post-processing of a system evolution step and are used to delete those 
parts which will not be used any more in the new system state. The functional behav-
ior of the control application will not be changed. 

Command Object Download 
ECA RINIT RECONF RDINIT Deletion 

ECA 

Resource / FB Yes Yes — — — 
CREATE 

Connection Yes Yes Yes — — 

Resource / FB — — — Yes Yes 
DELETE 

Connection — — Yes Yes Yes 

Parameter Yes Yes Yes — — 
WRITE 

Internal variable Perhaps Perhaps Yes — — 

Input/output variable — — Yes — — 
READ 

Internal variable — — Yes — — 

START FB Yes Yes Yes — — 

STOP FB — — Yes Yes Yes 

KILL FB — — — Yes Yes 

RESET FB — — — — — 

QUERY Anything Yes Yes — Yes Yes 

Table 4: Basic reconfiguration services within the different execution phases of a system evolution step 

According to this limited set of basic reconfiguration services, which neglects any structural 
changes to the system model, an incorporation of these changes to the formal model can be 
applied by using the available means of the modeling language. Four different classes of 
changes to the system model have to be modeled: 

• Manipulation of connections 
• Execution control of FB instances 
• Reading of input/output variables as well as internal variables 
• Writing of input and internal variables 

We will provide a detailed description of the modeling approach for these kinds of changes in 
the system model during execution based on the modeling language NCES. 

7.3.1 Manipulation of connections 
We have to distinguish two different aspects when a basic reconfiguration service manipulates 
a connection. On the one hand there are two types of connections, event and data connections, 
which will be modeled in different ways according to their functionality within the IEC 61499 
standard. On the other hand there are two different management commands available for the 
manipulation of any connection: the CREATE and the DELETE management command. In 
the following discussion we will provide models for the two different types of connections 
(for data and events) that provide the possibility to create and delete the connection. 
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Event connections 
An event connection is used to trigger the execution of FBs in the IEC 61499 standard. Based 
on the execution semantics of R3E described in Section 6.1.2 the the issue of of an output 
event means that the connected input events will be put into the queue within the event 
dispatcher. This behavior can be mapped to the formalisms of NCES by using event arcs, 
which model the execution flow within the runtime environment. Based on the schematic of 
the execution behavior of BFBs in Figure 23 an output event will be put into the event 
dispatcher as part of an action. Afterwards, the execution within the BFB has to be continued. 
The corresponding NCES interface of an FB will consist of an output event in order to put the 
connected input event into the event dispatcher and an input event as notification that the 
execution flow within the BFB can be continued. 
An appropriate NCES model for the event connection is depicted in Figure 26 incorporating 
the possibility to “create” and “delete” the event connection. The input event ‘IN’ receives an 
event if the BFB executes the sending of an output event. Based on the internal state of the 
event connection (represented by places ‘p1’ and ‘p2’), two different paths are available in 
‘ManagedEventConnection’. If the event connection is enabled (the event connection has 
been created), the output event ‘Trigger’ will be issued, which can be used to put the corre-
sponding input event into the event dispatcher. After a confirmation via the event input 
‘Confirm’ the output event ‘OUT’ is triggered and the execution flow within the BFB will be 
continued. But if the event connection is disabled (the event connection has been deleted), 
nothing else will happen except that the output event ‘OUT’ is triggered. In terms of 
IEC 61499 this means that the event connection does not exist, because no entry within the 
event dispatcher is added. 

 
Figure 26: Formal NCES model of a managed event connection19 

The creation and deletion of the event connection is triggered by the input events ‘CREATE’ 
and ‘DELETE’, which are issued by the basic reconfiguration services within the ECA. The 
model in Figure 26 describes an event connection that is initially created. By changing the 
initial marking from ‘p1’ to ‘p2’ an initially deleted event connection can be modeled.  

Data connections 
The behavior of data connections is different to event connections. Based on the implementa-
tion of R3E a data connection includes a storage element. As soon as an output event occurs 

                                                 
19 The condition input ‘enable’ is neglected for the sake of clarity. As this module will be used within the model 
of a task, each condition has to be connected to the ‘enable’ condition input, too. 
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which is related to the data output via the WITH construct, the storage element of the data 
connection is set according to the data output of the FB. If several data connections exist with 
the same source (several connections from the same data output to several data inputs) only 
one storage element will be used for all these data connections. 
The formal model of a manageable data connection is based on a similar concept as for event 
connections (see Figure 27 for a data connection for Boolean variables). The internal state 
machine (places ‘p1’ and ‘p2’) defines the current state of the data connection, whether it 
exists or not. This state is influenced by the corresponding basic reconfiguration service 
within the ECA. The internal behavior is different to an event connection, as the internal 
storage of the data connection has to be set as soon as the execution flow enters the data 
connection via the ‘IN’ event input (according to the WITH construct this will happen during 
the sending of an output event). The internal storage for Boolean variables is represented by 
places ‘p5’ and ‘p6’. As this operation will take a certain amount of time, a time delay of 
length ‘x’ is introduced at place ‘p4’. If the data connection does not exist (place ‘p2’ is 
marked), no data sampling with time consumption will happen. In this case only the output 
event ‘OUT’ is issued, which means in terms of IEC 61499 that the data connection does not 
exist. 

 
Figure 27: Formal NCES model of a managed data connection (Boolean type)19 

The time delay modeled in Figure 27 depends on two conditions. On the one hand it will vary 
according to the data type which has to be stored. For each different data type the specific 
time value has to be measured. On the other hand this time will only occur if the data 
connection is the first one which has been established for a certain data output. As stated 
above, the implementation of the R3E uses only one storage element, although several data 
connections exist with the same source. Accordingly only for one data connection the 
execution time has to be mentioned, for all other data connections with the same source ‘x’ 
can be set to zero. 
The initial state of the data connection (available or not) can be modeled via the initial 
marking of places ‘p1’and ‘p2’, as already mentioned for event connections. 
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7.3.2 Execution control of FB instances 
The representation of the management commands START and STOP for FB instances can be 
summarized as execution control. The concept is similar to the one used for the manipulation 
of connections. Based on a state machine the execution flow within the FB instance may 
trigger the operation of the FB (in terms of NCES models) or it will be ignored and handed 
over to the next element in the execution flow. As basis for the internal state machine the 
operational state machine for managed FBs (see Figure 63) has to be used. As we will not 
consider the management commands KILL and RESET, a simplified state machine is 
modeled by the places ‘p1’ to ‘p3’ and transitions ‘t1’ to ‘t3’ in Figure 28. As simplified 
representation of the different triggers for the execution of an FB instance—this will be the 
request by the occurrence of an input event, see Section 7.4.3—we use only one input event 
‘IN’. Based on the state of the managed FB instance, the execution of the internals of the FB 
will be triggered (denoted by the dotted rectangle). Or the execution flow will be passed over 
to the next element within the system architecture by the issue of the output event ‘OUT’. The 
state of the FB instance will be influenced via the input event ‘START’ and ‘STOP’, which 
represent the triggers sent from the corresponding basic reconfiguration services within the 
ECA. The current state of the FB instance is additionally available via the condition outputs 
‘FBSidle’, ‘FBSrunning’, and ‘FBSstopped’. 

 
Figure 28: Formal NCES model of a managed FB instance19 

This simple model also incorporates the correct behavior in the case of stopping the FB 
instance during its operation (the ECA may preempt the execution exactly during operation of 
the FB instance). According to IEC 61499-1 (2005, Table 9) the currently active execution of 
the BFB will be completed without the generation of output events. If the execution control is 
passed back to the FB instance after being stopped, the execution flow will continue the 
execution of the FB and the algorithms will be finished. For the the issue of of output events 
an appropriate condition for sending the output events based on place ‘p2’ has to be incorpo-
rated in the model of the FB (not included in Figure 28). 
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Based on a similar concept also the CREATE and DELETE management commands for FBs 
may be incorporated in the formal NCES models by using an enhanced state machine of the 
FB instance. Only the KILL management command is problematic, as the operations of the 
FB instance have to be stopped immediately. If this happens, the execution flow within the 
formal NCES model of the control device will be stopped, too, which does not model the 
correct behavior of the implementation. 

7.3.3 Reading of input/output variables as well as internal variables 
The READ management command can be modeled without any additional effort in the NCES 
models. Any variable is represented by a set of places within the formal model, as for instance 
depicted for the storage element of a data connection in Figure 27 (places ‘p5’ and ‘p6’). The 
corresponding basic reconfiguration service within the ECA has to be connected to these 
places via condition arcs. As soon as the basic reconfiguration service is executed it will 
gather the current value of the variable. The necessary execution time for reading the variable 
has to be incorporated within the basic reconfiguration service. 
In principle any data type may be modeled by using places representing Boolean values. But 
the effort within the formal models grows to a high extend already for integer variables, as a 
16-bit variable has to be represented by 32 places in the model. Consequently a read com-
mand (or any data connection, too) will consist of 32 condition arcs. The situation will be 
even worse for structured data types or character strings. 

7.3.4 Writing of input and internal variables 
The influence of the WRITE management command has to be modeled in a similar way as the 
assignment of a value to a variable, which is used within any kind of storage element. The 
only difference is that there may be several sources of values for a variable, but this may be 
necessary for the formal model of an algorithm, too. The NCES model depicted in Figure 29 
may be used to model also other aspects than only the influence of the WRITE management 
command to a variable. In general the assignment of a value to a storage element from 
different sources is represented by this NCES model. 

 
Figure 29: Formal NCES model of WRITE for two different values19 

The concrete example of Figure 29 provides the possibility to write two different values to a 
storage element (again of Boolean type) by using different execution flows. These are 
depicted by the interface ‘WRITE1’ and ‘Out1’ as well as ‘WRITE2’ and ‘Out2’. The 
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different values of the WRITE management commands is provided via the condition inputs 
‘InVar1’ and ‘notInVar1’ as well as ‘InVar2’ and ‘notInVar2’. If one of the two input events 
is triggered, the value depicted by the related condition inputs is assigned in the storage 
element. If the corresponding basic reconfiguration service is triggered, the new value for the 
variable has to be issued to the model given in Figure 29 by using condition arcs. The 
execution time for writing the value of the variable may be included also in the model in the 
same way as depicted for data connections (see Figure 27). But it may be incorporated also in 
the execution time of the basic reconfiguration service, as it is assumed in Figure 29. 

7.4 Modeling architectural elements in NCES 
Based on the representation of real-time behavior and the influence of basic reconfiguration 
services to the system model the overall formal model for a given control device can be 
designed. The following sections provide an overview on modeling approaches for a specific 
control device, which will be used for demonstration also in Chapter 8. As main architectural 
elements the Embedded Configurable Operating System (eCos) as described in Massa (2003) 
(see also Appendix C) and R3E (see Appendix B) are used in the demonstration control 
device. The overall system model emerges by the composition of the different parts based on 
the given configuration, which depends apart from the main elements operating system and 
runtime environment especially on the control application and the ECA. According to the 
parameters of these applications the system model has to be configured, which will include 
also structural effects on the NCES model. Another important parameter is the execution time 
of the different single units within the system model, which have to be adapted according to 
the given system architecture. 

Modeling language 
Before we will go into detail about the modeling of the architectural elements, a short analysis 
of the proposed modeling language NCES should be provided. Many different modeling 
languages exist with specific features and modeling opportunities. The modeling language 
NCES is described in detail in Appendix C. The most important features for the evaluation of 
DSE are: 

• Modular modeling: The overall system architecture can be established and configured 
in terms of modules in a hierarchical manner. Based on simple functionalities more 
complex elements can be created by composition. The configuration of a control de-
vice is a composition of different parts by itself. 

• Execution flow via events: The incorporation of real-time behavior is based on the 
fragmentation of the overall source code and attaching execution time to these parts. 
The overall system behavior is represented according to the execution flow within the 
system model. The modeling elements events and event connections provide a power-
ful means for the modeling of the execution flow in NCES. 

• Preemption: A real-time operating system is characterized by the scheduling algo-
rithm in order to achieve real-time constraints for the different tasks during interaction 
with the environment mainly based on interrupts. A modeling language has to provide 
the possibility to model preemption as consequence of these characteristics. Especially 
in combination with the modeling of execution time preemption has to be supported 
(an appropriate approach utilizing NCES is described in Section 7.2).20 

                                                 
20 A popular approach for the modeling of real-time systems is timed automata. According to Waszniowski and 
Hanzálek (2003) timed automata is not suited for modeling preemption. Stanica (2005) uses timed automata in 
order to model the behavior of IEC 61499 applications. His resource model is very simple with the only 
constraint that only one algorithm may be executed at the same time. The temporal behavior of algorithms is 
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But there are also some limitations based on the choice for NCES as modeling language. The 
main restriction is that no continuous time may be used. NCES provides only means for 
discrete models of time. According to the chosen smallest time unit a more or less accurate 
model of the system will be available. A very small time unit additionally increases the state 
explosion problem. A more detailed analysis about the comparison of discrete and continuous 
time model checking is given in Clarke et al. (1999, Section 17). This situation may not be 
problematic within a single control device, but based on a closed-loop modeling (the plant is a 
continuous time system by nature) as well as the cooperation of several control devices within 
the same control application (in general no synchronization of execution exist within different 
control devices) a discrete time model may restrict the expressiveness of the system model. A 
second drawback concerns the modeling of calculations with values aside from Boolean 
variables. Any calculation may be modeled by Boolean relations, but this is no appropriate 
means for the efficient modeling of calculation with non-Boolean variables, especially 
algorithms in BFBs. 
We will provide a rough overview of the main modeling approaches for the elements real-
time operating system, real-time reconfiguration runtime environment, control applications 
and evolution control applications as depicted in Figure 24. In addition a general behavior 
model for different elements such as additional tasks, other applications or the communication 
network will be presented in Section 7.5. 

7.4.1 Real-time operating system (eCos) 
The RTOS provides the basis for the execution of different tasks within the control device and 
the interaction between the tasks and the environment (based on interrupts). As a concrete 
example the eCos real-time operating system [9] will be considered, which is described in 
detail in Massa (2003) as well as in Appendix C. The models presented in this section are 
based on the master thesis of Gosetti (2007), which has been conducted under supervision of 
the author. 
The main element of an RTOS is the scheduler, which provides the execution order of 
different tasks based on a specific algorithm. eCos includes two different scheduling algo-
rithms, which both provide 32 priorities with task preemption. In case of the bitmap scheduler 
one task can be handled per priority level. As soon as a task with a higher priority (the highest 
priority is 0) than the currently executed task wants to become active, a task switch is 
performed in order to execute the task with the highest priority. The second scheduling 
algorithm is called Multilevel Queue (MLQ) scheduler and supports several tasks per priority 
level. The active tasks within the same priority level are included in a queue, and based on a 
time parameter the execution is switched between these tasks in a round robin procedure. 
Again only the tasks which concern the highest active priority level will be executed. 

RTOS configuration 
In order to provide a component-based formal model of the operating system and its configu-
ration the different tasks as well as the scheduler of the RTOS will be considered as separate 
NCES modules. Figure 30 depicts such an RTOS configuration with two priority levels, 
whereupon the MLQ scheduler is used because there are two tasks related to priority level 1. 
In order to model the execution behavior of these tasks the following interface is utilized 
between the scheduler and a task (we will use the task perspective for explanation): 

• Notification of task activation (‘Wakeup’): If a task wants to be come active, the 
output event ‘Wakeup’ will be issued by the task. This may happen based on an exter-
nal interrupt, e.g., the timer or the network interface. 

                                                                                                                                                         
characterized by their execution time. But there are no concepts included in order to provide a more detailed 
description of the temporal behavior of the overall system architecture, especially no preemption. 
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• Notification of task suspension (‘Suspend’): If a task does not need to be executed 
any more, the output event ‘Suspend’ will be issued by the task. A typical example is 
the execution of event chains: as soon as there are no more events in the event dis-
patcher, the task corresponding to the event chain will suspend. 

• Assigning execution control to a task (‘enable’ and ‘stopped’): As already described 
in Section 7.2 preemption of the control flow within NCES models can be realized by 
using an enabling condition input. The scheduler will use the ‘enable’ condition input 
in order to assign the execution control to the task that should be executed. The condi-
tion input ‘stopped’ is inverse to ‘enable’. 

 
Figure 30: RTOS configuration with three tasks and two priority levels 

The NCES model of the scheduler (‘Scheduler’) provides this interface for each task within 
the configuration of the control device. Based on the scheduling algorithm, the task with the 
highest priority is executed by setting the input condition ‘enable’ to true. There is only one 
task executed at the same time. If the scheduler has to perform an action (e.g., switching the 
task context), only the module ‘Scheduler’ will be active. 

Model of the scheduler 
The formal model of the scheduler is split up into several components again. In detail each 
priority level is handled by a distinct module, Figure 31 depicts the internal model of the 
element ‘Scheduler’ mentioned before in Figure 30. The principal idea for modeling the 
scheduling algorithm is that each priority level has information about the upper priority levels 
as well as the task related to its own priority level. The module ‘IDLE’ represents the 
situation that there is no active task within the system configuration. Initially ‘IDLE’ is active 
within ‘Scheduler’. As soon as one priority level receives a ‘Wakeup’ event, the correspond-
ing module becomes active within the scheduler. It may be interrupted by a higher priority, or 
the corresponding task suspends. In the second case the next lower priority level will become 
active. If there are no more tasks ready for execution, the execution flow will reach ‘IDLE’ 
again. 
The behavior of the NCES module ‘Scheduler’ outlined above results in an interface between 
the different priority level modules which consists of the following elements: 

• Execution flow (‘activate’, ‘nextPx’): A priority level receives the control for the 
execution of its related tasks via the event input ‘activate’. If there is no task ready for 
execution, the next lower priority will be activated via the event output ‘nextPx’. If 
any higher priority level wants to execute its tasks, the corresponding event output 
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‘nextPx’ will be triggered. A priority level has event outputs for every higher priority 
level as well as the next lower priority level (simply denoted by ‘x’ in this descrip-
tion). 

• Current state of priority levels (‘Px_suspend’, ‘Px_wakeup’): Based on the internal 
modeling of the different priority levels a condition for the suspension of the priority 
level (‘Px_suspend’) and a condition about the availability of tasks for execution 
(‘Px_wakeup’) are sufficient to represent the current state of priority levels. In order to 
provide each priority the necessary information on the current state of the higher prior-
ity levels as well as the next lower priority level, appropriate condition inputs are used 
in the modules of the priority level. 

In addition each priority level provides the interface to the tasks which are related to this 
priority level, as described above. 

 
Figure 31: Internal model of the module ‘Scheduler’ mentioned in Figure 30 

Interrupt handling 
The eCos operating system uses so-called callback functions in order to handle interrupts. As 
soon as an interrupt occurs, the scheduler switches to the callback function, which includes 
the functionality related to this interrupt (application dependent source code). In order to 
model the interrupt handling the model of the scheduler can be used. A callback function is 
represented as a task on a priority level higher than 0. If an interrupt occurs, the output event 
‘Wakeup’ will be triggered. 

Real-time behavior 
The real-time behavior of the RTOS is mainly characterized by the scheduling of tasks. This 
is given by three different times (quantitative measurements are documented in Section 8.1.1): 

• Task switching time: The time necessary to switch from one active task to another 
one. This time may vary according to the amount of data that has to be saved for 
switching the context.  
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• Task suspension and resumption: The transition between a priority level and the 
‘IDLE’ state are characterized by separate time parameters. 

• Task creation and deletion: The approach for the evaluation of DSE does not need to 
model these aspects within the reconfiguration sequence. There will be a fixed set of 
tasks within the operation system. 

The different time parameters have to be incorporated in the model of the scheduler. For 
instance the information about active tasks in the next lower priority level is used in order to 
decide if the execution time of a task switch has to be included when a certain priority level 
has no more active tasks. 

7.4.2 Real-time reconfiguration runtime environment 
The execution behavior of the R3E has been described in the context of the calculation of 
execution times for event chains in Section 6.1.2 as well as in Appendix B. In order to provide 
a model of the behavior of the R3E the event propagation mechanism by the use of the event 
dispatcher as well as the separation of different event chains has to be taken into considera-
tion. Based on the description above of the representation of different tasks within the RTOS 
(see Section 7.4.1) the different event chains have to be modeled within the different tasks. 
Therefore we will investigate only the formal model of a single event chain. 

FB interface 
The basis for the transformation of an IEC 61499 FB into a NCES module is the representa-
tion of the FB interface within NCES. Both concepts (IEC 61499 and NCES) provide events 
as means for the modeling of execution flow, but the NCES module has to take into consid-
eration the implementation method, too. Figure 32 depicts the IEC 61499 FB as an example in 
both ways, a) as an IEC 61499 FB and b) as the corresponding NCES module.  

a)  

b)  

Figure 32: Representation of FB E_CYCLE in a) IEC 61499 and b) NCES 

Each IEC 61499 input event is directly mapped to NCES because it represents the call of the 
FB and directly matches with the execution flow within R3E. The end of such an call is 
depicted by the event output ‘FBready’, which signals that the execution control moves to the 
next element. An IEC 61499 output event is visible in the NCES module interface, too. But in 
addition to each output event an input event has to be incorporated, which signals that the 
sending of the output event has finished and execution flow comes back to the model of the 
FB (e.g., the output event ‘EO’ and the input event ‘readyEO’ relate to each other). Any data 
inputs and outputs may be represented by condition inputs and outputs. In the example given 
in Figure 32 the data input ‘DT’ is not visible in the NCES interface, because this value 
parameterizes the timing service of the runtime environment and will be used directly in the 
callback function of the timer. But instead an interface for the interaction between the timing 
service and the E_CYCLE FB is included in the NCES module. The timing service can be 
started (‘startTI’) or stopped (‘stopTI’). The NCES module includes an additional event input 
‘TIinvoke’ as trigger from the timer as well as a confirmation (‘FBreadyTI’) in order to move 
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the execution flow back after an interruption from the timer (see next paragraphs for more 
details). 

Event propagation within an event chain 
Each real-time constrained event chain is executed in a separate task with a separate event 
dispatcher. All unconstrained event chains within a resource are executed in one task with a 
common event dispatcher. The concept and models for event propagation are the same in both 
cases. Figure 33a depicts a simple FB network which will be used to describe the transforma-
tion of an IEC 61499 control application into a formal model. The corresponding NCES 
model is given in Figure 33b, where each FB is represented by its NCES interface as men-
tioned above. The basic idea for the transformation is that each event input within the FB 
network is modeled by a number, e.g. the ‘REQ’ event input of ‘simpleFB1’ has number two 
(‘EV2’ in Figure 33a). By using this number the event dispatcher is able to distinguish 
between different events that are inserted (‘inEVx’ and confirmation via ‘readyEVx’) and 
fetched for calling of the corresponding NCES module (‘outEVx’ with feedback of execution 
control via ‘endEVx’), where ‘x’ stands for the number of the input event. An event connec-
tion is modeled by a module similar to the one depicted already in Figure 26 and a data 
connection according to Figure 27 (both without the capability of dynamic reconfiguration).  

a)  

b)  

Figure 33: Representation of an FB network in a) IEC 61499 and b) NCES19 

The introduction of the first event (which is the identification of the event source 
‘E_CYCLE’, which again has a unique number) will be described in the next section. As soon 
as this event is put into the event dispatcher, the corresponding task will issue for execution 
time (output event ‘Suspend’) and then call ‘E_CYCLE’ via the ‘TIinvoke’ input event. 
‘E_CYCLE’ sends the output event ‘EO’ which triggers the module ‘EventConn1’ represent-
ing the event connection between ‘EO’ and ‘REQ’. The input event ‘REQ’ is put into the 
event dispatcher via the event input ‘inEV2’. After finishing the execution of ‘E_CYCLE’, 
the next event will be fetched from the event dispatcher (‘outEV2’). The overall FB network 
is executed based on this basic modeling approach. The FB network presented in Figure 26 
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depicts only a sector within the overall task model. The open interface to the rest of the task 
model is denoted by ‘…’. 

Critical sections within R3E 
One main challenge in real-time computer systems is the assignment of priorities and tasks in 
order to avoid deadlocks. Different concepts exist for protection of such critical sections (see 
also Appendix C) within an RTOS. One of the most important critical sections within R3E is 
the event dispatcher. On the one hand each event input within the task will be put into the 
event dispatcher. But on the other hand also the identification of an event source has to be put 
into the event dispatcher. If the execution of an event chain is interrupted by the timer exactly 
when an input event is put into the event dispatcher, the timer will not be able to use the event 
dispatcher, too. In order to avoid a deadlock in this situation, R3E uses a mutual exclusion 
methodology with priority inversion. 
The NCES model for the protection of this critical section is depicted in Figure 34. The 
modules ‘RegIn’ and ‘RegOut’ are used to capsule the critical region ‘EventDispatcher’. The 
module ‘Semaphore’21 simply provides a storage element that is triggered as soon as the 
execution flow enters or leaves the ‘EventDispatcher’. If an external event source (e.g., the 
timer) wants to add an identification of an event source to the event dispatcher the input event 
‘TRIG’ occurs. Before the issue of this request to the event dispatcher via ‘Insert’, the 
availability of the critical resource ‘EventDispatcher’ is checked. If it is currently used, the 
priority inversion protocol will be applied: The event dispatcher will be executed (‘enableEV’ 
set to true) as long as ‘EventDispatcher’ is free again, then the request from the external event 
source will be handled. 

 
Figure 34: Representation of mutual exclusion for the event dispatcher 

Figure 34 provides again only a sector of the overall model of the FB network. For instance, 
the confirmation of the insertion to the external event source is given by the event output 
‘readyTRIG’. In the model of the overall RTOS configuration in Figure 30 appropriate 
connections between the task representing the timer callback function and the event chain 
have to be added. Concrete measurements for the real-time behavior at the application level 
are presented in Section 8.1.1. 

                                                 
21 A means for the synchronization of tasks within an RTOS called semaphores exists, too. The NCES module 
‘Semaphore’ may also be used for this purpose, too. But within the application depicted in Figure 34 it is part of 
the mutual exclusion model. 
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7.4.3 IEC 61499 applications 
The above given description of event chain modeling provides one part of IEC 61499 
applications. The second part belongs to the internal formal models of FBs, which will be 
discussed in this section. Three different types of FBs exist within IEC 61499, whereupon we 
will focus on the BFB. The CFBs can be modeled based on the above given description of an 
event chain (the same event dispatcher as for the overall application will be used for a CFB), 
and the SIFBs are not described by means of IEC 61499. For SIFBs the implementation 
details need to be taken into consideration (see also Section 7.5). 
Figure 35a depicts a very simple BFB example, which consists of an ECC with two states. If 
the event input ‘REQ’ is issued to the FB in its initial state ‘State1’, the ECC switches to 
‘State2’, executes an algorithm ‘Alg.’ and sends the output event ‘CNF’. The ECC will only 
go back to ‘State1’ if the data input ‘DI’ is true. 

a)  

b)  

Figure 35: Representation of a BFB in a) IEC 61499 and b) NCES19 

The corresponding NCES model is given in Figure 35b. The execution flow within the formal 
model is similar to the one given in Figure 23. If the BFB is called by an input event, at first 
the input event is registered to an internal storage (‘InputEvent’) and the corresponding data 
input is sampled (‘DataInput’). Both actions take some time, denoted by the time delays ‘x’ 
and ‘y’. The ECC is evaluated according to the procedure modeled in ‘TransitionEvalua-
tionSM’. After a certain time delay ‘z’, representing a constant time for evaluation, the 
different transition conditions available within the currently active ECC state are evaluated. 
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The ECC is represented in the module ‘ECC’. Herein, only ‘Transition1’ will be triggered as 
‘State1’ is initially true. The evaluation result will be offered in two different ways. On the 
one hand a storage element is used to represent the evaluation result. On the other hand, an 
output event (the ‘Transition1’ module issues different output events according to the result of 
the evaluation) is used to model the execution flow. As each evaluation will take some time, a 
representative time delay ‘q’ is included in ‘Transition1’ and ‘Transition2’. In case of a 
negative evaluation, the next transition will be triggered (not visible in Figure 35b). If the 
evaluation was positive and a transition clears, the state in module ‘ECC’ will be changed and 
the actions within the currently active state (‘Actions_State2’ in this case) will be triggered. 
This includes also the sending of output events (‘event output ‘CNF’), whereas the insertion 
of the connected input events is represented in the event chain model as depicted in Figure 
33). Afterwards the transitions of the new active state are evaluated again. In case of a 
negative evaluation, the event output ‘FBready’ is triggered, as no more actions have to be 
performed within the BFB model. The sampling of data outputs, which do not concern any 
event output, has to be represented within the event chain model (directly connected to the 
event output ‘FBready’). 

7.4.4 Evolution control application 
An ECA is similar to any control application and can be modeled according to the concepts 
presented in Section 7.4.2. The only difference is the use of special FBs, the basic reconfig-
ureation services. The formal model of a basic reconfiguration service is similar to the model 
of any FB, as depicted in Section 7.4.3. The only difference is that a special interface is added 
according to the IEC 61499 management command incorporated by the basic reconfiguration 
service. The interfaces for the relevant management commands within the reconfiguration 
sequence have been described already in Section 7.3: 

• Manipulation of connections: CREATE or DELETE management commands are 
executed in the NCES model by a single event. 

• Execution control of FB instances: The operational state machine has to be added to 
the NCES model according to Section 7.4.3. The START or STOP management 
commands are executed in the NCES model by a single event. 

• Reading of input/output variables as well as internal variables: The necessary data is 
available within storage elements in the NCES model. The basic reconfiguration ser-
vices can access this data via condition arcs. 

• Writing of input and internal variables: The basic reconfiguration service has to 
provide the data via condition arcs. The WRITE management command is executed in 
the NCES model by a single event. 

7.5 Interrelation with the system environment 
The description given above of formal models represent the core part for the evaluation of 
DSE. The control application and the ECA are in the center of interest, but it is necessary to 
include also the IEC 61499 runtime environment, the real-time operating system, and the 
hardware (in terms of execution time for source code regions) to the formal description. But 
according to the evaluation framework for DSE presented in Section 5.1.2 and especially the 
architectural elements within a control device depicted in Figure 24 additional elements have 
to be incorporated to the formal models. We summarize these elements by the term system 
environment, because they are not directly involved in a system evolution step but do provide 
important effects to the overall system model: 

• Communication network: If there are control devices which are not part of the control 
application (which will be adapted during operation) the behavior of the communica-
tion network can be used to integrate a brief description of the interaction with any 
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other control device. The incentives from the communication network may be used 
within any task of the control device, especially in any other IEC 61499 application. 

• Additional tasks: Any task within the control device influences the execution behavior 
of the control device at least due to the consumption of execution time according to 
the scheduling algorithm and its own execution characteristics. 

• Other applications: Any IEC 61499 application within the control device has to be 
represented in the formal model, although it does not affect the functional behavior of 
the control application. According to the mechanisms of R3E other applications are in-
corporated as tasks within the RTOS and therefore may be treated similar to additional 
tasks. 

A detailed description of all elements within the system environment will possibly cause 
unacceptable effort in the engineering process. But for the evaluation of the evolution 
specification properties it is essential to include also these side effects within the DSE in order 
to provide significant results. As a possible solution, a very abstract behavior of these 
elements may be used as an approximation. In any case it has to be evaluated if this abstract 
behavior provides an over- or under-estimation of the real behavior of the element. 

General behavior description 
A general description of an element within the control device may be based on the occurrence 
models of external events presented in Section 6.1.1. For the formal model these occurrences 
may be used as triggers for some calculations within the different tasks of the RTOS or 
directly as triggers from the communication system. In addition to the pure occurrence of an 
event also the execution time of the element, e.g., a typical time necessary for a control 
application, has to be included into the formal model. Herein the possibility of conflicts 
within the formal model can be incorporated for the description of different execution times. 
A conflict in NCES occurs for instance if a place is connected to several conditions via flow 
arcs and there are more conditions enabled as markings are available within this place. In the 
reachability graph of the system each possible combination of transitions that may clear based 
on this situation will be incorporated. Accordingly different execution times of a given 
element are included in the formal model. 
We will consider different occurrence models for external events represented as NCES model 
in order to give some examples. These modules may be used within the formal model of the 
elements to describe an abstract representation of the element’s behavior. The first occurrence 
model is the periodic occurrence model. The occurrence of events is characterized only by the 
cycle time TP without taking into consideration any disturbances of this cycle. Figure 36 
depicts the NCES model of a periodic occurrence model for the cycle time TP = 5.  

 
Figure 36: Representation of periodic event occurrences (5 time units) 

The module may be started and stopped by the input events ‘Start’ and ‘Stop’. As soon as the 
module is started, the internal clock in place ‘p3’ modeled by markings starts counting and 
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issues an event output ‘eo’ every 5 time units. Transition ‘t5’ is used to remove all markings 
from place ‘p3’ in order to stop the emitting of output events. 
A more complicated model is the periodic occurrence of events with jitter. Next to the precise 
cycle time TP an event may occur already before or after the cycle time, bounded by the 
jitter J. Figure 37 represents a model with cycle time TP = 5, whereupon a jitter J of one time 
unit is incorporated, too. The module may be stopped and started as described already above. 
Based on the time resolution Tres and the jitter time J, different paths are possible. The ‘Start’ 
event will add a marking to place ‘p3’, which represents the point in time exactly at the 
beginning of the possible time window for emitting events. Accordingly an event may be 
issued immediately (path over transition ‘t3’), or every next time unit until the end of the time 
window (two times the jitter time J) is reached. In Figure 37 three different paths are possible, 
because the jitter time and the time resolution are equal and set to one (J = Tres = 1). In order 
to reach again the same point in time represented by place ‘p3’ in all possible paths, an 
additional time delay after the issue of an output event ‘eo’ has to be added in each path. The 
reachability graph of ‘Periodic_5_Jitter_1’ includes all possible occurrences of output events 
‘eo’ according to the parameters cycle time TP, jitter time J, and time resolution Tres. 

 
Figure 37: Representation of periodic event occurrences (5 time units) with jitter (1 time unit) 19 

The last kind of occurrence model for external events presented here is the bounded model. 
The bounded model is characterized by two bounds: the minimal and the maximal inter-
arrival times (Tmin and Tmax). Any time delay between these two bounds is possible for the 
occurrence of two consecutive events. In the formal model of a bounded event occurrence 
additionally the time resolution Tres used in the model has to be taken into consideration. 
Figure 38 depicts a model with a minimal inter-arrival time of 3 time units (Tmin = 3), a 
maximal inter-arrival time of 5 time units (Tmax = 5), and a time resolution of one time unit 
(Tres = 1). Accordingly there are again three paths available within the module. Place ‘p3’ 
represents the point in time when an output event ‘eo’ has just been emitted. Each path 
originated in place ‘p3’ describes a certain inter-arrival time for events, whereas transition ‘t3’ 
represents the minimal und transition ‘t5’ the maximal inter-arrival time. The reachability 
graph of ‘Bounded_3_5’ will include any path based on the above mentioned parameters. 
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Figure 38: Representation of bounded event occurrences with minimal (3 time units) and maximal (5 time 

units) inter-arrival time19 

7.6 Definition of evolution specifications 
The description of the overall system architecture in terms of formal models is the first part 
that has to be defined for the verification by model checking. The second part concerns to the 
definition of the evolution specifications. According to the consideration of evaluation means 
for the different system integrity characteristics and evolution specifications in Section 5.2 
several properties need to be fulfilled by a system evolution step. In order to define these 
properties two different tasks have to be handled: 

• Specification of properties for DSE in temporal logic: The most important way in 
order to define specification for model checking is the use of temporal logic. We will 
discuss the use of specification patterns utilizing the representation of the elements 
within the system architecture presented above. The ACS customer does not need to 
be faced with specifications in temporal logic according to Requirement (8) “User-
friendly definition of specifications”. 

• Definition of properties for DSE: The different system integrity characteristics that 
need to be checked by model checking for the reconfiguration sequence have to be 
analysed and appropriate general definitions need to be provided. 

In addition we will investigate possible problems when restricting the scope for the verifica-
tion by model checking to the reconfiguration sequence, which may be used to restrict the 
model of the plant and control application also only to a limited part of the overall life time of 
the plant. 

7.6.1 Specifications in natural language 
The use of temporal logic is very challenging for ACS customers as they often lack an 
appropriate background in the field of computer science. This situation has been highlighted 
for instance in Dwyer et al. (1998) for the use of temporal logic in general. They propose 
property specification patterns in order to simplify the usage of specifications in temporal 
logic. A property specification pattern provides a general description for a specific problem, 
which can be adapted to the specific property of the ACS customer. 
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Property specification patterns 
A categorization of property specification patterns may be applied according to different 
characteristics. The following description follows Dwyer et al. (1998) and 
Dwyer et al. (1999), which have been continuously adapted and improved online in [53]. 
Appendix E provides a more detailed description of the different specification patterns. The 
main categorization is the so-called pattern hierarchy, which provides an order of patterns 
according to their semantics (see Figure 39). The main differentiation is based on whether a 
single item or an order of items is taken into consideration [53]: 
Occurrence patterns: “Occurrence patterns talk about the occurrence of a given event/state 
during system execution.” 

• Absence property pattern: “To describe a portion of a system’s execution that is free 
of certain events or states. Also known as never.” 

• Universality property pattern: “To describe a portion of a system’s execution which 
contains only states that have a desired property. Also known as henceforth and al-
ways.” 

• Existence property pattern: To describe a portion of a system’s execution that con-
tains an instance of certain events or states. Also known as eventually.” 

• Bounded existence property pattern: To describe a portion of a system’s execution 
that contains at most a specified number of instances of a designated state transition or 
event.” 

 
Figure 39: Pattern hierarchy, Dwyer et al. (1999) 

Order patterns: “Order patterns talk about relative order in which multiple events/states occur 
during system execution.” 

• Precedence property pattern: “To describe relationships between a pair of 
events/states where the occurrence of the first is a necessary pre-condition for an oc-
currence of the second. We say that an occurrence of the second is enabled by an oc-
currence of the first.” 

• Response property pattern: “To describe cause-effect relationships between a pair of 
events/states. An occurrence of the first, the cause, must be followed by an occurrence 
of the second, the effect. Also known as follows and leads-to.” 

• Chain precedence property pattern (one cause two effects version): “To describe a 
relationship between an event/state p and a sequence of events/states (s, t) in which the 
occurrence of s followed by t within the scope must be preceded by an occurrence of 
the sequence p within the same scope.” 

• Chain response property pattern (one stimulus two responses version): “To describe 
a relationship between a stimulus event (p) and a sequence of response events (s, t) in 
which the occurrence of the stimulus event must be followed by an occurrence of the 
sequence of response events within the scope.” 
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Scope of patterns: In addition to these patterns the scope for each pattern may be constrained 
according to different aspects. Dwyer et al. (1998) distinguish five different kinds of scopes 
(see Appendix E for a more detailed description), as for instance the specification has to be 
valid globally, before a certain condition or after a certain condition. Furthermore two 
different variants for scopes that describe validity in between of different conditions are 
mentioned. 
Application for the ACS customer: Each pattern with a specific scope is represented by an 
extensive description. The formula may be given in different kinds of temporal logic; a 
description of the aim of the pattern in natural language as well as a different example for its 
application can be included. The ACS customer is able to select the pattern which fits best to 
the specification he wants to define and only has to provide the data to parameterize the 
formula in temporal logic. According to the features provided by the engineering tool the 
ACS customer may be supported by dialogs and selection wizards, as this has been proposed 
for instance in Bitsch (2003) for the special purpose of safety requirement specifications. 

Representing system architecture elements in specifications 
In order to apply the above given property specification patterns for the evaluation of DSE, 
the elements of the formal models (places and transitions) have to be used for parameteriza-
tion. In the best case the ACS customer does not need to mention any place or transition by 
himself, instead he should use the same means he has already used for modeling control 
applications: the elements of the IEC 61499 standard. Based on the models provided in 
Section 7.4 the following mappings can be used in order to identify places and transitions in 
the NCES models within the architectural elements of the control device: 

• Activity of tasks: The scheduler provides a condition output in order to control the 
execution of tasks via the ‘enable’ condition input (see Figure 30). The activation of a 
task is represented by the place within the scheduler which is connected to this condi-
tion output. In order to check the activity of certain event chains, the activity of the re-
lated tasks has to be checked. As the callback function of an interrupt is also repre-
sented by a task, the same place within the scheduler may be used to describe the acti-
vation of interrupts. 

• Usage of critical section within R3E: As depicted for the example event dispatcher a 
critical section within the formal model is bounded by modules for the registration of 
the execution flow. The corresponding storage element (e.g., places ‘p1’ and ‘p2’ in 
module ‘Semaphore’ in Figure 34) can be used to address the usage of these critical 
regions in the specifications.  

• Sending of output events: The model of a connection can be used to address the send-
ing of an output event within the formal model. Place ‘p4’ in Figure 26 (managed 
event connection) depicts exactly the situation when the connected input event is put 
into the event dispatcher. The concrete type of the FB emitting the event can be ne-
glected in this case. 

• Data outputs: A data output of an FB may be represented in the internal model of the 
FB, but it can be addressed also by using the model of the data connection. The inter-
nal storage of the data connection (e.g., places ‘p5’ and ‘p6’ in Figure 27) can simply 
be used to represent the data output of an FB without taking care of the internal repre-
sentation of the FB. 

• Triggering of BFBs: The triggering of a BFB by a certain input event is registered 
within a module (e.g., ‘InputEvent’ in Figure 35b) including a storage element for reg-
istration of the input event. The places of this storage element can be used to address 
the triggering of a BFB in a specification. 
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• ECC state: The states of a BFB according to its ECC are directly represented as places 
in the model of a BFB. The module ‘ECC’ in Figure 35b includes a place for each 
state of the ECC, therefore these places can be used to address the state of a BFB. A 
state transition may be identified by the transitions mentioned in the modul ‘ECC’, 
which directly represent the transitions of the ECC. 

• Creation and deletion of connections: The models provided for data and event con-
nections include a state machine that defines the state of a connection, whether it is 
available or not. The places within these modules (see Figure 26 and Figure 27) can be 
used to address the current status of the connection. The transitions within the state 
machine represent the moment in time when the management command is executed. 

• Operational state of managed FBs: The operational state machine for managed FBs 
is directly represented in the formal model of FBs (see Figure 28). The incorporation 
of the operational state in the specification is provided by these states, the execution of 
state changes is characterized by the appropriate transitions. 

The interrelation of parameters within the specifications and the elements of the formal model 
is a matter of support in the engineering tool. Based on the rules given above the ACS 
customer will be able to define the variables within the property specification patterns without 
being in touch with the formal model itself. 

7.6.2 Evolution specifications 
The various properties that need to be checked in order to achieve system integrity during the 
execution of a system evolution step have been defined already in Section 5.2.1. According to 
the discussion of evaluation means in Section 5.2.2, the following properties of the evolution 
specification need to be checked by using verification by model checking: 
Global consistency: Any specification that has been defined for the normal operation of the 
ACS has to hold also during the execution of a system evolution step. The specifications for 
normal operation have been split up in Section 5.1.1 into plant, process, and product specifi-
cations. 
Local consistency: Similar to global consistency. 
Active references: This properties aims at the check of interrelations between different parts 
of the control application based on services within the underlying system configuration. In an 
IEC 61499 based system these interrelations are based on the internals of SIFBs. If there are 
any disruptions of such an interrelation the properties for normal operation (plant, process, 
and product specification) will be violated. Based on the detailed model of these interrelations 
and their manipulation during the system evolution step it is sufficient to check the properties 
for normal operation. 
State management: One main prerequisite for DSE is to disturb the operation of the plant as 
little as possible. This is especially achieved by appropriate transition management policies as 
described in Section 3.5 within the ECA. In order to check the integrity characteristic for state 
management, the effect to the plant under operation has to be taken into consideration. There 
are two different situations that need to be distinguished: 

 The actions within the system evolution step commence a disturbance of a certain 
amount into the system, which will disappear in a short time frame apart from the 
execution of the DSE. Within the property specification patterns the absence pattern 
for a specific time frame (which can be specified by a beginning and an end condition) 
may be used (Appendix E, Equation 35). On the other hand it is possible to use timed 
CTL for the proposed model checker SESA, which enables the restriction of temporal 
parameters to a certain time frame. Accordingly the absence pattern for the considera-
tion of all paths after a certain condition may be adapted to  
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AG ( Q Ø AG[0, a](Ÿp) ) (13) 

where Q marks the start of the reconfiguration sequence, 
 [0, a] is the time frame for the observation of disturbances, and 
 p describes the occurrence of an exceeding disturbance. 

 

Equation 13 uses the operator G with a time scope of a certain upper limit a, which 
does represent a sufficient time frame for the DSE of the control application. Based on 
restrictions of SESA the operator G is not supported with such a time scope. By using 
equivalences within the temporal operators in CTL Equation 13 can be formulated as 

AG ( Q Ø ŸEF[0, a](p) )22, (14) 

which will be supported by the model checker SESA. 
The open question for the application of Equation 14 is the selection of an appropriate 
property for condition p that describes the occurrence of an exceeding disturbance. 
This condition is highly application dependent. When we consider for instance the ex-
change of the controller within a closed-loop control circuit (see Section 4.2.3), we 
may use the difference between the reference value and the control value to determine 
condition p. If the ACS customer is aware of the concrete value of the control variable 
(e.g., because the trigger for the reconfiguration sequence is based on this value) a 
simple upper or lower limit for the control variable may be chosen as condition p. Of 
course, also any other description using temporal logic may be used in order to define 
condition p. 

• The second possibility is that based on the DSE an incentive to the system is intro-
duced which leads to a continuously growing disturbance. A concrete example for a 
closed-loop control example is that the controller becomes unstable. The transient will 
be very small in the first time after the DSE, but will lead to high disturbances to the 
overall system later on. Therefore a detection of this kind of fault will not be possible 
in a given time frame after the start of the reconfiguration sequence. An infinite time 
frame is not possible because for instance a high difference between reference value 
and control value may be part of the normal operation of the plant (when the reference 
value is changed stepwise). But as this kind of failure will lead to a permanent disrup-
tion of the normal plant behavior, it is possible to use the specifications for normal op-
eration (plant, process, and product specification) in order to check for continuously 
growing disturbances commenced by the system evolution step. 

Real-time constrained operation: The system integrity characteristic for real-time con-
strained operation aims at the execution of the ECA, which has to fulfill certain real-time 
constraints, too, because it influences a control application with real-time constraints. Next to 
the properties for the functional behavior of the ECA also the temporal behavior has to be 
taken into consideration (see also Requirement (1) “Temporal behavior”). The reconfiguration 
sequence will be executed only once and has to be finished in a certain amount of time 
according to the control application. Based on the property specification patterns several 
possibilities exist to check the real-time constrained operation of an ECA: 

• The property of real-time execution may be related to the operation of the control 
application. The existence pattern for a specific time frame (which can be specified by 
a beginning and an end condition) may be used without taking care of the concrete 
execution time of the ECA in the following way: 

AG ( Q v ŸR Ø A [ ŸR W ( p v ŸR) ] )23, (15) 

                                                 
22 Based on the equivalence AG f = ŸEF(Ÿf), see for instance Clarke et al. (1999, Section 3.2). 
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where Q marks the start of the reconfiguration sequence, 
 R marks a condition within the control application, when the  
 reconfiguration sequence has to be finished, and 
 p describes the end of operation of the reconfiguration sequence. 

 

• The execution time of the reconfiguration sequence may be checked based on timed 
CTL formulas, too. As basis the universality pattern after a certain condition (Appen-
dix E, Equation 39) may be enhanced by the application of a specific time frame. As 
already depicted for Equation 13 the limitations of the model checker SESA require a 
reformulation of this pattern to 

AG ( Q Ø ŸEF[a, b]( Ÿp) )22, (16) 

where Q marks the start of the reconfiguration sequence, 
 p describes the end of operation of the reconfiguration sequence, 
 and 
 [a, b] is the time frame when the operation of the ECA has to be 
 finished (a may be set to zero). 

 

• Based on the system behavior described in the system model it is possible to use veri-
fication by model checking not only to check some properties but additionally also 
performance characteristics may be evaluated in order to provide additional informa-
tion for the ACS customer. Clarke et al. (1999, Section 16.4) describe two algorithms 
that are able to calculate the minimal and maximal delay between a request and the 
corresponding response. For the use of these algorithms the request could be marked 
by the start of the reconfiguration sequence, and the corresponding response would be 
the end of the reconfiguration sequence. The ACS customer receives the BCET and 
WCET execution time of the reconfiguration sequence, which may be helpful for the 
fine-tuning of the behavior of the system. The model checker SESA does not provide 
such algorithms. 

7.6.3 Evaluation of small portions of system behavior 
DSE is a single action that influences the behavior of the overall system, as already depicted 
in Section 1.1. Therefore the interesting part for verification by model checking is limited to 
the execution of the reconfiguration sequence, which is related to a very small part of the 
overall system behavior. Accordingly it may be possible to restrict the formal model of the 
system to this small part in contrast to modeling the overall system behavior, which is 
especially interesting for the model of the plant because it is a highly time consuming task 
(other parts may be generated automatically). But on the other hand there are also some risks 
that need to be evaluated for the restriction to a small portion of system behavior: 

• The model of the plant may lack details that are important for the execution of DSE. 
The system behavior may not include effects on the ECA in certain circumstances. 

• The variety of paths from the initial state of the plant to the starting point of the recon-
figuration sequence may be very high. A limited system model can be enhanced by us-
ing different initial states in order to incorporate the high variety of the overall system 
model. But it may be difficult to define the different initial states of the limited system 
model. 

• Several integrity characteristics within the evolution specifications are checked by 
using the specifications for normal operation (plant, process, and product specifica-

                                                                                                                                                         
23 A description of the weak until operator W is given in Appendix E. 
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tion). Therefore, it is necessary that the model of the system provides all information 
about these properties; otherwise the check for the evolution specifications will not be 
possible in all details. 

7.7 Summary 
The evaluation of properties for the execution of a system evolution step by means of model 
checking is restricted to the reconfiguration sequence. Only in this sequence the functional 
behavior of the control applications will be actively changed. Based on the methodology for 
model checking three tasks have to be taken into consideration: design of the system model, 
definition of the specification, and execution of the model checking algorithm. 
The system model has to incorporate two essential parts for DSE: the real-time behavior 
within formal models and the dynamic reconfiguration of the model. The execution behavior 
of elements within a control device is not only characterized by a model of time within the 
modeling language. It is essential to provide models that are capable to model interruptible 
time delays within the formal models, because a real-time computer system is characterized 
by the preemption of tasks in the RTOS and external event sources. On the other hand, the 
dynamic reconfiguration of models has been taken into consideration. No means exist in 
modeling languages to directly include changes during the evaluation process, as the method-
ology of model checking is based on the assumption of a given model. But the existence of 
different models can again be modeled within the execution flow of the formal model, which 
has the same effect in the behavior of the overall system. The different basic reconfiguration 
services that may be used within the reconfiguration sequence of a system evolution step can 
be modeled in this way. 
The definition of specifications is especially problematic for ACS customers. The usage of 
property specification patterns provides a good basis, which enables the determination of 
properties without directly using temporal logic. The necessary parameters for the different 
patterns can be customized based on the formal model, which again may be abstracted by 
means of the programming language for the control application. In addition, the definition of 
a specification in terms of a pattern provides independence from a special dialect of a 
temporal logic. The main prerequisite for DSE is that the normal operation of the plant will 
not be disturbed. Accordingly, several integrity characteristics can be checked by using the 
specification for the normal operation of the plant. In addition, the properties state manage-
ment and real-time constrained operation may be taken into consideration by explicit specifi-
cations in order to achieve additional information about the quality of the system evolution 
step. 
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8 Demonstration and Experiments 

Chapter 8 

Demonstration and Experiments 

In order to provide a proof of the concept for the proposed methodology for the evaluation of 
DSE it is necessary to provide the overall description of a control device, the control applica-
tion, and the modeled ECA. We will use a microcontroller platform, which is installed for 
different purposes in the Odo Struger Laboratory at the ACIN. The given example represents 
a typical situation for the exchange of some parts within a control application and has been 
executed on this platform. The evaluation of the example will be structured into KAPPA-
based calculations, which have been integrated in an engineering tool, as well as verification 
by model checking, whereas the generation of appropriate models has been done by hand. 
Next to this example, two further experiments dedicated to the verification by model checking 
are presented as a more detailed description of aspects for formal modeling within the 
evaluation framework proposed within this work. Due to limitations of the used model 
checking tool an integration of these aspects into the evaluation example was not possible. In 
detail, the handling of the priority inversion policy for the access to the event dispatcher and 
the integration of a plant model are taken into consideration. 

8.1 Typical example on a specific test model 
The demonstration is based on the engineering tool, which has been developed during the 
research project εCEDAC [8]. This environment provides on the one hand an appropriate 
framework for the engineering of IEC 61499 based control systems, and on the other hand has 
been extended to integrate the proposed modeling methodology for DSE. The evaluation of 
properties based on KAPPA-based calculations has been added to the engineering tool and 
therefore represents an integral part of the engineering tool. The evaluation of properties by 
model checking has been based on the tools Visual Verifier, Visual Editor and TNCES Editor 
(see also Appendix C.3). 

8.1.1 Demonstration control device 
The demonstration control device is based on an evaluation board for a microcontroller and 
would not be used in commercial applications in this configuration. But the missing elements 
only concern external parts such as I/O interfaces and therefore do not restrict the functional 
elements of the demonstration control device. According to the description about the architec-
tural elements of the system model used for verification by model checking (see Figure 24 in 
Section 7.1) the concrete representation of the three gray shaded elements will be considered 
in the following explanations. 

Processing unit 
The evaluation board phyCORE-AT91M55800A (Phytec, 2003) from the company Phytec 
Messtechnik GmbH [43] utilizes an ATMEL AT91M55800A microcontroller, clock genera-
tion, memory modules as well as different interface peripherals (e.g., an Ethernet controller). 
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The performance of the processing unit will be described by the measurements of parameters 
for the RTOS and the R3E in the following paragraphs. These values are usable only for this 
special configuration of the control device. 

Real-time operating system 
The RTOS eCos, which has been described briefly already in Section 7.4.1 represents the 
basis for any program execution within the control device builds the. The various configura-
tion parameters for eCos have to be incorporated into the formal model. In addition, also the 
execution time for explicitly recognizable actions within the operating system has to be 
included according to the given processing unit. In case of the above mentioned evaluation 
board phyCORE-AT91M55800A the measurements of these parameters are summarized in 
Table 5 according to the work done by Ferhatbegovic (2007) under supervision of the author. 

Time parameter Value 

Task switching time 82,0 µs 

Task suspension 10,1 µs 

Task resumption 13,3 µs 

Task creation 85,5 µs 

Task deletion 96,0 µs 

Table 5: Real-time behavior of eCos on the demonstration control device, Ferhatbegovic (2007) 

Real-time reconfiguration runtime environment 
The control device utilizes the IEC 61499 compliant runtime environment described in 
Zoitl (2007) with some enhancements, which are related to additional functionality with 
respect to basic reconfiguration services. A detailed description of the execution behavior of 
R3E has been provided in Section 6.1.2 (execution time calculation for event chains) as well 
as Sections 7.4.2 and 7.4.3 (with regard to the formal model of the elements of the runtime 
environment and the control application). For both purposes time parameters for the real-time 
behavior on a specific processing platform need to be provided in order to verify the different 
properties for DSE. Table 6 depicts a set of parameters which are necessary for the evaluation 
of control applications as well as FBs (as far as they are independent from a specific FB type), 
enhanced by the work done by Mandl and Zhang (2008) under supervision of the author. 

Time parameter Value 

Insertion of an event Tentry (only 1 event, no data) 23,2 µs 

Fetching of an event and triggering of the correspond-
ing FB Tinvoke 

11,0 µs 

Offset for data sampling TDS,offset 67,4 µs 

Data sampling of INT data type Tsample,INT 6,8 µ,s 

Evaluation of active ECC state TAS 0,8 µs 

Evaluation of an ECC transition with  
 “1” condition TCond,1 

 Boolean condition TCond,bool 
 event as condition TCond,event 
 event and Boolean condition TCond,mix 

 
6,9 µs 
7,61 µs 
7,02 µs 
7,60 µs 

Constant time for algorithm execution TAlg,const 6,4 µs 

Table 6: Real-time behavior of R3E within the demonstration control device, Mandl and Zhang (2008) 
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KAPPA vector of the demonstration control device 
All information about the demonstration control device has to be provided in an appropriate 
form to the engineering tool, in order to integrate it into the evaluation process. Next to the 
above mentioned timing parameters for instance also memory consumption, FB types, or the 
configuration parameters of eCos need to be included. Appendix F depicts a description file 
representing the KAPPA vector of the demonstration control device (without any control 
applications) based on FDCML, as already described in Section 5.3.2. 
The description of a control device can be used within the engineering tool to provide a more 
detailed view of the ACS. Figure 40 depicts the graphical representation of the IEC 61499 
device ‘myDevice’ which is located on the demonstration control device within the εCEDAC 
engineering tool. Based on the KAPPA vector information the communication interface and 
the process interface of the device can be described according to the actual configuration. 
Furthermore two IEC 61499 resources exist within ‘myDevice’: The resource ‘MGR’ is part 
of each device according to the used compliance profile, ‘Res_App1’ is established during the 
engineering process. 

 
Figure 40: Demonstration control device within the εCEDAC engineering tool 

8.1.2 Typical control example 
In order to use a relevant practical example for the demonstration of DSE and its evaluation, 
the following aspects have been taken into consideration: 

• Internal variables of FB instances have to be involved in the evolution process in order 
to check also state management characteristics. 

• The control application should be independent of a plant as well as the network in 
order to have the demonstration focused on the evolution process. 

The resulting control application for the practical example adds a certain value to an internal 
element. The periodic addition is triggered by the timer and ends after the internal variable 
has exceeded a certain limit. A similar situation can be found for a closed-loop control circuit 
whose controller has to be triggered (see the example given in Section 4.2.3), the exchange of 
a filter in the feedback loop of a control circuit, or the exchange of an encryption algorithm of 
a communication channel. Figure 41 depicts the initial state of the chosen typical control 
application, and Figure 42 provides in the upper part the user interface in order to interact 
with this control application. The control application uses the FB ‘TAKT’ in order to generate 
the necessary trigger for the calculations. The user controls ‘TAKT’ via the check box 
‘START’, which sends a Boolean value to the control application. This value is decoded by 
the FB ‘E_SWITCH’, whose output events start or stop the FB ‘TAKT’. During each clock 
cycle the FB ‘E_CTU’ is triggered, which increases a counter variable (‘E_CTU.CV) at each 
call, starting from the value 0. This data output is used as input for the addition within the FB 
‘ADD_INT_TO_INTERNAL’ (FB ‘CONV_UINT2INT’ is necessary for a type conversion 
from the UINT to the INT data type). The output value ‘ADD_INT_TO_INTERNAL.OUT’ 
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represents the result of the addition of this value and the internal variable. Both values, the 
data output ‘CV’ from ‘E_CTU’ and the data output ‘OUT’ from 
‘ADD_INT_TO_INTERNAL’ are sent to the user interface at each cycle of the control 
application. FB ‘CHECK_INT_GREATER’ provides the evaluation if the current value of 
variable ‘ADD_INT_TO_INTERNAL.OUT’ exceeds the given limit, which is set to 100 in 
Figure 41. If the condition ValA > ValB is fulfilled, the Boolean output 
‘CHECK_INT_GREATER.Result’ is set to true and the FB ‘E_PERMIT’ will send an output 
event ‘EO’ which stops ‘TAKT’. 

 
Figure 41: Typical control application example (initial state) 

Two different system evolution steps have been modeled for this control application. The 
corresponding CECA is depicted in Figure 43, which includes two EECFBs: 

• ‘Change_Threshhold’ will change the limit for the evaluation of the current value of 
the integrating variable. ‘CHECK_INT_GREATER.ValB’ is changed to a different 
value based on the execution flow of the control application. We will not go into detail 
for this system evolution step. 

• ‘Subtract’ includes a bigger evolution within the control application. The task of DES 
is to exchange the summing up the ‘E_CTU’ output value by subtraction from the in-
ternal element. In order to stop the control application after exceeding a given limit, 
also a different kind of check has to be applied, if the internal element falls below a 
defined value. We will take into consideration this system evolution step and discuss 
the application of the evaluation methodology. 

 
Figure 42: Application and evolution user interface for the typical control example 

The two EECFBs are executed sequentially, whereas the successful execution of a sequence 
of the system evolution step is the precondition for starting the next sequence. The initial 
trigger for the execution of each system evolution step is provided by the corresponding user 
interface for the DSE as depicted in the lower part of Figure 42. Furthermore also a feedback 
from the execution of the EECFBs is provided to the user: ‘CNF-EROIx’ signals that event 
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output RDINITO has been emitted, and ‘Result-EROIx’ represents the value of the data 
output ‘RDINIT_QO’ (x stands for 1 or 2). Each EECFB may be triggered independently by 
the user by using the buttons ‘Start-EROIx’. 

 
Figure 43: CECA including two system evolution steps for the typical control example 

System evolution step Subtract 
The ECA included within the EECFB ‘Subtract’ is given in Appendix G, Figure 72. We will 
describe the actions within the EECFB based on the control application’s model. Figure 44 
depicts a virtual view of the control application. Next to the initial system state (solid lines) 
also the additional items of the final system state (dashed lines) are included. This situation 
never occurs during the system evolution step. The real situation within the control applica-
tion after each of the three main sequences of the system evolution step is depicted in 
Appendix G: Figure 73 provides the situation after the execution of the RINIT sequence, 
Figure 74 after the RECONF sequence, and Figure 75 after the RDINIT sequence (which is 
already the final system state from the control application’s point of view). The CECA itself 
is located in a separate resource within the control device, therefore its download and deletion 
is not visible within the control application. 

 
Figure 44: Typical control application: mixed representation of initial and new system state 

RINIT sequence 
The RINIT sequence is responsible for the preparation of the necessary elements within the 
control application for the new system state. The new functionality of subtracting the data 
output ‘E_CTU.CV’ from an internal variable will be provided within the FB 
‘SUB_INT_FROM_INTERNAL’, which is established during this phase. Furthermore also 
the FB ‘CHECK_INT_LESS’ is necessary, because the new condition ValA < ValB has to be 
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evaluated. Next to these two FB instances also the input connections for both FBs are created. 
These are 

• ‘CONV_UINT2INT.CNF’ to ‘SUB_INT_FROM_INTERNAL.REQ’, 
• ‘CONV_UINT2INT.OUT’ to ‘SUB_INT_FROM_INTERNAL.IN’, 
• ‘E_CTU.RO’ to ‘SUB_INT_FROM_INTERNAL.INIT’, as well as 
• ‘SUB_INT_FROM_INTERNAL.CNF’ to ‘CHECK_INT_LESS.REQ’, and 
• ‘SUB_INT_FROM_INTERNAL.OUT’ to ‘CHECK_INT_LESS.ValA’. 

After starting the two new FB instances within the RINIT sequence the internal value within 
‘SUB_INT_FROM_INTERNAL’ as well as the check for falling below the given limit are 
calculated at each cycle of the control application. But these new calculations do not have any 
impact to the behavior of the control application. 

RECONF sequence 
Within the RECONF sequence only the output connections of the marked application parts 
within Figure 44 have to be changed. The ECA splits up these actions into two parts: the 
connections within the logic part of the control applications and the connections to the user 
interface. We will describe only the first part of actions, as herein also the transition manage-
ment has to take place: 

• DELETE the connection from ‘CHECK_INT_GREATER.CNF’ to ‘E_PERMIT.EI’ 
• DELETE the connection from ‘CHECK_INT_GREATER.Result’ to 

‘E_PERMIT.PERMIT’ 
• READ the internal variable of ‘ADD_INT_TO_INTERNAL’ 
• WRITE the internal variable of ‘SUB_INT_FROM_INTERNAL’ 
• CREATE the connection from ‘CHECK_INT_LESS.Result’ to 

‘E_PERMIT.PERMIT’ 
• CREATE the connection from ‘CHECK_INT_LESS.CNF’ to ‘E_PERMIT.EI’ 

Based on the conditions within the plant there may be different real-time constraints for the 
execution of these two parts, as the logic within the control application may be more impor-
tant than the correct update of the user interface. Within the ECA given in Appendix G, 
Figure 72, there are no real-time constraints modeled. The control application and the ECA 
are executed in different resources of the same device, but according to the point in time when 
the ACS customer triggers the system evolution step, it may be possible to violate specifica-
tions of the application and introduce disturbances due to the DSE.  

RDINIT sequence 
Within the RDINIT sequence the roles between the two marked application parts within 
Figure 44 have changed. The gray shaded part is now active, and the FBs 
‘ADD_INT_TO_INTERNAL’ and ‘CHECK_INT_GREATER’ do not have any effect on the 
application behavior (the output connections of ‘CHECK_INT_GREATER have been 
deleted, but the FBs are still calculated). Within this sequence both FBs have to be stopped, 
their input connections are deleted, and at the end both FBs are deleted. 

8.1.3 KAPPA-based calculations 
The evaluation of system integrity characteristics based on KAPPA-based calculations has 
been identified as appropriate evaluation means in Section 5.2.2 for global and local consis-
tency, dependent operation, and requirements of resources. As basis for these evaluations a 
wizard has been implemented in the εCEDAC engineering tool, which will be described in 
general below. Furthermore the evaluation itself will be taken into consideration. 
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Evaluation wizard within the εCEDAC engineering tool 
The εCEDAC engineering tool is an IEC 61499 compliant software which has been enhanced 
towards the modeling of DSE. For the description of control devices, which is out of the focus 
of the IEC 61499 standard, the format depicted in Sections 5.3.2 and 8.1.1 is used within the 
engineering tool to represent the current system state KAPPA. A given control device has to 
be represented by using an XML description file (see Appendix F for an example) and can be 
integrated in the type library of the engineering tool for further use within the engineering 
process. Figure 45 shows a screenshot of the εCEDAC engineering tool in the background. 
For the evaluation of evolution specifications based on KAPPA-based calculations an 
evaluation wizard has been integrated into the engineering tool. The different pages of the 
evaluation wizard are depicted in the foreground of Figure 45. 

 
Figure 45: Screenshot of the eCEDAC engineering tool and the evaluation wizard 

The evaluation wizard consists of five pages, which are related to the different sequences of a 
system evolution step (except the deletion of the ECA which needs no evaluation): 

• Page 1: Selection of the EECFB which should be verified within a CECA. 
• Page 2: This step is related to the download of the ECA. As first step, the current sys-

tem state is evaluated. Herein the currently active IEC 61499 applications are queried 
from the specified control devices. According to Figure 21 ‘KAPPA 1’ is now avail-
able within the evaluation wizard. The wizard page takes into consideration the overall 
CECA, which needs to be downloaded, and evaluates the requirements of resources. 
Furthermore, the KAPPA vector is enhanced with the CECA, which means that 
‘KAPPA 2’ is created according to Figure 21, the initial situation for the RINIT se-
quence. 

• Page 3: The RINIT sequence is handled within this wizard page. The FBs as well as 
their execution order related to the RINIT sequence are identified. Based on this in-
formation, the properties requirements of resources and dependent operation are evalu-
ated. During the evaluation for dependent operation, the given system state is adapted 
according to the basic reconfiguration services included in the RINIT sequence and 
the initial system state for the RECONF sequence (‘KAPPA 3’ in Figure 21) is cre-
ated. 

• Page 4: Similar to the RINIT sequence this wizard page identifies the FBs and their 
execution order for the RECONF sequence, evaluates the properties requirements of 
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resources and dependent operation, and finally provides the initial system state for the 
RDINIT sequence (‘KAPPA 4’ in Figure 21). 

• Page 5: The last wizard page is devoted to the RDINIT sequence. Again the similar 
actions as already described above for RINIT and RECONF sequence are executed 
within this wizard page. As final step the initial system state for the deletion of the 
ECA is created (‘KAPPA 5’ in Figure 21). 

Each system state, which is generated by the evaluation wizard, is available within the 
engineering environment for documentation purposes. Since the last step, the deletion of the 
ECA, does not need any evaluation, the evaluation wizard does not take this step into account. 

Check for global and local consistency 
The given typical example for DSE does not mention the real-time constrained execution of 
the control application, therefore the evaluation for global and local consistency within the 
preparation phase of the system evolution step is not necessary. But in order to give an 
impression of the effort related to this property, we will describe the evaluation process 
briefly. The evaluation has to be split up into the two sequences within the preparation phase: 
download of the ECA and RINIT sequence. 
For the download of the ECA, the runtime environment is expected to handle the download 
procedure without influences on the control application. But the interrelations between the 
ECA and the control application have to be taken into consideration, as there might be 
additional FBs triggered within the context of the control application. For the above given 
typical control example no additional interrelations between the control application and the 
CECA (especially the EECFB ‘Subtract’) exist. 
The RINIT sequence has to be considered in more detail, as there are new FBs which are 
included into the control application. Figure 46 depicts the situation after the execution of the 
RINIT sequence, yet only the relevant part for the evaluation is presented. The new FBs 
‘SUB_INT_FROM_INTERNAL’ and ‘CHECK_INT_LESS’ as well as their input connec-
tions (marked by bold lines in Figure 46) are added and have to be executed in the same 
context as the control application.  

 
Figure 46: Relevant control application part for the evaluation of global and local consistency 

There are two different event chains within the control application, which are affected by the 
new FBs. The first one is the calculation of the overall application, which is triggered by 
‘TAKT’ now has to additionally execute both new FBs. Secondly a possible interruption of 
the operation by a stop command from the user interface has to be taken into consideration, 
where only the new FB ‘SUB_INT_FROM_INTERNAL’ will be executed. 

• The additional effort within the event chain triggered by ‘TAKT’ starts with the inser-
tion of the input event ‘SUB_INT_FROM_INTERNAL.REQ’. Of course, this event 
will be fetched and the related FB is executed, which again sends an output event in-
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terrelated to ‘CHECK_INT_LESS.REQ’, and finally ends with the call of 
‘CHECK_INT_LESS’. According to Equation 7 the additional time effort within this 
event chain is 
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The first insertion of an event Tentry,1 is very fast because ‘CONV_UINT2INT’ already 
includes one connected input event. Only the additional effort for the second con-
nected input event (see Mandl and Zhang (2008) for more details) needs to be taken 
into consideration. Tentry,2 includes in contrast the overall effort for sending one event 
as well as the latching of one data output. According to Table 6 this time can be calcu-
lated as Tentry,2 = Tentry + TDS,offset + Tsample,INT (the data types BOOL and INT need the 
same time for sampling). 

• For the second event chain, which is triggered by the user interface, the additional 
effort within the control application can be calculated as 
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For the evaluation of global and local consistency of the control application the new time 
consumptions for all event chains within the control device have to be calculated and the 
synthetic utilization Usyn(t) needs to be checked with the boundary given from the scheduling 
theory for the used scheduling algorithm within the control device (see Section 6.1.1). 

Check for dependent operation 
The system integrity characteristic dependent operation aims at the check for the applicability 
of basic reconfiguration services within the ECA. Therefore, the current KAPPA vector needs 
to be available for this evaluation for exactly that moment, when the corresponding FB has to 
be executed. This property has to be checked for the RINIT, the RECONF, and the RDINIT 
sequence, whereas the procedure for this check is the same for each sequence. As starting 
point within the evaluation wizard, the initial system state of each sequence is available. 
The different tasks for the evaluation are: 

• Identification of basic reconfiguration services: Each of the relevant sequences is 
free programmable by the user, therefore it is important to identify the execution order 
for the involved basic reconfiguration services (based on the experiences of the author 
a sequential execution is sufficient). The execution is based on the execution seman-
tics of the runtime environment, which has to be mentioned by the identification algo-
rithm. For each of the identified basic reconfiguration services, the following actions 
have to be performed. 

• Check for basic reconfiguration service type: First of all the type of the evaluated 
basic reconfiguration service needs to be identified. The runtime environment within 
the control device needs to be able to execute this type of service. 

• Check for applicability: The parameters of the basic reconfiguration service need to 
be valid within the current system state. If for instance a new connection should be es-
tablished, the source and destination of this connection need to be available within the 
current system state. Additionally, further requirements need to be fulfilled: source 
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and destination have to be of the same type (e.g. INT) and in case of a data connection 
the destination needs not to be connected. Section 6.2.1 provides a detailed analysis of 
the different IEC 61499 management commands and their dependencies. 

• Update of current system state: The last step for each basic reconfiguration service is 
the application to the current system state (only within the evaluation wizard), in order 
to generate the correct new system state for the evaluation of the next command. 

The evaluation wizard implemented within the εCEDAC engineering tool documents the 
results of the evaluation of the dependent operation property in two different ways. On the 
one hand, the final system state for each sequence is stored as separate project within the 
engineering tool. The current state of the control application is depicted in Appendix G, 
Figure 73 to Figure 75. On the other hand each check of a basic reconfiguration service is 
documented in the status field of each wizard page. Herein the identified basic reconfiguration 
services as well as all checks provided for the sequence of commands are described. The 
output files for these checks are also incorporated in Appendix G, Table 7 to Table 9. 

Check for requirements of resources 
The requirements of resources belong to those properties, which may be changed during the 
execution of a system evolution step. In Section 6.3 especially the FB types and the memory 
consumption have been identified as important properties. The evaluation wizard includes a 
check for both requirements, whereas some limitations have to be mentioned: 

• Type library check: Based on the information about the incorporated basic reconfigu-
ration services within the ECA it is possible to identify the types which are claimed by 
the ECA. The second part of this check concerns the evaluation of the available ele-
ments within the type library. In the evaluation wizard the data included in the de-
scription file of the control device are used. It is also possible to get this data by using 
the QUERY management command directly from the control device. 

• Available memory check: In order to apply the check for sufficient available memory 
within the control device it is necessary to get this data from the control device. The 
demonstration control device does not provide this possibility. Therefore, the evalua-
tion wizard only sums up the necessary memory based on the basic reconfiguration 
services included in the ECA. 

8.1.4 Verification by model checking 
The system integrity characteristics global and local consistency, active references, state 
management, and real-time constrained operation need to be evaluated by using verification 
by model checking for the reconfiguration sequence according to the results presented in 
Section 5.2.2. The procedure for model checking starts with the design of the appropriate 
models, then the formulation of specifications, and at last the verification by executing the 
model checking algorithm. This will be the guideline for the application of the check for 
above mentioned properties within the reconfiguration sequence. 

Design of the system model 
The basic elements of the system model need to represent the configuration of the control 
device, as described in Section 7.1. The top-level view of the system model used for verifica-
tion is given in Appendix G, Figure 76. For the typical control example the control applica-
tion is located within one thread (‘Thread_APP’), as there are no real-time constraints 
mentioned in the application. Furthermore the control application makes use of the timer; 
accordingly the callback function has to be included in to the model (‘TimerTHREAD’). The 
ECA is located within a separate resource of the control device, which is modeled by another 
application thread in the system model (‘Thread_RECONF’). As there are no real-time 
constraints used in the ECA, too, the two threads including IEC 61499 control logic are 
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located on the same priority level. The module ‘Scheduler’ is capable to handle five different 
priority levels, whereas on the lowest priority three different threads may be located. 

Modeling of non-Boolean variables 
The model of the control application is given in Appendix G, Figure 77. As prerequisite for 
the given functionality in the typcial control example it is necessary to provide means for the 
handling of integer variables in NCES. Two possibilities exist for this purpose: the value of 
the integer variable may be represented as a number of tokens within a place or a set of places 
is used to represent the integer value. The first possibility has been chosen in Pang and 
Vyatkin (2007). An unsigned integer value is represented by the number of tokens and models 
for all basic numeric operations as well as comparison are described, whereupon a variable 
and a fixed number are taken into consideration for these operations. The identification of a 
certain value within a place is based on condition arcs with weights according to the value 
which needs to be detected. This fact is problematic for the modeling of the typcial control 
example, as it is necessary to model connections with arbitrary values of integer variables. 
Therefore for each possible value a condition with the appropriate weight would be necessary. 
Furthermore also signed values of integers should be possible. Therefore this work uses a 
representation of non-Boolean variables in a binary format. An integer variable with a range 
of values according to a 16 bit binary format is represented by 32 places. For each bit two 
places are used in order to model the values true and false. Based on this information any 
operation for such a variable can be modeled in the same manner as this is done within any 
microcontroller or binary processing unit. For the typical control example addition and 
subtraction as well as comparison operations were modeled for this kind of representation. As 
a consequence it is not possible to represent an integer data connection by only one condition 
arc. For each data input/output in IEC 61499 32 condition inputs/outputs have to be modeled 
in the NCES representation. These sets of condition inputs/outputs increase the effort for 
modeling, especially without the support for automatic NCES model generation, and result in 
extensive and bulky NCES models. But the complexity does not increase, since any operation 
can be based on well known principles of digital data processing. 

Model of the initial state of the control application before the RECONF sequence 
The model of the control application for the verification of the RECONF sequence has to 
include the initial state for the RECONF sequence. This situation is presented in Figure 73 
and includes apart from the original control application also the FBs 
‘SUB_INT_TO_INTERNAL’ and ‘CHECK_INT_LESS’ as well as their input connections. 
The event and data flow is modeled according to the guidelines presented in Sections 7.4.2 
and 7.4.3. Each input event is assigned to a specific number, and the event dispatcher needs to 
differentiate between each of these numbers. The model of the event dispatcher is capable to 
distinguish 30 different events, which is sufficient for the given control application. As 
mentioned above, the influence of the network was not targeted for this evaluation attempt. In 
order to simulate a certain network behavior, the internal timer functionality is used. There-
fore three different interfaces to the callback function ‘TimerTHREAD’ are part of the model. 
One interface is necessary for the FB ‘TAKT’ which triggers the execution of the control 
application. The other two are used to provide a start and a stop command (which would be 
received from the user interface) in order to model a certain start and stop time for the 
verification process. The necessary NCES modules have been incorporated into the model of 
the FB ‘Start_sub’24. For the evaluation of the DSE this does not have an effect, as the 
                                                 
24 This is only a choice of the author for modeling such a behavior. It would be possible to simply use the means 
provided by NCES to simulate points in time when the FB ‘Start_Sub’ does invoke an output event. In a more 
comprehensive model of the control device, a thread dedicated to the network interface would be included, 
which would introduce external events and the SIFB-ID of the corresponding SIFB into the event dispatcher. By 
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verification will be focused on the time in between the starting and the stopping of the 
calculations within the control application. The second part of the interrelation with the user 
interface, the FB ‘CurrentVal_pub’, is only represented by its execution time. The data 
connection is modeled as storage element, but the condition arcs from this storage element to 
‘CurrentVal_pub’ is neglected for the sake of a better clarity in the NCES representation. As 
this data will not be used in a model of the user interface, this simplification does not have 
any effect on the evaluation of the DSE. 

Model of dynamic reconfiguration within the control application 
The model presented in Appendix G, Figure 77, includes the models for dynamic reconfigura-
tion for the first part of the RECONF sequence which is related to the control logic (see the 
description given above in Section 8.1.2). This part is crucial for the correct behavior of the 
application. The second part is dedicated to the correct representation of data in the user 
interface and will be neglected. The following commands need to be represented: 

• Deletion of the event connection ‘CHECK_INT_GREATER.CNF’ to 
‘E_PERMIT.EI’: The module representing this event connection is of the type man-
aged event connection (see Figure 26) which is initially enabled. 

• Deletion of the Boolean data connection ‘CHECK_INT_GREATER.Result’ to 
‘E_PERMIT.PERMIT’: The module representing this data connection is of the type 
managed data connection (see Figure 27) which is initially enabled. 

• Reading of the internal variable within ‘ADD_INT_TO_INTERNAL’: The interface 
of the NCES model of this FB is enhanced by condition outputs connected to the 
places representing the internal variable. At any time the current value of the internal 
variable can be used. 

• Writing of the internal variable within ‘SUB_INT_FROM_INTERNAL’: The inter-
nals of the NCES model of the FB is enhanced in order to provide the possibility to set 
the value of the internal variable by an additional source. This source is the enhanced 
interface of the FB, which provides condition inputs for another integer variable. Fur-
thermore an input event for setting the internal variable to this value is used. 

• Creation of the Boolean data connection ‘CHECK_INT_LESS.Result’ to 
‘E_PERMIT.PERMIT’: On the one hand the module representing this data connec-
tion is of the type managed data connection (see Figure 27) which is initially disabled. 
But another enhancement is necessary, because the old data connection and the new 
data connection are connected to the same data input. Within NCES it is not possible 
to connect several condition outputs to the same condition input (similar to 
IEC 61499), because the value of the condition input would not be specified unambi-
guously. Due to the procedure defined in the ECA (which has been already proved to 
be correct in the system integrity characteristic dependent operation) there is always 
only one data connection active at the same time. An additional module only has to 
copy the currently active value of the data connection to the condition outputs which 
are connected to ‘E_PERMIT.PERMIT’. 

• Creation of the event connection ‘CHECK_INT_LESS.CNF’ to ‘E_PERMIT.EI’: 
In contrast to the above mentioned data connection, it is sufficient to model this event 
connection by a module which belongs to the type of managed data connection (see 
Figure 26) which is initially disabled. Only those event connections which are enabled 
will insert the input event to the event dispatcher. 

                                                                                                                                                         
using the timer for simulating these external events, the procedure of calling the event dispatcher is the same as 
with a separate thread for the network interface. 
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Each of the models for dynamic reconfiguration (except the reading of the internal variable) is 
triggered by an event signal, which has to be provided by the model of the ECA. For the 
READ command, the time when the basic reconfiguration service latches the internal variable 
determines the value which will be read. 

Model of the RECONF sequence within the ECA 
The ECA is modeled within the module ‘Thread_RECONF’, which is depicted in Appen-
dix G, Figure 78. As the verification by model checking is restricted to the reconfiguration 
sequence, only the relevant parts are included in the NCES model. Each FB representing a 
basic reconfiguration service is modeled as discussed in Section 7.4.3 for any IEC 61499 FB, 
but with the difference that an event output for triggering the corresponding dynamic recon-
figuration is added (except for the READ command). The transition of the state from 
‘ADD_INT_TO_INTERNAL’ to ‘SUB_INT_FROM_INTERNAL’ should be done within 
the ECA, but for the sake of clearness this is modeled directly by interconnecting the output 
conditions representing the internal variable of ‘ADD_INT_TO_INTERNAL’ with the 
condition inputs dedicated for writing the internal variable of ‘SUB_INT_FROM INTER-
NAL’25. Only the point in time when the write command happens is provided by the execu-
tion of the ECA. As trigger for the RECONF sequence we will use again the timer of the 
control device. This trigger may vary in order to include different system behaviors. For a 
more detailed analysis it can be represented by a general event occurrence behavior as already 
described in Section 7.6.3. 

Specifications and evaluation 
The following sections will provide an overview on the different specifications which have to 
be considered for the check of the reconfiguration sequence. Several possibilities exist for this 
evaluation according to the used tool framework Visual Verifier (ViVe) [61] (see also 
Section C.3): 

• Use of the internal model checker: This model checker only enables specifications 
based on first order predicates (no temporal logic). In addition it is capable to provide 
the set of states which fulfills a given property (e.g., all state of the reachability graph 
where a specific transition fires). 

• Use of SESA: The model checker SESA may be used to check specifications in tem-
poral logic according to CTL, which also includes the possibility to use time intervals 
for the temporal operators X, F, and U. 

• Visual verification: Based on the timing diagrams for paths within the reachability 
graph it is possible to visually verify if certain conditions are fulfilled by simply dis-
playing the relevant places and transitions. 

It has to be noted that during the evaluation with the given tool framework a limiting behavior 
of the model checkers has been found. Due to the comprehensive modeling approach, the 
number of states and transitions within the models (6672 states and 10563 transitions for the 
typical control example as described above) is rather high. On the other hand also the use of 
discrete time increases the number of states in the reachability graph. For a very accurate 
model of the system a time step of 0,1 µs is a necessary choice for one NCES time unit, but 
on the other hand the total length that needs to be taken into consideration depends on the 
control application. For the typical control example at least three cycles of computation 
should be incorporated, which results at least in a length of 0,9 s and 0,9 million states in the 
reachability graph for only one path within the reachability graph (no idle time of the 
                                                 
25 It has to be mentioned that this simplification neglects the latching of the internal variable which is read by the 
ECA. If also real-time critical behavior should be evaluated, the value of the internal variable has to be latched 
by the basic reconfiguration service. 
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microcontroller assumed), and without those states which are based on the modeled function-
ality). This big amount of states in the reachability graph, where each state consumes a not 
inconsiderable amount of memory due to the big amount of states and transitions in the 
model, results in the requirement that the model checking tool needs a very big amount of 
memory. This is not the case for the current version of ViVe and SESA, therefore the 
experiments with the typical example have to be restricted to a manageable volume of states 
for the model checking tool. The following restrictions have been formulated for the typical 
control example: 

• Non-consideration of exact real-time behavior: The principle temporal order of ac-
tions has to be incorporated in the system model, but the exact time delay of actions 
will be substituted by virtual values in order to reduce the number of states in the 
reachability graph. 

• Single execution path: The use of non-determinism in the system model provides the 
possibility to include a high variety of system behavior into the model checking proc-
ess, which is one of the main advantages of the evaluation by model checking. But this 
also increases the reachability graph to a high extent; therefore we will consider only 
one single path within the system model. 

In order to provide the verification of the given typical control example, we will use the 
internal model checker of the tool framework together with the possibility for visual verifica-
tion. The reachability graph includes 11116 states when using the option “Maximum set of 
spontaneous” as firing rule (see Section C.3 for details about this setting). By using the 
following checks the correctness of the DSE has been proven. Even if we have restricted our 
considerations to a very limited model, we will describe the evaluation process in a compre-
hensive way. 

Global and local consistency 
The check for global and local consistency aims at the verification of the specifications of the 
control application (without taking care of the DSE). According to Hanisch (2004) we have to 
distinguish plant, process, and product specifications. As our typical control example does not 
use a plant and accordingly does not produce anything that may be specified, we only have 
process specifications which have to be checked. Different examples for process specifica-
tions related to the typcial control example are: 

• “If the user interface sends a start command, the FB ‘TAKT’ has to send at least one 
output event some time afterwards.” This property may be formulated based on the re-
sponse property pattern (see Section E.2.2, Equation 57) as 

AG ( p1251 Ø AF ( p1267 ), 
where  p1251 is marked during the issue of ‘E_SWITCH.EO1’ and 
 p1267 is marked during the issue of ‘TAKT.EO’. 

(19) 
 
 

• “If the user interface sends a stop command, the FB ‘TAKT’ has to be set to its idle 
state some time afterwards.” This property may be formulated in a similar manner 
based on the response property pattern as 

AG ( p1245 Ø AF ( p1254 ), 
where  p1245 is marked during the issue of ‘E_SWITCH.EO0’ and 
 p1254 marks the idle state of ‘TAKT’. 

(20) 
 
 

• “Each start of FB ‘TAKT’ has to be followed either by a regular stop due to a success-
ful evaluation of the stop criterion (FB ‘E_PERMIT’ sends an output event) or a stop 
command from the user interface.” Again the response property pattern may be used 
to formulate this property as 
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AG ( p1256 Ø AF ( p3455 w p1245 ), 
where  p1256 marks the active state of ‘TASK’, 
 p3455 is marked during the issue of ‘E_PERMIT.EO’, and 
 p1245 is marked during the issue of ‘E_SWITCH.EO0’. 

(21) 
 
 
 

The normal operation of the typical control example has been evaluated by model checking 
based on the model given in Appendix G, Figure 79, which includes the same models but no 
ECA, by visual verification. For the model including DSE this has been done by visual 
verification, too. 

Active references 
Within the typical control example only references to the underlying services timer function-
ality and communication interface are included. As the DSE is not related to these elements, 
no special consideration of this system integrity characteristic is necessary. If these elements 
would have been involved, a check for the properties of the plant, product, or process would 
be sufficient, which has been provided already above. 

State management 
Within the control application the internal state of FB ‘ADD_INT_TO_INTERNAL’ has to 
be transferred to FB ‘SUB_INT_FROM_INTERNAL’ without any additional calculations (as 
this may be necessary for changes related for instance to a closed-loop controller). In general 
the transition management policy may be evaluated according to the influences on the plant. 
But as the typcial control example does not use a model of the plant, the evaluation of the 
system integrity characteristic state management has to be focused on the control application 
itself. The following criteria may be used: 

• “After the execution of the ECA the internal variables of the two FBs 
‘ADD_INT_TO_INTERNAL’ and ‘SUB_INT_FROM_INTERNAL’ need to have the 
same value”. The point in time when this criterion has to be fulfilled should be exactly 
after the execution of the corresponding basic reconfiguration service, in detail the fin-
ishing of the WRITE command within the ECA. A possible formulation would be 

AG ( p6436 Ø AX (( p2421 = p3593 ) v … v ( p2452 = p3624 )), 
whereas  p6436 is marked during the issue of ‘SET_FBINTVAR_INTER
 NAL.CNF’, p2421 to p2452 represent the internal variable  
 within ‘ADD_INT_TO_INTERNAL’, and 
 p3593 to p3624 represent the internal variable within 
 ‘SUB_INT_FROM_INTENRAL’. 

(22) 
 
 
 
 
 

The property has been proved by visual verification. 

Real-time constrained operation 
The execution of the control application as well as the ECA in time is essential for correct-
ness. In the given typical control example we have not included concrete real-time parameters 
in order to limit the number of states in the reachability graph. But the temporal order of 
commands was introduced by virtual values. An exact evaluation of the system integrity 
characteristic real-time constrained operation thus does not lead to the desired results. 
Nevertheless, a list of possible specifications regarding this property should be presented: 

• “The execution of the calculations within the control application has to be finished 
before a new trigger occurs.” This property would be part of the global and local con-
sistency properties if a real-time constrained execution would have been modeled with 
the event source ‘TAKT.EO’. This property may be formulated based on the absence 
pattern (see Section E.1.1, Equation 35) as  
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AG (p1267 v Ÿ p3376 Ø A [ ( Ÿ p1257 w AG ( Ÿ p3376 )) W p3376 ] ), 
where  p1267, which is marked during the issue of ‘TAKT.EO’,  
 represents the starting point of the considered time frame, 
 p3376, which marks the triggering of ‘E_PERMIT’ with the 
 input event ‘EI’, represents the end point of the considered 
 time frame, and 
 p1257 marks the triggering of ‘TAKT’ by the timer. 

(23) 
 
 
 
 
 
 

This property is not very sharp because the end of the execution differs according to 
the current value of the internal variable. If the result of the evaluation within 
‘CHECK_INT_GREATER’ or ‘CHECK_INT_LESS’ is true, FB ‘E_PERMIT’ will 
send an output event in order to stop ‘TAKT’. But if this is not the case, the execution 
will stop at ‘E_PERMIT’. 

• “The execution of the event chain triggered by ‘TAKT.EO’ has to be finished in a 
certain amount of time”. Herein the same problem as described for the previous prop-
erty occurs, a possible formulation would be (see also Equation 14) 

AG ( p1267 Ø ŸEF[0, a]( p3376 )), 
where  p1267 is marked during the issue of ‘TAKT.EO’, 
 p3376 marks the triggering of ‘E_PERMIT’, and 
 α represents the end of the time frame, e.g. 250000 as 
 equivalent to 250 ms (0,1 µs = 1 NCES time step). 

(24) 
 
 
 
 

• “The execution of the RECONF sequence within the ECA has to happen within a 
given time frame.” This property may be formulated similar to Equation 24 as 

AG ( p5962 Ø ŸEF[0, a]( p6565 )), 
where  p5962 marks the insertion of the event  
 ‘DEL_CONN_CNFEI.REQ’ to the event dispatcher, which is 
 the starting point for the execution of the RECONF sequence, 
 p6565 marks the end of execution of the FB  
 ‘CREATE_CONN_CNFEI’, the last FB of the modeled  
 RECONF sequence, and 
 α represents the end of the time frame, e.g. 100000 as 
 equivalent to 100 ms (0,1 µs = 1 NCES time step). 

(25) 
 
 
 
 
 
 
 
 

Further improvements of the modeling precision 
The above given description of the verification process for the reconfiguration sequence of the 
typical control example has been limited to only one single execution path within the 
reachability graph. Figure 47 depicts the execution of the different threads within the control 
device in the first three time diagrams. Every millisecond the callback function for the timer 
(‘TimerTHREAD’) is triggered and evaluates the actually registered timer FBs. If the counter 
value for the FB ‘TAKT’ has elapsed, the SIFB-ID of ‘TAKT’ is put into the event dispatcher 
of the thread corresponding to the control application (‘Thread_APP’), which takes place 
every 300 ms as configured in Figure 41. The trigger for the reconfiguration sequence may be 
provided within any time, as there is no special event dedicated as starting point. Within the 
above described model, the reconfiguration sequence is executed between two execution 
triggers for the control application. 
In order to improve the quality of the verification process, several aspects may be considered 
in more detail. For instance, the trigger for the reconfiguration sequence may vary according 
to its prerequisites: It may happen at any time during the execution of the control application, 
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because it is triggered via the user interface. Furthermore any other threads which may belong 
to the control device (Figure 47 mentions for instance additional programs in the forth timing 
diagram) may vary in their occurrence (see the general behavior patterns in Section 7.5) as 
well as the time consumption of the related actions. All these situations and their combina-
tions can be incorporated into the system model for the verification, which will be used to 
check whether the reconfiguration sequence will be executed successfully or not. This 
situation matches with the introductory comments described in Section 1.1, whereas there is a 
high variety of situations which has to be taken into consideration for deciding whether a DSE 
may be successful or not. The above described modeling approach provides the basis to 
incorporate this variety into the system model and therefore represents a basis for a well-
grounded decision. 

 
Figure 47: Overview on the execution of threads in the typical control example 

8.2 Experiments with selected architectural elements 
In order to give a more detailed description of the chosen modeling approach for the system 
architecture of a control device, we will present two examples of special situations that are 
considered without DSE. As mentioned within the last paragraph, the system model incorpo-
rates a high variety of possible system behavior. We will focus in the following two sections 
on the event dispatcher as the critical section as well as the model of a linear axis as the plant. 

8.2.1 Event dispatcher as critical section 
A very important concept within the implementation of R3E is the event dispatcher and the 
insertion of events from different sources (FBs within the thread as well as external event 
sources). Therefore, the area of the event dispatcher has to be handled as a critical section 
within R3E (see also Appendix B or Section 7.4.2). In order to verify the system behavior in 
the case of access to this critical section a simple experiment taking this aspect into considera-
tion will be presented here. This example has been presented also in Sünder et al. (2008). 
The control application for this experiment is depicted in Figure 48b. There are four event 
sources included in this small FB network: the ‘E_RESTART’ FB which provides the initial 
event for the application; the timed FBs ‘E_CYCLE’ and ‘E_DELAY’, and the ‘SUB-
SCRIBE’ FB. As there are no real-time constraints mentioned in the application, the whole 
application is mapped onto one single thread. 
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The computational architecture of the control device is provided in a simplified schematic in 
Figure 48a. The IEC 61499 control application is located in ‘THREAD3’ on the lowest 
priority of the operating system. There are two external events, which can be recognized by 
the control device: the timer interrupt and the network interrupt. Both are implemented as 
callback functions and are located on the highest priorities of the scheduler. Additionally, we 
assume two further threads that may be active on the control device. They are located in 
between of the external events and the IEC 61499 application in ‘THREAD1’ and 
‘THREAD2’. The behavior of these two threads is modeled in a very abstract way by a 
typical execution time and activation behavior. We will consider especially the event dis-
patcher within ‘THREAD3’, which is interrelated with both external event source timer and 
network according to the control application. 

a)  

b)  

Figure 48: Example configuration a) of the control device and b) the control application in 'THREAD3' 

Figure 49 depicts a shortened form of a path in the generated reachability graph. We have 
again mentioned only virtual values for the computation time of actions within the control 
device, but the temporal order of these actions is correct26. The path starts in the state when 
‘FB1’ is executed because the timer interface has triggered the FB ‘E_CYCLE’. At this time 
also the external event network becomes active and interrupts the execution of ‘THREAD3’. 
Accordingly, the SIFB-ID for the ‘SUBSCRIBER’ FB is put into the event dispatcher. 
Exactly at the same time the event dispatcher is already in use (event ‘REQ’ of ‘FB2’ is put 
into the queue), ‘TREAD3’ is executed in the context of the network interrupt as long as the 
event dispatcher is free again. After the execution of ‘FB1’ has been finished, ‘FB2’, ‘SUB’ 
and then ‘FB3’ are executed. This is a notable result, since ‘FB2’ and ‘FB3’ are triggered by 
the same event – one can see that our NCES model correctly implements the sequential 
execution model of R3E. During the execution of ‘FB3’, the timer interrupt has to be exe-
cuted, but as no timed FB is ready to be triggered, this does not influence the execution of 
‘THREAD3’. The event dispatcher includes now the input events ‘REQ’ from ‘FB4’, ‘FB3’, 
‘FB5’ and ‘FB6’. During the execution of ‘FB6’, the timer interrupt occurs again and disrupts 
the execution of ‘THREAD3’. 

                                                 
26 The time values in Figure 49 have to be considered as simplified values from different measurements with the 
demonstration control device. 
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Figure 49: Excerpt of a path within the reachability graph of the control application within 'THREAD3' 

8.2.2 Modeling the plant behavior 
A very important part of the system model is the behavior of the plant which needs to be 
incorporated into the models of the control device. As an example for a plant model we will 
use a linear axis, which has been described in contrast to the application of DSE in 
Hanni (2007). In detail, the exchange of the closed-loop position controller was demonstrated 
in this thesis, which has been supervised by the author. Accordingly, the formal model of the 
plant has to describe the temporal behaviour of the movement of the axis. Herein appropriate 
descriptions, which usually already exist for the design of the closed-loop control circuit, need 
to be modeled by means of NCES. The linear axis used for this automation object can be 
described by the transfer function 

824 102,51066,41
1)( −− ⋅⋅+⋅⋅+

=
ss

sG , (26) 

which uses the current reference value as input and the force applied to the linear axis as 
output. As we are interested especially at the position control of the linear axis, we are able to 
simplify the overall model architecture by neglecting the details of the velocity control 
application. The model of the plant is enhanced by the velocity closed-loop control and has 
the velocity reference value as input and the current position of the axis as output. The 
introduction of this behavior into the NCES model can be achieved by a transformation into 
discrete time, as it is usual for sampled-data control systems. 
Appendix F, Figure 80, depicts the NCES model used for testing the behavior of the plant 
model together with the closed-loop position control27. The model of the control device itself 
is neglected, and based on a clock which is used for calculating the current value of the plant 
model also the position control is calculated. The representation of the non-Boolean values for 
velocity and position of the linear axis has been chosen according to the description given 
above, as set of places. The NCES model of the position closed-loop circuit provides the same 
step response which has been simulated by using an appropriate model in the tool Matlab 
simulink. This result is depicted in Figure 50. 

                                                 
27 The use of a simple model of the control device, including only the timer callback function as well as one 
thread for the control application (position closed-loop control) already exceeds the memory limits of the tool 
framework. 
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Figure 50: Result of the NCES model of a position closed-loop control 

8.3 Summary 
The proposed methodology for the modeling and evaluation of DSE has been demonstrated 
by using a typical control example within this chapter. Therefore, several preconditions have 
been described as starting point for the demonstration: 

• The control application, which includes a simple integration of a given value. This 
value changes every cycle of the execution. This is a usual situation for any closed-
loop control circuit. 

• An evolution scenario, which includes the exchange of the addition of the given value 
by a subtraction, whereas also transition management has to be taken into considera-
tion for the preservation of the integration variable. The same procedure has to be ap-
plied for the exchange of a controller or a filter in the feedback loop of a closed-loop 
control circuit. 

• The representation of the demonstration control device by its KAPPA vector, which 
has been provided as a FDCML-based description file. 

• The formal models for the different parts of the control device as well as the control 
application, whereas special attention has been paid to the representation of integer 
variables within NCES. 

The evaluation of all system integrity characteristics has been described for the given typical 
control example. The KAPPA-based calculations have been incorporated into an evaluation 
wizard within the εCEDAC engineering tool. The verification by model checking has been 
based on a tool framework without the automatic generation of models. Herein as important 
requirement for the model checking tool the high amout of necessary memory has been 
pointed out. The given tool framework was not capable to handle both, the detailed models of 
the control device and the representation of real-time behavior with a fine grain time scale. 
Therefore, the evaluation results with respect to real-time behavior have only principal 
character. Based on the system model a high variety of scenarios for the execution of DSE 
can be taken into consideration (especially the various combinations of these scenarios) which 
will provide a significant basis for the evaluation process. 
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The described typical example of a DSE has been implemented and executed on the given 
demonstration control device in the Odo Struger Laboratory at ACIN. The successful 
evaluation of the DSE has been proved by its execution on the physical hardware, which has 
been applied successfully, too. Further different failure scenarios have been occurred during 
the engineering of the demonstration example, which have been detected during the evalua-
tion process. For instance, type mismatch of FB instance names within the ECA have been 
detected during the check for dependent operation. Although the set of test scenarios has been 
very small, the demonstration example shows that the successful evaluation corresponds with 
the successful execution of a DSE. Further tests need to be applied in order to prove this new 
methodology in more detail. 
In order to give also an impression of details within the system model of the control device, 
further experiments regarding the access to the critical section event dispatcher and the plant 
model of a linear axis are taken into consideration. 
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9 Discussion of Industrial Application 

Chapter 9 

Discussion of Industrial Application 

This thesis proposes a new methodology for modeling DSE within an ACS and provides the 
evaluation process in order to check that the system will not produce disturbances to the 
process under control or even break down. A crucial point for DSE is the application in 
industrial practice, whereupon especially the ACS customer has to be taken into consideration 
(see also the introductory comments in Chapter 1). 
We will split up our considerations into two parts, which are motivated by the following 
questions: 

• How can the additional effort necessary for DSE be introduced without enormous 
endeavors? 

• What kind of engineering can be established based on the possibility to use DSE in 
ACSs? 

The first question is highly related to the kind of knowledge, which the engineers have within 
the different parties of an ACS. If an ACS customer has to create the formal description of 
e.g. the operating system, which is part of the control devices within the ACS, this methodol-
ogy will not be used in industrial practice, because the additional effort as well as the 
principal feasibility is ignored. Therefore, we will discuss the interrelation of DSE and its 
evaluation in regard with the general structure and roles of vendors in ACSs in Section 9.1. 
The second question aims at a more general consideration of the possibilities provided by 
DSE. We will consider a methodology well-known in computer science, which takes continu-
ous changes and early operating software as basis for the engineering process in Section 9.2. 

9.1 Value-added chain for total evaluation 
DSE provides the capability to keep a plant in operation even if changes have to be applied. 
There is no need for often highly expensive ramp down and up procedures within the plant, 
because the plant will stay operational all the time. But these benefits have to be paid with 
additional effort in the engineering process. On the one hand the ACS needs to have the 
capability to model and execute these changes during operation. And of course it is on the 
other hand of eminent importance to check if a system evolution step will not produce errors, 
which may create even more costs than the ramp down and up procedure. 
In order to discuss the responsibilities for the establishment of the basis for the evaluation 
process, the exhaustive description of the different parts of the control device and its integra-
tion into the engineering cycle, we will recall the general structure and roles of vendors in 
ACSs, which has been already introduced in Section 3.1 based on Vyatkin et al. (2005). The 
basic idea of this so-called value-added chain is that each of the companies provides its 
specific expertise to the ACS. Of course, the added value represents the basis for the business 
model of these companies, but on the other hand also a highly efficient engineering cycle is 
possible based on this structure. The company, which is most related to a topic, provides the 
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solution for problems related to this topic. For instance, the component vendors provide the 
software for the control of their components, which are typically actuators and sensors. The 
machine vendor has its special expertise in the overall machine and the concepts for its 
operation, and does not need to take care about the control for each single sensor or actuator. 
This model holds also for the overall industrial enterprise, which coordinates different 
systems provided by system integrators (see also Figure 3). 
If we put this structure as basis for the question: “How can the additional effort necessary for 
DSE be introduced without enormous endeavors?”, the answer is simple. Those companies 
within an ACS, which are closely related to the necessary information for the evaluation of 
DSE, will incorporate this effort into their business activities. Figure 51 depicts this value-
added chain for total evaluation, whereupon the effort for the different roles in an ACS is 
described briefly. The ACS customers, which are part of the roles component vendor, 
machine vendor, system integrator, and industrial enterprise, have to provide only the 
information which is related to their special expertise: 

• Description of the software functionality: Each of the companies within the different 
levels adds functionality to the overall ACS. This functionality is represented in soft-
ware and hardware behavior. The software functionality has to be described according 
to the rules given by the architecture of the used control device. According to Figure 
24 especially the control and other applications, additional tasks, and their parameteri-
zation with real-time behavior have to be provided in terms of formal models and en-
hancements to the KAPPA vector of the related control devices. These companies cre-
ate the software functionality; correspondingly they also have the responsibility to 
provide the necessary information for the evaluation process about these parts. 

 
Figure 51: The DSE expertise of the different roles in ACS: the value-added chain for total evaluation 

• Description of the behavior: Next to the pure software functionality also the behavior 
of the component, machine, system or even enterprise has to be described as input for 
the evaluation of DSE. Herein especially the hardware in terms of parts of the plant is 
taken into consideration together with the related plant behavior. For instance, the 
model of the linear axis described in Section 8.2.2 has to be provided by a component 
vendor. A machine vendor may use these models and adds the behavior of the ma-
chine which is in conjunction with the linear axis.  

In order to efficiently use such a modular engineering approach for the description of 
components it is necessary to standardize the interfaces between the different components. As 
an example the interface for different tasks within the formal model of the operation system 
has been defined in Section 7.4.1, so different companies may put together their software 
functionalities in terms of tasks without taking care of each other (except interrelations exist 
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between tasks, as for instance in the case of external event sources, which again may be 
standardized). 

The special role of tool, controller, and service vendors 
The main part of the control device description for the evaluation of and support for DSE has 
to be provided by tool vendors, controller vendors and service vendors. They take the central 
role within the application of this new methodology in industrial practice. Their responsibili-
ties can be summarized as follows: 

• Engineering tool support for modeling DSE: The basic prerequisite for DSE is an 
engineering tool that provides this new engineering methodology. The general de-
scription of the concept for modeling DSE has been given in Chapter 4. Next to the 
basic capability to model ECAs the tool support is one of the most important aspects 
for the acceptance by ACS customers. The detailed information represented in the 
KAPPA vector of the system can be used as basis for enhanced engineering support 
for DSE as well as modeling of control applications, e.g., automatic communication 
configuration, provision of template libraries, and support for the selection of the most 
appropriate template for a given change within the control application. 

• Engineering tool support for the evaluation of DSE: Next to the overall engineering 
cycle for DSE especially the integration of the evaluation process plays an important 
role. The evaluation of properties for both KAPPA-based calculations and model-
checking should be available in the same environment as the modeling of a system 
evolution step. For instance, the specification of properties may be enabled in terms of 
the programming language, e.g. events and data of IEC 61499 FBs. 

• Operating system description: The exhaustive description of the operating system 
belongs to the provider of the RTOS. Herein next to models for the formal description 
of the RTOS also the basics for the KAPPA-based calculations concerning scheduling 
bounds, parameterization, and memory management have to be part of this descrip-
tion. 

• Runtime environment description: Similar to the operating system the exact behavior 
description of the concepts implemented in the runtime environment regarding to the 
execution and dynamic reconfiguration of control logic need to be provided by the 
company who sells the runtime environment (in most cases this is the same company 
which provides also the engineering tool). 

• Control device description: The control device is created from the different architec-
tural elements as for instance the operating system or the runtime environment. The 
overall description of these elements, which have to be parameterized and enhanced 
according to the special configuration of the control device, has to be provided as a 
description file. The engineering tool should be capable to handle these type descrip-
tions of the control device and utilize the information in the KAPPA vector, which in-
cludes the concrete instances of the different control devices. 

As a unifying element for the different elements and companies the engineering tool acts as 
common basis. There will be companies who provide single parts that are composed to 
overall descriptions by other companies (e.g., the operating system vendor and the control 
device vendor), which is related to the development of the basic infrastructure of ACSs. And 
on the other hand there will be companies utilizing the given information in order to design 
more complex ACSs, e.g. the component and machine vendors. These companies are the 
applicants of ACS technology. Based on these two different viewpoints within a system, the 
occurrence of the engineering environment and the support of the engineering tool may differ. 
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9.2 Automation Extreme Programming 
The possibility of keeping the system always running with the flexibility to adapt the system’s 
functionality at any time is a big advantage of DSE. In order to utilize this advantage it is 
necessary to apply this new methodology according to certain rules, otherwise the system may 
become unmanageable (see also the discussion about software evolution in Section 3.4). 
From the field of computer science many different concepts and paradigms for software 
development have been proposed. One of these concepts is eXtreme Programming (XP), 
which concentrates on a highly flexible design flow and changes of program functionality at 
any time in the engineering cycle. But it is not intended for applying changes during opera-
tion. Based on the principles of XP and the capabilities of DSE, we will develop a new 
paradigm for system design in ACSs. 

Extreme programming 
XP was developed by Kent Beck and does not introduce new concepts of software design. It 
represents a summary of common sense principles of software development, trying to 
strengthen their individual benefits on the one hand and to diminish the drawbacks by a 
compensation with capabilities of other principles on the other hand. A comprehensive 
introduction to XP is provided in Beck (2000). The different practices summarized within XP 
are listed in Beck (2000, Chapter 10) in the following way: 

• “The planning game—Quickly determine the scope of the next release by combining 
business priorities and technical estimates. As reality overtakes the plan, update the 
plan.” 

• “Small releases—Put a simple system into production quickly, then release new ver-
sions on a very short cycle.” 

• “Metaphor—Guide all development with a simple shared story of how the whole 
system works.” 

• “Simple design—The system should be designed as simple as possible at any given 
moment. Extra complexity is removed as soon as it is discovered.” 

• “Testing—Programmers continually write unit tests, which must run flawlessly for 
development to continue. Customers write tests demonstrating that features are fin-
ished.” 

• “Refactoring—Programmers restructure the system without changing its behavior to 
remove duplication, improve communication, simplify, and add flexibility.” 

• “Pair programming—All production code is written with two programmers at one 
machine.” 

• “Collective ownership—Anyone can change any code anywhere in the system at any 
time.” 

• “Continuous integration—Integrate and build the system many times a day, every 
time a task is completed.” 

• “40-hour week—Work no more than 40 hours a week as a rule. Never work overtime 
a second week in a row.” 

• “On-site customer—Include a real, live user on the team, available full-time to answer 
questions.” 

• “Coding standards—Programmers write all code in accordance with rules emphasiz-
ing communication through the code.” 

As a summary, “XP is a lightweight methodology for small-to-medium-sized teams develop-
ing software in the face of vague or rapidly changing requirements” (Beck, 2000, Preface). 
Change is a common element within the methodology. As soon as e.g. simplification is 
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possible, the corresponding part of the software will be changed. This has to be considered 
also from the economical point of view, as typically the cost of changing a program is 
expected to rise exponentially over time (Figure 52, upper part). As a consequence of this 
schematic, changes will be applied only in the early development phase because of the high 
costs in the later ones. XP expects a very different schematic for the cost of change, as 
depicted in the lower part of Figure 52. The cost of change rises much slower over time, 
eventually reaching an asymptote. “If the cost of change rose slowly over time, you would act 
completely different from how you do under the assumption that costs rise exponentially. You 
would make big decisions as late in the process as possible, to defer the cost of making the 
decisions and to have the greatest possible chance that they would be right. You would only 
implement what you had to, in hopes that the needs you anticipate for tomorrow wouldn’t 
come true. You would introduce elements to the design only as they simplified existing code 
or made writing the next bit of code simpler.” (Beck, 2000, Chapter 5). The different practices 
summarized in XP make this vision possible. 

 
Figure 52: Cost of change in classical software project (top) and as premises of XP (bottom), 

Beck (2000, Figures 1 and 3) 

Automation extreme programming 
If we consider the typical engineering practice in ACSs, there seems to be only little similari-
ties with software development known from computer science. Apart from completely 
different programming languages especially the interaction with real hardware is the most 
important aspect that has to be taken into account in ACSs. The functionality is dictated by 
the plant and its hardware capabilities; the control logic is responsible to keep the process 
under control. Of course, the software becomes an even more important part of the overall 
system, as for instance depicted in Bouyssounouse and Sifakis (2005, Section 28.2) for the 
mechatronics industry. Changes to the control application and also the hardware of the plant 
are related to high costs since the plant has to be stopped during the application of these 
changes usually. Each stop has to be scheduled and is often related to a significant time 
consumption for ramping down and up the plant. 
The methodology of DSE changes the general assumption for the engineering of ACSs: 
changes to the system are applied during operation of the plant and (in the best case) with no 
disturbances to the process under control. The main hindering reason, high costs related to 
changes to the system, are neglected since there is no need to stop the operation of the plant. 
As an extension to pure dynamic reconfiguration, DSE incorporates also hardware into the 
scope of changes. The engineering cycle provides a clear guideline as well as a methodology 
for the evaluation of these changes. But the overall engineering cycle of the system design has 
to be adapted to these new possibilities, too. For this reason, the practices of XP may be used 
as basis for a new kind of engineering paradigm, the so-called Automation eXtreme Pro-
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gramming (AXP). The following aspects of XP have to be adapted (all other practices should 
be used, too): 

• Small releases—Due to the possibility to apply changes at any time, the simplest ver-
sion of a system can be the starting point for operation. Of course, due to the interrela-
tion of hardware and software the volume of the first operating plant highly depends 
on the kind of process under control, but it is possible that also the hardware itself may 
be changed (and enhanced up to the final configuration) during operation. Typically 
any plant will be optimized to a high extend during the first phase of operation. The 
practice of small releases brings the engineer to think of the most important function-
alities at first, receiving feedback from its operation already before all details of the 
plant (hardware and software) are designed. Therefore, optimization is done naturally 
during the development of the system by establishing the final configuration based on 
small releases during operation. 

• Continuous integration—Based on the engineering cycle for DSE each change of the 
system functionality will be applied immediately to the overall system. 

• Simple design and refactoring—There is no need to think about highly sophisticated 
functionalities until the point in time when this functionality should be incorporated in 
the next release. Therefore, the design will be kept as simple as possible. In addition, 
feedback from the operating system is available during the whole engineering process. 
The optimization of the plant is already part of the engineering process instead of an 
extra part afterwards. This feedback has to be used to reduce unnecessary complexity 
within the plant. 

• Testing—For software development the impact of testing is very high since in most 
cases it is simple to execute these tests automatically. For ACS the interrelation with 
hardware makes testing more complex or even not possible without information on the 
hardware behavior. Anyway it is important to follow the main idea of testing: describe 
the proposed functionality before starting programming. For DSE in addition it is nec-
essary to define the disturbances to the system which should be neglected during the 
execution of a system evolution step. The scope for testing and the specification of 
tests will be enhanced: from testing of functionality to a definition of properties for the 
plant under operation as well as the system evolution steps. According to the engineer-
ing cycle for DSE, testing is necessary for both, the proposed new system state and the 
ECA. 

By the use of this new methodology for the overall system design, the sketch for the engineer-
ing of ACSs with DSE depicted in Figure 9 gets more substance and clear guidelines for its 
application. AXP clearly states that the first version of the plant, which will be put in opera-
tion, is the simplest version with reduced functionality. Only the most important features will 
be part of this first version. Any further steps towards more functionality and the final version 
of the plant, the single releases, will be planned incorporating both the new system state and 
the ECA in order to reach this new state. AXP provides guidelines about the volume of 
changes and the procedure to define the priorities of changes. By evolving the plant from this 
very simple initial state to the fully functional final state of the plant (whereas it has to be 
stated that the evolution will take place over the whole life cycle of the plant), the total 
engineering time should be decreased to a large extent. Additionally, since the cost of change 
does not rise exponentially, the overall system costs will be low, too. Adaptive manufacturing 
becomes the normal situation, as already the initial engineering of the plant is based on the 
principle “change during operation at low costs”. 
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9.3 Summary 
The acceptance in industrial practice is of crucial importance for new concepts in ACSs. We 
have considered two different aspects for the industrial application of DSE. 
The provision of the necessary information concerning all elements within the ACS, the 
control devices, the plant, and the internals of each architectural element imposes additional 
effort to the engineering process. According to the role of the different companies within 
ACSs, a clear relation of responsibilities for the different aspects of descriptions can be 
established. As main guideline, those parties which are concerned with a topic also have to 
provide the necessary additional information for the DSE methodology. 
Another aspect is the incorporation of the capabilities from DSE for the engineering of the 
overall plant. It is necessary to interrelate the new functionality of changes during operation to 
clear guidelines for its application within the engineering of the overall plant. The concepts of 
XP, which already put change into the center of engineering, have been adapted to the 
prerequisites of ACS with DSE. As a result, an improved engineering of ACSs with operation 
of a first version of the plant as early as possible and continuous enhancements during 
operation has been established. 
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Chapter 10 

Towards Evaluation of logi.CAD εCEDAC Instant reload 

The evaluation of DSE has been discussed based on the IEC 61499 standard and the basic 
reconfiguration services provided by R3E. But the industrial practice is dominated by control 
devices based on the IEC 61131-3 standard. As already depicted in Section 3.2.1 no dedicated 
interface exists in order to modify control applications during operation for IEC 61131-3 
(2003). Many IEC 61131-3 based engineering tools and runtime environments provide a 
proprietary interface based on the principle of changing the control logic between execution 
cycles (see Section 3.4.3). The procedure of changing the control logic during operation 
works almost automatically, but without any possibility to apply transition management 
policies. Typically only the internal states of POUs, which have not been changed between 
the current system state and the new system state, will be restored. 
The company logi.cals Austria (former kirchner SOFT GmbH) [29] provides the IEC 61131-3 
compliant engineering tool logi.CAD which includes the possibility to change the control 
logic during operation by using of the function Instant reload. Based on the results of the 
research project εCEDAC [8], where kirchner SOFT GmbH has been a consortium member, 
the existing functionality of Instant reload has been enhanced in order to achieve also DSE 
(called εCEDAC Instant reload). We will provide a short overview on the functionality of 
these two kinds of exchange of the control logic within this IEC 61131-3 based control 
system and discuss the application of the evaluation method proposed within this thesis for 
logi.CAD with εCEDAC Instant reload28. The information about the logi.CAD internal 
functionality is based on personal discussions with Thomas Baier, Heinrich Steininger, and 
Mario Semo from the company logi.cals Austria. 

10.1 logi.CAD Instant reload 
The Instant reload functionality of logi.CAD provides the possibility to change any element 
within the IEC 61131-3 control logic (functions, function blocks, programs, data types, tasks, 
resources) within a given project. The changes are applied abruptly in between the execution 
cycles of the different tasks at the runtime environment. But the granularity for changes 
modeled in the engineering tool and those parts exchanged within the runtime environment 
may differ. Within the runtime environment only the binary deployment of a resource is taken 
into consideration. For instance, if the only change within the current system state and the 
new system state is a new data connection, the overall binary deployment of the resource will 
be exchanged. From the ACS customer’s point of view this behavior is not visible, because 
the Instant reload mechanism takes care of internal states of the elements within the resource. 
If the same element exists in the new system state all internal states will be restored (internal 

                                                 
28 Within this chapter we will use only the terminology of IEC 61131-3. If we use the terms resource or function 
block, they are used as defined within IEC 61131-3. This is in contrast to the previous chapters which use the 
meaning based on the IEC 61499 standard. 
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states may be variables or active states within an SFC). A rough description of the Instant 
reload functionality within logi.CAD is provided in logi.cals Austria (2008). 
Figure 53a depicts the procedure executed within the runtime environment during the Instant 
reload. First the binary deployment of the new resource is loaded and its feasibility is 
checked. The engineering tool generates special code based on the current system state in 
order to perform a change during operation; therefore the consistency with the current 
resources operated in the runtime environment has to be evaluated. Up to this point in time 
the old resource is still executed. Then the old resource is stopped, the internal states will be 
restored and the new resource will be started. The point in time when these actions are 
performed is determined based on the execution cycles of the different tasks within the 
resource. Between the actions ‘Stop old resource’ and ‘Start new resource’ no control logic is 
executed, neither the old nor the new resource. This time is crucial for the disturbances to the 
execution behavior of the control device. 

a)  

b)  

Figure 53: Comparison of a) Instant reload and b) εCEDAC Instant reload mechanisms within logi.CAD 

10.2 logi.CAD εCEDAC Instant reload 
The enhancement of the above given procedure according to the engineering cycle developed 
within the εCEDAC project is based on the different execution phases of a system evolution 
step, whereas the incorporated actions may be different. As depicted in Figure 53b the 
mechanism for applying changes has been enhanced by further steps that enable additional 
calculations for a DSE. Next to the new resource also an ECA is downloaded, which includes 
three different parts of the control logic: εRINIT, εRECONF, and εRDINIT logic. The 
execution of these three parts is sequential and in addition related to the actions provided for 
an Instant reload. After checking the feasibility of the new resource and the code for recover-
ing the internal states from the old resource, the εRINIT logic is executed in parallel to the old 
resource. The set of commands in order to interact with the current system state is limited to 
READ and WRITE FBs (from the runtime’s point of view apart from the exchange of the 
resource not more basic reconfiguration services are possible than READ and WRITE). 
Accordingly this sequence can be used to fetch any internal state of the old resource and also 
to provide some calculations for the transition management. Then the already described 
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Instant reload operations ‘Stop old resource’ and ‘Restore internal states’ are applied. But 
before ‘Start new resource’, the εRECONF logic is executed. Herein user-defined algorithms 
can be executed in addition to the already restored internal states of the resource, which is 
especially necessary for new elements within the new resource (the automatic restoring of 
internal states only includes unchanged elements). When the εRECONF logic has been 
executed (signaled by a Boolean value) the new resource is started and the critical phase 
where no control logic is executed is finished. The εRDINIT logic is executed next (in 
parallel to the new resource), providing the possibility to do some user-defined actions after 
the change. The εCEDAC Instant reload procedure is finished by the deletion of the ECA. 
Figure 54 depicts a screenshot from an ECA within the logi.CAD engineering tool for a 
simple example of the exchange of a controller of a closed-loop control circuit (similar to the 
example presented in Section 4.2.3). The controller ‘SpeedCtrl’ within the program ‘CTRL’ 
will be changed during operation by another controller of a different type with the same name 
(it is assumed that a controller with a proportional part is exchanged by an enhanced control-
ler including also an integral part). In contrast to the description given above it is possible to 
use similar names for the controller, because they belong to different resources within the 
εCEDAC Instant reload mechanism. The three parts of the ECA provide the following 
functionality: 

• Within the εRINIT logic the current values of the gain ‘Kp’ and the control deviation 
‘Inp’ are read and stored in the local variables ‘KpOld’ and ‘InpOld’. This happens 
while the old resource is still executed. The ECA is triggered by using the FB 
‘εRINIT’, which provides a Boolean output set to true as soon as the εRINIT logic has 
to be executed. The finishing of the εRINIT logic is signaled by a Boolean input value 
of the FB ‘εRECONF’ set to true. 

• Based on the input value of the FB ‘εRECONF’ the internal procedure of stopping the 
old resource and restoring the internal states is triggered. Afterwards the output value 
of ‘εRECONF’ is set to true and the εRECONF logic is executed. Herein the integral 
parts of the new controller ‘SpeedCtrl’ for the previous cycle ‘IOLD’ as well as for the 
current cycle ‘I’ incorporating an adaptation of the controller gain ‘KpNew’ are set. 
By the issue of a true value to the input of FB ‘εRDINIT’ the εRECONF logic is fin-
ished. 

• Within the εRDINIT logic (triggered by a true value at the output of FB ‘RDINIT’) 
nothing happens and the ECA is finished by the issue of a true value to the input of FB 
‘εDONE’. 

 
Figure 54: Example of an ECA in logi.CAD 
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10.3 Evaluation approach for the logi.CAD εCEDAC Instant reload 
The application of an evaluation for DSE for an IEC 61499 based system environment has 
been presented in this thesis. In order to apply the evaluation methodology for a different 
system environment, as for instance the IEC 61131-3 based logi.CAD, the same steps need to 
be achieved: 

• Analysis of the system properties in order to identify the possible change types ac-
cording to Walsh et al. (2007b). 

• Mapping the evolution modeling methodology. 
• Identification of evaluation means necessary to check the involved system integrity 

characteristics. 
• Formulation of algorithms and formal models for the different evaluation means. 

We will discuss the first three tasks for the logi.CAD εCEDAC Instant reload within this 
section. A concrete formulation of the evaluation means need a detailed analysis of the 
internals of the system environment. 

Analysis of system properties 
The theory presented in Walsh et al. (2007b) is based on a component-based software 
development policy and the different change types are related to a component framework. As 
discussed in Section 3.2.1 it is not possible to consider the elements of IEC 61131-3 as 
software components apart from the element function. The most important hindering reason is 
the use of an interface description which only defines variables without details about the 
behavior of this interface. This is especially problematic for dynamic reconfiguration within 
an IEC 61131-3 based system such as logi.CAD.  
According to the short introduction of the mechanisms logi.CAD Instant reload and logi.CAD 
εCEDAC Instant reload two different levels of changes exist that need to be taken into 
consideration. On the one hand the ACS customer may change any kind of element within a 
configuration and define adaptations to the system with fine granularity. On the other hand 
the runtime environment provides only changes of resources. If any adaptation is applied to 
the system under operation, always the overall resource will be exchanged. We will consider 
the change types of logi.CAD based on the capabilities of the runtime environment, because 
the evaluation of DSE should be as close as possible to the real implementation. Figure 55 
depicts the interrelation of different change types according to the capabilities of the 
logi.CAD runtime environment. The main element is the substitution of resources, which may 
use any internal change defined in the engineering tool for any element of the resource. The 
interface of a resource is described especially by VAR_EXTERNAL, and based on the 
substitution of a resource also the interface may be changed. The overall change of configura-
tions can be described as architectural changes.  

 
Figure 55: Change types within logi.CAD εCEDAC Instant reload 
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The dashed arrows in Figure 55 represent logical dependencies between change types (as 
described in Section 3.4.1), but as the basis for dynamic reconfiguration is the exchange of 
resources they can not be used for modeling an ECA directly. The runtime environment 
provides only a small set of basic reconfiguration services, with limited possibilities for the 
usage within an ECA. But based on the concept of exchanging resources, this small set is 
sufficient for any change within the system: 

• Exchanging resources: This command is integrated into the engineering tool and is 
not available as FB within control logic. 

• Read: A separate FB for reading any variable within a resource may be used within 
the ECA. 

• Write: A separate FB for writing any variable within a resource may be used within 
the ECA. 

• Evolution Control FBs: Furthermore the FBs εRINIT, εRECONF, εRDINIT, and 
εRDONE exist which are used to define the borders of the different parts of the ECA 
in terms of defining the start and end point of the execution (see Figure 54 mentioned 
above). 

Mapping the evolution modeling method 
The evolution modeling method presented in Chapter 4 describes the use of an ECA for the 
modeling of a system evolution step. In addition, different ECAs may be encapsulated within 
an EECFB and so-called CECAs may be modeled in order to define the synchronization 
between different system evolution steps. The implementation of the logi.CAD εCEDAC 
Instant reload provides the possibility to model ECAs, CECAs are not supported. The 
different execution sequences within a system evolution step described in Section 5.2 can be 
mapped to the logi.CAD εCEDAC Instant reload methodology as follows: 

• Download ECA: This step is similar in the logi.CAD εCEDAC Instant reload. 
• Initialization sequence: The concept of the logi.CAD εCEDAC Instant reload is 

based on the exchange of a resource. There will be no actions performed within the 
ECA to change the old resource. The initialization sequence is executed by the engi-
neering tool by downloading the new resource to the runtime environment. 

• Reconfiguration sequence: The reconfiguration sequence is split up into two parts, 
the εRINIT logic and the εRECONF logic. The first one is able to work on the old re-
source, and the second is only capable to influence the new resource. Any transfer of 
state information for new elements of the resource is modeled within the ECA. All 
other state information is recovered automatically by the mechanism already used for 
the logi.CAD Instant reload. 

• Deinitialization sequence: The εRDINIT logic provides the possibility to edit the new 
resource after the reconfiguration sequence. But based on the limited set of basic re-
configuration services only states within the new resource may be influenced. The de-
letion of the old resource is done automatically. 

• Delete ECA: Together with the deletion of the old resource also the ECA is deleted 
automatically in the logi.CAD εCEDAC Instant reload mechanism. 

Identification of evaluation means 
The above given mapping of the logi.CAD εCEDAC Instant reload approach to the five 
execution sequences of a system evolution step implies that it will not be necessary to 
consider each execution sequence by itself for evaluation. The download of the ECA and the 
initialization sequence will be considered together as preparation sequence, and the deinitiali-
zation sequence and the deletion of the ECA will be summarized as post-processing sequence 
(see also Section 5.2). 
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Preparation sequence: There are several aspects that have been mentioned within the 
preparation of the ECA. In contrast to the considerations in Section 5.2.2 no free-
programmable part exists in the initialization sequence. Nevertheless, it is necessary that the 
runtime environment provides appropriate means to download the ECA and the new resource 
without causing disturbances in the currently executed resources. Furthermore the require-
ments of resources need to be taken into consideration in advance. No actions within the 
execution of the ECA exist that influence the necessary amount of memory, but the download 
of the ECA and the new resource has to be considered. The type library for the new resource 
is an integral part of the source code, therefore this element of requirements of resources will 
not be violated due to the principles of the logi.CAD εCEDAC Instant reload. The check for 
dependent operations is also unnecessary, because no actions will be executed that are 
modeled by the ACS customer. 
Reconfiguration sequence: The main evaluation means for the reconfiguration sequence is 
model checking, because the interaction of the ECA and the control application have to be 
checked in relation to the plant, possible network interactions, and other disturbances within 
the control device. For the logi.CAD εCEDAC Instant reload the situation is similar, because 
the changes within the runtime environment are related to user-defined logic within the 
εRECONF logic. The necessary formal model for a control device has to include the proce-
dure mentioned in Figure 53b, but in contrast to the models especially for dynamic reconfigu-
ration (see Section 7.3) only a switch between two resource models has to be modeled apart 
from the READ and WRITE commands. Furthermore it has to be evaluated if the included 
algorithm for transition management does not cause disturbances in the overall plant. 
According to the different system integrity characteristics, the following checks have to be 
fulfilled for a system evolution step: 

• Global and local consistency: The plant, process, and product specifications need to 
be fulfilled also for the system model including the system evolution step. 

• Active references: The IEC 61131-3 standard especially provides active references in 
terms of global variables. The influence between different algorithms connected by 
global variables has to be analyzed carefully in order to do not violate specifications 
for the normal operation. Next to verification by model-checking the interrelation be-
tween algorithms may be evaluated also by an appropriate calculation. Whisnant et al. 
(2003) present an approach for dynamically reconfigurable software (in general, not 
focused on embedded systems) where the existing dataflow dependencies are analyzed 
based on the current system state and the new configuration. This methodology may 
be applied for IEC 61131-3 based systems, too. 

• State management: The evaluation of the chosen transition management policy pro-
vides information about the possible disturbances caused by the system evolution step. 

• Real-time constrained operation: The execution of the reconfiguration sequence 
within a certain time limit is of special interest for the logi.CAD εCEDAC Instant re-
load because the execution of the resource is interrupted. During the execution of the 
εRECONF logic the operation of the resource is stopped, therefore in any case it is 
necessary that this part signals its successful execution. The operation of the resource 
would not be continued otherwise. Further effects of the disruption of operation for 
any control application within the control device need to be evaluated. 

In addition to model checking, also KAPPA-based calculations are mentioned for the 
reconfiguration sequence. For the logi.CAD εCEDAC Instant reload only dependent opera-
tion has to be taken into consideration. It has to be checked if the εRINIT logic does only 
include access to the old resource and the εRECONF logic to the new resource. No further 
checks for requirements of resources are necessary. 
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Post-processing sequence: Within Section 5.2.2 only dependent operation has been identified 
as a necessary property of the evolution specification. In the logi.CAD εCEDAC Instant 
reload approach, the εRDINIT logic has to be evaluated if situations with erroneous usage of 
basic reconfiguration services exist. In general it is necessary that the εRDINIT logic can be 
executed successfully. 

10.4 Summary 
The Instant reload mechanism provided by the IEC 61131-3 based engineering tool logi.CAD 
represents the current state of the art for the dynamic reconfiguration of ACSs. The control 
logic is changed in between the cyclic execution, whereupon the internal states of unchanged 
elements are restored. By enhancing this mechanism with the engineering approach developed 
in the εCEDAC project (the logi.CAD εCEDAC Instant reload mechanism) also DSE is 
possible. 
As main differences to the approach described in this thesis only read and write commands 
exist within the ECA, because the main principle is based on the exchange of a resource. The 
new resource is deployed as an entity, in contrast to changing single connections or FBs 
within the existing resource. But on the other hand this principle is characterized by only little 
effort for the ACS customer, because he has to model only the reconfiguration sequence as 
well as some post-processing. 
As a consequence the evaluation is focused on the reconfiguration sequence, which is 
especially critical because no control logic is operated during the execution of εRECONF 
logic. This part of the ECA is modeled by the ACS customer and has to be checked if there 
will be no influence to the specifications for normal operation and real-time constrained 
operation. In addition, active references caused by the use of global variables according to the 
concepts of IEC 61131-3 have to be taken into consideration. 
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Chapter 11 

Outlook 

The use of DSE and its evaluation is an important step towards agile manufacturing. The 
potential of time reduction for the reconfiguration and change based on the overall time-to-
market for process and production plants, as described in Figure 1, provides a high incentive 
to utilize this new methodology within future ACSs. Next to the dramatically decrease of 
costs of change the paradigm of agile manufacturing will be put to a new level of quality: the 
continuous execution of changes during the overall evolution of a production plant according 
to the principles of AXP (see Section 9.2) without any shutdown has the potential to revolu-
tionize the ACS industry. 
This work sets a starting point by formulating a new engineering methodology and a new 
concept for the evaluation of DSE. But there is still work left, which is related to the practical 
realization as well as further theoretical investigations. We will discuss different aspects for 
further enhancements, starting with logical next steps based on the work presented here and 
ending up in visionary considerations about future application of DSE. 

Standards for device description and parameters 
The representation of the current system state, the KAPPA vector, is the basis for an im-
proved engineering support in general and the evaluation process especially for DSE. Within 
this thesis the use of an open standard, FDCML, in conjunction with the models of IEC 61499 
has been demonstrated. For the use of such a device description in industrial practice a 
common sense on the format and the usage of parameters needs to be established. FDCML 
provides a very general basis and does not define concrete parameters. Therefore it is highly 
flexible for the description of various situations, even if they are not known up to now. But on 
the other hand an engineering tool needs clear definitions of parameters and their semantics in 
order to automatically operate the information of a device description. 
Based on the current status in ACSs detailed definitions of enhancements for standards are 
generated by user organizations such as PLCopen [44], OPC Foundation [41], or CiA [6]. 
Based on a standardized description format such as FDCML these organizations should 
provide detailed definitions for device descriptions, which may be used as common basis for 
engineering tools and the exchange of data between different companies. 
Another aspect is related to the definition of parameters for the description of real-time 
behavior, e.g., the architectural elements of a control device or the communication network. A 
satisfactory situation within typically heterogeneous ACSs can only be achieved by a 
common sets of parameters and measurement specifications for their obtainment. This is an 
important prerequisite for both KAPPA-based calculations as well as formal models, and in 
addition provides the possibility to compare different platforms by standardized parameters, 
as proposed in Sünder et al. (2007d) for benchmarking IEC 61499 runtime environments. 
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System model for verification 
A critical point for the evaluation of DSE is the provision of appropriate models of the control 
devices. Within this thesis the principles for modeling the most important architectural 
elements of a control device have been discussed based on NCES. For a practical application, 
these models should be generated and assembled to the overall system model with only little 
(or in the best case no) interaction with the user. First approaches exist already in this 
direction, as for instance presented in Pang and Vyatkin (2008) with a special focus on the 
IEC 61499 standard. Based on the exhaustive description of the current system state KAPPA 
an algorithm should be capable to put together the different fragments from the different 
architectural elements. 
A principal problem in the application of NCES has been detected for the modeling of non-
Boolean variables. The proposed solution for the representation of integer variables as a set of 
places enables simple calculations within the system model. But it should not be necessary to 
model arithmetic operations by NCES. An extension of the NCES formalism towards the use 
of data types would enhance the usability of formal methods in general and especially for the 
evaluation process of DSE. 
A special problem for the design of the system model is related to the model of the plant. The 
ACS customer has to provide these models which are highly related to the concrete produc-
tion plant. Of course, based on any formalized description, the appropriate models may be 
generated automatically, as for instance described in Lobov et al. (2006a) for UML. But the 
ACS customers normally use their own description formats, which are usually not related to 
UML. Therefore, it would highly decrease the effort for designing the plant model, if existing 
description formats, which are highly specific to a given application domain, would be 
supported by algorithms for the automatic generation of the plant model. 

Enhanced system analysis and behavior 
The basis for the evaluation of DSE, an exhaustive description of the KAPPA vector and a 
system model incorporating functional as well as temporal behavior of the overall configura-
tion of a control device, may be used also for investigations in completely different fields, as 
for instance the design of control devices in general. The current situation in the design of 
real-time computer systems, for instance WCET analysis, is unsatisfactory as depicted in 
Bouyssounouse and Sifakis (2005, Section 7.3). The incorporation of real-time behavior to 
the formal model of the system provides the necessary information for such analysis by using 
model checking algorithms. Clarke et al. (1999, Chapter 16) describe algorithms for quantita-
tive temporal analysis, which may be enhanced for a detailed consideration of the temporal 
behavior of real-time computer systems. 
This work has presented an approach for DSE of an ACS. The laws of software evolution 
from Lehmann and Ramil (2000) as well as emerging challenges for software evolution as 
depicted in Mens et al. (2005) discuss this topic in a very general scope. All their statements 
are related to computer science and component-based software engineering. But the special 
needs and environmental conditions of ACSs need some more investigations to adapt these 
laws and challenges correspondingly to the industrial practice in ACSs. A set of laws directly 
related to DSE of ACSs would be an important input for further developments of engineering 
paradigms such as AXP. 

Intelligent tool support 
The acceptance of new technologies especially in the field of ACSs is highly related to an 
appropriate tool support, as outlined for instance in Hall et al. (2007). Of course many 
possibilities exist for tool support, especially based on the information related to the KAPPA 
vector. We will focus on possibilities related to DSE and the evaluation by model checking: 
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• As already described in Section 7.6.1 a simple mapping of elements of the program-
ming language and the model language can be defined. An engineering tool, incorpo-
rating both the modeling of the control applications and the verification tool may pro-
vide the possibility to use only the elements of the programming language within 
specifications (which may be established by using patterns or wizards). 

• The analysis of results for the verification by model checking may be difficult for 
ACS customers, because the formal model will not be familiar to them. Therefore, an 
intelligent engineering tool should be possible to visualize the verification results in 
terms of the control application. This aims at the representation of different paths 
within the reachability graph of a system (e.g. for visual verification) or the inspection 
of counter examples in case of the violation of some specifications. The VEDA tool 
presented in Vyatkin and Hanisch (2001a) already incorporated such capabilities. 

• The continuous evolution of a plant sets high demands to the revision management for 
the different KAPPA vectors. Next to the pure documentation of the system’s changes 
over time, the engineering tool may provide further possibilities for the ACS customer 
to browse the various configurations of the plant (the past and the already engineered 
future) in order to analyze the previous evolutions and to plan the next steps. 

Automatic generation of ECAs 
The engineering of DSE is of course a time consuming activity, which accompanies addi-
tional effort for its evaluation. Accordingly an advantageous enhancement may aim at the 
reduction of this effort by the automatic generation of at least parts of the ECA. The clear 
structure of the ECA provides a good basis for such automatisms. Based on the difference 
between the current system state and the new system state for instance the RINIT and 
RDINIT sequence may be generated automatically by analyzing the new and the deleted 
elements. Available templates for predefined evolutions, e.g., the exchange of an FB, may be 
adapted automatically by the engineering tool. The properties for the evaluation of the ECA 
may be used by such an algorithm in order to generate correct ECAs a priori. 
But there is also a more visionary application for the automatic generation of ECAs, if we 
think of a production plant which is capable to autonomously react on disturbances and 
optimize its processes according to the current production order. Such a system may also be in 
the position to apply changes to the plant according to the current needs. The system would 
calculate the necessary changes in the control applications, generate the necessary ECAs for 
these changes, and apply them to the plant at run-time. This would increase the flexibility of 
agile manufacturing systems to a high extend, since the reconfigurability of the system is 
increased from the upper coordination level down to the low level control logic. Combined 
with further possibilities of physical dynamic reconfiguration (see next item) this would be a 
possible next step to autonomous RMSs. 

Physical dynamic reconfiguration 
The capabilities of DSE are highly related to the capabilities of the underlying system 
environment for dynamic reconfiguration. This work is focused on changes to control 
applications, triggered by basic reconfiguration services. The incorporation of changes to the 
hardware are related to additional human interaction in Section 4.4. But if also capabilities 
exist for changing the hardware configuration by using services, the methodology for DSE 
will become more powerful. There are two kinds of services possible as next steps: 

• Physical reconfiguration within control devices: A control device may be capable to 
change its hardware configuration triggered from any service within the software ar-
chitecture. This may be possible if a certain hardware part provides different configu-
rations which may be changed during operation. But there may also be the possibility 
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to freely change hardware functionality for instance based on reconfigurable Field 
Programmable Gate Arrays. 

• Physical reconfiguration within a plant: The different components of a plant may be 
arranged automatically and therefore provide services for the reconfiguration of the 
hardware components of a plant. Already existing examples are CNC machines, which 
do change the tool according to the current production order. If the concept of automa-
tion objects becomes practically relevant, a hardware component will incorporate 
software components, too. An exchange of a component, which is not only related to 
the tool of a machine but also a modification of the overall hardware configuration, 
provides a new kind of flexibility for production plants. The DSE methodology may 
be enhanced by services which trigger the dynamic reconfiguration of hardware 
components. 

Vision for future practical applications 
How to apply the methodology of DSE in a future practical example? We will consider a 
virtual plant which is inspired by the testbed available in the Odo Struger Laboratory at the 
ACIN. The main element is a transfer system, which consists of autonomous components 
such as switches, crossings, index stations, and conveyor belts. These components are 
provided by a component vendor and include basic software functionalities. The transfer 
system is manufactured by a machine vendor, who does additionally includes functionality for 
control and scheduling. Finally, different machines are connected via the transfer system; the 
coordination of the whole plant is designed by a system integrator. What kind of scenarios for 
DSE may be possible within this virtual plant? 

• Firmware update: The component vendor improves the basic functionality for in-
stance of the crossings. He models an ECA in order to evolve existing components to 
the new firmware version and provides it to his customers. The machine vendor will 
check the correctness of the DSE within the transfer system and evolves the system af-
terwards. Based on the new functionality also the control functionality for the machine 
can be improved. The machine vendor models the appropriate ECAs and evolves the 
operating transfer system. 

• Transfer system enlargement: Due to experiences from the operation of the transfer 
system new paths should be included. After designing the mechanical enlargements, 
the machine vendor engineers the evolution of the control functionality of the related 
components (switches and crossings). Now first tests with the new configuration are 
possible, which lead to enhancements within the scheduling functionality of the trans-
fer system: the machine vendor provides appropriate ECAs and evolves the transfer 
system during operation. 

• Autonomous system control: We assume an autonomously acting system control, 
which is responsible for the coordination within the plant, for this scenario. A failure 
happens within the system (e.g., a machine breaks down), and the system control cal-
culates a new system configuration for the optimal plant operation. Therefore, changes 
in some machine functionalities are necessary. The system control calculates the nec-
essary changes within the software functionality of the machines, generates the ECAs 
and applies the changes. Then the new control strategy is applied within the system 
control, by the execution of automatically generated ECAs. 
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Conclusion 

The capability of changing functionalities without interrupting the operation will become one 
of the main features of next generation automation and control systems. Different studies such 
as Favre-Bulle (2005) or the European High-Level Group Manufuture drastically point out, 
that ACSs have to become easily changeable in terms of software and hardware functionality. 
But the current state of the art is not able to satisfy these needs. The time-to-market for 
process and producting plants in case of reconfiguration and change (based on an existing 
plant) increases the time effort especially for the production process (see Figure 1). The 
paradigm of agile manufacturing, which claims highly flexible production facilities which are 
capable to adapt themselves to the fast changing markets and product portfolios, does not 
provide the promised efficiency in real-world applications up to now. Concepts for the 
dynamic reconfiguration especially focus on the pure capability to apply changes, but without 
considering of the necessary engineering process in behind. 
This thesis focuses on the engineering process and introduces the new methodology of 
downtimeless system evolution, which uses dynamic reconfiguration capabilities as basis 
input and sets up new concepts for their application. The term DSE may be explained as 
follows: 

• Downtimeless: Changes have to be applied to the running system with as little distur-
bances to the process under control as possible, in the best case without any distur-
bances. 

• System: Although software is considered to be the central element that is changed, 
also changes to hardware—or more general changes to the overall system—are taken 
into consideration. 

• Evolution: Changes of a system become normal operations within the plant, which are 
applied continuously as soon as any change is necessary. The overall system evolves 
during its life-cycle according to the changing requirements. 

The engineering of DSE does not only describe the transition from the current system state to 
a new system state. We have to proof also the correctness of each system evolution step, 
because the main prerequisite for changes within this methodology is the execution during 
operation of the plant without disturbances. The three main topics, which have been devel-
oped in the scope of DSE, can be characterized by the following three questions: 

How to model the transition of the system without disturbing its operation? 
The starting point for DSE is a new engineering methodology, which puts change into the 
center of considerations. A plant is in most cases a unique part and the different processes 
within the plant are highly heterogeneous. We proposed a new kind of application, the 
evolution control application, which models the transition to the new system state freely 
programmable for the user. The different possibilities for dynamic reconfiguration, the so-
called basic reconfiguration services, represent the basic building blocks for ECAs. The 
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effects of dynamic reconfiguration have been structured in five sequences, which are executed 
sequentially: download of the ECA, initialization sequence, reconfiguration sequence, 
deinitialization sequence, and deletion of the ECA. The engineer follows a clear outline for 
modeling single system evolution steps as well as the interconnection of several steps to 
enable also the synchronization between different areas of the reconfiguration within the 
control application. Changes to the hardware configuration are possible by integrating human 
interaction into the execution of system evolution steps. 

How to decide if this transition is free of failures? 
The interruption of production processes or even break downs are very expensive and time 
consuming, therefore DSE promises high financial benefits by keeping the system running 
also during the execution of changes. But the transition to the new system state has to be 
correct, too. In order to evaluate the absence of failures within ECAs, we have analyzed the 
capabilities for dynamic reconfiguration based on the reference model of 
Walsh et al. (2007b), which provides also a list of system integrity characteristics according 
to the different change types. Due to the structured engineering approach for DSE and the 
different properties of system integrity, the five sequences for the execution of a system 
evolution step have been interrelated in order to identify the most appropriate evaluation 
means. As a result, two kinds of evaluation means were presented: 

• Verification by model checking: This methodology provides due to its automatic 
character, the result as true/false decision with counter example, and the incorporation 
of a detailed system description into the formal model the best methodology for the 
evaluation of the reconfiguration sequence. This sequence includes the active change 
of the current system state and needs to be taken into consideration very carefully. 

• KAPPA-based calculations: Several properties can be evaluated by calculations based 
on the current system state. The calculations are based on rules concerning resource 
properties. As there will be no active adaptations to the functional behavior of the con-
trol application within the preparation and post-processing of a system evolution step, 
these calculations are sufficient for the evaluation of DSE apart from the reconfigura-
tion sequence, which is mainly evaluated by model checking. 

How to model the system in order to provide the basis for the evaluation process? 
Apart from the means and properties for the evaluation of DSE the representation of the 
system behavior within appropriate models has to be defined. Herein the system state, the so-
called KAPPA vector, was the basis for an exhaustive description of the system and the 
control devices. We have used the general description format of FDCML and provided 
enhancements related to the IEC 61499 standard as well as parameters for the evaluation 
process. 
Within the evaluation by KAPPA-based calculations especially the adaptations of the KAPPA 
vector during the evaluation process has to be pointed out. As DSE aims at changes to the 
system during operation, the KAPPA vector needs to be changed accordingly during the 
evaluation process. 
For the verification by model checking, the representation of two important topics has to be 
taken into consideration in detail. On the one hand any ACS is characterized by its functional 
and temporal behavior. Therefore, especially the consideration of temporal behavior has taken 
an important role within the system model for model checking. The second topic is again 
dynamic reconfiguration, which is not part of typical verification means. Based on the 
restriction of verification by model checking to the reconfiguration sequence and the possible 
set of basic reconfiguration services in this area the effects of dynamic reconfiguration have 
been modeled by means of the chosen formal description language NCES. 
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Reconsideration of requirements 
The analysis of requirements for DSE in Chapter 2 resulted in a set of eight claims that need 
to be fulfilled by the new methodology for the engineering and evaluation of changes to an 
ACS during its operation. We will reconsider these requirements and describe their fulfill-
ment by the concepts of this thesis roughly: 

• (1) Temporal behavior: A detailed analysis of the temporal behavior of the control 
device’s elements were incorporated in both the KAPPA-based calculations and the 
formal model of the system. 

• (2) Execution semantics: The execution semantics of the R3E were analyzed and 
incorporated to evaluations by KAPPA-based calculations as well as the functional 
behavior of control logic execution within the system model. 

• (3) Underlying system configuration: A control device was considered with all archi-
tectural elements, starting from the interaction with the environment (plant and com-
munication network), the hardware platform, operating system, any kind of applica-
tions and programs, up to the ECA. 

• (4) Modeling dynamic reconfiguration: A model for the effects of basic reconfigura-
tion services within the reconfiguration sequence were specified in order to incorpo-
rate changes of the system within the verification by model checking. The KAPPA 
vector is a dynamically changing quantity during the evaluation of DSE. 

• (5) Free programmable downtimeless system evolution: The new engineering meth-
odology for DSE enables free programmable ECAs based on basic reconfiguration 
services and uses the programming languages common to the ACS customers. 

• (6) Extensive engineering support: Any concept that was presented in this work is 
applicable by an engineering tool. Furthermore, the introduction of an exhaustive de-
scription of the current system state KAPPA represents the basis for this extensive 
support of the engineer. 

• (7) Provision of formal models: The overall architecture of a control device was ex-
emplarily provided with formal models in the modeling language NCES. Based on the 
concept of a value-added chain for total evaluation the ACS customer receives the 
necessary models by the different vendors or they may be generated by the engineer-
ing tool according to the presented transformations. 

• (8) User-friendly definition of specifications: The different properties for the evalua-
tion of DSE were simplified by separation to the most appropriate evaluation means. 
Therefore, many properties can be checked by simple definitions within rules based on 
the current system state. For the use of temporal logics the property specification pat-
terns system was used, whereas the mapping to the elements of the programming lan-
guage to the formal model has been explained exemplarily, which can be used to pro-
vide specifications by means of the programming language used for the control appli-
cation. 
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A Field Device Configuration Markup Language 

Appendix A 

Field Device Configuration Markup Language 

The FDCML has been developed as a markup language for the description of ACS compo-
nents. Information about the consortium and further information are available at [10]. The 
following description of the main elements of FDCML is based on the specification 
FDCML.org (2002), which provides the description of the XML Schema. 
The requirements for the establishment of FDCML are defined as given in (FDCML.org, 
2002, Chapter 2): 

• Network independence: “FDCML is able to describe network components in a net-
work/bus independent manner without loosing the ability to describe network specific 
properties.” 

• Multi language support: “FDCML is able to support descriptive text elements in 
multiple languages in one XML file.” 

• Extensibility: “FDCML is able to store more information as defined in “ its specifica-
tion “without the need to change the format of the device description.” 

The most important aspect for this work is extensibility, as it provides the basis to use 
FDCML for a device description that includes especially parameters necessary for the 
evaluation of DSE. Multi language support is achieved by the use of appropriate attributes 
within the XML schema elements that define the used language. Network independence is 
especially interesting for current ACS applications, since this is the field where device 
descriptions are used in most cases. Herein a very basic structure is defined that (similar to the 
elements that provide extensibility) provides a framework for the declaration and description 
of any parameters. 

A.1 Basic elements of the FDCML schema definition 
The FDCML schema definition is closely related to ISO 15745-1 (2003), which consists of 
the four elements device identity, device manager, device function, and application process 
(see also Section 3.3). The device model provides a modular structure. On the one hand single 
devices may be described according to these four elements. On the other hand a composition 
of single elements and their interrelation by connections can be incorporated, too. 
Figure 56 depicts the basic structure of the FDCML schema definition and its main elements 
in a simplified manner29. The root element is ‘ISO14745Profile’, depicting the relation of 
FDCML to the ISO 15745 standard. ‘ProfileHeader’ includes information about the device 

                                                 
29 The figures in this chapter show the structure of the XML schema and also incorporate multiplicities. Each 
rectangle depicts an element, whereas attributes of elements are neglected. A drawn through line represents 
mandatory elements, and a shadow depicts multiplicity. A dotted line represents optional elements. A switch 
represents a choice between elements, whereas also this choice may have multiplicity (represented as double 
switch in Figure 58b). 
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description file itself, since FDCML is a markup language and may be used in different kinds. 
It is possible to describe one single device or composite devices, according to the choice 
‘ProfileBody’ (single device) or ‘ProfilesBody’ (composite devices). 
If we consider a single device description, the four elements already mentioned above are 
available as schema elements. ‘DeviceIdentity’ includes a list of fixed elements which 
provide information about the device vendor or the product name, just to give two examples. 
‘DeviceFunction’ as well as ‘ApplicationProcess’ are not within the scope of the FDCML 
definition and refer to any external schema that may be added. Additionally also a non-
standardized extension to ‘ProfileBody’ is included by the element ‘nonStandardizedExten-
sion’. The element that is investigated in more detail is ‘DeviceManager’, that contains all 
information concerning to network configuration and device structure. 
Figure 56 depicts the most important elements within ‘DeviceManager’, namely ‘DeviceS-
tructure’, ‘communicationEntity’, and ‘resourceEntity’. Next to these elements additional 
elements for documentation but also for arbitrary information (e.g., the link to an external 
XML schema definition) are included. 

• ‘DeviceStructure’: This element describes the physical structure of a device. Next to 
the elements ‘channelList’(including physical and logical channels) and ‘MAUList’(a 
collection of network interfaces) also indicators and slots are mentioned. 

• ‘communicationEntity’: This element describes a network facility within a device. A 
device may have different communication entities as this is common for ACSs. As one 
of the requirements for FDCML is network independence the ‘communicationEntity’ 
element includes a framework for the declaration of parameters concerning the com-
munication facitiy. This is for instance a list of configuration items or process data de-
scriptions. Further the association to a network interface is included next to arbitrary 
additional information (see Section A.2 below). 

• ‘resourceEntity’: This element is the counterpart of ‘communicationEntity’ as it de-
scribes facilities within a device that perform functionalities which are not related to 
network communication. The different elements within ‘resourceEntity’ include next 
to configuration items also logical connection points as well as arbitrary additional in-
formation. 

 
Figure 56: Basic structure of the FDCML Schema 

A composite device is defined by the ‘ProfilesBody’ element, which again may include a 
‘DeviceIdentity’ element in order to provide general information of the overall device. In this 
case ‘ProfileBody’ elements are used in order to define the components within the composite 
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device. For the interrelation between these components a list of connections (‘connec-
tionList’) is defined, which consists of ‘connection’ elements that provide information about 
source and destination of the interrelation as well as specific properties of the connection (see 
description below). 

A.2 Elements that provide extensibility in FDCML 
The FDCML schema includes different elements in order to achieve extensibility of the 
device description. Within the discussion above we have already mentioned the use of 
external schemas, the element ‘nonStandardizedExtension’ within ‘ProfileBody’, as well as 
configuration item lists that can be handled in a very free manner. Additionally there are two 
kinds of elements that further provide open space for arbitrary information within the 
elements of the FDCML schema: specific properties and additional items. 

The ‘specificProperty’ element 
A specific property is a pair consisting of a name and a value. Both are depicted in Figure 57 
in detail. The name of a ‘specificProperty’ is given as a group (‘g_naming’) that may consist 
of a label (‘label’) with an reference for this label (‘labelRef’) and appropriate help informa-
tion (‘help’, ‘helpRef’, and ‘helpFileRef’). The value of a specific property is given by the 
group ‘g_values’ and provides a set of possibilities in order to define the value of an element. 
Corresponding to the elements depicted in Figure 57 the following possibilities are provided: 

• Constant values (‘const’). 
• Editable element values (‘edit’). 
• A set of valid element values or names for these values as enumeration (‘enumera-

tion’). 
• A set of ranges for valid element values (‘range’). 
• Boolean element values (‘yes’ and ‘no’). 
• References to other elements within the device description (‘reference’). 
• The value of an instance (‘instanceValue’). 

 
Figure 57: The FDCML element 'specificProperty' 

The ‘additionalItem’ element 
A more powerful means for describing any arbitrary information within the framework of 
FDCML schema elements is provided by ‘additionalItem’. The element is depicted schemati-
cally in Figure 58a. Next to the elements already mentioned for ‘specificProperty’ above, 
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‘g_naming’ and ‘g_values’, further information can be included as properties (‘specificProp-
erty’) or further additional items (‘additionalItem’). This offers the possibility to describe data 
in a hierarchical manner. Further elements such as ‘picutureList’ or ‘instances’ (information 
how to instantiate a certain element) are provided, too. 

 
Figure 58: The FDCML elements a) ‘additionalItem’ and b) ‘additionalItemList’ 

Based on the element ‘additionalItem’ FDCML provides also a collection of additional items 
as ‘additionalItemList’ (see Figure 58b). Next to the group ‘g_naming’ an arbitrary number of 
choices between ‘additionalItemCategory’ and ‘additionalItem’ are possible. ‘additionalItem-
Category’ provides a means in order to define a vendor specific category of ‘additionalItem’ 
elements. 
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B Real-time Reconfiguration Runtime Environment 

Appendix B 

Real-time Reconfiguration Runtime Environment 

The runtime environment which is taken as concrete example for the considerations within 
this thesis is characterized by three main features: 

• IEC 61499 runtime environment: The R3E is compliant to the definitions of 
(IEC 61499-1, 2005) as well as the additional definition of the IEC 61499 compliance 
profile for feasibility demonstration [17]. 

• Real-time execution: The R3E is capable to execute FB networks with regard to real-
time constraints. Therefore special SIFB types for the encapsulation of different 
sources of events are defined, which are the user interface for the runtime capability to 
separate between different event flows and match them to the scheduling algorithm of 
the operating system. 

• Reconfiguration support: The R3E further provides enhanced capabilities for the 
reconfiguration of control logic during execution. The management commands de-
fined in (IEC 61499-1, 2005) are fully supported as well as additional commands nec-
essary for DSE are part of the runtime environment. 

The development of this runtime environment has been pushed by different parties within 
different research projects, but its main developer is Alois Zoitl from ACIN. The fundataion 
of the runtime environment has been established during the µCrons research project [36]. 
Zoitl (2007) gives a very detailed description of the internals of the runtime environment 
which will be used as main source for the following description. Additional enhancements 
and specializations have been added during the εCEDAC research project [8], especially 
within the set of basic reconfiguration services as depicted below. In parallel to this the 
runtime environment has been made public as an open source project called 4DIAC [12]. 
According to this history there exist different versions of the runtime environment which 
provide different sets of features and functionality. We will use the version of the runtime 
environment which was the result of the adaptions within the εCEDAC project for the 
considerations and experiments within this thesis. There may be discrepancies with other 
versions (e.g., the 4DIAC runtime environment). In the following we will describe the two 
aspects of the R3E real-time execution and reconfiguration support. 

B.1 Real-time execution of IEC 61499 applications 
In order to provide real-time execution for FB networks according to IEC 61499 it is neces-
sary to provide a mapping between the elements of IEC 61499 and the elements of a real-time 
system. The elements of IEC 61499 have been depicted already in Section 3.2.2 which are the 
models for system, device, resource, FBs and so on. The basic theory for real-time execution 
will be described roughly based on Douglass (1999, Chapter 2). As already depicted a real-
time computer system has to execute programs under certain time constraints. Only if the 
results can be provided in time, the computation has been successful. The execution of 
different programs has to be performed concurrently in order to meet the requirements. Herein 
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a lot of work is available that describes scheduling algorithms for concurrent programs. There 
exist different terms for the context of execution. We have used the word program in the 
previous description, but also thread or task may be used. For this work we will use task as 
key word for an execution context. The scheduling of concurrent tasks may be done very 
simple as for instance cyclic executive (the tasks are statically ordered and executed according 
to a fixed, cyclic schedule) or time-slicing round robin (tasks are preempted when they exceed 
a certain time, always the highest priority waiting task is executed, and different waiting tasks 
on the same priority are executed alternately based on time slices). The different tasks may 
communicate to each other via special means or share similar resources during their execu-
tion. Especially the second case is very challenging since the execution may be locked 
(deadlock) if a low priority task uses a resource which is necessary for the execution of a high 
priority task. Herein concepts such as semaphores or mutual exclusion are applied in order to 
avoid deadlocks. 
Zoitl (2007) discusses the mapping of IEC 61499 elements to real-time scheduling theory in 
detail in Chapter 4. As a result he proposes the so-called event chain concept as appropriate 
realation ship of IEC 61499 execution and tasks within a RTOS. The following considerations 
are provided within this theory: 

• Event sources: The most interesting elements within an application are those FBs 
which are capable to generate events. These are always SIFBs, as for instance 
E_CYCE which provides a cyclic event based on the timer functionality of the under-
lying system. Every execution within the FB network starts at this kind of FBs which 
receive an important rule for the real-time execution concept. 

• Event sinks: The opposite of event sources are event sinks, simply speaking the end of 
execution within an application. This can be represented by an output event that is not 
connected or based on the internals of an FB, e.g., based on the current state of the 
ECC there is no event emitted. 

• Event chains: Based on the sources and sinks of execution Zoitl (2007, Section 4.2.3) 
defines “an event chain as the chain of FB executions started through an even occur-
ence at one event source FB and ending in an event sink”. The event chain serves as 
the execution context that will be mapped to tasks within the operating system. Ac-
cordingly it is possible to add real-time constraints to event chains, in detail single cal-
culations within the overall event driven FB network. 

Figure 59 depicts the overall situation for the R3E architecture deviding into two different 
aspects. Within the application level the FB network is visible and the different event source 
FBs (‘ES 1’, ES 2’ and ‘ES x’) are visible as the anchor points for the user for the definition 
of event chains. Of course the event chains are not statically visible and may change based on 
the current state of the application (e.g., whether an FB will produce an output event or not) 
and the FB network may be interrelated between different event sources. But from the 
execution point of view the correlation of FBs and tasks is clearly defined: each event that is 
triggered based on a certain event source belongs to the execution context (event chain) of this 
event source. On the execution level there exist two different elements. On the one hand the 
underlying services for the event source have to be handled appropriately (one external event 
source may be related to different event source FBs). As the event sources are a critical part 
for the execution and especially an overload situation within the runtime environment, Zoitl 
(2007) proposes the use of a guarding of external events (suppress external events if they do 
not occure according to their specification). On the other hand the execution of tasks within 
the operating system has to be handled by appropriate scheduling algorithm. The execution of 
FBs within such a task is proposed according to the event dispatcher concept: Each FB that 
needs to be executed is inserted in a list by the input event which receives the event. The FBs 
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are executed in a sequential manner according to this list, which is handled as first-in-first-out 
buffer. 

 
Figure 59: Interrelation of external events, event chains and tasks within the operating system 

(Zoitl, 2007, Figure 4.3) 

The critical point for the real-time execution of FB networks is to prove whether an applica-
tion will be schedulable (it is possible to fulfill all real-time constraints) or not. Zoitl (2007) 
provides a detailed analysis of schedulablity based on results from real-time scheduling theory 
based on the occurrence specification of the external event sources, a limited execution time 
of event chains, and the structure of the event chain itself. To give an example, there exist 
dependencies between different event chains based on a special class of event sources, the so 
called event chain couplers. Typical IEC 61499 applications will be interrelated by event and 
data connections. In terms of event chains this situation is not very satisfying as huge parts of 
the application will be executed within the same execution context. But in many cases the 
real-time constraints can be limited to rather small portions of the application. An event chain 
coupler can be used in order to change the execution context within a chain of executing FBs. 
Figure 60 depicst this situation schematically. Within the FB network there exists only one 
event source triggered by some external event (‘ES’). In order to separate the overall execu-
tion into different portions with different real-time constraints (‘deadline1’, deadline2’ and 
unconstrained execution) event chain coupler FBs (‘EC coupler’) are used. 

 
Figure 60: Separation of execution contexts within a chain of executing FBs (Zoitl, 2007, Figure 4.9) 

You can imagine that there exists a high variety of different FBs that serve as event sources or 
as coupling element in order to separate execution contexts within an application. Zoitl (2007, 
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Appendix C) provides a list based on the event function blocks that are defined in 
(IEC 61499-1, 2005, Annex A). Among these FBs there are for instance the cyclic execution 
under real-time constraints as depicted in Figure 61a (‘RT_E_CYCLE’). An interesting FB 
emerges from the enhancement of an ‘E_SWITCH’ FB with real-time constraints 
(‘RT_E_SWITCH’ in Figure 61b). Based on the Boolean value ‘G’ different execution paths 
with different execution contexts will be triggered. The already describe coupler for the 
separation of one execution path into two execution contexts is presented in Figure 61c 
(‘RT_E_EC_COUPLER’). 

a)  

b)  
c) 

Figure 61: Different event source FBs a) real-time constrained cyclic execution b) data dependend 
splitting of an execution chain c) coupler FB for changing the execution context within an application 

(Zoitl, 2007, Appendix C) 

B.2 Basic reconfiguration services 
The reconfiguration approach described in Zoitl (2007) is based on the most important work 
on dynamic reconfiguration from Kramer and Magee (1985). But in contrast to the original 
definition of a configuration manager, which is responsible for the application of the configu-
ration changes to the current system state in order to change from one configuration specifica-
tio not another, Zoitl declares that the reconfiguration should be applied by a special applica-
tion, the so called reconfiguration application. Herein the functionality for changing the 
current system state is incorporated as special FBs and the way how to change the system 
state can be used to model application specific (this concept has been discussed also in 
Section 4.2.1 for DSE). 
The main elements are the basic reconfiguration services, which provide the necessary 
functionality for changing the current system state and are encapsulated as SIFBs. Zoitl 
(2007, Section 3.2.2) defines five categories of basic reconfiguration servces which are 
necessary for dynamic reconfiguration: 
Structural services: The structural reconfiguration services provide mechanisms for changes 
to the structure of the control application. The device cannot be created by an appropriate 
service as it is the element which provides the basis for the application of these services (in 
detail the management application in order to access a device). But all elements within a 
device are affected by structural services: 

• “CREATE resources within devices, FBs within resources, and connections (event and 
data) between them.” 

• “DELETE resources, FBs, and connections.” 
• “WRITE parameter values to device data inputs, resource data inputs, and FB data 

inputs.” 
Zoitl (2007) defines a generic interface for the different FBs incorporating basic reconfigura-
tion services in (Zoitl, 2007, Annex A). Figure 62a depicts the interface of the FB that is 
capable to create a (data or event) connection. The FB interface provides as input values the 
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necessary parameters for the management command CREATE. These are the destination 
‘DST’ (which resource is concerned) as well as the source ‘SOURCE’ and destination 
‘DESTINATION’ of the connection. These parameters are provided as dot-seperated list as 
defined in (IEC 61499-1, 2005). In order to minimize the execution time of FB during the 
execution of an evolution step, this FB has been adapted as depicted in Figure 62b (similar 
adaptions have been applied also for other basic reconfiguration services). On the one hand an 
initialization of the FB has been added in order to move decoding of strings to a not time 
critical phase. Further the parameters have been split up, as for instance the instance name and 
the input/output name for the source and the destination of the connection. 

a)  
b)  

Figure 62: Interface of basic reconfiguration services for the creation of a connection a) as defined in 
Zoitl (2007, Appendix A) and b) as available in R3E 

Library services: The library reconfiguration services influence the library available within a 
device. Zoitl (2007) does not provide FBs in order to incorporate these basic reconfiguration 
services since library services are tightly coupled with the engineering tool and can be applied 
via the management application. The establishment of a library which is dynamically 
adaptable during runtime is a challenge especially for resource-limited devices. Zoitl (2007) 
proposed the use a virtual machine approach. The engineering tool transforms the type 
definition of a BFB into the machine code of this virtual machine, and the runtime environ-
ment interprets the machine code and simulates a situation as the virtual machine would be 
physically present. 
Execution control services: The execution control reconfiguration services set the state of a 
managed FB or resource. These services are based on the state machine for managed FBs, 
which is defined in (IEC 61499-1, 2005, Section 3.3). There may exist also FBs that cannot be 
managed as they are fundamental part of the runtime environment. For instance the resource 
that includes the management application within a device is of such a type. But in common 
the FB networks and also resource within a device are established by management commands 
and therefore their behavior belongs to this state machine (see Figure 63). A transition within 
the state machine corresponds to the execution of the mentioned management command. 
Therefore, also structural services for the creation and the deletion of an FB instance are part 
of the state machine. The execution control services influence the FB instance during its 
execution: 

• “START puts the FB in the running state. Input events are processed.” 
• “STOP” stops the processing of input events. No further input events are processed.” 

If the management command occurs during the execution of an algorithm of the af-
fected FB, then this algorithm will be completed. 

• “KILL aborts the processing of input events. No further input events are processed.” 
In this case an algorithm that is just executed will not be completed and the FB may be 
in an inconsistent state. 

• “RESET puts the FB back into the initial state.”  
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Figure 63: Operational state machine of a managed function block (IEC 61499-1, 2005, Figure 24) 

State interaction services: The state interaction reconfiguration services provide access to the 
internals of an FB by the use of the management command READ and WRITE. This is an 
enhancement to the definitions of the IEC 61499 standard which claims this functionality only 
for input and output data. Zoitl (2007) defines a very simple FB interface for this basic 
reconfiguration service capable to handle input, output, and internal variables (see Figure 
64a). Due to similar reasons as discussed already for above the R3E uses a more specialized 
FB interface (and therefore also a higher number of different FB instances in the basic 
reconfiguration services library). Figure 64b depicts an FB for reading an internal variable of 
an FB instance. Again the parameters of the management command are already analyized 
during initialization of the FB. A further possibility to enhance execution speed of this kind of 
FB is the output variable ‘VALUE’. Zoitl (2007) uses a string in order to provide any kind 
variable type. But encoding and (in case of transition management) calculation and again 
decoding of a certain data type from and to string data type can be omitted by provided 
specialized FB types based on the type of the internal variable. 

a)  
b)  

Figure 64: Interface of basic reconfiguration services for reading of values a) as defined in 
Zoitl (2007, Appendix A) and b) as available for internal variables in R3E 

Query services: The query reconfiguration services can be used to establish the current 
system state by interaction with the control devices. The following commands are mentioned 
in (Zoitl, 2007): 

• “QUERY resources returns a list of the instantied resources within a device or for a 
resource’s instance name the resource type name can be retrieved.” 

• “QUERY FBs returns a list of the instanced FBs within a resource or for an FB’s in-
stance name the FB type name can be retrieved.” 
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• “QUERY FB state returns the current execution state of the FB.” As depicted in the 
state machine in Figure 63 the possible states are ‘IDLE’, ‘RUNNING’, ‘STOPPED’, 
and ‘KILLED’. 

• “QUERY connections returns a list of all connections within a device or resource or 
retrieve the corresponding end point of a connection for a given connection’s source 
or destination specification.” 

• “QUERY type returns the type definition of the queried type (resource, FB, data 
type).” 

These basic reconfiguration services are mainly useful for an engineering tool, as the re-
quested data will become very large in some cases. For instance, these query services provide 
a big amount of data necessary to acquire the current system state. This is the first step within 
the engineering cycle for DSE (see Section 4.1). 
But query service may be useful also for the modeling of the ECA itself. For instance it 
provides the possibility to check in some aspects whether the different sequences of a system 
evolution step have been applied correctly. Another opportunity is modeling of failure 
handling procedures. 

B.3 Measurement results 
Zoitl (2007, Chapter 5) provides a detailed experimental analysis of the behavior of the 
implemented runtime environment. As there have been no changes to these parts of the 
runtime environment within R3E, his results are applicable also for this thesis. The concepts 
have been applied on three different embedded hardware platforms in order to quantify also 
dependencies between the underlying system configurations. 
The results for the pure real-time execution model of IEC 61499 applications can be summa-
rized as follows: 

• The concept of real-time execution holds for the different runtime platforms. If the 
schedulability bounds given in Equations 5 and 6 are fulfilled, the real-time con-
straints of the control application will be met. 

• Because the test platforms used are very limited in memory usage and processing 
power it was possible to apply situations where the schedulability bounds are violated. 
“Even in these overload situations the runtime environment provided a deterministic 
execution of control applications. Furthermore the most important event chains (i.e. 
the event chains with the shortest deadlines) met their real-time constraints in this 
critical situation” (Zoitl, 2007, Section 5.2.3). 

• A special target of the runtime design mentioned in Zoitl (2007) is independent execu-
tion behavior from the underlying systm confinguration, especially the RTOS. The 
experiments with three different test platforms showed that the runtime environment is 
not able to abstract all RTOS characteristics. But it was possible to observe general 
similarities in the execution behavior of the different test platforms. 

Further Zoitl (2007) provides experiments which aim at the consideration of the execution of 
basic reconfiguration services during operation of real-time constrained event chains. 

• The download of an application via the management application during execution of 
real-time constrained event chains does not influence the real-time constraints of the 
control application. 

• A separated consideration has been applied for QUERY commands, because they have 
to be replied big amount of data as answer (e.g., a list of FB types or connections). 
Also for QUERY commands the operation of real-time constrained event chains has 
not been influenced. 
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• A simple ECA without real-time constraints, which acts on a real-time constrained 
event chain, does influence the execution behavior of the control application to an ex-
tent of one to ten percent of the deadline (based on a rather small application and 
deadline). It is important that there exists some spare execution time in order to pro-
vide the capability of execution of basic reconfiguration services within the prepara-
tion and the post-processing of a system evolution step. 

• The disturbance of an ECA which is executed with real-time constraints has not been 
considered in detail as Zoitl (2007) states that therefore a careful planning and adjust-
ment of the control application and the ECA is necessary. The content of this thesis 
provides exactly the missing context. 
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C Net Condition/Event Systems 

Appendix C 

Net Condition/Event Systems 

The formalism of Net Condition/Event Systems (NCESs) has been introduces in Rausch and 
Hanisch (1995) as a formal, modular modeling approach that is based on two concepts 
already known in literature: 

• Sreenivas and Krogh (1991) introduced “condition/event systems as a class of con-
tinuous-time discrete event dynamic systems with two types of discrete-valued input 
and output signals: condition signals and event signals”. 

• Petri (1961) introduced his modeling approach for asychronous communication in 
computer systems based on places, transitions, their interconnection, and the token 
flow within the graph (see also Section 3.6.3). There exist many different dialects of 
so-called Petri nets. 

The main idea of NCES is to combine these concepts in the following way. The dynamic 
behavior of modules is described as Petri net, which are extended with condition and event 
signals. Based on these modules composition can be modeled as condition/event systems by 
interconnecting the event and condition interfaces of the different modules. In this way a 
hierarchical model architecture can be established. In order to provide model checking for this 
kind of modeling approach, the overall system can be reduced into one single system without 
modules (flattening of the hierarchy). According to Starke and Roch (2002) such a system 
without inputs and outputs (so-called autonomous systems) are called Signal-Net Systems 
(SNSs), and an appropriate model checking algorithm is described. We will focus our 
considerations on a certain type of NCES, which provide the usage of timed arcs as well as 
multiple tokens within arcs. Further enhancements such as distinguishable tokens (coloured 
tokens) as described in Starke and Roch (2002, Section 3) or the combination of NCES with 
extended timestamp nets (a high-level Petri net class with tokens that may carry timestamps 
and additionally an arbitrary number of other elements—which may be especially continuous 
state variables for modeling of dynamic behavior) as depicted for instance in Ha-
nisch et al. (2000) will not be taken into consideration. 

C.1 Timed net condition/event systems 
The above given extension of NCES with timed arcs is called Timed Net Condition/Event 
Systems (TNCES) and has been introduces in Hanisch et al. (1997). TNCES provide the basis 
for different applications of the modeling approach of NCES as for instance depicted in 
Hanisch et al. (2006) or Lobov et al. (2006a). Within this thesis we will always use timed 
NCES models. A graphical representation of a timed NCES model is depicted in Figure 65. 
The main elements are places (which may contain a certain number of indistinguishable 
tokens), transitions, and arcs between places and transitions. These arcs are called flow arcs as 
they enable the flow of tokens from places to transistions and transitions to places. The 
interface of a module is given by input and output events as well as input and output condi-
tions. An event represents the firing of a transition (dynamic property); a condition represents 
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the incorporation of tokens within a place (static property). Accordingly there exist two 
further kinds of arcs within a NCES module, the event arcs and the condition arcs. The first 
one is able to transmit events between conditions (or the interface of the NCES module), the 
second one provide the static property of tokens incorporated within a state from places to 
transitions. A condition represents a Boolean value, whether there exists a token in the related 
state (true) or not (false). 

 
Figure 65: A timed Net Condition/Event Systems module 

The behavior of a model represented as NCES is depicted by firing rules which describe when 
a transition is evaluated true. There exist two different types of transitions: 

• Spontaneous transitions: A spontaneous transition does not have any incoming event 
signal. The transition clears if all incoming transition arcs are true and the incoming 
flow arcs do have a marking within the related place. Only if all incoming condition 
and flow arcs are evaluated true (logical AND relation), the transition may fire. The 
token flow via the transition is given by the flow arcs. If the transition fires an event is 
issued to every outgoing event arc. 

• Forced transitions: A forced transition has at least one incoming event arc. Addition-
ally there may be incoming condition and flow arcs as depicted for spontaneous transi-
tions. The transition will be evaluated only if an event is issued to the transition via the 
incoming event arc. There may be several incoming event arcs, too, whereas a logical 
OR or AND relation may be used within the firing rule. 

In addition to the firing rules described above two further situations have to be distinguished: 
• Number of tokens: As there may be several tokens within a place (denoted by dots or 

a number within the place) also the condition represented via a condition arc can be 
separated according to the number of tokens. A condition arc may have a weight, 
which means an integer number which describes the threshold when the condition arc 
will issue a true condition to the related transition. Only if there are equal or more to-
kens within a place than given by the condition are weight, the condition arc will issue 
a true value. The situation is similar for flow arcs. Herein also a flow arc weight may 
be defined, which has two effects to the behavior of the NCES model. On the one 
hand a transition may fire only if there are equal or more tokens within a place as de-
noted in the flow are weight. But on the other hand the flow arc weight also gives the 
number of tokens that are removed from the place when the transition fires. A flow arc 
weight may be used also for arcs that interconnect a transition and a place. In this case 
the flow arc weight defines the number of tokes that are added to the place when the 
transition fires. 

• Timed arcs: Time is represented as an integer value related to clocks within places. As 
soon as a place includes a token the clock is enabled. The execution of a NCES model 
is stepwise, which means based on the current situation (tokens within places) the 
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transitions are evaluated. Spontaneous transitions fire if the conditions given by in-
coming condition and flow arcs are fulfilled. A forced transition is evaluated as soon 
as it is enabled. Therefore a stepwise execution emerges, because as soon as all transi-
tions have been evaluated once no more action is possible within the NCES model. As 
soon as this situation has been reached the enabled internal clocks within the places 
are increased by one and the next step is executed. The timed behavior within NCES 
modules is incorporated by the use of permeability intervals to flow arcs that connect 
places with transitions. The permeability interval provides a lower and upper bound 
for the value of the clock within the place. Only if the clock value is within this range, 
the corresponding flow arc will be evaluated true. 

According to Hanisch et al. (1997) “a Timed Net Condition/Event System (TNCES) is a tuple 

TNCES = { P, T, F+, F- , M0, y, CN, EN, DC } (27) 

with: P finite, ordered set of n places p 
 T finite, ordered set of m transitions t 
 F+ n µ m - matrix of input arcs 
 F- n µ m - matrix of output arcs 
 M0 initial marking, vector of dimension 
 y input/output structure 
 CN Condition signal matrix of dimension n µ m 
 EN Event signal matrix of dimension m µ m. 

 

The input/output structure y is defined as follows: 

y = { Cin, Ein, Cout, Eout, Bc, Be, Cs, Dt } (28) 

with: Cin finite, ordered set of r Condition input signals 
 Ein finite, ordered set of s Event input signals 
 Cout finite, ordered set of p Condition output signals 
 Eout finite, ordered set of q Event output signals 
 Bc Condition input matrix of dimension r µ m 
 Be Event input matrix of dimension s µ m 
 Cs Condition output matrix of dimension n µ p 
 Dt Event output matrix of dimension m µ q. 

 

The time extension of a TNCES (…) is defined as follows: 

DC = { DR, DL, D0 } (29) 

with: DR n µ m – matrix of delay time 
 DL n µ m – matrix of limitation time 
 D0 initial state of local clocks associated to the places. 

 

The elements DR( i, j ) and DL( i, j ) of matrices DR and DL denote the associated delay and 
limitation times of the permeability of the arc from place i to transition j.”  
Next to this definition of basic NCES modules there exist also so-called composite NCES 
modules which are characterized by the component NCES modules interrelated via event and 
condition arcs (similar to condition/event systems). Vyatkin et al. (2003a) provides a descrip-
tion of problems and their solution by enhancements to the classical NCES formalism. Such a 
restriction has occurred for instance for interconnections of modules with arc weights of input 
and output condition arcs or the behavior of open (unconnected) event and condition inputs. 
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The solution may differ depending on the used model checking tool and algorithm. For this 
thesis we utilize the visual framework for verification of function blocks [61] with the 
following solution provided: 

• The chain of condition arcs with different arc weight will be defined by the smallest 
arc weight within this chain. 

• Every open input is considered as inactive. An open event input never receives an 
event and an open condition input is always false. 

The use of a hierarchical engineering by the use of NCES is depicted for instance in Vyatkin 
and Hanisch (2003b). Figure 66a shows a simple situation of two different NCES modules 
interconnected as composite NCES module. 

 
Figure 66: (a) Composition of NCES modules and (b) the corresponding SNS model 

C.2 Signal net systems 
The analysis of NCES is based on a flat model of the overall model without external inputs, 
the so-called Signal Net Systems. SNSs are described in detail in Starke and Roch (2002), 
which take into consideration different variants of SNS. For this thesis we use SNS under 
time constraints, which utilize a similar model of time as depicted above for TNCES. A SNS 
is generated based on a NCES model as depicted in Figure 66. The composite NCES models 
in the upper part of the figure are transformed into a SNS model by resolving the borders of 
the NCES modules.  
According to Starke and Roch (2002, Section 1.1) a SNS (without timing constraints) can be 
described as 

N = { P, T, F, V, B, W, S, M, m0 } (30) 

where 1. P is a non-empty finite set (of places), 
 2. T is a non-empty finite set (of transitions), disjoint with P, 
 3. F is a subset of ( P µ T ) » ( T µ P ) (the flow relation, the set of flow 

arcs), 
 4. V is a mapping which atteches a positive integer to every arc (the arc 

weight, V : FØÕ ), 
 5. B is a subset of P µ T (the set of condition arcs) 
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 6. W is a mapping which attaches a positive integer to every condition 
arc (the condition arc weight, W : FØÕ ), 

 7. S is a subset of ( T µ T ) \ idT, the irreflexive signal (flow) relation, 
 8. M is a mapping which attaches a (signal-processing) mode to every 

transition ( M : TØ{ -, / }, and, finally, 
 9. m0 is a marking of P called the initial marking or the initial state of 

N. 
In constrast to the definition of NCES herein the arc weights of flow arcs and condition arcs 
are especially mentioned within V and W, whereas in Equation 27 the matrices F+, F- 
(represented as F in Equation 30), and CN include this information as intereger values 
directly. In addition the parameter for the processing of events in forced arcs is also repre-
sented explicitely in M. The representation of time is added in a similar manner to SNSs as 
described above for NCES in Equation 29. A formal definition for timed SNSs is given in 
Starke and Roch (2002, Section 2, Definition 2.1). 
The analysis of any modeling language is based on the possibilities incorporated within the 
model checking algorithm provided by an appropriate tool. In case of SNSs the model 
checker SESA, which has been developed at Humbold-Universität zu Berlin, is available. 
Starke and Roch (2002) provide a detailed description of the theory that provides the basis for 
SESA as well as a short tool description. SESA is part of the visual framework for verifica-
tion of function blocks [61]. According to Starke and Roch (2002, Section 5) the following 
methods are incorporated within SESA: “Once we know that an SNS is bounded, we can (at 
least in principle) decide all further questions by construction of a reachability graph30. But 
the state explosion problem urges us to look for methods which, depending on the question at 
hand, avoid unnecessary computations, i.e. which compute only a subgraph of the reachability 
graph: 

• restrict the depth of the computed graph (applicable in the unbounded case too), 
• use a ‘bad’ predicate; only states (markings) not satisfying the predicate will be devel-

oped further while state satisfying the predicate will be included as dead states into the 
computed graph, 

• use a CTL-formula: compute only that part of the reachability graph needed to check 
the formula, 

• reduce the number of arcs by avoiding simultaneous firing of steps, 
• use the stubborn set method to compute a reduced reachability graph, 
• use symmetries of the net.” 

The SESA model checker provides different variants of CTL in order to define specifications. 
• Pure CTL as described in Section 3.6.2. 
• Extend CTL which utilizes so-called transition formulae that are able to contain cer-

tain state transitions between states (which is complicated in CTL). The transition in-
formation is based on the edges of the reachabilty graph. A detailed description of ex-
tend CTL is given in Starke and Roch (2002, Section 12), but as we will not use ex-
tend CTL within this thesis we lack for a more detailed description. 

• Timed CTL is introduced in a similar manner as RTCTL described in Section 3.6.2, 
based on the structure of the reachability graph enhanced by a state delay. This delay 

                                                 
30 The reachability graph is the state graph of a signal net system. It incorporates all possible states a system may 
have as well as the possible transitions between these states. In contrast to the unwinded Kripke structure 
mentioned in Section 3.6.1 each state of the system is only mentioned once. 
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describes the number of time units that have to elaps before a step can be executed. 
The satisfaction relation Ö is defined in Starke and Roch (2002, Section 13, Definition 
13.3) for timed CTL in SESA by the use of intervals that refer to the state delay. An 
interval [l, h] with 0 # l # h may be used as time constraint for the operators X, F, and 
U.  

C.3 Tool framework 
As already mentioned above we will use the tool framework “visual framework for verifica-
tion of function blocks” [61] provided by Valeriy Vyaktin within this thesis. The framework 
incorporates a model editor as well as a verification tool, the so-called Visual Verifier (ViVe). 
The model checking tool used in ViVe is on the one hand SESA and on the other hand a 
simple built-in model checker. Another framework for the use of TNCES is the MOVIDA 
tools framework [33] provided by Tampere Univeristy of Technology, which also uses SESA 
as model checking tool. For pure modeling of TNCES, also the TNCES editor developed 
from Martin-Luther-Universty Halle-Wittenberg [32] is available and has been used also for 
this work partially. 
A detailed description of the functionality of the tool framework is available via [61]. We will 
provide a short description of the different options for model checking, as the creation of the 
reachability graph and therefore the system’s behavior are influence by these options to a high 
extent. 
Figure 67 depicts a screeshot of the current version of ViVe with the appropriate pane for the 
use of the model checking tools. The elements summarized as ‘Checker of CTL formulae’ 
provide the interface for the SESA model checker, whereas the elements summarized as 
‘Checker of predicates’ are related to the built-in model checker. 
SESA provides many different options for the analysis of SNS as described in Starke and 
Roch (2002, Appendix). For the generation of the reachability graph especially the firing rule 
has to be taken into consideration as described in Starke and Roch (2002, Section 1.3). The 
following two settings can be used within ViVe: 

• Single spontaneous: SESA computes a list of all executable steps at a given state 
within the reachability graph, including all combinations of enabled spontaneous tran-
sitions as well as all possible forced transitions. If ‘Single spontaneous’ is active this 
list will be reduced to only those steps that contain only one spontaneous transitions. 

• Maximal steps: If ‘Maximal steps’ is active all elements within the list of executable 
steps at a given state will be included for the calculation of the reachability graph. 

The options of the built-in model checker of ViVe are described in Vyatkin (2007b), which is 
part of the documentation of ViVe. The firing rules supported by this model checker are 
slightly different to SESA: 

• Single spontaneous: The reachability graph is created taking into account only one 
single spontaneous transition (and as much as possible forced transitions) between two 
states of the system. This option is similar to the ‘Single spontaneous’ option men-
tioned above for SESA. 

• All combinations: Herein any kind of combination of enabled spontaneous transitions 
(again with all possible forced transitions) is included in the reachabilty graph calcula-
tion. This option is similar to the ‘Maximal steps’ option mentioned above for SESA. 

• Maximum set of spontaneous: This option provides a reachability graph where only 
the maximal set of spontaneous transitions enabled in a given state is incorporated. 
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Figure 67: Screenshot of the ViVe tool with the check pane 
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Appendix D 

Embedded Configurable Operating System (eCos) 

There are many different RTOSs available within the field of embedded system. Within this 
thesis we will utilize eCos, which is an open source and royalty-free RTOS available since 
1998. Detailed information about the current status of eCos is available in [9]. Further the 
overall architecture of eCos has been described in Massa (2003), which will provide the basis 
for the following descriptions. 
The main characteristics of eCos are: 

• Low requirements for necessary memory and processing power 
• Availability for various embedded platforms based on a hardware abstraction layer 
• Configurability of the overall system (see Section D.1) 
• Deterministic behavior for task scheduling and handling of interrups (see Section D.2) 

D.1 Configurability 
“In order to get an understanding of the eCos architecture, it is important to appreciate the 
component framework that makes up the eCos system. This component framework is 
specifically targeted at embedded systems and meeting the requirements associated in 
embedded design. Using this framework, an enormous amount of functionality for an 
application can be built from reusable software components or software building blocks. (…) 
Most embedded software today provides more functionality than what might actually be 
needed for a particular application. Often, extra code is included in a software system that 
gives generic support for functionality that embedded developers are not concerned with and 
is not needed. (…) eCos gives the developer ultimate control over run-time components 
where functionality that is not needed can easily be removed. eCos can be scaled from a few 
hundred bytes up to hundreds of kilobytes when features such as networking stacks are 
included and third-party contributions such as Web servers are used. Developers are able to 
select components that satisfy basic application needs, and configure that particular compo-
nent for the specific implementation requirements for the application. This could mean 
enabling or disabling a particular feature within a component, or selecting a particular 
implementation for the component. An example of this is in the kernel scheduler configura-
tion. eCos offers the developer options such as the ability to select the number of priority 
levels and whether time slicing is used. Any code unnecessary to meeting the developer’s 
requirements is eliminated in the final image of the application.” (Massa, 2003, Section 1.2.1) 
“Figure 68 shows a portion of the eCos Kernel package from the Configuration Tool. The 
figure shows how the building blocks are encapsulated within each other to create a complete 
and independent package. We can see the hierarchy of the configuration from packages to 
components to configuration options to suboptions. Building blocks are grouped together in a 
package based on the functionality they include. In Figure 68, we see the ‘eCos kernel’ 
package, which contains the ‘Exception handling’ component and the ‘Kernel Schedulers’ 
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component; the other eCos Kernel components are not shown in this figure. We can see in 
Figure 68 the nesting of configuration options, such as ‘Scheduler timeslicing’, and subop-
tions that compose the components.” (Massa, 2003, Section 1.3.1.2) 

 
Figure 68: Configuration tool options, (Massa, 2003, Figure 1.2) 

D.2 The kernel component 
The core of the eCos architecture is the kernel component, which includes different schedul-
ing policies for tasks31, mechanisms for synchronization of tasks, and the effect of interrupts 
on task execution. We will focus our consideration on the elements that have been mentioned 
for the formal model of a control device (see Section 7.4.1), which are the scheduling policies 
and the synchronization mechanisms.  

Multilevel queue scheduler (MLQ) 
eCos supports two different scheduling policies for tasks. “The multilevel queue scheduler 
allows the execution of multiple tasks at each of its priority levels. The number of priority 
levels is a configuration option from 1 to 32, corresponding to priority numbers 0 (highest 
priority) to 31 (lowest priority). The scheduler allows preemption between the different 
priority levels. (…) Preemption is a context switch halting execution of a lower priority task, 
thereby allowing a higher priority task to execute. The multilevel queue scheduler also allows 
timeslicing within a priority level. Timeslicing allows each thread at a given priority to 
execute for a specified amount of time, which is controlled by a configuration option. The 
queue implementation for the multilevel scheduler uses double linked circular lists to chain 
together threads within a priority level and threads at different priority levels. 
In Figure 69, we see the multilevel scheduling queue representation along with an example of 
task execution using this scheduler. In the scenario shown in Figure 69, three tasks—
‘Task A’, ‘Task B’, and ‘Task C’—are configured during creation of the tasks at priority 
levels 0, 0, and 30, respectively. The state of the scheduler queue after thread creation is 
shown in Figure 69. For this scenario, timeslicing is enabled. The timeline is a snapshot that 
starts with ‘Task C’ executing. Next, ‘Task A’ becomes able to run, causing ‘Task C’ to be 
preempted and a context switch occurs. During the execution of ‘Task A’, ‘Task B’ also 
becomes able to run. ‘Task A’ continues until its timeslice period expires. Then, another 
context switch occurs allowing ‘Task B’ to run. ‘Task B’ completes within its given timeslice 
period. The descheduling of a thread can happen for various reasons; for example, by waiting 
on a mutex that is not free or delaying for a specified amount of time. Since ‘Task A’ has the 
highest priority of tasks waiting to execute, a context switch occurs and it runs next. After 
‘Task A’ has completed, a context switch takes place allowing ‘Task C’ to execute.” (Massa, 
2003. Section 5.1.3.1) 

                                                 
31 Massa (2003) uses the term thread in order to describe execution contexts, which is defined as „a single flow 
of execution through a program“ which contains „its own context or workspace to perform its operations“ 
(Massa, 2003, Section 6.1). This definition is similar to the term task which is used for independent exeuction 
contexts within this thesis. In order to provide a common terminology also citations from Massa (2003) will be 
changed to use the term task instead of thread. 
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Figure 69: Execution example for MLQ scheduler, (Massa, 2003, Figure 5.3) 

Bitmap scheduler 
“The bitmap scheduler allows the execution of tasks at multiple priority levels; however, only 
a single task can exist at each priority level. This simplifies the scheduling algorithm and 
makes the bitmap scheduler very efficient. The number of priority levels is a configuration 
option from 1 to 32, corresponding to priority numbers 0 (highest priority) to 31 (lowest 
priority). 
Figure 70 illustrates an example of task execution using the bitmap scheduler. In Figure 70, 
there are three tasks created at different priority levels: ‘Task A’—priority 0 (highest), 
‘Task B’ —priority 1, and ‘Task C’—priority 30 (lowest). The state of the bitmap scheduler 
queue after the tasks are created is shown left to the task execution timeline. The timeline is a 
snapshot of task execution starting with ‘Task C’ running. Next, ‘Task A’ and ‘Task B’ are 
able to run, causing a context switch and ‘Task C’ is preempted. ‘Task A’ executes next 
because it has the highest priority of the waiting tasks. When ‘Task A’ completes, a context 
switch takes place, enabling ‘Task BA’ to execute. After ‘Task B’ completes, ‘Task C’ can 
finish its processing.” (Massa, 2003, Section 5.1.3.2) 

 
Figure 70: Execution example for bitmap scheduler, (Massa, 2003, Figure 5.4) 

Task synchronization mechanisms 
eCos supports different mechanisms for tasks in order to communicate with each other and 
synchronize access to common resources (as for instance the event dispatcher mentioned in 
Section 7.4.2). We will roughly mentioned the most important ones for the establishment of 
the formal model. 
Mutexes: “A mutex (mutual exclusion object) allows multiple tasks to share a resource 
serially. The resource can be an area of memory or a piece of hardware, such as a direct 
memory access controller. A mutex is similar to a binary semaphore in that it only has two 
states—locked and unlocked. However, there are a couple of differences between a binary 
semaphore and a mutex. A mutex provides protection against priority inheritance, whereas a 
binary semaphore does not. (…) A mutex also has the concept of an owner, and only the 
owner can unlock the mutex. (…) A thread that attempts to lock a mutex that is currently 
owned by another thread will block until the owner unlocks the mutex.  
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One issue that arises in real-time systems when using mutexes is priority inversion. Priority 
inversion occurs when a high priority task is incorrectly prevented from executing by a low 
priority task. (…) eCos provides two solutions to the priority inversion problem that are 
selectable as configuration options. The first solution is a priority ceiling protocol. In the 
priority ceiling protocol, all tasks that acquire the mutex have their priority level raised to a 
preconfigured value. (…) A more elegant solution eCos provides is a priority inheritance 
protocol. The priority inheritance protocol allows a task that owns the mutex to be raised to 
the priority level equal to the highest level of all tasks waiting for the mutex. The priority 
inheritance protocol is only used when a higher priority task is waiting for the mutex.” 
(Massa, 2003, Section 6.2.1) 
Semaphores: “A semaphore is a synchronization mechanism that contains a count indicating 
whether a resource is locked or available. There are two types of semaphores, counting and 
binary. Binary semaphores are similar to counting semaphores; however, their count is never 
incremented past a value of one. Binary semaphores are in either a locked or unlocked state. 
Counting semaphores can be in multiple states depending on their count value. Counting 
semaphore objects contain a value that is incremented when a task posts to a semaphore, and 
the value is decremented when a tasks completes a wait for the semaphore. Only the highest 
priority waiting task is executed when the semaphore count is above zero. Counting sema-
phores are often used when a higher priority task (…), which received data, needs to signal 
another thread to continue processing the data at a lower priority.” (Massa, 2003, Sec-
tion 6.2.2) 
Condition variables: “Another available synchronization mechanism is the condition 
variable. Condition variables are used with mutexes that allow multiple tasks access to shared 
data. Typically, there is a single task producing the data, and one or more tasks waiting for the 
data to be available. The task producing the data can either signal a single task to wake up or 
all tasks to wake up, with a broadcast signal, when the data is available. The waiting tasks can 
then process the data as needed.” (Massa, 2003, Section 6.2.3) 
In addition to the above mentioned task synchronization mechanisms eCos provides the 
mechanisms flags, message boxes, and spinlocks. 
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Appendix E 

Property Specification Patterns 

Dwyer et al. (1998) introduce the idea of patterns for specifications in order to simplify the 
usage of temporal logic. “A property specification pattern is a generalized description of a 
commonly occurring requirement on the permissible state/event sequences in a finite-state 
model of a system. A property specification pattern describes the essential structure of some 
aspects of a system’s behavior and provides expressions of this behavior in a range of 
common formalisms.” Dwyer et al. (1998, Section 3) 
A refined version of the property specification pattern system has been presented in 
Dwyer et al. (1999) based on a survey of specifications that have been published in literature. 
As a result of the survey on 555 example specifications collected, 511 specifications (92%) 
matched with one of the patterns mentioned by the authors. The pattern system has been made 
public available in [53] and has been adapted continuously. In order to provide a snapshot of 
the current state of the pattern system, this appendix reproduces the content of [53] with 
special focus on CTL as temporal logic for the formulation of patterns. 

Pattern hierarchy 
There exist different possibilities for a categorization of patterns. As already presented in 
Section 7.6.1 a classification in terms of the kinds of system behavior the pattern describe can 
be represented as pattern hierarchy (see Figure 39). We will use this kind of categorization in 
the following paragraphs. An alternative organization may be based on the formalisms used 
for the description in temporal logic. [53] provides a formulation of the patterns in LTL, CTL, 
Graphical Interval Logic, Quantified Regular Expressions, INCA Queries, Action Computa-
tion Tree Logic, and Regular Alternation-Free-Mu-Calculus. We will only provide the 
formulation in CTL in this appendix, because this is the kind of temporal logic that can be 
used with the model checking tool SESA (see Appendix C). 

Property specifications scope 
“Each pattern has a scope, which is the extent of the program execution over which the 
pattern must hold. There are five basic kinds of scopes: global (the entire program execution), 
before (the execution up to a given state/event), after (the execution after a given state/event), 
between (any part of the execution from one given state/event to another given state/event) 
and after-until (like between but the designated part of the execution continues even if the 
second state/event does not occur). The scope is determined by specifying a starting and an 
ending state/event for the pattern: the scope consists of all states/events beginning with the 
starting state/event and up to but not including the ending state/event. 
Figure 71 illustrates the portions of an execution that are designated by the different kinds of 
scopes. We note that a scope itself should be interpreted as optional; if the scope delimiters 
are not present in an execution then the specification will be true. 
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Figure 71: Pattern Scopes, [53] 

Before and after scopes for our patterns are interpreted relative to the first occurrence of the 
designated state/event. We have done this because it matches our experience with real 
specifications. Note, however, that we could just as easily interpret these scopes relative to the 
last occurrence of the designated state/event (the mappings given in the patterns are easily 
transformed to match this interpretation). At present we do not see the need for supporting 
both first and last occurrence scopes, but as we gain experience applying the patterns we may 
wish to extend scopes in this way.” 

Weak until operator (W) 
Within the formulation of the patterns in temporal logic the weak until operation W is used 
instead of the until operator U. The difference will become visible based on the definition of 
the two operators: 

• p U q means that p is true until q is true, with q is true somewhere. 
• p W q means that at all states p is true until q is true. 

The same formula using W instead of U will be evaluated true even if q is never true. This 
can be simple expressed as p W q = p U q w G p. As equivalence [53] provides the following 
formulae: 

A [ x W y ] = ŸE [ Ÿy U ( Ÿx v Ÿy ) ] 
E [ x U y ] = ŸA [ Ÿy W ( Ÿx v Ÿy ) ] 

(31) 

E.1 Occurrence specification patterns 
“Occurrence patterns are used to express requirements related to the existence or lack of 
existence of certain states/events during well-defined regions of system execution. As with 
our other patterns, the regions are defined using scopes. 
There are four occurrence patterns: 

• Absence, aka never 
• Universality, aka globally, henceforth 
• Existence, aka eventually, future 
• Bounded existence” 

E.1.1 Absence property pattern 
“Intent: To describe a portion of a system's execution that is free of certain events or states. 
Also known as never. 
Mappings for CTL: 
p is false: 
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Globally AG ( Ÿp ) (32) 

Before R A [ ( Ÿp w AG ( ŸR )) W R ] (33) 

After Q AG ( Q Ø AG ( Ÿp )) (34) 

Between Q and R AG ( Q v ŸR Ø A [ ( Ÿp w AG ( ŸR )) W R ] ) (35) 

After Q until R AG ( Q v ŸR Ø A [ Ÿp W R ] (36) 

Examples and known uses: The most common example is mutual exclusion. In a state-based 
model, the scope would be global and p would be a state formula that is true if more than one 
process is in its critical section. For an event-based model, the scope would be a segment of 
the execution in which some process is in its critical section (i.e., between an enter section 
event and a leave section event), and p would be the event that some other process enters its 
critical section. 
Relationships: This pattern is the dual of the existence pattern. In fact, in many specification 
formalisms negation and explicit queries for existence will be used to formulate an instance of 
the absence pattern, as seen in the examples above. 
Note that between scopes in this pattern (with a false proposition or empty event symbol) 
appear to be able to specify the same thing as a response pattern with global scope. This is not 
the case, however, since the cause-effect relationship is required for the response whereas the 
scope for this pattern is optional. 
If one wishes to exclude states characterized by multiple propositions or multiple events one 
can do this by defining p appropriately. One common use is to fill the role of p in the above 
mappings with disjunctions of propositions or event symbols. For other parameterizations of 
patterns consult the pattern notes” (see Section E.3). 

E.1.2 Universality property pattern 
“Intent: To describe a portion of a system’s execution which contains only states that have a 
desired property. Also known as henceforth and always. 
Mappings for CTL: 
p is true: 

Globally AG ( p ) (37) 

Before R A [ ( p w AG ( ŸR )) W R ] (38) 

After Q AG ( Q Ø AG ( p )) (39) 

Between Q and R AG ( Q v ŸR Ø A [ ( p w AG ( ŸR )) W R ] ) (40) 

After Q until R AG ( Q v ŸR Ø A [ p W R ] (41) 

Examples and known uses: This pattern can be applied in most situations where the absence 
pattern can be applied. This is especially true for state-based formalisms, e.g., where mutual 
exclusion could be formulated as absence or universality with a between scope. 
Relationships: This pattern is closely related to the absence and existence patterns. Universal-
ity of a state can be viewed as absence of its negation. For event-based formalisms, we look 
for the existence of the positive event and absence of the negative event.” 

E.1.3 Existence property pattern 
“Intent: To describe a portion of a system’s execution that contains an instance of certain 
events or states. Also known as eventually. 
Mappings for CTL: 
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p becomes true: 

Globally AF ( p ) (42) 

Before R A [ ŸR W ( p v ŸR ) ] (43) 

After Q A [ŸQ W ( Q v AF ( p )) ] (44) 

Between Q and R AG ( Q v ŸR Ø A [ ŸR W ( p v ŸR ) ] ) (45) 

After Q until R AG ( Q v ŸR Ø A [ ŸR U ( p v ŸR ) ] ) (46) 

Examples and known uses: The classic example of existence is specifying termination, e.g., 
on all executions do we eventually reach a terminal state. 
Relationships: This pattern is the dual of the absence pattern. In fact, in many specification 
formalisms negation and explicit queries for existence will be used to formulate an instance of 
the absence pattern. 
We may wish to specify that a state/event occur at most some bounded number of times. The 
bounded existence pattern handles that case. 
If one wishes to require the existence of a state characterized by multiple propositions or 
multiple events one can do this by defining p appropriately. One common use is to fill the role 
of p in the above mappings with disjunctions of propositions or event symbols. For other 
parameterization of patterns consult the pattern notes” (see Section E.3). 

E.1.4 Bounded existence property pattern 
“Intent: To describe a portion of a system’s execution that contains at most a specified 
number of instances of a designated state transition or event. 
Mappings for CTL: In these mappings we illustrate one instance of the bounded existence 
pattern, where the bound is at most 2 designated states. Other bounds can be specified by 
variations on this mapping. 
Transitions to p-states occur at most 2 times: 

Globally ŸEF (Ÿp v EX ( p v EF (Ÿp v EX ( p v EF (Ÿp v EX ( p)))))) (47) 

Before R ŸE [ ( ŸR U ( Ÿp v ŸR v EX ( p v … 
  E [ ( ŸR U ( Ÿp v ŸR v EX ( p v … 
   E [ ( ŸR U ( Ÿp v ŸR v EX ( p v ŸR )) ] )) ] )) ] 

(48) 

After Q ŸE [ ŸQ U ( Q v EF ( Ÿp v EX ( p v … 
  EF ( Ÿp v EX ( p v EF (Ÿp v EX ( p ))))))) ] (49) 

Between Q AG ( Q Ø ŸE [ŸR U (Ÿp v ŸR v EX ( p v … 
and R  E [ŸR U (Ÿp v ŸR v EX ( p v … 
   E [ŸR U (Ÿp v ŸR v EX ( p v ŸR v EF ( R ))) ] )) ] )) ] ) 

(50) 

After Q AG ( Q Ø ŸE [ŸR U (Ÿp v ŸR v EX ( p v … 
until R  E [ŸR U (Ÿp v ŸR v EX ( p v … 
   E [ŸR U (Ÿp v ŸR v EX ( p v ŸR )) ] )) ] )) ] ) 

(51) 

Examples and known uses: Bounded overtaking properties can naturally be expressed using 
instances of this pattern. For example, if we wish to say that process 1 can enter its critical 
region at most twice while process 2 is waiting to enter its region we would use a between 
scope (delimited by process 2 entering and exiting its waiting region) with 2-bounded 
existence for process 1 entering its critical region. 
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Mappings of bounds other than two can be constructed relatively simple from the given 
mappings. (…) For LTL and CTL we simply add additional copies of the nested until 
structures. 
Relationships: This pattern is related to existence and chains. Note that this pattern does not 
require the occurrence of any number of instances of the given states/events (rather it bounds 
the number of instances). Single instances can be required with existence patterns. Multiple 
instances can be required with a slight variant to the above mappings. 
Note that response chain patterns are different than bounded existence in two ways: response 
chains require the responding sequence to be of the designated length (whereas here we only 
bound a sequence length), and the notion of an instance of a state/event differs between the 
two. In particular, a stuttered instance (i.e., in consecutive states on a path) counts as multiple 
instances with the chain whereas it is a single instance with bounded existence.” 

E.2 Order specification patterns 
“Order patterns are used to express requirements related to pairs of states/events during well-
defined regions of system execution. As with our other patterns, the regions are defined using 
scopes. 
There are two basic order-related patterns: 

• Precedence 
• Response, aka follows, leads-to 

Chain patterns are used to express requirements related to complex combinations of individ-
ual state/event relationships. These include precedence/response relationships consisting of 
sequences of individual states/events. We call these chain patterns. 
There are two variations of chain patterns: 

• Response chains 
• Precedence chains 

A variation of the chain patterns is to constrain the regions between the state/events that 
constitute the chain sequence.” The constrained chain property pattern will not be mentioned 
in the following discussion (see [53] for more details). 

E.2.1 Precedence property pattern 
“Intent: To describe relationships between a pair of events/states where the occurrence of the 
first is a necessary pre-condition for an occurrence of the second. We say that an occurrence 
of the second is enabled by an occurrence of the first. 
Mappings for CTL: 
In these mappings p is the consequent and s is the enabling state/event. 

Globally A [Ÿp W s ] (52) 

Before R A [ (Ÿp w AG ( ŸR )) W ( s w R ) ] (53) 

After Q A [ ŸQ W ( Q v A [ Ÿp W s ] ) ] (54) 

Between Q and R AG ( Q v ŸR Ø A [ ( Ÿp w AG ( ŸR )) W ( s w R ) ] ) (55) 

After Q until R AG ( Q v ŸR Ø A [ Ÿp W ( s w R ) ] ) (56) 

Examples and known uses: Precedence properties occur quite commonly in specifications of 
concurrent systems. One common example is in describing a requirement that a resource is 
only granted in response to a request. 
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Relationships: Note that a precedence property is like a converse of a response property. 
Precedence says that some cause precedes each effect, and response says that some effect 
follows each cause. They are not equivalent, because a response allows effects to occur 
without causes (precedence similarly allows causes to occur without subsequent effects). 
Note that this pattern does not require that each occurrence of a consequent will have its own 
occurrence of an enabling condition.” 

E.2.2 Response property pattern 
“Intent: To describe cause-effect relationships between a pair of events/states. An occurrence 
of the first, the cause, must be followed by an occurrence of the second, the effect. Also 
known as follows and leads-to. 
Mappings for CTL: 
In these mappings p is the cause and s is the effect. 

Globally AG ( p Ø AF ( s )) (57) 

Before R A [ (( p Ø A [ ŸR U ( s v ŸR ) ] ) w AG (ŸR )) W R ] (58) 

After Q A [ ŸQ W ( Q v AG ( p Ø AF ( s )) ] (59) 

Between Q and R AG ( Q v ŸR Ø A [ ((p Ø A [ ŸR U ( s v ŸR ) ] ) w … 
  AG (ŸR )) W R ] ) (60) 

After Q until R AG ( Q v ŸR Ø A [ ( p Ø A [ ŸR U ( s v ŸR ) ] ) W R ] ) (61) 

Examples and known uses: Response properties occur quite commonly in specifications of 
concurrent systems. Perhaps the most common example is in describing a requirement that a 
resource must be granted after it is requested. 
Relationships: Note that a response property is like a converse of a precedence property. 
Precedence says that some cause precedes each effect, and response says that some effect 
follows each cause. They are not equivalent, because a response allows effects to occur 
without causes (precedence similarly allows causes to occur without subsequent effects). 
Note that this pattern does not require that each occurrence of a cause will have its own 
occurrence of an effect.” 

E.2.3 Response chain property pattern 
“Intent: This is a scalable pattern. We describe the intent of the 1 stimulus – 2 response 
version here. 
To describe a relationship between a stimulus event (p) and a sequence of two response 
events (s, t) in which the occurrence of the stimulus event must be followed by an occurrence 
of the sequence of response events within the scope. In state-based formalisms, the states 
satisfying the response must be distinct (i.e., s and t must be true in different states to count as 
a response), but the response may be satisfied by the same state as the stimulus (i.e., p and s 
may be true in the same state). 
Mappings for CTL: 
s, t responds to p: 

Globally AG ( p Ø AF ( s v AX ( AF ( t )))) (62) 

Before R ŸE [ ŸR U ( p v ŸR v ( E [ Ÿs U R ] w  
  E [ ŸR U ( s v ŸR v EX ( E [ Ÿt U R ] )) ] )) ] (63) 

After Q ŸE [ ŸQ U ( Q v EF ( p v ( EG ( Ÿs ) w EF ( s v EX ( EG (Ÿt )))))) ] (64) 
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Between Q and R AG ( Q Ø ŸE [ ŸR U ( p v ŸR v ( E [ Ÿs U R ] w  
  E [ ŸR U ( s v ŸR v EX ( E [ Ÿt U R ] )) ] )) ] ) (65) 

After Q until R AG ( Q Ø ŸE [ ŸR U ( p v ŸR v ( E [ Ÿs U R ] w 
  EG ( Ÿs v ŸR) w E [ ŸR U ( s v ŸR v EX ( E [ Ÿt U R ] w  
   EG ( Ÿt v ŸR ))) ] )) ] ) 

(66) 

Examples and known uses: If a resource allocator grants a process access to a resource 
(GrantRes), the process will start using the resource (BeginRes) and finish using the resource 
(EndRes). 
Relationships: This pattern is a generalization of the response pattern. If you wish to restrict 
the occurrence of states/events between stimuli or responses use the constrained response 
chain pattern.” 

E.2.4 Precedence chain property pattern 
“Intent: This is a scalable pattern. We describe the intent of the 1 stimulus – 2 response 
version here. 
To describe a relationship between an event/state p and a sequence of two events/states (s, t) 
in which the occurrence of s followed by t within the scope must be preceded by an occur-
rence of the sequence p within the same scope. In state-based formalisms, the beginning of 
the enabled sequence (s, t) may be satisfied by the same state as the enabling condition (i.e., p 
and s may be true in the same state). 
Mappings for CTL: 
p precedes s, t: 

Globally ŸE [ Ÿp U ( s v Ÿp v EX ( EF ( t ))) ] (67) 

Before R ŸE [ ( Ÿp v ŸR ) U ( s v Ÿp v ŸR v EX ( E [ ŸR U ( t v ŸR ) ] )) ] (68) 

After Q ŸE [ ŸQ U ( Q v E [ Ÿp U ( s v Ÿp v EX ( EF ( t ))) ] ) ] (69) 

Between Q and R AG ( Q Ø ŸE [ ( Ÿp v ŸR ) U ( s v Ÿp v ŸR v … 
  EX ( E [ ŸR U ( t v ŸR v EF ( R )) ] )) ] ) (70) 

After Q until R AG ( Q Ø ŸE [ ( Ÿp v ŸR ) U ( s v Ÿp v ŸR v … 
  EX ( E [ ŸR U ( t v ŸR ) ] )) ] ) (71) 

Examples and known uses: An example of this pattern, assuming reliable communication 
between client and server, is that ‘If a client makes a request and there is no response, then the 
server must have crashed.’ This would be expressed by parameterizing the constrained variant 
of the 1-2 precedence chain pattern as: ServerCrash precedes ClientRequest, G ŸResponse 
without Response in LTL. 
Relationships: Note that this pattern does not require that each occurrence of the enabled 
sequence will have its own occurrence of the enabling condition.” 

E.3 Property specification pattern notes 
“The patterns provided in this system cover a broad range of requirements for real systems. 
Your requirement, however, may require you to adapt existing patterns slightly to better 
express your intended property. There are a number of ways in which this variation can take 
place, e.g., parameterization of patterns, combination of patterns, and variation in pattern 
scopes. 
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Pattern parameterization 
“Pattern mappings are presented in terms of place-holder symbols (e.g., p, Q, R, s) that are to 
be replaced by users when writing actual specifications. These place holders are filled with 
descriptions of specific system states or event of interest. These descriptions can be more 
complex than just a single proposition or event name. Here are a few examples (for logics, 
e.g., CTL, LTL): 

• Purely propositional formula can always be used to describe a state. This includes 
simple negations, disjunctions, conjunctions, and implications. 

• State-formulae that include temporal operators can also be used (…). Care must be 
taken in using such state-formulae, since the meaning of the resulting specification can 
be quite subtle. This is especially true when using scopes that may have an end point, 
i.e., before, between, and after-until.” 

Pattern combinations 
“A system’s specification usually consists of a collection of property specifications. 
Conjunctions: It is most often the case that all such property specifications should hold. In 
this case, one could simply check all specifications individually and require that all are 
successful. For the logical formalisms, an alternative is to conjoin the individual specifica-
tions into a single larger specification. While this is semantically equivalent, it may be the 
case that a larger specification is less efficient to verify (e.g., the cost of LTL in Buchi 
automaton construction can be large for automata-based model checkers). For this reason, 
preserving, and verifying, the individual property specifications is suggested. 
Disjunctions: There are two views of pairs (or more generally a collection) of alternative 
individual property specifications: 

• System behaviors all correspond to one specification or they all correspond to the 
other specification. 

• Some of the system behaviors correspond to one specification and the rest of the be-
haviors correspond to the other specification. 

The first of these alternatives corresponds to the checking of individual property specifica-
tions independently and disjoint the results. This is true for all specification formalisms. The 
latter situation can be achieved in formalisms that allow specifications to be disjoined under 
the same universal path qualifier. 
For LTL and Quantified Regular Expression there is an implicit outer universal path qualifier, 
thus checking of a top-level disjunction of specifications will achieve these semantics. To 
achieve the first alternative (above) one must check LTL and Quantified Regular Expression 
specifications separately. 
This is not the case for CTL, where two specifications cannot be disjoined directly under the 
same path quantifier. A top-level disjunction CTL achieves the first alternative and the second 
cannot be achieved directly (although one might be able to rewrite a combined version of the 
two specifications).” 

Scope variations 
“Most event-based formalisms use some version of an interleaved model of concurrent 
computation. In such formalisms, two events cannot coincide. Event-delimited scopes are thus 
open at both ends: an event that occurs within the scope cannot occur at the same time as an 
event that marks the beginning or end of the scope. For state-based formalisms, the situation 
is different. Consider, for instance, a scope that begins with a state in which proposition Q 
holds and ends with the next state in which R holds. If we want to specify that proposition p 
does not hold within the scope, we have to decide what should happen if p is true at either of 
the states marking the endpoints of the scope.” 
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F FDCML-based description of the demonstration control 
device 

Appendix F 

FDCML-based description of the demonstration control device 

The basis for the evaluation of DSE is a very detailed description of the current system state. 
Appropriately, also each control device needs to be described with all its parameters. In order 
to support the engineering process, a device description based on the FDCML format has 
been proposed in Section 5.3. The following listing includes excerpts of the device descrip-
tion of the demonstration control device (see also Section 8.1.1) without any control applica-
tions already included. If an ACS customer buys a new control device, a similar situation 
occurs and the device vendor would provide an analogue device description file as presented 
above for the demonstration control device. 
 
<?xml version="1.0" encoding="UTF-8"?> 
<hcd:ISO15745Profile xmlns:hcd="http://www.ecedac.org/61499/hcd" xmlns:data="http://www.ecedac.org/61499/data" 
 xmlns:lib="http://www.ecedac.org/61499/lib" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
 xsi:schemaLocation="http://www.ecedac.org/61499/hcd eCEDAC_HCD.xsd http://www.ecedac.org/61499/data 
DataType_elements_cs.xsd http://www.ecedac.org/61499/lib LibraryElement_elements_cs.xsd "> 
 
 <hcd:ProfileHeader> 
  <ProfileIdentification>eCEDAC HCD</ProfileIdentification> 
  <ProfileRevision>V 0.1</ProfileRevision> 
  <ProfileName> eCEDAC Hardware Capability Description </ProfileName> 
  <ProfileSource>eCEDAC Consortium</ProfileSource> 
  <ProfileDate>2006-11-14</ProfileDate> 
 </hcd:ProfileHeader> 
 
 <hcd:ProfileBody fileCreationDate="2007-05-30" fileCreator="Christoph Suender" fileModificationDate="2007-05-30" 
  fileName="DevBoard_ARM7.xml" fileVersion="V0.1"> 
 
  <hcd:DeviceIdentity> 
   <hcd:vendorName> 
    <hcd:label>PHYTEC Messtechnik GmbH</hcd:label> 
   </hcd:vendorName> 
   <hcd:productName> 
    <hcd:label>phyCORE-AT91M55800A</hcd:label> 
   </hcd:productName> 
   <hcd:productText> 
    <hcd:label> phyCORE Development Board HD200 mit phyCORE-AT91M55800A </hcd:label> 
   </hcd:productText> 
  </hcd:DeviceIdentity> 
 
  <hcd:DeviceManager> 
   <hcd:deviceStructure> 
    <hcd:channelList> 
     <hcd:channel uniqueID="Supply.VCC" channelType="Supply" direction="I"> 
      <hcd:label>X1</hcd:label> 
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      <hcd:help>Controller Supply Voltage</hcd:help> 
      <hcd:specificProperty propertyType="Voltage"> 
       <hcd:label>nomVoltage [V]</hcd:label> 
       <hcd:help>  Nominal supply voltage of the controller measured in Volts [V] </hcd:help> 
       <hcd:instanceValue>5</hcd:instanceValue> 
      </hcd:specificProperty> 
      <hcd:specificProperty propertyType="Current"> 
       <hcd:label>maxCurrent [mA]</hcd:label> 
       <hcd:help> Maximum current consumption of the cntroller measured in Miliamperes [mA] </hcd:help> 
       <hcd:instanceValue>500</hcd:instanceValue> 
      </hcd:specificProperty> 
     </hcd:channel> 
List of further channels listed here in the original description file. 
    </hcd:channelList> 
    <hcd:MAUList> 
     <hcd:MAU uniqueID="TP1" interfaceType="RJ45" protocol="10BaseT Ethernet IEEE 802.3"> 
      <hcd:label>TP</hcd:label> 
      <hcd:help>Ethernet network connector</hcd:help> 
      <hcd:specificProperty 
       propertyType="DataTransmissionSpeed"> 
       <hcd:label>maxDataSpeed [MBit/s]</hcd:label> 
       <hcd:help>  Maximum data transmission speed measured in [MBit/s] </hcd:help> 
       <hcd:instanceValue>10</hcd:instanceValue> 
      </hcd:specificProperty> 
      <hcd:specificProperty 
       propertyType="MACAddress"> 
       <hcd:label>MAC Address</hcd:label> 
       <hcd:help>  printed on the bar code sticker attached to the phyCORE module </hcd:help> 
       <hcd:instanceValue> 00:00:00:00:00:00  </hcd:instanceValue> 
      </hcd:specificProperty> 
      <hcd:specificProperty 
       propertyType="MediaType">  
       <hcd:label>full/half duplex</hcd:label> 
       <hcd:instanceValue> needs to be defined </hcd:instanceValue> 
      </hcd:specificProperty> 
     </hcd:MAU> 
List of further MAUs listed here in the original description file. 
    </hcd:MAUList> 
    <hcd:indicatorList> 
     <hcd:LEDList> 
      <hcd:LED LEDType="DeviceStatus" uniqueID="PowerON"> 
       <hcd:label>D2 - PowerON</hcd:label> 
       <hcd:specificProperty propertyType="Colors"> 
        <hcd:label>LED Colors</hcd:label> 
        <hcd:instanceValue> red </hcd:instanceValue> 
       </hcd:specificProperty> 
       <hcd:specificProperty 
        propertyType="Programmable"> 
        <hcd:label> LED's ability to be programmable </hcd:label> 
        <hcd:instanceValue> false </hcd:instanceValue> 
       </hcd:specificProperty> 
      </hcd:LED> 
List of further LEDs listed here in the original description file. 
     </hcd:LEDList> 
    </hcd:indicatorList> 
   </hcd:deviceStructure> 
 
   <hcd:communicationEntity protocol="TCP/IP" uniqueID="TCP" enabled="YES">  
    <hcd:label>TCP/IP</hcd:label> 
    <hcd:identity> 
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     <hcd:vendorName> <hcd:label>Beck</hcd:label> </hcd:vendorName> 
     <hcd:typeName> <hcd:label>TCP Stack</hcd:label> </hcd:typeName> 
    </hcd:identity> 
    <hcd:cfgItemList> 
     <hcd:label>Protocol Settings</hcd:label> 
     <hcd:dedicatedCfgItem uniqueID="TCP_IPAddress" dedicatedCfgItemType="IPAddress"> 
      <hcd:label>IP Address</hcd:label> 
      <hcd:instanceValue> 128.130.200.162 </hcd:instanceValue> 
     </hcd:dedicatedCfgItem> 
     <hcd:dedicatedCfgItem uniqueID="TCP_SubnetMask" dedicatedCfgItemType="SubnetMask"> 
      <hcd:label>Subnet Mask</hcd:label> 
      <hcd:instanceValue> 255.255.255.128 </hcd:instanceValue> 
     </hcd:dedicatedCfgItem> 
    </hcd:cfgItemList> 
    <hcd:MAUUsageList> 
     <hcd:MAUUsage ref="TP1"></hcd:MAUUsage> 
    </hcd:MAUUsageList> 
   </hcd:communicationEntity> 
List of further communicationEntity elements listed here in the original description file. 
 
   <hcd:resourceEntity resourceType="ComputationUnit" uniqueID="cpu0"> 
    <hcd:label>phyCORE-AT91M55800A</hcd:label> 
    <hcd:help>single board computer module</hcd:help> 
    <hcd:identity> 
     <hcd:vendorName> <hcd:label>Phytec</hcd:label> </hcd:vendorName> 
     <hcd:typeName> <hcd:label>L-618e_3</hcd:label> </hcd:typeName> 
    </hcd:identity> 
    <hcd:additionalItemList 
     additionalItemsType="ProcessingUnit"> 
     <hcd:label>ProcessingUnit</hcd:label> 
     <hcd:additionalItem additionalItemType="Processor" uniqueID="Processor0"> 
      <hcd:label>Processor0</hcd:label> 
      <hcd:instanceValue> AT91M55800A </hcd:instanceValue> 
      <hcd:specificProperty propertyType="Vendor"> 
       <hcd:label>Vendor</hcd:label> 
       <hcd:instanceValue>ATMEL</hcd:instanceValue> 
      </hcd:specificProperty> 
      <hcd:specificProperty 
       propertyType="ClockRate"> 
       <hcd:label>ClockRate</hcd:label> 
       <hcd:help>  The processor's clock rate measured in [MHz] </hcd:help> 
       <hcd:instanceValue> 32 MHz </hcd:instanceValue> 
      </hcd:specificProperty> 
List of further specificProperty elements listed here in the original description file. 
     </hcd:additionalItem> 
    </hcd:additionalItemList> 
    <hcd:additionalItemList 
     additionalItemsType="MemoryUnit"> 
     <hcd:label>MemoryUnit</hcd:label> 
     <hcd:additionalItem additionalItemType="Memory" uniqueID="Memory0"> 
      <hcd:label>Memory0</hcd:label> 
      <hcd:instanceValue>U6</hcd:instanceValue> 
      <hcd:specificProperty propertyType="Type"> 
       <hcd:label>Type</hcd:label> 
       <hcd:instanceValue>Flash</hcd:instanceValue> 
      </hcd:specificProperty> 
      <hcd:specificProperty 
       propertyType="MemorySize"> 
       <hcd:label>MemorySize</hcd:label> 
       <hcd:help>  Memory size measured in [KB] </hcd:help> 
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       <hcd:instanceValue> 4096 KB </hcd:instanceValue> 
      </hcd:specificProperty> 
List of further specificProperty elements listed here in the original description file. 
     </hcd:additionalItem> 
     <hcd:additionalItem additionalItemType="Memory" uniqueID="Memory1"> 
      <hcd:label>Memory1</hcd:label> 
      <hcd:instanceValue> U14, U15, U16, U17 </hcd:instanceValue> 
      <hcd:specificProperty propertyType="Type"> 
       <hcd:label>Type</hcd:label> 
       <hcd:instanceValue>SRAM</hcd:instanceValue> 
      </hcd:specificProperty> 
      <hcd:specificProperty propertyType="MemorySize"> 
       <hcd:label>MemorySize</hcd:label> 
       <hcd:help>  Memory size measured in [KB] </hcd:help> 
       <hcd:instanceValue> 2048 KB </hcd:instanceValue> 
      </hcd:specificProperty> 
List of further specificProperty elements listed here in the original description file. 
     </hcd:additionalItem> 
    </hcd:additionalItemList> 
   </hcd:resourceEntity> 
List of further resourceEntity elements listed here in the original description file. 
   <hcd:resourceEntity resourceType="OperatingSystem" uniqueID="os0"> 
    <hcd:label>eCos</hcd:label> 
    <hcd:identity> 
     <hcd:vendorName> <hcd:label>Open Source</hcd:label> </hcd:vendorName> 
     <hcd:typeName> <hcd:label>Realtime OS</hcd:label> </hcd:typeName> 
    </hcd:identity> 
    <hcd:additionalItemList additionalItemsType="OSCharacteristics"> 
     <hcd:label>OSCharacteristics</hcd:label> 
     <hcd:additionalItem additionalItemType="Scheduler" uniqueID="Scheduler0"> 
      <hcd:label>Scheduler0</hcd:label> 
      <hcd:instanceValue> Bitmap Scheduler </hcd:instanceValue> 
      <hcd:specificProperty propertyType="Type"> 
       <hcd:label>Type</hcd:label> 
       <hcd:instanceValue> Bitmap Scheduler </hcd:instanceValue> 
      </hcd:specificProperty> 
      <hcd:specificProperty propertyType="numberPriorities"> 
       <hcd:label>numberPriorities</hcd:label> 
       <hcd:instanceValue>32</hcd:instanceValue> 
      </hcd:specificProperty> 
      <hcd:specificProperty propertyType="numberThreadsperPriority"> 
       <hcd:label> numberThreadsperPriority </hcd:label> 
       <hcd:instanceValue>1</hcd:instanceValue> 
      </hcd:specificProperty> 
     </hcd:additionalItem> 
     <hcd:additionalItem additionalItemType="Scheduler" uniqueID="Scheduler1"> 
      <hcd:label>Scheduler1</hcd:label> 
      <hcd:instanceValue> Multi Level Queue Scheduler </hcd:instanceValue> 
      <hcd:specificProperty propertyType="Type"> 
       <hcd:label>Type</hcd:label> 
       <hcd:instanceValue>MLQ</hcd:instanceValue> 
      </hcd:specificProperty> 
      <hcd:specificProperty 
       propertyType="numberPriorities"> 
       <hcd:label>numberPriorities</hcd:label> 
       <hcd:instanceValue>32</hcd:instanceValue> 
      </hcd:specificProperty> 
      <hcd:specificProperty propertyType="numberThreadsperPrioritiy"> 
       <hcd:label> numberThreadsperPriority </hcd:label> 
       <hcd:instanceValue> infinity </hcd:instanceValue> 
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      </hcd:specificProperty> 
     </hcd:additionalItem> 
     <hcd:additionalItem 
      additionalItemType="CompilerOptions" 
    <hcd:additionalItemList 
     additionalItemsType="OSConfiguration"> 
     <hcd:label>OSConfiguration</hcd:label> 
     <hcd:additionalItem additionalItemType="Scheduler" uniqueID="Scheduler_current"> 
      <hcd:label>Scheduler_current</hcd:label> 
      <hcd:instanceValue> Scheduler1 </hcd:instanceValue> 
     </hcd:additionalItem> 
    </hcd:additionalItemList> 
    <hcd:additionalItemList 
     additionalItemsType="ModelExecutionTime"> 
     <hcd:label>ModelExecutionTime</hcd:label> 
     <hcd:additionalItem additionalItemType="TaskSwitch" uniqueID="TaskSwitch"> 
      <hcd:label>TaskSwitch</hcd:label> 
      <hcd:instanceValue>820</hcd:instanceValue> 
     </hcd:additionalItem> 
     <hcd:additionalItem 
      additionalItemType="ThreadSuspension" uniqueID="ThreadSuspension"> 
      <hcd:label>ThreadSuspension</hcd:label> 
      <hcd:instanceValue>101</hcd:instanceValue> 
     </hcd:additionalItem> 
     <hcd:additionalItem 
      additionalItemType="ThreadResumption" uniqueID="ThreadResumption"> 
      <hcd:label>ThreadResumption</hcd:label> 
      <hcd:instanceValue>133</hcd:instanceValue> 
     </hcd:additionalItem> 
    </hcd:additionalItemList> 
    <hcd:internalConnectionPointList> 
     <hcd:internalConnectionPoint ref="cpu0" uniqueID="os0_with_cpu0" enabled="YES"> 
     </hcd:internalConnectionPoint> 
    </hcd:internalConnectionPointList> 
   </hcd:resourceEntity> 
 
   <hcd:resourceEntity resourceType="IEC61499Runtime" uniqueID="rt1499_0"> 
    <hcd:label>MARTE</hcd:label> 
    <hcd:identity> 
     <hcd:vendorName> <hcd:label> Alois Zoitl </hcd:label> </hcd:vendorName> 
     <hcd:typeName> 
      <hcd:label> IEC 61499 Runtime Environment </hcd:label> 
     </hcd:typeName> 
    </hcd:identity> 
    <hcd:additionalItemList 
     additionalItemsType="ModelExecutionTime"> 
     <hcd:label>ModelExecutionTime</hcd:label> 
     <hcd:additionalItem 
      additionalItemType="DispatcherParams" uniqueID="DispatcherParams"> 
      <hcd:label>DispatcherParams</hcd:label> 
      <hcd:instanceValue> DispatcherParams </hcd:instanceValue> 
      <hcd:specificProperty 
       propertyType="VerificationParam"> 
       <hcd:label>T_FETCH</hcd:label> 
       <hcd:help>Ticks in 0.1 µs</hcd:help> 
       <hcd:instanceValue> 29,6 µs </hcd:instanceValue> 
      </hcd:specificProperty> 
      <hcd:specificProperty 
       propertyType="VerificationParam"> 
       <hcd:label>T_EV_OUT</hcd:label> 
       <hcd:help>Ticks in 0.1µs</hcd:help> 
       <hcd:instanceValue> 27,4 µs </hcd:instanceValue> 
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      </hcd:specificProperty> 
     </hcd:additionalItem> 
List of further additionalItem elements listed here in the original description file. 
    </hcd:additionalItemList> 
    <hcd:additionalItemList additionalItemsType="TypeLibraryParameters"> 
     <hcd:label>TypeLibraryParameters</hcd:label> 
List of additionalItem elements listed here in the original description file, e.g. FB Types, Data 
Types, Resource Types. 
    </hcd:additionalItemList> 
    <hcd:additionalItemList additionalItemsType="ComplianceProfiles">  
     <hcd:label> supported IEC 61499 Compliance Profiles </hcd:label> 
     <hcd:additionalItem additionalItemType="ComplianceProfile" uniqueID="CPFD"> 
      <hcd:label>CPFD</hcd:label> 
      <hcd:instanceValue> IEC 61499 Compliance Profile for Feasibility Demonstration </hcd:instanceValue> 
     </hcd:additionalItem> 
    </hcd:additionalItemList> 
 
    <hcd:IEC61499TypeLibrary> 
List of type definitions available within the control device according to the XML format 
defined in IEC 61499-2 (2005, Annex A). 
    </hcd:IEC61499TypeLibrary> 
 
    <hcd:internalConnectionPointList> 
     <hcd:internalConnectionPoint ref="cpu0" uniqueID="rt1499_0_with_cpu0" enabled="YES"> 
     </hcd:internalConnectionPoint> 
    </hcd:internalConnectionPointList> 
   </hcd:resourceEntity> 
 
  </hcd:DeviceManager> 
 
 </hcd:ProfileBody> 
 
</hcd:ISO15745Profile> 
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Appendix G 

Additional information for demonstration example 

 
This appendix includes additional information for the demonstration example used in 
Section 8.1. The following aspects will be depicted in the figures presented here without 
further detailed explaination: 

• Figure 72: Internal model of 'Subtract' depicted in Figure 43 
• Figure 73: Control application after execution of RINIT sequence 
• Figure 74: Control application after execution of RECONF sequence 
• Figure 75: Control application after execution of RDINIT sequence 
• Table 7: Status output of dependent operation check within Page 3 (RINIT sequence) 
• Table 8: Status output of dependent operation check within Page 4 (RECONF se-

quence) 
• Table 9: Status output of dependent operation check within Page 5 (RDINIT se-

quence) 
• Figure 76: NCES model for practical example (Addition/Subtracion) 
• Figure 77: NCES module 'Thread_APP', the control application of Addi-

tion/Subtraction example at the beginning of the RECONF sequence 
• Figure 78: NCES module 'Thread_RECONF', the RECONF seqeunce of ECA within 

Addition/Subtraction example 
• Figure 79: NCES model of Addition/Subtraction example without downtimeless sys-

tem evolution 
• Figure 80: NCES model for position controller including plant model (velocity closed-

loop control) 
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Figure 72: Internal model of 'Subtract' depicted in Figure 43 
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Figure 73: Control application after execution of RINIT sequence 

 

 
Figure 74: Control application after execution of RECONF sequence 
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Figure 75: Control application after execution of RDINIT sequence 

 
 
Initial RINIT system state calculated! 
 
 
List of FBs contained in RINIT sequence: 
 
IN_EROI2 
CREATE_SUB_INT 
CREATE_CHECK 
CREATE_CNF_REQ 
CREATE_OUT_ValA 
PARAM_ValB 
CREATE_CNF_REQ_2 
CREATE_RO_INIT 
CREATE_OUT_IN 
START_SUB_INT 
START_CHECK 
 
 
CALCULATE Logical order rule: 
 
Param: CREATE_SUB_INT.FB_NAME = SUB_INT_FROM_INTERNAL 
Param: CREATE_SUB_INT.FB_TYPE = SUB_INT_FROM_INTERNAL 
Param: CREATE_SUB_INT.DST = Res_App1 
Destination resource Res_App1 is valid. 
FB type SUB_INT_FROM_INTERNAL is present. 
 
Param: CREATE_CHECK.FB_NAME = CHECK_INT_LESS 
Param: CREATE_CHECK.FB_TYPE = CHECK_INT_LESS 
Param: CREATE_CHECK.DST = Res_App1 
Destination resource Res_App1 is valid. 
FB type CHECK_INT_LESS is present. 

Establish a copy of the system state. 
 
Extract a list of FBs that are executed 
within the RINIT sequence. 
 
 
 
 
 
 
 
 
First basic reconfiguration service: 

• CREATE FB 
• Target resource available 
• Type available 

 
Second basic reconfiguration service: 

• CREATE FB 
• Target resource available 
• Type available 
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Param: CREATE_CNF_REQ.SRC_FB = SUB_INT_FROM_INTERNAL 
Param: CREATE_CNF_REQ.SRC_FB_OUT = CNF 
Param: CREATE_CNF_REQ.DST_FB = CHECK_INT_LESS 
Param: CREATE_CNF_REQ.DST_FB_IN = REQ 
Param: CREATE_CNF_REQ.DST = Res_App1 
Destination resource Res_App1 is valid. 
Both connection points SUB_INT_FROM_INTERNAL.CNF, 
CHECK_INT_LESS.REQ are valid. 
 
Param: CREATE_OUT_ValA.SRC_FB = SUB_INT_FROM_INTERNAL 
Param: CREATE_OUT_ValA.SRC_FB_OUT = OUT 
Param: CREATE_OUT_ValA.DST_FB = CHECK_INT_LESS 
Param: CREATE_OUT_ValA.DST_FB_IN = ValA 
Param: CREATE_OUT_ValA.DST = Res_App1 
Destination resource Res_App1 is valid. 
Both connection points SUB_INT_FROM_INTERNAL.OUT, 
CHECK_INT_LESS.ValA are valid. 
 
Param: PARAM_ValB.ELEM_NAME = CHECK_INT_LESS 
Param: PARAM_ValB.ELEM_DATA_IN = ValB 
Param: PARAM_ValB.PARM_VAL = -100 
Param: PARAM_ValB.DST = Res_App1 
Destination resource Res_App1 is valid. 
Destination FB CHECK_INT_LESS is valid. 
Destination ELEM_DATA_IN ValB is valid. 
 
Param: CREATE_CNF_REQ_2.SRC_FB = CONV_UINT2INT 
Param: CREATE_CNF_REQ_2.SRC_FB_OUT = CNF 
Param: CREATE_CNF_REQ_2.DST_FB = 
SUB_INT_FROM_INTERNAL 
Param: CREATE_CNF_REQ_2.DST_FB_IN = REQ 
Param: CREATE_CNF_REQ_2.DST = Res_App1 
Destination resource Res_App1 is valid. 
Both connection points CONV_UINT2INT.CNF, 
SUB_INT_FROM_INTERNAL.REQ are valid. 
 
Param: CREATE_RO_INIT.SRC_FB = E_CTU 
Param: CREATE_RO_INIT.SRC_FB_OUT = RO 
Param: CREATE_RO_INIT.DST_FB = SUB_INT_FROM_INTERNAL 
Param: CREATE_RO_INIT.DST_FB_IN = INIT 
Param: CREATE_RO_INIT.DST = Res_App1 
Destination resource Res_App1 is valid. 
Both connection points E_CTU.RO, SUB_INT_FROM_INTERNAL.INIT 
are valid. 
 
Param: CREATE_OUT_IN.SRC_FB = CONV_UINT2INT 
Param: CREATE_OUT_IN.SRC_FB_OUT = OUT 
Param: CREATE_OUT_IN.DST_FB = SUB_INT_FROM_INTERNAL 
Param: CREATE_OUT_IN.DST_FB_IN = IN 
Param: CREATE_OUT_IN.DST = Res_App1 
Destination resource Res_App1 is valid. 
Both connection points CONV_UINT2INT.OUT, 
SUB_INT_FROM_INTERNAL.IN are valid. 
 
Param: START_SUB_INT.ELEM_NAME = 
SUB_INT_FROM_INTERNAL 
Param: START_SUB_INT.DST = Res_App1 
Destination resource Res_App1 is valid. 
Destination FB SUB_INT_FROM_INTERNAL is valid. 
 
Param: START_CHECK.ELEM_NAME = CHECK_INT_LESS 

Third basic reconfiguration service: 
• CREATE connection 
• Target resource available 
• Source and destination avail-

able 
 
Fourth basic reconfiguration service: 

• CREATE connection 
• Target resource available 
• Source and destination avail-

able 
 
Fifth basic reconfiguration service 

• WRITE parameter 
• Target resource available 
• Target FB available 
• Target parameter available 

 
Sixth basic reconfiguration service: 

• CREATE connection 
• Target resource available 
• Source and destination avail-

able 
 
 
Seventh basic reconfiguration service: 

• CREATE connection 
• Target resource available 
• Source and destination avail-

able 
 
Eighth basic reconfiguration service: 

• CREATE connection 
• Target resource available 
• Source and destination avail-

able 
 
 
Nineth basic reconfiguration service: 

• START element 
• Target resource available 
• FB available 

 
Tenth basic reconfiguration service: 

• START element 
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Param: START_CHECK.DST = Res_App1 
Destination resource Res_App1 is valid. 
Destination FB CHECK_INT_LESS is valid. 
 

• Target resource available 
• FB available 

Table 7: Status output of dependent operation check within Page 3 (RINIT sequence) 

 
Initial RECONF system state calculated! 
 
 
List of FBs contained in RECONF sequence: 
 
IN_EROI2 
START_RECONF 
Cross_EROI2_RECONF 
DEL_CNF_EI 
DEL_Result_PERMIT 
GET_INTERNAL 
SET_INTERNAL 
CREATE_Result_PERMIT 
CREATE_CNF_EI 
DEL_INITO_REQ 
DEL_CNF_REQ 
DEL_OUT_SD2 
CREATE_OUT_SD2 
CREATE_CNF_REQ1 
CREATE_INITO_REQ 
 
CALCULATE Logical order rule: 
Param: DEL_CNF_EI.SRC_FB = CHECK_INT_GREATER 
Param: DEL_CNF_EI.SRC_FB_OUT = CNF 
Param: DEL_CNF_EI.DST_FB = E_PERMIT 
Param: DEL_CNF_EI.DST_FB_IN = EI 
Param: DEL_CNF_EI.DST = Res_App1 
Destination resource Res_App1 is valid. 
Both connection points CHECK_INT_GREATER.CNF, E_PERMIT.EI 
are valid. 
Connection CHECK_INT_GREATER.CNF-E_PERMIT.EI is present. 
 
Param: DEL_Result_PERMIT.SRC_FB = CHECK_INT_GREATER 
Param: DEL_Result_PERMIT.SRC_FB_OUT = Result 
Param: DEL_Result_PERMIT.DST_FB = E_PERMIT 
Param: DEL_Result_PERMIT.DST_FB_IN = PERMIT 
Param: DEL_Result_PERMIT.DST = Res_App1 
Destination resource Res_App1 is valid. 
Both connection points CHECK_INT_GREATER.Result, 
E_PERMIT.PERMIT are valid. 
Connection CHECK_INT_GREATER.Result-E_PERMIT.PERMIT is 
present. 
 
Param: GET_INTERNAL.FB_NAME = ADD_INT_TO_INTERNAL 
Param: GET_INTERNAL.FB_INTVAR = INTERNAL 
Param: GET_INTERNAL.DST = Res_App1 
Destination resource Res_App1 is valid. 
Destination FB ADD_INT_TO_INTERNAL is valid. 
Internal Variable INTERNAL is valid. 
 
Param: SET_INTERNAL.FB_NAME = SUB_INT_FROM_INTERNAL 
Param: SET_INTERNAL.FB_INTVAR = INTERNAL 
Param: SET_INTERNAL.DST = Res_App1 
Destination resource Res_App1 is valid. 

Establish a copy of the system state. 
 
Extract a list of FBs that are executed 
within the RINIT sequence. 
 
 
 
 
 
 
 
 
 
 
First basic reconfiguration service: 

• DELETE connection 
• Target resource available 
• Source and destination avail-

able 
 
 
 
Second basic reconfiguration service: 

• DELETE connection 
• Target resource available 
• Source and destination avail-

able 
 
 
 
Third basic reconfiguration service: 

• READ variable 
• Target resource available 
• FB and variable available 

 
Fourth basic reconfiguration service: 

• WRITE variable 
• Target resource available 
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Destination FB SUB_INT_FROM_INTERNAL is valid. 
Internal Variable INTERNAL is valid. 
 
Param: CREATE_Result_PERMIT.SRC_FB = CHECK_INT_LESS 
Param: CREATE_Result_PERMIT.SRC_FB_OUT = Result 
Param: CREATE_Result_PERMIT.DST_FB = E_PERMIT 
Param: CREATE_Result_PERMIT.DST_FB_IN = PERMIT 
Param: CREATE_Result_PERMIT.DST = Res_App1 
Destination resource Res_App1 is valid. 
Both connection points CHECK_INT_LESS.Result, E_PERMIT.PERMIT 
are valid. 
 
Param: CREATE_CNF_EI.SRC_FB = CHECK_INT_LESS 
Param: CREATE_CNF_EI.SRC_FB_OUT = CNF 
Param: CREATE_CNF_EI.DST_FB = E_PERMIT 
Param: CREATE_CNF_EI.DST_FB_IN = EI 
Param: CREATE_CNF_EI.DST = Res_App1 
Destination resource Res_App1 is valid. 
Both connection points CHECK_INT_LESS.CNF, E_PERMIT.EI are 
valid. 
 
Param: DEL_INITO_REQ.SRC_FB = ADD_INT_FROM_INTERNAL 
Param: DEL_INITO_REQ.SRC_FB_OUT = INITO 
Param: DEL_INITO_REQ.DST_FB = CurrentVal_pub 
Param: DEL_INITO_REQ.DST_FB_IN = REQ 
Param: DEL_INITO_REQ.DST = Res_App1 
Destination resource Res_App1 is valid. 
At least one of the connection points 
ADD_INT_FROM_INTERNAL.INITO, CurrentVal_pub.REQ is invalid. 
 
Param: DEL_CNF_REQ.SRC_FB = ADD_INT_TO_INTERNAL 
Param: DEL_CNF_REQ.SRC_FB_OUT = CNF 
Param: DEL_CNF_REQ.DST_FB = CurrentVal_pub 
Param: DEL_CNF_REQ.DST_FB_IN = REQ 
Param: DEL_CNF_REQ.DST = Res_App1 
Destination resource Res_App1 is valid. 
Both connection points ADD_INT_TO_INTERNAL.CNF, Current-
Val_pub.REQ are valid. 
Connection ADD_INT_TO_INTERNAL.CNF-CurrentVal_pub.REQ is 
present. 
 
Param: DEL_OUT_SD2.SRC_FB = ADD_INT_TO_INTERNAL 
Param: DEL_OUT_SD2.SRC_FB_OUT = OUT 
Param: DEL_OUT_SD2.DST_FB = CurrentVal_pub 
Param: DEL_OUT_SD2.DST_FB_IN = SD_2 
Param: DEL_OUT_SD2.DST = Res_App1 
Destination resource Res_App1 is valid. 
Both connection points ADD_INT_TO_INTERNAL.OUT, Current-
Val_pub.SD_2 are valid. 
Connection ADD_INT_TO_INTERNAL.OUT-CurrentVal_pub.SD_2 is 
present. 
 
Param: CREATE_OUT_SD2.SRC_FB = SUB_INT_FROM_INTERNAL 
Param: CREATE_OUT_SD2.SRC_FB_OUT = OUT 
Param: CREATE_OUT_SD2.DST_FB = CurrentVal_pub 
Param: CREATE_OUT_SD2.DST_FB_IN = SD_2 
Param: CREATE_OUT_SD2.DST = Res_App1 
Destination resource Res_App1 is valid. 
Both connection points SUB_INT_FROM_INTERNAL.OUT, Current-
Val_pub.SD_2 are valid. 
 
Param: CREATE_CNF_REQ1.SRC_FB = SUB_INT_FROM_INTERNAL 

• FB and variable available 
 
Fifth basic reconfiguration service: 

• CREATE connection 
• Target resource available 
• Source and destination avail-

able 
 
 
Sixth basic reconfiguration service: 

• CREATE connection 
• Target resource available 
• Source and destination avail-

able 
 
Seventh basic reconfiguration service: 

• DELETE connection 
• Target resource available 
• Source and destination avail-

able 
 
 
Eighth basic reconfiguration service: 

• DELETE connection 
• Target resource available 
• Source and destination avail-

able 
 
 
Ninth basic reconfiguration service: 

• DELETE connection 
• Target resource available 
• Source and destination avail-

able 
 
 
 
Tenth basic reconfiguration service: 

• CREATE connection 
• Target resource available 
• Source and destination avail-

able 
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Param: CREATE_CNF_REQ1.SRC_FB_OUT = CNF 
Param: CREATE_CNF_REQ1.DST_FB = CurrentVal_pub 
Param: CREATE_CNF_REQ1.DST_FB_IN = REQ 
Param: CREATE_CNF_REQ1.DST = Res_App1 
Destination resource Res_App1 is valid. 
Both connection points SUB_INT_FROM_INTERNAL.CNF, Current-
Val_pub.REQ are valid. 
 
Param: CREATE_INITO_REQ.SRC_FB = SUB_INT_FROM_INTERNAL 
Param: CREATE_INITO_REQ.SRC_FB_OUT = INITO 
Param: CREATE_INITO_REQ.DST_FB = CurrentVal_pub 
Param: CREATE_INITO_REQ.DST_FB_IN = REQ 
Param: CREATE_INITO_REQ.DST = Res_App1 
Destination resource Res_App1 is valid. 
Both connection points SUB_INT_FROM_INTERNAL.INITO, 
CurrentVal_pub.REQ are valid. 

Eleventh basic reconfiguration service:
• CREATE connection 
• Target resource available 
• Source and destination avail-

able 
 
Twelfth basic reconfiguration service: 

• CREATE connection 
• Target resource available 
• Source and destination avail-

able 
 

Table 8: Status output of dependent operation check within Page 4 (RECONF sequence) 

 
Initial RDINIT system state calculated! 
 
 
List of FBs contained in RDINIT sequence: 
 
IN_EROI2 
Cross_EROI2_RDINIT 
DEL_CNF_REQ1 
DEL_RO_INIT 
DEL_OUT_IN 
STOP_ADD_INT 
STOP_CHECK 
DEL_ADD_INT 
DEL_CHECK 
 
 
CALCULATE Logical order rule: 
 
Param: DEL_CNF_REQ1.SRC_FB = CONV_UINT2INT 
Param: DEL_CNF_REQ1.SRC_FB_OUT = CNF 
Param: DEL_CNF_REQ1.DST_FB = ADD_INT_TO_INTERNAL 
Param: DEL_CNF_REQ1.DST_FB_IN = REQ 
Param: DEL_CNF_REQ1.DST = Res_App1 
Destination resource Res_App1 is valid. 
Both connection points CONV_UINT2INT.CNF, 
ADD_INT_TO_INTERNAL.REQ are valid. 
Connection CONV_UINT2INT.CNF-ADD_INT_TO_INTERNAL.REQ is 
present. 
 
Param: DEL_RO_INIT.SRC_FB = E_CTU 
Param: DEL_RO_INIT.SRC_FB_OUT = RO 
Param: DEL_RO_INIT.DST_FB = ADD_INT_TO_INTERNAL 
Param: DEL_RO_INIT.DST_FB_IN = INIT 
Param: DEL_RO_INIT.DST = Res_App1 
Destination resource Res_App1 is valid. 
Both connection points E_CTU.RO, ADD_INT_TO_INTERNAL.INIT are 
valid. 
Connection E_CTU.RO-ADD_INT_TO_INTERNAL.INIT is present. 
 
Param: DEL_OUT_IN.SRC_FB = CONV_UINT2INT 
Param: DEL_OUT_IN.SRC_FB_OUT = OUT 

Establish a copy of the system state. 
 
Extract a list of FBs that are executed 
within the RINIT sequence. 
 
 
 
 
 
 
 
First basic reconfiguration service: 

• DELETE connection 
• Target resource available 
• Source and destination avail-

able 
 
 
 
Second basic reconfiguration service: 

• DELETE connection 
• Target resource available 
• Source and destination avail-

able 
 
 
 
Third basic reconfiguration service: 

• DELETE connection 
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Param: DEL_OUT_IN.DST_FB = ADD_INT_TO_INTERNAL 
Param: DEL_OUT_IN.DST_FB_IN = IN 
Param: DEL_OUT_IN.DST = Res_App1 
Destination resource Res_App1 is valid. 
Both connection points CONV_UINT2INT.OUT, 
ADD_INT_TO_INTERNAL.IN are valid. 
Connection CONV_UINT2INT.OUT-ADD_INT_TO_INTERNAL.IN is 
present. 
 
Param: STOP_ADD_INT.ELEM_NAME = ADD_INT_TO_INTERNAL 
Param: STOP_ADD_INT.DST = Res_App1 
Destination resource Res_App1 is valid. 
Destination FB ADD_INT_TO_INTERNAL is valid. 
 
Param: STOP_CHECK.ELEM_NAME = CHECK_INT_GREATER 
Param: STOP_CHECK.DST = Res_App1 
Destination resource Res_App1 is valid. 
Destination FB CHECK_INT_GREATER is valid. 
 
 
Param: DEL_ADD_INT.FB_NAME = ADD_INT_TO_INTERNAL 
Param: DEL_ADD_INT.DST = Res_App1 
Destination resource Res_App1 is valid. 
Destination FB ADD_INT_TO_INTERNAL is valid. 
 
 
 
Param: DEL_CHECK.FB_NAME = CHECK_INT_GREATER 
Param: DEL_CHECK.DST = Res_App1 
Destination resource Res_App1 is valid. 
Destination FB CHECK_INT_GREATER is valid. 
 

• Target resource available 
• Source and destination avail-

able 
 
 
Fourth basic reconfiguration service: 

• STOP element 
• Target resource available 
• FB instance available 

 
Fifth basic reconfiguration service: 

• STOP element 
• Target resource available 
• FB instance available 

 
Sixth basic reconfiguration service: 

• DELETE FB 
• Target resource available 
• FB instance available 

 
Seventh basic reconfiguration service: 

• DELETE FB 
• Target resource available 
• FB instance available 

Table 9: Status output of dependent operation check within Page 5 (RDINIT sequence) 
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Figure 76: NCES model for practical example (Addition/Subtracion) 
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Figure 77: NCES module 'Thread_APP', the control application of Addition/Subtraction example at the 

beginning of the RECONF sequence 
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Figure 78: NCES module 'Thread_RECONF', the RECONF seqeunce of ECA within Addi-

tion/Subtraction example 
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Figure 79: NCES model of Addition/Subtraction example without downtimeless system evolution 
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Figure 80: NCES model for position controller including plant model (velocity closed-loop control) 
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Used terms and abbreviations 

New terms introduced in the thesis 
Automation and Control System (ACS). ACS is used as an umbrella term for any kind of 

system32 that is able to control some kind of process. This thesis uses this term for 
equipment for production automation (in contrast to product automation, see Favre-
Bulle (2004). In common, such a system is programmable and flexible configurable to 
fit to the process under control. A typical kind of ACS is a PLC. An ACS may be any 
kind of feedforward or feedback system. Due to the intensive usage of sensor systems 
as input for the control logic, we commonly consider an ACS as a feedback system. 

Automation extreme programming (AXP): Following the idea of extreme programming 
stated in Beck (2000) the application for ACS with regard to the possibilities of DSE 
leads to automation extreme programming. As changes can be applied during operation 
of the plant and the cost of change is limited although for late changes in the engineer-
ing cycle a continuous evolution of the plant will take place starting from a very simple 
first version. 

Basic reconfiguration services. A set of basic services that allows all necessary modifica-
tions of control logic in order to conduct any system evolution. The basic reconfigura-
tion services are based on the management commands from (IEC 61499-1, 2005) and 
can be categorized in five groups: structural services, library services, execution control 
services, state interaction services, and query services. More detailed information can 
be found in Zoitl (2007). 

Composite Evolution Control Application (CECA). An ECA which includes several 
system evolution steps can be represented in a simplified manner by the use of EECFBs 
for each system evolution step. Such an ECA is called CECA. 

Downtimeless system evolution (DSE). The term downtimeless system evolution describes 
the combination of software evolution and dynamic reconfiguration for automation and 
control systems. Its characteristics are that it faces the adaptation of system at run-time 
with at less disturbances as possible, it aims at overall system configurations, and it 
claims for a continuous evolution process for the overall life cycle of ACSs.  

Dynamic reconfiguration. Dynamic reconfiguration is used as an umbrella term for method-
ologies and techniques for the change of software architectures at run-time. Wermelin-
ger (1999) provides an overview on three different approaches to dynamic reconfig-
ureation, an reference architecture for dynamic reconfiguration is presented in 
Walsh et al. (2007b) who define a categorization of change types as well as various in-
tegrity characteristics. 

                                                 
32 The term system is widely used in literature as the interconnection of parts that exhibit as a whole one or more 
properties. If these properties are not obvious from the properties of the individual parts, a complex system is 
described. ACS are considered as complex systems in this thesis. 
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Evolution Control Application (ECA): An ECA describes the transition from a current 
system state to a new system state by the use of an IEC 61499 application. Herein spe-
cial function blocks that provide access to the device management of the IEC 61499 
device are used. As the ECA is free programmable, the DSE can be adapted to the spe-
cial needs of an ACS: wide range of application, transition management, and the in-
complete representation of ACS programming languages as software components. The 
use of ECAs in an IEC 61131-3 based system environment is described in Chapter 10. 

Evolution Execution Control Function Block (EECFB). This special kind of FB includes 
an ECA and provides a separate interface for each of the three sequences within the 
ECA. Therefore, an ECA can be simply combined with other ECAs in order to model 
enhanced DSE scenarios again by means of IEC 61499 standard. 

Evolution Region Of Interest (EROI). The EROI defines the region within an control 
application that will be changed during a system evolution step. As the ECA of a sys-
tem evolution step is represented as EECFB, the EROI depicts the corresponding area 
within the control application that is related to the EECFB. 

Evolution specification. Evolution specifications are a list of properties that specially aim at 
the execution of DSE. Next to the preservation of the properties of system without evo-
lution (plant, process, and product specifications) these properties include active refer-
ences to underlying services, state management within the control application, depend-
ent operation of basic reconfiguration services, real-time constrained operation, and re-
quirements of resources. 

KAPPA calculus. The term KAPPA calculus is used as umbrella term and represents any 
calculation that is based on the current system state (respectively the KAPPA vector). 
This is a very broad field of calculations since many aspects of engineering support can 
be described as KAPPA calculus as for instance depicted in Sünder et al. (2007c). In 
terms of evaluation of DSE especially the evaluation of the properties of the evolution 
specification by the use of calculations based on the KAPPA vector are summarized as 
KAPPA calculus. 

KAPPA vector. The KAPPA vector is the representation of the current system state. It is a 
structured list of parameters that can be devided according to their dependency in ap-
plication dependent and/or device dependent elements. During normal operation the 
KAPPA vector is static, but during the execution of DSE the KAPPA vector is a highly 
versaticle quantity as it changes due to each execution of a basic reconfiguration ser-
vice. 

Physical reconfiguration. This term depicts dynamic reconfiguration of hardware configura-
tions. During a system evolution step software as well as hardware may be changed. As 
there exist no automatisms for changes to the hardware configuration, the necessary 
tasks (addition or removal of hardware) need to be executed manually during the DSE. 

Real-time Reconfiguration Runtime Environment (R3E). The R3E is the IEC 61499 
runtime environment which provides the basis for the execution of DSE within this 
work. Its main principles are described in Zoitl (2007), although several minor changes 
and enhancements have been applied to it during the εCEDAC project. 

Value-added chain for total evaluation: The provision of the exhaustive description for all 
elements within the architecture of a control device can be based on roles of the differ-
ent companies involved in ACSs. Each company adds a special expertise to the ACS, 
therefore the necessary information for the evaluation of DSE regarding to this exper-
tise, has to be provided by this company, too. As a result, the effort for providing DSE 
support is reduced and spread up between the different roles in ACS and the application 
of DSE will achieve high benefits related to the necessary effort. 
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General terms and abbreviations 
Accompanying Measure on Advanced Real-Time Systems (ARTIST). The ARTIST 

project [1] was funded by the European Union in Frame Program 5. ARTIST gathered 
together 30 leading European research institutes in the area of embedded systems de-
sign. One major output was a roadmap on future directions in advanced real-time sys-
tems (Bouyssounouse and Sifakis, 2005).  

Ambigrams. Ambigrams can be letters, words, or numbers that are ambiguous. Some 
ambigrams are mirror reversible, others can be read inverted, others have two meanings 
hidden in the word. 

Automation and Control Institute (ACIN). ACIN is located in the faculty for electro 
technique and information technology at Vienna University of Technology, [2] 

Automation object. Following the idea of Vyatkin et al. (2005, Section 3), “an automation 
object is an abstraction for a mechanical device associated with its embedded intelli-
gence, i.e., software components of different functional domains. For example, the lay-
out of a component is related to its appearance on its visualization screen (View). The 
View component can receive data about the dynamic state of the object either from ac-
tual process interface or from a simulation model. Control functions can refer directly 
to the process interface of the object or to the low-level control functions. The HMI 
component communicates with both process and controller.” 

Basic Function Block (BFB). A BFB type is defined in (IEC 61499-1, 2005, Section 3.8) as 
“function block type that cannot be decomposed into other function blocks and that 
utilizes an execution control chart (ECC) to control the execution of its algorithms”. 

Best Case Execution Time (BCET): Analogous to the definition of WCET given in (Kopetz, 
1997, Section 4.5) the BCET of a task is a lower bound for the time between task acti-
vation and task termination. 

CAN in Automation (CiA). CiA [6] is the international users’ and manufactures’ group that 
develops and supports CANopen and other CAN-based higher-layer protocols. Espe-
cially for CANopen a very broad range of specifications for different devices profiles 
have been developed. 

Component framework. “A component framework is a dedicated and focused architecture, 
usually around a few key mechanisms, and a fixed set of policies for mechanisms at the 
component level. Component frameworks often implement protocols to connect par-
ticipating components and enforce some of the policies set by the framework.” 
(Szyperski, 2005, Section 20.3) 

Component system architecture. “A component system architecture consists of a set of 
platform decisions, a set of component frameworks, and an interoperation design for 
the component frameworks. A platform is the substrate that allows for installation of 
components and component frameworks, such that these can be instanced and acti-
vated. (…) An interoperation design for component frameworks comprises the rules of 
interoperation among all the frameworks joined by the system architecture.” (Szyper-
ski, 2005, Section 20.3) 

Composite Function Block (CFB). A CFB type is defined in (IEC 61499-1, 2005, Sec-
tion 3.16) as “function block type whose algorithms and the control of their execution 
are expressed entirely in terms of interconnected component function blocks, events, 
and variables”. 

Computability. The theory of computability can be described by two questions (Hop-
craft et al. , 2001, Section 1.1.3): „What can a computer do at all?“ and „What can a 
computer do efficiently?“. Herein abstract models such as finite automata and formal 
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grammars are used in design and construction of software. Other concepts like Turing 
machines are used to understand what we can expect from a software program. 

Computation Tree Logic (CTL). CTL is a temporal logic is a temporal logic that utilizes a 
model of time that is a tree-like structure. “The future is not determined; there are dif-
ferent paths in the future, any one of which might be the ‘actual’ path that is realized.” 
(Huth and Ryan, 2004, Section 3.4.1) There exist different dialects such as CTL*, CTL, 
ACTL, TCTL, or RTCTL in literature. 

Computer Numerical Control (CNC) machines. The combination of a machine tool, an 
actuator system to force the axis of the machine tool, and an integrated numerical con-
trol by a computer is called CNC machine. These machines are specialized to opera-
tions on a workpiece, e.g. drilling, milling, turning, or grinding, and provide means for 
coordinated motion of the tool center point. (Favre-Bulle, 2004, Section 2.4.5) 

Continuous Stochastic Logic (CSL). The logic CSL is a stochastic version and variant of the 
temporal logic CTL. It permits expessing steady-state probabilities. CSL properties are 
verified at the state-space level using model checking. A detailed definition of CSL is 
given for instance in D’Aprile et al. (2004, Section 2). 

Control Area Network (CAN): The CAN network has been developed especially for the 
automotive sector in order to connect typically sensors, actuators, and control devices. 
Each node is able to send and receive messages, conflicts are resolved by the identifica-
tion of each node which represents the header of a message. 

Deductive verification. Deductive verification is a technique for validation of the functional-
ity of a system and usually refers to the use of axioms and rules to prove the correctness 
of systems. It requires expert knowledge and is applied to highly sensitive systems such 
as security protocols. 

Document Type Definition (DTD). “The XML document type declaration contains or points 
to markup declarations that provide a grammar for a class of documents. This grammar 
is known as a document type definition, or DTD. The document type declaration can 
point to an external subset (a special kind of external entity) containing markup decla-
rations, or can contain the markup declarations directly in an internal subset, or can do 
both. The DTD for a document consists of both subsets taken together.” [64], Sec-
tion 2.8 

Electronic Device Description Language (EDDL). EDDL has been standardized in 
(IEC 61804-3, 2006) and is a generic description language for ACS components. 
EDDL is used to create an Electronic Device Description, which is a textual file includ-
ing the properties of an ACS components in terms of the EDDL, such as device pa-
rameters and their dependencies, device functions, graphical representations, interac-
tion with control devices, and persistent data store. 

Enterprise Resource Planning (ERP). A ERP system is a information system, that takes 
care on all business processes within an enterprise in trans-sectoral way. The informa-
tion processes are at least partly automated. (Favre-Bulle, 2004, Section 3.5.3) 

Event-Condition-Action (ECA). Dynamically reconfigurable software systems such as 
active databases or expert systems are often specified by ECA rules. Almeida et al. 
(2007) describes an approach to use ECA rules for modeling reconfigurable logic con-
trollers. The elements of an ECA rule are the event, which is used to trigger evaluation 
of the condition of the rule, and in case of positive evaluation the action that is exe-
cuted. 

Embedded Configurable Operating System (eCos): eCos is an open source, royalty-free, 
real-time operating system intended for embedded applications. There exists a high va-
riety of different hardware platforms which are already supported by eCos (see [9]). 
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Based on the highly configurable nature eCos can be adapted to the requirements of a 
given application very flexible. A detailed description of the concepts implemented by 
eCos is provided in Massa (2003). 

Embedded systems. “We will refer to embedded systems as electronic programmable sub-
systems that are generally an integral part of a larger heterogeneous system. An em-
bedded system acts within—and in many cases on—the physical environment. Embed-
ded systems are, by nature, inherently real-time computer systems.” (Bouyssounouse 
and Sifakis, 2005) 

Evolution Control Environment for Distributed Automation Components (εCEDAC). 
The εCEDAC project aims at a fundamentally new application centered engineering 
method for efficient component based modeling of applications for controlled, fault-
tolerant and safe system evolution in order to overcome the limitations of current em-
bedded industrial automation and control engineering methods. 
The εCEDAC project has been funded by the Austrian government within the FIT-IT 
embedded systems program under contract number FFG-809447/7126. The project 
lasted from May 2005 to July 2007. The project consortium consists of the companies 
Bachmann electronic [3], kirchner SOFT33 [29], Loytec electronics [28], and Siemens 
VAI [49], as well as the research institutes Profactor [45] and ACIN [1]. More detailed 
information is available on the corresponding web page [3]. 

Execution Control Chart (ECC). The ECC is defined in (IEC 61499-1, 2005, Section 3.40) 
as “graphical or textual representation of the causal relationships among events at the 
event inputs and event outputs of a function block and the execution of the function 
block’s algorithms, using execution control states, execution control transitions, and 
execution control actions”. 

Field bus. A common means for communication in ACS are field bus systems. They fulfill 
special requirements such as real-time characteristics, reliability, and rough ambient 
conditions. There exists a huge variety of field bus systems as describe by Favre-Bulle 
(2004, Section 2.7). In recent years especially the introduction of Ethernet networks for 
industrial communication tremendously increase the variety of available systems. 

Field Device Configuration Markup Language (FDCML). FDCML (FDCML.org, 2002) 
has been developed by DRIVECOM User Group e.V. [24] and Interbus Club [6] as a 
general markup language for device description files based on XML. It is based on the 
(ISO 15745-1, 2003) basic elements and fulfills the basic requirements network inde-
pendence, multi language support, and extensibility. Further information is available 
via [10]. 

Field Device Tool (FDT). The FDT concept defines the interface between device-specific 
software components provided by the device supplier and the engineering tool of the 
control system manufacturer. The focus of the FDT technology lies on engineering, 
commissioning, diagnostics and documentation of field bus-based ACSs. The engi-
neering tool is able to interact actively with the field bus device. FDT has been speci-
fied by the FDT Group [11], where further information is available. 

Framework for Distributed Automation and Control (4DIAC). The general aim of the 
4DIAC initiative is to provide an open, IEC 61499 standard compliant basis, that gives 
the opportunity to establish an automation and control system based on the targets 
portability, configurability and interoperability. The open source project includes a 
runtime environment as well as an engineering tool. Further information is available 
via [12]. 

                                                 
33 Company kircher SOFT has changed its name to „logi.cals Austria“ in 2008. 
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Function Block (FB). The term function block is used in several standards, for this work 
especially the definitions of IEC 61131-3 (2003) and IEC 61499-1 (2005) are of special 
interest. 

Function Block Diagram (FBD). FBD is a graphical programming language defined in 
(IEC 61131-3, 2003). FBs or functions are interconnected via flow lines, the signal 
flow shall be from the output (right-hand) side to the input (left-hand) side. The exec-
tion of FBD is defined so that an element is evaluated only if its predecessor elements 
are evaluated. Additionally, implementation dependent rules can be applied. 

Function Block Development Kit (FBDK). The FBDK [15] has been developed by James 
H. Christensen in parallel to the development of the IEC 61499 standard. It consists of 
two parts, an engineering tool as well as a runtime environment (FBRT) for the ele-
ments of IEC 61499 standard. It is the first IEC 61499 engineering tool and still en-
hanced by James H. Christensen. 

Function Block Run Time (FBRT). The FBRT is the runtime environment within the FBDK 
engineering tool. It is implemented in Java and is characterized by its implementation 
of the event propagation by direct function call. The detailed execution semantics of the 
FBRT are described in Sünder et al. (2006a). 

Function Block Execution Runtime (FUBER). This IEC 61499 runtime environment has 
been published as open source project [13] by Goran Čengić (Automation Research 
Group, Chalmers University of Technology). A description of FUBER can be found in 
Čengić et al. (2006). 

Generalized Stochastic Petri Nets (GSPN). “Generalized Stochastic Petri Nets (…) have 
two different classes of transitions: immediate transitions and timed transitions. Once 
enabled, immediate transitions fire in zero time. Timed transitions fire after a random, 
exponentially distributed enabling time as in the case of Stochastic Petri Nets.” (Bause 
and Kritzinger, 1996, Chapter 8) 

Holonic Manufacturing Systems (HMS). A HMS is “a holarchy (a system of holons—
autonomous and cooperative building blocks of a manufacturing system—which can 
cooperate to achieve a goal or objective) which integrates the entire range of manufac-
turing activities from order booking through design, production and marketing to real-
ize the agile manufacturing enterprise” (Christensen, 1994). The HMS project [22] 
took place within the Intelligent Manufacturing Systems initiative [23] from 1991 to 
2004. 

Human Machine Interface (HMI). The HMI is the interface between a machine and a 
human being. Generally the system state of the machine is displayed in some kind, e.g. 
by some graphics, and there exists the possibility to influence the machine by the use of 
buttons or textual inputs. 

Instruction List (IL). IL is a textual programming language defined in (IEC 61131-3, 2003). 
IL is composed of a sequence of instruction, whereas each instruction shall begin on a 
new line. A line may consist of an optional label, an operator, optional operands, and an 
optional comment. The operators are very simple such as load, Boolean operations as 
well as mathematical operations. Further, jump operators to labels and FB/function 
calls are possible. 

International Electrotechnical Commission (IEC). International Organization [25] that 
provides international standards and conformity assessment for government, business, 
and society for all electrical, electronic, and related technologies. 

Intellectual Property (IP). IP is a used in law as umbrella term for a bundle of exclusive 
rights concerning information, ideas, and so on. In the contrast of ACS, IP means the 
special knowledge of a vendor concerning his products. It is necessary to provide 
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means for the protection of a vendor’s IP to build an open, knowledge-based economy 
in industrial automation. (Vyatkin et al., 2005) 

Industrial Personal Computer (IPC). An IPC is in general a personal computer that fulfills 
special requirements according to is use as replacement for PLCs in ACSs. The addi-
tional features are robustness, use of standards, type of protection, operating system, 
and communication with other system components. (Favre-Bulle, 2004, Section 2.4.4) 

Kripke structure. “A Kripke structure consists of a set of states, a set of transitions between 
states, and a function that labels each state with a set of properties that are true in this 
state. Paths in a Kripke structure model computations of the system. Although these 
models are very simple, they are sufficiently expressive to capture those aspects of 
temporal behavior that are most important for reasoning about reactive systems.” 
(Clarke et al., 1999, Chapter 2) 

Ladder Diagram (LD). LD is a graphical programming language defined in (IEC 61131-3, 
2003). The symbols are laid out in a similar manner to a rung of a relay ladder logic 
diagram. The LD network is located between the left and right power rail. The used 
symbols are contacts, coils as well as functions and FBs (by the use of the EN/ENO 
construct). The execution order is rung by rung from top to bottom. Within a rung, an 
element is evaluated only if its predecessor element has been already evaluated. 

Linear-time Temporal Logic (LTL). “LTL is a temporal logic (…) that models time as a 
sequence of states, extending infinitely into the future. (…) In general, the future is not 
determined, so we consider several paths, representing different possible futures.” 
(Huth and Ryan, 2004, Section 3.2) LTL consists “of formulas that have the form A f 
where f is a path formula in which the only state subformulas permitted are atomic 
propositions.” (Clarke et al., 1999, Section 3.2) 

Middleware. “Category of software that is neither dedicated to the operation of a specific 
system (handled by the operating systems) nor to the functionality of specific applica-
tions. Middleware typically addresses cross-system concerns, such as communication, 
synchronization, and coordination, that are of importance to multiple applications.” 
(Szypersky, 2005, Glossary) 

Micro Holons for Next Generation Distributed Embedded Automation and Control 
Systems (µCrons). The aim of the µCrons project is to overcome limitations of state of 
the art PLC-based automation technology and provide an embedded system computing 
infrastructure (middleware) for µCrons that supports predictable dynamic reconfigura-
tion of real-time application software that is distributed on µCrons. A µCron is the 
mechatronic assembly of mechanic, hydraulic, pneumatic, etc. parts with electric, com-
puting, networking and software level components to an intelligent, reconfigurable, 
user-programmable device of fine granularity (similar to an automation object). 
The µCrons project has been funded by the Austrian government within the FIT-IT 
embedded systems program under contract number FFG-808205/7126. The project 
lasted from May 2004 to November 2006. The project consortium consists of the com-
panies Festo GmbH [19] and Fronius International AG [20], as well as the research in-
stitutes Profactor [45], ACIN [1], and University of Applied Science, Upper Austria 
[57]. More detailed information is available on the corresponding web page [36]. 

Model checking. Model checking is a technique for validation of the functionality of a 
system for finite state concurrent systems. Based on the model of a system, a model 
checking tool verifies whether the state space of the system fulfils a given specification 
or not. If the model violates some property of the specification, a counterexample as a 
path within the state space is given. 
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Mulitlevel Queue (MLQ). The MLQ scheduling policy is part of the eCos kernel component. 
It provides the use of several threads within the same priority level, with a maximum 
number of 32 priorities. All tasks within one priority level are held within a queue, and 
the execution time of a task may be limited by a timeslicing period. A detailed descrip-
tion of the MLQ scheduler is provided in Massa (2003, Section 5.1.3.1). 

Net Condition/Event Systems (NCES). NCES are a modeling approach that is a combina-
tion of Condition/Event systems and Petri nets. There exist modules utilizing events 
and conditions as interfaces that can be interrelated to composite modules. Internals of 
a module are described Petri nets, whereas incoming conditions as well as events may 
be used for the firing condition of a transition. If a NCES has no inputs it is called Sig-
nal-Net System (SNS). A description of NCES and their use for verification of distrib-
uted control systems is given for instance in Vyatkin and Hanisch (2003b). 

Object Management Group (OMG). The OMG is an international, open membership, not-
for-profit computer industry consortium. The different task forces develop enterprise 
integration standards for a wide range of technologies, and an even wider range or in-
dustries. The most important specification developed by the OMG is UML. [38] 

Open, Object-Oriented Knowledge Economy for Intelligent Industrial Automation 
(O3neida). The O3neida organization [28] operates as a network of networks focused 
on fostering distributed industrial automation based upon open standards. The basic 
idea of the O3neida organization is describe in Vyatkin et al. (2005). 

OPC Unified Architecture (OPC UA). OPC UA has been defined by the OPC Foundation 
[41], which is a user driven organization that has released several specifications for the 
access of data from various devices in a unified manner. OPC stems from OLE for 
Process Control, which is derived from the technology Object Linking and Embedding 
used in Microsoft Windows operating systems. OPC UA defines a Client/Server archi-
tecture based on standardized web technologies (such as XML defined by W3C [63]). 

Ordered Binary Decision Diagram (OBDD). OBDDs (Clarke et al., 1999, Chapter 5) are a 
canonical form representation for Boolean formulas. They can be calculated from cal-
culated from binary decision trees simply speaking by eliminating redundancy. A ca-
nonical form can be achieved by two restrictions: (i) a similar order of variables along 
each path and (ii) no isomorphic subtrees or redundant vertices. One challenge in the 
use of OBDDs is that the size of the OBDD depends critically on the variable order. 
Therefore techniques such as dynamic reordering have been developed. 

PLCopen. PLCopen [44] was founded as an independent worldwide association for industrial 
suppliers and users resolving topics related to industrial control programming. PLCo-
pen members have concentrated on technical specifications around IEC 61131-3, creat-
ing specifications and implementations in order to reduce cost in industrial engineering. 
Examples are the specifications for motion control and safety function blocks, and the 
XML schemes for an unified data format for control logic. 

Predicate transformer. A predicate transformer is a function τ : Pred(S) 6 Pred(S) with the 
attributes (i) τ is monotonic, (ii) τ is c-continuous and (iii) τ is 1-continuous. Pred(S) is 
denoted as a lattice under the set inclusion ordering from the states S of a Kripke struc-
ture M (3). These properties are used for symbolic model checking to utilize fixpoint 
calculations. A detailed description is given for instance in Clarke et al. (1999, Chap-
ter 6). 

Priority inheritance protocol. A RTOS provides different means for synchronization of 
different tasks. The mutual exclusion method allows multiple tasks to share a resource 
serially. If a resource is occupied by a low priority task, and a high priority task wants 
to access the resource, different protocols can be used to resolve this situation. “The 
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priority inheritance protocol allows a task that owns the mutual exclustion object to be 
raised to the priority level equal to the highest level of all threads waiting for the mu-
tual exclusion object. The priority inheritance protocol is only used when a higher pri-
ority task is waiting for the mutual exclusion object.” (Massa, 2003, Section 6.2.1) 

Programmable Logic Controller (PLC). The term PLC is an umbrella term for control 
devices based on the IEC 61131 standard. Although the term is used more generally in 
literature, we will use this term for control devices that are programmable according to 
the concepts of (IEC 61131-3, 2003). 

Program Organization Unit (POU). The standard IEC 61131-3 defines POU as an software 
element which may be either a program, function block or function. (IEC 61131-3, 
2003) 

Production planning and scheduling (PPS). A PPS system is used for computer based 
planning, ordering, and supervision of production flows. The main tasks are the coordi-
nation of the production program, quantities, schedules, and capacities. (Favre-Bulle, 
2004, section 3.5.1) 

Property Specification Pattern. “A property specification pattern is a generalized descrip-
tion of a commonly occurring requirement on the permissible state/event sequence in a 
finite-state model of a system. A property specification pattern describes the essential 
structure of some aspect of a system’s behavior and provides expressions of this behav-
ior in a range of common formalisms.” (Dwyer et al., 1998, Section 3, first paragraph) 

Real-time computer system. “A real-time computer system is a computer system in which 
the correctness of the system behavior depends not only on the logical results of the 
computation, but also on the physical instant at which these results are produced.” (Ko-
petz, 1997, Section 1.1, first paragraph) 

Real-time operating system (RTOS). A RTOS is an operating system, which provides 
support for concurrent programming via processes and/or threads, real-time scheduling 
services with predictable timing behavior, preemption, predictable synchronization 
mechanisms, mutual exclusion, and time management services. (Bouyssounouse and 
Sifakis, 2005, Section 21.1) 

Reconfigurable Manufacturing System (RMS). “A reconfigurable manufacturing system is 
designed at the outset for rapid change in structure, as well as in hardware and software 
components, in order to quickly adjust production capacity and functionality within a 
part family in response to sudden changes in the market or in regulatory requirements.” 
(Koren et al., 1999, Section 2) 

Simulation. Simulation is a technique for validation of the functionality of a system by 
providing certain inputs and observing the outputs. The tests are performed on an ab-
straction or a model of the real product. Typical PLC engineering tools support the 
simulation on the engineering computer without the real PLC. 

Sequential Function Chart (SFC). SFC is defined in (IEC 61131-3, 2003) as a means for 
partitioning POUs written in one of the languages defined by the standard, for the pur-
pose of performing sequential control functions. It consists of steps and transitions in-
terconnected by direct links. A step may have a set of actions associated, which are 
executed if the step is activated and according to the used action qualifier (for instantce 
time limited or rising edge). Each transition is associated with a transition condition. 
The initial situation of a SFC network is characterized by the initial state which is the 
active state. Evolution of the active states of steps shall take place along the directed 
links when caused by the clearing of one or more transitions. 

Service Interface Function Block (SIFB). A SIFB is defined in (IEC 61499-1, 2005, 
Section 3.89) as “function block which provides one or more services to an application, 



252 USED TERMS AND ABBREVIATIONS 

based on a mapping of service primitives to the function block’s event inputs, event 
outputs, data inputs, and data outputs”. 

Signal-Net Systems (SNSs). SNSs are autonomous systems of NCES modules, that are 
systems with no external inputs. For such systems analysis is possible. Starke and Roch 
(2002) describe analysis techniques for SNS in detail, such as dynamic properties, 
structural properties, Invariants and model checking. The appropriate model checker 
for SNS is called SESA and has been developed at Humboldt-University Berlin. It is 
available next to a graphical NCES tool in [61]. 

Software component: There exist several definitions for software components in literature. 
Within this work we use (Szyperski, 2002, Section 4.1.5): “A software component is a 
unit of composition with contractually specified interfaces and explicit context depend-
encies only. A software component can be deployed independently and is subject to 
composition by third parties.” Its main characteristics are that a software component is 
a unit of independent deployment, it may be used for composition by third-parties and 
it has no (externally) observable states. 

Software maintenance. The term software maintenance is defined in (IEEE 14764, 2006, 
Section 3.10 “the totality of activities required to provide cost-effective support to a 
software system. Activities are performed during the pre-delivery stage as well as the 
post-delivery stage.” The predecessor IEEE 1219 (1998) focuses more on the modifica-
tion of a software product after delivery, whereas pre-delivery activities are necessary 
such as a the planning for post-delivery activities. 

Software evolution. The term software evolution lacks for a concrete definition but became 
very famous due to the so called ‘laws of software evolution’ as for instance claimed by 
Lehmann and Ramil (2000) for component-based software. It is stated that a software 
product needs to be continuously adapted in order to kept satisfactory. There are differ-
ent challenges of software evolution stated in Mens et al. (2005) including sufficient 
engineering support as well as runtime environments enabling adaptations at run-time.  

Structured Text (ST). ST is a graphical programming language defined in (IEC 61131-3, 
2003). ST consists of a list of statements, which may include assignments, FB/function 
calls, selections (IF construct), and iterations (FOR, WHILE, and REPEAT construct). 
Within the statements expressions are used, which are composed of operators and oper-
ands. The evaluation of expressions consists of applying the operators to the operands 
according to the operator precedence. In order equal precedence, evaluation shall be 
applied from left to right. 

Subapplication. A subapplication type is defined in (IEC 61499-1, 2005, Section 3.95) as a 
“functional unit whose body consists of interconnected component function blocks or 
component subapplications”. In the note to (IEC 61499-1, 2005, Section 3.94) it is 
stated that “a subapplication instance may be distributed among resources, i.e. its com-
ponent function blocks or the content of its component subapplications may be as-
signed to different resources”. 

Symbolic Model Verifier (SMV). SMV was the first tool for checking finite-state systems by 
the use of symbolic model checking algorithms using OBDDs. It has been developed 
by Ken McMillan (1993) in his PhD thesis and provided important results to the state 
explosion problem. SMV uses its own input language, which is based on modules and 
their interaction. There are several tools available based on the original SMV, the most 
relevant one is the open source NuSMV [35]. 

Testing. Testing is a technique for validation of the functionality of a system by providing 
certain inputs and observing the outputs. The tests are performed on the real product. 
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Timed Net Condition/Event Systems (TNCES). TNCES is the extension of the strictly 
causual, untimed model of NCES to a timed model as introduces in Ha-
nisch et al. (1997). 

Tool Calling Interface (TCI). TCI specifies a concept that defines a calling interface for the 
device engineering tool and the automation system engineering tool. It provides param-
eterization and diagnostics over network boundaries, data storage, and reloading of set 
parameters when a device is replaced. TCI has been specified by the Profibus and Pro-
finet International organization [48], where further information is available. 

Total life cycle web-integrated control (TORERO). The TORERO project has focused on 
creating a total life cycle web-integrated control design architecture and methodology 
for distributed control systems in factory automation. It lasted from 1998 to 2002 and 
was funded by the European Union. Schwab et al. (2005) describe the TORERO ap-
proach in detail, further information is also available at [54]. 

Unified Modeling Language (UML). UML [56] is a visual language for the specification, 
visualization, construction and documentation of models for software systems. It has 
been specified by the OMG and represents the de facto standard used by software engi-
neers. It includes for instance use case diagrams, class diagrams, and state charts. 

Verification Environment for Distributed Applications (VEDA). The tool VEDA has been 
developed by Valeriy Vyatkin and provides a framework for the verification of distrib-
uted applications according to IEC 61499. The model of the IEC 61499 application is 
generated automatically, the validation is supported by visualization of the process 
along selected trajectories within the reachability graph. Details are given for instance 
in Vyatkin and Hanisch (2001a), actually VEDA is no more supported and developed. 
Related projects can be found in [14]. 

Visual Verifier (ViVe). ViVe is a verification tool for TNCES. The model checking is done 
via SESA and a simple built-in model checking algorithm. The models, reachability 
graph, and sequence diagrams of paths within the reachability graph are available in a 
graphical representation. ViVe is part of the visual framework for verification of func-
tion blocks [61] provided by Valeriy Vyaktin. 

World Wide Web Consortium (W3C). The W3C [63] has been created as industry consor-
tium dedicated to building consensus around web technologies in 1994. It develops in-
teroperable technologies (specifications, guidelines, software, and tools) to lead the 
web to its full potential. XML is one of the most important standards developed by 
W3C. 

Worst Case Active Task Set (WCATS): The WCATS is defined in (Zoitl, 2007) as “the task 
set that needs the most execution resources of all possible task sets”. It has to be con-
sidered for the proof of schedulability of real-time constrained control applications 
based on event chains. 

Worst Case Execution Time (WCET): “The WCET of a task is an upper bound for the time 
between task activation and task termination. It must be valid for all possible input data 
and execution scenarios of the task, and should be a tight bound.” (Kopetz, 1997, Sec-
tion 4.5) 

XML Interface for Robots and Peripherals (XIRP). The XIRP specification (VDMA 
66430-1, 2006) provides an XML based description for the interaction between robots 
and processor based peripherals (e.g. a vision system). The communication protocol de-
fines the machine-to-machine exchange of commands. XIRP is an german initiative 
and has been specified by VDMA [59]. 

eXtended Markup Language (XML). XML [64] is a text format that consists of markup 
codes and raw data. By the use of the markup codes the raw data is structured and se-
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mantic information is added. XML has been developed by the World Wide Web Con-
sortium (W3C) and is widely used in computer systems and for data exchange be-
tween computer systems. The structure of a XML file can be defined through a DTD 
file or a XML schema. 

XML schema. The purpose of a XML schema is to define a class of XML documents. It can 
be viewed as a collection (vocabulary) of type definitions and element declarations 
whose names belong to a particular namespace. Different namespaces can be managed 
within an XML document. [65] 

eXtreme Programming (XP). XP has been developed by Kent Beck as a summary of well 
known practices from computer science such as pair programming, testing, simplicity 
of design, short iterations, refactoring and so on. The design process becomes highly 
adaptive as changes are applied as soon as they have been identified, starting with a 
simple first version of the program. A detailed description of XP is given in 
Beck (2000). 
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