

Integration of Heterogeneous Software-
Intensive Systems with Rule-Engine-Based

Event Correlation, Analysis and
Generation

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Magister der Sozial- und Wirtschaftswissenschaften

im Rahmen des Studiums

Wirtschaftsinformatik

eingereicht von

Paul Alexandrow
Matrikelnummer 0025410

an der

Fakultät für Informatik der Technischen Universität Wien

Betreuung:
Betreuer/Betreuerin: Ao. Univ.-Prof. Mag. Dipl.-Ing. Dr. Stefan Biffl
Mitwirkung: Dipl.-Ing. Dr. Alexander Schatten

Wien, 17.11.2008 _______________________ ______________________
 (Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43/(0)1/58801-0 http://www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

2

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen nicht benützt und die den
benutzten Quellen wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich
gemacht habe.

November 17, 2008

3

Kurzfassung

Die Integration heterogener Systeme stellt eine große Herausforderung dar. Event-
basierte Architekturen, die die Events zwischen solchen Systemen sammeln und um-
wandeln können, sind ein vielversprechender Ansatz dazu.

Analysten müssen große Mengen von Events aus solchen Systemen verarbeiten und
relevante Muster darin erkennen können. Es gibt bereits Tools dafür, wie das Open
Source Projekt Naiad, die Events aufgrund ihrer Attribute korrelieren und aggregieren
können. Allerdings beschränkt sich die Korrelation in den meisten Fällen auf das
Finden von identen Attributen, eine semantische Verarbeitung steht noch aus. Let-
ztere wäre aber ein Schlüsselfaktor um Geschäftsprozesse mit der Fülle an Events aus
heterogenen und dynamischen IT Systemen sinnvoll zu verbinden.

Letztlich muss jeder praktikable Lösungsansatz auch entsprechend skalierbar sein,
um eine gleichbleibend hohe Performance gewährleisten zu können.

Der Kern dieser Arbeit befasst sich mit der Frage, ob und wie eine konventionelle
Rule Engine gemeinsam mit einem Tool zur Korrelation von Events genutzt werden
kann, um die skalierbare und semantische Verarbeitung von Events zu ermöglichen.

Zuerst soll Naiad Rules, ein allgemeines Konzept für die regelbasierte, semantis-
che Korrelation von Events vorgestellt werden. Ziele dieses Ansatzes sind die Aus-
tauschbarkeit der verwendeten Rule Engine, die Möglichkeit einer GUI gestützten
Bedienung, maximale Skalierbarkeit und die Möglichkeit der Verteilung auf mehrere
physikalische Systeme. Dahingehende Probleme und deren Lösungen sollen ebenfalls
präsentiert werden.

Danach soll gezeigt werden, wie gängige Patterns aus dem Bereich des Complex
Event Processing mit diesem Konzept umgesetzt werden können, bzw. wo die Grenzen
davon liegen.

Naiad, ein Tool zur Korrelation von Events, wird mithilfe einer Rule Engine erweit-
ert, um das Konzept von Naiad Rules exemplarisch zu realisieren. Dabei soll das in
Naiad implementierte SEDA (staged event-driven architecture) Design weitergeführt
werden.

Zum Einsatz wird dabei die Open Source Rule Engine Drools kommen. Deren
Integration mit den existierenden Komponenten von Naiad sowie dabei aufgetretene
Probleme werden detailliert erläutert. Danach werden Engstellen und Lösungsansätze
zu diesen diskutiert.

Als begleitendes Beispiel dient das SAW (Simulation of an Assembly Workshop)
Projekt an der TU Wien.

Schließlich sollen Resultate hinsichtlich der Performance und der Handhabung des
Konzepts vorgestellt werden, bevor ein kurzer Ausblick mögliche weitere Forschungs-
und Entwicklungsziele auf diesem Sektor darstellt.

4

Abstract

The integration of heterogeneous systems, in particular legacy systems, is a major
IT-challenge. Event-based architectures provide an approach to integrate systems by
collecting and transforming the events exchanged between systems.

System integrators want to analyze the large number of events available from these
systems to find meaningful patterns. There are tools for event analysis, like the open
source tool Naiad, which help to correlate and aggregate event according to common
event types and matching data fields. However, the correlation is typically limited to
simple similarity matching, lacking support for semantic matching. The latter is an
important feature to allow linking typical business processes to the flow of events com-
ing from heterogeneous and evolving systems. Further, correlation rules can provide
better usability to a more extensive range of clients.

Finally, the correlation approach needs to be scalable as the performance of event
correlation can be a critical success factor of the business application.

In this work a key research issue is to investigate how a conventional rule engine can
be used together with a tool for correlating events to provide scalable semantic event
correlation for business process applications.

First, Naiad Rules, a general concept for rule based, semantic event correlation will
be developed. The main goals of this concept are interchangeability of the underly-
ing rule engine, the support of a GUI based configuration of rules, a maximum of
scalability and the possibility to distribute rule processing to multiple systems at any
time. Occurred problems and their solutions to achieve these goals will be discussed
in detail.

It will then be shown how common patterns of complex event processing can be
implemented with that concept. Limitations of it will be discussed and useful future
enhancements to get rid of those limitations will be contemplated.

The design of the open source tool Naiad, a tool for correlating events, will be
extended with standardized programming interfaces and configuration files to accom-
modate a rule engine that is compatible with the staged event-driven architecture
(SEDA) paradigm of Naiad.

The design will be prototypically implemented as part of the open source project
Naiad using the freely available rule engine Drools. The integration with the already
existing parts of Naiad and some major problems with it will be discussed in detail.
Then bottlenecks and possibilities to their avoidance will be presented.

As an accompanying example the SAW (Simulation of an Assembly Workshop)
project with a simulator and hardware test bed at the Vienna UT will be used. Finally
findings about performance and the ease of configurability will be presented, before a
short outlook will give an overview about a possible roadmap for future research and
development on rule based event processing with Naiad.

5

6

Contents

1 Introduction 13
1.1 Events and their Relevancy . 13

1.1.1 Definition of Events . 13
1.1.2 Importance of Events . 14
1.1.3 Layers of Interest . 14

1.2 Complex Event Processing . 15
1.2.1 From Complex to Correlated and Composite Events 15
1.2.2 Advantages of Complex Event Processing 17
1.2.3 What is Complex Event Processing not? 18

1.3 BRM Systems and Expectations for Complex Event Processing 18
1.4 Subject and Motivation of this Work 19

1.4.1 The Sense and Respond Paradigm 20
1.4.2 Requirements to a Rule Engine based CEP Application 21
1.4.3 Anticipated Benefits . 24
1.4.4 Delimitations . 24

1.5 SAW: Simulation of Assembly Workshops 24

2 Related Work 27
2.1 A short History of Naiad . 27
2.2 The SEDA Model . 30
2.3 Separation of Correlation and Rule Processing 31
2.4 SARI Rules . 32
2.5 Similar Concepts and Projects . 36

3 Naiad - an Event Correlation Server 39
3.1 XML based Events . 39
3.2 Correlation and Sessionhandling as Core Features 40
3.3 Configuring Naiad: Correlations and Bridges 41

4 Applying a Conventional Rule Engine to Complex Event Processing 47
4.1 Types of Rules . 47
4.2 Transforming Naiad Rules to Conventional Rules 49
4.3 Ancestor Identifiers . 52

4.3.1 Transforming Ancestor Identifiers 58
4.4 Response Events . 59

5 Implementing Common Patterns of Complex Event Processing 61

7

Contents

5.1 Filters . 61
5.2 Maps . 63
5.3 Event Processing Networks . 63
5.4 Distributed Event Detection . 67
5.5 Naiad’s Limitations . 67

5.5.1 Constraints . 67
5.5.2 Cut and Join . 68

6 Connecting a Rule Engine to Naiad 71
6.1 The Rule Engine - JBoss Drools . 71

6.1.1 The Rete Algorithm . 74
6.1.2 The Mapping Problem and its Solution 75

6.2 The Response Event Generator - Apache Velocity 77
6.3 Integration . 78
6.4 Testing . 80
6.5 Bottlenecks . 82

6.5.1 Using Multiple Session Managers 82

7 Results and Findings 85
7.1 Development . 85
7.2 Configurability . 85
7.3 Performance . 86

7.3.1 The completenessTimeout Problem 87

8 Conclusion 91

9 Outlook 93
9.1 Further Research Topics . 93
9.2 Ongoing Development in Naiad . 94

A Configuration of Naiad Rules with Drools and Velocity 101
A.1 Connecting Naiad Rules to the Correlation Server 101
A.2 Defining Rules . 103
A.3 Defining Response Events . 105

B Configuration of Common Patterns 107
B.1 Filters . 107
B.2 Maps . 107
B.3 Event Processing Networks . 107

C Testsystem 109

8

List of Figures

1.1 An event of type evtWorkpieceIn . 14
1.2 An event of type evtWorkpieceOut . 15
1.3 An event of type evtProductFinished 15
1.4 Different roles in a company require different views on its events. . . . 17
1.5 SARI Sense & Respond Loops [28] . 21
1.6 SARI Architecture [28] . 22
1.7 Screenshot of the SAW Simulator . 26

2.1 “Rank 2” search results in EventCloud [22] 28
2.2 EventServer architecture overview [34] 29
2.3 Naiad’s function seen as a blackbox . 29
2.4 A SEDA stage [38] . 30
2.5 Overlapping Sessions in an event cloud 32
2.6 Event Condition in SARI Rules [27] 33
2.7 Event Pattern in SARI Rules [27] . 34
2.8 Response Event in SARI Rules [27] . 34
2.9 An example of interconnected elements of SARI Rules [27] 35

3.1 An overview of Naiad’s architecture 40
3.2 Two sample event types with the attributes they contain 42
3.3 Events of the same workpiece correlated into one session 43
3.4 The event created when Alice placed an order 43
3.5 A session containing all events relevant to Alice’s order 44

4.1 A simple example of a rule in Naiad 48
4.2 A simple rule with one pattern definition 50
4.3 A rule’s precondition port being connected to two other rules 51
4.4 Two different events of type orderPayment 52
4.5 A set of rules illustrating the ancestor problem 54
4.6 Ancestor Identifiers in Naiad Rules . 55
4.7 Ancestor Identifiers referring to different patterns in the same rule . . 56
4.8 Ancestor Identifiers used with an OR precondition port 57
4.9 Forwarding of Ancestor Identifiers . 58

5.1 A Filter EPA in Naiad Rules . 62
5.2 A simple Map in Naiad Rules . 63
5.3 A simple assembly workshop . 64

9

List of Figures

5.4 EPA of Machine 1 from figure 5.3 . 65
5.5 Simple EPA for conveyor in figure 5.3 66
5.6 EPA of Machine 2 from figure 5.3 . 66
5.7 EPA layout for workshop in figure 5.3 67

6.1 Screenshot of Drools’ web-based BRMS [9] 73
6.2 Integration architecture of Naiad Rules 79
6.3 Naiad Rules architecture with multiple RuleUMOs 80
6.4 Naiad’s Mule setup for Unit Testing 81
6.5 Naiad architecture using multiple Session Managers 83

10

Listings

3.1 An event from the SAW domain . 39
3.2 Configuration of a bridged correlation in Naiad 45
4.1 A basic example of Drools’ pattern syntax 49
4.2 An example of the transformation of a pattern’s event type 50
4.3 An example of the transformation of a rule’s AND precondition 50
4.4 An example of the transformation of a rule’s OR precondition 51
4.5 Code snippet of a rule that prevents retriggering 51
4.6 The right-hand side of the Machine Released rule in figure 4.9 59
4.7 Parts of the left-hand side of the Processing too long rule from fig-

ure 4.9 . 59
5.1 XML representation of an event that can not be mapped to unique

name/value-pairs . 69
5.2 XML representation of an event cut and joined from listing 5.1 69
6.1 Simplified version of Drools’ ”Hello World” example 72
6.2 Simplified version of Drools’ ”Hello World” example in XML format . 74
6.3 XML representation of a workpieceIn event 75
6.4 XML configuration of a rule in Naiad 76
6.5 Sample configuration of Naiad Rules’ attributeMapping 76
6.6 Sample definition of a Response Event in Naiad Rules 78
6.7 A Response Event’s definition for Velocity 78
7.1 Configuration of a Correlation Set with Completeness Timeout 88
A.1 Mule configuration for a sample Naiad server 101
A.2 General skeleton for Naiad Rules’ configuration 103
A.3 A sample rule definition in Naiad Rules’ configuration 104
A.4 A sample definition of a Response Event in Naiad Rules’ configuration 105
B.1 Configuration of the Velocity based REG for example in figure 5.1 . . 107
B.2 Configuration of the Velocity based REG for example in figure 5.2 . . 107
B.3 Configuration of the Velocity based REG for example in figure 5.4 . . 107

11

Listings

12

1 Introduction

1.1 Events and their Relevancy

1.1.1 Definition of Events

The notion of an event is common in many fields of computer science and even in
other sciences as well. For instance in software development, events as means to
invoke certain portions of code (mostly used in programming of GUIs) are just one
very well known example. Therefore the meaning of this term can differ as much as
the occasions where it is used at.

In his book The Power of Events [12] David Luckham provided the fundamentals
for what today is commonly known as Complex Event Processing (CEP) and for this
work in particular. His 2001 definition of an event still describes the understanding of
events in this work pretty well:

An event is an object that is a record of an activity in a system. The
event signifies the activity. An event may be related to other events [12].

Though there is nothing wrong with this definition the term system might misleadingly
suggest that events can only be found (and processed) in electronic systems. And
indeed it is true, that most research into CEP has been done investigating purely
electronic systems.

However, more recently Mühl, Fiege and Pietzuch used a slightly different terminol-
ogy on that topic, and thus accentuate the otherwise easily overlooked fact that events
do not equal the data-container that represents them, when they are processed. To
them the term event stands for the happening of interest that is then observed from
within a computer. In contrast to that they define a notification to be a datum that
reifies an event [16], for example the very instance of a Java [31] class containing data
about a real-life event. In Luckham’s work, the latter is called the significance of an
event.

For the rest of this work the term textitevent will be used ambiguously. The context
should always make it clear, whether the event itself or the notification representing
it is meant.

Regardless of the terminology used, understanding the difference between those two
ideas (event vs. notification or significance vs. event) is the key to understanding the
full potential of CEP.

13

1 Introduction

Figure 1.1: An event of type evtWorkpieceIn

1.1.2 Importance of Events

Whenever a computer or similar device generates a notification about any internal
happening, it is obvious that this information can then be used for further processing.
CEP techniques can be applied to the data and the beneficial effects of those patterns
can be leveraged.

Now what if this device would generate a notification not about an internal but an
external happening? The device would then become an observer. This could be any
simple sensor like a light barrier or something much more complex - just as long as an
electronic notification containing data about the happening can be generated. Data
in this context can be as little as just the information about the plain occurrence of
the event [16].

Hence all the known CEP techniques can be applied to any events as long as they
are (electronically) observable. With today’s possibilities of measuring technology this
includes pretty much all imaginable domains and systems in the world around us, on
any desired level of detail.

In purely electronic systems, which still are the main focus of ongoing research
into CEP, it is even easier than that: most such systems already include elaborate
notification and reporting features that can be utilized for monitoring and analysis
purposes. Unfortunately today’s platforms suffer from inappropriate management [26]
of this data.

1.1.3 Layers of Interest

An event for instace could be the fact that a workpiece is entering a machine (see
chapter 1.5 for the accompanying case-study). In a minimal version it could look like
figure 1.1.

Obviously for every evtWorkpieceIn there should be an event of type evtWorkpiece-
Out, like the one in figure 1.2.

As one can easily see, the bigger our assembly line gets, the more events we would
end up with. This can very quickly exceed any manageable dimension. Besides, we

14

1.2 Complex Event Processing

Figure 1.2: An event of type evtWorkpieceOut

Figure 1.3: An event of type evtProductFinished

might not be interested in workpieces entering and leaving machines at all. Probably
we only want to know about finished products leaving our factory. Like the event
shown in figure 1.3.

Suppose that unfortunately in our assembly line there is no sensor which could
generate such an event. Luckily, knowing the sequence of machines a workpiece has
to move through to become the final product, we can derive an evtProductFinished
event from all evtWorkpieceIn and evtWorkpieceOut events for a certain workpiece.
And thus, we have just created a complex event.

1.2 Complex Event Processing

1.2.1 From Complex to Correlated and Composite Events

To understand what the processing of complex events is all about, one naturally has
to have an idea what a complex event is in the first place.

What is a complex event? It is an event that could only happen if lots
of other events happened [12].

This very simple but comprehensible definition describes exactly what the evtPro-
ductFinished event from the previous chapter represents. It can only happen, if a
workpiece has passed all required machines, that is to say all required evtWorkpieceIn
and evtWorkpieceOut events have happened.

15

1 Introduction

Now, knowing the assembly line and the product it is relatively simple to see which
evtWorkpieceIn and evtWorkpieceOut events must have happened once a evtPro-
ductFinished occurs. But as we said before: evtProductFinished events don’t occur
on their own. So it is one of the key challenges posed on complex event processing to
find out things the other way round. How do we find out, that a product was finished?

An additional level of complexity is added to that problem by the fact, that there
might be not just one type of product that our assembly line is able to produce. So we
might face a huge amount of events of which there is only a fraction we are interested
in. Facing a bigger scale, say the events send back and forth between the electronic
systems of two or even more globally operating enterprises this is what Luckham
describes as the Global Event Cloud.

We talk of a cloud rather than a stream because the event traffic is not
... nicely organized. ... They (events) do not necessarily arrive ... in the
order they were created or in their causal order [12].

So the first step in CEP is to collect all the events from the event cloud that are of
interest to the question we’re currently facing. This is called correlating the events.
Based on information specific to the current problem we have to find groups of events
that represent “regions if interest” within the event cloud. In our example we might
want to correlate (= put into separate groups) “all events containing the same work-
pieceId in their attributes”. Occasionally the acronym CEP stands for Correlated
Event Processing. However, as we will see, this is only one part of the big picture.

To add to confusion, Mühl, Fiege and Pietzuch introduce the notion of a composite
event:

A composite event ins published whenever a certain pattern of events
occurs in the ... system [16].

In our example the composite event might be the evtProductFinished event whereas
the pattern that caused the composite event to be published is the set of all evtWork-
pieceIn and evtWorkpieceOut events required to finish the product. Depending on the
particular definition of composite events and/or the system used, a composite event
might contain all its causing events, references to its causing events, all or parts of the
data contained in its causing events or none of that at all.

To sum things up we can say that the correlation and the composition of events
are parts but not all of the techniques that are commonly referred to as complex
event processing. One part does not necessarily require the other, but the benefits of
applying both are obvious.

David Luckham comes to a similar conclusion:

CEP consists of very simple techniques, a mix of old an new. ... In
CEP, new techniques are combined with well-known techniques in a unified
framework [12].

Additionally it is worth mentioning that the most important part of CEP, besides
the correlation and composition of events, is the presentation of the data that was

16

1.2 Complex Event Processing

Figure 1.4: Different roles in a company require different views on its events.

processed. Very high level composite events are of no use, if they don’t aid any
decision-maker in managing or troubleshooting the system at hand. This however is
out of focus of this work.

1.2.2 Advantages of Complex Event Processing

As already mentioned, the biggest advantage of complex event processing is that the
very same principles and techniques can be applied to any system that can be recog-
nized as a crowd of generators of events.

Second, and we will see this later in this work, a CEP system is not one big chunk of
code, but consists of many relatively simple pieces that can be plugged into each other
as needed. Therefore, for simple tasks it is not necessary to implement and configure
a complicated system. A CEP system can easily adapt its own size and complexity to
the tasks assigned to it.

The concept of composite events enables the abstraction of the underlying system
on any desired level of operation. Further, for different roles in an enterprise or other
system the generation of different views on the system is possbile, combining multiple
correlations and compositions of events (figure 1.4). This helps to separate concerns
between agents with minimal extra cost, because all the processing is starting from
the same basic set of events, and thus from the same set of - possibly expensive -
observers.

17

1 Introduction

Moreover the loosely coupled nature of a CEP system makes it extremely flexible
when it comes to adapting to changes in the underlying system or creating new views
onto it. In theory all of this even is possible on the fly, while the observed system and
the CEP system are running.

1.2.3 What is Complex Event Processing not?

Though apparently sharing the same intentions, CEP systems differ strongly from
any systems implementing an ETL (Extract, Transform, Load) [10] approach like
traditional datawarehousing software. Both try to understand and manage a given
system by analyzing relatively small pieces of information and processing them into
a bigger picture. The important difference is, that ETL systems usually operate in
a batch-mode during a given time-window while CEP systems process events from a
continuous stream of data in or near real-time. This favors CEP systems over the ETL
approach whereever latency is critical [26].

Another approach to low-latency event processing is event stream processing (ESP).
ESP systems work on a stream of events, that is a sequence of events ordered by time.
Opposed to that is an event cloud, a set of events without any explicit ordering in
time [13]. When looking at an event cloud, more focus has to be given on the relations
between those events. Time is just one if them. Luckham identifies the three most
common and important relationsships between events as the following [12]:

Time states that one event happened before another one.

Cause states that one event had to happen in order for the another one to happen.

Aggregation one higher level event that consists of a number of lower level events.
Luckham calls this a complex event [12], Mühl, Fiege and Pietzuch a composite
event [16].

Typically ESP systems cannot handle too elaborate relationships between events, as
they cannot recognize cause and aggregation, and time only to a limited degree. Of
course this is not a disadvantage per se, but just another focus. On the other hand,
manufacturers of ESP applications have recently started to include more and more
features of CEP into their products, which is gradually closing the gap between ESP
and CEP applications [13].

1.3 BRM Systems and Expectations for Complex Event
Processing

Business Rule Management Systems (BRMS) have been around for quite some time
now. Their main purpose and conventional scope is to separate business logic, that is
policies that have to be enforced in certain business situations, from processes and the
software systems that manage them. They further try to support automatic decision

18

1.4 Subject and Motivation of this Work

making and thus aim to increase a business’ agility when reacting to internal and
external chances, opportunities and threats.

BRM Systems express business policies through (mostly large) sets of relatively
simple rules in an if/then format. Most such systems come with their own language
and syntax to define Business Rules, and many of them even allow the definition
and usage of Domain Specific Languages (DSL). This significantly lowers the cost
and shortens the delay of handling Business Rules, as non-technical but managing
personnel can create and modify them.

The core part of any BRM System is a Business Rule Engine. A specialized piece
of software, developed to survey huge amounts of information, transforming fore-
mentioned large sets of rules to machine-oriented instructions and applying them to
the information they are fed with. Therefore Pattern Matching, deciding whether
the if -part of a rule is satisfied, is obviously one very important task of a Business
Rule Engine.

These requirements and aims of Business Rule Engines on the other hand are quite
similar, if not identical for the most part, to those of a CEP system. In the latter we
need to process huge amounts of information as well, we need to apply rules to that
information1, and we need this done as fast as possible.

Hence the basic idea of this work, to utilize an already existing, conventional Busi-
ness Rule Engine to implement those features that are needed in CEP systems. Ex-
pectations are, that the following benefits of existing rule engines can be leveraged for
complex event processing as well:

• Using an existing engine and its libraries significantly reduces development
time and cost.

• Rules are relatively simple and thus can be understood and managed by less
trained personnel than complex relations of events. The use of a Domain Specific
Language might be able to further utilize that effect.

• A rule engine’s high-performance algorithm for pattern matching is al-
ready optimized for the task of finding certain constellations in huge clouds of
events.

1.4 Subject and Motivation of this Work

This work investigates if and how conventional rule engines can be used to support the
implementation of a CEP application. The suggested patterns will then be tested on
an existing CEP application (Naiad, see chapter 3) applied to a real-life environment
(SAW, see section 1.5).

1How to filter events, how to aggregate them, what to look for in the first place.

19

1 Introduction

Naiad is an open source, highly flexible and easily extensible event processing server
that provides automatic correlation of events. As we found out in the previous chapter,
event correlation is just one part of complex event processing. To be a full featured
CEP application, Naiad still lacks the composition of events, the automatic generation
of alerts and metrics, the graphical presentation of the processed data and other general
principles of CEP.

First and foremost this work is going to show how a rule engine can be used to
implement the composition (mapping) of events. That is how to aggregate multiple
low-level events into less high-level events by detecting patterns in pre-correlated clouds
of low-level events. In this document this extension will be referred to as Naiad Rules.

Furthermore we will see, how the relatively simple features of pattern detection
and event aggregation can be adopted to implement a couple of more sophisticated
concepts of CEP (see chapter 5).

The utilization of rule engines in the field of complex event processing is not a to-
tally new idea. For instance in [19], quite some time before the notion of CEP gained
popularity though Luckham’s book [12], the Alarm Correlation Engine’s (ACE) goal
was to improve (automatic) network management. It was using a specific high-level
language that supported a condition/action like process, which had great similarity to
conventional rules. Without being denominated like this, the data containers describ-
ing those actions could already be seen as complex events.

Other works where conventional rule engines are mentioned to be used for CEP
include papers of Josef Schiefer, especially [28].

1.4.1 The Sense and Respond Paradigm

In their work Schiefer and Seufert described SARI (Sense and Respond Infrastructure)
[28]:

... SARI ... manages the processing of past-oriented, present-oriented
and future-oriented data in order to support business processes with Busi-
ness Intelligence in near real-time.

SARI works in continuous loops, sensing business information, interpreting and an-
alyzing that information, making decisions upon that information and sending those
decisions back into the system (responding), as shown in figure 1.5 Sensing in this re-
spect means gathering information in a non-intrusive way, that is with the monitored
system not even knowing.

Besides providing low-latency results, SARI aims to be a distributed, scalable plat-
form that follows the paradigm of Service Oriented Architectures (SOA) [18]. SARI’s
architecture is shown in figure 1.6.

20

1.4 Subject and Motivation of this Work

Figure 1.5: SARI Sense & Respond Loops [28]

Naiad so far has followed the SARI principles in many aspects, which is why any
rule engine based extension should stick to them as well. Naiad Rules will follow the
paradigm of SOA, enabling it to be hooked into Naiad’s event bus without affecting
any other existing or yet to-be components (unless this is wanted). The theoretical
foundation for this has been presented in [27] and carried on by Rozsnyai in [23], a
detailed presentation of which can be found in section 2.4.

1.4.2 Requirements to a Rule Engine based CEP Application

Numerous requirements to a CEP application have already identified in works be-
fore this one. The most fundamental of which naturally deal with the features and
techniques of complex event processing itself. Among others, a CEP application must

• ... be able to subscribe to a system’s events (or get hold of them another
way).

• ... foremost provide techniques for defining and utilizing relationships between
events [12], in other words provide means to implement common patterns
of CEP, such as composite events, filters, constraints, alarms, etc.

• ... be understandable and manageable by experts on the domain at hand,
not software engineers. Customization should only consist of configuration, not
the development of completely new software components.

• ... support the graphical presentation of the processed data, enabling quick
and unerring judgments by a business’ decision makers.

• ... support real-time, drill-down, event-base diagnostics [12].

21

1 Introduction

Figure 1.6: SARI Architecture [28]

22

1.4 Subject and Motivation of this Work

However there are a number of “meta-requirements” as well, that do not directly
contribute to the set of features of a CEP system, but rather make its application in
today’s business environments feasible and useful.

• Should enable easy integration into existing systems [28]. In a best case sce-
nario the complex event processing is just hooked into the monitored system,
without it being affected in any way. This, of course, only applies to the Sense
part of SARI. Today’s enterprise service bus (ESB) systems make this relatively
easy.

• Under the assumption that many small interconnected computers are gener-
ally cheaper than a few powerful systems, a CEP application should be dis-
tributable down to almost atomic EPAs (event processing agents, see [12]).

• Not only because of the previous item, a CEP solution should be scaleable while
continuously integration data with minimal latency [26].

• Following the SARI paradigm, it should be extensible without affecting already
existing parts of the system.

• On the fly configuration should be possible, as the specification of the events
of interest, how they should be viewed and acted upon, can be changed while the
system is running [12].

For the part of rule processing in a SARI environment (called Sense and Respond
Rules) additional requirements have been identified and theoretically also met in [27]:

Event-triggered Rule Evaluation To support near real-time decisions, rules shall be
evaluated (and triggered) as soon as a new event relevant to them comes in.

User-friendly Rule Modeling and Adaptability Same as for the general requirements,
even technically less experienced personnel should be able to create and modify
rules. Sense and Respond Rules suggest a tree like structure (see section 2.4)
that very much promotes the use of graphical editors.

Building Complex Rules with Divide and Conquer The aforementioned tree like str-
ucture supports the breakdown of rules to individually quite simple rules that
can then be combined to reflect more complex business situations.

Event Pattern Recognition The core part of a rules left-hand-side in most cases is
comprised of the recognition of certain patterns within a cloud of events.

Service-oriented Rule Processing has already been discussed in this section.

23

1 Introduction

1.4.3 Anticipated Benefits

Using a conventional, out of the box, third-party rule engine obviously comes at the
cost of decreased overall performance and less freedom when designing a CEP system.
The big advantage, which this work tries to depict, is, that this approach implies
a much shorter development time than any solution that is build from the scratch.
This still is easily comprehensible, as all the pattern matching does not need to be
programmed and only interfaces for event input and output have to be developed
and “plugged into” the rule engine. It is not quite as easy as that (as we will see in
section 4.2), but the general idea holds true.

Now what is harder to believe is, that using an out of the box product still leaves the
freedom to implement at least the most common patterns of complex event processing.
These are filters, constraints and maps [12]. In chapter 5 it will be shown that this is
possible in most if not any desired situations, and in addition present approaches for
more advanced patterns like EPNs [12], Cut and Join or Distributed Event Detection
[16].

Though most papers that provided the background for this work only handled one
single or very few domains (Business Processes [26] [12], computer networks [19], ...),
the presented approach will be flexible enough to be applicable to any system that
satisfies the requirements defined in section 1.1.2.

1.4.4 Delimitations

The primary goal is not to show how Business Rules can be implemented and carried
out in a CEP environment. Though this would be totally possible with the presented
approach, it is merely a convenient side product of the work and hand. The way rules
are used here goes beyond plain decision making: they are used to implement the very
patterns of CEP themselves.

Again it should be mentioned, that the rule engine will not be used to find corre-
lations between incoming events, though this of course would be possible. Following
the separation of correlation and further processing and thus promoting a separation
of concerns, as it was suggested by Schiefer and McGregor in [26], our rule engine
will only operate on pre-correlated sessions of events. Benefits of this approach are
discussed in section 2.3.

1.5 SAW: Simulation of Assembly Workshops

The SAW project of the Vienna TU’s IFS institute studies agent-based solutions in
an assembly workshop’s environment. “Agent-based” means that there is no central
control element, but all parts of the system, like working cells (machines), conveyor
belts and others, communicate with each other and try to implement an optimal
strategy in terms of total efficiency. This, of course, is a quite interpretable notion,
hence the notion of an optimal strategy is very wide. Evaluating different strategies
is just one of many subtopics of the SAW project. Failure detection and handling

24

1.5 SAW: Simulation of Assembly Workshops

is another one. An advantage of agent-based systems over centralized approaches is
the ability to react dynamically and appropriately to any structural/functional changes
within the agent-based system [37].

Heart of the project is a Java based simulator of such assembly workshops. It
originated from the MAST (Manufacturing Agent Simulation Tool) simulator, which
was presented in [36]. Further improvements have been made to the Tool, resulting in
a system of four parts as described in [37]:

Agent Control Part This part represents the agents which make up the whole system.
The JADE Agent Platform2 is used for that.

Emulation Part In the end, the software agents are supposed to control real-world
machinery. For development and testing purposes, sensor-signals from those
machines have to be emulated, which is this part’s task.

Runtime Interface Ideally no programming should be necessary when switching from
an emulated to a real assembly workshop. This unified interface provides the ba-
sis for that. It even facilitates a stepwise “going-live”, with parts of the machines
emulated, parts being the real deal.

Graphical User Interface A GUI where layouts of workshops can be created and mod-
ified per drag-and-drop interaction. While a simulation is running, its progress
can be observed on those layouts.

The SAW team at the IFS contributed some more improvements. Figure 1.7 shows
the current state of the simulator’s GUI with a sample workshop loaded.

The relevance of the SAW project for CEP and its adequacy as a showcase domain
for Naiad is obvious: any piece of communication between any agents or machines can
be seen as an event. Some examples of such events have already been given in the
introduction, many more will follow.

2http://jade.tilab.com

25

http://jade.tilab.com

1 Introduction

Figure 1.7: Screenshot of the SAW Simulator

26

2 Related Work

2.1 A short History of Naiad

The application now known as Naiad is the newest product in a line of event handling
systems developed at the Vienna UT’s IFS [35].

The Project started out by the name of EventCloud and was introduced by Szabolcs
Rozsnyai in [22]. It fetched events from Senactive’s InTime [29] for further process-
ing. Its core feature was not a real-time analysis of events, but a web based search
interface, where events that have already been correlated and stored in a database
could be queried with a “Google-like” search experience. The three main functions of
EventCloud were [22]:

• Extracting and transforming event data from the source system and integrate
them into EventCloud’s own data structure.

• Full text index over simple and correlated events.

• Search functionality including a sophisticated query syntax and various filter
functions.

Technologies that were utilized included Java [31], Lucene [2], PostgreSQL [20] and
Spring [30].

EventCloud supported two kinds of searching. “Rank 1” searches was just a simple
full text search over all indexed events (and their attributes). “Rank 2”, the core
feature of EventCloud, was a search over correlations of events. So, if any event within
a correlation matched the query, the correlation was added to the list of results, like
shown in figure 2.1.

Rozsnyai discussed an unimplemented “Rank 3” as well. This would search not
only between events in the same correlation, but even take relationships between
correlations into account, and thus linking and finding indirectly related events.

The ETL (Extract Transform Load) approach of EventCloud unfortunately was
exceedingly static, which made it a good proof-of-concept starting point and lesson
for further research, but a dead end for developing a real-time CEP application.

EventCloud then got renamed to EventServer when Roland Vecera presented a
couple of important changes in [34]:

27

2 Related Work

Figure 2.1: “Rank 2” search results in EventCloud [22]

• Correlation, was discovered as a core feature, and was implemented as a reusable
service.

• Rank 3 indexing, as proposed in [22], was implemented.

• Understanding that plain searching for events did not satisfy given needs, a
pattern for the calculation of metrics was devised.

• The whole architecture of the application was changed into a very flexible service
based one.

The new service based architecture was still built upon the Spring framework. Ser-
vices that have been implemented at that time were a correlation service (as the core
feature), a service for persisting events to a database, services for creating rank 1 to
3 indexes, a service providing simple timing metrics and a service for performance
logging. Besides, Event Server was prepared to fetch events from other sources than
Senactive’s InTime by implementing an EventAdapter Interface (see figure 2.2).

Due to its service oriented infrastructure, the EventServer was much more reusable
and applicable in a wider variety of situations than EventCloud. However, the services
it included still promoted a quite static use of the whole application (indexing and
searching at a later point in time).

Event Core later got the Name IFS:CEP, under which, still focusing on the use
of open source products, it was ported from Spring to Mule [17] as the underlying
framework. Mule provides a huge amount of connectors to existing ESB (Enterprise
Service Bus) solutions and other common protocols out of the box. Further does
it support the easy (re)distribution of service agents (Mule UMOs), that can form
queue- and tree-like routes for incoming events. Thus Mule enables scalable solutions
in heterogeneous software environments.

28

2.1 A short History of Naiad

Figure 2.2: EventServer architecture overview [34]

Figure 2.3: Naiad’s function seen as a blackbox

The main idea in IFS:CEP remained the same as presented in [26] and followed
by [34]: incoming events are first correlated into correlation sessions which then can
be accessed by other downstream services. This provides a maximum amount of
modularity and extensibility.

A correlation session is a container with a set of data items that exist
for each relationship between events [26].

While [26] was mainly thinking of metric calculating services, this of course can be
any components that benefit from correlation-enriched events in sessions. This feature,
consisting of a CorrelationManager and a SessionManager working closely with each
other, as the basic enabler for any other features became part of IFS:CEP’s core.

Marian Schedenig [25] created appropriate interfaces for these core functions and
implemented a CorrelationManager supporting Rank 2 and 3 correlations as well as a
first memory based SessionManager. With his work completed IFS:CEP was renamed

29

2 Related Work

Figure 2.4: A SEDA stage [38]

to Naiad1.

2.2 The SEDA Model

As an application to be deployed within the Mule framework, Naiad follows the prin-
ciples of a Staged Event-Driven Architecture (SEDA).

SEDA decomposes an application into a network of stages separated by
event queues and introduces the notion of dynamic resource controllers to
allow applications to adjust dynamically to changing load [38].

This approach satisfied the four primary goals for SEDA identified by Welsh, Culler
and Brewer:

• Support massive concurrency

• Simplify the construction of well-conditioned services

• Enable introspection

• Support self-tuning resource management

In detail, each stage consists not only of its event handler, that is the code doing all
the work, but also of a queue for incoming events, a thread pool and a controller as
shown in figure 2.4.

The last thee components are superimposed onto the event handler, without it even
knowing it. This helps to keep the actual working code simple. The controller is
in charge of monitoring the size of the queue and the mean time events take to be
processed. Based on those values i can then in- or decrease the number of threads its

1In Greek mythology Naiads were nymphs living near sources of fresh water.

30

2.3 Separation of Correlation and Rule Processing

event handler is replicated in. These numbers can also be logged and used for debug-
ging and performance analysis of services, which has traditionally been a challenge for
complex multithreaded servers [38].

Originally SEDA was designed to be used in internet applications, where huge
amounts of requests have to be processed in relatively short time windows and with
a minimum latency. Therefore, the first presented application was Haboob, a high-
performance HTTP Server. However, seen from a software developers point of view,
huge amounts of incoming events are not too different from HTTP requests. This
made SEDA a very good architecture to choose for Naiad as well.

Mule [17] supports SEDA like, self-tuning resource management out of the box. The
event handlers of each stage are called Universal Message Objects (UMO), are almost
nothing more than plain old java objects (POJO), and therefore very easy to create,
understand and maintain. Just like suggested in SEDA, Mule takes care of all queue
handling and thread replication. In Naiad, each service is implemented with its own
UMO.

There is of course a downside to automatic resource management, that should be
mentioned here as well: Because UMOs don’t know anything about the count or state
of their twins and processing time of one event per UMO is virtually random, events
running through the network of stages might possibly overtake each other. Therefore
extra care must be taken, to avoid race-conditions and related situations. More about
that subject is discussed by Schedenig [25].

2.3 Separation of Correlation and Rule Processing

The basic idea how the correlation and rule service work together in Naiad was de-
scribed in [26] and later [34]. The core concept there is, that the correlation of related
events takes place in a central correlation service which assigns incoming events to ses-
sions prior to any further processing (like rule based processing). Figure 3.1 illustrates
that concept.

This approach of separation of concerns [21] leads to a much clearer arrangement of
services and thus to shorter and less error-prone development cycles. Another benefit
is the higher level of flexibility to distribute an application or even to redistribute it
on the fly. Distributability is closely linked to scalability and thus overall speed of an
application.

Resulting from that concept of separation is, that any set of rules is only operating
on the events of one single correlation session - the session becomes the scope for a
ruleset. A rule can never be evaluated for two or more events that do not share the
same correlation session. If a situation arises where this would be a desired behavior,
the reason for that lies within the configuration of the correlation service, as it does
not reflect the needed views on the domain of events. In that case other criteria for
correlating the events have to be found, that make sure that related events really end
up in the same sessions.

31

2 Related Work

Figure 2.5: Overlapping Sessions in an event cloud

Sessions overlapping for certain events are no problem, because every event can be a
member of multiple sessions at the same time. If it makes no sense to extend a session’s
correlation criteria to include some new aspect of the domain, the best thing to do is to
just create a completely new correlation session for that aspect. A correlation session
should always reflect one area of interest, or view, inside a target domain. This helps
to keep rules (or any other extending service) simple and maintains the scalability of
the application.

Figure 2.5 shows different views within the domain of the SAW.

2.4 SARI Rules

SARI Rules, as they were suggested in [27] and adapted in [23] form the basis of
how the rule service for Naiad should work and how it should be configured by a
domain engineer. In the original paper SARI Rules tried to address six key require-
ments: Event-triggered Rule Evaluation, User-friendly Rule Modeling, Building Com-
plex Rules with Divide and Conquer, Event Pattern Recognition, Adaptability and
Service-oriented rule processing. They have already been discussed in section 1.4.2.

Sense and respond rules are organized in rule sets and allow to con-
struct decision scenarios, which use event conditions and event patterns

32

2.4 SARI Rules

Figure 2.6: Event Condition in SARI Rules [27]

for triggering response events. Event conditions and event patterns can be
arbitrarily combined with logical operators [27]...

Event conditions (figure 2.6) are triggered, when an incoming event matches the
event type defined for that condition and satisfies a list of boolean expressions con-
tained in it. Every event condition possesses a true port and a false port, either of
which may be connected to another element of the rule set. This might be another
event condition, an event pattern or a response event. The true port is activated, when
the event condition evaluates to true, the false port in the opposite case. Optionally
every event condition may posses a precondition port, where conditions or patterns can
be connected, which should be used as a precondition for the current event condition.
Precondition ports can be of type AND or OR.

Event patterns (figure 2.7) can detect series of events. Opposed to event conditions
they require some kind of state information maintained within a session. Besides a
definition of the event types that can trigger the pattern it contains a pattern definition
that defines some boolean matching criteria for those events and how they should be
causally related. Same as event conditions, event patterns may posses a precondition
port. However, instead of a true and a false port they only feature a matched port,
which is activated when incoming events have satisfied the pattern definition.

Response Events (figure 2.8) respresent events that should be created once their
precondition port is activated. The attribute of such events can either be constants,
bindings to attributes of triggering events or calculation expressions containing any of
the previous.

An example of a couple of these elements being connected together to form a rule
set can be found in figure 2.9.

In [23] Rozsnyai identifies the key benefits of SARI Rules:

33

2 Related Work

Figure 2.7: Event Pattern in SARI Rules [27]

Figure 2.8: Response Event in SARI Rules [27]

34

2.4 SARI Rules

Figure 2.9: An example of interconnected elements of SARI Rules [27]

• The graphical model promotes the use of a graphical editor and thus dramatically
increases the range of potential users.

• Preconditions can extend the scope of event conditions and help to keep them
simple at the same time.

• False ports facilitate the implementation of “otherwise” situations. Event condi-
tions can be reused instead of creating almost identical ones. This further helps
to keep rule sets simple.

• Even more simplicity derives from the separation from the correlation process.

• The service orientation of SARI Rules helps to maintain flexibility for the rule
processing itself as well as for any relying services.

The big steps taken towards the upkeep of simplicity and performance naturally
don’t come without a downside. SARI Rules certainly do not provide all the possi-
bilities a full featured language like RAPIDE [11] would feature. However, one aim
of this work is to show, that the concept of SARI Rules is still powerful enough to
accommodate the biggest part of all common business situations and even situations
beyond that.

35

2 Related Work

2.5 Similar Concepts and Projects

Many concepts that are applied in Naiad and Naiad Rules are not totally new - not
even their application in the field of Complex Event Processing.

Schiefer and McGregor [26] were not the first to value the power of correlated events.
As early as in [19] the Alarm Correlation Engine (ACE) was presented. It features the
correlation of causally related alarms and the triggering of rules upon these alarms.
In this respect it followed the same principle as the SARI architecture. The ACE
however was designed exclusively for telephone networks.

Senactive InTime [29] is another, commercial, product following the SARI paradigm.
Like Naiad, it too correlates events into sessions before further processing them. Naiad
shares some history with InTime, because in prior lifecycles, before aiming to be a
standalone CEP product, Naiad was designed to analyze events that originated from
InTime.

The Simple Event Correlator (SEC) by [33] is another tool that utilizes the corre-
lation of events. It aims to be lightweight, open-source and platform independent, as
it is written in PERL [32]. Its primary focus lies on network management. SEC is
configured with regular expressions, which are then applied to incoming events. Those
expressions form rule-like entities, making Vaarandi one of the first to introduce rules
to Complex Event Processing. However, those rules where not enforced by a rule
engine in our sense.

RuleCore [15] is a commercial real-time CEP server that features dynamic (runtime)
management of event condition action (ECA) rules, causality tracking, semantic event
correlation and a convenient user interface. In its concepts, Naiad is very similar to
RuleCore, as it uses an ECA based rule engine, JBoss Drools [9], too.

Drools CEP [9] is the relatively new approach to extend the Drools Rule Engine with
features of complex event processing, and thus trying to implement things “from the
other side”. Though very interesting and promising, Drools CEP was not in a usable
state at the time this work was done and therefore has not been reviewed further.

Internally Naiad uses XML-based events. One problem when trying to bring this
approach and a conventional rule engine together is, that the latter was never meant
to work with entities of variable and extendable nature. Chen discusses ways to use
legacy CEP applications, that can only handle name-value pairs as attributes to the
events processed, with structural event data, such as XML [4]. A similar approach is
taken for Naiad Rules too.

Although pursuing virtually the same goals, event stream processing (ESP) is a
slightly different approach to the topic then complex event processing. Esper [6], an
open-source Java [31] based product, is a quite prevalent tool from that sector. It
supports event pattern matching, event correlation based on these patterns and a

36

2.5 Similar Concepts and Projects

SQL-like query language. Esper has been ported to .NET [14] as NEsper. ESP is
explained in section 1.2.3 in a little more detail.

Finally, works by Luckham [12] and Mühl, Fiege and Pietzuch [16] should be men-
tioned, where Patterns of CEP that this work tries to implement (see chapter 5) have
been presented.

37

2 Related Work

38

3 Naiad - an Event Correlation Server

The previous chapter has given an overview about the history and the becoming of
Naiad. This chapter will illustrate the current state of Naiad and the features it
provides.

3.1 XML based Events

To extract values out of an event’s data container Naiad uses XPath [5] Expressions,
which have already proved themselves very suitable in [26]. They are powerful enough
to be applicable to almost all imaginable real-life data structures for events. Of course,
this strongly suggests the use of XML as underlying data structure, because XPath
libraries for XML are available as third-party products and appropriate adapters have
already been included in Naiad’s core. To hook up Naiad to any system that is already
providing events in the XML format, one is only left with some configuration tasks
and no programming whatsoever. Further, the extensible nature of XML perfectly
complements the service oriented architecture of Naiad.

There are of course disadvantages about XML based events. They can be roughly
summarized as XML events being very “clumsy” to handle. More on this can be
found in [4]. On the other hand Naiad supports the processing of events in any other
data structure than XML as well, just as long as data can be extracted using XPath
expressions. The only thing that must be done to accomplish this, is to write an
adequate implementation of the IEvent interface provided in Naiad’s core, which is
not too much of an effort.

XPath is not only used for the plain extraction of data from events, but also for
defining the attributes after which events should be correlated. Optionally it can be
used to define an event’s type, if that information is available in the underlying XML
structure. In the example of listing 3.1 the type’s XPath would be //@type.

1 <event id="68" timestamp="35100" type="evtWorkpieceOut">
2 <payload key="WorkpieceId">medium_part1 </payload >
3 <payload key="ComponentName">DS7 </payload >
4 </event >

Listing 3.1: An event from the SAW domain

Events in Naiad, besides all the attributes they carry within themselves, are tagged
with a special attribute, its type. When scanning for fitting correlation sessions for an

39

3 Naiad - an Event Correlation Server

Figure 3.1: An overview of Naiad’s architecture

incoming event, the type of an event is used to make a first distinction whether the
event is a candidate member for that session or not. Except for that the type of an
event has no inherent special meaning in Naiad and doesn’t have to be used at all.
However, in most occasion it is very convenient to have a mean of rough distinction,
before any attributes of an event need to be examined.

3.2 Correlation and Sessionhandling as Core Features

Figure 3.1 shows a basic layout of Naiad’s core. First, Naiad taps into any system via
one of Mule’s various out-of-the-box connectors. Ideally this is done via subscribing
to any external service’s notifications, implementing an event-based interaction model
[16], and thus leaving the monitored system completely untouched. Alternatively a
custom connector implementing Mules interface for connectors can be written.

Incoming events are then processed by a transformer, that puts their data into Java
classes implementing the IEvent interface, which knows an events type and can query
its data with XPath expressions.

It is possible to use multiple connectors and adapters at the same time, just as long
as valid IEvents are the output.

The IEvents then go into a UuidUMO that equips them with a unique identifier in
the UUID format1. The identifier is later used for (de)serialization, but is a convenient

1http://tools.ietf.org/html/rfc4122

40

http://tools.ietf.org/html/rfc4122

3.3 Configuring Naiad: Correlations and Bridges

help in bugtracking as well.

Uniquely identified events then go into the CorrelationUMO, where all the magic
happens. Though, following the principles of SEDA, many instances of the Correla-
tionUMO may exist at the same time, they share the same, injected2 references to
a global Correlation Manager and Session Manager. To be precise, they only share
a reference to a global Naiad Manager, from which they can request references to a
Correlation Manager or Session Manager via injected identifiers of those. The Corre-
lation Manager and Session Manager are instantiated by the Naiad Manager from its
configuration.

The Correlation Manager first returns all Correlation Matches fitting an incoming
event (see section 3.3 for more on CorrelationMatches). The list of Correlation Matches
is then sent to the Session Manager, which returns a list of (identifiers of) Sessions
with which the event is enriched.

If needed (which might be the case when using so called bridged correlations, see
section 3.3) sessions get merged prior to that. Because sessions serve as data containers
for the correlations an event belongs to [26], they might contain data that needs
special attention on merging. For this reason multiple Session Merge Managers may
be injected into the Session Manager. Normally a Session Merge Manager would
handle the merging of one special date in the session.

Except for correlating and merging sessions another task of the Session Manager
is the isolation of session access. Due to the SEDA model events might be pro-
cessed concurrently and side effects of this approach need to be prevented [26]. The
MemorySessionManager implemented by Marian Schedenig solves that problem by
locking sessions for write-access and sending threads to sleep that are waiting for
write-access.

In any case, a session is cloned before it is handed out by the MemorySession-
Manager. Per default this is done via (de)serialization. But same as for the merging
of sessions, some contained data might again need special attention for cloning. Hence
multiple Session Clone Managers may be injected into the Session Manager.

It should be mentioned, that it is possible to have multiple different Correlation-
UMOs, Correlation Managers and/or Session Managers per runtime environment.
Wiring them together, which is freely possible in either a serial and/or parallel fashion,
opens up the doors for a number of scaling and performance boosting strategies. The
precise structure and useability of such strategies depends strongly on the domain at
hand and lies out of the scope of this introduction.

3.3 Configuring Naiad: Correlations and Bridges

How correlations and sessions are handled in Naiad is configured in a single XML
document. On the one hand Session Managers can be defined and Session Merge

2dependency injection aka inversion of control (IoC)

41

3 Naiad - an Event Correlation Server

Figure 3.2: Two sample event types with the attributes they contain

Managers and Session Clone Managers can be injected into them. On the other hand
Correlation Managers can be defined, each with the following elements:

• An identifier for the Correlation Manager.

• Correlation Items are defined for certain event types. Each Correlation Item
holds one or more xPathSelectors, that point to certain values in the events
data. If an incoming event’s type matches the type defined for the Correlation
Item, a Correlation Match is created, which holds information about the Cor-
relation Item it belongs to and about the values behind the Correlation Item’s
xPathSelector for that event.

• Multiple Correlation Items are grouped into Correlation Sets. If two ore more
events have equal Correlation Matches, that is if they have equal values behind
the xPathSelectors of their matching Correlation Item, and their Correlation
Items are grouped into the same Correlation Set, they end up in the same session
and thus are correlated.

• Multiple Correlation Sets can be grouped into Correlation Bridges. If an
event belongs to two ore more different Correlation Sets, for which two different
sessions existed so far, and those Correlation Sets belong to the same Correlation
Bridge, this event becomes the bridging event for those sessions, and they are
merged into one. With this technique events can be correlated, that do not share
any values according to which they could be correlated directly.

There are a couple of less important additional features and configuration options,
which are described in [25].

Like always, an example helps to demonstrate things. Let’s assume that machines in
our assembly line generate (among others) events with attributes as shown in figure 3.2.

The evtWorkpieceIn event signals that a certain pallet has entered a certain ma-
chine at a certain point in time. The evtWorkpieceOut event signals that the ma-
chine has finished on the workpiece and the pallet has been released from the machine.
Those events are obviously related to each other in some way as they share the same
machineId as well as the same palletId. If we correlated them via the machineId,

42

3.3 Configuring Naiad: Correlations and Bridges

Figure 3.3: Events of the same workpiece correlated into one session

Figure 3.4: The event created when Alice placed an order

all such events from the same machine (but caused by different pallets!) would end
up in the same session. This could be something really useful, if somebody wanted to
find out things about the machine.

For our example we go the other way and correlate those two events by the palletId.
Needless to say, all evtWorkpieceIn and evtWorkpieceOut events caused by the same
pallet will now end up in the same session (figure 3.3), regardless of the machine where
they were caused.

This is what a single Correlation Set would do in Naiad. Now let’s assume that the
product that is assembled on this pallet was ordered by Alice. When Alice placed her
order the following event shown in figure 3.4 was generated.

The manager of the company does not yet now how much to charge Alice for the
order, but It would be a good hint for him, if he knew how long each machine was
occupied for it. Unfortunately, we cannot correlated the evtOrderPlaced event directly
to the evtWorkpieceIn and evtWorkpieceOut events, because they share no attributes
for which we could create Correlation Items. Luckily, when the order was sent to the
factory, a pallet was assigned to Alice’s order and a corresponding evtPalletAssigned
event was created. Enter: Correlation Bridges!

We can now add a Correlation Item for the evtPalletAssigned event to the Cor-
relation Set we already had. This way the evtPalletAssigned event ends up in the
same session as all other evtWorkpieceIn and evtWorkpieceOut events for that pal-

43

3 Naiad - an Event Correlation Server

Figure 3.5: A session containing all events relevant to Alice’s order

let. Then we create a second Correlation Set with two Correlation Items: One for
the evtPalletAssigned event, but this time with the xPathSelector pointing to the
orderId. The other one for the evtOrderPlaced event. The only thing left to do
now, is to enclose both Correlation Sets in a Correlation Bridge.

Now, though at first two different sessions will be created, they are going to be
merged when the palletAssigned event is processed, because it belongs to two dif-
ferent session of the same Correlation Bridge. Now the evtOrderPlaced event is
correlated into the same session as all evtWorkpieceIn and evtWorkpieceOut events
for Alice’s order are, and any downstream metric UMO will have a walk-over in cal-
culating the total machine usage for Alice’s order. Figure 3.5 depicts that case.

The XML document configuring Naiad for this simple example, could look like
listing 3.2.

44

3.3 Configuring Naiad: Correlations and Bridges

1 <?xml version="1.0" encoding="UTF -8"?>
2 <eventServer statusEndpointAddress="vm:// stateChange">
3 <correlationManager name="correlationManager">
4 <correlationBridge identifier="allEvents">
5 <correlationSet identifier="palletEvents">
6 <correlationItem identifier="workpieceIn" eventType="

evtWorkpieceIn">
7 <xPathSelector >//palletId </ xPathSelector >
8 </correlationItem >
9 <correlationItem identifier="workpieceOut" eventType="

evtWorkpieceOut">
10 <xPathSelector >//palletId </ xPathSelector >
11 </correlationItem >
12 <correlationItem identifier="palletAssigned" eventType="

evtPalletAssigned">
13 <xPathSelector >//palletId </ xPathSelector >
14 </correlationItem >
15 </correlationSet >
16 <correlationSet identifier="orderEvents">
17 <correlationItem identifier="orderPlaced" eventType="

evtOrderPlaced">
18 <xPathSelector >//orderId </ xPathSelector >
19 </correlationItem >
20 <correlationItem identifier="palletAssigned" eventType="

evtPalletAssigned">
21 <xPathSelector >//orderId </ xPathSelector >
22 </correlationItem >
23 </correlationSet >
24 </correlationBridge >
25 </correlationManager >
26 <sessionManager name="sessionManager" class="at.ac.tuwien.ifs.

naiad.core.session.memory.MemorySessionManager"
correlationManager="correlationManager">

27 </eventServer >

Listing 3.2: Configuration of a bridged correlation in Naiad

45

3 Naiad - an Event Correlation Server

46

4 Applying a Conventional Rule Engine to
Complex Event Processing

Naiad Rules try to follow the principles of SARI (see section 2.4) very closely. However,
for their current implementation a couple of simplifications and modifications have
been made to them.

4.1 Types of Rules

Opposed to SARI, there are only two kinds of Elements within a set of rules: Rules
and ResponseEvents.

A rule in Naiad Rules consists of the following parts:

• A unique name called identifier.

• One or more patterns.

• An optional precondition.

A pattern consists of

• an identifier,

• an event type,

• an optional ancestorIdentifier (see section 4.3),

• a optional list of constraints that together form a boolean expression.

A precondition consists of

• a type (AND or OR),

• an identifier for OR-preconditions only,

• one or more preconditionItems.

A preconditionItem consists of

• a causingRule’s identifier,

• an identifier for preconditionItems that belong to AND-preconditions only.

47

4 Applying a Conventional Rule Engine to Complex Event Processing

Figure 4.1: A simple example of a rule in Naiad

A rule triggers when there is any combination of events within a correlation session
that matches the patterns it contains. Because a rule can contain just one pattern as
well, this makes it a mix between event conditions and event patterns in SARI Rules.

A pattern is satisfied in Naiad Rules by any incoming event of the same type,
whose attributes satisfy the pattern’s list of constraints. Constraints may be liter-
alFieldConstraints, which compare an event’s attribute to a fixed value, or variable-
FieldConstraints, which compare attributes to other attributes of the same event or
other event’s that have matched other patterns of the same rule. Constraints may
be connected by AND and OR constraintConnectives which may contain constraints
and constraintConnectives themselves. This way very powerful boolean expressions
can be built. In any graphical representation of course, constraintConnectives should
be depicted with the help of parentheses and boolean operators. Big parts of the
nomenclature for patterns and their subelements have been taken from Drools [9].

A rule that is equipped with a precondition can only be triggered once that pre-
condition is satisfied. PreconditionItems are references to other rules, that must have
been triggered for the precondition to be satisfied. Those rules are called a rule’s an-
cestors. The difference between AND and OR preconditions is pretty self-explanatory
and identical to SARI Rule’s precondition ports. Though they are mentioned here
for the sake of completeness, preconditionItems are only a technical requirement to
implement links between rules and preconditions and should be hidden from the user
in any graphical editor.

A rule can only be triggered once per correlation session, even if a later incoming
event or alternate combinations of such would satisfy its patterns again. This restric-
tions not welcome in all situations, but it had to be made to solve the retriggering
problem (see section 4.2).

48

4.2 Transforming Naiad Rules to Conventional Rules

The implementation of something like SARI Rule’s false-port has been omitted for
Naiad Rules. Though this would help to keep rule sets more simple, there is is nothing
that could not be implemented without it. Therefore the decision was made to drop
that feature for the first proof-of-concept version of Naiad Rules.

Examples of how to configure rules in Naiad can be found in appendix A.

Response events are discussed later in section 4.4.

4.2 Transforming Naiad Rules to Conventional Rules

Conventional rule engines, which work after the ECA (event condition action) princi-
ple, already do a lot of what we need in Naiad Rules. They “wait” for incoming events
(sometimes called facts) and try to match them on the left-hand side of any rules in
a rule set. If a match could be found, the right-hand side of that rule is executed.
“Executed” in that respect varies a lot from one product to another. However, there
are a couple of things about Naiad Rules that conventional rule engines do not support
out of the box.

In this section it will be shown, how those things can be rewritten to fit into the
left-hand side of a conventional ECA rule. Because for Naiad Drools [9] was chosen
as rule engine, Drools’ self-explanatory DRL (Drools Rule Language) syntax will be
used to illustrate things. As an example listing 4.1 in a rule’s left-hand side would
match any Event with the value of the attribute machineId being 1 and the value of
the attribute palletId being 7. Additionally this would bind the matching event to
the variable myEvent for referencing it in other constraints of the same rule or its
right-hand side.

1 $myEvent : Event(machineId == 1 && palletId == 7)

Listing 4.1: A basic example of Drools’ pattern syntax

Constraints of patterns in Naiad Rules do function just like constraints in a conven-
tional rule’s left-hand side. So converting them to something a conventional rule engine
understands is trivial. The binding variable is named after the patterns identifier.

To keep the concept of Naiad Rules compatible with a spectrum of rule engines as big
as possbile, it could not be assumed that the rule engine of choice recognizes different
types of incoming events (like Drools would). Therefore the event type defined in a
pattern is transformed to be a part of the pattern’s constraint. As an example, the
only pattern of the rule in figure 4.2 would be rewritten as shown in listing 4.2.

Preconditions were another feature that needed special attention when transforming
Naiad Rules. The solution to this were InternalEvents. Whenever a rule is triggered,

49

4 Applying a Conventional Rule Engine to Complex Event Processing

Figure 4.2: A simple rule with one pattern definition

1 $myPattern : Event(type == "evtWorkpieceIn" && (machineId == 15
|| machineId == 16))

Listing 4.2: An example of the transformation of a pattern’s event type

a new InternalEvent, which is not visible from the outside, is created (see listing 4.6).
InternalEvents contain the following pieces of information:

• The identifier of the rule that caused them.

• References to its ancestors (see section 4.3).

So if a rule needs to ”wait“ for one or more other rules before itself is allowed to trigger,
this can be achieved by adding a pattern for each of these rules to the waiting rule’s
left-hand side. Following this suggestion the left-hand side of the rule dependingRule
in figure 4.3 would be transformed to the code in listing 4.3.

1 $anotherPattern : Event(type == "evtWorkpieceIn")
2 $someInternalIdentifier1 : InternalEvent(causingRule == "myRule1

")
3 $someInternalIdentifier2 : InternalEvent(causingRule == "myRule2

")

Listing 4.3: An example of the transformation of a rule’s AND precondition

If the precondition in figure 4.3 was an OR condition, the transformation would look
like shown in listing 4.4.

Another problem was caused by the possibility that two already existing sessions
got merged because of a bridged correlation. Again, because it was necessary to
stay compatible with a spectrum of rule engines as big as possbile, it could not be
assumed that a rule engine could handle the merging of two sessions in any predictable
way. Therefore merging two sessions is done by adding all events and InternalEvents

50

4.2 Transforming Naiad Rules to Conventional Rules

Figure 4.3: A rule’s precondition port being connected to two other rules

1 $anotherPattern : Event(type == "workpieceIn")
2 $someInternalIdentifier : InternalEvent(causingRule == "myRule1"

|| causingRule =="myRule2")

Listing 4.4: An example of the transformation of a rule’s OR precondition

contained in either one into a freshly created session. As different rules might or
might not have been triggered in either session, they might or might not have been
retriggered in the new session.

Hence, to keep predictability, it was decided to prevent the retriggering of a rule
entirely by adding the non-existence of its own InternalEvent as a constraint to each
rule.

The rule dependingRule from figure 4.3 would therefore be amended with the code
from listing 4.5.

1 not InternalEvent(causingRule == "dependingRule")

Listing 4.5: Code snippet of a rule that prevents retriggering

At first glance one problem still remains: if the same rule has been triggered in two
different sessions that later get merged, the new session would contain two different

51

4 Applying a Conventional Rule Engine to Complex Event Processing

Figure 4.4: Two different events of type orderPayment

internalEvents for the same causingRule. If you took a peek into section 4.3 you would
see, that it is not equal which of these would trigger any other rule ”waiting“ for an
InternalEvent of that twice triggered rule.

On a second though this is no problem at all: if there are different sets of events
triggering the same rule in different sessions that got merged later, those events could
just as well have been inserted after the sessions have already been merged. In that
case, the (unpredictable) order of the events incoming would decide, which set of events
is then used by any depending rule. So, the possible unpredictability after a merge
is just a transformation of an unpredictability that has always been there. If that
is a problem, then there is probably a problem with the correlation criteria or rules
themselves.

4.3 Ancestor Identifiers

You might have noticed, that not all parts of Naiad Rule’s configuration have been
discussed yet. The missing parts are about so called Ancestor Identifiers. To see what
they are good for, let’s take a look at the example of SARI Rules from [27], shown in
figure 2.9 again.

Suppose that there were two OrderPayment Events in a correlation session, each
with attributes as shown in figure 4.4.

Maybe having two different OrderPayment events in one correlation session would
not make too much sense in that example, but let’s just accept that fact and take a
look at the Platinum or gold customer rule. Obviously the event with id of 5 would
trigger that rule, while the event with id of 3 would not. However, Platinum or gold
customer has the Payment of large order rule connected to its precondition port.
Payment of large order on the other hand would only be triggered by the event
with the id of 3, not the event with the id of 5. Let’s suppose further, that Order not
shipped on time has been triggered.

Price question: Does Platinum or gold customer trigger and thus activate the
Give order discount or goody response event, or does it not? The answer: This

52

4.3 Ancestor Identifiers

depends whether the OrderPayment event defined in the Platinum or gold customer
rule refers to the OrderPayment event from the Payment of large order rule to
which it is connected via its precondition port, or to any other OrderPayment event
contained in the event cloud of that correlation session.

Now SARI Rules could include some extra definition about how to handle that
case, but to my knowledge they don’t. Further, any fixed definition about those kind
of situations should be handled would reduce flexibility as business situations are
imaginable where either interpretation could be the desired one.

In Naiad Rules Ancestor Identifiers aim to eliminate that shortcoming. They pro-
vide a way for rules to say ”I explicitly want to refer to a event, that triggered the
rule I have in my preconditions“. But there is more to think about.

Take a look at the example in figure 4.5, which shows a rule set working on a
correlation session containing all events from the same workpiece. The rule Too much
delay tries to trigger when a workpiece has passed1 machine 4 and machine 6 - let’s
assume 6 always comes after 4 in the assembly line - and the time between those events
is bigger than a certain threshold. Obviously we need to subtract the timestamp of the
event of machine 4 from the timestamp of the machine 6 event and compare the result
to our threshold. But in Too much delay, how shall we know which of the ancestor’s
events is from 6 and which from 4?

To solve this question, Ancestor Identifiers in Naiad Rules are a way to even say ”I
explicitly want to refer to this event, that triggered that rule I have in my precondi-
tions“. The first thing needed is the already mentioned identifier for preconditionItems.
With this a rule has a reference to any rule it depends upon. And because patterns
already have identifiers in all rules, a rule has a reference to any pattern of any rule it
depends upon as well.

An Ancestor Identifier can now be added to any pattern of our rule. It consists
of two parts and looks like this: preconditionItemIdentifier.patternIdentifier.
Figure 4.6 shows how the example from figure 4.5 can be completed using Ancestor
Identifiers. The colored bars are just helpful to understand which elements refer to
each other, they are not part of Naiad rules.

When defining an Ancestor Identifier for a pattern, no event type must be defined
for that pattern. This would not add any informational value anyways.

As utilized in the m6Pattern pattern, it naturally is also possible to add constraints
to any pattern that contains an Ancestor Identifier.

Please note that the given example could be solved without the concept of Ancestor
Identifiers too, but then we would again end up with more complex and thus less

1”Passed“ is not really accurate to what a workpieceIn event stands for, but that assumption is fine
for our example.

53

4 Applying a Conventional Rule Engine to Complex Event Processing

Figure 4.5: A set of rules illustrating the ancestor problem

efficient and less reusable rules. Hence we would not only end up with bigger, but
more rules as well.

Another thing to mention is, that even if a pattern does not reference a specific
ancestor (event) with an Ancestor Identifier, it still might be matched by that event,
just because it defines the same event type and its conditions match. However, the
pattern might just as well be matched by any other event in the correlation session.

Ancestor Identifiers can not only be of use, when the same type of event triggered
multiple precondition rules, but when one single precondition rule is triggered by
multiple events of the same type too. This is shown in figure 4.7.

When using OR preconditions not every preconditionItem gets its own identifier.
Because only one of all connected rules will trigger a precondition port, it is enough
to give an identifier to the precondition itself. Figure 4.8 depicts that case and even
illustrates an example of how Ancestor Identifiers can be utilized to reuse rules. In
that case it is Processing too long, which is able to detect too long delays from
machine 6 as well as machine 8.

Ancestor Identifiers do only work on one level of precondition. It is however possible,
to make explicit references to events that are away more than one hop in terms of

54

4.3 Ancestor Identifiers

Figure 4.6: Ancestor Identifiers in Naiad Rules

55

4 Applying a Conventional Rule Engine to Complex Event Processing

Figure 4.7: Ancestor Identifiers referring to different patterns in the same rule

56

4.3 Ancestor Identifiers

Figure 4.8: Ancestor Identifiers used with an OR precondition port

57

4 Applying a Conventional Rule Engine to Complex Event Processing

Figure 4.9: Forwarding of Ancestor Identifiers

preconditions by ”through-connecting“ them in intermediary rules. Figure 4.9 shows
an example of that technique. Note that in the example workpieceIn events could
get compared to workpieceOut events from different machines. To increase clarity,
the accordant constraints have been omitted.

4.3.1 Transforming Ancestor Identifiers

Just like preconditions, Ancestor Identifiers have to be rewritten to normal constraints
a conventional rule engine can understand.

It was already mentioned that Internal Events do not only contain the identifier of
their causing rule, but also references to all events that were matched for triggering
it. To keep the class for Internal Events generic, those references are stored in a Map.
Listing 4.6 illustrates how this would look in Java.

In Drools, the parts of the left-hand side of a rule, which deal with internalEvents
and Ancestor Identifiers, would look like shown in listing 4.7.

58

4.4 Response Events

1 // The constructor of InternalEvent takes the causing rule’s
identifier as argument.

2 InternalEvent internalEvent = new internalEvent("Machine
Released");

3 // The variables In and Out were assigned to the events matching
the patterns in the rule’s left -hand side.

4 internalEvent.addAncestor("In", In);
5 internalEvent.addAncestor("Out", Out);
6 // The global insert () method adds the internalEvent to the

event cloud of the current session.
7 insert(internalEvent);

Listing 4.6: The right-hand side of the Machine Released rule in figure 4.9

1 $releasedPI : InternalEvent(causingRule == "Machine Released")
2 $In : Event(this == $releasedPI.ancestor_In ());
3 $Out : Event(this == $releasedPI.ancestor_Out ());

Listing 4.7: Parts of the left-hand side of the Processing too long rule from
figure 4.9

As you can see, the variable binding called someInternalIdentifier in listing 4.3
has now been renamed to the identifier of the preconditionItem (releasedPI in this
case). Not very suprising, the keyword this refers to the event to be matched
itself. The calls to ancestor * really call helper methods that emulate calls to
getAncestor("*"). This is a technical requirement of Drools, which is discussed
in section 6.1.2.

The pattern for the Out event would also contain a constraint for the timestamps
(as shown in figure 4.9), which has been omitted for demonstration purposes.

4.4 Response Events

Just like in SARI Rules, response events in Naiad represent events that should be
created once all their preconditions are satisfied. Besides the precondition, which
works just like any preconditions for rules (including Ancestor Identifiers), response
events have an identifier and a template name.

In Naiad, the generation of response events is not a part of the rule engine, but a
service of its own. The template name is just a hint for any connected event-generating
service how to compose the new event.

Another important thing to mention is, that response events do not contain any
explicit reference to the events that caused them. This makes sense in the context of
Naiad, because instead of explicit causal relationships, related events are correlated
into sessions. Response events may be re-fed into the system and, assuming an accord-
ing definition of correlations, eventually will end up in the correlation session they were

59

4 Applying a Conventional Rule Engine to Complex Event Processing

created from. Again, this approach helps to keep things simple, memory consumption
low and performance high.

For this, the data contained in the response event’s ancestors is made available to
that service, and thus an implicit definition of causal relationships is enabled. Configu-
ration of such a service lies out of scope for this work. However, for the proof-of-concept
version in Naiad, a template engine was chosen and a simple but well working configu-
ration mechanism implemented. See section 6.2 for details about that implementation.

A detailed explanation of how to configure response events in Naiad can be found
in appendix A.

60

5 Implementing Common Patterns of
Complex Event Processing

As already stated, the theoretical basis for Naiad Rules, SARI Rules [28], is differ-
ent from other classic approaches like for instance Luckham’s Rapide language and
its interpreters. Naiad Rules naturally comes with its own set of advantages and
shortcomings, compared to such other approaches. Nevertheless, it is possible to im-
plement some common features of CEP, like presented in [12], not explicitly, but at
least implicitly using a couple of tricks.

Tricks naturally come with some loss in performance. This section just wants to
show which patterns can theoretically be implemented, which can not and why. In
many real-life cases it might even make more sense, to try to utilize Naiad’s core assets
instead of copying concepts from other systems.

In Luckham’s approach Event Processing Agents (EPAs) are small, rule-based,
action-processing1 entities. Three types of EPAs are presented, which all share a
common interface. Simplified, this interface defines an input of certain actions and an
output of certain actions that an EPA generates following its rules. This is quite the
same as the ”blackbox-definition“ of a Rule Set in Naiad Rules.

Two of those types, Filters and Maps, can be implemented in Naiad Rules as de-
scribed in the next sections.

5.1 Filters

Filters are the simplest of all types of EPAs. Yet they are very important to the
processing of a huge number of events. In such situations, it is always the best decision,
to get rid of all those events irrelevant to our problem first. Filters have been identified
as key features of CEP as early as in [19].

A filter marks a certain pattern of events. Events that match this pattern are
passed through, events that do not match are dropped. In [12] Luckham explains
three different types of filters:

Action Name Filters Such filters match, and thus pass, any actions with a certain
name. In Naiad that would be any events of a certain event type.

Content Filters use the contents of events to decided which ones to pass on to their
output. [12]

1For our purposes it is sufficient to set Luckham’s notion of actions equal to our notion of events.

61

5 Implementing Common Patterns of Complex Event Processing

Figure 5.1: A Filter EPA in Naiad Rules

Context Filters pass on subposets of their input that occur in a certain context. [12]
While context does not exactly mean the same, we can think of an event’s cor-
relation session as its context in Naiad Rules.

Naiad Rules’ concept of Ancestor Identifiers makes it very easy, to depict all three
variations of filters in one single example. Figure 5.1 shows that.

Any of the three rules in figure 5.1 could be connected to Response Event directly,
thus implementing one of the three types presented by Luckham. The Response Event
would need to completely rebuild the original evtWorkpieceIn event, copying the
original event’s attributes into a skeleton with placeholders. Listing B.1 shows this for
Naiad Rules and the Velocity based Response Event Generator.

This obviously is unneeded work, because the original event already contains a XML
based representation of itself. Another implementation of Naiad’s Response Event
Generator interface, like a PassThroughResponseEventGenerator could be an elegant
and very simple solution to this. This would still create a new, totally identical event
instead of passing the original one, but would nevertheless be much faster than the
current approach.

62

5.2 Maps

Figure 5.2: A simple Map in Naiad Rules

5.2 Maps

Maps are one core feature of any CEP system, because they provided the means to
aggregate multiple events into less, higher-level events. This is one of the basic concepts
of CEP as already shown in figure 1.4.

A simple example of a map is shown in figure 5.2. The Velocity based configuration
of the Response Event can be found in listing B.2.

In Luckham’s work, events generated by a Map are causally related to those events
that triggered the execution of the map. Naiad does not have the idea of causal
relation. Instead the forementioned session paradigm is used. Configuring Response
Events in ”Maps“, one has to make sure that they contain the necessary attributes2

to be allocated to the right sessions, if they are re-fed into the system (see section 4.4
too).

5.3 Event Processing Networks

Event Processing Networks (EPNs) are packages of multiple, relatively light-weight
EPAs, communicating with each other through the events they produce. Alternatively,
the same results as with EPNs could be achieved in one big set of Naiad Rules, which

2palletId or machineId in our example

63

5 Implementing Common Patterns of Complex Event Processing

Figure 5.3: A simple assembly workshop

could perfectly make sense, depending on the case. However, Luckham identifies a
couple of advantages of EPNs [12]:

• Agents can be reused easily. They might as well be taken from some generic EPA
library.

• EPNs can be composed dynamically. The network could be modified on the fly,
while the system is up and running, to reflect changing business situations.

• CEP can be achieved in small steps. This facilitates the distribution of the whole
CEP system onto multiple physical systems and thus enhances scalability.

The next example from the SAW domain illustrates, how multiple Maps, each rep-
resenting a single workstation (machine) in a workshop, can be connected together to
form a EPN representing the whole workshop. Assume we have a very simple workshop
as shown in figure 5.3. It consists of two workstations, each processing multiple input-
workpieces into a single output-workpiece. For example, Machine 1 builds product D
out of products A, B, and C.

In our example we have two kinds of events:

Sensor Events Those are events generated whenever something ”physical“ happens
in our workshop. We only need the evtWorkpieceOut event, signalling that a
workpiece has left a machine. In our simplified example, this is equal to the
workpiece entering the next machine - that is, we don’t have any conveyor- or
waiting-time between machines.

”Meta“ Events Those events are generated from within the CEP system, whenever
according sensor events occur. They contain the state of a workpiece. In our
example, we want to utilize those events, to transitively compute a workpiece’s
cost. Note that technically they are normal events just like sensor events too -
it is just their meaning to the example, that makes them special.

64

5.3 Event Processing Networks

Figure 5.4: EPA of Machine 1 from figure 5.3

Let’s take a look at machine 1 and just assume for the moment, that (meta) events of
type A in, B in and C in are correlated into a session, representing all events related
to Machine 1. Figure 5.4 shows Machine 1’s EPA. Listing B.3 shows the configuration
of the D out Response Event.

Once a sensor event arrives, that the workpiece has left machine 1, the D out event
is created, which maps the cost of products A, B and C into the cost for product D.

The next node in our EPN would be some EPA representing the conveyor between
machines 1 and 2. Since we dropped that for our example, its configuration is very
simple as shown in figure 5.5. D in’s configuration is trivial as well, so it is not listed
here.

The EPA for machine 2 (figure 5.6) looks very similar to that of machine 1. Again,
we assume that a E in event somehow got merged into Machine 2’s correlation session.
However, the D in event is the one generated by our conveyor’s EPA. Again, the cost of
product F is transitively computed from the cost of product D and E. The configuration
of F out is similar to listing B.3.

Figure 5.7 shows an overview of our EPN and how the single EPAs are connected
together. Additionally to the connections shown there, all EPAs receive the sensor
events relevant to them.

This concludes the example. We have seen how multiple EPAs can be connected to
form an EPN that transitively computes a workpiece’s cost.

In Naiad, all those EPAs could run within the same virtual machine, or easily be
distributed among different physical systems.

65

5 Implementing Common Patterns of Complex Event Processing

Figure 5.5: Simple EPA for conveyor in figure 5.3

Figure 5.6: EPA of Machine 2 from figure 5.3

66

5.4 Distributed Event Detection

Figure 5.7: EPA layout for workshop in figure 5.3

5.4 Distributed Event Detection

Distributed Event Detection is described in [16]. It applies to CEP systems where
the transfer of events between nodes (whatever nodes that might be) is either time
consuming, expensive, or both. In such scenarios it makes sense to aggregate events
close to their source, before huge and unnecessary amounts of events are sent through
such expensive connections.

Suppose for instance, that we have two factories on either side of the globe. Naturally
we would only send aggregate events of finished products, or even whole finished orders
to our headquarters, but certainly not status messages from each and every single
sensor.

However, there are cases where things are not so clear, and where one might not
be able to consider these things before ”going live“. In [16] a number of Distribution
Policies are discussed, which define how a CEP system would reorganize itself and its
EPAs at runtime, to obey to a certain priority of goals.

This lies far beyond the scope of this work though. It shall nevertheless be noted,
that the ESB-like nature of Mule, the framework underneath Naiad’s hood, perfectly
supports the quick reorganization of its components, and thus would facilitate the
autonomous execution of such a thing as well.

5.5 Naiad’s Limitations

There are of course very convenient patterns that can not be implemented with Na-
iad Rules (yet). The two most desirable are presented here. Possible strategies to
implement them are later discussed in chapter 9.

5.5.1 Constraints

The third type of EPAs are Event Pattern Constraints or just Constraints. They can
be seen as special kinds of maps, but opposed to maps their purpose is not aggregation,

67

5 Implementing Common Patterns of Complex Event Processing

but detection [12].

Event Pattern Constraints have important applications in detecting vi-
olations of business or security policies in enterprise systems [12].

Luckham defines three kinds of constraints:

Never Constraints describe patterns that must never occur in a system.

Always Constraints contain patterns that must always occur in some relationship to
some other pattern.

State Constraints require some part of a system’s state to satisfy certain conditions
whenever a pattern of events happens.

Implementing Never Constraints is trivial in Naiad Rules. Just model any pattern
that must not occur as a set of rules and connect it to a ”Constraint Violation“
Response Event.

Always Constraints show where the limits of the current state of Naiad Rules are.
As Luckham explains (see [12]) they require some kind of ”event store“. However, no
such thing is currently provided for rule sets in Naiad Rules. On the technical side this
would not be too complicated to accomplish, but providing a clean and understandable
way of configuring such a feature is somewhat more complex. Section 9.1 discusses
that aspect.

State Constraints require a rule set to have access to external sources like a database.
Being technically simple as the forementioned ”event store“ for Always Constraints,
such a feature implicates the same problems and yet to make considerations as well.

5.5.2 Cut and Join

Cut and Join is a technique described by Chen, Jeng and Chang in [4]. Their motiva-
tion was to cut relatively big and thus complex events into multiple smaller ones before
they are processed by a correlation engine. The reason for this was, that most available
correlation engines need to work with events consisting of unique name/value-pairs.
The event in listing 5.1 obviously does not satisfy these requirement, as it contains
multiple item tags of no predefined count.

The Cut and Join approach would create three new events, where all attributes are
accessible through a unique name. Listing 5.2 contains an example.

68

5.5 Naiad’s Limitations

1 <event type="purchaseOrder">
2 <customer >
3 <name >H. J. Simpson </name >
4 <address >742 Evergreen Terrace </address >
5 </customer >
6 <items >
7 <item >
8 <product >Donuts </product >
9 <quantity >10</ quantity >

10 </item >
11 <item >
12 <product >Ham </product >
13 <quantity >1</quantity >
14 </item >
15 <item >
16 <product >Duff Beer </product >
17 <quantity >200</ quantity >
18 </item >
19 <items >
20 </event >

Listing 5.1: XML representation of an event that can not be mapped to unique
name/value-pairs

1 <event type="purchaseOrderItem">
2 <customerName >H. J. Simpson </ customerName >
3 <customerAddress >742 Evergreen Terrace </ customerAddress >
4 <product >Donuts </product >
5 <quantity >10</ quantity >
6 </event >

Listing 5.2: XML representation of an event cut and joined from listing 5.1

Opposed to other correlation engines, Naiad’s utilization of the XPath language
enables it to cope with events like the one in listing 5.1 as well. At least as long as
there is a predefined number of non-unique items per event. Unfortunately in our
example and in most other real-life situations this is not the case. Naiad lacks the
possibility to work with sets and counts of attributes of the same type. This feature
is definitely something worth to work on in the future.

69

5 Implementing Common Patterns of Complex Event Processing

70

6 Connecting a Rule Engine to Naiad

This chapter will present some of the more technical details and problems that oc-
curred, when the prototype for Naiad Rules was implemented. It will further explain
the choice of technologies with a focus on “open source licenses” and a maximization
of modularity and extensibility.

6.1 The Rule Engine - JBoss Drools

As workhorse for Naiad Rules the open source rule engine JBoss Drools [9] was chosen.
In 2005 the up-to-then stand-alone project Drools federated with JBoss, but it is still
being developed by a multinational team of programmers of varied origin, currently
under the lead of Mark Proctor1.

Drools is a business rule management system (BRMS) [9].

The algorithm Drools uses under its hood is called ReteOO, which is an implemen-
tation of the Rete algorithm (see section 6.1.1) optimized for object oriented program-
ming languages, especially Java.

When programming with Drools, most interaction will be made with the Working-
Memory class. Simplified, one could think of it as a bucket, where facts of any kind
(Java objects of any class) can be thrown in.

Each WorkingMemory is connected to a RuleBase which contains the (business)
rules how those facts should be interpreted and acted upon. A WorkingMemory’s rules
are not always evaluated, when a new fact is inserted, but only when its fireAllRules
method is called.

A RuleBase contains an arbitrary number of Rules, each consisting of a left-hand
side (LHS) and a right-hand side (RHS), which together are very much like any
if-then-else statement in other programming languages. Listing 6.1 shows the (sim-
plified) “Hello World” example of a rule from the Drools documentation.

Facts that are inserted into Drools WorkingMemories must follow some principles
of Java Beans. To be precise, the must provide a getter and a setter method for each
of their attributes, which is mentioned in any Rule of the WorkingMemory. For the
ReteOO algorithm to function properly, the return values of the getter methods must
not change. Drools does provide other means to safely change attributes of already
inserted facts, but they naturally come with a cost in overall performance.

1http://www.markproctor.com

71

http://www.markproctor.com

6 Connecting a Rule Engine to Naiad

1 rule "Hello World"
2 when
3 $m : Message(status == Message.HELLO , $message : message

)
4 then
5 System.out.println(message);
6 end

Listing 6.1: Simplified version of Drools’ ”Hello World” example

In the example of listing 6.1 there is a class Message which provides two methods
named getStatus and getMessage. Further it contains a constant named HELLO.
When fireAllRules is called on the surrounding WorkingMemory, the first Message
with a status of Message.HELLO matches the LHS and is bound to the variable m.
Additionally the return value of its getMessage method is bound to the variable
message. The RHS of the rule is written in plain Java code and just prints out the
text bound to that variable before. It is possible to user other pluggable dialects for a
rule’s RHS.

If a rule’s LHS contains more than one pattern, Drools tries to find fitting sets of
facts within all possible combinations of all facts that have been inserted into the
WorkingMemory.

Additionally to rules a WorkingMemory can define globals. Those are references to
Java objects that are usable from within all rules, but which are not used by ReteOO
to find matches in the LHS of a rule. Globals are predominantly used to let rules
communicate with the “outside world”.

WorkingMemories can be of a stateful or stateless session. While the bucket analogy
holds for stateful sessions, stateless sessions only operate on a fixed set of facts and
throw them away afterwards. Naiad Rules only uses stateful sessions.

In Drools RuleSets can be modified dynamically, on the fly. This feature is not used
in Naiad Rules yet, but keeps the door open for some interesting extensions to the
current implementation.

The fastest way to configure Drools and create rules for it from scratch is its own
rule language, which was used in listing 6.1 and prior examples. For this language
Drools offers a convenient editor plugin for the popular Eclipse IDE2 too. The rule
language can be extended with selfmade domain specific languages (DSL).

Further Drools can load decision tables from popular file formats like Microsoft
Excel’s or OpenOffice’s. Drools also comes with a web-based BRMS (business rules
management system) targeted at a technically less experienced audience as shown in
figure 6.1.

2http://www.eclipse.org

72

http://www.eclipse.org

6.1 The Rule Engine - JBoss Drools

Figure 6.1: Screenshot of Drools’ web-based BRMS [9]

The last (and probably most cumbersome) way to configure a RuleBase in Drools is
via a XML document. In Naiad this way was chosen, because it is automated program
code that transforms Naiad Rules’ configuration to Drools’ configuration, and XML
is the best of all choices, when it comes to automatically creating highly nested data
structures (like rule definitions).

Cumbersome, because up to now there is almost no documentation provided for the
XML configuration of Drools. Further, the currently available stable version (4.0.7),
which is used for Naiad Rules, contains a hard-to-find bug specific to the configuration
via XML. At the time this is written, the Drools development team unfortunately failed
to respond to any reports3 about that bug. Therefore a temporary quick fix has been
inserted into Naiad Rules.

Listing 6.2 shows the rule from listing 6.1 in XML format. This of course is only a
basic example and does neither exhibit all features of Drools’ XML configuration nor
those used for Naiad Rules.

Starting from version 5, which is not a stable release at the time of writing, Drools
will come with some CEP features (Drools CEP that is) out of the box.

There are of course a lot of other features packed into Drools, but they are not used
in Naiad Rules, and therefore of no interest to this work.

3http://article.gmane.org/gmane.comp.java.drools.user/11802

73

http://article.gmane.org/gmane.comp.java.drools.user/11802

6 Connecting a Rule Engine to Naiad

1 <rule name="Hello World">
2 <lhs >
3 <pattern identifier="$m" object -type="Message" >
4 <field -constraint field -name="status">
5 <qualified -identifier -restriction evaluator="==">Message

.HELLO </qualified -identifier -restriction >
6 </field -constraint >
7 <field -binding field -name="message" identifier="$message"

/>
8 </pattern >
9 </lhs >

10 <rhs >
11 System.out.println(message);
12 </rhs >
13 </rule >

Listing 6.2: Simplified version of Drools’ ”Hello World” example in XML format

Another rule engine, that has been short-listed for use in Naiad Rules was Jess4,
which, just like Drools, has the Rete algorithm under its hood as well. It too would have
been suitable for the task. However, Drools won the race due to Jess’ less attractive
licensing model. Jess is only free for academic use, but has to be licensed for any
commercial application.

6.1.1 The Rete Algorithm

The Rete Match Algorithm was developed by Charles L. Forgy and presented in [8]
and later [7]. As the name says, it was developed for fast and efficient matching of
patterns in production systems. Its high-performance derives from the exploitation of
two assumptions about the nature of production systems:

Temporal Redundancy This principle suggests that only a few pieces of data change
in working memory from one cycle to another. Therefore, in short, each cycle
Rete only watches the changes that happen to a working memory, rather then
the working memory itself.

Structural Redundancy With multiple rules being applied to the same set of facts,
it is very likely that the left-hand sides of these rules contain big portions of
similarity to each other, and only differ in a view conditions. Rete benefits of
that fact by compiling rules’ LHSs before execution and thus discovering those
similarities.

Rete is the Latin word for net, and it describes perfectly what the algorithm does.
On compile-time it builds a a network of nodes, each representing a certain (atomic)

4http://www.jessrules.com

74

http://www.jessrules.com

6.1 The Rule Engine - JBoss Drools

condition in the whole set of rules. New facts enter this network via a special root-node
and are then sent and filtered through so called input-nodes until they finally arrive
at a terminal-node. Each terminal-node represents a rule, and each fact arriving at a
terminal-node represents a whole rule been satisfied.

There are of course a lot more things to know about how Rete networks are built
and how facts propagate through them, but this is out of scope for this work. In [8]
Forgy presents a hardware based approach for the Rete algorithm, which supposedly
is able to boost the algorithm’s performance by another 25% compared to a standard
microprocessor based interpreter. This however does not add to this work as well.

Since 1979 a lot of improvements have been committed to, and a quite some alter-
natives have been derived from Rete. For instance Charles Forgy himself developed
Rete II in the 1980’s, which, unlike the original Rete algorithm, is a closed-source
commercial product. Another spin-off is ReteOO, which is the engine used in JBoss
Drools.

6.1.2 The Mapping Problem and its Solution

When integrating the Drools rule engine with Naiad, one major problem regarding
structure of facts. As already mentioned, Drools requires facts to follow the Java Beans
standard. In particular, any attribute of a fact, that is part of any condition of a rule
must be accessible through a getAttributename and a setAttributename method.
To provide such methods naturally is no big deal when writing a custom application
for any special domain. However, Naiad Rules and Naiad in general aim to become an
out-of-the-box and ready-to-use application for non-programmers. Hence, the burden
of writing customized Java classes for each and every new domain was certainly not
an option.

It should be noted that Drools in fact does provide other means to access a fact’s at-
tributes. However, those can not leverage Rete’s assumptions of Temporal Redundancy
(see section 6.1.1) and thus would dramatically influence the applications performance
in a negative way.

In Naiad Rules’ configuration the solution to the Mapping Problem is called at-
tributeMapping. Listing 6.3 shows a workpieceIn event, as it would be represented
in XML. ComponentName in this case refers to the machine that was entered by the
workpiece.

1 <event id="79" timestamp="66880" type="evtWorkpieceIn">
2 <payload key="WorkpieceId">SW003 </payload >
3 <payload key="ComponentName">DS3 </payload >
4 </event >

Listing 6.3: XML representation of a workpieceIn event

75

6 Connecting a Rule Engine to Naiad

If we wanted to create a rule similar to the Machine 4 passed rule from figure 4.6
Naiad Rules’ XML configuration for that rule would look like shown in listing 6.4.

1 <rule identifier="Machine_4_passed">
2 <pattern type="evtWorkpieceIn" identifier="wpInPattern">
3 <literalFieldConstraint fieldName="machineId" evaluator="=="

value="4" >
4 </pattern >
5 </rule >

Listing 6.4: XML configuration of a rule in Naiad

Now how would Naiad Rules know, that the fieldName of machineId refers to the
payload with key ComponentName? The solution is shown in Listing 6.5.

1 <xPathMapping >
2 <mappingItem xPath="// payload[@key=’ComponentName ’]" fieldName

="machineId" type="integer" />
3 </xPathMapping >

Listing 6.5: Sample configuration of Naiad Rules’ attributeMapping

There must be only one xPathMapping element per ruleset. It may contain any
number of mappingItems, each mapping a XPath expression to a fieldName to be
used by the rules.

As an additional benefit, while other parts of Naiad can interpret an event’s at-
tributes only as string values, we can define an attribute’s type within Naiad Rules.
This comes in very handy when evaluators other then == are to be used in a constraint.
Currently supported types are string, integer, float and date.

Another advantage is, that more meaningful names can be assigned to attributes
than what they had in an event’s XML representation. Just like in the example above.
Needless to say, that this feature should be used very carefully in order to avoid any
confusion.

Obviously the mapping could be done automatically as well. XPath expressions
could be written into a rule’s conditions directly and be secretly and internally mapped
to some dummy-names only known to Naiad Rules and Drools. The presented solution
was implemented nevertheless, because it definitely is easier to handle and bugs are
easier to track down for the time being. Further, if automatic mapping would take
place, some other mechanism must be found to define an attribute’s type. However,
this still is a topic of discussion, and the xPathMapping element might be dropped or
replaced in a future version.

76

6.2 The Response Event Generator - Apache Velocity

One more though about that arises, when one thinks about a - yet to develop -
graphical editor for Naiad Rules. If we could rely on such an editor to always set the
mappingItems correctly, we can leave the feature like it is and keep its advantages
while hiding its disadvantages from the user at the same time.

What is technically happening for the mapping to take place is a different story.
When Naiad Rules starts up, the class Event is dynamically extended to the class
Event NameOfRuleSet . This extending class provides getters and setters for all map-
pingItems defined and is then used to load incoming events in XML format into a
correlation session’s working memory.

Java does not support the dynamic creation or modification of classes or interfaces.
Java’s concept of reflection is not powerful enough either. The only solution was to
create the new class’ bytecode directly and overload the virtual machine’s standard
ClassLoader with a customized one for that job. To create the bytecode Object Web’s
ASM5 is used.

Naturally, being quite low-level compared to standard Java coding, the development
process of this part took its time and involved a good amount of time-consuming
kickbacks. The result is not quite what could be described as intuitive and perfectly
readable as well. Luckily all of this is encapsulated in its own classes and package,
and can be replaced once a better solution comes up (which won’t happen unless some
other and better technology but Drools is found and chosen).

On the other hand, now that things are stable, the generation and loading of byte-
code is fast and works like a charm.

6.2 The Response Event Generator - Apache Velocity

As already mentioned, the Naiad Rules itself does not know anything about how
to create new events and where to publish them. Via injection Naiad Rules knows
a Response Event Generator (REG) to which it can send the data contained in all
ancestors of a ResponseEvent and the name of a template which should be used to
create the event. The name of the template can be any string, just as long as the
actual implementation of the REG understands it. Therefore, the definition of a
ResponseEvent in Naiad Rules’ XML configuration is relatively simple as shown in
listing 6.6.

As REG in Naiad Apache’s Velocity Template Engine [1] was chosen. Only a very
lightweight wrapper class connects Velocity to Naiad, the biggest part of required
features came out-of-the-box. A sample template for a Response Event in Naiad can
be found in listing 6.7. Except for the data of all ancestors contained in the variable
$data, the Velocity REG automatically provides a formatable variable containing the
current time ($now).

5http://asm.objectweb.org/

77

http://asm.objectweb.org/

6 Connecting a Rule Engine to Naiad

1 <responseEvent identifier="myResponseEvent" template="
myResponseEvent.vm">

2 <precondition type="OR" identifier="cause">
3 <preconditionItem causingRule="anotherRule" />
4 </precondition >
5 </responseEvent >

Listing 6.6: Sample definition of a Response Event in Naiad Rules

1 <event type="myFirstResponseEvent" timestamp="$now.format(’HH:mm
:ss’, $now)">

2 <payload key="WorkpieceId">$data.cause.wpInPattern.workpieceId
</payload >

3 <payload key="anotherPayload">$data.cause.anotherPattern.
anotherPayload </payload >

4 <payload key="moreFun">some totally ancestor -unrelated value </
payload >

5 </event >

Listing 6.7: A Response Event’s definition for Velocity

It is not a requirement that events generated by the REG have to be in XML format.
It is just very convenient, because Naiad already provides according parsers. More, it
is even not a requirement for the REG to create Events at all. Being connected to any
other components via flexible Mule, an REG could literally create any Java class out
of the data submitted to it, just as long as all subscribing components can work with
it or Mule provides proper transformers.

Of course such considerations should be made with care, because any such varia-
tion to the original theoretical concept of Response Events could very easily lead to
confusion and error-proneness.

6.3 Integration

All services of Naiad are wired together using the Mule framework [17]. Naiad Rules
and the Response Event Generator are no exception to that. Figure 6.2 shows a
minimal setup of the components that make up Naiad Rules and how they relate to
and rely on other parts of Naiad.

On startup the Rule Agent loads its configuration - its set of rules - and creates an
according ClassLoader (see section 6.1.2). At the same time the REG is instantiated
too, but doesn’t do anything yet. Like the Naiad Manager, Rule Agents and REGs are
implemented as Mule Agents. Agents are globally available services, that exist outside
the flow of events and are not managed by SEDA principles. A SessionMergeManager
and a CloneManager, both able to handle Drools’ WorkingMemories, are created for

78

6.3 Integration

Figure 6.2: Integration architecture of Naiad Rules

the Session Manager.
At runtime, events that have been correlated into sessions enter the RuleUMO. Via

injection the RuleUMO knows its Session Manager6, its Rule Agent and the Response
Event Generator assigned to it.

When a new event enters the RuleUMO, all the sessions it belongs to are checked
out from the Session Manager for write access. If a session already contains a Drools
WorkingMemory the new event is inserted and the fireAllRules method is invoked.
If a session does not contain a WorkingMemory, one is created and stored in the session
before the same procedure is applied.

If the evaluation of the new event resulted in the creation of a response event, its
ancestor’s data and its template name are sent to the REG, which then creates an
according Response Event and returns it to the RuleUMO. The UMO then publishes
the event at its OutboundRouter(s). An arbitrary number of Response Events can be
generated in each cycle.

What services wait at the other side of the router is not relevant to the RuleUMO
and configured in Mule. That configuration might even change during runtime without
affection the RuleUMO in any way. However, because the Response Events issued by
the RuleUMO are neither correlated nor equipped with a UUID, it is probably a best
practice to send them through a UuidUMO and a CorrelationUMO first. This might
be the same CorrelationUMO where their ancestors have been processed (“re-feeding

6To be precise, just like the CorrelationUMO the RuleUMO only knows the Naiad Manager and
requests references to the Session Manager from there.

79

6 Connecting a Rule Engine to Naiad

Figure 6.3: Naiad Rules architecture with multiple RuleUMOs

events”), or a completely different one, with its own configuration and correlation
criteria, representing a higher level of aggregation in the whole CEP system.

The RuleUMO is a listener for status events from the Session Manager too. These
include notifications about merged or deleted sessions, upon which the RuleUMO acts
accordingly (e.g. invoking the fireAllRules method for freshly merged Working-
Memories).

It is perfectly possible to have multiple independent Rule Agents and/or REGs at
the same time, each with its own set of rules or templates. Figure 6.3 illustrates that
in a more complex example. Due to the extensive use of interfaces, these could even
be totally different implementations.

6.4 Testing

Testing of Naiad is automatically done with version 4 of the JUnit testing framework
[3]. Naiad Rules follows this approach too. About 90 percent of the code that makes
up Naiad Rules are covered by conventional JUnit Tests. Some of them make use of
lightweight mock-up classes as some classes can not be tested standing alone. Those
mock-up classes and their usage are rather conventional and not to fancy either.

However, the remaining ten percent are of utmost importance for Naiad Rules’
functionality and well-behaving. Those are the parts, where Naiad Rules’ configuration
files are transformed into Drools Rule Sets and where those Rule Sets are applied
to incoming Events upon which ultimately Response Events are created. As this
functionality is the result of all parts of Naiad Rules working together, and being
connected with each other through Mule, it can only be tested within a complete,
running Mule application.

80

6.4 Testing

Figure 6.4: Naiad’s Mule setup for Unit Testing

Luckily there is a way to automatically test this functionality with JUnit Tests too.
Figure 6.4 shows an overview of the setup used for this. As only the UMOs and
their connections are relevant, other parts, like Mule Agents, have been omitted in the
figure.

Key to this approach is the EventLoggerUmo. In this class all fields and methods are
defined as static, thus allowing this class to bypass any duplicates Mule, following
the SEDA principle, might create. Whenever a Response Event leaves the RuleUmo it
is sent to the EventLoggerUmo where it is stored.

A JUnit Test would then test some functionality of Naiad Rules as following:

• Start an instance of a Mule server configured as shown in figure 6.4. The con-
figuration of the RuleUmo holds only very few rules and Response Events, that
test for some specific behavior.

• Send a small number of events to the server. Those events have been designed to
trigger respectively not to trigger the rules loaded into the RuleUmo in a specific
way.

• Fetch all events from the EventLoggerUmo that have been stored there since the
server started. Examining those events a test can now automatically decide if it
has succeeded or failed.

• Shutdown the server.

Needless to say, that the set of rules and the event cloud used for a test have to be
selected very carefully. Otherwise expected behavior in terms of observed Response
Events could occur accidentally.

81

6 Connecting a Rule Engine to Naiad

6.5 Bottlenecks

The most critical bottleneck for Naiad Rules - and probably for Naiad in general - is the
Session Manager. To be precise, the (de)serialization that is done whenever a session
is checked out or back in, which is very often. Because Drools’ WorkingMemories
are stored as attributes of a Session, they have to be (de)serialized just like the rest
of the session. Additionally, a WorkingMemory of Drools does not implement Java’s
Serializable interface. Thus, simply put, “deserializing” is more like “creating a
new WorkingMemory and consigning properties”, which makes that procedure even
more time-consuming than true (de)serialization of all inserted facts (!) would be in
the first place.

Another theoretical bottleneck is, that the Rule Agent and the REG are imple-
mented as Mule Agents and therefore shared between all RuleUMOs. Luckily this
is not too critical in practice, because there are almost no synchronized operations
between those agents and the UMOs. So calls from an UMO to an agent in most cases
still run in the UMO’s thread without blocking or otherwise affecting threads of other
UMOs.

Additional care must be taken, when RuleUMOs are to be distributed among mul-
tiple virtual machines. In that case each of those virtual machine must have its Rule
Agent(s) and REG(s).

At the moment, distribution is only a theoretical topic for further research anyways,
because the central bottleneck, the Session Manager, still lacks support for that. Fur-
ther, adequate Mule Transformers have to be written yet, to send events across the
boundaries of one virtual machine. That however is a trivial task, once the Session
Manager supports distribution.

6.5.1 Using Multiple Session Managers

The importance of the (de)serialization problem grows, when one considers, that it is
not only the RuleUMOs that check out sessions. Pretty much any service in the CEP
system, existing or yet to be developed, relies on or works with the correlated sessions
- and, by the way, the correlation service itself does too. That means, that whenever
a session is checked out by any service, all attributes of that session, whether they are
used by that service or not must be (de)serialized in the process. Further, the bigger
the number of services is, the more likely it is that a session is already checked out and
a service is blocked until it is checked in again, resulting in even more performance
loss.

The first approach that came to our minds was some mechanism that allowed the
check-out of only certain attributes of a session. This way access to sessions would
only block thread if already checked-out attributes would be requested by that thread.
Further, not all attributes would have to be (de)serialized.

82

6.5 Bottlenecks

Figure 6.5: Naiad architecture using multiple Session Managers

That suggestion induced too many new questions about concurrency and integrity
of sessions and threads, and was quickly rejected.

Instead Marian Schedenig came up with the idea of using multiple Session Managers
with the same Correlation Manager, each one holding the attributes of just a few or
maybe even just one service. Figure 6.5 gives an example. Please note that components
that are actually necessary for Naiad Rules, but that are of no use for the example
have been omitted.

In this example, we have some other metrics computing service (MetricsUMO) be-
sides our RuleUMO. They work on the same set of correlations, but do not share
any of their own ressources. When a new event enters the CorrelationUMO and its
CorrelationMatches have been identified, those matches are sent to two Session Man-
agers instead of only one. Up to that point both Session Managers hold identical sets
of sessions. When the events propagate further through the system, they eventually
arrive at the RuleUMO and the MetricsUMO. Each one of these can now use its own
Session Manager and thus its own sessions to store attributes, without blocking the

83

6 Connecting a Rule Engine to Naiad

other service or having to wait for the (de)serialization of attributes that are of no use
to it.

What makes that concept so attractive is, that neither the Session Managers nor the
RuleUMO and MetricsUMO know anything about it. In Naiad UMOs get references
to their Session Managers via injection anyways and Session Managers do not know
anything about “the outside world” at all. The only implementational work that
needs to be done, is to enable the CorrelationUMO to work with more than one
Session Manager - which is trivial. Besides that, it only has to be taken care that
every Session Manager is hooked up with the proper Clone- and Merge-Managers for
the attributes that will be stored in its sessions. Configuration editors, which have to
be developed yet, could do that.

Additionally we gain some sort of distributability with this, even though, as men-
tioned, things are not truly distributable yet. The price we pay naturally is slightly
more usage of memory as well as some overhead in transmission. And because so many
components and only a few settings have to be modified, this can be easily applied to
existing Naiad configurations.

84

7 Results and Findings

7.1 Development

Naturally it took some time and a couple of design-evaluate-redesign cycles to develop
the whole basic concept of Naiad Rules and how it should be integrated into Naiad’s
services. After that task was finished however, development of the architecture in
detail and coding of Naiad Rules was finished surprisingly fast.

Because Naiad Rules is more like a wrapper for a conventional rule engine, rather
than a piece of working code, only 4 interfaces and 2 classes, which are relatively
simple in their design, make up the generic part of it1. The other parts are specific
to the integration of Drools and the Velocity template engine. The biggest part of
those is the loading and parsing of Naiad Rules’ XML configuration and its transfor-
mation to Drools rules. This part was the most time consuming of all planned steps
of implementation.

The most time-consuming task however, was finding out about and tracing a bug
in Drools and writing a workaround for it. The second most time-consuming part was
the writing of the dynamic generation of bytecode for facts of incoming events using
ASM. To be honest, it was not really the writing itself, but the study about how to
write bytecode for the Java Virtual Machine.

To conclude this with a final statement: Development time for the integration of a
conventional rule engine into a CEP application was short - certainly much shorter
than any from-the-scratch solution. But it could have been even shorter, if it were not
for problems and obstacles due to the chosen rule engine. To be fair, any other rule
engine probably would have come with its own set of equally time-consuming oddities
and challenges.

7.2 Configurability

The configuration of Naiad Rules and the Velocity based Response Event Generator
has shown to be very easy, fast and powerful. It proved to be very easy to adjust the
rule set to meet changing business requirements too. At least for somebody who is
familiar with the features, options and syntax. Unfortunately this is the problem.

Because unless you spent a couple of hours studying Naiad’s manual and trying out
some sample-configurations, you just can not be familiar with it. All those interleaved
options and parameters contained in an existing set of rules presented to somebody not

1Those numbers include all code for the Response Event Generator

85

7 Results and Findings

familiar with them are just too confusing - not even speaking of creating a completely
new set of rules from the scratch. Additionally the nature of Naiad Rules is just too
far away from anything else a normal user is familiar with, so learning by trying and
intuition is not an option either.

This once more stresses the importance of a graphical editor that can guide new
users through creating rules and assists them in the process.

7.3 Performance

Naiad Rules and its performance was tested with live data from the SAW simulator (see
section 1.5). The SAW team provided a JMS2 connector, where a running instance
of the simulator’s Runtime Interface would publish all events which were useful for
further processing using CEP.

However, to be independent from varying consumption of system resources by the
simulator (if both applications were run on the same computer) or varying network
bandwith (if both applications were run on different computers) and to be able to test
in reproducible environments, events from various testruns of the SAW simulator have
been recorded to files. A light-weight “event-player” was written, that was able to
read those files and send the events they contained to Naiad per JMS. The speed of
the playback could be modified, so that real-time, sub-real-time and super-real-time
loads could be simulated.

For the specifications of the testsystem used refer to appendix C.

First, as a most simple scenario, Naiad Rules’ performance as a filter (see section 5.1)
has been tested. With only one rule filtering for one event type only, Naiad was able
to process approximately 250 incoming events per second at a constant rate. When
adding another filter, that rate dropped to roughly 200 events per second.

Interestingly, adding some more filter rules did not minimize that throughput any-
more. Adding some Literal Constraints to those rules did not either. Further ex-
amination of the recorded data revealed, that the limiting factor for the testsetup,
which was similar to the one shown in figure 6.2, was the CorrelationUMO, not the
RuleUMO. Even the use of quite “creative” but realistic filter rules did not increase
the RuleUMO’s consumption of resources to a level where it would have become the
limiting factor and decrease overall throughput.

Even if the number of handled events per second would decrease with more and
more complex filter rules being added, it still would be considerably larger than the
number of events3 generated by an average assembly workshop.

2Java Message Service - http://java.sun.com/products/jms/
3That is events provided through the simulator’s JMS connector, not all its internal events.

86

http://java.sun.com/products/jms/

7.3 Performance

However, filtering is more or less just a supporting feature of complex event pro-
cessing. Therefore after testing Naiad Rules with those simple scenarios, a some-
what more complex one was chosen: Like figure 5.2 shows, a map should be im-
plemented, that integrated evtWorkpieceIn and evtWorkpieceOut events into new
evtWorkpieceProcessed events (see listing B.2).

Surprisingly, doing this unveiled another performance issue with a more conceptual
nature, rather than a technical one. It is described in section 7.3.1.

7.3.1 The completenessTimeout Problem

If you look at figure 5.2 it is clear, that for achieving a map like that, correlating all
evtWorkpieceOut and evtWorkpieceProcessed events of the same machine does not
do the trick: during a working shift, there is not only one pair of evtWorkpieceOut
and evtWorkpieceProcessed events per machine, but hundreds if not thousands. If
they all were correlated into the same session, it would not be possible to find those
pairs that belong together.

Things were a lot easier, if the events contained some ID of the workpiece that
they are about. Then we could correlated by the componentName (ID of the machine)
and the ID of the workpiece. Unfortunately this is not what we can get from the
SAW simulator (see listing 3.1) and we would end up with a lot of memory-consuming
sessions anyways. But luckily Naiad offers a feature for just that case - at least sort
of.

Each Correlation Item (see section 3.3 about how to configure correlations in Naiad)
can specify a minOccurence attribute. If specified, Naiad counts the occurrences of this
Item per session and marks the session COMPLETE once the count equals the specified
value.

Sessions with this mark are then deleted after a certain amount of time, which is
specified in a surrounding Correlation Set’s or Correlation Bridge’s completeness-
Timeout attribute.

Listing 7.1 shows an example. All sessions created from the workingProcess Cor-
relation Set are deleted two seconds after a evtWorkpieceOut event was added to the
session.

Now this sounds exactly like what we were looking for: our mapping rule can rely
on the fact, that all events in a session not only belong to the same machine, but
to the same workpiece, because if a session is deleted after the workpiece has left
the machine a new one is automatically created when the next workpiece enters the
machine. Further, sessions get deleted after a workpiece has been processed, and don’t
clutter up our precious memory.

The problem with this lies in the detail of high-frequency domains in terms of
incoming events per time unit. Given the testsetup similar to the one in figure 6.2 it
is clear, that the interval for the Completeness Timeout must not be shorter than the

87

7 Results and Findings

1 <correlationSet identifier="processingOfWorkpiece"
completenessTimeout="2">

2 <correlationItem identifier="workpieceOut" eventType="
evtWorkpieceOut" minOccurence="1">

3 <xPathSelector mandatory="true">// payload[@key=’
ComponentName ’]</xPathSelector >

4 </correlationItem >
5 <correlationItem identifier="workpieceIn" eventType="

evtWorkpieceIn">
6 <xPathSelector mandatory="true">// payload[@key=’

ComponentName ’]</xPathSelector >
7 </correlationItem >
8 </correlationSet >

Listing 7.1: Configuration of a Correlation Set with Completeness Timeout

time it takes Mule to propagate an event from the CorrelationUMO to the RuleUMO
plus the time it takes the RuleUMO to process the event. If it were shorter, the session
would have been deleted even before the RuleUMO would try to check it out.

On the other hand, the interval must not be too long either. In this case, subsequent
events might be added to a session they don’t belong to, because that session was not
deleted yet.

As already denoted, it strongly depends on the domain at hand, whether the Com-
pleteness Timeout could be a problem or not. That is because the relevant factor is
not the frequency of incoming events in general, but the frequency of incoming events,
that accidentally might be added into the same session although they do not belong
together.

In the SAW domain this definitely is a problem. If the strategy used to manage
a a workshop aims to be optimal, machines must not have long idle times. That
means, whenever a workpiece leaves a machine, the next one might and should en-
ter it immediately afterwards. Candidate events for erroneous correlation therefore
are evtWorkpieceIn events from one workpiece and evtWorkpieceOut events from
another workpiece that just left a machine.

Naiad supports values for Completeness Timeouts only in steps of seconds. This
makes sense, because due to the non-deterministic nature of SEDA and Mule (see
section 2.2) any smaller value would be a mere lottery. Nevertheless, for testing that
restriction was removed.

First, using a correlation configuration as shown in listing 7.1 and a mapping rule
as shown in figure 5.2, the minimum value for the Completeness Timeout of the
processingOfWorkpiece Correlation Set was determined, while simulating a rela-
tively small load of one incoming event per second. A Completeness Timeout of 100
milliseconds was possible with that configuration at a constant rate. That is, no in-

88

7.3 Performance

coming event took more than that time to be processed from the CorrelationUMO to
and including the RuleUMO.

Then, gradually increasing the number of incoming events per second, the maximum
number was identified: 2.5 events per second was all that could be processed by Naiad
without getting caught in the timeout trap and mixing up sessions. It should be
noted, that relying on those numbers would be far to risky for any real-life production
environment, as they are too close to error-causing settings to allow for any variance
in a computer’s available resources.

This unfortunate bottleneck is solely caused by Naiad’s handling of correlations and
sessions. Though the RuleUMO naturally takes its own share of a system’s ressources,
they are negligible small in comparison. Stand-alone tests of the RuleUMO suggest,
that throughputs close to the 200 events per second of Naiad Rule’s application as
an event filter would be possible, if there were no external handicaps like the one
presented in this section.

One promising and possibly quite simple solution to the problem could be, if the Cor-
relationUMO just ignored any sessions marked COMPLETE. This way a bigger Complete-
ness Timeout interval could be set, which makes sessions available to the RuleUMO
even if they need more time to be propagated through all UMOs by Mule. On the
other hand such a big interval would not be a problem for subsequently incoming
evtWorkpieceIn events, as the CorrelationUMO would create a new session for them.
However, this would be a rather big interference with existing code and should be
evaluated carefully before doing any rash changes.

What would be left, is the risk of one evtWorkpieceIn event “overtaking” a forego-
ing evtWorkpieceOut event in parallel SEDA instances of the same CorrelationUMO.
However, much smaller intervals between incoming events and a huge load on the
system (which would lead to an increase of the number of instances of the Correlation-
UMO as well as a greater variance in processing intervals of events in that UMO) would
be needed to make such a situation as likely as the problem regarding Completeness
Timeouts.

89

7 Results and Findings

90

8 Conclusion

Virtually all business processes in today’s world can be seen as event-generating and
-consuming activities. The role of Complex Event Processing, when trying to han-
dle those vast amount of events produced by modern computer systems, cannot be
underestimated.

The assumption was formulated, that the application of conventional rule engines
onto pre-correlated sessions of events could be a powerful way to extend an existing
correlation engine’s possibilities with a minimum of implementational work.

The SARI model (section 2.4) is a basic foundation for the functioning of what is
developed as Naiad Rules in this work. Easy to follow step-by-step instructions can be
used to translate rules of that concept into rules that a conventional rule engine can
understand and handle. Though it was planned from the start to use a specific engine,
JBoss Drools [9], those instructions are generic enough to be applied to virtually any
rule engine currently available, as long as it follows an Event-Condition-Action (ECA)
approach.

Although not all details of SARI Rules have been implemented into Naiad Rules,
the key benefits as identified by Rozsnyai in [23] were achieved:

• The nature of Naiad Rules facilitates the use of a graphical and thus easier to
comprehend model.

• Preconditions allow the combination of multiple rules, thereby enabling their
reuse for a gain in clarity and performance.

• The service oriented approach of Naiad enables easy integration of new services
that depend on Naiad Rules or that Naiad Rules can depend on.

The lack of a graphical editor is of course the biggest shortcoming towards the full
exploitation of all benefits. But as this has been kept in mind throughout the whole
development phase of Naiad Rules, it is possible to create such an editor without
requiring any modifications on Naiad Rules itself.

The SARI Model incorporates some shortcomings with ambiguous definitions of
events in certain rule patterns. Those are resolved by introducing Ancestor Identifiers
to Naiad Rules. They are a convenient and easily configurable way to distinctively refer
to specific events in a theoretically endless chain of preceding rules. Being completed
by this new concept, Naiad Rules is now powerful enough to handle a lot of real-life
business situations out of the box, that is without requiring additional programming.

91

8 Conclusion

Hence more power has been given from the programmers to technically less experienced
business analysts and domain engineers. This is even amplified by the fact, that the
setup or modification of Naiad Rules’ configuration is very quickly done - even without
some intuitive graphical editor.

With some creativity Naiad Rules can be utilized to implement common features
of CEP too, such as Filters, Maps, Event Processing Networks or Distributed Event
Detection. It has to be admitted however, that all those patterns can only be achieved
implicitly, through tricky combination of certain rules, which makes greater demands
on the personnel trying to configure Naiad. Here, again, an adequate editor tool could
be of great value as it could act as a translator between the explicit definition of CEP
patterns and their implicit configuration in Naiad.

There are of course features that cannot be implemented, though there are promising
approaches to make that possible with probably only minor enhancements to the core
concept.

As a proof of concept, the ideas of Naiad Rules were successfully implemented into
Naiad. Though some unforeseen problems needed to be resolved, it was shown that,
just like it was assumed, this approach still was significantly faster to implement
than any solution built from the scratch. It is totally non-intrusive, meaning that no
modifications whatsoever (except for bugfixes) had to be made to the existing core of
Naiad.

Naiad Rules has proved to be fast enough for many standard business situations.
Unfortunately the correlation- and session-handling of Naiad itself constitutes a prob-
lematic bottleneck to the overall performance of the system, while the rule-handling
part itself consumes comparatively few resources. Tests revealed that for certain do-
mains and situations Naiad’s performance is more than disappointing.

In the end it is naturally inherent to the presented solution, that it can never achieve
the same grade of performance as any specifically developed solution. But that is the
same with any generic concept in information technologies.

Nevertheless and because Naiad and Naiad Rules offer a couple of options for the
distribution of their services, it presumably is fast enough for the greatest part of
all common business situations. And even with costlier and thus faster hardware it
probably still is the cheaper alternative.

Within their relatively low cost of implementation, setup and maintenance lies the
biggest advantage of Naiad and Naiad Rules, as they provide a rich spectrum of
possibilities out of the box nevertheless. Being simple to be set up for a specific
domain in the first place, but offering space for further enhancements, they can serve
as both, a quick and painless entry to the world of Complex Event Processing or a
powerful tool in the struggle to conquer daily growing avalanches of data.

92

9 Outlook

9.1 Further Research Topics

Currently neither Naiad nor any of its core services are able to save their current state
and “go to sleep”. Solving this initialization- and restart-problem is the main
key for crash recovery strategies, which are vital for many real-life usage scenarios.

Related to that is the modification of rules at runtime. Though Drools sup-
ports the modification of its rule sets on the fly, this can not be leveraged by Naiad
Rules, because some way to handle all those “meta-constraints” (see section 4.2) in a
predictable and reasonable way is yet to be found.

Though SARI Rules were targeted to be configured with a graphical editor, such a
tool is still missing for Naiad Rules. Besides reducing the error-proneness of manually
messing with XML documents, it could provide helpful features like the basic verifica-
tion of a user’s input and auto-completion. Further it would help to understand and
manage large sets of rules much faster than without any graphical preparation. If you
remember section 1.4.2, this was one of the key requirements on a CEP application.

Depending on the rules and the number of incoming events per time-unit, events
might arrive out of order when their order is important. Even if they do arrive in
order, their order might change due to the SEDA [38] model implemented in Na-
iad: Because some events might take more time to be processed than others, one
event might “overtake” another one while they are in the same UMO, but in different
threads. So currently Naiad can only provide Best-Effort Detection, but not Guar-
anteed Detection [16] of sequences of events. The latter however could be helpful
or even necessary in a couple of situations.

In [12] Luckham presented parents of rules. Those are like data-containers able to
hold a state, which can be accessed and modified by a rule. Using Drools, this could be
easily implemented using Drools’ concept of globals, with the WorkingMemory being
the parent of a rule. What still needs to be developed is a convenient way of how
to express the definition of and the access to data objects in a rules parent in Naiad
Rules’ XML configuration.

However it is done, this feature would dramatically increase the potential of what
can be done with Naiad Rules (see section 5.5.1), and possibly enable the calculation
of metrics at the same time. Sums, averages, maximum/minimum values - they all
require some kind of state for their calculation. Vecera [34] suggested to use the

93

9 Outlook

correlation session as temporary storage for metric calculation. This is an alternative
to using Drools’ WorkingMemory, with some advantages and disadvantages, that have
to be evaluated yet.

The count of some kind of event is another valuable information in a lot of domains.
For example the count of error messages within a certain time interval [19]. This could
be implemented with a stateful parent as well.

Being able to handle events that contain sets of attributes rather than only simple
name/value-pairs would greatly improve Naiad’s power as well. Section 5.5.2 gave an
example.

In [24] the concept of inheritance of event types is presented. This should not
be too difficult to implement in a Java environment, that knows about such concepts
out-of-the-box, but would add great value to Naiad’s power. Drools is able to check for
types of facts using Java’s instanceof operator, which makes things even more simple.
However, some implementational work still needs to be done to use that feature (see
section 9.2), and once again a convenient way to configure this has to be found yet.

[24] presents some interesting similar concepts, the usage of which in Naiad could
be evaluated as well after inheritance has been implemented.

The solution to the retriggering problem (see section 4.2) is not a very beautiful
one. It is more a sacrifice that had to be made to enable the predictable and clean
merging of WorkingMemories and thus of correlation sessions. Another solution, which
does not prohibit the repeated triggering of rules, but would still prevent the accidental
triggering on a merge, would give a lot more freedom to what domain engineers can
do using rules. At best it would be totally configurable, whether a rule is allowed to
trigger once, limitless or for a fixed amount of times.

9.2 Ongoing Development in Naiad

One major task for the near future is to make the services of Naiad truly distributable.
For this the Session Manager as a core feature must be distributable, and adequate
Mule transformers must be written that enable the transmission of events from one
virtual machine to another. The latter is a trivial task. As for the Session Manager
efforts are currently made to follow an approach of space-based computing.

As described earlier in section 4.2, the check for an event’s type is transformed to
just another constraint in a pattern. But the Rete algorithm defines a special kind of
node, that checks for a fact’s type and that is always the first node a fact has to pass
in the network. In Drools those nodes are called Object Type Nodes, and utilize Java’s
instanceof operator, which might make things a little faster. Dynamically creating
bytecode for one Java class per event type is not too difficult, but as mentioned in
section 6.1.2 quite complex and cumbersome, and has therefore be postponed so far.

94

9.2 Ongoing Development in Naiad

Currently the calculation of metrics in Naiad is only possible with custom-written,
for most parts non-reusable services. A reusable solution that could be configured
without any programming skills and maybe with some graphical editor would be a
very valuable addition to Naiad’s core services. Studies are already made towards
that direction.

95

9 Outlook

96

Bibliography

[1] Apache Software Foundation. Apache Velocity. http://velocity.apache.org,
September 2008.

[2] Apache Software Foundation. Lucene Webpage. http://lucene.apache.org,
September 2008.

[3] Kent Beck, Erich Gamma, et al. JUnit. http://www.junit.org, October 2008.

[4] Shyh-Kwei Chen, Jun-Jang Jeng, and Henry Chang. Complex Event Processing
using Simple Rule-Based Event Correlation Engines for Business Performance
Management. In CEC-EEE ’06: Proceedings of the The 8th IEEE International
Conference on E-Commerce Technology and The 3rd IEEE International Confer-
ence on Enterprise Computing, E-Commerce, and E-Services, page 3, Washing-
ton, DC, USA, 2006. IEEE Computer Society.

[5] James Clark and Steve DeRose. XML Path Language (XPath). http://www.w3.
org/TR/xpath, November 1999.

[6] EsperTech Inc. Esper. http://esper.codehaus.org, January 2008.

[7] Charles Forgy. Rete: A Fast Algorithm for the Many Patterns/Many Objects
Match Problem. Artif. Intell., 19(1):17–37, 1982.

[8] Charles Lanny Forgy. On the efficient implementation of production systems.
PhD thesis, Pittsburgh, PA, USA, 1979.

[9] JBoss Labs. Drools Webpage. http://labs.jboss.com/drools/, January 2008.

[10] Ralph Kimball and Joe Caserta. The Data Warehouse ETL Toolkit. John Wiley
& Sons, 2004.

[11] David C. Luckham. Rapide: A Language and Toolset for Simulation of Dis-
tributed Systems by Partial Ordering of Events. In DIMACS Partial Order Meth-
ods Workshop IV. Princeton University, 1996.

[12] David C. Luckham. The Power of Events: An Introduction to Complex Event Pro-
cessing in Distributed Enterprise Systems. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2001.

[13] David C. Luckham. Whats the Difference Between ESP and CEP? Online Article,
August 2006.

97

http://velocity.apache.org
http://lucene.apache.org
http://www.junit.org
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://esper.codehaus.org
http://labs.jboss.com/drools/

Bibliography

[14] Microsoft. .NET Webpage. http://www.microsoft.com/NET/, September 2008.

[15] MS Analog Software kb. Rulecore Webpage. http://www.rulecore.com, January
2008.

[16] Gero Mühl, Ludger Fiege, and Peter R. Pietzuch. Distributed Event-Based Sys-
tems. Springer, 2006.

[17] Mule Source Inc. Mule Open Source ESB Webpage. http://mule.mulesource.
org/display/MULE/Home, January 2008.

[18] Yefim Natis. Service-Oriented Architecture Scenario. Technical Report AV-19-
6751, Gartner Research, April 2003.

[19] Wu Peng, R. Bhatnagar, L. Epshtein, M. Bandaru, and Shi Zhongwen. Alarm
Correlation Engine (ACE). In Network Operations and Management Symposium,
1998. NOMS 98., IEEE, volume 3, pages 733–742, 1998.

[20] PostgreSQL Global Development Group. PostgreSQL Webpage. http://www.
postgresql.org, September 2008.

[21] Chris Reade. Elements of functional programming. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1989.

[22] Szabolcs Rozsnyai. Efficient Indexing and Searching in Correlated Business Event
Streams. Master’s thesis, Vienna University of Technology, 2006.

[23] Szabolcs Rozsnyai. Managing Event Streams for Querying Complex Events. PhD
thesis, Vienna University of Technology, 2008.

[24] Szabolcs Rozsnyai, Josef Schiefer, and Alexander Schatten. Concepts and models
for typing events for event-based systems. In DEBS ’07: Proceedings of the 2007
inaugural international conference on Distributed event-based systems, pages 62–
70, New York, NY, USA, 2007. ACM.

[25] Marian Schedenig. Leveraging ESB and SEDA Technologies for Complex Event
Correlation. Master’s thesis, Vienna University of Technology, 2008.

[26] Josef Schiefer and Carolyn McGregor. Correlating Events for Monitoring Business
Processes. In ICEIS (1), pages 320–327, 2004.

[27] Josef Schiefer, Szabolcs Rozsnyai, Christian Rauscher, and Gerd Saurer. Event-
Driven Rules for Sensing and Responding to Business Situations. In DEBS ’07:
Proceedings of the 2007 inaugural international conference on Distributed event-
based systems, pages 198–205, New York, NY, USA, 2007. ACM.

[28] Josef Schiefer and Andreas Seufert. Management and Controlling of Time-
Sensitive Business Processes with Sense & Respond. In CIMCA/IAWTIC, pages
77–82, 2005.

98

http://www.microsoft.com/NET/
http://www.rulecore.com
http://mule.mulesource.org/display/MULE/Home
http://mule.mulesource.org/display/MULE/Home
http://www.postgresql.org
http://www.postgresql.org

Bibliography

[29] Senactive GmbH. Senactive GmbH Webpage. http://www.senactive.com, Jan-
uary 2008.

[30] SpringSource. Spring Webpage. http://www.springframework.org, September
2008.

[31] Sun Microsystems. Java Webpage. http://java.sun.com, January 2008.

[32] The Perl Foundation. PERL Webpage. http://www.perl.org, September 2008.

[33] R. Vaarandi. SEC - A Lightweight Event Correlation Tool. 2002.

[34] Roland Vecera. Efficient Indexing, Search and Analysis of Event Streams. Mas-
ter’s thesis, Vienna University of Technology, 2007.

[35] Vienna UT Information & Software Engineering Group. IFS Webpage. http:
//www.ifs.tuwien.ac.at, September 2008.

[36] P. Vrba. MAST: manufacturing agent simulation tool. Emerging Technologies and
Factory Automation, 2003. Proceedings. ETFA ’03. IEEE Conference, 1:282–287
vol.1, Sept. 2003.

[37] Pavel Vrba and Vladimir Marik. Simulation in agent-based control systems:
MAST case study. Technical report, Rockwell Automation Research Center, 2005.

[38] Matt Welsh, David Culler, and Eric Brewer. SEDA: An Architecture for Well-
Conditioned, Scalable Internet Services. In Proceedings of the Eighteenth ACM
Symposium on Operating Systems Principles (SOSP 2001), pages 230–243. ACM
Press, October 21–24 2001.

99

http://www.senactive.com
http://www.springframework.org
http://java.sun.com
http://www.perl.org
http://www.ifs.tuwien.ac.at
http://www.ifs.tuwien.ac.at

Bibliography

100

A Configuration of Naiad Rules with
Drools and Velocity

A.1 Connecting Naiad Rules to the Correlation Server

Before any rules can be processed, one or more rule agents have to be instantiated
and connected to Naiad’s Correlation Services in the Mule configuration as shown in
figure 6.2. Listing A.1 exhibits a minimal but complete sample configuration of Mule,
including all agents, connectors, transformers and UMOs necessary for a working Naiad
server.

1 <?xml version="1.0" encoding="UTF -8"?>

2 <mule -configuration id="EventServer_SAW" version="1.0">

3

4 <description >

5 This mule configuration file configures all necessary umo , transformer and

endpoints to be used by the event server

6 </description >

7

8 <agents >

9 <agent name="naiadManager" className="at.ac.tuwien.ifs.naiad.core.

NaiadManager">

10 <properties >

11 <property name="configFile" value="naiad.xml"/>

12 </properties >

13 </agent >

14 <agent name="ruleAgent" className="at.ac.tuwien.ifs.naiad.core.rule.drools.

DroolsRuleAgent">

15 <properties >

16 <property name="configFile" value="naiadRules.xml"/>

17 </properties >

18 </agent >

19 <agent name="responseEventGenerator" className="at.ac.tuwien.ifs.naiad.core

.rule.velocity.VelocityResponseEventGenerator">

20 <properties >

21 <property name="typeXPath" value="//@type"/>

22 </properties >

23 </agent >

24 </agents >

25

26 <connector name="jmsConnector" className="org.mule.providers.jms.JmsConnector"

>

27 <properties >

28 <property name="connectionFactoryJndiName" value="ConnectionFactory"/>

29 <property name="jndiInitialFactory" value="org.activemq.jndi.

ActiveMQInitialContextFactory"/>

30 <property name="specification" value="1.1"/>

101

A Configuration of Naiad Rules with Drools and Velocity

31 <map name="connectionFactoryProperties">

32 <property name="brokerURL" value="vm:// localhost"/>

33 <property name="brokerXmlConfig" value="classpath:activemq.xml"/>

34 </map >

35 </properties >

36 </connector >

37

38 <transformers >

39 <transformer name="ActiveMQTransformer" className="at.ac.tuwien.ifs.naiad.

core.transformer.ActiveMQToXMLEvent" returnClass="at.ac.tuwien.ifs.naiad

.core.event.IEvent">

40 <properties >

41 <property name="XPath" value="//@type" />

42 </properties >

43 </transformer >

44 </transformers >

45

46 <model name="SAW_EventServer">

47

48 <mule -descriptor name="UuidUmo" implementation="at.ac.tuwien.ifs.naiad.core.

umo.UuidUmo">

49 <inbound -router >

50 <endpoint address="jms :// MyDestination" transformers="

ActiveMQTransformer"/>

51 </inbound -router >

52 <outbound -router >

53 <router className="org.mule.routing.outbound.OutboundPassThroughRouter">

54 <endpoint address="vm:// uuid"/>

55 </router >

56 </outbound -router >

57 </mule -descriptor >

58

59 <mule -descriptor name="CorrelationUmo" implementation="at.ac.tuwien.ifs.

naiad.core.umo.CorrelationUmo">

60 <inbound -router >

61 <endpoint address="vm:// uuid"/>

62 </inbound -router >

63 <outbound -router >

64 <router className="org.mule.routing.outbound.MulticastingRouter">

65 <endpoint address="vm:// correlated"/>

66 </router >

67 </outbound -router >

68 <properties >

69 <property name="correlationManagerId" value="correlationManager"/>

70 <property name="sessionManagerId" value="sessionManager"/>

71 </properties >

72 </mule -descriptor >

73

74 <mule -descriptor name="RuleUmo" implementation="at.ac.tuwien.ifs.naiad.core.

umo.RuleUmo">

75 <inbound -router >

76 <endpoint address="vm:// correlated"/>

77 <endpoint address="vm:// stateChange"/>

78 </inbound -router >

79 <outbound -router >

80 <router className="org.mule.routing.outbound.OutboundPassThroughRouter">

81 <endpoint address="vm:// ruleResponseEvents"/>

82 </router >

83 </outbound -router >

84 <properties >

85 <property name="sessionManagerId" value="sessionManager"/>

86 <property name="ruleAgentId" value="ruleAgent"/>

102

A.2 Defining Rules

87 <property name="responseEventGeneratorId" value="responseEventGenerator"

/>

88 </properties >

89 </mule -descriptor >

90

91 </model >

92

93 </mule -configuration >

Listing A.1: Mule configuration for a sample Naiad server

Three parts of listing A.1 are important for Naiad rules:

• The RuleUmo, which listens for events leaving the CorrelationUmo and status-
events, and which publishes Response Events on the vm://ruleResponseEvents
endpoint. The names of the Session Manager, Rule Agent and Response Event
Generator it should use are injected here too.

• The Rule Agent that loads and manages a set of rules. All configuration of
rules is done in the separate file naiadRules.xml, which is explained in detail
in the next section.

• The Response Event Generator, implemented as Mule Agent. Because it
creates IEvents, it must know a XPath selector which points to the type of a
Response Event within its XML representation.

A.2 Defining Rules

All rule-related configuration in Naiad is done in a file separate from any other settings.
This helps a little to keep things organized. Further, if multiple Rule Agents are
configured each one has its own file for configuration, facilitating quick distribution
among different virtual machines at a later point in time.

The general skeleton for Naiad Rules’ configuration is shown in listing A.2.

1 <?xml version="1.0" encoding="UTF -8"?>

2 <ruleAgent >

3

4 <xPathMapping >

5 <!-- All XPathMappings go here. 3 examples follow: -->

6 <mappingItem xPath="// payload[@key=’WorkpieceId ’]" fieldName="workpieceId"

type="string" />

7 <mappingItem xPath="// @timestamp" fieldName="timestamp" type="date" />

8 <mappingItem xPath="//@id" fieldName="eventId" type="integer" />

9 </xPathMapping >

10

11 <!-- All definitions of rules and Response Events go here -- >

12

13 </rule >

Listing A.2: General skeleton for Naiad Rules’ configuration

103

A Configuration of Naiad Rules with Drools and Velocity

Listing A.3 shows a sample definition of a rule (myFirstRule), that exhibits all
features for such.

An AND-precondition depends on two other rules (aRule and anotherRule). Those
are named firstConditionAI and secondConditionAI to be referenced in any An-
cestor Identifiers of this rule.

The pattern named productFinishedPattern matches any event of type evt-
ProductFinished, for it does not contain any constraints.

The pattern named workpieceInPattern references to any event that triggered the
rule aRule and was identified as workpieceInPattern there as well, and matches the
pattern’s additional constraints.

Constraints can be nested in cascades of andConstraintConnectives and orCons-
traintConnectives.

Constraints can either be literalFieldConstraint comparing an event’s fields to
some constant, or variableFieldConstraints comparing fields to a field of the same
or another event. Whether the former or the latter is the case is determined by the
absence of presence of a ’.’ in the variableName attribute.

1 <rule identifier="myFirstRule">

2 <precondition type="AND" identifier="cause">

3 <preconditionItem causingRule="aRule" identifier="firstConditionAI"/>

4 <preconditionItem causingRule="anotherCondition" identifier="

secondConditionAI"/>

5 </precondition >

6 <pattern type="evtProductFinished" identifier="productFinishedPattern"/>

7 <pattern ancestorIdentifier="firstConditionAI.workpieceInPattern" identifier="

workpieceInPattern">

8 <literalFieldConstraint fieldName="workpieceId" evaluator="==" value="1234"

/>

9 <andConstraintConnective >

10 <orConstraintConnective >

11 <literalFieldConstraint fieldName="workpieceId" evaluator="==" value="

1234" />

12 <literalFieldConstraint fieldName="workpieceId" evaluator="==" value="

5678" />

13 </orConstraintConnective >

14 <variableFieldConstraint fieldName="timestamp" evaluator="<"

variableName="productFinished.timestamp" />

15 </andConstraintConnective >

16 </pattern >

17 </rule >

Listing A.3: A sample rule definition in Naiad Rules’ configuration

Listing A.4 shows a sample definition of a Response Event in Naiad Rules. For a
Response Event, only a precondition and a template name have to be defined. The
template name can be any string that can be interpreted by the connected Response
Event Generator (see listing A.1 about how to connect a REG).

104

A.3 Defining Response Events

1 <responseEvent identifier="myResponseEvent" template="myResponseEvent.vm">

2 <precondition type="OR" identifier="cause">

3 <preconditionItem causingRule="aRule" />

4 <preconditionItem causingRule="anotherRule" />

5 </precondition >

6 </responseEvent >

Listing A.4: A sample definition of a Response Event in Naiad Rules’ configuration

A.3 Defining Response Events

With the Velocity based Response Event Generator of Naiad Rules, Response Events
are directly created from XML templates, where placeholders point to attributes of
triggering events. Listing 6.7 has already shown a simple template.

The variable $data holds all preconditionItems of a Response Event. Those in
turn hold all events that triggered the preconditionItem, identified by the matching
pattern’s identifier. Finally all xPath-mapped fields of those events can be accessed
from them. Additionally the REG provides a variable named $now, which provides
the current timestamp with an optional formatting feature.

Naturally the Velocity based REG could have created events of any form, not just
XML, but with events represented as a XML document lots of already existing code
in Naiad’s core could be used.

105

A Configuration of Naiad Rules with Drools and Velocity

106

B Configuration of Common Patterns

B.1 Filters

1 <event type="evtWorkpieceIn" timestamp="$data.contextPI.wpInPattern.timestamp">

2 <payload key="palletId">$data.contextPI.wpInPattern.palletId </payload >

3 <payload key="machineId">$data.contextPI.wpInPattern.machineId </payload >

4 </event >

Listing B.1: Configuration of the Velocity based REG for example in figure 5.1

B.2 Maps

1 <event type="evtWorkpieceProcessed" timestamp="$data.wpOutPI.wpOutPattern.

timestamp">

2 <payload key="palletId">$data.wpInPI.wpInPattern.palletId </payload >

3 <payload key="machineId">$data.wpInPI.wpInPattern.machineId </payload >

4 #set($busyTime = $data.wpOutPI.wpOutPattern.timestamp - $data.wpInPI.wpInPattern

.timestamp)

5 <payload key="busyTime">$busyTime </payload >

6 </event >

Listing B.2: Configuration of the Velocity based REG for example in figure 5.2

B.3 Event Processing Networks

1 <event type="metaOutEvent" timestamp="$data.wpOutPI.wpOutPattern.timestamp">

2 <payload key="machineId" >1</payload >

3 <payload key="product">D</payload >

4 #set($machine1cost = 10)

5 #set($cost = $data.aInPI.aInPattern.cost + $data.bInPI.bInPattern.cost + $data.

cInPI.cInPattern.cost + $machine1cost)

6 <payload key="cost">$cost </payload >

7 </event >

Listing B.3: Configuration of the Velocity based REG for example in figure 5.4

107

B Configuration of Common Patterns

108

C Testsystem

The testsystem used for this work was a mobile notebook for personal use at the low
end of up-to-date computers:

• Intel Centrino 1.7 GHz

• 1 GB RAM (512 MB reserved memory for the Java VM)

• 5400rpm HDD

• Operating System: Ubuntu 8.04.1 hardy with 2.6.24-21-generic i686 Linux kernel

109

	1 Introduction
	1.1 Events and their Relevancy
	1.1.1 Definition of Events
	1.1.2 Importance of Events
	1.1.3 Layers of Interest

	1.2 Complex Event Processing
	1.2.1 From Complex to Correlated and Composite Events
	1.2.2 Advantages of Complex Event Processing
	1.2.3 What is Complex Event Processing not?

	1.3 BRM Systems and Expectations for Complex Event Processing
	1.4 Subject and Motivation of this Work
	1.4.1 The Sense and Respond Paradigm
	1.4.2 Requirements to a Rule Engine based CEP Application
	1.4.3 Anticipated Benefits
	1.4.4 Delimitations

	1.5 SAW: Simulation of Assembly Workshops

	2 Related Work
	2.1 A short History of Naiad
	2.2 The SEDA Model
	2.3 Separation of Correlation and Rule Processing
	2.4 SARI Rules
	2.5 Similar Concepts and Projects

	3 Naiad - an Event Correlation Server
	3.1 XML based Events
	3.2 Correlation and Sessionhandling as Core Features
	3.3 Configuring Naiad: Correlations and Bridges

	4 Applying a Conventional Rule Engine to Complex Event Processing
	4.1 Types of Rules
	4.2 Transforming Naiad Rules to Conventional Rules
	4.3 Ancestor Identifiers
	4.3.1 Transforming Ancestor Identifiers

	4.4 Response Events

	5 Implementing Common Patterns of Complex Event Processing
	5.1 Filters
	5.2 Maps
	5.3 Event Processing Networks
	5.4 Distributed Event Detection
	5.5 Naiad's Limitations
	5.5.1 Constraints
	5.5.2 Cut and Join

	6 Connecting a Rule Engine to Naiad
	6.1 The Rule Engine - JBoss Drools
	6.1.1 The Rete Algorithm
	6.1.2 The Mapping Problem and its Solution

	6.2 The Response Event Generator - Apache Velocity
	6.3 Integration
	6.4 Testing
	6.5 Bottlenecks
	6.5.1 Using Multiple Session Managers

	7 Results and Findings
	7.1 Development
	7.2 Configurability
	7.3 Performance
	7.3.1 The completenessTimeout Problem

	8 Conclusion
	9 Outlook
	9.1 Further Research Topics
	9.2 Ongoing Development in Naiad

	A Configuration of Naiad Rules with Drools and Velocity
	A.1 Connecting Naiad Rules to the Correlation Server
	A.2 Defining Rules
	A.3 Defining Response Events

	B Configuration of Common Patterns
	B.1 Filters
	B.2 Maps
	B.3 Event Processing Networks

	C Testsystem

