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Chapter 2

Background

2.1 Fundamentals

2.1.1 Overview

In this section an overview of the most important terms used in this thesis is given.
The depth of the background knowledge presented here should be enough for any
reader to gain enough insight into the topic to interpret the results of this thesis.

Most elementary terms come from the field of operation systems and have their
roots in single-processor systems. In many cases the terminology was just extended
to cover also systems that allow concurrent processing. Nevertheless, concurrency
itself introduces some new problems that are simply inexistent in a system with
strictly sequential execution. This section covers the theory vital for this thesis by
following this historical development from nonparallel to parallel systems.

2.1.2 Atomicity

A sequence of commands is said to be executed atomically if they are executed as
if they were a single instruction.

2.1.3 Processes

According to [Sta01] the term process is used here as a synonym for a program
in execution, that is all its data whether it is part of the program itself or the
operating platform that executes that process. The system-dependent part of the
process is called the context of the process, all the data regarding a process are
the working set of this process.
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Implementation and Performance
of Synchronization Methods

for
Dual-Core

Engine Control-Systems

Multiple parallel processing cores are about to conquer embedded systems as well
- the roadmaps of leading semiconductor companies certify this: it is not the ques-
tion of whether they are coming but how the architectures of the microcontrollers
should look in respect to the strict demands in the automotive sector. In this
thesis the step from one to multiple cores is presented, establishing coherence and
consistency for different types of shared memory by soft- and hardware means.
Also support for point-to-point synchronization between the processor cores is re-
alized implementing different methods. Though the theoretical approach using
simulations is independent of the number of processing units, the practical exam-
inations focus on the logical first step from single- to dual-core systems, using an
FPGA-development board with two hard PowerPC - processor cores. Best- and
Worst-case results, together with intensive benchmarking of all synchronization
primitives implemented, show the expected superiority of the hardware solutions.
It is also shown that dual-ported memory outperforms single-ported memory if
the multiple cores use inherent parallelism by locking shared memory more intel-
ligently using a locking-method developed in this thesis. Simple global locking of
the whole shared memory alone prevents any parallel access on principle. In the
worst case multiple-ported memory degenerates in performance to single-ported
memory. However, the conditions that must be fulfilled for this worst case to occur
do not seem to be realistic for practical applications in the field.



Implementierung und Performanz
von Synchronisationsmethoden

für
Antriebssoftware auf
Zweikernsystemen

Mehrere parallele Prozessorkerne sind auch bei den eingebetteten Systemen im An-
marsch - die Pläne von führenden Halbleiterherstellern bezeugen dies: es ist nicht
die Frage ob sie kommen sondern vielmehr wie die Architekturen der Mikrocontrol-
ler unter Berücksichtigung der strengen Anforderungen im Automobilsektor aus-
sehen sollen. In dieser Diplomarbeit wird der Schritt von einem zu mehreren Pro-
zessorkernen unternommen, unter Verwendung von Mechanismen in Software und
Hardware wird Kohärenz und Konsistenz von unterschiedlichen Typen von geteil-
tem Speicher hergestellt. Auch Unterstützung für Punkt-zu-Punkt Synchronisation
zwischen den Prozessorkernen wird durch verschiedene implementierte Methoden
realisiert. Obwohl der theoretische Ansatz mithilfe von Simulationen unabhängig
von der Anzahl der Prozessorkerne ist konzentrieren sich die praktischen Unter-
suchungen auf den logischen ersten Schritt von einem Ein- zu einem Zweikern-
system, unter Verwendung einer FPGA-Entwicklungsplatine mit zwei PowerPC-
Prozessorkernen. Resultate des besten und schlechtesten Falles zeigen, zusammen
mit intensiven Vergleichstests aller implementierten Synchronisationsprimitiven,
die erwartete Überlegenheit der Hardwarelösungen. Es wird auch gezeigt wie ein
Speicher mit zwei Ports einem Speicher mit nur einem Eingang überlegen ist,
falls die mehreren Prozessorkerne inhärente Parallelität unter Verwendung einer
in dieser Diplomarbeit vorgestellten Methode zur Speicherreservierung intelligenter
nutzen. Allein eine simple globale Reservierung des gesamten geteilten Speichers
verhindert eine parallele Nutzung grundsätzlich. Im schlimmsten Fall degeneriert
die Performanz eines Speichers mit mehreren Ports zu der eines Speichers mit
nur einem Eingang, doch die Bedingungen die zu diesem schlimmstmöglichen Fall
führen scheinen für Anwendungen in der Praxis nicht realistisch zu sein.
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Chapter 1

Introduction

Parallelism is a rising star in the automotive sector, its advent is inevitable and is
happening right now. The road map of leading semiconductor companies shows
that multi-core chips will be introduced within the next couple of years. It is
almost certain that in the next decade vehicles will be controlled by multi-core
microcontrollers following the development of microprocessors in other areas.

The subject for this thesis originates in the growing demand for resources in the
automotive sector. Electronic architectures in automobiles face a continuous in-
crease in functionality, and the correspondingly increasing code requires additional
memory. To handle the new functions in time, additional computational power is
needed too. Single-core solutions are now the standard in automobiles, but due to
the stringent environmental conditions the electronics must fulfill, increasing the
core frequency of the processor cores is much more limited than in other fields.

1



1.1. OUTLINE OF THESIS CHAPTER 1. INTRODUCTION

In this thesis we gather information on the performance of multi-core architectures
that seem usable for microcontroller designs in the automotive field. With the re-
sults, not only is judging conventional architectures easier, but it is also possible
to interpret the results to suggest new hardware designs. Of course it is clear that
the most efficient hardware architecture might not be the cheapest one. But since
the issue here concerns safety-critical systems, cost will or should not be the sole
criterion when looking at the results. Architectures that are quite common in the
commercial field might not yield enough improvement in performance to give a
significant advantage over a single-core system. Exploiting inherent parallelism in
the current engine control software for single-cores is a promising possibility to im-
prove the computational power. However, the complexity of today’s engine control
software makes it difficult to give an accurate estimate about the improvement to
expect. The change from single- to multi-core is not without pitfalls and requires
prudence. With an automobile being a safety-critical system, the testing alone
may prove tedious and unveil unexpected problems.

The advent of parallelism is notoriously renowned in the field of computer science
and there are enough examples that show how parallelism - in all its undeniable
benefit - introduces totally new kinds of problems which, unfortunately, are non-
trivial in the majority. However, with ever increasing miniaturization, introducing
parallelism is a natural next step in the evolution of any microprocessor architec-
ture (e.g. leading from the UltraSPARCI in 1995 to the dual-core 64b UltraSPARC
in 2003 [ea04c]).

1.1 Outline of Thesis

We explain the background including all relevant basic concepts and give a broad
overview of research done in the field of multiprocessing in chapter 2.

In chapter 3 the hardware platform used for this thesis is described briefly, then
our system is supplemented by software synchronization. We then try to improve
efficiency by using bus-slaves in hardware and analyze the results.

In the chapter 4 we complement the PowerPC dual-core system at hand with
hardware facilities to improve synchronization. The benchmarking results and
their interpretation is presented in chapter 5. A conclusion is given afterwards to
sum up the results and usefulness of this thesis’ results.

The appendix covers the vendor-specific step-by-step guide of the developed and
used digital flow both for the hardware and software.

Please note here that none of the ANSI C-, Assembler- nor VHDL-code is printed
in this thesis due to size limitations.

2



2.1. FUNDAMENTALS CHAPTER 2. BASICS

2.1.4 Resources

In any computer system there are resources that are needed by processes to execute
until their completion. Any operating system acts essentially as a resource con-
troller, managing the resources of a given system to guarantee correct operation.
The resources that must be managed are

• processor time

• memory

• devices

Also in systems that have only one processor there may be more than one process
at a time to use the time the processor must wait for relatively slower operations
like input-/output(i/o)-operations carried out by i/o-devices. The method that
introduced the sharing of the resources of as system between more than just one
process at a time is known as multiprogramming. With more than one program in
execution on a single processor the complexity of the operating system increases
significantly. The operating system must cope now with newly arisen problems
(→ 2.1.6), even though the system still has only one processing unit that must be
switched between the active processes.

2.1.5 The Memory Hierarchy, Caches

The term memory hierarchy comes from the fact that a system normally com-
prises different types of memory where the fastest memory coincides with the
highest costs and thus smallest amount ([Sta01], 1.5). Due to today’s high mem-
ory requirements there is almost always a high-capacity but slow memory present.
The slower the memory accessed the longer the waiting time introduced by waiting
cycles. To avoid such time-consuming access a small but faster memory called a
cache is used to buffer read values for further accesses or even buffer writes (write-
back cache) to the slower memory. Caches improve the average performance of a
system significantly. The reason for this is the inherent locality of data due to the
structure of the data used in programs (spatial locality) and the iterative, step-wise
nature of programs (temporal locality).

To learn more about locality and the memory-hierarchy see [Sta01].

4



CHAPTER 2. BASICS 2.1. FUNDAMENTALS

2.1.6 Process Interaction

Processes that are active at the same time might not be aware of each other. Ac-
cording to [Sta01] this makes them simply competitors for the available resources.
Coexistent processes can also be aware of each other, either because they were orig-
inally meant to cooperate directly to achieve their goals or because one process
depends on the results of another. Due to the new situation coexistent processes
create in a system, the operating system faces the following new control problems:

• Mutual Exclusion Resources that cannot be used by an arbitrary
number of processes at the same time are commonly called critical re-
sources, the section in the code of a program that accesses this resource
is called a critical section. The problem of how to guarantee exclusive
access to a resource is a new problem simply inexistent to systems
where only one process is allowed to be active.

• Deadlock A deadlock is a very uncomfortable situation where at least
one process cannot proceed its execution and is stuck. The processes
in a deadlock are waiting for resources that are not just currently but
indefinitely unavailable. It usually arises when process requests for crit-
ical resources are granted incrementally instead of granting all needed
resources at once, avoiding the possibility of another process to snap
up a still missing resource. But if the competitor never releases the
resource (maybe because this process is also waiting for a resource be-
fore proceeding, or because of a failure) - we are in a deadlock. This
problem is also possible if only one process can run at a time - but
more processes may be active (→ multiprogramming): so one process
can block all others and therefore the whole system.

• Livelock We speak of a livelock if mutual exclusion is guaranteed but
the relative speed between processes can lead to sequences of actions
that block each involved process. If processes are executed concurrently
and are they are both releasing and obtaining a resource that each other
wants, and this happens in a timely fashion that both of them cannot
get the wanted resource each time they want it - then it is said that
there is a livelock. A livelock may not go on forever, different relative
speeds of execution can lead to a break of this sequence of actions.
An easy example would be two processes that both set and reset their
corresponding flags at the same time. Then the two processes also
always test the others flag at the same time, always coming to the
conclusion the opponent is in the critical section - and both resetting
their flag without entering the critical section (s. [Sta01], section 5.2).
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• Starvation In the case of process-priorities regarding resources it could
happen that higher prioritized processes continuously access critical
resources, preventing a process with a lower priority to get its turn.
Also in the case that no priorities are present starvation might occur,
due to unfairness, different access-frequencies, failures (e.g. babbling
idiot), etc..

2.1.7 Mutual Exclusion on Single-Cores

One common method of enforcing mutual exclusion on critical resources is by
implicit synchronization ([Kop97], ch. 10) of the processes: the execution of the
active processes is organized such that no process is interrupted when accessing a
critical resource (simplest achieved by disabling interrupts [Sta01]). This requires
off-line analysis of the processes to generate a flawless schedule, then, since there
is only one processor, there cannot occur any conflicts at all. This method has the
obvious drawback of limited flexibility: the operating system cannot interrupt a
currently executing process at any arbitrary time.

A dynamic alternative to off-line analysis would be priority inheritance protocols
like the priority ceiling protocol for real-time systems. It avoids deadlocks despite
incremental requests for resources by elevating the priority of processes that are
in a critical section (s. [Kop97], ch. 11).

Another solution are locks : the interruption of processes is possible with the risk
that a currently locked resource is unavailable until the continuation of its locker.

2.1.8 From Multiprogramming to Multiprocessing

A computing system that contains more than one simultaneously working pro-
cessing unit is called a multiprocessor in case the processors all have access to a
commonly shared memory (key property of a multiprocessor according to [TvS02]).
In the case the processing units are even located on the same chip, today’s term
for this is a multi-core processor or chip-level multiprocessor (CMP). A processor
with only one processing unit is called a single-core processor.

On the other hand, a multicomputer is a system that interconnects physically
separated computer systems where each computer has its own private memory,
leading to the field of distributed systems (see [TvS02] for details on remotely
connected systems). The focus here as in this thesis lies on the current modern
variant of multiprocessors, the multi-core processors.

With multiple processing units available it is possible to execute more than just
one active process at a time, generating even more new problems, for instance:
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• Data coherence & consistency If processes are not just competing
for resources but also share them (like possibly memory), then the pro-
cesses must rest relaxed that the shared resource is always in a correct
state. Coherence is assured as long as there is only one processing unit
present in a system, but with more processes concurrently accessing a
shared resource that allows this it might happen that the shared re-
source is not consistent with the view of the accessing processes, that
is, the shared resource is not in a coherent, a correct state.

2.1.9 Synchronization

With truly parallel execution on multiprocessors and multi-core processors, im-
plicit ordering of the execution paths is not enough (s. next section). As in
dynamically scheduled uniprocessor systems it is necessary to provide ([CS99],
1.3)

• data synchronization ⇒ mutual exclusion

• event synchronization ⇒ informing other processes that a certain
point of execution is reached

In analogy, parallelism in problems themselves can be exploited using temporal
parallelism or data parallelism. An example for the former would be pipelining,
in the latter the data is split into independent parts. See [RM06] for more about
how to solve problems in parallel.

There are three major components of a synchronization event:

1. Acquire synchronization method

2. Waiting algorithm for the synchronization to become available

3. Release synchronization method, enabling other processes to proceed
pas a synchronization event

Waiting can be of type busy-waiting or blocking, whereas locking by busy-waiting
is not a preferred locking technique. From [CS99], 5.5.1:

Busy-waiting avoids the cost of suspension but consumes the pro-
cessor and cache bandwidth while waiting. Blocking is strictly more
powerful than busy-waiting because, if the process or thread that is
being waited upon is not allowed to run, the busy-wait will never end.
Busy-waiting is likely to be better when the waiting period is short, ...
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According to [CS99] and [Her88], a shared data structure is said to be lock-free
if the operations defined on it do not require mutual exclusion over multiple in-
structions. If the operations on the data structure guarantee that some process
will complete its operation in a finite amount of time, even if other processes halt,
the data structure is nonblocking. If it can be guaranteed that every process will
complete its operation in a finite amount of time, the data structure is wait-free.

2.1.10 Mutual Exclusion using Locks

With multiple physical processors explicit synchronization is needed to enforce
mutual exclusion when accessing critical resources. One common synchronization
mechanism is a lock. Critical resources may be protected by their corresponding
locks. A lock is taken by a process if that process successfully acquires it, giving
it the exclusive access to work with the resource corresponding to this lock. The
lock is said to be owned by that process. A lock is free if no process currently owns
it. Processes possessing a lock must release this lock as soon as they leave their
critical resource, otherwise other processes may starve or deadlocks might occur.

There are software algorithms to achieve mutual exclusion, mainly Dekker’s Al-
gorithm and Peterson’s Algorithm. They both have in common the continuous
looping until it is assured that the critical section can be entered exclusively. This
busy-waiting named looping is not very efficient, even more the first algorithm is
quite complex. Even worse, some prerequisites must be fulfilled by the underly-
ing memory-subsystem to guarantee the correctness of the algorithms, that is: a
sufficiently strong consistency model (s. 2.1.19). Also, the algorithms mentioned
in the previous paragraph work with dedicated flags to achieve mutual exclusion.
Those flags indicate whether one process has the right to enter its critical section
or not. Hence a kind of locking is achieved by the algorithms, but there is no
explicit single lock - all flags together represent the lock.

Hardware support for mutual exclusion is given primarily by special machine in-
structions that allow to manage a single memory cell to represent a single lock for
a given critical resource. According to the hierarchy introduced in [Her88], atomic
operations are ranked depending on their relative power (listed in ascending order):

1. atomic load/store

2. atomic Test and Set, Fetch and Store, Fetch and Add, Exchange

This means that atomic read/write registers that are safe (coherent), are less
powerful and therefore less useful in the construction of lock-free data-structures
than, for instance, the Test and Set instruction. Queues, lists etc. using primitives
of lower power would be considered in this ranking to be even more ”powerful”.
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2.1.11 Semaphores

A breakthrough in coping with concurrent processes was the introduction of
semaphores with Dijkstra’s treatise in 1965 [Dij65]. A semaphore is an abstract
structure that contains an integer value. Processes can cooperate with each other
by using a semaphore and issuing two kinds of signals to it:
a test- and an increment-signal. Both signals must be handled atomically. The
test-signal corresponds to a request, the targeted semaphore decrements its value.
The requesting process is blocked in case the semaphore’s value is negative. Leav-
ing a critical section a semaphore receives an increment-signal, resulting in an
increment to be applied to the semaphore-value. The greater the initial value
of a semaphore, the more processes can signal a test without being blocked. A
semaphore that implements a fair first-in-first-out (FIFO) queue for handling the
processes waiting for it is called a strong semaphore [Sta01].

The simplest type of semaphore is the binary semaphore - it corresponds with the
lock described in the previous section. However, one should not misunderstand a
semaphore for a lock - semaphores are not concerned with consideration of blocking
or busy-waiting. Semaphores introduce an additional level of abstraction, in prin-
ciple the signalling avoids busy-waiting and makes much more efficient scheduling
mechanisms possible (blocked processes could be easily detected and put into a
queue by the operating system). Nevertheless, in reality semaphores happen to be
implemented using locks and hardware-primitives like the test-and-set operation.
Of course this implementation is hidden from the applications using a semaphore.

2.1.12 Event Synchronization by Barriers

Event synchronization forces processes to come together at a certain point of exe-
cution. They enter the barrier, wait for the other processes and then all processes
leave the barrier together. Barriers can be used to separate distinct phases of com-
putation. However, according to [CS99], p.358 barriers are normally implemented
without special hardware-support, using locks and shared memory instead.

2.1.13 The Parallel Random Access Machine (PRAM)
Model

There exist some abstract models that can be used for designing parallel algo-
rithms without the need to concern about the underlying implementation of a
given system. Parallel algorithms are a major application for parallel systems. In
accordance with [RM06] we look at the PRAM-model as an abstraction of a par-
allel system, consisting of N identical processors, a shared memory and a memory-
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address unit (MAU) that allows all processors to access this shared memory. The
following acronyms are stated here for further usage in this thesis:

... a problem might arise when more than one processor tries to
access the same memory location at the same time. The PRAM model
can be subdivided into ... categories based on the way simultaneous
memory accesses are handled.

Exclusive Read Exclusive Write (EREW) PRAM In this model,
every access to a memory location (read or write) has to be exclusive.
This model provides the least amount of memory concurrency and
is therefore the weakest. Concurrent Read Exclusive Write (CREW)
PRAM In this model, only write operations to a memory location are
exclusive. Two or more processors can concurrently read from the same
memory location. This is one of the most commonly used models.

Other models exist, but are irrelevant considering the practical nature of this thesis.
It is pointed out here that the EREW model does not take any advantage of a
multi-ported memory - like on a bus, all accesses are exclusive and thus serialized.

2.1.14 Real-Time Systems (RTS)

Referring to [Kop97], if the correctness of a system not only depends on the correct
resulting values but also of their deliverance in time, then such a system is called
a real-time system. The time when a result must be available is called a deadline
(completion deadlines). The problem of ordering the execution of processes in a
way that all deadlines are met is called the scheduling problem and is nontrivial.
In order to give any guarantees about the correct function of a real-time system
the execution time of processes must be known in advanced, or more precise:
the longest execution time. This time is commonly referred to as the worst-case
execution time (WCET). Computing this time becomes more complicated the more
abstract the definition of the processes is. Speculative enhancements of designs
(caches, speculative execution, ...) increase unpredictability and result in relatively
rough estimates for the WCET. The WCET is an important area of research, an
introduction in the subject as well as a broad overview is given in [Sto06].

Many systems that are safety-critical are real-time systems per definition (e.g.
processes in nuclear plants, aeroplanes etc.). An automobile must also meet some
stringent timing requirements in order to react to its user’s input in-time, for
instance the break- or steer-by-wire units.
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2.1.15 Fault-Tolerant Systems (FTS)

Closely related to RTS are fault-tolerant systems, introducing or using present
redundancy in resources to be able to handle errors (the results of faults) that
might lead to failures of a system. The seriousness of errors that might be tolerated
by a given FTS depends on the amount of redundancy and the mechanisms used.

Fault tolerance is not a focus in this thesis. It is mentioned here for completeness
and to point out alternative usages of multiple processing cores in this field . Refer
to [TvS02] for fault-tolerance in distributed systems and [Kop97] for fault-tolerance
regarding real-time systems.

2.1.16 Architectures of Multiprocessor Systems

Figure 2.1: Architectures of multiprocessor systems, simplified

In accordance with [CS99] common types of small- to medium-scale multiprocessor
system-architectures are presented in figure 2.1. These architectures provide a
global physical address space, access to all of main memory is possible from any
processor. Such a system is often called a symmetric multiprocessor (SMP).
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Non-symmetric architectures are not considered here since they are irrelevant re-
garding this thesis.

Architecture of figure 2.1 (a) can make sense for a multi-core chip where the cores
would share an on-chip first-level cache. Besides that this architecture was used
mainly in the mid-1980s when it was typical to connect a low number of processors
on one motherboard. More common today is to have local first-level caches and
shared second-level caches.

Architecture of figure 2.1 (b) is the most common form for up to 20, 30 processors.
A bus shared amongst the processors connects them to the shared memory. The
number of processors to connect is limited by the bandwidth of the shared bus and
the efficiency of the local caches that decrease the average-case load on the bus.

Simplicity is supported by using a bus, but for a massive parallel systems con-
taining many processors a single shared bus might significantly limit performance.
Hence, to efficiently connect a large number of processors the bus must be replaced
by more efficient means of interconnections, typically a scalable point-to-point in-
terconnection network. In figure 2.1 (c) such an interconnection network is given
by links between each pair of processors. A link is a direct connection between
any two processors. With the number of links necessary for full point-to-point con-
nections in networks being a square function, pure linking can become too costly.
A switching network allows to connect any two processors in a network, but it
is possible that a connection cannot be established until other connections and
hence resources are released. This depends on the amount of communication and
the design of the switching network. Look into [CS99], chapter 10 for in-depth
information on interconnection network design.

The discrepancy between using a bus and using links or switches is quite apparent.
The results of this thesis make this difference also quite obvious.

2.1.17 Caches

Local caches reduce the average load on the bus, therefore increasing the number
of processors that can be connected. Still the worst-case would be to assume
all caches to be invalid, leading to a bus-load the interconnection network might
be unable to handle. But caches not only add unpredictability (which makes
them quite unattractive for real-time systems), they also introduce a new problem
in parallel systems called cache coherence. Burdened with these disadvantages,
caches become very uncomfortable in respect to real-time systems and are thereby
often avoided as a whole. As an example ([CS99]) the second-level cache of all
the 2048 alpha-processors of the CRAY T3D were deactivated simply to avoid the
longer accesses to shared memory introduced by cache-misses. A very comfortable
by-product: no cache, no cache-coherence to cope with.
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2.1.18 Coherence

The term coherence was already mentioned briefly in section 2.1.8. Coherence
in the uniprocessor case is a property that simply states that a read returns the
last value written. In the parallel case this gets more complicated since there
are parallel programs interacting such that a location in memory can be accessed
concurrently by different processes on different processors.

From [CS99] we take the definition of a coherent multiprocessor system:

... we say that a multiprocessor system is coherent if the results of any
execution of a program are such that, for each location, it is possible
to construct a hypothetical serial order of all operations to the location
... that is consistent with the results of the execution and in which

1. operations issued by any particularly process occur in the
order in which they were issued to the memory system by
that process, and

2. the value returned by each read operation is the value writ-
ten by the last write to that location in the serial order.

With this definition it is clear that all memory-accesses themselves must be atomic;
if they were not, reading a currently written memory location can result in an
arbitrary bit-value. Clearly, such a scrambled bit-value is not the result of any
total ordering of the processes involved. It is interesting to add here that a bus
simplifies this problem by its inherent property of serialization: only one action
can be done on the bus at one time (assuming a one-channel bus).

It should be obvious by now how caches complicate things by introducing cache-
coherence. Additional complex measures like bus-snooping (MESI, Dragon - s.
[CS99]) are necessary to guarantee coherence for the more complex caching-
methods as write-back caches. This additional overhead can be avoided by simply
using no caches, it eases the handling of real-time systems greatly (→ 2.1.14).

2.1.19 Consistency

In essence, coherence says that a written value will eventually become visible to
another processor core or other cores. But what is not defined is when this written
value becomes visible. In parallel programming it is often desired to establish an
order between reads and writes of a single and multiple programs or processes, in
more detail taken from [CS99] again:
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... Coherence says nothing about the order in which writes to different
locations become visible. ... A memory consistency model for a shared
address space specifies constraints on the order in which memory op-
erations must appear to be performed (i.e., to become visible to the
processors) with respect to one another. This includes operations to
the same locations or to different locations and by the same process
or different processes, so in this sense memory consistency subsumes
coherence.

Strict consistency is the most strict kind of consistency ([TvS02]:

The most stringent consistency model is called strict consistency. It
is defined by the following condition:
Any read on a data item x returns a value corresponding to the result
of the most recent write on x.

Since time is unambiguous in uniprocessor systems strict consistency is normally
present there. But in the multiprocessor case this consistency model might be far
too restrictive, maybe even severely limiting average performance. But it may well
be applicable for multi-core systems due to the common clocking on one chip-die.

As a form of weaker consistency sequential consistency is quite common for multi-
processor systems (also called linearizability). Weakening consistency even further
we go toward distributed systems with causal consistency, FIFO consistency, re-
lease consistency etc., for details on those also called data-centric as well as also
client-centric consistency models please look into chapter 6 of [TvS02].

Referring to the sufficient conditions for preserving sequential consistency in
[TvS02] it is easy to see that using a bus for interconnecting our processor cores
simplifies achieving this type of consistency by its inherent serialization. Still the
consistency model has to be guaranteed by the bus protocol itself. One must be
aware that it is easy to violate such a strict consistency model. For instance, pri-
orities assigned to different processor cores may lead to older requests for access
to be carried out after more recent accesses with a higher priority. So starvation
is also a clear violation of strict consistency. Even worse, if a compiler rearranges
the order of accesses to memory, consistency is violated before the hardware gets
involved. Hence it might be necessary to prevent such optimizations, e.g. by using
the keyword volatile when programming in ANSI-C.
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2.1.20 Scalability

Since this thesis is concerned only with small- to medium-scale multiprocessor
systems, large-scale multiprocessor systems may not seem important at all. Still,
looking at scalability may uncover some of the bottlenecks also present in small-
scale multiprocessor systems. For instance, looking at bus-based multiprocessor
systems it is stated in [CS99] that extending a bus increases the latencies, resulting
in lower usable bandwidth and thus lower maximum frequencies. More processors
or nodes connecting to the bus also degrade the signal quality and hence perfor-
mance. Clearly a bus-based system is not scalable over a certain technology-specific
point.

A glimpse at the early attempts to scale bus-based multiprocessor systems is given
in [ea93]:

The performance of earlier bus-based multiprocessor machines had
demonstrated performance degradation with more than four proces-
sors connected to the bus. Cache coherence traffic and bus contention
made more processors counterproductive.

It becomes obvious by studying the results of this thesis (s. chapter 5), the limita-
tions introduced by a bus are relevant also with only a few processor cores present,
in particular when performance is time-critical.

2.1.21 Transactional Memory (TM)

Transactions are a very useful abstraction, grouping a series of actions and exe-
cuting them with the following properties holding ([TvS02]):

The all-or-nothing property of transactions is one of the four char-
acteristic properties that transactions have. More specifically, transac-
tions are:

1. Atomic: To the outside world, the transaction happens in-
divisibly.

2. Consistent: The transaction does not violate system invari-
ants.

3. Isolated: Concurrent transactions do not interfere with each
other.

4. Durable: Once a transaction commits, the changes are per-
manent.

These properties are often referred to by their initial letters, ACID.
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In addition we state from [TvS02]:

A transaction that completes successfully commits and one that
fails aborts. ... we will call this property failure atomicity to dis-
tinguish it from a more expansive notion of atomic execution, which
encompasses elements of other ACID properties.

Transactions originate from database-design in the world of business where series’
of operations must be executed as a whole or none at all (like transfers on accounts).
The power of using transactions comes from the fact that if any action of the
transaction fails, the whole transaction has no side effect.

Transactional memory (TM) offers a modern and comfortable solution to introduce
more abstraction at the software designer’s level. As is written in [LR07]:

The basic idea is very simple. The ACI properties of transactions
provide a convenient abstraction for coordinating concurrent reads and
writes of shared data in a multi-threaded or multi-process system. Ac-
cesses to shared data originate in computations executing on concurrent
threads that run on one or more processors. ... Today, this coordi-
nation is the responsibility of a programmer, who has only low-level
mechanisms, such as locks, semaphores, mutexes, etc., to prevent two
concurrent threads from interfering. ... Transactions provide an alter-
native approach to coordinating concurrent threads. A program can
wrap a computation in a transaction. Failure atomicity ensures the
computation completes successfully and commits its result in its en-
tirety or it aborts. In addition, isolation ensures that the transaction
produces the same result as it would if no other transaction were ex-
ecuting concurrently. ... If a programmer’s goal is a correct program,
then consistency is important, since transactions may execute in unpre-
dictable orders. It would be difficult to write correct code without the
assumption that a transaction starts executing in a consistent state.
Failure atomicity is a key part of ensuring consistency.

Despite today’s hype for transactional memory consider this ([TvS02]):

Transactions are not a panacea. It is still (all too) easy to write an
incorrect concurrent program, even with transactional memory.

The concept and idea of transactional memory and the related work done in this
field (essentially hardware-acceleration, s. more in the succeeding section 2.2.3)
heavily influenced the development of this thesis.
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2.2 Related Work

A rough overview about the research and related work that is more or less related
to this thesis is given in this section. It must be noted here that general design
practice is mentioned along with references of concrete related work. An interesting
fact to point out is that in parallel systems performance is not always the main
concern. As can be seen in [ea04a], research is also concerned about how to reduce
die area and thus costs in parallel systems by let adjacent processor cores share
their resources (even caches, floating point units etc.) while trying to keep the
performance degradation as low as possible.

2.2.1 Mutual Exclusion

The criteria against which to judge any locking mechanism are [CS99]:

• low latency

• low traffic

• scalability

• low storage cost

• fairness

If the underlying hardware has no support for mutual exclusion, locking must be
done by software alone. Still, improving efficiency beyond the level pure software
approaches can offer needs support by an atomic test&set-, exchange-, swap-,
fetch&op- or compare&swap-instruction provided by the hardware. The atomicity
condition for these instructions must be fulfilled regarding all processors in the
system, not for one alone (chapter 3 shows what happens if this is violated).

According to [CS99] it becomes more common to implement a pair of special in-
structions to access a synchronized variable instead of a single read-write-modify
instruction as mentioned in the previous paragraph. From [CS99]:

The first instruction, commonly called load-locked or load-linked (LL),
loads the synchronization variable into a register. It may be followed by
arbitrary instructions that manipulate the value in the register - that
is, the modify part of the read-modify-write. The last instruction of the
sequence is the second special instruction, called a store-conditional. It
tries to write the register back to the memory location (the synchro-
nization variable) if and only if no other processor has written to that
location (or cache block) since this processor completed its LL.
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An example for a processor architecture that uses such a pair of special instructions
is the Power PC 405 used in this thesis ([IBM05] and [Xil07g], appendix D).

Some first implementations of locks in hardware used a set of lock lines on
the bus interconnecting the multiple processors. A processor that wanted to lock
asserted a free locking line, a priority circuit elected the winner in case of multiple
concurrent requestors [CS99]. Clearly such a hardware approach was inflexible
since the number of locks and the waiting algorithm is fixed. Providing more locks
could only be accomplished by the overlaying operating system that used these
hardware mechanisms.

A similar implementation was realized in the CRAY X-MP [ea89]: a set of lock
registers was shared by the processors and even allowed to be assigned to certain
processes. But with only a small fixed number of shared registers this approach
needed the operating system to make use of this underlying hardware to provide
the software with a variable number of higher-level locks in memory.

About the performance of such software locking methods based on a special
atomic instruction is said in [CS99]:

Consider the atomic exchange or test&set lock. It is very low la-
tency if the same processor acquires the lock repeatedly without any
competition, since the number of instructions executed is very small
and the lock variable will stay in that processor’s cache. However, we
have seen that it can generate a lot of bus traffic and scales poorly as
the number of competing processors increase.

So, with increasing competition for a critical resource the above busy-waiting
scheme for a lock might lead to overloading the bus and thrashing ([Kop97]) of the
overall multiprocessor system. A way to prevent the overhead in communication to
explode by increased contention is by using the advanced ticket locking algorithm
as described in [CS99]:

Every process wanting to acquire the lock takes a ticket number
and then busy-waits on a global now-serving number ... until the
now-serving number equals the ticket number it obtained. To release
the lock, a process simply increments the now-serving number so that
the next waiting process can acquire the lock.

Advanced lock algorithms like the Ticket-Lock described previously prevent
all cores to rush for a lock when it is released and therefore avoid starvation with
the one-way cycling of the ticket (like a token) between the processors. For further
information on advanced locking algorithms see [CS99], 5.5.3.
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[MS95] starts with a somewhat theoretical approach toward the question which
of the atomic primitives test&set, ... to implement in hardware - and where:
in the cache- or the memory-controller. It is also asked which coherence policy
should be used for atomically accessed data and different answers to those general
questions are examined, resulting in some experimental results. The paper can be
recommended as an advanced reading on atomic primitives. In this context [CL97]
is interesting in the aspect that it shows how cooperation between a compiler and a
memory coherence protocol is able to improve the performance of Fortran programs
running on distributed shared memory systems.

In [ea90] the architecture of a RISC-based multiprocessor is described. The
goal was to bring many processors on one chip. In that perspective the paper is
describing an approach for a multi-core chip, although the term is not used yet.
Each processor has 12 channels to send data to the other processors, 4 bytes can
be sent on a channel without blocking the sending processor. In a multi-core chip
these channels between the processors can be easily provided on-chip as well. With
compiler-support the channels are used to coordinate the processes running on the
different processors:

The channels are used to execute parts of the program which are inher-
ently sequential and only contain instruction level parallelism. The use
of channels allows processors to drift in relation to each other ... The
execution of operations on different processors is scheduled by the com-
piler. ... Compiler techniques for efficiently allocating a fixed number
of channels have already been developed.

An important work with respect to this thesis is [NP00] where the frequent syn-
chronization primitives locks, barriers and lock-free data structures are the focus of
attention. The classical implementations of those primitives are compared against
hybrid synchronization primitives that use hardware support and also the
caches (implementation on a cache-coherent system) to improve efficiency and
scalability of the primitives. To state a result from [NP00], the hybrid test&set
locking is over twice as fast as the classical one without hardware support.

An example for a specialized multi-core chip is the HiBRID-SoC architecture
from [ea02]. A DSP-, RISC- and VLIW-core are connecting to all their common
interfaces by a 64-bit AMBA AHB bus. One of those interfaces connects them to
the external SD-RAM. For fast inter-core synchronization each pair of the three
cores share a block of dual-ported memory on-chip. Caching is not done for the
on-chip but for the off-chip SD-RAM. This configuration shows some relevance
regarding the hardware configurations used for this thesis (s. section 5.2.1).
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2.2.2 Event Synchronization

In multiprocessor systems interrupts can be used to signal events between proces-
sors, maybe by using a dedicated shared memory region to convey data ([CS99]).
Barriers are normally implemented using locks, shared counters or flags. A bar-
rier for an arbitrary number of processors is called a centralized barrier when it
uses only one counter, one lock and a single flag. When barriers are implemented
using locks the barrier algorithms have the same problem as locking algorithms:
⇒ all the processors that want to block at a barrier contend for the same lock.

One way to circumvent this bottleneck is to equip the system with hardware
barriers. Barriers between an arbitrary number of processors can be realized using
a separate synchronization bus. A simple wired-AND line is enough - all processors
reaching a barrier assert their signal at this line. As soon as all processors are
arrived the signal line yields ’high’, releasing the waiting processors all at once.

[ea90] explains the drawback of the idle time of a processor waiting at a barrier
and shows how compiler-support can help to improve this using fuzzy barriers:

The waiting of processors at barriers is reduced by using compile-
time techniques to find useful instructions such that can be executed
by a processor after it is ready to synchronize. ... If processors reach
the barrier at different times they are less likely to stall at a fuzzy
barrier than at a fixed barrier. ... The fuzzy barrier makes the system
tolerant of drift in the progress of individual instruction streams.

The code that is to be executed while waiting at a fuzzy barrier is called barrier
region and is generated by code reordering and other program transformation
techniques. Such transformations can make the programs quite large ([ea90]) and
even more: a reordering of code may not be adequate for all applications.

In [CS93] an in-depth analysis of how to provide an efficient synchronization by
barriers on a shared memory multiprocessor with a shared multi-access bus inter-
connection (like CSMA/CD) is given. Some applicable algorithms are presented
together with their performance-results.

An innovative - if not unorthodox - alternative to ordinary barriers (hardware
barriers or mapped onto locks) is given in [ea05b]: the waiting of a thread is
forced by continuous invalidation of the respective I-line of the instruction-cache.
Additional logic in the second-level instruction cache ensures that such artificial
cache-misses are kept from the out-chip bus by ignoring it. As soon as all threads
that are needed at this synchronization point have joined the waiting thread the
caches resume normal operation. A big advantage here is the fast continuation
since the threads resume operation instantly when the next instruction is given by
the first-level cache (which got it by the second-level cache on barrier-release).
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2.2.3 Transactional Memory (TM)

Hardware-TM (HTM) originated in the quest for programs that are not con-
cerned about explicit locking. The research in the field of HTM shows some very
interesting developments in adding hardware-support for transactions - mainly to
simplify programming and improve performance. Many concepts are not inevitably
tied to TM and may give inspiration for non-TM architectures as well.

The works presented in this section are a selection that seemed most related to the
work done in this thesis, an extensive survey (50 sources) of transactional memory
(as well as an attempt to categorize its implementations) can be found in [LR07].

The work of Jensen et al. ([ea87]) from 1987 describes how to use architectural sup-
port for writing lock-free program code, avoiding the performance degradation
that is most severe when locking only single instructions (benchmarks supporting
this statement are given in chapter 5). Support from the coherence protocol and
the compiler are needed - the mostly complex details are left out here but can also
be found in [LR07].

The paper [SS93] describes an extension of Jensen et al. such that not just a single
but a bounded number of memory locations can be locked by hardware support. To
accomplish this, new instructions operating on new reservation-registers were im-
plemented. With this extension it is possible to access multiple memory locations
using lock-free code. A similar approach is made in [HM93]. The goal is the same:
to develop lock-free data structures. This time a transactional cache was used
to monitor and buffer accesses regarding transactions. Still, the size of the transac-
tional cache represented a bottleneck severely limiting the size of the transactions.
This paper used and therefore coined the term transactional memory.

Referring to [LR07] the first industrial implementation of transactional
memory in hardware is the IBM 801 storage manager system from 1988 [CM88].
Hardware support was added by additional registers to keep track of ongoing trans-
actions and, most importantly, associating a lock to each page of memory (exten-
sion of page table entries and translation look-aside buffers). By collecting the
locks of all data involved in a transaction the transaction could be executed, if
some of the locks are already occupied hardware exceptions call some routines to
resolve the matter (like waiting for the missing locks).

An interesting approach is done in [RG01]: the main idea here is that a processor
does not need to get a lock but only needs to monitor it during executing a critical
section, thus saving the need to set and release a lock. This is of course a kind
of speculation and is called speculative lock elision (SLE). Hardware support
for the speculative execution of a critical section is used: the processor executes
it as if the lock were not present - the lock elision is done by the hardware. In
case of a conflict the hardware resets execution with restoring the original data.
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After multiple failed speculations or with the critical section being too extensive
to be supported in hardware, the processor does not speculate and acquires the
lock explicitly. For all this to work a tight dependency between hard- and software
is unavoidable (a downside of more complex hardware support).

The concept of transactions is taking over in [ea04b], defining a shared memory
model where all operations execute inside transactions. In this transactional
coherence and consistency model, a transaction is a basic unit of work which
leads to a simplification of parallel programming in comparison with conventional
synchronization. Transactions are executed speculatively, in case of conflicts only
one transaction is allowed to commit system-wide (determined by a global token).

Interesting in [ea06] is that tracking data conflicts does not depend on caches and
coherence or consistency protocols (like most other approaches for HTM). Instead,
address-information is sent when a transaction is ready to commit, re-
vealing address-conflicts. The implementation is called Bulk. Address-conflicts can
be detected word-precise, the compressing of transaction-addresses into so-called
signatures is done by the hardware. Such signatures represent a compressed su-
perset of all the read- and write-addresses comprising a transaction (this can lead
to false conflicts due to the compression).

Summing up this section, some main ideas influenced by HTM came up during
this thesis as well. Still, there is a main difference to be aware of: transactions may
not commit even if executed. In this thesis such an approach to redo a block of
executions is out of the question, as roll-backs are in general considered of limited
utility regarding safety-critical systems where time is not to be wasted and actions
already done may be irrevocable (s. also [Kop97], chapter 1).

2.2.4 A Glance at Scalable Multiprocessors

Most of the more recent designs extending shared memory systems into large-scale
multiprocessor systems use distributed memory schemes, leaving the classical
shared memory architecture due to the difficulty implementing a shared memory
for many processors. What is left is the notion of a shared memory by keeping a
shared address space. Sharing a physical address space among processors of a large-
scale multiprocessor system enables the usage of simple load/store-instructions to
invoke network-operations. Without a shared physical address space it is necessary
to use dedicated message passing facilities to communicate. The nCUBE/2 is an
example for only private memories, the CRAY T3D on the other hand has a
shared physical address space. Both systems are described in some more detail in
the following.
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The nCUBE/2 is a rather old but still presentable representative for a multi-
processor system. The area of the 2,048 VAX-based processor nodes (hypercube
configuration, build in 1991) that would have normally be used for the cache was
occupied by diverse communication logic. Only a small code and an even smaller
first-level data cache was available to each processor (128 to 64 bytes [CS99]). 14
channels are used as unidirectional links between the processors and can be used
for synchronization. Each processor connects directly with local SD-RAM. This
system has a shared address space, but no physically shared memory.

Yet another example, the CRAY T3D is a parallel system containing of 2,048
DEC Alpha 21065 microprocessors with up to 64 MB private memory each. In-
terestingly the second level cache of all processors (512kByte each) is deactivated
to reduce the main memory’s access time (cache-misses cost an additional clock
cycle). The T3D has a special global AND- and global OR-network to support
synchronization (primarily for barriers). A broad perspective can be gained in
[CS99], 7.6. A compiler-perspective on how to work with the CRAY using the
parallel extension of ANSI-C, Split-C is given in [ea95].

The highly parallel system KSR1 from Kendell square research described in [ea93]
has large local caches for each processor and achieves synchronization by hardware-
support of the memory subsystem. This architectural technique is called ALL-
CACHE. A shared physical address space mapped on devices is present, locking is
accomplished by putting memory pages into an atomic state. A page in the atomic
state is the only valid page throughout all local memories, the memory subsys-
tem ensures invalidation of all other pages. A processor that successfully locks a
memory page (make it atomic) automatically gets the page moved into its local
memory where it can be used directly.

The major bottleneck for highly-parallel systems is the connection of the pro-
cessors to the memory. In [SZ02] the insufficient performance of parallel systems
built from commercial off-the-shelf components for programs with low locality
is unveiled. So instead of using already available commercial modules as parts
for a parallel system, further integration presents the possibility to locate mem-
ory together with the executing cores on one chip. This field of research focused on
overcoming the interconnection bottleneck is known also as the area of processor-
in-Memory architectures (PIM) and gives quite some insight into the new
perceptions in this field. Like the results of this thesis the work of [SZ02] helps in
gaining additional insight into how to judge a given multiprocessor architecture in
respect to different types of parallel applications it is intended to host.
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The IBM BlueGene/L team goes another way to weaken the bottleneck of the
processor-memory interconnection, as well as other disadvantages in traditional
massively parallel SMPs. [Tea02]:

To scale the next level of parallelism, in which tens of thousands
of processors are utilized, the traditional approach of clustering large,
fast SMPs will be increasingly limited by power consumption and foot-
print constraints. ... In addition, due to the growing gap between the
processor cycle times and memory access times, the fastest available
processors will typically deliver a continuously decreasing fraction of
their peak performance ... The approach taken in BlueGene/L (BG/L)
is substantially different. ... The design point of BG/L utilizes IBM
PowerPC embedded CMOS processors, embedded DRAM, and system-
on-a-chip techniques that allow for integration of all system functions
... Because of a relatively modest processor cycle time, the memory is
close, in terms of cycles, to the processor.

The BlueGene/L interconnects its highly-integrated nodes (having a large local
memory) by a 3-dimensional torus network for point-to-point communication. One
additional network is a global barrier- and interrupt network for event synchro-
nization.

Since we are not concerned about large-scale multiprocessor systems we conclude
this section here, but not without emphasizing that the hardware support and
high-scale integration of such systems might be relatively advantageous for small-
and medium-scale parallel systems as well.

For more information about large-scale systems and the approach to make them
as easily programmable as a shared memory system see [TvS02], 1.4: Distributed
shared memory systems. More details about synchronization approaches in mas-
sively parallel systems is given in [ea93, CS99]. For more insight into the differ-
ent types of interconnection-networks possible for multi-core architectures see also
[ea05a] (crossbars, shared bus fabrics etc.).
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Chapter 3

Software Synchronization

A hardware-environment based on two processor cores is used in this thesis for the
application and practical verification of the implemented concepts.

This chapter starts by briefly introducing the actual Xilinx dual-core system at
hand. The features of the hardware are presented in order to get an overview. For
the rest of the thesis an abstract point of view is maintained to favor generality.
Plenty further in-depth information about the hardware can be found by consulting
the respective references of the vendor Xilinx (esp. [Xil07e, Xil07h]).

The rest of this chapter is concerned with how to achieve coherence and consistency
on the described hardware platform. Since there is no help from the hardware
by default, this is accomplished just by software means. More to the point, the
traditional approach of spinning locks to enforce mutual exclusion is followed.

The digital flow necessary for this thesis had to be developed by the author, the
software tools used (at the time of this thesis) were unable to provide all of the
functionality required. The complete flow is described in the appendix A.
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3.1 The Hardware Platform

Here we present a fully-arranged dual-core system configuration as the executing
hardware platform for our software. The main focus is on how to achieve reliable
communication between the two PowerPC cores using the on-chip shared memory.
To enable communication, synchronization between the cores regarding the access
to the shared memory is necessary.

A Xilinx development board ML410 with a mounted FPGA Virtex-4 FX60 is used.
The configuration of the dual-core system as it is used in this thesis is drafted in
figure 3.2. It represents an abstract architectural view of our dual-core system
and relieves us from irrelevant vendor-specific details (→ [Xil07e, Xil07h]).

Figure 3.1: Ideal communication stays on-chip
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Figure 3.2: Architecture of present dual-core system

The Block-RAM is used to speed up the inter-core communication. The ’closer’ a
shared memory is to a processor the faster is the access. It would be optimal for all
communication between the processor cores to stay on-chip as sketched in figure
3.1. However, the Xilinx reference design ([Xil07a]) uses only the significantly
larger external SD-RAM as shared memory. It is one of the goals of this thesis to
examine the impact on the system’s performance such design decisions impose.

The two types of memory which are accessible by both cores are (s. fig. 3.1):

• 16kB (16,384 bytes) on-chip Block-RAM concurrently accessible by
both cores’ on-chip memory interface (OCM)

• 64MB (67,108,864 bytes) shared SD-RAM connected to the two cores
through the IBM peripheral local bus (PLB)
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We paid our architecture two different types of memory:

• internal memory
The internal Block-RAM holds the program-code for each core, con-
nected exclusively to its core by a dedicated instruction-side on-chip
memory-controller (IOCM, left out in fig. 3.2). Hence there is no in-
terference in our benchmarks by code-fetches.
Another part of the Block-RAM serves as shared memory with each
core accessing it directly via the data-side OCM (DOCM). This on-chip
shared memory is solely for the interaction between the cores.

• external memory
The external SD-RAM provides each core with a sufficiently large pri-
vate data-section (heap, stack, read-only data etc.). There is also a
small shared memory embedded, serving as counterpart to the inter-
nal shared memory for conducting the benchmarks in chapter 5.

Commonly the on-chip memory is limited much more than the external one (max.
522kByte Block-RAM for the Xilinx VFX60). For non-real time systems the
16kByte of shared on-chip memory may be far too less too hold big chunks of data,
but for our purposes it is more than enough. In general a small but fast shared
memory may still complement and disburden a larger external one to speed up
on-chip synchronization - an advantage multi-core chips have over multiprocessor
systems with more than just one chip. Evaluation of the performance between
these different kinds of shared memory is also a major point of this thesis.

In our system the clocks relate to each other as the following proportion:

fcore0 : fcore1 : fOCM : fPLB : fOPB = 1 : 1 : 1 : 1 : 1

To get this proportion and avoid wait-states using the busses we chose a global
frequency of 100 MHz. Increasing it would lead to wait-states (e.g. a core-PLB
frequency division of 2:1) which would only proportionally worsen any results using
a bus for our benchmarks (s. chapter 5). Considering the current state-of-the-art in
the automotive environment this frequency constellation seems fully appropriate.

The detailed information about how to change the architecture by reconfiguration
is sourced out to the appendix A.
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3.2 Low-Level Coherence

As already described in the previous section our dual-core system has on-chip
Block-RAM configured as shared memory. The access to this dual-ported RAM is
done by the core-side on-chip memory-interfaces (OCM). Using OCM we have the
same frequency for accessing the BRAM as we have for clocking the cores. Due to
that fast access (2 cycles per single store or load) there is no caching by default.

In the data sheet of the dual-ported Block-RAM is no information about whether
it is allowed to concurrently read and write the same memory cell or not. Hence
we must test the dual-ported shared memory for data-coherence. One processor
core writes repeatedly to the same memory-word, thereby toggling all bits:

• First value: 232 − 1

• Second value: zero

Figure 3.3: Dual-ported B-RAM without low-level coherence

A simple flow diagram is shown in figure 3.3. It indicates that the full concurrency
introduced by the two ports causes problems in case one core reads when the other
is currently writing. This structure is used in the automatic testing programs
prove core0 and prove core1 which, due to size, are not printed in this thesis.
The experimental evidence conducted shows that using the structure of figure 3.3
(implemented in ANSI-C) gives a statistic of over 60 percent corrupted reads.

29



3.2. LOW-LEVEL COHERENCE CHAPTER 3. SW-SYNCHR.

With the help of assembler we can artificially generate the worst-case:
It is possible to program a series of writes and reads such that there are no interme-
diate instructions at all. If the overlapping is worst as demonstrated in figure 3.4,
no read gives back a coherent state in case the 2-cycle long store-/read-instructions
start at the same time. Then the read-instructions read out the bit patterns at
exactly the same time they are written to, resulting in the almost arbitrary values
shown in 3.4. Those values are experimental return-values and can be found in
the log files and in the screenshot A.19.

Figure 3.4: Worst-case non-coherent access: no single correct value read

Now it is also clear that our configuration of the system does not use the Block-
RAM as it was intended to be used: the RAM-blocks have no additional logic
that handles concurrent read-write accesses (like buffering and serializing accesses
to the same memory cells). Summing up, we have no coherence using our dual-
ported shared Block-RAM as it is. Whenever there is a writer involved the values
read might be corrupt. Even worse, the probability of corruption depends on the
frequency shared memory locations are accessed by all cores. It is impossible for a
single core to tell if a value is valid or not - clearly this situation is unacceptable.
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3.3 Coherence by Locking

Since the external SD-RAM is not concerned with coherence at all (accesses over
an ordinary bus are atomic by nature) we will only look at the dual-ported on-
chip Block-RAM here. With each core owning one port, the shared memory can
be accessed completely concurrently. Hence if not stated explicitly otherwise the
term shared memory always denotes the on-chip Block-RAM in the following.

The first idea how to achieve coherence in our on-chip shared memory originated
from the PowerPC manual [Xil07g]: a suggestion on how to implement a test&set-
operation that ensures atomicity by using a reserved load/store-pair. This special
load-operation reserves the memory-location and if there is an intermediate ac-
cess the subsequent conditional store-operation jumps back to do it all over again
(more of load-linked (LL) in section 2.2.1). The flow diagram of the respective
assembler routine named smem lock is given in diagram 3.6. Unfortunately there
is no explicit information in the manual if this works for the dual-core case as well.

Figure 3.5: Atomic access by locking
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The lock can be anywhere in the system as long as all cores can access it. Our lock
is set at the end of the shared memory. It must be pointed out that the actual
value of the lock depends on the core currently holding it - each core must have a
private lock-value - all the lock-values must be disjunctive for this is to work (it is
the only way we can validate which core won the lock with a memory that does
not define the outcome of two concurrent writes to the same memory cell).

With the test&set as suggested in [Xil07g] we unveil a major flaw: it is only
functional within the processes running on a single core. Closer inspection of the
LL-commands shows that it does not work for both cores (the cores would have to
exchange information about a memory-reservation, but apparently they do not).

By analysing the problem we can quickly identify its root: one core overwrites
the lock already written by its opponent. But the core writing the lock last is
not aware that the lock is already reserved since it loaded the value of the lock
before the lock was written. This can happen only in a small time-window due
to a race-condition: consider both cores are loading the value of the lock at the
same time, then also testing in parallel. If the lock is free both cores set the lock
and go on into their critical sections. This is a clear violation of the principle of
mutual exclusion - only one core must be allowed to enter at any time. A core
must enter the critical section if and only if it also owns the lock.

This analysis lead us to a revised extended assembler routine smem lock 2 with the
flow given in figure 3.6. By an additional test before entering the critical section
a core is now able to detect that it lost the race (of setting the lock) against the
other core and retries getting the lock. On the other hand, if the lock is successfully
taken, the last test confirms this and the critical section can be entered safely.

Billions of successful test runs exhaustively confirmed the functionality of the
test&set&test-instruction that ensures atomic access to the shared memory. Pre-
supposing a minimal distance of instructions between any two core’s attempts to
get the lock, strict coherence (temporal ordering of requests) is guaranteed as well.
With just a slight time-difference in the locking-attempts the later core might win
the lock over the prior one by overwriting it (→race, see previous paragraphs).

It must be pointed out that this is an software-synchronization optimized for the
given system regarding execution time - changes like present caching may invalidate
correctness. Since the traditional Dekker-algorithm (→ 2.1.10) is also independent
from low-level mutual exclusion it could also be used here - at the cost of a greater
software overhead. A formal proof of correctness can be given with arguments
similar to those from Dekker, an outline of it is drawn here. In fact the testset-
instruction alone corresponds to the flawed second step in developing Dekker’s
algorithm. Mutual exclusion can be guaranteed only by entering the critical sec-
tion after an additional test. The result of this test is always correct due to the
unbuffered direct 2-cycle access to the Block-RAM. A deadlock cannot occur since
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Figure 3.6: From non-coherent test&set to coherent test&set&test

the two cores never wait for each other forever during normal operation. A livelock
cannot occur due to the impossibility that the cores delay their requests for the
lock (together). Without flags we would have to unset the lock we try to set - but
that never happens here, one core always proceeds. Starvation is prevented by
cores dominating the lock implicitly (or better unwillingly) deferring to the later
arriving other core, which overwrites the lock shortly after the dominating core.
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Figure 3.7: State machines of both OPB-locks 1 and 2

3.4 External Bus-Slaves as Locks

Up to now we simply used a word of the shared memory as lock, but this has the
disadvantage that we cannot transfer any functionality of the locking-process from
the assembler-routine into the hardware. With the two busses (peripheral local bus
(PLB) and on-chip peripheral bus (OPB)) available we can add user-logic modules
and make them slaves of one of those two busses (details on flow and busses in
appendix A). So we source out our lock and look how to optimize it along the way.

At first we chose the OPB to work with: it is simpler and involves less overhead
than the PLB. The OPB requires less compulsory ports in the VHDL-entity we
must write for the Xilinx peripheral wizard to define our OPB-slave.

34



CHAPTER 3. SW-SYNCHR. 3.4. EXTERNAL BUS-SLAVES AS LOCKS

A simple 32-bit OPB-register was implemented - it fits the size of a word in our
PowerPC architecture and the size of the lock in shared memory. Hence with
this OPB-register we can use the same assembler locking routine smem lock 2 by
just changing the destination address for the lock to that of the OPB-slave. This
address is used in our VHDL-entity to react to requests for access. The user-logic
of the OPB-lock is quite simple, its functionality is drafted in figure 3.7.

Logically, the next step is to add hardware-support to improve performance. With
our lock clinging to a bus it gets only one request at a time. Unfortunately this
narrows down our possibilities to add hardware-support considerably. What we
can do is to source out the first test of the test&set&test-routine into the hardware,
making it obsolete in the software-routine. That results in a set&test-routine where
the first action is to try to write the own lock-value to the lock. Our OPB-lock sets
the lock not with every write (as a dump memory cell does), but only if the register
- the lock - is actually equal to zero or there is zero on the data-bus (clearing the
lock). With this improvement we establish strict coherence since the first arriving
store irreversibly sets an empty OPB-lock until release (writing zero). This is
always under the assumption the OPB is not reordering the requests for access
to violate the temporal order they were issued. The state-machine of this more
sophisticated OPB-lock2 is shown in figure 3.7 as well.

The last test for the value of the lock could only be eliminated if setting the lock
would block the caller until it has the lock, resulting in a simple set instead of the
original test&set&test. Spinning could be avoided completely. Even though the
OPB and the PLB have support for blocking the sender (but with time-limits),
there is no way for a slave on the bus to block the bus-logic and, in parallel, serve
another request. That would be necessary to release the lock while blocking the
request to set it, clearly impossible with a serializing bus. Hence this one test in
hardware seems to be the only support we can realize using slaves on a bus.

The two versions of the OBP-lock were translated to the PLB, requiring more
compulsory ports and minor modifications due to the PLB-protocol (s. fig. 3.8).
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Figure 3.8: State machines of both PLB-locks 1 and 2

3.5 Event Synchronization

Also without hardware support there exists the need to coordinate the execution
of intra- as well as inter-core processes. Concurrent processes can make use of a
lock to meet at some point in their execution (spinning locks are common practice
to achieve point-to-point event synchronization, see also section 2.1.12).

An asymmetrical form of a primitive barrier using busy-wait was used in the early
stages of this thesis. One core must reach the point of synchronization prior to
its opponent. Since this scheme is intolerant with violations of this fixed order of
execution, a more sophisticated symmetrical form was developed and is used in
the final programs wherever no hardware-support for synchronization can be used.
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Both flows of synchronization are shown in figure 3.9.

Figure 3.9: Dual-core event synchronization with busy-waiting

It must be added here that the tightness of the synchronization differs slightly
in theory as well as in practice (depending on some factors like bus-latencies,
contention etc.). Despite the fact experimental evidence always showed the syn-
chronization to suffice in practice, some form of timing requirements may need
guarantees (upper bounds) for the synchronicity. Software-synchronization like
the one here using busy-waiting can never guarantee the tightness of synchroniza-
tion that hardware-mechanisms can offer (s. chapter 4 for hardware-barriers).
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3.6 Locking Performance

Five different locks were introduced for locking the access to the shared memory:

• a word of the shared memory serves as lock

• one simple OPB-lock, one OPB-lock2 with hardware-test

• one simple PLB-lock, one PLB-lock2 with hardware-test

The simple OPB- and PLB-locks are unlikely to bring an advantage in performance
- on the contrary: it should worsen since they are connected to the busses instead
of using the fast OCM. However, the hardware-enhanced versions bring one im-
provement: the routines for locking are shorter (set&test instead of test&set&test,
s. section 3.4). Bringing it more to the point, performance of locking depends on:

• time to execute the locking routine without accessing the lock

• time to load and store the lock

The total execution time of the locking routine comprises both aspects.

3.6.1 Direct Access to the Lock

To examine how much impact the usage of the PLB- and OPB-locks has we mea-
sure their closeness to the processor cores by just accessing them: table 3.1 shows
the number of cycles needed to execute only one store- or load-instruction.

BRAM PLB OPB

load/store 2 ≥7 ≥12

Table 3.1: Time for direct access to different lock-locations [clock-cycles]

3.6.2 Locking, Best Case

Table 3.2 results from summing up the clock cycles for all the single operations
in the assembler source code, confirming our suspicion about using external locks:
locking by the PLB-locks is slightly worse, additionally crossing the PLB-OPB
bridge accessing the OPB-locks halves the locking-performances - and we are still
looking at the contention-free best-case where one core locks exclusively.
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Lock-location BRAM PLB2 PLB1 OPB2 OPB1

Locking 33 35 46 45 74
Temporal locking-order ∗ ∗
Unlocking 12 13 13 20 20

Table 3.2: Theoretical best case (contention-free) locking results [clock cycles]

3.6.3 Locked Single Access, Best-, Worst- & Average-case

Here we eventually access our shared memory using the different types of locks at
hand. We also look at the worst-case (WC), using assembler-routines programmed
exclusively for that purpose. The structure of the code executed in this worst-case
is drafted in table 3.3.

core 0 1

POINT-TO-POINT SYNCHRONIZATION
LOCK LOCK
store to BRAM load from BRAM
UNLOCK UNLOCK
LOCK LOCK
store to BRAM load from BRAM
UNLOCK UNLOCK
LOCK LOCK
... ...

Table 3.3: WC single locked accesses - code structure

Of course in the contention-free case locking happens immanently. But in the
worst-case the whole locking procedure is prolonged by unsuccessful locking at-
tempts that results in jumps back to the first test in the test&set&test - this is
called spinning. An additional counter counts up each time there is a jump back.

Spinning (busy-waiting) is the reason for the exploding overhead under bus-load
- this can easily be observed experimentally in our scenario: one core writes, the
other core reads repeatedly. Each single access is made atomic by a lock-unlock
pair. The spinning for some cases is shown in table 3.4.

Ones more the best-case results confirm the delays introduced by using the busses
OPB and PLB. Even worse in the worst-case our hardware-enhanced locks lead to
starvation - indicated by the infinity-symbol in table 3.4. The first core to get the
lock keeps it. The other core starves and can do its work only after the other core
stops taking the lock as demonstrated in fig. 3.11, leading to unacceptable delays
for the starving core. The other types of locks do not show that negative effect.
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Figure 3.10: Single access performance using spinning locks (no values: starvation)

Lock-type BRAM PLB1 PLB2 OPB1 OPB2
Locked load‖store ld st ld st ld st ld st ld st

BC, ticks ≤66 ≤57 ≤78 ≤66 ≤64 ≤50 ≤102 ≤87 ≤85 ≤75
BC-spins 0 0
WC ≥107 ≥122 ≥136 ≥138 (65) ∞ ≥269 ≥266 (109) ∞
WC-spins 10 16

Table 3.4: Spinning and locked single-access performance
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The starvation is caused by the strict temporal ordering of locking that is not
present with the locks using only a memory-cell or register, they allow an arriv-
ing core to overwrite the lock set just shortly before (race condition). With our
hardware-enhancement this is not possible: in the WC (LOCK immediately fol-
lowing UNLOCK, s. table 3.3) the dominating core has two store-instructions
succeeding in the code and sets the lock again before the other, currently spinning
core checks that the lock is free and can inject its own store (shown in table 3.4).
The probability of breaking that starvation corresponds to the likelihood of the
SET in the set&test-routine of the waiting core to be applied exactly one cycle
(issued one cycle earlier) after the UNLOCK of the core currently holding the lock
(values taken from measurement and structure of assembler-routines):

P{set&test of waiting starving core sneaks in} =

= P{store in set&test at starving core} · P{UNSET at dominating core} =

= store in set&test routine
whole routine

· UNSET executing
whole LOCK-read/write-UNLOCK

= 12
45
· 11

59
= 132

2655

=⇒ P{starving core can get the lock} ≈ 5%

Hence - statistically - it holds that every twentieth access the starving core can steal
the lock from its dominator. But since our probability calculus is based on uniform
distributions that is just theoretic and too optimistic. Our tests revealed that in
reality it is commonplace that in a row of 200 locked accesses the dominating core
gets never interrupted - with the other core starving beyond all its deadlines.

Starvation can be easily broken by inserting (artificial) delays between successive
locked critical sections. As a rule of thumb the relation of the time for a crit-
ical section (LOCK → UNLOCK) to the time between two critical sections
(UNLOCK → LOCK) should be at worst

• 1 : 1 for the PLB-lock2

• 1 : 2 for the OPB-lock2

to avoid starvation. With this relaxation of the WC the usage of the hardware-
enhanced locks seems safe enough for certain kinds of applications, but it must
be pointed out that it is not the worst-case anymore. The greater the inserted
delays the more we detach from the WC towards the average case (AC).

Summing up, the WC-behaviour is certainly all else but ideal and kind of relativizes
the performance improvement we achieved by hardware-support for the best and
average case. For a non-real time system this may be acceptable, for safety-critical
systems, in all probability it is not. How to attack the roots of this starvation-
and fairness-problem and also better performance is shown in chapter 4.
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Figure 3.11: Unfairness in relaying requests for the lock causes starvation: stores
to locked lock are ineffective
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Chapter 4

Hardware Synchronization

This chapter starts with analysing the disadvantages of pure software synchroniza-
tion (see chapter 3). After identifying the roots of the problems efficient hardware-
solutions are developed to overcome them. Facilities for event-synchronization are
implemented in hardware as well, allowing for tight point-to-point cooperation and
hence the uncomplicated implementation of automatic testing.

The level of details provided in this chapter should suffice to get an extensive insight
into the core subject of this thesis - which is the implementation of synchronization
primitives in hardware. Please note that the appendix comprises no source-files -
in the case of interest please contact the author or his instructors. However, the
abstract descriptions in this chapter should provide any reader with the means to
implement similar techniques and methods without the sources.

4.1 The Problems

Software synchronization is accompanied by the following severe problems:

• no strict consistency
No temporal consistency complicates handling real-time systems.

• unfairness
The multiple processor cores are not treated equally.

– starvation (worst unfairness)
A processor core may wait for a resource indefinitely.

Next we look deeper at the software locking mechanisms used in chapter 3.
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4.1.1 PLB- and OPB-Lock, no Hardware Support

With a simple register on the bus the outcome of the race for this simple lock has
a random factor. The factor is due to the possibility that a request for the lock
may overwrite it shortly after the lock has already been set by another core. The
previous core looses the race. A possibly present discrimination caused by the bus
is weakened by this randomized race for the lock, resulting in a smoothed service
ratio over time (average case). ⇒ Positive: no starvation occurs due to this
effect. ⇒ Negative: no strict temporal order in servicing the locking-requests.

4.1.2 BRAM-Lock, no Hardware-Support

With the lock located in the block-RAM we use no external busses (PLB, OPB)
and the cores issue their requests for the lock (that is, the memory cell) directly
through the two ports of the dual-ported memory. Still the same race condition
as for the simple PLB- and OPB-locks without hardware-support prevents tem-
poral consistency to be present. ⇒ Negative: No temporal consistency. Due to
the better performance of the BRAM in comparison with the busses, fairness is
smoothed even better than using the IBM-busses. ⇒ Positive: No starvation.

4.1.3 PLB- and OPB-Lock, Hardware-Support

With the hardware-test for zero the lock ignores all requests for locking when it
is set: the lock stays locked by its first locker until its release (s. figure 3.11).
⇒ Positive: assuming the requests for the lock are relayed in temporal order,
the lock is always set in strict temporal order too. ⇒ Negative: unfortunately
starvation occurs in the worst-case (s. diagram 3.10), hence we have no fairness.

4.2 The Roots of the Problems

The reasons why software synchronization performs insufficiently are:

1. Spinning is inefficient (no process-switch or power-down possible)

2. Lost Control relaying the service-requests for the lock
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When spinning, the processor spends far too much time for application-remote
computations instead of accessing the shared memory as intended. To achieve
worst-case fairness the two cores would have to keep and exchange statistics about
their respective accesses to the lock. Since this cooperation itself needs synchro-
nization it becomes clear that additional help for the software is desperately needed
- software alone must spin to set a lock and ensure that it is set properly.

Using the external busses we face the problem of uncertainty : the bus takes the
requests from the processor cores and relays them to its slaves (here the locks).
What exactly happens with the store- and load-commands is up to the interna of
the busses and is out of the designers immediate control. Figure 4.1 demonstrates
the uncertainty added by handing over service requests to an external bus acting
as a relay. For instance, there are fixed- and dynamic-priority schemes available for
the IBM busses PLB and OPB. Depending on the priority scheme used completely
different performance-results are possible - even starvation.

Figure 4.1: Broken chain of control over accessing bus-slaves
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4.3 From SW- to HW-Synchronization

Clearly it is desirable to keep control over the path of requests for the lock from
their being issued in the program until their service in hardware. To gain such
a predictability of execution the hardware must be fully transparent. This is the
reason why we abandon working with external busses in this chapter and concen-
trate on the on-chip block-RAM that enables full concurrency for two processor
cores by its dual-ported architecture.

The two main problems of software synchronization are eliminated by

1. Blocking instead of spinning

2. Pure user-logic chain of control (request ↔ service)

No bus is shared by the processor cores, therefore no serialization is forced on the
service-requests of the cores ⇒ true concurrency is possible.

Figure 4.2: The OCM-access-controller takes control over the BRAM

User-logic is needed to surround the BRAM and take requests for the shared
memory in order to coordinate their execution to ensure consistency. Using the
digital flow of the appendix A user-logic could be inserted successfully by means of
a new logic module called the OCM-access-controller (s. figure 4.2). The controller
completely isolates the BRAM from the cores, takes all access-requests for the
shared memory and handles them according to its programmed functionality.
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Still there is the question on how to let a processor core wait that issues requests
to the shared memory. Here the Xilinx Virtex-4 family of FPGAs offers a solution:
blocking of a core is possible by delaying the acknowledge-signal for a core’s OCM-
controller (s. [Xil07f] for details on the OCM-protocol). Using this feature we
can get rid of the busy-waiting and thus all the software-overhead for locking.
One single store- or load-instruction is now enough to access the shared memory,
consistency and synchronization as a whole are delegated to and handled by the
new hardware unit controlling the access to the shared memory.

4.4 The OCM-Access-Controller

Figure 4.3 shows a rough draft of the OCM-access-controller. The controller takes
requests for the shared memory (BRAM) and displaces them in time - if necessary.
It must be noted that this delay is in the magnitude of the clock itself and is there-
fore incomparable with the big overhead involved using software synchronization.

Figure 4.3: The OCM-access-controller delays requests for the BRAM if necessary

Also, as is indicated in figure 4.3, concurrent reads can be executed in parallel - if
allowed and wanted. Not allowing concurrent accesses at all results in a serializa-
tion, obviously eliminating the advantage of multi-ported memory.

4.4.1 Features

The OCM-access-controller is finalized in two versions. The general framework,
the version 4.0, offers a generic approach to the problem where the number of pro-
cessor cores involved in competition is scalable. This was confirmed by simulations
comprising test benches with 4 cores.
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For the case of having two cores the theoretical testing (means simulation) was
complemented by intensive practical testing, resulting in the specialized dual-core
version 3.16.

The features of the OCM-access-controller in the finalized versions 4.0 and 3.16
are the following:

• Data Synchronization

– Implicit locking of single accesses to the shared memory

∗ Single load/stores do not need explicit locking

∗ Reads are executed concurrently

– Global locking of all of shared memory

∗ by setting/resetting a global locking bit

∗ by loading a counter with the number of accesses

– Address-sensitive locking

∗ regions in shared memory are lockable
(WORD-granularity)

∗ every processor core can lock one region at a time

∗ other cores cannot access such regions until release

∗ address-conflicts with already locked regions
prevent/delay locking

∗ address-comparisons may bring up timing issues

• Event Synchronization

– Simple Barrier
A minimum of two cores meet at a simple hardware barrier

– Extended simple barriers
(v4.0 only, limitation to 32 cores)
A core can wait for some other cores in particular

– Complex barriers
(v4.0 only, no core-limitation)
Each core specifies the ID of the barrier to be used and the
number of other cores to wait for

• Set of special-purpose configuration registers

• Status-information for debugging the hardware

• Variable register-file for application-specific purposes (optional)
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4.4.2 Description and Programming

Here the features presented in section 4.4.1 are explained in more detail, comple-
mented by a rough description of how to use them concretely in practice.

Coherence Ensurance - Implicit Locking in Hardware

In this thesis the term coherence ensurance in a broader sense means all work
done regarding the atomicity of single accesses (to the shared memory). As is
explained in chapter 3, with no low-level coherence, explicit software locking is
necessary (see figure 4.5). Hence the first goal was to eliminate this significant
overhead and relocate the locking into the hardware.

With this feature the memory can be accessed by applications as if the glue logic
was not present. The comfort in using this feature and the gain in means of less
software-overhead is demonstrated in the code-comparison of figure 4.6.

Figure 4.4: Core-side addressing of the OCM-access-controller
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Figure 4.5: Explicit locking, principle

Consistency Ensurance - Explicit Global Locking in Hardware

With consistency ensurance all matters regarding the atomic execution of groups
of accesses is concerned. To realize this it is necessary to realize a possibility to
lock the shared memory globally - this must be done before the groups that are
related are executed. Figure 4.7 shows global locking in principle (realizable easily
by software locking) and more concrete for our OCM-access-controller.

The configuration register must be programmed to activate the global locking
capability. That special-purpose (SP) register was added as an additional logic to
the end of the address range of the shared memory. Figure 4.4 gives an overview
over the registers that are accessible by the user. The hardware is generically
adapting to varying sizes of the shared memory, hence the software can use the
fixed offsets to the registers and there is no need to severely modify the sources.

Figure 4.6: Pseudo-code of explicit software vs. implicit hardware locking
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Figure 4.7: Pseudo-code for global locking

Requesting the global lock of the controller can be done by bit 1 or by writing the
number of accesses wanted to lock globally into the global locking counter (bits
24 to 31 for the dual-core version 3.16). Those two methods are equivalent and
trigger the same race for the global lock as described in section 4.4.5. As soon as
the current core has obtained the global lock this is indicated by bit 2.

Figure 4.8: Control- and Status-register of the OCM-access-controller
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Address-Sensitive Locking of Regions in the Shared Memory

Previously it was described how accessing the shared medium is made exclusive in
hardware - implicitly or explicitly. Despite the improved efficiency the processor
cores are still waiting for each other - the inter-core access is serialized. Especially
in the real-time sector blocks of data tend to stay relatively small in compari-
son with data-intensive applications, making it quite inefficient to lock the whole
shared memory for each small block of data globally. That seems to be an overkill.

Here a new concept complementing the so-far exclusive techniques of access is in-
troduced. Having costly multi-ported memory (dual-ported in our case) we would
like to use this advantage, but allowing concurrent accesses through the different
ports of the shared memory we once again face the danger of corrupting data writ-
ten by multiple sources. Looking on it in more detail, the case of corruption only
happens in case the destination addresses of concurrent accesses collide. With at
least one of the accesses being a write such a case leads to scrambled bit patterns
read or even stored in memory as described in chapter 3. Hence the addresses of
accesses to be executed in parallel must be compared against each other.

Figure 4.9: Concurrent access by disjunctive shared memory windows
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These considerations lead to address-sensitive logic. Up to now the address
played no major role besides the addressing of controller-internal registers.

The idea here is to partition the shared memory into topologically coherent chunks
of data that are defined and described by their highest and lowest addresses. Such
a window into the shared memory is subsequently called an address-window or an
address-region. With the hardware supporting the inter-core protection of such
address-regions the concurrent access to the shared memory becomes possible -
illustrated in fig. 4.9. The hardware-protection makes sure that all cores own non-
overlapping address-windows of the shared memory. To keep the functionality as
straightforward as possible one core can reserve only one window at a time, but
then it is the exclusive owner of that region of memory until releasing it.

Due to the definition of atomicity no other core can access a once reserved address-
window of a core until it is set free again, also single accesses must wait. However,
added address-sensitive signals enable single-accesses of other cores to sneak in
into regions of memory not covered by locked address-windows. It is vital here
to understand that global locking and the hereby described address-locking are
totally mutual exclusive due to their very nature:

If any processor core holds the global lock

all other cores must wait no matter what they request for,

and vice versa:

If at least one core owns a locked address-window

no other core can acquire the global lock

but

other cores may lock address-regions as long as they do not

overlap with already established regions.

In any case it holds that with the occurrence of a conflict the processor core that
issued its request later has to wait and is blocked in the mean-time.

Contrary to the global lock that is shared among an arbitrary number of processor,
now every core can hold a lock. Ideally all cores would hold such an address-lock
for one address-region, and all regions would be distinct. Practically such a case
will not always occur due to the need to exchange data between the cores.

Allowing the processor cores to reserve more than one address-region at a time
would explode the constant effort needed for inter- and then also intra-core address-
comparisons. More precisely, a naive approach needs to compare

(
n∗m

2

)
pairs of

address-windows with at least 2 comparison each (n ... number of processor cores,
m ... max. number of address-locks per core).
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Figure 4.10: Pseudo-code for locking an address-window

Address-sensitive locking is deactivated as long as there is the same address-value
in the two address-registers (s. fig. 4.4). Inserting two different values in the two
registers corresponds to issuing a request to lock the memory-region between those
two addresses (s. fig. 4.10). As soon as a request arises this is indicated by bit
4 in the control- and status register shown in figure 4.8. Bit 5 is set when the
address-locking was successful, the respective core has its address-window defined
by its two address-registers reserved and therefore has exclusive access to it.

Event-Synchronization by Hardware-Barriers

An efficient and comfortable point-to-point synchronization is realized by means of
three different types of hardware barriers, making locking in this matter obsolete.

Figure 4.11: Event-synchronization by hardware-barriers
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Simple barriers are the easiest method: each core that wants to meet at a given
point of execution writes an arbitrary value to the barrier register shown in figure
4.4. Then the respective processor core is blocked until at least one other core
writes to its corresponding counterpart-register. Please note that if the writes are
buffered an additional read from the register/address is needed to lead to blocking
of the processor core (or the read alone instead of the write).

With more than two processor cores in the system, extended simple barriers offer
the possibility to define exactly for what other cores to wait for. Each bit in the
register corresponds to the fixed number of a processor core in the system. The
drawback is that the numbers of the cores must be known at compile-time, this
may not be possible for dynamically executing systems.

Figure 4.11 demonstrates the practical usage of simple and extended simple bar-
riers. As hardware locks the hardware barriers get rid of the time- and space-
consuming overhead coming along with pure software solutions (s. chapter 3).

A more flexible replacement for the extended simple barriers are complex barriers.
They allow a more hardware-remote level of programming: the numbers of the
processor cores must not be known in advanced, only the number of other cores to
wait for, making it unimportant on what processor core the program is eventually
executed. Due to the additional level of complexity a more detailed description of
complex barriers can be found in section 4.4.8.

Additional Status Information and Functionality

For debugging some additional bits were added to the register 0 shown in figure
4.8: these additional status bits can bring light into the question if there is another
core currently holding the global lock (bit 3 ), if address-sensitive locking is done
by another core in the system (bit 6 ) or if there is an address-conflict preventing
the locking-request for an address-window to succeed immediately (bit 7 ).

Finally there is the possibility to bypass the OCM-access-controller completely and
access the shared memory directly by setting bit 0 of the control register. It is in
the responsibility of the programmer to reactivate the controller before accessing
its internal registers again, to avoid unpredictable behaviour.
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4.4.3 Structure and State Machine

In this and the subsequent sections more in-depth information about the con-
troller is presented. The main underlying methods realizing the features explained
in section 4.4.2 are covered here in more detail. This section should be informative
enough to understand and possibly copy or adapt the principles and techniques de-
veloped and used in this thesis. In the case that questions remain still unanswered
after reading this section please feel free to contact the author.

Figure 4.12: Abstracted schematic of OCM-access-controller v4.0 for multiple cores

The OCM-access-controller consists of core-side and inter-core logic as demon-
strated in figure 4.12. The former handles the interfacing to the respective core
and is essentially a state machine that made quite an evolution from being a Mealy
to becoming a more stable mainly Moore-based automat having dedicated state -
flip flops for all critical output signals. In this thesis only the final outcome is of
importance, the previous development stages are not covered.

Figure 4.13 shows the state machine of the specialized dual-core version 3.16, figure
4.14 the generalized version 4.0 providing all functionality developed in this thesis.
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Figure 4.13: Core-side state machine of OCM-access controller v3.16

Details on the specific functional parts can be found in the subsequent sections.
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Figure 4.14: Core-side state-machine for the beyond-dual-core case (v4.0)
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4.4.4 Coherence Ensurance - Implicit Locking in Hardware

Single accesses to the shared memory that need not be grouped with other accesses
suffer most from the need of explicit locking. Explicit locking costs a multiple of the
actual access time to shared memory, hence dramatically worsening performance.

Existing examples of hardware descriptions handling an arbitrary number of par-
ticipants in a race for a shared medium share a common factor: at least one
variable that makes handling the generic number of competitors possible. It was
the author’s ambition to find a mechanism that allows an arbitrary number of
participants to compete in a race against each other - but without variables which
are somewhat notorious for the level of abstraction they add to hardware designs,
easily leading to unsynthesizable or very badly synthesized hardware. (The rec-
ommendation to avoid variables is given, amongst others, in [Ska99]. The author
himself made practical experiences with the problems variables in HDL-code can
pose during an internship at a leading semiconductor company). Therefore, to
avoid uncomfortable abstract variables in the underlying VHDL-code a variable-
free but still unboundedly scalable procedure with respect to the number of cores
has been established, organizing and controlling the race for the shared memory.

The first approach granting only one core to access the shared memory at a time
was quite simple: a ticket was provided by a ring-register with only one bit set.
This ticketing-scheme works quite well in the dual-core case, but it is as less scalable
as it is inefficient: cores that do not want to access the shared memory but hold
the ticket waste time that could be used by cores waiting for access. Hence this first
approach (version 2.x of the OCM-access-controller) was not pursued for long. In
order to find an efficient mechanism to resolve concurrent requests for our critical
resource the requirements for such a technique are the following:

• Efficiency:

– only competitors (cores requiring access) attend the race and
can become the winner

– the race itself must not consume a big amount of time
⇒ ideally the race elects one winner per clock cycle which
is the case with the mechanism presented here

• Fairness:

– no competitor must wait indefinitely to get access

– each competitor is served in a finite amount of time
⇒ ideally the worst-case waiting time (in clock cycles) is
bounded only by the number of processor cores in the system
(this holds with the mechanism presented here)
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Figure 4.15: Principle of a fair and efficient race for access

Figure 4.15 shows the main principle behind the idea for an efficient and fair race:
only one of the competing cores wins the race and may access. Now the question is
how the race can resolve a winner of an unbounded arbitrary number of competitors,
and ideally with the time to resolve the race being a constant, independent of the
number of competitors. Looking at the worst case for such a race as shown in fig.
4.16 makes it more apparent: the election of the winner must not depend on the
number of cores, or we have a practically non-scalable system that will destroy the
advantage of having multiple processor cores at hand.

Figure 4.16: Worst-case race
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A first idea would be to give each core a unique priority, numbering the cores
depending to this priority. With this scheme it would be simple to get the winner
of a race: the core with highest priority wins. But in the case the highest-priority
core enters the race repeatedly shows that there exists no fairness: starvation of
lower-priority cores can occur. Table 4.1 shows a possible unique prioritization of
processor cores, with figure 4.17 indicating an efficient implementation.

bit-pattern priority
1000..0000 highest priority
0100..0000 2nd-highest priority
0010..0000 3rd-highest priority
0001..0000 4th-highest priority
... ...
0000..1000 4th-lowest priority
0000..0100 3rd-lowest priority
0000..0010 2nd-lowest priority
0000..0001 lowest priority

Table 4.1: Core-Priorities determined by significance of single set bit

Figure 4.17: Fixed priority scheme: slices of an invariable register

To avoid starvation but keep the simple approach presented so far there is need for
modifications. A fixed-priority scheme can bring problems in an SMP (symmetrical
multiprocessing system) where probably no processor core is dedicated or special.
In such a system there is no need for priorities at all. But using priorities solves
our race efficiently. So the question is: what must be changed ?

The solution to this dilemma is to introduce fairness by variability into the unfair
fixed priority-scheme. We simply pass on the priorities from one core to the
next in an endless loop, with each one of all the cores holding the highest (and
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lowest) priority for only one cycle per period. The length of this period is exactly
the number of cores present in the system. Since the cycling of the priorities is
triggered by the system clock itself no other logic can disrupt this scheme: with
each core holding the highest priority once per period we have a worst-case delay
equal to the period of the cycling priorities of when a core’s request is served.

Figure 4.18: Variable Priority Scheme: Slices of a rolling register

Fig. 4.18 shows the implementation of cycling priorities using a chain of flip-flops
equal in length to the number of cores present in the system. There is only one
flip-flop set, all others are cleared. By assigning each core a different slice of this
register we achieve a very efficient correspondence of priorities to the cores (means
minimal hardware-overhead). By rolling this register (shifting with LSB/MSB
lossless becoming MSB/LBS depending on direction) we can easily avoid problems
with scalability: rolling is simply done by passing on the value hold by any flip-flop
to the next in row. Hence rolling is done in one clock cycle independent of the
number of flip-flops involved in the process, making this scheme truly scalable.

The actual race for the shared memory is given in figure 4.19 - slightly abstracted
from the corresponding VHDL-code but with the original signal-names on its right
column as a reference. The resulting signal-array called granter ff holds transition
signals for the finite state machines (s. fig. 4.13, 4.14), allowing only one of all
cores to go from the request-stage to actually accessing the memory.

So, basically we implemented a round-robin mechanism in hardware: ’time slices’
are given only to cores that demand access to the shared memory. The algorithm
always elects a winner if at least one core demands access, there is no idle time
in such a case. The race for the memory is fast enough to be executed each clock
cycle, yielding a high throughput of access to the shared memory. Scaling measures
could involve parallelizing operations (e.g. the linear running OR in fig. 4.19).

With fairness, efficiency, thus scalability and even predictability given, our
race seems fit for duty in parallel real-time applications.
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Figure 4.19: Detailed single-access race for the shared memory using core-priorities
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Figure 4.20: Race for the global lock of the OCM-access-controller
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4.4.5 Consistency Ensurance -
Explicit Spin-Free Global Locking by Hardware

In the previous section 4.4.4 it was explained how an arbitrary number of processor
cores compete for the shared memory in hardware. Only single accesses were
covered: all cores issue single accesses to the shared memory without any intra-
core interdependence between those accesses.

In this section we look at larger amounts of data that must be transferred to or
from the shared memory as a whole, preventing a violation of the consistency
of interdependent data. Issuing sequences of single accesses to the memory
is just not good enough in this case: the OCM-access-controller may interleave
accesses of different cores since there is no information about the wished atomicity
of execution. For instance, in the automotive sector blocks of data in the magnitude
of a few hundred words must be transferred atomically.

Exclusive access to the shared memory must be demanded explicitly. The OCM-
access-controller provides a control bit in its control register that must be set,
resulting in all subsequent accesses to the shared memory to be executed exclu-
sively without interference by other cores. Of course the shared memory must be
available, otherwise the first access is delayed until the reservation of the shared
memory is done successfully. Ones more a lock shared by all processor cores is
subject to a race between all cores requesting exclusive access, only this time this
so-called global lock is realized and also managed totally in hardware.

Due to the same advantages as the ones stated in section 4.4.4 the same race-
mechanism as the one described there was used to handle the race for the global
lock as well. By setting the request-bit described in section 4.4.2 and issuing a
subsequent request for access a core joins the race for the global lock. Figure 4.19
gives an overview of the race single accesses participate in (winner accesses), the
similar figure 4.20 shows the race for the global lock (winner owns global lock).

4.4.6 Event Synchronization - Simple Barrier

By writing to a special barrier-register (s. figure 4.4) the core-side state machine
enters a cycle of waiting states (fig. 4.13, fig. 4.14). This cycling in the barrier-
states is broken by the signal sb cond met, with it asserted the state machine gets
back into the idle-state. Now a temporal synchronization is established between
the two cores that just met at the barrier. The principle is shown in fig. 4.21. The
signal sb cond met is acquired by an OR of all the other core’s information about
being in a barrier or not, figure 4.22 gives an idea of the generation. Hence the
name simple barrier: the barrier reacts to any other core waiting at the barrier.

Simple barriers are easily implemented, thus being a cheap asset for any hardware
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Figure 4.21: Simple Barrier, principle: two cores synchronize temporally

Figure 4.22: Generation of the transition signal sb cond met to leave simple barrier

synchronization unit. Since in a system with only two processor cores there is only
one opponent for each core it makes no sense to have more complicated barriers.
Hence such a simple barrier is the only event synchronization feature in the dual-
core version 3.16 of the OCM-access-controller (s. state-machine 4.13).
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Figure 4.23: Multiple selective synchronization at extended simple barrier

4.4.7 Event Synchronization - Extended Simple Barriers

A downside of simple barriers is their non-scalability. With multiple cores in the
system problems using such simple, core-insensitive barriers can occur: by the
execution of multiple cores (temporally drifting away from each other) it might
happen that the two false cores synchronize at a simple barrier, leading to failure
of the subsequently depending operation - or even worse consequences.

For this reason the simple barrier was extended in functionality. Using the already
present barrier-register additional information can be relayed to the OCM-access-
controller, in particular for what other cores the barrier should be sensitive for.
The idea was to keep it simple by invariably associating the bits of the register to
the processor cores in the system. A set bit tells the controller to wait for that
core, a zero tells otherwise. Writing a zero alone to the barrier-register results not
in waiting for no other core but waiting at a simple barrier as described in the last
section 4.4.6. So no additional register was necessary.
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The structure of the newly established data format can be seen in diagram 4.24.

Figure 4.24: Multiple cores synchronize by extended simple barrier

How it works regarding the core-side state machines shown in figure 4.14 is demon-
strated in the figure 4.23. Of course the logic to determine when a core can leave
the barrier is not as simple as shown in figure 4.22 anymore. Still, by using the fixed
correspondence of cores to bits as shown in figure 4.24 the underlying hardware is
still quite simple - hence we can still speak of simple barriers.

The functionality of the extended simple barrier has been proven for 4 cores using
a dedicated test bench. However, there is a limit to scalability in practice: a word
is defined in the present PowerPC-architecture by 32 bits, limiting the maximum
number of cores in the system to the same number.

4.4.8 Event Synchronization - Complex Barriers

Extended simple barriers have an obvious drawback: the programmer must be
aware on what cores the software will execute exactly. For compile-time static
scheduling where the software designer has absolute control over what part of the
software will execute where and when, this might be good enough. In the perhaps
more common case of SMP-systems where the final partitioning and mapping of
the software on the available processors is uncertain, extended barriers are just
not flexible enough.

To improve flexibility a leap in complexity is necessary to achieve more abstraction
in handling the multiple processor cores in the system. Instead of telling exactly
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Figure 4.25: Generation of the release-signal for extended simple barriers

for what core to wait it is more optimal to specify only on how many cores to wait
for. What cores will be executing the final software tasks is then irrelevant for the
program code - no porting is necessary afterwards. With this new approach the
problem of how to distinguish between groups of cores waiting for each other arises.
For instance a group of three cores waiting for each other must not interfere with
the meeting of a group of two other cores. But how to separate the groups ? The
solution is to introduce different barriers: each group is defined by the ID of the
barrier they are meeting at. Hence each group of cores waiting for each other has
a unique barrier or better ID they do share, avoiding misunderstandings easily.

The newly introduced abstraction has severe consequences for the complexity of
the underlying logic. Now a global logic unit must manage the interaction of the
multiple core-side logics. This global logic is called the complex barrier manager.
The original intent of the author of this thesis was to introduce the possibility to
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Figure 4.26: Complex Barrier Implementation, abstracted
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establish barriers with arbitrary names, but this adds complexity unwarranted: in
a system with n cores there can only be n − 1 barriers active at any time - that
implies a natural numbering of the barriers in that range. In the still not too
abstracted schematic of the complex barrier mechanism shown in 4.26 one can see
that n − 1 barriers are implemented as registers. These registers are somewhat
shared by all processor cores using a bus for writing them. It is assured that only
one core uses the write-bus at a time by using a serialization: the race described in
4.4.4 was taken and slightly adapted to allow only one core at a time to transition
into the state cb enter i. Therefore multiple cores may arrive at a complex barrier
at the same time but only one core enters per clock cycle. The entering core
puts the number of cores to wait for on the bus and the complex barrier register
addressed by the specific barrier ID is written to. If the respective barrier register
is not zero it is not written but decremented. All barrier registers are constantly
checked for zero. If a complex barrier is zero and at least one core waits in it the
release-signal for those cores is asserted - and the cores leave the complex barrier.

As a conclusion it is noted here that - as with extended simple barriers - the com-
plex barriers were successfully tested for the quad-core case using a specialized test
bench. The functionality for the dual-core case was successfully tested in practice
as well. However, for the dual-core version 3.16 of the OCM-access-controller the
complex barrier - handling was completely removed due to the overhead in logic
and its irrelevance in the dual-core case.

4.4.9 Precision of Event Synchronization

The simple and extended simple barriers described previously provide applications
with a tight one-cycle synchronization which is impossible to achieve by software
means in the present context. Since not all involved processor cores are allowed to
enter a complex barrier at once, at first glance the synchronization at a complex
barrier seems to be dependent on the number of cores. Nevertheless, practically
there are two factors that render such reasoning inert:

• Different programs on different cores:
The points in time where also many cores issue the request to enter a
complex barrier collide with a very low relative probability (except in
cases where there are additional prior synchronization points).

• Release from complex barrier does not depend on number of cores:
Only the meeting at a complex barrier is serialized. The hardware
facilities allow for cycle-wise admittance of cores, making the serializa-
tion of simultaneously meeting cores still relatively fast considering the
total waiting time at the barrier.
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4.5 Worst-Case Performance

In this chapter we presented a full complement of hardware primitives to facilitate
multi-core synchronization. In this section we rigorously analyse the work done
and also mention the critical points to be aware of when using the present work.

4.5.1 Direct-Access Performance

Using hardware synchronization we do not have a lock located somewhere in mem-
ory and fortunately no spinning is possible anymore. Locking groups or series of
accesses is now done by programming the respective registers of the OCM-access-
controller. For single accesses there is no necessity to do even that: a single access
is not locked explicitly and thus corresponds to a direct access to the BRAM,
maximizing the boost in performance compared with software synchronization.

The increase in cycles for direct accesses to the shared BRAM via the controller
compared to direct access without the controller is due to the overhead introduced
by the OCM-access-controller’s state machine. The requests are processed before
forwarding them to the shared memory - thus ensuring exclusive access. Even
when there is no competition this needs those additional cycles shown in table 4.2.

load (BC-WC) store (BC-WC)

BRAM direct 2 2
BRAM via OCM-access-controller 4-6 5-7
OCM-access-controller registers 3 3
PLB memory cell ≥7 ≥7
OPB memory cell ≥12 ≥12

Table 4.2: Access-performance for single accesses in the dual-core case

In the best case the access to the shared memory is temporally exclusive, in the
worst-case the access is delayed by the opponent’s access. The maximum delay
is determined by the length of the actual execution of an access - which is two
cycles as in direct access without the OCM-access-controller. The difference in
performance is given by table 4.2: 4 to 6 and 5 to 7 cycles for reading and writing
in the best and worst-case (no collision, collision). For details look at the state-
machine 4.13 as a reminder: only one core-side state machine is allowed to be in
the execution-states at a time - not considering concurrent read-access of course.
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4.5.2 Prevention of Starvation in the Worst-Case

The worst-case is produced using long series of read- and/or write-accesses to the
shared memory. A welcome effect is observed: the longer the series the more the
average access-time approaches the best-case time - 4 cycles for loads, 5 for stores.
This observation is positive because it shows that the actual delay of a single
access (due to the opponent) happens only at the start of the access-series - then
the two access-chains are kind of aligned with a fixed temporal offset. Overlapping
in time like that, the two series of accesses do not collide when accessing the shared
memory. Figure 4.27 roughly demonstrates this.

Figure 4.27: Temporal overlapping of worst-case store-accesses

Testing the worst-case with two series of loads uncovered that using hardware
facilities does not protect from the possibility that starvation can occur. Indeed
one of the cores starves while the other core executes its accesses in best-case time
- uninterrupted. Obviously this must be related to the fact that the load-accesses
need only four cycles to execute. Together with the uncomfortable fact that the
variable core-priorities used here toggle between zero and one in our simple dual-
core case this disadvantageous situation occurs: the number of cores (2 ) is a divisor
of the number of cycles a load needs (4 ). At first glance it seems that a rule of
thumb would be that our hardware architecture should favour commands with
an odd number of cycles. Also, more than just two cores result in a much longer
cycling-period of the core-priorities, breaking the exclusive possession of the shared
medium, smoothing out unfairness over time.
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Still this effect only occurring in our artificial worst-case is unbecoming. A more
detailed analysis shows that a hardware architecture as the present OCM-access-
controller can be built in a way to avoid such shortcomings even in such unlucky
situation as our dual-core worst-case. In contrast to the simplified figure 4.27 figure
4.28 gives a more precise insight into what happens in the worst-case.

Figure 4.28: Analysis of starvation caused by dual-core worst-case

Figure 4.28 gives a detailed snapshot of what happens and shows clearly that
our controller could be slightly more efficient: our granter-logic that grants cores
accessing the shared memory could react faster, saving at least one cycle. The
cycle which is kind of wasted is marked with a different color, demonstrating the
slow reaction of the sampled granter-signal in comparison with the combinatorial
granter-signal itself.
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For the starvation to occur we pinpoint the following causes:

• Short cycle-period of core-priorities and even-length access
When the granter-signal is sampled after an access, the core that had
just finished this access already issued a new request. Due to the even
length of the access the core has the highest priority again, resulting
in the starvation of the other core. More cores or odd-length accesses
would prevent this effect from occurring.

• Slow reaction of the granting-logic
With a more rapid grant for the waiting other core the starvation would
also be impossible.

The present implementation is based on considerations about signal-stability for
our relatively high frequency. Using combinatorial signals directly is avoided to
prevent combinatorial loops (which by the way occurred in the first version of an
OCM-access-controller that was quite faster but not trustworthy).

Starvation in this worst-case can be removed by the following approaches:

• Penalty for cores that just finished an access

– naive approach:
memorize and penalize every access

– more intelligent hence also more complex approach:
penalize only when appropriate

• Insert additional delay before forwarding request to shared memory

• Speed up the granting logic to allow starving core to sneak in

– naive approach:
generate non-conservative sampling edges

– more intelligent approach:
use preparation signals to pre-signal ending of ongoing access

• Accesses instead of the system clock rotate the core-priorities
(this method introduces additional levels of logic with longer signal-
chains)

One simple approach to break the starvation would be to delay new requests by any
core by one cycle. This would result in the re-request for the shared memory not
to be considered by the granter-signal for another cycle, then the sampled signal
would allow the starving core to enter. The disadvantage: all accesses would suffer
an additional one-cycle delay, that is exactly what should be prevented by using
the next-state signals instead of the state-bits itself for the granter-logic.
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In the present thesis the second point was pursued. A simple penalize-logic was
inserted as an effective starvation-prevention, however it added some additional
clock-cycles necessary to process the new functionality. Our naive approach was
to penalize any core that finished a single-access and to remove the penalty when
another core accesses the shared memory. Of course this method is quite primi-
tive - but also effective. A more efficient approach would try to implement more
intelligence to inject penalties as really needed.

Accelerating the granter-logic would be a more desirable alternative to slowing it
down as explained previously. Here there are also two possibilities. The first would
be simpler but may require violations of the strict usage of only positive clock-
edges. For instance, by using a negation of the system-clock the signal controlling
the sampled granter-signal can easily be reshaped to allow sampling immediately
after the end of an access is signalled by the locked access ff - signal. However,
using negative clocks and negative edges is exactly what was tried to be avoided.
Another approach here would be to make the granter more anticipating by addi-
tional preparation-signals. It seems apparent that one could use the information
which is kept in the states to detect the soon ending of an execution (the rd exc 1 -
state), to give just one example. Truly the last approach seems most promising.

4.5.3 Conclusion

With the exploding extent of the logic added to the OCM-access-controller during
its development signal propagation problems occurred. As a consequence all unnec-
essary logic was removed in the later stages of development. For the non-worst case
scenarios presented in the next chapter 5 the starvation-prevention was inactive,
enabling benchmarking the performance without the additional delay introduced
by a dump starvation-prevention-logic.

One additional cycle in between two consecutive accesses is enough to prevent
the highly artificial starvation presented in this section. Surely, when looking at
any compiler-generated assembler code the reader will agree that the worst-case
analysed in this section cannot occur at all in the non-faulty daily routine.

However, in case the concepts of this thesis are used for further development a
starvation-prevention should be in consideration from the beginning, to get rid
of the possibility of starvation once and for all. Especially when ASIC-design is
an issue, one of the more intelligent and hence more efficient solutions described
in section 4.5.2 should be preferred (maybe considered together with even more
complex methods that to discuss would exceed the scope of this thesis, e.g. a
global ticket instead of primitive penalizing etc.).
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Chapter 5

Benchmarking

This chapter provides performance results based on extensive benchmarks under-
taken to examine the practicality of the synchronization mechanisms developed.

In the first part of this chapter we recapitulate the worst-case performance results
and their implications, followed by the second larger part that covers all used non-
worst-case test-scenarios. Different scenarios were developed and implemented in
ANSI-C to allow the production of vivid results that give a good estimate of what
to expect in the daily programming routine - the average case so to say.

5.1 Worst-Case Benchmarks

In this section we summarize the abstracted results gained in the previous chapters
about soft- and hardware synchronization primitives. These results were obtained
by worst-case test scenarios where the access is done by assembler -routines. The
best case is equivalent with the case that only one processor core accesses the
memory, the worst-case means all cores access the memory without any pauses.

The greatest differences in performance are present when executing single indepen-
dent accesses: the OCM - access controller can score by making locking instructions
(needed when using software locks) obsolete. Figure 5.1 shows the best and worst
performances for all major synchronization methods implemented in this thesis
(OPB- and PLB-locks in all versions considered together) - shown in relation to
the 2 -cycle direct BRAM-accesses. It is apparent from fig. 5.1 that hardware syn-
chronization clearly outperforms the spinning locks of software synchronization.
The overhead introduced by hardware synchronization is very low in comparison.
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Figure 5.1: Performance of single accesses to the BRAM using all methods

In figure 5.1 one can see that all software-synchronized single-accesses need at least
13 times the time of the hardware-synchronized ones, in the worst-case even longer.
The question arises now how much of this maximum possible gain in performance
can be observed in practice, with the applications not only accessing the memory
but including non-memory operations as well. This is answered in section 5.2.

Since grouped access is related to single accesses and involves some dead time
- waiting time for the lock - we do not provide similar diagrams like the ones
for single accesses here: the performance difference will be less evident than in
figures 5.1 depending on the group size. In difference to single operations the
controller must be programmed explicitly in these cases. However, non-worst-case
performance results of that kind are shown in the next section 5.2 as well.
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5.2 Non-Worst-Case Benchmarking

First it must be emphasized here that the following test scenarios are not the
worst-case. They were realized using a higher programming language for more
flexibility in testing and parameterization. Nevertheless there was invested con-
siderable effort to tune the testing as much as possible (registering loop-variables,
loop-unrolling etc.) to decrease the computational overhead in favor of the com-
munication between the processor cores. Doing so our test-scenarios achieve a high
data-throughput via the shared memory. Although this is not the artificial worst-
case producible only by assembler, this might as well represent the average-case in
everyday’s computing of embedded systems (a ’worst’ average case, so to say).

For the ’real’ worst-case please consult the previous chapters and section 5.1.

Figure 5.2: All modules available for system benchmark configuration
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5.2.1 Benchmark System Configuration

It is common practice to use also the SD-RAM as shared memory, especially when
large amounts of data are used. That is why we use SD-RAM in our real-world
benchmarks here in addition to the BRAM used so far to increase the statistical
data and broaden our perspective on what to expect in practice.

Figure 5.2 shows all system-modules available for a testing environment. Shared
memory can be chosen to be on-chip with dual-ported fast access over the OCM or
off-chip accessed by the PLB. Hardware-locking accessing the on-chip B-RAM can
be done implicitly and explicitly by the OCM-access-controller. With deactivated
OCM-access-controller software locking can be used: the lock can be located either
on-chip in the B-RAM or off-chip in form of a PLB- or OPB-memory cell.

Configurations used for benchmarking either use the dual-ported on-chip BRAM
or the single-ported off-chip SD-RAM as shared memory. In both cases all relevant
pairings with locking methods of this thesis are examined to best cover the whole
range of possible system configurations and their performances.

5.2.2 The Global Locking Counter

The OCM-access-controller has a global locking counter as an alternative to the
global locking bit. The advantage of the counter is that it resets itself when
all accesses are executed by the controller. Using the counter should hence give
some performance gain. This improvement has been examined by using the 8 -
bit global locking counter of the OCM-access-controller in version 3.16 on the
dual-core PowerPC system.

The assumption that the usage of the counter brings the biggest advantage for
small groups of accesses is testified by the results summarized in diagram 5.2.2.
With small groups the advantage of saving one unlocking-instruction is relatively
high whereas this improvement decreases with larger groups. Summing up, as a
rule of thumb using the counter should be preferred if the group size is representable
with by the word-size of the counter (8 bits in v3.16 ) and unlocking is scheduled
statically, otherwise the classical locking bit can be used.
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Figure 5.3: Benchmarking: single accesses (no contention: only one core active)

5.2.3 Heavy-Load Single Access Benchmark

Here we make a large-scale memory-access by both cores to the same word of
the shared memory. The start of the scenario is synchronized temporally by a
hardware barrier. A total of 10 million single accesses are executed, resulting in
countless conflicts between the two cores accessing the same word.

The results are shown in figure 5.3 and speak for themselves.
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Figure 5.4: Benchmarking: paired accesses (no contention: only one core active)

5.2.4 Heavy-Load Paired Access Benchmark

Now we pair a read and a write from and to the shared memory with some basic
bit-operation (to avoid compiler-optimizations eliminating the initial read). The
combination of accesses is made atomic by locking. In this scenario the hard-
ware synchronization cannot lock implicitly since there are two accesses grouped.
Hence we must lock explicitly using the global locking bit of the OCM-access-
controller. Therefore the results of global locking are not as superior over software
locking as without grouping. Yet hardware locking outperforms the spinning locks.
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Access-configuration No contention Massive contention
(access-target, lock-location) (ms) (ms)

BRAM, OCM-access controller 1025 1025
BRAM, SMEM-software-lock2 5517 9619
BRAM, PLB2-lock 5810 10937
BRAM, PLB1-lock 7226 10613
BRAM, OPB2-lock 7421 14455
BRAM, OPB1-lock 9472 21731
SDRAM, PLB2-lock 7080 12288
SDRAM, PLB1-lock 8316 14031
SDRAM, OPB2-lock 8651 14010
SDRAM, OPB1-lock 10725 26448

Table 5.1: Benchmarking: single accesses, exact values

Access-configuration No contention Massive contention
(access-target, lock-location) (ms) (ms)

BRAM, OCM-access controller 1030 1054
BRAM, SMEM-software-lock2 2734 4426
BRAM, PLB2-lock 2890 5512
BRAM, PLB1-lock 3520 5266
BRAM, OPB2-lock 3681 7071
BRAM, OPB1-lock 4726 9213
SDRAM, PLB2-lock 4058 8116
SDRAM, PLB1-lock 4701 10346
SDRAM, OPB2-lock 4874 8627
SDRAM, OPB1-lock 5908 11093

Table 5.2: Benchmarking: paired accesses, exact values

5.2.5 Heavy-Load Floating Windows Benchmark

In order to give a realistic assessment about the improvement of address-locking
over global locking, an access-intensive benchmarking method has been developed.

The main idea is to assign each processor core an area of shared memory called
an address window or memory window. These windows are accessed by their
respective cores and then moved by an appropriate offset. The fact that the
windows are moving in opposite directions and changing direction when colliding
with the borders of the shared memory makes collisions between the core’s windows
inevitable, as is demonstrated in figure 5.5.
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Figure 5.5: Benchmarking by moving memory-windows on a collision course

A fixed total number of times each core accesses its window and shifts it to a
different location. Thus by varying the size of the memory window we get more
and more accesses in total: the larger the window the more accesses to it per one
of the 100 thousand times a whole address window is accessed.

Strong optimization efforts were made to reduce the amount of memory-remote
operations in order to simulate real applications with heavy load on the processor-
shared memory system (or more like it, get an upper bound for such applications:
in reality they will also compute something and not only access the memory).

The overall results are shown in diagram 5.6. In order to reduce the complexity
all the different synchronization methods using SD-RAM as shared memory are
compressed into a blue belt confined by the worst and best result curve.

Regarding the more interesting benchmarking configurations using shared B-RAM
the following observations can be made by looking at figure 5.6 and numbering the
most interesting result-curves from 1 to 4:

1. B-RAM always outperforms SD-RAM as shared memory

The SD-RAM as a single-ported solution with the usage of spinning
locks (software synchronization) can lead to thrashing, resulting in an
(at best linearly) rapidly increasing time function. Also of course, SD-
RAM has also a way longer access time (it is off-chip).
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Figure 5.6: Results of benchmarking with floating windows
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2. Global locking with the B-RAM as shared memory performs

worst of all B-RAM configurations

Global hardware locking is quite capable to handle the heaviest load
without an unreasonable explosion in overhead and disadvantages.
The relatively bad performance is due to the following two reasons:

• Global locking prevents the efficient usage of both ports of
the dual-ported memory: practically the B-RAM works as
fast single-ported shared memory accessible over the OCM.

• The slight processing-overhead for the locking logic decreases
the relative performance when accessing large memory-areas.

3. Address-locking behaves - in the case the windows are

spanning the whole shared memory - like global locking.

No surprise here: in its worst-case address-locking brings no advantage
to simpler global locking. With all cores requesting the whole shared
memory to be address-locked potential concurrency is eliminated.

4. Bursted address-locking outperforms all other methods

In the special burst-mode address-locking is used to reserve an address-
window. Then the direct access to the shared memory is enabled, but
with the OCM-access-controller keeping its locking state. After the
whole bursted access the direct access to the B-RAM is deactivated
again. At last the address-lock is released. The hardware guarantees
that direct access is only possible with no address-conflicts present.

This procedure achieves the best performances of all, going along with
the contention-free best-cases until address-windows almost a third the
size of the shared memory. Then the performance worsens due to mul-
tiple collisions but still outperforms all other heavy-load configurations.

The improvement by using bursted vs. normal address-locking becomes more sig-
nificant with address-windows larger than 20 percent of the size of the whole
shared memory. Then the overheads of the slower single accesses sum up to as
much as 48 percent of the total time for the scenario. Hence the performance can
almost be expected to be doubled at best in the average case by using bursted
address-locking. Of course this improvement is less strongly developed with the
decrease in total accesses over time.

In this scenario all was done to maximize the frequency of access to the shared
memory. In more common applications the difference in performance will be re-
spectively less pronounced, still in certain situations (especially those with a high
volume in data-transfers and real-time issues) the superior hardware methods may
be vital in reaching one’s goals without investing dearly more into the underlying
hardware (faster memory, faster busses, higher frequency etc.).
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Mehr als die Vergangenheit
interessiert mich die Zukunft,
denn in ihr gedenke ich zu leben.

Albert Einstein

Chapter 6

Conclusion

6.1 Summary

In this thesis a dual-core shared-memory system was set up using state-of-the-art
equipment. In doing so a digital flow was developed that makes the usage of on-
chip block-RAM as shared memory possible, in addition to the conventionally used
SDRAM. In the end the system set up contains two processor cores, two different
types of shared memory and offers expandability in hardware by means of the IBM
core connect busses PLB and OPB. A possibility to add on-chip hardware modules
was found by manually inserting the logic into the underlying tool-chain, thereby
greatly extending the number of possibilities to explore in the system. Detailed
information on the complete setup can be found in the appendix A.

With the system set up and ready to be programmed, the non-coherence of the
dual-ported shared memory had to be corrected by using assembler-optimized
locking of the shared memory as a software method to establish coherence. Despite
some slight unpredictabilities in the underlying hardware this seems acceptable
for the average case of non-real time systems, but the attempt to establish more
control over the locking process by the help of the IBM busses failed and lead
to starvation. Even worse, with these ”quick fixes” of our design, the potential
concurrency of the dual-ported shared memory lay dormant. It quickly became
clear that with such software locking dual-ported memory is of no benefit.

By inserting an on-chip logic module as an access-controller, the concept of spin-
ning locks in software was abandoned. The controller oversees the operation of all
processor cores involved, comprising inter-core as well as the inevitable core-side
logic. Multiple simultaneous demands to access the shared-memory are handled
by allowing only one of the cores access. The method used here is inspired by the
idea of fairness, being essentially a round-robin mechanism between all competi-
tors. Since this decision is made during each hardware-cycle, a fast throughput to
the shared memory is realized. Specifically in the case where there is no write-
request the concurrent reads are executed truly in parallel by the new hardware.
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In order to group accesses together that must be atomic, global locking is imple-
mented in the hardware. Due to the usage of dual-ported memory, an additional
locking-method has also been developed: each core can hold one address-lock at a
time, corresponding to a coherent block of shared memory. As long as the core owns
this lock it also has exclusive access to this memory-block. This address-sensitive
locking exploits parallelism for data-structures and whole address-regions, not just
for single accesses as explained in the last paragraph.

Also mechanisms to allow for point-to-point synchronization were realized in hard-
ware. Simple and more sophisticated barriers covering the dual - and multi -core
case were developed and tested successfully on our dual-core system - the precision
of synchronization is clearly superior in comparison to software barriers.

To allow easy configuration and debugging, the controller implements special-
purpose registers that are directly accessible by the software due to the memory-
mapped architecture. A special bit enables to bypass the hardware unit and use
the block-RAM as it is, unburdened by the newly added hardware.

During the evolution of this thesis program code was developed in the languages
VHDL, PowerPC assembler and ANSI C, with increasing quantities in exactly that
order. While a higher language as ANSI-C may be suffice to get average-case
benchmarking results, assembler is a must to get meaningful and especially worst-
case results. All of these kinds of results are presented in this thesis.

By delegating the responsibility of exclusive write-access to this hardware unit the
software-overhead could be reduced significantly. Also the system at hand can
be utilized much better, greatly improving the throughput to the shared mem-
ory and thus the overall performance of the system. Thus we can clearly say
that the advantage of migrating delicate issues concerning consistency and mutual
exclusiveness into hardware is (still) worth being considered in future multi-core
hardware designs, in particular in the case of reliability being of major concern.

Complementing systems that lack hardware-support is likely to introduce much
overhead, possibly leading to the inadequacy of the given hardware. With
hardware-support the same and thus cheaper hardware resources might suffice.

The results also show that an intelligent hardware improves the performance with
single-ported shared memory as well (examined by using the dual-ported memory
only with global locking). Whether a dual-ported memory seems fit depends on
the given application: the coupling between the processor cores is vital here. With
a tight coupling we have a high frequency of communication, resulting in many
collisions when accessing regions in the shared memory. In such a case dual-ported
memory can not be used efficiently. But with a less tight coupling between the
cores, the impact of a small dual-ported shared memory complementing a larger
single-ported one may still be significant enough to warrant the additional costs.
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6.2 Future Work

The comparison between SDRAM and on-chip BRAM serving as shared memory
can be continued by scaling the frequency of the processor cores and hence the
on-chip memory. However, this is likely to only sharpen the contrast between the
on- and off -chip shared memory and hence will only emphasize the advantage of
on-chip memory even more. Therefore it was of no primary concern in this thesis.

With the on-chip BRAM being clocked with the same frequency as the processor
cores, the usage of caches was of no importance in this thesis. Nevertheless, with
the off-chip SDRAM serving as shared memory, it might be interesting to examine
the impact of caching. Of course this brings up new uncomfortable issues like
cache-inconsistency. It is only logical that the whole testing procedures must also
be reconsidered, with the potential outcome that the additional efforts do not
warrant the usage of caches and the costly hardware they are accompanied by.

The underlying hardware mechanisms developed in this thesis can serve as a stable
base for more sophisticated hardware schemes. For instance, the intelligence used
when handling simultaneous requests for the shared memory can be improved by
keeping statistics about the processor cores’ accesses, thereby also preventing an
artificially generated worst-case to lead to starvation (s. section 4.5). In the case
the applications suggest it, it might be possible to allow more address-regions to
be reserved per core at the same time (consider a ”gap” in the middle of a large
memory block which cannot be accessed if the whole block is locked).
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Of course the concept of using dual-core shared memory cannot be extended for
more than two cores in practice: despite all the simulations, we do not have multi -
ported RAM beyond dual -”portedness” in reality. However, it might be possible to
extend the hardware control in such a way that multiple requests for a dual-ported
shared memory are handled, for example by always selecting two accesses per cycle
that are executed. The hardware could be made intelligent enough to also pair
two write-accesses to different memory locations, not only read-accesses. Still, if
the outcome warrants the additional efforts, and hence costs, is to be shown.

What is quite fascinating is the idea to simulate the ”real” engine-control software
on the system developed in this thesis. This can happen by feeding the ”real”
software by test-vectors or even only simulate the software’s behaviour in respect
to data-transfers. Unfortunately the analysis of the immense engine control soft-
ware raises some difficulties and was still unfinished with the conclusion of this
thesis. Even with all data-dependencies fully uncovered, a reasonable partitioning
of the software is still to be found, ideally minimizing the coupling of the processes
executed at each core. Considering the extent of the engine control software this
nontrivial optimization task requires significant help by heuristic search methods.

Closing this section, there is still a lot to be achieved in the step from a uni -
to a multi -processor, both at the software- and at the hardware-side. A complete
understanding of the software-processes involved would greatly facilitate the design
of an appropriate dual-core multicontroller system for the automotive sector. Since
this is likely not to happen in that order, this thesis might help in finding a good
start for a reasonable hardware design.
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Appendix A

Digital Flow

This appendix represents a brief guide for anyone who intends to construct a dual-
core system with one of the current boards and software tools of Xilinx supporting
dual processor cores. The digital flow presented here was established using a Xilinx
development board ML41x containing a Virtex-4 VFX60 FPGA device on it.

To be able to follow the hardware-part of the flow you need to install the Xilinx
Embedded Development Kit (EDK) 9.2i or higher, the Integrated Software Envi-
ronment (ISE) 9.2i or higher, and of course you need a Xilinx board containing
one of the FPGAs with at least two hard PowerPC-cores in it.

Please be aware of the fact that the free ISE-version called Webpack is not sup-
porting high-density FPGAs like the VFX-family that has more than just one
PowerPC-core. Also, some intellectual properties (IPs) in ISE need licences to be
functional, as does the main ISE application. However, the evaluation copy (of
ISE 9.2i) allows unrestricted working for a period of 60 days.
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A.1. THE XILINX DEVELOPMENT BOARD ML410 AND THE XILINX
FPGA VIRTEX-4 FX60 APPENDIX A. DIGITAL FLOW

A.1 The Xilinx Development Board ML410 and

the Xilinx FPGA Virtex-4 FX60

Our platform to work with is a Xilinx development board ML410 with the features
given in the following block-diagram A.1:

Figure A.1: High-level block diagram of the Xilinx ML410, taken from [Xil07e]

For this thesis we use one USB -port for programming the system using JTAG
for the hardware and for the upload of ELF -applications. The 64 MB big DDR1
Component is used as external memory. For debugging one core uses the JTAG-
connection over the USB-cable, the other core uses one RS-232 connection.

The FPGA itself is a black box in fig. A.1, the actual FPGA in our case is an FX60
from the Xilinx Virtex-4 family of FPGAs. The most important details are given
in A.2, see [Xil07h] for more details. What concerns us is the on-chip Block-RAM
which we need to implement a high-speed on-chip shared memory.

Figure A.2: Virtex-4 FX family, partial overview, taken from [Xil07h]
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Figure A.3: Picture of the Xilinx ML410, from [Xil07e]

A.2 Hardware Flow

This section deals with the issue on how to configure the Xilinx ML41x board
and its VFX60 FPGA in order to access both cores. Since only one of the two
PowerPC-cores is activated by default, the other core must be connected as well
to get a fully functional dual-core system to work with.
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A primary goal of the designer must be to minimize re-factorization iterations
since the hardware side of the digital flow can easily become very costly in time.
In optimal no rearrangement of the hardware configuration of the system should be
necessary afterwards. That was also tried to accomplish with the initial hardware
setup for this thesis. However, adding new logic modules can and could not be
avoided considering the hardware nature of this thesis.

A.2.1 Setup of a Multi-core System with Xilinx EDK 9.2i

Figure A.4: Creating a new project in the EDK

The Xilinx Embedded Development Kit (EDK) is the most comfortable way to
quickly configure your system to accommodate your wishes. Please refer to [Xil07b]
about how to open and set up an initial project (done best with the Base System
Builder (BSB) as shown in screenshot A.4). Make sure you do not forget to add
the modules that are necessary to debug your hardware later by software (e.g.
RS232 Uart, FPGA JTAG, etc.). Generation of some default test applications
might also prove useful to find a quick entry into the software part (→ [Xil07b]).

Do not forget to enable the debugging-capability over the JTAG-cable for one of
the two cores, otherwise the output of both may get mixed up completely - or
even worse, the whole system may not function as soon as both cores try to use
the same UART. To activate JTAG-debugging, go into the menu DEBUG → DEBUG

CONFIGURATION ... as is done for the second core in screenshot A.5.

By default only one PowerPC-core is operational after setting up a new project.
Therefore, the first step to do then is to make the second core operational too.
After adding the second core make sure that all mandatory signals are connected -
otherwise the core will not be sensible to any attempts to open a GDB -connection
to it later on (it will simply not respond). One pitfall here is that in the PORTS-
slide of EDK there are not all signals presented as default; to make sure you see
all signals you must deactivate the filtering by choosing all signals as shown in
screenshot A.7. Especially all reset- and clock -signals should be taken care of.
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Figure A.5: Enabling debugging over JTAG for one core

The second core must get its own memory and other resources. In the following it
is described how the configuration was established for the present thesis. First the
basic system architecture was pinpointed, as is drafted in figure A.6. In difference
to [Xil07a] where the shared memory is created using a shared region of the on-
board SDRAM connected to the cores by the Intel Peripheral Local Bus (PLB), we
want to avoid the PLB here and use the 18 -kBit on-chip Block-RAMs to make our
shared memory. The idea is to avoid using a bus to access our shared memory, since
a bus, by definition, enforces serialization of the accesses to the shared memory.

Figure A.6: draft of basic system-architecture
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Figure A.7: deactivate port-filtering in the EDK

Each processor core can connect memory almost directly using the on-chip memory
controller (OCM). Fortunately there are two OCM-sides per core, the data-side and
the instruction-side OCM. So it is also possible to create an instruction-memory
private to each core, which avoids flooding the PLB by both core’s instruction
fetches targeting the SDRAM. The chain of modules (intellectual properties, IPs)
necessary to add might not be clear at first, hence it is drafted in figure A.8.

Figure A.8: OCM-chain of IPs
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Figure A.9: ISOCM-chain, core-private

Making the connections for two instruction-side BRAM-blocks should give a result
as shown in A.9. Details like the amount of memory used etc. should be determined
considering the individual requirements and thus no default values are given here.

The connection of block-RAM with the two data-side OCM-controllers of the two
PowerPC-cores may not be that obvious. The correct solution can be seen in A.10:
each port of the dual-ported block-RAM is accessible by one of the two cores.

Block-RAM can be accessed relatively fast, but its size is limited. Even worse,
the more blocks of RAM are organized together to form larger RAM-blocks, the
slower the access might become. To avoid overloading the block-RAM it makes
sense to use also SDRAM over the PLB, placing stack, heap and large arrays of
data there. If no SDRAM is used as shared memory, the 64 MByte SDRAM can
be split up into two non-overlapping parts, the first half dedicated to the first core,
the second half used by the second one.
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Figure A.10: DSOCM connections creating shared memory!

One should always be aware of the relatively low performance of SDRAM
compared to the OCM-accessed BRAM. Hence SDRAM should be used

with care, in particular when time-critical tasks are present in a system.

An overview of the hardware configuration of the whole system is given in A.11.
This block diagram generated by the EDK can help in uncovering design-faults.

The last configuration-step after all connections are complete: address-ranges must
be assigned to all IPs of the system. One must set, for instance, the address-ranges
for both DSOCM-controllers to be the same, otherwise software-applications can-
not be used on both cores without re-compilation after changing the shared-
memory’s base-address. For the example configuration of this thesis we give the
address-ranges, as they were fixed in the EDK, in A.12. It must be pointed out
that the automatic address-generation is not reliable in the case that both cores
are about to be used. Manual editing may be required.
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Told from experience, unfortunately it might happen that addresses of own IPs
must be checked in the IP’s own MPD-file as well, but the IPs from the Xilinx-
libraries are generally all generic, so there should not be any inconsistencies. If
in doubt, check the MPD-file of the respective IP. For more insight into working
with Xilinx EDK we refer to [Xil07b] which works as a tutorial, as well as we
recommend the EDK online documentation.

Figure A.11: Complete shared-memory system configuration

With all connections drawn and all address-ranges assigned, the configuration in
the Xilinx EDK is finished. The EDK must be used to generate netlists for the
Xilinx board based on the configured hardware design, it can also be used to
complete the digital flow as a whole. However, the transfer of the configuration
into Xilinx ISE is recommended for the experienced designer to get full control
over the hardware-implementation. This is described in section A.2.3.
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Figure A.12: address-ranges of all IPs in design

Figure A.13: The EDK peripheral wizard
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A.2.2 Adding Individual IPs in Xilinx EDK

There are two possibilities to add own IPs into the hardware-configuration made
with the Xilinx EDK. The easier way is to use the respective wizard in the EDK to
do that. The way to manually add an IP goes along with porting the EDK-project
to ISE. The latter approach is described in section A.2.3, the former here.

In chapter 5 of [Xil07b] is a detailed description on how an own IP is created
using the wizard shown in A.13. But there is a slight inconvenience: the focus lies
on using the Xilinx-specific interface called IPIF (intellectual property interface).
Using this interface destroys any chance that the created IP can be easily used
on another hardware-platform. As much as IPIF may help a beginner in VHDL
to avoid bus-specific code and to immediately create its own logic, it must be
said that especially the low complexity of the OPB does not warrant abandoning
genericity totally and turn to IPIF. Since it was one of the goals in this thesis to
produce generic and portable code, the IPIF is not used to create own IPs here.

Instead of using IPIF we always import existing peripherals from our own VHDL
source files. The steps through the wizard are quite simple to carry out, we do
not go into too much detail here. What must be pointed out here are the common
pitfalls that might occur in importing an own IP:

• Incomplete interface: The wizard helps in not allowing entities with
incomplete port-list to be imported.

• Erroneous interaction with the bus: It is important for the stability
of the whole system to be completely aware about the protocol of the
bus the IP should connect to. For instance, if the bus demands a zero
for all signals if the IP is inactive, but the IP switches to high instead,
in the worst-case the whole system might as well hang up (e.g. OPB).

An imported IP can be easily added to the hardware-configuration. Some caution
is recommended in configuring its attributes, it lies in the responsibility of the
programmer of the IP to make the logic configurable by generic parameters. For
instance, if the address decoding is done explicitly in hardware the IP might de-
mand a specific address, and different addresses in EDK might lead to the software
to access the IP using a false address, resulting in failure.

With a functional state-machine interfacing correctly to the respective bus and
enabling data-transfers, the road is free to add any additional functionality into
the VHDL-sources. The clear advantage is the possibility to use that code for any
system where this bus is present, not just for Xilinx-systems.
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A.2.3 Adding Individual IPs Manually: from EDK to ISE

The porting of an Xilinx EDK configuration to Xilinx ISE was done first, histor-
ically, due to an elementary problem in the Xilinx EDK 9.1i. The EDK 9.1i was
unable to complete the flow for the configuration used for this thesis. In more
detail, the error occurred in the place&route phase of the EDK (exact error mes-

sage: ËRROR:Xflow in PAR: DeleteInterpProc called with active evals)̈. In the
Xilinx online database was a hint on how to use the EDK-configuration in ISE and
complete the flow without the EDK. With EDK 9.2i the problem was promised to
be solved. Still, since the Xilinx ISE offers much more control over the design flow,
the EDK was never used again for the whole flow. Thus, the completion of the
hardware flow by ISE is a standard now, enabling also the insertion of user-defined
logic where that would not be possible using solely the Xilinx EDK. In this section
it is described in detail how a configuration established in the Xilinx EDK
is conveyed to the Xilinx ISE - and what new opportunities appear by that.

Figure A.14: Xilinx ISE
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There is a main drawback adding IPs using the peripheral wizard in Xilinx EDK
9.2i: an IP that is connected to the PowerPC-cores by the OCM is not supported
and cannot be added to the configuration. This strikes one quite odd, even in
the presentations of Xilinx the performance-gain by using OCM instead of the
OPB or PLB is emphasized (s. [Xil07c]). Also, the use of the OPB and PLB
are limiting the overall performance: OPB-IPs are connected via a PLB-to-OPB
bridge (s. A.11), and both PLB and OPB are true busses, serializing and thus
totally eliminating concurrency between the two PowerPC-cores. To add an IP
that is not fed by pre-serialized data we have to leave those busses and go to the
OCM. For instance, in A.11 the data-side OCMs of both cores connect to the
same block-RAM serving as shared memory. An IP that connects to the core-side
OCM-bus-controllers and the BRAM-controllers is the goal: in essence such an IP
would work as a buffer for the incoming accesses to the shared memory - but an
intelligent buffer that acts according to both core’s requests.

It follows the complete list of steps that must be performed to add an IP into the
design that was initially configured in Xilinx EDK 9.2i. The steps were developed
by the author of this thesis by intensive analysis of the Xilinx-flow. Aliases used:

prj ... name of project
submodule ... name of own IP
EDK prj ... project-directory of the Xilinx EDK
ISE prj ... project-directory of the Xilinx ISE
/pcores ... directory where all own IPs are stored subdirectory by subdirectory

1. EDK, make configuration as much as the EDK can help us to:

• Add IPs

• Configure IPs

• Connect unconnected ports

• Set address ranges

With the configuration finished we must generate the netlists:

2. In the Project Options, check both boxes:

• Implement design in ISE

• Processor Design is a sub-module
→ This creates the internal sub-module prj i

• Then activate the command HARDWARE → GENERATE

NETLIST. This produces the NGC- and VHD-files in the
directories EDK prj/implementation and EDK prj/hdl
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With the netlists and the VHDL-files generated, the job of and in the
Xilinx EDK is finished. As soon as the (hw-)configuration is fixed the
EDK is only used if significant configuration-changes must be done.

Figure A.15: Synthesis of IP ocm access cntrl using XST

3. Create Netlist of your own IP
A submodule is to be added manually into the netlists, therefore the
configuration of the EDK (the VHDL- and NGC-files that were gener-
ated by it), must be modified to needlessly include this our own IP.

• Write VHDL-code of submodule

• mkdir submodule in directory /pcores

• Copy the HDL-files of the submodule to /pcores/submodule

• Create file /pcores/submodule/submodule.prj with one such
entry per source file:
vhdl work 〈total path of HDL-source file〉
• Generate the NGC-netlist of our own submodule using Xil-

inx Synthesis Technology (XST):
Go into your IP’s project directory /pcores/submodule, start
XST (by the command of the same name) and synthesize
your IP e.g. with the command at the bottom of A.15.
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Please notice that the switch deactivating the buffering of
the inputs, -iobuf NO, is absolutely necessary, otherwise
buffers at input- and output-ports are inserted and the
names of the nets do not match with the ones of the rest
of the VHDL-hierarchy, resulting in errors and abortion of
ISE when attempting to translate the whole design.

• Copy netlist submodule.ngc into EDK prj/implementation -
ISE will copy it from there along with the others.

The result of the last, the netlist /pcores/submodule/submodule.NGC
must be available for EDK/ISE when synthesizing the design!

4. Modify HDL-sources generated by Xilinx EDK - insert interface

Ideally, when the configuration is not changed furthermore in EDK, we
must do the following only once:

• add own code to the VHDL-file /EDK prj/hdl/prj.vhd, it is
the largest VHDL-file in that directory containing the code
that interconnects all the board’s IPs. Normally it will be
necessary to define some new signals to reroute the signals
meant for the BRAM-controller to the input-ports of our
own IP! All what was done for this thesis was rerouting the
BRAM-signals to our IP, and connecting the outputs of our
IP with the BRAM-controllers.
Specifically:

• Add own component definitions

• Add additionally needed internal signals

• Set own component into logic

• Reroute signals to the inserted IP:
re-map ports in old component instantiations

• Save changes and make a backup-copy.

Caution!
In the case the command GENERATE NETLIST is executed
again (in the EDK) all changes are lost - the VHDL-files
are generated anew according to the EDK-configuration,

overwriting any changes made afterwards!
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5. Transfer project to Xilinx ISE

• Open a new project

• Copy EDK prj/hdl/prj stub.vhd into ISE prj (contains top-
module with, amongst others, sub-module prj i)

• Copy EDK prj/data/prj.ucf to ISE prj, then open the copy
and edit the constraints as follows:

NET "prj i/C405RSTCORERESETREQ" TPTHRU = "RST GRP";

NET "prj i/C405RSTCHIPRESETREQ" TPTHRU = "RST GRP";

NET "prj i/C405RSTSYSRESETREQT̈PTHRU = "RST GRP";

• Add ISE prj/prj stub.ucf and ISE prj/prj.ucf as existing
sources to ISE-project

• Add EDK prj/prj.xmp as existing source. Now entering the
EDK results in a notification about ISE handling the project.

6. Choose Synthesize in ISE to synthesize the design

During Synthesis, ISE makes a new top-netlist using prj stub.vhd.
Luckily, because otherwise our changes to the VHDL-file would
be ineffective. ISE analyses the VHDL-files like our modified
EDK prj/hdl/prj.vhd, but still do not need the netlists since we have
our components defined literally as black boxes.

Synthesis results mainly in the top-level netlist prj stub.NGC, as long
as the interface of our submodule and the VHDL-files of the rest of the
design do not change we do not need to redo synthesis in ISE.

7. Choose Implement Design in ISE

(a) Translation → ISE now copies all netlists from
EDK prj/implementation. With the NGC-file of our own
IP present in this directory, there must not be any error
during the Translation. If the netlist submodule.ngc was
not copied into EDK prj/implementation or the netlist is
updated you can copy the netlist directly into ISE prj (to
keep consistency, also into EDK prj/implementation), the
ISE will indicate by question marks that there was a change
and synthesis and the subsequent steps must be redone.

The result of the translation is a full logic description of
the whole design in the file prj stub.NGD.

(b) Map → The logical design of the NGD-file is now mapped
onto the actual logic of the FPGA (be sure you chose the
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right one). The result is an NCD-file prj stub.NCD that
can be used in the FPGA-editor. Other side-products of
the mapping are PCF-(ASCII), NGM- and a MRP-(map
report)-file.

(c) PAR - place route → The native circuit description
(NCD-file from mapping), is complemented by detailed in-
formation about where the logic is placed on the FPGA.
Other results are a PAR-, PAD-, CSV-, TXT- and GRE-file.

Figure A.16: Programming FPGA with iMPACT
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8. Choose GENERATE PROGRAMMING FILE in ISE
ISE takes the fully placed and routed NCD-design and produces a
configuration bit stream as a binary file. The main result is the
ISE prj/prj.BIT - file that can be used by the iMPACT -program to
load the FPGA with this design, shown in snapshot A.16.

9. Choose CONFIGURE DEVICE in ISE or load the iMPACT-program
separately from the ISE-program folder XILINX ISE 9.2i →
ACCESSORIES → iMPACT. In iMPACT, choose EDIT → LAUNCH

WIZARD, select only the BIT -file as source and then load it with
PROGRAM up to the FPGA as shown in snapshot A.16.

With all these previous steps carried out successfully, the FPGA-board is now
ready to be programmed by software.

Figure A.17: xbash-prompt as universal tool to work with

A.3 Software Flow

Of main concern (with the hardware-design finished) is the correct connection to
the two PowerPC-cores. There are some points that must be considered, otherwise
the second or even both cores are unusable. The universal tool that helps us to do
all necessary configuration is the Cygwin-prompt xbash shown in snapshot A.17.

110



APPENDIX A. DIGITAL FLOW A.3. SOFTWARE FLOW

A.3.1 Using the Xilinx Microprocessor Debugger (XMD)

We need one xbash-prompt for each core’s application, and one prompt to prepare
the two cores, means to make the uploading of any application possible at all.
Why is that ? By default only one core is working. Loading up any application by
its ELF-file normally resets the system or at least the PowerPC-core used by this
application. Using both cores a system-reset always resets both of them, disrupting
a possibly currently executing application on the other core. Therefore we have
to configure our system such that uploading an application to any core does not
affect the other core. We achieve this by using the XMD in the following way:

The first xbash-prompt is opened, then we execute the following script ./xs :

cd EDK prj

xmd -xmp prj.xmp

The first line moves us from our own network-directory to the lo-
cal project directory of the Xilinx EDK (/cygdrive/c/MCORE/Workspace/-
main/MC HW Architecture/XILINX PRJ/n2 ppc shm001 OCM ). For our thesis
the path is quite long, so it would be tedious to change the directory manually.
The second line of the previous script actually starts the XMD with the argument
of the EDK’s project-file located in that directory. The following happens:

1. XMD searches for the file xmd.ini in the path XMD is launched, if it
is found it is executed first.

2. XMD analyses the file prj.xmp to set up its configuration for connecting
to the hardware-design, that is the PowerPC cores active in it. When
we use both cores this is apparent in the project-file and XMD will give
out information about both cores at start-up - shown in snapshot A.18.

Executing the initialization-file xmd.ini XMD ensures that no reset is done when
uploading an ELF-file to one of the cores, done by the following commands:

connect ppc hw -debugdevice cpunr 1

debugconfig -reset on run disable

connect ppc hw -debugdevice cpunr 2

debugconfig -reset on run disable

terminal tcp

Thus, by executing the script ./xs the hardware design is prepared to take pro-
grams for execution. Snapshot A.18 shows how starting XMD should look like for
a dual-core system; using a single-core system results in output without the blocks
of information regarding the second core.

For details on how to use XMD please see [Xil07d], chapter 12.
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Figure A.18: Connect to dual-core design using XMD
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A.3.2 Upload of Applications to the PowerPC Cores

With XMD started (like described in the previous section) we can upload programs
to both cores. This is done by opening two new xbash-prompts. It is important not
to use one prompt for both applications, strange effects like corrupt data-packages
can occur in that case. One prompt per application, then there are no problems.

In a prompt we have to specify the ELF-file to use for the upload, that is the
application we want to execute on a core. For the upload we use GNU Debugger
(GDB) as explained in [Xil07d], chapter 11. There are two possible commands:

1. powerpc-eabi-gdb -nw prj.elf

Here the GDB-prompt is opened where commands must be typed in.
The option -nw prevents using the GUI.

2. powerpc-eabi-gdb prj.elf

Now the GUI is loaded. It simplifies stepping through the application’s
program by showing the code. But working with two cores the GUI is
not always very comfortable at all (as one might notice trying it out).

As an example we show how to execute the two applications prove core0 and
prove core1. In the former, meant for the first PowerPC-core, the bits of a memory-
word in the shared memory is toggled in an infinite loop. In the latter application
the second core reads this memory-word and checks it for values others than the
two allowed values, thus proving or disproving the coherence of the shared memory.

First XMD is initialized as described before, then we open one prompt per core,
in each prompt using GDB to load the ELF-file wanted for the respective core.
Then in an GDB-prompt we select the wanted core using

target remote localhost:〈port number of core〉
The number of the port must be one of the two distinct port-numbers given for
both cores by XMD, the numbers assigned by XMD at start-up can be obtained by
looking at the output of XMD. Look at A.18 as an example. Using this example
we establish a GDB-connection to core 0 via port 1234, and core 1 via port 1236.

After a connection was successfully established we can upload the ELF-application
by the command load. Actual execution is started by c (for continue).

To display the output of the two applications the program hyperterminal can be
used, as is shown in the example desktop given in snapshot A.19.

A.3.3 The Xilinx Software Development Kit (SDK)

Despite the fact the Xilinx EDK offers the possibility to generate some first useful
testing applications for one’s configuration - managing those applications in the
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Figure A.19: Essential dual-core working environment

EDK is not very comfortable. Here the Eclipse-based Xilinx Platform Studio SDK
is the right tool for serious development. Of course with the SDK you can create ap-
plications from scratch, but it is recommended to use the test-applications already
generated by the Xilinx EDK, located in the directory EDK prj/SDK projects.
Those applications generated by the Xilinx EDK can be used as a starting point
for own programs. Still there are some major points one must be aware of when
programming parallel programs with the SDK. The points are given in the follow-
ing and can be taken for creating new dual-core applications. Assuming functional
test-applications for the cores were created by the Xilinx EDK, we present a way
to get two new applications by duplicating two already available applications. It
holds for core 0 and core 1 respectively:
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Figure A.20: Working environment of the Xilinx SDK

Figure A.21: References essential to core0- and core1- programs
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Duplicating a core0/1 -application:

• Copy an existent functional core-0 or core-1 project in the project
window and paste it in with its new name (e.g. in snapshot A.20
prove core0 is about to be duplicated).

• Control the dependencies of the project in the project properties

(right-click on project in project-window). In our case a core-0 project
has only a dependence on the PowerPC core-0 - platform, a core-1 on
the other hand is also dependent on a core-0 application to compile
correctly (s. snapshot A.21 as a reference how to do that).

• Adapt the project properties. The most important points are:

– Add the path where all your header-files are located as an
include path (A.22 upper left).

– Use compiler optimization with caution, maybe even deacti-
vate it. For debugging debug-symbols must be added to the
ELF-file (→ A.22 upper right).

– When an assembler-library is present and used, it and its
path must be added (→ A.22 lower left).

– A linker script is essential to communicate the right address-
ranges (→ A.22 lower right. It can be generated automat-
ically (right-click on project, then snapshot A.23) and can
then easily be modified for dual-core-specific purposes like
changing the base-address in the SDRAM to divide it be-
tween the two cores. The effect can be observed when load-
ing an ELF-file onto a core: all relevant address-areas are
displayed in the GDB-prompt (see snapshot A.19).
The linker script is of vital importance. Such as for some
complex systems manual changes might always be necessary.
Also, with an application expanding in nested function-calls,
the size of the stack might become an issue.

• Inspect the linker script for non-overlapping of all segments re-
garding the applications for both core-0 and core-1. For instance, if
the data in the SDRAM is located for both cores at the same base-
address, the currently running core will be corrupted when loading the
ELF-file to the second one (it might look like a reset of the other, but
it is not). As an example snapshot A.24 shows the beginning of the
two asymmetrical linker scripts of two applications used in this thesis.
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Figure A.22: Important project-properties for core0 and core1

• Rename all relevant, delete all irrelevant files, but the subdirectory
Binaries and Debug can be left almost untouched - their contents (like
Makefile etc.) are generated automatically when the rest is changed.

After the ELF-file of an application has been created feel free to use it to upload
it on a proper hardware-design (s. previous section A.3.2).

A.3.4 Single-Core Application-Management by the SDK

With a second core inexistent (or left idle) the possibility to execute applications
directly from the SDK is comfortable. To do so one must go to RUN → RUN...

and make an entry for the application there (e.g. see snapshot A.25). Then
XMD is executed automatically and even step-by-step debugging is possible in the
SDK, making the development process as a whole much more efficient. However,
using both cores at the same time unfortunately overburdens the capabilities of the
current Xilinx Platform Studio SDK, resulting in the somewhat delicate procedure
described in the previous sections.
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Figure A.23: Generation of a linker script in the SDK

Figure A.24: Asymmetrical linker scripts for core 0 and core 1
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Figure A.25: Run-configuration of the SDK (only for single-core applications)

A.3.5 The Usage of Assembler

Early in making this thesis it became clear that the help of assembler-subroutines
is necessary to achieve expressive results (for instance in the worst-case). Therefore
a subdirectory in the include-directory was made, along with an assembler source
file and a script to assemble it. The content of this script is:

powerpc-eabi-gcc -g -c -O0 sync dppc.s

mv sync dppc.o ../lib/libsync dppc.a
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The first line assembles the source file sync dppc.s with no optimizations (-O0),
without linking (-c) and with inserting platform-specific debugging information
(-g). For details on how to handle the compiler see the Options summary - section
in the manual of the GNU compilers ([GP05], chapter 3, section 1). In the first
line the resulting object-file is moved to the library-directory where the SDK reads
it from. Notably, a PowerPC-derivative of the GNU compiler collection (GCC)
is used for all compiling, also to assemble our assembler-file into a library-file
libsync dppc.a. The directory where it is put to must be specified in the project’s
properties in Xilinx SDK. The file-extension a of the library-file is cut there - see
snapshot A.22, lower left, as an example.

There is one more but less mentioned usage for assembler in this thesis: assem-
bling the ANSI-C sources is done quite frequently to analyze the output of
the GCC for the applications developed - and, e.g. when coping with the barrier-
problem where a write-command alone didn’t block the core at the wished point
in the program - to find the sources of concurrent problems. Only the actual
assembler-sources give a low-level point of view that covers all questions regard-
ing the software-part of the digital flow! It might be unavoidable in a low-level
development to use this help when needed.

During this thesis, in each project-directory of a software-application there was
the script make ass code to quickly generate the assembler sources. The script
executes the following command:

powerpc-eabi-gcc -c -I./../ppc405 0 sw platform/ppc405 0/include

-I../../../include common/include ppc

-g -O0 -S -o prove core0.o ./prove core0.c

Two switches and their arguments give the paths of the Xilinx- and our own header-
files. The GCC does not link (-c), makes debugging information (-g), does not
optimize (-O0), stops after translating to assembler and before assembling (-S),
thus the assembler-code is the final output. The name of this assembler output-file
is explicitly given (-o). See [GP05], chapter 3, section 1, for detailed explanation.

A.3.6 The Directory-Structure

An overview of the final directory-structure grown over the duration of this thesis is
given in figure A.26. The current state and contents of the directories are described
there. For more details go into the top-level directory MC HW Architecture and
open the text file INFO CONTENTS DETAILED.TXT for an even more detailed view
on the directory-hierarchy.
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Figure A.26: The final directory structure evolved over this thesis
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