
Towards a Domain-Specific Language
for Defining Intra-Service Protocols

of Stateful Web Services

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Waldemar Hummer
Matrikelnummer 0416710

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung:
Betreuer: Univ.Prof. Dr. Schahram Dustdar
Mitwirkung: Univ.Ass. Mag. Philipp Leitner

Wien, 27.03.2009
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43/(0)1/58801-0 http://www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Erklärung zur Verfassung der Arbeit

Waldemar Hummer
Leidesdorfgasse 11-13/3/2
1190 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die
verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich
die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die
anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen
sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht
habe.

Wien, 27. März 2009
(Unterschrift)

i

Abstract

The Web Services Resource Framework (WSRF) specifications are an extension to
the core Web service standards (WSDL, SOAP, UDDI), which define how to use Web
service technologies to address and access computational resources that maintain an
internal state between invocations. This behavior is referred to as stateful.

Web services which address stateful resources usually have implicit constraints
concerning the order in which operations can be invoked. For example, a client might
first have to invoke an initialization method before further invocations to the stateful
resource are allowed. In order for the client to adhere to these constraints, it needs
to obtain information about the intra-service protocol in terms of valid operation
sequences and the expected input-output transformation across invocations. While
the community has widely agreed on WSDL as the standard for functional service
description (the “static” service interface), there is still an evident lack of languages
to describe the dynamic, behavioral interface of services.

In this thesis we introduce SEPL (SErvice Protocol Language) as a high-level
domain-specific language (DSL) with a scripting-language like syntax, that is tailored
specifically towards the needs of intra-service protocol description. Notable features of
the DSL include support for WS-Addressing and simple creation of new Web service
instances, synchronous and asynchronous service invocation facilities and easy access
to WSRF-style service resource properties. Service providers can use SEPL to define
the procedure which must be followed by clients in order to achieve a certain behavior.
These functionalities, which are compounded from a combination of the service’s op-
erations, are themselves exposed as stand-alone operations. Essentially, this approach
can break down the functionalities which require knowledge about the state of stateful
services to a “stateless” interface. We provide a graphical representation of service
protocols in the form of UML Activity Diagrams and tools to generate SEPL code
from such models. The broad range of existing UML design tools can foster model
driven development of SEPL service protocols. We further present a solution to host
and execute SEPL protocols in a server application based on Web services technology.

ii

Kurzfassung

Das Web Services Resource Framework (WSRF) ist eine Sammlung von Spezifika-
tionen zur Erweiterung der fundamentalen Web Service Standards (WSDL, SOAP,
UDDI), die beschreibt, wie Web Service Technologien verwendet werden, um Com-
puter und elektronische Einrichtungen (Ressourcen) zu adressieren und aufzurufen,
die einen internen Zustand zwischen aufeinanderfolgenden Aufrufen beibehalten. Diese
Eigenschaft wird als stateful (engl. für “zustandsbehaftet”) bezeichnet.

Web Services, die auf zustandsbehafteten Ressourcen aufbauen, erwarten in der
Regel eine bestimmte Reihenfolge der Operations-Aufrufe. Zum Beispiel könnte es
vom Client erwartet werden, zuerst eine Initialisierungs-Methode aufzurufen, bevor
weitere Anfragen an die zustandsbehafteten Ressource erlaubt sind. Damit der Client
sich an diese Erwartungen und Einschränkungen halten kann, muss er Informationen
über das Service-interne Protokoll (intra-service protocol) erhalten. Dies betrifft die
erlaubten Operations-Sequenzen und die Transformation von Input und Output, die
zwischen den Aufrufen erfolgen muss. Während sich Anbieter und Anwender weit-
gehend auf WSDL als Standard zur Beschreibung des statischen, funktionalen Inter-
faces von Web Services geeignet haben, existiert noch ein offensichtlicher Mangel an
Sprachen um das dynamische, verhaltensbezogene Interface von Services niederzule-
gen.

In der vorliegenden Master-Arbeit führen wir die auf hoher Abstraktionsebene an-
gesiedelte domänenspezifische Sprache SEPL (SErvice Protocol Language) ein, die mit
ihrer Skriptingsprachen-ähnlichen Syntax auf die Anforderungen der Beschreibung
von Service-internen Protokollen zugeschnitten ist. Namhafte Features der Sprache
sind beispielsweise die Unterstützung von WS-Addressing und die einfache Erzeu-
gung von neuen Web Service Instanzen, synchrone und asynchrone Möglichkeiten des
Aufrufs von Service-Operationen sowie vereinfachter Zugriff auf Zustandsvariablen
im Stil von WSRF (resource properties). Service-Provider verwenden SEPL, um die
Prozedur zu definieren, an die sich die Clients halten müssen, um ein gewisses Verhal-
ten zu erreichen. Diese Funktionalitäten, die sich aus einer Kombination von Aufrufen
der einzelnen Operationen des Services ergeben, werden ihrerseits als selbständige Op-
erationen angeboten. Durch diesen Ansatz ist es möglich, die Funktionalitäten, die
ein Wissen über den Zustand eines Services erfordern, auf ein zustandsloses (stateless)
Interface herunterzubrechen. Im Zuge der Arbeit wird eine graphische Repräsentation
von SEPL Dokumenten in der Form von UML Aktivitätsdiagrammen (activity dia-
grams) vorgestellt, sowie ein Werkzeug angeboten, das SEPL Code aus solchen UML
Modellen generiert. Die breite Palette an vorhandenen UML Design-Tools begünstigt
die modellgetriebene Entwicklung von SEPL Protokollen. Des Weiteren präsentieren
wir eine Lösung zum Hosten von SEPL Protokollen in einer Server-Anwendung, die
als Web Service erreichbar ist und die Protokoll-Ausführung vornimmt.

iii

Danksagungen

Die vorliegende Master’s Thesis stellt die Krönung von fünf arbeits-, erfolg- und
ereignisreichen vorangegangenen Studienjahren dar. Die Fertigstellung und Einrei-
chung der Arbeit ist zum einen ein erbaulicher Moment, wenn man an die Stra-
pazen und Belastungen sowie den immanenten Schlafentzugs-Charakter der vergan-
genen Jahre denkt. Zum anderen stimmt einen der drohende Verlust der Freiheit
nachdenklich: eine derart selbstbestimmte Art der Zeiteinteilung ist für das (reine)
Berufsleben in Zukunft wohl nicht zu erwarten. Für mich steht jedenfalls fest: die
Studienjahre sind eine “goldene Ära” im individuellen Werdegang einer Person. So
würde ich mir aus heutiger Sicht – wie viele andere auch – wünschen, dass sie ewig
andauern mögen.

Mein Dank für die Ermöglichung der wunderbaren Studienzeit richtet sich in er-
ster Linie an meine lieben Eltern, die mir den Weg zu dieser unversitären Ausbildung
geebnet haben. Ohne Eure finanzielle, intellektuelle, motivatorische und moralische
Unterstützung würde ich heute nicht “da stehen, wo ich mich befinde” (und das
Vergnügen haben, diese Danksagung zu schreiben). Ebenso muss ich meinen lieben
Schwestern danken, die immer ein aufmunterndes Wort für mich übrig hatten, wenn
der Druck besonders groß war. Nicht zuletzt gilt mein Dank allen Verwandten, Bekan-
nten, Freundinnen und Freunden, von denen jeder und jede einzelne auf wichtige
Weise meinen Weg mitgestaltet hat.

Für die inhaltliche Unterstützung bei der Erstellung dieser Arbeit möchte ich
mich herzlich bei meinen Betreuern, Prof. Dr. Schahram Dustdar und Mag. Philipp
Leitner, bedanken. Die Atmosphäre am Institut war überaus angenehm, auf Feedback
musste ich nie lange warten und mir wurde in weiten Teilen Freiheit geboten, sodass
ich mich weder über- noch unterbetreut gefühlt habe. Die Besprechungen und Treffen
waren fachlich und persönlich hochgradig ergiebig, weshalb ich das Verfassen der
Arbeit nicht als Last, sondern viel mehr als Bereicherung empfunden habe.

v

Contents

1 Introduction 1
1.1 Motivation . 3
1.2 Contribution . 6
1.3 Organization . 7

2 State of the Art Review 8
2.1 Service Oriented Architecture . 8
2.2 Web Services . 9
2.3 Stateful Web Services and Service Resources 11

2.3.1 Grid Computing and the Open Grid Services Infrastructure . . 11
2.3.2 The Web Services Resource Framework 12
2.3.3 Web Services Addressing . 14

2.4 Asynchronous Service Invocation . 15
2.5 SOAP Fault Handling . 17
2.6 Web Service Composition . 18

2.6.1 Service Composition in WS-BPEL 19
2.6.2 Semantic Web Service Composition 20

2.7 Model-Driven Architecture . 21

3 Related Work 22
3.1 Web Services Conversation Language 22
3.2 Web Service Choreography Interface 22
3.3 WSDL 2.0 Message Exchange Patterns 23
3.4 SOAP Service Description Language 24
3.5 The Web Service Programming Language XL 25
3.6 XLANG/s . 26
3.7 Dynamic Service Invocation with Daios 26
3.8 Model-Based Service Development . 27
3.9 Petri Net-Based Web Service Composition 29

4 Design 32
4.1 Example Scenario . 32
4.2 SEPL - The Service Protocol Language 33

4.2.1 SEPL Example Protocol . 34
4.2.2 SEPL Basics . 34
4.2.3 WSRF Specific Features . 37
4.2.4 Advanced Concepts . 38

4.3 Model-Driven SEPL Development . 39
4.3.1 SEPL-to-UML Mapping . 41

4.4 SEPL Protocol Host . 46
4.4.1 Generating Protocol WSDL Documents 47
4.4.2 Dispatching Incoming Requests 49
4.4.3 Execution of the Target Protocol Function 50

vii

5 Implementation 51
5.1 SEPL Client Engine . 52
5.2 SEPL Code Generator . 54
5.3 SEPL Protocol Host . 58

5.3.1 Web Application Structure . 58
5.3.2 Configuration . 59
5.3.3 Parameters Types and Return Types 59

6 Evaluation 61
6.1 Development Efficiency . 61
6.2 Framework Performance . 65

6.2.1 SEPL Client Engine . 65
6.2.2 WSDL Generator . 68

7 Conclusion and Future Work 71
7.1 Future Work . 72

A List of Abbreviations 74

B SEPL Syntax Rules 76

C Usage of the SEPL Client 77

D SEPL Client Implementation 78

viii

List of Figures

1 Stateless Versus Stateful Service Conversation 2
2 Macroflows and Microflows . 3
3 Service Functionalities Involving Service Operations 4
4 Roles and Relationships in the SOA Triangle 9
5 Specifications in the Web Services Stack 10
6 Example of WS-Addressing for Newly Created WS-Resources 15
7 BPEL partnerLink Mapping . 19
8 Petri Net Service Composition Patterns 30
9 Porting Service Protocol . 32
10 SEPL-to-SOAP Mapping . 35
11 Mapping Resource Properties . 37
12 UML Activity Nodes Used in SEPL ADs 40
13 Number Porting Protocol Activity Diagram 46
14 SEPL Protocol Host . 47
15 Generated Protocol WSDL Document 48
16 Connection Between the SEPL Framework Components 51
17 SEPL Engine Structure and Responsibilities 52
18 SEPL Code Preprocessing Example . 54
19 Class Diagram of the UML AD In-Memory Representation 55
20 Common Merge Node and Intertwined Branches 57
21 Web Application Structure . 58
22 Determining the Return Type of a Function 60
23 WSDL Generator Benchmark Results 69

ix

List of Tables

1 Table of Definitions . 5
2 SOAP Fault Codes . 18
3 List of SEPL Language Constructs . 41
4 Mapping of SEPL Constructs to Activity Diagram Elements 45
5 SEPL Objects and the Respective Java Classes for Pnuts 53
6 Comparison of Service Protocol Implementation Variants 65
7 Performance Test Results . 67
8 WSDL Generation Time Formula . 69
9 List of Abbreviations . 75

x

List of Listings

1 Example of Grid WSDL Extensions 12
2 Resource Property Definitions in WSDL. From: WSRP specification . 12
3 WS-Addressing EndpointReference Type 14
4 Notification SOAP Message . 16
5 SOAP Version 1.2 Fault . 17
6 Construction of a Daios Message . 27
7 Number Porting Service Protocol in SEPL 34
8 XML Usage in SEPL . 36
9 WS-Addressing Action in Generated WSDL Document 49
10 WS-Addressing Action in SOAP Invocation 50
11 WS-Addressing Action in SOAP Invocation 50
12 Example PH Configuration File sepl.xml 59
13 Executing the Protocol With the SEPL Client 61
14 Number Porting Protocol Implemented Using Daios’ ServiceFrontend 62
15 The MultiplePorting Protocol Implemented in WS-BPEL 63
16 SEPL Performance Test Functions . 66
17 SEPL Syntax Rules in EBNF . 76
18 Using the SEPL Client to Execute the Number Porting Protocol . . . 77
19 Operation execute in the Class SEPLClient 78

xi

1

1 Introduction

Throughout the last years, software engineering research and practice have put re-
markable focus on the Service-Oriented Architecture (SOA) [16, 28, 41] paradigm,
which propagates the use of services - autonomous applications made available in a
computer network using standardized interface description and message exchange -
as a means to create decoupled, distributed, composite applications in heterogeneous
environments. Web services [76] have gained momentum as a means for implementing
SOA applications. The technologies and standards for Web services have been widely
agreed on: the Simple Object Access Protocol (SOAP) [78, 92] defines standards for
the exchange of messages between client applications and service endpoints; the Web
Services Definition Language (WSDL) [81] is used to provide metadata about a ser-
vice, i.e., under which endpoint address it is available, which operations it offers and
which messaging technology it supports; Web Services Addressing (WSA) [84] pro-
vides an extensible mechanism to uniquely address Web service endpoints; XML [74]
is the syntactical foundation for SOAP and WSDL as well as many other standards.

It is a commonly agreed principle that Web services generally do not persist a state
across invocations, i.e., are stateless [16, 41]. The output and side effects of invoca-
tions to stateless Web services depend solely on the input, the service business logic
and environmental factors (e.g., a back-end application, an attached machine, the
current time, . . .) but not on the state of the service itself. This implies that two
service invocations with the same input and under the same environmental conditions
should result in the same output and side effects. However, in some areas stateful
services have become popular. Most notable is the concept of the Grid service which
is defined in [20] as follows: “a Web service [...] that implements standard interfaces,
behaviors, and conventions that collectively allow for services that can be transient
(i.e., can be created and destroyed) and stateful (i.e., we can distinguish one ser-
vice instance from another) ”. More information on Grid computing [20] and Grid
services will be given in Section 2. Participants in stateful service interactions are

Client

Service Request: sub(5,3)

Web
Service

Service Response: 2

Service Response: 8

Service Request: mult(2,4)

Service Response: 15

Service Request: add(8,7)

Client

Service Request: set(5)

Web
Service
Instance

Service Request: sub(3)

Service Response: 15

Service Request: add(7)

Stateless Conversation Stateful Conversation

Service Request: mult(4)

Figure 1: Stateless Versus Stateful Service Conversation

service instances, which maintain an internal state. Figure 1 illustrates the difference
between stateful and stateless conversation by means of two calculator service im-

2

plementations and clients which calculate the result of the expression (5− 3) ∗ 4 + 7
using the services’ operations. In the stateless conversation, firstly the operation sub

with parameters 5 and 3 is invoked, then the result (2) is passed to the operation
mult along with the value 4 and so on: the result of each invocation is passed as
a parameter to the next operation. In the stateful conversation, the Web service
instance internally maintains a current value. The first invocation sets the value to
5, the second subtracts 3 from the value, the third multiplies the value with 4 and
the fourth adds 7 to the value. Note that the intermediate results do not have to
be passed to the subsequent operations and that only the return value of the last
invocation is needed (final result). Since less data needs to be transmitted over the
network, the Grid service paradigm is interesting for scientific, technical or medical
applications, which access large amounts of data.

In practice, the capabilities of one Web service often only account for a small part
of the desired functionality and hence services are combined. In cases where the
execution of a service operation involves the invocation of one or more other service
operations, we speak of service composition [13]. According to the survey carried
out in [13], service composition approaches can be divided into various categories,
which are briefly summarized below:

• The involved services can be assembled statically at design-time or dynamically
at runtime. Static compositions, on the one hand, usually have a performance
advantage but on the other hand require adaption if the services evolve. The
dynamic approach aims at making use of the flexibility of the service environ-
ment by assembling the required partner services upon request – based on given
requirements. In compliance with the SOA triangle [41], service providers pub-
lish services and their capabilities in a registry. Then the composition engine,
based on the user requirements, requests description documents of appropriate
services and binds to these concrete services.
• In manual service composition, participating services are selected by humans

and statically linked to one another. On the other hand, automated service
composition aims at taking away this responsibility by leaving to choice to
“intelligent” decision algorithms, which automatically select suitable services
to satisfy the requirements of a given abstract composition problem.
• In model driven service composition, the Unified Modeling Language [46] (UML)

is used to provide a high-level representation of services with the aim of enabling
a direct mapping to concrete service composition languages [13]. By means
of the Object Constraint Language [47] (OCL) it becomes possible to specify
business rules and constraints which apply to the service operations and inter-
dependencies. The authors of [60] identify seven main entities which apply to all
descriptions of service compositions: activity (a well-defined business function),
condition (integrity constraints and guards for activities), event (occurrences
of normal and exceptional nature), flow (block of activities and how they are
connected), message (container of information; input and output of activities),

Motivation 3

provider (participating party) and role (abstract description of a provider).
• Client requests to a composition engine might be expressed in a declarative way

using formal languages: the engine is then responsible to firstly construct a
generic plan, and, based on that, to discover appropriate services and build a
workflow out of them [13].

Based on the granularity of the composition we distinguish microflows (“short run-
ning, more technical processes”) and macroflows (“long-running, higher-level business
process”) [26]. This conception is illustrated in Figure 2. The macroflow printed in a
gray rectangle embraces three activities, which make up a higher-level business pro-
cess. Two of these activities (Activity 1 and Activity 2) are processes themselves

Macroflow

Activity 1

Activity 2

Activity 3

Microflow 2
Microflow 1

(human interaction)

Activity 1.1

Activity 1.2

Activity 2.1

Activity 2.2

Web Service A

operation1

operation2

operation3

Figure 2: Macroflows and Microflows

– on a microflow level. Microflow 1 includes human interaction whereas Microflow
2 is executed programmatically. Microflow 2 invokes operations of a Web Service
A in a certain order and manner. The microflow is an invokable sub-process which
executes autonomously: the internal procedures are hidden (and irrelevant) on the
macroflow level. Microflows have transactional characteristics, i.e., they require to
perform all included activities successfully in order to provide their functionality to
the parent macroflow.

1.1 Motivation

Clients need to obtain information about a service in order to be able to successfully
invoke one or more of the service’s operations. On the one hand, this information
concerns the “static” interface description including the names of available operations,
parameter and return types as well as the message style to be used. These issues
are covered by the WSDL document offered by the service provider. In the WSDL
document, client applications determine the operation names in the portType section,
parameter and return types in the portType and types sections and the message
style in the binding section. On the other hand, clients ought to know the service’s

4 Motivation

“dynamic” (behavioral) interface which specifies the order in which operations can
be invoked. Especially stateful services, i.e., services which persist data values across
invocations, often provide functionalities which involve more than one operation.

Web Service

operation 1 operation 2 operation 3 operation 4

Client

service functionality 1 service functionality 2

1 2 3 1 2

Figure 3: Service Functionalities Involving Service Operations

Figure 3 depicts a scenario where a Web service, as for its “static” interface, offers
4 operations. Assuming that the client wants to invoke operation 4 and that the
business logic in that operation depends on the former execution of operation 2,
the client would first have to invoke operation 2 before it invokes operation 4.
In Figure 3 this sequence of service invocations is named “service functionality 2”.
“Service functionality 1” requires that operation 1, operation 2 and operation 4

shall be invoked (in this order). We refer to such constraints, which require the client
to have knowledge about functionalities on top of the actual service operations, as
the intra-service protocol. We observe that intra-service protocols (for short, service
protocols) relate to service microflows:

• Both service protocols and microflows create new or extended functionality in
addition to the single operations offered by a Web service.
• Service protocols – like microflows – have a transactional aspect: if one involved

operation call fails, the wanted functionality can most likely not be delivered.
• Service protocols target one single service and they contain no cross-service

collaboration aspects. This is equally true for microflows which operate at the
lowermost level.
• Service protocol descriptions are actually a means of expressing the set of mi-

croflow processes which are supported by a specific Web service (“dynamic
interface”).

Before continuing, we summarize the key terms mentioned so far in Table 1.

In real-world applications it is very likely that a service contains constraints concern-
ing valid and invalid operation sequences, which becomes clear when considering the
following examples:

• A service implements the state pattern [21] (or, alternatively, the strategy pat-
tern) and reacts to client requests according to its internal state. The client

Motivation 5

Term Description

Stateful Service A stateful service is a service which maintains state infor-
mation across invocations. For the interaction with stateful
services it is crucial for clients to know the protocol that
has to be stuck to. Stateful services play an important role,
e.g., in Grid computing. The WSRF [58] set of specifica-
tions enables explicit addressing and handling of stateful
services.

Static Interface The static service interface describes which operations are
supported and which input and output is expected. For
Web services, it is expressed in WSDL.

Intra-Service Protocol
= Dynamic Interface

The intra-service protocol defines behavioral aspects of ser-
vices on the macroflow level: in which order and with
which output-input transformations operations have to be
invoked in order to achieve certain functionalities.

Service Composition Service composition is the process of creating new invokable
services which involve the functionality of existing services.
In contrast to intra-service protocols, service composition
usually involves several partner services (“inter-service”)
and therefore covers aspects of the macroflow level.

Table 1: Table of Definitions

sets the desired state of the service (by invoking an according operation) before
invoking any business logic operations.
• The input of an operation requires the result (output) of another operation.
• A client invokes a service operation which creates a new service resource [58] and

returns the endpoint reference of the new resource. The client needs to invoke
an initialization operation on the newly created resource. This architectural
pattern is called the resource factory pattern [22] and will be further discussed
in Section 2.
• A service with 2 or more operations is to be extended by a new functionality

which involves invoking the existing operations. The WSDL contract cannot be
extended by a new operation because then some existing clients of the service
might fail to parse it.

Currently, there is still an evident lack of special purpose languages to describe intra-
service protocols. In our state of the art review in Section 2 we will discuss the
related problem of service composition, which aims at composing a set of services
to an invokable business process. Service composition has been addressed in various
ways and the suggested solutions range from semantics-/ontology-based approaches
to process modeling using Petri nets [25] or finite state machines [4, 30]. The most
prominent de facto standard language for service composition is WS-BPEL [56], an
XML-based language used to create invokable electronic business processes.

6 Contribution

Describing intra-service protocols is essentially a subproblem of service composition
specification, therefore, languages from the service composition domain (e.g. WS-
BPEL) can also be used to specify intra-service protocols. However, we argue that
this approach has a number of drawbacks. Firstly, the problem of intra-service pro-
tocol specification is less complex than service compositions: the service to invoke
is always clearly defined (e.g. there is no need for partner links), protocols are usu-
ally much less complicated than composition, and many WS-BPEL constructs (e.g.
“Parallel Flows”) are not useful for intra-service protocols. Secondly, composition lan-
guages are generic and do not contain any explicit support for stateful Web services
specifics, such as Web Service Resource Framework (WSRF) [58] Resource Properties
(WS-ResourceProperties) [59] or the WSRF factory/instance pattern. Thirdly, com-
position engines are rather heavy-weight server tools, and not suitable for client-side
usage. Lastly, the XML syntax that, e.g., WS-BPEL is based on is notoriously hard
to write without appropriate tool support.

1.2 Contribution

In this thesis we address the issues mentioned before and propose a solution for the
problem of intra-service protocol modeling, description and execution. The contribu-
tion of this thesis is threefold:

• We introduce a light-weight, scripting-like DSL named SEPL (SErvice Protocol
Language), which offers features to specify functionalities on top of the opera-
tions of a Web service. Features of SEPL include synchronous and asynchronous
invocations, fault handling, simplified processing of XML messages and direct
support for WSRF specifics and for the service factory/instance pattern. An
advantage of SEPL documents is that they are decoupled from existing ser-
vices and that service implementations remain untouched. SEPL documents
are straight-forward to author for service providers and easy to interpret for
clients. In Section 4 we present our prototype SEPL execution engine and
SEPL client implementation written in the Java programming language.
• We provide a framework for the model driven development [3] (MDD) of

SEPL documents using the Unified Modeling Language (UML). For this pur-
pose we define a 1-to-1 mapping from UML activity diagrams [44] to SEPL code.
Among the various graphical UML modeling tools available we decided to choose
the Eclipse Model Development Tools (MDT) [15] platform as the starting point
for SEPL modeling. MDT contains a graphical editor to compose UML activity
diagrams and save them in an XML format based on XML Metadata Interchange
[48] (XMI). Based on these files we implemented a command-line SEPL code
generation tool UML2SEPL.
• To take away the responsibility of clients to execute SEPL protocols, we offer

a SEPL protocol server implementation. The responsibility of the server is
to host SEPL protocols, to expose service functionalities contained therein as

Organization 7

WSDL operations and to execute protocol functions upon request. We imple-
mented the SEPL protocol server as a configurable Web Application Archive
(WAR) [71] that can be deployed to established application servers like Apache’s
Tomcat [2] or Sun’s Glassfish [8].

1.3 Organization

The remainder of this thesis is structured as follows:

• Section 2 details the current state of the art in the areas of SOA, stateless and
stateful Web services, service composition and service protocols. It presents the
Web Services Resource Framework (WSRF), a set of specifications to handle
stateful Web services and service resources. Furthermore we briefly discuss
WS-Addressing [84], WS-BaseNotification [55] and SOAP Fault [78].
• Section 3 provides an overview of related work in the area of intra-service pro-

tocol description and the related field of service composition. We examine the
concept of conversations in the message exchange with services and, relatedly,
the Web Services Conversation Language [80]. We discuss approaches to Petri
Net [67] based and model-driven development of service compositions. Fur-
thermore, we review SSDL [66], a SOAP-centric, message-based Web service
description language which attempts to avert the shortcomings of WSDL and
draws a complete picture about services and their protocols.
• In Section 4 we firstly define SEPL, a domain-specific language which addresses

the problem of intra-service protocol definition. Afterwards we discuss the de-
sign of the prototypical SEPL execution engine which has been developed as
part of the practical work of this thesis. Secondly, we explain how intra-service
protocols can be modeled using UML activity diagrams and describe the im-
plementation of our “UML-to-SEPL” code generator. Thirdly, we address the
problem of how service protocols can be hosted in a server to expose the higher-
level service functionalities as Web service operations themselves.
• Section 5 covers a presentation of the prototype implementation of the SEPL

execution engine, the SEPL code generator and the SEPL service host. Selected
aspects such as the SEPL code writer algorithm and the WSDL generation algo-
rithm are discussed in more detail. Usage examples illustrate how the respective
components are integrated into new applications.
• Section 6 contains an evaluation of the implemented SEPL framework concern-

ing different aspects. The productivity of developing service protocols with
SEPL is measured against other methods (pure client implementation, imple-
mentation in WS-BPEL). The section also covers a performance evaluation of
the protocol execution and the WSDL generation, which are crucial parts of the
SEPL prototype implementation.
• Section 7 concludes the thesis with a short summary and plans for improving

the framework and work to be carried out in the future.

8 Service Oriented Architecture

2 State of the Art Review

In this section we discuss the concepts of Service Oriented Architecture, the core
protocols and specifications of Web services and the current state of the art in Web
service composition.

2.1 Service Oriented Architecture

Since software development is a complex, time consuming and expensive process,
vendors as well as customers can benefit from reusable software elements. To achieve
sustainable reuseability, on a Business-internal as well as on a Business-to-Business
(B2B) level, a high degree of interoperability and integration is crucial. The concept
of Service-Oriented Computing [61] (SOC) utilizes services as fundamental elements
for developing applications: services are “self-describing, platform-agnostic computa-
tional elements that support rapid, low-cost composition of distributed applications”
[61]. According to [16], characteristics of services are:

• Loose coupling : Services are autonomous and not hard-wired. The relation-
ship between services minimizes dependencies and allows for the replacement
of single elements.
• Service contract : Services adhere to a communications and interface agreement,

as defined by one or more service description documents.
• Autonomy : Services have control over the logic they realize.
• Abstraction: Services describe their interface in a service contract but hide the

actual implementation logic from the outside world.
• Reuseability : The functionality provided by a service is intended for reuse.
• Composability : Services can be assembled to form composite services. The ab-

straction principle still applies, which means that to the outside world composite
services are not distinguishable from atomic services.
• Statelessness: Services do not retain an internal state. Context information is

carried in the message exchange with the service.
• Discoverability : Services are designed to be outwardly descriptive so that they

can be found and assessed via available discovery mechanisms.

The view of software as a service is the basis for the Service Oriented Architecture
(SOA) paradigm, a form of technology architecture that adheres to the principles of
service-orientation [16]. The definition given in [41] underlines the interoperability
and platform-independence aspects of SOA:

“A service-oriented architecture is a style of design that guides all aspects of creating
and using business services throughout their lifecycle (from conception to retirement).
An SOA is also a way to define and provision an IT infrastructure to allow different

Web Services 9

applications to exchange data and participate in business processes, regardless of the
operating systems or programming languages underlying those applications.”[41]

SOA is best described by means of the SOA “triangle” [41], which depicts the depen-
dencies between the three roles of Service Provider, Service Consumer and Service
Registry (see Figure 4). The service consumer requires a certain capability and is

Service
Contract

Service
Registry

Service
Consumer

Service
Provider

Find Publish

Bind

Figure 4: Roles and Relationships in the SOA Triangle

looking for a service which can provide it. The service provider is able to provide
the required capability in the form of a service. The service registry is the mediator
between consumer and provider: the service provider publishes the service contract
to the registry; the consumer queries the service registry to find the desired service
and its contract. When the service consumer has found an appropriate service, the
binding takes place and interaction between the consumer and the provider (service)
begins.

2.2 Web Services

One possible – and, by this time, very popular – way to implement SOA applications is
by means of Web services [11, 41, 61, 76]. 1 Web service technology builds the bridge
from the abstract SOA concepts to concrete service implementations. Essentially, the
term Web service embraces a set of standards and specifications for different aspects
of SOC. Three core specifications are briefly presented in the following:

• Description of Web services: The Web Services Definition Language [81] (WSDL)
serves the purpose of defining the service contract in the sense of the service’s
interface. For one thing, WSDL describes which operations the service offers,
which input and output messages the operations receive and return and which
exact XML schema type [86, 87] these messages have to match. This informa-
tion makes up the portType element of WSDL documents and constitutes the
abstract interface without any dictate of the transportation method to be used.

1Note that it is a common misperception that all applications using Web services are service-

oriented or that Web services are the only way of creating SOAs [16].

10 Web Services

Based on the portType, WSDL documents contain a binding section, which
determines the transport protocol to be used (usually HTTP [18]). When the
WSDL declares SOAP [78] (see next point) to be the messaging protocol, this
section contains specific data such as the SOAP binding style [6] or SOAPAction
strings. The service section, finally, specifies the location URI [5] under which
the service is accessible.
• Message exchange with Web services: The Simple Object Access Protocol [78]

(SOAP) is the most commonly used messaging protocol in Web service com-
puting. SOAP messages are XML documents which are exchanged by service
consumer and provider for the invocation of service operations and their re-
turn values. The top-level element in SOAP 1.1 messages is named Envelope

and contains a mandatory Body element and an optional Header element (in the
meantime, SOAP version 1.2 [92] has been released but not yet fully adopted by
frameworks and toolkits, so we will consider SOAP version 1.1 throughout this
document). The format of SOAP documents follows a separation-of-concerns
principle: the Body carries the actual payload of the communication, whereas
the Header contains contextual information to satisfy issues such as addressing
(WS-Addressing [84], see below), security (WS-Security [52]) or policy asser-
tions (WS-Policy [90]).
• Web services registries: Universal Description, Discovery and Integration [73]

(UDDI), an OASIS specification for Web service registry implementations, de-
fines a data model to describe service providers, their offered services and rela-
tions within the entities. UDDI registries describe services verbally (informal)
as well as technically (formal) and can be used by consumers via special query
operations. Technical service descriptions usually link to the service’s WSDL
definition.

From the Web services perspective, the SOA triangle has not been fully realized
due to the weak adoption of UDDI [16, 38] (the authors of [38] even write about
the “broken SOA triangle”). In practice, it is more common to use in-house registry
implementations and, relatedly, service factories (see later). A more complete picture
of the so-called Web services stack [23, 79] is given in Figure 5. The network transport

HTTP, JMS, SMTP, ...Network Transport

Messaging

Description

Discovery

W
S

A
dd

re
ss

in
g

W
S

S
ec

ur
ity

SOAP

WSDL

UDDI

Composition

W
S

P
ol

ic
y

WSBPEL, WSCDL, ...

Figure 5: Specifications in the Web Services Stack

Stateful Web Services and Service Resources 11

protocol (mostly HTTP) is the basis for messaging (exchange of SOAP messages).
One (meta-)level higher we find WSDL for the description of the service interface
and expected communication methods. Service discovery (UDDI) makes use of service
descriptions and the other aforementioned levels and, finally, Web service composition
involves all other levels and represents the top of the stack. Namable standards on
this level are WS-BPEL [56] and WS-CDL [96]. Web service composition will be
discussed in more detail later on.

2.3 Stateful Web Services and Service Resources

In the SOA literature of the past years, (Web) services have frequently been character-
ized as being inherently stateless [16, 41] ([41] denotes this a secondary characteristic
for Web services). The service offers a WSDL contract to its clients and the infor-
mation contained therein is sufficient to invoke the service’s operations. The service
implementation does not maintain a state and for the same input an operation will
always return the same, or a logically conforming result (output) in subsequent in-
vocations. We use the term “logically conforming” because an operation might still
react differently depending on externally influencing factors like, for example, the
date and time of the invocation, but it does not behave dependent on the data stored
in the service implementation itself. Paradigms like the state pattern can not be im-
plemented when strictly sticking to the principle that services are stateless. In this
section we discuss state-of-the-art Web service technologies adverse to the “stateless
paradigm”.

2.3.1 Grid Computing and the Open Grid Services Infrastructure

Disaccording to the principle of stateless services, Web service developers turned out
to be relying on stateful services in some areas. Most notably, stateful services play
a decisive role in Grid Computing. A definition of the “Grid” can be found in [20]:
“We define a Grid as a system that coordinates distributed [computational] resources
using standard, open, general-purpose protocols and interfaces to deliver nontrivial
qualities of service.”. The coordination of distributed resources requires introspection
functions for relevant state information such as current load, availability and response
time. In 2003, the Open Grid Forum released the specification Open Grid Services
Infrastructure (OGSI) [49], which satisfies the requirements of Web services for use
in a Grid architecture. The theoretical background of OGSI is elaborated in the
Open Grid Services Architecture [50] (OGSA) specification. OGSA aims to create
interoperable, portable and reusable components and systems by defining a set of
capabilities and behaviors that address key concerns in Grid systems - discovery,
access, allocation, monitoring etc. [50]. A complete description of OGSA would go
beyond the scope of this thesis, so we only focus on OGSI and the parts which are
relevant in our context.

12 Stateful Web Services and Service Resources

OGSI defines a component model that extends WSDL and XML Schema definition to
incorporate the concepts of stateful Web services. A main facet of handling stateful
services with OGSI is that it exposes a service instance’s state data for query and
update operations as well as change notifications. The state data of a service consists
of one or more service data elements (SDEs), which are comparable to member vari-
ables of a class in object oriented programming. Analogously, the set of all SDEs is
called the service data, or serviceData. Such serviceData is defined in the service’s
WSDL document using so-called Grid WSDL Extensions. Listing 1 depicts an exam-
ple WSDL document which contains a Grid WSDL portType named gridServicePT.
In addition to the operation declarations this portType defines two SDEs, data1 and
data2. The purpose of the staticServiceDataValues element is to assign initial
values. Since the sole way of communication with a Web service means invoking one
of its operations, OGSI services must provide methods to query and update service
data.� �
1 <wsdl : d e f i n i t i o n s

2 xmlns : sd=”http ://www. gr idforum . org /namespaces /2003/03/ se rv i ceData ”

3 xmlns : gwsdl=”http ://www. gr idforum . org /

4 namespaces /2003/03/ gridWSDLExtensions”

5 xmlns : wsdl=”http :// schemas . xmlsoap . org /wsdl /”

6 xmlns : tns=”xxx” targetNamespace=”xxx”>

7 <gwsdl : portType name=” gr idServ icePT”>

8 <wsdl : ope ra t i on name=” . . . ”> . . . </wsdl : operat ion>

9 . . .

10 <sd : s e rv i ceData name=”data1” type=”xsd : S t r ing ” />

11 <sd : s e rv i ceData name=”data2” type=” tns : SomeComplexType” />

12 <sd : s ta t i cSe rv i c eDataVa lue s >

13 <tns : data1> i n i t i a l value </tns : data1>

14 </sd : s ta t i cSe rv i c eDataVa lue s >

15 </gwsdl : portType>

16 . . .

17 </wsdl : d e f i n i t i o n s >� �
Listing 1: Example of Grid WSDL Extensions

2.3.2 The Web Services Resource Framework

The consequence was the need for a unified description of stateful services which re-
sulted in the creation of the Web Services Resource Framework (WS-Resource Frame-
work, WSRF) [58] set of specifications. In its introductory document, the authors
define the term WS-Resource as “the composition of a [computational] resource and
a Web service through which the resource can be accessed” [57]. Every WS-Resource
is represented by an endpoint reference (EPR), which is an XML element whose type
is defined by the WS-Addressing specification [84] (see Subsection 2.3.3).

WS-ResourceProperties (WSRP) [59] describes how stateful service resources can
expose properties and how the definition of these properties becomes a part of the
service’s WSDL contract. Listing 2 contains an example taken from the specification,
which shows the WSDL contract of a “generic disk drive” service.

Stateful Web Services and Service Resources 13

� �
1 <wsdl : d e f i n i t i o n s . . . xmlns : tns=”http :// example . com/ di skDr ive ” . . . >

2 . . .

3 <wsdl : types>

4 <xsd : schema targetNamespace=”http :// example . com/ di skDr ive ” . . . >

5 <!−− Resource property element d e c l a r a t i o n s −−>
6 <xsd : element name=”NumberOfBlocks” type=”xsd : i n t e g e r ”/>

7 <xsd : element name=” BlockS ize ” type=”xsd : i n t e g e r ” />

8 <xsd : element name=”Manufacturer ” type=”xsd : s t r i n g ” />

9 <xsd : element name=” StorageCapab i l i ty ” type=”xsd : s t r i n g ” />

10 <!−− Resource p r op e r t i e s document d e c l a r a t i on −−>
11 <xsd : element name=” Gener i cDi skDr iveProper t i e s ”>

12 <xsd : complexType>

13 <xsd : sequence>

14 <xsd : element r e f=” tns : NumberOfBlocks”/>

15 <xsd : element r e f=” tns : B lockS ize ” />

16 <xsd : element r e f=” tns : Manufacturer ” />

17 <xsd : any minOccurs=”0” maxOccurs=”unbounded” />

18 <xsd : element r e f=” tns : S to rageCapab i l i ty ”

19 minOccurs=”0” maxOccurs=”unbounded” />

20 </xsd : sequence>

21 </xsd : complexType>

22 </xsd : element>

23 . . .

24 </xsd : schema>

25 </wsdl : types>

26 . . .

27 <!−− Assoc i a t i on o f r e s ou r c e p r op e r t i e s document to a portType −−>
28 <wsdl : portType name=”Gener icDiskDrive ”

29 wsrf−rp : ResourceProper t i e s=” tns : Gener i cDi skDr iveProper t i e s ” >

30 <opera t i on name=” s t a r t ” . . . / >

31 <opera t i on name=” stop ” . . . / >

32 . . .

33 </wsdl : portType>

34 . . .

35 </wsdl : d e f i n i t i o n s >� �
Listing 2: Resource Property Definitions in WSDL. From: WSRP specification

The types section contains an XSD element GenericDiskDriveProperties, which
itself defines the properties which apply to every instance (WS-Resource) of the ser-
vice: NumberOfBlocks, BlockSize, Manufacturer and StorageCapability. Using
the attribute wsrf-rp:ResourceProperties, the XSD definition of the properties
is tied to the port type GenericDiskDrive. Hence, clients can discover available
properties and read, change and query resource properties. The respective prede-
fined operations are named GetResourceProperties, SetResourceProperties and
QueryResourceProperties.

The explicit addressing of Web service instances (WS-Resources) allows for the dy-
namic run-time instantiation of new service EPRs. The WS-Resource Factory Pattern
[22] embodies the concept of a singleton service which - upon request - creates new in-
stances of a specific service and returns its EPR. Due to the fact that service factories
are a diverse topic and hard to reduce to a common denominator, there is no explicit
standardization in the WSRF specification, but it certainly is common practice to
use service factories.

14 Stateful Web Services and Service Resources

2.3.3 Web Services Addressing

The Web Services Addressing specification (WS-Addressing, WSA) provides “trans-
port-neutral mechanisms to address Web services and messages” [84]. Before the in-
troduction of WSA, the addressing of a Web service was often dependent on the used
transport protocol. In most Web service environments the Hypertext Transfer Pro-
tocol (HTTP) [18] serves as the transport protocol for SOAP messages. The central
addressing entity of HTTP is the Uniform Resource Locator (URL). Service URLs on
HTTP level are usually http://<host>:<port>/<service path>. With WSA,
the addressing information is lifted one level higher in the Web services stack: it
is included in the SOAP header of messages. The central XML data structure in
WSA is the endpoint reference (EPR), which uniquely addresses a Web service or
WS-Resource.

� �
1 <wsa:EndpointReference>

2 <wsa:Address>ht tp : //company . com/ShoppingServ ice</wsa:Address>

3 <wsa :Re f e r encePrope r t i e s>

4 <customerID>customer1529</customerID>

5 </ wsa :Re f e r encePrope r t i e s>

6 <wsa:ReferenceParameters>

7 <shoppingCartID>37542</ shoppingCartID>

8 </wsa:ReferenceParameters>

9 </wsa:EndpointReference>� �
Listing 3: WS-Addressing EndpointReference Type

Listing 3 shows an example EPR which addresses the WS-Resource available under
the address http://company.com/ShoppingService, whose property customerID

equals the value customer1529. The contextual information shoppingCartID is con-
sidered a parameter specific to the current interaction with the WS-Resource. The
ReferenceProperties element is an important part of the EPR for WS-Resources.
Consider a factory Web service F which creates service instances I1, I2, . . . , In. Then,
the factory service provides for distinguishable EPRs using the reference property
ResourceID (although any other XML markup could as well be used instead of
ResourceID). This is illustrated in Figure 6. Note that the endpoint references of
I1 and I2 contain the same Address (http://abc.com/service) and only differ in
the value of ResourceID. In the figure, the SOAP message exchange between the
client and the WS-Resources is depicted. WSA specifies that all sub-elements of
wsa:ReferenceProperties occurring in an EPR are put to the SOAP header. In
our example this concerns only the ResourceID header. The WSA header To holds
the value of the wsa:Address element of the EPR. As mentioned before, service fac-
tories might also operate differently and, e.g., return a new URL for each created
service.

Asynchronous Service Invocation 15

Service Site

Factory Service

WSResource I1

creates

Client invokes
<wsa:EndpointReference>
 <wsa:Address>http://abc.com/service
 </wsa:Address>
 <wsa:ReferenceProperties>
 <ResourceID>I1</ResourceID>
 </wsa:ReferenceProperties>
</wsa:EndpointReference>

WSResource I2

invokes/
destroys

<wsa:EndpointReference>
 <wsa:Address>http://abc.com/service
 </wsa:Address>
 <wsa:ReferenceProperties>
 <ResourceID>I2</ResourceID>
 </wsa:ReferenceProperties>
</wsa:EndpointReference>

. . .

WSResource In

<soap:Envelope>
 <soap:Header>
 <ResourceID>

I[1|2|...|n]
 </ResourceID>
 <wsa:To>
http://abc.com/service
 </wsa:To>
 ...
 </soap:Header>
 ...
</soap:Envelope>

Figure 6: Example of WS-Addressing for Newly Created WS-Resources

2.4 Asynchronous Service Invocation

Synchronous service calls send a request message to a target service and receive a
response message with result data as soon as the processing has finished. In the time
between request and response message, the underlying network connection remains
established. With asynchronous invocations, on the other hand, the request of an
operation is separated from the receipt of the response message. According to [97],
the four patterns for asynchronous invocations are:

• Fire And Forget : A request message is sent and no response message is ex-
pected. The sender does not get any acknowledgment of the target service
having received the request.
• Sync With Server : Similarly to Fire And Forget, Sync With Server is a one-

way request which does not expect a response message. But, in contrast, the
receiver acknowledges the receipt of the message on network level.
• Poll Object : An operation is requested and the service returns a Poll Object.

This object is used to either repeatedly query for the result until it is available
or to block on the object until the result is available.
• Result Callback : After the sender has requested a service operation, the service

performs the computation and actively notifies the sender of the completion.

Especially the Result Callback version imposes additional requirements on the sender
(client) in the form of an interface which enables the service to send its response
message. In Web service computing, several possible solutions exist to provide a
callback mechanism, three of which are:

• WS-BaseNotification: WS-BaseNotification [55] specifies a SOAP-based mes-
sage format for creation and destruction of notification subscriptions as well

16 Asynchronous Service Invocation

as notifications themselves. By sending a Subscribe message, clients specify
which types of notifications they are interested in and the service answers with
a SubscriptionReference message. This reference is used to distinguish sub-
scriptions and can be used to poll the service for new messages. When an event
occurs that the service wants to inform about, it sends a Notify SOAP mes-
sage to all clients which have subscribed for this type of notification. Listing 4
shows an example Notify SOAP message of a ShoppingService service which
informs about the new status (SHIPPED) of an order with ID order15034.� �
1 <soap:Envelope . . .>

2 . . .

3 <soap:Body>

4 <wsnt :Not i fy xmlns:wsnt=” ht tp : // docs . oa s i s−open . org /wsn/b−2”>

5 <wsnt :Not i f i c a t i onMes sage>

6 <wsnt :Subsc r ip t i onRe f e r ence>

7 <wsa:Address>ht tp : //company . com/ShoppingServ ice</wsa:Address>

8 <wsa:ReferenceParameters>

9 <Not i f i c a t i on ID>order15034−1</ Not i f i c a t i on ID>

10 </wsa:ReferenceParameters>

11 </ wsnt :Subsc r ip t i onRe f e r ence>

12 <wsnt :ProducerReference>

13 <wsa:Address>ht tp : //company . com/ShoppingServ ice</wsa:Address>

14 <wsa:ReferenceParameters>

15 <OrderID>order15034</OrderID>

16 </wsa:ReferenceParameters>

17 </ wsnt :ProducerReference>

18 <wsnt:Message>

19 <OrderStatus orderID=”order15034 ”>

20 <Status>SHIPPED</ Status>

21 <Text>Your order has been shipped .</Text>

22 </OrderStatus>

23 </wsnt:Message>

24 </ wsnt :Not i f i c a t i onMes sage>

25 </ wsnt :Not i fy>

26 </ soap:Body>

27 </ soap:Envelope>� �
Listing 4: Notification SOAP Message

The message contains a SubscriptionReference element and a Producer-

Reference element which holds the EPR of the notification producing end-
point. The format of the reference parameter NotificationID (the order ID
order15034 as prefix and a trailing -1) indicates that more than one notifica-
tion subscriptions may exist for the same order. The notification body itself
is contained in the element Message. In the example, the notification informs
about the new status of a previously made order. When no more notifications
are desired by the client, the subscription is finalized by sending an according
Destroy SOAP message to the subscription reference EPR.
• WS-MessageDelivery Callback Pattern: In WS-MessageDelivery [85], the Call-

back pattern is used to asynchronously deliver a response message to a request
message. The service requester needs to provide a reference to the endpoint
which is to receive the callback response (ultimate response destination) and a
correlation ID which is to be returned in the response message later on. Call-
backs are declared in the portType section of the target service’s WSDL doc-

SOAP Fault Handling 17

ument: the WSDL operation declaration of the request operation is enriched
with a ResponseOperation element, in which the response operation interface,
which has to be provided by the requester in order to properly receive callback
messages, is declared.
• WS-Addressing RelatesTo header : In WS-Addressing, the MessageID SOAP

header element uniquely identifies a SOAP message in the interaction between
service consumer and provider. In the reply message sent by the provider, the
message identifier of the request message must be present in a RelatesTo SOAP
header. Therefore, reply messages can be uniquely assigned to request messages
and clients can implement parallelism if they perform proper pooling of request
and response messages.

2.5 SOAP Fault Handling

Service provider and service consumer in SOAs rely on the exchange of messages over
the network in order to to interact with each other. Given the fact that faults and
exceptions may occur in this interaction, there is a need for a generalized format for
fault messages. In the area of Web services, SOAP addresses this issue by defining
SOAP Faults [78, 92]. The definition of faults differs between SOAP version 1.1 [78]
and version 1.2 [92]. We focus on version 1.2 and briefly discuss the concepts of SOAP
faults on the basis of the example given in Listing 5, which contains a fault message
indicating that a username/password authentication was unsuccessful.� �
1 <env : Envelope xmlns : env=”http ://www.w3 . org /2003/05/ soap−enve lope ”

2 xmlns : tns=”http ://www. example . org / au then t i c a t i on ”

3 xmlns : xml=”http ://www.w3 . org /XML/1998/namespace”>

4 <env : Body>

5 <env : Fault>

6 <env : Code>

7 <env : Value>env : Sender</env : Value>

8 <env : Subcode>

9 <env : Value>tns : I nva l i dCr eden t i a l s </env : Value>

10 </env : Subcode>

11 </env : Code>

12 <env : Reason>

13 <env : Text xml : lang=”en”>I nva l i d username/password combination</env : Text>

14 </env : Reason>

15 <env : Deta i l>

16 <tns : Attempts>1</tns : Attempts>

17 <tns : MaxAttempts>5</tns : MaxAttempts>

18 </env : Deta i l>

19 </env : Fault>

20 </env : Body>

21 </env : Envelope>� �
Listing 5: SOAP Version 1.2 Fault

Each SOAP fault has a code and an arbitrary number of subcodes. The code gives
information on the originator of the fault – possible values are given in Table 2. From
SOAP v1.1 to v1.2 the codes Client and Server have been replaced by Sender and
Receiver and the new code DataEncodingUnknown has been introduced. The sub-

18 Web Service Composition

Fault Code Description v1.1 v1.2
VersionMismatch The version of the SOAP message

does not match the expected ver-
sion.

X X

MustUnderstand A SOAP header with
mustUnderstand attribute of
value true could not be processed
by the receiver.

X X

DataEncodingUnknown An unknown encoding [92] has been
specified.

× X

Client/Sender The message was incorrectly formed
or contained inappropriate informa-
tion.

X X

Server/Receiver The operation failed due to a failing
processing caused by the receiver.

X X

Table 2: SOAP Fault Codes

codes of SOAP faults are used to further distinguish the reason of fault occurrences.
Subcodes may be of arbitrary type and are comparable to exception types (exception
classes) in ordinary programming languages such as Java. In the example listing the
fault subcode InvalidCredentials indicates that invalid authentication data has
been provided. The Reason element in listing 5 gives a human-readable description
of the raised fault. The optional Detail element provides further details, in our ex-
ample the number of login attempts made so far and the number of attempts possible
(before the service gets locked and becomes unavailable).

2.6 Web Service Composition

In Section 1 we briefly mentioned that intra-service protocol description is essentially
a subset of the problem of service composition. We will discuss this statement in more
detail in this subsection.

The basic Web service infrastructure described in Subsection 2.1 is sufficient to cre-
ate applications only involving simple interactions between client and server. If the
implementation of a service’s business logic involves the invocation of other Web ser-
vices, we speak of a composite service [13]. More precisely, in situations where the
solution to a problem cannot be implemented with one single, but only with a set
of services, some kind of service composition is needed. [13] comprises an analysis
and classification of service composition approaches, taking into account static and
dynamic, automated and manual, business rule driven, model driven, context based
and declarative composition. In this document we cover only some of these aspects.
We discuss WS-BPEL (static, manual, possibly model-driven) and touch on the topic
of semantic service composition approaches (automatic, ontology-based, often times

Web Service Composition 19

dynamic). The reason why we do not mention model driven, declarative or context
based solutions here, is that none of them can be regarded prevalent or state-of-the-
art. We will, however, discuss current research in these areas in Section 3.

2.6.1 Service Composition in WS-BPEL

The Web Services Business Process Execution Language [56] (WS-BPEL, BPEL) is
an XML-based language for the description of electronic business processes, whose
individual activities are performed by Web services. The participating Web services
are specified by partnerLink definitions, which point to the respective portType

declarations and service EPRs. If the WSDL portType definition of a service is
regarded as the equivalent of a class interface definition in object-oriented program-
ming (OOP), then the partnerLink element in a WS-BPEL process can be seen as an
equivalent to the object identifier in OOP: if several instances of a Web service exist,
several partnerLink definitions may exist with according EPRs. Figure 7 illustrates
the mapping of partner links to service EPRs. The figure depicts the two WSDL
documents of the process interface and a target service, respectively, as well as an
excerpt from a WS-BPEL document and the EPR of one of the target service’s in-
stances. Partner link types and roles are defined in the WSDLs and referenced in the
partnerLink element of the WS-BPEL process definition. The EPR information is
assigned to the partner link service using an assign directive. This EPR is dynamic
and may be reassigned in the course of the process execution. The partnerLink at-

<definitions ...> ...
 <portType name=“ServicePT“>...</portType>
 <plnk:partnerLinkType name="servicePLT">
 <plnk:role name="svc">
 <plnk:portType name="tns:ServicePT"/>
 </plnk:role>
 </plnk:partnerLinkType>
</definitions>

<process ...>
 <partnerLinks>
 <partnerLink myRole="pcs" name="process"
 partnerLinkType="tns:processPLT"/>
 </partnerLink>
 <partnerLink partnerRole="svc" name="service"
 partnerLinkType="tns:servicePLT"/>
 </partnerLink>
 </partnerLinks>
 ...
 <assign>
 <from>
 <wsa:EndpointReference>
 ...
 </wsa:EndpointReference>
 </from>
 <to partnerLink="service" />
 </assign>
 ...
</process>

WSBPEL

WSDL

Service Instance 1
<wsa:EndpointReference>
 ...
</wsa:EndpointReference>

<definitions ...> ...
 <portType name=“ProcessPT“>...</portType>
 <plnk:partnerLinkType name="processPLT">
 <plnk:role name="pcs">
 <plnk:portType name="tns:ProcessPT"/>
 </plnk:role>
 </plnk:partnerLinkType>
</definitions>

Figure 7: BPEL partnerLink Mapping

tribute myRole which points to the port type ProcessPT indicates that, to the outside
world, the WS-BPEL process appears as an invokable Web service with the WSDL

20 Web Service Composition

interface defined in this port type.

A WS-BPEL engine parses the process definition, publishes the process WSDL file
and accepts incoming SOAP messages which request the execution of the process.
Upon receipt of a request message, the engine starts to interpret the XML-encoded
directives given in the process definition. The main directives are listed below:

• invoke: This instruction invokes an operation of a partner Web service. Input
and output of the invocation are defined by one variable each.
• assign: WS-BPEL allows for the use of variables which can be assigned values

using the assign instruction. Values can be atomic (string, integer, . . .) or
XML markup. XPath expressions are used to select the target part of the
variable to be assigned.
• receive: The receive instruction signifies that a message is to be received

from an outside participant. This is used either at the beginning of the process
to indicate the start of the execution or in the middle of the process to receive
results from asynchronous invocations.
• while: repetitive execution of a part of the process.
• switch: conditional execution of parts of the process.
• flow: parallel execution of several activities.
• reply: returns the process result.

BPEL documents are very verbose and usually generated by tools which support
graphical development of processes (e.g., Eclipse BPEL Editor [14], Netbeans BPEL
Designer [40] or Oracle BPEL Process Manager [51]). Finally it is important to
mention that BPEL has been designed for use with more than one target service (see
partnerLink concept) and is not intended for intra-service protocol specification.

2.6.2 Semantic Web Service Composition

Discovery, execution and composition of Web services with “conventional”, well-
established technologies (UDDI, SOAP, WS-BPEL) requires, to a large extent, man-
ual work by the human programmer, which limits scalability and curtails the added
economic value of Web services [12]. Recent research in the Semantic Web com-
munity aims at furnishing Web services with more machine-processable semantic
markup. The semantic description of Web services enables automatic (and there-
fore more flexible and cost-effective) discovery and selection of a set of suitable Web
service operations, given a characterization of the required functionality. The draw-
back of providing semantic descriptions is that service creation requires additional
expertise and, generally, becomes more time-consuming. Another limitation is that
the complexity of service client implementations increases as it becomes necessary
to interpret the syntax and semantics of the formal language. But, additional com-
putational complexity can not be dealt with efficiently on all hardware platforms,

Model-Driven Architecture 21

e.g., considering mobile devices. Notable specifications in the area of Semantic Web
services and Web service ontologies encompass the Web Service Modeling Ontology
(WSMO) [68], Ontology Web Language [83] for Web services (OWL-S) and Web Ser-
vice Semantics (WSDL-S) [88]. A discussion of the concepts of these standards and
similarities and differences among them would go far beyond the scope of this thesis.
The general idea is to create a formal foundation for the description of a Web service
and its “intra” and “inter” relationships in order to create a very exact picture of
the service. By introducing inference rules and defining a target functionality (or
target state) it becomes possible to dynamically select and compose services suitable
to reach the goal.

2.7 Model-Driven Architecture

Model-driven architecture (MDA) (as well as Model-driven development - MDD) [43]
is a registered trademark of the Object Management Group (OMG) for a design ap-
proach for the development of software systems. The MDA paradigm is based on
platform-independent models, most of which are collectively known under the name
Unified Modeling Language (UML) diagrams [46]. UML defines several types of dia-
grams to model different aspects of a software system: 6 types of structural diagrams
and 7 types of behavioral diagrams [44]. According to [3], the underlying motivation
for MDD is to improve productivity, in fact, in the short term and in the long term.
The short-term productivity depends on how much executable functionality can be
generated from the models. The long-term advantage of MDD is in the software arti-
facts’ reduced sensitivity to change. The authors of [33] further state that MDD can
help achieve a clear separation of concerns. MDD has found its way to various fields
of software development, and also to the area of Web service creation and composi-
tion. In Section 3 we will discuss current research approaches of MDD in the area
of Web service composition and compare it to the proposed solution of model-driven
SEPL development, which is explained in more detail in Section 4.

22 Web Service Choreography Interface

3 Related Work

In this section we discuss work in the field of intra-service protocol description, dy-
namic service invocation and model-driven service development.

3.1 Web Services Conversation Language

The Web Services Conversation Language (WSCL) [80] is an effort to extend the
standard Web service description (WSDL) by conversational aspects. The WSCL
specification declares that “defining which XML documents are expected by a Web
service or are sent back as a response is not enough”. Beyond the mere description
of the input and output messages, WSCL defines the order in which they may be
exchanged. The main elements of WSCL documents are conversations, interactions
and transitions. A conversation can be thought of as the sum of all interactions
(message exchanges) with a service in order to achieve a certain functionality or to
reach an specific end state. Interactions model the message exchange (or document
exchange) between two participants. Transitions specify the ordering relationships be-
tween interactions. Essentially, WSCL models conversations as finite state machines,
in which the states are represented by the interactions. The transitions determine
which interactions can be executed after having received a certain output from an-
other interaction. WSCL is helpful to model intra-service dependencies in a general
way and to lay down the order in which interactions may occur, but fails to specify
how the interactions are connected, i.e., how the result of one interaction can become
part of the input to the next interaction. In SEPL this is possible – input and output
can be transformed directly and arbitrarily. In WSCL the decision, which operations
op1, op2, . . . opi can be executed after an operation op0 is simply based on the output
type of op0. The output type, according to the WSDL contract, may be some XML
message m0 in the normal case or fault messages m1, m2, . . . mj in exceptional cases.
For each message m0, m1, . . . mj a transition to a subsequent interaction (or an end
state) is specified. But, in comparison to SEPL, WSCL allows only for distinctions
concerning the type and not the actual content of messages. Finally, WSCL does not
define executable protocol functionalities but is rather a guideline for the interaction
with a service.

3.2 Web Service Choreography Interface

The Web Service Choreography Interface (WSCI) “describes how Web Service opera-
tions [. . .] can be choreographed in the context of a message exchange [. . .]” [75]. The
specification describes that WSCI addresses the dynamic interface of a Web service
and argues that standard Web service description using solely WSDL lacks certain
aspects: the WSDL definition does not define how to interpret a set of operations hap-
pening in a given order (choreography); it is further not clear how to distinguish sub-

WSDL 2.0 Message Exchange Patterns 23

sequent operations from different protocol executions or how to associate subsequent
operations being part of the same execution, respectively (correlation); WSDL defi-
nitions do not describe if the Web service operations are performed in a transactional
way (transaction); real life services may be able to choose different executions based
on the informations in the message exchange (possible choices). The language con-
structs of WSCI provide solutions to these issues. Choreography aspects are modeled
using the action directive and control-flow related instructions (such as sequence,
foreach or switch). The correlation mechanism determines for each action which
correlation identity it is assigned to. Certain actions, usually process-initial actions,
instantiate a correlation identity for further use. The compensate construct allows for
compensation routines in case a sequence of actions cannot be completed successfully
in the context of a transaction. Furthermore, WSCI provides methods to manage
exceptional situations, such as timeouts and fault messages. WSCI can be seen as
a description of the dynamic service interface which benefits the service consumers,
who get to know the expected behavior of invocation sequences. Similar to WSCL,
WSCI does not define the exact transformation of input and output messages and is
therefore – in comparison to SEPL – not directly executable.

3.3 WSDL 2.0 Message Exchange Patterns

In WSDL version 2.0 [89], message exchange patterns (MEPs) are introduced as “a
template for the exchange of one or more messages, and their associated faults, be-
tween the service and one or more other nodes as described by an Interface Operation
component”. In contrast to WSDL 1.1, operations in WSDL 2.0 can have multiple
inputs, outputs, incoming faults and outgoing faults. A MEP defines for a specific
operation the type of message exchange that the service performs with one or more
partner services. The concepts of MEP yields a change from the procedural way of
regarding Web services to a more message oriented way. The WSDL 2.0 specification
defines eight predefined MEPs, whereas service providers are not limited to these
MEPs, but may define new ones:

• In-Only : the service receives a message without returning a response.
• Robust In-Only : the service receives a message and returns a fault message if a

fault occurs.
• In-Out : the service receives a message and returns a response message.
• In-Optional-Out : the service receives a message and optionally returns a re-

sponse message.
• Out-Only : the service sends a message (without awaiting a response).
• Robust Out-Only : the service sends a message and receives a fault message in

case a fault occurs with the partner service.
• Out-In: the service sends a message and receives a response message.
• Out-Optional-In: the service sends a message and optionally receives a response

message.

24 SOAP Service Description Language

The authors of [42] perform an analysis of the expressiveness of MEPs by presenting
a sample business scenario which involves message exchange among three different
types of service. The paper comes to the conclusion that MEPs in WSDL “can in
principle express the communication with different node types and multiple instances
of one node type”, but that MEPs “are not expressive enough to define the overall
interaction of a choreography [. . .]”. Furthermore, we argue that MEPs are a step
towards capturing the dynamic service interface in WSDL, but that they are not
suitable to fully express intra-service protocols of Web services.

3.4 SOAP Service Description Language

The SOAP Service Description Language [65, 66] (SSDL) is an effort to create a
holistic description of Web services, which focuses on messages and service protocols
and which is specifically tailored to integrate with the concepts of the messaging
protocol SOAP. The authors argue that WSDL has several shortcomings and has
misled to an object-oriented and RPC-style mindset in service computing. Given the
fact that SOAP is the most widely used protocol for message exchange between Web
services, service descriptions ought to be more SOAP-centric and message definitions
should rely on XML instead of creating a new component model simply for contract
description. SSDL contracts are XML-based documents which are split up into four
major sections:

• Schemas: Similar to the WSDL types section, the schemas section contains
XSD definitions.
• Messages: The messages section defines the format of normal messages as well

as fault message documents, which may occur in the message exchange with the
service. The message description is SOAP-centric and body as well as header
elements can be specified.
• Protocols: The protocols section provides an extensible mechanism to specify

the protocols (i.e., the messaging behavior) that the service supports. The
contracts included in this section range from simple MEPs to multi-message
interactions and process/workflow definitions.
• Endpoints: The endpoints section contains WS-Addressing EPRs for the end-

points of the described service.

Especially the protocols section is of interest and related to SEPL service proto-
col descriptions. The core protocol descriptions suggested by SSDL are located at
different abstraction levels and address different concerns:

• The Message Exchange Patterns framework [63] utilizes the MEPs defined in
WSDL 2.0 to characterize the message exchange with partner services.
• The Communicating Sequential Processes (CSP) framework [62] lays down the

service protocol in a process manner. By means of sequence and choice di-

The Web Service Programming Language XL 25

rectives, service providers describe the expected control flow of multi-message
exchanges. In contrast to SEPL, CSP does not describe executable protocols
because they lack exact information about data transformations to be carried
out. The CSP process definition is rather a guideline for client implementors
to stick to the expected behavior. CSP is silent about contextualization of the
multi-message interaction and states that standards such as WS-Context [53]
or WS-Addressing need to be utilized to clarify which message belongs to which
context/conversation.
• The Rules framework [64] for SSDL provides a means of expressing relation-

ships between messages in terms of what messages have or have not been sen-
t/received. It imposes constraints on the types of messages which may or may
not be sent to and received from the service at a specific point in time.
• The Sequencing Constraints [95] framework presents a language to express the

valid sequence of (externally visible) actions a service may perform. It is based
on the pi-calculus [39] and provides constructs for action sequences, choices,
replications, parallel compositions and atomic send and receive actions.

The SSDL framework provides the expressive power to describe SOAP-based Web
services in a holistic way, i.e., concerning the static as well as the dynamic interface.
However, SSDL contracts are rather a guideline for clients and certainly not an exe-
cutable intra-service protocol. The SSDL protocols section is extensible, for which
reason we propose to embed SEPL code in SSDL contracts in order to describe the
protocol of Web services in an executable way.

3.5 The Web Service Programming Language XL

The authors of [19] present XL, an XML programming language for Web service speci-
fication and composition. It is argued that current Web service implementations have
integration deficiencies: host programming languages such as Java or Visual Basic in
combination with XML documents and back-end (relational) database management
systems build up a heterogeneous environment with difficulties. XML data must be
converted to Java objects and vice versa. Java objects must be marshaled through
database management interfaces (e.g., JDBC [70]). XL attempts to address these is-
sues and provides features to specify Web service implementations. Similar to SEPL
functions, XL defines operations which describe service functionalities using control
flow directives (if, switch, while, for), invocations of (external) service opera-
tions and input-output transformation. XL and SEPL are similar in the way they
handle XML data as both languages directly integrate XML processing in the syntax.
Both languages support XPath [77] to access certain elements and attributes of XML
variables. SEPL additionally supports a “dot-syntax” which resembles the syntax to
access class members in object-oriented programming; on the other hand, XL addi-
tionally supports XQuery [93] statements, which operate on XML data sources and
should serve as a replacement for queries to external (relational) databases. In gen-

26 Dynamic Service Invocation with Daios

eral, XP is designed to contain much of the business logic and does not necessarily
require an existing target Web service whereas SEPL documents are rather slender
and delegate most tasks to the target service implementation. XL and SEPL use a
different conversation pattern: XL requires a conversation-URI header in each ex-
changed SOAP message to identify which conversation the message belongs to, which
imposes requirements on the clients’ capabilities; SEPL, on the other hand, creates
new service instances where needed and uses the service instance EPR to distinguish
conversations and, most importantly, publishes its functions as stateless operations
which do not require clients to consider any conversation-specific aspects. XL allows
for parallel execution which is not yet supported in SEPL. In SEPL it is possible
to perform asynchronous invocations using a notification mechanism, which is not
directly supported in XL.

3.6 XLANG/s

Microsoft’s XLANG/s [10] is a service description language for embedded use with
.NET-based objects and messages. On the one hand, XLANG/s supports the usage
of .NET elements (e.g. C# objects) to create service implementations. On the other
hand, XLANG/s provides call (synchronous) and exec (asynchronous) operations
for interaction with partner services which opens possibilities for service orchestra-
tion and service protocol specification. XLANG/s is proprietary and neither well
documented nor maintained and plays only a subordinate role in the world of Web
service standards.

3.7 Dynamic Service Invocation with Daios

Daios [34, 35] is a framework of Java classes which enables dynamic invocation of Web
services. The implemented SEPL execution engine is based on Daios, i.e., invocations
of Web service operations are realized using the Daios client library. In the following
we briefly describe the main features of this framework.

Daios follows a message-oriented approach, i.e., client developers do not “call oper-
ations” but send and receive messages to and from the service. Daios uses a special
message format - the according class is named DaiosMessage - which abstracts mes-
sages from their XML representations. The Daios message format is conceptually sim-
ilar to objects expressed in the data-interchange format JSON [31] (JavaScript Object
Notation). In JSON, objects are textually represented as a collection of name/value
pairs, which is equally the case for Daios messages. The value of one such pair entry
may be either 1) a simple type (string, integer, . . .), 2) an array of simple types or
3) a message or an array of messages (recursive construction). Listing 6 contains a
code excerpt in which a DaiosMessage representing a “person object” is created. In
lines 3 and 4, the simple values name and age of the person are set. DaiosMessage

objects can also be constructed recursively, which is illustrated in lines 5-8.

Model-Based Service Development 27

� �
1 DaiosMessage message = new DaiosMessage () ;

2 DaiosMessage person = new DaiosMessage () ;

3 person . s e t (‘ ‘ name ’ ’ , ‘ ‘ Jack King ’ ’) ;

4 person . s e t (‘ ‘ age ’ ’ , 3 6) ;

5 DaiosMessage address = new DaiosMessage () ;

6 address . s e t (‘ ‘ s t r e e t ’ ’ , ‘ ‘ 2 King ’ s Cross ’ ’) ;

7 address . s e t (‘ ‘ c i t y ’ ’ , ‘ ‘ London ’ ’) ;

8 person . s e t (‘ ‘ address ’ ’ , address) ;

9 message . s e t (‘ ‘ person ’ ’ , person) ;

10 Serv iceFrontend f = . . . // c r e a t i on o f s e r v i c e f rontend omitted

11 f . setWSDLOperationName (new QName(‘ ‘ addPerson ’ ’)) ;

12 DaiosMessage r e s u l t = f . requestResponse (message) ;� �
Listing 6: Construction of a Daios Message

Once a DaiosMessage has been constructed, the class ServiceFrontend is used to per-
form a service invocation. In line 11, the name of the target operation is set. Finally,
the message is sent to the target service in line 12 using a synchronous invocation.
Beside the “request response” invocation flavor, Daios also supports asynchronous
communication (“fire and forget”, “poll object”, “callback”). The achievement of
the Daios framework is that all information necessary to construct the final SOAP
message (qualified operation names, XML namespaces, . . .) is collected from the
service’s WSDL document in the background.

The Daios framework features the invocation of WSRF-style services and the use of
factory services to create new service resources. We will discuss in Section 4 how
these capabilities are utilized in the SEPL framework.

3.8 Model-Based Service Development

MDD has found its way to various fields of software development, and also to the
area of Web service creation and composition. In [27], an approach for UML-based
composition of Grid services is presented. Based on UML activity diagrams, a domain
specific language (DSL) is defined. In the DSL, each activity represents a Grid service
operation. The name of the activity equals the name of the operation. Object flows
model the types of messages which are passed from one operation to the other. Tagged
values, which are appended to the activities, specify the WSDL location of the target
service and whether the service is stateful. In case of a stateful service, the DSL
semantics specify that the engine executing the composition shall take care that the
same instance is reused for all invocations to this service.

The authors of [24] propose another approach to UML-based service composition that
is related to modeling SEPL protocols. The following success criteria are defined:

• Expressing Web service patterns: The UML model needs to be expressive
enough to support Web service invocations and the basic control patterns (se-
quence, choice, merge etc.).

28 Model-Based Service Development

• Readability : The model shall be easy to understand for experienced modelers.
• Executability : It shall be possible that the UML model is transformed to a

workflow document (e.g., WS-BPEL), which can be executed by a workflow
engine.
• Independence of workflow language: The model shall not be tied to one partic-

ular target workflow language.

The paper then discusses Web service workflow patterns one by one. Web service
calls are identified using a triple (WSDL document, service, operation). The loop
pattern is modeled with a circular control flow path starting with a decision node. In
the paper it is mentioned that this approach is a workaround for the UML LoopNode

which has not yet been defined at the time of writing. The document further discusses
the problem of data transformation – how the value (parts) of one data object (DO)
may become (part of) the value of another DO – and present three solutions: 1)
include flow links between the DOs (which is problematic if more than one link
points to one DO), 2) provide a mapping function on the flow between activities,
3) introduce mapper actions which are part of the flow and explicitly describe the
transformation (e.g. do1.part1 = do2 for DOs do1 and do2). Depending on the
type of transformation (one-to-one identical/non-identical, many-to-one the
authors propose each one of the solutions. As we will discuss later on, SEPL MDD
uses the third approach as the most expressive and powerful one. However, SEPL
activity diagrams go without DOs but utilize input pins and output pins on actions
to specify the used variables. The last point discussed in the paper – discussion of
alternative service selection – is not directly related because SEPL service protocols
target only a single service.

In [32], an even broader picture is drawn for different abstraction levels and kinds of
models:

• On the collaboration level, UML collaboration diagrams [45] are chosen for
modeling the high-level roles of participants in business interactions. This level
is irrelevant for SEPL as intra-service protocols do not target inter-business
activities.
• On the transaction level, three diagrams model different aspects: 1) Activity

diagrams describe the behavior of a collaboration in terms of transactional
processes. Each action in the diagram specifies the involved participants and
the name of the action. The document emphasizes that no central control is
required. Rather, each participant must behave in the specified way in order for
the resulting behavior of the overall collaboration to correspond to the defined
collaboration activity. This is a main difference to SEPL models which are
designed to be centrally executed. 2) Class diagrams model the structure and
attributes of objects used in interactions. With the aid of a detailed data model,
the activity diagrams can specify exact constraints and decision guards for data
objects. Guards and constraints can equally be defined in SEPL, with the

Petri Net-Based Web Service Composition 29

difference that object types are not static but dynamically resolved at run time.
Therefore SEPL models require no information about the class structure of data.
3) State diagrams model the abstract states and state transitions which apply
to data objects used in transactions. Based on the object states, constraints
and decision guards can be defined in the activity diagrams. In SEPL, the state
of services is distinguished by means of WS-Resource properties and the state
of exchanged message objects is defined by the concrete data contained therein.
Hence, there is no need to define abstract states in state diagrams.
• On the interaction level, which is a refinement of the transaction level, two

diagrams are used: 1) Sequence diagrams, in combination with OCL constraints,
give a fine-grained description of the actions listed in the activity diagrams on
the transactional level. Whereas actions on the transactional level are rather
abstract constructs, the interaction level represents explicit and executable se-
quences of Web service operations. 2) Class diagrams are used to model the
request and response messages. These messages are based on and use the classes
defined on the transactional level. SEPL does not model messages with class
diagrams and also does not use a static type system, but dynamically detects
message types and extracts type information from WSDL files at runtime.

Although this approach targets the more extensive problem of Web service collabo-
ration protocols, it contains some interesting points related to SEPL. Essentially, by
using activity diagrams to model the concrete interaction with a target service, SEPL
lifts the interaction one level higher compared to the presented approach. Thereby,
SEPL activity diagrams combine the transaction level and the interaction level to a
common level which is expressive enough to handle both aspects. This is due to the
fact that in intra-service protocols there are only two participants, the client and the
target service – plus the special case of an optional factory service.

3.9 Petri Net-Based Web Service Composition

The Petri net [67] (PN) is a formal concept widely used to model and simulate the
dynamics of computer systems and automata. A PN is a directed bipartite graph,
in which the nodes represent places and transitions. The places contain zero, one
or more tokens which indicate whether the place is “active”. Transitions have the
ability to fire, which means to move tokens from one state to another. A transition
can only fire if all preceding states contain at least one token. If the transition fires,
each one token is removed from all preceding states and each one token is added to
all succeeding states.

Several research approaches suggest the use of Petri nets to model Web service com-
positions. [25] uses a Petri net based algebra to provide a formal framework for the
composition of Web services. In this algebra, each place represents a (starting, inter-
mediary or final) state in the protocol execution, the transitions denote the invocation

30 Petri Net-Based Web Service Composition

of Web service operations and directed arcs define the control flow of the composition,
i.e., the sequence and parallelism of invocations. More formally, the paper defines the
term service net as a tuple SN = (P, T,W, i, o, l), where P is the set of places, T is
the set of transitions representing the service operations, W ⊆ (P × T)

⋃
(T × P) is

the flow relation, i/o are the input/output places and l is a labeling function which
assigns operation names to the transitions. Based on this formulation, the authors
define patterns to express typical composition techniques in service nets, mainly oper-
ation sequence, choice, iteration, parallelism and service selection. Figure 8 illustrates
these service net patterns. Rectangles with dashed borders stand for any arbitrary
subpart of the service composition (which are assumed to start and end with one sin-
gle place each), places are drawn as circles, transitions are shown as black rectangles,
and black dots inside the circles depict the available tokens in a place. Part a) of
the figure shows the pattern for the operation sequence; composition parts S1 and
S2 are simply connected with a separating transition. A choice can be modeled by
prepending each a transition to the subparts S1 and S2 as well as a place with one
token in front of the transitions (see part b)). Clearly, only one of the transitions can

S1

S2

S1 S2
p1

p2

...
S1

...

S2

...P'

a) b) c) d)

T'

Figure 8: Petri Net Service Composition Patterns

fire, because only one token is available in the place and hence the pattern produces
an exclusive choice. Part c) depicts the iteration pattern where a loopback connection
(via a transition T ′) is inserted between the start place p1 and the end place p2 of
a composition subpart. In the control flow at p2, either T ′ is fired to start a new
iteration, or the final transition is fired to leave the iteration. In part d), a simplified
picture of the parallelism pattern is given. Upon firing of the transition which pre-
cedes subparts S1 and S2, both subparts become active and can execute in parallel.
To achieve communication and synchronization between S1 and S2, a place P ′ has
been inserted which is connected to each one transition in S1 and S2, respectively.

A similar Petri net based approach, called WS-Net, has been introduced in [98]. WS-
Net describes a Web services oriented software architecture as a set of connected
architectural components and distinguishes between three levels:

• Interface Nets define the interface of architectural components as a set of se-
mantically related operations which the component provides.

Petri Net-Based Web Service Composition 31

• The interconnection net specifies which foreign service operations are required
in order for a Web service to operate properly.
• The interoperation net describes the connections between service components

and the data flow for the entire system.

The advantage of the Petri net model lies in the support for many flow concepts (e.g.,
choice, parallelism, iteration) and its formal mathematical foundation. Well-known
algorithms can be applied to prove the correctness (e.g., termination, reachability
of places) even for very complex compositions. On the other hand, Petri nets are
unhandy to use and can grow unmanageably large even for small or mid-size scenarios.
UML activity diagrams, which are generally more light-weight than Petri nets, can
be transformed to a Petri net representation as shown in [69]. This transformation
approach can be used to generate Petri service nets from SEPL activity diagrams in
order to apply correctness checks on the service nets.

32 Example Scenario

4 Design

In this section we present the architectural design of the SEPL framework - the
intra-service protocol modeling, description and execution framework. After an in-
troductory example scenario description, the design section is split up into 3 main
parts: firstly, we define the syntax and semantics of the service protocol language
SEPL; secondly, the service protocol modeling features are presented along with a
mapping of SEPL features to UML activity diagram elements; thirdly, we describe
the architecture of the SEPL service protocol server. In this section we focus on the
conceptual ideas of the framework, whereas details concerning the prototype imple-
mentation can be found in Section 5.

4.1 Example Scenario

As the motivating example of a service protocol we consider an imaginative service
hosted by a European cell phone operator (CPO). The service allows other competi-
tor CPOs to “port” customer telephone numbers from one provider to the other,
a functionality that CPOs have to provide because of European Union regulations.
The service is implemented as a stateful Web service using WSRF, and employs the

Service Protocol Services

Service
Factory

Service
Instance

Create Service
instance

 creates

Invoke login

For each porting request

Invoke check

Raise fault
porting not possible

Set customer

Wait for
all results

porting not possible

Invoke async
schedule_porting

Set newProvider

Figure 9: Porting Service Protocol

factory/instance pattern (one stateless factory service is used to create stateful Web
service resources). Figure 9 sketches the protocol of the service in a simple graph-
ical notation. On the left-hand side of the figure the actual steps that have to be

SEPL - The Service Protocol Language 33

carried out by the client are sketched, while the right-hand side shows the services
involved. Before being able to access any functionality for number porting the client
has to create a new service resource, which handles the request. It does so by using
the Service Factory’s create operation. The Service Factory then creates a new
stateful service resource for the client, and returns a reference to this instance. The
first step that the client then has to carry out at the new service resource is to log
in, in order to be granted access to the actual service functionality. The protocol
now loops over all porting requests which each contain information on the customer
account to port and the new provider to port the number to. In the loop, it should
first be checked whether the porting process is currently possible. If it is not, the
client has to escalate the issue (i.e., by raising an application exception, interrupting
the current execution). If porting is possible the client provides the necessary input to
the service by setting two WSRF resource properties (customer and newProvider).
Then the porting can be scheduled for a specific date, which will cause the porting
operation to be carried out asynchronously. The service returns the result of this
operation by sending a notification to the client. The protocol ends at the point
where all notifications have arrived and the results of all porting operations have
been collected.

Even though the protocol of this service is simple to understand, it contains a num-
ber of challenges and issues that service providers may encounter when defining
intra-service protocols, including invocations of Web service operations, alternative
branches of execution, service callbacks, (SOAP) fault handling [82], and handling
of WSRF resource properties. We consider these challenges as “standard” for intra-
service protocols, meaning that many real-life stateful Web services utilize concepts
such as the ones mentioned. Note that the problem of formally defining this protocol
is similar to Web service composition, however, the services involved are limited to
the actual Web service that the protocol considers, and, as a special case, the factory
service that is used to create new resource instances for this particular service.

4.2 SEPL - The Service Protocol Language

The key design principles of the high-level service protocol specification language
SEPL are the usage of an intuitive syntax and practicability of Web service technology.
Hence, SEPL combines syntax concepts taken from popular programming/scripting
languages (e.g., Java or JavaScript) and satisfies a set of relevant Web service specifi-
cations including WS-Addressing, WS-ResourceProperties and WS-Base-Notification.
In the following subsections we first present a reference implementation of the exam-
ple scenario in SEPL, on the basis of which we then define the syntax and semantics of
SEPL.A complete syntax description of the SEPL language in Extended Backus-Naur
Form [29] (EBNF) is given in Listing 17 in Appendix B.

34 SEPL - The Service Protocol Language

4.2.1 SEPL Example Protocol

Listing 7 shows the implementation of the illustrative example from Subsection 4.1
in SEPL syntax.� �
1 f a c t o r y . wsdl = ”http :// i n f o s y s . tuwien . ac . at / Por t ingFactoryServ i ce ?wsdl ”

2

3 f unc t i on port numbers (username , password , r eque s t s) {
4 f a c t o r y . c reateResource ()

5 t ry {
6 l o g i n (username , password)

7 } catch (i n v a l i dC r ed en t i a l s) {
8 r e turn f a u l t . d e t a i l

9 }
10 f o r (r : r e que s t s) {
11 s t a tu s = che ck po r t i n g s t a t u s (r . customer , r . newProvider)

12 i f (! s t a tu s . i s P o s s i b l e)

13 throw Fault (”Port ing e r r o r ” , s t a tu s . problemDetai l)

14 p r op e r t i e s . customer = r . customer

15 p r op e r t i e s . newProvider = r . newProvider

16 c a l l b a ck s [] = async .WSN(”// Port ingResu l t [@customer=‘”+r . customer+” ‘] ”)

17 s c h e du l e p o r t i n g f o r (r . time)

18 }
19 f o r (c : c a l l b a c k s)

20 r e s u l t s [] = c . wait ()

21 Destroy ()

22 r e turn r e s u l t s

23 }� �
Listing 7: Number Porting Service Protocol in SEPL

The function port numbers, which embraces the SEPL code, defines the input pa-
rameters needed by the service protocol. Inside the function, factory.create-

Resource() indicates the start of a new porting activity. Afterwards the protocol
as described in Subsection 4.1 is mapped to invocations of the newly created service
resource and interactions with WS-Resource properties. Finally, the porting results
are received asynchronously and returned to the client executing the protocol, after
which the resource is destroyed again. For the sake of completeness, the protocol also
handles various error conditions that can happen during the protocol execution. The
details of the SEPL instructions used in this example are explained step by step in
the subsections to follow. Line numbers in the following sections always refer back to
this listing.

4.2.2 SEPL Basics

The top-level structure in SEPL documents is called function. Each function has a
name and a list of parameters, and contains one or more instructions. Parameters are
final, i.e., they must not be assigned values anywhere in the function. SEPL allows for
the use of variables, which are untyped, i.e., their content is not limited to a specific
type. The type and its supported operations are determined by the SEPL interpreter
at runtime. Variables are declared when they are first used, so there is no need for

SEPL - The Service Protocol Language 35

explicit variable declaration. Variables can hold basic types (e.g., numbers, strings),
arrays, object references and XML structures, which are treated specially in SEPL
(see below). The statement callbacks[] = ... used in line 16 is a convenience
operation to append an element to the end of an array. If the array has not been
declared before, it is automatically created. Some variable names are reserved and
must not be assigned values (properties, factory, fault, async and self). The
semantics of these reserved variables are further explained below. In the example
implementation in Listing 7 we use a number of variables, e.g., status in lines 11-13
to indicate whether porting is currently possible for this customer.

The invocation of a Web service operation in SEPL resembles a method call in
an ordinary programming language. An invocation contains the name of the WSDL
operation as well as a list of parameters, and will return a result which can be directly
assigned to a variable. In our example protocol we use 3 service invocations - login,
check porting status and schedule porting for (see lines 6, 11 and 17 in Listing
7). The name of a service invocation in SEPL is directly mapped to the name of the
according WSDL operation of the target service. Figure 10 depicts the relationship
between SEPL code, WSDL and SOAP. From the SEPL protocol description we
determine the name of the operation and look up its definition in the WSDL to
finally construct a SOAP message and send it to the target Web service.

<definitions ...>
 <types><schema>
 <element name=“loginInput“/>
 <complexType><sequence>
 <element name=“username“

type=“string“/>
 <element name=“password“

type=“string“/>
 </sequence></complexType>
 </element>
 </schema></types>
 <message name=“loginRequest“>
 <part name=“parameters“

element=“loginInput“/>
 </message>
 <binding name=“PortingBinding“ >
 <operation name=“login“>
 <input message=“loginRequest“ .../>
 </operation>
 </binding>
</definitions>

login (“user1“, “Secret“)

<Envelope>
 <Body>
 <login>
 <username>user1
 </username>
 <password>Secret
 </password>
 </login>
 </Body>
</Envelope>

SEPL

WSDL

SOAP

Figure 10: SEPL-to-SOAP Mapping

SEPL allows for the use of functions to aggregate multiple SEPL commands. From
a client’s viewpoint, a SEPL function can be seen as a separate Web service operation
on top of the operations defined in the WSDL. Essentially, a SEPL function breaks
down a service protocol to an interface contract in the form of the function signature.
This is similar to WS-BPEL, where a service composition can again be published as
a Web service using a WSDL interface. In our example, the implementation of the

36 SEPL - The Service Protocol Language

number porting protocol is accessible via a function named port numbers (declared in
line 3). SEPL protocol definitions may contain more than one function, and functions
can be invoked from within other functions. This increases reuseability and can help
avoid duplicate code.

To define the behavior of service protocols, SEPL supports a number of standard
control flow structures (if-then-else, while, foreach) with semantics akin to
languages such as C or Java. SEPL service protocols are not meant to perform heavy
computations, but rather to delegate tasks to existing services and to process their
results. Nevertheless, the basic arithmetic, logic, string processing and compar-
ison operations are supported. Lines 10-18 of the porting service protocol contain
a foreach loop which loops over all elements of the array variable requests. We use
a conditional statement (if) in line 12 to check whether the previous invocation of
the check porting status operation indicated that the client may continue. Proto-
cols can return results (e.g., indicating outputs of the protocol, or returning status
codes) using the return statement (see line 22 in Listing 7).

A key goal of SEPL is to simplify access to elements and attributes of XML
structures. Assuming a variable var contains an XML structure, an XML sub-
element named element can be directly addressed using var.element. Depending
on the content of the variable var, the type of var.element might be an XML
structure or a simple type (e.g., integer, string, boolean). In our example protocol
we make use of this approach when accessing the elements isPossible (boolean)
and problemDetail (string) in the response of the operation check porting status

(lines 12 and 13). Listing 8 shows an extended example of how XML elements and
attributes can be accessed in SEPL. A string containing XML markup is assigned to
a variable a. The XML sub-element is accessible using the expression a.b, and
further sub-elements <c> using a.b.c.� �
1 a = ”<a xmlns : ns=\”http : // . . .\” >

2 <ns : b>

3 <c>text1 </c>

4 <c name=\”name1\”>text2 </c>

5 </ns : b>

6 ”

7

8 a . b . c [0] // re turns ” t e x t 1 ”

9 a . b . c [1] . a t t r (”name”) // re turns ”name1”

10 a . b . c // re turns {” t e x t 1 ” , ” t e x t 2 ”}
11 a . b // re turns o b j e c t o f type ’XML element ’

12 a . xpath (”b/c [1] / t ext () ”) // re turns ” t e x t 1 ”

13 a . xpath (”b/c [2] /@name”) // re turns ”name1”

14 a . xpath (”b/c”) // re turns {” t e x t 1 ” , ” t e x t 2 ”}
15 a . xpath (”b”) // re turns o b j e c t o f type ’XML element ’� �

Listing 8: XML Usage in SEPL

If an expression like this returns more than one element, these elements are treated as
an array. XML attributes can be read and set using the operation named attr. The
content of simple type elements is directly evaluated: taking the example listing, the

SEPL - The Service Protocol Language 37

expression a.b.c[1] * 2 would evaluate to 246. This convenience syntax is equal
to XPath with the difference that a dot (.) is used instead of a slash (/) to access
sub-elements. XPath expressions may as well be used directly as can be seen in the
lines 12-15 of Listing 8. Note that in XPath array indices start at position 1 whereas
in SEPL array indices start with 0.

4.2.3 WSRF Specific Features

The WSRF set of specifications [58] defines a message exchange model and related
XML definitions to access stateful (computational) resources, which retain a state be-
tween several invocations. Influenced by the observation that stateful service comput-
ing has gained considerable importance, the design of SEPL is tailored to specifically
support concepts of the WSRF.

The state of a resource in WSRF is defined by a set of properties (WS-Resource-
Properties). The predefined SEPL variable named properties allows direct access
to such resource properties. A property named prop1 can be accessed in SEPL
using the statement properties.prop1. In our number porting service in Listing
7 we use resource properties named customer and newProvider to specify which
customer account shall be ported to which new provider (lines 14 and 15). Figure 11

<definitions ...>
 <types><schema>
 <element name=“customer“
 type=“string“/>
 <element name=“Properties“>
 <complexType><sequence>
 <element ref=“customer“/>
 </sequence></complexType>
 </element>
 </schema></types>
 ...
 <portType name=“PortingPT“
 ResourceProperties=“Properties“>
 ...
 </portType>
</definitions>

properties.customer=“cst123“

<Envelope>
 <Body>
 <SetResourceProperties>
 <Update>
 <customer>cst123
 </customer>
 </Update>
 </SetResourceProperties>
 </Body>
</Envelope>

SEPL WSDL

SOAP

Figure 11: Mapping Resource Properties

depicts the relationship of SEPL’s syntax for resource properties to WSDL and SOAP.
The WSDL document of the service, through which the resource is made available,
contains a definition of the property that is used to verify that the new value has
valid content. Then, the SEPL command is transformed to a service invocation with
a SetResourceProperties SOAP body element.

38 SEPL - The Service Protocol Language

The WSRF specification suggests the usage of factory services to control the life-
time of service resources (often referred to as the factory/instance pattern). The fac-
tory service should provide a create operation to bring new resources into existence.
The response of this operation should contain the WS-Addressing endpoint reference
(EPR) of the new resource. In our example protocol, we use a factory service to create
a new service resource for each number porting activity. For this purpose, SEPL pro-
vides a predefined variable named factory. In the SEPL protocol in Listing 7, firstly
the address of the factory service is set by assigning the address URL to the variable
factory.EPR (line 1). This is a convenience operation and, if additional information
is needed to address the factory service, the variable factory.EPR can also be as-
signed an XML string containing the markup of a WS-Adressing EnpointReference

element. Secondly, the factory service’s operation createResource is invoked to cre-
ate the new resource (line 4). The response of the invocation contains the new EPR,
which gets assigned to the predefined variable self.EPR. From this time on, all fur-
ther service invocations reach the service resource available under the EPR stored
in self.EPR. Finally, we call the service instance’s Destroy operation to destroy the
newly created resource (line 21) [54]. No further input from the service provider is
necessary on how to handle resource creation or termination.

4.2.4 Advanced Concepts

Besides synchronous service operations, SEPL supports the notion of asynchronous
invocations using WS-BaseNotification. In WS-BaseNotification, consuming Web
service endpoints subscribe at the producing endpoint to receive notification messages
of a special topic or with a certain message content. The message content that con-
sumers are interested in can be specified using an XPath expression, which must evalu-
ate to a non-empty node set or the boolean value true when matched against the body
of a SOAP notification message. In SEPL, the predefined variable async is used to
handle notification registrations and events. In the example in Listing 7, the instruc-
tion callbacks[] = async.WSN("//PortingResult[@customer=’...’]") (see line
16) registers a subscription for notifications at the number porting service and ap-
pends the returned callback object to the end of the array callbacks. Within this
subscription, the callback object will receive all notifications containing an XML ele-
ment with tag name PortingResult and an attribute customer with the respective
customer identifier. The example is relatively simple, however, XPath allows for
queries of arbitrary complexity to filter notifications. After the subscription for a no-
tification, code execution continues until the wait operation is called on the callback
object. wait causes the script to block until an according notification is received from
the service. Optionally, a timeout interval can be specified for the wait operation
to avoid scripts blocking forever when no notification arrives. In our example we
collectively wait for all results at the end of the protocol function (lines 19-20).

SOAP Faults [78], the Web service equivalent to exceptions in ordinary program-
ming languages, are messages with a well-defined syntax which are sent by services to

Model-Driven SEPL Development 39

indicate that an error occurred while processing a request. A SOAP fault message con-
tains a fault code, and a brief as well as a detailed description of the fault’s reason and
its origin. SEPL provides means to handle SOAP Faults using a try-catch-finally

notation similar to the exception handling syntax in traditional programming lan-
guages. Fault handling always happens for a particular fault code, although it is
possible to use a wildcard symbol (*) to catch faults of any type. Inside a catch-
block the predefined variable fault can be used to obtain details about the fault.
Additionally, SOAP Faults can be thrown from inside the protocol using the throw

keyword. In Listing 7 a fault is thrown in line 13. In the listing, fault handling is
performed for the invocation of the operation login (lines 5-9). The catch block
beginning in line 7 catches faults of type invalidCredentials. To define a universal
catch block which catches SOAP Faults of any type, the wildcard symbol * can be
specified; inside the catch block the predefined variable fault is used to access the
Body element of the SOAP message containing the raised Fault. In the example, we
access and return the child element detail of the fault and return it as the result
of the function. SEPL allows for the use of a finally block (not included in the
example), which is executed at any rate, whether or not any fault has occurred in the
execution of the try block.

4.3 Model-Driven SEPL Development

Regarding the syntax of SEPL, we see clearly that it requires a certain amount of
programming skills to compose service protocols. We therefore present a more con-
venient way of creating service protocols graphically. The suggested method is based
on UML activity diagrams (in the following referred to as service protocol activity
diagram, or short AD).

The main entity of ADs is the activity. Just as a SEPL document may contain
several functions, an AD may contain several activities. We define that an activity is
equivalent to a function in SEPL code. The UML standard defines that an activity
contains executable nodes and control nodes as well as edges between these nodes. The
node types are further divided into subtypes as depicted in Figure 12. Executable
nodes are logically divided into atomic action nodes and structured activity nodes.
An action node represents a single instruction whereas a structured activity node
is a node which internally contains one or more nodes (which may themselves be
simple or composite). An action node may contain input pins and output pins, which
determine the input parameters and return value of the action, in case the action is
a call operation action. A specialization of structured activity nodes are loop nodes.
ADs use the control nodes final node, decision node and merge node. Final nodes
signalize the end of a subflow or of a whole activity. On decision nodes, the control
flow is split up into two or more conditional branches. These branches can run
together on a merge node. After a merge node, the control flow continues on a single
path. Additionally to these three types of control nodes, UML defines the fork node
and the join node [44] which can both be used to control the flow of concurrent

40 Model-Driven SEPL Development

Activity ActivityNode *

ExecutableNode ControlNode

StructuredActivityNode

Action

LoopNode

FinalNode DecisionNode MergeNode

 *

Figure 12: UML Activity Nodes Used in SEPL ADs

computations. But since SEPL does not support concurrency, we will not consider
fork and join nodes.

Edges in SEPL ADs are directed and each edge connects exactly two nodes. The
directions of the edges signify the control flow of the service protocol. UML dis-
tinguishes between control flow edges and object flow edges. We will not take into
account the latter and assume that all edges in SEPL ADs are control flow edges.

We map the mentioned AD nodes and edges to SEPL language constructs (such as
service invocations, assignments, loops, branches etc.). For this purpose, we make
a distinction between atomic, structured and composite SEPL language constructs.
Atomic language constructs consist of a single operation and can be mapped to a
single action node. Structured language constructs potentially contain several other
operations or language constructs and can be mapped to a structured activity node.
Composite language constructs are mapped to a composition of nodes and edges.
The difference to structured constructs is that composite structures are made up of
several nodes but do not represent a single (structured) node in the diagram.

For a better understanding it is helpful to recapitulate the different language con-
structs of SEPL. Table 3 contains a listing of all (classes of) SEPL language con-
structs, including a code example and whether they are atomic or structured. All
atomic language constructs, namely service invocations, variable assignments and re-
turn statements, can be expressed in ADs using a single action node. Structured
language constructs, i.e. branches, loops, function and try-catch blocks, may consist
of several nodes and edges in ADs.

Before going into detail with the definition of mappings between SEPL code constructs
and AD elements, we consider the following general syntax rules for SEPL ADs:

• Every decision node has exactly one incoming edge and two or more outgoing
edges.

Model-Driven SEPL Development 41

Language Construct Example Atomic/Structured
Service invocation login(username,password) atomic
Invocation/assignment result = login(username,password) atomic
Return statement return result atomic
Set resource property properties.prop1 = value atomic
Subscribe for notification callback = async.WSN(“//Op1Result”) atomic
Receive notification result = callback.wait() atomic
If-branch if(var1 < 10){ ... } composite
If-else-branch if(...){ ... } else { ... } composite
If-else if-else-branch if(...){ ... } else if(...){ ... } else { ... } composite
While-loop while(var1 < 10){ ... } structured
Try-catch-finally block try { ... } catch(...) { ... } finally { ... } structured
Function function f1(param1,param2){ ... } structured

Table 3: List of SEPL Language Constructs

• Every merge node has exactly one outgoing edge and two or more incoming
edges.
• Every structured node (function, loop, block) contains exactly one node con-

taining no incoming edges OR one initial node (OR no child nodes at all).
• The AD graph must not contain any cycles.

These rules are important to stick to because they determine whether the framework
can successfully parse ADs to generate SEPL code. We will discuss this in more detail
in Section 5.

4.3.1 SEPL-to-UML Mapping

In the following we define the mapping of SEPL language constructs to UML AD
elements (please refer to Table 4 for concrete examples of each of the discussed map-
pings). Note that the mapping adheres to the UML standard for activity diagrams,
and as SEPL ADs require only a small subset of the latter, the mapping contains a
few simplifications where reasonable. Specifically, SEPL ADs contain no object flow
edges but only control flow edges and make extensive use of the generic name attribute
rather than using specialized element attributes. The latter has the advantage that
the name attribute is visually available on many UML diagram editors and in general
simplifies diagram creation.

A service invocation in SEPL code is represented by a UML CallAction entity.
The name of this entity equals the name of the service operation to be invoked.
This entity is associated with an ordered set of UML InputPins (zero, one or more
InputPins are allowed). The names of the InputPins equal the names of the in-
vocation parameters in the SEPL code. Graphically, the entity is represented by a
rectangle with rounded corners containing the name of the operation. Input pins are
drawn as rectangles and usually overlap the area of the the CallAction rectangle.

42 Model-Driven SEPL Development

An invocation/assignment is represented in the same way as a service invocation
with the extension that the CallAction entity additionally contains one output pin
whose name equals the variable to be assigned the result of the invocation.

To model a return statement in SEPL ADs, a UML CallBehaviorAction en-
tity is used. The name of the entity equals the String return <statement> where
<statement> is the statement (a variable, in general) to be returned. The graphical
representation is a rectangle with rounded corners.

To model the assignment of a resource property, a CallBehaviorAction is used,
whose name equals set <property name>. The action contains a single input pin
which holds the value to be assigned.

Notification subscriptions are modeled using a CallBehaviorAction with the
name async "<XPath>". <XPath> is the XPath expression used as the filter to select
matching notification messages. An output pin defines the variable to which the
callback object gets assigned. Relatedly, the receipt of notifications is modeled
with the same node type and the name async wait. The input pin to this action
node holds the name of the callback variable. An (optional) output pin defines which
variable the notification message content gets assigned to.

The model of an if-branch is a compound structure made up of a decision node, a
merge node and an executable node. The decision node has one incoming edge and
two outgoing edges, one of which is connected to the merge node. The other edge is
connected to the executable node and holds a guard [44] with the condition of the
if-branch. The executable node represents the body of the if-branch.

The model of an if-else-branch is a compound structure made up of a decision node,
a merge node and two executable nodes. The decision node has two outgoing edges.
One of these edges holds a guard with the condition of the if-branch and is connected
to the first executable node, which represents the body of the if-branch. The other
edge is connected to the second executable node, which represents the body of the
else-branch. Both executable nodes are connected to the merge node.

The model of an if-else if-else-branch is a compound structure made up of a decision
node, a merge node and three or more executable nodes. One of the executable
nodes represents the if-branch, one represents the else-branch and the remaining
executable nodes represent else if-branches. The decision node has an outgoing
edge to each of the executable nodes. The edges pointing to the if-branch and
the else if-branches hold guards with the respective conditions. The edge which
connects to the else-branch has no guard defined. All executable nodes are connected
to the merge node.

The equivalent to a while-loop is a UML LoopNode. The LoopNode is a structured
activity node which internally contains one or more nodes. The internal nodes deter-
mine the body of the while-loop (specified via the UML association bodyPart). The

Model-Driven SEPL Development 43

loop condition is specified in the form of a decider, which is an output pin whose
value is examined before every loop iteration. If and only if the value evaluates to
true, the body of the loop is executed. On that account, exactly one of the internal
nodes needs to be an activity node with zero incoming edges (this activity node is
executed first, followed by all nodes connected to it).

Try-catch-finally blocks are expressed in UML utilizing the ExceptionHandler

construct. An exception handler can be thought of as a link between two executable
nodes (either simple action nodes or structured activity nodes). The source of the
link is the protected node (UML association protectedNode) and the destination
of the link is the handler body (UML association handlerBody). Semantically, the
protected node makes up a try block and the handler body represents either a catch

block or a finally block. The UML association exceptionType specifies which
type of exception is to be caught: If exceptionType is empty, the target handler
body is a finally block; if exceptionType equals *, the handler body is a catch

block which handles SOAP faults of any kind; otherwise the target handler body
is a catch block handling SOAP faults whose fault code equals the string value of
exceptionType. For the reason that any fault being caught in a SEPL catch block
is always accessed using the reserved variable fault, there is no need for the UML
association exceptionInput and it is generally ignored.

A SEPL function is modeled as a UML Activity, the top-level entity of UML
activity diagrams. The name of the Activity maps to the name of the function. The
input parameters are specified using ActivityParameterNodes. For simplicity, we use
the attribute name of ActivityParameterNode and not its association parameter.
The order of the input parameters has to be consistent with the order in which
they occur in the SEPL function signature. Activity parameters contain no type
information. Activities define no return type or output pins, the value returned by
an activity is determined solely by the return actions occurring therein.

SEPL Code SEPL Activity Diagram

Service Invocation

login
username

password

l o g i n (username , password)

Invocation/Assignment

login
username

password result

r e s u l t = l o g i n (username , password)

44 Model-Driven SEPL Development

Return Statement

return result

r e turn r e s u l t

Set Resource Property

set prop1value
p r op e r t i e s . prop1 = value

Subscribe for Notification

async "//Op1Result" callback
ca l l b a ck = async .WSN(”//Op1Result”)

Receive Notification

async waitcallback
result

r e s u l t = ca l l ba ck . wait ()

If-Branch

. . .

[var1 < 10]
i f (var1 < 10){

. . .

}

If-else-Branch

. . .

[var1 < 10]

. . .

i f (var1 < 10){
. . .

} e l s e {
. . .

}

Model-Driven SEPL Development 45

If-else if-else-Branch

. . .

[var1 > 100]

[var1 < 0]

.

i f (var1 < 0){
. . .

} e l s e i f (var > 100) {
. . .

} e l s e {
. . .

}

While-Loop
<<LoopNode>>

doLoop

whi le (doLoop){
. . .

}

Try-catch-finally Block

. . .
. . .

securityFault

. . .

t ry {
. . .

} catch (s e cu r i t yFau l t) {
. . .

} f i n a l l y {
. . .

}

Function
func1

param1

param2

f unc t i on func1 (param1 , param2){
. . .

}

Table 4: Mapping of SEPL Constructs to Activity Diagram Elements

Figure 13 depicts the screenshot of the UML model of the number porting service
presented in Section 4. The screenshot has been taken from the graphical presentation
of the diagram created in the Eclipse modeling tool MDT [15] (see subsection 5.2).
The outmost rounded rectangle is the activity port numbers with the parameters
username, password and requests. Inside the activity, actions are drawn in smaller
rounded rectangles. From the login action, one edge points to the next “regular”
node (the first foreach block) and one edge depicts an ExceptionHandler link.
The rectangles with dashed border depict the two foreach loops which occur in the
protocol: the input pins requests and callbacks, respectively, denominate the array
over which the loop iterates; the output pins r and c, respectively, denominate the
local variable used in each iteration. The action containing async "..." stands for
the subscription of the notification and the string $1 inside the XPath query refers to

46 SEPL Protocol Host

Figure 13: Number Porting Protocol Activity Diagram

the first parameter of this action (r.customer) 2. At the end of the control flow, the
figure contains a Destroy action and a return statement, both depicted in rounded
rectangles.

4.4 SEPL Protocol Host

The SEPL client implementation allows for the client-side execution of service pro-
tocols. Client-side protocol execution has a number of drawbacks. For one thing,

2$2, $3, ..., $9 can furthermore be used to refer to the second to ninth parameter.

SEPL Protocol Host 47

asynchronous communication with services requires the client to open a separate
port to listen for notification messages. Secondly, clients require the SEPL client
library, additionally to the Web service libraries. We therefore provide for a solution
where clients can launch a protocol execution with standard Web service tools. This
is accomplished by setting up a server on which the service protocols are published
as Web services themselves. We refer to this part of the framework as SEPL protocol
host (PH).

WSDL SEPL

Web Service A

SEPL
Protocol Host

publishes

Protocol
WSDL

Client invokes Operation 1

Operation 2

Operation 3

parses

invokes

Figure 14: SEPL Protocol Host

Figure 14 depicts a protocol hosting scenario. The PH is configured to host the
protocol for a Web service A. The PH has knowledge of the interface (WSDL) and
the protocol specification (SEPL) of service A. With the combined information of
these two documents the PH generates and publishes a the protocol WSDL document,
which contains all functions of the SEPL document as WSDL operations. The client
- using any standard Web service library - parses the protocol WSDL and sends an
invocation message to the PH. The PH receives the request and dispatches it.

We identify three main tasks performed by the PH: 1) generating the protocol WSDL
document from the service’s SEPL and WSDL documents; 2) dispatching incoming
requests; 3) executing the protocol and returning the result. These three tasks will
be briefly discussed in the following.

4.4.1 Generating Protocol WSDL Documents

In the protocol WSDL document the data from both the target service’s WSDL file
and the SEPL protocol is combined to provide a service interface definition covering
all protocol functions. The key issue is that SEPL function parameters are untyped
and that WSDL, based on XSD, requires type information of operation parameters.
Although XSD allows for the use of the special element type any for untyped elements,
Web service clients can usually handle typed messages better. Therefore we try to
extract the maximum level of type information from SEPL documents and avoid the
usage of the any type wherever possible.

48 SEPL Protocol Host

Figure 15 contains example code excerpts from a SEPL document with one function
purchase, the WSDL document of the target service and the protocol WSDL defi-
nition which is generated from this information. Three service invocations occur in
the SEPL function purchase (login, addToCart and submit). The binding style of
the WSDL is document/literal [94] wrapped, i.e., in the XSD the operation parameter
elements are “wrapped” in elements having the same name as the operations they
are part of. The details of the message, portType and binding sections are omitted
for brevity.

function purchase(user, pass, itemID) {
token = login(user, pass)
addToCart(itemID, token)
result = submit(token)
return result

}

<definitions ...>
 <types><xsd:schema>
 <element name=“login“><sequence>
 <element name=“user“ type=“xsd:string“/>
 <element name=“pass“ type=“xsd:string“/>
 </sequence></element>
 <element name=“loginResponse“ type=“xsd:long“/>
 <element name=“addToCart“><sequence>
 <element name=“itemID“ type=“xsd:int“/>
 <element name=“token“ type=“xsd:long“/>
 </sequence></element>
 <element name=“submit“><sequence>
 <element name=“token“ type=“xsd:long“/>
 </sequence></element>
 <element name=“submitResponse“

type=“xsd:boolean“/>
 ...
 </xsd:schema></types>
 <! messages/operations omitted;
 using documentliteral binding style >
 ...
</definitions>

<definitions ...>
 <types><xsd:schema>
 <element name=“purchase“>
 <sequence>
 <element name=“user“ type=“xsd:string“/>
 <element name=“pass“ type=“xsd:string“/>
 <element name=“itemID“ type=“xsd:int“/>
 </sequence>
 </element>
 <element name=“purchaseResponse“

type=“xsd:boolean“/>
 </xsd:schema></types>
 ...
</definitions>

SEPL WSDL

Protocol Interface WSDL

Figure 15: Generated Protocol WSDL Document

For the WSDL generation, with regards to the example in hand, we consider the
following:

• The name of the XSD top element (wrapper element) equals the name of the
protocol function (purchase).
• The parameters user and pass are passed to the invocation of the operation
login. The XSD types of this operation’s parameters are both string (see the
WSDL’s types section), hence the type of the function’s parameters user and
pass are assumed to be of type string.
• The variable itemID is passed to the invocation of the operation addToCart as

the first parameter. We read out from the WSDL types section that the XSD
type of this first parameter is int, hence the type of the function’s parameter
itemID is assumed to be int.
• To determine the return type of the operation, we observe that the variable
result is returned, which has previously been assigned with the output of the

SEPL Protocol Host 49

operation submit. In the XSD the according element (named submitResponse)
is of type boolean. Hence, the return type of the function purchase is assumed
to be boolean. Note that the example in hand contains only one return state-
ment; in case a function contains several return statements, it becomes imprac-
ticable in general to determine the return type without advanced flow analysis.

For a more detailed discussion of the WSDL generation algorithm, specifically con-
cerning the cases in which XSD types can or cannot be determined, see Subsection
5.3.3. The further improvement of this algorithm is part of our future work (see
Section 7.1).

4.4.2 Dispatching Incoming Requests

Having generated and published the WSDL files of the protocol functions, clients
invoke the PH to request protocol execution. Upon receiving a SOAP message the
PH needs to determine the target SEPL document and the target function in this
protocol. This is accomplished by an according WS-Addressing Action header to
be sent in the SOAP message from the client: the format of the Action header is
<protocol name>:<function name>.� �
1 <d e f i n i t i o n s xmlns=”http :// schemas . xmlsoap . org /wsdl /”

2 xmlns : tns=”http :// i n f o s y s . tuwien . ac . at /dsg/ da io s / s t a t e f u l ”

3 xmlns : wsa=”http ://www.w3 . org /2005/08/ addre s s ing ” . . . >

4 . . .

5 <portType name=”Port ingProtocolPortType ”>

6 <opera t i on name=”port numbers ”>

7 <input name=”port numbersRequest ” message=” tns : port numbersRequest ”

8 wsa : Action=” Port ingProtoco l : port numbers ”>

9 </input>

10 <output name=”port numbersResponse ” message=” tns : port numbersResponse ”

11 wsa : Action=” Port ingProtoco l : port numbers : r e sponse ”>

12 </output>

13 </operat ion>

14 </portType>

15 . . .

16 </d e f i n i t i o n s >� �
Listing 9: WS-Addressing Action in Generated WSDL Document

Listing 9 contains an excerpt of the generated WSDL document for the porting ser-
vice protocol introduced in Section 4. The according SEPL document contains one
function port numbers which is equal to the WSDL operation name. The input def-
inition of this operation specifies the Action PortingProtocol:port numbers. The
operation’s output specifies the same Action with a colon and the string response

appended. WS-Addressing enabled SOAP clients will parse the WSDL and auto-
matically append the according Action header (see Listing 10). PortingProtocol

is the unique identifier under which the porting service protocol is registered in the
PH. Neither this identifier nor the name of a function may contain a colon, hence the

50 SEPL Protocol Host

Action string can easily be split at the colon by the PH to unambiguously determine
which function it needs to execute.� �
1 <Envelope xmlns=”http :// schemas . xmlsoap . org / soap/ enve lope /”

2 xmlns : tns=”http :// i n f o s y s . tuwien . ac . at /dsg/ da io s / s t a t e f u l ”

3 xmlns : wsa=”http ://www.w3 . org /2005/08/ addre s s ing ” . . . >

4 <Header>

5 <wsa : Action>Port ingProtoco l : port numbers</wsa : Action>

6 . . .

7 </Header>

8 <Body>

9 <tns : port numbers>

10 . . .

11 </tns : port numbers>

12 </Body>

13 </Envelope>� �
Listing 10: WS-Addressing Action in SOAP Invocation

4.4.3 Execution of the Target Protocol Function

After having determined the target protocol in the dispatching phase, the PH starts
with its execution. Therefore it is necessary to convert the incoming SOAP message
to objects which are interpretable by the SEPL script engine.� �
1 <Envelope xmlns=”http :// schemas . xmlsoap . org / soap/ enve lope /” . . . >

2 . . .

3 <Body>

4 <tns : port numbers>

5 <username>te l co0815 </username>

6 <password>s e c r e t </password>

7 <request>

8 . . .

9 </request>

10 <request>

11 . . .

12 </request>

13 </tns : port numbers>

14 </Body>

15 </Envelope>� �
Listing 11: WS-Addressing Action in SOAP Invocation

A key aspect is to detect whether parameters have simple (string, int, . . .), complex
(XML markup) or array type. Consider the example SOAP invocation sketched in
Listing 11. The Body element port numbers contains four sub-elements: the strings
username and password and two elements request. The PH detects that the two
request elements are of the same type and make up an array. Eventually, the PH
makes use of the SEPL client to execute the target SEPL function port numbers

with three parameters: the two strings and the array of requests.

During execution of the protocol the SOAP invocation to the PH blocks and returns
the result when the SEPL client has finished. Further implementation details will be
discussed in Section 5.

51

5 Implementation

In this section our prototype implementation of the SEPL framework is presented.
Analogously to the Design section (Section 4), this section is divided into three sub-
sections: one for each the SEPL client engine, the SEPL tools for model-driven de-
velopment (SEPL code generator) and the SEPL protocol host server application.
Firstly, we take a look at the “big picture”, i.e., how the framework components are
connected with each other. The details will be explained step by step later on. Fig-
ure 16 illustrates the implementation of the example scenario presented in Section
4. The scenario is based on the functionality of the PortingService Web service
which supports porting of mobile numbers across providers. The static interface of
this service is defined in the WSDL contract, the functionality is laid down in an ac-
cording SEPL document. The SEPL Protocol Host (PH) is responsible to execute the
SEPL protocol and to expose its functionality to the SOAP Client (which represents
the end-user) in the form of invokable WSDL operations. The PH is implemented
as a Java Web Application [71] and is deployed in a Tomcat application server [2].
The WSDL Generator is responsible to generate a WSDL definition containing the
Web service interface of the protocol functionality. The UML2SEPL code genera-
tor converts SEPL activity diagram (AD) models into SEPL code – a preprocessing
step which is necessary in case the PortingService service is configured with an AD
model. The code generation is optional but added here for the sake of completeness.
If the end user wants to execute a protocol function, he uses a SOAP Client which

SEPL
AD Model

SEPLWSDL

Tomcat Application Server

SEPL Protocol Host Web Application

SEPL Client

PortingService
Web Service

FactoryService
Web Service

SOAP Client

WSDL Generator

Protocol
WSDL

Request
Processor

invokes

Protocol Host
Configuration

delegates

UML2SEPL Code
Generator executes

invokes parses

generates

reads generates Notification
Receiver

callbacks

notifies

Figure 16: Connection Between the SEPL Framework Components

parses the Protocol WSDL and sends an according SOAP message to the network
interface of the Tomcat server (illustrated as a thick circle). The Request processor
receives the SOAP message and dispatches it. Then the request is delegated to the
SEPL client which is embedded in the Web application. The SEPL client reads the
SEPL document and executes it by invoking operations of the FactoryService and

52 SEPL Client Engine

the PortingService Web services. When the execution reaches a wait statement, the
SEPL client waits until the service sends a notification message, which is received by
the notification receiver and handed to the SEPL client. The result of the protocol
execution is handed back to the request processor, which returns it to the SOAP
client.

After this short example scenario discussion we turn to the details of the framework
components in the following subsections.

5.1 SEPL Client Engine

The SEPL client (or SEPL engine) prototype implementation has been developed in
the Java programming language (version 6). Figure 17 illustrates the structure of the
engine and the responsibility of the separate parts, in the context of an example Web
service and a service factory.

SEPL Client

Target Web Service

op1(...) op2(...) op3(...)

Factory Web Service

create(...)

Script Interpretation

Code
Preprocessor

Core Execution

SOAP StackCode
Interpreter

SEPL
Protocol

WSDL
Description

WSN Processor

WSDL Parser

invoke notify

read parse

Figure 17: SEPL Engine Structure and Responsibilities

In preparation of SEPL documents for interpretation, the Code Preprocessor reads
SEPL protocol files and applies certain modifications to convert SEPL code into the
format of a concrete scripting language. The modified source code is interpreted by
a Code Interpreter, which directs the control flow of the protocol and maintains the
state of the variables. All Web service specific tasks - as part of the core execution -
are delegated by the code interpreter to the respective specialized parts of the client.
The WSDL parser reads WSDL documents and parses them for operations, their pa-
rameters and for WSRF resource property definitions. The SOAP stack performs all
Web service invocations and mediates between the SOAP messages on network level
and Java objects at high level. In the figure, arrows point from the execution engine to
the target Web service and the factory Web service to illustrate the direction of invo-
cation. The arrow in the opposite direction signifies the flow of WS-BaseNotification

SEPL Client Engine 53

messages which are received and processed by the WSN Processor. The SOAP stack
is based on the Daios framework. Listing 18 in the Appendix C contains Java source
code which illustrates the usage of the SEPL client, and Listing 19 in the Appendix
D contains an excerpt of the SEPL client implementation.

The Code Interpreter is based on the Java scripting engine Pnuts [9]. Each ob-
ject occurring in SEPL code has its equivalent Java class. Pnuts is extensible in so
far as it supports the definition of new object types which implement the interface
pnuts.lang.AbstractData. The objects occurring in SEPL and their respective Java
implementations for Pnuts are listed in Table 5.

SEPL object Instance of class
async at.ac.tuwien.infosys.dsg.daios.stateful.pnuts.Async

factory at.ac.tuwien.infosys.dsg.daios.stateful.pnuts.WSFactory

fault at.ac.tuwien.infosys.dsg.daios.stateful.pnuts.SOAPFault

self at.ac.tuwien.infosys.dsg.daios.stateful.pnuts.WSResource

properties at.ac.tuwien.infosys.dsg.daios.stateful.pnuts.WSResourceProps

Array object at.ac.tuwien.infosys.dsg.daios.stateful.pnuts.Array

Callback object at.ac.tuwien.infosys.dsg.daios.stateful.pnuts.WSNCallback

Daios message at.ac.tuwien.infosys.dsg.daios.stateful.pnuts.DaiosMessage

XML structure at.ac.tuwien.infosys.dsg.daios.stateful.pnuts.XML

Table 5: SEPL Objects and the Respective Java Classes for Pnuts

All classes listed in the table implement pnuts.lang.AbstractData and can be seen
as the DSL-specific extension to the Pnuts core. Pnuts is responsible to parse and
interpret SEPL code, the SEPL extension is responsible to perform domain-specific
tasks such as Web service invocations, XML processing and so forth.

In order for the Pnuts core to interpret SEPL code, the source needs to be prepro-
cessed by the Code Preprocessor. Pnuts cannot handle, for example, faults in
the way they are syntactically defined in SEPL catch-blocks. The class PnutsCode-
Preprocessor makes all replacements and adjustments to the code source which are
necessary in order for Pnuts to operate. Figure 18 depicts an example SEPL docu-
ment before and after code preprocessing. The code preprocessor modifies the original
document in various ways:

• At the beginning of the document, the necessary import statements are added.
This makes the SEPL Pnuts classes available inside the code.
• The SOAP fault code errorCode1 inside the catch-block needs to be trans-

formed into a class definition, which is achieved as follows. A new Pnuts func-
tion named Fault errorCode1 gets included which defines the exception class
Fault errorCode1 and returns a new instance of this exception. Due to the
scoping of Pnuts, the defined exception class is also available in the function
xyz, and hence the class can be used in the catch block. Whenever a SOAP

54 SEPL Code Generator

function xyz() {
 try {
 var1 = op1("hello")
 var2 = <a>
 c
 ;
 var3[] = "hello"
 } catch(errorCode1) {
 ...
 } catch(*) {
 ...
 }
}

import at.ac.tuwien.infosys.dsg.daios.stateful.pnuts.Async
import at.ac.tuwien.infosys.dsg.daios.stateful.pnuts.WSFactory
...
function Fault_errorCode1() {
 class Fault_errorCode1 extends SOAPFault {
 }
 return new Fault_errorCode1()
}
function xyz() {
 try {
 var1 = op1(SEPLString.create("hello"))
 var2 = SEPLString.create("<a>
 c
 ")
 var3 = Array.append(var3, SEPLString.create("hello"))
 } catch(Fault_errorCode1 f) {
 ...
 } catch(SOAPFault f) {
 ...
 }
}

Figure 18: SEPL Code Preprocessing Example

fault with a subCode equal to errorCode1 is received, the SEPL client will eval-
uate the expression throw Fault errorCode1() (inside the function xyz). This
throws a new fault which is caught by the embracing exception handler. Figure
18 illustrates how the code preprocessor alters the catch-block definitions with
the according class types.
• The XML structure assigned to the variable var2 is embraced with quotation

marks.
• Every string s under quotation marks is replaced by SEPLString.create(s).

This static function determines the content of the string and returns 1) an
object of type XML representing s if the string contains valid XML markup, or
2) the string s itself otherwise.
• The convenience SEPL expression var3[] = "hello", which appends the string
"hello" to the end of the array, is replaced by the expression var3 = Array

.append(var3, SEPLString.create("hello")) which performs the according
computation and returns the array.

5.2 SEPL Code Generator

In this section we briefly discuss the SEPL code generator prototype implementa-
tion 3. The generator consists of two main parts: 1) a UML factory which reads
encoded UML files and builds an in-memory object representation; 2) The actual
code writer, which outputs the according SEPL code to an output stream. By mak-
ing this distinction we strive for independence from the UML notation (the file format

3Classes are in package at.ac.tuwien.infosys.dsg.daios.stateful.codegen, though the pack-

age name of the classes mentioned in this section is not written out in full.

SEPL Code Generator 55

in which the UML AD is saved). New notations can be integrated by implementing
an according factory class. Our implementation is based on the file format used
by the Eclipse modeling tools [15] (MDT). With MDT, users can graphically design
SEPL ADs in the Eclipse IDE and save the model to a file. The in-memory ob-

UMLElement

UMLEdge

childElements

*

UMLTryBlock UMLActivity

UMLGroup

UMLNode
 type
 edgesIn [0..*]
 edgesOut [0..*]

 ID
 name

UMLLoop

source

 target

UMLHandler

 exceptionType
 handlerBody:

UMLNode

UMLHandlerEdge
target

initialNode

 bodyPart: UMLNode
 decider: UMLNode

UMLAction

 parameters [0..*]
 result [0..1]

Type:
merge node, decision
node, action node, ...

 parameters [0..*] handlers [1..*]

Figure 19: Class Diagram of the UML AD In-Memory Representation

ject representation of UML AD elements is presented in the class diagram in Figure
19. The abstract base class UMLElement holds an identifier (ID) and a name and,
more importantly, contains a reflexive association childElements (composite pat-
tern). UMLNode and UMLEdge, representing the basic elements of ADs, are direct sub-
classes of UMLElement. UMLGroup, a subclass of UMLNode, represents an aggregation
of nodes and is subclassed by UMLTryBlock, UMLActivity and UMLLoop. UMLAction

is the central element that represents all actions/operations in SEPL documents.

We will not discuss in detail how the in-memory model is created from the MDT
AD file as this involves mainly parsing the XML markup. We will, however, take a
short look at how the SEPL source code is actually produced from the in-memory
model (Algorithm 5.2). The proceeding of the code writer is similar to the visitor
pattern [21]: basically it iterates over all activities and calls the method visit, which
recursively iterates over all nodes and outputs according SEPL code.

56 SEPL Code Generator

Algorithm 1 SEPL Code Writer Algorithm
1: lockedMergeNodes = ∅
2: for all activities a do
3: visit(a)
4: end for
5: function visit(node)
6: if node instance of UMLAction then
7: output the action according to its type (e.g. invocation)
8: else
9: if node instance of UMLGroup then

10: write “[function|while|for|try] <. . . > {” according to the type of node

11: initialNode← initial executable node of the group
12: visit(initialNode)
13: write “}”
14: else if node is a DECISION node then
15: m← merge node connecting the paths of all outgoing edges of node

16: lockedMergeNodes = lockedMergeNodes ∪m

17: for all outgoing edges e of node do
18: write “[}else] [if(<condition>)]{” according to guard of e

19: visit(e)
20: end for
21: lockedMergeNodes = lockedMergeNodes \m

22: write “}”;
23: visit(m) return
24: else if node is a MERGE node and node ∈ lockedMergeNodes then
25: return
26: end if
27: end if
28: for all successor nodes s of node do
29: visit(s)
30: end for
31: end function

SEPL Code Generator 57

Inside of visit, the following is taken into consideration:

• Simple operations (UMLActions) are output according to their type, e.g.
“<variable> = <operationName>(<parameters>)” for an invocation.
• For group nodes (UMLGroups), at first the “first line” of the group is written,

e.g. “while(<condition>) {” for while-loops, or “try {” for try-blocks. After-
wards, a recursive call to visit is made with the initial executable node

of this group. The initial node is either specified by a specific attribute such as
bodyPart or it is the group’s single node which has no incoming edges.
• A bit more complicated is the procedure to convert structures with decision

and merge nodes into if-else if-else code structures. When the algorithm
arrives at a decision node, it calls a sub-procedure which “travels” along all
reachable paths and searches for the first common merge node (CMN) which
can be reached on all paths. This merge node is considered the end of the
if-else if-else structure. It is important to recapitulate that ADs must not
contain cycles (see Subsection 4.3), because this simplifies the graph traversal as
we do not need to keep track of nodes already visited. It is also possible that no

. . .

. . .

. . .

. . .

. . .

D1

M2
D2

M1 (Common Merge Node)

Generated
Twice in
SEPL Code

Figure 20: Common Merge Node and Intertwined Branches

such CMN exists (in those cases where the control flow does not continue after
the if-else if-else structure). In this case the variable m in the algorithm is
empty (null) and the call of visit with parameter null has no effects. Figure
20 illustrates the idea of the common merge node. The decision D1 splits up the
control flow into 3 branches. One branch will become the if-branch, the second
will become the else if-branch and the third will become the else-branch in
the generated SEPL code (note that edge guards are left out for simplicity).
Whatever structures occur inside the three branches (indicated by three dots
“. . . ”), the branches are joined by the common merge node M1. Note that it
is nevertheless possible to “intertwine” the branches in such manner that the
control flow of one branch ramifies to the other branch (implemented using the

58 SEPL Protocol Host

decision node D2 and the merge node M2). This is certainly not customary
but can be very useful in some cases. The consequence of intertwined branches
is that part of the code is generated twice in two different branches.

5.3 SEPL Protocol Host

In this subsection the crucial points of the SEPL Protocol Host (PH) implementation
are explained.

5.3.1 Web Application Structure

Figure 21 contains a screenshot of the rough structure of the SEPL protocol host
Web application. The SEPL protocol application is based on Apache AXIS2 [1].
But, unlike in AXIS2 where services are statically configured, SEPL configures all
required Web services dynamically on deployment. The single most important file
is WEB-INF/classes/sepl.xml, which contains the PH configuration. Every time a
new PH is to be created, sepl.xml is the single file which needs to be adapted. The

Figure 21: Web Application Structure

file sepl-descriptor.xsd is the XSD schema file for the configuration file sepl.xml.
WEB-INF/classes/soap/ contains XSD files required by the Daios framework. The
directory /WEB-INF/lib/ contains all required libraries, including those of Daios,
SEPL and AXIS2. The Web application can be packed in a WAR [71, 72] file in
exactly this structure and deployed to a Tomcat application server.

SEPL Protocol Host 59

5.3.2 Configuration

The configuration file sepl.xml defines the parameters needed by the PH in order to
work properly:

• containerHost and containerPort: hostname or IP address and port of the
container in which the PH is deployed.
• notificationServiceName: name of the service used to receive notifications.
• overwriteWSDLsOnStartup: boolean value to indicate whether protocol WSDL

files should be generated and overwritten on startup (deployment).
• serviceProtocol: element to define a protocol, its name and the location of

the target WSDL and SEPL files. One or more protocols may be defined.

Listing 12 contains the configuration file used for our example scenario.� �
1 <?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>

2 <s ep l xmlns=” ht tp : // i n f o s y s . tuwien . ac . at /dsg/ s ep l / d e s c r i p t o r ”

3 xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”

4 xs i : s chemaLocat ion=” ht tp : // i n f o s y s . tuwien . ac . at /dsg/ s ep l / d e s c r i p t o r

5 sep l−d e s c r i p t o r . xsd”>

6

7 <conta inerHost> l o c a l h o s t</ conta inerHost>

8 <conta ine rPor t>8080</ conta ine rPor t>

9 <not i f i c a t i onSe rv i c eName>S ep lNo t i f i c a t i o nS e r v i c e</ not i f i c a t i onSe rv i c eName>

10 <overwriteWSDLsOnStartup>t rue</overwriteWSDLsOnStartup>

11

12 <s e r v i c eP r o t o c o l name=” Port ingProtoco l ”>

13 <wsdlLocat ion>ht tp : // l o c a l h o s t : 8 0 8 0 /Port ing /Port ing . wsdl</wsdlLocat ion>

14 <s ep lLoca t i on>ht tp : // l o c a l h o s t : 8 0 8 0 /Port ing /Port ing . s e p l</ sep lLoca t i on>

15 </ s e r v i c eP r o t o c o l>

16

17 </ s ep l>� �
Listing 12: Example PH Configuration File sepl.xml

It contains the configuration of one protocol named PortingProtocol. The notifica-
tion service is named SeplNotificationService. The Tomcat container is available
under localhost:8080. Assuming the name of the WAR file is sepl.war, then the
context path of the Web application (in Tomcat) is /sepl and the full URL of the noti-
fication service results in http://localhost:8080/sepl/SeplNotificationService.

5.3.3 Parameters Types and Return Types

Figure 22 illustrates - by means of a flowchart - the programmatic decisions made to
determine the return type of a SEPL function from the source code. Firstly, the
source code is checked with a regular expression to find out the number of return
statements contained therein. If more than or less than one return statement exists,
the return type is set to any (unknown). Otherwise, the (single) return statement

60 SEPL Protocol Host

is syntactically analyzed. If the statement returns the result of an operation, the
function’s return type is the return type of the operation (which can be extracted
from the WSDL). If the statement returns a constant value (a string, numeric value
or boolean value) then the return type is the type of the constant. If the statement
returns a variable (say, var1), we have to make another case distinction. If the

n = 1?
no Return type is any

Type of expr?

 yes

How many
assignments?

n := number of return statements

Return type is the
r.t. of the operation

invocation

Return type is the
type of the constant

 constant expression

variable

 0

 more

 than 1

 1

expr := returned expression

expr := assigned expression

Return type is any
expr is func

tion parameter?
noReturn type is the type

of the function parameter

Figure 22: Determining the Return Type of a Function

variable gets assigned exactly once in the function (and assumingly before the return
statement), a recursive call is made and the assigned variable is further analyzed. If
the variable gets assigned more than one time, we set the return type to any. If no
assignment to the variable in question is found in the function, the variable must be
a function parameter. If this is the case, the return type of the function equals the
type of the respective parameter.

Determining the types of parameters is less complicated. We mentioned in Sub-
section 4.2.2 that parameters are final, thus an assignment to a parameter variable is
invalid and the type of parameters is preserved throughout the function. It is there-
fore sufficient to find one Web service invocation instruction in which the function
parameter is used as a parameter to the invocation. This is implemented in the PH
with the aid of Java regular expressions. If a parameter type cannot be determined
by this means, it is rendered with XSD type any in the WSDL.

61

6 Evaluation

In this section we perform an evaluation of the work carried out in the thesis. The
evaluation focuses on the design decisions discussed in Section 4 as well as the concrete
prototype implementation presented in Section 5. The SEPL framework can hardly
be compared to existing similar solutions on the whole. However, certain aspects
of the framework can be compared to the related work: one aspect is how (time-
)efficiently service protocols can be implemented using SEPL; a second aspect is the
performance of executing a protocol functionality by means of the SEPL framework
in comparison to other conceivable solutions. Framework-internally we evaluate the
WSDL generation performance, which is a crucial factor for the startup speed of
SEPL PH applications, for SEPL documents of various sizes.

6.1 Development Efficiency

In the following we consider the example number porting service protocol presented
in Subsection 4.1 and compare the usage of the SEPL framework to other possi-
ble solutions for this problem with special regards to the development efficiency.
We assume the existence of a service PortingService (PS) with operations login,
check porting status and schedule porting for. The functionality of Multiple-
Porting is to perform number porting for a series of customers in one go – using
the operations provided by the PS Web service. Principally, this scenario could be
implemented in different ways:

• by creating a SEPL protocol file
• by creating a client which implements the business logic
• by creating a WS-BPEL process
• by extending the PS service itself (adding an additional operation).

Other solutions are conceivable, but we will focus on these 4 solutions. The SEPL
implementation of the porting protocol has been printed in Listing 7 in Subsection
4.1. The code with its 23 lines seems slender and clear. To start the SEPL protocol
execution, the five Java code lines in Figure 13 are sufficient.� �
1 Element [] r e que s t s = . . . ; // assume tha t the reque s t array i s g iven

2 SEPLClient c l i e n t = new SEPLClient (

3 ”http :// l o c a l h o s t :8080/ Port ing / s e r v i c e s / Por t ingSe rv i c e ?wsdl ” ,

4 new URL(”http :// l o c a l h o s t :8080/ Port ing /Port ing . s e p l ”) . openStream ()) ;

5 boolean ok = (Boolean) c l i e n t . invoke (”port numbers ” , user , pass , r e que s t s) ;� �
Listing 13: Executing the Protocol With the SEPL Client

Implementing the protocol becomes more tedious when we use a pure Web service
client library. Listing 14 illustrates how the MultiplePorting functionality can be im-
plemented with the Daios ServiceFrontend. The source code gets blown up to more

62 Development Efficiency

than 60 lines. The code given in Listing 14 hides the asynchronous notification re-
ceiving, which takes place in a separate thread. We assume that received notifications
are put to the thread-safe blocking queue QUEUE.� �
1 St r ing WSDL FACTORY = ” . . . ” ;

2 St r ing WSDL PORTING = ” . . . ” ;

3 St r ing USERNAME = ” . . . ” ;

4 St r ing PASSWORD = ” . . . ” ;

5 LinkedBlockingQueue QUEUE = . . . ; // re f e r ence to n o t i f i c a t i o n queue

6 St r ing [] [] r e que s t s = . . . ; // assume the r e que s t s are encoded as

7 // a 2−dimensional S t r ing array

8

9 WSAEnabledInvokerFactory f a c = new WSAEnabledInvokerFactory () ;

10 Serv iceFrontend f rontend = fac . createFrontend (

11 new URL(WSDL PORTING) , new URL(WSDL FACTORY)) ;

12

13 t ry {
14 DaiosMessage l o g i n = new DaiosMessage () ;

15 l o g i n . s e t S t r i n g (”username” , USERNAME) ;

16 l o g i n . s e t S t r i n g (”password” , PASSWORD) ;

17 f rontend . setWSDLOperationName (new QName(” l o g i n ”)) ;

18 DaiosMessage response = frontend . requestResponse (l o g i n) ;

19 } catch (Invocat ionExcept ion e) {
20 SOAPEncodedException e1 = (SOAPEncodedException) e . ge tOr ig ina lExcept i on () ;

21 SOAPFault f a u l t = new SOAPFault (e1 . getElement ()) ;

22 r e turn f a u l t . g e tDe ta i l () ;

23 }
24 List<Str ing> requestCustomerList = new ArrayList<Str ing >() ;

25 f o r (S t r ing [] req : r eque s t s) {
26 requestCustomerList . add (req [0]) ;

27 DaiosMessage check = new DaiosMessage () ;

28 check . s e t (” customer” , req [0]) ;

29 check . s e t (”newProvider ” , req [1]) ;

30 f rontend . setWSDLOperationName (new QName(” ch e ck po r t i n g s t a tu s ”)) ;

31 DaiosMessage s t a tu s = frontend . requestResponse (check) . getComplex (” s t a tu s ”) ;

32 i f (! s t a tu s . getBoolean (” i s P o s s i b l e ”))

33 throw new Fault (s t a tu s . g e tS t r i ng (” problemDetai l ”)) ;

34

35 DaiosMessage setCust = new DaiosMessage () ;

36 DaiosMessage update = new DaiosMessage () ;

37 update . s e t S t r i n g (” customer” , req [0]) ;

38 setCust . s e t (”Update” , update) ;

39 f rontend . setWSDLOperationName (new QName(NS WSRP, ” SetResourceProper t i e s ”)) ;

40 f rontend . requestResponse (setCust) ;

41 DaiosMessage setProv = new DaiosMessage () ;

42 update = new DaiosMessage () ;

43 update . s e t S t r i n g (”newProvider ” , req [1]) ;

44 setProv . s e t (”Update” , update) ;

45 f rontend . requestResponse (setProv) ;

46

47 DaiosMessage schedu le = new DaiosMessage () ;

48 schedu le . s e t (” time” , req [2]) ;

49 f rontend . setWSDLOperationName (new QName(” s c h e du l e p o r t i n g f o r ”)) ;

50 f rontend . requestResponse (schedu le) ;

51 }
52 List<DaiosMessage> r e s u l t s = new ArrayList<DaiosMessage >() ;

53 whi le (requestCustomerList . s i z e () > 0) {
54 // n o t i f i c a t i o n s are r ece i v ed in a separa te thread and put to QUEUE

55 DaiosMessage n o t i f = QUEUE. take () ;

56 St r ing customer = no t i f . g e tS t r i ng (” customer”) ;

57 requestCustomerList . remove (customer) ;

58 r e s u l t s . add (n o t i f) ;

59 }

Development Efficiency 63

60 f rontend . setWSDLOperationName (new QName(”Destroy ”)) ;

61 f rontend . requestResponse (new DaiosMessage ()) ;

62 r e turn r e s u l t s ;� �
Listing 14: Number Porting Protocol Implemented Using Daios’ ServiceFrontend

The source code grows even more if we implement the MultiplePorting functionality
in WS-BPEL (see Listing 15). The design of BPEL requires developers to use many
assign directives between operations. Even though some parts have been left out
in the listing, we end up with more than 100 lines of BPEL code. Concerning the
asynchronous invocation of schedule porting for, BPEL imposes a difficulty: in
order for the execution engine to correlate an incoming notification message with a
certain process instance, the process definition needs to define a correlationSet

with correlation properties. In our case, we define the property correlationID to
be the ID of the resource created by the factory when createResource is invoked.
This ID is extracted 1) from the EPR returned by the factory service and 2) from
the EPR contained in the notification message. Having these two values, the BPEL
engine can assign notification messages to the correct process instances.� �
1 <?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>

2 <proce s s name=” Mult ip l ePort ing ” xmlns : tns=” . . . ” . . . >

3 <!−− WSDL imports omitted −−>
4 <partnerLinks>

5 <partnerLink name=”processPL” myRole=” Mul t ip l ePor t ingProtoco l ” . . . / >

6 <partnerLink name=” t a r g e t S e r v i c e ” partnerRole=” Mult ip l ePort ing ” . . . / >

7 <partnerLink name=” f a c t o r y ” partnerRole=” Mult ip l ePort ingFactory ” . . . / >

8 </partnerLinks>

9 <va r i ab l e s >

10 <!−− va r i ab l e d e c l a r a t i o n s omitted −−>
11 </va r i ab l e s >

12 <c o r r e l a t i o nS e t s >

13 <c o r r e l a t i o nS e t name=” Cor r e l a t i onSe t ”

14 p r op e r t i e s=” tns : c o r r e l a t i on ID ”>

15 </c o r r e l a t i o nS e t >

16 </c o r r e l a t i o nS e t s >

17 <sequence>

18 <r e c e i v e name=” r e c e i v e ” c r e a t e In s t an c e=”yes ” partnerLink=”processPL”

19 opera t i on=”port numbers ” portType=” tns : Port ing ”

20 va r i ab l e=”Port numbersIn”/>

21 <a s s i gn name=” a s s i g n I n i t i a l ”>

22 <!−− omitted : i n i t i a l i z a t i o n o f input v a r i a b l e s with empty l i t e r a l −−>
23 </ass ign>

24 <invoke name=” c r ea t e ” partnerLink=” f a c t o r y ” opera t i on=” createResource ”

25 portType=” tns : PortingFactoryPT” inputVar iab l e=”CreateResourceIn ”

26 outputVar iab le=”CreateResourceOut”>

27 <c o r r e l a t i o n s >

28 <c o r r e l a t i o n i n i t i a t e=”yes ” s e t=” Cor r e l a t i onSe t ”/>

29 </c o r r e l a t i o n s >

30 </invoke>

31 <a s s i gn name=”assignEPR2”>

32 <copy>

33 <from>$CreateResourceOut . parameters </from>

34 <to partnerLink=” t a r g e t S e r v i c e ”/>

35 </copy>

36 <!−− omitted : copy username and password to $LoginIn −−>
37 </ass ign>

38 <scope name=”LoginScope”>

39 <f au l tHand le r s >

64 Development Efficiency

40 <catch faultName=” tns : I nva l i dC r ed en t i a l s ”>

41 <r ep ly name=”Reply2” partnerLink=”processPL” operat i on=”port numbers ”

42 portType=” tns : Mul t ip l ePort ing ” va r i ab l e=”Port numbersOut”/>

43 </catch>

44 </fau l tHand le r s >

45 <invoke name=”auth” portType=” tns : PortingPT” partnerLink=” t a r g e t S e r v i c e ”

46 opera t i on=” l o g i n ” inputVar iab l e=”LoginIn ” outputVar iab le=”LoginOut”/>

47 </scope>

48 <forEach name=”ForEachRequest” p a r a l l e l=”no” counterName=” i ”>

49 <startCounterValue >1</startCounterValue>

50 <f ina lCounterValue>count ($Port numbersIn . parameters /Port ingRequest)

51 </f ina lCounterValue>

52 <scope name=”RequestLoopScope”>

53 <sequence name=”Sequence1”>

54 <!−− omitted : copy customer and newProvider from input (p o s i t i o n

55 $ i) to Check status In and Per form port ingIn −−>
56 <invoke name=”chk” partnerLink=” t a r g e t S e r v i c e ”

57 portType=” tns : PortingPT” operat i on=” ch e ck po r t i n g s t a tu s ”

58 i nputVar iab l e=” Check status In ” outputVar iab le=”Check statusOut ”/>

59 < i f name=”check”>

60 <condi t ion>

61 not ($Check statusOut . parameters / s t a tu s / tns : i s P o s s i b l e)

62 </condi t ion>

63 <throw name=”Throw” faultName=”ns1 : c on f l i c t i n gReque s t ”/>

64 </ i f >

65 <!−− omitted : copy proce s s EPR address to $Subscr ibe In −−>
66 <invoke name=”sub” partnerLink=” t a r g e t S e r v i c e ” opera t i on=” Subscr ibe ”

67 portType=” tns : PortingPT” inputVar iab l e=” Subscr ibe In ”

68 outputVar iab le=”SubscribeOut ”/>

69 <!−− omitted : copy customer to $SetResourceProper t i e s In −−>
70 <invoke name=”setCustomer” partnerLink=” t a r g e t S e r v i c e ”

71 opera t i on=” SetResourceProper t i e s ” portType=” tns : PortingPT”

72 i nputVar iab l e=”SetRPIn” outputVar iab le=”SetRPOut”/>

73 <!−− omitted : copy newProvider to $SetRPIn −−>
74 <invoke name=” setNewProvider ” partnerLink=” t a r g e t S e r v i c e ”

75 opera t i on=” SetResourceProper t i e s ” portType=” tns : PortingPT”

76 i nputVar iab l e=”SetRPIn” outputVar iab le=”SetRPOut”/>

77 <!−− omitted : copy date to $ScheduleIn −−>
78 <invoke name=” schedu l ePor t ing ” partnerLink=” t a r g e t S e r v i c e ”

79 opera t i on=” s c h edu l e p o r t i n g f o r ” portType=” tns : PortingPT”

80 i nputVar iab l e=”ScheduleIn ” outputVar iab le=”ScheduleOut”/>

81 </sequence>

82 </scope>

83 </forEach>

84 <forEach name=”ForEachCallback” p a r a l l e l=”no” counterName=” i ”>

85 <startCounterValue >1</startCounterValue>

86 <f ina lCounterValue>count ($Port numbersIn . parameters /Port ingRequest)

87 </f ina lCounterValue>

88 <scope name=”CallbackLoopScope”>

89 <sequence name=”Sequence2”>

90 <r e c e i v e name=” no t i f y ” partnerLink=”processPL” opera t i on=” Not i fy ”

91 portType=” tns : Mul t ip l ePort ing ” va r i ab l e=” Not i fy In ”>

92 <c o r r e l a t i o n s >

93 <c o r r e l a t i o n s e t=” Cor r e l a t i onSe t ” i n i t i a t e=”no”/>

94 </c o r r e l a t i o n s >

95 </r e c e i v e >

96 <!−− omitted : append r e s u l t to $Port numbersOut array −−>
97 </sequence>

98 </scope>

99 </forEach>

100 <invoke name=”Destroy” partnerLink=” t a r g e t S e r v i c e ” operat i on=”Destroy”

101 portType=” tns : PortingPT” inputVar iab l e=”DestroyIn ”

102 outputVar iab le=”DestroyOut”/>

Framework Performance 65

103 <r ep ly name=” return ” partnerLink=”processPL” operat i on=”port numbers ”

104 portType=” tns : Mul t ip l ePort ing ” va r i ab l e=”Port numbersOut”/>

105 </sequence>

106 </process>� �
Listing 15: The MultiplePorting Protocol Implemented in WS-BPEL

The last of the mentioned possibilities to implement the MultiplePorting functionality
is to extend the implementation of the PS service itself. Note that extending the
service may even be impossible, e.g., because the service implementation is part of
outdated legacy code and cannot be re-compiled. If we assume that the service is
implemented in an (easily changeable) Java class, a new operation port numbers can
be added to the class which implements the protocol using direct (local) calls to the
other service operations.

An overview of the comparison is printed in Table 6. Concerning the lines of code,
SEPL clearly leads the list. In general, SEPL code is more light-weight and much less
lines of code (LOC) are required compared to WS-BPEL documents or clients which
implement the protocol functionality. The SEPL syntax is tailored to fast and simple
programming, not necessarily requiring domain knowledge in Web service technology.
The XML-based syntax of WS-BPEL is harder to read for humans, but XML is well
suited to be processed by machines. Eventually, both BPEL and SEPL allow for
graphical development using adequate modeling tools.

LOC (ex.) LOC (general) Syntax Graph. tools
SEPL ∼ 20 small scripting-like X
Client ∼ 60 varies/medium prog.lang. ×
WS-BPEL > 100 huge XML X
Service - varies/small prog.lang. ×

Table 6: Comparison of Service Protocol Implementation Variants

6.2 Framework Performance

In the following we discuss the performance of the SEPL framework. Performance
measurement tests have been carried out for the SEPL client engine and the WSDL
generator. All tests have been run on a computer with AMD64 2.2GHz processor,
1GB RAM under the Linux operating system Ubuntu 8.04 4 (Linux kernel 2.6.27-7).

6.2.1 SEPL Client Engine

The aim of the SEPL client engine tests is to determine how much overhead the (dy-
namic) interpretation of SEPL code causes, in comparison to (static) implementation

4http://www.ubuntu.com

66 Framework Performance

of the protocol directly in the host programming language (Java) and in comparison
to an implementation using WS-BPEL. The SEPL client engine utilizes the Daios
framework, which has been measured against other popular Web service invocation
frameworks with good results [35]. The aim of the tests presented here is not to re-
peat the comparison of Daios to other frameworks but to show the framework-internal
overhead (mere Daios invocation time versus complete SEPL execution time) and the
performance in comparison to WS-BPEL. We consider 2 example protocol function-
alities in the tests (see Listing 16):

• TestOperationChain focuses on invoking many operations in a chain. The test
invokes the test service’s operation testOp1 100 times and uses the output of
each invocation as the input to the next operation.
• TestIOTransformation focuses on the transformation of input and output

data. The test performs 100 iterations where in each iteration the output of
two operations (testOp2 1 and testOp2 2) is merged to become the input of a
third invocation (testOp2 3).

The SEPL implementation of the two example functions is printed in Listing 16. The
protocol has been executed standalone using the SEPL client and hosted using the
SEPL PH. Additionally to the SEPL implementation, we have developed a WS-BPEL
process which executes the test functionalities. The process has been deployed in a
Sun Glassfish [8] application server (version 2.1) with sun-bpel-engine [7] module.
The fourth realization of the two example functionalities is a Java class implementa-
tion which relies solely on the Daios client and direct manipulation of DaiosMessage
objects.� �
1 f unc t i on TestOperationChain (input , i t e r a t i o n s) {
2 r e s u l t = testOp1 (input)

3 i = 1

4 whi le (i < i t e r a t i o n s) {
5 r e s u l t = testOp1 (r e s u l t)

6 i = i + 1

7 }
8 r e turn r e s u l t

9 }
10

11 f unc t i on TestIOTransformation (i t e r a t i o n s) {
12 i = 0

13 whi le (i < i t e r a t i o n s) {
14 r e s u l t 1 = testOp2 1 ()

15 r e s u l t 2 = testOp2 2 ()

16

17 both = ”<bothResults><r e s u l t 1/><r e s u l t 2/></bothResults>”

18 both . r e s u l t 1 = r e s u l t 1 . t e s t 1

19 both . r e s u l t 2 = r e s u l t 2 . t e s t 2

20 testOp2 3 (both)

21 i = i + 1

22 }
23 }� �

Listing 16: SEPL Performance Test Functions

Framework Performance 67

For each of the four implementation versions (Daios, SEPL, SEPL PH and BPEL) 5,
the tests have been performed in 13 iterations whereas the time was measured only
in the last 10 iterations. The first 3 iterations were run without time measurement
in order not to allow time-consuming initializations (initial parsing, object creation
etc.) to distort the accuracy of the test results.

The results of the test runs are listed in Table 7. For both tests, the SEPL client and
the execution using the SEPL PH were slightly slower than the Daios implementation
and slightly faster than the WS-BPEL process. In the first test, the slowdown of SEPL

Daios SEPL SEPL PH BPEL

TestOperationChain
Iterations 10 10 10 10
Total Duration (ms) 3573 3772 4229 4753
Avg. Duration (ms) 357.3 377.2 422.9 475.3
Std. Deviation 46.90 51.75 81.79 44.36
Increase compared to Daios - 5.57% 18.36% 33.03%
Increase compared to SEPL - - 12.12% 26.01%
Increase compared to SEPL PH - - - 12.39%
Value of t against Daios - 0.901 (I) 2.2 (S) 5.78 (S)
Value of t against SEPL - 1.493 (I) 4.551 (S)
Value of t against SEPL PH - 1.781 (S)
Comparison value t(0.95,18) 1.734

TestIOTransformation
Iterations 10 10 10 10
Total Duration (ms) 9529 11941 12292 12413
Avg. Duration (ms) 952.9 1174.1 1229.2 1241.3
Std. Deviation 68.46 115.08 176.51 31.93
Increase compared to Daios - 25.31% 28.99% 30.27%
Increase compared to SEPL - - 2.94% 3.95%
Increase compared to SEPL PH - - - 0.98%
Value of t against Daios - 5.224 (S) 4.615 (S) 12.073 (S)
Value of t against SEPL - 0.827 (I) 1.779 (S)
Value of t against SEPL PH - 0.213 (I)
Comparison value t(0.95,18) 1.734

Table 7: Performance Test Results

amounts to only 5.57% compared to Daios. In the second test, where more input-
output transformations are performed, the slowdown amounts to roughly a quarter
25.31%. The SEPL PH execution durations are slightly higher than the durations
for SEPL, due to the time consumed by messages exchanged with the PH. SEPL and
SEPL PH are faster than BPEL on average, although the difference in the second

5The source code of the implementation with Daios and the WS-BPEL process source code are

not included in this document for the sake of brevity.

68 Framework Performance

test is very small (3.95% and 0.98%). The durations measured for SEPL and SEPL
PH have a higher standard deviation than both Daios and BPEL.

To check the significance of the results, we performed a t-test [36] calculation. For
each combination (A, B) of implementation versions we formulate the null hypothesis
H0 = time(A) < time(B) (A executes the protocol faster than B) and calculate

the value t, which is defined as t :=
x̄A−x̄B√

(sA)2+(sB)2
n

, where x̄A and x̄B are the

average (mean) run times of A and B, sA and sB are the standard deviations of
the run times of A and B, respectively, and n is the number of iterations (10).
The value of t is compared to the critical value of t, which is obtained from the t-
distribution table [37]. We target a 95% confidence interval and the degree of freedom
is (n− 1) + (n− 1) = 18. Hence, the critical value of t is t(0.95, 18) = 1.734. In
all cases where the t is greater than or equal to 1.734, the hypothesis H0 cannot be
rejected and we conclude that A runs significantly faster than B. In Table 7 this is
indicated with the capital letter S in brackets. If the value of t is smaller than 1.734,
we reject the null hypothesis H0 and assume the opposite, i.e., that the run time
difference between A and B is insignificant (indicated with the capital letter I). In
the TestOperationChain test, BPEL is significantly slower than all other variants.
In TestIOTransformation, Daios is significantly faster than all other variants. In
both cases, SEPL PH is significantly slower than Daios, but insignificantly slower
than SEPL. For both tests, SEPL is significantly faster than BPEL.

6.2.2 WSDL Generator

In this section we discuss the runtime performance of the SEPL WSDL generator.
Upon startup of the managing application container, the SEPL PH starts initializa-
tion of all protocols that it has been configured with. This involves generating the
WSDL documents which describe the interface of the protocol functions hosted by
the PH. Time is a crucial factor when it comes to this initialization and we want
to check how well the WSDL generator scales for large service protocols and large
numbers of SEPL functions.

First of all, we analyze which factors influence the duration of the WSDL generation
process. The total time TW it takes to generate one protocol WSDL document from
the SEPL file and the WSDL file of the target service depends mainly 1) on the
time needed to preprocess the SEPL code in order to make it interpretable by the
Pnuts parser (TC), 2) on the time consumption of the Pnuts parser which creates an
in-memory representation of the SEPL source code (TP), 3) on the duration between
requesting and having fully parsed the target WSDL file (TT) and 4) on the “net”
WSDL generation time, i.e., the time needed to combine all the collected information
and to write out the WSDL as a Java String (TN). This relation is summarized in
Table 8.

Framework Performance 69

TW = TC + TP + TT + TN

TW WSDL generation time
TC Code preprocessing time
TP Pnuts parsing time
TT Target service WSDL parsing time
TN Net WSDL generation time

Table 8: WSDL Generation Time Formula

In the class WSDLGenPerformanceTest we have set up an appropriate test environ-
ment: the SEPL function port numbers (see Subsection 4.2.1) is duplicated N times
with names port numbers1, port numbers2, ..., port numbersN and N steadily
increasing (N ∈ {1, 2, 3, 5, 10, 15, 25, 35, 50, 65, 80, 100}). The resulting SEPL doc-
uments, together with the WSDL file of the number porting service, are used as
input to the WSDL generator. In the source code, we use an interceptor approach
to measure the required durations. At each the start and the end of an activity, the
interceptor is called to save the current timestamp (e.g. Interceptor.event(Event-
Type.START PNUTS PARSE), Interceptor.event(EventType.FINISH PNUTS PARSE)).
At the end of the computation, the difference between the timestamps is calculated.
The tests have been run 10 times and the arithmetic mean has been calculated. Fig-
ure 23 depicts the results of this benchmark. We can see from the figure that TP and

Figure 23: WSDL Generator Benchmark Results

TN mount near-linearly at almost the same rate. The duration TT is near-constant
with increasing number of SEPL functions, whereas the code preprocessing time TC

slightly increases. The solid line in the figure depicts the linear regression curve
of the total WSDL generation time: duration = 267.9 + 15.3 * #(functions),

70 Framework Performance

which fits with a standard deviation of (only) 39.296. Hence we can estimate that
the WSDL generation takes a base time of less than 300ms and an additional time
of roughly 15ms per protocol function. However, this is only a rough estimation and
the generation time, in general, depends on the size and structure of the protocol
functions as well as the number of parameters of the single functions.

71

7 Conclusion and Future Work

Even though part of the SOA community have argued that Web services are in-
herently stateless, stateful services have become widespread and popular. The Web
Services Resource Framework is a set of specifications that has emerged from the
need for a unified way to describe, address, create, invoke and destroy stateful service
instances. The statefulness of a service imposes constraints on the way and the order
in which messages are to be exchanged. We speak of the intra-service protocol to
express the dynamic interface of a service, knowledge of which – additionally to the
static interface in the form of the WSDL definitions – is a prerequisite in order for
clients to successfully interact with the service. The intra-service protocol specifies
exactly the anticipated behavior (the input data that is required, the order in which
the operations have to be performed and the way in which the output of an operation
has to be transformed to serve as the input to another operation in order to achieve a
certain functionality) as well as the unexpected behavior of the service (handling and
raising of SOAP Faults). Service protocol specification is similar to service composi-
tion in so far as new functionalities are composed, but with the major difference that
only one service is considered. Currently there is still an evident lack for an effective
way to express and execute such protocols.

In this thesis we have addressed the problem of intra-service protocol specification
and execution and have come up with an appropriate solution, the SEPL framework.
SEPL is a DSL with a scripting-language like syntax whose features to specify service
protocols range from basic control flow directives and synchronous/asynchronous in-
vocations to fault handling and easy access to WS-Resource properties and elements
in XML markup. Based on the definition of the DSL, we have presented the design
and implementation of the three main components of the SEPL framework: the SEPL
execution engine (SEPL client), the UML-based SEPL development environment and
the SEPL protocol host (SEPL server). The SEPL client has a clear interface and is
ready to be used in third party Java applications. The performance evaluation has
shown that the protocol execution is performed with a minor overhead compared to
static implementation of the protocol’s business logic. The SEPL code generator fa-
cilitates model-driven development of service protocols on the basis of UML activity
diagrams. The presented UML activity diagram models have the same expressive
power as SEPL documents and the advantage that existing graphical tools (Eclipse
Modeling Framework) provide a clear presentation to both technical specialists and
non-experts. The SEPL protocol host offers a convenient way to expose SEPL pro-
tocol functions as Web service operations, to execute SEPL protocols centrally on a
server machine and thereby to take away the protocol execution responsibility from
clients. The proposed WAR file structure and the configuration mechanism allows
for the efficient deployment of protocol hosts in standard J2EE application servers
such as Apache Tomcat. In the evaluation it became apparent that SEPL fosters
efficient development of service protocols to create new service functionalities based
on existing Web service implementations.

72 Future Work

7.1 Future Work

Even though the presented SEPL framework implementation is fully functioning in
its current state, the development is not considered finished. We plan to extend the
SEPL architecture by new features and to introduce further improvements to the
current implementation:

• The WSDL generation algorithm will be enhanced to reach a maximum level
of information concerning the XSD types of messages in the generated WSDL
documents. In Section 5 we mentioned that the algorithms to determine re-
turn types and parameter types do not handle special cases such as two return

statements occurring in a SEPL function. Using an advanced data-flow anal-
ysis it will become possible to handle even complex cases and to provide a
near-complete picture of the interface of SEPL functions in generated WSDL
documents without use of the XSD type any.
• We plan to extend the SEPL syntax by capabilities for parallel execution of ac-

tivities. Parallelism can drastically reduce the net time consumed by a protocol
execution and is also an integral part of service composition languages such as
WS-BPEL (flow instruction). Parallelism is well supported in Java in terms
of synchronized multi-threading and therefore straight-forward to implement in
the execution engine of the SEPL client.
• WSDL documents have emerged as the general purpose way of describing Web

services. Due to its popularity and extensibility, WSDL is often used to carry
additional information such as semantic annotations [91] besides the mere syn-
tactical rules for the message exchange with a service. We plan to develop a
suitable way to include SEPL protocols in the WSDL definition of services, ei-
ther by a link to a SEPL file or by embedding the SEPL code directly. Another
thinkable method to communicate SEPL protocols to service consumers is the
usage of WS-MetadataExchange [17].
• To identify single conversations with target services, the SEPL framework cur-

rently relies on WS-Addressing and the factory-instance pattern: For each pro-
tocol execution, a new service instance is created and its EPR is used in sub-
sequent invocations to the service. We plan to provide more flexibility in this
matter and support the use of conversation IDs in the SOAP header of messages
exchanged between the SEPL client and the target service.
• Besides the use of WS-BaseNotification messages, we will analyze and imple-

ment different methods of asynchronous service invocations. From the current
point of view, we mainly consider the Callback Pattern of WS-MessageDelivery
[85].

73

Appendix

74

A List of Abbreviations

AD Activity Diagram
B2B Business-to-Business
BPEL (Web Services) Business Process Execution Language
CMN Common Merge Node
CPO Cell Phone Operator
Daios Dynamic and asynchronous invocation of services
DO Data Object
DSL Domain Specific Language
EPR Endpoint Reference
HTTP Hypertext Transfer Protocol
ID Identifier
IDE Integrated Development Environment
IT Information Technology
JMS Java Message Service
LOC Lines Of Code
MEP Message Exchange Pattern
MDA Model Driven Architecture
MDD Model Driven Development
MDT Eclipse Model Development Tools
OASIS Organization for the Advancement of Structured Information Standards
OGSA Open Grid Services Architecture
OGSI Open Grid Services Infrastructure
OMG Object Management Group
OOP Object-Oriented Programming
OWL-S Web Ontology Language for Web Services
PH Protocol Host
PN Petri Net
RPC Remote Procedure Call
SDE Service Data Element
SEPL Service Protocol Language
SMTP Simple Mail Transfer Protocol
SOA Service-Oriented Architecture
SOAP Simple Object Access Protocol
SoC Service-oriented Computing
UDDI Universal Description, Discovery and Integration
UML Unified Modeling Language
URI Universal Resource Identifier
URL Universal Resource Locator
WS-BPEL Web Service Business Process Execution Language

Continued on Next Page. . .

75

WS-CDL Web Service Choreography Description Language
WS-Resource Web Service Resource
WSA Web Services Addressing
WSCI Web Service Choreography Interface
WSCL Web Services Conversation Language
WSDL Web Service Definition Language
WSDL-S Web Service Semantics
WSMO Web Service Modeling Ontology
WSRF Web Services Resource Framework
WSRP Web Services Resource Properties
WAR Web Application Archive
WWW World Wide Web
XMI XML Metadata Interchange
XML eXtensible Markup Language
XPath XML Path Language
XSD XML Schema Definition

Table 9: List of Abbreviations

76

B SEPL Syntax Rules� �
1 PROTOCOL = {ASSIGNMENT} FUNCTION {FUNCTION} ;

2 FUNCTION = ” func t i on ” IDENTIFIER FUNC PARAMETERS Eol BLOCK ;

3 EOL = ”\ r ” | ”\n” | ”\ r \n” ;

4 Eol = {EOL} ;

5 FUNC PARAMETERS = ” (” [FUNC PARAM { ” , ” FUNC PARAM }] ”) ” ;

6 FUNC PARAM = Eol IDENTIFIER Eol ;

7 BLOCK = BLOCK2 | EXPRESSION {” ; ” [EXPRESSION] } ;

8 BLOCK2 = ”{” Eol [EXPRESSION LIST] ”}” ;

9 EXPRESSION LIST = EXPRESSION { (” ; ” | EOL) [EXPRESSION] } ;

10 EXPRESSION = ASSIGNMENT | STATEMENT EXPRESSION ;

11 ASSIGNMENT = IDENTIFIER ”=” ASSIGNABLE ;

12 ASSIGNABLE = INVOCATION | CONSTRUCTOR | (XML ” ; ”) | PRIMARY EXPR;

13 STATEMENT EXPRESSION = IF STATEMENT | WHILE STATEMENT | DO STATEMENT |
14 FOR STATEMENT | ”break” | ” cont inue ” | RETURN |
15 INVOCATION | TRY STATEMENT | ”throw” EXPRESSION ;

16 IF STATEMENT = ” i f ” Eol ” (” Eol EXPRESSION Eol ”) ” Eol

17 BLOCK {ELSEIF NODE} [ELSE NODE] ;

18 ELSEIF NODE = Eol ” e l s e ” ” i f ” ” (” Eol EXPRESSION Eol ”) ” Eol BLOCK ;

19 ELSE NODE = Eol ” e l s e ” Eol BLOCK ;

20 WHILE STATEMENT = ” whi le ” Eol ” (” Eol EXPRESSION Eol ”) ” Eol BLOCK ;

21 TRY STATEMENT = ” try ” Eol BLOCK2 { Eol CATCH BLOCK } [Eol FINALLY BLOCK] ;

22 CATCH BLOCK = ”catch ” ” (” IDENTIFIER ”) ” Eol BLOCK2 ;

23 FINALLY BLOCK = ” f i n a l l y ” Eol BLOCK2 ;

24 DO STATEMENT = ”do” Eol BLOCK2 Eol ” whi l e ” Eol ” (” Eol EXPRESSION Eol ”) ” ;

25 FOR STATEMENT = ” f o r ” Eol ” (” Eol (IDENTIFIER Eol ” : ” Eol EXPRESSION Eol |
26 {ASSIGNMENT} ” ; ” Eol [CONDITION Eol] ” ; ”

27 Eol {ASSIGNMENT}) ”) ” Eol BLOCK ;

28 RETURN = ” return ” [ASSIGNABLE] ;

29 NUMBER = INTEGER | FLOATING POINT ;

30 DIGIT = ”0” . . ”9” ;

31 INTEGER = DIGIT { DIGIT } ;
32 FLOATING POINT = INTEGER ” . ” INTEGER [EXPONENT] | INTEGER EXPONENT ;

33 EXPONENT = (”e” | ”E”) [”+” | ”−”] INTEGER ;

34 LETTER = ”a” . . ”z” | ”A” . . ”Z” | ” ” ;

35 IDENTIFIER = LETTER { LETTER | DIGIT } ;

36 NOT QUOTATION MARK = ”\x0020” . . ”\x0021” | ”\x0023” . . ”\ x f f f f ” ;

37 STRING = ”\”” {NOT QUOTATION MARK | ”\\\””} ”\”” ;

38 STRING ANY = {NOT QUOTATION MARK | ”\””} ;

39 NCNAME = IDENTIFIER [{IDENTIFIER | ”−”} IDENTIFIER] ;

40 XML = ”<” [NCNAME ” : ”] NCNAME

41 { [NCNAME ” : ”] NCNAME ”=” STRING } ”>”

42 Eol (XML | STRING ANY) Eol ”</” [NCNAME ” : ”] NCNAME ”>” ;

43 PRIMARY EXPR = STRING | NUMBER | IDENTIFIER | MATH EXPRESSION;

44 INVOCATION = IDENTIFIER ” (” PARAMETERS ”) ” ;

45 PARAMETERS = ” (” [PARAM { ” , ” PARAM }] ”) ” ;

46 PARAM = IDENTIFIER | STRING | MATH EXPRESSION ;

47 MATH EXPRESSION = STRING | NUMBER | IDENTIFIER |
48 UNARY EXPRESSION | BINARY EXPRESSION |
49 ” (” UNARY EXPRESSION ”) ” | ” (” BINARY EXPRESSION ”) ” ;

50 UNARY EXPRESSION = (” ! ” | ”−” | ”˜”) MATH EXPRESSION ;

51 BINARY OPERATOR = (”+” | ”−” | ”∗” | ”/” | ”%” | ”<” | ”<=” | ”>” | ”>=” | ” | | ” | ”&&”) ;

52 BINARY EXPRESSION = MATH EXPRESSION BINARY OPERATOR MATH EXPRESSION;

53 CONSTRUCTOR = IDENTIFIER ” (” PARAMETERS ”) ” ;

54 CONDITION = MATH EXPRESSION ;� �
Listing 17: SEPL Syntax Rules in EBNF

77

C Usage of the SEPL Client� �
1 import at . ac . tuwien . i n f o s y s . dsg . da io s . s t a t e f u l . U t i l ;

2 . . .

3 SEPLClient c = new SEPLClient (

4 Cl i entTest . c l a s s . getResourceAsStream (”Port ing . s ep l ”) ,

5 ” 1 2 7 . 0 . 0 . 1 ” ,

6 8090) ;

7

8 long time1 = new Date () . getTime () + 10∗1000;

9 long time2 = new Date () . getTime () + 13∗1000;

10 St r ing r eque s t s =

11 ”<r eques t s >” +

12 ”<request>” +

13 ”<customer>customer</customer>” +

14 ”<newProvider>orangeTel </newProvider>” +

15 ”<time>” + time1 + ”</time>” +

16 ”</request>” +

17 ”<request>” +

18 ”<customer>customer2</customer>” +

19 ”<newProvider>blueTel </newProvider>” +

20 ”<time>” + time2 + ”</time>” +

21 ”</request>” +

22 ”</reques t s >” ;

23

24 Element reqs = Ut i l . toElement (r eque s t s) ;

25 Object r e s u l t = c . invoke (”port numbers ” ,

26 ”whummer” ,

27 ” secretPassword ” ,

28 Ut i l . getChi ldElements (r eqs) . toArray ()) ;

29

30 System . out . p r i n t l n (” Protoco l execut ion r e s u l t : ” + r e s u l t) ;� �
Listing 18: Using the SEPL Client to Execute the Number Porting Protocol

78

D SEPL Client Implementation� �
1 pub l i c c l a s s SEPLClient {
2

3 pr i va t e Pnuts pnuts ;

4 pr i va t e S t r ing source ;

5 pr i va t e Context context ;

6 pr i va t e WSNot i f i cat ionRece iver wsnReceiver ;

7 pr i va t e WSResource s e r v i c e ;

8 pr i va t e HttpServer s e r v e r ;

9 pr i va t e boolean c l i e n t I s S e r v e rC r e a t o r ;

10 pr i va t e boolean hasBeenShutDown ;

11 pr i va t e f i n a l S t r ing protoco lExecut ionID = UUID. randomUUID () . t oS t r i ng () ;

12 pr i va t e CodePreprocessor p r ep ro c e s s o r = new PnutsCodePreprocessor () ;

13 . . .

14

15 pr i va t e void i n i t i a l i z e (S t r ing wsdlURL , InputStream i s , HttpServer serv ,

16 WSNot i f i cat ionRece iver recv) throws Exception {
17 . . .

18 }
19

20 pub l i c Object execute (S t r ing protoco lFunct ion , Object . . . a rgs)

21 throws Protoco lExecut ionFaul t {
22 t ry {
23 hasBeenShutDown = f a l s e ;

24 i f (s e r v e r != nu l l) {
25 s e r v e r . s t a r t () ;

26 }
27 PnutsFunction func = nu l l ;

28 t ry {
29 func = (PnutsFunction) context . reso lveSymbol (protoco lFunct ion) ;

30 i f (func == nu l l)

31 func = (PnutsFunction) context . ge t Id (protoco lFunct ion) ;

32 } catch (Exception e) {
33 l o gg e r . e r r o r (e) ;

34 }
35 i f (func == nu l l)

36 throw new SEPLException (”Unknown func t i on : ” + protoco lFunct ion) ;

37 f o r (i n t i = 0 ; i < args . l ength ; i++)

38 args [i] = Ut i l . toSEPLObject (args [i]) ;

39 Object r e s u l t = func . c a l l (args , context) ;

40 i f (r e s u l t i n s t an c e o f XML) {
41 List<Element> e lements = ((XML) r e s u l t) . getElementsL i s t () ;

42 r e s u l t = elements . toArray (new Element [] { }) ;

43 i f (e lements . s i z e () == 1)

44 r e s u l t = elements . get (0) ;

45 }
46 r e turn r e s u l t ;

47 } catch (PnutsException e) {
48 throw new Protoco lExecut ionFaul t (e . getThrowable ()) ;

49 } f i n a l l y {
50 shutDown () ;

51 }
52 }
53 . . .

54 }� �
Listing 19: Operation execute in the Class SEPLClient

REFERENCES 79

References

[1] Apache Software Foundation. Apache Axis 2. http://ws.apache.org/axis2/.
Visited: 2008-09-27.

[2] Apache Software Foundation. Apache Tomcat. http://tomcat.apache.org.
Visited: 2008-11-01.

[3] Colin Atkinson and Thomas Kuhne. Model-driven development: a metamodeling
foundation. Software, IEEE, 20(5):36–41, Sept.-Oct. 2003.

[4] Daniela Berardi, Fabio De Rosa, Luca De Santis, and Massimo Mecella. Finite
State Automata As Conceptual Model For E-Services. Journal of Integrated
Design and Process Science, 8(2):105–121, 2004.

[5] Tim Berners-Lee, Roy Fielding, and Larry Masinter. RFC 3986, Uniform Re-
source Identifier (URI): Generic Syntax. http://rfc.net/rfc3986.html, 2005.
Visited: 2008-12-13.

[6] Russel Butek. Which style of WSDL should I use? http://www.ibm.com/

developerworks/webservices/library/ws-whichwsdl/. Visited: 2008-10-02.

[7] CollabNet Corporation. BPEL Service Engine User’s Guide. https://

open-esb.dev.java.net/kb/60/ep-bpel-se.html. Visited: 2009-02-25.

[8] CollabNet Corporation. Glassfish - Open Source Application Server. https:

//glassfish.dev.java.net. Visited: 2008-11-01.

[9] CollabNet Corporation. The Pnuts language. https://pnuts.dev.java.net/.
Visited: 2008-11-02.

[10] Microsoft Corporation. XLANG/s Language. http://msdn.microsoft.com/

en-us/library/aa577463.aspx. Visited: 2009-01-21.

[11] Francisco Curbera, Matthew Duftler, Rania Khalaf, William Nagy, Nirmal
Mukhi, and Sanjiva Weerawarana. Unraveling the Web Services Web: An Intro-
duction to SOAP, WSDL, and UDDI. IEEE Internet Computing, 6(2), 2002.

[12] John Davies, Rudi Studer, and Paul Warren. Semantic Web Technologies:
Trends and Research in Ontology-based Systems. John Wiley & Sons, 2006.

[13] Schahram Dustdar and Wolfgang Schreiner. A survey on web services composi-
tion. International Journal of Web and Grid Services, 1(1):1–30, 2005.

[14] Eclipse Foundation. Eclipse BPEL Project. http://www.eclipse.org/bpel/.
Visited: 2009-02-15.

[15] Eclipse Foundation. Model Development Tools (MDT). http://www.eclipse.

org/uml2. Visited: 2008-11-01.

[16] Thomas Erl. Service-Oriented Architecture. Concepts, Technology, and Design.
Prentice Hall, 2005.

http://ws.apache.org/axis2/
http://tomcat.apache.org
http://rfc.net/rfc3986.html
http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl/
http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl/
https://open-esb.dev.java.net/kb/60/ep-bpel-se.html
https://open-esb.dev.java.net/kb/60/ep-bpel-se.html
https://glassfish.dev.java.net
https://glassfish.dev.java.net
https://pnuts.dev.java.net/
http://msdn.microsoft.com/en-us/library/aa577463.aspx
http://msdn.microsoft.com/en-us/library/aa577463.aspx
http://www.eclipse.org/bpel/
http://www.eclipse.org/uml2
http://www.eclipse.org/uml2

80 REFERENCES

[17] Keith Ballinger et al. Web Services Metadata Exchange (WS-
MetadataExchange). http://specs.xmlsoap.org/ws/2004/09/mex/

WS-MetadataExchange.pdf, August 2006.

[18] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter, Pe-
ter Leach, and Tim Berners-Lee. RFC 2616, Hypertext Transfer Protocol –
HTTP/1.1. http://www.rfc.net/rfc2616.html, 1999. Visited: 2009-02-03.

[19] Daniela Florescu, Andreas Grünhagen, and Donald Kossmann. XL: an XML
programming language for Web service specification and composition. Computer
Networks, 42(5):641–660, 2003.

[20] Ian Foster and Carl Kesselman. The Grid 2: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2003.

[21] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[22] Globus Alliance. The WS-Resource Framework. www.globus.org/wsrf/specs/
ws-wsrf.pdf, 2004. Visited: 2008-07-27.

[23] Karl Gottschalk, Stephen Graham, Heather Kreger, and James Snell. Introduc-
tion to Web services Architecture. IBM Systems Journal, 41(2), 2002.

[24] Roy Grønmo and Ida Solheim. Towards Modeling Web Service Composition
in UML. In Proceedings of the 2nd International Workshop on Web Services:
Modeling, Architecture and Infrastructure, pages 72–86, 2004.

[25] Rachid Hamadi and Boualem Benatallah. A Petri net-based model for web
service composition. In ADC ’03: Proceedings of the 14th Australasian database
conference, pages 191–200, Darlinghurst, Australia, 2003. Australian Computer
Society, Inc.

[26] Carsten Hentrich and Uwe Zdun. Patterns for process-oriented integration in
service-oriented architectures. In Proceedings of 11th European Conference on
Pattern Languages of Programs (EuroPlop 06), 2006.

[27] Yousra BenDaly Hlaoui and Leila Jemni BenAyed. Toward an UML-based com-
position of grid services workflows. In AUPC ’08: Proceedings of the 2nd interna-
tional workshop on Agent-oriented software engineering challenges for ubiquitous
and pervasive computing, pages 21–28, New York, NY, USA, 2008. ACM.

[28] Michael N. Huhns and Munindar P. Singh. Service-Oriented Computing: Key
Concepts and Principles. IEEE Internet Computing, 9(1), 2005.

[29] International Organization for Standardization. ISO/IEC 14977:1996 - Extended
BNF. http://standards.iso.org/ittf/PubliclyAvailableStandards/

s026153_ISO_IEC_14977_1996(E).zip, 1996.

http://specs.xmlsoap.org/ws/2004/09/mex/WS-MetadataExchange.pdf
http://specs.xmlsoap.org/ws/2004/09/mex/WS-MetadataExchange.pdf
http://www.rfc.net/rfc2616.html
www.globus.org/wsrf/specs/ws-wsrf.pdf
www.globus.org/wsrf/specs/ws-wsrf.pdf
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip

REFERENCES 81

[30] Hu Jingjing, Zhao Xing, Cao Yuanda, and Zhou Ruitao. A Service Composition
Model with Characteristic of Transaction Based on Finite State Machine. Com-
puter and Electrical Engineering, 2008. ICCEE 2008. International Conference
on, pages 450–454, Dec. 2008.

[31] Json.org. Introducing JSON. http://www.json.org/. Visited: 2009-02-14.

[32] Gerhard Kramler, Elisabeth Kapsammer, Werner Retschitzegger, and Gerti Kap-
pel. Towards Using UML 2 for Modelling Web Service Collaboration Protocols. In
Interoperability of Enterprise Software and Applications, pages 227–238. Springer
London, 2006.

[33] Vinay Kulkarni and Sreedhar Reddy. Separation of concerns in model-driven
development. Software, IEEE, 20(5):64–69, Sept.-Oct. 2003.

[34] Philipp Leitner. The Daios Framework - Dynamic, Asyn-
chronous and Message-oriented Invocation of Web Ser-
vices. Master’s thesis, Vienna University of Technology,
http://www.infosys.tuwien.ac.at/Staff/leitner/dowloads/masterthesis.pdf,
2007.

[35] Philipp Leitner, Florian Rosenberg, and Schahram Dustdar. DAIOS - Efficient
Dynamic Web Service Invocation. To appear in IEEE Internet Computing (reg-
ular paper), 2009.

[36] Richard Lowry. Critical Values of t. http://faculty.vassar.edu/lowry/

ch11pt1.html. Visited: 2009-03-05.

[37] Richard Lowry. t-Test for the Significance of the Difference between the Means of
Two Independent Samples. http://faculty.vassar.edu/lowry/apx_c.html.
Visited: 2009-03-05.

[38] Anton Michlmayr, Florian Rosenberg, Christian Platzer, Martin Treiber, and
Schahram Dustdar. Towards recovering the broken SOA triangle: a software
engineering perspective. In IW-SOSWE ’07: 2nd international workshop on
Service oriented software engineering, pages 22–28, New York, NY, USA, 2007.
ACM.

[39] Robin Milner. Communicating and Mobile Systems: The Pi Calculus. Cambridge
University Press, 1999.

[40] NetBeans Community. Developer Guide to the BPEL Designer. http://www.

netbeans.org/kb/60/soa/bpel-guide.html. Visited: 2009-02-15.

[41] Eric Newcomer and Greg Lomow. Understanding SOA with Web Services. Ad-
dison Wesley Professional, 2004.

[42] Jörg Nitzsche, Tammo van Lessen, and Frank Leymann. WSDL 2.0 Message
Exchange Patterns: Limitations and Opportunities. In ICIW ’08: Proceedings of
the 2008 Third International Conference on Internet and Web Applications and
Services, pages 168–173, Washington, DC, USA, 2008. IEEE Computer Society.

http://www.json.org/
http://faculty.vassar.edu/lowry/ch11pt1.html
http://faculty.vassar.edu/lowry/ch11pt1.html
http://faculty.vassar.edu/lowry/apx_c.html
http://www.netbeans.org/kb/60/soa/bpel-guide.html
http://www.netbeans.org/kb/60/soa/bpel-guide.html

82 REFERENCES

[43] Object Management Group. OMG Model Driven Architecture. http://www.

omg.org/mda/. Visited: 2009-01-21.

[44] Object Management Group. OMG Unified Modeling Language (OMG
UML), Superstructure, V2.1.2. http://www.omg.org/spec/UML/2.1.2/

Superstructure/PDF/. Visited: 2008-11-01.

[45] Object Management Group. OMG Unified Modeling Language Specification.
http://www.omg.org/spec/UML/1.5/PDF/. Visited: 2009-02-12.

[46] Object Management Group. Unified Modeling Language (UML). http://www.

uml.org/.

[47] Object Management Group. Object Constraint Language. http://www.omg.

org/docs/formal/06-05-01.pdf, 2006.

[48] Object Management Group. MOF 2.0/XMI Mapping, Version 2.1.1. http://

www.omg.org/cgi-bin/apps/doc?formal/07-12-01.pdf, 2007. Visited: 2009-
02-14.

[49] Open Grid Forum. Open Grid Services Infrastructure (OGSI), Version 1.0. http:
//www.ggf.org/documents/GFD.15.pdf. Visited: 2008-11-02.

[50] Open Grid Forum. The Open Grid Services Architecture, Version 1.5. http:

//www.ogf.org/documents/GFD.80.pdf. Visited: 2008-11-02.

[51] Oracle Corporation. Oracle BPEL Process Manager. http://www.oracle.com/
technology/products/ias/bpel/index.html. Visited: 2009-02-15.

[52] Organization for the Advancement of Structured Information Standards (OA-
SIS). OASIS Web Services Security (WSS) TC. http://www.oasis-open.org/
committees/wss/. Visited: 2009-02-17.

[53] Organization for the Advancement of Structured Information Standards (OA-
SIS). Web Services Context Specification. http://docs.oasis-open.org/

ws-caf/ws-context/v1.0/wsctx.html.

[54] Organization for the Advancement of Structured Information Standards (OA-
SIS). Web Services Resource Lifetime 1.2 (WS-ResourceLifetime). http:

//docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceLifetime-1.

2-draft-03.pdf, 2004.

[55] Organization for the Advancement of Structured Information Standards (OA-
SIS). Web Services Base Notification 1.3 (WS-BaseNotification). http://docs.
oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf, 2006.
Visited: 2009-02-14.

[56] Organization for the Advancement of Structured Information Standards (OA-
SIS). Web Services Business Process Execution Language Version 2.0. http:

//docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html, 2006.

http://www.omg.org/mda/
http://www.omg.org/mda/
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/
http://www.omg.org/spec/UML/1.5/PDF/
http://www.uml.org/
http://www.uml.org/
http://www.omg.org/docs/formal/06-05-01.pdf
http://www.omg.org/docs/formal/06-05-01.pdf
http://www.omg.org/cgi-bin/apps/doc?formal/07-12-01.pdf
http://www.omg.org/cgi-bin/apps/doc?formal/07-12-01.pdf
http://www.ggf.org/documents/GFD.15.pdf
http://www.ggf.org/documents/GFD.15.pdf
http://www.ogf.org/documents/GFD.80.pdf
http://www.ogf.org/documents/GFD.80.pdf
http://www.oracle.com/technology/products/ias/bpel/index.html
http://www.oracle.com/technology/products/ias/bpel/index.html
http://www.oasis-open.org/committees/wss/
http://www.oasis-open.org/committees/wss/
http://docs.oasis-open.org/ws-caf/ws-context/v1.0/wsctx.html
http://docs.oasis-open.org/ws-caf/ws-context/v1.0/wsctx.html
http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceLifetime-1.2-draft-03.pdf
http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceLifetime-1.2-draft-03.pdf
http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceLifetime-1.2-draft-03.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

REFERENCES 83

[57] Organization for the Advancement of Structured Information Standards (OA-
SIS). Web Services Resource 1.2 (WS-Resource). http://docs.oasis-open.

org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf, 2006. Visited: 2008-07-27.

[58] Organization for the Advancement of Structured Information Standards (OA-
SIS). Web Services Resource Framework. http://www.oasis-open.org/

committees/wsrf, 2006. Visited: 2008-09-27.

[59] Organization for the Advancement of Structured Information Standards
(OASIS). Web Services Resource Properties 1.2 (WS-ResourceProperties).
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.

2-spec-os.pdf, 2006. Visited: 2008-07-27.

[60] Bart Orriëns, Jian Yang, and Mike P. Papazoglou. Service-Oriented Computing
- ICSOC 2003, volume 2910/2003, chapter Model Driven Service Composition,
pages 75–90. Springer Berlin / Heidelberg, 2003.

[61] Mike P. Papazoglou. Service-Oriented Computing: Concepts, Characteristics
and Directions. In WISE ’03: Proceedings of the Fourth International Conference
on Web Information Systems Engineering, page 3, Washington, DC, USA, 2003.
IEEE Computer Society.

[62] Savas Parastatidis and Jim Webber. CSP SSDL Protocol Frame-
work. http://www.ssdl.org/docs/v1.3/html/CSP%20SSDL%20Protocol%

20Framework%20v1.3.html, 2005.

[63] Savas Parastatidis and Jim Webber. MEP SSDL Protocol Frame-
work. http://www.ssdl.org/docs/v1.3/html/MEP%20SSDL%20Protocol%

20Framework%20v1.3.html, 2005.

[64] Savas Parastatidis and Jim Webber. Rules-based SSDL Protocol Frame-
work. http://www.ssdl.org/docs/v1.3/html/Rules%20SSDL%20Protocol%

20Framework%20v1.3.html, 2005.

[65] Savas Parastatidis and Jim Webber. The SOAP Service Description Language.
http://www.ssdl.org/docs/v1.3/html/SSDL%20v1.3.html, 2005.

[66] Savas Parastatidis, Simon Woodman, Jim Webber, Dean Kuo, and Paul Green-
field. Asynchronous Messaging between Web Services Using SSDL. IEEE Inter-
net Computing, 10(1):26–39, 2006.

[67] Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, University of
Bonn, Germany, 1962. (In German).

[68] Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubén Lara, Michael
Stollberg, Axel Polleres, Cristina Feier, Cristoph Bussler, and Dieter Fensel. Web
service modeling ontology. Appl. Ontol., 1(1):77–106, 2005.

http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://www.oasis-open.org/committees/wsrf
http://www.oasis-open.org/committees/wsrf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf
http://www.ssdl.org/docs/v1.3/html/CSP%20SSDL%20Protocol%20Framework%20v1.3.html
http://www.ssdl.org/docs/v1.3/html/CSP%20SSDL%20Protocol%20Framework%20v1.3.html
http://www.ssdl.org/docs/v1.3/html/MEP%20SSDL%20Protocol%20Framework%20v1.3.html
http://www.ssdl.org/docs/v1.3/html/MEP%20SSDL%20Protocol%20Framework%20v1.3.html
http://www.ssdl.org/docs/v1.3/html/Rules%20SSDL%20Protocol%20Framework%20v1.3.html
http://www.ssdl.org/docs/v1.3/html/Rules%20SSDL%20Protocol%20Framework%20v1.3.html
http://www.ssdl.org/docs/v1.3/html/SSDL%20v1.3.html

84 REFERENCES

[69] Tony Spiteri Staines. Intuitive Mapping of UML 2 Activity Diagrams into Fun-
damental Modeling Concept Petri Net Diagrams and Colored Petri Nets. In
ECBS ’08: Proceedings of the 15th Annual IEEE International Conference and
Workshop on the Engineering of Computer Based Systems, pages 191–200, Wash-
ington, DC, USA, 2008. IEEE Computer Society.

[70] Sun Microsystems Inc. Java SE Technologies - Database. http://java.sun.

com/javase/technologies/database/. Visited: 2009-02-15.

[71] Sun Microsystems Inc. JSR-000154 JavaTM Servlet 2.4 Specification. http:

//jcp.org/aboutJava/communityprocess/final/jsr154/. Visited: 2009-02-
14.

[72] Sun Microsystems Inc. What’s New in Java Servlet API 2.2? http://java.sun.

com/developer/technicalArticles/Servlets/servletapi/. Visited: 2009-
02-25.

[73] UDDI.org. UDDI Technical White Paper. http://www.uddi.org/pubs/Iru_

UDDI_Technical_White_Paper.pdf, 2000. Visited: 2008-07-31.

[74] World Wide Web Consortium (W3C). Extensible Markup Language (XML).
http://www.w3.org/XML/. Visited: 2009-01-21.

[75] World Wide Web Consortium (W3C). Web Service Choreography Interface
(WSCI) 1.0. http://www.w3.org/TR/wsci/. Visited: 2009-01-21.

[76] World Wide Web Consortium (W3C). Web Services Activity. http://www.w3.
org/2002/ws/. Visited: 2009-02-14.

[77] World Wide Web Consortium (W3C). XML Path Language (XPath). http:

//www.w3.org/TR/xpath/, 1999.

[78] World Wide Web Consortium (W3C). Simple Object Access Protocol (SOAP)
1.1. http://www.w3.org/TR/soap11/, 2000. Visited: 2009-02-14.

[79] World Wide Web Consortium (W3C). Web Services Architecture. http://www.
w3.org/TR/2002/WD-ws-arch-20021114/, 2002. Visited: 2009-02-17.

[80] World Wide Web Consortium (W3C). Web Services Conversation Language
(WSCL) 1.0. http://www.w3.org/TR/wscl10/, 2002. Visited: 2009-01-21.

[81] World Wide Web Consortium (W3C). WSDL, Web Service Description Lan-
guage. http://www.w3.org/TR/wsdl, 2002. Visited: 2008-10-21.

[82] World Wide Web Consortium (W3C). SOAP Version 1.2 Part0: Primer. http:
//www.w3.org/TR/soap12-part0/, 2003. Visited: 2008-09-24.

[83] World Wide Web Consortium (W3C). OWL Web Ontology Language. http:

//www.w3.org/TR/owl-features/, 2004. Visited: 2009-01-21.

http://java.sun.com/javase/technologies/database/
http://java.sun.com/javase/technologies/database/
http://jcp.org/aboutJava/communityprocess/final/jsr154/
http://jcp.org/aboutJava/communityprocess/final/jsr154/
http://java.sun.com/developer/technicalArticles/Servlets/servletapi/
http://java.sun.com/developer/technicalArticles/Servlets/servletapi/
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf
http://www.w3.org/XML/
http://www.w3.org/TR/wsci/
http://www.w3.org/2002/ws/
http://www.w3.org/2002/ws/
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/soap11/
http://www.w3.org/TR/2002/WD-ws-arch-20021114/
http://www.w3.org/TR/2002/WD-ws-arch-20021114/
http://www.w3.org/TR/wscl10/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/soap12-part0/
http://www.w3.org/TR/soap12-part0/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/

REFERENCES 85

[84] World Wide Web Consortium (W3C). Web Services Addressing (WS-
Addressing). http://www.w3.org/Submission/ws-addressing/, 2004. Visited:
2009-01-21.

[85] World Wide Web Consortium (W3C). WS-MessageDelivery Version 1.0. http:

//www.w3.org/Submission/ws-messagedelivery/, 2004. Visited: 2009-02-17.

[86] World Wide Web Consortium (W3C). XML Schema Part 1: Structures Second
Edition. http://www.w3.org/TR/xmlschema-1/, 2004. Visited: 2009-02-17.

[87] World Wide Web Consortium (W3C). XML Schema Part 2: Datatypes Second
Edition. http://www.w3.org/TR/xmlschema-2/, 2004. Visited: 2009-02-17.

[88] World Wide Web Consortium (W3C). Web Service Semantics - WSDL-S. http:
//www.w3.org/Submission/WSDL-S/, 2005. Visited: 2009-01-21.

[89] World Wide Web Consortium (W3C). Web Services Description Language
(WSDL) Version 2.0 Part 0: Primer - W3C Candidate Recommendation
27 March 2006. http://www.w3.org/TR/2006/CR-wsdl20-primer-20060327/,
2006.

[90] World Wide Web Consortium (W3C). Web Services Policy 1.2 - Framework (WS-
Policy). http://www.w3.org/Submission/WS-Policy/, 2006. Visited: 2009-02-
03.

[91] World Wide Web Consortium (W3C). Semantic Annotations for WSDL
and XML Schema. http://specs.xmlsoap.org/ws/2004/09/mex/

WS-MetadataExchange.pdf, August 2007.

[92] World Wide Web Consortium (W3C). SOAP Version 1.2 Part 1: Messaging
Framework (Second Edition). http://www.w3.org/TR/soap12/, 2007. Visited:
2009-02-14.

[93] World Wide Web Consortium (W3C). XQuery 1.0: An XML Query Language.
http://www.w3.org/TR/xquery/, 2007.

[94] Web service interoperability organization (WS-I). Basic Profile Version 1.2.
http://www.ws-i.org/Profiles/BasicProfile-1.2.html. Visited: 2007-08-
02.

[95] Simon Woodman, Savas Parastatidis, and Jim Webber. Sequencing Con-
straints SSDL Protocol Framework. http://www.ssdl.org/docs/v1.3/html/

SC%20SSDL%20Protocol%20Framework%20v1.3.html, 2005.

[96] World Wide Web Consortium (W3C). Web Services Choreography Descrip-
tion Language Version 1.0, W3C Working Draft. http://www.w3.org/TR/

ws-cdl-10, 2004. Visited: 2007-07-31.

[97] Uwe Zdun, Markus Voelter, and Michael Kircher. Pattern-Based Design of an
Asynchronous Invocation Framework for Web Services. International Journal of
Web Services Research, 1(3):42–62, 2004.

http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-messagedelivery/
http://www.w3.org/Submission/ws-messagedelivery/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/Submission/WSDL-S/
http://www.w3.org/Submission/WSDL-S/
http://www.w3.org/TR/2006/CR-wsdl20-primer-20060327/
http://www.w3.org/Submission/WS-Policy/
http://specs.xmlsoap.org/ws/2004/09/mex/WS-MetadataExchange.pdf
http://specs.xmlsoap.org/ws/2004/09/mex/WS-MetadataExchange.pdf
http://www.w3.org/TR/soap12/
http://www.w3.org/TR/xquery/
http://www.ws-i.org/Profiles/BasicProfile-1.2.html
http://www.ssdl.org/docs/v1.3/html/SC%20SSDL%20Protocol%20Framework%20v1.3.html
http://www.ssdl.org/docs/v1.3/html/SC%20SSDL%20Protocol%20Framework%20v1.3.html
http://www.w3.org/TR/ws-cdl-10
http://www.w3.org/TR/ws-cdl-10

86 REFERENCES

[98] Jia Zhang, Carl K. Chang, Jen-Yao Chung, and Seong W. Kim. WS-Net: a
Petri-net based specification model for Web services. In Proceedings of the IEEE
International Conference on Web Services (ICWS), 2004.

	Introduction
	Motivation
	Contribution
	Organization

	State of the Art Review
	Service Oriented Architecture
	Web Services
	Stateful Web Services and Service Resources
	Grid Computing and the Open Grid Services Infrastructure
	The Web Services Resource Framework
	Web Services Addressing

	Asynchronous Service Invocation
	SOAP Fault Handling
	Web Service Composition
	Service Composition in WS-BPEL
	Semantic Web Service Composition

	Model-Driven Architecture

	Related Work
	Web Services Conversation Language
	Web Service Choreography Interface
	WSDL 2.0 Message Exchange Patterns
	SOAP Service Description Language
	The Web Service Programming Language XL
	XLANG/s
	Dynamic Service Invocation with Daios
	Model-Based Service Development
	Petri Net-Based Web Service Composition

	Design
	Example Scenario
	SEPL - The Service Protocol Language
	SEPL Example Protocol
	SEPL Basics
	WSRF Specific Features
	Advanced Concepts

	Model-Driven SEPL Development
	SEPL-to-UML Mapping

	SEPL Protocol Host
	Generating Protocol WSDL Documents
	Dispatching Incoming Requests
	Execution of the Target Protocol Function

	Implementation
	SEPL Client Engine
	SEPL Code Generator
	SEPL Protocol Host
	Web Application Structure
	Configuration
	Parameters Types and Return Types

	Evaluation
	Development Efficiency
	Framework Performance
	SEPL Client Engine
	WSDL Generator

	Conclusion and Future Work
	Future Work

	List of Abbreviations
	SEPL Syntax Rules
	Usage of the SEPL Client
	SEPL Client Implementation

