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Kurzfassung

Diese Dissertation analysiert Zwei-Zustands-Modelle zur optimalen Kontrolle von
illegalem Drogenkonsum. Im Unterschied zu vielen bestehenden Modellen werden
Personen, die für Drogenkonsum empfänglich sind, in einem separaten Zustand
betrachtet. Die zweite Zustandsvariable gibt die Anzahl der Konsumenten an. Als
Kontrollinstrument wird sogenannte “harm reduction” modelliert.

Zunächst wird das Grundmodell beschrieben, bei dem es sich um ein nichtlin-
eares, autonomes Modell mit unendlichem Planungshorizont handelt. Der Einstieg
in den Drogenkonsum ist eine Funktion der beiden Zustände, wobei die Wahr-
scheinlichkeit, dass das zufällige Aufeinandertreffen von Drogenkonsumenten und
suszeptiblen Nicht-Konsumenten zu einem Neueinstieg führt, von der momenta-
nen Anzahl an Konsumenten abhängt. Einerseits wirkt sich die Kontrolle positiv
auf die im Zielfunktional akkumulierten sozialen Kosten aus, gleichzeitig bewirkt
sie aber einen erhöhten Drogeneinstieg. Das Modell wird für die Kokainepidemie
in den Vereinigten Staaten von Amerika und für “injecting drug users” in Aus-
tralien betrachtet. Für die Kontrollvariable gibt es Kontrollbeschränkungen. Die
komparative Analyse des deskriptiven Modells unter den Randkontrollen liefert
erste wichtige Erkenntnisse. Im nächsten Schritt wird die Lösung des optimalen
dynamischen Kontrollproblems ermittelt. Gleichgewichtslösungen mit Randkon-
trolle sind dabei von signifikanter Relevanz. “Harm reduction” soll in Australien
nahezu immer umgesetzt werden, hingegen ist der maximal mögliche Einsatz von
“harm reduction” in den U.S.A. nur in Phasen der Epidemie mit entweder sehr
wenigen oder sehr vielen Drogenkonsumenten optimal. In den Bereichen dazwis-
chen ist “pure use reduction” optimal.

Der zweite Teil der Dissertation präsentiert die optimalen Lösungen für einige Ab-
wandlungen des Basismodelles. Zunächst wird angenommen, dass die Kokainepi-
demie in den USA weniger ansteckend ist. In einer weiteren Modifikation wird
die Funktion für den Drogeneinsteig um sogenannte Innovatoren ergänzt. Die
dritte Abwandlung besteht darin, in der Zielfunktion die für die Kontrolle anfal-
lenden Kosten zu berücksichtigen. Sowohl für Australien als auch die USA wer-
den mehrere verschiedene Szenarien betrachtet und miteinander verglichen. Ab-
schließend wird die funktionale Form für den Drogeneinstieg verändert, allerdings
erscheint die benutzte logistische Funktion nur für Australien sinnvoll.

Das Pontryagin’sche Maximumprinzip ist das geeignete Verfahren aus der opti-
malen Kontrolltheorie, um die vorliegenden Modelle zu lösen. Hierbei treten in fast
allen Fällen Gleichgewichtspunkte mit Randkontrolle auf. In den Einzugsgebieten
der Gleichgewichte existieren sogenannte Indifferenz-Kurven oder DNSS-Kurven
(benannt nach Dechert, Nishimura, Sethi und Skiba). Entlang solcher Kurven
ist ein Entscheidungsträger indifferent zwischen zwei Pfaden, die auf verschiedene
Weise zu einem optimalen Gleichgewicht führen, beziehungsweise zwischen zwei
Pfaden, die zu unterschiedlichen optimalen Gleichgewichten führen.
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Abstract

This thesis investigates two-state optimal control models of illicit drug use. In
contrast to most existing models, we explicitly consider people who are susceptible
to drug use. This subpopulation of susceptibles is modeled as one state, with the
current users of the drug making up the second state. The single control instrument
is so-called “harm reduction”.

The first part of the thesis introduces the base model, which is non-linear, au-
tonomous, and of infinite time horizon. Initiation into drug use is driven by random
mixing of users and susceptible non-users. The probability of adoption depends
on the current size of the pool of users. Furthermore, harm reduction has the ben-
eficial effect of reducing social costs, while at the same time it increases initiation.
The model is parameterized both for the U.S. cocaine epidemic and for injecting
drug use in Australia. For the control variable, there are boundary constraints.
A static comparative analysis between control set equal to zero and control at its
upper bound is conducted to derive first important insights. Next, the optimal
dynamic control model is assessed. Boundary control solutions turn out to be of
significant relevance. Harm reduction should be applied almost always in Aus-
tralia, whereas for the U.S. cocaine epidemic it is optimal only at the very early
stages of the epidemic and at high levels of use. At intermediate levels of cocaine
use, the policy suggestion for the U.S. is not to apply harm reduction.

The second part of the thesis discusses various modifications of the model. First,
the case of a less intense infectivity of the U.S. cocaine epidemic is analyzed.
Second, innovators are introduced to the initiation function. Third, a linear cost
term that penalizes control spending is introduced in the objective function. For
both the U.S. and Australia, various scenarios are analyzed and compared with
each other. The last modification makes initiation a logistic function of prevalence
of injecting drug use in Australia.

The optimal control models are solved by applying Pontryagin’s Maximum Prin-
ciple. The optimal steady states are solutions with boundary control. In several
scenarios, indifference curves and DNSS curves (named after Dechert-Nishimura-
Sethi-Skiba) show up in the phase portrait. These curves consist of points in the
state space at which a decision maker is indifferent between two different paths that
lead to the same optimal steady state (indifference curve) or at which a decision
maker can choose between two optimal steady states (DNSS curve), respectively.
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Chapter 1

Introduction

Consumption of illicit unhealthy substances poses serious challenges for so-
cieties and decision makers all over the world. Policy makers are interested
in ameliorating problems that stem from drug use. Consequently, there is a
wide range of control interventions. Among the most traditional there are
prevention, treatment, and various forms of enforcement. In the past and
present, analysis of the optimal dynamic application of these interventions
has been subject of abundant work in the field of optimal dynamic control
of drug use (see e.g., Behrens et al., 2000; Tragler et al., 2001; Zeiler, 2007).
The vast majority of prior studies on optimal control of drug epidemics em-
phasizes on numbers of users. Some of the models recognize that drug users
progress through different levels of drug use. Amongst the models of drug
epidemics that provide pioneering results we find the famous two-state LH-
model (cf. Behrens et al., 1999; Knoll and Zuba, 2004). The L state models
“light users” who consume a certain drug, but are not yet dependent, whereas
the state variable H denotes “heavy users” who are dependent of the drug.
In Zeiler (2007), the situation of a decision maker facing two qualitatively
similar, interacting drug epidemics is modeled.

In marketing, the group of susceptible non-users plays an important role.
Bass (1969) introduced his classic model of product diffusion via consumer
contact. It posits that the rate of adoption by susceptible non-users is linearly
increasing in the number of current product users. The role of susceptibles as
potential users of a certain good is well known and recognized in marketing.
Drug models and marketing models have many parallels, because the spread
of drugs is a diffusion process. Nevertheless, only very few studies in the field
of drug control optimization pay attention to those susceptible to drug use
(an exception being provided by Almeder et al., 2001, 2004).
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Chapter 1. Introduction 7

Concerning the question how to fight a drug problem in a society, a heated
debate in drug policy has been going on for the last years. It concerns the
relative merits of “use reduction” versus “harm reduction”. Basically, the
term use reduction refers to the control of drug use per se, whereas harm
reduction focuses on the reduction of harms that arise due to drug consump-
tion, e.g., drug-related HIV/AIDS transmission, transmission of Hepatitis C,
health costs borne by drug users, or crime and violence. Complicating mat-
ters in the debate, when different people use the term “harm reduction” they
often mean different things. In the past, there has been another vigorous
and equally contentious debate between those placing primacy on “demand
reduction” and the proponents of “supply control”. Efficiency analyses (see
e.g., Winkler et al., 2004) and optimal control models (Behrens et al., 1999,
2000; Tragler et al., 2001) suggested a peaceful solution to the bitterly oppo-
nent sides. The optimal control solutions revealed that each kind of control
mechanism had a decisive role to play but the relative effectiveness varied
over the course of the drug epidemic. The excited discussion between harm
reduction and use reduction proponents makes it interesting to explore the
possibility of a similar resolution for this case.

The model assessed in this thesis is revolutionary in two respects. In-
spired by the discussion of harm reduction versus use reduction the control
instrument in our model is harm reduction. With respect to the states, the
model does no longer focus on numbers of users only, but also considers peo-
ple who are susceptible to drug consumption. The users of a particular drug
are lumped together into one state. It is the non-using remainder of the
population where the second state emerges from. The non-users are split up
into people who are not using that drug, but who are vulnerable to do so,
and a large remainder of non-using non-susceptible persons. Following the
concept of a drug epidemic with infectivity that may vary over the course of
the epidemic, the probability that the contact between users and susceptible
non-users leads to initiation depends on the number of current users.

The goal of this thesis is the analysis of the optimal dynamic application
of harm reduction interventions and use reduction measures over the course
of a drug epidemic, applying the tools of optimal control theory to a simple,
dynamic, two-state, one-control model of drug use. The classic interventions
of the use reduction framework (treatment, price-raising law enforcement,
and prevention) are not modeled explicitly, but nevertheless they are an
implicit part of the model, because parameterizations stem from data affected
by the classic drug control policies. Thus setting the harm reduction control
equal to zero represents the traditional policy of pure use reduction with
application of the classic controls.
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This thesis is structured as follows:

Chapter 2 presents the definition of harm reduction underlying the model.
Furthermore, the mathematical formulation of the model is presented, the
functional forms are specified, and the parameterization of the model for
the U.S. cocaine epidemic and Australia’s population of injecting drug users
(mostly abbreviated by IDU in what follows) is presented.

Before analyzing an optimal control model, it is often useful to examine
the behavior of the underlying uncontrolled (purely descriptive) model first.
Chapter 3 presents a more advanced static analysis. It contrasts results from
the system without control and with the maximum possible control. Results
suggest that full harm reduction may yield great benefits. Depending on the
drug, the country, and the stage of the epidemic, however, harm reduction
also bears risks. In particular, the simple static analysis suggests that harm
reduction may have always been advantageous for Australia’s IDU problem,
while for the cocaine epidemic in the U.S. it can be highly disadvantageous.

The optimal dynamic control version of the model under the base case
parameterizations is presented in Chapter 4. In the base case, the optimal
long-run steady states always have boundary control values. Trajectories
leading to those steady states will typically involve several switches between
boundary and interior control. The results obtained provide interesting inter-
pretations for policy makers. Even for U.S. cocaine, where harm reduction
is so bitterly assailed and demonized, harm reduction turns out to play a
potentially helpful role.

Chapter 5 is devoted to the important issues of sensitivity and bifurcation
analyses.

Some variations of the model are presented in Chapter 6. First, the case
of increased infectivity of the U.S. cocaine epidemic is analyzed. Second,
innovators are introduced to the initiation function. Third, a linear cost
term is added to the objective function in order to penalize control spending.
Various scenarios are analyzed and compared with each other for both the
U.S. and Australia. The last variation modifies the initiation function and
uses a logistic approach to model the feedback of current use.

The Appendix presents some technicalities of the model. Most results
cannot be computed analytically. Therefore numerical methods have to be
employed to obtain the solutions of the system. Information on the software
used is given in Appendix A.4.



Chapter 2

The Model

2.1 Literature Review on Harm Reduction

MacCoun (1998) briefly introduces the issue of harm reduction with the fol-
lowing lines: “During the 1980s, a grassroots movement called harm reduc-
tion emerged in Amsterdam, Rotterdam, and Liverpool [. . . ]. The movement
gradually spread to many other European cities, eventually influencing the
policies of several nations [. . . ]. Harm reduction is not yet a well-developed
approach. Rather, it is a set of programs that share certain public health
goals and assumptions. Central among them is the belief that it is possi-
ble to modify the behavior of drug users, and the conditions in which they
use, in order to reduce many of the most serious risks that drugs pose to
public health and safety. Examples of specific harm reduction interventions
for drug use include needle and syringe exchange, low-threshold methadone
maintenance, “safe use” educational campaigns, and the use of treatment as
an alternative to incarceration for convicted drug offenders.”

Australia is a country that has a long history of harm reduction inter-
ventions and thus represents a concrete example. Monograph Nr. 6 (Ritter
& Cameron, 2005) by Australia’s Drug Policy Modelling Program (DPMP)
sheds light on their understanding of the term harm reduction: “Harm re-
duction was defined as policies and interventions that focus on reducing the
harms associated with drug use, not the amount of drugs used. The following
interventions were reviewed: needle syringe programs; supervised injecting
facilities; non-injecting routes of administration; outreach; HIV education
and information and HIV testing and counselling; brief interventions (aimed
at harm reduction); overdose prevention interventions and legal and regula-
tory frameworks.” Furthermore, the authors explain: “The definition chosen

9



Chapter 2. The Model 10

for this review was programs or policies that aimed to reduce harm but not
reduce drug use per se; and do not have as a primary mechanism of ac-
tion, the reduction of drug use. By way of example, needle syringe programs
(NSP) are included because the goal of NSP is to reduce the harm associated
with injecting. Methadone maintenance has been excluded from the review
because the primary mechanism by which it achieves reductions in harm is
through reductions in use. With outreach, or brief interventions, the focus is
on interventions that reduce the risk of harm associated with injecting (over-
dose, blood borne viruses [BBV]) rather than interventions for reduction of
drug use itself.”

From the fact that MacCoun includes methadone maintenance treatment,
whereas Ritter & Cameron exclude such interventions, we infer that depend-
ing on the particular background and specific attitudes different people may
have different perceptions of harm reduction.

An example where harm reduction’s definition and the outlook on future
harm reduction interventions are targeted to specific needs of a certain region
and its prevalent problems is Azim et al. (2005). They report on the effective-
ness of harm reduction programs for IDUs in Dhaka city and describe “The
services provided include needle/syringe exchange in the field, DIC based
clinical services for the management of abscesses and sexually transmitted
infections (STIs), drug detoxification camps, condom distribution, education
and awareness on the harmful effects of drugs, safe injections, HIV/AIDS,
STIs, other blood borne infections.” This sounds similar to the Australian
understanding, but the results of the study suggest riskier sexual behavior
in IDUs who are involved in commercial sex, which seems less of a problem
in Australia. Further, there are neighborhood differences. Thus, the article
concludes that “the harm reduction programme has to develop a more com-
prehensive response” and that “consideration of structural interventions may
be necessary if an HIV epidemic is to be averted.”

The third interesting example out of the literature review is the harm
reduction approach by the Chicago Recovery Alliance (CRA). Information
on this program was retrieved online only. Their Harm Reduction Protocol
(Scavuzzo (editor), 1996) sheds light on very important points and states
the vitally important fact that harm reduction is different from classic drug
control approaches in the U.S. Indeed, harm reduction rather stands for
a change of the attitude towards drug use taking into account the most
individual needs of drug users. Their definition is: “Harm Reduction is
anything that reduces the risk of injury whether or not the individual is
able to abstain from the risky behavior. Inherently, it is a staged form of
behavioral change, which is consistent with all the prevalent models of sexual
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and drug use behavior change and all the models of behavior change in these
areas that have been shown to have some benefit.”

Pointing out to the ongoing contentious discussion between proponents
of use reduction and harm reduction advocates, it is outlined, that the first
priority of harm reduction is a decrease in the negative consequences of drug
use. But by contrast, North America’s drug policy has traditionally focused
on the reduction of the prevalence of use. Harm reduction establishes a hi-
erarchy of goals. Amongst those, the more immediate and realistic ones are
chosen to be achieved as first steps toward risk-free use or, if appropriate,
abstinence. Needle exchange is mentioned as a form of harm reduction di-
rected to the enormous risks injecting drug users face, primarily stemming
from the sharing of needles. A crucial point is that needle exchange programs
recognize that many IDUs are unable or unwilling to stop injecting, and that
the goal of interventions must be reducing the risk of an HIV infection. The
strategy is based on knowledge and means approach to change in behavior.
The individuals are provided with information about the changes that are
needed. Moreover, they are also provided with the means to make these
changes. In the case of IDU, those means are sterile needles, syringes, other
instruments for administering drugs, and condoms.

Furthermore, the issue of respect and trust is addressed. The Harm
Reduction Protocol states that the essence of harm reduction is providing
education in a respectful, non-judgemental and clearly understandable way.
In a simple definition, harm reduction can be understood as “any positive
change”, which is eponymous for the entire CRA initiative. Positive change
is relative to the individual, which is subject to a myriad of circumstances,
and therefore needs to be determined by the individual. The CRA’s Harm
Reduction Advocates work with the individual to determine what changes
are desired and to figure out goals and changes that are indeed realistic. As
may be expected, the Advocates state that this task is usually an ambitious
one. The Advocates report that individuals often arrive with arguments
like “I want to stop shooting”, “I plan quitting” or “I am interested in a
methadone program”, when in reality they are seeking clean needles or other
sterile equipment. Their experience is that getting beyond this stage is crit-
ical. There are no requirements for participation in harm reduction and
related activities. Individuals are informed that they can choose the avenues
for change, when and if they want to. This is a form of self-empowerment al-
lowing users to make the choice(s) in how they want to design their personal
harm reduction efforts. This approach often creates a trusting, respectful
relationship that allows for a positive harm reduction interaction. Beyond
this, once IDUs understand how the concept of harm reduction works, they



Chapter 2. The Model 12

will usually try to find out what other services are available.

Harm reduction tactics designed by the CRA are clearly focused on users.
A harm reduction approach that also takes into account harms felt by non-
users is prevalent in Canada. The Canadian government launched Canada’s
first National Drug Strategy (CDS) to address substance abuse problems.
The strategy has four pillars providing a balance of measures to reduce the
demand for and supply of illicit substances. One of them is harm reduction
(Health Canada, 2003). According to Riley (1993), the CDS defined harm
as “sickness, death, social misery, crime, violence and economic cost to all
levels of government.” The description is very general, but crime and violence
usually account for harms that are felt by the community of non-users, which
makes it quite different from the definitions we retrieved before.

Those extracts from literature show that definitions (which types of in-
terventions are classified as reducing harm) and focuses (users vs. non-users)
vary and that IDU populations and more generally drug users can have very
specific problems, needs or behaviors. In the next sections the understanding
of harm reduction underlying the current work is explained and the role of
harm reduction in the model is discussed.

2.2 Harm Reduction versus Use Reduction

For the current model a definition of harm reduction has to be specified. Mac-
Coun (1998) gives a definition of harm reduction that is essentially equal to
minimization of social costs. He describes this as “macro harm reduction”,
which has to be distinguished from “micro harm reduction” standing for min-
imization of how harmful drugs are. The distinction between the aggregate
level and the per-unit-level is captured by the simple equation

Total Harm = Total Use · Average Harm Per Unit of Use. (2.1)

In the terminology of MacCoun macro harm reduction means the reduction
of total harm. Looking at equation (2.1) a reduction of total harm can
be achieved by either reducing the factor Total Use or by reduction of the
Average Harm Per Unit of Use. The first mechanism reflects the idea of
pure use reduction, where total harm is reduced by cutting down total use.
Thereby, harmfulness is viewed as something that cannot change. Moreover,
opponents of harm reduction measures worry that such interventions might
induce higher levels of use. Thus, they shy away from such programs. Critics
of use reduction usually bring in the counter-argument that it is not possible
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to completely suppress drug use in a free society. Furthermore, they criticize
that efforts to suppress use usually displace it into even more harmful forms.
The classic example in that context is that prohibition of syringe possession
leads injecting drug users to share and reuse their syringes, which increases
the risk of infections and exacerbates the spread of blood borne diseases,
notably HIV/AIDS and Hepatitis C. Harm reduction proponents suggest,
e.g., that use can be made safer by providing supervised injection facilities
(SIFs) where overdoses can be quickly detected and treated. They don’t
believe that harm reduction might induce more young people to try drugs,
increase drug use in general, or literally “send the wrong message”.

Minimization of total harm is indeed the objective in our model. When
speaking about harm reduction in the sense of the control variable v(t) of
our model the reduction of the average harmfulness of a drug per unit of use
is addressed.

Focusing on the question whose harms should get counted, there is again
considerable discrepancy between harm reduction proponents and use reduc-
tion advocates. Many harm reduction advocates focus on harms felt and
suffered by users exclusively, with special attention paid to the risk of over-
doses and blood borne diseases like HIV/AIDS. Use reduction proponents
rather tend to consider the harms felt by the non-using community, notably
drug-related crime and violence.

It is not surprising that the U.S. differ from Australia and some European
countries regarding their harm and use reduction objectives. Social costs and
public concern about illicit drugs in the U.S. are dominated by crime and
violence. The considerable share of two thirds of social costs stems from a
single drug: cocaine (including crack). Cocaine is usually not injected in the
U.S. In most other developed countries, violence is much less of a concern and
the drug that dominates use is heroin, which is usually injected (UNODC,
2005). Injecting drug users face a high risk of infections when reusing or
sharing their devices for administration, in the worst case they are infected
with blood borne diseases. Coutinho (1998) reports on HIV and Hepatitis
C among injecting drug users and concludes that “the low incidence (and
prevalence) of HIV among injecting drug users in Australia may be ascribed
to that country’s public health approach, with wide implementation of pre-
ventive measures including needle and syringe programmes.” Furthermore,
heroin has a particularly high risk of overdose because of its low “safety ra-
tio”. Gable (2004) computed the “safety ratio” for several substances by
comparing its reported acute lethal dose with the usual recreational dose.
One of the key findings of the study is that “intravenous heroin appeared
to have the greatest direct physiological toxicity”. This implies that for the
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U.S., where the most problematic drug is not administered by injection, harm
reduction might probably play a less important role.

2.3 Risk Compensation

Considering equation (2.1) and assuming that harm reduction has no effect on
levels of use, it is trivial to conclude that reducing harmfulness would reduce
total harm. The crucial point is, that there is evidence for the possibility that
people tend to participate more frequently in a risky activity if that activity is
made safer. MacCoun (1998) discusses psychological and empirical evidence
for the possibility of so-called “risk compensation” in various domains. He
cites examples from literature that document that car drivers have responded
to seat belts and other safety improvements in cars by driving more recklessly
and faster, and that low-tar tobacco reduces the harmfulness per unit of
tobacco, but yet numerous studies demonstrated that smokers compensate
by smoking more cigarettes, inhaling more deeply, or blocking the filter vents.

Measures like improvements in car safety or low-tar tobacco aim at re-
duction of adverse consequences of certain behaviors. Nevertheless, increased
participation may offset the per-unit reduction and lead to increases of harm-
fulness at the macro level. Another example for an idea that intends a bene-
ficial effect, but in reality does not lead to a reduction of harms, are so-called
difficult-to-reuse syringes. Sharing of syringes by injection drug users is a
principal means by which HIV is spread. Some have suggested that dis-
tributing syringes that are difficult to reuse (DTR) would slow the spread of
HIV. Caulkins et al. (1998) developed a simple mathematical model which
describes how changes in the numbers of DTR syringes or regular syringes
consumed over the course of a fixed number of injections affect the propor-
tion of injections that are potentially infectious and, thus, the transmission
of HIV. The authors find that increasing the number of either type of sy-
ringe will reduce the number of potentially infectious injections, but that,
per syringe added, the reduction is always greater if a regular rather than a
DTR syringe is added. Similarly, introduction of a certain number of DTR
syringes and simultaneous reduction of regular syringes by the same number
will increase, not decrease, the proportion of infectious injections. Given the
fact that DTR syringes are more expensive than regular syringes, the au-
thors conclude that there is little justification for substituting DTR syringes
by regular syringes.

The term “moral hazard” describes a phenomenon similar to risk compen-
sation. Moral hazard describes the possibility that an individual insulated
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from certain risks may behave differently from the way he or she would be-
have if fully exposed to that risk. When a person (or institution) does not
bear the full consequences of his/her actions, and therefore develops a ten-
dency to act less carefully than it would otherwise, and thereby a third party
is left to bear the responsibility for the consequences of the behavior, moral
hazard occurs. As an example, one can imagine a person with insurance
against automobile theft. The negative consequences of automobile theft are
(partially) borne by the insurance company, consequently the person may
care less about locking his/her car.

The essence of the discussion of risk compensation, moral hazard, and
DTR syringes is that measures that aim at benefits need not necessarily
be beneficial. From the principle that making an activity safer generally
increases participation in that activity we can conclude ambiguous effects of
harm reduction on total harm. Imagine harm reduction is done, meaning
harm per unit of consumption is cut down. Via a risk compensation effect,
total use increases due to pushed initiation and/or because current users
increase their units of consumption. If the increase in use was high enough,
total harm could go up even if the harmfulness per unit went down. However,
MacCoun’s conclusion on the topic’s treatise is that there is “little evidence
that behavioral responses produce net increases in harm [. . . ]. Instead, most
studies find that when programs reduce the probability of harm given unsafe
conduct, any increases in the probability of that conduct are slight, reducing,
but not eliminating the gains in safety [. . . ]. As a result, in our terms, micro
harm reduction produces macro harm reduction.”

Risk compensation is considered in the current model by assuming that
application of harm reduction measures reduces the risk of drug consumption
and thus induces more people to try drugs. Consistent with MacCoun’s
concluding finding, the direct adverse effect of harm reduction is always less
than the benefit resulting from reduced harm per unit of use. What remains
to be explored is whether and how non-linear feedback effects in the dynamics
of drug users affect total harm.

2.4 State Dynamics

In Wallner (2005), the so-called “SA model of Harm Reduction” inspired by
Caulkins (2005) was stated in a general form. The analysis there is limited
to a simple one-state model, and only basic features are explored. In this
thesis, a more sophisticated analysis is conducted. The two states tracked
over time are the number of users of a particular drug and people who are
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not consuming that drug, but who are susceptible to start doing so. They
are captured by the state variables A(t) and S(t), respectively.

The flows in the system are schematically described in the flow diagram
in Figure 2.1.

constant inflow

k
S A

constant maturing out
δ

constant quitting rate
µ

initiation

non-linear feedback, bf(A)

Figure 2.1: Flow diagram of the modeled system

2.4.1 Drug Users

The analysis in this thesis is twofold in the sense that the model is run with
parameterizations stemming from two different countries. In particular, the
drug use states A(t) we deal with are cocaine users in the U.S. and injecting
drug users in Australia. Within the use state, we do not take into account
frequency of use, quantity consumed or degree of addiction.

Users can quit consumption. Reasons for such an exit may be death, ceas-
ing use due to successful participation in a treatment program or desistance
motivated by economic or other reasons. The model does not distinguish the
particular reasons why people quit, they are all lumped together. This single
outflow from the pool of users is modeled via a constant per capita rate, µ.
Note that the fraction 1

µ
gives the average length of a career of drug use.
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2.4.2 The Susceptible Individuals

The pool of susceptibles, S(t), is fed by a constant inflow, k. This simple
approach can be corroborated by the fact that most people who start using
drugs are teenagers or young adults. Hence, people that reach the age when
susceptibility to drug use starts can be seen as the inflow to the group of
susceptibles. To be concrete, this inflow could be made up by all young
people turning age 12.

After some ten or twenty years, people reach ages when they will no
longer be vulnerable to drug use. This “maturing out” is governed by the
constant per capita outflow rate δ. The outflow rate is roughly equal to one
over the usual dwell time in the pool of people who are likely to consider
starting drug consumption. Above we alluded to a duration of susceptibility
between ten and twenty years, thus we expect δ to be in the range between
0.05 and 0.1.

2.4.3 Initiation

The link between the two states is initiation into drug use. It is a flow
from the pool of susceptibles S(t) to drug use A(t) modeled by the so-called
initiation function. The general initiation function reads

I(A(t), S(t), v(t)) =
(

τ + b f
(
A(t)

))

S(t) g
(
v(t)

)
. (2.2)

Interaction between non-users S(t) and users A(t) leads to new infections over
the course of the drug epidemic. A certain proportion of susceptibles S(t) is
“recruited” per unit time. That proportion is influenced by the current size
of the community of users, which is modeled by the function f

(
A(t)

)
. The

dependence on A(t) is grounded on the perception of “drug epidemics”. Of
course, there is no pathogen that spreads drug use similar to the way that a
pathogen spread the flu, malaria or HIV. However, Noymer (2001) finds that
drug use is contagious in the same way fashions, laughter and even rumors
can be. Indeed, almost everyone who engages in illicit drug consumption is
introduced by a friend, sibling or acquaintance who is already using. The
story of drug dealers seducing unsuspecting, naive persons is no more than
a myth. What happens with drug use is no general spread in the sense of
diffusion, but a process grounded on social interaction between current users
and current non-users. One concrete approach for such an epidemic concept
is the functional form f

(
A(t)

)
= A(t)α chosen for the base case model. A

so-called logistic approach is briefly discussed later on in this section, and a
concrete example is investigated in the last section of Chapter 6.
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Consistent with the idea of risk compensation discussed in section 2.3, the
function g

(
v(t)

)
models effects of harm reduction v(t) on initiation. Section

2.5.2 is devoted to the detailed discussion of this important function g
(
v(t)

)
.

With respect to the reasons why susceptible non-users S(t) start to con-
sume drugs, the initiation function distinguishes two groups of people. The
vast majority of new users enter the drug use state due to the contagious
spread done by current users. In the jargon of product diffusion models, the
term b f

(
A(t)

)
gives the share of susceptibles that start a career of drug use

as so-called imitators. The parameter b is a proportionality constant that
links the units of the number of users modified by the power function to the
probability that the contact between a user and a susceptible non-user leads
to an “infection”. The smaller share of new users, τS(t), is called innovators,
because they are not recruited via such social interaction effects. They start
to use drugs due to intrinsic interest. The parameter τ is the coefficient of
innovation.

A basic assumption on initiation is that it is increasing in the number
of users. The most unpretentious functions that fit that need are power
functions f

(
A(t)

)
= A(t)α with α > 0. This leads to the formulation of the

initiation function

I(A(t), S(t), v(t)) =
(
τ + bA(t)α

)
S(t) g

(
v(t)

)
, (2.3)

that is underlying the lion’s share of the investigations in this thesis. De-
pending on the exponent α, the initiation function will be concave (α < 1)
or convex (α > 1) in the number of users. This suits our needs in drug
epidemics with respect to the following two concepts of feedback effects from
current users to initiation.

An individual who is offered an illicit drug for the first time might be
less likely to accept the offer if he or she does not know much about the
drug and/or if only a small, maybe even highly atypical population uses the
drug. The person may be more likely to accept the offer knowing that some
of his/her friends are already using it, and even more likely to engage in
consumption of a drug that almost all of his/her peers use. Hence, we might
expect convexity with respect to A(t) at least for some illicit drugs.

Another concept of a drug epidemic observes the so-called Musto effect.
Most of the severe adverse consequences of drug use do not manifest when
there are only some users. They turn out later in the epidemic, when some
people have used the drug for an extended period and when use is relatively
widespread (Musto, 1987). People who have progressed to dependent use and
people who manifest destructive consequences of drug use act as a brake on
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A(Ā − A)

ĀĀ
2

A

Figure 2.2: Logistic function f(A) = A (Ā − A)

initiation. The virulence of the epidemic then develops less than proportional
to the number of users. The idea of saturation takes the same line, but works
as an entirely separate argument. When use is relatively widespread, non-
users are offered the drug in multiple occasions, and people who did not
accept earlier offers will most probably also reject future offers. This means
that at the later stages of the epidemic, an increase in users A(t) leads to
a less than proportionate increase in initiation. Thus, an initiation function
concave in A(t) may be appropriate to model the spread of certain drugs.

Please note that initiation functions with power functions A(t)α and
functions increasing in A(t) are not the single possibility to model initi-
ation. One could assume that manifestation of negative consequences of
drug use does not only slow down contagion, but that initiation declines
in the number of users when use is high. Then, a logistic approach with
f
(
A(t)

)
= A(t)

(
Ā − A(t)

)
is appropriate. With this function, a logistic

initiation function could read

Ilog(A(t), S(t), v(t)) =
(
τ + bA(t) (Ā − A(t))

)
S(t) g

(
v(t)

)
. (2.4)

Ā denotes the carrying capacity of the model. The number of users can-
not grow beyond that critical value, because then initiation is negative. As
sketched in Figure 2.2, the number of infections is increasing in A(t) as long
as A(t) < Ā

2
. But for use growing beyond A(t) = Ā

2
, the contagious effect

decreases.
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Aiming at construction of a realistic model the feasible domains of the
initiation functions have to be determined. Initiation is the flow from the pool
of susceptibles to the drug use state, negative numbers of initiates are not
sensible. Negative numbers of drug users A(t) and/or susceptibles S(t) do not
occur, hence we only have to concentrate on the first quadrant of the (A,S)-
plane, i.e. we have to check if I(A(t), S(t), v(t)) ≥ 0 for A(t) ≥ 0, S(t) ≥ 0 and
the actual parameters. Areas where initiation is negative have to be excluded
from the feasible domain. For the functional form I(A(t), S(t), v(t)) =

(
τ +

bA(t)α
)
S(t)g

(
v(t)

)
with parameters τ ≥ 0 and b > 0, non-negativity in the

first quadrant is assured. For the logistic initiation function introduced in
equation (2.4) the feasible domain is restricted to A(t) ≤ Ā.

This thesis elaborates on the spread of a “bad” fashion, of a substance
that triggers harms and social costs to society. In marketing, many product
diffusion models have been explored. These models focus on the adoption of a
consumer good, whose consumption is usually beneficial to the buyer and/or
decision maker, by people who are not yet buying that product. In the
original model by Bass (1969), the number of new adoptions is given by the
stock of current users A(t), multiplied with the non-using remainder of the
population, 1−A(t), and a proportionality constant b. It gives the probability
that the random mixing between users and non-users leads to an adoption.
Hence, the number of new adoptions is

(
τ+bA(t)

) (
1−A(t)

)
. Notable among

the extensions of the Bass model are the non-uniform influence models by
Easingwood et al. (1983). These models allow for a nonlinear effect from
current buyers on the non-buying population, which modifies the adoption
term to

(
τ + bA(t)δ

)(
1 − A(t)

)
. The current model tracks two separate

states, the number of drug users, A(t), and those who are susceptible to
start consuming that drug, S(t). To the best of my knowledge, the present
model is the first time that an adoption decision is described as the result of
random interaction between users A(t) and susceptible non-users S(t) with
nonlinear feedback from the pool of current users.

Note that the states A(t) and S(t) are given in numbers of millions
throughout the whole thesis.

To conclude this section, we summarize the above discussed flows and
write down the system dynamics in general form, in which the time argument
of the states and the control variable is omitted:

Ȧ = I(A, S, v) − µ A (2.5)

Ṡ = k − δ S − I(A, S, v). (2.6)
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2.5 The Control Variable

The control variable harm reduction is denoted as v(t). It represents the
reduction in the harmfulness of drug use at time t in terms of a number
between 0 and 1. Beyond the natural upper bound of v(t) ≤ 1 we can expect
that there will exist limits to what extent the harmfulness of a drug can be
reduced.

In this thesis the control variable v(t) focuses on harms felt by the users,
whereas we assume that harms felt by the non-users are not affected or wiped
out by those harm reduction measures targeted on the users. Consequently,
there exists an upper boundary control condition demanding v(t) ≤ vmax < 1,
whereas the lower boundary control condition is given by the non-negativity
condition v(t) ≥ 0.

The notion of harm reducion v(t) in the current model and the parame-
terization of vmax are based on Cost of Illness (COI) studies (see Caulkins et
al., in submission). The costs listed there are used as a proxy for social costs
that stem from drug abuse and are borne by society in general, i.e. those
harms and social costs entailed by illicit drug consumption are diluted over
users and non-users. We assume that the health-related costs listed in COI
studies are borne by the users, whereas the remaining components of COI
studies (e.g. also crime costs) are borne by third parties.

As mentioned above, the harm reduction control variable v(t) in the cur-
rent model focuses only on the harms felt by the users, and we assume that
those costs can be wiped out. Hence, vmax denotes the share of costs that is
felt by the users. As derived in Caulkins et al. (in submission), the propor-
tion of COI study costs that is health-related gives this upper bound vmax

for the harm reduction control variable v(t). Please note that given this def-
inition of harm reduction, the specific value of vmax will vary depending on
the particular drug and the country.

Reducing harms felt by drug users has a beneficial effect on the objective
function in the model. Nevertheless, the model also considers fears that
harm reduction might trigger behavioral responses. The opponent effects in
the objective function and the dynamics are explained in the following two
subsections.
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2.5.1 Objective Function: The Benefit Attributable to

Harm Reduction

The objective is to minimize total discounted drug-related social costs over
the planning horizon. Social costs are the product of

• the baseline social costs when there is no harm reduction, which is
normalized to κ = 1 without loss of generality,

• the number of drug users, A(t), and

• 1−v(t), the proportion of total social costs that is not averted via harm
reduction policies.

Additionally one might want to consider

• costs for the control v(t), captured by a cost function c(v(t)).

Most of the optimal control models with classic controls consider control costs
in the objective function. Budget spending for law enforcement, treatment,
or prevention is given in U.S. dollars or some other currency, but always
synchronized to the occurring social costs terms. Harm reduction is mod-
eled as a percentage, not as a monetary budget. Thus, we cannot simply
add the term v(t) in order to penalize spending on harm reduction. An ap-
propriate cost function c(v(t)) has to be considered. There is evidence that
c(v(t)) = 0 might be most appropriate. In countries like Australia or the
Netherlands, where harm reduction is the centerpiece of national drug con-
trol strategies, harm reduction programs actually receive very modest levels
of funding (Moore, 2005; Rigter, 2006). More generally, one should think of
harm reduction as a kind of policy that integrates a new attitude to existing
drug control strategies, and not consider it as a program with a budget. A
simple example is a jurisdiction that pursues a harm reduction strategy and
tells police not to arrest people for possessing a syringe. Such measures are
easy to implement and essentially do not cost much money. This is the mo-
tivation why in the base case parameterization, the cost function c(v(t)) is
omitted. Later on in this thesis, when variations of the model are assessed,
a linear function c · v(t) is investigated.

Putting the above items together, we formulate the objective functional
in generalized form

min
0≤v≤vmax

{

J =

∫ ∞

0

e−rt
(

A(t)
(
1 − v(t)

)
+ c
(
v(t)

))

dt

}

. (2.7)
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In the best case of application of full harm reduction, where all harms felt by
the users are wiped out, the share vmax of total harm is reduced, but there
is still the remainder (1 − vmax) that is felt by the non-using community.

Please note that the objective functional’s value can be interpreted equally
as aggregated harms or aggregated costs. The background of COI studies
for the parameterization makes the two terms “harms” and “social costs”
essentially equal.

2.5.2 The Negative Effect of Harm Reduction: Initia-

tion Increases

As discussed in sections 2.2 and 2.3 harm reduction can have adverse effects
on total use. Risk compensation due to harm reduction is a controversial
issue. There are claims and fears that harm reduction might lead to adverse
behavioral reactions, but no one knows for sure if this downside really exists.
To the best of my knowledge, no one has ever tried before to find a function
to model such effects. The present model does not consider the possibility of
an increase in the quantity consumed by current users, it limits the adverse
effect of harm reduction to an increase in initiation. That increase is modeled
by the function g

(
v(t)

)
which multiplies the baseline (i.e. when there is no

harm reduction) initiation term.

The properties of the function g
(
v(t)

)
are:

• When harm reduction is not applied, i.e. for v(t) = 0, there is no
increase beyond the baseline initiation:

g(0) = 1. (2.8)

• For any positive amount of harm reduction that is done, there is an
increase in initiation, if only slightly. More mathematically stated,

g
(
v(t)

)
> 1 for v(t) > 0. (2.9)

• The negative effect in initiation is higher, when more harm reduction
is done. This means, that the function g(v(t)) is increasing in its argu-
ment v(t):

g′(v(t)) > 0 for v(t) > 0. (2.10)
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• The direct percentage change in initiation into drug use is always less
than the percentage change in harms felt by the user. In mathematical
terms this can be expressed as

g
(
v(t)

)
− 1 ≤ v(t) for 0 ≤ v(t) ≤ vmax. (2.11)

The functional form of g
(
v(t)

)
follows a simple approach. We first assume

that changes in the non-monetary costs of drug use (e.g. health risks) induce
the same changes in the consumption decision of a user as changes in the
monetary costs (money spent for purchase of drugs) of drug use do. This
is particularly convenient because there is a growing empirical literature on
drug price elasticities that deals with how responsive drug use is to changes
in drug price (e.g. Grossman, 2004; Dave, 2004, 2008).

Several cost terms occurred in the preceding text: social costs, monetary
and non-monetary costs of drug use. It is important not to mix them up.
In particular, the personal, non-monetary costs of drug use are distinct from
the social costs of drug use in two ways.

First, some of the costs included in social costs are externalities from a
user’s point of view. The most notable share among those is costs that are
imposed on third parties, stemming from drug-related crime and violence.
These costs can make up a considerable share of the overall social costs (e.g.
in the case of the U.S. cocaine epidemic). Of course, a decision maker should
be interested in implementation of strategies to reduce them. An example for
such interventions is to push drug markets away from street corners, where
dealing takes place under rather violent conditions, into more covert and less
destructive forms. But such policies do not activate the risk of a behavioral
response that increases participation in drug use. And the costs are not
only borne by the users, but also by third parties. Thus, as important such
policies may be, they are orthogonal to the current model. As outlined in
section 2.5.1, the model takes costs listed in COI studies as a proxy for social
costs. It assumes that the health-related costs documented in those studies
are borne by the users (i.e. those costs are the personal, non-monetary costs
of use), and that the other components of the costs listed there are seen as
externality from the point of view of the users.

Second, even a fraction of the health-related costs may be an externality
to the users. For example, when a user overdoses, one can distinguish costs
that are borne by the user (e.g. reduced income when work time is lost
because of morbidity and/or increased mortality) and other costs that are
not (e.g. emergency care provided at no charge or medical treatment covered
by state administered health services like Medicaid in the U.S.). Thus, we
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assume that drug users do not fully factor the health-related costs into their
consumption decision.

In the function g
(
v(t)

)
the parameters cm and cs denote the monetary

and social costs of drug consumption, respectively. The parameter ω denotes
the proportion of health-related non-monetary costs of drug consumption
the users factor into their consumption decisions. In the absence of empirical
evidence, we set this value equal to ω = 0.5. Then, the cost recognized by
the user when no harm reduction is done is given by cm + ωcsvmax. When
harm reduction is done to some extent v(t) ∈ (0, vmax], the costs felt by the
user are reduced to cm + ωcs

(
vmax − v(t)

)
. A constant elasticity of demand

model suggests the functional form

g
(
v(t)

)
=

(
cm + ωcs

(
vmax − v(t)

)

cm + ωcsvmax

)η

, (2.12)

with η being the elasticity of participation in drug use with respect to cost
of drug consumption.

It is noteworthy that we only need to synchronize the units of price cm and
other costs cs with each other, but not with the objective function coefficient
κ normalized to 1. This is because in the function g

(
v(t)

)
, the units in the

numerator and the denominator cancel out.

There is a certain subtlety about the elasticity η when we want to utilize
the above mentioned price elasticities. Grossman (2004), Dave (2004, 2008)
and others empirically estimated the elasticity of participation with respect
to price (which is captured by cm in the model). We have to find a link
between elasticity with respect to cost and with respect to price. Therefore
we interpret the function g as a function of cm and let the constant c0 denote
the baseline value of costs felt by the user. This yields

g(cm) =

(
cm + ωcs(vmax − v)

c0

)η

.

Per definition the empirically measured price elasticity γ is

γ =
dg(cm)

g(cm)

cm

dcm

= η

(
cm + ωcs(vmax − v)

c0

)η−1
1

c0

cm

(
cm + ωcs(vmax − v)

c0

)−η

=
ηcm

cm + ωcs(vmax − v)
.
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This formula helps to derive an expression for the elasticity with respect to
cost, η, given the elasticity with respect to price, γ, namely

η =
cm + ωcs(vmax − v)

cm

γ.

2.6 Parameter Values

The derivation of the base case parameter values summarized in Table 2.1 is
presented in detail in Caulkins et al. (in submission). For the sake of con-
ciseness of this thesis, the detailed re-exposition of the parameter derivation
is avoided.

Remember that the states tracked in the current model are drug users,
A, and a pool of susceptible non-users, S. The Australian parameterization
with respect to states is based on a Multiple State Markov Chain Model
(Caulkins et al., 2007). The drug of major interest in the U.S. is cocaine,
and our A state is derived from the LH Markov Chain Model in Caulkins et
al. (2004). Based on those sources, the reader should associate the state A

with injecting drug users (mostly heroin) for the results derived for Australia.
For the U.S., the state A shall be thought of as cocaine users, independent
on the frequency of use or whether the user is dependent on the drug or
not. The pool of susceptible non-users S is best imagined as adolescents and
young adults that are vulnerable to try that drug.

Please note that the data underlying the parameterization of the dynam-
ics of users A and susceptible persons S is given in years.

When looking at the results presented in the following sections, please
keep in mind that the parameter estimates are by no means precise since
the data may not be perfectly accurate due to the illicit nature of the drug
industry.

We assume τ ≥ 0 with the special case of τ = 0 in the base case com-
putations, b > 0 for the initiation proportionality constant, and α > 0 for
the initiation function exponent. For the parameters of the function g

(
v(t)

)
,

social costs cs and monetary costs cm are assumed to be non-negative, the
factor ω can vary in the interval [0, 1], the elasticity η of drug participation
with respect to cost is negative. The parameter k is assumed to be non-
negative, whereas for the rates µ and δ we assume that they are positive.
Positivity is also demanded for the discount rate r.

In the objective functional J in equation (2.7), r > 0 is the time discount
rate. It is assumed to be constant over the whole planning horizon. If the
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Parameter Symbol Australian IDU U.S. Cocaine

Inflow into S-state k 0.0526 1.3417
Maturing out from S-state δ 0.0952 0.0605
Coefficient of innovation τ 0 0
Proportionality constant b 0.5112 0.0090
Exponent in initiation function α 0.8622 1.5604
Exit rate from A-state µ 0.1136 0.1661
Social costs of use cs $ 39,255/yr $ 223.56/g
Monetary costs of use cm $ 13,537/yr $ 106.54/g
Health costs factor in g(v) ω 0.5 0.5
Upper bound for control v vmax 0.53 0.17408
Price elasticity of participation γ -0.21 -0.45
Cost elasticity of participation η -0.371 -0.532
Annual discount rate r 0.04 0.04

Table 2.1: Parameter values for the base case model for IDU in Australia
and cocaine consumption in the U.S.

decision maker is interested in what happens in the future, r will be small,
i.e. close to zero, and the decision maker is said to be “farsighted”. A
“myopic” planner, who does not care much about the future development,
is characterized by large values of r. We model a farsighted decision maker,
discounting at 4% per year, i.e. r = 0.04.

Regarding the planning horizon, one could argue that for drug problems,
policy programs will change when a new election period begins, and that
thus a finite time horizon T would be more appropriate than the infinite
time horizon we use in the objective functional (2.7). Nevertheless, we follow
the spirit of Arrow & Kurz (1970, p. xvii), who justify consideration of
an infinite time horizon in the following way: “The infinite horizon is an
idealization of the fundamental point that the consequences of investment
are very long-lived; any short horizon requires some methods of evaluating
end-of-period capital stocks, and the only proper evaluation is their value in
use in the subsequent future.”

Examining the values estimated for the proportion of social costs that can
be averted in the best case, in the model’s notation concisely captured by
the variable vmax, we find that the upper bound for the control v(t) is much
larger in Australia (53%) than in the U.S. (17%). This perfectly reflects
the fact that much of the social costs attributable to heroin consumption
in Australia are health-related and stem from problems for which effective
harm reduction tactics exist (e.g. preventing overdose and the spread of blood
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Figure 2.3: Functions f(A) = Aα for the U.S. parameter α = 1.5604 in gray
and for the Australian parameter α = 0.8622 in black

borne infections), whereas the lion’s share of social costs stemming from
cocaine abuse in the U.S. is not health-related, but associated with crime
and violence.

The discussion of the epidemic concept that underlies the initiation mech-
anism in section 2.4.3 presents the idea of concave and convex dependence
of initiation on the number of current users. In the base case initiation func-
tion I(A(t), S(t), v(t)) from equation (2.3) the distinction is governed by the
exponent α. The parameterizations presented above indeed yield a convex
function with α = 1.5604 > 1 for the U.S. cocaine epidemic and a con-
cave function with α = 0.8622 < 1 for Australia’s IDU population. Figure
2.3 shows the corresponding curves f

(
A(t)

)
= A(t)α for the U.S. cocaine

epidemic in gray and for Australian IDUs in black.

Structurally the parameter α is the most interesting and important pa-
rameter of the initiation function. For the U.S. cocaine epidemic we find
α > 1, thus initiation is convex with respect to the number of users. Convex-
ity implies the possibility that multiple stable equilibria emerge, with their
basins of attraction separated by a curve of tipping points. In contrast, for
Australia’s injection drug use, where the parameter estimate is α < 1, we
expect to encounter only one stable steady state. The fact of existence of tip-
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Figure 2.4: Functions g(v) for the U.S. cocaine epidemic (gray) and Aus-
tralian IDU (black)

ping points in the model for the U.S. and the absence of such a phenomenon
for the Australian parameterization suggests that in the U.S., harm reduc-
tion has greater potential to trigger catastrophic consequences in trajectories
of use.

It is easy to see that the function g
(
v(t)

)
presented in equation (2.12)

fulfills that g(0) = 1, which is the property demanded by equation (2.8).
Figure 2.4 shows the function g

(
v(t)

)
parameterized for Australian IDU and

the U.S. cocaine epidemic. The plot shows the entire curves, but due to the
control constraint 0 ≤ v(t) ≤ vmax the relevant part is limited to this inter-
val. To emphasize this limitation, the graph is plotted bold on the relevant
interval. The black curve is for Australian IDU, where the upper bound for
control interventions is quite high, vmax = 0.53. The maximum reduction of
53% of social cost that wipes out all the harms felt by the users yields an
adverse effect of an increase of less than 24% in initiation. In the U.S. (gray
curve), the maximum reduction of social costs is more modest, about 17%.
The negative behavioral response is less than 9% increased initiation. Figure
2.4 shows that the fully parameterized function g

(
v(t)

)
for either case indeed

has the properties (2.9) - (2.11).

Note that with the parameters presented in Table 2.1 for both U.S. co-
caine use and Australian IDU the function g

(
v(t)

)
is convex, though only

modestly. Convexity is a property that meets the following considerations
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about how a rational drug control planner would align harm reduction in-
terventions. Among the various programs that rank among harm reduction
policies a smart policy maker would figure out which program generated the
least impact on initiation per unit reduction in harm and implement that
program first. Then the policy maker would determine the next program,
the one with the second lowest impact on initiation, and implement it, and so
on. Thus, the different programs are implemented from the least problematic
ones to those that have more adverse effects on use. Consequently, one can
presume that g

(
v(t)

)
is convex.

Additionally, the only modest convexity points to the fact that a linear
approximation of the function g

(
v(t)

)
may be suitable for some applications.

We deal with nonlinear dynamic systems and do not focus on models that
are linear with respect to control. Such models have so-called bang-bang
solutions. This means that for a certain time, the optimal strategy is to
choose control at either the lower or the upper bound, but then a point t = θ

in time is reached, where it is optimal to switch to the other extreme of
the control domain and stay there until the end time T is reached. Modest
convexity of g

(
v(t)

)
opens the possibility that the optimal control results

involve boundary solutions with respect to control, meaning that for certain
intervals of time t, v∗(t) = 0 or v∗(t) = vmax is the optimal policy.



Chapter 3

Base Case Models with Static

Control

For the ease of exposition and if there is no ambiguity, the time argument t

is mostly omitted in what follows. Furthermore, the denominations equilib-
rium, steady state, fixed point or critical state/point are used synonymously.

The ultimate aim of our investigations is to solve optimal control problems
based on a two-dimensional system

Ȧ = I(A, S, v) − µA, A(0) = A0,

Ṡ = k − δS − I(A, S, v), S(0) = S0.
(3.1)

Before analyzing an optimal control model, the uncontrolled (purely de-
scriptive) model is often assessed as a benchmark case. Here the uncontrolled
model is assessed, i.e. the model with v(t) = 0 for all t, and additionally the
system is run with control v set to v(t) = vmax for all t. We assume that im-
plementation of harm reduction is a one-time, irrevocable decision. The focus
is not yet put on choosing the best control value v(t) over time for a partic-
ular set of initial conditions (A(0), S(0)), but on comparing the performance
of pure use reduction (denoted as v ≡ 0) vs. full harm reduction (labeled
v ≡ vmax) for various initial conditions. The simple comparative study con-
ducted for the two-dimensional system using the base case initiation function
I(A, S, v) = bAα S g(v), which only takes into account imitators, given by

Ȧ = bAα S g(v) − µA, A(0) = A0,

Ṡ = k − δS − bAα S g(v), S(0) = S0,
(3.2)

yields constitutional results and is an important and fruitful point of depar-
ture for the optimally controlled versions of the model, which are presented in
Chapter 4 for the base case and in Chapter 6 for some interesting variations.

31
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Please note that the states A and S are denoted in millions, only some-
times numbers like A = 0.3 are reported as 300,000 users.

3.1 General Remarks

Some analysis can be done easily before the parameters values specific for a
particular drug and country are substituted into the model.

To determine the steady states (Â, Ŝ) of the generalized system (3.1),
the equations for Ȧ and Ṡ are set equal to zero and this system is solved
simultaneously. Except for special cases of α that do not occur in the present
parameterizations, the solution cannot be computed analytically. Still, we
can directly derive some insights. Summing up the equations Ȧ = 0 and
Ṡ = 0, the terms including the initiation function I(A, S, v) cancel out, which
yields that in steady state there holds k− δ Ŝ−µ Â = 0. Solving for Ŝ yields
that the steady states of the system satisfy

Ŝ =
k − µÂ

δ
. (3.3)

This is a downward sloping line between (A, S) = (0, k
δ
) and (A, S) = ( k

µ
, 0)

and is not dependent on the harm reduction control variable v. So, no mat-
ter if control is applied or not, the steady states of the system are located
according to this linear relation. Consequently, the highest possible value of
susceptibles in steady state is Ŝmax = k

δ
, whereas the highest possible steady

state number Â for the users is located at Âmax = k
µ
.

In the base case model with dynamics (3.2), all trajectories starting in
the positive quadrant never leave it. The A-axis acts as a repeller, because

lim
S→0

Ṡ = lim
S→0

(
k − δS − bAαSg(v)

)
= k > 0.

The S-axis (i.e. A = 0) is a natural delimiter of the system, because there
the dynamics of users comes to rest for any α > 0:

Ȧ|A=0 =
(
bAαSg(v) − µA

)
|A=0 = 0.
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3.2 Australia: Isoclines, Steady States and

Phase Portraits

We start with the static investigation of the model for the Australian pa-
rameters. The uncontrolled model is analyzed first, i.e. v ≡ 0. Please note
that when control is set equal to zero for all time, the function g(v) takes the
value g(v) = g(0) = 1 as demanded in equation (2.8).

In order to locate the equilibria of the two-dimensional system (3.2), the
equations Ȧ|v≡0 = 0 and Ṡ|v≡0 = 0 have to be solved simultaneously, which
is done numerically. The locus where the dynamics of a state comes to rest is
called isocline. For example, all points in the (A, S)-plane, where Ȧ|v≡0 = 0
holds, are conditions for which the number of users does not change over
time when harm reduction is never applied. In a steady state (Âv≡0, Ŝv≡0)
of the uncontrolled system, neither A nor S changes over time, thus the
intersections of the isoclines Ȧ|v≡0 = 0 and Ṡ|v≡0 = 0 provide the system’s
steady states. In the case of the Australian parameterization two equilibria
are computed which are located at

(
Â1

v≡0

Ŝ1
v≡0

)

=

(
0

0.552521

)

,

(
Â2

v≡0

Ŝ2
v≡0

)

=

(
0.304916

0.188672

)

.

In Figure 3.1 the isocline Ṡ|v≡0 = 0 given by S = k
δ+bAα is depicted as

a gray dashed curve. The isocline Ȧ|v≡0 = 0 has two branches. For A = 0
there holds Ȧ|v≡0 = 0, independent from the actual number of susceptibles
S. So the axis A = 0 is a branch of the isocline. For any value A > 0 a
unique value for S can be determined, where the dynamics with respect to A

comes to rest. This function S = µA

bAα gives the second branch of the isocline

Ȧ|v≡0 = 0. In Figure 3.1 it is shown as a solid gray curve. The steady state
(Â2

v≡0, Ŝ
2
v≡0) located at the intersection of the isoclines in the interior of the

first quadrant is depicted as a black dot.

In order to analyze the computed steady states with respect to their
qualitative properties graphically, the phase diagrams in the neighborhood of
the equilibria are constructed. The little arrows give the direction of evolution
of the dynamics of users and susceptibles over time. It can easily be detected
in Figure 3.1 that the steady state (Â2

v≡0, Ŝ
2
v≡0) is a stable focus. The no-

use steady state (Â1
v≡0, Ŝ

1
v≡0) can only be achieved for initial conditions with

A(0) = 0. This represents the case that the epidemic never starts, which is
of no interest here. The steady state is a saddle point.

The stability properties can also be shown analytically by investigation
of the Eigenvalues of the Jacobian Matrix evaluated at the critical point or
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Figure 3.1: Phase portrait for the Australian base case parameter set with
static control v ≡ 0

by calculating the trace and the determinant of the Jacobian Matrix, re-
spectively. The theoretical background on the determination of the stability
properties of steady states of two-dimensional systems is presented in Ap-
pendix A.1. The mathematically more proper, non-graphic stability analysis
for the above presented equilibria is conducted in section 3.3.

For the model with static control at the upper bound, v ≡ vmax, the
phase portrait is qualitatively equivalent to the one described above. The
intersections of the isoclines Ṡ|v≡vmax

= 0 and Ȧ|v≡vmax
= 0 are located at

(
Â1

v≡vmax

Ŝ1
v≡vmax

)

=

(
0

0.552521

)

,

(
Â2

v≡vmax

Ŝ2
v≡vmax

)

=

(
0.333455

0.154617

)

,

where the first one is a saddle point which is only achieved when one moves
along the S-axis. The second one is a stable focus.

Figure 3.2 depicts the isocline Ṡ|v≡vmax
= 0 for the system (3.2) with

static control v ≡ vmax as a black dashed curve. The black solid curve is the
interior (i.e. A > 0) branch of the isocline Ȧ|v≡vmax

= 0. At their intersection,
the steady state (Â2

v≡vmax
, Ŝ2

v≡vmax
) is depicted as a black dot. Furthermore,

the arrows trace the vector field of the system dynamics under static control
v ≡ vmax. The isoclines of the uncontrolled system are shown in gray. The
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Figure 3.2: Phase portrait for the Australian base case parameter set with
static control v ≡ vmax

line Ŝ = k−µÂ

δ
given by equation (3.3) is depicted in black. In section 3.1

this line was identified as the characteristic line along which the steady states
of the system are located. It is clearly visible that the computed equilibria
indeed lie on the downward sloping line. Intuitively, one assumes that when
full harm reduction is done and if it triggers an increase in initiation, the
pool of users is larger throughout the epidemic and hence is also larger in
equilibrium, whereas there are less susceptibles in steady state, because more
individuals out of the S-state are recruited to drug use. Figure 3.2 provides
the graphical confirmation of this intuition, because the full harm reduction
steady state (Â2

v≡vmax
, Ŝ2

v≡vmax
) is located to the right and below the steady

state (Â2
v≡0, Ŝ

2
v≡0) of the system without harm reduction.

3.3 Local Stability Behavior of the System

Around Steady States, Australia

In order to investigate the local stability behavior of the system, we derive the
Jacobian Matrix of the two-dimensional base case system of state dynamics.
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For general v it is of the form

J =

(
b α Aα−1 S g(v) − µ bAα g(v)
−b α Aα−1 S g(v) −δ − bAα g(v)

)

.

Evaluated at the equilibrium (Â2
v≡0, Ŝ

2
v≡0) we get

J =

(
−0.0156541 0.183591
−0.0979459 −0.278791

)

,

which has the conjugate complex Eigenvalues

e1,2 = −0.147222 ± 0.0259179 i.

According to Appendix A.1 this indicates that the fixed point (Â2
v≡0, Ŝ

2
v≡0)

is a stable focus. Equivalently, we find ∆ = 0.0223462 for the determinant of
the Jacobian Matrix and τ = −0.294445 for its trace, which yields τ 2−4∆ =
−0.00268696 < 0. This also identifies the steady state as a stable focus.

For the no-use steady state (Â1
v≡0, Ŝ

1
v≡0) the analysis is less straightfor-

ward. In the Australian parameter set, the exponent α is α = 0.8622 < 1.
The Jacobian Matrix involves the term Aα−1, which has a pole at A = 0. We
cannot calculate the Jacobian Matrix and determine its Eigenvalues, but we
can look at the expressions for its trace τ and the determinant ∆:

τ = b α Aα−1 S − µ − δ − bAα

∆ = −b α δ Aα−1 S + b µ Aα + δ µ.

The parameters µ, δ and the value of the product δµ are fixed and indepen-
dent of A. For S we substitute Ŝ = k

δ
+ dA, with d ∈ R. For 0 < α < 1,

the terms including Aα tend to zero for A → 0 (those including d converge
independently from this constant), while the terms with Aα−1 diverge. This
leads to

lim
A→0

τ = lim
A→0

b α
k

δ
Aα−1 = +∞

lim
A→0

∆ = lim
A→0

−b α k Aα−1 = −∞.

The determinant is negative, hence the fixed point without users is a saddle
point.

Substituting v ≡ vmax into the Jacobian Matrix, at (Â2
v≡vmax

, Ŝ2
v≡vmax

) we
evaluate

J =

(
−0.0156541 0.244995
−0.0979459 −0.340195

)

.
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The Eigenvalues are real and negative

e1 = −0.226251, e2 = −0.129598.

For the trace and the determinant of the Jacobian Matrix we get

τ = −0.355849, ∆ = 0.0293217, with τ 2 − 4∆ = 0.00934172 > 0,

consequently the fixed point (Â2
v≡vmax

, Ŝ2
v≡vmax

) satisfies the properties of a
stable node.

Analogously to the above investigation for the case v ≡ 0 it can be shown
that the no-use equilibrium (Â1

v≡vmax
, Ŝ1

v≡vmax
) is a saddle point.

3.4 U.S. Cocaine: Isoclines, Steady States

and Phase Portraits

The exponent α > 1 in the initiation function raises the possibility of multiple
stable equilibria. Such multiplicity often generates “tipping points” in mod-
els. From the mathematical point of view this is caused by the occurrence of
saddle points. The importance of this will be explained below.

Concerning drug use, there is the following interpretation of tipping
points. When the number of persons engaging in the drug market (be it
using or selling) is of modest size, the drug does not spread for different rea-
sons. First, if little is known about a drug or its consumption is associated
with small, atypical populations, people are less likely to accept offers to
consume. Second, if the market is still small in the sense that there are only
a few sellers and a few drug consumers, they may have a hard time to lo-
cate each other. This keeps the market from spreading. A third argument is
that in a “thin” market, a modest level of enforcement considerably increases
the risk of getting caught for each of the few participants in the market (cf.
Kleiman, 1993). The other extreme is widespread use of the drug. When use
is so common that non-using persons receive a multitude of offers, they are
more likely to try the drug that most of their friends consume. Furthermore,
if there are many users, the corresponding demand is accommodated by a
considerable number of sellers. The tipping point is the hairline case between
those extreme stages. It identifies the critical market size which determines
the borderline between drug use being limited to a modest number of users
and widespread drug consumption.

If a drug epidemic is near such a tipping point, small changes may have a
potential to tip trajectories of prevalence away from convergence to modest
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levels to convergence to high-use levels. Effects of very modest changes can
be large in terms of numbers of drug users, long-lasting in terms of time
and may impose high social costs. Thus, a decision maker should act with
caution if he knows the drug epidemic he or she is confronted with might
have such tipping points.

Multiple stable equilibria separated by tipping points indeed occur in the
model of the U.S. cocaine epidemic.

Solving the system (Ṡ|v≡0 = 0, Ȧ|v≡0 = 0) for the base case dynamics
(3.2) and the U.S. parameterization gives three steady states located at
(

Â1
v≡0

Ŝ1
v≡0

)

=

(
0

22.1769

)

,

(
Â2

v≡0

Ŝ2
v≡0

)

=

(
0.8867

19.7426

)

,

(
Â3

v≡0

Ŝ3
v≡0

)

=

(
5.4888

7.1076

)

.

For the Australian parameter set, the no-use steady state could only
be achieved if the epidemic never started. In the U.S. case, the parameter
α = 1.5604 > 1 induces a structural change. The no-use steady state plays a
more important role, because there are initial conditions with A(0) > 0 for
which the system will converge to the no-use steady state (Â1

v≡0, Ŝ
1
v≡0). In

Figure 3.3 the two branches of the isocline Ȧ|v≡0 = 0 are depicted in gray
(solid). The dashed gray curve represents the locus where Ṡ|v≡0 = 0. The
three fixed points are located at their intersections, and are depicted as black
dots in Figure 3.3.

In order to analyze the qualitative properties of the steady states graph-
ically, the phase portrait of the system was constructed in a neighborhood
of the fixed points. The little arrows in Figure 3.3 represent the vector field.
Aiming for better visualization of the dynamics some trajectories are de-
picted as black curves. If we encounter the system in a state in the region
under the dashed isocline Ṡ|v≡0 = 0, the number of susceptibles S increases.
Located above this dashed curve, S decreases. For initial conditions below
and to the left of the inner branch of the isocline Ȧ|v≡0 = 0 which is the gray
solid curve, the number of users decreases, whereas above this gray curve use
spreads.

The no-use steady state (Â1
v≡0, Ŝ

1
v≡0) and the fixed point (Â3

v≡0, Ŝ
3
v≡0)

with a high number of users are stable. The no-use equilibrium is a node,
and the high-use steady state is a focus. This can be directly conducted by
interpretation of the phase portrait and can also be shown by investigation
of the Eigenvalues of the Jacobian Matrix of the system at the steady states.
The following section 3.5 is devoted to this analysis.

The intermediate-use steady state (Â2
v≡0, Ŝ

2
v≡0) is a saddle point. Only

paths starting on its stable manifold end up in the saddle point. Such initial
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v≡0, Ŝ
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Figure 3.3: Phase portrait for the U.S. base case parameter set with static
control v ≡ 0

conditions are a hairline case in the (A, S)-plane. The light gray curve in
Figure 3.3 depicts the stable manifold of the intermediate-use steady state
(Â2

v≡0, Ŝ
2
v≡0). It divides the first quadrant of the (A, S)-plane into two non-

overlapping regions. Paths that emanate on the left of the curve converge to
the no-use steady state. For any initial value to the right of the curve, the
system dynamics approach the high-use steady state, possibly overshooting
the steady state value of users considerably. The stable manifold of the
saddle point separates the basins of attraction of the stable steady states.
This property justifies calling the stable manifold a “separatrix”.

In general, in purely descriptive analyses of dynamical systems, saddle
points are quite unimportant because the probability to reach the saddle
point is equal to zero. Notwithstanding, the saddle points or more concretely
speaking their stable manifolds and the regions between and around them
play a crucial role in the comparison of the two static control settings v ≡ 0
and v ≡ vmax in sections 3.6 and 3.7.

In the investigation of steady states of the statically controlled system
(3.2), the case v ≡ vmax for the U.S. parameterization is still missing. The
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steady states of the system (Ȧ|v≡vmax
= 0, Ṡ|v≡vmax

= 0) are located at

(
Â1

v≡vmax

Ŝ1
v≡vmax

)

=

(
0

22.177

)

,

(
Â2

v≡vmax

Ŝ2
v≡vmax

)

=

(
0.727

20.181

)

,

(
Â3

v≡vmax

Ŝ3
v≡vmax

)

=

(
5.777

6.317

)

.

In analogy to the previously investigated case, from the left to the right
we encounter a stable node, a saddle point and a stable focus. The phase
portrait is qualitatively equivalent to the one for v ≡ 0 shown in Figure 3.3,
hence the exposition is omitted.

3.5 Local Stability Behavior of the System

Around Steady States, United States

The Jacobian Matrix at the high-use equilibrium (Â3
v≡0, Ŝ

3
v≡0) in the pure

use reduction scenario is

J =

(
0.0930824 0.128269
−0.259182 −0.188769

)

.

The Eigenvalues are conjugate complex with negative real parts

e1,2 = −0.0478434 ± 0.115694 i.

For the determinant and the trace of the Jacobian Matrix evaluated at the
equilibrium we find ∆ = 0.015674, τ = −0.0956868 and the relation τ 2 −
4∆ = −0.0535402 < 0. Thus, the steady state (Â3

v≡0, Ŝ
3
v≡0) is classified as a

stable focus.

Next, the intermediate-use steady state (Â2
v≡0, Ŝ

2
v≡0) is investigated. The

Jacobian Matrix evaluated there is

J =

(
0.0930824 0.00745974
−0.259182 −0.0679597

)

with determinant ∆ = −0.00439243 and trace τ = 0.0251227. The negative
determinant immediately indicates that the fixed point is a saddle point.
Indeed, we evaluate Eigenvalues

e1 = 0.0800166, e2 = −0.0548939,

which are both real and have opposite sign.
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For the no-use steady state (Â1
v≡0, Ŝ

1
v≡0), in the Jacobian Matrix

J =

(
b α Aα−1 S g(v) − µ bAα g(v)
−b α Aα−1 S g(v) −δ − bAα g(v)

)

the terms with Aα and Aα−1 both tend to zero for A → 0, because in the
U.S. case there holds α > 1. So, the Jacobian Matrix is reduced to

J =

(
−µ 0
0 −δ

)

=

(
−0.1661 0

0 −0.0605

)

,

which has the Eigenvalues

e1 = −µ = −0.1661, e2 = −δ = −0.0605.

The Eigenvalues are real and have negative signs, consequently the no-use
steady state (Â1

v≡0, Ŝ
1
v≡0) is a stable node.

Finally, we investigate the local stability behavior of the steady states
when v ≡ vmax. The Jacobian Matrix evaluated at the high-use steady state
(Â3

v≡vmax
, Ŝ3

v≡vmax
) is

J =

(
0.0930824 0.151889
0.259182 −0.212389

)

.

Its determinant is ∆ = 0.0195972, the trace is computed as τ = −0.119306.
The positive determinant indicates that the critical point is either a focus
or a node, the negative τ classifies the fixed point to be stable. For the
distinction between focus and node, one evaluates τ 2−4∆ = −0.064155 < 0.
Consequently, the high-use steady state is a focus. The Eigenvalues of J are
indeed conjugate complex with negative real part

e1,2 = −0.0596532 ± 0.126644 i.

The Jacobian Matrix evaluated at the fixed point with intermediate use,
(Â2

v≡vmax
, Ŝ2

v≡vmax
), is

J =

(
0.0930824 0.00598441
−0.259182 −0.0664844

)

with ∆ = −0.00463748, τ = 0.026598, and Eigenvalues

e1 = 0.0826845, e2 = −0.0560864.

Consequently, the fixed point (Â2
v≡vmax

, Ŝ2
v≡vmax

) is a saddle point.
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Analogously to the case with v ≡ 0, the Jacobian Matrix evaluated at
the no-use steady state (Â1

v≡vmax
, Ŝ1

v≡vmax
) is reduced to

J =

(
−µ 0
0 −δ

)

=

(
−0.1661 0

0 −0.0605

)

.

Hence, one concludes directly that it has the local stability properties of a
stable node.

3.6 Comparative Analysis of the System with

Static Control

This section contrasts the evolution of the states and the resulting value
of the objective functional under the pure use reduction regime v ≡ 0 and
under the full harm reduction regime v ≡ vmax, i.e. under the static settings
as explained at the beginning of Chapter 3.

3.6.1 Tipping Point Curves for the U.S. Cocaine Epi-

demic

We first conduct some investigations for the U.S. cocaine epidemic. Figure
3.4 depicts the inner branch of the isocline Ȧ|v≡0 = 0 in the system without
harm reduction in gray and dashed, the gray solid curve represents the locus
where Ṡ|v≡0 = 0. In black we find the isoclines of the system with full harm

reduction. The thin black downward sloping line is the line Ŝ = k−µÂ

δ
from

equation (3.3), along which any equilibrium of the system is located. When
harm reduction is pursued with full force the inner branch of the isocline
Ȧ = 0 is pulled closer to the origin (switch from the gray to the black solid
curve), and the isocline Ṡ = 0 moves closer down to the A-axis (switch from
the gray dashed to the black dashed curve). This means that application
of full harm reduction pulls the high-use steady state to the lower right,
increasing the equilibrium number of users and inducing less susceptibles in
steady state. Switching from v ≡ 0 to v ≡ vmax, the intermediate-use steady

state is shifted to the upper left along the line Ŝ = k−µÂ

δ
. The high-use and

intermediate-use steady state (Â3
v≡0, Ŝ

3
v≡0) and (Â2

v≡0, Ŝ
2
v≡0), respectively, are

depicted as gray dots in Figure 3.4. The analogous fixed points of the system
under static control v ≡ vmax are shown as black dots. The no-use steady
state is not affected by a switch in static control. Hence, at (A, S) = (0, k

δ
)
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Figure 3.4: Comparison of isoclines, steady states and separatrices in the
U.S. base case parameter set with static control v ≡ vmax and v ≡ 0

we encounter a circle representing both (Â1
v≡0, Ŝ

1
v≡0) and (Â1

v≡vmax
, Ŝ1

v≡vmax
).

In the previous section 3.5 we identified the intermediate-use steady states
as saddle points. Now we look at their stable manifolds and the effect of a
shift of policy emphasis.

The stable manifold of the intermediate-use steady state (Â2
v≡0, Ŝ

2
v≡0) is

the light gray bold curve in Figure 3.4. The stable manifold of the saddle
point (Â2

v≡vmax
, Ŝ2

v≡vmax
) is the black bold curve. As mentioned in section

3.5, the probability that the initial condition is located exactly on the stable
manifold is zero. Nevertheless, those curves play an important role because
they act as frontiers between the basins of attraction of the stable equilibria
in the system. We assume that the initial condition is located somewhere
between the black and the gray manifold. If the policy maker in his one-time
irrevocable decision chooses the no harm reduction regime v ≡ 0, the initial
condition lies on the left hand side of the gray manifold (separatrix in the
system with v ≡ 0). Hence, the epidemic converges to the no-use steady
state (Â1

v≡0, Ŝ
1
v≡0). The drug epidemic will die out, which is most desirable.

If the decision maker decides for the full harm reduction strategy, the initial
condition is located to the right of the system’s separatrix (black bold line).
Consequently, the corresponding trajectory will lead to the high-use steady
state (Â3

v≡vmax
, Ŝ3

v≡vmax
) with almost six million drug users in equilibrium.
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In order to exemplify the extreme difference in evolution of the epidemic
graphically, the initial condition (A(0), S(0)) = (0.85, 19.843) located in the
region between the separatrices is chosen. Figure 3.5 outlines the appalling
contrast between convergence to a steady state with zero users when v ≡ 0
is chosen, and approaching the catastrophic high-use steady state under v ≡
vmax. The stable manifold of the saddle point in the uncontrolled system
is again shown in gray, the stable manifold of the intermediate-use steady
state in the system with full harm reduction in black. The short gray curve
emanating from the above mentioned initial condition is the path for v ≡ 0.
It approaches the no-use steady state with zero users Â1

v≡0 = 0 and Ŝ1
v≡0 =

22.177 million susceptible individuals. This fixed point is shown as a gray dot
in Figure 3.5. The black curve shows how the system evolves under the static
control v ≡ vmax. The curve eventually curls into the high-use steady state
with Â3

v≡vmax
= 5.777 million users and Ŝ3

v≡vmax
= 6.317 million susceptibles,

which is depicted as a black dot. The gray dot close to the black high-use
steady state is the high-use equilibrium (Â3

v≡0, Ŝ
3
v≡0).

The difference in the development of the numbers of users and susceptibles
under the distinct policies v ≡ 0 and v ≡ vmax could hardly be more striking.
When harm reduction is never applied, the number of users decreases and
the pool of susceptibles grows towards the final steady state number. Very
different to this, when harm reduction is always pursued to the full extent,
the pool of susceptibles is exploited first. At the same time, use grows and
overshoots the equilibrium value considerably. Only later on, use starts to
ebb down a bit, but finally the transient curls into a high-use steady state.
High numbers of users might induce high costs. Intuitively, one expects that
the objective functional’s value for the black trajectory will be larger than
the amount of social costs and harm imposed on society along the short gray
segment.

3.6.2 First Insights Into Effects of Full Harm Reduc-

tion

The following analyses shed light on the question for which initial condi-
tions the full harm reduction option v ≡ vmax is a good alternative to the
pure use reduction scenario v ≡ 0. Both systems are run forward numer-
ically with t = 200. For the resulting trajectories (Av≡0(t), Sv≡0(t)) and
(Av≡vmax

(t), Sv≡vmax
(t)) the net present values of aggregated use U and ag-
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Figure 3.5: Initial condition (A(0), S(0)) = (0.85, 19.843) between the sep-
aratrices in the model of the U.S. cocaine epidemic: When static control
v ≡ 0 is chosen, the initial condition is located to the left of the system’s
separatrix (gray). The short gray segment shows convergence to the no-use
steady state (Â1

v≡0, Ŝ
1
v≡0). Given the choice of full harm reduction v ≡ vmax,

the initial condition lies to the right of the system’s separatrix (black). The
black trajectory shows convergence to the high-use steady state (Â3

v≡0, Ŝ
3
v≡0).

gregated harm J

U |v≡0 =

∫ 200

0

e−rtAv≡0(t) dt,

J |v≡0 =

∫ 200

0

e−rtAv≡0(t)

=1
︷ ︸︸ ︷

(1 − v) dt,

U |v≡vmax
=

∫ 200

0

e−rtAv≡vmax
(t) dt,

J |v≡vmax
=

∫ 200

0

e−rtAv≡vmax
(t)(1 − vmax) dt

are evaluated numerically. Finally, the relations

RU :=
U |v≡vmax

U |v≡v0

and RJ :=
J |v≡vmax

J |v≡v0
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are considered.

The initial values A(0) for the numbers of users vary between A = 0
and the high-use equilibrium number of users when harm reduction is not
pursued. For Australian IDU, this is Â2

v≡0 = 0.304916 million users, while
we have Â3

v≡0 = 5.4888 million cocaine users in the U.S. In order to be
able to present the results for Australia and the U.S. on the same graph,
the horizontal axis in Figure 3.6 gives the initial number of users A(0) as
proportion of the above mentioned steady states. The initial numbers of
susceptibles are set to S(0) = k−µA(0)

δ
(cf. equation (3.3)). Typically, the

number of users tends to increase in the early stages of an epidemic, and
there are many susceptibles, thus the chosen initial conditions indeed model
important points in time at which harm reduction interventions could begin.
The resulting ratios RU and RJ are shown on the vertical axis of Figure 3.6.

Figure 3.6 reveals that for injecting drug users in Australia, full force
harm reduction v ≡ vmax increases aggregate use compared to the static no
harm reduction policy v ≡ 0 (black dashed curve, RU > 1), but it reduces
aggregate harm in the society (gray dashed curve, RJ < 1). The reduction is
considerable, total harm is cut down by 44-49% for most of the initial condi-
tions. This goes along with an increase by 8 to a maximum of 20% in drug
use. For cocaine use in the U.S., aggregated harm (gray curve) is reduced
although total use (black curve) increases, when initial conditions involve
A(0) smaller than about 10.8% and larger than about 23% of the steady
state value Â3

v≡0 = 5.4888. For the intermediate region, the choice of static
full force harm reduction v ≡ vmax does not only increase aggregated drug
use, but also aggregated harm. The increases are dramatic for some initial
conditions. The maximum increase in total harm and total use was com-
puted for the initial condition (A(0) = 0.808, S(0) = 19.9585) and amounts
to RJ = 5.54, which means a more than fivefold increase in aggregated use.
Aggregated harm multiplies with the factor 4.57. This initial condition is
quite close to the initial condition (A(0) = 0.85, S(0) = 19.843) chosen for
the exposition in Figure 3.5. Hence, the expectation that in Figure 3.5 the
black trajectory is worse than the gray one is now proven. Please note that
the terrifying high increases in both use and harm occur only for initial con-
ditions that are located between or close around the separatrices. The results
are a clear sign that for initial conditions around there, the U.S. drug policy
makers might better shy away from a harm reduction policy. Nevertheless,
for a large region of other initial values of users A(0) on the line, application
of full harm reduction v ≡ vmax indeed reduces aggregated harm, hence such
interventions cannot be demonized in general.
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Figure 3.6: Effects of application of full harm reduction v ≡ vmax compared
to a static use reduction policy v ≡ 0 on total aggregated use U and harm
J , measured in terms of the ratios RU and RJ for the U.S. cocaine epidemic
(solid) and IDU in Australia (dashed).

3.6.3 Comprehensive Investigation of Effects of Full

Harm Reduction

Next, a more comprehensive answer to the question “For which initial condi-
tions does full harm reduction lead to higher value of aggregated harm than
does the pure use reduction regime?” is given.

Figure 3.7 gives this answer graphically for the U.S. cocaine epidemic’s
base case parameterization. The region colored in gray depicts initial condi-
tions (A(0), S(0)) where RJ > 1, which means that J |v≡vmax

evaluates higher
total harm than does J |v≡0. Figure 3.7 also redraws the separatrices of the
systems and the trajectories picked to show the possibility of tipping the
epidemic to a high-use equilibrium. The gray region is somewhat broader
than the sliver between the tipping point curves, but it still includes only a
modest share of the state space.

Figure 3.8 displays the results from the analogous investigation for Aus-
tralian IDU. For any initial condition shown in the Figure, the ratio of total
aggregated harm evaluates to RJ < 1. The maximum of the computed ratios
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Figure 3.7: Distinction of RJ > 1 (gray) and RJ < 1 (white) for several
initial conditions of the U.S. cocaine epidemic on the (A, S)-plane.

is 0.5947, the minimum is 0.4870. The ratio is higher, the closer the underly-
ing initial condition is located to the S-axis. The different gray shadings in
Figure 3.8 give different ranges for the ratios. Nevertheless, Jv≡vmax

< Jv≡0

holds everywhere. When applying a static drug control policy to IDU in
Australia, the full harm reduction regime v ≡ vmax is always preferred to the
control regime v ≡ 0 without harm reduction.

The results for static control of Australia’s IDU population are intuitively
clear. The health-related share of social cost stemming from drug abuse
is high for that drug epidemic. When use is widespread, the harms felt
by users are correspondingly high. A full harm reduction intervention is
appealing because it considerably reduces the amount of harm (the harms
felt by the users account for 53% of the objective function). No matter
where on the (A, S)-plane the initial conditions are located, on the way to
a steady state, the drug epidemic will always progress through stages of
high use, namely when the epidemic is close to the steady state or if it
overshoots the equilibrium number of users. The static full harm reduction
regime has the benefit of this huge reduction in harms, whereas the static
pure use reduction regime does not. In the short run, it seems irrational
to apply the initiation-increasing policy of harm reduction at low levels of
use, but the static control choice v ≡ vmax shows its merits in the long run,
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although the steady state level of users is higher and the transient under the
full harm reduction policy overshoots the levels of use occurring under the
pure use reduction regime. As an example, Figure 3.8 shows two trajectories
emanating from (A(0), S(0)) = (0.02, 0.95). The solid trajectory shows the
path for static control v ≡ 0, the dashed one shows the evolution of the system
when applying v ≡ vmax. The arrows indicate the convergence towards the
steady states of the statically controlled system, which are shown as black
dots.
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Figure 3.8: RJ < 1 for several initial conditions in the (A, S)-plane for IDUs
in Australia. The dashed trajectory outlines the overshoot in number of users
when v ≡ vmax is applied compared to v ≡ 0 (solid trajectory).

3.6.4 Conclusions from the Comparative Analysis in

the Base Case

Recapitulating the results from the different steps of the investigation of the
static options v ≡ vmax and v ≡ 0, the results derived for the U.S. cocaine
epidemic are less in favor of harm reduction than the results for Australian
IDU. The first finding of the comparative study was that applying the full
harm reduction policy v ≡ vmax for an initial condition located between the
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separatrices existing in the case of the U.S. cocaine epidemic’s parameter set
tips the epidemic towards a high-use steady state.

At this step, we did not yet know if the aggregated harm along the tra-
jectories leading to the high-use steady state was indeed higher than when
the system evolves under a pure use reduction policy. A comparison of to-
tal aggregated use and harms for initial conditions located on a single line
revealed that for the U.S. cocaine epidemic there exists a region for which
application of full harm reduction v ≡ vmax increases total use and total
harm, dramatically so for certain initial conditions.

Inspection of total harm Jv≡vmax
and Jv≡0 for a large set of initial con-

ditions led to the gray region in Figure 3.7. Starting static control in this
gray region, the total aggregated harm under a static harm reduction policy
v ≡ vmax exceeds the total aggregated harm when a pure use reduction regime
v ≡ 0 is pursued. The gray region is broader than the domain between the
stable manifolds. This reveals that even if harm reduction does not tip the
epidemic, it may affect the course of the epidemic negatively, such that more
harm is accumulated compared to the pure use reduction policy.

Looking at the diverging trajectories shown e.g. on Figure 3.7, the strong
contrast in steady state numbers of users Â = 0 and Â = 5.77 million, and
the gray region shown in Figure 3.7, the immediate conclusion is that even
the modest amount (vmax = 17.4%) of harm reduction available in the U.S.
could have terrible and long-lasting effects on the cocaine epidemic.

However, having a look on the results from a less nervous (fearful) point
of view, the “dangerous” initial conditions where full harm reduction tips
the epidemic are located in a quite narrow sliver of the (A, S)-plane. The
gray region where Jv≡vmax

> Jv≡0 is a bit broader, but still a rather narrow
region in the entire state space. Furthermore, for any initial condition located
to the left of the separatrix of the system with v ≡ 0 (gray bold curve in
Figure 3.4), the population of drug users A(t) declines under the pure use
reduction regime. Confronted with a drug epidemic at such a stage (rather
modest number of users, declining number of users), a policy maker might
most probably not think about new drug control policies like harm reduction.
This argument shows that from about two third of the initial conditions that
were encountered as problematic, there is actually no great danger. Only the
sliver on the right outside the region between the separatrices remains. In
this region, no matter if harm reduction is implemented to the full possible
extent v ≡ vmax or if the decision maker sticks to the pure use reduction
regime v ≡ 0, the system will converge to a high-use steady state. Static
full harm reduction leads to higher total social cost along the epidemic’s
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transients, making it the worse option. Note that this is only the case for
(A(0), S(0)) close to the separatrix. For initial conditions further to the
right, the static policy v ≡ vmax is preferred. Although this softens many
of the concerns against harm reduction, ill-timed harm reduction clearly has
negative effects.

The most important conclusion from the static analysis is that harm
reduction seems to have great potentials to ameliorate social costs and harms
associated with injecting drug use in Australia. For the base case scenario of
the U.S. cocaine epidemic, it seems to have great potential at the early stages
of the epidemic - when drug use is rather rare and there is no danger that
initiation will explode - or when the number of drug users is high in the later
stages of the epidemic. At these levels of high use even the modest reduction
of 17% beneficially cuts down social cost and harms in society. Nevertheless,
it shall be emphasized that if control intervention is timed incorrectly, it may
tip the epidemic and/or induce increased aggregated harm.

3.7 Parameter Variations

In drug-related modeling, parameterizations may be tenuous. Indeed, the
present parameterizations are not precise. Therefore, analyses of the sensi-
tivity of results with respect to parameter variations are indispensable.

The first scenario investigated is that the infectivity of the U.S. cocaine
epidemic dropped. In terms of the parameters this means that the original
value b = 0.009 is replaced by the lower b = 0.0075, whereas the other
parameter values from the U.S. base case remain unchanged. On the one
hand the choice of a decreased infectivity of cocaine in the U.S. is based on the
fact that this modification changes results dramatically compared to the base
case. On the other hand, there is indeed a possibility that the virulence of
the epidemic has declined in the later stages of the cocaine epidemic (Tragler
et al., 2001; Caulkins et al., 2004; Johnson et al., 1996).

The factor ω = 0.5 in the base case parameterization is rather arbitrary,
thus we allow for the further modification to ω = 1. That change means
that users will now fully factor their non-monetary costs of drug use into
their consumption decision. In the base case, only a proportion of 50% was
recognized by them, the rest was regarded to be an externality from the point
of view of the users. With this change, the effects modeled by the function
g(v) are more pronounced.

Analogously to the base case investigation conducted in the preceding
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section 3.6, we first analyze the ratios RJ and RU for initial conditions located
on the line S = k−µA

δ
(cf. equation (3.3)) between the no-use steady state

and the high-use steady state of the system without harm reduction. Then
we investigate the stable manifolds of the saddle point steady states and
compute the ratio RJ for a larger set of initial conditions. The respective
results from the base case parameterization of the U.S. cocaine epidemic are
shown in panels a) and b) of Figure 3.9 as a reference.

Panel c) of Figure 3.9 reveals that for initial conditions on the line

S(0) = k−µA(0)
δ

, full harm reduction always increases total use (gray curve).
Furthermore, it increases total harm (black curve) for any initial number
of users greater than about 15% of the uncontrolled high-use steady state,
which has now about Â3

v≡0 = 4.14 million users. Harm reduction is a good
choice at the early stages of the epidemic, but only then.

Panel d) in Figure 3.9 shows the stable manifolds of the intermediate-use
saddle points of the system. The tipping point region between the separa-
trices is now considerably broader than in the base case. Additionally, the
gray region where full harm reduction v ≡ vmax counterproductively affects
the system in terms of RJ > 1 is substantially larger than in the base case.
Note that the high-use steady state of the uncontrolled model is now located
at Â3

v≡0 = 4.1366, Ŝ3
v≡0 = 9.9940. In panel d) it is shown as a little dark

gray dot. Use is widespread there, the epidemic has reached an endemic
level. Intuitively, we would expect that harm reduction’s merits in cutting
down harms and social cost via the objective function are appealing in such
circumstances. Counterintuitively, the steady state happens to fall in the
gray region, where full harm reduction is worse than pure use reduction.
We conclude that even if the epidemic has reached levels around a high-use
steady state of the system under the pure use reduction, harm reduction is
not necessarily beneficial. Use must grow a whole lot more, until the white
region of save application of v ≡ vmax is reached.

From an economic point of view - seen through the eyes of a user - it
is plausible that in the stylized example harm reduction is a poor choice
for a broader range of initial conditions. The larger the proportion ω, the
more do drug users factor health-related costs into their decision to consume.
Thus, in the fraction involved in the function g(v), the denominator will be
large, when ω is large. Full harm reduction decreases the fraction under the
elasticity radical in g(v) when ω is larger. The large ω says that potential
users fully recognize any economic reduction of health-related cost of use,
and full harm reduction gives a large economic benefit, which considerably
fuels up initiation.
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Figure 3.9: Overview of the results for the static system under parameter
changes. Panels a) and b) show the results for the base case with b = 0.009,
ω = 0.5. Panels c) and d) present the results for parameter values b = 0.0075,
ω = 1. Panels e) and f) refer to the case of b = 0.0065, ω = 0.5.
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The next step of the analysis decreases infectivity a bit more to b =
0.0065. The other parameters remain unchanged, i.e. we use ω = 0.5 again.
Panel e) in Figure 3.9 shows that for initial conditions along the line S(0) =
k−µA(0)

δ
total use increases for any initial condition, but at the early stages

of the epidemic, full harm reduction v ≡ vmax can bring benefits. The peaks
in RJ and RU are less pronounced than in the base case.

Panel f) shows what happens to the stable manifolds. The separatrix
in the system with v ≡ vmax is still a curve of the same shape as in the
examples before, though shifted further to the right. In the system with
v ≡ 0, the separatrix forms a pocket around the high-use steady state at
Â3

v≡0 = 3.3521, Ŝ3
v≡0 = 12.9739. For initial conditions that happen to fall

inside the pocket, static control v ≡ 0 will lead to this high-use steady state.
Under v ≡ 0, initial conditions located outside the pocket exhibit transients
that will eventually approach a no-use steady state. Consequently, for most
initial conditions, eradication of the epidemic is possible with the pure use
reduction strategy. Choosing an initial condition outside the pocket and on
the right of the left separatrix, the static no-harm reduction policy v ≡ 0
leads to convergence to zero use, whereas static full harm reduction v ≡ vmax

lets the system converge to a high-use steady state. The region where harm
reduction tips the epidemic to a high-use equilibrium is now extended to
a considerable part of the (A, S)-plane. Moreover, we evaluated the ratio
RJ for a large set of initial conditions. The results are shown by the usual
shading in white and gray in panel f). The large tipping point region is now
split up in a gray part and a white part. The gray part, where full harm
reduction actually increases J , is smaller, the larger part of the tipping point
region is shaded white. This means that even when harm reduction tips
the epidemic to a high-use steady state, its application yields less social cost
and harms than the no harm reduction regime under which zero use can be
approached. When the epidemic has grown beyond a certain number of users
and susceptibles, it is the better option to accommodate the existing drug
use problems by the new harm reduction mechanism and cut down harm and
social cost to the maximum possible extent.

3.8 Conclusions from the Model with Static

Control

The numbers of users and susceptibles in the steady states determined in
the preceding sections are realistic. Remaining in the first quadrant is plau-
sible for a drug epidemic, and the model nicely captures this property. By
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construction of the base case initiation function I(A, S, v) = bAαSg(v), ini-
tiation cannot be negative. The stability properties of the steady states are
“stable” or “saddle”, instable fixed points did not occur. Altogether, the
model’s properties are satisfactory and we do not need to adapt functional
forms and re-estimate parameters to expunge unwanted features. All this
clearly speaks for our model.

A major comment with respect to no-use steady state in the uncontrolled
model is that it is viewed as unrealistic by many people. They interpret this
steady state in the sense that the cocaine epidemic dies out by itself, and
that the decision maker does not have to undertake policy interventions to
ameliorate problems that stem from illicit drug consumption. With respect
to the present model, one has to take into account that the control v(t) = 0
means that the policy maker decides not to apply harm reduction as a drug
control tool at time t. Still, the system is in the pure use reduction regime.
This means that even if not modeled explicitly in our current approach, in
a system with v(t) = 0 something is done to fight the drug problem in
the society, namely classic drug control policy (law enforcement, prevention,
treatment) is applied.

The term “uncontrolled model” is used some times in the text. It is
important to emphasize that this does not allude to drug legalization. The
word “uncontrolled” merely states that the control variable v(t) of the present
model is set equal to zero.

We conclude the static analysis with the observation that whether static
full harm reduction v ≡ vmax is beneficial or not depends on a lot of factors.
The particular drug, the specific country and the actual parameter values
influence the results on potential merits and dangers of harm reduction in-
terventions. Given the parameters shown in Table 2.1 for Australia, static
full harm reduction v ≡ vmax is to be preferred in comparison to a static
pure use reduction regime where v ≡ 0. Policy recommendations for the
U.S. cocaine epidemic are a more sensitive endeavor, even more because the
parameter variations in the previous section do not lead to unitary results.

Static analysis is important and revealed interesting features of the model.
We have seen that results are sensitive to parameter changes, which points
to the need of sensitivity analysis and bifurcation investigations. Such anal-
yses are conducted in Chapter 5. We found that at certain stages of a drug
epidemic, full harm reduction has great advantages, whereas for other ini-
tial conditions it can tip the epidemic to non-desired levels of use and/or
negatively affect transients in terms of increased aggregated harm. The dis-
tinction of various stages of the epidemic and the insight that for distinct
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stages of the epidemic appropriate control interventions may be different,
are crucial in a system, in which social costs are proportional to the number
of users, and in which the number of users over time is affected by the control
interventions. This leads directly to the importance of investigation of the
optimal dynamic control version of the model. It is analyzed in detail in
Chapter 4.



Chapter 4

Base Case Models with

Optimal Control

4.1 The Optimal Control Model

In the previous Chapter, control was determined at time t = 0 in form of a
so-called one-shot policy. This means that at the beginning of the planning
horizon, the decision maker chooses among the options v ≡ 0 (pure use
reduction) and v ≡ vmax (full harm reduction). The chosen policy is then
applied once and for all time. In an optimally controlled system, the control
intervention is allowed to vary dynamically over time, i.e. obeying the non-
negativity condition

v(t) ≥ 0 ∀ t, (4.1)

and the upper boundary control condition

vmax − v(t) ≥ 0 ∀ t, (4.2)

the control v(t) can take any value between v(t) = 0 and v(t) = vmax. Of
special interest are time spans where interior control values 0 < vi(t) < vmax

occur. This is where the harm reduction policy is introduced and imple-
mented, where only certain harm reduction programs are done, or where
harm reduction is reversed. This may for example happen when certain
measures are discontinued because they trigger adverse behavioral responses
in the current community of drug users and susceptibles. In what follows, vi

refers to interior values of control v(t).

Please remember that the upper boundary value vmax varies for specific
drugs and countries and can depend on exact definitions of the term harm

57
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and whose harms get counted. The bounds of the feasible control region play
an important role in the optimal control solutions of the current model.

The optimization problem is first solved for the base case model, where
initiation into drug use is exclusively driven by current users who recruit
new users from the pool of susceptibles and control costs are assumed to be
negligible. The base case parameterization for the U.S. and Australia can be
found in Table 2.1 in section 2.6.

The optimal control version of the SA Harm Reduction Model in the base
case formulation is

min
0≤v(t)≤vmax

{

J =

∫ ∞

0

e−rt

(

A(t)
(
1 − v(t)

)
)

dt

}

(4.3)

subject to the system dynamics for A and S with initial condition (A0, S0)

Ȧ(t) = bA(t)α S(t) g(v(t)) − µ A(t), A(0) = A0, (4.4)

Ṡ(t) = k − δ S(t) − bA(t)α S(t) g(v(t)), S(0) = S0, (4.5)

and to the boundary conditions (4.1) and (4.2) for the control variable v.

It is a nonlinear, autonomous, continuous-time optimization problem with
infinite time horizon, has two states and one control. The decision maker’s
goal is to minimize the discounted stream of social costs (interpreted as harms
borne by the society) caused by illicit drug use.

Optimal control problems can be solved with Pontryagin’s Maximum
Principle (see, e.g. Feichtinger & Hartl, 1986; Leonard & Long, 1992; or
more recently formulated in Grass et al., 2008).

To enhance readability, we will mostly omit the time argument t in what
follows.

Note that the problem formulation is given as a minimization problem
in equation (4.3). Analogously to the Maximum Principle the Minimum
Principle could be stated, but here for personal convenience we stick to the
Maximization notation. Consequently, we simply switch to maximization of
the negative objective cost functional:

max
0≤v≤vmax

−J.

Next, the costate variables λA (costate of A) and λS (costate of S) are
introduced. The current-value Hamiltonian H is given by

H(A, S, v, λA, λS) = −λ0

(
A(1 − v)

)
+ λA Ȧ + λS Ṡ. (4.6)
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We deal with an infinite planning horizon, thus the additional constant
multiplier λ0 ≥ 0 has to be associated with the integrand of the objective
function. For λ0 6= 0, λ0 = 1 can be set without loss of generality. Among
others, Leonard and Long (1992) point out that λ0 = 0 is the case only
in pathological examples. For the sake of completeness, we show in the
Appendix that λ0 = 1 may be used for the base case model. This result can
be easily transferred to the slightly modified model formulations in Chapter
6. In what follows, we will hence omit the factor λ0 = 1.

We proceed stating the necessary optimality conditions for solutions of
the infinite time horizon problem with boundary control constraints. In order
to do so, we first define the Lagrangian function

L(A, S, v, λA, λS, π1, π2) = H(A, S, v, λA, λS) + π1 v + π2 (vmax − v), (4.7)

where π1 and π2 denote the Lagrange Multipliers.

The necessary optimality conditions that have to be satisfied by an opti-
mal solution of the optimal control problem with boundary conditions are:

H(A∗, S∗, v∗, λA, λS) = max
0≤v≤vmax

H(A∗, S∗, v, λA, λS) (4.8)

Lv = 0 (4.9)

λ̇A = rλA − LA (4.10)

λ̇S = rλS − LS (4.11)

π1 ≥ 0, π1v
∗ = 0 (4.12)

π2 ≥ 0, π2 (vmax − v∗) = 0. (4.13)

These conditions are necessary conditions, thus they only help for determi-
nation of candidates for the optimal solutions. But we need to ensure that
we indeed obtain maxima. Unfortunately, the Mangasarian sufficiency con-
ditions for optimality are not fulfilled. They are stated in Appendix A.3 and
applied to the current optimal control problem. Still, due to the fact that

the steady states of the dynamics are confined to the line Ŝ = k−µÂ

δ
(see

equation (3.3)) in the (A, S)-plane, we can be quite sure that the solutions
derived here are indeed optimal.

Please note that in equations (4.10) and (4.11) LA and LS denote the
derivative of the Lagranian function L with respect to the states A and S,
respectively.
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The limiting transversality conditions for the costates λA and λS are

lim
t→∞

e−rt λA(t) A(t) = 0,

lim
t→∞

e−rt λS(t) S(t) = 0.

They hold if the states approach a stable steady state, which will be the case
in the optimal control solutions.

Equations (4.10) and (4.11) are the so-called costate equations. Together
with the state dynamics (4.4) and (4.5), they build the so-called canonical
system.

The complementary slackness conditions (4.12) and (4.13) state that for
an interior solution 0 < v∗ < vmax the Lagrange Multipliers have to be zero.
So, if we restrict ourselves to the inner region of the feasible domain, we have
π1 = 0 and π2 = 0. The Lagrangian function L is reduced to the Hamil-
tonian function H . The necessary optimality condition is the Hamiltonian
maximizing condition of the control, given by

v∗ = argmax
v

H. (4.14)

Assuming that the optimal solution is located in the interior of the feasi-
ble control domain we substitute v∗ derived from Hv = 0 into the four-
dimensional canonical system of the model, set the equations equal to zero
and solve the system simultaneously.

The derivative of the Hamiltonian H with respect to v is

Hv = A + bAα S (λA − λS) g′(v).

Investigating the concavity of the Hamiltonian H with respect to control
v, it is easy to see that due to the fact that the function g(v) is convex, H is
concave if λA − λS < 0 holds.

Claiming Hv = 0, we can then solve for v. This yields

−A

bAα S (λA − λS)
= g′(v) =

−cs ω η

cm + cs ω vmax

(cm + cs ω (vmax − v)

cm + cs ω vmax

)−1+η

.

To avoid lengthy formulas, we define

Ψ :=
A

bAα S (λA − λS)
, Φ := cm + cs ω vmax, (4.15)
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and get

v∗ =
Φ

−csω

(
( ΨΦ

csωη

) 1

−1+η − 1

)

. (4.16)

Next, we tackle the explicit formulation of the canonical system for the
model. The four differential equations read

Ȧ = bAα S g(v) − µ A, (4.17)

Ṡ = k − δ S − bAα S g(v), (4.18)

λ̇A = 1 − v + (r + µ)λA + bαAα−1S(λS − λA) g(v), (4.19)

λ̇S = (r + δ)λS + bAα (λS − λA) g(v). (4.20)

In what follows, the steady states of the model are computed and analyzed
with respect to optimality.

4.2 Searching for Steady States with Interior

Control

We first search for steady states with interior control, substituting v∗ from
equation (4.16) into the canonical system (4.17) - (4.20). The resulting four
equations are set equal to zero and the system is solved simultaneously for
Â, Ŝ, λ̂A and λ̂S. Then we can substitute those results back into equation
(4.16) for optimal control v∗.

4.2.1 Australia

Conducting analytical investigations, which are not presented here for the
sake of conciseness, it can be shown that steady states with 0 < v̂i < vmax

do not exist.

4.2.2 United States

For the U.S. parameter set the following steady state values are computed:







Â1

Ŝ1

λ̂S,1

λ̂A,1








=







0.059236
22.014230
−0.909179
−0.004025
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with control v̂1 = 1.047218, which is larger than the upper bound, and








Â2

Ŝ2

λ̂A,2

λ̂S,2








=







4.212853
10.610664
−33.954817
−13.453296







with control v̂2 = −0.684428, which lies to the left of the feasible control
domain.

The steady states with v∗ from equation (4.16) violate the control con-
straint 0 ≤ v ≤ vmax in both the case of U.S. cocaine and Australian IDU.
Hence we conclude that the optimal solution in both cases will involve bound-
ary control steady states of the system. Those steady states are analyzed in
the next sections.

4.3 Boundary Control Steady States and La-

grange Multipliers

For determination of boundary control steady states the four equations of
the canonical system (4.17) - (4.20) are set equal to zero simultaneously for
v̂ = 0 and v̂ = vmax, respectively. The steady state values Â and Ŝ in this
section are the ones derived in sections 3.2 and 3.4 devoted to the statically
controlled system. Dealing with the optimally controlled system the steady
state values Â and Ŝ are complemented by the steady state costate values
λ̂A and λ̂S.

The economic interpretation of the costate variables is that they give a
shadow price of an increment in the associated state. Users and susceptibles
are bad in the current model, because they cause costs (the users do so
directly, whereas the susceptibles are possible future users). Consequently,
we expect negative or at least non-positive costates λA and λS in the current
model.

Calculating steady states with boundary control, the Lagrange Multiplier
of the active constraint has to be investigated. The complementary slackness
conditions (4.12) and (4.13) state that only steady states at which the asso-
ciated Lagrange Multiplier is non-negative can be candidates for the optimal
solution of the current problem.
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The Lagrange Multipliers for the current optimal control problem are

π1 = −A − bAα S (λA − λS) g′(0), (4.21)

π2 = A + bAα S (λA − λS) g′(vmax). (4.22)

4.3.1 Australia

We start with the parameterization for Australian IDU and upper boundary
control. Substituting v = vmax into equations (4.17)-(4.20), we set them equal
to zero simultaneously. The complementary slackness conditions (4.12) and
(4.13) state that the Lagrange Multipliers have to be non-negative for an
optimal solution. In steady states with upper boundary control v̂ = vmax,
the lower boundary constraint v ≥ 0 is not active. So, for its Lagrange
Multiplier, π1 = 0 holds automatically. π2 ≥ 0 must be fulfilled to make a
steady state a candidate for optimality.

We numerically determine the following fixed points (Â, Ŝ, λ̂A, λ̂S) and
their Lagrange Multipliers π2:

Ê1
v̂=vmax

=







0.333455
0.154617
−3.95724
−2.55002







with π2 = 0.304802,

Ê2
v̂=vmax

=







0
0.552521
0.076176

0







with π2 = 0.

The steady state Ê1
v̂=vmax

is feasible. The discussion of Ê2
v̂=vmax

in the next
subsection excludes this steady state.

For lower boundary control v̂ = 0, we get the following steady states
(Â, Ŝ, λ̂A, λ̂S) and Lagrange Multipliers π1:

Ê1
v̂=0 =







0.304916
0.188672
−8.92372
−5.13915







with π1 = −0.265058,

Ê2
v̂=0 =







0
0.552521
0.237137

0







with π1 = 0,
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where the first one has a negative Lagrange Multipliers π1 and is thus not
among the candidates for the optimal long-run solution. The second steady
state Ê2

v̂=0 is discussed in the subsequent section.

4.3.2 Considering the No-Use Steady States in Depth

The striking feature of the no-use steady states Ê2
v̂=vmax

and Ê2
v̂=0 are the

positive values of the costate λ̂A. In its economic interpretation, the costate
variable gives the shadow price of the associated state. This means that it
quantifies the internal value of an infinitesimal increment in the state. For
the current problem’s formulation, we clearly expect the shadow price of use
to be negative.

To clear the discrepancy about the no-use steady states, we set the costate
equations (4.19) and (4.20) simultaneously equal to zero and solve for λ̂S and
λ̂A. This yields

λ̂S =
bÂ1+α(v − 1)g(v)

Â(r + δ)(r + µ) − bα(r + δ)ŜÂαg(v) + b(r + µ)Â1+αg(v)
,

λ̂A =
Â(v − 1)(r + δ + bÂαg(v))

Â(r + δ)(r + µ) − bα(r + δ)ŜÂαg(v) + b(r + µ)Â1+αg(v)
.

In order to investigate the costates when the steady state at (Â, Ŝ) = (0, k
δ
)

is approached, we set S = k
δ

+ d · A, where d ∈ R, and then consider the
expressions for the costates for A → 0. With the help of d convergence to
the no-use steady state can be analyzed coming from any direction from the
first quadrant of the (A, S)-plane. Setting D := r + δ and M := r +µ we get

λS =
bδA1+α(v − 1)g(v)

AδDM − bkαDAαg(v) − bδA1+αg(v)(dαD − M)
,

λA =
δA(v − 1)(r + δ + bAαg(v))

AδDM − bkαDAαg(v) − bδA1+αg(v)(dαD − M)
.

For A tending to zero, denominator and numerator both converge to zero,
which yields the indeterminate form “0

0
”. Unfortunately, L’ Hôpital’s rule

does not help here. A trick often used is manipulation of the expression, such
that common factors cancel out, giving a new fraction which is no longer of
indeterminate form. Here, we can extract Aα and obtain

λS =
AαbδA(v − 1)g(v)

Aα[A1−αδDM − bkαDg(v) − bδAg(v)(dαD − M)]
.
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The factor Aα is in the numerator and the denominator and cancels out.
Remember that α < 1 for Australia. Taking the limit for A → 0, we finally
get λ̂S = 0 because

lim
A→0

λS =
bδ(v − 1)g(v)

=0
︷ ︸︸ ︷

lim
A→0

A

δDM lim
A→0

A1−α

︸ ︷︷ ︸

=0

−bkαDg(v) + bδg(v)(dαD − M) lim
A→0

A
︸ ︷︷ ︸

=0

= 0.

Please note that the convergence of the third term in the denominator is
independent of the constant d.

The equation for λA is modified in the same way

λA =
AαδA1−α(v − 1)(r + δ + bAαg(v))

Aα[A1−αδDM − bkαDg(v) − bδAg(v)(dαD − M)]
,

lim
A→0

λA =

=0
︷ ︸︸ ︷

lim
A→0

A1−α δ(v − 1)(r + δ + b

=0
︷ ︸︸ ︷

lim
A→0

Aα g(v))

δDM lim
A→0

A1−α

︸ ︷︷ ︸

=0

−bkαDg(v) + bδg(v)(dαD − M) lim
A→0

A
︸ ︷︷ ︸

=0

= 0,

which yields λ̂A = 0.

Substituting the resulting Â = 0, Ŝ = k
δ
, λ̂A = 0, λ̂S = 0 into the

canonical system, we get λ̇A = 1 − v̂ = 1 − vmax 6= 0, and λ̇A = 1 − v̂ =
1 − 0 = 1 6= 0 respectively, while in steady state there should hold λ̇A = 0.
Hence, we arrive at a contradiction. Analysis of the numerical solution shows
that any positive value of λ̂A is the product of division by an approximation
of λ̂S = 0.

Concluding, the no-use steady states Ê2
v̂=vmax

and Ê2
v̂=0 for the population

of IDUs in Australia do not exist because the steady state costate value λ̂A

cannot be determined.

4.3.3 United States

For the U.S. parameters, we start with the boundary control steady states
without harm reduction, i.e. v̂ = 0. The three pairs of steady state values
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(Â, Ŝ) are already known from section 3.4. They are now amplified by the
steady state costate values λ̂A, λ̂S and the Lagrange Multipliers:

Ê1
v̂=0 =







5.488796
7.107619
−10.84137
−6.07868







with π1 = −3.43948,

Ê2
v̂=0 =







0.886661
19.742572
28.43041
1.96447







with π1 = −2.72627,

Ê3
v̂=0 =







0
22.176860
−4.85201

0







with π2 = 0.

The Lagrange Multipliers π1 at Ê1
v̂=0 and Ê2

v̂=0 are negative. Hence, those
steady states are not among the candidates for optimality. The no-use steady
state Ê3

v̂=0 is investigated in more detail in section 4.3.4.

The three steady states (Â, Ŝ, λ̂A, λ̂S) with upper boundary control v̂ =
vmax are

Ê1
v̂=vmax

=







5.776702
6.317187
−8.02684
−4.83059







with π2 = 4.0649,

Ê2
v̂=vmax

=







0.727089
20.180670
21.4433
1.20511







with π2 = 2.09133,

Ê3
v̂=vmax

=







0
22.176860
−4.00738

0







with π2 = 0.

The Lagrange Multipliers π2 are non-negative, thus those steady states
are candidates for optimality and will be analyzed further. In particular, the
no-use steady state Ê3

v̂=vmax
is considered in detail in the following section

4.3.4.

Nevertheless, we are heuristically able to exclude the steady state Ê2
v̂=vmax

from being a candidate for optimality. Keeping the economic interpretation
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of the costate variable as shadow price of the stock of users in mind again,
we expect that λA is negative, because users are “a bad” in the system. The
absolute value |λA| describes the system’s internal validation of an infinites-
imal increment in drug use. Susceptibles S will potentially flow on to drug
use. Hence, their shadow price λS is expected to be negative as well. Due to
the fact that only a certain proportion of them indeed initiate drug use, we
expect that they are not validated as bad as drug users are. In more math-
ematical terms this means λA ≤ λS ≤ 0, or in absolute values |λS| < |λA|.
In the intermediate-use steady state Ê2

v̂=vmax
, we found λ̂A = 21.4433 and

λ̂S = 1.20511. Positive shadow prices do not correspond to the economic
interpretation explained above. Anyway, that steady state is dominated by
trajectories leading to another steady state, which will be shown in section
4.5 where the optimal paths are finally computed.

4.3.4 Closer Inspection of the No-Use Steady States

For the parameterization for IDU in Australia, no-use steady states of the
four-dimensional canonical system were encountered numerically, but did not
exist. Although there is nothing suspect about the no-use steady states for
the U.S. cocaine epidemic, we decided to investigate it analytically and in
more depth. This will finally allow us to show that the Lagrange Multiplier
π2 is positive in the neighborhood of the steady state Ê3

v̂=vmax
.

In the U.S. parameter setting, we have α > 1. Analogously to section
4.3.2, we modify the costate equation for λS such that in

λS =
AbδAα(v − 1)g(v)

A[δDM − bkαDg(v)Aα−1 − bδAαg(v)(dαD − M)]
.

the factor A in the numerator and the denominator cancels out. Taking the
limit for A → 0, we finally get

lim
A→0

λS =
bδ(v − 1)g(v)

=0
︷ ︸︸ ︷

lim
A→0

Aα

δDM − bkαDg(v) lim
A→0

Aα−1

︸ ︷︷ ︸

=0

−bδg(v)(dαD − M) lim
A→0

Aα

︸ ︷︷ ︸

=0

(4.23)

= 0.

The equation for λA is re-arranged to

λA =
Aδ(v − 1)(r + δ + bAαg(v))

A[δDM − bkαDAα−1g(v) + bδg(v)(dαD − M)Aα]
,
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where the factor A drops out after cancellation. The limit for A → 0 is

lim
A→0

λA =
δ(v − 1)(r + δ + b

=0
︷ ︸︸ ︷

lim
A→0

Aα g(v))

δDM − bkαDg(v) lim
A→0

Aα−1

︸ ︷︷ ︸

=0

+bδg(v)(dαD − M) lim
A→0

Aα

︸ ︷︷ ︸

=0

g(v)

=
δ(v − 1)(r + δ)

δ(r + δ)(r + µ)

=
v − 1

r + µ
.

Hence, we conclude that λ̂S = 0 and λ̂A = v−1
r+µ

. Please note that the terms
including the constant d converge to zero independently of that constant.

Looking at equation (4.23), in the denominator we find the positive con-
stant δDM = δ(r + δ)(r + µ), whereas the other terms converge to zero for
A → 0. In the numerator we find positive factors, with the exception of the
factor v−1. Concluding from this, the costate λS converges to zero from the
left when A ↘ 0, S → k

δ
, i.e. limA↘0,S→ k

δ
λS = 0(−). Consequently, in the

neighborhood of the steady state the costate is negative, as we expect for an
optimal solution.

Substituting Â = 0, Ŝ = k
δ
, λ̂A = v−1

r+µ
, λ̂S = 0 into the canonical system

(4.17) - (4.20), we find that the dynamics indeed come to rest there.

With the parameters specified for the U.S. cocaine epidemic we get

λ̂A|Â=0,v̂=0 =
v − 1

r + µ
=

−1

0.04 + 0.1661
= −4.85201,

λ̂A|Â=0,v̂=vmax
=

vmax − 1

r + µ
=

0.17408 − 1

0.04 + 0.1661
= −4.00738.

These results coincide with the numerically determined costates λ̂A of the
no-use steady states. The steady states with zero use exist for the four-
dimensional canonical system with the parameterization for the U.S. cocaine
epidemic.

What remains to be investigated are the Lagrange Multipliers in the
neighborhood of the steady states.

Substituting the expressions obtained for λ̂A and λ̂S into the Lagrange
Multiplier π1 from equation (4.21), we get

π1 = −A + bAα S
1

r + µ
g′(0).
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It is easy to see that in the neighborhood of Ŝ = k
δ
, the state S is positive.

The factor bg′(0)
r+µ

is positive, too. The exponent α takes a value α > 1 in
the U.S. cocaine epidemic’s parameterization, there holds Aα < A when A

is close to zero. Moreover, there holds b k
δ

1
r+µ

g′(0) = 0.457061. With this,

we infer that there holds limA↘0,S→ k
δ
π1 = 0(−). In the neighborhood of the

no-use steady state Ê3
v̂=0 the Lagrange Multiplier π1 is negative and therefore

it cannot be a candidate for the optimal long-run solution.

Substituting the expressions obtained for λ̂A and λ̂S into the Lagrange
Multiplier π2 from equation (4.22), we get

π2 = A + bAα S
vmax − 1

r + µ
g′(vmax). (4.24)

Here, we evaluate b k
δ

vmax−1
r+µ

g′(vmax) = −0.488117. With this, we deduce

limA↘0,S→ k
δ
π2 = 0(+). In the neighborhood of the no-use steady state Ê3

v̂=vmax

the Lagrange Multiplier π2 is positive and therefore it is a candidate for the
optimal long-run solution.

Summarizing the analysis of boundary control steady states, the only
candidates for optimality are the no-use steady state Ê3

v̂=vmax
and the high-

use steady state Ê1
v̂=vmax

. Please note that both involve upper boundary
control v̂ = vmax.

4.4 Stability Properties of the Feasible

Steady States

The most stable situation that can be achieved in the four-dimensional
canonical system is saddle point stability. The stable manifold is then two-
dimensional. In terms of the Eigenvalues of the Jacobian Matrix the feature
is characterized by two Eigenvalues (out of the four) that are negative or
have negative real parts. Saddle point stability in the canonical system cor-
responds to stability in the optimized dynamical system.

4.4.1 Australia

For Australian IDU, there is a single feasible steady state at Â = 0.333455,
Ŝ = 0.154617, λ̂A = −3.95724, λ̂S = −2.55002 with boundary control v̂ =
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vmax. The linearized system around this steady state exhibits the Eigenvalues

ξ1 = 0.266251,

ξ2 = −0.226251,

ξ3 = 0.169598,

ξ4 = −0.129598.

The Eigenvalues are real, and two of them are negative, the others positive.
Hence, the fixed point is a saddle node in state-costate space, and a stable
point in the optimized dynamical system.

The equilibrium number of users amounts to 333,455 injecting drug users
in Australia. Users cause social costs and harms to themselves and to society
in general. In Australia, good harm reduction tactics exist that are focused on
harms borne by the users themselves. The model’s solution indeed suggests
that in steady state, the highest possible proportion vmax = 0.53 of harms is
eliminated. This means that all harms felt by the users are wiped out. At the
steady state level of the state A, injecting drug use has grown so far that the
reduction in the integrand of the objective function that can be achieved via
full harm reduction v̂ = vmax is attractive. To benefit from this positive effects
of harm reduction, the decision maker accepts the negative consequence of
an increase in initiation. This downside is modeled by the function g(v). For
the Australian parameterization we evaluate g(vmax) = g(0.53) = 1.235. This
means that the fully expunged risks (for the users) associated with injecting
lead to an increase in initiation by about 24% in steady state.

The resulting value of social costs in steady state is Â(1− v̂) = 0.156724.
This number is an abstract value because the baseline harm per unit of use
is normalized to κ = 1. The steady state number of initiates to drug use
is I(Â, Ŝ, vmax) = 0.03788, meaning that in equilibrium, 37.880 susceptibles
initiate injecting drug use every year. Initiation is the inflow that feeds the
pool of users, whereas on the other hand µA gives the number of drug users
that quit consumption. In steady state, this is µÂ = 0.1136 · 0.333455 =
0.03788, which is the same number as persons that flow into the pool. This
is not surprising, because in steady state Ȧ = 0 holds. Furthermore, we
evaluate δŜ = 0.0952 · 0.154617 = 0.01472, thus 14.720 persons leave the
pool of susceptibles in steady state. Summing up those who mature out and
those who initiate use, we get 0.03788 + 0.01472 = 0.0526, which is equal to
the inflow k and what we expect due to the fact that Ṡ = 0 in steady state.
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4.4.2 United States

The Eigenvalues of the linearized system around the high-use equilibrium
Ê1

v̂=vmax
with about 5.78 million users, about 6.32 million susceptibles and

costates λ̂A = −8.02684, λ̂S = −4.83059 are two conjugate complex pairs

ξ1,2 = 0.0996532± 0.126644 i,

ξ3,4 = −0.0596532 ± 0.126644 i,

one of which has a negative real part. Hence this fixed point is of saddle
point stability. It is a so-called saddle focus. Trajectories approaching this
steady state will exhibit transient oscillations.

In equilibrium, harm reduction is pursued to the full extent, i.e. v̂ = vmax,
which is at about 17% for U.S. cocaine. The number of users Â = 5.776702
is the highest one among at the encountered steady states. Optimality of
maximum control v̂max in such a steady state can be corroborated in the
following way: The high number of users Â directly transfers to high social
costs in the objective function. By application of full harm reduction v̂ = vmax

a 17% reduction can be achieved in the integrand of the objective function.
Of course, there is again the downside of the increase in initiation. Here, it
accounts for g(v̂max) = 1.09, meaning that initiation goes up by 9%. There
is an increase in participation, but in the trade-off between achieving lower
social costs by 17% and an increase in initiation by 9%, the reduction in costs
is the more attractive effect and makes the strategy v̂ = vmax optimal.

The integrand of the objective functional evaluates to a per year cost of
Â(1 − v̂) = 4.771094. Steady state initiation is I(Â, Ŝ, vmax) = 0.959510.
This means that in the high-use equilibrium, each year 959.510 persons from
the pool of susceptibles decide to take cocaine. Quitters from cocaine use
account for the same number, µ Â = 0.1161 · 5.776702 = 0.959510, which is
due to the fact that in steady state the number of users does not change,
i.e. Ȧ = 0. The number of persons who quit the pool of susceptibles is
δŜ = 0.0605 · 6.317187 = 0.382190. Due to the fact that Ṡ = 0 holds in
steady state, the sum of those who mature out of the S-state and those
who initiate must be equal to the constant k, that gives the constant inflow
k to the pool of susceptibles. Indeed, we find that I(Â, Ŝ, vmax) + δŜ =
0.959510 + 0.382190 = 1.3417 = k.

At the no-use steady state Ê3
v̂=vmax

with a steady state number of Ŝ =

22.176860 million susceptibles, and costates λ̂A = −4.00738, λ̂S = 0 the
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linearized system evaluates Eigenvalues

ξ1 = 0.2061,

ξ2 = −0.1661,

ξ3 = 0.1005,

ξ4 = −0.0605.

They are real, two of them are positive and two of them negative. Thus,
the no-use equilibrium of the U.S. cocaine epidemic is a saddle node. Here,
a steady state with no use, Â = 0, will be approached in the long run.
That means, that in the steady state itself, the decision maker will not incur
any social cost stemming from cocaine abuse, because there is no cocaine
problem. The steady state is a boundary control steady state where full
harm reduction is applied, so we can expect that at least in a region around
the steady state, where numbers of users are moderate, v = vmax will be
applied, too. This optimal choice of full harm reduction may find its reason
in the fact that for moderate levels of use, initiation is low enough that even
with modest increases (see the function g(v)) there is little risk that use will
explode. We will deal with detailed interpretations later, when the optimal
paths are presented.

In steady state, there is no drug use, consequently there cannot be a
positive number for initiation because the initiation function suggests that
initiation can only happen when there are current users that recruit new
users. Analogously, the outflow µÂ in steady state is equal to zero. For
the dynamics of the susceptibles, we trivially evaluate the number of persons
maturing out of this state as δŜ = δ k

δ
= 1.3417 = k.

4.5 Optimal Paths

This section is devoted to the determination of the optimal paths leading
to the optimal steady states of the canonical system. The optimal equilib-
ria have the property of saddle point-stability, meaning that there exists a
two-dimensional stable manifold in the four-dimensional state-costate space.
Only initial conditions (A(0), S(0), λA(0), λS(0)) located on the stable man-
ifold exhibit trajectories that eventually end up in the steady state. The
projection of the optimal solutions onto the (A, S)-plane gives the optimized
phase portrait.
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4.5.1 Australia

Recall that the steady state is located at Â = 0.333455, Ŝ = 0.154617, with
costates λ̂A = −3.95724, λ̂S = −2.55002. It is a boundary control steady
state with optimal control v̂∗ = vmax = 0.53.

The upper boundary control constraint vmax − v∗ ≥ 0 from equation
(4.2) is active there. Due to the complementary slackness condition (4.13),
the Lagrange Multiplier π2 has to be positive along an optimal solution. If
the Lagrange Multiplier π2 hits zero while computing backward, boundary
control is no longer optimal and the system has to be switched to interior
control v∗ from equation (4.16). Further switches are necessary when control
constraints become active, or when the Lagrange Multiplier π1 hits zero when
calculating at the lower bound v∗ = 0.

Optimal Control and Optimized Phase Portrait

Figure 4.1 depicts optimal control as a function of states A and S. The
darkest gray color indicates regions of the (A, S)-plane, where optimal control
is given by the maximum harm reduction policy v∗ = vmax. The white part
of the phase portrait gives the region where the pure use reduction regime is
preferred, i.e. v∗ = 0. Gray levels in between characterize different amounts of
interior control. In more detail, the region where only some harm reduction
interventions are implemented, i.e. 0 < v∗ < 1

3
· vmax, is depicted in light

gray. The next darker gray color shows parts of the (A, S)-plane for which
an intermediate harm reduction amount 1

3
· vmax < v∗ < 2

3
· vmax is optimal.

The again darker third sliver shows where almost all possible harm reduction
interventions are applied, but not yet to the full extent, meaning that there
we find optimal control 2

3
· vmax < v∗ < vmax.

The lion’s share of the (A, S)-plane is covered by boundary control re-
gions. Next to the S-axis, the model suggests optimal control v∗ = 0. There
is a narrow segment for which interior control values are optimal, whereas
next to this sliver we find the large region where the full harm reduction
policy is optimal.

Furthermore, Figure 4.1 shows the projection onto the (A, S)-plane of
some of the optimal trajectories. The little black arrows indicate the direction
of convergence towards the steady state. The examples outline that the
trajectories usually involve a lot of switches in optimal control.

Please note that although not presented here, the optimal paths exhibit
negative costates.
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Figure 4.1: Optimal control as a function of A and S for IDU in Australia.

Implications

No matter what initial condition (A(0), S(0)) we encounter for the epidemic
of IDU in Australia, the optimally controlled system always converges to a
steady state with about 0.33 million users and 0.15 million susceptibles. It
is shown as a black dot in Figure 4.1.

The gray dot at about 0.3 million users and 0.18 million susceptibles
denotes the steady state Ê1

v̂=0 of the system with v̂ = 0. The steady states
are located very close to each other; there is a difference of only about 3,000
persons in the number of users and of about 30,000 susceptibles. Still, the
analysis in section 4.3.1 shows that the lower boundary control steady state
is not even a candidate for optimality. It is a steady state of the investigated
system, going without harm reduction (i.e. applying v = 0) does not elicit
increases in participation, and the number of users is lower than in the other
possible fixed point. How can it happen that it is not optimal? The reason lies
in the objective of our model. It comprehends the product of the number of
users and harms that arise from drug abuse. Our aim is actually to minimize
this product. Thus, the model integrates a use reduction approach and a
harm reduction approach. At the steady state Ê1

v̂=0 full harm is borne to
society. At the steady state Ê1

v̂=vmax
, with an only slightly higher number

of users, the full reduction in harms felt by the users is achieved. The gray
dot lies in the dark gray region, where optimal control is given by full harm
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reduction. Hence, instead of staying at the steady state forever, it is better
to apply harm reduction with full force. This example clearly shows that
even if the system is close to a steady state of the use reduction policy, it is
not necessarily the optimal choice to approach this steady state.

Furthermore, for the large region of the (A, S)-plane around the optimal
long-run steady state Ê1

v̂=vmax
, optimal control is full harm reduction v∗ =

vmax. At those stages of the IDU problem, drug use has grown far and/or
the pool of susceptibles is large. Due the random mixing and contagion
effects modeled in our initiation function, we can expect that progression
from the S-state to the A-state will be considerable in the future. Application
of full harm reduction has adverse consequences and pushes initiation, but
it is beneficial to cut down the social costs arising for a large number of
users. In regions where use is still of modest size (white in Figure 4.1) the
optimal control model suggests v∗ = 0. Keeping in mind the results of the
static analysis shown in section 3.6 for Australian IDU, that suggestion for
optimal control seems counterintuitive. Figure 3.8 clearly shows that the
static decision v ≡ vmax triggers a lower value of aggregated social cost than
static control v ≡ 0, notably for any initial condition shown on the plot.
The static analysis presumes that one of the two control options is chosen
once and then applied for all time until the corresponding steady state is
reached. In this static world of a one-time irrevocable control decision, full
harm reduction always performs better, because at the later stages close to
or even larger than the equilibrium levels of use, it significantly cuts down
costs. Here, the optimal control approach delivers a more flexible policy.
The optimal control model allows control to vary over time. This means
harm reduction may progress through control’s entire feasible domain 0 ≤
v ≤ vmax. Essentially, it is chosen in a way that optimizes the objective
functional. Please note that in Figure 3.8, the performance of static full
harm reduction is best compared to static pure use reduction in the regions
that are shaded lighter, whereas the performance is worse for darker shading.
Those darker slivers are located close to the S-axis. When we can choose
control optimally from the entire spectrum 0 ≤ v ≤ vmax, at initial conditions
shaded white in Figure 4.1 and close to the S-axis, optimal control is v∗ = 0.
This is because any amount v > 0 of harm reduction would adversely affect
trajectories of use and trigger increases in aggregated harms/costs.

The gray regions of interior harm reduction v∗
i also stem from this great

flexibility of control choice. Between the extremes of boundary control v∗ = 0
and v∗ = vmax, harm reduction interventions have to be planned and imple-
mented step by step. Harm reduction increases at stages of the epidemic,
where the effect of reductions in harm are so beneficial that the increased
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initiation is an adverse consequence, but still of acceptable size. Neverthe-
less, we also encounter trajectories along which optimal harm reduction v∗

decreases at certain times. This means that the optimized world also al-
lows reversing control when necessary. This happens when increases in use
triggered by too high control v would lead to counterproductive increases in
use.

Control is dynamically adjusted in order to apply it optimally with respect
to the tension of reduced social A (1− v) and the increase in initiation given
by the function g(v). Figure 4.1 shows that the region where interior control
values 0 < vi < vmax are optimal is rather narrow in state space. The analyses
of the phase portrait and of optimal control at different stages of the epidemic
do not shed light on the important issue of the actual time structure of the
optimal solution. The regions of the (A, S)-plane with maximum control
and without harm reduction are divided by a narrow triangular domain of
transitory control, hence in particular we are interested in how fast those
regions are passed while the epidemic converges to its optimal fixed point. If
initial optimal control is the pure use reduction policy v∗ = 0, but later on
a full harm reduction policy v∗ = vmax is optimal, does the implementation
and gradual incline up to the maximum extent happen within a decade or
so? Or is harm reduction an intervention that can and should be applied
quickly, probably within a few months only? If amounts of harm reduction
decrease, how far and how fast shall harm reduction’s implementation be
reversed? Such questions and a whole lot of similar issues are of interest.

Furthermore, we assume a discount rate of r = 0.04 per year (see section
2.6), which stands for a rather farsighted decision maker. In concrete num-
bers, social costs that will occur in t = 5 years are factored into the current
decision with a factor e−r t = e−0.04·5 = 0.8187. Costs one is confronted with
in t = 20 years have still a factor of e−r t = e−0.04·20 = 0.4493. Although
future costs are discounted, costs occurring in the rather far future are still
factored into the current decision to a high degree. From this point of view,
the detailed time structure of the optimal solutions is interesting, too.

Time Paths

To answer the above stated questions for IDU in Australia, the time paths
for the trajectories labeled T1 and T2 in Figure 4.1 are depicted.

Trajectory T1 emanates from (A(0), S(0)) = (0.011935, 0). Optimal con-
trol v∗(t) is shown in panel c) of Figure 4.2. Optimal control starts at
v∗ = vmax, which is shown as a black solid line. Subsequently, declining
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control represented by the dashed gray segment is optimal. Afterwards, the
optimal choice is v∗ = 0, which is shown in gray. But after some time,
increasing control is optimal again, which is depicted as dashed black seg-
ment. Finally, optimal control stays at the upper bound v∗ = vmax until the
steady state is reached. It is again shown in black. The transitions between
boundary control regimes are indeed quite short in terms of time. Along the
gray dashed part of the transient, optimal control gradually decreases from
v∗ = vmax to v∗ = 0 within t = 2.4 years. The black dashed transient shows
that v∗ increases from zero to full harm reduction in t = 4.81 years.

In panels a), b) and d), the segments of the resulting time paths for the
states and costates are colored corresponding to the optimal control values
along the trajectories. Panel a) shows that the number of users is slightly
decreasing first, but then it starts to grow. The increase in use is moderate
in the first years, but as soon as a critical mass is reached, use grows heavily
within a decade. Finally, the steady state value will be approached without
overshooting. Panel b) depicts the progression of the susceptibles S over
time t. The pool of susceptibles grows at the early stages of the epidemic,
overshoots its steady state value, reaches a peak after some t = 15 years,
and then declines toward the steady state. Panel d) shows how the shadow
prices of the users and susceptibles develop over time. Both costates λA

and λS are negative, meaning that an increment in either A or S is always
“bad”. The costate of the number of users, λA, is located below the costate
of S for the whole planning horizon, thus users are always judged worse than
susceptibles, which is what we expected intuitively.

The tub-shaped form of optimal control v∗ shown in panel c) of Figure
4.2 is very interesting, and there arises the question where this particular
structure of optimal control stems from. The answer of this question is
very much linked to initiation. In the current model, initiation is driven
by the contact of current users and non-using susceptible individuals, thus
we interpret the tub-shaped form of control complementing the above given
information on the evolution of states with the according number of initiates
over the course of the drug epidemic. Initiation I(A, S, v) along the trajectory
T1 as a function of time is shown in Figure 4.3.

Given initial conditions like for trajectory T1, i.e. no susceptibles and only
a very modest number of users, the initiation term I(A, S, v) = bAαSg(v) is
zero at the beginning. The dynamics of the susceptibles leads to an imme-
diate increase in the number of people in the S-state, which can be seen on
panel b) of Figure 4.2. Initiation grows then, but is at modest levels. It is
so low, that initially the number of users drops slightly, although full harm
reduction is applied, which additionally leads to a reduction of social cost
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Figure 4.2: Optimal number of users A, susceptibles S, costates λS and
λA, and the optimal amount of harm reduction v∗ along trajectory T1, as a
function of time.
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Figure 4.3: Initiation along the optimal trajectory T1 for Australian IDU

counted in the objective function. Although costs arise only for a modest
number of users, the full benefit of harm reduction v(t) can be achieved and
the increase in initiation is not much of a disadvantage at those levels of users
A and susceptibles S. Nevertheless, the pool of susceptibles grows heavily
in the first decade, the resulting combinations of users A and potential new
consumers S reach levels at which harm reduction interventions might fuel up
initiation in an undesired manner. This justifies the discontinuation of harm
reduction measures shown, which finally lead to omission of application of
the control variable. The pool of susceptibles is still growing at those stages
of the epidemic, and by then use has reached levels at which the reduction
of harms felt by the users is attractive again. Harm reduction is gradually
implemented again, and although the numbers of new users is considerable at
those time spans, control reaches the upper bound of the feasible domain and
stays there until the steady state is reached. It is notable that the peak of
susceptibles is reached when the final switch from interior control to full harm
reduction happens. The pool of susceptibles is exploited afterwards, but use
grows heavily. The justification for accepting the increases in initiation and
use is the reduction of 53% of harms that can be achieved.

The above initial condition without susceptibles and with a low number of
users is not very realistic. More suitable initial conditions for a drug epidemic
are located at low numbers of users, but with a pool of susceptibles that is
large. Assuming A(0) = 10, 000 users, the corresponding initial value for
the susceptibles located on trajectory T2 in Figure 4.1 is S(0) = 0.783634.
Starting optimal control there, the model suggests sticking to the policy
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Figure 4.4: Optimal number of users A, susceptibles S, costates λS and
λA, and the optimal amount of harm reduction v∗ along trajectory T2, as a
function of time.
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without harm reduction for t = 3.34 years. This is shown in panel c) by the
gray segment. Afterwards, harm reduction is implemented relatively quickly.
Namely, within t = 1.58 years optimal control progresses from v∗ = 0 to
v∗ = vmax (black dashed part). Then, full harm reduction is applied until the
steady state is reached, which is shown by the solid black segment in panel
c).

Panel a) of Figure 4.4 shows that the number of users overshoots the
steady state value Â. The evolution of the pool of susceptibles over time
is shown on panel b). It is declining first and then grows slightly towards
the steady state value Ŝ. Panel d) plots the costates λA and λS on a shared
panel. As above, the time paths nicely shows that the costates are indeed
negative along the entire trajectory, and that the shadow price λA of an
additional user is always higher in absolute value than the shadow price λS

of an additional person in the susceptible state.

4.5.2 United States

Dominated steady state Ê2
v̂=vmax

In section 4.3.3 we heuristically excluded the intermediate-use steady state
Ê2

v̂=vmax
from candidacy to optimality. The analysis of the basin of attraction

of the no-use steady state Ê3
v̂=vmax

allows to give the mathematically proper
argumentation by showing that this steady state is dominated. The black dot
in Figure 4.5 depicts its projection (Â2

v̂=vmax
, Ŝ2

v̂=vmax
) = (0.727089, 20.180670)

onto the (A, S)-plane. The trajectories shown in Figure 4.5 are the optimal
paths approaching the no-use steady state Ê3

v̂=vmax
. The gray segments of

the trajectories show where v∗ = 0. The black dashed parts stand for opti-
mal control v∗ that increases gradually from 0 to vmax. The black segments
indicate that v∗ = vmax, which characterizes optimal control in a large neigh-
borhood of the no-use steady state.

Located at the initial condition (A(0), S(0)) = (0.727089, 20.180670) there
are two options. Under the full harm reduction regime v = vmax, those state
values form part of a steady state solution. Hence, one could stay there for-
ever applying v̂ = vmax for all time. Alternatively, the location in the basin
of attraction of the no-use steady state allows us to eventually approach this
steady state. In order to converge to the no-use steady state, optimal control
at the initial condition is v∗ = 0.

The value of the objective functional for an optimal control problem with
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general objective function F , state x, control v and costate λ is given by
∫ ∞

0

e−rtF
(
x(t), v(t)

)
dt =

1

r
H
(
x(0), v(0), λ(0)

)

=
1

r
H0
(
x(0), λ(0)

)
, (4.25)

where H0 is the Hamiltonian maximized with respect to control. The formula
also holds true for models with boundary control (see e.g., Feichtinger &
Hartl, 1986). Please note that in particular, the formula does not only hold
true for optimal solutions, but for any solution x, v that satisfies the necessary
optimality conditions.

To determine the objective functional’s value for staying at the steady
state Ê2

v̂=vmax
forever, we substitute the steady state values into formula (4.25)

and get
∫ ∞

0

e−rtF
(
Â(t), v̂(t)

)
dt =

1

r
H(Â, Ŝ, vmax, λ̂A, λ̂S) =

1

0.04
H(0.727, 20.181, 0.174, 21.443, 1.205) = −15.013.

The trajectory (Ã(t), S̃(t), λ̃A(t), λ̃S(t)) emanating from the initial condi-
tion (Ã(0), S̃(0)) = (0.727089, 20.180670) in the (A, S)-plane, but converging
to the no-use steady state Ê3

v̂=vmax
assigns initial shadow prices λ̃A(0) =

−34.648 to the drug use state and λ̃S(0) = −0.996 to the pool of suscepti-
bles. This path is the bold one among the trajectories shown in panel a) of
Figure 4.5. Observing that control at the initial point of the bold trajectory
is v = 0, formula (4.25) yields

∫ ∞

0

F (Ã(t), ṽ(t))dt =
1

r
H(Ã(0), S̃(0), v(0), λ̃A(0), λ̃S(0)) =

1

0.04
H(0.727, 20.181, 0,−34.648,−0.996) = −9.503.

The objective of the given optimization problem is maximization of the
negative objective functional. Staying at the fixed point with an intermedi-
ate level of users gives the objective functional’s value −15.013, whereas the
alternative path that eventually converges to the no-use steady state eval-
uates to −9.503 > −15.013. Hence, staying at the intermediate-use fixed
point Ê2

v̂=vmax
is not optimal. At the corresponding level of users and suscep-

tibles, the optimal solution is to converge to a steady state with zero users.
Eradication of the cocaine problem is achieved by means of application of a
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policy that can be described as “do pure use reduction first, but additionally
implement harm reduction when use has sufficiently declined”. The time
paths for states, costates and control along the optimal path are shown in
panels b) - e) of Figure 4.5.

v∗ = vmax
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Figure 4.5: The intermediate-use steady state Ê2
v̂=vmax

shown as the black dot

in panel a) is dominated. Staying forever at Ê2
v̂=vmax

is not optimal; the bold

trajectory in panel a) leading to the no-use steady state Ê3
v̂=vmax

evaluates
a better objective functional value. The optimal time path for state A is
shown on panel b), for state S on panel d), and the costates λA and λS are
depicted on panel e). Panel c) gives optimal control over time.

Optimal Control

Backward calculation of the optimal long-run steady states Ê3
v̂=vmax

and

Ê1
v̂=vmax

leads to Figure 4.6. It shows optimal control on the (A, S)-plane



Chapter 4. Optimal Control 84

in terms of different gray shadings. The meaning of the distinct gray shad-
ings is the same as used in Figure 4.1 for Australia. The darkest regions
indicate that optimal control is given by control at the upper bound, i.e.
v∗ = vmax. To the other extreme, the white part of the phase portrait marks
the region of the (A, S)-plane where v∗ = 0 is to be preferred. Regions
shaded in gray levels between the extremes denote interior control. In detail,
the region shaded in the lightest gray color is where 0 < v∗ < 1

3
· vmax, the

next darker gray level colors regions where the optimal policy is between
1
3
· vmax < v∗ < 2

3
· vmax. Finally, the remaining gray level marks harm

reduction interventions 2
3
· vmax < v∗ < vmax.

Some of the trajectories of the optimized system are presented to outline
the structure of the optimal phase portrait. The basins of attraction are
separated from each other in an asymptotic way. This is because the saddle
point structure of the dynamics of states A and S under static control v ≡ 0
is inherited to the optimized system. The intermediate-use steady state with
boundary control v̂ = 0 is not feasible in the optimal control model. It
exhibits a negative Lagrange Multiplier π1 < 0 and can therefore not be
a candidate for the optimal solution. Nevertheless, in the region around
this steady state the optimal policy is given by v∗ = 0. Consequently, the
optimized state dynamics there follow the same rules as in the static system
with v ≡ 0. The little black arrows indicate the direction of convergence to
either one or the other optimal equilibrium.

Looking at the trajectories T1 and T2 in Figure 4.6, we see that the optimal
policy may again be a sophisticated blend of boundary control and interior
levels of harm reduction interventions. When use is initially high and the
pool of susceptibles is of rather modest size, one optimally begins with a full
harm reduction strategy done for some time, followed by a gradual cutback
of control v. Then, a policy of pure use reduction is optimal, but later on
harm reduction is re-implemented, exhibiting a monotonic increase until the
upper bound is reached. Finally, full harm reduction remains the optimal
policy until the steady state is reached.

Indifference Curve in the Basin of Attraction of the High-Use

Steady State

Such advanced suggestions for optimal policy are interesting, but are not the
fanciest feature our model reveals in terms of policy options. In a rather tiny
region between A = 3 and A = 3.5 million users and between S = 7 and
S = 9.5 million susceptibles, some trajectories overlapped. In such cases it
has to be investigated which of the trajectories evaluate the best value of
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Figure 4.6: Optimal control in the phase portrait for the U.S. base case
parameter set

the objective functional and so provides the optimal solution. In the current
case, an indifference curve is encountered.

Figure 4.7 presents the indifference curve in the basin of attraction of the
high-use steady state Ê1

v̂=vmax
of the U.S. cocaine epidemic as a red curve

in the (A, S)-plane. The blue curve that emanates in the center and goes
towards the upper right corner of the Figure gives the set of points in the
(A, S)-plane where in reversed time, calculating backward from the steady
state with v∗ = vmax, the Lagrange Multiplier π2 hits zero and hence full
harm reduction is no longer optimal. The green curve closely passing the
point (A, S) = (3, 11) depicts where boundary control v∗ = 0 becomes op-
timal along the backward solution. The second blue curve shows where the
Lagrange Multiplier π1 hits zero. The green curve in the middle of the plot
depicts where intermediate control relapses to the upper bound. Completing
our description of the loci of switches, the green curve in the lower right cor-
ner of Figure 4.7 shows where increasing control achieves the value v∗ = vmax

in the backward continuation.

With respect to optimal control Figure 4.7 is divided into three regions.
In the right segment of the Figure, optimal control uses full harm reduction,
i.e. v∗ = vmax. At the left side, the other extreme in harm reduction in-
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Figure 4.7: Indifference curve in the U.S. base case model.

terventions, namely to do no harm reduction at all, is optimal: v∗ = 0. In
between, we encounter a region of optimal interior amounts 0 < v∗

i < vmax of
harm reduction. Harm reduction grows from the left to the right on the plot,
but following the optimal trajectories, we also encounter declining control.

For most of the initial conditions in the basin of attraction of the high-use
steady state, there is a unique path in terms of numbers of users and sus-
ceptibles that leads to the high-use steady state Ê1

v̂=vmax
. It is characterized

by substituting the unique optimal control value into the canonical system.
For some special initial conditions, there exist two different initial control
values that induce distinct future control and consequently distinct paths
on the (A, S)-plane, but both approach the same steady state and evaluate
identical values of the objective functional. Thus, one cannot say which of
the strategies is better; they are equally optimal and the decision maker is
indifferent between them. Such special points are located on the red curve,
and imply the label “indifference curve”.

The black curves in Figure 4.7 depict some of the optimal trajectories.
Most initial conditions were picked exactly on the red indifference curve. The
right part of the indifference curve separates regions with interior control, the
left part gives points of indifference where one option to initiate control is
v∗(0) = vmax, and the alternative is to start control at some interior level
v∗(0) = vi. The future control choices and the resulting development of
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states are quite different. Emanating from the red curve with decreasing
control, one first aims for reductions in drug use. This choice means that
at the beginning of the planning horizon, the system progresses through the
region right below the red curve. Use declines there, and to keep it further
at low levels, harm reduction declines, until one even switches to a pure use
reduction regime. Under the classic control policy, the pool of susceptibles
grows bigger and bigger. Via the random mixing effect in the term bAα S,
initiation becomes high enough to trigger growth of the cocaine use state A.
When the cocaine epidemic progresses to higher levels of use, harm reduction
becomes attractive again. Optimal control v∗ increases steadily and finally
the optimal policy even switches to full harm reduction.

There are two possible scenarios for the alternative, depending of where
on the red curve one starts. In both cases, the states progress through the
region directly above the red curve at the beginning of the planning horizon.
The distinction is that one either applies full harm reduction first, or that
initially an interior amount of harm reduction is done. If one applies full
harm reduction first, there will soon be a short intermezzo where control
declines to some v∗

i . From there it increases again to full harm reduction,
which is then optimal until the steady state is reached. Beginning with
interior control v∗(0) = vi, harm reduction declines first and reaches some
minimum along the trajectory, but from there it ramps back up to full harm
reduction and then the epidemic approaches the optimal steady state under
full harm reduction.

The examples for possible paths emanating from the indifference curve
show that levels of use are higher at the beginning when control interven-
tions start at a higher level. What is not visible in Figure 4.7, is that the
paths that lead initially to cutbacks in use, later on considerably overshoot
the alternative. Suspending harm reduction at the beginning leads then to
lower levels of use. This is because the increasing effect of g(v) is omitted.
Nevertheless, later on, numbers of users are higher. Differently, when harm
reduction is applied for the critical initial conditions, use decreases first too,
but the cutback is slowed down due to the risk compensation effect that in-
creases initiation. Considering only the early times of the planning horizon,
this seems a disadvantage, but at the later stages the strategy is rewarded
by lower numbers of users. The tension between distinct control policies and
the therewith induced numbers of users (decreases in use first, later an over-
shoot of the steady state value versus more moderate decreases in use first,
but later a less pronounced overshoot of the steady state value of users Â)
creates identical values in aggregated harm.
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Time paths

To shed more light on this tension and the different developments over time
that create the same amount of aggregated harm, Figure 4.8 depicts the two
alternative developments for the initial condition A(0) = 3.2611, S(0) =
7.7296. Starting with full harm reduction v(0) = vmax, the initial costates
λA(0) = −16.54077122, λS(0) = −5.778665364 are assigned. The alternative
involves initial control v∗

i (0) = 0.0892, and the costates at t = 0 are λA(0) =
−20.2462, λS(0) = −6.4042.

Panel c) in Figure 4.8 shows the two distinct control options. The first
one is to apply almost always full harm reduction with a rather moderate
cutback of harm reduction in the middle of the first decade. The second one
is a mix of use reduction and harm reduction, which also includes a time span
where no harm reduction at all is done. Let us call the strategy mentioned
first the “mostly harm reduction strategy” and the other one the “mixed
strategy”.

Please note, that the time span on panels a) and b) goes up to t = 80,
whereas in panel c) time only ranges to t = 20. The possible control choices
are distinct in the first t = 15 years only. For time t > 15 years, either
option suggests full harm reduction. Hence, the short time span is sufficient
to present the control alternatives. In terms of the evolution of users and
susceptibles, the different control choices trigger lasting effects. To make
the differences in stocks over time visible, the time scale of t = 80 is more
appropriate. The colors in panels a) and b) associate the control information
in panel c) with the development of states. The transient in black stems from
the mostly harm reduction strategy, where the solid line indicates v∗ = vmax

and the dashed segment stands for the short intermezzo of interior harm
reduction values being optimal. The mixed strategy induces the transients
colored in gray. The dashed segments show the parts that stem from interior
control, the solid line indicates that v∗ = 0, and the dotted part of the time
paths of the mixed strategy shows where v∗ = vmax within the mixed policy
option.

Panel a) shows nicely that the number of users is initially higher under
the mostly harm reduction strategy. Use peaks earlier (black) than under the
mixed strategy (gray). Moreover, the peak is higher when the mixed strategy
is applied. Within the mostly harm reduction strategy, the slight cutback
in control (dashed black line) happens when use would grow too strong due
to the risk compensation effect g(v) that drives initiation. Furthermore, the
black solid and gray dotted curves show how the number of users evolves
under v∗ = vmax. Along those parts, we also encounter time segments for
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which the number of users is declining. Along the entire first black segment,
v∗ = vmax is chosen, and use ebbs back. Those examples show that even if
we model that harm reduction interventions increase initiation, the full harm
reduction strategy does not hamper declines in use.

Panel b) of Figure 4.8 shows the evolution of the pool of susceptibles.
Again, the mixed strategy induces an overshoot in the state. This is what we
expect, because the trajectory stemming from the mixed strategy progresses
through the (A, S)-space above the trajectory induced by the strategy with
mostly harm reduction.

In the basin of attraction of the no-use steady state Ê3
v̂=vmax

the regions
where transitions between boundary control values occur are quite narrow in
(A, S)-space. In the basin of attraction of the high-use steady state Ê1

v̂=vmax

the transitory regions are broader, but still rather small compared to the
large regions where boundary control is optimal. For Australian IDU, we
found similarly narrow spaces of optimal interior control, and the time paths
in Figures 4.2 and 4.4 revealed that the transitions are also quick in terms
of time that is needed to switch from one bound to the other. We infer from
Figures 4.5 and 4.8 that it is similar when optimally applying harm reduction
for the U.S. cocaine epidemic. Control measures are introduced quickly when
it is advantageous to exploit the social cost cut in the objective function.
When the epidemic’s course is affected adversely due the increased initiation,
the harm reduction policy is optimally reversed quickly, too. Essentially, in
such situations, it is not always necessary to completely shy away from harm
reduction. Sometimes it is enough to reduce the amount of harm reduction
interventions to some intermediate value, but soon increase it to the full
extent again (see the black control strategy in panel c) of Figure 4.8).

The different regions where pure use reduction and full harm reduction are
the optimal control policy suggested by the current model are not congruent
to the gray and white regions we identified in section 3.6, when conducting
the static analysis of v ≡ 0 versus v ≡ vmax. As in the case for Australia, this
is due the more flexible approach of the optimal control model. In the static
world of a one-time decision, we simply compared aggregated harm along the
trajectories resulting from either static option.

The most striking effect concerns regions that are shaded white and lo-
cated close to the gray region in Figure 3.7. For any initial condition located
there, static full harm reduction on the entire way to a steady state (either
the high-use of the no-use steady state) triggers less social cost than to never
apply harm reduction. In the optimal control result, a large part of this
domain is now optimally controlled with v∗ = 0. In the static world the de-
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ference curve occurring for the U.S. base case parameterization
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cision taken at t = 0 cannot be altered later. The optimal control approach
allows for flexible adjustments in control, all aimed at minimization of total
social cost. Picking an initial condition in the critical region that is shaded
white on both Figure 3.7 and 4.6, the optimal solution in the world of flexible
adjustment of control consists in v∗ = 0 at some initial time spans, but later
on optimal control progresses to interior and full harm reduction. At the
intermediate stages shaded white on the gray level portrait in Figure 4.6 any
amount v > 0 of harm reduction negatively affects the course of the cocaine
epidemic. Consequently, if dynamic choice of control is possible, harm reduc-
tion is omitted there. Nevertheless, the model suggests that harm reduction
may be applied for higher numbers of users. There, even the modest share
of vmax at about 17% leads to significant benefits because it fully cuts down
the harms felt by the users, such that to society overall, there is a remainder
of only 83% of baseline social cost. Furthermore, harm reduction can be
applied safely at the early stages of the epidemic. Although v∗ > 0 leads to
increases in initiation, the contagious effect of the U.S. cocaine epidemic is
low at low levels of use, hence there is no risk that use might explode when
harm reduction is applied.

4.6 Conclusions from the Base Case Model

In the preceding sections, an optimal control model was analyzed in order
to determine within the context of that model how the mechanism of harm
reduction should be optimally applied in the case of the U.S. cocaine epidemic
and for the prevalence of IDU in Australia. The main conclusion of the model
is that if drug consumption can vary over time, drug control interventions are
optimally varied, too. A very smart feature of the model presented here is
that it consists in only one control variable v. This control has a lower bound
v = 0, which is essential in the optimal solutions and implicitly stands for
application of the traditional drug control interventions of law enforcement,
prevention and treatment. The model tries to provide an answer or some
advice to the participants in the discussion whether use reduction or harm
reduction was the right policy.

In the Australian parameterization of the model, harm reduction tactics
are optimal for almost all possible initial conditions. Only if numbers of users
are very low, it is better to omit harm reduction. Still, when the number
of users increases only slightly, harm reduction shall be applied. Very soon,
harm reduction is optimally done with full force.

For the U.S. cocaine epidemic parameterization, the policy recommen-
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dation is less straightforward. Multiple steady states occur. This creates a
domain of interior levels of use where harm reduction is omitted in the op-
timal control solution. For high levels of use, or when use is rather low, the
optimal strategy consists in full application of harm reduction.

For both the U.S. and Australian parameterization, the most probable
initial conditions exhibit optimal trajectories that involve switches in opti-
mal control. The results presented in this thesis show once more that for a
problem that varies over time, the optimal control interventions can be quite
distinct over time, too. Furthermore, we can deduce that control interven-
tions that pursue different aims (use reduction versus harm reduction) may
both have merits over the course of a drug epidemic, but not necessarily al-
ways at the same time. An indifference curve occurs for the high-use steady
state of the U.S. cocaine epidemic parameterization. For initial conditions
located there, there exist two possibly quite different options that are equally
optimal.

To the extent that one can generalize the results from these stylized mod-
els, the answer to the opponents in the discussion may be that neither the
one nor the other strategy is unequivocally the best. Perhaps both are good,
important, and advantageous, but possibly not at all times. Use reduction
tactics are traditional and most have been evaluated to be effective. Nev-
ertheless, at certain stages of the dynamic evolution of a drug problem in a
society, it maybe fruitful with respect to minimizing social costs and harms
borne to society, to apply harm reduction mechanisms. Proponents of use
reduction, and of harm reduction, need not demonize the ideas and downplay
the arguments of the other. Rather, they might accept that the ideas of the
other party may be fruitful and beneficial in at least certain circumstances,
and try to reconcile their perceptions in order to build models that will yield
better drug control strategies for the future.



Chapter 5

Sensitivity and Bifurcation

Analysis

In optimal control problems, the investigated dynamic systems usually have
a lot of parameters. Exact values are mostly not available. Sensitivity and bi-
furcation analysis are the appropriate tools to investigate the effect of changes
in parameters. Sensitivity analysis seeks to answer the question whether and
how results change when parameters are slightly modified. Bifurcation the-
ory tries to explain disruptions like destruction or creation of steady states
in the system when the parameters vary.

5.1 Sensitivity Analysis

This section assesses the sensitivity of the optimal steady state solutions
under parameter changes. Departing from the optimal steady states for the
base case parameterizations for Australian IDU and U.S. cocaine use, a one-
dimensional 1%-increase sensitivity analysis is conducted. This means that
one of the base case parameter values is multiplied with 1.01, while the other
parameters are kept at their original value, and then the steady state values
are re-computed. The effects are expressed as percentages. The subsequent
Tables 5.1 and 5.2 present the effect of the 1%-increase of each parameter
value on the steady state values of states, Â and Ŝ, of costates, λ̂A and λ̂S,
and the Lagrange Multiplier of the active constraint.

The optimal steady states in the base case are boundary control steady
states with control at the upper bound, i.e. v̂∗ = vmax. Thus, the Tables 5.1
and 5.2 contain the Lagrange Multiplier π2. The percentage change in the

93
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Lagrange Multiplier π2 is investigated to find out which parameter changes
are most likely to induce that the boundary control steady state is no longer
a candidate for the optimal solution.

Interpreting the changes in costate values, we have to keep in mind that
the costates are negative. The Tables 5.1 and 5.2 list the change in the abso-
lute value of the costates. Consequently, a positive percentage in the columns
for the costates means that the absolute value of the costate increases, which
means that the value of the costate decreases. In the interpretation of the
costates as shadow prices of an infinitesimal increment in the state, a positive
value means that an increase in the state is internally valued worse under the
new parameters than in the original system. When a shadow price is shifted
to the right on the negative axis, meaning that its absolute value decreases,
the internal validation is less negative. This manifests in a negative value in
the Tables.

5.1.1 Australia

Table 5.1 gives the results of the sensitivity analysis for the unique optimal
steady state Ê1

v̂=vmax
= (0.333455, 0.154617,−3.95724,−2.55002) of the base

case parameterization for Australian IDU.

In each line, the symbol of the single parameter multiplied with 1.01
is listed, followed by the induced changes in steady state values given as
percentages. E.g., if the inflow k to the pool of susceptibles goes up by 1%,
the steady state value Â is increased by 1.318% relative to the base case.
The number of susceptibles increases by 0.181%, |λ̂A| decreases by 0.213%,
and the absolute value of costate λ̂S increases by 0.187%.

The strongest impacts (more than proportional) on the equilibrium values
are encountered when parameters k, µ and vmax are varied. When k increases
by one percent, Â increases by more than 1.3%, π2 by more than 1.4%. The
1%-increase of µ reduces the steady state value Â by more than 1.3%, the
Lagrange Multiplier π2 is decreased by more than 1.4% compared to its base
case value. The increase in the upper bound vmax by 1% leads to decreases
of about 1.1% in |λ̂A| and |λ̂S|. This means that increments in both A and
S are judged negatively, but not entirely as bad as in the base case.

The modification of vmax by +1% has strong impacts on the costate values
in steady state, but 1%-increases in the other parameters of the function g(v),
which are cm, cs, ω, and η, yield only modest changes in the steady state
values.
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Â Ŝ |λ̂A| |λ̂S| π2

k 1.318 0.181 -0.213 0.187 1.408
b 0.365 -0.940 -0.246 0.217 0.468
α -0.352 0.905 0.536 0.0868 -0.478
µ -1.305 0.817 -0.445 -0.846 -1.424
δ -0.369 -0.051 0.193 -0.171 -0.449
cm -0.059 0.152 0.0399 -0.035 0.018
cs 0.059 -0.153 -0.040 0.035 -0.018

vmax 0.059 -0.153 -1.167 -1.093 0.182
w 0.059 -0.153 -0.040 0.035 -0.018
η 0.078 -0.200 -0.053 0.046 0.006

Table 5.1: Effects of a 1%-increase in parameter values on the steady state
values of Êv̂=vmax

and the active Lagrange Multiplier π2 for the Australian
base case parameterization.

The consequences of the increases in parameters in terms of increased or
decreased equilibrium stocks of states and the corresponding Lagrange Mul-
tiplier are mostly as one would intuitively expect thinking of the dynamics
Ṡ and Ȧ (see equations (4.4) and (4.5)).

Increasing k means that more people stream into the pool of suscepti-
bles every year. Thus, we expect a higher Ŝ, and indeed the corresponding
percentage displayed in Table 5.1 is positive. The increased inflow to suscep-
tibility makes the initiation term bAαS larger. This increased flow from S

to A leads to a higher steady state value Â. For the Lagrange Multiplier π2

an increase is detected. Thus, the higher inflow to the pool of susceptibles
assures in a certain sense that the full harm reduction steady state remains
a candidate for optimality. A fearful decision maker could expect that the
negative consequences of harm reduction modeled in g(v) were more likely
to trigger an explosion in use, when the constant inflow k to the pool of sus-
ceptibles was higher. Hence, he or she would most possibly shy away from
a full harm reduction policy. Table 5.1 shows that at least for the high-use
steady state and for a slight increase of 1% in k, the indicator for optimality
of this high-use steady state with full harm reduction is shifted to the right
along the positive axis.

If the epidemic is more virulent, i.e. when the parameter value of b is
larger, Â increases and Ŝ decreases, just as one would expect regarding the
initiation term I(A, S, v) = bAαSg(v) which is an inflow to the pool of users
and an outflow from the pool of susceptibles.
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The increase in the parameter α leads to less users Â in steady state,
whereas the steady state number Ŝ of susceptibles is higher. This is under-
standable due to the fact that for power functions f(A) = Aα with 0 < α < 1,
an increase in α pulls the concave function closer to the line f(A) = A on
the interval A ∈ [0, 1]. In the current context this means, that the conta-
gious effect of current users on susceptibles is reduced. The new system then
reaches a steady state with a lower number of users.

Increasing µ by 1%, the constant outflow µ A is directly reduced, which
decreases the state A. In turn, initiation decreases such that the steady
state value of users is lower, as one would intuitively expect. Further, the
equilibrium value Ŝ is increased.

The increase in δ, which is the fraction of susceptibles that flow out of the
state S (“maturing out”), leads to a decrease in the number of susceptibles
in steady state. Due to the smaller pool of susceptibles from which new users
can be recruited, the equilibrium number of users is decreased as well.

Thinking of the Lagrange Multiplier π2, fearful argumentations could ex-
pect that increases in the infectivity proportionality constant b bear greater
danger under a full harm reduction strategy, because the increases attributable
to application of harm reduction modeled by g(v) multiply the increased b

in the initiation term I(A, S, v) = bAαSg(v). Nevertheless, using 1.01 · b the
steady state with full harm reduction is still optimal and the value of the
Lagrange Multiplier π2 even increases, thus this modification in the parame-
ters does not push the boundary control steady state closer to the borderline
where it ceases being a candidate for optimality. Contrary to this, when α is
decreased, which pushes Aα closer to a linear form, the Lagrange Multiplier
π2 decreases. The same happens, when the outflow µ of drug use or the out-
flow δ of the pool of susceptibles is increased. The results indicate that when
people quit spans of susceptibility quicker, when the contagion effect is less
pronounced, and when desistance is higher, the full harm reduction solution
is still optimal for slight changes. Nevertheless, the decreases in π2 indicates
that if the direction of the change stays the same under larger increases in the
parameters values, the dynamics are affected in a way that might eventually
rule out the full harm reduction steady state from candidacy for optimality.
In a system with more susceptibles (increased k) or an increased proportion-
ality constant of contagion, b, full harm reduction tactics in the steady state
are the appropriate tool.

As stated above, the 1%-changes of the parameters cm, cs, ω and η of the
function g(v) have only a low impact on the steady state values, and are not
analyzed in depth here.
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5.1.2 United States, High-Use Steady State

Table 5.2 summarizes the effects of an increase by 1% in the parameter
values derived for the U.S. cocaine epidemic on the high-use steady state
Ê1

v̂=vmax
= (5.776702, 6.317187,−8.02684,−4.83059).

The most severe changes happen when the parameters k, α or µ are in-
creased. Their 1%-increases induce changes of more then 3% in the Lagrange
Multiplier π2 at the steady state. More than proportionate, but less striking
increases or decreases are encountered for the increase of k (Â and λ̂2), b (Ŝ
and λ̂A), α (Â, Ŝ and λ̂A), µ (Â, Ŝ and λ̂A) and δ (π2).

The changes induced by multiplication of the parameters of the function
g(v) with 1.01 are very moderate only. Particularly so for the 1%-increase in
the upper boundary value for harm reduction, vmax, for which there resulted
over-proportional effects for the system run for Australian IDU.

Â Ŝ |λ̂A| |λ̂S| π2

k 1.793 -0.9915 -1.642 -0.559 3.198
b 0.506 -1.270 -1.062 -0.361 1.404
α 1.380 -3.465 -1.929 -0.027 3.431
µ -1.790 2.027 1.124 -0.014 -3.391
δ -0.515 0.290 0.857 0.292 -1.232
c1 -0.042 0.105 0.089 0.030 0.301
c2 0.042 -0.106 -0.089 -0.030 -0.304

vmax 0.042 -0.106 -0.300 -0.241 0.206
w 0.042 -0.106 -0.089 -0.030 -0.304
η 0.046 -0.115 -0.097 -0.033 -0.293

Table 5.2: Effects of a +1%-change in parameter values on the steady state
with a high number of users Ê1

v̂=vmax
in the U.S. base case parameterization.

5.1.3 United States, No-Use Steady State

The presentation in a Table is omitted, because the no-use steady state
Ê3

v̂=vmax
located at (Â, Ŝ, λ̂A, λ̂S) = (0, 22.176860,−4.00738, 0) is not subject

to many changes. It is obvious, that the steady state value Â = 0 is insensi-
tive to parameter changes. The steady state value of susceptibles Ŝ = k

δ
only

depends on the two parameters k and δ. Looking back on the convergence of
the Lagrange Multiplier π2 (see equation (4.22)) discussed in section 4.3.4,
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the expressions involved in equation (4.24) depend continuously on the pa-
rameters. Hence, the property limA↘0,S→ k

δ
π2 = 0(+) persists. Consequently,

the no-use steady state with v̂ = vmax remains a candidate for optimality
under small variations of the parameter values.

5.2 Bifurcation Analysis

Bifurcation theory detects and explains disruptions in the dynamical behav-
ior under parameter change. Examples for such disruptions are the creation
or annihilation of steady states or the exchange of stability properties of
equilibria.

Thinking of a certain parameter p of a parameter-depending dynamical
system, a parameter value where a bifurcation occurs is called a bifurcation
value or critical value of the system and will be denoted by pc.

A most fundamental type of bifurcation, in which fixed points of a system
are created or destroyed, is the so-called saddle node bifurcation. Alternative
denominations for the catastrophic fold (or tangent) bifurcation in literature
are abundant. A nice denomination for such a creation event is “blue sky
bifurcation”, which refers to the magical emergence of a pair of fixed points
“out of the blue sky”. This type of bifurcation is indeed detected in the
current model with the U.S. parameterization.

The following section 5.2.1 illustrates the annihilation event of steady
states in the two-dimensional system (4.4) and (4.5). In the remainder of this
Chapter, the four-dimensional system (4.17)-(4.20) is analyzed with respect
to bifurcation points. The bifurcation analysis presented here is limited in
the sense that we only focus on two parameters, which are b and µ.

A good introduction to the field of bifurcation theory is given in Grass
et al. (2008). For more comprehensive elucidations on the theoretical and
numerical details, the reader is referred to good textbooks on the specific
subject (e.g., Guckenheimer & Holmes, 1983; Kuznetsov, 1998).

5.2.1 Blue Sky Bifurcation in the Two-Dimensional

System

The results from section 3.7 suggest that decreasing the infectivity propor-
tionality constant b for the U.S. cocaine epidemic induces a change in the
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vector field of the two-dimensional system (4.4), (4.5). The case of a de-
creased parameter value of b might indeed play a role, because there are
hypotheses that the virulence of the U.S. cocaine epidemic has dropped in
its later stages (Tragler et al., 2001; Caulkins et al., 2004; Johnson et al.,
1996).

Remember that the boundary control steady states are located at the
intersection of the isoclines Ȧ = 0 and Ṡ = 0. The inner branch of the
isocline Ȧ = 0 is given by S = µA

bAαg(v)
. As shown in Figure 3.3 it is a

downward sloping line in the U.S. case (α > 1). Recall furthermore that
in section 3.1 we concluded that any steady state of the system is located

along the line Ŝ = k−µÂ

δ
, which is the black line in Figure 3.3. Looking at its

equation S = µA

bAαg(v)
it is clear that the isocline Ȧ = 0 is pushed further away

from the origin, when b decreases. The intermediate-use steady state of the
system is shifted to the right along the line, whereas the high-use steady state
moves to the left along the line. If the critical value bc is reached, a borderline
case is met. The inner branch of the isocline Ȧ = 0 is tangent to the line

Ŝ = k−µÂ

δ
. The intermediate-use steady state and the high-use steady state

collide there. When b decreases further, they do not exist any longer. The
property of tangentiality is helpful in order to compute the critical parameter
values where blue sky bifurcations occur in the two-dimensional system with
boundary control.

In mathematical terms, the tangentiality means that the derivatives with

respect to A of the equations S = µA

bAαg(v)
and Ŝ = k−µÂ

δ
are equal. Addition-

ally the property of a steady state has to be given. Thus, we arrive at a set
of three equations

k − δS − bAα S g(v) = 0, (5.1)

bAα S g(v) − µA = 0, (5.2)

µ(1 − α)

bg(v)
A−α = −µ

δ
. (5.3)

We substitute the base case parameters k, δ, α, µ and the parameter
values for g(v) into the system (5.1)-(5.3), and solve it simultaneously to
obtain the critical parameter value bc and the corresponding steady state
(Âc, Ŝc).

In the uncontrolled case, this yields the critical steady state Âv̂=0
c =

2.901002, Ŝ v̂=0
c = 14.212291, and the critical parameter value bv̂=0

c = 0.006434.

In the system with full harm reduction the blue sky bifurcation occurs at
Âv̂=vmax

c = 2.901002, Ŝ v̂=vmax

c = 14.212291, and the critical parameter value
is bv̂=vmax

c = 0.005885.
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Figure 5.1: Illustration of the annihilation event of intermediate- and high-
use steady state when b declines for the U.S. cocaine epidemic

Figure 5.1 sheds light on the annihilation event when b changes. In both

panels, the line Ŝ = k−µÂ

δ
is shown in black on the (A, S)-plane, whereas

the different curves show the inner branch of the isocline Ȧ = 0 for different
values of b.

Panel a) depicts the case when there is no harm reduction, i.e. v̂ = 0.
The gray dashed curve is for the base case value b = 0.009, the gray solid
curve illustrates the case of the higher value b = 0.015, where the steady
states are located further away from each other. The black dashed curve
depicts the borderline case of bv̂=0

c = 0.006434 where the saddle and the node
of the two-dimensional system collapse into a single steady state. The black
solid curve shows the case b = 0.0053, where infectivity is so low, that fixed
points with Â > 0 do not exist.

Panel b) shows the same phenomenon for full harm reduction control
v̂ = vmax. The gray dashed curve gives the inner branch of the isocline Ȧ = 0
for the base case value b = 0.009, the gray curve illustrates the location of the
equilibria in the case b = 0.015, the black dashed curve depicts the borderline
case bv̂=vmax

c = 0.005885, and the black solid curve shows the case b = 0.0053,
where infectivity is so low, that the two fixed points with intermediate and
high levels disappear.
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Note that for all those variations of b, the no-use steady states of the two-
dimensional system remain unchanged at Êv̂=0 = Êv̂=vmax

= (Â, Ŝ) = (0, k
δ
).

5.2.2 Bifurcation Analysis in the Four-Dimensional Sys-

tem

Figure 5.1 displays isoclines and steady states on the (A, S)-plane to visualize
the collision and annihilation of the intermediate-use saddle and the high-
use focus. Bifurcation diagrams provide the same information, but display
the parameter that undergoes the variation and the corresponding steady
state values. The steady states of the canonical system (4.17)-(4.20) have
four components, thus in a two-dimensional plot, only one can be displayed,
which is Â in what follows.

For the simple investigation whether annihilations or creations happen for
variation of a parameter value, analysis of the two-dimensional system like
conducted in the preceding section is sufficient. Nevertheless, the canonical
system (4.17)-(4.20) of the optimally controlled system is richer and more
conclusions can be drawn. The computations then also provide the appro-
priate costate values λ̂A and λ̂S. We determine the Lagrange Multipliers for
the boundary control steady states. This allows for insight for which param-
eter values the boundary control steady states are candidates for optimality
and for which not.

Additionally, the bifurcation analysis is conducted for the steady states
with steady state control v̂ from equation (4.16). This investigation provides
the information for which parameter values there exist steady state solutions
with feasible interior control 0 < v̂i < vmax.

Bifurcation Analysis with Respect to the Parameter µ for Aus-

tralian IDU

In the case of Australian IDU, where the epidemic spreads with an exponent
α < 1, a single candidate for optimality is encountered. It is a steady state
with upper boundary control v̂∗ = vmax. Any trajectory that emanates in
the first quadrant of the (A, S)-plane will eventually reach this steady state.
Due to the shape of the isoclines, we expect that under parameter variation,
there only occurs a shift of the boundary control steady state along the line

Ŝ = k−µÂ

δ
, but that additional steady states do not emerge.

Figure 5.2 shows the bifurcation plot when µ varies. At the base case
parameter value µBC = 0.1136 there is vertical dashed line colored black.
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Figure 5.2: Bifurcation diagram with respect to the parameter µ for the
steady states Â with boundary control in the case of Australian IDU

The bifurcation analysis emanates from the black dots located at this line.
The green solid line shows how the steady state value with v̂ = 0 changes
when µ decreases. The blue solid line shows how the decrease in µ affects
the steady state value of drug use when v̂ = vmax. The dashed lines show the
consequences of an increase in the value of the parameter µ.

The bifurcation lines show that when the outflow µ of drug use is reduced,
the steady state value in either boundary control system increases. To the
contrary, when more people cease use every year, the steady state numbers
decline.

The black dot labeled NS1 located on the blue dashed bifurcation line
indicates that at µ = 0.1189 > µBC a bifurcation point is detected in the
system with full harm reduction v̂ = vmax. The corresponding steady state
of the canonical system is located at Â = 0.3139, Ŝ = 0.1605, λ̂A = −3.8777,
λ̂S = −2.4521. It is a neutral saddle, and the Jacobian Matrix evaluated at
this steady state exhibits the Eigenvalues
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ξ1 = 0.232076,

ξ2 = −0.192076,

ξ3 = 0.192076,

ξ4 = −0.152076.

In the system without harm reduction, i.e. v̂ = 0, we encounter the
neutral saddle NS2 at µ = 0.1094 < µBC . The according steady state values
are Â = 0.321376, Ŝ = 0.183081, λ̂A = −9.052919, λ̂S = −5.313421. The
Jacobian Matrix evaluated at this steady state has the Eigenvalues

ξ1 = 0.211193,

ξ2 = −0.171193,

ξ3 = 0.171193,

ξ4 = −0.131193.

The crucial property of neutral saddles is that there is a pair of Eigen-
values with opposite signs that sum up to zero. In the present cases, the
pairs are made up by ξ2 and ξ3 in each case. At the bifurcation line that
is crossed here, nothing dramatic happens. The steady states for parame-
ter values close to the critical parameter still exist and are of saddle point
stability. Therefore, neutral saddles are not analyzed further.

The subplot of Figure 5.2 shows the Lagrange Multipliers π1 and π2 eval-
uated at the corresponding steady state as a function of the parameter µ.
In the neighborhood of the base case parameter µBC = 0.1136 the Lagrange
Multiplier π1 is negative, whereas π2 is positive. Only for parameter values
as high as µ ≈ 0.48 the Lagrange Multiplier π1 switches to positive values.
Increasing µ even further to about µ ≈ 0.65 leads to π2 < 0. This means
when the desistance from IDU is high, the no harm reduction policy becomes
a candidate for the optimal solution.

As stated in section 4.2.1, for the base case parameter values for Aus-
tralian IDU there do not exist steady states with v∗ from equation (4.16).
Given the previously described change of the signs of the Lagrange Multipli-
ers for values of µ around µ = 0.6, the system with that parameter value was
analyzed with respect to bifurcations and feasibility of control. There exists
a steady state with v̂ = 0.4131 at Â = 0.0070, Ŝ = 0.5083, λ̂A = −3.8480,
λ̂S = −0.2220. From there, the bifurcation analysis was conducted. The red
curve in Figure 5.3 shows the value of Â as a function of µ. Feasibility of the
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Figure 5.3: Analysis of steady states with control v̂ from equation (4.16)
under variation of the parameter value of µ in the case of Australian IDU.

steady state solution is given only for those values of the parameter µ, for
which the green dashed curve representing control as given by equation (4.16)
is located between the horizontal black lines. The black solid line indicates
the lower bound v = 0, whereas the black dashed line shows v = vmax.

From Figure 5.3 we infer that for values between µ ≈ 0.47785 and µ ≈
0.66725 there exists a steady state with feasible control 0 < v̂i < vmax.
Those values are close to the values for which the Lagrange Multipliers at
the steady states of both boundary control systems are positive. Although
from a mathematical point of view the investigation of the system with such
values of the parameter µ is interesting, we omit those investigations due to
the fact that quitting rates between µ = 0.48 and µ = 0.67 are quite high
compared to the base case value µBC = 0.1136.

Bifurcation Analysis with Respect to the Parameter b for Aus-

tralian IDU

The results from the bifurcation analysis for IDU in Australia with respect
to the parameter b are shown in Figure 5.4. When the value of b declines
compared to the base case value bBC = 0.5112, the steady state number of
users in both boundary control scenarios declines, which is represented by
the solid lines (green for v̂ = 0, blue for v̂ = vmax). For increased values of b,
the steady state numbers grow, which is visible from the dashed lines.

Neutral saddles are encountered, which are labeled NSm1, NSm2 (system
with v̂ = vmax, blue bifurcation curve), NSn1 and NSn2 (system under v̂ = 0,
green bifurcation line). Those steady states are not investigated in detail.
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Figure 5.4: Bifurcation diagram with respect to the parameter b for the
unique interior steady states Â with boundary control for IDU in Australia

The Lagrange Multipliers π1 and π2 along the bifurcation lines are de-
picted in the little subplot of Figure 5.4. For any value of b the upper bound-
ary control steady state is a candidate for optimality (π2 > 0), whereas
the Lagrange Multiplier π1 for the lower boundary control steady states is
negative and hence this steady state is not a candidate.

It was investigated whether there exist steady states with v∗ from equa-
tion (4.16) for values of the parameter b different from the base case param-
eter value bBC = 0.5112. Such steady states do not exist.

Bifurcation Analysis with Respect to the Parameter µ for U.S.

cocaine

Figure 5.5 shows the bifurcation plot with respect to the parameter µ for
the steady states in the case of the U.S. cocaine epidemic. The blue curve
gives the bifurcation line under full harm reduction v̂ = vmax, the light green
curve is for the system without harm reduction v̂ = 0. The solid lines de-
pict the steady state numbers at the high-use steady states as a function
of the parameter µ, the dashed lines show the steady state numbers of the
intermediate-use equilibria when µ changes. The dark green curve is the bi-
furcation plot for the steady state with control v̂ from equation (4.16). At
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the base case parameter value µBC = 0.1661, there is a vertical dashed line
in black, denoting where the computations for the bifurcation analysis begin.

The bifurcation lines show that when µ decreases the high-use steady
state’s number of users increases, whereas the number of users in the inter-
mediate-use steady state decreases. When the parameter value µ increases,
the high-use steady state number of users decreases, whereas Â increases at
the intermediate-use steady state.

Along any of the bifurcation lines, there occurs a blue sky bifurcation.
The critical parameter values are µv̂=0

c = 0.2060 for the light green bifur-
cation line of the system with lower boundary control v̂ = 0, µv̂=vmax

c =
0.2181 for the blue bifurcation line of the system with upper boundary
control v̂ = vmax, and µv̂i

c = 0.4822 for the dark green bifurcation line of
the system with v̂ from equation (4.16). The corresponding steady states
of the four-dimensional system are located at Â = 2.3396, Ŝ = 14.2123,
λ̂A = −176.9738, λ̂S = −44.6426 for v̂ = 0, at Â = 2.2096, Ŝ = 14.2123,
λ̂A = −227.6043, λ̂S = −57.4144 for v̂ = vmax, and at Â = 0.721935,
Ŝ = 16.423249, λ̂A = −0.409003, λ̂S = −0.071234, with control v̂ = 1.04056
which is not feasible.

Apart from these blue sky bifurcation points labeled BSn, BSm and BSi
on Figure 5.5, other bifurcation points are found. Several neutral saddles
are encountered which are not discussed in detail. The occurring Hopf bi-
furcation points Hn and Hm are of greater interest. This type of bifurcation
denominates the event that a pair of conjugate complex Eigenvalues is purely
imaginary. In the phase portrait around such a steady state periodic solu-
tions occur.

As before, the Lagrange Multiplier of the active boundary control con-
straints is evaluated along the bifurcation lines for the boundary control
steady states. The resulting information is provided in the subplot of Fig-
ure 5.5. The Lagrange Multiplier π1 at the intermediate-use steady states of
the uncontrolled system (dashed branch of the light green curve) is negative.
Symmetrically in a certain sense, along the dashed branch of the blue curve
which gives the bifurcation line of the intermediate-use steady state with
upper boundary control, a positive Lagrange Multiplier π2 > 0 is computed.
We expect that this steady state will be located in the basin of attraction of
the optimal no-use steady state and that one can show that it is dominated
analogously to what turned out in section 4.5.2 for the base case, but this
has to be investigated in detail for any concrete parameter value.

The solid branch of the light green curve, denoting the high-use steady
states under the pure use reduction regime, evaluates to negative Lagrange



Chapter 5: Sensitivity and Bifurcation Analysis 107

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6

BSm

BSi

BSn

HmHn

µBC

µ

Â

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

−6

−2

2 

6 

π1

π2

µ1µ2

Figure 5.5: Bifurcation diagram with respect to the parameter µ for the
steady state values Â for the U.S. cocaine epidemic

Multipliers π1 for any µ < µ1 = 0.1938. For rates of desistance higher
than this, the high-use steady state with v̂ = 0 has π1 > 0. Along the
upper branch of the blue bifurcation line the steady states exhibit a positive
Lagrange Multiplier π2 > 0 for parameters µ < µ2 = 0.2048. For fractions
of quitters from drug use higher than this, the Lagrange Multiplier π2 of
the upper boundary control steady state with high-use is negative. The
parameter values µ1 and µ2 are indicated by the black little bars along the
blue and light green bifurcation line in Figure 5.5.

Along the dark green bifurcation line for the system with control taken
from equation (4.16), the respective control values v̂ were computed. Steady
states evaluating interior control values 0 < v̂ < vmax are feasible. The red
segment of the dark green curve shows that exactly for parameter values µ1 <

µ < µ2 there exist steady states with interior control values. Furthermore, for
parameter values between µ = 0.038822 and µ = 0.039225 control evaluates
to feasible values. The corresponding segment of the dark green bifurcation
curve is not visible in Figure 5.5. Those steady states are not analyzed here
because the corresponding quitting rates are low.

We now continue the discussion of the Hopf bifurcations points. The
critical parameter values are µv̂=0

c = 0.2014 in the system without harm
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reduction and µv̂=vmax

c = 0.2108 in the system with full harm reduction. The
steady state for µv̂=0

c = 0.2014 is located at Â = 3.0908, Ŝ = 11.8889,
λ̂A = −28.7570, λ̂S = −9.8495. The steady state values for µv̂=vmax

c = 0.2108
are Â = 3.1052, Ŝ = 11.3552, λ̂A = −19.7673, λ̂S = −7.2063.

From Figure 5.5 we infer that the Hopf bifurcation point Hm evaluates
to a Lagrange Multiplier π2 < 0. Thus, it is not a candidate for optimality
and therefore further investigation is omitted.

The Hopf bifurcation steady state Hn in the system without harm re-
duction occurs for the parameter value µv̂=0

c = 0.2014, which happens to lie
on the arc of the light green bifurcation line where π1 is positive. For the
critical parameter value, there also exists a steady state with interior control.
In order to determine what happens there, a detailed analysis of the system
for the critical parameter value has to be conducted. Although this is an
interesting endeavor, it is omitted in this thesis.

Bifurcation Analysis with Respect to the Parameter b for U.S. co-

caine

Figure 5.6 shows the bifurcation diagram for the steady states when the pro-
portionality constant b for the virulence of the U.S. cocaine epidemic varies.
The black dashed line at bBC = 0.009 represents the base case parameter
value.

The blue and light green curves show the same feature presented as in
Figure 5.1, but shed light on the situation from another point of view. Figure
5.1 shows how the intermediate- and high-use steady states on the (A, S)-
plane move closer and closer when b declines, and that those steady state
finally cease to exist when the parameter passes a critical value. In Figure
5.6 the steady state value Â is shown as a function of the parameter b. The
light green dashed line depicts Â at the intermediate-use steady state of the
system with v̂ = 0, the solid line shows the high-use steady state number of
users in the uncontrolled system. Analogously, the blue dashed line presents
the intermediate-use number Â when v̂ = vmax, whereas the solid blue line
shows the corresponding high-use steady state value of A. When the value
of b declines, the values along the high- and intermediate use branch come
closer and closer to each other, until they finally collide at the blue sky bifur-
cation points labeled BSn and BSm in Figure 5.6. At the critical parameter
values bv̂=0

c = 0.006434 (indicated by the vertical light green dashed line) the
blue sky bifurcation happens in the uncontrolled system. The corresponding
steady state values are Â = 2.901002, Ŝ = 14.212291, λ̂A = −81.315631,
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Figure 5.6: Bifurcation diagram with respect to the parameter b for the
steady states Â for the U.S. cocaine epidemic

λ̂S = −20.512316. In the system with v̂ = vmax, we get bv̂=vmax

c = 0.005885
which is highlighted by the blue dashed vertical line, and Â = 2.901002,
Ŝ = 14.212291, λ̂A = −67.160206, λ̂S = −16.941532. The critical parameter
values bv̂=0

c and bv̂=vmax

c are of course exactly the ones derived from equations
(5.1)-(5.3) in section 5.2.1.

With respect to the boundary control steady states, Figure 5.6 directly
implies the following conclusion over the existence of such steady states.
Please note that in both boundary control systems we encounter the no-use
steady state at (Â, Ŝ) = (0, k

δ
), independent of the value of b.

for







b < 0.005885 2 steady states at Â = 0
b ∈ (0.005885, 0.006434) + 2 steady states with v̂ = vmax

b > 0.006434 + 2 steady states with v̂ = 0

(5.4)

The dark green curve in Figure 5.6 gives the bifurcation plot for the
steady states with v̂ derived from equation (4.16). When the parameter
value of b declines relative to the base case value, there happens a blue sky
bifurcation. The critical parameter value is bv̂i

c = 0.001971, with steady state
values Â = 1.891598, Ŝ = 16.983563, λ̂A = −1.455114, λ̂S = −0.226214.
Please note that the corresponding control value is v̂ = 1.01861 > vmax,
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which is not feasible. The respective point in the (b, Â)-plane on Figure 5.6
is labeled BSi.

At the base case parameter value bBC , a steady states with control 0 <

v̂i < vmax was not found (see section 4.2.2). There arises the question whether
there exist values of the parameter b for which 0 < v̂i < vmax holds. The
answer is shown graphically in Figure 5.7. We first discuss the signs of the
Lagrange Multiplier at the boundary control steady states. The according
information is given in the left panel of Figure 5.7. The light green dashed
line shows that along the intermediate-use branch of the system with v̂ = 0,
there always holds π1 < 0. Along the high-use branch (light green solid
curve), π1 < 0 for large values of b, but at b = 0.006942 the Lagrange
Multiplier π1 becomes positive. Symmetrically in a certain sense, along the
intermediate-use branch of the system with upper boundary control (blue
dashed curve), there holds π2 > 0, whereas along the high-use branch (blue
solid curve) there holds π2 > 0 as long as the value of b is large enough.
At b = 0.006332 the Lagrange Multiplier π2 changes its sign. Evaluating v̂

along the dark green bifurcation line results in the dark green dashed and red
solid line in the right subplot of Figure 5.7. The light green and blue lines
show the Lagrange Multipliers π1 and π2 at the high-use steady states as a
function of the parameter b, the dark green dashed line shows steady state
control v̂ from equation (4.16). The red line denotes interior control values
0 < v̂i < vmax. It shows that steady states with interior control 0 < v̂i < vmax

exist for parameter values between b = 0.0063373 and b = 0.0069363, i.e.,
those steady states occur for the values of b for which both boundary control
steady states exhibit a positive Lagrange Multiplier.

Please note that the simple analysis conducted here only gives a statement
on the existence of steady states. The investigation of the dimension of the
stable manifold of the steady states, the determination whether dominated
equilibria exist among the possibly multiple candidates for optimality, and
the analysis whether DNSS curves or indifference curves occur has to be
conducted for each parameter value in particular.

Along the bifurcation lines there occur neutral saddles. They are labeled
NSn, NSm and NSi in Figure 5.6, but due to the fact that they are neutral
saddles, the are not analyzed in more detail. The three dots located close to
BSn and BSm points resulting from the continuation of the bifurcation line,
they do not denote bifurcation points.
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Figure 5.7: Lagrange Multipliers π1 and π2, and control v̂ when b varies for
the U.S. cocaine epidemic

5.2.3 Conclusions from the Bifurcation Analysis

The shifts in boundary control steady state values for U.S. cocaine and Aus-
tralian IDU correspond to rational expectations how Â would evolve under
variations of b and µ.

The additional investigation of the existence and feasibility of steady
states with interior control 0 < v̂i < vmax showed that when the Lagrange
Multipliers of the boundary control steady states computed for the U.S.
cocaine epidemic change their sign, there exist such steady states with feasible
control 0 < v̂i < vmax.

Nevertheless, the information derived here does not allow drawing direct
conclusions with respect to the optimal phase portrait. For statements on
the issue of optimality, a detailed investigation of the system under a new
parameter value is necessary. The first section of the subsequent Chapter
6 is devoted to the example of the important problem of a lower parameter
value b for the U.S. cocaine epidemic.



Chapter 6

Variations of the Model

The parameterizations derived for the model cannot be expected to reflect
exact values. Hence, a sensitivity analysis was conducted and bifurcations
were investigated, which gave interesting and important insights. Further-
more, the base case model neglects control cost and innovators into drug
consumption. This Chapter presents results from models where parameter
values or functional forms are modified.

6.1 Decreasing the Virulence of the U.S. Co-

caine Epidemic

There are hypotheses that the virulence of the U.S. cocaine epidemic has
dropped at the later stages of the epidemic (Tragler et al., 2001; Caulkins
et al., 2004; Johnson et al., 1996). The results of section 3.7 allude to a
change in the vector field of the system when the contagion proportionality
constant b decreases. This motivated the bifurcation analysis with respect
to the parameter b in section 5.2. It revealed that there happens a blue sky
bifurcation. When b falls down to about two thirds of its base case value, the
intermediate-use and high-use steady states of the system do not exist any
longer. Checking the respective Lagrange Multipliers along the bifurcation
lines revealed that for a certain interval around the critical parameter values,
both boundary control steady states with a high number of users exhibit a
positive Lagrange Multiplier. Hence both are candidates for optimality.

Consequently, it is interesting to determine the solution to the optimal
control model for a lower value of the parameter b. All other parameters

112
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are kept at their base case values derived for the U.S. cocaine epidemic (see
Table 2.1).

The parameter b = 0.0065 is appropriate to create a system that is as
rich as outlined above. Looking back on the existence overview from equation
(5.4), we observe that b = 0.0065 is large enough, such that six steady states
with boundary control exist. Furthermore, for the new parameter value the
high-use steady state of the system without harm reduction (upper branch of
the green bifurcation line in Figure 5.6) is located on the arc where π1 > 0.
On the other hand, the new b = 0.0065 is larger than b2 = 0.006332, where the
Lagrange Multiplier π2 becomes negative. Hence, the high-use steady state
with upper boundary control is still among the candidates for optimality, and
the high-use steady state without harm reduction joins the pool of candidates.

6.1.1 Analysis of Steady States

Searching for Steady States with Interior Control

Before going into depth with the analysis of the boundary control steady
states, the existence of steady states with interior control has to be assessed.
Two steady states are encountered. The first one is located at

(Â, Ŝ, λ̂A, λ̂S) = (0.107571, 21.8815,−0.9175,−0.0074)

with control v̂ = 1.04678 > vmax, so it is not feasible. The second one is
located at

(Â, Ŝ, λ̂A, λ̂S) = (4.13633, 10.8208,−18.4676,−7.1501)

with control v̂ = 0.1271 ∈ [0, vmax]. It is feasible, but the Jacobian Matrix of
the system evaluated at this steady state exhibits the Eigenvalues

ξ1,2 = 0.02 ± 0.114257 i,

ξ3 = 0.107323,

ξ4 = −0.0673225.

It has only a one-dimensional stable manifold, and can thus be excluded.

Boundary Control Steady States with v̂ = 0

Next, the three boundary control steady states with v̂ = 0 are investigated.
The first one is located at

(Â, Ŝ, λ̂A, λ̂S) = (0, 22.1769,−4.8520, 0)
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with Lagrange Multiplier π1 = 0, where analogously to the investigations in
section 4.3.4 there holds limA↘0,S→ k

δ
π1 = 0(−).

The second one is the intermediate-use steady state at

(Â, Ŝ, λ̂A, λ̂S) = (2.46965, 15.3965,−813.324,−170.433) =: P̂v̂=0.

It exhibits a positive Lagrange Multiplier π1 = 121.997, but the Jacobian
Matrix evaluated at the steady state has the Eigenvalues

ξ1 = 0.0718859,

ξ2 = 0.0378254,

ξ3 = −0.0318859,

ξ4 = 0.00217463.

Only one of them is negative, thus there is only a one-dimensional stable
manifold leading to the steady state P̂v̂=0. As a candidate for optimality it
is hence of no relevance. The following investigation shows that the one-
dimensional stable manifold still plays a role in the optimal phase portrait.

The third fixed point with boundary control v̂ = 0 is the high-use steady
state located at

(Â, Ŝ, λ̂A, λ̂S) = (3.35206, 12.9739,−40.8588,−12.2265) =: Ĉv̂=0

with a positive Lagrange Multiplier π1 = 4.17192. The Eigenvalues of the
Jacobian Matrix are

ξ1,2 = 0.0451663± 0.0383409 i,

ξ3,4 = −0.00516634 ± 0.0383409 i.

One of the two pairs of conjugate complex Eigenvalues has a negative real
part, which classifies the steady state as fixed point of saddle type having
a two-dimensional stable manifold. Hence, it is a candidate for an optimal
long-run steady state, which motivates the notation C.

Boundary Control Steady States with v̂ = vmax

We proceed with the three boundary control steady states with upper bound-
ary control. The numerically determined no-use steady state is located at

(Â, Ŝ, λ̂A, λ̂S) = (0, 22.1769,−4.0074, 0) =: Ĉv̂=vmax
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with a Lagrange Multiplier π2 = 0. Analogously to the investigations in sec-
tion 4.3.4 it can be shown that there holds limA↘0,S→ k

δ
π2 = 0(+). This means

that when conducting the backwards calculation from points close around the
no-use steady state, the Lagrange Multiplier is positive and the computed
solutions are optimal. With respect to the costate λS the argumentation is
also analogous to section 4.3.4. There holds limA↘0,S→ k

δ
λS = 0(−), which

corresponds to our expectation of negative costates. The Eigenvalues of the
linearized system around the steady state Ĉv̂=vmax

are

ξ1 = 0.2061,

ξ2 = −0.1661,

ξ3 = 0.1005,

ξ4 = −0.0605.

They are real and two of them are negative, thus the saddle node Ĉv̂=vmax
is

a candidate for optimality, too.

The intermediate-use steady state of the system with full harm reduction
is encountered at

(Â, Ŝ, λ̂A, λ̂S) = (1.65192, 17.6416, 45.0157, 6.0329) =: D̂1
v̂=vmax

.

It has a positive Lagrange Multiplier π2 = 7.62217, but the costate values
are positive in this equilibrium. This does not correspond to the expectation
that the shadow prices of users and susceptibles in the model should be
negative. It can easily be shown that remaining at the steady state D̂1

v̂=vmax

is dominated by a trajectory that emanates from the steady state’s projection
to the (A, S)-plane, but leads to the no-use steady state Ĉv̂=vmax

. The fact
that it is dominated is the reason for the label D.

The high-use steady state of the four-dimensional system with v̂ = vmax

is

(Â, Ŝ, λ̂A, λ̂S) = (4.33609, 10.2723,−15.4585,−6.35265) =: D̂2
v̂=vmax

.

It exhibits a positive Lagrange Multiplier π2 = 0.67549. The Jacobian Matrix
evaluated at this point has Eigenvalues

ξ1,2 = 0.0587654 ± 0.0752474 i,

ξ3,4 = −0.0187654 ± 0.0752474 i.

The high-use steady state D̂2
v̂=vmax

is of saddle type and principally represents
another candidate for optimality. Nevertheless, the subsequent analysis re-
veals that it is dominated by the no-use steady state Ĉv=vmax

.
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6.1.2 Determination of Optimal Steady States

This is a typical case of multiple candidates for the optimal long-run steady
state(s). The information on the dominated steady states D̂1

v̂=vmax
and D̂2

v̂=vmax

is given in advance to make notation clear, but actually it turns out only later
during the backward calculation. This backward calculation to analyze the
structure of the phase portrait around the fixed points is now presented in
several steps.

Possible Basin of Attraction of Ĉv̂=0

The first step is the backward calculation around the high-use steady state of
the system without harm reduction, Ĉv̂=0. Please note that it is depicted as a
blue dot in Figure 6.1. The trajectories determined by backward calculation
with control v = 0 are depicted in light gray in Figure 6.1. Above we found
that the neighboring steady state P̂v̂=0 (the blue cross in Figure 6.1) exhibits
a one-dimensional stable manifold. The gray pocket shown in Figure 6.1
is the projection of that manifold onto the (A, S)-plane. Parts of the gray
trajectories shown in Figure 6.1 will turn out to be indeed optimal, whereas
for certain domains of the regions in the pocket there will exist trajectories
that lead to another steady state an perform better in terms of maximization
of the negative objective functional.

Dominated Steady States

The second step is the backward calculation from the no-use steady state
Ĉv̂=vmax

. Figure 6.2 shows that the projections of the steady states D̂1
v̂=vmax

and D̂2
v̂=vmax

onto the (A, S)-plane happen to fall in the basin of attraction

of the no-use steady state Ĉv=vmax
. The steady states are shown as green

crosses. Figure 6.2 depicts the trajectories emanating from the (A, S)-values
of D̂1

v̂=vmax
and D̂2

v̂=vmax
, respectively, and ending up in the no-use steady

state Ĉv̂=vmax
as black curves. Making use of formula (4.25), one finds that

remaining at the intermediate-use steady state D̂1
v̂=vmax

forever yields a value
of the objective functional of J = −34.1087, whereas the path leading to the
no-use steady state Ĉv̂=vmax

results in J∗ = −22.4205. Staying forever at the
fixed point with a high numbers of users at D̂2

v̂=vmax
yields J = −89.5316,

compared to the value J∗ = −81.3576 resulting for the trajectory that con-
verges to the no-use steady state Ĉv̂=vmax

. Hence, the intermediate-use steady
state D̂1

v̂=vmax
and high-use steady state D̂2

v̂=vmax
are both dominated by the

no-use steady state Ĉv̂=vmax
.
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Figure 6.1: Trajectories with v = 0 around the high-use steady state Ĉv̂=0,
enclosed by a pocket created by the one-dimensional stable manifold of the
steady state P̂v̂=0. Note that some of the gray trajectories are not optimal,
which turns out only later.

The red dots shown in Figure 6.2 are the steady states from the un-
restricted maximization problem that were not feasible. The blue symbols
(dots and cross) show the steady states with lower boundary control v̂ = 0,
whereas the green crosses depict the steady states with upper boundary con-
trol v̂ = vmax. The curves in blue and green indicate where switches in the
system happen. When interpreting Figure 6.2, please note that the Figure
only provides the information on the switches necessary for this part of the
analysis; the large region in the upper right of Figure 6.2 still has to be
analyzed.

For the two trajectories (black) shown in Figure 6.2, optimal control at
the initial points and during the first part of the planning horizon is v∗ = 0.
At the green curve, the Lagrange Multiplier π1 of the active constraint hits
zero, meaning that the boundary control solution v = 0 is no longer optimal.
The optimized system switches to interior control. Harm reduction v then
gradually increases, until optimal control v∗ hits the upper bound at v∗ =
vmax. This is represented by the blue curve. There, the optimized system
switches to upper boundary control, which is optimal until the steady state
Ĉv̂=vmax

with zero users is finally reached.
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Figure 6.2: The no-use steady state Ĉv̂=vmax
dominates the steady states

D̂1
v̂=vmax

and D̂2
v̂=vmax

.

Indifference Curves and DNNS Curve

The next steps of the backward calculation reveal first an indifference curve
for trajectories that eventually approach the no-use steady state Ĉv̂=vmax

. In
Figures 6.3 and 6.4 it is shown as a blue curve.

Proceeding with the backward calculation, trajectories that eventually
lead to the no-use steady state Ĉv̂=vmax

overlap the pocket around the high-
use steady state Ĉv̂=0. Investigation of the Hamiltonian in the critical region
reveals a DNSS curve. The DNSS curve is shown in black in Figures 6.3
and 6.4. The occurrence of the DNSS curve reveals that parts of the gray
trajectories shown in Figure 6.1 are not optimal. A DNSS curve is different
from an indifference curve in view of the fact that emanating from a point
on the DNSS curve, the decision maker is indifferent between convergence to
different steady states. In the current case, the black curve acts as a separa-
trix between convergence to the high-use steady state Ĉv̂=0 and convergence
to the no-use steady state Ĉv̂=vmax

. The curve is the borderline where two
alternatives perform equally optimal in terms of the value of the objective
functional. There exists no unique solution; both options are equal in terms
of aggregate cost. The curve is a hairline case, for which the decision maker
can choose which one of the steady states he or she wants to approach. Lo-
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Figure 6.3: Optimal control and optimal phase portrait for the U.S. cocaine
epidemic with decreased b

cated a bit to the left or to the right of the DNSS curve, there exists a unique
optimal solution.

The final finding when investigating the optimal phase portrait for the
case of reduced infectivity of the U.S. cocaine epidemic is that some trajecto-
ries wind back around the region where trajectories converge to the high-use
steady state Ĉv̂=0. There exists another indifference curve, which is shown
in red in Figures 6.3 and 6.4.

6.1.3 Interpretation of the Indifference Curves and the

DNSS Curve

Figures 6.3 and 6.4 depict optimal control as a function of the states A and
S. Like in the kindred Figures 4.1 and 4.6 shown for the base case param-
eterizations, the white region indicates where on the (A, S)-plane optimal
control is given by the pure use reduction regime, i.e. v∗ = 0. At the other
extreme, the darkest gray region shows where v∗ = vmax. The other gray re-
gions stand for optimal interior control values 0 < v∗

i < vmax. The shading is
leveled depending on whether control interventions amount up to one third,
two thirds or the full extent of the available harm reduction interventions.
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Figure 6.4: Detailed plot of optimal control around the DNSS curve and
indifference curves

Exposition of the optimal development of states takes a back seat in that
Figures. Only some of the optimal trajectories are depicted in order to show
more clearly the structure of the optimal phase portrait. The little arrows
are of particular importance, because they help to understand how the states
A and S evolve.

Figure 6.4 zooms in to the region where the indifference curves (red and
blue) and DNSS curve (black) are located. The curves provide initial con-
ditions for which a decision maker is indifferent between two possibly quite
distinct control strategies inducing different courses of the drug epidemic.
Indifference stems from the fact that the two strategies evaluate the same
value of aggregate social cost. This allows for interesting interpretations.
It should be emphasized that indifference curves and DNSS curves are not
merely an abstract mathematical feature. To the contrary, they can yield
important insights. Grass et al. (2008) bring a brilliant statement on the
issue of DNSS curves:

“Multiplicity means that for given initial states there exist multiple opti-
mal solutions; thus the decision-maker is indifferent about which to choose.
This explains why such initial states are called points of indifference. In con-
trast, history-dependence occurs when the optimal solution depends on the
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problem’s temporal history.

The existence of multiple equilibria has been long-recognized in physics,
and more recently has provided an important enrichment of economic con-
trol models. In policy-making, it may be crucial to recognize whether or not
a given problem has multiple stable optimal equilibria and, if so, to locate
the thresholds separating the basins of attraction surrounding these differ-
ent equilibria. At such a threshold different optimal courses of actions are
separated. Thus, in general, starting at a threshold, a rational economic
agent is indifferent between moving toward one or the other equilibrium.
Small movements away from the threshold can destroy the indifference and
motivate a unique optimal course of action. Among the economic conse-
quences of such an unstable threshold is history-dependence (also denoted as
path-dependence): the optimal long-run stationary solution toward which an
optimally controlled system converges can depend on the initial conditions.”
(Cited from Grass et al. (2008), p.237.)

In the subsequent interpretations on the indifference curves and the DNSS
curve, the following, general insight is important. The drug control policy
alternatives that are separated by the curves, and the trajectories of use that
stem from those policy options, show a trade-off either between different
effects in the short run or between effects in the short and in the long run.
As a basic notion for such ideas, please note the following: For any of the
trajectories that emanates from the curves, the one strategy always involves
a lower initial value v(0) = vL of harm reduction, whereas the other strategy
has a higher initial amount v(0) = vH of harm reduction. When the option
with vL is chosen, levels of use decline first. When initiating control with
v(0) = vH , numbers of users increases first. The detailed interpretation of
trade-offs is now given for each curve separately.

Indifference Curve #1

The blue indifference curve contrasts two different scenarios for the develop-
ment of a drug epidemic in the short run. In the long run, the policies follow
an identical control pattern and the cocaine epidemic approaches the no-use
steady state. Taking the decision in favor of the higher initial control vH ,
which is vH = vmax in this case, the decision maker accepts larger numbers of
users at the beginning. The benefit from this is the reduction of social cost
to a fraction 1 − vmax along the first part of the transient. The other option
is to choose the lower initial control value vL, which means in this case either
to do no harm reduction first or to begin at some interior level, but let harm
reduction decline to v∗ = 0 in the following time span. That decision leads
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to an immediate reduction in the number of users, but initially the decision
maker cannot benefit from the reduction in social costs. The tension between
reduction of users, but high cost in the objective function on the one side,
and reduced social cost in the objective function, but increased in use on
the other side, contributes to understanding why the different strategies are
finally equivalent in terms of social cost aggregate over the entire planning
horizon.

An essential feature of the first strategy is that in the initial phase, where
control is at the upper bound v = vmax, the number of users increases at
the beginning, but the pool of susceptibles is exploited in this phase. Re-
membering the dynamics of use (see equations (4.4) and (4.5)), the outflow
µA from the drug use state is large, when A is large. The initiation term
bAα S g(v) models the inflow to the A-state. It is driven by the contagious
effect of current users on susceptibles. Nevertheless, when use is high, but
the number of susceptibles is low enough, initiation is rather modest. At
such circumstances, the inflow to state A might not be sufficiently high to
keep levels of use growing. This is the case here, although harm reduction
is applied with full force. The dynamics themselves lead to the turn in the
trajectory that is the cornerstone for the following continuous decrease in the
number of users.

What happens here is similar to what we have found for the base case
parameterization for the U.S. cocaine epidemic (see section 4.5.2). Namely,
even though the model assumes that harm reduction increases initiation rel-
ative to the “no harm reduction”-alternative, this does not hamper declines
in use when the full harm reduction strategy is applied.

DNSS Curve and Time Paths

The black curve in Figures 6.3 and 6.4 is the DNSS curve. The idea is in
principle the same as for the indifference curve: For a certain initial condition
in (A, S)-space, there are two trajectories that yield the same value of the
objective functional. However, the important difference is that in the case of
a DNSS curve the trajectories approach different steady states.

For initial conditions located on the black curve, the decision maker can
impose a pure use reduction regime, i.e. v∗ = 0. Under this control choice,
the system approaches the steady state Ĉv=0 with Â = 3.35206 million users
and Ŝ = 12.9739 million susceptibles. Two of the corresponding trajectories
are shown in gray in Figure 6.4. The little arrows indicate that the system
spirals clockwise into the boundary control steady state Ĉv=0. This option
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chooses the lower one of the available initial control values, i.e. v(0) = 0 = vL,
whereas vH > 0. This is a simple strategy in the sense that optimal control
v∗ does not change over time. Corresponding to what we found above, use
declines first. Later, it curls back to an increasing number of users. Finally,
it spirals into the steady state.

The alternative option to depart from an initial condition located on the
DNSS curve involve some non-zero level of harm reduction 0 < vH ≤ vmax.
This yields the trajectories that emanate from the black curve and go to the
right, which means that use increases first. Later on, the number of users
declines and after some switches in the control policy, and the no-use steady
state Ĉv=vmax

is reached. Please note that the black trajectories representing
the alternatives to the gray trajectories without harm reduction in Figure
6.4 both start with full harm reduction v(0) = vmax.

Panel b) of Figure 6.5 shows the time paths for the numbers of users along
the two gray trajectories in Figure 6.4 that converge to the high-use steady
state Ĉv̂=0. The corresponding control v∗ = 0 is shown in panel d). Panels
a) and c) of Figure 6.5, in contrast, show the alternative control options
as a function of time and the course of the epidemic stemming from them.
Panel c) shows a tub-shaped form of the mixed control strategy. The number
of users (panel a)) converges to the no-use steady state Ĉv=vmax

when this
more complex control strategy is applied. It is given by maximum boundary
control at the early and at the late stages, minimum boundary control at some
intermediate time spans, and quick transitions between those extremes.

Apart from the fact that the mixed control strategy that induces conver-
gence to the no-use steady state Ĉv̂=vmax

is so very different from the pure use
reduction regime represented in panel d), the underlying time spans outline
that the paths leading to the high-use equilibrium Ĉv=0 take much longer
to converge to the steady state than the alternatives do. Panels a) and b)
illustrate graphically the difference of either an increase or a decrease of A

during the first phase.

Please note that the feature described above is very interesting. The
DNSS curve that occurs in the current two-state model of drug epidemics
provides the possibility that departing from the DNSS curve to the left (which
in the present model means that use declines) lets the system eventually
converge to a high-use steady state. Vice versa, emanating to the right
and allowing for increasing numbers of users, the system eventually ends up
in a steady state without use. Summarizing, starting left leads to a right
equilibrium, whereas starting right lets the system end up left.

Beyond this, please note that whereas the mixed strategy causes a single
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peak in use that is followed by a continuous decline to zero use, the pure
use reduction regime leads to damped oscillations in the number of users.
After every 200 years, there is a new peak in use, although over time the
peaks are less and less pronounced. The axes of panels a) and b) are equally
scaled, hence we infer that the pure use reduction regime only traverses a
narrow interval of numbers of users, whereas the difference in minimum and
maximum use is much larger when the mixed control strategy is used.

At the hairline case of the DNSS curve, the decision maker is indiffer-
ent between the scenarios “reductions in use first, high-use steady state in
the long run” and “increases in use first, no-use steady state in the long
run”. It is a hairline case, but also a separatrix. For any small movement
away from the black curve in Figures 6.3 and 6.4, there is a unique optimal
strategy. Slightly to the left on the A-axis, convergence to the steady state
Ĉv=0 under a pure use reduction regime is less costly than any strategy that
involves harm reduction interventions. For only slightly higher numbers of
users and/or susceptibles, the pure use reduction policy is no longer an op-
tion. The optimal suggestion is to apply harm reduction. Numbers of users
increase in the short run. This may be interpreted as a downside, but the
argument that sheds a different light on the supposed downside is that in the
long run, a steady state where drug use is eradicated is approached.

Indifference Curve #2

The interpretation of the indifference curve depicted in red mainly takes
the same line as the above interpretations. The first option is to choose a
strategy with fully implemented harm reduction first. It increases use at
the early stages, but then the A-state starts to decline. Subsequently, the
control policy involves the usual switches to optimally approach the no-use
steady state Ĉv=vmax

. If the decision maker chooses his second option, which
consists in the pure use reduction regime, this leads to decreasing numbers of
users as an immediate effect. Along the associated trajectories, the pool of
susceptibles grows. Although use declines, many new users are recruited out
of the large pool of susceptibles. This tips the epidemic over to increasing
drug use. Very soon, the number of users reaches a size for which it is
favorable to do harm reduction in order to moderate the social cost borne by
society. Finally, the same number of users as at the initial condition A(0) is
reached again, but now with a higher level of susceptibles. Then, one follows
the same optimal control policy than along the alternative path. Compared
to the number of users along the alternative path, one easily detects an
overshoot in the number of users.
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The strategy that begins without harm reduction postpones the increase
in use at the expense of a higher peak in the number of users later in the
course of the epidemic. The considerable decline in use at the early stages
combined with the overshoot at later states is opposed to immediate increases
in use that lead to a less pronounced peak.

6.1.4 Conclusions

Regarding the dominated steady states D̂1
v=vmax

and D̂2
v=vmax

, we identified
conditions for which staying at a fixed point under application of full harm
reduction yields higher aggregate social costs than applying a mixed policy.
Figure 6.2 shows that in the case of either of the dominated steady states,
the mixed policy is made up by a pure use reduction regime first, followed
by increasing control v∗. Later, the full harm reduction strategy is pursued.
Along the entire transient, the number of users declines. Harm reduction is
implemented only when the drug epidemic has dropped down to levels of use
at which there is no more danger that use could be affected in an adverse
manner due to a coupling of effects of g(v) and the feedback from current
users on initiation.

For the U.S. cocaine epidemic’s base case parameterization, section 4.5.2
revealed that the intermediate-use steady state of the system with full harm
reduction was dominated by the optimal no-use steady state where full harm
reduction is applied. This result is persistent under the new parameteriza-
tion with decreased b. In the base case, the high-use steady state of the
system with full harm reduction v̂ = vmax was the second optimal long-run
steady state. This property vanishes when the proportionality constant for
contagion, b, declines from its base case value b = 0.009 to b = 0.0065, which
represents a decline of 27.8%. In the current parameterization, the high-use
steady state is dominated by the no-use steady state, too.

Although there are dominated steady states, we still encounter two opti-
mal long-run steady states. In the base case, the basins of attraction of the
two optimal long-run steady states are non-overlapping. In the present case,
there exists a DNSS curve. It has been described and interpreted in detail
above. Comparison of Figures 6.3 and 4.6 shows that the optimal control
structures have many parallels, though there are also some differences.

In terms of the optimal phase portrait there are big differences between
the base case b and the new value. When b is larger (base case) the no-
use steady state can only be approached if the initial condition involves
a number of users that is low enough. If use has grown beyond certain
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thresholds given by the stable manifold of the intermediate-use steady state
of the two-dimensional system (see Figure 3.4), the optimal solution is always
to approach a steady state at endemic levels of use. Very different to this, in
the optimal phase portrait stemming from the new parameterization, there
is only a tiny region for which a steady state with a high number of users is
achieved. For most of the initial conditions on the (A, S)-plane, use should
be eradicated.

The conclusion from this difference is an apparent need to find the answer
to the question “Has the infectivity of cocaine in the U.S. indeed declined,
and if so, which new parameter value for b best represents this decline in
the SA Harm Reduction Model?” Remember that the current example re-
duces b = 0.009 by 27.8% to b = 0.0065. The answer may have a crucial
impact - not so much on the principal policy recommendation, because in
a rough generalization both the base case and the current case suggest full
harm reduction at low and very high levels of use. However, at intermediate
levels the value of the parameter b definitely affects which steady state is
approached in the long run. For a decision maker in the U.S. it makes a big
difference whether a drug epidemic that has grown to some 4-6 million users
can be eradicated by a smart mix of control interventions, or if that mix of
interventions is only able to let the epidemic approach a steady state with
more than 5 million users.

6.2 Modeling Innovators into Drug Use

The previous results involve the possibility that cocaine use in the U.S. is
fully eradicated in the long run. Experts often comment on that feature
stating that any steady state with zero drug use is rather unrealistic. They
argue that it is impossible to totally suppress drug use in a free society. Their
opinion is that there will always be a number of people, albeit perhaps only a
modest number, who consume drugs. Related to such comments, we present
now a slight update of the parameters of the initiation function which shifts
the no-use steady state of the base case model for the U.S. cocaine epidemic
to the right. With the new parameter set, the lowest possible value of Â

amounts to some thousand cocaine users.

In the preceding sections of this thesis, initiation into drug use was ex-
clusively driven by the social interaction between current drug users and
persons being susceptible to drug use. Although most new drug consumers
are “recruited” due to such social network effects, some new users enter the
drug using population due to some internal reason. They start to take a
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drug because they are curious, by shifting from other drugs, or due to some
other internal impetus that is not influenced by current users. Following the
spirit of Bass (1969) and harking back to the jargon of diffusion models, this
group of initiates is called “innovators”. That label contrasts them with the
“imitators” who are introduced to consumption by a friend, sibling or ac-
quaintance who is already using that drug. The base case initiation function
(2.3) presented in section 2.4 incorporates the coefficient of innovation, τ .
Nevertheless, the base case parameterizations had τ = 0. Here, the same
initiation function is used

I(A, S, v) = (τ + bAα) S g(v), but now with τ > 0.

The other base case parameter values listed in Table 2.1 are not adjusted;
the coefficient of innovation τ is introduced additionally. This actually in-
creases the initiation term slightly, but the parameterizations used here are
anyway by no means stalwart, so we accept this inaccuracy.

Application of Pontryagin’s Maximum principle to the model with τ is
very similar to the base case. The details are omitted, but the canonical
system with innovators which now reads

Ȧ = (τ + bAα) S g(v) − µ A,

Ṡ = k − δ S − (τ + bAα) S g(v),

λ̇A = 1 − v + (r + µ)λA + bαAα−1S(λS − λA) g(v),

λ̇S = (r + δ)λS + (τ + bAα) (λS − λA) g(v).

The Hamiltonian maximizing condition yields interior optimal control

v∗ =
Φ

−c2ω

(
(ΨτΦ

c2ωη

) 1

−1+η − 1

)

, (6.1)

where the former Ψ from equation (4.15) has to be replaced by

Ψτ :=
A

(τ + bAα) S (λA − λS)
.

In the harm reduction versus use reduction debate, several fears about
the possible downsides of harm reduction are articulated. Due to possible
risk compensation effects, there is the risk of an increase in initiation and
the possibility that current users will consume more. A more subtle fear
is reflected in claims that “harm reduction might send the wrong message”
(cf. MacCoun, 1998). Although this rather addresses legalization issues, one
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can interpret it with respect to the reputation of a drug. Harm reduction
interventions could make a drug more popular and spread it independent
from the social networks. Using the original initiation function from the base
case, a susceptible non-user’s decision to initiate depends on that person’s
immediate social environment. Looking at the process of initiation into drug
abuse in more detail, it is clear that such direct social factors may give strong
incentives to start consumption. Nevertheless, the overall reputation of the
drug in society may play a vital role, too. If a drug is portrayed as harmless in
movies or news media, this might induce a non-user to try the particular drug,
though there are no friends of the individual “seducing” him/her to do so.
The innovators τS are exactly such individuals who are susceptible to drug
use and try drugs although none of their associates directly encourages that
desire. In this sense, the introduction of τ > 0 can be seen as an attempt to
pay attention to the fears that harm reduction might send a wrong message.

6.2.1 United States

In the model, τ gives a constant fraction of susceptibles that initiate drug
use for other reasons than contagion by a current user. In the LH-model for
cocaine abuse in the U.S., Behrens et al. (1999) assume a value of 50,000
people flowing in to light cocaine use in the U.S. each year. In this number,
immigration of cocaine users to the U.S. is included, which cannot be con-
sidered in the current case, because the innovator group stems from the pool
of those among the U.S. population who are susceptible. This is a reason
why the number of 50,000 should be toned down for the purpose of the cur-
rent model. Nevertheless, we first used those 50,000 people and the steady
state number Ŝ of susceptibles from the uncontrolled high-use steady state
to determine a preliminary τ . Solving

τŜg(v)
v=0
= τŜ = 7.10762 · τ = 0.05

for τ results in τ ≈ 0.007. For this parameter value, the isoclines Ȧ = 0 and
Ṡ = 0 of the dynamics of states A and S for the U.S. cocaine epidemic have
one intersection, whereas in the base case we encountered multiple equilibria.
Using the lower parameter τ = 0.0007 for the calculations results in three
steady states in each boundary control system, as was the case in the base
case.
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Analysis of Steady States

Of course, first one has to search for fixed points of the canonical system with
optimal control v∗ from equation (6.1). Afterwards, the boundary control
steady states are investigated. The computed equilibria Â, Ŝ, λ̂A, λ̂S together
with corresponding control v̂ and/or Lagrange Multipliers π1 and π2 of active
constraints are summarized in Table 6.1. The three steady states with lower
boundary control v̂ = 0 exhibit negative Lagrange Multipliers π1. Hence,
they are not among the candidates for the optimal solutions. Among the
steady states with upper boundary control v̂ = vmax, only the high-use steady
state has a positive Lagrange Multiplier π2. Thus, this high-use steady state
is a candidate for the optimal long-run solution. The first line of Table 6.1
identifies the second candidate. It exhibits interior control v̂i = 0.1409 and
has a relatively low number of users Â.

v̂ Â Ŝ λ̂A λ̂S π1 π2 classification

0.1409 0.1999 21.6281 -11.332 -0.170 - - candidate
−0.7259 4.1827 10.6933 -13.557 -34.528 - - not feasible

0 0.1575 21.7444 -10.102 -0.1195 -0.034 - not optimal
0 0.6496 20.3934 132.557 6.6294 -7.062 - not optimal
0 5.5077 7.0556 -10.691 -6.023 -3.492 - not optimal

vmax 0.2186 21.5767 -12.305 -0.203 - -0.027 not optimal
vmax 0.4297 20.9972 -69.727 -2.281 - -2.257 not optimal
vmax 5.7915 6.2767 -7.944 -4.798 - 4.102 candidate

Table 6.1: Equilibria for the U.S. cocaine epidemic when innovation to drug
use is modeled.

In order to simplify notation, we denote the interior control steady state
listed in the first line of Table 6.1 as Îτ and the full harm reduction steady
state listed in the last line of Table 6.1 as M̂τ .

To determine their stability properties, the linearized system is inves-
tigated. The Jacobian Matrix at the interior control steady state Îτ has
Eigenvalues

ξ1,2 = 0.0979727± 0.00505549 i,

ξ3,4 = −0.0579727 ± 0.00505549 i.

Among the two pairs of conjugate complex Eigenvalues, one has a positive
and the other one a negative real part. Thus, the fixed point is of saddle
type exhibiting a two-dimensional stable manifold.
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The Eigenvalues of the Jacobian Matrix evaluated at the steady state M̂τ

with upper boundary control are

ξ1,2 = 0.100986± 0.127217 i,

ξ3,4 = −0.0609861 ± 0.127217 i.

This indicates that it also has the desired property of saddle point stability
and exhibits a two-dimensional stable manifold. Please recall that in the
base case solution, the high-use steady state with boundary control v̂ = vmax

was located at (Â, Ŝ) = (5.7767, 6.31719). Here, the optimal high-use steady
state M̂τ also has upper boundary control and is encountered at (Â, Ŝ) =
(5.7915, 6.2767). Introducing τ = 0.0007 shifts the high-use steady state
only slightly to the lower right in the (A, S)-plane. Compared to the base
case values we find an increase of about 0.25% in the number of users and a
decrease of about 0.64% in the number of susceptibles in steady state.

Optimal Control

As with the U.S. cocaine epidemic’s base case parameterization (see section
4.5.2), the basins of attraction of the two optimal long-run steady states are
non-overlapping. Notably, the basin of attraction of the high-use steady state
M̂τ is quite similar to that of the high-use, upper boundary control, optimal
long-run steady state in the base case. Again, an indifference curve can be
identified. Its location and the structure of the trajectories are very similar
to the base case, so the detailed exposition is omitted.

In the investigation of the SA harm reduction model, the low-use steady
state Îτ is the first fixed point that exhibits non-boundary control and indeed
has a two-dimensional stable manifold. At that steady state of the optimized
system, some harm reduction is done, but the interventions are not realized
to the maximum possible extent.

Figure 6.6 shows optimal control as a function of A and S around the
low-use steady state Îτ in detail. Some trajectories (black) are shown to hint
at the optimal phase portrait. Additionally, the arrows indicate the direction
of convergence. The locus where the trajectories meet is exactly the interior
control fixed point Îτ at (Â, Ŝ) = (0.1999, 21.6281) with steady state control
v̂∗ = 0.1409. The region in state space where the optimal policy is full harm
reduction v∗ = vmax = 0.17408 is shaded in the darkest gray, whereas regions
with optimal pure use reduction policy v∗ = 0 are left white. In between,
optimal control is leveled in steps of 1

5
· vmax now, whereas former kindred

Figures had only three levels for interior control. Nevertheless, as in the
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Figure 6.6: Optimal control as a function of A and S around the low-use
interior-control steady state Îτ .

previous Figures of that kind, the shading is darker the higher the optimal
amount v∗ of harm reduction is.

When looking at the information on the optimal phase portrait provided
by Figure 6.6, please remember that the basins of attraction of the optimal
long-run steady states Îτ and M̂τ are separated in an asymptotic way. The
trajectories in the upper right corner of Figure 6.6 show paths in the basin
of attraction of Îτ that are quite close to the separatrix. Initial conditions
located slightly on the left of those trajectories fall in the basin of attraction
of the high-use steady state M̂τ . In the part of the basin of attraction of M̂τ

that is close to the separatrix, optimal control is v∗ = 0. Hence, the white
shading of the upper right corner of Figure 6.6 is appropriate. Nevertheless,
one has to be aware that initial conditions located above the two trajectories
depicted there belong to the basin of attraction of the other optimal long-run
steady state.

Interpretation of Results

In the previously investigated base case parameterization of the U.S. cocaine
epidemic and the case of a less virulent epidemic, we had an optimal no-
use steady state with upper boundary control v̂∗ = vmax. In large regions
around this steady state, full harm reduction was optimal, too. Although the
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model assumes that harm reduction tactics increase initiation (see function
g(v) explained in section 2.5.2) harm reduction could be done safely with
full force when use was rare. Using τ = 0 the inflow to the pool of users is
driven exclusively by the recruitment of new users by current users. Hence,
for low numbers of users A there was no risk of exploding increases in use,
because the recruitment effect was then only modest. Here we encounter
τ > 0, which means that a certain fraction of the susceptibles flows to the
drug use state independent of the contagious spread caused by current users.
This alters the dynamics and destroys the possibility of no-use steady states.
It creates a steady state with a low, non-zero number of users, because no
matter whether there are current users or not, some of the susceptibles always
start drug consumption.

The shift in the equilibrium number of users is not the only effect of the
innovators. The optimal long-run steady state with the low number of users
is no longer a boundary control steady state with full harm reduction. The
optimal steady state strategy is now control v̂∗ = 0.1409, which is neverthe-
less close to the upper bound at vmax = 0.17408.

Another observation is that while in the former results control was always
increasing just before the full harm reduction region around the steady state
was reached, for the current parameterization there exist trajectories along
which control is decreasing in the time spans right before the steady state
is reached, and others along which control is increasing while the optimized
dynamics converge towards the steady state.

Furthermore, regarding the structure of optimal control on the (A, S)-
plane, the optimal policy for stages of the epidemic with very low numbers
of users and many persons in the susceptible state is not given by full harm
reduction as it was the case with the base parameterization of the U.S. co-
caine epidemic (see Figure 4.6). The optimal control solution for the new
parameterization suggests a no harm reduction policy for those stages of the
epidemic. That difference is triggered by the innovators. In the absence of
innovators, the stylized model suggests that harm reduction can be safely
applied there with full force. In the base case, numbers of users are declin-
ing at those stages of the epidemic. Now, there are innovators who push
the steady state with the lowest number of users away from zero users to a
modest steady state number of users. Beyond this, for low numbers of users,
the A-state is increasing along the optimal trajectories. Applying harm re-
duction at those stages of prevalence induces more susceptibles to become
innovators. This leads to further increases in use, which affects the course of
the epidemic negatively. Only when a critical mass of drug users is reached,
and additionally the pool of susceptibles is of an appropriate size that does
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not exceed about 24 million people, will harm reduction start to show its
merits. The darkest region of Figure 6.6 is located very close by. There, full
harm reduction is the optimal policy. Figure 6.6 shows that in the case with
innovators and modest numbers of users, regions of very different recommen-
dations for optimal control are located very close to each other. Please note
that in the dark gray region with v∗ = vmax, there also occur decreases in A.
The trajectories that progress through that gray region switch to interior con-
trol shortly before the steady state is reached. Those paths are characterized
by harm reduction that declines towards the steady state value.

As far as one can generalize the results from the stylized model for the U.S.
cocaine epidemic to other epidemics, the differences we found and interpreted
above point to a clear need for a decision maker who is confronted with a
drug epidemic similar to the U.S. cocaine epidemic, to investigate in all detail
whether the initiation process is driven by contagion only or whether there
are also innovators. The policy recommendation in the cases τ = 0 and
τ = 0.0007 are rather different for low levels of use. Neglecting innovators
if the real parameter value was some τ > 0 leads to ill-timed application of
harm reduction at low levels of use, which exacerbates the drug epidemic.

For the current U.S. cocaine epidemic, the question of whether τ = 0
or τ = 0.0007 might be of less importance. The policies suggested by the
current two-state one-control model differ for low numbers of users, but the
current cocaine epidemic has progressed to levels of use far beyond such
stages. The base case and the current parameterization differ only marginally
in the numbers of A and S at the optimal high-use steady state, the structure
of optimal control at high levels of use and the optimized phase portrait
around the high-use steady state. The UNODC published a current number
of 7,097,000 cocaine users in the United States in the most recent World Drug
Report (UNODC, 2008). Hence, if optimal harm reduction interventions were
to start today, current initial conditions are located in the basin of attraction
of the high-use steady state, where innovators do not make a big difference.

6.2.2 Australia

The fraction τ = 0.0007 was also used to update the initiation term for
Australian IDU. This means that each year 0.07% of the susceptibles start a
career of drug use due to some impetus that is not affected by current users.

The results of the optimal control model change only marginally. Hence,
the exposition is limited to the most basic information. The optimal steady
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state Êτ
v̂=vmax

is now located at








Â

Ŝ

λ̂A

λ̂S








=







0.333887
0.154102
−3.94972
−2.54937







.

The optimal base case steady state Ê1
v̂=vmax

is located at (Â, Ŝ, λ̂A, λ̂S) =
(0.333455, 0.154617,−3.95724,−2.55002) (see section 4.3.1). We identify an
increase in steady state use by 0.13%, whereas the steady state number of
susceptibles is 0.33% lower than in the base case. The optimized phase
portrait and gray level plot of optimal control on the (A, S)-plane are not
presented, because there is no visible difference compared to Figure 4.1.

6.3 Linear Harm Reduction Cost Term in the

Objective Function

Most optimal control models in the field of drug problems consider the costs
that arise from applying drug control interventions. Modeling classic in-
terventions such as treatment, law enforcement, or prevention, the annual
budgets the government assigns to those programs are then simply added
to the objective function. A similar approach for harm reduction is a less
straightforward endeavor, because as explained in preceding sections of this
thesis, harm reduction is rather an attitude than a program with a budget.
Nevertheless, we here assess what happens to the optimal solutions of the
model without innovators, i.e. τ = 0, when control costs are considered.
The most basic way to do so is to use a linear form for the function c(v) in
the generalized objective function from section 2.5.1, i.e. c(v) = cv with a
positive constant c. The new Lagrangian function is then given by

L = −(A(1 − v) + cv) + λA Ȧ + λS Ṡ + π1v + π2(vmax − v).

The new parameter c occurs in the objective function, but not in the
state dynamics. In the derivatives of the Lagrangian L with respect to the
states A and S, the cost term cv vanishes. Those two features imply that the
new canonical system does not change compared to the base case except for
the expression v∗ that results from the Hamiltonian maximizing condition.
Looking for steady state solutions with interior control, Hv = 0 is used. In
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the resulting expression for the optimal control, the new parameter c occurs.
It is given by

v∗ =
Φ

−csω

(
(ΨcΦ

csωη

) 1

−1+η − 1

)

, (6.2)

where Ψ from equation (4.15) is modified to

Ψc :=
A − c

bAα S (λA − λS)
. (6.3)

The existence of steady state solutions with interior control was investigated
in several of the cases that will be discussed later in this section. We forestall
the information that the steady states derived with v∗ from equation (6.2)
are either not feasible (control out of bounds) or have only a one-dimensional
stable manifold.

Consequently, the following analysis concentrates on the results for the
boundary control steady states, which are the same as presented in section
4.1. In order to determine whether such a boundary control steady state is a
candidate for the optimal long-run solution, the Lagrange Multiplier associ-
ated with the active constraint is the first variable of interest. The necessary
conditions for optimality (see section 4.1 in the formulation for the base case)
state that for an optimal boundary control solution, the corresponding La-
grange Multiplier has to be non-negative. The equations for the Lagrange
Multipliers π1 and π2 are achieved by setting the derivative of the Lagrangian
Function L with respect to control v equal to zero and solving for π1 or π2,
respectively. Those expressions are affected by the new cost term cv. We
investigate now what happens to the Lagrange Multipliers when c varies.

For boundary control steady states without harm reduction, i.e. v̂ = 0,
the upper control constraint is not active, thus π2 = 0. Setting the derivative
Lv equal to zero then yields

π1 = c − A + bAαS(λS − λA)g′(0). (6.4)

Checking for positivity at a steady state value (Â, Ŝ, λ̂S, λ̂A) we get

π̂1 > 0 ⇔ c > Â − bÂαŜ(λ̂S − λ̂A)g′(0). (6.5)

Analogously, the Lagrange Multiplier π2 for the upper boundary con-
straint is

π2 = −c + A − bAαS(λS − λA)g′(vmax). (6.6)
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Positivity at a steady state, i.e. π̂2 > 0, is given as long as there holds

c < Â − bÂαŜ(λ̂S − λ̂A)g′(vmax). (6.7)

We substitute the boundary control steady states derived in the base case
into the above equations (6.5) and (6.7) and conclude for which values of c

they are candidates for an optimal fixed point solution. For Australian IDU,
the four-dimensional canonical system has a unique saddle point steady state
with Â > 0. The analysis here is conducted for this steady state, both for
upper and lower boundary control. For the U.S. cocaine epidemic, where
we encountered multiple steady states, the analysis focuses on the high-use
steady states. In the base case, optimal control at and around the steady
states used the highest possible amount of harm reduction. Those results
were derived under the assumption that harm reduction is either free of any
cost or that costs are so modest that they can be neglected. The simple linear
function c(v) = cv helps to derive insights whether and how the optimal
control structure changes when costs are taken into account.

Australia

We first analyze the Australian parameterization. The lower boundary con-
trol fixed point in the base case is Êv̂=0. It is located at states Â = 0.304916,
Ŝ = 0.188672, and has costates λ̂A = −8.92372, λ̂S = −5.13915. The associ-
ated Lagrange Multiplier is negative π1 = −0.265058. Hence, the steady state
is not a candidate for the optimal solution in the base case. The upper bound-
ary control steady state Êv̂=vmax

is located at Â = 0.333455, Ŝ = 0.154617,
λ̂A = −3.95724, λ̂S = −2.55002. It evaluates to π2 = 0.304802 > 0, which
identified it as an optimal solution in the base case.

Substituting the concrete steady state values into equations (6.5) and
(6.7), we get the relations

π1 = −0.265058 + c > 0 ⇔ c > 0.265058,

π2 = 0.304802− c > 0 ⇔ c < 0.304802.

From those relations we conclude the following: For low costs c < 0.265058,
the Lagrange Multiplier π1 of the pure use reduction equilibrium is negative,
whereas the Lagrange Multiplier π2 of the full harm reduction steady state
is positive. Hence, the latter one is the single candidate for optimality. For a
high cost parameter c > 0.304802, the steady state without harm reduction
control is the only optimal solution, because π1 > 0, but π2 < 0. For inter-
mediate costs, 0.265058 < c < 0.304802, the Lagrange Multipliers of both
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Figure 6.7: The value of the cost parameter c determines which boundary
control steady states are candidates for optimality in the model for Australian
IDU.

boundary control steady states are positive. In principle, both are candidates
for optimality. Figure 6.7 summarizes those results graphically. In the case of
two candidates, investigating whether both of them have a two-dimensional
stable manifold is necessary. If yes, then one has to analyze whether one
is dominated by the other or if there exists a DNSS curve separating their
basins of attraction.

United States

Before conducting the analogous analysis of Lagrange Multipliers π1 and π2

for the U.S. cocaine epidemic we first recall the high-use steady states from
the base case. Ê1

v̂=0 is located at Â = 5.4888, Ŝ = 7.10762, λ̂A = −10.8414,

λ̂S = −6.07868. In the base case this steady state was not a candidate
for optimality, because it evaluates π1 < 0. The upper boundary control
steady state Ê1

v̂=vmax
is located at Â = 5.7767, Ŝ = 6.31719, λ̂A = −8.02684,

λ̂S = −4.83059, and has a positive Lagrange Multiplier π2 > 0 in the base
case. Hence, it was a candidate for the optimal long-run solution and turned
out as the optimal solution that is approached when initial levels of use are
high.

Substituting those steady state values into equations (6.5) and (6.7) re-
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Figure 6.8: The value of the cost parameter c determines which boundary
control steady states are candidates for optimality in the model for U.S.
cocaine.

veals the following: For low cost parameters c < 3.43948, the high-use steady
state with full harm reduction is a candidate for the optimal solution, whereas
the high-use steady state without harm reduction is not. For high param-
eter values c > 4.0649, the situation is the other way round: Ê1

v̂=vmax
is no

longer among the pool of candidates, because it evaluates π2 < 0, but Ê1
v̂=0

is a candidate due to its π1 > 0. For cost values in an intermediate range
3.43948 < c < 4.0649, both boundary control steady states are candidates
for the optimal long-run solution. As in the related cases above, further in-
vestigations have to be conducted for such intermediate values of c. Figure
6.8 gives the graphical overview for the U.S. case.

6.3.1 Cost Parameter Scenarios for Australia

The particular cases investigated are c = 0.14, c = 0.28, and c = 0.5. The
base case analyzed in section 4.5.1 is the special case c = 0.

Steady States

From the findings on the influence of the cost parameter c on the steady
state values of the Lagrange Multipliers, in the case c = 0.14, we conclude
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that the steady state with v̂ = vmax is the single candidate for optimality,
whereas in the case with c = 0.5, the equilibrium with v̂ = 0 is the only
one for which the backward calculation has to be done. In both cases there
exist indifference curves. Their detailed exposition is omitted for the sake
of focusing on the more global differences in optimal control when different
values for the control cost c are assumed.

For the cost parameter c = 0.28, the above analysis of Lagrange Multi-
pliers reveals that both steady states, Êv̂=vmax

and Êv̂=0, are candidates for
the optimal long-run solution. In such cases, DNSS curves can occur. They
separate the basins of attraction of the steady states at points at which a
decision maker is indifferent which equilibrium to approach, because any of
the alternatives causes the same cost. Such a DNSS curve was detected in
the scenario analyzed in section 6.1. In the current case such a curve does
not occur. Instead, we have to deal with dominated steady states. Staying at
the steady state Êv=0 located at (Â, Ŝ) = (0.304916, 0.188672) in the (A, S)-
plane forever results in the following value of the objective functional where
we make use of equation (4.25):

J =
1

0.04
H(0.3049, 0.1887, 0,−8.9237,−5.1391) = −7.623.

Emanating from (A(0), S(0)) = (0.304916, 0.188672), the steady state Ev̂=vmax

located at (Â, Ŝ) = (0.333455, 0.154617) can be reached. The correspond-
ing policy assigns the interior harm reduction value v(0) = 0.2496 for initial
control. Hence, the objective functional’s value for the resulting trajectory
evaluates to

J∗ =
1

0.04
H(0.304, 0.188, 0.2496,−4.266,−2.538) = −7.6001.

Our objective is to maximize the negative aggregate cost value, hence we
conclude that the trajectory that yields J∗ is preferred. Despite the fact that
harm reduction interventions cause costs in this scenario, it bears less cost
to approach the equilibrium with full harm reduction where social cost is cut
down to 1− vmax of its baseline value, than to stay at the pure use reduction
steady state forever and without such a reduction in social costs. In the basin
of attraction of the dominating steady state Êv̂=vmax

an indifference curve is
found, but the detailed presentation is omitted.

Optimal Control

Figure 6.9 provides an overview over optimal control on the (A, S)-plane
for the different control cost values. Like in the kindred Figures 4.1 and
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Figure 6.9: Comparison of optimal control on the (A, S)-plane for different
harm reduction control cost values c in Australia

4.6, the shading indicates how much harm reduction is optimal. At white
parts of the (A, S)-plane, optimal control is given by v∗ = 0. To the other
extreme, optimal control v∗ = vmax is indicated by the darkest gray color.
The intermediate gray levels indicate where harm reduction interventions
are implemented to some interior extent, which is either 0 < v < 1

3
· vmax,

1
3
· vmax < v < 2

3
· vmax, or 2

3
· vmax < v < vmax. To insinuate the flow of the

optimal system subject to the different values of c, any of the panels shows
some trajectories. The little arrows indicate the direction of convergence
towards the optimal long-run steady state.

Panel a) in Figure 6.9 redraws the optimal control structure from the
base case, which is equivalent to the case c = 0 in the current formulation.
The other panels show optimal control on the (A, S)-plane for the cases with
c > 0.

The result for c = 0.14 is depicted in panel b). What can immediately be
seen is that optimal control is structurally very similar to the base case. For a
large region around the optimal long-run equilibrium, full harm reduction is
the best choice. When the number of users is rather modest, sticking to a pure
use reduction strategy is the optimal policy option. At intermediate stages
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of the epidemic, we encounter transitory control. It is either declining (when
harm reduction triggers negative effects in initiation) or increasing (when
the reduction in social costs in the objective function that is attributable
to harm reduction is attractive). The triangular form of the region with
optimal interior control values 0 < v∗

i < vmax is broken up. With respect to
the optimal trajectories, this leads to the existence of an indifference curve.
But much more interesting than this particular hairline case curve is a more
general observation: The regions with interior amounts of harm reduction
0 < v∗

i < vmax and with full harm reduction v∗ = vmax are more or less only
shifted to the right along the A-axis by an increment of 0.14.

The optimal control structure for the system with cost c = 0.28 is pre-
sented in panel c). This is the case where among two candidates for optimal-
ity, Êv̂=vmax

is the dominant steady state. The arrangement of the differently
shaded regions is again shifted further to the right. Compared to the base
case, the increment for the right-shift on the A-axis is now 0.28. The fun-
damental division into the differently colored regions is like in the previous
cases, even though the crack in the triangular shape of the regions with
optimal interior control 0 < v∗

i < vmax is more pronounced now.

Finally, the case of a single candidate for optimality that exhibits v̂ = 0
was investigated. Panel d) presents optimal control as a function of A and
S for this case with control cost c = 0.5. At the optimal long-run steady
state, harm reduction is omitted, because control cost is too high there.
Furthermore, the no harm reduction policy is the optimal policy choice for
most initial conditions shown on the panels of Figure 6.9, which range from
0 to 700, 000 users (A = 0.7 on the plot) for A(0) and from S(0) = 0 to
S(0) = 1.5 million for the susceptibles. Nevertheless, when the epidemic
grows beyond a certain threshold of users, interior amounts of harm reduction
and full force application of the control tool become the optimal strategies,
because they ameliorate the harms felt by the considerable number of users.

The similarity of the structure of the regions with boundary and non-
boundary control in the different cases is striking. The light gray sliver for
the control range 0 < v < 1

3
· vmax is always the narrowest one, whereas the

sliver with 2
3
· vmax < v < vmax is always the broadest one. Most striking,

from one case to the other, they do not seem to change in broadness.

Comparison of Costs

In order to compare the aggregate costs for each of the values of c when
emanating from a fixed initial condition, (A(0), S(0)) = (0.3, 1) was chosen.
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The initial value for A is quite close to, but below the steady state numbers
of users Âv=0 = 0.304916 and Âv=vmax

= 0.333455. The initial value for the
S-state is a rather arbitrary number. Primarily, its choice is based on the
idea that at the beginning of the epidemic, there should be a considerable
number of susceptibles from which initiates can be recruited.

In the system with c = 0, optimal control at the initial condition is full
harm reduction, i.e. we have v∗(0) = vmax. The steady state Êv̂=vmax

is
reached with upper boundary control along the entire planning horizon. At
the initial state A(0) = 0.3, S(0) = 1, the optimal trajectory assigns the
costates λA(0) = −4.3929 and λS(0) = −2.7504. Making use of formula
(4.25) yields

J∗|c=0 =
1

r
H(0.3, 1.0, 0.53,−4.3929,−2.7504) = −6.0368.

The optimal trajectory in the system with c = 0.14 is emanating from
the initial condition (A(0), S(0), λA(0), λS(0)) = (0.3, 1.0,−4.4018,−2.7487).
The optimal initial control value is the interior amount v∗(0) = 0.4118 of
harm reduction. From there, control ramps up to the maximum, and then
the system converges to the steady state with full harm reduction. The
resulting value of the objective functional is

J∗|c=0.14 =
1

r
H(0.3, 1.0, 0.4118,−4.4018,−2.7487) = −7.8911.

In the system with c = 0.28, the initial states (A(0), S(0)) = (0.3, 1.0)
yield optimal costate values (λA(0), λS(0)) = (−4.7577,−2.7285). Optimal
initial control is given by v∗(0) = 0. Pure use reduction is optimal for some
initial time span, but then more and more harm reduction is done. Finally,
it is applied with full force until the steady state is reached. The value of the
objective functional for the resulting trajectory is given by

J∗|c=0.28 =
1

r
H(0.3, 1.0, 0,−4.7577,−2.7285) = −9.7242.

When the harm reduction cost parameter c is high, i.e. c = 0.5, the
optimal costates for (A(0), S(0)) = (0.3, 1.0) are λA(0) = −6.1137, λS(0) =
−3.3296. Optimal control at the initial point is v∗(0) = 0, then use increases
to levels where implementation of harm reduction measures is beneficial to
the system. Harm reduction is introduced, then gradually increases until
its maximum possible value v∗ = vmax is reached, and under this full harm
reduction policy, the turn from increasing to decreasing numbers of users is
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done. When numbers of users are sufficiently low, harm reduction is gradually
reduced and finally abolished. For the remaining time until the steady state is
reached, the optimal policy is pure use reduction. The value of the objective
functional along this trajectory with a rather sophisticated blend of boundary
and transitory control values is

J∗|c=0.5 =
1

r
H(0.3, 1.0, 0,−6.1137,−3.3296) = −11.3457.

Figure 6.10 shows the different values of control cost c investigated for
Australian IDU and the associated value of the objective functional along
the optimal trajectory that emanates from the initial condition at A(0) = 0.3
million IDUs and S(0) = 1 million susceptibles. The discounted, aggregate
social cost J∗ along the optimal path leading to the optimal long-run steady
state is higher, when c is large. This fact is not astonishing. In Figure 6.9,
we can observe that optimal control on the (A, S)-plane is in principle always
governed by the idea: “Do harm reduction when use is high, because then it
reduces social cost via the objective function. Do not apply harm reduction
when use is low, because then it adversely affects the system dynamics due
to risk compensation effects.” Solely, the distinction whether use is “high”
or “low” enough depends on the value of c. The objective function now puts
social cost A (1− v) into relation to the control cost term c v. This demands
for a trade-off. The number of users for which the reduction in the objective
function becomes attractive despite the adverse effect modeled by g(v) is
higher when c is high. For low levels of use and c being large, the benefit of
the reduction in the term A (1−v) is wiped out by the control cost value c v.
The new tension between cost for the control mechanism and the fact that
the control can reduce social costs, leads to the shift in the optimal control
regions as identified in Figure 6.9.

Thoughts about Realistic Values of c

The above findings are of somewhat theoretic nature, because the social
cost parameter normalized to κ = 1 (see section 2.5.1) and the control cost
parameter c are fairly abstract numbers. In what follows we try to derive
further insights on a realistic magnitude of the parameter c.

Following Moore (2005), the Australian governments spent $ 3.2 billion
on drug control in the year 2002-03. Australia’s drug budget is divided into
“proactive” policies, which account for $ 1.3 billion, whereas $ 1.9 billion are
spent “reactively”. The latter term means that interventions deal with the
consequences of drug use. A detailed list of expenditure components reveals
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Figure 6.10: |J∗| evaluated for the optimal trajectories emanating from
(A(0), S(0)) = (0.3, 1) for different values of control cost c in Australia

that needle and syringe programs received $ 4.6 million of federal money, and
$ 33.7 million were funded by state or territory, respectively. Hepatitis C
education and family support received funds accounting for $ 6.5 million out
of the federal budget. Summing up those items, Moore (2005) concludes that
$ 44.8 million were spent in the year 2002-03 on harm reduction measures.
Hence, for the following calculations we denote B = 44.8 · 106.

Harm reduction is one of the important pillars of Australia’s strategies
to control drug consumption and problems stemming from it. We assume
that over one year an average level vc of harm reduction measures is applied.
For this level, we explore two extreme cases: an optimistic assumption of full
harm reduction vc = 0.53 and the pessimistic assumption that the spending
of the $ 44.8 million resulted in a reduction of only 5%, i.e. vc = 0.05. This
yields an optimistic and a pessimistic value for the parameter c.

There is a little subtlety of the objective function we have to consider
when deriving those values. The social cost stemming from drug use is quan-
tified by the constant κ = 1. It is a normalized, abstract number that was
used for simplification in the base case model, where it did not matter if the
outcome was an abstract number or dollar cost. For the current investigation
κ and c have to be synchronized.



Chapter 6. Variations of the Model 146

Remember first that κ gives the social cost per unit use. In the model,
the unit A = 1 means that there is one million users. Moreover, the proxy
for the harms felt by the users were health-related social costs of drug abuse
listed in COI studies. In Australia, the social cost parameter cs = 39, 255 $
per user per year can be directly used. Taking into account the unit of A = 1
million of users, we arrive at the non-normalized parameter κ̃ = 39.255 · 109.

Next, we derive c̃ for the non-normalized dollar cost of harm reduction
interventions. Due to the assumption that vc is the average amount of harm
reduction applied over one year, we do not take into account discounting of
costs and simply equate B = c̃ · vc . The pessimistic assumption vc = 0.05
results in the pessimistic estimate c̃p = B

vc
= 44.8·106

0.05
= 8.96 · 108. The

optimistic assumption vc = 0.53 evaluates to the optimistic estimate c̃o =
B
vc

= 44.8·106

0.53
= 8.45 · 107. Normalizing those values with the help of κ̃, we

arrive at cp = c̃p

κ̃
= 8.96·108

39.255·109 = 0.0228 and co = c̃o

κ̃
= 8.45·107

39.255·109 = 0.0022.

Both the optimistic estimate co = 0.0022 and the pessimistic cp = 0.0228
are far away from the critical parameter c = 0.265058, where the feature of
the full harm reduction steady state being the unique candidate for optimality
is endangered. In panels a) and b) in Figure 6.9, optimal control in the cases
c = 0 and c = 0.14 is displayed. We infer that even in the pessimistic scenario
of cp = 0.0228, the shift of the regions to the right is significantly less than
that displayed in panel b).

Taking into account that in Australia there exist good harm reduction
interventions and that the country has a long history of such approaches,
the real value vc will be rather large, most probably around the parameter
value vmax. Hence, we assume that the real parameter c is relatively close to
zero. Consequently, the simple analysis conducted in this section underpins
the assumption that control cost for providing harm reduction measures to
Australia’s IDUs can be neglected in the objective function, as we did in the
base case.

6.3.2 Cost Parameter Scenarios for the United States

The different cost values investigated for the U.S. cocaine epidemic are c = 2,
c = 4, c = 8, and the special case c = 0 that has been assessed in the
base case. The results for optimal control on the (A, S)-plane for those
cases are shown in Figure 6.11. Before analyzing the differences, we give a
short overview over the optimal long-run steady states in the different cost
scenarios.
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Steady States

Substituting cost c = 2 into the model, the Lagrange Multiplier π2 for the
high-use steady state with full harm reduction is positive, whereas π1 for
the high-use steady state without harm reduction is negative. In the basin of
attraction of the optimal high-use steady state, there is an indifference curve.
At intermediate levels of use, the steady state with v̂ = 0 evaluates π1 < 0,
hence it is not a candidate for optimality. The upper boundary control
steady state at intermediate numbers of users evaluates a positive Lagrange
Multiplier π2 > 0. As in the base case (see section 4.5.2), it can be shown
that this steady state is dominated. Instead of applying full harm reduction
v = vmax to remain at the steady state forever, the choice of v∗(0) = 0 is
optimal, which leads to a path that finally approaches a no-use steady state.
A new feature compared to the base case is that at and around this no-use
steady state, optimal control is given by the pure use reduction policy.

That latter feature persists in the model with the higher cost parameter
c = 4. At the intermediate-use steady states, full harm reduction leads now
to a negative Lagrange Multiplier π2 < 0, while the lower boundary control
steady state has a positive Lagrange Multiplier π1 > 0. Nevertheless, the
costates are positive, whereas we expect negative costates. The backwards
calculation from the intermediate-use steady state is possible, it has a two-
dimensional stable manifold in the four-dimensional system. The projection
of the stable paths onto the (A, S)-plane coincides with the stable manifold of
the intermediate-use steady state in the two-dimensional system (Ȧ = 0, Ṡ =
0). The high-use steady states evaluate positive corresponding Lagrange
Multipliers. The steady state without harm reduction is dominant. In its
basin of attraction, an indifference curve is found, but the details are omitted
here.

The last cost parameter is c = 8. The situation for the intermediate-
use and no-use steady states is unchanged compared to the previous case of
c = 4. Among the high-use steady states, the full harm reduction steady
state is no longer a candidate for optimality, because we find π2 < 0. Hence,
the optimal steady state at high levels of use exhibits a pure use reduction
strategy.

Optimal Control

Optimal control as a function of the state space (A, S) is shown in Figure
6.11, using the usual gray shadings for different levels of optimal control.
Please note that the location and relative size of the basins of attraction of
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Figure 6.11: Comparison of optimal control on the (A, S)-plane for different
harm reduction control cost values c in the U.S.

the two optimal steady states do not change from one panel to the other.
Notwithstanding, the optimal control structure does.

Panel a) redraws optimal control for the base case c = 0. Harm reduc-
tion is optimal when use is widespread or when the number of users is only
modest. Although v∗ = vmax for most of the state space, a considerable part
of the (A, S)-plane is white, which stands for optimal control v∗ = 0. The
boundary control regions are separated by very narrow regions of transitory
harm reduction.

Switching to panel b), which shows optimal control in the case c = 2,
there are significant changes in both basins of attraction. The first striking
difference is that now optimal control at and around the no-use steady state
is v∗ = 0. Optimal control v∗ = 0, which characterizes the white region,
makes up the lion’s share of the basin of attraction of the no-use steady
state. When converging to the no-use steady state, interior and full harm
reduction are optimal only in a tiny region with about A = 2 to A = 4 million
users combined with modest numbers of susceptibles. The formerly expanded
region of v∗ > 0 is now shifted and compressed dramatically. Second, the
regions where intermediate levels of harm reduction are optimal in the basin
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of attraction of the high-use steady state are shifted to the right, and there
is a certain distortion in the structure of those regions.

Going one step further to panel c) and the cost value c = 4, in the basin of
attraction of the no-use steady state the regions with optimal control v∗ > 0
are even more contracted. The pure-use reduction regime is now optimal in
almost the entire basin of attraction. At the high-use steady state, optimal
control is now v∗ = 0. Compared to the base case, the white region where
v∗ = 0 has expanded considerably to the right. In the cases with lower c,
the gray regions had a rather round shape with a dint on the left side of
the optimal high-use steady state. Here, the optimal high-use steady state is
located in the white region. The gray regions are shifted again further to the
right, which results in an almost triangular form for the regions of interior
and full harm reduction. There is again a dint in the gray slivers, but now
it occurs on the right of the optimal high-use steady state.

When control cost is as high as c = 8, optimal control in the entire basin
of attraction of the no-use steady state is given by v∗ = 0. In the basin of
attraction of the high-use steady state, the regions shaded in gray are shifted
far to the right. This is shown in panel d) of Figure 6.11.

The value of c obviously determines how far the regions with an optimal,
non-zero amount v∗ > 0 of harm reduction are shifted to the right. On
the A-axis, the switching point between v∗ = 0 and v∗ > 0 is located at
(A, S) = (c, 0). This happens because at S = 0, the Lagrange Multiplier
π1 from equation (6.4) is positive as long as A < c holds, and the Lagrange
Multiplier π2 from equation (6.6) is positive there for A > c.

In the base case, where control costs are neglected, the policy recommen-
dation of our model is that full harm reduction can be applied safely for low
levels of use. One accepts the downside of increases in initiation, because the
feedback effect from current users to susceptible non-users does not trigger
so many new users such that use could explode. In the cases with control
cost, harm reduction is omitted at most of those low levels. This switch
in the optimal control is not because harm reduction interventions are “so
bad” all of a sudden. The mechanism of initiation, essentially the effect of
g(v), is entirely the same as in the base case. The crucial fact is that now
control interventions cost money. It is a rather simple effect, which is easy
to understand from an economic point of view. In the trade-off between re-
duction of harm felt by users and monetary cost for the tool that helps to
achieve those reductions, control is omitted. Only when prevalence grows to
higher numbers of users, the tension is resolved in favor of harm reduction’s
application.
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Figure 6.12: |J∗| evaluated for the optimal trajectories emanating from
(A(0), S(0)) = (4, 21) for different values of control cost c in the U.S.

Comparison of Costs

Figure 6.12 shows the different values of control cost c investigated for the SA
Harm Reduction Model parameterized for the U.S. cocaine epidemic with the
corresponding values of the objective functional resulting from the optimal
trajectory emanating from the initial condition at A(0) = 4 million cocaine
users and S(0) = 21 million individuals being vulnerable to try cocaine.
The corresponding initial costates, initial control, and optimal control over
time are described in the paragraphs below. The aggregate discounted social
cost |J∗| along the optimal path is higher, the bigger the parameter value
c for control cost is. In any of the cost scenarios, the optimal control path
emanating from the chosen initial condition involves periods where interior
levels of harm reduction or full force harm reduction are optimal. At those
times, control is applied to exploit the benefits of the reduction in social
cost. But control cost is running, and when c is higher, the accumulated
control costs are higher. Furthermore, the region where no harm reduction
is done, is larger when c is high. This means that the periods where there
is no reduction in social cost for considerable time spans. Putting the two
effects together gives an explanation why |J∗| increases when c grows.
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In the base case system with c = 0, optimal control at the initial condition
suggests to do no harm reduction at all, i.e. v∗(0) = 0. Converging to the
optimal steady state Êv̂=vmax

, control starts to grow later on. Once the
upper bound of the feasible control values is reached, upper boundary control
remains optimal while the steady state is approached. At the initial state
A(0) = 4, S(0) = 21, the optimal trajectory assigns the costates λA(0) =
−9.6490 and λS(0) = −4.2481. Making use of formula (4.25) yields

J∗|c=0 =
1

r
H(4.0, 21, 0,−9.6490,−4.2481) = −169.2768.

In the system with the cost parameter c = 2, the optimal trajectory
emanates from (A(0), S(0), λA(0), λS(0)) = (4.0, 21,−9.9784,−4.2400). The
optimal initial control value is again v∗(0) = 0. After a period of pure use
reduction, control ramps up to the maximum, and then the system converges
to the steady state with full harm reduction. The resulting value of the
objective functional is

J∗|c=2 =
1

r
H(4.0, 21, 0,−9.9784,−4.2400) = −177.6599.

The optimal trajectory in the system with c = 4 assigns the optimal
costate values (λA(0), λS(0)) = (−10.313,−4.26316) to the initial condition.
Optimal initial control is again given by v∗(0) = 0. The optimal control
strategy that leads to the long-run steady state is very complicated in this
case. First, control is at the lower bound, then it increases, is at the upper
bound for some time. Then it decreases again, a time span of pure use
reduction follows, but then control increases again. There is another time
interval for which full harm reduction is optimal, then control declines, and
finally v∗ remains at the lower bound until the steady state is reached. The
value of the objective functional for the resulting trajectory is given by

J∗|c=4 =
1

r
H(4.0, 21.0, 0,−10.313,−4.26316) = −184.773.

For the high cost parameter c = 8, the optimal costates at the initial
condition (A(0), S(0)) = (4.0, 21) are (λA(0), λS(0)) = (−10.8380,−4.4097).
Like in the preceding cases, optimal control at the initial point is given by
v∗(0) = 0. Optimal control over time stays at zero harm reduction first, then
it increases, followed by some time interval of full harm reduction, until it
declines back to the pure use reduction regime. The value of the objective
functional along the resulting trajectory is

J∗|c=8 =
1

r
H(4.0, 21, 0,−10.8380,−4.4097) = −192.0424.
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Thoughts about Plausible Values of c

Similarly to the derivation of realistic values for the control cost parameter c

in the case of Australian IDU, we conduct the following rough calculations.
Caulkins et al. (2002) report social costs of $ 49 billion attributable to cocaine
use in the U.S. in 2000, which implies κ̃ A = 49 · 109. In this case, data on
harm reduction funding is not readily available. Hence, we depart from
federal drug control spending for treatment and prevention. The ONDCP
(2002) lists the federal drug control spending in the year 2001 for treatment
and prevention with 3,335 and 2,578.7 million dollars, respectively, which
sums up to approximately 6 billion dollars. Without a special reasoning, we
assume that 10% of those interventions can be interpreted as harm reduction
tactics, i.e. we arrive at B = 6 · 108. The most recent World Drug Report
(UNODC, 2008) lists current prevalence of cocaine use in the U.S. at the
level of 7,097,000 cocaine users. With this, we arrive at κ̃ ≈ 49·109

7
= 7 · 109.

We assume a very pessimistic scenario of vc = 0.02, which presumes
that only 2% percent of the harms counted in the objective function are
wiped out due to harm reduction measures. Remember that in the best case,
when all harms felt by the users are cut down, this accounts for the share
of vmax = 0.17. Like in the case of Australia, we use the simple equation
c̃ · vc = B. This yields c̃ = B

vc
= 6·108

0.02
= 3 · 1010. Normalizing by κ̃, we

arrive at c = c̃
κ̃

= 3·1010

7·109 = 4.28571. This value is larger than the critical value
c = 4.0649, for which high-use steady state with upper boundary control is
no longer a candidate for the optimal solution.

The assumptions we took to arrive at this parameter value bear much
uncertainty. It seems plausible that a realistic value for c might be even
higher. Obviously, the value of c provided by the present rough calculations
depends very much on the assumption how much of prevention and treatment
measures in the U.S. can be seen as harm reduction targeted on cocaine users.

6.4 Logistic Approach for Initiation into IDU

in Australia

In section 2.4 we touched on the subject that power functions of the form
Aα are not the only possibility to make initiation a function of the number
of current users. Assuming that adverse consequences of drug use manifest
when there is a certain (rather high) number of users and that the awareness
of the negative consequences of drug use acts as a brake on initiation, a
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logistic function is appropriate. Equation (2.4) introduces the functional
form

Ilog(A, S, v) = bA(Ā − A) S g(v) (6.8)

for the logistic initiation function. The parameter Ā denotes the carrying
capacity of the model. As long as A < Ā

2
, the term A(Ā − A) is increasing.

At A = Ā
2
, the contagion effect peaks. For levels of use higher than half of

the carrying capacity, initiation is decreasing in the number of users. Please
note that when the number of users grows beyond the carrying capacity Ā,
initiation is negative, which is not sensible. Hence, the logistic approach is
limited to the domain A ≤ Ā.

A general logistic function is displayed in Figure 2.2. It is a concave func-
tion. Hence, the logistic approach suits modeling initiation into injecting
drug use in Australia, for which we assumed that the contagion effect is con-
cave in the number of users. The U.S. cocaine epidemic’s parameterization
involves an exponent α > 1 in the approach with the power function. The
contagious effect is stronger, the more users exist. The logistic approach does
not meet this property. Consequently, the logistic function is explored for
Australian IDU, but not for cocaine use in the U.S.

The most basic approach to derive the parameter values for the new
logistic approach for Australia is to evaluate the original term bAα for the
base case parameterization and for values of A between 0.01 and 0.4 in steps
of 0.01. The resulting values are then used to estimate a least squares fit
for the logistic form. This results in a carrying capacity of Ā = 2.005775
and a proportionality constant b = 0.35656. The power function bAα =
0.5112 A0.8622 from the base case and the new logistic term bA(Ā − A) =
0.35656 A (2.005775−A) are shown in Figure 6.13. The curves are very close
to each other as long as there are less than half a million of IDUs. The
gray curve which stems from the functional form of the base case denoted in
equation (2.2) then increases stronger, whereas the logistic function shown as
a black dashed curve has a less steep incline. It peaks at A = Ā

2
= 1.00289.

Figure 6.13 shows that the logistic function decreases for numbers of users
that exceed that critical stage A = Ā

2
.

For the sake of conciseness, the canonical system stemming from appli-
cation of Pontryagin’s Maximum Principle is not presented. Conducting
the usual steps (search for steady states with interior control, analysis of
boundary control steady states and the corresponding Lagrange Multiplier,
investigation of stability properties) we arrive at a unique optimal solution.
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Figure 6.13: The power function bAα = 0.5112 A0.8622 from the original
initiation function for Australian IDU is shown in gray. The black dashed
curve depicts the new logistic approach bA(Ā−A) = 0.35656 A (2.005775−
A).
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Ŝ

λ̂A

λ̂S








=







0.333769
0.154242
−3.8735
−2.49905







.

The fixed point evaluates a positive Lagrange Multiplier π2 = 0.305758. The
Jacobian Matrix of the new canonical system evaluated at the equilibrium
exhibits Eigenvalues

ξ1 = 0.276486,

ξ2 = −0.236486,

ξ3 = 0.167214,

ξ4 = −0.127214.

The Eigenvalues are real, with one pair of them being negative whereas the
other pair is positive. Hence, the property of saddle point stability is given.

Optimal control as a function of users A and susceptibles S is shown in
Figure 6.14. The shading in gray and white is analogous to kindred gray
level Figures in this thesis, e.g. Figure 4.1 or Figure 4.6. Some of the tra-
jectories from the optimized phase portrait are shown. The arrows indicate
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Figure 6.14: Optimal control on the (A, S)-plane for the logistic approach
modeling initiation into IDU in Australia.

the direction of convergence towards the steady state. The unique optimal
long-run steady state is shown as a black dot. Any trajectory that starts in
the feasible domain (remember that here it is limited to A ≤ Ā = 2.005775)
eventually approaches this fixed point. The gray dot close to it shows the
steady state of the boundary control system with v̂ = 0, which evaluated a
negative Lagrange Multiplier π1 = −0.266979 and is therefore not a candi-
date for optimality.

It is evident from Figure 6.14 that both the optimal control structure
and the resulting optimized phase portrait are very similar to the results
derived for the base case. Those results are shown in Figure 4.1. Hence, we
conclude with the finding that the results achieved for Australia’s population
of IDUs are not induced by the special functional form Aα. When switching
to another concave function to model the contagion effect of current users to
non-using susceptibles, the results are stable.



Chapter 7

Conclusions and Possible

Extensions

This thesis was devoted to a two-state one-control model of drug epidemics.
The main purpose was to derive optimal drug control strategies. There were
two innovative aspects of the model. First, it explicitly considered a popu-
lation of non-using susceptibles who are the ones to feed the drug use state.
Second, a fairly novel control mechanism was modeled, which aims at the
reduction of the harms felt by drug users. The parallel investigation of
harm reduction for one parameter set based on data on the U.S. cocaine
epidemic and another parameter set derived from data on injecting drug use
in Australia showed that appropriate functional forms and the corresponding
parameters depend on the specific drug and country.

Unlike classic drug control interventions like law enforcement acting like
a tax driving up prices, treatment stimulating the outflow from drug use, or
prevention that aims at avoiding that young people ever try drugs, the new
approach does not primarily aim at reductions in use and may even increase
initiation. This makes harm reduction controversial. The model introduced
in this thesis tried to provide advices to the participants in the discussion
whether use reduction or harm reduction is the right policy.

From the modeling perspective, boundary conditions for the control had
to be considered. In a first step a static-control analysis of the performance
of full harm reduction relative to the performance of pure use reduction
was conducted. The most important conclusion from this static comparative
analysis was that harm reduction seems to have great potentials to ameliorate
social costs and harms associated with injecting drug use in Australia. For
the base case scenario of the U.S. cocaine epidemic, it seems to have great

156
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potential at the early stages of the epidemic - when drug use is rare and
there is no danger that initiation will explode - or when the number of drug
users is high at the later stages of the epidemic, because then the reduction
in social cost counted in the objective function is beneficial. Nevertheless,
the investigations of the static system revealed that if harm reduction was
timed incorrectly, it may tip the epidemic and/or induce increased aggregated
harm.

Applying optimal control theory to the base case model which neglects
control costs and assumes that initiation into drug use is only driven by
feedback effects from current use, it turned out that for the Australian pa-
rameterization of the model, harm reduction tactics were optimal for almost
all possible initial conditions, but if numbers of users are very small, it was
better to omit harm reduction. For the U.S. cocaine epidemic parameteriza-
tion, the policy recommendation was less straightforward. Multiple steady
states occurred, of which a high-use steady state and a no-use steady state
were the optimal long-run solutions. For both of them, full harm reduction
was optimal at the steady state and in a large region around the fixed point.
An indifference curve was found for which the high-use steady state could be
reached in two different ways yielding the same value of the objective func-
tion. With respect to optimal control the simple model suggested to omit
harm reduction at intermediate levels of cocaine use, but for high levels of
use, and when use was rather low, the optimal strategy was full application
of harm reduction.

A sensitivity and bifurcation analysis was conducted to deal with the
problem that there is of course some uncertainty about the base case pa-
rameterizations. We found blue sky bifurcations, neutral saddles, and Hopf
bifurcation points. The Hopf bifurcation points indicate the existence of limit
cycles, but given the many other interesting results in this thesis there were
no further investigations in that direction. Of course, these Hopf bifurcation
points provide an important starting point for future investigations of the
SA Harm Reduction Model, in which we may expect to find optimal limit
cycles.

The previous Chapter assessed several variations of the base case model.
First, the case of decreased virulence of the cocaine epidemic in the U.S. was
investigated. The structure of optimal control depending on the stage of the
epidemic was not so different from the base case results, but nevertheless
optimality of the multiple candidate solutions changed relative to the base
case. Given the new parameter value used in this variation, eradication of the
epidemic was optimal for most initial conditions, whereas only for a narrow
region of initial conditions a high-use steady should be approached. The
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basins of attraction of those two optimal steady states were separated by a
DNSS curve.

Second, innovators were included in the initiation function. At high levels
of use there was barely a change relative to the base case scenario of the U.S.
cocaine epidemic, but at low levels of use, the steady state was pushed away
from zero use towards a moderate number of users. Furthermore, this steady
state did not exhibit optimal control at its boundary level, i.e., control took
an intermediate value there. Given the parameter value modeling the group
of innovators in this variation, we found that the full harm reduction strategy
was no longer optimal at low levels of drug use. The innovators give a drive
to initiation that is not governed by the size of current use. Even at low
levels of use, harm reduction would attract new innovators which triggers
undesired increases in use. On the other hand, innovators into drug use only
marginally changed the results for Australian IDU.

Third, a linear cost function was introduced. The important conclusion
from the investigation of the model using different cost parameter values
was that harm reduction cost can indeed be neglected in the objective func-
tion when modeling Australian IDU. For the U.S., additional investigations
on budgets and harm reduction interventions seem necessary to arrive at a
recommendation whether control costs can be omitted or not.

The last variation of the model showed that the results derived for Aus-
tralia are fairly robust with respect to the functional form used to model
initiation into drug use. Using a logistic approach for the initiation function,
steady state values and the structure of optimal control turned out to be
structurally stable.

Considering the evolution of optimal control as computed for the U.S.
and Australian parameterization and for any of the variations, the results
showed once more that for a problem that varies over time, the optimal
control interventions can be quite distinct over time, too. Furthermore, we
could deduce that control interventions that pursue different aims (i.e., use
reduction versus harm reduction) may both have merits over the course of a
drug epidemic, but depending on the numbers of current users and non-using
susceptible individuals not necessarily at the same time.

To the extent that one can generalize the results from these stylized mod-
els, the answer to the opponents in the discussion may be that neither the
one nor the other strategy is unequivocally the best. Perhaps both are good,
important, and advantageous, but possibly not at all times. The main mes-
sage is that policy makers should recognize that use reduction is not the
unique mechanism that can ameliorate drug related problems and reduce so-



Conclusions and Possible Extensions 159

cial costs. A decision maker aiming for a comprehensive cost-minimizing drug
control strategy should take into consideration that harm reduction may have
benefits. Use reduction tactics are traditional and most have been evaluated
to be effective. Nevertheless, at certain stages of the dynamic evolution of a
drug problem, it may be fruitful with respect to minimizing social costs and
harms borne to society to apply harm reduction mechanisms. Proponents
of use reduction, and of harm reduction, should not demonize the ideas and
downplay the arguments of the other. Rather, they ought to accept that
the ideas of the other party may be fruitful and beneficial in at least certain
circumstances, and try to reconcile their perceptions in order to build models
that will yield better drug control strategies for the future.

By no means it can be claimed that this thesis was the definitive answer
how periods with and without harm reduction should vary over time. Much
more, the present investigations are only the first steps into the treatise of an
important novel area in drug policy. There are various possible extensions
that would allow going a step further than the work presented in this the-
sis. The extensions that should be taken into consideration for future work
include the following ideas and approaches:

• People who claim that harm reduction sends the wrong message would
probably like to find a more pronounced increase in initiation than
modeled in the current work. Additionally, they might criticize that
the possibility of an increase of the quantity consumed by prevalent
users is ignored in the model. On the other hand, harm reduction
proponents do not cease to argue that there is evidence that harm re-
duction tactics do not have negative effects, in particular that they
do not increase initiation. Hence, it might be of interest to investi-
gate other functional forms to model several possibly negative effects
triggered by harm reduction.

• Considering the different variations conducted for the U.S. cocaine epi-
demic and the corresponding changes in the optimal solution, it seems
interesting to investigate a model that recognizes a certain amount of
innovators into drug use, that assumes a decreased virulence, and that
considers an appropriate amount of control costs.

• A bifurcation analysis should be conducted with respect to other pa-
rameters, and the Hopf bifurcation occurring when the parameter µ is
varied for the U.S. cocaine epidemic (see Chapter 5) should be analyzed
in more detail, in order to answer the question whether optimal limit
cycles exist.
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• Additional control strategies and their impact on the drug epidemic
could be included in the harm reduction model.

• The drug use state A could be split up into states modeling different
degrees of consumption. Similar to the LH-model (cf. Behrens et al.,
1999; Knoll and Zuba, 2004), there could be a division into occasional
use, where people are not dependent on the drug (light users), and a
state that models those who are dependent on the drug and thus use
it with a much higher frequency (heavy users). Auch a SLH-model
could be of particular importance, because it would track the career
of a drug-using individual from the moment entering the population
of susceptible non-users, through the state of relatively unproblematic
light use to the escalation to the more problematic state of dependent
heavy use. The distinction of different states of drug use might go
along with a distinction of the effects of harm reduction measures in
the different groups. Adverse consequences for personal health might
be more of a concern for the H state, whereas the multiplier effect
of the function g(v) could be more pronounced for the flow from the
S-state to the L-state.

• Bultmann (2008) extends a (single-state) A-model presented by Grass
et al. (2008) by assuming that the drug price is a random variable.
Even in that rather simple model, complex optimal solutions occur
such as stochastic Skiba (DNSS) points. Given the rich structure of
the two-state SA-model presented in this thesis, we may expect that
a stochastic version should give rise to even more interesting behavior
such as stochastic DNSS curves.
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Appendix

A.1 Local Stability Behavior

The local stability behavior of a steady state (Â, Ŝ) of a two-dimensional
system of differential equations Ȧ, Ṡ can be determined by linearization
around the steady state. The Jacobian Matrix J evaluated at a steady state
(Â, Ŝ) is

J |(Â,Ŝ) =

(
∂Ȧ
∂A

|(Â,Ŝ)
∂Ȧ
∂S

|(Â,Ŝ)
∂Ṡ
∂A

|(Â,Ŝ)
∂Ṡ
∂S
|(Â,Ŝ)

)

.

The steady state’s stability properties are determined with the help of the
Eigenvalues e1 and e2 of this matrix, or equivalently, evaluating the trace
τ := tr(J |(Â,Ŝ)) and the determinant ∆ := det(J |(Â,Ŝ)) of J |(Â,Ŝ). Note, that
the symbol τ used here is different from the “innovators term” introduced to
the initiation function in Chapter 2 and used in section 6.2 of Chapter 6. As
mentioned in Strogatz (1994), the type and stability of all different sorts of
fixed points can be presented on a single diagram (see Figure A.1).

For simplicity we denote the entries of the Jacobian Matrix at the steady
state as

J |(Â,Ŝ) =

(
a b

c d

)

.

The characteristic equation is given by

(a − λ) (d − λ) − b c = λ2 − (a + d) λ + a d − b c = 0. (A.1)
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Figure A.1: Type and stability of all different fixed points of a two-
dimensional system can be determined with the help of the trace τ and
the determinant ∆ of the Jacobian Matrix J |(Â,Ŝ).

Determining the trace τ = a + b and the determinant ∆ = a d − b c, we
express the Eigenvalues of the Jacobian Matrix as

e1,2 =
1

2
(τ ±

√
τ 2 − 4∆).

Furthermore, we can write the characteristic equation in the form (λ −
λ1)(λ − λ2) = λ2 − λ1λ − λ2λ + λ1λ2 = 0, whereas in equation (A.1) the
characteristic equation is written in the form λ2−τ λ+∆ = 0. Comparison of
coefficients in the two expressions immediately yields the identities ∆ = λ1λ2

and τ = λ1 + λ2.

To arrive at the diagram in Figure A.1, we make the following observa-
tions:

• If ∆ < 0, the expression under the root is positive, so both Eigenvalues
are real and they have opposite signs. Hence, the fixed point is a saddle
point.

• If ∆ > 0, we have to distinguish the cases τ 2 − 4∆ > 0 and τ 2 −
4∆ < 0. In the first case, the Eigenvalues are real, which characterizes
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nodes. Foci satisfy τ 2 − 4∆ < 0, which means that the Eigenvalues
are conjugate complex. The parabola τ 2 − 4∆ = 0 is the borderline
between spirals and nodes. On this curve we encounter star nodes and
degenerate nodes.

The stability of the nodes and spirals is determined by τ . For τ < 0,
both Eigenvalues are negative or have negative real parts, which means
the fixed point is stable. Unstable spirals and nodes have τ > 0. The
borderline τ = 0 between stability and instability is where neutrally
stable centers live. There, the Eigenvalues are purely imaginary.

• If ∆ = 0, at least one of the Eigenvalues is zero. Then the fixed point is
not an isolated fixed point. There is either a whole line of fixed points,
or a plane of fixed points, if J = 0.

From Figure A.1 one can easily infer that saddle points, nodes and spirals
(foci) are the most relevant types of fixed points, because they occur in large
open regions of the (τ, ∆)-plane on the diagram. As analyzed above, centers,
stars, degenerate nodes and non-isolated fixed points live only on hairline
cases in this plane.

A.2 Proof that λ0 6= 0

We consider a dynamic optimal control problem with infinite time horizon.
In contrast to problems with a finite horizon, a constant λ0 multiplies the
integrand of the objective function (see equation (4.6)). We cannot set λ0 = 1
a-priori, because the degenerate case λ0 = 0 can appear. This degenerate
case has to be excluded. There is the general assumption of non-degenerate
costates (λ0, λS, λA) 6= 0. If we can show that λ0 6= 0, then the constant can
be set to λ0 = 1 without loss of generality.

Let us assume that λ0 = 0. The Hamiltonian H (with general initiation
function including τ) is then reduced to

H = k λS − S δ λS − A λA µ + (λA − λS) (τ + bAα) S g(v).

The necessary optimality condition for an interior control is Hv = 0. We get

Hv = (λA − λS) (τ + bAα) S g′(v) = 0. (A.2)

For the factor g′(v), there holds g′(v) > 0 for all admissible values of v. Thus,
the above expression can only be equal to zero, if one of the other 3 factors
in equation (A.2) is equal to zero.
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• At S = 0, the system dynamics takes the value Ṡ = k > 0. Thus,
the pool of susceptibles would immediately grow to a positive number
of users. In section 3.1 we have shown that the A-axis, S = 0, is a
repeller. Consequently, the number of susceptibles can be zero at the
initial condition S(0) = 0, but S(t) = 0 for a t 6= 0 cannot occur.

• For the costates we expect that λA < λS, because in their interpretation
as shadow prices of the states this relation means that an increment in
use is always validated to be worse than an increment in susceptibles.
Please note that we expect that the costates are both negative in our
model because users cause costs and susceptibles are potential future
users.

• For the case with innovators, τ > 0, the expression τ + bAα cannot be
zero for A ≥ 0, because b > 0.

In the case without innovators, τ = 0, A = 0 would have to hold.
If once there is no use, Ȧ = 0 holds. Then we encounter the ideal
case that the drug epidemic never starts. Of course, this is the most
desirable case for the decision maker, but the underlying intention is
to investigate optimal control of an illicit drug problem with A(t) 6= 0
for the initial time t = 0.

Concluding, the degenerate case λ0 = 0 is not appropriate here, and we can
set λ0 = 1 without loss of generality for our calculations.

A.3 Mangasarian Sufficiency Conditions

The crucial point about the Mangasarian sufficiency conditions is that the
Hamiltonian must be jointly concave in states and control for a solution
that fulfills the necessary conditions to be indeed optimal. The concavity is
investigated with the help of the Hessian Matrix of the Hamiltonian H with
respect to A, S, and v.

M =





HAA HAS HAv

HSA HSS HSv

HvA HvS Hvv



 .

Concavity follows from this matrix M being negative semi-definite. To this
end, we must show that the first leading principal minor of M , M1, is nega-
tive, the second leading principal minor M2 positive and that the third M3

is negative again.
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The first leading principal minor is given by

M1 = HAA = −Aα−2 b S (α − 1)α(λS − λA) g(v).

The second leading principal minor is

M2 = HAAHSS − HSAHAS = −A−2+2α b2 α2 (λA − λS)2 g(v)2.

M3 is the determinant of M . Looking at the expression for M2, we find a
row of squares which are all positive, the term A−2+2α is positive, too. Thus,
with the leading minus, M2 < 0 holds. Consequently, the Hamiltonian is not
concave and the Mangasarian sufficiency conditions do not hold.

Nevertheless, we can be quite sure that the solutions we encountered are
optimal. First of all, the state dynamics induce the nice property, that the
steady states are located on a single line in the (A, S)-plane, see equation
(3.3) in section 3.1. The search for steady states was conducted with two
software packages independently of each other, thus most probably all possi-
ble steady states were found. Some steady states were not feasible (Lagrange
Multiplier negative). The backward calculation from the remaining candi-
dates for optimality is able to cover the entire first quadrant including the
axes. Some candidates were dominated by better solutions. Hence, we can
be quite sure that the determined trajectories of the system are indeed the
optimal ones.

A.4 Numerics, Software, and Further Tech-

nicalities

The analyses presented in this thesis are conducted with Wolfram’s Mathe-
matica 5.2 (1988-2005), with Matlab 7.1 (1984-2005), and with the help of
MatCont CL (2007) and the toolbox OCMat (2008).

General information on the programs used can be accessed at

• http://www.wolfram.com (Mathematica),

• http://www.mathworks.com (Matlab),

• http://www.matcont.ugent.be (MatCont and MatCont CL).
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With respect to the solution techniques and their implementation, Grass
et al. (2008) provides an excellent textbook. It also introduces the Matlab
toolbox OCMat that was used to conduct significant parts of the present
analysis. OCMat is available via http://www.eos.tuwien.ac.at/OR/OCMat.
From an often considerable number of switches from boundary to interior
control and vice versa there arose a numerical complexity of the model. This
led to the challenging task of adjusting and extending the toolbox to be able
to handle the several switches.

While conducting the investigations of the SA Harm Reduction Model
presented herein, a modus operandi of rotational and complementary work
with the different programs turned out to be convenient and advantageous.
In particular, Matlab provides the advantage of continuation tools, which
allow continuing an existing solution to find further solutions. With respect
to calculation of indifference curves and DNSS curves, this is a great benefit.
Most of the plots presented in this thesis stem from Mathematica, this shall
not mislead to the assumption that Matlab played an unimportant role in
the analysis.

To calculate the trajectories that converge towards the steady states,
there are two approaches. One can either solve Initial Value Problems
(IVPs) or Boundary Value Problems (BVPs). To achieve the results pre-
sented herein, both methods were employed. The IVP approach is used with
Mathematica, whereas Matlab makes use of the BVP approach.

Using the IVP approach, the system of differential equations is solved
in reversed time. The initial values for the IVP have to be chosen in an
appropriate neighborhood of the steady state. To find such a neighborhood,
we follow the approach introduced in Knoll and Zuba (2004), which makes
use of the Eigenvectors of the Jacobian Matrix evaluated at the steady state
to span an ellipsoid close around the steady state.

Different from this, the BVP approach for infinite time horizon optimal
control problems uses a so-called asymptotic boundary condition. The de-
tailed definition is given in Grass et al. (2008).

Grass et al. (2008) also give a definition of DNSS curves. Please note that
in this thesis we do not use the denominations as defined in the textbook,
which is for the sake of differentiation between curves that allow for different
ways to approach a steady state (called indifference curves in this thesis), and
curves characterized by equally optimal convergence to two different steady
states (called DNSS curves here).

With respect to the location of the indifference curves and the DNSS curve
found in the scenario of decreased virulence of the U.S. cocaine epidemic in
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section 6.1, it has to be mentioned that the junction points between the curves
might constitute so-called multiple DNSS point. Feichtinger & Steindl (2006)
found two DNSS curves in a production/inventory model, whereby those two
curves intersect. At the intersection point, a threefold Skiba point in the state
space was detected. From this point there emanate three different trajectories
with the same accumulated total cost.
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steady states Â for the U.S. cocaine epidemic . . . . . . . . . 109

5.7 Lagrange Multipliers and control v̂ when b varies for the U.S.
cocaine epidemic . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.1 One-dimensional stable manifold forms a pocket . . . . . . . . 117

6.2 Dominated steady states in the scenario of declined infectivity
of the U.S. cocaine epidemic . . . . . . . . . . . . . . . . . . . 118

6.3 Optimal control and optimal phase portrait for the U.S. co-
caine epidemic with decreased b . . . . . . . . . . . . . . . . . 119

6.4 Detailed plot of optimal control around the DNSS curve and
indifference curves . . . . . . . . . . . . . . . . . . . . . . . . 120

6.5 Time paths for initial conditions located on the DNSS curve . 124



LIST OF FIGURES 175

6.6 Optimal control as a function of A and S around the low-use
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11/05 - IAESTE Vienna
Vereinsmitglied
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