
DIPLOMARBEIT

Monte Carlo Simulation Methods for

Quantum Mechanical Systems

ausgeführt am

Institut für Allgemeine Physik (IAP)
der Technischen Universität Wien

unter der Anleitung von

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Peter Mohn

durch

Robert Achleitner

Dürergasse 23, 1060 Wien

Wien, Mai 2008

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Zusammenfassung

Diese Diplomarbeit beschäftigt sich mit Monte Carlo (MC) Simulationen
mit Schwerpunkt auf quantenmechanischen Systemen. Zuerst wird ein kurz-
er Überblick über Monte-Carlo Methoden im Allgemeinen gegeben, danach
wird eine bereits bekannte Anwendung, das klassische Ising Modell, behan-
delt. Der größte und wichtigste Teil dieser Diplomarbeit beschäftigt sich
mit quantenmechanischen Systemen und deren Lösungsmethode auf Basis
der stochastischen Reihenentwicklung (SSE). Es wird zuerst der theoretische
Hintergrund dieser Methode dargestellt und dann der Algorithmus für das
Heisenberg Modell auf endliche Spin-Ketten angewendet. Alle Simulationen
wurden in FORTRAN programmiert.

Abstract

This thesis work deals with Monte Carlo (MC) simulations with the focus
on quantum mechanical systems. I start with an introduction about Monte-
Carlo methods in general and their application to the classical Ising model.
The second, most important part deals with the problem in quantum me-
chanics, and presents a possible simulation method, the Stochastic Series
Expansion (SSE). I give an introduction about the idea behind that method
and give some results obtained for simulations for finite spin chains. All
programming was performed in FORTRAN.

Contents

I Introduction 3

1 Introduction 3

2 Monte Carlo Simulations (MC) 3
2.1 Introduction . 3
2.2 Example: Calculation of π . 3

II Classical Ising 6

3 Theory 6
3.1 Model Description . 6
3.2 Weightfunction . 6

4 Simulation 9
4.1 Algorithm . 9
4.2 Results . 10

III Stochastic Series Expansion (SSE) 11

5 Classical Approach 11
5.1 Basics . 11
5.2 A mathematical trick to obtain energy expectation values and

the specific heat more easily 12

6 Quantum Mechanical SSE 14
6.1 Basics . 14
6.2 Configuration limits of QM-SSE 16
6.3 A graphical way to describe Operator strings 17

7 Simplified Heisenberg System 20
7.1 Theory . 20
7.2 Algorithm . 24

7.2.1 Overview . 24
7.2.2 Diagonal Updates . 24
7.2.3 Vertices and Linked-Vertex-List 27
7.2.4 Off-Diagonal Updates 30
7.2.5 Determining M . 33

7.3 Simulation and Results . 37

1

8 QMSSE in more general Heisenberg systems 39
8.1 Theory . 39

8.1.1 Statistical weight and probabilities 39
8.1.2 Vertices and selection rules 40
8.1.3 Implementation of an external field h 41
8.1.4 Example of a more general heisenberg system 41

8.2 Differences in the algorithm 43
8.2.1 Diagonal updates . 43
8.2.2 Off-diagonal updates 43

8.3 Simulation and Results . 44

9 Lookout 45
9.1 Vertices . 45
9.2 Plaquettes . 45

10 Conclusion 47

A Abbreviations and definitions 48

B FORTRAN code - Open spin chain in the simplified Heisen-
berg system 50

2

Part I

Introduction

1 Introduction

Computer Simulations are an important part of modern physics. Once a
process can’t be solved analytically anymore one needs numerical meth-
ods. These numerical calculations are of course performed on computers.
The faster the CPUs become, the more complex a numerical calculation
can be performed. Computer simulations in Physics are nowadays a broad
field. Many of the numerical methods rely on the solution of analytically
given equations (e.g. the Schrödinger equation) by means of deterministic
methods. MC simulations go along a completely different path by applying
statistical methods to obtain numerical results. The possibilities are huge
as will be demonstrated during this diploma work.

2 Monte Carlo Simulations (MC)

2.1 Introduction

As mentioned above, Monte Carlo Simulations are simulations with random
numbers. To give a better explanation, one can say MC Simulations use
random numbers either to generate different possible states of the system or
to weight possible changes to the system and use the results in statistics. To
give an idea on how MC simulations work I will start with an easy example,
the calculation of the irrational number π.

2.2 Example: Calculation of π

A good example as an introduction into the MC method is the calculation
of the constant π. In figure 1 below you can see how this is done. There is
a square with the length 1 and a quarter of a circle in it with the radius 1.
Then points are drawn with random x and y coordinates.

3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 1: Graphical representation of how to calculate π with a MC-
simulation

If the random number generator (RNG) is good enough, one should be able
to fill the whole square equally if you just draw enough random points. So
it’s easy to see that the ratio of the areas of the square and the circle will
have the same ratio as the points inside the circle and the total number of
points. So all that has to be done is to draw a chosen amount of random
points and count the ones that are inside our quarter circle. Then π should
be given by 4M

N
(M is the number of points counted inside the circle so that

π is approximated by a rational fraction. N is the number of all random
points. The factor 4 comes from working with a quarter circle). The simple
algorithm is like following:

• Set your counter(M) to 0 and choose a number of random points(N)

• Start a loop

• Choose a random value for x (Between 0 and 1)

• Choose a random value for y (Between 0 and 1)

• Increase your counter by 1 if x2 + y2 is less or equal than 1

• End the loop if the chosen number of random points is reached

• Calculate π by π = 4M
N

Below are some sample results i obtained with this simple algorithm:

4

N π

101 2.8000000

102 3.0800000

103 3.0680000

104 3.1268000

105 3.1406800

106 3.1391560

107 3.1415068

As you can see the value of the calculated π gets the close to the real value of
π the more random points were used. This shows us an important property
of typical MC simulations. They fulfill the ’Law of Large Numbers’. That
means the more random points, or to be more general, the more random
numbers are considered, the better will be the result you get. The re

5

Part II

Classical Ising

3 Theory

3.1 Model Description

The classical Ising model is a simple model for a spin system developed
by Ernst Ising. In fact it is an approximation of the quantum mechanical
heisenberg model which will be discussed later on [2]. The spins are aligned
on a lattice and can have the values +1 or -1. They are coupled to each other
with a coupling constant Ji,j. Usually there is also a Zeeman term which
takes the influence of an applied external field into account. For simplicity
we will neglect an external field for now. The hamiltonian, and thus also
the total energy, is given by following:

H =
∑

i,j

Ji,jSiSj (1)

In this formula every spin Si interacts with every other spin Sj. The Ji,j

are varying according to the interaction partners. For simplification we
assume that our forces are short ranged and we can focus on next neighbor
interaction only (That is not the case in real systems). Let’s also consider
our system got a lattice structure with a lattice constant J which means one
has to deal with an isotropic system. The hamiltonian becomes

H =
∑

i

JSiSi+1 (2)

for a one dimensional model and

H =
∑

i,j

J1Si,jSi+1,j + J2Si,jSi,j+1 (3)

for a two dimensional model. Of course you could go further the same way
for a three dimensional system.
The coupling constants Ji classify the system. For Ji > 0 the energy is
lower when neighbor spins are aligned antiparallel. Thus the system is an-
tiferromagnetic. For Ji < 0 the energy is lower when the neighbor spins are
aligned parallel. Thus the system is ferromagnetic.

3.2 Weightfunction

Lets have a look at the statistics. According to the hamiltonian every state
α got a total energy E(α). The statistical weight of each state is given by

6

the Boltzmann distribution. So the statistical weight of the state α is given
by

W (α) = e−βE(α) (4)

With β = 1
kBT

. The expectation value of a function f(α) is given by

〈f〉 =
1

Z

∑

α

f(α)e−βE(α) (5)

with Z as the partition function

Z =
∑

α

e−βE(α) (6)

With the help of equation (4) the transition probability from state i (initial)
to state f (final) can be calculated:

Pi→f =
Wf

Wi

= e−β(Ef−Ei) (7)

As one can see it is possible to get higher values for Pi→f than 1. This is
nothing to worry about. A value for Pi→f ≥ 1 just means that the transition
happens at 100%, because Ef is sufficiently lower than Ei. Since it makes
no sense to have a probability higher than 1 the probability will be limited
to 1. So we obtain

Pi→f = min(e−β(Ef−Ei), 1) (8)

Typical functions that are calculated in such models are response functions
such as the susceptibility or the specific heat. Since this chapter has the
aim of providing a better understanding for computer simulations and their
reliability it is sufficient to focus a very simple model consisting only out
of two spins. For that case the analytical solution can easily be obtained
for the response function. It will be satisfying enough to just focus on the
susceptibility χ for now. According to [7] χ is given by

χ = β(〈M2〉 − 〈M〉2) (9)

with M as the magnetization. The derivation of the analytical function for
χ out of equations (5) and (9) for a ferromagnetic system consisting out of
two spins is given by following:

〈M〉 =
0 · eβJ + 2 · e−βJ

eβJ + e−βJ
= 2

e−βJ

eβJ + e−βJ
(10)

〈M2〉 =
02 · eβJ + 22 · e−βJ

eβJ + e−βJ
= 4

e−βJ

eβJ + e−βJ
(11)

〈χ〉 = β(〈M2〉 − 〈M〉2) (12)

7

〈χ〉 = β[4
e−βJ

eβJ + e−βJ
− (2

e−βJ

eβJ + e−βJ
)2] (13)

〈χ〉 = 4β[
e−βJ

eβJ + e−βJ
−

e−2βJ

(eβJ + e−βJ)2
] (14)

〈χ〉 = 4β[
e−βJ (eβJ + e−βJ) − e−2βJ

(eβJ + e−βJ)2
(15)

〈χ〉 = 4β[
1 + e−2βJ) − e−2βJ

(eβJ + e−βJ)2
(16)

〈χ〉 = 4β
1

4 cosh2(βJ)
(17)

〈χ〉 =
1

kBT

1

cosh2(J
kBT

)
(18)

Since such a simplified model is just a toy model the constants can be chosen
freely. For convenience let’s set them to 1. The resulting function is plotted
in figure 2. This analytical function can be used to compare whether a
computer simulation gets close to this function. Actually this will be shown
in the end of the next chapter.

0 2 4 6 8 10
T

0.1

0.2

0.3

0.4

χ

χ vs T

Figure 2: χ vs T - analytic solution for a ferromagnetic 2 spin system

8

4 Simulation

4.1 Algorithm

Since MC simulations are well known for the Ising model it is sufficient
enough to give only a short summary about the algorithm with adding just
a few more words to each point. If you would like to have more details i
recommend [7]

1. Set up the model by setting different parameters (constants, starting
temperature, number of spins, number of steps,...)

2. Determine a starting configuration. Either choose one manually or use
random numbers to generate one.

3. Choose a spin; either one after the other or by randomly picking one
and calculate its probability to flip according equation (8)

4. Draw a random number. If this number is greater than the transition
probability then the spin does not flip. If it is less or equal than the
transition probability then the spin flips. [3]

5. Save the important data (like magnetization, total energy) and re-
peat points 3-5 until the predetermined maximum number of steps is
reached.

6. Calculate averages out of the saved data.

This is a pretty simple algorithm which is easy to program. There is one
thing to add that I recommend, not just for this algorithm, but for MC
simulations in general. Instead of doing one run with lots of steps i recom-
mend to split up the steps into several runs. There are two reasons for doing
this. The first reason is to neglect runs that end up in unlikely but possible
configurations. The second reason is to neglect the limitation of the RNGs.
That limitation comes from the periodicity of RNGs. Also to avoid runs
starting with the same seed it is a good idea to generate some kind of list
containing random numbers at first, from which a seed is drawn every time
a new runs starts. That way you will start each run with a different seed for
the RNG, which results in different starting values for the simulation. That
way unlikely paths of a simulation, that can happen in one run, will average
out by other runs. You can recognize that by a smoothing of your graphs.

9

4.2 Results

This part was intended to introduce the reader into the basic concepts of
computational simulations of spin systems with the help of the Ising model.
Because this thesis work is focused on the method of Stochastic Series Ex-
pansion I will settle here for just showing how accurate a MC simulation
can be.

0 2 4 6 8 10
T

0

0.1

0.2

0.3

0.4

0.5

 χ

Simulation
Analytical Solution

χ vs T

Figure 3: Analytical Solution and Simulated Results for χ with same pa-
rameters

In figure 3 you can see the analytical solution and the simulation result. For
both graphs the same parameters (kB = 1, J = 1, number of spins N = 2)
were used to make them comparable. As you can see the numerical results
fits perfectly onto the analytical curve. This shows quite well how accurate
a numerical simulation can be.

10

Part III

Stochastic Series Expansion (SSE)

5 Classical Approach

5.1 Basics

Let’s have a look at some statistical basics that were used in the Ising section.
The statistical weight of a state |α〉 is given by a Boltzmann factor

W (α) = e−βE(α) (19)

β stands for 1
kBT

.
The partition function is given by

Z =
∑

α

W (α) (20)

Thus an expectation value is given by

〈f〉 =
1

Z

∑

α

f(α)W (α) (21)

The probabilities used in the Ising model are determined by the Boltzmann
factor. Let’s imagine the weightfactor (the exponential function) is not
trivially solvable. What you can do now is to make a series expansion of
this exponential function.

Z =
∑

α

W (α) =
∑

α

e−βE(α) =
∑

α

∑

n

βn(−E(α))n

n!
=

∑

α

∑

n

W
′

(α, n)

(22)
n is a new dimension of our configuration space. Thus a new weightfunction
W

′

(α, n) was defined. Since this weightfunction depends on two variables
(α, n) and can easily be distinguished from the old one depending only on α

I will leave out the apostrophe from now on. If you have a look at W (α, n)
you can see that for odd n it is possible to get a negative value. Since it
makes no sense to have a negative statistical weight the zero point has to
be shifted (E ⇒ E − ε) to make sure every shifted energy value is negative
which causes all statistical weights to be positive.

W (α, n) =
βn(ε − E)n

n!
(23)

The fact that n ranges from 0 till ∞ and that the denominator is a factorial
function calls for an approximation to make the series expansion a useful
tool. The approximation will be an truncation of the series expansion. How
to perform this truncation will be discussed later in chapter 6.1.

11

5.2 A mathematical trick to obtain energy expectation val-
ues and the specific heat more easily

First of all a new function H is defined

H = ǫ − E (24)

That way the weightfactor becomes

W (α, n) =
βnHn(α)

n!
(25)

Let’s calculate the expectation value of the hamiltonian H and transform it
into a more convenient form

〈H〉 =
1

Z

∑

α,n

H(α)
βnH(α)n

n!
(26)

〈H〉 =
1

Z

∑

α,n

βnH(α)n+1

n!
(27)

〈H〉 =
1

Z

∑

α,n

n + 1

β

βn+1H(α)n+1

(n + 1)!
(28)

〈H〉 =
1

Z

∑

α,m

m

β

βmH(α)m

(m)!
(29)

with m = n + 1

〈H〉 =
1

βZ

∑

α,m

m
βmH(α)m

(m)!
(30)

〈H〉 =
1

βZ

∑

α,n

n
βnH(α)n

(n)!
(31)

with m renamed to n

〈H〉 =
1

βZ

∑

α,n

nW (α, n) (32)

〈H〉 =
〈n〉

β
(33)

The expectation value of H is proportional to the expectation value of n.
So it’s only necessary to keep track of n. What exactly n is and how to
calculate its expectation value will be shown later. From H = ǫ−E follows
E = ǫ − H. Thus the expectation value of E is given by

12

〈E〉 = ǫ − 〈H〉 = ǫ −
〈n〉

β
(34)

Similar can be done for the expectation value of E2 which leads to

〈E2〉 =
1

β2
[〈n2〉 − 〈n〉2] (35)

If we insert those two equation into the equation for specific heat, which is

cv = β(〈E2〉 − 〈E〉2) (36)

we get an equation for the specific heat depending only on n

cv =
1

β
[〈n2〉 − 〈n〉2 − 〈n〉] (37)

These equations for the expectation values of the energies (34, 35) and the
specific heat (37) also hold for quantum mechanics which can be easily profen
by doing the same derivations as above for a quantum mechanical expecta-
tion value (the difference is the addition of Bra-Kets for the states, which
corresponds to the trace in the expectation value).

13

6 Quantum Mechanical SSE

6.1 Basics

In quantum mechanics the expectation value of an observable A is defined
by

〈A〉 =
1

Z
Tr(Âe−βĤ) (38)

Ĥ is the energy operator, the hamiltonian. Its eigenvalues are the different
energy values of the different states. The partition function Z is defined by

Z = Tr(e−βĤ) (39)

As mentioned in the last chapter, it is possible to express the expectation
values for the energy and thus also the specific heat as functions depending
on n only (34, 35, 37). But what exactly is this n and how to keep track of
it during a numerical simulation?
First of all let’s have a look on the weightfactors. Let’s start with equation
(38) and make a series expansion [4].

〈A〉 =
1

Z

∑

α

〈α|Âe−βĤ |α〉 (40)

〈A〉 =
1

Z

∑

α

〈α|Â
∑

n

βn(−Ĥ)n

n!
|α〉 (41)

〈A〉 =
1

Z

∑

α,n

A(α)
βn

n!
〈α|(−Ĥ)n|α〉 (42)

〈A〉 =
1

Z

∑

α,n

A(α)W (α, n) (43)

The |α〉 comes from the trace in (38) and are needed to get eigenvalues out
of Ĥ. As in the classical approach the energies, which are the eigenvalues
of Ĥ, have to be negative to make sure to not get a negative weight. To
make sure this is fulfilled the zero point has to be shifted again and following
ansatz is being made

Ĥ = −
∑

a,b

Ĥa,b (44)

with Ĥa,b > 0

The hamiltonian is written as a sum of single bond operators, where b de-
notes the bondnumber and a the operator type. What exactly bondnumber

14

and operator types are will be discussed later on. For now it’s only impor-
tant to know that the Ĥa,b are a bunch of different operators. The zero-point

shift of the main hamiltonian was put into one or more of the operators Ĥa,b.

Let’s have a look at the factor (−Ĥ)n and how to solve it.

(−Ĥ)n = (
∑

a,b

Ĥa,b)
n (45)

For the next step a new definition is introduced, the definition of an op-
eratorstring {a, b}. Each string stands for a configuration of operators
Ĥa(1),b(1), Ĥa(2),b(2), ..., Ĥa(n),b(n). The strings have the lengths of n. With
the help of such operatorstrings the above equation can be rewritten as

(
∑

a,b

Ĥa,b)
n =

∑

{a,b}

n∏

p=1

Ĥa(p),b(p) (46)

The result is a sum over different products of different configurations of n

operators. So the number n corresponds to the number of operators in such
a string. Let’s put that into the formula for expectation values:

〈A〉 =
1

Z

∑

α,n

A(α)
βn

n!

∑

{a,b}

〈α|
n∏

p=1

Ĥa(p),b(p)|α〉 (47)

Note that the strings {a, b} in this equation have the length n and therefore
the order of the sum over n and the sum over the strings {a, b} can’t be
exchanged. However, if the strings are allowed to have all lengths from
n = 0 till n = ∞ we can write the two sums as a sum of operator strings
only whose lengths determine n as

〈A〉 =
1

Z

∑

α,{a,b}

A(α)
βn

n!
〈α|

n∏

p=1

Ĥa(p),b(p)|α〉 (48)

This equation looks quite fine already except it still got infinite elements
and the operator strings got different lengths. This is mathematically not
a problem, but for an application in a computersimulation it is quite use-
less. To make this equation practically useful a truncation has to be made.
Furthermore a way to unify the length of the strings has to be found
First assume that the truncation can be done at the number M ǫ N. Which
value M should have will be described later on. Next a new operator type
Ĥ0,0 is introduced. This operator type is just a unit operator and works as
some kind of a space holder. With the help of this operator you can expand
any string {a, b} with the length n ≤ M to the length M by just adding
M − n unit operators Ĥ0,0. There are

l =
M !

(M − n)!n!
(49)

15

ways of doing this. Because we transformed one α, {a, b, } configuration into
l statistically equally distributed configurations we have to divide our former
statistical weight by the factor l and obtain

〈A〉 =
1

Z

∑

α,{a,b}

A(α)
βn

n!

(M − n)!n!

M !
〈α|

M∏

p=1

Ĥa(p),b(p)|α〉 (50)

〈A〉 =
1

Z

∑

α,{a,b}

A(α)
βn(M − n)!

M !
〈α|

M∏

p=1

Ĥa(p),b(p)|α〉 (51)

Thus the base of the configuration space are states α and strings {a, b} with
length M . n is now the number of non unit operators in those strings. The
weightfactor of a configuration is given by

W (α, {a, b}) =
βn(M − n)!

M !
〈α|

M∏

p=1

Ĥa(p),b(p)|α〉 (52)

This equation is highly important and will be used a couple of times in the
QM-SSE algorithm later on.

6.2 Configuration limits of QM-SSE

As already discussed in former chapters, it is necessary to shift the zero point
of the hamiltonian to make sure the statistical weight stays non-negative.
This works pretty fine for the classical case, but does not work for all systems
in QM-SSE. The problem is caused by the off-diagonal elements 〈α1|Ĥa,b|α2〉
with α1 6= α2, because the zero-point shift only effects diagonal elements.
Thus some restrictions have to be made to the system to ensure a positive
statistical weight. Systems with only positive off-diagonal elements don’t
need any restrictions to ensure positive weights. Therefore only systems with
possible negative off-diagonal elements have to be restricted (for example
anti-ferromagnetic systems).
How does this restriction look like? To make sure the weight is positive, an
even number of negative operators must be used. From

〈α|
M∏

p=1

Ĥa,b|α〉 (53)

you can see that left and right from the product we got the same state, which
comes from the trace. To get a non-zero weight, only operator strings are
allowed that have that diagonal form. Therefore only systems are allowed
that have only an even number of off-diagonal elements. For example for an
one dimensional anti-ferromagnetic closed spin chain system only an even
number of spins is allowed, because an odd number of spins would break
this rule.

16

6.3 A graphical way to describe Operator strings

Before we proceed I want to introduce a graphical way to describe operator
strings the so called world line presentation. To start this let’s pick a one-
dimensional lattice of spins which can either are up or down. For future
uses within this thesis work, I will use blue circles as spin up and red circles
as spin down. Let’s pick 5 spins. With 5 spins you obtain 25 possible states
|α〉. For example with above definitions the state |α〉 = | ↑, ↑, ↓, ↑, ↓〉 can be
displayed as following

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

Figure 4: State |α〉 = | ↑, ↑, ↓, ↑, ↓〉

Now let’s draw a complete operator string {a, b} at a particular state |α〉.
The length M of our string will be assumed as 8. Further we assume there
are only 2 types of non unit operators and only next neighbor interaction
is allowed. Another restriction is to allow only operators at bonds between
two opposing spins. That way we get a really simple model for better un-
derstanding. How such a figure can look like is shown below.

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

31 2 4 5 bap

01 0

2 1 3

3 1 4

24 2

5 1 1

6 0 0

7 2 2

8 0 0

Spin

Figure 5: Complete Operatorstring at a defined state |α〉

17

Let’s analyze this figure step by step. First of all, the numbers 1 to 5 at the
top of the colored dots label the different spins on our latice. This picture
represents an open chain since spin 1 and spin 5 are not connected. Since
only next neighbor interaction is allowed there exist only four different bonds
(spin 1 - spin2, spin 2 - spin 3, spin 3 - spin 4, spin 4 - spin 5). The top row
of dots represent the spin state |α〉 = | ↓, ↓, ↑, ↓, ↑〉. The space between the
different rows represents each operator of the operator string. Empty space
stands for a unit operator. The empty rectangles represent operator type
1. The full ones stand for operator type 2. The order of these operators
is determined by going from the top till the bottom and the position is
labeled by p. As you can see, p ranges from 1 till 8 which was the length
of the operator string. The colum with a points out the operator type for
each position p while the colum with b points out the bondnumber of those
operators.
Now let’s have a better look on those 2 operators. Type 1 will just give out
a value without changing the state |α〉 while type 2 exchanges the value of
the spins it is acting on. This is easy to see by imaging the operators act on
the above spin state and the result is the spin state below them. What has
to be mentioned is, that the last spin state (the bottom row) has to be the
same as the first one (the top row). This requirement is obvious if we have
a look on the last part of the Weightfactor:

〈α|

M∏

p=1

Ĥa(p),b(p)|α〉

The bra corresponds to the top row while the ket stands for the bottom
row. In between is the product of operators ordered the same way as in
the figure. Because we only have diagonal elements the top and the bottom
state have to be identical.
Because it is inconvenient to draw all spins for every row even if they don’t
change only the top and bottom states are fully drawn. Other spins only
show up at the corners of operators. Spins in the same column which don’t
change their value are represented by the edge-spins connected by a line.
Thus figure 5 can be displayed as figure 6

18

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

31 2 4 5 bap

01 0

2 1 3

3 1 4

24 2

5 1 1

6 0 0

7 2 2

8 0 0

Spin

Figure 6: Optimized graphical Interpretation of an operator string

In future figures with this kind of schema only the graphical display will
be shown, while the numerical columns (p,a,b) will be left out. In more
complex models with more operator types new icons for those operators
might appear. Also arrows connecting two edges of one operator will appear
later on for the off-diagonal updates in the algorithm.

19

7 Simplified Heisenberg System

7.1 Theory

While the Ising model works with spins that can only have the values +1 or
−1 the Heisenberg model works with whole quantummechanical observables.
The hamiltonian (without a Zeeman term) looks as following:

Ĥ =
∑

i6=j

Jij
~Si

~Sj (54)

This can be rewritten as

Ĥ =
∑

i6=j

Jij(S
x
i Sx

j + S
y
i S

y
j + Sz

i Sz
j) (55)

I have to mention that in the literature there are two versions of this hamil-
tonian. This two versions are equivalent except the sign in front of the sum
which comes from the opposite sign of the coupling constants Ji,j.
Let’s choose the z-components as our base. (|α〉 = |Sz

1 , Sz
2 , ..., Sz

N 〉 with
Sz

i |α〉 = ±1
2). Then with

Sx
i Sx

j + S
y
i S

y
j =

1

2
(S+

i S−
j + S−

i S+
j) (56)

the hamiltonian becomes to

Ĥ =
∑

i6=j

Jij [S
z
i Sz

j +
1

2
(S+

i S−
j + S−

i S+
j)] (57)

with S+,S− as the ladder operators.
Up to now, it was a general description of any Heisenberg system, but for
an easier understanding of the upcoming algorithm let’s simplify this sys-
tem. While the the summation in the hamiltonian of the heisenberg model
usually has to be done over all two-particle interactions, which have differ-
ent coupling constants, we focus now on a simplified system that only takes
next neighbor interaction into account. Furthermore every next neighbor
pair will have the same distance and thus the same coupling constant J .
The result is a spin lattice only with next neighbor bonds. As you can see
in the figure below, such a system is easy to manage in an algorithm as we
label each spin and each bond with a number:

20

1 2 3

4 5 6

7 98

10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

XIII

I

XIV

II

XV

III

XVI

IV

V

IX

VI VII

XI XII

VIII

X

Figure 7: Two dimensional spin-lattice

In Figure 7 you can see a two dimensional 4 × 4 spin lattice. The spins are
labeled in Roman numerals, while the bonds are labeled in Arabic numerals.
There is a meaning why the bonds were labeled in in that way. By counting
first through the horizontal and then through the vertical bonds it is easier
in the algorithm to determine which kind of bond the program is treating at
the moment. In the case of a isotropic lattice it would not matter, but if you
want to simulate an anisotropic lattice you will have two different coupling
constants which makes it necessary to determine which bond and thus which
direction has to be considered. What also has to be mentioned is that for
now we will only deal with finite systems as you can see from Figure 7, too.
At the edges of our lattice there are no bonds. The reason for this is to
avoid frustrated systems which could occur in periodic systems with an odd
spin number in any direction (e.g. 3×3, 3×2, 2×3,...). For even systems it
is possible to use periodic boundary conditions by just adding the necessary
bonds (e.g. in the spin row I-IV an additional horizontal bond would be
added right of spin IV labeled with number 4, thus the first horizontal bond
in the second row would start with 5 and so on).
Now let’s have a look at the hamiltonian itself. We have to define which
types of bonds can occur and have to separate diagonal and off-diagonal
elements. First of all let’s separate the diagonal and off-diagonal terms and
then have a look at the operator types. We can rewrite (57) as following:

Ĥ =
∑

i6=j

JijS
z
i Sz

j +
∑

i6=j

Jij

2
(S+

i S−
j + S−

i S+
j) (58)

21

Let’s focus on isotropic materials only. Thus we can replace the different
coupling constants Ji,j by one coupling constant J . Further we limit our
possible systems to anti-ferromagnetic systems. Thus the coupling constant
J has to be positive. As discussed already in chapter 6.1. the hamiltonian
has to be separated into single bond operators

Ĥ = −
∑

a,b

Ĥa,b (59)

Let’s discuss which operator types there are and what their eigenvalues are.
The operators Sz

i and Sz
j don’t change the state and their eigenvalues are

±1
2 . The ladder operators S+

i ,S−
j ,S+

i andS−
j change the state by raising(S+

i)

or lowering(S−
i) the z-component of a spin. The combinations S+

i S−
j and

S−
i S+

j then change the z-component of two neighbor spins, by exchanging
their values. Thus the first term in (58) corresponds to the diagonal part
while the second term represents the off-diagonal part. The table below lists
all possible single bond operators and their eigenvalues:

state before state after operator eigenvalue

↑,↓ ↑,↓ Ĥ1
J
4

↑,↓ ↓,↑ Ĥ2 -J
2

↑,↑ ↑,↑ Ĥ3 -J
4

Without an external field one cannot distinguish ↑ spin and ↓ spin. That’s
why there are only 3 different operator types left (e.g. the operator for ↑,↓
and ↓,↑ is the same). As you can see the eigenvalues of Ĥ2 and Ĥ3 are
negative. For the chosen system the off-diagonal operator Ĥ2 will cause no
trouble as explained in chapter 6.2. and will be treated as +J

2 from now.

But because of the diagonal operator Ĥ3 the zero-point of the energy has to
be shifted to fulfill the single bond operator condition

Ĥdiagonal,b > 0 (60)

Thus Ĥ −→ Ĥ − J
4 and therefore Ĥ1 −→ J

2 , Ĥ2 −→ −J
2 and Ĥ3 −→ 0. Due

zero-point shift only two possible operators are left, because the statistical
weight for a configuration that contains a Ĥ3 operator is zero and therefore
can be left out. The eigenvalues of the two remaining operators Ĥ1 and
Ĥ2 are equal which will make the algorithm a lot easier. Additionally the
coupling constant J will be set to 1 which makes the eigenvalues to 1

2 .
Before I start to explain the algorithm I am going talk about the probabili-
ties applied on the current model. The statistical weight of a configuration
is given by equation (52). Since there are only operators left with the eigen-
values 1

2 (n Ĥ1 and Ĥ2 operators) and 1 ((M − n) unit-operators Ĥ0) the
weight can be written as

22

W (α, {a, b}) =
βn(M − n)!

2nM !
(61)

For a constant temperature β and M are constants, thus only the number
of non unit-operators n changes the weight. This means that different con-
figurations with the same n have the same weight. This will be used in the
off-diagonal update later on which can only transform Ĥ1 operators into Ĥ2

operators and vice versa. This leads to a transition probability of 1
2 . The

number n will be updated in the diagonal update by using

Paccept(A → B) =
W (B)Pselect(B → A)

W (A)Pselect(A → B))
(62)

The ratio Pselect(B→A)
Pselect(A→B) stands for the difference of the transition directions.

There are B (free bonds) possibilities of adding an operator while there is
only 1 way to remove an operator. Thus the transition probabilities for
adding/removing an operator are given by

Paccept(n → n + 1) = min(
Bβ

2(M − n)
, 1) (63)

Paccept(n → n − 1) = min(
2(M − n + 1)

Bβ
, 1) (64)

Equations (63) and (64) will be used as transition probabilities for the di-
agonal updates. The way the probabilities are written cause a cap at 1 to
avoid a probability higher than 1 which would be unreasonable.

23

7.2 Algorithm

7.2.1 Overview

How does the algorithm look like? In the itemization below is a short step
by step overview.

• Generate a starting configuration

• Start the main program loop

• Perform diagonal updates: Exchanging unit-operators Ĥ0,0 and diag-
onal operators Ĥ1,b

• Construct the linked-vertex-list

• Perform off-diagonal updates: Exchange diagonal operators Ĥ1,b and

off-diagonal operators Ĥ2,b in loops with the help of the linked-vertex-
list

• Check if M needs to be updated

• Obtain data out of the simulation

• End the main program loop

• Calculate averages out of the collected data

One more point has to be mentioned. For high temperatures there will
hardly be any non unit operator as we can see from (63) and (64). This refers
to a classical region and one might have to add a classical spin flip at high
temperatures. But since with this method the quantum mechanical effects
are simulated and one usually is more interested in quantum mechanical
temperature regions it is not strictly necessary to implement classical spin
flips.

7.2.2 Diagonal Updates

As the name tells, this update step is just about diagonal operators. There
are two diagonal operators, the one ’real’ diagonal operator Ĥ1,b with the

eigenvalue +1
2 and the unit operator Ĥ0,0, which is nothing more than a

placeholder in the operator strings. What is done, is a full cycle (M) through
all positions (p) in the current operatorstring. For each position p a check
is performed to determine the current operator at this position and, if not
the unit operator, to also determine the bond number. To do this the
operatorstring’s components have to be translated into numbers which is
represented by the array opstring[p]. It’s value for the operator Ĥa(p),b(p)is
given by

24

opstring[p] = 2(b(p) − 1) + a(p) (65)

For example the operator Ĥ1,4 leads to opstring[p] = 7. The non unit
operators got a value greater or equal than 1. Hence we can define the
unit operator to have a value smaller or equal than 0, which makes it easy
to check, weather the current operator string position is empty (filled with
the unit operator as a spaceholder) or occupied by another operator. As
you can see from (65) each possible combination of operator type and bond
number leads to one value for the opstring[p] and vice versa (Except for the
unit operator which could have any value lower than 1). Even if the unit
operator could have any value below one, it is common to assign the unit
operator the value 0
Now let’s have a look at the different cases that can occur during our diagonal
update cycle. The first case is a zero value of opstring[p]. In the graphical
representation this means an empty operator row. Since this could be filled
at any bond number, the bond number is randomly drawn from all possible
bonds. Then one has to check weather the two spins connected with that
bond are parallel or antiparallel aligned. Since the diagonal operator only
acts on antiparallel spins, parallel ones are neglected and the cycle moves
on to the next operator string position. In the case of antiparallel spins
the transition probability according equation (63) is calculated. Then an
random number in the range [0,1] is being generated and the insertion of the
diagonal operator Ĥ1,b(p) at the former chosen bond number b is accepted if
the random number is lower than the calculated transition probability. If the
random number is higher than the transition probability nothing happens
and the cycle moves on to the next position p. Below is a diagram made for
better demonstration of the possible insertion of a diagonal operator:

25

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�
�

opstring[p]=0

Bond between antiparallel spins Bond between parallel spins

no change, next p

choose bond number b randomly

accept reject

operater was inserted, next p no change, next p

draw a random number and compare
it to the transition probability

Figure 8: Diagonal Update Diagram of inserting an operator

The other possible case is to have already an operator at the current operator
string position p. One has then to determine the bond number and whether
it is a diagonal operator Ĥ1,b(p) or an off-diagonal operator Ĥ2,b(p). Both can
easily be gained out of the current opstring[p] value. If one has to deal with
an off-diagonal operator, nothing happens and the cycle moves on to the
next position p. If the operator is the diagonal type, then equation (64) is
used to calculate the transition probability to remove that operator. Then
again a random number is drawn to check if the transition really happens
or is neglected. The diagram below illustrates this case:

26

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

���
���
���
���

���
���
���
���

accept reject

no change, next p

draw a random number and compare
it to the transition probability

opstring[p] > 0

determine bond number b and operator type

off−diagonal operatordiagonal operator

operater was removed, next p

no change, next p

Figure 9: Diagonal update diagram of removing an operator

Once all operator string positions were cycled through (last p was equal to
M) the diagonal update is finished and the next step, the constructing of
the linked-vertex-list, starts.

7.2.3 Vertices and Linked-Vertex-List

A vertex is defined as an operator and spins before and after this operator
has acted. It consists of an operator and different entrance and exit legs. In
this simplified heisenberg model the vertices got 4 legs in total. All possible
vertices are shown in following figure:

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

1 2

3 4

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��

��
��
��

1 2

3 4

1 2

3 4

1 2

3 4

Figure 10: Vertices with their legs

These vertices look pretty much as the graphical view of an operator string
described in chapter 6.3. Actually a diagram with vertices is an enhancement
of the ordinary graphical representation of operator strings. The enhance-
ment is found in the treatment of the legs. In the ordinary graphical view

27

the vertex like objects consist out of one operator and 4 spins, two before
and two after the operator has acted. The spins are exactly between two
operator positions which makes an overlap possible. In the vertex repre-
sentation the spin rows are duplicated to avoid such an overlap which is
illustrated in figure 11:

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�

�
�
�

vertex list representationordinary representation

Figure 11: Enhancement of the graphical representation through vertices

The main aim of the vertex representation is to avoid that possible overlap
of two consecutive positions in the operator string. This is important for an
algorithm, because such overlaps could cause big troubles in the off-diagonal
updates. Because this enhancement was mainly done for avoiding troubles
in an algorithm and it would be unpracticable to draw those double spin
rows in the graphical representation, the diagrams are drawn as the ordinary
ones, but someone has to keep in mind that vertices are being drawn and
an spin overlap is treated as two separated legs.
The linked-vertex-list is a list which connects every leg of each vertex in the
current operator string to another leg. To do this a lattice of vertex-legs has
to be created. Since there is one vertex possible for each position p in the
operator string and each vertex got 4 legs a 4×M lattice has to be created,
which i call vertex-leg lattice. For each lattice point a number is assigned
by

v = 4(p − 1) + l (66)

with l being the leg number, which can have the value 1,2,3 or 4 according
to figure 10. Then leg-pairs are created which correspond to lines in the
graphical representation. In the algorithm this means you start from one
leg in the graphical representation and move vertically until you reach a
leg of another (or even the same) operator. If the top spin row is reached
without a hit, then one has to continue from the bottom row and vice versa.
A list is being created, which links the concerning vertex-leg lattice points.
All other vertex-leg lattice points (empty operator string positions) will be
set to zero. Thus a list was created, the so called linked-vertex-list. An
example on how such a list looks like is given in figure 12.
In this diagram the form vlist[v]=linked v is used and this is a full vertex-leg

28

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

2

3

4

5

6

7

8

1

pl=1 l=2 l=3 l=4

vlist[1]=0 vlist[2]=0 vlist[3]=0 vlist[4]=0

vlist[6]=11 vlist[7]=14 vlist[8]=9

vlist[9]=8 vlist[10]=12 vlist[11]=6 vlist[12]=10

vlist[13]=27

vlist[5]=28

vlist[14]=7 vlist[15]=18 vlist[16]=26

vlist[17]=19 vlist[18]=15 vlist[19]=17 vlist[20]=25

vlist[21]=0 vlist[22]=0 vlist[23]=0 vlist[24]=0

vlist[25]=20 vlist[26]=16 vlist[27]=13 vlist[28]=5

vlist[29]=0 vlist[30]=0 vlist[31]=0 vlist[32]=0

Figure 12: Example of an operatorstring and its linked-vertex-list

lattice with v being constructed by (66). With the help of such a list loops
will be created as explained in the off-diagonal update section 7.2.4.

29

7.2.4 Off-Diagonal Updates

Up to now only diagonal operators were taken into account. As one can tell
from the name this section considers also the off-diagonal operators. One
way how this is done is the so called local off-diagonal update. In this method
the type of two operators on the same bond (but of course different position
p) is changed and thus also the spins at that particular bond. The problems
that occur with this method is that there can be constraining operators
between the concerning operators and the slowing down at critical points,
which is always a problem for local update algorithm. Because this method
is obsolete i won’t give more detailed information about it.
A better method is the Loop update. In this method loops are created with
the help of the linked-vertex-list. In short one starts at a leg at one vertex
and moves according to the linked-vertex-list to the paired leg of the next
vertex. There with some selection rule another leg on this vertex is chosen
and again one moves the the paired leg and so on. Once the starting leg
has been reached the loop closes itself Every visited spin along this path
is flipped and also every visited operator is changed as will be explained
below. Then the next loop is being constructed beginning at a not visited
vertex leg. But first let’s have a look at the selection rules at an operator
as mentioned above.
Since all visited spins in a loop have to be flipped one can draw all possible
transformations and sort out the ones that are forbidden. In figure 13 the
possible transformations are drawn.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���1)

2)

3)

4)

5)

6)

Figure 13: Possible operator transformations

1. Transformation of an operator Ĥ1,b into an operator Ĥ2,b. Both oper-
ators exist in our model −→ allowed

2. Transformation of an operator Ĥ1,b into an operator that would look

like J
2 (Ŝ+

i Ŝ+
j Ŝ−

i Ŝ−
j). Second operator does no exist in our model −→

not allowed

30

3. Transformation of an operator Ĥ1,b into an diagonal operator between
to parallel spins. Second operator does in principle exist in our model,
but got the eigenvalue 0 which leads to a statistical weight of 0. −→
not allowed

4. Transformation of an operator Ĥ2,b into an operator Ĥ1,b. Both oper-
ators exist in our model −→ allowed

5. Transformation of an operator Ĥ1,b into an diagonal operator between
to parallel spins. Similar as in point 3) −→ not allowed

6. Transformation of an operator Ĥ1,b into the same non existing operater
as in point 2) −→ not allowed

As can be seen from this enumerations only operator transformations are
allowed where you move along an operator horizontally. This is the selection
rule on how loops have to be constructed. Hence to construct a loop one
has to start at a vertex leg (that has not been visited by a previous loop
already) and moves vertically to the paired leg of the next vertex and flip
every spin passed this way (use periodic boundary conditions for the top
and bottom spin rows). There you move horizontally to the neighbor leg
on the same vertex and change the operator type. Then move again to the
paired leg and so on. Once the loop is closed accept the loop-flip with the
probability 1

2 according to Swendsen-Wang [6],[5] or restore the state before
the loop if rejected. Note that loops can’t intersect each other. In figure 14
such a loop construction is shown.

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

start

Figure 14: Construction of a loop and its flip

31

As you can see in figure 14 all spins along the loop have been flipped. Also
the two off-diagonal operators Ĥ2,b on the right side of the loop have been

transformed into diagonal operators Ĥ1,b. The diagonal operator Ĥ1,b on
the left side seems to have been unchanged which would be a fallacy. In
fact this operator has been visited twice by the loop which equivalent to
the transformation Ĥ1,b → Ĥ2,b → Ĥ1,b which means this operator has been
transformed twice and thus it ended up as the same operator as before the
loop. If you have a look at the top and bottom spin rows, which corresponds
to 〈α| and |α〉 you can see a change in the state |α〉. Thus the off-diagonal
update not only considers the off-diagonal operators, but also moves through
different states |α〉. That way, for long enough runs, all (or at least a rep-
resentative amount) possible configurations were sampled according to the
statistical weights and thus the interesting averages can be calculated by
just saving the data after each full step (diagonal and off diagonal updates)
and dividing it by the number of steps. The off-diagonal update is complete
when all vertex legs had been used once in a loop. Now only the value of
the cutoff M has to be determined which is done in the next section.

32

7.2.5 Determining M

This chapter will deal in detail with the cutoff M . In general for a truncation
of a series any cutoff can be taken which is sufficiently big to lead to a
neglectable deviation from the full series. On the other hand this truncation
is used in a computer simulation and should be as low a possible to accelerate
the simulation. Therefore a compromise for a lower limit has to be found
which leads to a small enough error and guarantees at the same time a
satisfying simulation performance. Before it will be explained how to apply
this in an algorithm let’s have a deeper look onto M itself.
M is the length of the operator strings. At the very beginning this operator
string is filled with unit operators only. The probabilities of adding and
removing a diagonal operator Ĥ1,b is given by (63) and (64). It is obvious to
see that the number of non unit operators n depends on the temperature and
one can imagine that there will be some distribution around an average value
for a particular temperature. In figure 15 three histograms were plotted
over each other to compare them. They result from three simulations with
identical parameters except M .

5 10 15 20 25
n

0.02

0.04

0.06

0.08

0.1

0.12
M=15
M=50
M=150

Histogram of n for different M

Figure 15: Histogram of n for different M=15,50,150

33

For better a better overview the curves for M = 50 and M = 150 have
been shifted, else they would have been congruent. As you can see from
figure 15 if a too low cutoff (M = 15) is chosen the distribution for n is
not fully considered and this would obviously lead to wrong results. On the
other hand once M is higher than the maximum occurring n it makes no
difference for the distribution how large M is (no difference between M = 50
and M = 150). Hence the aim is to find a cutoff large enough to contain
all occurring n, but small enough to avoid unnecessary computation time in
the simulations. This is done by following condition:

M − nmax >
nmax

a
(67)

As long as this condition holds, M doesn’t need to be changed. a is a
constant smaller or equal than the starting value of M . (67) leads to a
cutoff M which is a fraction (depends on a) higher than the maximum
n. In principle the condition M = nmax + 1 would be the best if someone
would know the maximum n from the beginning. Using the smallest possible
cutoff would lead to the best computational performance, but because the
maximum n is usually not known from the beginning it would even slow
down the simulation. The reason for this slowing down can be understood
with following diagram of the algorithm:

next MC−step

next MC−step

Check if (M−n) > n/a

False True

M=M+n/a

Figure 16: Control of M in the algorithm

Notice that this time n was used instead of nmax. That means, that after
every MC update step a check of condition (67) is performed. This is the
reason for the slowing down by trying to find the lowest possible cutoff. In

34

the algorithm M is determined dynamically, because usually nmax is not
known. Because the statistical weights and probabilities change with M

the stored data should usually be reseted after each M update until a stable
cutoff has been found. If someone would search the ideal cutoff by increasing
M by 1 lots of restarts will be the consequence while with condition (67) the
increasing steps are higher and therefore a satisfying cutoff is found more
quickly. Thus even if the M found that way is higher than the ideal one
(M = nmax + 1) the increased computational time is often compensated
by the faster convergence of M . Figures 17-20 show an example of how M

develops.

20 40 60 80 100
MC-step

10

20

30

40

50

60

70

M

M during the simulation

Figure 17: Development of M

0 200 400 600 800 1000
MC-step

10

20

30

40

50

60

70

M

M during the simulation

Figure 18: Development of M

35

0 2000 4000 6000 8000 10000
MC-step

10

20

30

40

50

60

70

M

M during the simulation

Figure 19: Development of M

0 10000 20000 30000 40000 50000 60000
MC-step

10

20

30

40

50

60

70

M

M during the simulation

Figure 20: Development of M

As you can see M raises quickly in the beginning and slows down the closer it
gets to the cap of n. Because of this behavior it’s even better to understand
that a slow step by step increase of M would take very long until it reaches
a stable value which would cause a huge slowdown. A value of 4 for the
constant a is quite common.
Knowing the algorithm how to update the cutoff M is just half the way.
Raising means means increasing the length of the operator strings by just
appending Mnew − Mold unit operators. From the graphical representation
one can see it will not only be enough to just add those empty operator string
positions, because one also needs to keep track of the spin rows between
them. Because only unit operators were added this is simply done by just

36

carrying forward the spin state |α〉 at Mold to the Mnew−Mold new spinrows.
Then only the data needs to be saved before the next MC-step starts.

7.3 Simulation and Results

With the above algorithm I simulated a system out of 10 spins. A plot of
the specific heat can be seen in figure 21.

0 2 4 6 8 10
T/J

0

0.5

1

1.5

Sp
ec

if
ic

 h
ea

t

Specific heat of an opened antiferromagnetic 10 spin chain.

Figure 21: Specific heat of an opened antiferromagnetic 10 spin chain

The same way how the algorithm was developed for the antiferromagnetic
system it can be done for the ferromagnetic system. In fact if only the sign
of the coupling constant is changed and the absolute value remains the same
the only difference resides in concerning only parallel instead of antiparallel
spins for adding diagonal operators and in using the selection rule 5) (in both
directions) in figure 13. Also closed chains are easy to realize by just adding
the bond between the first and the last spin. Notice that these changes are
only a few changes in algorithm while all probabilities of adding or lowering
the non unit operator number n and for the loop updates remain the same.
I simulated with this, still simplified, model different chain lengths for
opened and closed chains to check when they start to be identical. In fig-
ure 22 the specific heat for the different chains are plotted. The full lines
represent the opened chains and the dotted lines the closed ones. One can
see for longer chains that the closed and open ones seem to be shifted by
the length of 1 spin. The reason for this is the fact that not the number of
spins, but the number of bonds is the important factor. If N is the number

37

of spins then there are N − 1 bonds in open chains while there are N bonds
for closed chains. Thus if you label the plots by their bond number you see
opened and closed turn out to be the same at larger N .

1 2 3 4 5
T/J

0

0.2

0.4

0.6

0.8

1

1.2

sp
ec

if
ic

 h
ea

t

N=4, 3 bonds
N=15, 14 bonds
N=3, 3 bonds
N=14, 14 bonds

Specific heat for opened and closed chains.

Figure 22: Specific heat of opened and closed chains with different length

38

8 QMSSE in more general Heisenberg systems

8.1 Theory

The purpose of Chapter 7 was to give an idea about the algorithm and the
theory behind it. Now with the basic understanding of the QMSSE method,
more complex Heisenberg systems can be discussed.

8.1.1 Statistical weight and probabilities

Let’s have a look at the statistical weight before we simplified the model
which was given by equation (52):

W (α, {a, b}) =
βn(M − n)!

M !
〈α|

M∏

p=1

Ĥa(p),b(p)|α〉

The notations for n as the number of non unit operators and M as the
cutoff hold for all systems and therefore the fraction term remains the same
as in the simplified model. However the product term needs some more
detailed treatment. In a more general system the eigenvalues of the single
bond operators differ and therefore it is not enough anymore to keep track
of the number of non unit operators only, but also to keep track of their
composition. For that purpose a new occupation number na is introduced
for each Operator type Ĥa,b. n is then given by

n =

amax∑

a=1

na (68)

With the help of these occupation numbers the product in (52) can be
rewritten as (69). Note that Ha are the eigen values of the operators Ĥa,b.

〈α|

M∏

p=1

Ĥa(p),b(p)|α〉 =

amax∏

a=1

Hna
a (69)

By using equation (69) the general statistical weight can be written in terms
of numbers only (70) which will be the base to calculate the transition
probabilities.

W (α, {a, b}) =
βn(M − n)!

M !

amax∏

a=1

Hna
a (70)

With this modified weight and (62) the transition probabilities for raising or
lowering a particular na (na −→ na + 1 and na −→ na − 1) are given below
by (71) and (72)

39

Paccept(na → na + 1) = min(
BβHa

M − n
, 1) (71)

Paccept(na → na − 1) = min(
M − n + 1

BβHa
, 1) (72)

In chapter 7 the off-diagonal updates had been performed by using the only
possible selection rule to transform the operators during a loop update and
accept those loop flips with a probability of 1

2 . In more general systems there
are more selection rules and therefore more than just one possible operator
transition is possible while the loop flip probability remains 1

2 . More about
these selection rules is written in the next section.

8.1.2 Vertices and selection rules

In chapter 7 only two non unit operators occurred. Thus only the two
vertex-transformations explained in figure 13 (Chapter 7.2.4) existed. In a
more general heisenberg model with non vanishing operators between par-
allel spins it is obvious that there are more than just two different vertex
transformations and hence there is more than just one possible transition at
an operator in the loop updates (From figure 13 transitions 1, 3, 4 and 5 are
allowed in a more general heisenberg model). This leads to a new problem on
how to determine which transitions will be chosen at each operator passed
during a loop update. The solution is to weight those transitions by their
statistical values which leads to a transition probability only depending on
the concerning eigenvalues:

PHi−→Hf
=

W (Hf)∑
k W (Hk)

(73)

The W (Hi) are the statistical weights of the configuration after the transi-
tion where f denotes the chosen state and k all possible states according to
the selection rules. Inserting (70) results in

PHi−→Hf
=

βn(M−n)!
M !

∏amax

a=1 H
na(f)
a

∑
k

βn(M−n)!
M !

∏amax

a=1 H
na(k)
a

(74)

Since M ,n and β are not changed the terms with the factorials cancel each
other out what leads to

PHi−→Hf
=

∏amax

a=1 H
na(f)
a

∑
k

∏amax

a=1 H
na(k)
a

(75)

Because an operator transition just changes two occupation numbers by
increasing one by 1 and decreasing the other one by 1 the final probability
of choosing a particular transition is given by

40

PHi−→Hf
=

Hf∑
k Hk

(76)

8.1.3 Implementation of an external field h

To implement an external field is more tricky than it looks at first. The
general heisenberg hamiltonian with an external field h is given by

Ĥ =
∑

i6=j

Jij [S
z
i Sz

j +
1

2
(S+

i S−
j + S−

i S+
j)] − h

∑

i

Sz
i (77)

Because we work with single bond operators the external field has to be
carried over on those bonds. This is done by dividing the energy resulting
from the external field at a lattice site through the number of bonds that
lattice side has got (not a border site) [4]. Thus the hamiltonian is given by

Ĥ =
∑

i6=j

Jij [S
z
i Sz

j +
1

2
(S+

i S−
j + S−

i S+
j)] −

h

2d

∑

i

Sz
i (78)

The Zeeman term does not change a state |α〉 and hence it is a diagonal term.
Notice that the Zeeman term will not lead to an own single bond operator,
but rather add up to the other diagonal operators which will be shown in
section 8.1.4. Additionally note that first with the use of an external field
the quantization axis is defined and thus the directions for spin up and spin
down are determined which can clearly be seen in the energy splitting of
parallel spin up and spin down neighbors.

8.1.4 Example of a more general heisenberg system

For a better understanding on how to build up the single bond operators and
its eigenvalues an example is given as an anisotropic Heisenberg system with
a Zeeman term. Further this system is chosen to be ferromagnetic (Ji,j < 0)
and to make it more manageable to be in two dimensions. This leads to two
different coupling constants (it is assumed that coupling constants Ji,j are
constant along an axis) which are denoted by J1 and J2. The hamiltonian
is then given by

Ĥ = J1

x∑

i6=j

[Sz
i Sz

j +
1

2
(S+

i S−
j + S−

i S+
j)] +

J2

y∑

i6=j

[Sz
i Sz

j +
1

2
(S+

i S−
j + S−

i S+
j)] −

h

4

∑

i6=j

(Sz
i + Sz

j)

The x and y above the sums stands for the different bond directions of
neighbor spins. Again the hamiltonian must be split up into single bond

41

operators. In the table below you can see all possible operators and what
happens to the states they are acting on.

operator acts on results in eigenvalue

Ĥ1,b = −J1S
z
i Sz

j + h
4 (Sz

i + Sz
j) | ↑,↑〉 | ↑,↑〉 H1 = −J1

4 + h
4

Ĥ2,b = −J1S
z
i Sz

j + h
4 (Sz

i + Sz
j) | ↓,↓〉 | ↓,↓〉 H2 = −J1

4 − h
4

Ĥ3,b = −J1S
z
i Sz

j | ↑,↓〉 | ↑,↓〉 H3 = J1

4

Ĥ4,b = −J1

2 (S+
i S−

j + S−
i S+

j) | ↑,↓〉 | ↓,↑〉 H4 = −J1

2

Ĥ5,b = −J2S
z
i Sz

j + h
4 (Sz

i + Sz
j) | ↑,↑〉 | ↑,↑〉 H5 = −J2

4 + h
4

Ĥ6,b = −J2S
z
i Sz

j + h
4 (Sz

i + Sz
j) | ↓,↓〉 | ↓,↓〉 H6 = −J2

4 − h
4

Ĥ7,b = −J2S
z
i Sz

j | ↑,↓〉 | ↑,↓〉 H7 = J2

4

Ĥ8,b = −J2

2 (S+
i S−

j + S−
i S+

j) | ↑,↓〉 | ↓,↑〉 H8 = −J2

2

The operators have been labeled the same way as their eigenvalues which
makes it more obvious to see that an operator type also depends on the
spins that it acts on (there is a difference between parallel up and down
spins now). Remember the condition Ĥa,b > 0 for diagonal operators. To
fulfill this condition the zero point of the hamiltonian has to be shifted
accordingly. Remember also that for a ferromagnetic system the coupling
constants J1 and J2 are positive. The minimum shift to assure positive
eigenvalues is C = −J1

4 − J2

4 + h
4 and thus the final usable operators and

their eigenvalues are

operator acts on results in eigenvalue

Ĥ1,b = −J1S
z
i Sz

j + h
4 (Sz

i + Sz
j) + C | ↑,↑〉 | ↑,↑〉 −J1

2 − J2

4 + h
2

Ĥ2,b = −J1S
z
i Sz

j + h
4 (Sz

i + Sz
j) + C | ↓,↓〉 | ↓,↓〉 −J1

2 − J2

4

Ĥ3,b = −J1S
z
i Sz

j + C | ↑,↓〉 | ↑,↓〉 −J2

4 + h
4

Ĥ4,b = −J1

2 (S+
i S−

j + S−
i S+

j) | ↑,↓〉 | ↓,↑〉 J1

2

Ĥ5,b = −J2S
z
i Sz

j + h
4 (Sz

i + Sz
j) + C | ↑,↑〉 | ↑,↑〉 −J2

2 − J1

4 + h
2

Ĥ6,b = −J2S
z
i Sz

j + h
4 (Sz

i + Sz
j) + C | ↓,↓〉 | ↓,↓〉 −J2

2 − J1

4

Ĥ7,b = −J2S
z
i Sz

j + C | ↑,↓〉 | ↑,↓〉 −J1

4 + h
4

Ĥ8,b = −J2

2 (S+
i S−

j + S−
i S+

j) | ↑,↓〉 | ↓,↑〉 J2

2

42

8.2 Differences in the algorithm

This section will point out the differences in the algorithm compared to
the simplified Heisenberg system from chapter 7. The differences will not
be huge, but be the kind of that can slow down the simulation a lot (IF
statements; drawing a random number).

8.2.1 Diagonal updates

The basis of the algorithm remains the same except one addition. In the
simple heisenberg system only one type of diagonal operator occurred. In
more general systems more diagonal operator types occur which can clearly
be seen from 8.1.4. Therefore at each diagonal update step additionally
to checking whether there is already an operator and how the spins at the
selected bond are aligned one has to determine which kind of diagonal op-
erator can be inserted or removed. This additional check can be done either
by IF statements which would lead to a slowing down of the simulation, or
better by a quite complex mathematical formulation.

8.2.2 Off-diagonal updates

The beginning of the off-diagonal updates is the construction of the linked
vertex list. The list is constructed by just linking vertex legs horizontally
as in figure 12. It doesn’t matter which nun unit operator type is at what
vertex and therefore there is no difference in the algorithm compared to
the simple model of creating the linked vertex list. However in the loop
updates a change has to be made resulting from the change of the selection
rules discussed in 8.1.2. Each time during the loop construction when an
operator is passed the transformed operator has to be sampled according to
(76). This is done by assigning each possible sampled operator a numerical
interval between [0; 1] with respect to its ratio to the other possible operators
thus the sum over all those newly created intervals yields the full interval
[0; 1]. Then a random number in [0; 1] is generated and compared to the
ranges of those generated intervals. The operator connected to the interval
the random number is located in is chosen and the loop proceeds to the
next operator. One can imagine that drawing that many random numbers
are causing a huge slow down compared to the simple model where just one
transition was allowed.
Also note that with the loop algorithm according to [6],[5] each vertex leg
can only be visited once and thus it might be possible that even if in general
there might be three possible operator transitions there might only be one
allowed left. Therefore an additional check is necessary which also causes
longer run times.

43

8.3 Simulation and Results

I have done a view different simulations for an anisotropic two dimensional
Heisenberg system with different spin configurations and different external
fields. The simulated systems are toy models and therefore the constants are
seen as dimensionless numbers and the results are only useful to recognize
some trends and are not really comparable to any experiments. For that
purpose one has to extend the algorithm in a way to take also more than
just next neighbor interaction into account Additionally constants or at least
the right dimensions (one can normalize results by plotting ratios) have to
be considered.

0 0.5 1 1.5
T

50

100

150

χ

h=0
h=0.2
h=1

χ vs T

Figure 23: Simulation of two spin chains each with 5 spins with different
external fields.

In figure 23 three simulations of a ferromagnetic 5 × 2 system have been
performed with different external fields. The coupling constant between
the spins inside each chain is ten times higher than the coupling constant
between the chains. The trend is that for higher external fields the suscepti-
bility drops. This makes sense since the susceptibility is the response of the
system on a change of the external field. The higher the external field the
more arranged is the system already to it. Then a small change of the field
will result in a small response of the system and hence to a low susceptibility.
Also one can see that for high temperatures the system behaves classically.

44

9 Lookout

9.1 Vertices

In general all vertex paths are possible (depending on the model). What
I haven’t mentioned yet is the possibility of a bouncing. Bouncing means
that the entrance leg of a vertex is identical with the exit leg. Thus the
operator at the concerning vertex remains the same and so does the spin at
the entrance/exit leg (two spin flips lead to the same spin). This possible
vertex path usually has to be considered, but can be neglected in some
special cases, like in the simplified model [4]. Nevertheless I want to give an
overview of all possible vertex paths we had so far (fig. 24).

���������������� ���������������� ���������������� ����������������

a) c)b) d)

Figure 24: Different processes for single bond operators in a vertex repre-
sentation. a) is a bouncing path that leaves the spin and the operator un-
changed which refers to a ’bounce’ process. b) ’continue-straight’ c) ’switch-
and-continue’ d) ’switch-and-reverse’

By exchanging the gray circles with possible spin configurations you receive
the possible operator transitions. Those transitions correspond to the ones
seen in former chapters already and only allow operator transitions between
operators with the difference of two spins. There are also algorithms that
consider transitions with more than just two spin flips which leads to the
multi-branch-cluster updates. This has to interpreted as entering at one
leg and exiting out of the other 3 legs and so the loop generates branches
(therefore the name).

9.2 Plaquettes

The QMSSE method does not only work for single bonds, but it also holds
for models where interactions between more than just two lattice sites are
allowed. One then is talking about plaquettes instead of bonds. For example
plaquettes with four spins are given in figure 25.

45

�������������������������������� �������������������������������� ��������������������������������

Figure 25: Examples for vertices for plaquette operators. The one on the
right side corresponds to a multi-branch process

For more insight in plaquette operators [1] gives a nice introduction.

46

10 Conclusion

QMSSE is a powerful tool in todays numerical methods of simulating phys-
ical systems, because its possibilities are huge. Any system and any model
can be simulated where a lattice can be constructed and controlled, where
bond or plaquette operators can be defined and the statistical weights of
possible space configurations are positive. Problems arise for long calcu-
lation times simulating systems at very low temperatures which leads to
large numbers of non unit operaters, but this is compensated with the ris-
ing power of computers. On the other hand known problems that occur in
other numerical methods, like the critical slowdown, are avoided in QMSSE.
Altogether QMSSE is the numerical method currently used in science to sim-
ulatequantummechanicall systems and their properties.

47

A Abbreviations and definitions

RNG:

RNG(Random Number Generator) is an algorithm which produces so called
pseudo-random numbers. By a chosen starting value, called Seed, this algo-
rithm gives a sequence of varying numbers that produces a huge amount of
different numbers until the sequence starts from the beginning again. Those
numbers should fill the chosen interval ergodically. Every Seed starts this
sequence from a different point and lead therefore to different runs of sim-
ulations. Since numbers are varying like they were random you call them
pseudo-random numbers. For long simulations you should use a good RNG
which runs through a long sequence of numbers to avoid the sequence to
restart within your simulation.

MC:

MC (Monte Carlo) is a simulation method based random numbers. The
name really comes from the city and it’s casinos in which the importance of
random numbers should be reflected.

Metropolis-Algorithm:

Unlike the Monte-Carlo Method, the name doesn’t derive from the meaning
of a huge city even if it would be a nice way to explain this method, by trans-
ferring the skyline of a metropolis(High in the center, low at the edges) into
histogram. Instead it is named after the mathematician Nicolas Metropolis,
one of the first people who developed that algorithm. In this algorithm the
random numbers are being sampled by considering statistical weights. For
example if you try to hit the bulls-eye on a dart-board, throw lots of darts
and draw a histogram with sampling the number of hits dependent on the
distance from the bulls-eye you will end up with a higher density near the
middle and with dying away densities the further away from the middle. So
if you would make a computer simulation for such dart throws you would
need to sample your random numbers according to that histogram. Same
holds for Boltzmann distributed systems as will be used later on in this
work.

SSE:

SSE (Stochastic Series Expansion) is a method to do numerical simulations
for exponential functions which are not easy to solve or not solveable at
all. This method is used for Quantum-Mechanical systems where you need
to consider all states and have to calculate a trace over an exponent. This
leads to QM-SSE.

48

Update:

If you talk about an update in simulations a step is meant in that simulation
that can change (but doesn’t need to change) the configuration. For example
this can be the possible flipping of a spin.

49

B FORTRAN code - Open spin chain in the sim-
plified Heisenberg system

PROGRAM quchain

INTEGER bond,D1,D2,n,
1p3stroke,vspin,opcounter,initcounter,initcap
2M,p,a type,seed,spin,spin old,loopcounter,
3opstring,opstring old,bondnumber,average,
4spin i,spin j,vertexlist,vcheck,flip,v,
5counter,pstroke,p2stroke,step,steps,averages,
6cutconstant,magn1,magn2,j,magn,M counter,
7bond old,a type old,vsum,spinopcheck,nold
8v step,vstroke,v2stroke,v start,vertexpos

REAL RND

DOUBLE PRECISION temp,beta,kb,check,P accept,
1T begin,T end,T step,Z,avmagn,Weight,avn,
2avsqun,cv,cv array,T array,S,Jx,Jy,h,H1,H2,
3H3,H4,H5,H6,H7,H8,Typecheck,
4avmagn array,Weightfactor,
5avsqumagn,Chi,Chi array

DIMENSION bond(1:10000),a type(1:10000),
1spin(1:100,0:10000),spin old(1:100,0:10000),
2opstring(1:10000),vertexlist(1:40000),
3vertexpos(1:40000),vcheck(1:40000),
4opstring old(1:10000),cv array(1:100000),
5T array(1:100000),bond old(1:10000),
6a type old(1:10000),spinopcheck(1:100),
7avmagn array(1:100000),Chi array(1:100000)

c--------------- PARAMETERS -------------------------

WRITE(*,*) START
WRITE(*,*) SEED=
READ(*,*),seed

DO D1=6,20

cv array=0

50

T array=0
avmagn array=0
Chi array=0

T begin=0.1
T end=5.1
T range=20
M=10
cutconstant=4
steps=50000
averages=20
initcap=1000
kb=0.5
Jx=1

H1=Jx/2
H8=Jx/2
H3=0
H6=Jx/2

c----------------------------------

OPEN (UNIT=1,STATUS=UNKNOWN,FILE=chi.dat)
OPEN (UNIT=2,STATUS=UNKNOWN,FILE=c.dat)
OPEN (UNIT=3,STATUS=UNKNOWN,FILE=S.dat)

10 FORMAT(1X,2I8)
20 FORMAT(1X,2F20.10)
30 FORMAT(1X,1F20.10)

c---

T step=(T end-(T begin*1.001))/(T range-1)
bondnumber=D1-1
average=1

c--------------- START AVERAGES-----------------
DO WHILE(average.le.averages)
counter=1
temp=T end
M=10
bond=0
a type=0
opstring=0
spin=0
vertexlist=0

51

vcheck=0
vertexpos=0
spinopcheck=0
n=0

c------------- starting config ----------------------

50 CONTINUE

DO i=1,D1
check = RND(seed)
IF (check.lt.0.5) THEN

spin(i,0)=1
ELSE

spin(i,0)=-1
ENDIF
DO p=1,M

spin(i,p)=spin(i,0)
ENDDO

ENDDO

c***************** Start MC steps ********************

DO WHILE(temp.ge.T begin)

beta=1/(temp*kb)
Z=0
avmagn=0
avsqumagn=0
avn=0
avsqun=0
step=1
initcounter=0

DO WHILE(step.le.steps)

IF (MOD(step,10000).eq.0) THEN
WRITE(*,*) Step: ,step,/,steps, Temp: ,

1T end,/,temp,/,T begin
WRITE(*,*)Run: ,average,/,averages,

1Chain lenght: ,D1
ENDIF

c-------------- DIAGONAL UPDATES ---------------------

DO p=1,M

52

IF (opstring(p).eq.0) THEN
check=RND(seed)*bondnumber
bond(p)=check-MOD(check,1.0)+1
spin i=bond(p)
spin j=spin i+1

IF (spin(spin i,p)+spin(spin j,p).eq.0) THEN
GOTO 100

ENDIF

P accept=bondnumber*beta/(M-n)*(
1H1*(1+spin(spin i,p))/2+
3H8*(1-spin(spin i,p))/2)

P accept=MIN(P accept,1.0)
check=RND(seed)

IF (P accept.lt.check) THEN
bond(p)=0
GOTO 100

ENDIF

opstring(p)=8*(bond(p)-1)+(0.5*(spin(spin i,p)+1)
1-4*(spin(spin i,p)-1))

a type(p)=opstring(p)-8*(bond(p)-1)
n=n+1

ELSE IF (a type(p).ne.6) THEN

spin i=bond(p)
spin j=spin i+1
P accept=(M-n+1)/beta/bondnumber*(

11/H1*(1+spin(spin i,p))/2+
31/H8*(1-spin(spin i,p))/2)

P accept=MIN(P accept,1.0)
check=RND(seed)

IF (P accept.ge.check) THEN

n=n-1

bond(p)=0
opstring(p)=0
a type(p)=0

ENDIF

53

ENDIF

100 CONTINUE

ENDDO
c---

DO j=1,4*M
vertexpos(j)=0
vcheck(j)=0
vertexlist(j)=0

ENDDO

c------------- OFF-DIAGONAL UPDATES -------------------

c - - - - - - - - Constructing vertexlist - - - - - - -

DO p=1,M

IF (opstring(p).eq.0) THEN
GOTO 150

ENDIF

spin i=bond(p)
spin j=spin i+1
vertexpos(4*(p-1)+1)=spin i
vertexpos(4*(p-1)+3)=spin i
vertexpos(4*(p-1)+2)=spin j
vertexpos(4*(p-1)+4)=spin j

150 CONTINUE

ENDDO

DO p=1,M
v=4*(p-1)+1
int=-1

IF (vertexpos(v).eq.0) THEN
GOTO 300

ENDIF

200 CONTINUE

IF (vcheck(v).eq.0) THEN
vcheck(v)=1

54

i=v+int

IF (i.eq.0) THEN
i=i+4*M

ENDIF
IF (i.gt.4*M) THEN

i=i-4*M
ENDIF

DO WHILE(vertexpos(i).ne.vertexpos(v))
i=i+int

IF (i.le.0) THEN
i=i+4*M

ENDIF
IF (i.gt.4*M) THEN

i=i-4*M
ENDIF

ENDDO

vertexlist(v)=i
vertexlist(i)=v
vcheck(i)=1
int=-int
IF (MOD(i,2).eq.0) THEN

v=i-1
ELSE

v=i+1
ENDIF
GOTO 200

ENDIF

300 CONTINUE
ENDDO

c -

c - - - Safe Path, undo if P-Accept-check failed - - - -

DO j=1,4*M
vcheck(j)=0

ENDDO

v step=1
vstroke=1

55

DO WHILE (vstroke.le.4*M)

DO j=1,M
opstring old(j)=opstring(j)
DO k=1,D1
spin old(k,j)=spin(k,j)
ENDDO
bond old(j)=bond(j)
a type old(j)=a type(j)
ENDDO
DO k=1,D1

spin old(k,0)=spin(k,0)
ENDDO

v=vstroke
v start=v
opcounter=0

IF (vertexlist(v).eq.0.OR.
1vcheck(v).eq.1) THEN

GOTO 500
ENDIF

p2stroke=(v-1)/4+1
v=vertexlist(v)
vcheck(v)=1
pstroke=(v-1)/4+1
spin i=bond(pstroke)
spin j=spin i+1
p3stroke=pstroke

IF (MOD(v-1,4).lt.2) THEN
i=pstroke-1
p2stroke=p2stroke-1
j=-1

ELSE
i=pstroke
j=1

ENDIF

IF (p2stroke.eq.M) THEN
p2stroke=0

ENDIF

56

IF (i.lt.0) THEN
i=i+M

ELSE IF (i.ge.M) THEN
i=i-M

ENDIF

IF (i.eq.p2stroke) THEN
IF (MOD(v-1,4).eq.0.OR.MOD(v-1,4).eq.2) THEN

spin(spin i,i)=-spin(spin i,i)
spin(spin i,M)=spin(spin i,0)

ELSE
spin(spin j,i)=-spin(spin j,i)
spin(spin j,M)=spin(spin j,0)

ENDIF
i=i+j

ENDIF

IF (p2stroke.eq.M) THEN
p2stroke=0

ENDIF

IF (i.lt.0) THEN
i=i+M

ELSE IF (i.ge.M) THEN
i=i-M

ENDIF

DO WHILE(i.ne.p2stroke)

IF (MOD(v-1,4).eq.0.OR.MOD(v-1,4).eq.2) THEN
spin(spin i,i)=-spin(spin i,i)
spin(spin i,M)=spin(spin i,0)

ELSE
spin(spin j,i)=-spin(spin j,i)
spin(spin j,M)=spin(spin j,0)

ENDIF
i=i+j
IF (i.lt.0) THEN

i=i+M
ELSE IF (i.ge.M) THEN

i=i-M
ENDIF

ENDDO

57

pstroke=p3stroke

vspin=spin(vertexpos(v),pstroke)

a type(pstroke)=6*((a type(pstroke)-6)*
1(a type(pstroke)-1)/14-
2(a type(pstroke)-6)*(8-a type(pstroke))/35)+
3(a type(pstroke)-1)*(8-a type(pstroke))/10*
4((vspin+1)/2+(1-vspin)*4)

opcounter=opcounter+1

v=5-v+8*(pstroke-1)

opstring(pstroke)=8*(bond(pstroke)-1)+a type(pstroke)

DO WHILE (v.ne.v start)

vcheck(v)=1
p2stroke=(v-1)/4+1

v=vertexlist(v)
vcheck(v)=1
pstroke=(v-1)/4+1

spin i=bond(pstroke)
spin j=spin i+1

p3stroke=pstroke

IF (MOD(v-1,4).lt.2) THEN
i=pstroke-1
p2stroke=p2stroke-1
j=-1

ELSE
i=pstroke
j=1

ENDIF

IF (p2stroke.eq.M) THEN
p2stroke=0

ENDIF

IF (i.lt.0) THEN
i=i+M

ELSE IF (i.ge.M) THEN

58

i=i-M
ENDIF

IF (i.eq.p2stroke) THEN
IF (MOD(v-1,4).eq.0.OR.MOD(v-1,4).eq.2) THEN

spin(spin i,i)=-spin(spin i,i)
spin(spin i,M)=spin(spin i,0)

ELSE
spin(spin j,i)=-spin(spin j,i)
spin(spin j,M)=spin(spin j,0)

ENDIF
i=i+j

ENDIF

IF (p2stroke.eq.M) THEN
p2stroke=0

ENDIF

IF (i.lt.0) THEN
i=i+M

ELSE IF (i.ge.M) THEN
i=i-M

ENDIF

DO WHILE(i.ne.p2stroke)

IF (MOD(v-1,4).eq.0.OR.MOD(v-1,4).eq.2) THEN
spin(spin i,i)=-spin(spin i,i)
spin(spin i,M)=spin(spin i,0)

ELSE
spin(spin j,i)=-spin(spin j,i)
spin(spin j,M)=spin(spin j,0)

ENDIF
i=i+j
IF (i.lt.0) THEN

i=i+M
ELSE IF (i.ge.M) THEN

i=i-M
ENDIF

ENDDO

pstroke=p3stroke

vspin=spin(vertexpos(v),pstroke)

59

a type(pstroke)=6*((a type(pstroke)-6)*
1(a type(pstroke)-1)/14-
2(a type(pstroke)-6)*(8-a type(pstroke))/35)+
3(a type(pstroke)-1)*(8-a type(pstroke))/10*
4((vspin+1)/2+(1-vspin)*4)

opcounter=opcounter+1
v=5-v+8*(pstroke-1)
opstring(pstroke)=8*(bond(pstroke)-1)+a type(pstroke)

ENDDO

vcheck(v start)=1

P accept=0.5

check=RND(seed)

IF(P accept.lt.check) THEN

DO j=1,M
opstring(j)=opstring old(j)
DO k=1,D1
spin(k,j)=spin old(k,j)
ENDDO
bond(j)=bond old(j)
a type(j)=a type old(j)
ENDDO
DO k=1,D1

spin(k,0)=spin old(k,0)
ENDDO

ENDIF

500 CONTINUE
vstroke=vstroke+v step
v step=4-v step

ENDDO

c- -

magn=0
DO i=1,D1

magn=magn+spin(i,0)

60

ENDDO

avmagn=avmagn+ABS(magn)
avsqumagn=avsqumagn+magn**2

avn=avn+n
avsqun=avsqun+n**2

c-.-.-.-.-.-.-.- DETERMINE NEW M-.-.-.-.-.-.-.-.-.-.-

step=step+1

initcounter=initcounter+1

IF (initcounter.eq.initcap) THEN
avn=0
avsqun=0
avmagn=0
avsqumagn=0
Z=0
step=1

ENDIF

IF ((M-n).le.(n/cutconstant)) THEN
DO i=1,n/cutconstant

DO j=1,D1
spin(j,M+i)=spin(j,M)

ENDDO
ENDDO
avn=0
avsqun=0
avmagn=0
avsqumagn=0
Z=0

initcounter=0
M=M+n/cutconstant

step=1
WRITE(*,*)UPDATE - M/n ,M,n

ENDIF

IF (MOD(step,10000).eq.0) THEN
WRITE(*,*)M/n: ,M,n

ENDIF

61

ENDDO

avn=avn/steps
avsqun=avsqun/steps
cv=(1/beta)*(avsqun-avn**2-avn)
cv array(counter)=cv array(counter)+cv/averages
T array(counter)=temp
avmagn=avmagn/steps
avsqumagn=avsqumagn/steps
Chi=beta*(avsqumagn-avmagn**2)
avmagn array(counter)=avmagn array(counter)+avmagn/averages
Chi array(counter)=Chi array(counter)+Chi/averages
counter=counter+1
temp=temp-T step

ENDDO
c-----------end averages-----------

average=average+1

ENDDO
c----------------------------------

c**

S=0
DO i=1,counter-1

S=S+cv array(counter-i)/T array(counter-i)*T step
WRITE(UNIT=1,FMT=20),T array(counter-i),

1Chi array(counter-i)
WRITE(UNIT=3,FMT=20),T array(counter-i),S
WRITE(UNIT=2,FMT=20),T array(counter-i),

1cv array(counter-i)
ENDDO

900 CONTINUE
c------ loop end for different N

ENDDO
c-------------------------------

END

c---------------------- RNG -----------------------------

REAL FUNCTION RND(seed)
IMPLICIT NONE

62

INTEGER a,m,q,p,n,ndiv,j,k,seed
REAL rm,rmax

c m=2**31-1 and m=a*q+p
PARAMETER (a=16807, m=2147483647, rm=1.0/m)
PARAMETER (q=127773, p=2836, n=32, ndiv=1+(m-1)/n)
PARAMETER (rmax=1.0-1.2e-7)
INTEGER r(n),r0,r1
SAVE r,r0,r1
LOGICAL first
DATA r/n*0/,first/.true./

c initialize table of random numbers
IF (first) THEN

first=.false.
r1=abs(seed)
DO j=n+8,1,-1

k=r1/q
r1=a*(r1-k*q)-p*k
if (r1.lt.0.) r1=r1+m
if (j.le.n) r(j)=r1

ENDDO
r0=r(1)

END IF
c beginning when not initializing
c compute r1=mod(a*r1,m) without overflows

k=r1/q
r1=a*(r1-k*q)-p*k
if (r1.lt.0) r1=r1+m
j=1+r0/ndiv
r0=r(j)
r(j)=r1
rnd=min(rm*r0,rmax)
END

63

References

[1] Roger G. Melko and Anders W. Sandvik. Stochastic series expansion
algorithm for the s=1/2 xy model with four-site ring exchange. Physical
Review E, 72:026702, 2005.

[2] P. Mohn. Magnetism in the Solid State. Springer Series in Solid-State
Sciences , Volume 134, 2003.

[3] M.N. Rosenbluth A.H. Teller N. Metropolis, A.W. Rosenbluth and
E. Teller. Metropolis et al. J. Chem. Phys. 21, 1953.

[4] Anders W. Sandvik and Juhani Kurkijärvi. Quantum monte carlo sim-
ulation method for spin systems. Phys. Rev. B, 43(7):5950–5961, Mar
1991.

[5] Robert H. Swendsen and Jian-Sheng Wang. Nonuniversal critical dy-
namics in monte carlo simulations. Phys. Rev. Lett., 58(2):86–88, Jan
1987.

[6] Olav F. Syljůasen and Anders W. Sandvik. Quantum monte carlo with
directed loops. Phys. Rev. E, 66(4):046701, Oct 2002.

[7] J.M. Yeomans. Statistical Mechanics of Phase Transitions. Oxford Uni-
versity Press, Oxford, 1992.

Acknowledgements

It is time now to give acknowledgement to those people that accompanied
me during my study and this thesis work. I want to thank my family for
providing me with a great background and especially my parents for sup-
porting me also financially which made it possible for me to spend two terms
abroad and to focus completely on this thesis work in the final stages of my
study. I also want to thank Julia, my companion in life, who gave me the
strength and vigor I needed.
Special thanks go to my supervising tutor Prof. Peter Mohn. Not only that
he was always helpful in giving me important input for my thesis work, but
he also shared a lot of his time to discuss various problems that occurred
along this work which was the foundation for me of proceeding so well in
understanding the theory and its implementation in the algorithm. I also
want to point out his extraordinary patience which can’t be taken for granted
if one considers how frequently I ’invaded’ his office with tons of questions.

