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Kurzfassung

Betrachte eine Einbahnstraße mit n nummerierten Parkplätzen in einer Reihe.
m aufeinanderfolgende Fahrer wollen in dieser Straße parken, wobei jeder einen
bevorzugten Parkplatz hat. Jeder Fahrer fährt zu der gewählten Stelle und parkt
dort, falls sie frei ist. Falls nicht, nimmt er den nächsten freien Parkplatz, falls
vorhanden. Andernfalls verlässt er die Straße.
Die Funktion p : [m] → [n], die jedem Fahrer i den bevorzugten Parkplatz p(i)
zuweist, heißt Parkfunktion (parking function), falls alle m Fahrer erfolgreich
parken können.

Parkfunktionen wurden 1966 von Konheim und Weiss in ihrer Analyse von Hashta-
bellen mit linearem Sondieren eingeführt. Seitdem haben sie das Interesse zahlre-
icher Mathematiker geweckt und wurden ausgiebig studiert.
Viele Beziehungen zwischen Parkfunktionen und anderen kombinatorischen Objek-
ten wie zum Beispiel markierten Bäumen (labeled trees), azyklischen Funktionen
(acyclic functions), Warteschlangen (priority queues), nichtkreuzenden Partitionen
(noncrossing partitions) und speziellen Polytopen sind bekannt.
Parkfunktion wurden auf verschiedene Arten verallgemeinert, und sie treten in der
Analyse von Hashing-Varianten und Sortier-Algorithmen auf.

Im 1. Kapitel dieser Arbeit werden einige Lösungsmethoden und Hilfsresultate
gesammelt.
Parkfunktionen werden in Kapitel 2 definiert und einige grundlegende Eigen-
schaften hergeleitet. Es wird gezeigt, wo Parkfunktionen bei der Analyse von
Hashtabellen auftreten, und ein neues Resultat über Haltepunkte (breakpoints)
von Parkfunktionen wird präsentiert.
Im 3. Kapitel werden bekannte Relationen zwischen Parkfunktionen und azyklis-
chen Funktionen bzw. markierten Bäumen sowie eine Beziehung zwischen Park-
funktionen und Warteschlangen behandelt.
Einige Verallgemeinerungen von Parkfunktionen sind in Kapitel 4 gesammelt,
unter anderem bucket parking functions und x-parking functions.
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KURZFASSUNG

Das letzte Kapitel befasst sich mit defekten Parkfunktionen (defective parking
functions). Nach einer Darstellung bekannter Resultate wird eine erzeugende
Funktion für die Anzahl von defekten Parkfunktionen hergeleitet und diese für
eine asymptotische Analyse des erwarteten Defekts verwendet. Zum Abschluss
werden defective parking functions auf defective bucket parking functions verall-
gemeinert und eine erzeugende Funktion für deren Anzahl hergeleitet.

ii



Contents

Preface 1

Notation 2

1 Preliminaries 4
1.1 Lagrange’s inversion formula . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Example: Binary trees . . . . . . . . . . . . . . . . . . . . . 5
1.2 The tree function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 The kernel method . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
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Preface

In 1966, parking functions were introduced by Konheim and Weiss as a by-product
in their analysis of hashing with linear probing. Since then they have aroused the
interest of numerous mathematicans and the subject has been widely studied.
Many relations between parking functions and other combinatorial objects are now
known, such as labeled trees, acyclic functions, priority queues, noncrossing par-
titions and special polytopes. Parking functions have been generalized in various
ways, and they appear in the analysis of hashing variants and sorting algorithms.

We will start our work with a collection of auxiliary results in Chapter 1.
Then we define parking functions in Chapter 2 and derive some basic properties.
We will show where they appear in the analysis of hashing with linear probing and
then give a new result on breakpoints.
In Chapter 3 we will present known relations between parking functions, acyclic
functions and labeled trees and a relation between parking functions and priority
queues.
Some known generalizations of parking functions are collected in Chapter 4, such
as bucket parking functions and x-parking functions.
Our main point of interest will be defective parking functions in Chapter 5. After
presenting some known results we will derive a generating function for the number
of defective parking functions and use it to find an asymptotic result on the ex-
pected defect. Finally, we will generalize defective parking functions to defective
bucket parking functions and find a generating function for their number.

At this point, I want to thank everybody who has contributed to this master
thesis in one way or another. I want to thank Prof. Panholzer for suggesting
this interesting subject, and for the guidance through the process of writing a
master thesis. I want to thank my parents for making my studies possible, and
my girlfriend for the moral support.
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Notation

We will use the following notation:

N := {1, 2, 3, . . .},
and

N0 := N ∪ {0}.
Whenever we use the variables m and n, respectively, we implicitly mean that
m,n ∈ N0. We further define

[n] := {1, . . . , n},

with the convention that [0] = ∅, and

[n]0 := [n] ∪ {0}.

We write xn for the falling factorials of x,

xn = x(x− 1) · · · (x− n+ 1).

Let x̄ = (x1, . . . , xn) and cond(x̄) be a condition on x̄. We define the indicator
function 1{cond(x̄)}(x̄) by

1{cond(x̄)}(x̄) =

{
1, if cond(x̄) evaluates to ”true”,

0, else.

The symbol δi,j denotes the Kronecker delta,

δi,j = 1{i=j}(i, j).

Whenever it seems useful, we will identify any function f : [m] → [n] with the
tupel (f(1), . . . , f(m)) ∈ [n]m.
If X is a random variable, we write E (X) for the expected value of X.
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NOTATION

When we write an integral of the form

∮
F (t)dt,

we mean that the integral is taken in positive direction over a suitable contour
enclosing the origin. We will only use this symbol if it is obvious what ”suitable”
means.
If F (z) =

∑
k≥0 akz

k, or, more generally, F (z) =
∑

k≥−n akz
k, we write [zj]F (z)

to extract the coefficient of zj in F (z), i. e.,

[zj]F (z) = aj.

By Cauchy’s integral formula, we have

[zj]F (z) =
1

2πi

∮
F (z)

zj+1
dz,

which will be used frequently.
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Chapter 1

Preliminaries

Before we start with our main sections, we will collect some techniques and aux-
iliary results which will be useful in order to solve the subsequent problems.

1.1 Lagrange’s inversion formula

Consider a power series f(x) =
∑

k≥0 fkx
k. Given a parameter transform x =

x(z) =
∑

k≥0 akz
k, one may be interested in extracting the coefficients of f(x(z)).

In some cases, the following formula proves useful:

Theorem 1.1.1 (Lagrange’s inversion formula [26]). Let f(x) =
∑

k≥0 fkx
k. Sup-

pose that x = x(z) =
∑

k≥0 akz
k satisfies z = x

φ(x)
, where φ(x) =

∑
k≥0 φkx

k with
φ0 6= 0.
Then it holds that

[zn]f(x(z)) =

{
1
n
[xn−1]f ′(x)(φ(x))n, n ≥ 0

[x0]f(x), n = 0.

Note that, given the relation z = z(x) = x
φ(x)

, this theorem can be used to find the

coefficients of x(z) (simply set f(x) = x).

Proof. We use Cauchy’s integral formula and the substitution x(z) = x, dz =

4



CHAPTER 1. PRELIMINARIES

( 1
φ(x)
− xφ′(x)

(φ(x))2
)dx: We obtain

[zn]f(x(z)) =
1

2πi

∮
f(x(z))

zn+1
dz

=
1

2πi

∮
f(x)(φ(x))n+1

xn+1

(
1

φ(x)
− xφ′(x)

(φ(x))2

)
dx

=
1

2πi

∮
f(x)(φ(x))n

xn+1
− 1

2πi

∮
f(x)φ(x)n−1φ′(x)

xn

= [xn]f(x)(φ(x))n − [xn−1]f(x)(φ(x))n−1φ′(x).

This already shows that the claim holds for n = 0.
For n ≥ 1, we use the fact that for an arbitrary power series h(x) the equation

[xn]h(x) =
1

n
[xn−1]h′(x)

holds.
Hence, we have

[xn]f(x)φ(x))n =
1

n
[xn−1]f ′(x)(φ(x))n + [xn−1]f(x)(φ(x))n−1φ′(x),

and finally

[zn]f(x(z)) =
1

n
[xn−1]f ′(x)(φ(x))n.

We will now give an example where this method can be used.

1.1.1 Example: Binary trees

Definition 1.1.1. A binary tree is either empty or consists of a vertex and a ”left”
and a ”right” binary tree.

Let an denote the number of binary trees with n vertices. We will show that the
an are the well-known Catalan numbers, an = 1

n+1

(
2n
n

)
.

We can easily establish the recurrence

a0 = 1,

an+1 =
n∑

k=0

akan−k, n ≥ 0.

5



CHAPTER 1. PRELIMINARIES

Now we introduce the generating function

A(z) :=
∑
n≥0

anz
n.

When we multiply the above recursion by zn+1 and sum up, we obtain

A(z)− 1 =
∑
n≥0

n∑

k=0

akan−kz
n+1

= z

n∑

k=0

akz
k

∑

n−k≥0

an−kz
n−k

= z(A(z))2.

Note that one of the solutions to this equation, A(z) = 1+
√

1−4z
2z

, has a pole at
z = 0 and is therefore not relevant for our problem. Hence, we get the solution

A(z) =
1−√1− 4z

2z
.

We use the transform z(x) = x
(1+x)2

, i. e., φ(x) = (1 + x)2, and f(x) := A(z(x)) =

1−
√

1−4z(x)

2z(x)
= 1 + x.

An application of Lagrange’s inversion formula then shows that

[zn]A(z) = [zn]f(x(z))

=
1

n
[zn−1]f ′(x)(φ(x))n

=
1

n
[zn−1](1 + x)2n

=
1

n

(
2n

n− 1

)

=
1

n+ 1

(
2n

n

)
.

1.2 The tree function

Definition 1.2.1. The tree function

T (z) =
∑
n≥0

tn
zn

n!

is implicitely defined by
T (z) = zeT (z).

6



CHAPTER 1. PRELIMINARIES

T (z) is the exponential generating function of the numbers tn of rooted labeled
trees with n vertices [15]. As it turns out (see Section 3.1), parking functions
are closely related to labeled trees. Thus, it is natural that generating functions
associated with parking functions involve the tree function.
We will now collect some results on T (z).

Proposition 1.2.1.

T (z) =
∑
n≥1

nn−1 z
n

n!
,

i. e., tn = nn−1

Proof. Since z = T (z)

eT (z) , we can apply Lagrange’s inversion formula. We get

tn
n!

= [zn]T (z) =
1

n
[T n−1]enT =

nn−1

n!
, n ≥ 1,

and t0 = 0.

Note that for n ≥ 1, the Cayley number Tn := tn
n

= nn−2 is the number of (free)
labeled trees with n vertices.

Lemma 1.2.2.

[zn]T (z)j =

{
j nn−j−1

(n−j)!
, if n ≥ j,

0, else.

Proof. For n = 0 the claim obviously holds. For n ≥ 1, we can again use Lagrange’s
inversion formula:

[zn]T (z)j =
j

n
[T n−1]enTT j−1 =

j

n
[T n−j]enT =

{
j nn−j−1

(n−j)!
, if n ≥ j,

0, else.

We will further need the following expansion of T (z) [10, 11]:

Lemma 1.2.3. The function T (z) has a dominant singularity at t = 1
e
, and its

singular expansion there is

T (z) = 1−
√

2
√

1− ez +O(1− ez).

7



CHAPTER 1. PRELIMINARIES

1.3 The kernel method

In the following we will have to solve functional equations for multivariate gener-
ating functions. In certain cases, the kernel method proves useful, which can be
described as follows:
Assume that we have a functional equation

F (x̄) =
G(F, x̄)

H(x̄)
,

where x̄ = (x1, . . . , xn), from which we need to find the generating function F .
Now assume that H(ā) = 0 for ā = (a1, . . . , an). If we know a priori that a power
series expansion for F around ā exists, we must have G(F, ā) = 0 as well.
In some cases this is sufficient to compute the generating function F at special
values, and subsequently in general.
In [22], Prodinger has collected some problems where this method works. We will
now present an example.

1.3.1 Example: Knödel walks

Consider the following bin packing model: There are bins of size 1, and items of
size 1

3
and 2

3
, respectively, arriving at random. One tries to complete as many bins

as possible.
For each n ∈ N, we let state n represent the situation that we have n bins filled
2
3
. There is also a special state, which we denote by b, representing a bin filled 1

3
.

The possible state changes, depending on the next arriving item, are

• 0→ 1 or 0→ b,

• b→ 0 or b→ 1,

• n→ n− 1 or n→ n+ 1, for n ≥ 1.

This model can be formulated as a random walk on a special graph (see Figure
1.1). Following the example of Prodinger, we will call the random walks on this
graph, starting at state 0, ”Knödel walks”.
We are now interested in the number an,i of Knödel walks of length n which
end in state i. We introduce the generating functions fi(z) =

∑
n≥0 an,iz

n, for
i ∈ {b, 0, 1, . . .}.
We have the following recursions:

8



CHAPTER 1. PRELIMINARIES

Figure 1.1: The Knödel Graph

fi(z) = zfi−1(z) + zfi+1(z), i ≥ 2,

f1(z) = zf0(z) + zfb(z) + zf2(z),

f0(z) = 1 + zf1(z) + zfb(z),

fb(z) = zf0(z).

We further introduce the generating function F (z, x) =
∑

i≥0 fi(z)x
i. The above

recursions sum up to

F (z, x) =
∑
i≥2

xizfi−1(z) +
∑
i≥2

xizfi+1(z)

+ xzf0(z) + xzfb(z) + xzf2(z) + 1 + zf1(z) + zfb(z)

= xzF (z, x) +
z

x
F (z, x) + 1− z

x
f0(z) + (1 + x)zfb(z)

= xzF (z, x) +
z

x
F (z, x) + 1−

(z
x
− (1 + x)z2

)
F (z, 0),

and further

F (z, x) =
z(1− x(1 + x)z)F (z, 0)− x

x2z − x+ z
.

The denominator can be factorized into

x2z − x+ z = z(x− r1(x))(x− r2(x)),

where

r1(x) =
1−√1− 4z2

2z
, r2(x) =

1 +
√

1− 4z2

2z
.

Since x − r1(z) ∼ x − z as x, z → 0, the factor 1/(x − r1(z)) has no power series
expansion around (0, 0). But F (z, x) has, so (x − r1(z)) must be a factor of the
numerator as well.

9
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From this, we find

z(1− zr1(z)(1 + r1(z)))F (z, 0)− r1(z) = 0,

and, since

r2
1(z) =

1− 2
√

1− 4z2 + 1− 4z2

4z2
=
r1(z)

z
− 1,

we further get

f0(z) = F (z, 0) =
r1(z)

z(1 + z)(1− r1(z)) .

From this, we find the generating function

F (z, x) =
r1(z)

z(1 + z)(1− r1(z))
1 + xzr1(z)

1− xr1(z) .

By extracting coefficients we get

fi(z) = [xi]F (z, x)

=
r1(z)

z(1 + z)(1− r1(z))
(

[xi]
1

1− xr1(z) + [xi]z
xr1(z)

1− xr1(z)
)

=
r1(z)

z(1 + z)(1− r1(z))(1 + z)ri
1(z)

=
ri+1
1 (z)

z(1− r1(z)) ,

(1.1)

for i ≥ 1, and we have

fb(z) = zf0(z) =
r1(z)

(1 + z)(1− r1(z)) .

In order to extract the coefficients an,i = [zn]fi(z), we use the following lemma:

Lemma 1.3.1. Let F (z) =
∑

n≥0 fnz
n, and let z(v) = v

1+v2 . Then

[zn]F (z) = [vn](1− v2)(1 + v2)n−1F (z(v)).

Proof. This follows from an application of Cauchy’s integral formula: We have

[zn]F (z) =
1

2πi

∮
F (z)

zn+1
dz,

10



CHAPTER 1. PRELIMINARIES

and the substitution z = z(v) = v
1+v2 , dz = dv 1−v2

(1+v2)2
, shows that

[zn]F (z) =
1

2πi

∮
(1 + v2)n+1F (z(v))

vn+1

1− v2

(1 + v2)2
dv

= [vn](1− v2)(1 + v2)n−1F (z(v)).

By applying this lemma to (1.1), we find

[zn]fi(z) = [vn](1− v2)(1 + v2)n−1v
i(1 + v2)

1− v
= [vn−i](1 + v)(1 + v2)n

= [vn−i]
n∑

k=0

(
n

k

)
(v2k + v2k+1)

=

(
n

bn−i
2
c
)
,

for i ≥ 1. We further get

[zn](1 + z)f0(z) = [vn](1− v2)(1 + v2)n−1 1 + v2

1− v =

(
n

bn
2
c
)
,

so

[zn]f0(z) =
n∑

k=0

(
k

bk
2
c
)

(−1)n−k.

1.4 Singularity Analysis

Consider a generating function f(z), from which we want to determine the asymp-
totic order of growth of [zn]f(z). In certain cases one can apply singularity analysis
rather than extracting the coefficients exactly.
We will use the following lemma due to Flajolet and Odlyzko [9]:

Lemma 1.4.1. For fixed η > 0 and 0 < φ < π
2
, let

∆ := {z | |z| ≤ 1 + η and |Arg(z − 1)| ≥ φ} ,
where Arg(z) denotes the argument of z taken in the inverval [−π, π[. Assume
that, with the sole exception of a singularity at z = 1, f(z) is analatic in ∆, and
that

f(z) =
m∑

j=0

cj(1− z)αj +O((1− z)A), for z → 1 in ∆,

11
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where α0 < α1 < . . . < αm < A.
Then

[zn]f(z) =
m∑

j=0

(
n− αj − 1

n

)
+O(n−A−1), for n→∞.

The asymptotic growth of expressions of the form
(

n−α−1
n

)
is well-known:

Lemma 1.4.2. (
n− α− 1

n

)
∼ n−α−1

Γ(−α)

Note that if f(z) has a singularity at ζ, g(z) := f(ζz) has a singularity at 1.
Hence, if Lemma 1.4.1 can be applied to g(z), we can find the asymptotic growth
of [zn]f(z) using the fact that

[zn]f(z) = [zn]g

(
z

ζ

)
= ζ−n[zn]g(z).

1.5 Convergence of random variables

Definition 1.5.1. Let X be a random variable with distribution function F , and
(Xn)n∈N a sequence of random variables where each Xi is associated to a distribu-
tion function Fi. We say that the sequence Xn converges towards X in distribution,
if

lim
n→∞

Fn(a) = F (a)

for all a ∈ R at which F is continuous. We then write

Xn
d−→ X.

Assume that we want to show that a given sequence Xn of random variables
converges in distribution towards a random variable X. If the moments E (Xr

n)
are known, the following theorem can be useful:

Theorem 1.5.1 (Fréchet and Shohat [18]). If limn→∞ E (Xr
n) = E (Xr) for all

r ∈ N and the moments E (Xr) uniquely determine the distribution of X, then

Xn
d−→ X.

It remains to find a criterion for a sequence of moments to uniquely determine the
distribution. We will only use the following sufficient condition [6]:

12
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Lemma 1.5.2. Let X be a random variable and

MX(t) :=
∑
r≥0

E (Xr)
tr

r!

the moment generating function of X. If MX(t) exists in a neighbourhood of t = 0,
then the moments E (Xr) uniquely determine the distribution of X.

1.5.1 Example: Rayleigh distribution

Definition 1.5.2. We say that a random variable X is Rayleigh distributed with
parameter s, if X has the density function

f(x) =
x

s2
e−

x2

2s2 , x ≥ 0.

The moments of a Rayleigh distributed random variable X are given by

E (Xr) = 2
r
2 srΓ

(r
2

+ 1
)
,

see [20].

Proposition 1.5.3. Let (Xn)n∈N be a sequence of random variables. If

lim
n→∞

E (Xr
n) = 2

r
2 srΓ

(r
2

+ 1
)
, r ∈ N,

then Xn
d−→ X where X is Rayleigh distributed with parameter s.

Proof. We only have to show that the moment generating function of X,

MX(t) =
∑
r≥0

E (Xr)
tr

r!
=

∑
r≥0

2
r
2 srΓ

(r
2

+ 1
) tr
r!
,

exists in a neighbourhood of t = 0.
Since

lim
r→∞

Γ( r
2

+ 1)

r!
= lim

r→∞
Γ( r

2
+ 1)

Γ(r + 1)
= 0,

which can be seen by Stirling’s formula, MX(t) exists at least for |√2st| < 1.

13



Chapter 2

Parking functions

2.1 Definition

Parking functions have been introduced by Konheim and Weiss in their analysis
of hashing with linear probing [16] in the following way:

Consider a one-way street with n numbered parking slots in a line. There are m
consecutive drivers who wish to park in this street, each of which has a preferred
parking slot in mind. Each driver proceeds to the chosen place and parks there, if
it is empty. If not, the driver takes the first available space, if any. If no space is
empty, the driver leaves.

Definition 2.1.1. Let p : [m] → [n] be a function which associates each driver i
with his preferred parking slot p(i). If all drivers are able to park when using the
parking strategy described above, then p is called a parking function.

As a first result, we will prove that the ordering of the elements of a function
doesn’t affect the property of being a parking function:

Lemma 2.1.1. A function p : [m]→ [n] is a parking function if and only if p ◦ π
is a parking function for any permutation π on [m].

Proof. It suffices to show that if p is a parking function, then p ◦ π is a parking
function for any permutation π that only switches two consecutive elements and
leaves the other values fixed:
For any f : [m]→ [n], define ιf by

ιf(1) = f(1), and

ιf(i) = min {j ∈ N | j ≥ f(i), j /∈ {ιf(1), . . . , ιf(i− 1)}} ,

14
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for i ∈ {2, . . . ,m}. Note that if p is a parking function then ιp(i) is the final
parking slot of driver i. p is not a parking function if and only if ιp(i) > n for at
least one i ∈ [m].
Let p : [m] → [n] be a parking function and p′ = p ◦ π, where π(k) = k + 1,
π(k + 1) = k and π(x) = x for x ∈ [m]\{k, k + 1}.
We have {ιp(1), . . . , ιp(k− 1)} = {ιp′(1), . . . , ιp′(k− 1)}. Now we have to consider
the following three cases:

• ιp(k) < p(k+1) = p′(k): In this case, ιp′(k) = ιp(k+1) and ιp′(k+1) = ιp(k).

• ιp(k) ≥ p(k+1) = p′(k) and ιp(k+1) < ιp(k): Then we have ιp′(k) = ιp(k+1)
and ιp′(k + 1) = ιp(k) as well.

• ιp(k) ≥ p(k + 1) = p′(k) and ιp(k + 1) > ιp(k): Now ιp′(k) = ιp(k) and
ιp′(k + 1) = ιp(k + 1).

In all three cases we see that {ιp(1), . . . , ιp(k + 1)} = {ιp′(1), . . . , ιp′(k + 1)} and
further {ιp(i) | i ∈ [m]} = {ιp′(i) | i ∈ [m]}. Hence p′ is a parking function.

By this lemma, it is easy to verify the equivalence of various definitions of parking
functions on [n] (i. e., the special case m = n):

Lemma 2.1.2. For p : [n]→ [n], the following statements are equivalent:

• p is a parking function in the sense of Definition 2.1.1.

• p is a major function, i. e., if (q1, . . . , qn) is the increasing rearrangement of
(p(1), . . . , p(n)), then qi ≤ i for all i ∈ [n].

• |p−1({n− i+ 1, . . . , n})| ≤ i for all i ∈ [n].

• There exists a permutation π : [n]→ [n] with p(i) ≤ π(i) for all i ∈ [n] (π is
then called a certificate for p).

Example:
n = m = 5: p = (3, 5, 2, 2, 1) is a parking function and π = (4, 5, 3, 2, 1) is a
certificate for p.
q = (3, 5, 4, 3, 1) is not a parking function.

For a parking function on [n], the final parking order gives a permutation which
we call the output of the parking function. More formally:

Definition 2.1.2. If p : [n] → [n] is a parking function, we call πp := (ιp)−1 the
output of p.

15
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Example:
For p = (3, 5, 2, 2, 1) we have ιp = (3, 5, 2, 4, 1) and πp = (5, 3, 1, 4, 2).

2.2 Basic results

Let g(n,m) denote the number of parking functions p : [m] → [n]. The following
result due to Konheim and Weiss [16] shows that the numbers g(n, n) can be
expressed in terms of the numbers Tn = nn−2 (compare Section 1.2). A short and
elegant proof of this fact has been given by Pollak [12] and the proof provided here
is an adaptation to the general case which has appeared in [5].

Lemma 2.2.1. g(n,m) = (n − m + 1)(n + 1)m−1, especially g(n, n) = Tn+1 =
(n+ 1)n−1.

Proof. Considerm drivers who wish to park in a circular parking lot with n+1 slots
(m ≤ n), in which the same rules apply as in the one-way street. Now no driver
will have to leave and there will be n+ 1−m empty spaces once all drivers have
parked. The driver’s choices will be a parking function for the original problem if
and only if slot number n + 1 is empty. By symmetry, this happens in a fraction
n+1−m

n+1
of the total number (n+ 1)m of choices.

A first result on the limiting behaviour of g(n,m) is given in [16] as follows:

Proposition 2.2.2. For m,n ∈ N, m ≤ n, let fn,m be a random variable with
values in [n][m] such that P{[fn,m = h]} = 1

nm for all h : [m]→ [n]. Set P (m,n) :=
P{[fn,m is a parking function]}. Then

lim
n→∞

P (µn, n) = (1− µ)eµ, 0 < µ ≤ 1.

Proof. This follows directly from

P (m,n) =
g(n,m)

nm
=

(
1 +

1

n

)m (
1− m

n+ 1

)
.

We will now prove a useful result on the exponential generating function of the
numbers g(n, n).

16
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Proposition 2.2.3. Let

θ(z) =
∑
n≥0

g(n, n)
zn

n!
=

∑
n≥0

(n+ 1)n−1 z
n

n!
. (2.1)

Then
θ(z) = ezθ(z). (2.2)

Proof. Consider the tree function T (z). We have

T (z) =
∑

k≥1

kk−1 z
k

k!
=

∑

k≥1

kk−2 zk

(k − 1)!
=

∑

k≥0

(k + 1)k−1 z
k+1

k!
= zθ(z), (2.3)

and since T (z) = zeT (z), this proves the proposition.

Given a permutation τ of [n], one may be interested in the number of parking
functions on [n] with output τ . In [13], Gilbey and and Kalikow have given the
following expression for this number:

Proposition 2.2.4. Let τ be a permutation of [n] and

S(τ) = {p : [n]→ [n] | πp = τ} .
Define τ(0) := n+ 1 and

bτ (j) := max {i ∈ [j − 1]0 | τ(i) > τ(j)} .
Then

|S(τ)| =
n∏

j=1

(j − bτ (j)). (2.4)

Proof. If parking slot j is occupied by driver τ(j), this driver can have chosen any
slot number i ≤ j as long as the spaces i, . . . , j−1 were occupied when he arrived.
This happens if and only if all these slots are occupied by cars numbered less than
τ(j).

2.3 Uses of parking functions

In [16], the numbers g(n,m) appear in the context of a hashing problem using the
following occupancy discipline:
Consider m balls B1, . . . , Bm which have to be placed in n cells C0, . . . , Cn−1 (n ≥
m). There are m ”fictitious” cell numbers (j1, . . . , jm) with 0 ≤ jk < n for all
k ∈ [m], and the actual location lk of Bk is defined according to the rules
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• l1 = j1

• for k ≥ 2 : lk = jk + sk mod n,
where sk = min {i | i ≥ 0, jk + i mod n /∈ {l1, . . . , lk−1}}.

Let f(n,m) be the number of choices of (j1, . . . , jm) such that the last cell Cn−1

remains empty. Then obviously f(n,m) = g(n− 1,m).
The numbers f(n,m) can be used to express the probabilities P{sk = i}, if for
m balls the fictitious cell numbers j = (j1, . . . , jm) are randomly chosen (with
P{j = x} = n−m for all x ∈ {0, . . . , n − 1}m). We will now present the results in
terms of the numbers g(n,m,):
First observe that, due to symmetry

P{sk = i} =
n−1∑
t=0

P{sk = i|jk = t}P{jk = t}

=
n−1∑
t=0

P{sk = i|jk = 0} · 1
n

= P{sk = i|jk = 0}.

If jk = 0, then sk = 0 if and only if 0 /∈ {l1, . . . , lk−1}.
For 1 ≤ i ≤ k−1 the case sk = i occurs exactly if there exists a q ∈ {0, . . . , k−i−1}
such that

• {−q mod n, . . . , 0, . . . , i− 1 mod n} ⊆ {l1, . . . , lk−1} and

• {−q − 1 mod n, i mod n} ∩ {l1, . . . , lk−1} = ∅.
This shows:

P{sk = 0} =
g(n− 1, k − 1)

nk−1
,

P{sk = i} =
k−i−1∑
q=0

(
k − 1

q + i

)
g(q + i, q + i)

g(n− i− q − 2, k − i− q − 1)

nk−1
,

for 1 ≤ i ≤ k − 1. Note that this second formula actually holds for i = 0, too.
By using Lemma 2.2.1 this can be simplified to

P{sk = i} =
1

nk−1

k−1∑
q=i

(
k − 1

q

)
(q + 1)q−1(n− k)(n− q − 1)k−q−2.

18
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Furthermore,

E (sk) =
n− k
nk−1

k−1∑
i=1

i

k−1∑
q=i

(
k − 1

q

)
(q + 1)q−1(n− q − 1)k−q−2

=
n− k
nk−1

k−1∑
q=1

(
k − 1

q

)
(q + 1)q−1(n− q − 1)k−q−2

q∑
i=1

i

=
n− k
2nk−1

k−1∑
q=i

(
k − 1

q

)
(q + 1)qq(n− q − 1)k−q−2.

2.4 Breakpoints

The concept of breakpoints of a function has been introduced by Gilbey and Ka-
likow in [13]. We will use the following definition:

Definition 2.4.1. Let p : [n] → [n]. We say that b ∈ [n] is a breakpoint of p if
and only if |{i | p(i) ≤ b}| = b.

Note that if p is a parking function, this condition is equivalent to saying that
p(i) ≤ b if and only if ιp(i) ≤ b for all i ∈ [n]. This in turn is equivalent to saying
that {πp(1), . . . , πp(b)} = {i | p(i) ≤ b}. In a more intuitive way, b is a breakpoint
of a parking function p if every driver who wishes to park in one of the first b slots
succeeds in doing so.
Obviously, n is a breakpoint of any parking function p on [n]. The following lemma
from [13] shows that at least one other breakpoint exists in many instances:

Lemma 2.4.1. Let p be a parking function on [n], and d = ιp(n). Then d is a
breakpoint of p.

Proof. Since parking slot d is the only empty slot when driver n arrives, we have

|{i ∈ [n− 1] | ιp(i) < d}| = d− 1,

|{i ∈ [n− 1] | ιp(i) = d}| = 0,

and for all i ∈ [n− 1] holds

ιp(i) < d if and only if p(i) < d.

Since p(n) ≤ ιp(n) = d, this shows that |{i ∈ [n] | p(i) ≤ d}| = d.
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We will now derive a formula for the number of parking functions with exactly k
breakpoints:

Proposition 2.4.2. Let an,k be the number of parking functions on [n] with exactly
k breakpoints, and

F (z, w) =
∑
n≥1

∑

k≥1

an,k

n!
znwk.

Then

F (z, w) =

T (z)−z
T (z)

w

1− T (z)−z
T (z)

w
,

where T (z) denotes the tree function.
Furthermore,

an,k =
k∑

j=1

(−1)j+1

(
k

j

)
j(n− j)n−1.

Proof. Let p : [n] → [n] be a parking function with k > 1 breakpoints. If b is the
first breakpoint of p, then the function

p|{i∈[n] | p(i)≤b} : {i ∈ [n] | p(i) ≤ b} → [b]

is a parking function with one breakpoint, where the cars are numbered with b
elements of [n]. The number of choices of these elements is

(
n
b

)
. Similarly, the

function
p|{i∈[n] | p(i)>b} : {i ∈ [n] | p(i) > b} → {b+ 1, . . . , n}

is a parking function with k−1 breakpoints, where the cars are numbered with the
remaining elements of [n] (and the parking slots have been renumbered as well).
This gives the recursion

an,k =
n−1∑

b=1

(
n

b

)
ab,1an−b,k−1, n ≥ 1, k ≥ 2.
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By multiplying the recursion with znwk

n!
and summing up, we get

F (z, w)−
∑
n≥1

an.1

n!
znw =

∑

k≥2

∑
n≥1

n−1∑

b=1

ab,1

b!

an−b,k−1

(n− b)!z
nwk

=
∑

k≥2

wk
∑

b≥1

ab,1

b!
zb

∑
n≥1

an,k−1

n!
zn

=
∑

b≥1

ab,1

b!
zbw ·

∑
n≥1

∑

k≥2

an,k−1

n!
znwk−1

=
∑

b≥1

ab,1

b!
zbw · F (z, w),

or ∑
n≥1

an,1

n!
znw =

F (z, w)

1 + F (z, w)
.

Now, consider the function θ(z) as defined in (2.1).

We must have F (z, 1) = θ(z)− 1, and we know that θ(z) = T (z)
z

, see (2.3). Hence,

∑
n≥1

an,1

n!
zn =

T (z)− z
T (z)

,

and finally

F (z, w) =

T (z)−z
T (z)

w

1− T (z)−z
T (z)

w
.

Now, the coefficients an,k can be extracted:

an,k

n!
= [znwk]

T (z)−z
T (z)

w

1− T (z)−z
T (z)

w

= [zn]

(
1− z

T (z)

)k

=
k∑

j=0

(−1)j

(
k

j

)
[zn−j]

1

T (z)j
,

for n, k ≥ 1.
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We know that z = T (z)

eT (z) . Hence, using Lagrange’s inversion formula, we get

[zn−j]
1

T (z)j
= − j

n− j [T
n−j−1]

e(n−j)T

T j+1

= − j

n− j [T
n]e(n−j)T

= − j

n− j
(n− j)n

n!
.

This shows that

an,k =
k∑

j=1

(−1)j+1

(
k

j

)
j(n− j)n−1, n, k ≥ 1.
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Relations to other combinatorial
objects

Many relations between parking functions and other combinatorial objects are
now known, such as labeled trees and acyclic functions [12], priority queues [13],
noncrossing partitions [25] and special polytopes [21]. In this section, we will
present two of these known relations.

3.1 Parking functions and acyclic functions

We will show that acyclic functions on [n] can be represented as free labeled trees
with n + 1 vertices, the total number of which is Tn+1 = (n + 1)n−1 = g(n, n)
(see Section 1.2). This suggests to find a mapping between acyclic and parking
functions. We will then present two different mappings due to Foata and Rioardan
[12]. These mappings can be used to translate known properties of acyclic functions
and free labeled trees into properties of parking functions.

3.1.1 The representation of acyclic functions as labeled
trees

Definition 3.1.1. Let f : [n] → [n]. We say that f is an acyclic function if and
only if all cycles of f are of length 1.

It is easy to see how an acyclic function f on [n] can be represented as a labeled
tree with n+ 1 vertices:
First, given f , we define a rooted labeled forest with vertices x ∈ [n] in the following
way: For x 6= y, we let (x, y) be an edge of the forest if f(x) = y. We further let
x ∈ [n] be a root if and only if f(x) = x.
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The resulting forest is then mapped to a free tree with n + 1 labeled vertices by
connecting all rooted vertices with a new vertex n+ 1.
An example is shown in Figure 3.1.

Figure 3.1: Representation of the acyclic function f = (6, 2, 3, 5, 5, 3) as a
rooted labeled forest (roots are indicated by slings) and as a labeled tree

3.1.2 A mapping using tree codes

The first mapping between parking and acyclic functions rests on a mapping of
parking functions on codes by Pollak:
The code for a parking function (p(1), . . . , p(n)) is (c(1), . . . , c(n− 1)) with

c(i) = p(i+ 1)− p(i) mod (n+ 1). (3.1)

In order to map the code c = (c(1), . . . , c(n−1)) to an acyclic function, we interpret
c as a Prüfer code for a labeled tree with n+ 1 vertices. This correspondence can
be described as follows:
Given a labeled tree with n vertices, let (c1, . . . , cn−2) denote the associated code.
c1 is the vertex adjacent to the leave of the tree with the smallest label. Now this
leave and its edge to c1 are removed. c2 is then the vertex adjacent to the leave
with smallest label of the remaining tree, and so on. The process stops when there
are only two vertices left.
For the inverse one can write down two sequences:

b1, . . . , bn−2, bn−1

c1, . . . , cn−2, n

The second sequence is the code augmented by n. The first one will be the sequence
of vertices adjacent to the code elements in the process described above, which can
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be determined in the following way: b1 is the smallest number not contained in
c1, . . . , cn−2, n. For i ∈ {2, . . . , n− 1}, bi is the smallest number not contained in
b1, . . . , bi−1, ci, . . . , cn−2, n. The pairs (bi, ci), i ∈ [n− 2] and (bn−1, n) are n− 1
lines of the tree, thus the tree is completely determined.

Example:
n = 6: The code corresponding to the parking function p = (4, 3, 3, 1, 1, 4) is
c = (6, 0, 5, 0, 3). This is the Prüfer code of the labeled tree shown in Figure
3.1, hence the associated acyclic function is f = (6, 2, 3, 5, 5, 3).

We will now show that the mapping between parking functions and codes is a
bijection. If p(1) is known then the inverse of (3.1) is obviously given by

p(i) = p(1) + c(1) + . . .+ c(i− 1) mod (n+ 1), i = 2, . . . , n (3.2)

Proposition 3.1.1. For each code (c(1), . . . , c(n−1)) ∈ Zn−1
n+1 there exists a unique

p(1) such that the function p defined by (3.2) is a parking function.

Proof. In [12], this has been proved by providing an algorithm which determines
p(1):
Define (r1, . . . , rn) with ri = |{x | p(x) = i}| to be the specification of a parking
function p. From Lemma 2.1.2 it follows that rn−j+1+. . .+rn ≤ j for all j ∈ [n−1]
and it is clear that r1 + . . .+ rn = n. With Rj = r1 + . . .+ rj − j this is equivalent
to

Rj ≥ 0, j ∈ [n− 1], Rn = 0. (3.3)

Now, given a code (c(1), . . . , c(n− 1)), consider the function (h(1), . . . , h(n)) with

h(1) = n+ 1

h(i+ 1) = c(1) + . . .+ c(i) mod (n+ 1), i ∈ [n− 1].

Take r(h) = (r1, . . . , rn+1) as the specification of h and define Rj(h) = r1 + . . . +
rj − j, for j ∈ [n+ 1].
Now let d denote the leftmost position of the minimums of Rj(h), i. e.,

Rd(h) < Rj(h), j ∈ {1, . . . , d− 1}
Rd(h) ≤ Rj(h), j ∈ {d+ 1, . . . , n+ 1}.

Since Rn+1 = −1, we must have Rd(h) ≤ −1. If d = 1, then −1 ≥ R1(h) = r1− 1,
and if d > 1, then r1 + . . . + rd−1 − d + 1 = Rd−1(h) > Rd(h) = r1 + . . . + rd − d.
This shows that rd = 0.
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Define a function p as in (3.2) with p(1) = n+ 1− d. Then

p(i) = h(i)− d mod (n+ 1), i ∈ [n].

and the specification of p is (rd+1, . . . , rn+1, r1, . . . , rd).
Now, firstly, Rn(p) = r1 + . . .+ rn+1 − rd − n = 0, and secondly

Rj(p) =

{
Rd+j(h)−Rd(h), j ∈ {1, . . . , n+ 1− d}
Rd+j−n−1(h)−Rd(h) +Rn+1(h), j ∈ {n+ 2− d, . . . , n+ 1}

These relations together with the inequalities for Rd(h) show that Rj(p) ≥ 0, j ∈
[n− 1].
Hence p is a parking function.

Example:
We will show the inverse of the last example:
Take n = 6 and f = (6, 2, 3, 5, 5, 3), so that c = (6, 0, 5, 0, 3). We get
h = (7, 6, 6, 4, 4, 7) and r(h) = (0, 0, 0, 2, 0, 2, 2). Then (R1(h), . . . , R7(h)) =
(−1,−2,−3,−2,−3,−2,−1), so d = 3 and p = (4, 3, 3, 1, 1, 4).

3.1.3 A mapping using balanced sequences and permuta-
tions

For this mapping, a set Cn is introduced which will be put in one-to-one corre-
spondence with both the parking and the acyclic functions on [n] (denoted by An

and Bn, respectively).
Throughout this section, for each sequence r = (r1, . . . , rn) let the non-zero ele-
ments of r be denoted by (ri1 , . . . , rim) and set sij = ri1 + . . .+ rij .

Definition 3.1.2. Let r = (r1, . . . , rn) be a sequence of non-negative integers. We
say that r is balanced if, with

Rj = r1 + . . .+ rj − j, j ∈ [n],

conditions (3.3) are fulfilled.

If r is a balanced sequence, then we clearly have i1 = 1. Furthermore, note that r
is balanced if and only if

sij − (ij+1 − 1) ≥ 0 for all j ∈ [m− 1], and sim = n. (3.4)
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Definition 3.1.3. Let π be a permutation of [n] and r = (r1, . . . , rn) a balanced
sequence. We say that π is compatible with r if π−1 is increasing on {1, . . . , ri1}
and on each interval {sij + 1, . . . , sij+1

}, j ∈ [m− 1].

We now define Cn as the set of all couples (r, π) with

• r = r1, . . . , rn a balanced sequence,

• π a permutation of [n] which is compatible with r.

A parking function p ∈ An is now mapped to an element (s(p), τp) of Cn in the
following way:
s(p) is the specification of p as described earlier.
τp is defined by

τp(x) = |{y ∈ [n] | p(y) < p(x), or p(y) = p(x) and y ≤ x}| .

Example:
Take n = 9 and p = (1, 6, 2, 3, 5, 2, 1, 5, 3).
We get τp = (1, 9, 3, 5, 7, 4, 2, 8, 6) and s(p) = (2, 2, 2, 0, 2, 1, 0, 0, 0).

Proposition 3.1.2. The mapping p→ (s(p), τp) maps An into Cn.

Proof. s(p) is balanced due to relation (3.3), and τp(x) is obviously a permutation
on [n].

It is easy to verify that the definition of (s(p), τp) is equivalent to saying that

p(x) =

{
1, if 1 ≤ τp(x) ≤ ri1 ,

ij, if sij−1
+ 1 ≤ τp(x) ≤ sij , j ∈ {2, . . . ,m}, (3.5)

and that τ−1
p is increasing on {1, . . . , ri1} and on each interval of the form {sij +

1, . . . , sij+1
} for j ∈ [m− 1].

Proposition 3.1.3. The mapping p → (s(p), τp) is a bijection between An and
Cn.

Proof. The mapping is injective, because if p and p′ are two distinct parking func-
tions, then either s(p) 6= s(p′) or, if s(p) = s(p′), then τp 6= τp′ because of (3.5).
To prove that the mapping p→ (s(p), τp) is surjective and at the same time define
its inverse, let (r, π) be an element of Cn. Again, let the non-zero elements of r be
denoted by (ri1 , . . . , rim) and set sij = ri1 + . . .+ rij .
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Define the function p by

p(x) =

{
1 if 1 ≤ π(x) ≤ ri1

ij if sij−1
+ 1 ≤ π(x) ≤ sij , j ∈ {2, . . . ,m}. (3.6)

Then, firstly, r is the specification of p and since r is balanced, p is a parking
function. Secondly, π and τp are both compatible with r. This together with (3.5)
and (3.6) shows that π = τp.
Hence p→ (s(p), τp) is a bijection between An and Cn.

Now Bn will be mapped to Cn. If f is an acyclic function, then the associated
element of Cn will be denoted by (t(f), σf ).
As described in the first mapping, the function f is represented as a forest of
rooted trees, labeled with the numbers 1, . . . , n.
The usual definition of the height h(x) of a vertex will be used: For each vertex x,
h(x) is the length of the (unique) path from x to z(x), where z(x) is the root of
the tree to which x belongs. Roots are of course of height zero. Furthermore, if y
lies on the path from x to z(x), we say that x is at height h(y)− h(x) from y.
We define a total order <f on the set [n], from which σf will be derived: First, let
x <f y if

• h(x) < h(y) or if

• h(x) = h(y) = 0 and x < y.

Then assume that the order <f has been defined on the set of all vertices of height
≤ k. If h(x) = h(y) = k+1, then h(f(x)) = h(f(y)) = k. By induction, let x <f y
if

• f(x) <f f(y), or if

• f(x) = f(y) and x < y.

We let σ−1
f = (σ−1

f (1), . . . , σ−1
f (n)) be the elements of n in increasing order with

respect to <f and define σf to be the inverse permutation of σ−1
f .

Furthermore, we let t(f) = (r1, . . . , rn) be the forest-specification of f : r1 is the
number of roots, and for each i ∈ {2, . . . , n}, ri is the number of vertices at height
1 from σ−1

f (i− 1).

Example:
Take n = 9 and f = (1, 4, 1, 7, 6, 1, 7, 6, 7).
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One can read off the linear order <f from the rooted labeled forest in Figure
3.2: We have 1 <f 7 <f 3 <f 6 <f 4 <f 9 <f 5 <f 8 <f 2, hence σf =
(1, 9, 3, 5, 7, 4, 2, 8, 6).
Furthermore, we get t(f) = (2, 2, 2, 0, 2, 1, 0, 0, 0).

Figure 3.2: The acyclic function f = (1, 4, 1, 7, 6, 1, 7, 6, 7) represented as a
rooted labeled forest. The linear order <=<f can be read off from bottom to top.

Proposition 3.1.4. The mapping f 7→ (t(f), σf ) maps Bn into Cn.

Proof. As before, let (ri1 , . . . , rim) be the sequence of non-zero elements of t(f)
and sij = ri1 + . . .+ rij . Obviously

sim = n (3.7)

since the number of roots plus the number of lines in a rooted forest with n vertices
is n.
The first r1 = ri1 elements of σ−1

f are the roots in rising order, thus

f(x) = x if 1 ≤ σf (x) ≤ ri1 . (3.8)

Furhermore, for j ∈ {2, . . . , n}, the elements σ−1
f (sij−1

+ 1), . . . , σ−1
f (sij) are the

vertices at height 1 from σ−1
f (ij−1) written in rising order (compare the definition

of <f ). Thus

f(x) = σ−1
f (ij − 1) if sij−1

+ 1 ≤ σf (x) ≤ sij , j ∈ {2, . . . , n}. (3.9)

Moreover, the fact that a vertex of smaller height precedes a vertex of greater
height in the sequence σ−1

f implies

ij − 1 < sij−1
+ 1 (3.10)

or equivalenty
sij−1

+ 1− (ij − 1) > 0, j ∈ {2, . . . , n}. (3.11)
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Relations (3.7) and (3.11) show that t(f) is balanced (compare relation (3.4)).
Also, σ−1

f is increasing on {1, . . . , ri1} and on each interval {sij−1
+ 1, . . . , sij} for

j ∈ {2, . . . ,m}, thus σf is compatible with t(f). So f 7→ (t(f), σf ) maps Bn into
Cn.

Proposition 3.1.5. The mapping f 7→ (t(f), σf ) is a bijection between Bn and
Cn.

Proof. The mapping is injective, because if f and f ′ are two distinct acyclic func-
tions on [n], either σf 6= σf ′ , or, if σf = σf ′ , then t(f) 6= t(f ′) due to the relations
(3.8) and (3.9).
In order to prove that the mapping f 7→ (t(f), σf ) is surjective and at the same
time define its inverse, let (r, π) be an element of Cn. Again, the non-zero elements
of r are denoted by (ri1 , . . . , rim) and sij = ri1 + . . .+ rij .
Define a function f : [n]→ [n] by

f(x) =

{
x if 1 ≤ π(x) ≤ ri1 ,

π−1(ij − 1) if sij−1
+ 1 ≤ π(x) ≤ sij , j ∈ {2, . . . ,m}, (3.12)

(note that this is possible because sim = n).
As r is balanced, relation (3.10) holds for j ∈ {2, . . . ,m}, hence f is an acyclic
function with roots π−1(1), . . . , π−1(ri1). Now let us show that (t(f), σf ) = (r, π):
π is compatible with r, which, together with the definition of f and the total order
<f , implies that π−1(1) <f · · · <f π

−1(ri1) and π−1(sij−1
+ 1) <f · · · <f π

−1(sij)
for all j ∈ {2, . . . ,m}. Clearly π−1(ri1) is of height zero and π−1(ri1 + 1) is of
height 1, thus π−1(ri1) <f π

−1(ri1 + 1).
Now assume that π−1(sik−1

) <f π
−1(sik−1

+ 1) for all k with 2 ≤ k ≤ j < m. This
is equivalent to saying that π−1(1) <f · · · <f π

−1(sij). The two elements π−1(sij)
and π−1(sij + 1) are at height 1 from π−1(ij − 1) and π−1(ij+1 − 1), respectively.
Relation (3.10) implies that

ij − 1 < ij+1 − 1 ≤ sij .

By induction, this shows that

f(π−1(sij)) = π−1(ij − 1) <f π
−1(ij+1 − 1) = f(π−1(sij + 1))

and from the definition of <f follows

π−1(sij) < π−1(sij + 1).

Hence σf = π, and this together with the definition of f implies that t(f) = r.
Thus f 7→ (t(f), σf ) is a bijection between Bn and Cn.
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Now the two bijections from Cn to An and Bn can be combined in order to get an
explicit mapping f 7→ p from Bn to An. This mapping can be expressed as

p(x) =

{
1 if f(x) = x

1 + σf (f(x)) if f(x) 6= x

and the inverse is given by

f(x) =

{
x if p(x) = 1

τ−1
p (p(x)− 1) if p(x) 6= 1.

Example:
Take n = 9 and p = (1, 6, 2, 3, 5, 2, 1, 5, 3).
Then τp = (1, 9, 3, 5, 7, 4, 2, 8, 6) and f = (1, 4, 1, 7, 6, 1, 7, 6, 7). The
fact that p is mapped to f can also be seen from the previous two examples, where
τp = σf and s(p) = t(f).

3.1.4 Uses of the mappings

In [12], different uses of the mappings described have been given, two of which will
now be demonstrated.
We will use the following result about rooted trees, which has been found by
Riordan in [23]:

Lemma 3.1.6. Let an,k be the number of forests of rooted trees with n labeled
vertices which consist of exactly k trees, and define

An(x) =
∑

k≥0

an,kx
k.

Then
An(x) = x(x+ n)n−1.

Proposition 3.1.7. Let bn,k be the number of parking functions on [n] with k equal
consecutive numbers, and define

Bn(x) =
∑

k≥0

bn,kx
k.

Then
Bn(x) = x−1An(x) = (x+ n)n−1.

31



CHAPTER 3. RELATIONS TO OTHER COMBINATORIAL OBJECTS

Proof. Using the first mapping, a pair of equal consecutive numbers in the parking
funcion corresponds to a zero in the code. Furthermore, a code with k zeros
corresponds to an acyclic function with k + 1 fixed points (which is represented
by a forest of k + 1 rooted trees). Together with Lemma 3.1.6 this proves the
proposition.

Proposition 3.1.8. Let cn,k be the number of parking functions on [n] with k
elements equal to 1, and define

Cn(x) =
∑

k≥0

cn,kx
k.

Then
Cn(x) = An(x) = x(x+ n)n−1.

Proof. In the second mapping, an acyclic function with k fixed points corresponds
to a parking function with k elements equal to 1. Again, using Lemma 3.1.6, this
proves the proposition.

3.2 Parking functions and priority queues

The following relation between parking functions on [n] and allowable input-output
pairs of permutations of [n] in a priority queue is due to Gilbey and Kalikow
[13]. They have described this relation in a more general way by the use of valet
functions. But for now we will restrict ourselves to the simpler case of ordinary
parking functions.

3.2.1 Definition of priority queues and allowable pairs

A priority queue is an abstract data type supporting the operations Insert and
DeleteMin. There is an input stream σ = (σ1, . . . , σn) and an output stream
τ = (τ1, . . . , τn) which are tupels of elements of a totally ordered set. Each Insert
operation inserts the next element of σ into the queue, whereas each DeleteMin
operation removes a minimal element from the queue and places it in the output
stream.
Of course, the DeleteMin operation is only allowed if the queue is not empty.
An allowable sequence of n Insert’s and n DeleteMin’s is called a priority
queue computation. If σ is the input and τ is the output of some priority queue
computation, then (σ, τ) is called an allowable pair. Throughout this section, we
will always assume that {σ1, . . . , σn} = {τ1, . . . , τn} = [n], i. e., σ and τ both are
permutations.
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The following algorithm from [2] tests whether a given pair (σ, τ) of tupels of length
n is an allowable pair. If (σ, τ) is an allowable pair, the priority queue computation
executed by this algorithm is called the natural computation for (σ, τ).

function TestPair((σ, τ), n) {
Q := empty priority queue
i := 1

(*) for j :=1 to n {
while τj /∈ Q {

Insert(σi)
i := i+ 1

}
if τj 6= min(Q) {

return False
}
else {

DeleteMin
}

}
return True

}
Let An denote the set of parking functions on [n] and Bn the set of allowable pairs
(σ, τ) where σ and τ are permutations of [n].
In [3], Atkinson and Thiyagarajah have found that |Bn| = (n+ 1)n−1 = g(n, n) =
g(n, n). This suggests to find a mapping between An and Bn.

3.2.2 Breakpoints

We have already defined breakpoints of parking functions. We will now define an
analogous concept for pairs (σ, τ) of permutations on [n]. This will be useful in
the subsequent proofs.

Definition 3.2.1. Let (σ, τ) be a pair of permutations of [n]. We say that b ∈ [n]
is a breakpoint of (σ, τ) if and only if {σ1, . . . , σb} = {τ1, . . . , τb}.
If (σ, τ) is an allowable pair, this is equivalent to saying that with the natural
computation the queue is empty after outputting τb.
Obviously, n is breakpoint of any allowable pair (σ, τ) on [n].
The following lemma shows that at least one other breakpoint exists in many
instances:
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Lemma 3.2.1. Let (σ, τ) ∈ Bn and δ = τ−1(n). Then δ is a breakpoint of (σ, τ).

Proof. With any computation, n is only written to the output stream if there is
no element i < n in the queue. Thus the queue is empty after outputting n.

3.2.3 Bijection between parking functions and allowable
pairs

We define functions φn : An → Bn and ψn : Bn → An by induction on n. The case
n = 1 is trivial since |A1| = |B1| = 1.
Given p ∈ An, define (s, t) = φn(p) as follows:

(φ1) Set t := πp and d := π−1
p (n) = ιp(n).

(φ2) Define p′ ∈ An−1 by

p′(i) :=

{
p(i)− 1 if p(i) > d

p(i) otherwise
, i ∈ [n− 1].

(φ3) Set (s′, t′) = φn−1(p
′).

(φ4) Define s by inserting n into the p(n)-th position of s′.

Given (σ, τ) ∈ Bn, define q = ψn(σ, τ) as follows:

(ψ1) Set q(n) := σ−1(n) and δ := τ−1(n).

(ψ2) Let σ′ and τ ′ be, respectively, σ and τ with n deleted, so (σ′, τ ′) ∈ Bn−1.

(ψ3) Set q′ = ψn−1(σ
′, τ ′).

(ψ4) Set

q(i) :=

{
q′(i) + 1 if q′(i) ≥ δ

q′(i) otherwise
, i ∈ [n− 1].

Proposition 3.2.2. The functions φn and ψn are well-defined, output and break-
point preserving, mutually inverse bijections between An and Bn.

Following the example of Gilbey and Kalikow, we will split the proof into small
parts.
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Proposition 3.2.3. Step (φ2) is well-defined and πp′ is πp with n deleted (i. e.,
πp′(i) = πp(i), if i < d and πp′(i) = πp(i+ 1), if d ≤ i < n).

Sketch of proof. For p : [n]→ [n] and i ∈ [n], set

Ep(1) = [n],

Ep(i) = {j ∈ [n] | j /∈ {ιp(1), . . . , ιp(i− 1)}}

Ep(i) can be interpreted as the set of unoccupied parking slots when driver i arrives.
Clearly driver i will choose slot number ιp(i) = min {j ∈ Ep(i) | j ≥ p(i)}.
It is easy to verify by induction on i, that

Ep′(i) = {j | j ∈ Ep(i) and j < d} ∪ {j − 1 | j ∈ Ep(i) and d < j ≤ n} .

It follows that for all i ∈ [n] holds

ιp′(i) = ιp(i), if p(i) < d

and
ιp′(i) = ιp(i)− 1, if d < p(i) ≤ n.

The fact that p′ ∈ An−1 and the claim about πp′ follow immediately: For all
i ∈ [n − 1], either ιp′(i) = ιp(i) < d ≤ n or ιp′(i) = ιp(i) − 1 ≤ n − 1, thus
p′ ∈ An−1. Furthermore, if j < d, then for some i < n, j = ιp(i) = ιp′(i), thus
πp′(j) = πp(j). On the other hand, if n > j ≥ d, then there exists an i ∈ [n − 1]
with j = ιp(i)− 1 = ιp′(i), hence πp′(j) = πp(j + 1).
This shows that πp′ is πp with n deleted.

Proposition 3.2.4. Step (ψ2) is well-defined.

Proof. Consider the natural priority queue computation for (σ, τ). Remove the
σ−1(n)-th Insert and the τ−1(n)-th DeleteMin to get a priority queue computa-
tion, which produces an output of τ ′ given an input of σ′. Thus (σ′, τ ′) ∈ Bn−1.

Proposition 3.2.5. φn preserves breakpoints.

Proof. Let b be a breakpoint of p.
If b < d, then p(i) ≤ b if and only if p′(i) ≤ b, i ∈ [n− 1] by definition of p′, thus
b is a breakpoint of p′. By the inductive hypothesis, b is a breakpoint of (s′, t′), so
{s′1, . . . , s′b} = {t′1, . . . , t′b}. The fact that b < d = ιp(n) and b is a breakpoint of
p implies that p(n) > b. By definitions (φ1) and (φ4) and Lemma 3.2.3, we have
{s1, . . . , sb} = {s′1, . . . , s′b} = {t′1, . . . , t′b} = {t1, . . . , tb}, thus b is a breakpoint of
(s, t).
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On the other hand, if d ≤ b ≤ n, p(i) ≤ b if and only if p′(i) ≤ b− 1, i ∈ [n− 1].
Since p(n) ≤ ιp(n) = d ≤ b, we have

|{i ∈ [n− 1] | p′(i) ≤ b− 1}| = |{i ∈ [n− 1] | p(i) ≤ b}|
= |{i ∈ [n] | p(i) ≤ b}| − 1

= b− 1,

so b − 1 is a breakpoint of p′. Now, by induction, b − 1 is a breakpoint of (s′, t′).
It follows that

{s1, . . . , sb} = {s′1, . . . , s′b−1} ∪ {n}
= {t′1, . . . , t′b−1} ∪ {n}
= {t1, . . . , tb},

thus b is a breakpoint of (s, t).

Proposition 3.2.6. ψn preserves breakpoints.

Proof. Let b < δ be a breakpoint of (σ, τ), then {τ ′1, . . . , τ ′b} = {τ1, . . . , τb}. We
also must have σ−1(n) > b since b is a breakpoint, thus {σ′1, . . . , σ′b} = {σ1, . . . , σb}.
This shows that {τ ′1, . . . , τ ′b} = {σ′1, . . . , σ′b}, hence b is a breakpoint of (σ′, τ ′). By
the inductive hypothesis, b is a breakpoint of q′.
If, on the other hand, δ ≤ b ≤ n is a breakpoint of (σ, τ), then {τ ′1, . . . , τ ′b} =
{τ1, . . . , τb−1} ∪ {n} and {σ′1, . . . , σ′b} = {σ1, . . . , σb−1} ∪ {n}, which implies that
{τ ′1, . . . , τ ′b−1} = {σ′1, . . . , σ′b−1}, hence b− 1 is a breakpoint of q′.
Since for b < δ, q′(i) ≤ b if and only if q(i) ≤ b, i ∈ [n − 1], and for δ ≤ b ≤ n,
q′(i) ≤ b− 1 if and only if q(i) ≤ b, i ∈ [n− 1], one can easily verify that in both
cases |{i ∈ [n] | q(i) ≤ b}| = b. Hence b is a breakpoint of q.

Proposition 3.2.7. d− 1 is a breakpoint of p′.

Proof. Since d is a breakpoint of p and ιp(n) = d, we have p(i) < d if and only if
ιp(i) < d for i < n. This implies that

|{i ∈ [n− 1] | p(i) < d}| = |{i ∈ [n− 1] | ιp(i) < d}|
= |{i ∈ [n] | ιp(i) < d}|
= d− 1,

since p is a parking function. The definition of p′ shows that p′(i) ≤ d − 1 if and
only if p(i) < d, i ∈ [n− 1]. Hence, we finally get |{i ∈ [n− 1] | p′(i) ≤ d− 1}| =
d− 1.
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Proposition 3.2.8. δ − 1 is a breakpoint of (σ′, τ ′).

Proof. Consider the natural computation for (σ, τ). Remove the σ−1(n)-th Insert
and the τ−1(n)-th DeleteMin to get a priority queue computation for (σ′, τ ′).
When n is the output in the priority queue computation for (σ, τ), the queue can
only contain the element n. Thus, in the priority queue computation for (σ′, τ ′),
the queue will be empty at this point, i. e., after the (δ − 1)-th DeleteMin.

Proposition 3.2.9. ψn produces parking functions.

Proof. We show that given (σ, τ) ∈ Bn, q = ψn(σ, τ) is a major function, i. e.
|{i ∈ [n] | q(i) ≤ j}| ≥ j, j ∈ [n]. By the induction hypothesis, we already have
q′ ∈ Bn−1, so q′ is a major function.
Let j < δ, then q(i) ≤ j if and only if q′(i) ≤ j, i ∈ [n− 1], thus

|{i ∈ [n] | q(i) ≤ j}| ≥ |{i ∈ [n− 1] | q′(i) ≤ j}| ≥ j.

On the other hand, if δ ≤ j ≤ n, q(i) ≤ j if and only if q′(i) ≤ j − 1, i ∈ [n− 1].
Since q(n) = σ−1(n) ≤ τ−1(n) = δ, we get

|{i ∈ [n] | q(i) ≤ j}| = |{i ∈ [n− 1] | q(i) ≤ j}|+ 1

= |{i ∈ [n− 1] | q′(i) ≤ j − 1}|+ 1

≥ (j − 1) + 1

= j

Hence q is a major function.

Proposition 3.2.10. φn produces allowable pairs.

Sketch of proof. Given p ∈ An, we have to show that (s, t) = φn(p) is an allowable
pair. By the inductive hypothesis, we know that (s′, t′) is an allowable pair, and
by (φ4) and Lemma 3.2.3 we know that (s, t) is obtained from (s′, t′) by inserting
n into both the p(n)-th position of s′ and the ιp(n)-th position of t′.
Let Q(i, j) and Q′(i, j) be the content of the queue Q when (*) is reached in the
algorithm with values i and j as given, running the algorithm for (s, t) and (s′, t′)
respectively.
The fact that (s, t) is an allowable pair can now be verified by comparing the
execution of TestPair((s, t), n) with the one of TestPair((s′, t′), n − 1). This
comparison shows that

Q(i, j) =





Q′(i, j) if i ≤ p(n),

Q′(i− 1, j) ∪ {n} if p(n) < i and j ≤ ιp(n),

Q′(i− 1, j − 1) if ιp(n) < j,
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and that everytime the test tj = minQ is carried out in TestPair((s, t), n), the
test succeeds.

Proposition 3.2.11. ψn ◦ φn = IdAn.

Proof. For n = 1 this is clearly true, so we proceed by induction for n ≥ 2. Given
p ∈ An, we set (s, t) := φn(p), (σ, τ) := (s, t) and q := ψn(σ, τ) = ψn ◦ φn(p). We
will show that p = q.
As τ = t, we have δ = d. Furthermore, as p(i) 6= d for i < n and q(n) = p(n), it is
clear that if p′ = q′, then p = q. But as p′ = ψn−1(s

′, t′) by the inductive hypothesis
and q′ = ψn−1(σ

′, τ ′) by step (ψ3), it suffices to show that (s′, t′) = (σ′, τ ′).
By definition in (ψ2), σ′ and τ ′ are σ and τ , respectively, with n deleleted. Fur-
thermore, we showed in Proposition 3.2.3 that t′ is t with n deleted, and clearly s′

is s with n deleted by step (φ4). Since (s, t) = (σ, τ), we see that (s′, t′) = (σ′, τ ′),
so p = q and ψn ◦ φn = IdAn .

Since |An| = |Bn| according to [3], we also see that φn ◦ ψn = IdBn .
This finishes the proof of Proposition 3.2.2.

3.2.4 Uses of the mapping

Using the presented mapping, we can translate our result on breakpoints of parking
functions to a result on breakpoints of allowable pairs:

Proposition 3.2.12. Let an,k be the number of allowable pairs (s, t) ∈ Bn with
exactly k breakpoints. Then

an,k =
k∑

j=1

(−1)j+1

(
k

j

)
j(n− j)n−1, n, k ≥ 1.

Proof. This follows directly from Proposition 2.4.2 and the fact that the functions
φn and ψn are breakpoint preserving.

One can also translate Gilbey’s and and Kalikow’s result on the number of parking
functions with a given output:

Proposition 3.2.13. Let τ be a permutation of [n] and

S(τ) = {(s, t) ∈ Bn | t = τ} .
Define τ(0) := n+ 1 and

bτ (j) := max {i ∈ [j − 1]0 | τ(i) > τ(j)} .
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Then

|S(τ)| =
n∏

j=1

(j − bτ (j)). (3.1)

Proof. This follows directly from Proposition 2.2.4 and the fact that the functions
φn and ψn are output preserving.

3.2.5 Non-inductive description of the bijection

Given (σ, τ) ∈ Bn and j ∈ [n], we define

S(σ, j) := |{l ∈ [j] | σl ≤ σj}| ,
T (τ, j) := |{l ∈ [j − 1] | τl > τj}| .

Proposition 3.2.14. Let (σ, τ) ∈ Bn. Setting

q(i) := S(σ, σ−1(i)) + T (τ, τ−1(i)), i ∈ [n]

gives q = ψn(σ, τ).

Proof. We prove this result by induction. The case n = 1 is trivial. For n ≥ 2, we
assume that the claim holds for n− 1, so we have

q′(i) := S(σ′, σ′−1(i)) + T (τ ′, τ ′−1(i)),

for i < n.
Now, consider the relationship between S(σ, σ−1(i)) and S(σ′, (σ′)−1(i)): We have

S(σ, σ−1(i)) :=
∣∣{l ∈ [σ−1(i)] | σl ≤ i

}∣∣ and

S(σ′, (σ′)−1(i)) :=
∣∣{l ∈ [(σ′)−1(i)] | σ′l ≤ i

}∣∣ .

Since σ′ is σ with n deleted, the sequences σ1, . . . , σσ−1(i) and σ′1, . . . , σ
′
(σ′)−1(i) can

only differ in that there may be an n in the first sequence but not in the latter.
This shows that S(σ, σ−1(i)) = S(σ′, (σ′)−1(i)), i < n.
The same argument shows that the sequence τ1, . . . , ττ−1(i)−1 can only differ from
τ ′1, . . . , τ

′
(τ ′)−1(i)−1 by an added n before the τ−1(i)-th position. This implies that

T (τ, τ−1(i)) =

{
T (τ ′, (τ ′)−1(i)), if (τ ′)−1(i) < δ,

T (τ ′, (τ ′)−1(i)) + 1, if (τ ′)−1(i) ≥ δ,
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Furthermore, we know that τ ′−1 = ιq′ and ιq′(i) < δ if and only if q′(i) < δ, i ∈
[n− 1], hence

q(i) =

{
q′(i) if q′(i) < δ

q′(i) + 1 if q′(i) ≥ δ

for i < n, as required by step (ψ4) of the bijection.
Finally, S(σ, σ−1(n)) = |{l ∈ [σ−1(n)] | σl ≤ k}| = σ−1(n) and T (τ, τ−1(n)) = 0,
so q(n) = σ−1(n) as required by step (ψ1).

Example:
Take n = 6, σ = (3, 1, 6, 4, 5, 2) and τ = πp = (3, 1, 6, 2, 4, 5). Then q = ψn(σ, τ) =
(2, 4, 1, 4, 5, 3).

Next, given p ∈ An, we can calculate φn(p) = (s, t) as follows: We already know
that t = πp. To find s, we use a modified parking algorithm, which Gilbey and
Kalikow call ’Boston parking’. In this algorithm, each driver insists on parking in
his preferred space. If it is not empty, he pushes the car currently parking there
(and possibly a chain of cars parked in front of this one) one space further.

Example:
Take n = 6 and p = (2, 4, 1, 4, 5, 3). Then φn(p) = (s, t) where t = πp =
(3, 1, 6, 2, 4, 5) and s = (3, 1, 6, 4, 5, 2).
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Chapter 4

Generalizations of parking
functions

Parking functions have been generalized in various ways [4, 5, 7, 13, 27, 28]. In
this section, we will present some of these generalizations.

4.1 (p,q)-parking functions

The following generalization has been introduced by Cori and Poulalhon in [7].
Throughout this section, we will use modified parking functions :

Definition 4.1.1. A sequence u = u1, . . . , un of non-negative integers is a modified
parking function if there exists a permutation σ on [n] which is strictly larger than
u (σ is then called a certificate for u).

Obviously u is a modified parking function if and only if p : x 7→ u(x) + 1 is a
parking function.

4.1.1 Definition

Let p and q be two positive integers, and n = p+ q.

Definition 4.1.2. A (p, q)-sequence is a pair (u, v) of sequences of non-negative
integers with lengths p and q, respectively, such that

ui ∈ [q]0, i ∈ [p] and vj ∈ [p]0, j ∈ [q].

A partial order 4 on the set of all (p, q)-sequences is defined as (u, v) 4 (u′, v′) if
for all i ∈ [p] and j ∈ [q], ui ≤ u′i and vj ≤ v′j.
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Next, for any permutation σ on [n], define a (p, q)-sequence (xσ, yσ) as xσ =
(x1, . . . , xp) and yσ = (y1, . . . , yq) where

xi = |{1 ≤ j ≤ q | σp+j < σi}|
yj = |{1 ≤ i ≤ p | σi < σp+j}| .

Definition 4.1.3. A (p, q)-sequence (u, v) is a (p, q)-parking function if there exists
a permutation σ on [p+ q] such that (u, v) 4 (xσ, yσ). The permutation σ is then
called a certificate for (u, v).

In a more intuitive way, (p, q)-parking functions can be defined as follows:
Consider a one-way street with n parking slots. p blue cars and q red cars have to
park in this street. For all i ∈ [p], the driver of the i-th blue car wishes to have at
least ui red cars parked before him. Likewise, for all j ∈ [q], the driver of the j-th
red car wants to have at least vj blue cars parked before him.
The (p, q)-sequence (u, v) is a (p, q)-parking sequence if there exists a parking that
satisfies all the wishes.

4.1.2 Relation to modified parking functions

For any integer sequence u = u1, . . . , up define the rank function ρu of u as

ρu(i) = |{1 ≤ j ≤ p | uj < ui}|+ |{1 ≤ j < i | uj = ui}| .

Furthermore, define ~u = ~u1, . . . , ~up by ~ui = ui + ρu(i). Note that the elements of
~u are all distinct and ρ~u(i) = |{1 ≤ j ≤ p | ~uj < ~ui}|.
For two sequences u = u1, . . . , up and v = v1, . . . , vq, we write u · v for the concate-
nation of u and v, i. e., u · v = u1, . . . , up, v1, . . . , vq.

Proposition 4.1.1. A (p, q)-sequence (u, v) is a (p, q)-parking function if and only
if ~u · ~v is a modified parking function.

Proof. Let w = ~u · ~v and σ = (σ1, . . . , σn) be a permutation on [n] which satisfies
the following monotonicity condition:

wi < wj ⇒ σi < σj, i, j ≤ n,

The following arguments show that σ is a certificate for w if and only if it is a
certificate for (u, v):
Consider the (p, q)-sequence (xσ, yσ), and let xσ = x1, . . . , xp and yσ = y1, . . . , yq.
Then

xi = |{1 ≤ j ≤ q | σp+j < σi}| ,
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and

ρu(i) = ρ~u(i) = |{1 ≤ k ≤ p | wk < wi}| = |{1 ≤ k ≤ p | σk < σi}| ,

for all i ∈ [p]. Since σ is a permutation, this implies that xi + ρu(i) = σi − 1, or
(since wi = ui + ρu(i)) equivalently:

xi − ui = σi − wi − 1, i ∈ [p].

Symmetrically,
yj − vj = σp+j − wp+j − 1, j ∈ [q].

Hence w < σ if and only if (u, v) 4 (xσ, yσ).
To end the proof, note that any modified parking function and any (p, q)-parking
function has a monotonous certificate, hence this condition on σ is not a restriction.

As a corollary, we see that the set of modified parking functions on [n] can be
interpreted as the diagonal of the set of (n, n)-parking functions:

Proposition 4.1.2. A sequence u = u1, . . . , un is a modified parking function if
and only if (u, u) is an (n, n)-parking function.

Proof. If u is a modified parking function, then the bijection i 7→ ρu(i) + 1 is a
certificate for u. This shows that a sequence u is a modified parking function if
and only if ui ≤ ρu(i) or equivalenty ~ui ≤ 2ρu(i) for all i ∈ [n].
Let w = ~u ·~u. The sequence ~u consists of n distinct elements, and its rank function
is ρ~u = ρu. Hence the rank function ρw of w is given by

ρw(i) = 2ρu(i) and ρw(n+ i) = 2ρu(i) + 1, i ∈ [n].

According to the above argument, w is a modified parking function if and only
if wn+i = wi = ~ui ≤ 2ρu(i) for all i ∈ [n]. The equivalence of w = ~u · ~u being a
modified parking function and (u, u) being an (n, n)-parking function has already
been proved in Proposition 4.1.1.

4.1.3 Enumeration of (p, q)-parking functions

LetKp,q,1 be the complete tripartite graph with the three subsetsX = {x1, . . . , xp},
Y = {y1, . . . , yq}, Z = {z} of vertices and the set of edges (X × Y ) ∪ (Z ×
(X ∪ Y )). In [7], a relation between recurrent configurations of Kp,q,1 and (p, q)-
parking functions has been established, which we will use to enumerate (p, q)-
parking functions.
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A configuration of Kp,q,1 is an assignment of non-negative integers to each vertex
in X ∪ Y . Hence, a configuration is a pair (u, v) of sequences of lengths p and q,
respectively. We interpret the integer ui (resp. vj) to be the number of grains of
sand lying in vertex xi (resp. yj).
A toppling of vertex xi ∈ X occurs if ui > q. In that case we get a new configuration
(u′, v′) where

u′i = ui − q − 1,

u′k = uk, k ∈ [p] \ {i},
v′j = vj + 1.

The missing grain of sand is supposed to have fallen in the sink z. For yj ∈ Y , a
toppling is defined similarly.
We say that a configuration (u, v) is stable if no vertex can topple, i. e., if and
only if (u, v) is a (p, q)-sequence.

Definition 4.1.4. A stable configuration (u, v) is recurrent if it can be obtained
by a sequence of topplings from a configuration (u′, v′) where for any i ∈ [p] and
j ∈ [q], u′i > q and v′j > p.

Now we show that the recurrent configurations of Kp,q,1 stand in one-to-one cor-
respondence with (p, q)-parking functions:

Proposition 4.1.3. A configuration (u,v) is recurrent if and only if the pair (u’,
v’) defined by

u′i = q − ui, i ∈ [p],

v′j = p− vj, j ∈ [q],

is a (p, q)-parking function.

Proof. We use a characterization due to Dhar [8] of recurrent configurations. The
criterion claims that (u, v) is a recurrent configuration of Kp,q,1 if and only if the
addition of 1 to each ui and each vj leads to a sequence of topplings in which each
vertex topples exactly once.
We label the vertices in P with 1, . . . , p and the vertices in Q with p+1, . . . , p+ q.
Let (u, v) be a recurrent configuration and add 1 to each ui and each vj. Now let
σ be the permutation of [n] = [p + q], where σ(i) = j if vertex i is the j-th one
to topple, and consider the (p, q)-sequence (xσ, yσ). For i ∈ [p], exactly xi vertices
of Q topple before vertex i ∈ P does. Hence we must have ui + 1 + xi > q or
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equivalently xi ≥ u′i. The same argument shows that yj ≥ v′j, j ∈ [q]. Hence σ is
a certificate for (u′, v′).
Conversely, if (u′, v′) is a parking function, then any certificate σ of (u′, v′) will
give a possible sequence of topplings when 1 is added to each ui and each vj.

With this result and some known facts about Kp,q,1 we can easily enumerate (p, q)-
parking functions:

Proposition 4.1.4. The number of (p, q)-parking functions is

(p+ q + 1)(p+ 1)q−1(q + 1)p−1.

Proof. Majumdar and Dhar have shown that recurrent configurations of a graph
are in one-to-one correspondence with its spanning trees [19]. In [17], Lewis showed
that the number of spanning trees of the complete multipartite graph Kn1,...,nk

is

nk−2
∏k

i=1(n− ni)
ni−1, where n =

∑k
i=1 ni. This proves the proposition.

4.1.4 Increasing parking functions

A (p, q)-sequence is increasing if ui ≤ ui+1 and vj ≤ vj+1 for all i ∈ [p − 1] and
j ∈ [q − 1].

Proposition 4.1.5. The number of increasing (p, q)-parking function is

p+ q + 1

(p+ 1)(q + 1)

(
p+ q

p

)(
p+ q

q

)
.

Proof. Consider a circular parking lot with p + q + 1 slots numbered clockwise 0
to p+ q, where the same parking rules as in the proof of Lemma 2.2.1 apply.
The mapping (u, v) 7→ ~u · ~v realizes a one-to-one correspondence between the set
of increasing (p, q)-parking functions and sequences w of length p+ q such that:

• 0 ≤ wi ≤ p+ q, for all i ≤ p+ q

• wi ≤ wi+1, for all i < p+ q, i 6= p,

• the parking process for w leaves slot number p+ q empty.

For any preference function satisfying the first two conditions, one slot is left
empty. By symmetry, slot p+ q is left empty in a fraction 1/(p+ q+1) of the total
number of these preference functions. Thus the number of increasing (p, q)-parking
functions is

1

p+ q + 1

(
p+ q + 1

p

)(
p+ q + 1

q

)
,

which proves the proposition.
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4.2 Bucket parking functions

Consider a parking lot where cars are parked in n numbered rows, each of which
consists of k parking slots. There are m ≤ nk consecutive drivers who wish to
park there, each of which has a preferred row in mind. Each driver proceeds to
the chosen row and parks there, if it is not completely occupied. Otherwise, the
driver continues to the next free slot, if any, in one of the successive rows. If no
space is empty, the driver leaves.

Definition 4.2.1. Let p : [m] → [n] be a function which associates each driver i
with his preferred parking row p(i). If all drivers are able to park when using the
parking strategy described above, then p is called a k-bucket parking function.

Again, the ordering of the elements of a function doesn’t affect the property of
being a k-bucket parking function. The proof is a simple generalization of the one
given for normal parking functions.

We will now generalize the definition of ι from Section 2:
For any f : [m]→ [n] and k ≥ 1, we define ιkf as

ιkf(1) = f(1), and

ιkf(i) = min {j ∈ N | j ≥ f(i), |{t ∈ [i− 1] | ιkf(t) = j}| < k} ,

for i ∈ {2, . . . ,m}.
Note that if p is a k-bucket parking function then ιkp(i) is the final parking row
of driver i. Obviously, ιp = ι1p.

We will now give different definitions of k-bucket parking functions p : [kn]→ [n].
The fact that they are equivalent is easy to verify.

Lemma 4.2.1. For p : [kn]→ [n], the following statements are equivalent:

• p is a k-bucket parking function in the sense of Definition 4.2.1.

• If (q1, . . . , qkn) is the increasing rearrangement of (p(1), . . . , p(kn)), then qi ≤
d i

k
e for all i ∈ [kn].

• |p−1({n− i+ 1, . . . , n})| ≤ ki for all i ∈ [n].
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4.2.1 On the number of k-bucket parking functions

The following results on the number of k-bucket parking functions have been given
by Blake and Konheim in their analysis of a hashing variant [4]. Let

Pm,n,k = {p : [m]→ [n] | p is a k-bucket parking function} .
We define Tk,n,s to be the number of k-bucket parking functions p : [kn + s] →
[n+1] with the property that in the final parking order the rows 1, . . . , n are fully
occupied. More formally,

Tk,n,s := |{p ∈ Pkn+s,n+1,k | |{i ∈ [kn+ s] | ιkp(i) = n+ 1}| = s}| ,
for 0 ≤ s < k.
Furthermore, we let fk(n,m) denote the number of k-bucket parking functions
p : [m]→ [n] with the property that the last row in the final parking order is not
full, i. e.,

fk(n,m) := |{p ∈ Pm,n,k | |{i ∈ [m] | ιkp(i) = n}| < k}| .
We define the boundary values

fk(n, 0) = 1, for n ≥ 0,

and
fk(n, kn) = 0, for n > 0.

We already know that f1(n,m) = g(n− 1,m) = (n−m)nm−1, for m < n.
Finally, let gk(n,m) := |Pm,n,k| denote the total number of k-bucket parking func-
tions p : [m]→ [n].
Obviously, we have gk(n, nk) = Tk,n,0. We will now show that, given the numbers
Tk,i,0 and fk(n,m), the numbers gk(n,m) can easily be derived.

Lemma 4.2.2.

gk(n,m) = fk(n,m) +

bm
k
c∑

i=1

(
m

ik

)
Tk,i,0fk(n− i,m− ik).

Proof. The set of final parking orders for k-bucket parking functions p : [m]→ [n]
can be decomposed into the disjoint sets Ei of parking orders where

• the rows n− i+ 1, . . . , n are fully occupied, and

• row n− i is not full.
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The number of ways of choosing the ki cars which park in the rows n− i+1, . . . , n
is

(
m
ik

)
, and Tk,i,0 is the number of preference functions which place them in these

rows. fk(n − i,m − ik) is the number of preference functions which place the
remaining cars in the rows 1, . . . , n− i such that row n− i is not full.

We will now concentrate on the numbers Tk,n,s.

Lemma 4.2.3. The numbers Tk,n,s satisfy

Tk,n,s =

{
(n+ 1)Tk,n,s−1 +

∑n
i=1

(
kn+s−1

ki−1

)
iTk,i−1,k−1Tk,n−i,s, if 1 ≤ s < k,∑n

i=1

(
kn−1
ki−1

)
iTk,i−1,k−1Tk,n−i,0, if s = 0.

Proof. Suppose that the final parking row of car kn + s is i, 1 ≤ i ≤ n. Then
ki− 1 cars with smaller number completely occupy the first i− 1 rows and k − 1
slots of the i-th row. The rest of the cars occupies the rows i+1, . . . , n and s slots
of row n + 1. The set of cars with numbers smaller than kn + s can be divided
in these two groups in

(
kn+s−1

ki−1

)
different ways. Furthermore, car kn + s can have

chosen any of the first i rows in order to finally park in row i.
For 1 ≤ s < k, the case i = n+ 1 has to be considered as well.

We now introduce the generating functions

ψk,s(z) =
∑
n≥0

Tk,n,s

(kn+ s)!
zn, 0 ≤ s < k.

Then we multiply the above recursion for 1 ≤ s < k with zn

(kn+s−1)!
and sum up.

On the left hand side we get

∑
n≥0

Tk,n,s

(kn+ s− 1)!
zn =

∑
n≥0

(kn+ s)
Tk,n,s

(kn+ s)!
zn

= k
∑
n≥0

(n+ 1)
Tk,n,s

(kn+ s)!
zn − k

∑
n≥0

Tk,n,s

(kn+ s)!
zn

+s
∑
n≥0

Tk,n,s

(kn+ s)!
zn

= k(zψk,s(z))
′ − kψk,s(z) + sψk,s(z).

On the right hand side we have

∑
n≥0

(n+ 1)
Tk,n,s−1

(kn+ s− 1)!
zn = (zψk,s−1(z))

′,
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and

∑
n≥0

n∑
i=1

i
Tk,i−1,k−1

(k(i− 1) + k − 1)!

Tk,n−i,s

(k(n− i) + s)!
zn =

=
∑
i≥1

i
Tk,i−1,k−1

(k(i− 1) + k − 1)!
zi−1

∑
n≥0

Tk,n,s

(kn+ s)!
zn+1

= (zψk,k−1(z))
′zψk,s(z).

This leads to the system of differential equations

k(zψk,s(z))
′ − (zψk,s−1(z))

′ − zψk,s(z)(zψk,k−1(z))
′ = (k − s)ψk,s(z). (4.1)

Equation (4.1) holds for 0 ≤ s < k if we set ψk,−1(z) := 0.
We will prove that the solution to (4.1) is given by symmetric combinations of the
function θ(z) as defined in Section 2, Equation (2.1). In order to do this, we first
collect some results about elementary symmetric functions.

Definition 4.2.2. The r-th elementary symmetric function of the variables Ak :=
{αj | 1 ≤ j ≤ k} is

σr(Ak) := [xk−r]
k∏

j=1

(x+ αj).

As an example, we have σ1(Ak) =
∑k

i=1 αk, and σk(Ak) =
∏k

i=1 αk.

Lemma 4.2.4. Let σr := σr(Ak), and σr,i := σr−1(Ak \ {αi}). Then

rσr =
k∑

i=1

αiσr,i.

Proof. We certainly have

(k − r)σr = [xk−r]x
∂

∂x

k∏
j=1

(x+ αj) = [xk−r]x
k∑

i=1

∏

1≤j≤k
j 6=i

(x+ αj),
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hence

rσr = kσr − (k − r)σr

= [xk−r]k
k∏

j=1

(x+ αj)− [xk−r]x
k∑

i=1

∏

1≤j≤k
j 6=i

(x+ αj)

=
k∑

i=1

[xk−r]αi

∏

1≤j≤k
j 6=i

(x+ αj)

=
k∑

i=1

αiσr,i.

Lemma 4.2.5. With σr and σr,i defined as above, it holds that

σr = σr+1,i + αiσr,i,

for 1 ≤ i ≤ k.

Proof.

σr = [xk−r]
k∏

j=1

(x+ αj)

= [xk−r−1]
∏

1≤j≤k
j 6=i

(x+ αj) + [xk−r]αi

∏

1≤j≤k
j 6=i

(x+ αj)

= σr+1,i + αiσr,i.

Lemma 4.2.6. Let Ak be a set of functions of a variable z,

Ak = {αj(z) | 1 ≤ j ≤ k} ,

and write σr(z) := σr(Ak) and σr,i(z) := σr,i(Ak). It holds that

σ′r(z) =
k∑

i=1

σr,i(z)α
′
i(z).
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Proof.

σ′r(z) = [xk−r]
∂

∂z

k∏
j=1

(x+ αj(z))

= [xk−r]
k∑

i=1

α′i(z)
∏

1≤j≤k
j 6=i

(x+ αj(z))

=
k∑

i=1

α′i(z)σr,i(z).

Throughout the rest of this section, let ω denote a primitive k-th root of unity.
We let σr(z) and σr,i(z) be defined as above, with Ak = {ωjzθ(ωjz) | 1 ≤ j ≤ k}.
Lemma 4.2.7.

(kz)kψk,s((kz)
k) = (−1)k−s−1kk−sσk−s(z). (4.2)

Proof. By substituting (kz)k for z in (4.1), we get

(k − s)ψk,s((kz)
k) = kρ(z)[(kz)kψk,s((kz)

k)]′

−ρ(z)[(kz)kψk,s−1((kz)
k)]′

−ρ(z)(kz)kψk,s((kz)
k)[(kz)kψk,k−1((kz)

k)]′,

with ρ(z) = k−(k+1)z−(k−1). We will now verify that ψk,s(z) defined by (4.2) satisfies
this equation, i. e., it holds that

(k − s)k−sz−kσk−s(z) = k−sz1−kσ′k−s(z)

+ k−sz1−kσ′k−s+1(z)

− k−sz1−kσk−s(z)σ
′
1(z).

(4.3)

Since θ(z) satisfies the equation θ(z) = ezθ(z), we have θ(ωiz) = eωizθ(ωiz) and hence
(ωizθ(ωiz))′ = (log θ(ωiz))′. Using Lemma 4.2.6, this allows us to write

σ′r(z) =
k∑

i=1

σr,i(z)
θ′(ωiz)

θ(ωiz)
.

Hence, the right-hand side of (4.3) reduces to

k−sz1−k

k∑
i=1

(σk−s,i(z) + σk−s+1,i(z)− σk−s(z))
θ′(ωiz)

θ(ωiz)
.
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Using Lemma 4.2.5, this further reduces to

k−sz1−k

k∑
i=1

(σk−s,i(z)− ωizθ(ωiz)σk−s,i(z))
θ′(ωiz)

θ(ωiz)
=

= k−sz1−k

k∑
i=1

σk−s,i(z)(1− ωizθ(ωiz))
θ′(ωiz)

θ(ωiz)

= k−sz1−k

k∑
i=1

σk−s,i(z)((ω
izθ(ωiz))′ − ωizθ′(ωiz))

= k−sz1−k

k∑
i=1

σk−s,i(z)ω
iθ(ωiz).

This can easily be identified with the left-hand side of (4.3) using Lemma 4.2.4.

Using this result, one can at least theoretically compute Tk,n,s for special values of
k, n and s. For the special case s = k − 1, i. e., the number of k-bucket parking
functions p : [k(n + 1) − 1] → [n + 1] which leave one slot of the last row empty,
one can derive a surprisingly simple formula:

Proposition 4.2.8. Tk,n,k−1 = (n+ 1)kn+k−2

Proof. According to (4.2), we have

(kz)kψk,k−1((kz)
k) = kσ1(k)

= k

k∑
i=1

∑
n≥0

(n+ 1)n−1 (zωi)n+1

n!

= k
∑
n≥0

(n+ 1)n−1 z
n+1

n!

k∑
i=1

ωi(n+1)

= k2
∑
n≥0

n+1=0 mod k

(n+ 1)n−1 z
n+1

n!

= k2
∑
n≥1

(kn)kn−2 zkn

(kn− 1)!

= k2
∑
n≥0

(k(n+ 1))k(n+1)−2 zk(n+1)

(k(n+ 1)− 1)!

= (kz)k
∑
n≥0

(n+ 1)kn+k−2 (kz)kn

(kn+ k − 1)!
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This result can also be proved using an adaptation of Pollack’s proof for normal
parking functions:
Let the n+ 1 parking rows be arranged in a circle, so that each driver finds a free
parking slot and one slot is left empty. The number of preference functions for this
scenario is (n+1)kn+k−1. If a particular preference function leaves one of the slots in
the last row empty, then it is a k-bucket parking function p : [k(n+1)−1]→ [n+1].
Due to symmetry, this happens in a fraction 1

n+1
of the total number of preference

functions.

We will now find a recurrence formula for the numbers fk(n,m).

Lemma 4.2.9. The numbers fk(n,m) satisfy

fk(n,m) =
k−1∑
s=0

∑
0≤j<n

jk≤m−s

(
m

jk + s

)
Tk,j,sfk(n− 1− j,m− jk − s).

Proof. We can decompose the set of final parking orders which do not fill the last
row into the disjoint sets Ej,s of parking orders where

• s parking slots of row n are occupied,

• rows n− j, . . . , n− 1 are fully occupied, and

• row n− j − 1 is not fully occupied.

The number of ways of choosing the jk+s cars which park in the rows n−j, . . . , n
is

(
m

jk+s

)
, and Tk,j,s is the number of preference functions which place them in these

rows. fk(n− 1− j,m− jk − s) is the number of preference functions which place
the remaining cars in the rows 1, . . . , n − j − 1 such that row n − j − 1 is not
full.

Using this recurrence formula, we will now derive a generating function for the
numbers fk(n,m). We define

λn(z) =
kn−1∑
m=0

fk(n,m)
zm

m!
,

and
Λ(z, w) =

∑
n≥1

λn(z)wkn.
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Proposition 4.2.10.

Λ(z, w) =
wk

∑k−1
s=0 z

sψk,s((zw)k)

1− wk
∑k−1

s=0 z
sψk,s((zw)k)

.

Proof. We have

Λ(z, w) =
k−1∑
s=0

∑
n≥1

wkn

kn−1∑
m=0

zm

m!

∑
0≤j<n

jk≤m−s

(
m

jk + s

)
Tk,j,sfk(n− 1− j,m− jk − s).

We know that

fk(n− 1− j,m− jk − s) = 0, for m > k(n− 1) + s,

and, for m = k(n− 1) + s, it holds that

fk(n− 1− j,m− jk − s) = 1 if and only if j = n− 1.
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Hence, we can write

Λ(z, w) =
k−1∑
s=0

∑
n≥1

wkn

k(n−1)+s∑
m=0

zm
∑

0≤j<n
jk≤m−s

Tk,j,sfk(n− 1− j,m− jk − s)
(kj + s)!(m− kj − s)!

=
k−1∑
s=0

∑
n≥1

wknzk(n−1)+s Tk,n−1,s

(k(n− 1) + s)!
+

k−1∑
s=0

∑
n≥1

wkn

·
k(n−1)+s−1∑

m=0

zm
∑

0≤j<n
jk≤m−s

Tk,j,sfk(n− 1− j,m− jk − s)
(kj + s)!(m− kj − s)!

=
k−1∑
s=0

wkzsψk,s((zw)k) +
k−1∑
s=0

∑
n≥1

wkn

n−1∑
j=0

Tk,j,s

(kj + s)!
zkj+s

·
k(n−1)+s−1∑

m=kj+s

zm−(kj+s)fk(n− j − 1,m− kj − s)
(m− kj − s)!

=
k−1∑
s=0

wkzsψk,s((zw)k) +
k−1∑
s=0

∑
n≥1

wkn

n−1∑
j=0

Tk,j,s

(kj + s)!
zkj+sλn−j−1(z)

=
k−1∑
s=0

wkzsψk,s((zw)k) +
k−1∑
s=0

∑
j≥0

Tk,j,s

(kj + s)!
zkj+s

∑
n≥j+1

wknλn−j−1(z)

=
k−1∑
s=0

wkzsψk,s((zw)k) +
k−1∑
s=0

∑
j≥0

Tk,j,s

(kj + s)!
zkj+swk(j+1)Λ(z, w)

=

(
k−1∑
s=0

wkzsψk,s((zw)k)

)
(1 + Λ(z, w)).

Finally, we can express Λ(z, w) in terms of θ(z):

Proposition 4.2.11.

Λ(z, w) =
1−∏k

i=1(1− ωiwθ(ωiwz
k

))∏k
i=1(1− ωiwθ(ωiwz

k
))

.
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Proof. According to Lemma 4.2.7, we have

zk −
k∏

i=1

(z − kωivθ(ωiv)) =
k−1∑
s=0

(−1)k−s−1kk−sσk−s(v)z
s

=
k−1∑
s=0

(kv)kψk,s((kv)
k)zs.

Using the substitution w = kv
z

, this shows that

k−1∑
s=0

zswkψk,s((zw)k) = 1−
k∏

i=1

(1− ωiwθ(
ωiwz

k
)).

This finishes this section. We will later consider defective bucket parking functions
(see Section 5.4), which enables us to find a generating function for the total
number gk(n,m) of k-bucket parking functions p : [m]→ [n].

4.3 x-parking functions

Definition 4.3.1. Let x = (x1, . . . , xn) ∈ Nn. A sequence p = (p1, . . . , pn) of
positive integers is called an x-parking function if the increasing rearrangement
(q1, . . . , qn) of p satisfies qi ≤ x1 + . . .+ xi.

By this generalization, many different parking scenarios can be described.

• If xi >= 1 for all i ∈ [n], the scenario can be described as follows: Consider a
street with

∑n
i=1 xi parking slots. n drivers want to park there, and for each

k ∈ [n], driver k has parking slot p(k) in mind. But when the drivers arrive,
the parking slots i with i < x1 or x1+. . .+xk < i < x1+. . .+xk+1, i ∈ [n−1]
are already occupied. Again, each driver parks at his preferred space if it
is empty, and takes the next empty space (if any) otherwise. If all drivers
succeed to park, then the preference function p : [n] → [

∑n
i=1 xi] is an x-

parking function for x = (x1, . . . , xn).

• Bucket parking functions p : [kn] → [n] are x-parking functions for x =
(x1, . . . , xkn) with

xi =

{
1, if i = 1 mod k,

0, else.
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• Finally, ordinary parking functions on [n] correspond to the special case
x = (1, . . . , 1).

Given x = (x1, . . . , xn), we will denote the number of x-parking functions by gn(x).
In [21], Pitman and Stanley have found a relation between gn(x) and the volume
of some n-dimensional polytope. The following detail of their work will be useful
later:

Lemma 4.3.1. Let x = (x1, . . . , xn). gn(x) is a polynomial in the variables
x1, . . . , xn:

gn(x) =
∑

(p1,...,pn)∈Pn

xp1 · · · xpn ,

where Pn denotes the set of ordinary parking functions on [n].

Proof. Given (p1, . . . , pn) ∈ Pn, replace each i by an element of the set {∑i−1
j=1 xj +

1, . . . ,
∑i

j=1 xj}. The number of ways to do this is given by the product xp1 · · · xpn ,
and every x-parking function is obtained exactly once in this way.

4.3.1 Generalization of Section 3.1.3

In this section, some results on the special case x = (a, b, b, . . . , b) will be presented.

Proposition 4.3.2. For x = (a, b, . . . , b︸ ︷︷ ︸
n−1

), gn(x) = a(a+ nb)n−1.

This has been proved by Yan in [27] by generalizing the mapping between ordinary
parking functions and rooted labeled forests (see Section 3.1.3) in the following
way:
Let An be the set of all x-parking functions for x = (a, b, . . . , b︸ ︷︷ ︸

n−1

) and Bn the set of

all sequences (S1, . . . , Sa) of length a such that

• each Si is a rooted b-forest, i. e., each Si is a rooted forest in which each
edge is colored with one of the colors 0, . . . , b− 1,

• Si ∩ Sj = ∅ for i 6= j,

• the union of the vertex sets of S1, . . . , Sa is [n].

Like in Section 3.1.3, a third set Cn is introduced, which will be put in one-to-one
correspondence with both An and Bn.
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Let r = (r1, . . . , ra+(n−1)b) be a sequence of non-negative integers and set Rj =
r1 + . . .+ ra+(j−1)b − j. The sequence r is called balanced if

Rj ≥ 0, i ∈ [n− 1],

Rn = 0.
(4.1)

A permutation π of [n] is called compatible with r if π−1 is increasing on each
interval of the form {1 +

∑k
i=1 ri, . . . ,

∑k+1
i=1 ri} (if rk+1 6= 0).

Define Cn to be the set of all couples (r, π) with r ∈ Na+(n−1)b balanced and π a
permutation of [n] which is compatible with r.

An is mapped to Cn in the same way as in Section 3.1.3: For each a = (a1, . . . , an) ∈
An the associated element of Cn is (ra, πa), where ra is the specification of a, and
πa is defined by

πa(i) = |{j ∈ [n] | aj < ai, or aj = ai and j ≤ i}| .

The proof for the fact that the mapping a 7→ (ra, πa) is a bijection doesn’t signifi-
cantly differ from the proof given for Proposition 3.1.5.
Now let us map Bn to Cn: For an element S = (S1, . . . , Sa) ∈ Bn, the associated
element of Cn will be denoted by (r(S), σS). The definition of σS is just a general-
ization of the one given in Section 3.1.3. First, a linear order <S on [n] is defined
as follows: Let x <S y if

• h(x) < h(y), or if

• h(x) = h(y) = 0, x, y ∈ Si and x < y, or if

• h(x) = h(y) = 0 and x ∈ Si, y ∈ Sj with i < j.

Then assume that the order <S has been defined on the set of all vertices of height
≤ k. By induction, for two vertices x, y with h(x) = h(y) = k + 1, let x <S y if

• pre(x) <S pre(y), or if

• pre(x) = pre(y) and color of edge(x) < color of edge(y), or if

• pre(x) = pre(y) and color of edge(x) = color of edge(y) and x < y,

where pre(x) denotes the predecessor of x and edge(x) is the edge (x, pre(x)).
Let σ−1

S = (σ−1
S (1), . . . , σ−1

S (n)) be the sequence of {1, . . . , n} written in increasing
order with respect to <S, and let σS be the inverse of σ−1

S .
Now, define the forest specification of S as r(S) = (r1, . . . , ra+(n−1)b) where
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• ri is the number of roots in Si, for i ∈ [a],

• ra+k is the number of children of σ−1
S (1) with edge color k − 1, for k ∈ [b],

• in general, ra+(i−1)b+k is the number of children of σ−1
S (i) with edge color

k − 1, for k ∈ [b] and i ∈ [n− 1].

Again, the proof for the fact that the mapping S 7→ (r(S), σS) is a bijection is a
simple generalization of the proof given in Section 3.1.3 (Proposition 3.1.3).

Proof of Proposition 4.3.2. The fact that |Bn| = a(a + nb)n−1 [24], and both An

and Bn are in one-to-one correspondence with Cn, shows that for x = (a, b, . . . , b︸ ︷︷ ︸
n−1

),

gn(x) = |An| = |Bn| = a(a+ nb)n−1.

4.4 Valet functions

In [13], the following generalization of parking functions has been presented:
Let a = (a1, . . . , ak) be a sequence of positive integers, n :=

∑k
i=1 ai, and p a

function p : [k]→ P([n]) with |p(i)| = ai.
As before, we have a one-way street with n parking slots and n cars, but in this
case there are k types of cars and k valets. Each valet i is responsible for one
type of cars and tries to park all ai cars of this type, having an appropriately sized
preferred subset p(i) of parking slots. If all of the cars are able to be parked, then
p is called a valet function on a. We let Aa denote the set of valet functions on a.
Obviously, parking functions are valet functions on a = (1, . . . , 1).

Proposition 4.4.1. The number of valet functions on a is

1

n+ 1

k∏
i=1

(
n+ 1

ai

)
.

Proof. This can be proved by extending Pollak’s proof for the number of parking
functions on [n] as follows:
Consider a circular car park with n + 1 parking slots and allow each valet to
choose a subset of size ai of these slots. The number of possible choices is given by∏k

i=1

(
n+1
ai

)
. Since the car park is circular, each driver will be able to park, and in

the end there will be one empty slot. The choice of subsets will be a valet function
for the original problem if slot n+ 1 is empty, which (by symmetry) happens in a
fraction 1/(n+ 1) of the total number of possible choices.
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The concept of major functions can be generalized correspondingly: For k ≥ 1,
a = (a1, . . . , ak) and n =

∑k
i=1 ai, we say that f : [k] → P([n]) with |f(i)| =

ai, i ∈ [k] is a major function if and only if

k∑
i=1

|f(i) ∩ [m]| ≥ m, m ∈ [n].

Lemma 4.4.2. f is a valet function if and only if f is a major function.

Proof. This can be proved by numbering the n =
∑k

i=1 ai cars from 1 to n and
using the corresponding result for parking functions.

If f is a valet function, then the final parking order will give a multiset permutation
of Ma := {1a1 , . . . , kak} which we call the output πf of f .
The definition of breakpoints can also be generalized: We say that b is a breakpoint
of f , if

∑k
i=1 |f(i) ∩ [b]| = b.

4.4.1 Generalization of Section 3.2.3

In [13], the bijection between parking functions and allowable pairs has been given
in a more general way, using valet functions.
First, one can extend the concept of allowable pairs as follows: We say that
(σ, τ) is an allowable pair on the multiset Ma, if σ and τ are multiset permu-
tations of Ma and (σ, τ) is an allowable pair. We let Ba denote the set of these
pairs. Furthermore, we say that b is a breakpoint of (σ, τ) ∈ Ba if and only if
{σ1, . . . , σb} = {τ1, . . . , τb} as multisets.
Now we define two mappings φa : Aa → Ba and ψa : Ba → Aa.
For k = 1 the mappings are trivial, since |Aa| = |Ba| = 1. For k ≥ 2 we proceed
by induction on k. For this purpose, let a′ = (a1, . . . , ak−1).
Given p ∈ Aa, define (s, t) = φa(p) as follows:

(φ1) Set t := πp and D := t−1(k). Let d0 = 0, dak+1 = n+1 and D = {d1, . . . , dak
}

where d1 < · · · < dak
.

(φ2) Define p′ ∈ Aa′ by

p′(i) :=

ak⋃
w=0

{l − w | l ∈ p(i) and dw < l < dw+1} , i ∈ [k − 1].

(φ3) Set (s′, t′) = φa′(p
′).
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(φ4) Define s by inserting ak terms labeled k into s′ such that s(j) = k if and
only if j ∈ p(k).

Given (σ, τ) ∈ Ba, define q = ψa(σ, τ) as follows:

(ψ1) Set q(k) := σ−1(k) and ∆ := τ−1(k). Let δ0 = 0, δak+1 = n + 1 and
∆ = {δ1, . . . , δak

} where δ1 < · · · < δak
.

(ψ2) Let σ′ and τ ′ be, respectively, σ and τ with all k-s deleted, so (σ′, τ ′) ∈ Ba′ .

(ψ3) Set q′ = ψa′(σ
′, τ ′).

(ψ4) Set

q(i) :=

ak⋃
w=0

{λ+ w | λ ∈ q′(i) and δw < λ+ w < δw+1} , i ∈ [k − 1].

Proposition 4.4.3. The functions φa and ψa are well-defined, output and break-
point preserving, mutually inverse bijections between Aa and Ba.

The proof, in detail given in [13], follows the same steps presented in Section 3.2.3.
These bijections can be described non-inductively as well:
Let (σ, τ) ∈ Ba. For each i ∈ [k], let σ̂i(1), . . . , σ̂i(ai) and τ̂i(1), . . . , τ̂i(ai) be the
elements of σ−1(i) and τ−1(i), respectively, in increasing order. Setting

q(i) := {S(σ, σ̂i(j)) + T (τ, τ̂i(j)) | j ∈ [ai]}

gives q = ψa(σ, τ).
The proof does not significantly differ from the one given for Proposition 3.2.14.
The bijection φa can be described in the same way as φn in section 3.2.3, by using
the ’Boston parking’ algorithm.
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Defective parking functions

As another generalization of parking functions, we will now study preference func-
tions with the property that exactly d drivers do not succeed to park.

Definition 5.0.1. Let p : [m]→ [n]. We say that p is a defective parking function
of defect d if and only if

|{i ∈ [m] | ιp(i) > n}| = d.

It is easy to verify that p : [m]→ [n] is a defective parking function of defect d if
and only if

• for all i ∈ [n] holds |f−1({n− i+ 1, . . . ,m})| ≤ d+ i, and

• there exists an i ∈ [n] such that |f−1({n− i+ 1, . . . ,m})| = d+ i.

We let g(n,m, d) denote the number of defective parking functions of defect d. This
is a generalization of the numbers g(n,m): Clearly, ordinary parking functions are
of defect 0, hence we have g(n,m, 0) = g(n,m) = (n−m+ 1)(n+ 1)m−1.

5.1 Asymptotic results using a Poisson model

In their analysis of the sorting algorithm linear probing sort, Gonnet and Munro
[14] have found asymptotic results on the expected number of unsuccessful drivers
for preference functions p : [m]→ [n]. They use a Poisson filling model, and then
transform their results to our model, which we will refer to as the ”exact” model.
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5.1.1 The Poisson filling model

As before, we consider a street with n numbered parking slots, and the arriving
drivers follow the same rules as in the exact model. But for each i ∈ [n], we let the
number of drivers who wish to park in slot i be Poisson distributed with parameter
α, and independent of the number of drivers who wish to park elsewhere. Hence,
the total number of drivers itself is a random variable (whose expected value is
nα). The independency of the parking slots makes this model relatively easy to
analyze.

For i ∈ N0, we let ri denote the probability that exactly i cars wish to park in a
particular slot. Using a Poisson filling model with parameter α, we have

ri = e−αα
i

i!
.

We further let pi,j denote the probability that j cars overflow from the first i
parking slots, i. e., exactly j of the cars who wish to park in one of the first i
parking slots do not succeed to do so. We define the boundary values p0,j = δ0,j,
for j ∈ N0.

Proposition 5.1.1. The probabilities pi,j satisfy

pi,0 = pi−1,0(r0 + r1) + pi−1,1r0, for i ≥ 1.

and

pi,j =

j+1∑

k=0

pi−1,krj−k+1, for i, j ≥ 1.

Proof. No cars overflow from the first i parking slots if and only if

• no cars overflow from the first i − 1 parking slots and at most one driver
wishes to park in slot i, or if

• one car overflows from the first i − 1 parking slots and no driver wishes to
park in slot i.

For j ≥ 1, j cars overflow from the first i parking slots if and only if there exists
a k ∈ [j + 1]0 such that

• k cars overflow from the first i− 1 parking slots, and

• j − k + 1 drivers wish to park in slot i.
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We now introduce the generating functions

Pi(z) =
∑
j≥0

pi,jz
j.

Let Wn denote the random variable which counts the unsuccessful cars for a street
with n parking slots. Then Wn is described by Pn(z), and we have E (Wn) = P ′n(1).
Gonnet and Munro have shown that the limit limn→∞ E (Wn) exists and have found
its value. We will only sketch their work.

First, one can translate the recurrence for pi,j into a recurrence for Pi(z):

Proposition 5.1.2. It holds that

P0(z) = 1,

and, for i ≥ 1,

Pi(z) =
Pi−1(z)R(z) + (z − 1)pi−1,0r0

z
, (5.1)

with

R(z) :=
∑
j≥0

rjz
j =

∑
j≥0

e−αα
j

j!
zj = eα(z−1).

Proof. Since p0,j = δ0,j, we have P0(z) = 1.
For i ≥ 1, we multiply the above recursions with zj and sum up for j ≥ 0. This
leads to

Pi(z) = pi−1,0(r0 + r1) + pi−1,1r0 +
∑
j≥1

j+1∑

k=0

pi−1,krj−k+1z
j

= pi−1,0r0 +
∑
j≥0

j+1∑

k=0

pi−1,krj−k+1z
j

= pi−1,0r0 + pi−1,0

∑
j≥0

rj+1z
j +

∑
j≥0

j+1∑

k=1

pi−1,krj−k+1z
j

= pi−1,0r0 +
1

z
pi−1,0

∑
j≥0

rj+1z
j+1 +

1

z

∑

k≥1

pi−1,kz
k

∑

j≥k−1

rj−k+1z
j−k+1

= (1− 1

z
)pi−1,0r0 +

1

z
pi−1,0

∑
j≥0

rjz
j +

1

z

∑

k≥1

pi−1,kz
k
∑
j≥0

rjz
j

= (1− 1

z
)pi−1,0r0 +

1

z

∑

k≥0

pi−1,kz
k
∑
j≥0

rjz
j,
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which proves the proposition.

If the sequence (Pi(z))i≥0 converges, then equation (5.1) shows that we must have

lim
i→∞

Pi(z) =
(1− z) limi→∞ pi,0r0

R(z)− z .

In order to prove that the limit really exists, one can first derive a formula for
Pi(z) in terms of pj,0 with j < i. This can easily be achieved by solving the linear
recurrence relation (5.1).

Lemma 5.1.3.

Pi(z) = γ(z)i + β(z)
i−1∑
j=0

pi−j−1,0γ(z)
j, (5.2)

where γ(z) = R(z)
z

and β(z) = e−α(z−1)
z

.

By extracting the coefficient of z0 in this formula, one can derive a recursion for
pi,0:

Lemma 5.1.4.

pi,0 = e−iα (iα)i

i!
+ e−α

i−1∑
j=0

pi−j−1,0e
−jα (jα)j

j!

(
1− jα

j + 1

)
.

One can now express pi,0 in terms of truncated power series expansions of ex,

ei(x) :=
i∑

j=0

xj

j!
.

Lemma 5.1.5.

pi,0 = e−iα(ei+1((i+ 1)α)− αei((i+ 1)α)). (5.3)

Using this representation, one can show that the pi,0 converge.

Lemma 5.1.6. For α < 1 it holds that

pi,0 = (1− α)eα +O(i−
1
2 e(1−α+ln α)i),

for i→∞.
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Note that 1− α + lnα < 0, for α < 1, hence the convergence is exponential. It is
interesting to note that pi,0, i. e., the probability that all drivers succeed to park,
converges towards the same value as in the exact model for n,m→∞ with m

n
= α

(compare Proposition 2.2.2).

Using (5.2) and Lemma 5.1.6, one can prove that the Pi(z) converge, i. e.,

P (z) := lim
i→∞

Pi(z) =
(1− z)(1− α)

R(z)− z ,

Furthermore, one can show that the limit limn→∞ E (Wn) exists and find its value:

Lemma 5.1.7.

lim
n→∞

E (Wn) =
α2

2(1− α)
.

Using (5.2) and (5.3), one can finally write E (Wn) as a power series in α, which
will be useful when transforming the result to the exact model:

Proposition 5.1.8.

E (Wn) =
α2

2(1− α)
+O(αn+2). (5.4)

5.1.2 Transform to the exact model

The transform which Gonnet and Munro present rests on the following idea: Let
f(n,m) be an expected value computed using a model of m objects randomly
distributed among n locations. Let g(n, α) be the equivalent expected value using
a model with n locations each of which receives a random number of objects which
is Poisson distributed with parameter α and independent of all other locations.
Then

g(n, α) =
∑
m≥0

f(n,m)P{X1 + . . .+Xn = m},

where Xi is a Poisson distributed random variable with parameter α. This is easy
to verify since the distribution of the Xi’s, under the condition that their sum is
m, coincides with the random distribution of m objects in n places.
It is known that the sum of n independent Poisson distributed variables with
parameter α is Poisson distributed with parameter nα. Hence, we have

g(n, α) =
∑
m≥0

f(n,m)
(nα)me−nα

m!
. (5.5)

Note that this is an identity in α.
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Lemma 5.1.9. Let g(n, α) =
∑

i≥0 ai(n)αi be an expected value computed using
a model with n locations each of which receives a random number of objects which
is Poisson distributed with parameter α and independent of all other locations.
Let f(n,m) be the equivalent expected value computed using a model of m objects
randomly distributed among n locations. Then

f(n,m) =
m∑

k=0

ak(n)
mk

nk
.

Proof. We can write (5.5) as

enαg(n, α) =
∑
m≥0

f(n,m)
(nα)m

m!
.

By extracting coefficients, we get

f(n,m)
nm

m!
= [αm]enαg(n, α)

=
m∑

k=0

[αk]g(n, α)[αm−k]enα

=
m∑

k=0

ak(n)
nm−k

(m− k)! ,

which proves the lemma.

Example:
Let the expected value in the Poisson model be

g(n, α) =
1

(1− α)r+1
.

It is known that
1

(1− α)r+1
=

∑
i≥0

(
r + i

i

)
αi,

hence the equivalent expected value in the exact model is

f(n,m) =
m∑

k=0

(
r + k

k

)
mk

nk
.

We can now transform our results of the Poisson model to the exact model.
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Proposition 5.1.10. Let Wn,m denote the defect of a defective parking function
p : [m]→ [n]. If m ≤ n+ 1, then

E (Wn,m) =
1

2

m∑

k=2

mk

nk
. (5.6)

Proof. Consider the equivalent expected value E (Wn) in the Poisson model. Equa-
tion (5.4) shows that

g(n, α) = E (Wn) =
α2

2(1− α)
+O(αn+2) =

1

2

n+1∑
i=2

αi +O(αn+2).

Since mk = 0 for k > m, Lemma 5.1.9 proves that

E (Wn,m) = f(n,m) =
1

2

m∑

k=2

mk

nk
,

if m ≤ n+ 1.

We will now show that for m
n

= α < 1 and n → ∞, E (Wn,m) converges towards
the same value as Wn in the Poisson model:

Proposition 5.1.11. Let 0 < α < 1. Then

lim
n→∞

E (Wn,αn) =
α2

2(1− α)
.

We will use the following lemma:

Lemma 5.1.12. Let x ∈ N and k ∈ N0. It holds that

xk ≥ xk −
(
k

2

)
xk−1.

Proof. If x < k, then xk = 0 and the inequality trivially holds.
For x ≥ k, we will prove the lemma by induction: The claim obviously holds for
k = 0. If the inequality holds for k = k0 < x, then

xk0+1 = xk0(x− k0)

≥ (xk
0 −

(
k0

2

)
xk0−1)(x− k0)

≥ xk0+1 −
(
k0

2

)
xk0 − k0x

k0

= xk0+1 −
(
k0 + 1

2

)
xk0 ,

hence the claim holds for k = k0 + 1 as well.
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Proof of Proposition 5.1.11. We clearly have

lim
n→∞

E (Wn,αn) = lim
n→∞

1

2

n∑

k=2

(αn)k

nk

≤ lim
n→∞

1

2

n∑

k=2

(αn)k

nk

=
α2

2(1− α)
.

On the other hand, the above lemma shows that

lim
n→∞

E (Wn,αn) = lim
n→∞

1

2

n∑

k=2

(αn)k

nk

≥ lim
n→∞

1

2

n∑

k=2

(αn)k − (
k
2

)
(αn)k−1

nk

= lim
n→∞

1

2

n∑

k=2

(αn)k

nk
− lim

n→∞
1

2

n∑

k=2

(
k

2

)
(αn)k−1

nk

=
α2

2(1− α)
− lim

n→∞
α

2n

n−2∑

k=0

(
k + 2

2

)
αk

=
α2

2(1− α)
− lim

n→∞
1

2n

α

(1− α)3

=
α2

2(1− α)
.

Now, consider the case m = n:

Proposition 5.1.13.

E (Wn,n) ∼
√
nπ

8
, for n→∞.

Proof. Consider Ramanujan’s Q-function

Q(n) :=
n∑

k=1

nk

nk
.
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It is well-known (see for example [10]) that

Q(n) ∼
√
nπ

2
, for n→∞,

and we obviously have

E (Wn,n) =
1

2

n∑

k=2

nk

nk
=

1

2
(Q(n)− 1) ∼

√
nπ

8
, for n→∞.

5.2 Exact results

In [5], Cameron, Johannsen, Prellberg and Schweitzer have found an exact formula
for g(n,m, d). We will first present their derivation and then give an alternative.
Furthermore, we will show how defective parking functions can be described by
x-parking functions.

5.2.1 Parameter transform

In order to find a formula for g(n,m, d), Cameron, Johannsen, Prellberg and
Schweitzer first transform the parameters:
For r, s, d ∈ N0, let a(r, s, d) be the number of preference functions p : [d + s] →
[r + s] for which

• r parking slots remain empty,

• s slots are occupied in the end, and

• d drivers are unsuccessful.

We clearly have g(n,m, d) = a(n−m+d,m−d, d), especially g(n, n, d) = a(d, n−
d, d).
It is useful to set a(r, s, d) = 0 whenever one of the parameters r, s and d is smaller
than 0. We then get the following recursion formula:

Lemma 5.2.1.

a(r, s, d) =





1, if r = s = d = 0,∑d+1
i=0

(
s+d

d+1−i

)
a(r, s− 1, i), if d > 0,

a(r − 1, s, 0) +
∑d+1

i=0

(
s+d

d+1−i

)
a(r, s− 1, i), else.
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Proof. For r = s = d = 0 there exists exactly one assignment.
Next, let d > 0. Since d drivers leave in the end, exactly d+ 1 drivers must arrive
at parking slot r + s during the parking process. A preference function satisfies
this condition if and only if there exists an i ∈ [d + 1] such that d + 1− i drivers
actually choose the last slot and i drivers arrive at the slot, though they have not
chosen it.

(
s+d

d+1−i

)
is the number of ways to choose the drivers who pick the last

slot. The number of preference functions for the remaining drivers which satisfy
the condition that exactly i drivers arrive at the last space is given by a(r, s−1, i).
Finally, let d = 0 but r > 0 or s > 0. If we only consider the preference functions
p : [d + s] → [r + s] for which the last slot is occupied, then the same recursion
as for d > 0 holds. On the other hand, the number of preference functions which
leave the last slot empty is clearly given by a(r − 1, s, 0).

We can write the above recursion formula as

a(r, s, d) =1{r=s=d=0}(r, s, d) + 1{d=0}a(r − 1, s, 0)

+
d+1∑
i=0

(
s+ d

d+ 1− i
)
a(r, s− 1, i).

(5.1)

Next, we introduce a generating function A(u, v, t) of the numbers a(r, s, d). The
above recursion leads to a functional equation which involves evaluations of A at
t = 0:

Lemma 5.2.2. Let

A(u, v, t) :=
∑

r,s,d≥0

a(r, s, d)ur vstd

(s+ d)!
.

It holds that

A(u, v, t) =
1 + (u− v

t
)A(u, v, 0)

1− v
t
et

. (5.2)
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Proof. Multiplying (5.1) by ur vstd

(s+d)!
and summing up yields

A(u, v, t) = 1 + u
∑
r,s≥0

a(r − 1, s, 0)ur−1v
s

s!

+
v

t

∑

r,s,d≥0

d+1∑
i=0

a(r, s− 1, i)ur vs−1td+1

(d+ 1− i)!(s− 1 + i)!

= 1 + uA(u, v, 0)− v

t

∑
r,s≥0

a(r, s− 1, 0)ur vs−1

(s− 1)!

+
v

t

∑

r,s,d≥0

d∑
i=0

a(r, s− 1, i)ur vs−1td

(d− i)!(s− 1 + i)!

= 1 + (u− v

t
)A(u, v, 0)

+
v

t

∑
r,s,i≥0

a(r, s− 1, i)ur vs−1ti

(s− 1 + i)!

∑

d−i≥0

td−i

(d− i)!

= 1 + (u− v

t
)A(u, v, 0) +

v

t
etA(u, v, t),

which proves the lemma.

Next, we can obtain an explicit formula for A(u, v, t), which involves the tree
function T (z):

Proposition 5.2.3.

A(u, v, t) =
1

1− v
t
et

+
u− v

t

1− v
t
et
· eT (v)

1− ueT (v)

Proof. In order to find A(u, v, 0), we apply the kernel method as described in
Section 1.3. We set

1− v

t
et = 0,

or equivalently
t = vet.

Clearly, the solution to this equation is

t = T (v).

From (5.2) we conclude that
(
u− v

T (v)

)
A(u, v, 0) + 1 = 0,
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and further

A(u, v, 0) =
1

v
T (v)
− u =

1

e−T (v) − u =
eT (v)

1− ueT (v)
.

Substituting this into (5.2), this finally shows that

A(u, v, t) =
1 + (u− v

t
)A(u, v, 0)

1− v
t
et

=
1

1− v
t
et

+
u− v

t

1− v
t
et
· eT (v)

1− ueT (v)
.

Note that

A(u, v, 0) =
∑
r,s≥0

a(r, s, 0)ur v
s

s!

is a generating function for the number of ordinary parking functions p : [s] →
[r + s]. This provides an alternative way to prove Lemma 2.2.1.

Proposition 5.2.4.

a(r, s, 0) = (r + 1)(r + s+ 1)s−1.

Proof. We have

a(r, s, 0) = s! [vsur]A(u, v, 0)

= s! [vsur]
eT (v)

1− ueT (v)

= s! [vs]e(r+1)T (v).

Using Lagrange’s inversion formula, we obtain

s! [vs]e(r+1)T (v) = (s− 1)! [T s−1](r + 1)e(r+1)T esT

= (r + 1)(r + s+ 1)s−1.

From the above result, we get

A(u, v, 0) =
eT (v)

1− ueT (v)
=

∑
r,s≥0

(r + 1)(r + s+ 1)s−1ur v
s

s!
, (5.3)

which is proves useful when extracting the coefficients of A(u, v, t).
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Proposition 5.2.5. Let

S(n,m, d) =
m−d∑
i=0

(
m

i

)
(n−m+ d)(n−m+ d+ i)i−1(m− d− i)m−i.

Then
a(r, s, d) = S(r + s, s+ d, d)− S(r + s, s+ d, d+ 1), (5.4)

or equivalently
g(n,m, d) = S(n,m, d)− S(n,m, d+ 1).

Note that this implies that S(n,m, d) is the number of defective parking functions
p : [m]→ [n] of defect greater than or equal to d.

Proof. We have

a(r, s, d) = (d+ s)! [urvstd]A(u, v, t)

= (d+ s)! [urvstd]

(
1

1− v
t
et

+
u− v

t

1− v
t
et
· eT (v)

1− ueT (v)

)
.

We now read off the coefficients of the summands of A(u, v, t). We let the indicator
functions 1{r=0}, 1{r≥1} and 1{s≥1} be defined as usual.
The contribution of the first summand is

[urvstd]
1

1− v
t
et

= 1{r=0}(r)[t
d]

est

ts
= 1{r=0}(r)s

d+s 1

(d+ s)!
.

Using (5.3), we find that the coefficients of the second summand are

[urvstd]
u

1− v
t
et
A(u, v, 0) =

= 1{r≥1}(r)[v
std]

(
1

1− v
t
et

[ur−1]
∑
i,j≥0

(j + 1)(j + i+ 1)i−1uj v
i

i!

)

= 1{r≥1}(r)[v
std]

1

1− v
t
et

∑
i≥0

r(r + i)i−1v
i

i!

= 1{r≥1}(r)[t
d]

s∑
i=0

(
et

t

)s−i
r(r + i)i−1

i!

= 1{r≥1}(r)
s∑

i=0

(s− i)s+d−ir(r + i)i−1

(s+ d− i)!i! .
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Finally, the third summand contributes

[urvstd]
v
t

1− v
t
et
A(u, v, 0) =

= [vstd]
v
t

1− v
t
et

∑
i≥0

(r + 1)(r + i+ 1)i−1v
i

i!

= 1{s≥1}(s)[t
d]

s−1∑
i=0

1

et

(
et

t

)s−i
(r + 1)(r + i+ 1)i−1

i!

= 1{s≥1}(s)
s−1∑
i=0

(s− i− 1)s+d−i(r + 1)(r + i+ 1)i−1

(s+ d− i)!i! .

Multiplying the obtained expressions by (s+ d)!, we finally obtain

a(r, s, d) = 1{r=0}(r)s
s+d

+ 1{r≥1}(r)
s∑

i=0

(
s+ d

i

)
r(r + i)i−1(s− i)s+d−i

− 1{s≥1}(s)
s−1∑
i=0

(
s+ d

i

)
(r + 1)(r + 1 + i)i−1(s− 1− i)s+d−i.

Now, the fact that Equation (5.4) holds follows from the fact that

S(s, s+ d, d) = (s+ d− d)s+d +
s∑

i=1

(
s+ d

i

)
· 0 · ii−1(s− i)s+d−i

= ss+d.

Note that S(n,m, 0) is the total number of functions p : [m]→ [n], hence we must
have

nm = S(n,m, 0) =
m∑

i=0

(
m

i

)
(n−m)(n−m+ i)i−1(m− i)m−i.

This is a special case of Abels’ Binomial Identity [1]:

Lemma 5.2.6 (Abels’ Binomial Identity). Let x, y, z ∈ R and m ∈ N. It holds
that

(x+ y)m =
m∑

i=0

(
m

i

)
x(x− zi)i−1(x+ zi)m−i.
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We use this identity with x = n − m + d, y = m − d and z = −1 to find an
alternative expression for S(n,m, d), which is useful for small d:

S(n,m, d) =

=
m−d∑
i=0

(
m

i

)
(n−m+ d)(n−m+ d+ i)i−1(m− d− i)m−i

= nm −
m∑

i=m−d+1

(
m

i

)
(n−m+ d)(n−m+ d+ i)i−1(m− d− i)m−i

= nm −
d−1∑

l=0

(
m

l

)
(n−m+ d)(n+ d− l)m−l−1(l − d)l.

This also shows that

S̄(n,m, d) :=
d∑

l=0

(
m

l

)
(n−m+ d+ 1)(n+ d+ 1− l)m−l−1(l − d− 1)l (5.5)

is the number of defective parking functions p : [m] → [n] of defect not greater
than d.

5.2.2 Block decomposition

We now give an alternative derivation of the numbers g(n,m, d) due to Panholzer
[personal communication, January 2009]. By block decomposition of the final park-
ing order, we will find a recursion for g(n,m, d) and solve this recursion using a
generating function approach.

In the following, we will use the notation

f(n) := g(n, n, 0).

We further let s(n, d) denote the number of defective parking functions p : [n+d]→
[n] of defect d, i. e., the number of preference functions with the property that
all n parking slots are occupied in the final parking order and d drivers do not
succeed to park.
If m = n+ d, we clearly have g(n,m, d) = s(n, d).
For m < n+ d, we can establish the following recursion:
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Proposition 5.2.7. Let m < n+ d. It holds that

g(n,m, d) =
n∑

j=1

(
m

j − 1

)
f(j − 1)g(n− j,m− j + 1, d). (5.6)

Proof. Since m < n + d, each preference function p : [m] → [n] results in a final
parking order which leaves at least one slot empty. If the first empty slot is j,
then j − 1 of the total number of m cars park in the first j − 1 slots. The number
of ways to choose these cars is given by

(
m

j−1

)
, and there are f(j − 1) preference

functions which place them in the first j − 1 slots. The number of assignments of
the remaining m − j + 1 cars to the slots {j + 1, . . . , n} with the property that
exactly d cars overflow is given by g(n− j,m− j + 1, d).

We now introduce the generating function

G(z, u, v) =
∑
n≥0

∑
m≥0

∑

d≥0

g(n,m, d)
zm

m!
unvd.

We will further use the auxiliary generating function

S(u, v) =
∑
n≥0

∑

d≥0

s(n, d)
unvd

(n+ d)!
,

and the tree function

T (z) = zθ(z) =
∑
m≥1

g(m− 1,m− 1, 0)
zm

(m− 1)!
=

∑
m≥1

f(m− 1)
zm

(m− 1)!
.

Proposition 5.2.8. The generating functions defined above satisfy the equation

G(z, u, v) =
S(zu, zv)

1− T (zu)
z

. (5.7)

Proof. First note that g(n − j,m − j + 1, d) = 0 if m ≥ n + d. This allows us to
write

g(n,m, d) = 1{m=n+d}(n,m, d) s(n, d)

+
n∑

j=1

(
m

j − 1

)
g(j − 1, j − 1, 0)g(n− j,m− j + 1, d).
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We multiply this equation by zm

m!
unvd and sum up to obtain

G(z, u, v) =
∑
n≥0

∑

d≥0

s(n, d)
zn+d

(n+ d)!
unvd

+
∑
n≥0

∑
m≥0

∑

d≥0

n∑
j=1

f(j − 1)

(j − 1)!

g(n− j,m− j + 1, d)

(m− j + 1)!
zmunvd

=
∑
n≥0

∑

d≥0

s(n, d)
(zu)n(zv)d

(n+ d)!
+

1

z

∑
j≥1

f(j − 1)

(j − 1)!
(zu)j

·
∑

n−j≥0

∑
m≥0

∑

d≥0

g(n− j,m− j + 1, d)
zm−j+1

(m− j + 1)!
un−jvd

= S(zu, zv) +
T (zu)

z
G(z, u, v),

which proves the proposition.

We can now find an explicit formula for G(z, u, v).

Proposition 5.2.9.

G(z, u, v) =
1− T (zu)

zv

(1− T (zu)
z

)(1− u
v
ezv)

.

Proof. It clearly holds that

∑

d≥0

g(n,m, d) = nm.

Hence, evaluating (5.7) at v = 1, we obtain

S(zu, z)

1− T (zu)
z

= G(z, u, 1) =
∑
n≥0

∑
m≥0

nm z
m

m!
un =

∑
n≥0

enzun =
1

1− uez
,

or equivalently

S(zu, z) =
1− T (zu)

z

1− uez
.

Using the substitution z ← zv, u← u
v
, we find

S(zu, zv) =
1− T (zu)

zv

1− u
v
ezv

,
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and finally

G(z, u, v) =
1− T (zu)

zv

(1− T (zu)
z

)(1− u
v
ezv)

.

We can now re-prove the result of Section 5.2.1:

Alternative proof of Proposition 5.2.5. It suffices to show that

m! [unzmvd]
1

(1− T (zu)
z

)(1− u
v
ezv)

= S(n,m, d), (5.8)

and

m! [unzmvd]
T (zu)

zv

(1− T (zu)
z

)(1− u
v
ezv)

= S(n,m, d+ 1). (5.9)

Using Lemma 1.2.2 to expand 1

1−T (zu)
z

, we obtain

[unzmvd]
1

(1− T (zu)
z

)(1− u
v
ezv)

=

= [unzm]

(∑
j≥0

(
T (zu)

z

)j

[vd]
∑

l≥0

(u
v
ezv

)l
)

= [unzm]

(∑
j≥0

(
T (zu)

z

)j ∑

l≥0

[vd+l](uezv)l

)

= [unzm]
∑
j≥0

∑
i≥j

j
ii−j−1

(i− j)!z
i−jui

∑

l≥0

ul (lz)d+l

(d+ l)!

= [zm]
n∑

j=0

n∑
i=j

j
ii−j−1

(i− j)!z
i−j ((n− i)z)d+n−i

(d+ n− i)!

= [zm]
n∑

j=0

zd+n−j

n∑
i=j

j
ii−j−1

(i− j)!
(n− i)d+n−i

(d+ n− i)!

=
n∑

i=n−m+d

(n−m+ d)
ii−(n−m+d)−1

(i− (n−m+ d))!

(n− i)d+n−i

(d+ n− i)!

=
1

m!

m−d∑

l=0

(
m

l

)
(n−m+ d)(n−m+ d+ l)l−1(m− d− l)m−l

=
1

m!
S(n,m, d).
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This proves (5.8). The fact that Equation (5.9) holds can be verified in the same
manner.

5.2.3 Defective parking functions as x-parking functions

The following relation between defective parking functions and x-parking functions
has been mentioned in [5]: Let

xn,m,d := (n− (m− d) + 1, 1, . . . , 1︸ ︷︷ ︸
m−d−1

, 0, . . . , 0︸ ︷︷ ︸
d

).

Then p = (p1, . . . , pm) is an x-parking function for x = xn,m,d if and only if p is a
defective parking function p : [m]→ [n] of defect not greater than d.
We will use this fact to verify our result of Section 5.2.1, i. e., with S̄(n,m, d)
defined as in (5.5) we will show:

Proposition 5.2.10.
gm(xn,m,d) = S̄(n,m, d).

Note that for the special case d = 0, this follows immediately from Proposition
4.3.2, with a = n−m+ 1 and b = 1:

gm(xn,m,0) = gm((n−m+ 1, 1, . . . , 1)) = (n−m+ 1)(n+ 1)m−1.

For d ≥ 1, we will use an expression for gm((a, b, . . . , b︸ ︷︷ ︸
m−d−1

, c, 0, . . . , 0︸ ︷︷ ︸
d−1

)) which has been

found by Yan in [28]:

Proposition 5.2.11. For xm,d,a,b,c = (a, b, . . . , b︸ ︷︷ ︸
m−d−1

, c, 0, . . . , 0︸ ︷︷ ︸
d−1

),

gm(xm,d,a,b,c) = a

d∑
j=0

(
m

j

)
(c− (d+ 1− j)b)j(a+ (m− j)b)m−j−1.

Note that with a = n − (m − d) + 1, b = 1 and c = 0, this proves Proposition
5.2.10.

Proof. Due to Lemma 4.3.1, we know that for fixed a and b, gm(x) is a polynomial
in c. Hence, it suffices to prove the claim under the assumption that c > (d+ 1)b.
Every xm,d,a,b,c-parking function p = (p1, . . . , pm) satisfies the conditions

1 ≤ pi ≤ a+ (m− d− 1)b+ c, for i ∈ [m],
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and
|{pi | pi ≤ a+ (l − 1)b}| ≥ l, for l ∈ [m− d]. (5.10)

We can decompose every xm,d,a,b,c-parking function into two subsequences β, γ by
the following rule:
Let t be the largest integer such that the following condition holds:

|{pi | pi ≤ a+ (m− d− 1 + l)b}| ≥ m− d+ l, for l ∈ [t]. (5.11)

If no such t exists, we say that t = 0. Let β be the subsequence of p which consists
of all terms pi which are less than or equal to a + (m− d− 1 + t)b, and γ be the
subsequence of the remaining terms.
Since t is the largest integer for which (5.11) holds, β must be a sequence of length
m − d + t. Furthermore, from (5.10) and (5.11) follows that β is an x′-parking
function for x′ = (a, b, . . . , b). Let fi = a(a+bi)i−1, then we know from Proposition
4.3.2 that there are fm−d+t such sequences.
On the other hand, γ is a sequence of length d−t in which every term is an element
of the set {a + (m − d − 1)b + (t + 1)b + 1, . . . , a + (m − d − 1)b + c}. There are
(c−(t+1)b)d−t such sequences. Finally, the terms of γ can take any d− t positions
in p, hence we conclude

gm(x) =
d∑

t=0

(
m

d− t
)

(c− (t+ 1)b)d−tfm−d+t

=
d∑

j=0

(
m

j

)
(c− (d+ 1− j)b)jfm−j

= a

d∑
j=0

(
m

j

)
(c− (d+ 1− j)b)j(a+ (m− j)b)m−j−1.

5.3 Asymptotic results derived from the exact

results

We will now give a result on the asymptotics of g(n,m, d) for the special case
n = m which has been derived by Panholzer [personal communication, January
2009].
We will first determine the generating function of the numbers g(n,m, d),
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Q(z, v) :=
∑
n≥0

∑

d≥0

g(n, n, d)
zn

n!
vd.

Proposition 5.3.1.

Q(z, v) =
(v − 1)T (z)

vT (z)− zevT (z)
.

Proof. Since

G(z, u, v) =
∑
n≥0

∑
m≥0

∑

d≥0

g(n,m, d)
zm

m!
unvd,

we can obtain Q(z, v) by

Q(z, v) =
1

2πi

∮
G(t, z

t
, v)

t
dt

=
1

2πi

∮
1− T (z)

tv

t(1− T (z)
t

)(1− z
tv

etv)
dt

=
1

2πi

∮
t− T (z)

v

(t− T (z))(t− z
v
etv)

dt.

We can now determine Q(z, v) using the residue theorem. The integrand has a
singularity where t = z

v
etv, i. e., tv = zetv or equivalently tv = T (z), but one can

easily check that this is a removable singularity. Hence, we only have to consider
the residue at t = T (z), which is a simple pole. This gives

Q(z, v) = Res
t=T (z)

t− T (z)
v

(t− T (z))(t− z
v
etv)

=
T (z)− T (z)

v

T (z)− z
v
eT (z)v

=
(v − 1)T (z)

vT (z)− zevT (z)
.

For a random defective parking function p : [n]→ [n], we let Xn denote the defect
of p. By setting w := v − 1 and

Q̃(z, w) := Q(z, w + 1) = Q(z, v),

we clearly have

E (Xr
n) =

n!

nn
[zn]

(
∂r

∂vr
Q(z, v)

)

v=1

=
n!

nn
r! [znwr]Q̃(z, w).
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Proposition 5.3.2.

[wr]Q̃(z, w) =
1

(1− T (z))r+1

(
T (z)2

2

)r

+O
(

1

(1− T (z))r

)
,

for T (z)→ 1, i. e., z → 1
e
.

Proof. We have

Q̃(z, w) =
wT (z)

(w + 1)T (z)− ze(w+1)T (z)

=
wT (z)

(w + 1)T (z)− zeT (z)
∑

k≥0
wkT (z)k

k!

=
wT (z)

wT (z)− T (z)
∑

k≥1
wkT (z)k

k!

=
1

1−∑
k≥0

wkT (z)k+1

(k+1)!

=
1

1− T (z)−∑
k≥1

wkT (z)k+1

(k+1)!

=
1

(1− T (z))(1− 1
1−T (z)

∑
k≥1

wkT (z)k+1

(k+1)!

=
1

1− T (z)

(
1 +

∑
q≥1

1

(1− T (z))q

(∑

k≥1

T (z)k+1

(k + 1)!
wk

)q)

Hence it holds that

[w0]Q̃(z, w) =
1

1− T (z)
,

and, if r ≥ 1,

[wr]Q̃(z, w) =
1

(1− T (z))r+1

(
T (z)2

2

)r

+O
(

1

(1− T (z))r

)
,

for T (z)→ 1.

By singularity analysis, we can now asymptotically determine E (Xr
n).

Proposition 5.3.3.

E (Xr
n) =

√
πr!n

r
2

2
3r
2 Γ( r+1

2
)
(1 +O(n−

1
2 )).
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Proof. We use the singular expansion of T (z) at t = 1
e
, see Lemma 1.2.3.

[wr]Q̃(z, w) =

=
1

(1− T (z))r+1

(
T (z)2

2

)r

+O
(

1

(1− T (z))r

)

=
1

(
√

2
√

1− ez +O(1− ez))r+1

(
(1−√2

√
1− ez +O(1− ez))2

2

)r

+O
(

1

(
√

2
√

1− ez +O(1− ez))r

)

=
1 +O(

√
1− ez)

2
3r+1

2 (1− ez) r+1
2 (1 +O(

√
1− ez))

+O
(

1

(1− ez) r
2

)

=
1

2
3r+1

2 (1− ez) r+1
2

+O
(

1

(1− ez) r
2

)
.

So, using Lemma 1.4.1 and approximating n! by Stirling’s formula, we obtain

E (Xr
n) =

r!n!

nn
[znwr]Q̃(z, w)

=
r!n!

nn
[zn]

1

2
3r+1

2 (1− ez) r+1
2

+O
(

1

(1− ez) r
2

)

=
r!n!

nn

1

2
3r+1

2

enn
r−1
2

Γ( r+1
2

)
(1 +O(n−

1
2 ))

=
r!nn
√

2πn

nnen
(1 +O(n−1))

1

2
3r+1

2

enn
r−1
2

Γ( r+1
2

)
(1 +O(n−

1
2 ))

=

√
πr!n

r
2

2
3r
2 Γ( r+1

2
)
(1 +O(n−

1
2 )).

Now, observe that E (Xr
n) is given by a sum of the form

E (Xr
n) = E (Xr

n) +
r−1∑
i=0

aiE
(
X i

n

)
.

Hence, we finally obtain

E (Xr
n) =

√
πr!n

r
2

2
3r
2 Γ( r+1

2
)
(1 +O(n−

1
2 )).
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Proposition 5.3.4.

lim
n→∞

E
((

Xn√
n

)r)
= 2−

r
2 Γ

(r
2

+ 1
)
.

Proof. It suffices to show that

√
π

r!

2rΓ( r+1
2

)
= Γ

(r
2

+ 1
)
,

or equivalently

Γ

(
r

2
+

1

2

)
Γ

(r
2

+ 1
)

=
√
π
r!

2r
. (5.1)

We will prove this equation by induction. It is well-known that Γ
(

1
2

)
=
√
π, hence

the claim clearly holds for r = 0. Now assume that (5.1) holds for r = r0 ∈ N0.
By the reflection formula Γ(x+ 1) = xΓ(x), we have

Γ

(
r0 + 1

2
+

1

2

)
Γ

(
r0 + 1

2
+ 1

)
= Γ

(r0
2

+ 1
)

Γ

(
r0
2

+
1

2

)
r0 + 1

2

=
√
π
r0!

2r0

r0 + 1

2

=
√
π

(r0 + 1)!

2r0+1
,

hence (5.1) holds for r = r0 + 1 as well.

Proposition 5.3.5. Xn√
n

is asymptotically Rayleigh distributed with parameter s =
1
2
, i. e.,

Xn√
n

d−→ X,

where X is a random variable with density

f(x) = 4xe−2x2

, for x ≥ 0.

and moments
E (Xr) = 2−

r
2 Γ

(r
2

+ 1
)
.

Proof. This follows directly from Proposition 1.5.3 and Proposition 5.3.4.
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5.4 Defective bucket parking functions

We will now generalize the concept of defective parking functions to bucket parking
functions.

Definition 5.4.1. Let p : [m]→ [n]. We say that p is a defective k-bucket parking
function of defect d if and only if |{i ∈ [m] | ιkp(i) > n}| = d.

We let gk(n,m, d) denote the number of defective k-bucket parking functions of
defect d. This is a generalization of the numbers gk(n,m) of k-bucket parking
functions p : [m] → [n], gk(n,m) = gk(n,m, 0), and of the numbers g(n,m, d) of
defective parking functions p : [m]→ [n] of defect d, g(n,m, d) = g1(n,m, d).

In the following, we will use the numbers fk(n,m) from Section 4.2.1, i. e., fk(n,m)
is the number of k-bucket parking functions p : [m] → [n] with the property that
the last row in the final parking order is not full.
Furthermore, we let sk(n, d) denote the number of defective parking functions
p : [kn + d] → [n] of defect d, i. e., the number of preference functions with the
property that all n parking rows are fully occupied in the final parking order and
d drivers do not succeed to park.

If m = kn+ d, we clearly have gk(n,m, d) = sk(n, d).
For m < kn+ d, we can establish the following recursion:

Proposition 5.4.1. Let m < kn+ d. It holds that

gk(n,m, d) =
n−1∑
j=0

(
m

kj + d

)
sk(j, d)fk(n− j,m− kj − d).

Proof. Since m < kn+ d, each preference function p : [m]→ [n] of defect d results
in a final parking order in which at least one row is not full. If the last not fully
occupied row is at position n− j, then kj + d of the m drivers have chosen one of
the last j rows. The number of ways to choose these cars is given by

(
m

kj+d

)
, and

there are sk(j, d) preference functions which place them in the last j rows such that
exactly d drivers are not successful. The number of assignments of the remaining
m− kj − d cars to the first n− j rows with the property that row n− j is not full
is given by fk(n− j,m− kj − d).
We now introduce the generating function

Gk(z, u, v) =
∑
n≥0

∑
m≥0

∑

d≥0

gk(n,m, d)
zm

m!
unvd.
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For fixed k, we will further use the auxiliary generating function

S(u, v) =
∑
n≥0

∑

d≥0

sk(n, d)
unvd

(kn+ d)!
,

and the generating function of the numbers fk(n, r) from Section 4.2.1,

Λ(z, u) =
∑
n≥1

∑
r≥0

fk(n, r)u
kn z

r

r!
=

1−∏k
i=1(1− ωi

kuθ(
ωi

kuz

k
))

∏k
i=1(1− ωi

kuθ(
ωi

kuz

k
))

,

where ωk denotes a primitive k-th root of unity.

Proposition 5.4.2. The generating functions defined above satisfy the equation

Gk(z, u, v) = S(zku, zv)
(
1 + Λ

(
z, u

1
k

))
. (5.1)

Proof. We set fk(0, r) := 0 for all r ∈ N0. This allows us to write

gk(n,m, d) = 1{m=kn+d}(n,m, d) sk(n, d)

+
n∑

j=0

(
m

kj + d

)
sk(j, d)fk(n− j,m− kj − d).

We multiply this equation by zm

m!
unvd and sum up to obtain

Gk(z, u, v) =
∑
n≥0

∑

d≥0

s(n, d)
zkn+d

(kn+ d)!
unvd

+
∑
n≥0

∑
m≥0

∑

d≥0

n∑
j=0

sk(j, d)

(kj + d)!

fk(n− j,m− kj − d)
(m− kj − d)! zmunvd

=
∑
n≥0

∑

d≥0

s(n, d)
(zku)n(zv)d

(kn+ d)!
+

∑

d≥0

∑
j≥0

sk(j, d)

(kj + d)!
zkj+duj

·
∑

n−j≥0

∑
m≥0

fk(n− j,m− kj − d)
(m− kj − d)! zm−kj−dun−j

= S(zku, zv)

+
∑

d≥0

∑
j≥0

s(n, d)
(zku)j(zv)d

(kn+ d)!

∑
n≥0

∑
m≥0

fk(n,m)(u
1
k )kn z

m

m!

= S(zku, zv) + S(zku, zv)Λ
(
z, u

1
k

)
.
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From this, we can find an explicit formula for Gk(z, u, v):

Proposition 5.4.3. Let ωk denote a primitve k-th root of unity and T (z) the tree
function. Then

Gk(z, u, v) =
1

1− u

vk
ezv
·

k∏
i=1

[
1− k

zv
T

(ωi
ku

1
k z

k

)]

k∏
i=1

[
1− k

z
T

(ωi
ku

1
k z

k

)] .

Proof. It clearly holds that

∑

d≥0

gk(n,m, d) = nm.

Hence, evaluating (5.1) at v = 1, we obtain

S(zku, z)
(
1 + Λ

(
z, u

1
k

))
= Gk(z, u, 1) =

∑
n≥0

∑
m≥0

nm z
m

m!
un =

1

1− uez
,

or equivalently

S(zku, z) =
1

1− uez

1

1 + Λ
(
z, u

1
k

) .

Using the substitution z ← zv, u← u
vk , we find

S(zku, zv) =
1

1− u
vk ezv

1

1 + Λ
(
zv, u

1
k

v

) ,
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and finally

G(z, u, v) = S(zku, zv)
(
1 + Λ

(
z, u

1
k

))

=
1

1− u

vk
ezv
· 1 + Λ

(
z, u

1
k

)

1 + Λ
(
zv, u

1
k

v

)

=
1

1− u

vk
ezv
·

k∏
i=1

[
1− ωi

k

u
1
k

v
θ
(ωi

ku
1
k z

k

)]

k∏
i=1

[
1− ωi

ku
1
k θ

(ωi
ku

1
k z

k

)]

=
1

1− u

vk
ezv
·

k∏
i=1

[
1− k

zv
T

(ωi
ku

1
k z

k

)]

k∏
i=1

[
1− k

z
T

(ωi
ku

1
k z

k

)] .

As a direct consequence, we can complete our considerations on the numbers
gk(n,m) of k-bucket parking functions p : [m]→ [n] from Section 4.2.1:

Proposition 5.4.4. Let

Hk(z, u) =
∑
n≥0

∑
m≥0

gk(n,m)
zm

m!
un.

It holds that

Hk(z, u) =
(−1)k+1

u
·

k∏
i=1

[
k

z
T

(ωi
ku

1
k z

k

)]

k∏
i=1

[
1− k

z
T

(ωi
ku

1
k z

k

)] .

Proof. This follows directly from

Hk(z, u) = Gk(z, u, 0).

89



Bibliography

[1] Abel, N. H.: Beweis eines Ausdrucks von welchem die Binomial-Formel ein
einzelner Fall ist. J. Reine Angew. Math. 1, 159-160, 1826.

[2] Atkinson, M. D.; Beals, R.: Priority queues and permutations, SIAM J.
Comput. 23, 1125-1230, 1994.

[3] Atkinson, M. D.; Thiyagarajah, M.: The permutational power of a
priority queue, BIT Numerical Mathematics 33, 2-6, 1993.

[4] Blake, Ian F.; Konheim, Alan G.: Big Buckets Are (Are Not) Better!,
J. Assoc. Comput. Mach. 24, no. 4, 591-606, 1977.

[5] Cameron, Peter J.; Johannsen, Daniel; Prellberg, Thomas;
Schweitzer, Pascal: Counting Defective Parking Functions, Electron. J.
Combin. 15, Art. R92, 2008.

[6] Curtiss, J. H.: A Note on the Theory of Moment Generating Functions,
Ann. Math. Statist. 13, no. 4, 430-433, 1942.

[7] Cori, Robert; Poulalhon, Dominique: Enumeration of (p,q)-parking
functions, Discrete Mathematics 256, 609-623, 2002.

[8] Dhar, D.: Self-organized critical state of sandpile automaton models, Phys.
Rev. Lett. 64, 1613-1616, 1990.

[9] Flajolet, Philippe: Singularity Analysis of Generating Functions, SIAM
J. Disc. Math. 3, no. 2, 216-240, 1990.

[10] Flajolet, Philippe; Grabner, Peter J.; Kirschenhofer, Peter;
Prodinger, Helmut: On Ramanujan’s Q-function, Journal of Computa-
tional and Applied Mathematics 58, 103-116, 1995.

[11] Flajolet, Philippe; Poblete, Patricio V.; Viola, Alfredo: On the
Analysis of Linear Probing Hashing, Algorithmica 22, no. 4, 490-515, 1998.

90



BIBLIOGRAPHY

[12] Foata, Dominique; Riordan, John: Mappings of Acyclic and Parking
Functions, Aequationes Math. 10, 10-22, 1974.

[13] Gilbey, Julian D.; Kalikow, Louis H.: Parking functions, valet func-
tions and priority queues, Discrete Mathematics 197/198, 351-373, 1999.

[14] Gonnet, Gaston H.; Munro, J. Ian: The Analysis of Linear Probing
Sort by the Use of a New Mathematical Transform, Journal of Algorithms 5,
451-470, 1984.

[15] Knuth, Donald E.: The Art of Computer Programming 1, 3rd edition,
Addison-Wesley, 1997.

[16] Konheim, Allen g.; Weiss, B.: An Occupancy Discipline and Applica-
tions, SIAM J. Appl. Math. 14, 1266-1274, 1966.

[17] Lewis, Richard P.: The number of spanning trees of a complete multipartite
graph, Discrete Mathematics 197/198, 537-541, 1999.
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