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Abstract

The knee alignment angle, defined by the mechanical axes of the femur and the
tibia, is of high importance in orthopedics and traumatology, in particular for
pre-operative planning and post-operative follow-up assessment. It serves as
a predictor for pre-arthritis and the post-operative angulation is known to be
associated with the clinical outcome.

So far, only manual and semi-automated methods of measuring the align-
ment angle exist. The most serious drawback of these techniques is that they
lack reproducibility. The points in the anatomical structure, which define the
angle to be measured, are only vaguely defined and cannot clearly and precisely
be identified. The resulting variability between repeated measurements pre-
cludes the detection of small changes. A fully automatic measurement method
of axis alignment that provides a consistent definition of anatomical landmarks
would eliminate inter and intra reader variabilities caused by human interpre-
tation and lead to more accurate and reproducible results.

In the course of this thesis, a novel method for the automatic measurement
of alignment angles is developed and prospectively tested. It allows a fully
automatic assessment of knee alignment angles in full-limb radiographs with
high precision.

The positions of the lower limb bones and joints are estimated using Sparse
Markov Random Field Appearance Models. They are able to detect anatomical
structures by configurations of interest points, taking their spatial arrangement
and local appearance into account.

Based on the coarse position estimates of the bones, their contours are de-
lineated by Active Shape Models, controlled by ongoing estimates of the relia-
bility of the model. The regions around the joints are refined using submodels.
Landmarks are identified by their index and can be matched between different
instances of a shape. Hence, the defining points of the axes can be located in
a straightforward and repeatable way, when they are directly represented by
landmarks on the contour and annotated manually in the training phase on any
instance of the bone.

Overlapping structures and the compound nature of the large radiography
acquisition which results in partially missing data and changing intensities let
standard ASMs fail. For this reason, a search procedure is intruduced, which is
controlled by ongoing estimates of the fit confidence during the search, leading
to an improved result robustness, even if the spatial initialization is poor and
the structures of interest are partially cropped or occluded.

Experimental results show that the automatic assessment of the knee align-
ment angle allows for an accurate and observer independent quantification with
high precision and improves the detection of small changes.



Zusammenfassung

Der Beinachsen-Winkel, der durch die mechanischen Achsen des Femur und
der Tibia definiert wird, ist von großer Bedeutung für die Orthopädie und Trau-
matologie, insbesondere für die Operationsplanung und die post-operative Nach-
versorgung. Ferner dient er als Prädiktor von Präarthritis. Post-operative Mes-
sungen geben Auskunft über den Erfolg des Eingriffs.

Bisher gibt es ausschließlich manuelle und semi-automatisierte Meßmetho-
den. Ihr größter Nachteil liegt in der mangelhaften Reproduzierbarkeit der Er-
gebnisse. Der zu messende Winkel wird durch Punkte in der anatomischen
Struktur bestimmt, die nur vage definiert sind und nicht präzise identifi-
ziert werden können. Die resultierende Variabilität zwischen wiederholten Mes-
sungen macht die Erkennung von kleinen Änderungen unmöglich. Eine voll-
automatische Methode, die auf klar definierten Messpunkten basiert, würde die
durch menschliche Interpretation verursachte Variabilitt zwischen wiederholten
Messungenen beseitigen und zu akkurateren und reproduzierbareren Ergebnis-
sen führen.

Im Zuge dieser Arbeit wurde eine neue Methode entwickelt und prospek-
tiv getestet, die eine voll-automatische Messung des Beinachsen-Winkels auf
Ganzbein-Röntgenaufnahmen mit hoher Präzision erlauben soll. Die Positionen
der Beinknochen und -gelenke werden grob durch Sparse Markov Random Field
Appearance Models ermittelt. Diese können anatomische Strukturen durch Kon-
figurationen von “interest points” erkennen, indem sie ihre räumliche Anordnung
und lokale Erscheinung betrachten.

Basierend auf der groben Lokalisierung der Knochen werden deren Kontu-
ren durch Active Shape Models erkannt. Dabei wird die Suche von laufenden
Schätzungen der Zuverlässigkeit der aktuellen Modellanpassung gesteuert. Die
Regionen um die Gelenke werden durch die Verwendung von Submodellen ver-
feinert. Die Modell-Punkte können durch ihren Index identifiziert und zwischen
unterschiedlichen Instanzen einer Form zugeordnet werden. Daher können die
Punkte, die zur Bestimmung der Achsen dienen, in einfacher Weise ermittelt
werden, indem sie direkt durch Modell-Punkte auf der Kontur repräsentiert
und während der Trainings-Phase manuell annotiert werden.

Durch die aus mehreren Teilen zusammengesetzten großen Röntgen-
Aufnahmen und durch überlappende Strukturen ist die Bildinformation teil-
weise unvollständig und mit variiender Intensität behaftet, wodurch die übliche
ASM Segmentierung oftmals fehlschlägt. Aus diesem Grund wird eine Segmen-
tierungsmethode vorgestellt, die durch laufende Schätzungen der “Fit Confi-
dence” (Anpassungs-Qualität) gesteuert wird und zu verbesserter Robustheit
der Ergebnisse führt, auch wenn die räumliche Initialisierung ungenau und die
für die Messung relevanten Strukturen teilweise abgeschnitten oder verdeckt
sind.

Experimentelle Ergebnisse zeigen, dass die automatische Messung des
Beinachsen-Winkels eine präzise und beobachterunabhängige Quantifizierung
ermöglicht und die Erkennung kleiner Änderungen verbessert.



Synopsis

Chapter 1 gives an introduction which highlights the clinical background of
this work, outlines the state of the art in assessing knee aligment and states
the aim of this thesis. The remaining chapters divide the thesis into three parts.

In chapter 2 the methods deployed for image interpretation are explained.
It starts with an overview of the prevalent techniques and then focuses on a
sequence of concrete methods capable of delineating the lower limb bones and
measuring the alignment angles in a fully automatic way. The description of
the methods for the acquisition of training samples is followed by an illustration
of how shape and appearance can be modeled statistically. Sparse Markov
Random Field Appearance Models and, as an alternative, an application
specific approach are presented as techniques for coarsely localizing the bones
on a target image. The resulting estimations are used to initialize an Active
Shape Model (ASM) search, which is explained in detail. The remainder of
this chapter points out the shortcomings of the standard ASM search and
introduces a measure of fit confidence, which can be utilized to both express
the confidence in the results and improve accuracy and result robustness, by
controlling the search procedure by ongoing estimates of the fit confidence.

Chapter 3 reports on the experimental evaluation of the new methods. The
power and specificity of failure detection based on fit confidence is assessed and
the accuracy of the results are compared between the standard ASM search
and the enhanced search procedure. Further, the automatic assessment of the
knee alignment angle is evaluated functionally. The agreement of the results
with the standard of reference is calculated to determine accuracy. To evaluate
repeatability of the results, the agreement between repeated measurements
is computed. The findings are benchmarked against the results of manual
measuring techniques.

Parts of the work performed during this thesis also contributed to the Work-
shop of the Austrian Association for Pattern Recognition, OAGM/AAPR 2008
[WLD+08]. The paper outlines the methods introduced to increase result ro-
bustness, described in Chapter 2, and summarizes the experimental results pre-
sented in Chapter 3.
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Chapter 1

Introduction

1.1 The role of knee alignment

The assessment of lower limb alignment is important in the field of orthopedics
and traumatology, particularly when planning surgery such as total knee arthro-
plasty [LE77, PT92, PE88]. The knee alignment is of utmost importance in the
planning of corrective knee surgery and the degree of postoperative angulation
is known to be directly associated with the clinical outcome [CIW93, HD04].
In addition, the degree of mal-alignment correlates with the degree of cartilage
loss assessed by magnetic resonance tomography [CWHW04]. It is known that
quantitative joint space loss detected on radiography correlates with possible
prognostic value in knee osteoarthritis (OA) [SSF+01] and knee alignment an-
gle is closely related with structural progression in knee OA and with functional
decline [CWHW04, GB07]. OA is a wide spread pathology which is commonly
associated with deformities of the alignment of the lower limb [CSL+97]. In this
context, the varus knee alignment measurement focuses on arthritic changes in
the medial knee compartment whereas the valgus knee alignment affects the
lateral knee compartment. Further, the alignment of the lower extremity can
be thought of as a predictor for pre-arthritis and also plays a significant role in
the postoperative follow-up.

1.2 Definition of the knee alignment angle

Many authors suggest using full-limb radiographs to measure the hip-knee-ankle
angle (mechanical axis angle) to plan high tibial osteotomy, e.g. [BA00], [Gre95],
[Mur94]. In [IDC+07] the anatomic-axis angle (the femur-tibia angle) measured
from knee radiographs is suggested to assess alignment, in order to avoid pelvic
radiation and the need for special equipment. [CLS94], [YCTN07] and others
define the mechanical axis angle as the angle between the mechanical axis of
the femur and that of the tibia, i.e. the angle between two lines, each defined
by two points. Others, e.g. [BA00] and [HFB+06], define this angle by only
three points: the center of the femoral head, the center of the knee and the
center of the ankle mortise. The center of the femoral head was defined as the

7



center of the circumscribed circle of a triangle formed by three points along the
medial part of the femoral head, dividing it into portions of roughly equal size.
The center of the knee is defined to be in the middle between the intercondylar
notch and the center of the tibial spines. Considering a limited accuracy for
automatically localizing these two points, the latter approach is expected to
yield more stable angle measurements than trying to measure the angle between
two lines, each meeting one of these points exactly. The angles resulting from
the two approaches - assuming exact localization - deviate acceptably little.
Therefore, the three-point approach was adopted in this work, as depicted in
Fig. 1.1.

1.3 Conventional measuring techniques

Conventional measuring methods are the physical examination of the anatomic-
axis angle using a goniometer and radiographic assessment of the mechanical
axis, either on conventional or digital radiographs. The angle formed by the
intersection of the lines drawn from the hip to the knee and from the knee to the
ankle on a radiograph of the entire lower extremity is currently considered the
gold standard measure of knee alignment [KVWM05]. A standardized protocol
stipulates standing antero-posterior long-leg radiographs, using a conventional
film screen system [SSP+04, MBH87].

However, full-limb radiographs are limited in that they lack standardisa-
tion of the precise positioning of the patients. Poor control of patient po-
sitioning during set up, with common factors such as flexion and rotational
alterations, frequently influence the apparent alignment on the lower limb ra-
diograph [KPG90]. In addition, the image may be distorted by inclined x-ray
beams [CSB+91, SCB+91]. Moreover, assessment of images which are down
scaled in size to fit the screens loose precision and the two dimensional imaging
of a three dimensional body part bears inaccuracy in itself.

Observer variability is a further factor possibly reducing the accuracy of
manual measurements of limb alignment. Until recently, quantification of the
knee alignment offered difficulties as a result of unacceptable reproducibility
due to poor definition of landmarks and overall imprecise measurement tech-
niques. A novel digital method using Image J software to designate landmarks
digitally and to determine the angles formed by the femoral and tibial axes
was presented in [GB07]. Using this method, the limits of agreement between
duplicate assessments performed on separate days were reported to be +0.43◦

to −0.37◦ resulting in a minimally detectable change of 0.4◦ as compared to
repeated manual measurements, the limits of agreement of which were stated
to be +1.65◦ to −1.55◦, yielding a minimal detectable change of approximately
1.6◦.

Alternative measures are the anatomic-axis angle measured on a posteroante-
rior fixed-flexion knee radiograph or on an anteroposterior full-limb radiograph,
which are correlated with the angle measured on the full-limb radiograph and
have the potential to provide useful information regarding the risk of progression
of knee OA when a full-limb radiograph is not available [KVWM05].

Computer-assisted angle measurement on digital total-leg radiographs offers

8
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Figure 1.1: Full leg radiograph and definition of the knee alignment angle: the
mechanical axis angle is defined by three points: the center of the femoral head
(a), the center of the knee (b) and the center of the ankle mortise (c)
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a significantly lower evaluation time while showing no significant angle differ-
ences compared to conventional radiographic systems [SSP+04]. So far, however,
no fully automatic measuring method exists.

1.4 The aim of this thesis

The aim of this thesis is to develop a fully automatic method for assessing
the knee alignment angles on full-limb radiographs. The automatic measure-
ment should agree with the results of conventional assessment to an extent, so
that it can be considered suitable for replacing manual methods. The method
has to yield repeatable results to allow for the detection of even little change.
Computer-aided manual assessment will serve as standard of reference. The au-
tomatic method is to bear comparison with respect to variability and precision.

The development of an automatic measurement method meeting these re-
quirements involves selection and enhancement of suitable methods for

• automatic bone localization,

• accurate and robust shape delineation,

• coping with partially missing information (cropped shapes) and

• coping with overlapping and cluttered structures

10



Chapter 2

Automatic image
interpretation

Many approaches have been proposed for recognizing objects and locating struc-
tures in medical images, which can be subdivided into data-driven methods and
model-based methods [Coo04]. Data-driven approaches use only the image data
available and examine it at a low level, looking for local structures such as edges
or regions. Then, these low-level features are assembled into groups in an at-
tempt to identify objects of interest. But without a global model of the expected
appearance and shape of the object, this approach is difficult, prone to failure
and usually requires considerable user-interaction during the process. Model-
based approaches use a model of an object of interest to support its detection
in an image. Prior knowledge contained in the model can be used to resolve
the potential confusion caused by structural complexity, provide tolerance to
noisy or missing data, and provide a means of labeling the recovered structures.
The knowledge of the expected shapes of structures, their spatial relationships,
and their grey-level appearance can be used to restrict the search to “plau-
sible” interpretations. However, in the interpretation of highly complex and
variable structures, typically the case in medical images, it has proved to be
problematic to develop specific models, which are capable of representing only
“legal” examples of the modeled object, while allowing for natural variability.
This is mainly due to the required amount of training data necessary to achieve
sufficient generalization performance.

Deformable models maintain the essential characteristics of the class of ob-
jects they represent, but can deform to fit a range of examples. In order to
obtain specific models of variable objects, it is necessary to acquire knowledge
of how they vary. Where structures vary in shape or texture, it is possible to
learn to distinguish between plausible and illegal variations. Statistical models
can capture specific patterns of variability in shape and gray-level appearance
[CT92, CET98].

Kass et al [KWT88] introduced energy minimizing curves called Active Con-
tour Models or “snakes”. An external energy term drives the curve toward image
features, while an internal energy term aims to impose smoothness on the curve.
Although they are useful for locating the outline of general amorphous objects,
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they are not optimal for locating objects of a known shape, since they impose
no model other than smoothness.

Active Shape Models [CTCG92] are based on statistical models and belong
to the class of deformable models. They use a flexible model, which is based
on the distribution of boundary points in training shapes and is thus called
Point Distribution Model (PDM). By constraining the deformation based on
the learned statistical prior, the model will only deform to fit the data in ways
consistent with the training set. Active Shape Models are discussed in more
detail in Sect. 2.2.

Active Appearance Models [CET98] contain a statistical model of the shape
and grey-level appearance of the object of interest. They can generalize to
almost any structure and are even capable of synthesizing new instances of the
target object. The Active Appearance Model is a generalization of the Active
Shape Model approach. It uses not only the information near the modeled edges,
but also all textural information in the image region covered by the target object.

A comprehensive survey of deformable models used in medical image
analysis is given in [MT96].

The remainder of this chapter is structured as follows:

• Sect. 2.1 explains how the standard of reference data is obtained from a
set of sample images.

• Sect. 2.2 describes how statistical models of shape and local appearance
can be built from the samples.

• In Sect. 2.3 two alternative methods are presented, which calculate a
coarse estimate of the bones locations. This estimate is used to initialize
a subsequent search procedure.

• Sect. 2.4 explains the basic Active Shape Model search algorithm.

• In Sect. 2.5 several enhancements to the basic search algorithm are intro-
duced, which lead to better result accuracy and robustness.

• Sect. 2.6 describes how the alignment angle is calculated, after the lower
limb bones have been delineated automatically.

• Finally, Sect. 2.7 summarizes the complete angle measurement procedure.

2.1 Obtaining the standard of reference data

In this thesis, we aim at finding the mechanical axes of the lower limbs by
segmenting the right and left femora and tibiae and identifying the three specific
points p1, p2, p3 describing the alignment angle (see Fig. 1.1). For the automatic
delineation of the bones Active Shape Models are used, which employ statistical
shape models of the object of interest. In order to build these models, a set of
examples (in the following referenced as training set) is needed. In detail, we
need samples of all four lower limb bones, which are gathered from a number of
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full-leg radiographs and represented by a finite set of points along their contours,
called landmarks.

2.1.1 Landmarks

A landmark is a point of correspondence on each object that matches between
and within populations ([Ste00]). An nD-Landmark is a point x ∈ Rn in an
n-dimensional space. Since in this work we solely use 2D outlines of objects,
we define a 2D-landmark as point x ∈ R2. In the following, when the term
landmark is used, it always refers to 2D-landmarks.

One can roughly distinguish between three types of landmarks [DM98,
CTCG95]:

• Anatomical landmarks
Points assigned by an expert that correspond between organisms in some
biologically meaningful way.

• Mathematical landmarks
Points located on an object according to some mathematical or geometrical
property, i.e. high curvature or an extremum point.

• Pseudolandmarks
Constructed points on an object either around the outline or between
landmarks.

The identification of corresponding model points along the contours is a
prerequisite for building statistical models of shape. The models will capture
legal variations in shape by describing the dependencies between the variations
of individual landmark positions. If the model points do not correspond between
the samples, i.e. if they do not represent the same particular part of the object
boundary, the method will fail to capture shape variability.

Manually annotating a sufficiently large number of landmarks of an object
on several example images is a tedious and time consuming task. It has to be
executed by a human expert who is familiar with anatomy and experienced in
interpreting the type of medical image in question. It is not sufficient to indicate
the positions of anatomical landmarks, since in most cases there are not enough
of such landmarks to give a dense definition of an object. Besides, due to intra-
and inter-reader variabilities, the required accuracy is often difficult to attain.

To define boundary more precisely, the anatomical landmarks can be aug-
mented by equally spaced intermediary points between them. However, in prac-
tice the manual annotation of corresponding landmarks on a series of images
still requires a tremendous effort. In three dimensions it becomes almost im-
possible ([DTC+02]). Therefore, a variety of automatic and semi-automatic
methods have been developed to assist in this task [BMP01, Boo96, HTB00,
KG92, RCB97, RMP+96, SP95, SLH91, KNWT02]. An overview and timeline
of the various approaches can be found in [Coo04].

Although individual landmarks are hard to mark with sufficiently high preci-
sion, there exist well-established methods to semi-automatically obtain continu-
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ous delineations of object contours. The approach taken in this thesis therefore
involves two steps:

1. the continuous outlines of the objects of interest are delineated manually
in a sample image, assisted by a method described in the following section.

2. landmark correspondences on these contours are established by an auto-
matic method proposed in [DTC+02], which will be presented in Sect.
2.2.1.5.

2.1.2 Delineating the bones with Live-wire

The Live-wire algorithm, introduced in [MMBU92] and [USB92], provides a tool
for efficient, accurate, and reproducible boundary extraction which requires only
minimal user input. An objects boundaries can be extracted in one-fifth of the
time required for manual tracing, with 4.4 times higher accuracy and 4.8 times
higher reproducibility [BM97].

Boundary detection is formulated as a graph searching problem. The nodes
of the graph represent pixels in the image and the edges are created in a 8-pixel
neighbourhood. The user specifies a start node (called ”seed point”) manually
from which the algorithm searches for an optimal path to a goal node, specified
by the current position of the mouse pointer. When the mouse position is
moved in proximity to an object edge, a ”live-wire” boundary snaps to, and
wraps around the object of interest (see figure 2.1). Selection of a new seed
point freezes the selected boundary segment, and the process is repeated until
the boundary is complete.

The optimal path or boundary is defined as the minimum cumulative cost
path from a start node to a goal node, where the cumulative cost of a path is the
sum of the local costs (or edge link) on the path. The local costs are calculated
as a weighted sum of different component cost functionals, which exhibit the
desired property to be low at positions of strong edges. These functionals include

• laplacian zero-crossing, fZ

• gradient magnitude, fG and

• gradient direction, fD.

Thus, we can write the local costs l(p, q) of the path from pixel p to a
neighbouring pixel q as

l(p, q) = ωZfZ(q) + ωGfG(q) + ωDfD(p, q) (2.1)

where ωZ , ωG and ωD are the respective weights assigned to the individual
feature function, with emprical default values of ωZ = 0.43, ωG = 0.43 and
ωD = 0.14 [BM97].

The gradient magnitude, fG, is used for first-order positioning of the live-
wire, since it is a strong measure of edge strength. The function is defined as

1− G

max(G)
(2.2)
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Figure 2.1: The contours of the right femoral bone captured with Live-Wire.
Only ten points have to be selected manually to segment the complete outline
of the bone.

to response with low values to high image gradients. The laplacian zero-crossing,
fZ , provides a second-order fine-tuning of the final boundary position and is
defined fZ(q) = 0, where the convolution of the image with a laplacian edge
operator IL(q) = 0 or has a neighbor with a different sign, and fZ(q) = 1
otherwise.

The third component functional, gradient direction, restricts sharp changes
in boundary orientation. Let

G(p) = (gx(p), gy(p)) (2.3)

be the image gradient at point p with its components in the x and y direction,
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respectively, and let

D(p) =
(gy(p),−gx(p))
‖G(p)‖

(2.4)

(i.e. the unit vector normal to the gradient direction at point p) then the
gradient direction cost is defined

fD(p, q) =
2

3π
(
cos[dp(p, q)]−1 + cos[dq(p, q)]−1

)
(2.5)

where
dp(p, q) = D(p)·L(p, q)dq(p, q) = L(p, q)·D(q) (2.6)

are vector dot products and

L(p, q) =
{
q − p if D(p)· (q − p) ≥ 0
p− q if D(p)· (q − p) < 0 (2.7)

is a unit vector representing the bidirectional link between pixels p and q. Thus,
dp(p, q) is the angle between the unit vectors D(p) and L(p, q). The more the
directions of image gradient and link between two pixels agree, the lower the
cost that will be assigned to those pixels by the gradient direction feature fD.

2.1.3 The training instances

The training instances were gathered from total-leg radiographs of 15 patients,
12 male and 3 female, with a mean age of 29.4+6.9 years. The spatial resolution
of the image data was 0.3mm/pixel. The contours of the bones were captured
manually by a third-year radiology resident (six months of musculoskeletal sub-
specialty training), aided by the live-wire algorithm described in the previous
section. Two of the right tibiae and one right femoral bone had to be excluded
as they were either cropped or occluded to a large part by plates and screws,
so that their outlines could not be reconstructed. Hence, the models were built
from a training set of 14 instances of the right femoral bone, 13 instances of
the right tibial bone and 15 instances of both the left femoral bone and the left
tibial bone.

2.2 Active Shape Models

Active Shape Models (ASMs), introduced in 1992 by Cootes et al. [CT92],
are widely used in medical semgentation [LPBK07, PLW+07, TR01, CHTH94].
They provide a means to locate structures in images by utilizing prior knowledge
about shape and how it varies as well as local texture along the contour bound-
aries. This enables to constrain the search to only plausible shapes. The prior
knowledge is acquired during an initial training phase, where several manually
annotated instances of the object of interest are presented to a training algo-
rithm, which builds statistical models of shape and local texture. The search
procedure involves alternating steps of local texture matching and global shape
subspace constraint. The first searches within a limited range to move the con-
tour points to a position that optimally fits the texture model, while the latter
limits the movements to maintain shape plausibility. The model leads to a
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reliable delineation, and can cope with a certain amount of ambiguous image
content like overlapping structures in radiographs, or low contrast.

Although ASMs can be applied to shapes in 3D or even higher dimensional
space, we only consider the 2D outlines of the objects we are looking for. Fur-
thermore, we restrict the notion of contours to finite sets of contour points,
which we call 2D-landmarks or just landmarks in the following.

2.2.1 Modelling shape

Sect. 2.1.2 described a way to collect object outlines from training images. In
practice, the outlines are defined by a large but finite set of boundary points.
However, theoretically the contours are continuous, i.e. they are defined by
infinite sets of points. From these sets of boundary points, we need to select
model points or landmarks. As stated earlier, landmarks represent key points
of correspondence, which allow consistent localization on different images.

In section 2.2.1.5, a method is presented, which is able to select the corre-
sponding model points automatically from a given set of sample outlines. This
approach involves building shape models and optimizing an objective function
to find optimal correspondences. Therefore, we will first discuss shape modelling
and will present this method afterwards.

2.2.1.1 Shape and Pose

The training set we assembled consists of example outlines, which all are similar
in shape but have different absolute positions in the respective images. More-
over, they are also differently scaled and rotated. In the following, we will
distinguish between the notions of shape and pose, according to the following
definition:

• Shape Given an n ×m-matrix A, the column vectors (x1,x2, ...,xn) of
which denote points in Rn, then shape is defined as the equivalence class
with respect to the relation

A ∼ B :⇔ ∃T : B = T−1AT (2.8)

where T is the similarity transform matrix. In other words, the shape
is all the geometrical information that is invariant to location, scale and
rotation (cf. [DM98]).

• Pose The pose of an object is the geometrical information about its po-
sition, scale and rotation w.r.t. some coordinate reference.

Since we want to model shape, all information about position, scale and
rotation is neutralized by aligning the training set in a way so that the outlines,
now represented by vectors of landmarks, correspond as closely as possible,
which is achieved by a form of Generalized Procrustes Analysis. This step is
described in the following section.
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2.2.1.2 Alignment of the training set

In order to extract information about shape, the training instances have to be
freed from the effects of scale, translation and rotation. This is achieved by
aligning the samples to a common coordinate reference system. All instances
of a certain shape are thereby transformed into the same representative of the
shape equivalence class. More important, outlines of similar shape become
similar w.r.t. the distances between corresponding points. This is a necessary
precondition for deriving meaningful statistics. The required alignment is ap-
proached by a form of Generalized Procrustes Analysis (GPA)[Gow75], which
was described in [CTCG92].

Let x be a vector of n landmarks describing an instance of the training set,

x = (x0,y0,x1,y1, ...,xn,yn) (2.9)

Let M(s, θ)[x] be a rotation by θ and a scaling by s. To align two similar shapes
xi and xj we are looking for a θ, s and a translation t = (tx, ty) which minimize
the weighted sum

E = (xi −M(s, θ)[xj]− t)TW(xi −M(s, θ)[xj]− t) (2.10)

where

M(s, θ)
[
xjk
yjk

]
=
(

(s cos θ)xjk − (s sin θ)yjk
(s sin θ)xjk + (s cos θ)yjk

)
(2.11)

and W is a diagonal matrix of weights for each point. These weights are to
modulate significance of individual points according to the stability of their
position w.r.t. the other points in a shape.

In [CTCG92] the following definition of the weight matrix was suggested:
let Rkl be the distance between landmarks k and l of a shape, and let VRkl

be
the variance in this distance over the set of shapes. The weight wk for the kth

point can be chosen

wk =

(
n−1∑
l=0

VRkl

)−1

(2.12)

This definition assigns high weights to points with a low sum of variances, which
means, that this point has a stable position with respect to the other points.

To align all shapes in a set the following iterative procedure is proposed in
[CT04]:

1. Translate each example so that its centre of gravity is at the origin.

2. Choose one example as an initial estimate of the mean shape and scale so
that |x̄| = 1.

3. Record the first estimate as |x̄0| to define the default reference frame.

4. Align all the shapes with the current estimate of the mean shape.

5. Re-estimate mean from aligned shapes.

6. Apply constraints on the current estimate of the mean by aligning it with
|x̄0| and scaling so that |x̄| = 1.
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7. If not converged, return to 4. (Convergence is declared if the estimate of
the mean does not change significantly after an iteration)

This method aligns each shape so that the sum of distances of each shape to
the mean D =

∑
|xi− x̄|2 is minimized. The constraints applied to the current

estimate of the mean in step 6 are necessary to re-normalize the mean. Without
this, the algorithm would be ill-conditioned and wouldn’t converge [CTCG92].

2.2.1.3 Principal Component Analysis

The Principal Component Analysis (PCA) or discrete Karhunen-Loève trans-
form is a method of dimensionality reduction introduced in 1933 by Harold
Hotelling [Ste00]. The original variable space is rotated such that variance
along the coordinate axes is maximized. Then the axes are ordered according
to their variances. The first n principal axes will span a subspace that can ex-
plain a desired amount of the variance in the original samples. By discarding all
further axes, the high dimensional samples can be compressed and compactly
represented in the low-dimensional principal subspace. Thereby, a number of
correlated variables is transformed into a smaller number of uncorrelated vari-
ables called principal components.

Figure 2.2 illustrates this for a two-dimensional input space spanned by the
axis-vectors x and y. The two principal components p1 and p2 build the new
basis. Every data point can be described by a projection on the first component
p1, i.e. a coordinate with respect to p1, preserving a maximum of data variance
in the resulting description.

To represent a shape of n points, the (x, y) coordinates of the landmarks can
be concatenated to

xi = (x1,x2, ...,xn,y1,y2, ...,yn) (2.13)

so that the shape can be considered as a point in 2n-dimensional space. The
training set of shapes is assumed to constitute an ellipsoid structure [Ste00] the
centroid of which can be estimated [CET98]:

x̄ =
1
N

N∑
i=1

xi (2.14)

The covariance matrix of the set can be given

Σ =
1
N

N∑
i=1

(xi − x̄)(xi − x̄)T (2.15)

and by normalizing with the variance

V = diag(
1√

diag(Σ)
) =


1
σ1
· · · 0

...
. . .

...
0 · · · 1

σn

 (2.16)
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Figure 2.2: The principal axes of a two-dimensional data set.

the correlation matrix can be calculated [Ste00]:

Γ = VΣVT (2.17)

This matrix denotes the strength of relationship between the point coordi-
nates. Figure 2.4 illustrates the correlation matrix of the training set of 13 right
femoral bones.

The principal axes are defined as the eigenvectors Φ (or also called modes) of
the covariance matrix. Their corresponding eigenvalues λ depict the variances
of the data in the direction given by the respective eigenvector.

Every shape instance can be described by adding a linear combination of the
eigenvectors to the mean shape x̄:

x = x̄ + Φb (2.18)

where b is the vector of shape parameters. Note that the components of b
are ordered by decreasing amount of variation they account for. They denote
the coordinates with respect to the new coordinate system built by the principal
axes with the mean shape x̄ being the origin. Figure 2.5 illustrates deformations
of the mean shape of the right femoral bone using the first three principal modes.
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Figure 2.3: Covariance matrix of 13 right femoral bones with 256 landmarks
each.

2.2.1.4 Statistical Model of Shape Variation

The previous sections described how a training set of example outlines can be
obtained from a set of sample images and how the instances can be aligned
to neutralize pose information. After these steps, the remaining variations in
the model point’s positions reflect deformations of the shape. Applying PCA
to the set of the ns resulting shape representations with np model points each,
yields a model with a mean shape x̄ and a set of m = min(2np, ns) modes of
variation Φ = {φ1, ..., φm}, which are ordered by decreasing eigenvalues λi, i.e.
∀i = 1, ...,m−1 : λi > λi+1. An instance of the shape model can be constructed
by

x = x̄ + Φb (2.19)

where the parameter vector b is built by the coefficients of x − x̄ with respect
to Φ.

To avoid overfitting the model to the training data and actually modeling
noise, only the first t modes are chosen for the model. Since the variance along
the direction given by the eigenvector φi is determined by the corresponding
eigenvalue λi, it is straightforward to retain a fraction pv of the variation by
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Figure 2.4: Correlation matrix of 13 right femoral bones with 256 landmarks
each.

discarding all eigenvectors φt with

t−1∑
i=1

λi ≥ pv
m∑
i=1

λi. (2.20)

For this application, a number np = 256 of model points was chosen for each
bone, so that the original shape space had a dimensionality of 2 × 256 = 512.
Choosing a fraction pv = 0.95, the right femoral bone can be modeled using the
first 13 modes. Thus, an instance of this bone will now be described by a 13-
dimensional parameter vector. For the right tibia 12 modes were necessary, and
the left femoral and tibial bones were modeled using 14 modes each. To illustrate
the decay of the eigenvalues, figure 2.6 shows a bar graph of the eigenvalues of
the training set of right femoral bones.

The remaining modes of variation Φ determine the modeled directions of
deformation learned from the training set. But not all deformations of the
mean shape along these directions yield an instance which is similar to those
in the original training set. If we wish to generate only plausible shapes, the
shape parameters b must be chosen from the distribution p(b), which has to
be estimated from the training examples, such that p(b) ≥ pt, where pt is some
threshold on the probability density function. This threshold should be chosen
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Figure 2.5: Deformation of the mean shape using the first three modes
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Figure 2.6: The decrease of eigenvalues of the training set of right femoral bones

so that a high percentage of the training set passes it. For this application the
distribution can be approximated as a gaussian, since the changes in viewing
positions are too small to cause non-linear shape variations. If we further assume
that bi are independent, then

log p(b) = −0.5
t∑

i=1

b2
i

λi
+ c, (2.21)

where c is constant. Limiting each element bi of the shape parameters can
constrain the deformations to only plausible shapes. Choosing

|bi| ≤ 3
√
λi (2.22)

will let about 99.7% of the training instances pass (still assuming gaussian
distribution). Alternatively, b can be constrained to be in a hyperellipsoid,(

t∑
i=1

b2i
λi

)
≤Mt, (2.23)

where Mt is chosen using the χ2 distribution [CT04].

2.2.1.5 Automatically establishing landmark correspondences with
the Minimum Decription Length Approach

Identification of corresponding landmarks is a prerequisite for building statistical
models of shape. Manual annotation is often infeasible, due to the large number
of model points needed to give a dense definition of an object.

A fully automatic method for solving the correspondence problem to build
statistical shape models from a training set of example boundaries (or surfaces)
was proposed in [DTC+02] (earlier versions of this approach were published in

24



[KT98] and [DCT01]).

Dense correspondence over a set of training boundaries is established by
defining a parameterization for each instance of the training set.

Parameterization A parameterization ψi(t) maps the indices t of the
boundary points of an instance Si of a shape to the indices of the boundary
points of some reference instance, e.g. the mean shape S̄. In other words, the
parameterization governs the spacing between the points that are chosen to
sample the shape.”Good” parameterizations satisfy the requirement, that for
all indices t the point with the index ψi(t) of instance Si corresponds to the tth

point of the reference instance.

Finding the correct parameterizations {ψi} of the training shape boundaries
is treated as an explicit optimization problem. The basic idea is to find the
parameterizations of the training shapes that yield, in some sense, the ”best”
model. Kotcheff and Taylor [KT98] describe an approach in which the best
model is defined in terms of ”compactness”, as measured by the determinant
of its covariance matrix. In [DTC+02] the objective function is defined in an
information theoretic framework, with a rigorous theoretical basis. The quality
of a model is measured by how efficiently the entire training set can be described,
i.e. a minimum description length (MDL) [Ris83] criterion is adopted.

If the description had to be transmitted to some receiver, the message would
have to include both the encoded model parameter values and the encoded
data values. A poor quality of fit between the model and the data will increase
the coding length of the data. A more complex model may allow for better
compression of the data, but the costs for transmitting the model parameters
will rise. Minimizing the overall description length thus means balancing the
model’s complexity against it’s fitness w.r.t. the data. Here, the description
length is used as an objective function for optimization of correspondence
between the shapes. The better the parameterizations of the individual shapes,
the shorter the description length of the shape model parameters and the
encoded shapes will be.

To construct a shape model we first need to change to a coordinate system
whose axes are aligned with the principal axes of the training set. From the
eigenvectors {φi} of the covariance matrix we build the orthonormal set

φ̃m =
φm

‖φm‖
,m ∈ {1, ..., ns − 1} (2.24)

where ns is the number of training shapes. The new coordinates with respect
to the principal axes can now be written

ym ≡ x· φ̃m (2.25)

To describe this transformation the ns − 1 np-D vectors {φ̃m} have to be
transmitted. Their code length depends only on the number ns of shapes and
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the number np of points per shape and, hence, is constant for a given training
set. The set of coordinates Ym = {yim}, i ∈ {1, ...,ns} for each principal axis
φ̃m is modeled using a 1-D Gaussian. To calculate their description length the
data needs to be bounded and quantized. Given the original coordinates are
strictly bounded:

∀α∈{1,...,np},i∈{1,...,ns} : −r
2
≤ xiα ≤

r

2
(2.26)

then
R = r

√
np (2.27)

with
∀i∈{1,...,ns},m∈{1,...,ns−1} : −R

2
≤ yim ≤

R

2
(2.28)

gives the upper-bound for the new coordinates {yi} [DTC+02]. The quan-
tization parameter ∆ is determined by comparing the original shape and the
quantized shape. For boundaries from pixellated images ∆ is typically in the
order of pixel size. The quantization parameter will also give a lower bound for
the modeled variance:

σmin = 2∆. (2.29)

An expression for the description length of one-dimensional, bounded, and
quantized data, coded using a Gaussian model was derived in [DTC+02]:

Dm =


ln
(
R
∆

)
+D(1)(Ŷm, R,∆) if σm ≥ σmin

ln
(
R
∆

)
+D(2)(Ŷm, R,∆) if σm ≥ σmin

ln
(
R
∆

)
else

(2.30)

where Ŷm = {ŷi} denotes the quantized values of the original continuum coor-
dinates Ym = {yi}.

Letting ng be the number of directions which satisfy the first of the above
criteria and nmin the number of directions satisfying the second, then the total
description length of the training set can be written

D = (ns − 1) ln
(
R

∆

)
+

ng∑
p=1

D(1)(Ŷp, R,∆) +
ng+nmin∑
q=ng+1

D(2)(Ŷp, R,∆) (2.31)

Since the first term is constant for a given training set the objective function
F for the optimization task can be defined

F =
ng∑
p=1

D(1)(Ŷp, R,∆) +
ng+nmin∑
q=ng+1

D(2)(Ŷq, R,∆) (2.32)
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As stated earlier, the correspondence problem is cast as one of finding the
best parametrization ψi for each shape. Hence, F is minimized by manipu-
lating {ψi}. By demanding the parametrization ψi(t) of each shape to be a
monotonically increasing function of t, the point ordering and, consequently,
the correspondences can be constrained. In two dimensions, it is sufficient to
enforce the ordering of points on the boundaries according to arc-length. How-
ever, no such ordering exists on surfaces. To overcome this, a piecewise-linear
representation of the parametrization is suggested in [DTC+02], which enforces
an implicit ordering of the nodes and guarantees a diffeomorphic mapping even
for surfaces in three dimensions. For a single shape, the parametrization is
constructed following the below steps:

1. Chose an initial node from the shape outline. This node will represent the
initial set of parent nodes and count for both the origin and the endpoint.

2. Create a child node between each adjacent pair of parent nodes. The child
node will be described by the fractional distance along the curve between
it’s parent nodes.

3. Form a new set of initial nodes from the current parent nodes and the new
child nodes and enter the next level of recursion (Step 2), until a sufficient
number of nodes has been created.

In this fashion, a parametrization is described by a set of fractional distances
defining the positions of the child nodes relative to their respective parents. The
position values range from 0 to 1, where 0 means ”on the left neighbour”, 1
stands for ”on the right neighbour” and 0.5 denotes the position in the center
between the two neighbours. The number of nodes determines the degree of
refinement and depends, in general, on the complexity of the training shapes.

From the parametrizations ψi(t) constructed this way, an arbitrary num-
ber of corresponding points can be obtained by sampling the shapes at equally
spaced intervals of ψi(t). The sampled shapes can then be evaluated by calcu-
lating the objective function F .

The optimization procedure can be sketched as follows:

1. Generate a parametrization for each shape to the same level of recursion

2. Sample the shapes according to their parametrization

3. Build a model

4. Calculate F

5. Vary parametrization of each shape until F is optimal.

As F behaves highly non-linear and contains many local minima, a stochas-
tic optimization method, like e.g. a Genetic Algorithm search, is preferable
[DTC+02]. It is also important to note, that F can be minimized by collapsing
all points on all shapes to a single part of the boundary. This undesirable result
can be avoided by introducing a reference shape with a fixed parametrization.

To demonstrate the benefit of using the Minimum Description Length
method, two models were built from a training set of outlines of the left femoral
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bone. The first model was built using arc-length parametrization, while for the
latter a parametrization optimized by applying the above described Minimum
Description Length method was used. Figure 2.7 shows the first three modes of
the resulting models when using different parametrizations. The parametriza-
tion that minimizes the description length yields a model that can only represent
valid shape instances, while the model built with arc-length parametrization fails
to capture valid shape variation correctly.

Original FD 1Original FD 2Original FD 3

MDL FD 1MDL FD 2MDL FD 3

Figure 2.7: The first three modes of variation of a model built from the training
set of outlines of the left femoral bone with arc-length parametrization (top
row) and with a parametrization generated using the MDL method (bottom
row). The model built with arc-length parametrization can represent invalid
shape instances, whereas the model built with MDL parametrization can only
represent valid shape instances.

2.2.2 Modelling local texture

In the previous chapter we focused on how the shape of an object and its “le-
gal” variations can be modeled. If we want to use our shape model for image
interpretation, we need a drive that governs the way the landmark positions are
updated in order to fit the model to the target image. If we know that the model
boundary always corresponds to an edge, we can look along profiles perpendic-
ular to the current boundary through each model point and locate the strongest
edge. But in practice, model points are often placed on weaker secondary edges
or some other structure [CT01]. In this section, we therefore address a way to
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learn a model of local image content in proximity of the landmarks from the
training set.

Figure 2.8: Gray value profiles orthogonal to the shape.

During training, the manual annotation of the object’s outlines in each of the
training images and the identification of a set of corresponding landmarks on the
outlines of every object, provides the positions xij ∈ R2 of the landmarks. For
each of these points we sample along a profile normal to the object boundary
k pixels on either side of the point, as depicted in figure 2.8. The resulting
k + 1 pixels build a vector g∗ij (Fig. 2.2.2). Global changes in illumination
and contrast are largely eliminated by calculating the first derivative gi

j and
normalizing it by dividing through by the sum of absolute element values (Fig.
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Figure 2.9: Gray value samples gij
along the profile.
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Figure 2.10: Normalized derivative of
gray value samples g′ij along the pro-
file.
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2.10),

gi
j →

gi
j∑2k+1

s=1 |gi
j,s|

(2.33)

The resulting set of texture vectors for each landmark j is assumed to be dis-
tributed as a multivariate Gaussian, and we estimate the mean ḡj and covariance
Sj to obtain statistical model for the gray-level profile about the point [CT01].

2.2.3 Multi-resolution Active Shape Models

For this application a multi-resolution approach was used which incorporates a
coarse-to-fine search strategy to increase both speed, robustness and quality of
fit [CTL94]. First, the object is delineated in a coarse, low-resolution version
of the image, and then it is refined on higher resolution versions. For this it is
necessary to train a set of gray-level models for each landmark, one for every
level L of a multi-resolution image pyramid. Level L = 0 represents the original
image. By smoothing and subsampling the image at level each level L < Lmax,
an image of level L + 1 with half the number of pixels in each dimension is
obtained. Hence, the models at the higher levels are coarser, but capture larger
parts of the image. During search, the higher levels will allow large movements
and will yield a coarse delineation of the target object, which is then used to
initialize search on a finer level.

2.3 Coarse localization of the bones

Interpreting an image using a model is the task of finding the set of param-
eters, defining the shape and pose, which optimally match the image to the
target image. Most generally, this is an optimization problem, where the op-
timum is defined by a fit function. The fit function is obtained by generating
an instance of the model projected into the image and calculating a distance
measure between this hypothesis and the image content. If we have no initial
knowledge of where to look for the target object in an image, finding the best
set of parameters to maximize the fit is a difficult optimization problem, which
can, in principle, be solved with any general purpose optimizer, such as Genetic
Algorithms or Simulated Annealing [HCT92]. However, given an initial approx-
imation to the position of the target object in the image, local search techniques
can be used to locate the optimum rapidly. Active Shape Models, discussed in
Sect. 2.2, take advantage of the form of the fit function and provide one of such
techniques [CT04].

Thus, a method for coarsely estimating the initial position of the target
object in the image is needed. In this chapter, two possible approaches to this
task are presented: an application specific approach (Sect. 2.3.1) and a more
general approach based on sparse appearance models (Sect. 2.3.2).
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2.3.1 An application-specific approach

In the course of this thesis, a simple application specific approach to roughly es-
timating position, scale and orientation of the femora and tibiae was developed.
These estimates can be used for the initialization the segmentation algorithm
for each respective bone.

Figure 2.11: The lower limbs and hip are segmented from the background by
filtering and thresholding. From the resulting shape the medial axis transform
(”skeleton”) is calculated by morphological thinning. The center of the hip is
estimated by the position where the skeleton forks into two branches. The two
branches themselves are used as approximation of the medial line through the
bone shafts

As a first step, the image is down-scaled to 15% of its original size. To
strengthen the contrast between foreground, i.e the patients legs and hip, and
background, a filter F is applied, which is calculated from a bivariate gaussian
filter F′ by dividing through max F′ = 1/(2πσxσy). Empirically, choosing σx =
1 and σy = 0.7 has proved to yield expedient and stable results. By thresholding
the filtered image, a binary image of the legs and hip is created. The threshold
is chosen using Otsu’s method, which minimizes the intraclass variance of the
thresholded black and white pixels. Next, morphological opening is performed
on the binary image in order to remove small objects and smooth the outlines of
large objects. From the resulting shape the medial axis transform (”skeleton”)
is calculated by morphological thinning. Searching vertically downward in the
image, the center of the hip is estimated by the position where the skeleton forks
into two branches. The two branches themselves are used as approximation of
the medial line through the bone shafts (figure 2.11).
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2.3.2 Sparse Markov Random Field Appearance Models

Recently, Donner et al [DML+07] proposed a method based on Markov Random
Fields (MRF) to detect anatomical structures by configurations of interst points.
The approach incorporates the positions of the interest points as well as local
features in their vicinity, and uses the information of all interest points to find an
optimal mapping of the modeled object to the target image. The quality of fit
is defined by the combined costs of non-rigid deformations and local descriptor
differences. The max-sum algorithm [Wer05] finds a solution that minimizes
these costs in a single iteration.

In principle, arbitrary interest points and local descriptors can be used. For
this application, symmetry-based interest points and local descriptors [DML+07]
derived from Gradient Vector Flow (GVF) [XP98] were used, since the limbal
bones exhibit a shape with a high degree of symmetry w.r.t. their anatomical
axis. These interest points and local descriptors benefit from the ability of the
GVF field to detect even weak structures while being robust to certain amounts
of noise in the image.

The GVF field can be computed from an edge map or directly from a grey-
level image and is given by a complex matrix G. Maxima of the field magnitude
|G| mark areas of high image gradient and the start- and end-points of the field
lines of G are located at symmetry maxima. Thus, the symmetry interest points
are defined by the local minima of |G| (Fig. 2.12).

The orientation bi ∈ [0, π] of the local region surrounding the interest point
is calculated as

bi = ∠G(xi + ∆xi, yi + ∆yi), (2.34)

which is the orientation of G at a pixel in a local r × r-pixel neighborhood
satisfying

(∆xi,∆yi) = argmin
∆yi∈{−r/2,...,r/2}

∆xi∈{0,...,r/2}

|(∠G(xi+∆xi, yi+∆yi)−∠G(xi−∆xi, yi−∆yi)|.

(2.35)

To estimate the scale s of the interest point, the mean distance to the two
closest local maxima of |G| in the direction of bi ± π is calculated.

The local descriptors are patches extracted from G around the symmetry
interest points, according to the scale si and orientation bi, and re-sampled to
a 10 × 10 grid, as depicted in Fig. 2.13. Hence, the local descriptors encode
information about the image gradients around the interest points, in a way
invariant to scale and rotation of the object in the image.

The similarity between two descriptors can be measured using euclidean
distance. However, as the orientation of an interest point is only defined up to
±π, the actual distance between two descriptors D1 and D2 is calculated as

min(‖abs(D1 −D2)‖, ‖abs(D1 −D∗2)‖), (2.36)

where D∗2 denotes the second descriptor D2 rotated by π.

A subset of the interest points on a model image is selected to represent the
object of interest. The selected points build the nodes of a graph. The a edges
are defined by the Delaunay triangulation of the points and represented by a
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(a) (b)

Figure 2.12: Examples of GVF with the detected symmetry interest points
(diamonds). In the case of a symmetrical structure formed by a homogeneous
region surrounded by a different gray level value the field points either towards
(a) or away from (b) the local symmetry center of the structure. (Figure taken
from [DML+07])
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Figure 2.13: Descriptor extraction from the GVF field. Around each symmetry
point patches are extracted from the vector field according to their scale and
orientation. The patch is then resampled to a 10 × 10 grid to form the actual
descriptor. The image is displayed for better visualization, the symmetry points
are marked as circles. (Figure and text taken from [DML+07])

set A of index-tuples. To localize an object in a target image, all target interest
points are considered as potential candidates to correspond to the model points.
The N candidate correspondences of each model point are called fields or labels
and the M model points objects. The Markov Random Field represents a graph
with N2 edges fully connecting the labels of two adjacent objects, so that the
total number of edges is aN2 (see Fig. 2.14). The labels as well as the edges
have qualities (or weights) assigned to them. The quality of a label equals the
negative distance between the local descriptors of the respective target interest
point and model point. To calculate the quality of an edge between two labels ni
and nj , its length and angle is compared to the edge α between the corresponding
objects. The edge quality is set to

e(α, ni, nj) = − (|lengthA(α)− length(ny, nz)|+ γ (|∠A(α)− ∠(ni, nj)|)) ,
(2.37)

where length(h, k) represents the pixel distance between interest points k and
h, ∠(h, k) is the orientation of the edge and γ is a normalization factor to
compensate for the different scale of angles and lengths.
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Figure 2.14: The MRF graph consists of M nodes (objects), each of which has
N fields (labels). The labels of two adjacent nodes are fully connected by N2

edges. (Figure taken from [DML+07])

Selecting labels for each object, so that the sum of label and edge qualities
of the resulting sub-graph becomes maximal, optimally fits the model to the
target interest points. This can be achieved by the max-sum solver.

The max-sum (labeling) problem of the second order is defined as maximiz-
ing a sum of bivariate functions of discrete variables. The solution corresponds
to finding a configuration of a Gibbs distribution with maximal probability,
which is equivalent to finding a maximum posterior (MAP) configuration of a
Markov Random Field with discrete variables [Wer05].

Letting C be an M × N -matrix, assigning qualities of fit between the N
labels and the M objects, and E an a × N2-matrix determining the a edge
qualities for each of all N2 pairs of labels, the total quality of the label selection
S = {n1, . . . , nM} with ni ∈ {1, . . . , N} is defined as

C(S) =
∑

m=1...M

C(m,S(m)) +
∑

α=1...a

E(α, β(E,S, α)), (2.38)

where β(E,S, α) denotes the column representing the quality of the edge be-
tween the labels chosen to represent the edge A(α). The set of optimal labels
is thus

S∗ = argmax
S

C(S). (2.39)

The max-sum approach doesn’t solve the problem of a multi-label MRF
exactly, as it is NP-hard. Still, if the graph is a tree the global optimum of
Eq. (2.39) is guaranteed [Kol06], and otherwise, max-sum takes various approx-
imations into account to reach a possibly optimal solution.

Both, this method and the application specific approach described in Sect.
2.3.1, provide a course location estimate of the bone’s positions.

2.4 Image interpretation with standard Active
Shape Models

The generated models of shape and local texture can now be used to find new
examples of the modeled object in images. In this section an iterative algorithm
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is presented to find the shape and pose parameters, which cause the model to
coincide with the structures of interes in the image.

Starting from a rough estimation of the instance X of the model, the
algorithm - using multi-resolution ASM - can be summarized as follows
[CTL94, CTCG95]:

1. Set L = Lmax

2. While L > 0

(a) Compute the model point positions of the current estimate of X in
the image at level L.

(b) Update the landmark positions according to image content.

(c) Transform these local deformations into adjustments to the pose,
scale and shape parameters of the Point Distribution Model

(d) Enforce limits on the shape parameters to apply global shape con-
straints ensuring the shape of the model example remains similar to
those of the training set.

(e) Return to (2a) unless more than pclose of the points are found close
to the current position, or Nmax iterations have been applied at this
resolution.

(f) If L > 0 then L→ (L− 1)

3. The final result is given by the parameters after convergence at level 0.

This way, the models attempt to deform to better fit the data, but only in
ways which are consistent with the shapes found in the training set. In the
following, the particular steps are explained in detail.

2.4.1 Updating the landmark positions according to image
content

In order to fit the model instance X to the image content, a region of the image
around each model point is examined to determine a displacement which moves
it to a better location. This is done by translating each landmark j along a line
perpendicular to the shape and sampling m profile vectors γj,d, d ∈ {1, ...,m}
according to the computation of the gray-value vectors gi

j during training. The
profile vector γj,t, which minimizes the Mahalanobis distance [Mah30] to the
modeled texture ḡj is chosen and landmark j is updated accordingly.

The Mahalanobis distance is defined

f(d) = (γj,d − ḡj)TS−1
j (γj,d − ḡj), (2.40)

where Sj is the covariance of the gray value profile samples in the training set.

Repeating this for every model point gives a suggested new position for each
point.
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2.4.2 Updating pose and shape parameters

After having calculated new positions Y = X + dX of all landmarks to improve
the fit of the model instance to the image content, the shape model is fit to these
new points. This is achieved by adjusting the shape and pose parameters in a
way so that the resulting model points are as close as possible to the suggested
positions Y. Letting TXt,Yt,s,θ be a function, which performs a translation by
(Xt, Yt), a rotation by θ and scaling by s, the updated model instance X′ can
be expressed

X′ = TXt,Yt,s,θ(x̄ + Φb). (2.41)

The optimal fit can be found by minimizing the sum of squared distances

‖Y −TXt,Yt,s,θ(x̄ + Φb)‖ (2.42)

between corresponding points in Y and X′. The search can be performed by
the following iterative algorithm [CT04]:

1. Initialize the shape parameters, b, to zero

2. Generate the model instance x = x̄ + Φb

3. Find the pose parameters (Xt, Yt, s, θ) which best map x to Y

4. Invert the pose parameters and use to project Y into the model co-ordinate
frame:

y = T−1
Xt,Yt,s,θ

(Y) (2.43)

5. Project y into the tangent plane to x̄ by scaling by 1/(y.x̄)

6. Update the model parameters to match to y

b = ΦT(y − x̄) (2.44)

7. Apply constraints on b, so that p(b) ≥ pt. See Eq. 2.21 and Eq. 2.22.

8. Go to step 2 until the search converges.

The search is considered converged, when applying an iteration produces
no significant change in the pose or shape parameters. Usually, this approach
converges in a few iterations.

2.5 Improvements to the ASM Approach

Applying Active Shape Models in their basic form already yields good results for
some of the test instances (see Sec. 3). However, if the search is not initialized
sufficiently well, the search procedure is prone to ending prematurely in (or
close to) a local minimum. It can even pull the landmarks towards wrong
directions. The application specific initialization approach may fall below the
required accuracy, if the gauss-filtered gray-level intensity between the thighs
drops insignificantly, and therefore a possibly too large fraction of the legs cannot

36



be seperated. The estimated position of the center of the hip and, hence, the
estimated positions of the limbal bones will be vertically displaced from their
true locations. The initialization using Sparse MRF Appearance Models can fail
if due to overlapping structures, partially missing data and changing intensities,
a too little number of interest points can be identified to match the modeled
landmarks.

But even if the initialization provides a considerable overlap with the bone
in the target image, ASM-search may fail for full leg radiographs, since screws,
plates, raster lines or the seam between two radiograph-tiles, that cannot be
completely removed by filtering, cause an appearance which is only partially
consistent with the learned model, resulting in a cost minimum that does not
coincide with the correct match of the model. Moreover, the standard ASM seg-
mentation result does not provide a measure of confidence, that would indicate
such a failure to the clinical expert.

For this reason, we introduce an approach that continuously assesses the local
fit confidence during an ASM search. We apply it to the delineation of lower
limp bones in composite full-leg radiographs. The fit confidence contributes in
two ways: 1. it allows for a transparent assessment of the reliability of the local
delineation result, and 2. it can control the search procedure automatically
and results in improved results for ambiguous and complex data. This measure
allows to incorporate strategies for search method refinement, such as dynamic
adaptation of search parameters, conditional inclusion of an alternative search
step or re-initialization, which considerably improves accuracy and robustness
of the results.

2.5.1 Related work

Several improvements to the ASM methodology have been proposed. Yan et al
[YLL+03] proposed a method which effectively incorporates not only the shape
prior and local appearance around each landmark, but also the global texture
constraint over the shape, to perform more stable against varying initialization.
They used boosted regression instead of the original eigen model profiles of the
texture around each feature point, to learn the relationship between the dis-
placement to the true feature location and the textural appearance of the local
neighbourhood around each feature point.

Steward et al [SLT04] presented an uncertainty-drived hybrid of feature-
based and intensity-based registration, where the alignment error variance is
computed to generate registration constraints for the next iteration of the
matching process. The search region is controlled by both the uncertainty in
the current transformation estimate and the properties of the image locations
to be matched.

Wang et al [WWL06] proposed and compared new local detectors, which
essentially combined grey-level derivatives and edges sampled from an edge map
to build improved point distribution models. They filled the sample vectors with
edges and assigned polarity of the derivative or, by their preference, alternated
edge and derivative to build a combination vector of double length. These
combination vectors are then used for comparison instead of the normalized
derivative vectors to improve the performance of the search procedure.

37



In a related line of work, Beichel et al. [BBLS05] proposed robust active
appearance models (AAM), that deal with occlusions and outliers during an
AAM search, by discarding respective regions based on their coherence with the
learnt model.

2.5.2 Estimating Fit Confidence

In this section, an approach to continuously assessing reliability throughout the
search process is introduced. The reliability estimates can be used to control
search and - if necessary - can caution the clinical expert about low confidence
and possible failure. While the constant assessment of confidence improves
the search performance, the assessment of the result confidence is an essential
property for the application of automatic methods in a clinical setting.

During the search process local texture matching moves the landmarks to
optimal positions within a certain search range. Ideally, in the last iteration the
new landmark positions will accurately represent the outlines of the modeled
object in the target image. In this case, the drive of local texture matching and
shape constraint will agree perfectly. However, as long as the shape and pose
parameters are still too far apart from their correct values, the new landmark
positions will not form a plausible shape and will thus be corrected by the lim-
itation of the shape parameters. As the search proceeds, the shape will either
be moved out of the boundaries of the target image, or the landmark positions
will engage in oscillation, caused by opposing drives of local search and shape
constraint.
In [CTL94], where ASMs were first introduced, it is suggested to detect con-
vergence of the search by some threshold of change. If the change of landmark
positions in an iteration drops below this threshold, the search is considered
converged. However, due to noise and patterns in the target image that are not
captured by the model, the landmarks will oscillate even if the shape and pose
parameters are already within satisfactory ranges. To avoid the search to go on
infinitely, a maximum number of loops is established. But when this number of
loops is reached, there is no telling whether the search was successful in finding
accurate shape and pose parameters or not.

Therefore we suggest to compensate the effects of noise by applying a gauss-
filter to the magnitudes of change of the individual landmarks. Furthermore,
rather than using the euclidean distance between the former and the updated
landmark position to assess the magnitude of change (or the amplitude of
oscillation), we introduce a measure that is supposed to be more capable of
reflecting the agreement between texture matching and shape constraint. Also,
this measure is proposed as criterion for segmentation success, assuming that if
the landmarks are close to their true positions, the agreement will be high and
otherwise low.

Search procedure Finding parameters p in parameter space P that fit a
shape model to a target image can be viewed as the minimization of an error
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function of local image content and shape deformation:

e(p) = eT (p) ◦ eS(b) (2.45)

where b are the shape parameters, and p is the parameter vector
(Xt, Yt, s, θ,b) determining translation, scale, orientation and shape. The tex-
ture error eT is the overall profile appearance error at the landmark positions
and eS is the shape error. eT can be calculated as an accumulation of the indi-
vidual landmark texture errors elm which are given by the Mahalanobis distance
of the sample gray value profile γlm to the mean texture profile ḡlm, i. e.,

elm = (γlm − ḡlm)TS−1
lm (γlm − ḡlm), (2.46)

where Slm is the covariance of the gray value profile samples in the training
set. For instance, we can build outline texture vectors by concatenation of the
texture vectors of all landmarks, and define eT as the mahalanobis distance to
the mean outline texture vector. Assuming the textures independent between
the landmarks, the resulting definition of eT would be

eT =
∑

elm(p)2
i (2.47)

i.e. the squared sum of the errors of the individual landmarks.

The shape error eS reflects the plausibility of the deformation given by the
shape parameters and can be derived as the distance to the mean shape bmean =
~0, using a metric which accounts for the correlations of the training set through
the standard deviations of the elements bi of b, e.g.

eS(b) =
∑

eS,i(bi) (2.48)

eS,i(bi) = c× |bi|n = n−1 × (3σi)1−n × |bi|n (2.49)

The slope of eS is governed by n. The constant c is chosen such that

deS,i(bi)
dbi

{
< 1 if |bi| < 3σi
> 1 if |bi| > 3σi

(2.50)

See figure 2.15.

Intuitively, we would like to accept a parameter vector p∗ as plausible seg-
mentation of an object if both eT (p∗) and eS(b∗) are low. However, due to noise
and variations in illumination and texture it is hard to define a threshold for eT .
Either, the chosen threshold will often be too restrictive and reject correct de-
lineations due to increased texture errors resulting from noisy target images, or,
the threshold will fail to reliably classify all cases of failure or inaccurate results.
Therefore, instead of defining a threshold for eT , we try to derive a relative error
measure by assuming that p∗ is plausible to segment an object correctly, only
if both eT (p∗) and eS(b∗) have values close to the minimum errors within the
search range. And we argue, that a parameter vector p∗, which both satisfies
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Figure 2.15: The shape error function eS .

the shape constraint and yields a minimum texture error eT (p∗) within a suffi-
ciently large search range is very likely to identify the target object in the image.
This argument is encouraged by eS and eT being independent measures. Hence,
letting dT and dS be some metrics (or at least quasisemimetrics), we assert

dT (p∗,pmin) < tT (2.51)

and
dS(b∗,bmin) < tS (2.52)

where bmin and pmin are the locations of the minimum shape error eS and
the minimum texture error eT , respectively, within the search range. In the
following we try to set up definitions of dT and dS .

Since eS reflects the distance to the mean shape we know that the local and
global minimum is found at b = ~0 and has the value 0. We define

dS(b1,b2) = |eS(b1)− eS(b2)| (2.53)

so that
dS(b, 0̃) = eS(b). (2.54)

As for shape deformation, we can thereby establish an absolute threshold tS
for eS . Limiting the shape parameters b will keep eS(b) below this threshold
and thereby maintain inequation 2.52, corresponding to a minimal acceptably
posterior probability of the shape within the trained shape space, assuming a
Gaussian distribution.

Note that there is no unique local minimum of eT . Even within the search
range, there can be more than one such minimum. The values of the local
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minimum are unknown and eT does not increase monotonically with increasing
euclidean distance to the location pmin of the minimum error within the search
range. Two points within the search range may lie far apart, but still fit the
modeled texture similarly well,i. e. e1(p1) ≈ e1(p2). Vice versa, if the euclidean
distance between two points in P is small, they frequently offer very different
fitness. As a first step, we can define

d′T (p1,p2) = |eT (p1)− eT (p2)| (2.55)

The advantage of this definition over the euclidean distance between the land-
mark positions is that it accounts for the quality of fitness rather than the offset
from the optimal position. However, we still have to deal with absolute values of
fitness, which may vary between images and even between regions within an im-
age. To overcome this problem, the measure is normalized by dividing through
the maximum difference of fitness between two points within the search range

dT (p1,p2) =
∣∣∣∣ eT (p1)− eT (p2)
eT (pmax)− eT (pmin)

∣∣∣∣ (2.56)

As dS(b∗,bmin) will be kept low by limiting the shape parameters, evalu-
ating dT (p∗,pmin) after shape constraint will yield an inverse measure of con-
fidence in segmentation success. By replacing eT by elm, one can analogously
define a measure dlm for each individual landmark, which allows to assign con-
fidence values to regions along the contour (see Fig. 2.16).

The Fit Confidence Flm(p) for an individual landmark can now be defined:

Flm(p) = 1− dlm(p∗,pmin) (2.57)

= 1−


elm(p)−elm(pmin)

elm(pmax)−elm(pmin) if elm(pmax) 6= elm(pmin)

0 otherwise
(2.58)

where pmax and pmin are the locations of the maximum and minimum texture
error elm within the search range. Although the overall Fit Confidence for the
entire shape could be likewise derived from eT , in this work we chose to derive
it from the confidence values of the individual landmarks and calculated the
overall Fit Confidence as

F (p) =
√∑

Flm(p)2/
√

n, (2.59)

where n is the number of landmarks. In section 3.2 the capability of this measure
to determine success of the search is experimentally tested.

2.5.3 Using Fit Confidence to control search

In the following 4 uses of fit confidence are proposed to improve the ASM search:
1. a better termination criterion for the search procedure, 2. individual search
ranges for each landmark for the texture profile matching, 3. variable weights
derived form fit confidence for the shape alignment, and 4. the possibility for
re-initialization of the search procedure. All these improvements are based on
the notion of fit confidence, and their effect will be evaluated in Sec. 3.
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Figure 2.16: Fit Confidence calculated locally for individual landmarks. The
images show successive iterations of the search procedure. The categories high,
medium and low Fit Confidence are represented by green, yellow and red outline
color, respectively.

2.5.3.1 Termination of the search procedure

In the original Active Shape Models formulation it was suggested to formulate
the termination criterion for the iterative search algorithm in terms of a thresh-
old of change. The procedure was to be repeated until no significant changes
result [CTCG95]. However, over the iterations of the search procedure, the
model points approach their correct positions in a non-monotonic manner, and
the difference in the positions of the landmarks of two successive iterations does
not decrease monotonically. In fact, even after iterations which caused only
very little change, the approach can ”pick up speed” and move the landmarks
to their final positions. Furthermore, in some cases the model points are moved
to their correct positions in only small steps. It is therefore not always possible
to define an appropriate threshold of change to establish an optimal termina-
tion criterion. If the threshold is chosen too high, the search will terminate
prematurely and provide inaccurate results. If it’s chosen too low, the search
will be unnecessarily prolonged, so that the time needed to locate the object
will increase without improvement of accuracy. In the worst case, the search
will engage in an oscillating behavior and never terminate, unless a maximum
number of iterations is defined. Figures 2.17, 2.18 and 2.19 show exemplary
values recorded during the search for a femoral bone in an example image. The
correlation between the change in the landmark positions (Fig. 2.17) and the er-
ror (Fig. 2.18) is rather low (correlation coefficient c = 0.17). The fit confidence
on the other hand (Fig. 2.19) is highly correlated with the error (c = −0.98) and
thus allows to formulate a better termination criterion by setting a threshold
based on this value. The plot indicates that the fit confidence is better suited to
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serve as a termination criterion, than the position difference between successive
iterations.
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Figure 2.17: Euclidean distance between the landmark coordinate vectors of
two successive iterations of the search procedure.
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Figure 2.18: The maximum euclidean distance of a landmark to its correct
position over the iterations of the search procedure.
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Figure 2.19: 1 - Fit Confidence over the iterations of the search procedure.

In the previous chapter, Fit Confidence has already been suggested as mea-
sure of confidence in success. Obviously, the problems mentioned above could
be overcome, if the search algorithm terminated just by the time it succeeded in
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attaining a desired accuracy. Thus, in the course of this work, Fit Confidence
will be evaluated against change to detect that a desired level of accuracy has
been reached. If Fit Confidence outperforms change in this regard, a novel ter-
mination criterion can be formulated to allow for more accurate segmentation
results.

2.5.3.2 Variable search range

The search algorithm only works well when appropriate search ranges are used
in the texture matching step (see the experimental results of increased and de-
creased ranges in Sect. 3.3). Due to the repetitive and cluttered structure of
many anatomical sites a wide range can cause the divergence from the struc-
ture. Normalizing brightness and contrast and working on gradient images, as
suggested in [CT04], even deteriorates this effect. In the case of overlapping
structures, with multiple contours as e.g., in the hip region, this can make a
reliable search for the structure of interest unfeasible. Even structures which
apparently do not resemble the texture in question - e.g. seemingly solidly gray
areas - come forward as top candidates of the texture matching algorithm. Oc-
casionally the forces of the individual landmarks sum up to zero when the shape
is updated, so that the landmarks engage in oscillation, i.e. they are infinitely
moved to local texture error minima and immediately corrected back to their
original locations when the landmark coordinates are projected onto the princi-
pal components of the model and the parameters are limited to preserve shape
plausibility. In other cases, the shape will simply be moved out of the image.
However, when the texture matching algorithm searches in too narrow a range,
i.e. if the search range is smaller than the distance of a landmark to it’s correct
location, the algorithm will not be able to move the landmark to the optimal
position. Actually, the model point could even be moved farther away from
it. The choice of the search range, especially in combination with the distance
of the landmarks to their true positions, has therefore great influence on the
accuracy of the segmentation result.

Starting the search with a wide search range and decreasing it over the iter-
ations of the process will undoubtedly guarantee that the search will converge.
However, the point in shape space where it will terminate is governed by the
number of iterations needed to decrease the search range to zero, rather than
by properties of the positions in the image to which the landmarks have been
moved. Moreover, the correct landmark positions may simply move beyond
reach when the search range is decreased monotonically.

For this application, an effective range control mechanism was developed
and tested, which introduces individual dynamic search ranges for every model
point, that are updated after every iteration, according to the current local
fit confidence. High confidence will narrow the search range for the respective
model point. Likewise, low confidence will widen the search range. If we define
rmin and rmax to be the minimum and maximum search range, respectively,
and Fl,i to be the local fit confidence of the landmark with index l after the ith

iteration, the search range rl,i+1 for this landmark in iteration i+ 1 is given

rl,i+1 = rmax − Fl,i(rmin − rmax) (2.60)

Note that the value of Fl,i is in the range [0, 1] so that the search range will be
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kept within the limits rmin and rmax.

2.5.3.3 Variable deformation limits and weights for shape alignment

Depending on the starting position of the search, on the visibility and image
quality of the individual regions along the boundary of the object, the correct
locations of some of the landmarks can more easily be found than those of
others. For example, pathological variances in structure and appearance can
make texture matching very difficult and fault-prone in the affected regions. In
some cases the search algorithm has to cope with missing information, e.g. when
parts of the bones are invisible, because the image is cropped or because they
are occluded by screws, splints and plates in images which show post surgical
status. The presence of a prothesis (e.g. a femoral head prothesis) causes the
appearance of regions, which are crucial for the calculation of the mechanical
axis, to deviate dramatically from the modeled texture. Figure 2.20 shows
examples of such cases.

Figure 2.20: The radiographs are composites of 3 partial radiographs and show
a quadratic measurement grid. Many images show post surgical status. Parts of
the bones are occluded by screws, splints and plates. The presence of a prothesis
causes the appearance to deviate dramatically from the modeled texture.

In addition, due to the shape of the object, there are model points which
cannot be matched to better positions until the landmarks are already close to
their true locations. Figure 2.21 illustrates this.

The shape model allows the search to infer the positions of these landmarks
from the remaining points. During search the weight of the contribution of
individual points to the model parameter estimate can be adjusted in a con-
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Figure 2.21: The local texture matching searches only perpendicular to the
current contour (red lines) and, thus, fails to move the landmarks of the lower
part of the bone to their correct positions.

tinuous manner, to account for their varying reliability. The search procedure
can be roughly subdivided into two phases. During the first phase, the pose
of the shape is still inaccurate, i.e. there are still considerable corrections of
scale, translation and rotation necessary. The second phase is entered when the
shape’s pose is roughly aligned and the main corrections are with regard to the
shape parameters.

Every iteration in the first phase, consisting of local texture matching and
global shape constraint, can be viewed as a vote for the way the pose is updated.
After every model point made it’s contribution to translate, rotate or scale the
shape, the prior knowledge about the object’s shape constrains the result to a
plausible shape with updated pose. This effect and the two phases of the search
are inherent to and emerge from the standard ASM search procedure. However,
it can be essentially reinforced by assigning higher weights to the contributions
of landmarks which are already close to their correct locations during the first
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phase and by explicitly entering the second phase, where the shape parameter
constraint can be relaxed, when a required accuracy has been attained. Again,
Fit Confidence can be used to estimate accuracy.

When updating the model parameters to fit the model to the new landmark
positions, the first step is to find a translation dXt, dYT , a rotation dθ and a
scaling ds which best map the current set of points, X, onto the set of updated
landmark positions Y = X+dX. This is done by finding the optimal parameters
dXt, dYt, dθ, ds to align X and Y so as to minimize the weighted sum-of-squares
measure of point difference

E =
n∑
i=1

(Y − TdXt,dYt,dθ,ds(X))TW(Y − TdXt,dYt,dθ,ds(X)) (2.61)

For our application, we choose W to be a diagonal matrix with

wll = Fl (2.62)

This way, landmarks with higher Fit Confidence are weighted higher in order
that they drive the other landmarks to plausible positions.

2.5.3.4 Re-initialization by interposition of an alternative search
strategy

To compensate the by far most frequent effects of poor initialization, the contour
of the bone is stretched and translated along its anatomical axis. This is done in
a way that maximizes the cumulative Fit Confidence of all landmarks. Similarly
to the fashion of the Life-wire algorithm explained in section 2.1.2, the cheapest
path through a cost matrix C is calculated. The row indices p of this matrix
represent the indices of the model landmarks, whereas the column indices l
reflect the lengths of individual translation vectors. The values of the elements
of this matrix, i.e. the costs, are given by the Fit Confidence of the respective
model point after translation:

Cp,l = 1− Fl. (2.63)

Fig. 2.22 depicts the cost map graphically. The cheapest path through all land-
marks chooses translation coefficients for the individual model points. Trans-
lating the landmarks according to this path, guarantees that neighboring model
points are translated similarly - their translation coefficients can differ by at
most 1 pixel (except for the first and the last landmark, which can have a higher
offset). Thereby, shape plausibility can be extensively maintained. Hence, the
cheapest path through the cost map takes into account both shape deformation
and overall texture fitness to translate the shape in an optimal way (see Figs.
2.22 and 2.23).

2.5.4 Using sub-models and super-models

All the defining landmarks of the mechanical axes reside in regions around
the joints, the correct segmentation of which is thus crucial for the accurate
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Figure 2.22: The cost map is made up by the negative local Fit Confidence of
each landmark (rows), given they are translated by a certain amount (columns)
in the direction of the anatomical axis of the bone.

identification of the axes. Therefore, sub-models are trained for the femoral
head, the proximal and distal side of the knee joint and the talocrural joint.
This way, the search will be less restricted by global shape model of the entire
bone which allows the models to better fit to the actual contours in the target
image. Also, the landmarks that form the contour will be denser which allows
for more precise annotation of the mechanical axes.

While sub-models can refine delineation in regions of interest, a super-model
can be used to model the global configuration of the limb bones in order to con-
strain their relative size, position and alignment w.r.t. each other. The global
configuration is modeled by building a statistical shape model of all four bones,
analogously to the way shape models were built for the individual bones as de-
scribed in Sect. 2.2.1. 64 landmarks were used for each of the bones to represent
its outlines. The global configuration constraint yields another measure of con-
fidence. Implausible configurations like overlapping bones or disjoined femora
and tibiae can be detected and the ASM search can be reinitialized with the
“nearest plausible configuration”, which further improves the robustness of the
results. When updating the pose parameters to fit the models to the “nearest
plausible configuration”, the model points are weighted with the Fit Confidence
of the respective bone according to the scheme described in Sect. 2.5.3.3 in or-
der to estimate plausible positions of the bones with low confidence from those
with higher confidence.

[RCA03] presented a similar approach of combining a global model with
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Figure 2.23: The ”cheapest” path through all landmarks chooses translation
coefficients for the individual model points, to move them to positions which
maximize the cumulative Fit Confidence, while neighboring model points are
always translated similarly.

a sequence of sub-models, where the global model applies iteratively updated
“soft constraints” on the sub-models. They applied the algorithm to dual x-ray
absorptiometry scans of the spine in order to automate vertebral morphometry
measurements, using overlapping triplets of vertebrae as the sub-models, to-
gether with a global model of the entire spine, and reported substantially better
results than using a single model.
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2.6 Identifying the measuring points and calcu-
lating the axis angle

The landmarks defining the mechanical axes can be located in a straightforward
way, when they are directly represented by model points. These are identified
by their index and can be matched between different forms. In the course of the
search, the correspondence of the model points is largely preserved, so that the
landmark positions of the shape found in the image can be expected to render
their true positions quite accurately. Hence, the landmarks that are to define
the mechanical axes can be annotated manually in the training phase on any
instance of the shapes. In this work, the landmarks were drawn from prototyp-
ical shape instances, which can be generated by setting the model parameters
to their mean values (see figure 2.24). The three points h1, h2, h3 needed to
calculate the center of the femoral head (Fig. 2.6) are selected manually, along
with the center k1 of the intercondylar notch (Fig. 2.26), the center k2 of the
tibial spines (Fig. 2.6) and the center a of the ankle mortise (Fig. 2.28).

After having located the points (h1,h2,h3,k1,k2,a) the alignment angle is
calculated. As a first step, the center hc of the femoral head is computed as the
triangle circumcenter of (h1,h2,h3),

hc = h1 +

(
(h3y − h1y)h1

Th2 − (h2y − h1y)h1
Th3

− (h3x − h1x)h1
Th2 + (h2x − h1x)h1

Th3

)
2 ((h3y − h1y)(h2x − h1x)− (h2y − h1y)(h3x − h1x))

. (2.64)

The center kc is calculated as the center between k1 and k2,

kc =
k1 + k2

2
. (2.65)

The mechanical axis angle is computed as

A = ±(180−arctan∗(hcy−kcy, hcx−kcx)−arctan∗(ay−kcy, ax−kcx)), (2.66)

where

arctan∗(y, x) =

 arctan( yx ) ifx ≥ y

arctan( yx ) + π otherwise
(2.67)

Note that the sign of the angle A depends on whether the left or right side is
assessed and how varus and valgus alignment is to be encoded, respectively.

2.7 Summary of the image interpretation pro-
cess

The algorithm for the interpretation of the image and assessment of the align-
ment angle can be summarized as follows:

1. Coarsely localize the four bones
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Figure 2.24: Prototypical instance of the right femor, generated by setting the
model parameters to their mean values.

2. r ← 0

3. For all four bones

(a) Perform improved multiresolution ASM search, controlled by estima-
tions of Fit Confidence

(b) If Fit Confidence is too low

• Reinitialize the search by stretching and translating the model
along its anatomical axis so as to maximize Fit Confidence

• Repeat step 3a

(c) Refine delineation by performing improved ASM search for both the
proximal and distal joint region of the bone

4. Assess plausibility of the global configuration of the four bones.
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Figure 2.25: Prototypical instance of
the right femoral head with the three
points needed to calculate its center.
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Figure 2.26: The center of the inter-
condular notch annotated on a proto-
typical instance of the proximal side
of the right knee joint.
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Figure 2.27: The center of the tibial
spines annotated on a prototypical in-
stance of the distal side of the right
knee joint.
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Figure 2.28: The center of the ankle
mortise annotated on a prototypical
instance of the right ankle joint.

5. If the global configuration is implausible and r < rmax

• r ← r + 1

• Reestimate the initial positions of the bones by finding the “nearest
plausible” configuration and update the model parameters accord-
ingly, whereas the model points are weighted by the Fit Confidence
of the respective bone in order to estimate the positions of bones with
low confidence from bones with higher confidence

• Continue with 3

6. Identify the landmarks defining the mechanical axes and calculate their
angles
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Figure 2.29: Schematic illustration of the image interpretation process

7. Return the angles along with the plausibility measure of the global config-
uration of the bones and the cumulative Fit Confidence of all bones and
joints

A schematic overview of the image interpretation process is given in Fig.
2.29.
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Chapter 3

Experiments

This Chapter reports on the experimental evaluation of the new methods. Three
different aspects are tested seperately: in Sect. 3.2 the power and specificity
of failure detection based on fit confidence is assessed. Sect. 3.3 compares the
standard ASM search and the enhanced search procedure introduced in Sect.
2.5.3 with regard to the accuracy of the results. Finally, Sect. 3.4 focuses on the
functional evaluation of the automatic knee alignment measurements, including
the agreement of the results with the standard of reference and measurement
repeatability.

3.1 Common Setup

Experimental evaluation was performed on 26 full leg radiographs. The spatial
resolution of the data was 0.3mm/pixel. The radiographs were composites of 3
partial radiographs and showed a quadratic measurement grid (see Fig. 2.20).
For all images a manual expert annotation of the contours of the femora and the
tibiae served as standard of reference. The training of the ASMs was performed
at 15 radiographs and the testing on the remaining 11 radiographs (22 angles
to measure and 44 bones to segment).

3.2 Fit Confidence

This Section reports on the evaluation of the power and specificity of failure
detection based on fit confidence.

3.2.1 Experimental setup

To test whether the Fit Confidence can be used to detect segmentation success
and failure, respectively, the error rates of a success/failure detector based on
Fit Confidence F (p) were computed from 1924 samples of parameter vectors p
of shape and pose. All of these parameter vectors where sampled during the
ASM segmentation procedure after a random number of iterations. The Fit
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Confidence was calculated as described in Sec. 2.5.2. The standard of reference
regarding segmentation success was defined by a threshold td of the mean eu-
clidean distance d of the landmark positions l∗ = (l∗x,1, l

∗
y,1, ..., l

∗
x,n, l

∗
y,n) to their

true locations l = (lx,1, ly,1, ..., lx,n, ly,n), i.e.

d(l, l∗) =
1
n

∑
i

√
(l∗x,i − lx,i)2 + (l∗y,i − ly,i)2 (3.1)

where l and l∗ are vectors of the x- and y-coordinates of the landmarks. The
landmark errors d of the samples ranged from 0.64 to 41.15 pixels.

For our tests, we introduce a detector of successful segmentation and define
the null hypothesis H0 to be that the delineation has not reached the desired
accuracy. The rates of false-negative and false-positive results were evaluated
for a threshold td = 10 of distance and varying thresholds tF of Fit Confidence.

3.2.2 Results

Figs. 3.1 and 3.2 show the distribution of d given F is above or below various
values of threshold tF .
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Figure 3.1: The distribution of the mean euclidean distance of the landmarks to
their true positions given F > tF with varied thresholds tF of Fit Confidence.

Figure 3.3 shows the rates of false-negative and false-positive results for a
threshold td = 10 of landmark error and varying thresholds tF of Fit Confidence.

Choosing tF = 0.96 resulted in 97% of the parameter vectors p with
F (p) > tF having landmark errors d < 10 pixels (3% falsely accepted seg-
mentation results). 84.2% of the remaining parameter vectors with F (p) ≤ tF
have landmark errors d > 10 pixels (15.8% falsely rejected segmentation re-
sults). The distribution of the landmark errors of these parameter vectors can
be seen in Fig. 3.1 and Fig. 3.2, respectively, at tF = 0.96.
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Figure 3.2: The distribution of the mean euclidean distance of the landmarks to
their true positions given F ≤ tF with varied thresholds tF of Fit Confidence.
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Figure 3.3: The error rates for a distance threshold td = 10 and varying thresh-
olds tF of Fit Confidence. Every dot denotes one of 1924 samples.
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3.2.3 Discussion

Calculating Fit Confidence has two purposes. Firstly, a mechanism is needed,
which can reliably inform about possible failure. Secondly, high confidence
in having reached a desired accuracy serves as a termination criterion for the
search procedure. The experimental results show, that choosing the threshold
of fit confidence optimally, only 3% segmentation results were falsely accepted
and 15.8% of the results were falsely rejected, when a segmentation is defined
to be successful if the landmark error d is below 10 pixels. This allows to
reliably inform a human expert about low confidence in the results and a fairly
high probability of failure. The low rate of falsely accepted results encourages
the formulation of a termination criterion of the search procedure based on fit
confidence.

Generally, the distribution of the landmark errors highly depends on the Fit
Confidence. Hence, thresholding Fit Confidence yields an effective predictor of
success and failure of the segmentation.

3.3 Search performance

In this Section, the enhancements of the search procedure proposed in Sect.
2.5.3 are evaluated. Their influence on the accuracy of the results is assessed
by comparing the resulting distributions of the landmark errors.

3.3.1 Experimental setup

Active Shape Model search was performed with and without the use of Fit
Confidence. To assess the error of the resulting delineation, the mean euclidean
distance between the model landmarks and the standard of reference contour
landmarks was evaluated. The proposed enhancements of the search procedure
were evaluated by switching on and off the respective algorithm modifications
and comparing the results.

In all, 7 runs were performed with varied settings:

1. the standard ASM search algorithm, with decreased search range (-10
pixels on either side)

2. the standard ASM search algorithm, with optimal search range

3. the standard ASM search algorithm, with increased search range (+10
pixels on either side)

4. ASM with variable search ranges

5. ASM with local fit confidences as weights for shape alignment

6. ASM with re-initialization triggered by fit confidence

7. ASM with all proposed adaptations
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3.3.2 Results

Fig. 3.5 shows the distribution of the landmark errors resulting from the individ-
ual runs. With an optimal fixed search range, the basic ASM search procedure
yields a mean error of 7.86±14.22 (min 0.07, max 72) pixels. The mean land-
mark error dropped to 3.71±7.56 pixels (min 0.01, max 40.34) when the search
ranges were dictated by the local Fit Confidences of the individual landmarks.
Using local Fit Confidences as weights for shape update, the mean landmark
error was decreased to 3.1±6.35 pixels (min 0.03, max 46.57). Letting low Fit
Confidence trigger re-initialization through a Fit Confidence maximizing proce-
dure yielded a mean error of 2.3±4.82 pixels (min 0.01, max 40.34). With all
proposed adaptations switched on, the mean error decreases to 2.3±5.0 pixels.
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Figure 3.4: The mean landmark errors resulting from the different algorithm
variants.
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Figure 3.5: Distribution of the landmark errors resulting from the different
algorithm variants.
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3.3.3 Discussion

Using Fit Confidence to control the ASM search procedure improved the results
significantly. The experimental results show, that each of the proposed mod-
ifications yields a better result accuracy as compared to the standard search
procedure. Re-initialization of the search governed by fit confidence proved to
have the strongest effect on the accuracy of the results. Actually, the combina-
tion of all proposed modifications could not further reduce the mean landmark
error.

3.4 Angle measurement

In this Section the experiments and their results are presented, which assess the
accuracy and repeatability of the automatic angle measurements.

3.4.1 Experimental setup

Accuracy is measured as the agreement between the results of the automatic
assessment method and the results calculated from manually annotated land-
marks, which serve as standard of reference. Calculating a meaningful measure
of repeatability of a fully automatic method is inherently problematic. In the
literature, repeatability is usually reported as the variance in the results of mul-
tiple measurements on the same image, either performed by the same or by
different readers. However, provided exactly the same image, the results of re-
peated fully automatic measurements will always be identical, as the algorithm
is perfectly deterministic. Yet, repeatability shall in practice not only be a
measure of similarity between the results of multiple assessments on identical
image data. Rather, we want the results to be stable against changes in the
image data, that do not affect the quantity to be measured, i.e. the mechanical
axis angle. More specific, there should always be a high agreement between the
angles measured on two different radiographs of the same patient taken at the
same time, since this is a prerequisite for the detection of small change. As
the projection of the three-dimensional bones onto a 2D plane causes a loss of
geometrical information, perfect agreement is theoretically impossible, unless
the angle between the x-ray beams and the bone surfaces can be kept constant.
Therefore, a second series of images was generated by clipping the original im-
ages varyingly. Thereby, a second image of every patient is obtained, which
shows the lower limb bones from exactly the same perspective. To investigate
the stability of the results against these modifications of the input image, the
angles measured on the original images were compared to those measured on
the second series. We argue, that we can thereby estimate a measure of the
method’s reproducibility, that can be compared to the reported reproducibility
of other methods.

For statistical evaluation, leave-one-out cross validation (LOOCV) was per-
formed on the original training set. Further, an additional independent valida-
tion set was assembled, which consisted of radiographs which were not included
in training.
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The original training set was gathered from total-leg radiographs of 15 pa-
tients, 12 male and 3 female, with a mean age of 29.4+6.9 years. The alignment
angles ranged from 12.63◦ (varus) to −10.14◦ (valgus). For LOOCV, training
was performed with data from 14 patients at a time, while the automatic seg-
mentation was performed on the remaining case. Two of the right tibiae and
one right femoral bone had to be excluded from training as they were either
cropped or occluded to a large part by plates and screws, so that their outlines
could not be reconstructed. Therefore, the two right knees affected were also
excluded from LOOCV evaluation.

The independent validation set included full-limb radiographs of 11 patients
(22 knees), 5 male and 6 female, with a mean age of 28.2+5.9 years. One of the
patients showed mild, one showed grave deformations in at least one bone. Two
of the radiographs showed a post surgical status with splints, screws or plates
occluding parts of the bones. In one image parts of the bones were outside
the image and hence cropped. The alignment angles of the test-set ranged
from 8.76◦ (varus) to −9.49◦ (valgus). For evaluation using the independent
validation set, the complete original training set was used to build the models.

In order to test whether automatic measurement could replace manual as-
sessment, we evaluated the difference between the results of the two methods.
The alignment angles of the test-set were measured manually three times by a
third-year radiology resident (six months of musculoskeletal subspecialty train-
ing). The measurements were conducted by locating the defining points of the
mechanical axes on digital radiographs. The mean angles served as standard
of reference for determining the accuracy of the automatic measurements. We
calculated the mean, standard deviation, minimum and maximum of the differ-
ences and absolute differences between the measured angles. Furthermore, we
assessed the limits of agreement and bias (with 95% CI), according to the meth-
ods suggested in [BA86], as well as the minimal detectable change as described
in [GB07]. The differences are expected to be normally distributed, so that 95%
of the differences will be found within these limits. To evaluate reproducibility,
the automatic measurements were repeated with varying clipping (2% of image
height and width, respectively) of the entire radiograph.

3.4.2 Results

Using the independent validation set, the mean absolute difference between the
automatically measured angles from the standard of reference was 0.53 + 0.44◦

(min 0.04◦, max 1.57◦). Fig. 3.6 shows the automatically assessed results
plotted against the standard of reference. 82% of the angles differed less than
1◦ from the standard of reference, 59% differed less than 0.5◦. The limits of
agreement where −0.92◦ (−1.32◦ to −0.53◦, 95% CI) and 1.52◦ (1.12◦ to 1.92◦,
95% CI), with a bias of 0.3◦ (0.07◦ to 0.53◦, 95% CI) as depicted in Fig. 3.7. The
repeated automatic measurements showed a mean difference (bias) of −0.1 +
0.52◦ (−0.29◦ to 0.09◦, 95% CI) and limits of agreement of 0.93◦ (0.59◦ to
1.26◦, 95% CI) and −1.12◦ (−1.46◦ to −0.79◦, 95% CI) between the trials (Fig.
3.8). The minimal detectable change was 1.03◦. The mean absolute difference
between the two automatic measurements was 0.37 + 0.38◦ (min 0.03◦, max
1.79◦).

60



−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

m
an

ua
l a

ss
es

sm
en

t

automatic assessment

Figure 3.6: Results of the validation set: automatically assessed results plotted
against standard of reference, with line of equality
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Figure 3.7: Results of the validation set: difference between automatic mea-
surement and standard of reference, plotted against their mean, with bias and
limits of agreement

Performing LOOCV, the mean absolute difference between the automatically
measured angles from the standard of reference was 0.58 + 0.46◦ (min 0.04◦,
max 1.69◦). A plot of the automatically assessed results against the standard of
reference can be seen in Fig. 3.9. 82% of the angles differed less than 1◦ from the
standard of reference, 46% differed less than 0.5◦. The limits of agreement where
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Figure 3.8: Results of the validation set: difference between automatic mea-
surements with varied clipping of the radiograph against their mean. The black
lines show the limits of agreement.

−1.39◦ (−1.81◦ to −0.98◦, 95% CI) and 1.53◦ (1.11◦ to 1.94◦, 95% CI), with a
bias of 0.07+0.74◦ (−0.17◦ to 0.31◦, 95% CI) as depicted in Fig. 3.10. The mean
difference (bias) between repeated automatic measurements was 0.04 + 0.19◦

(−0.03◦ to 0.12◦, 95% CI) and limits of agreement of 0.52◦ (0.39◦ to 0.64◦, 95%
CI) and −0.43◦ (−0.56◦ to −0.30◦, 95% CI) between the trials (Fig. 3.11). The
minimum detectable change was 0.47◦. The mean absolute difference between
the two automatic measurements was 0.16 + 0.19◦ (min 0.00◦, max 0.81◦).

3.4.3 Discussion

In [GB07] a reproducible, highly sensitive digital method to quantify knee align-
ment angle was reported. They evaluated longitudinal reproducibility of manual
and digital measurements as well as their agreement concerning the measured
angles. This was accomplished by the “limits of agreement” method described
by [BA86]. The limits of agreement between two manual measurements per-
formed on separate days were stated to be +1.65◦ to −1.55◦, yielding a minimal
detectable change of 1.6◦. For the digital method, the limits of agreement were
reported to be +0.43◦ to −0.37◦, thus resulting in a minimal detectable change
of 0.4◦.

Deploying the method proposed in this thesis, the limits of agreement calcu-
lated from the validation set are 0.93◦ to −1.12◦, yielding a minimally detectable
change of 1.03◦. Performing LOOCV, the limits of agreement were 0.52◦ and
−0.43◦, resulting in a minimal detectable change of 0.47◦. Thus, this method
outperforms the manual state of the art reported by [GB07] with respect to the
agreement between repeated measurements. Since the 95% CI of the limits of
agreement are 0.39◦ to 0.64◦ for the upper bound and −0.56◦ to −0.30◦ for the
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autom msrmt std of ref diff abs diff
left 0.32 -0.6531 0.98 0.98

-0.27 -0.1638 -0.10 0.10
-9.65 -9.4944 -0.15 0.15
-1.70 -1.7902 0.09 0.09
2.10 1.7151 0.38 0.38

-2.64 -3.126 0.49 0.49
-3.03 -4.5932 1.57 1.57
-1.07 -1.7072 0.64 0.64
3.79 3.0902 0.70 0.70

-2.24 -2.0674 -0.17 0.17
3.89 4.2135 -0.32 0.32

right -0.86 -1.14 0.28 0.28
-2.48 -1.94 -0.55 0.55
-8.98 -8.12 -0.86 0.86
8.80 8.76 0.04 0.04

-1.06 -0.78 -0.27 0.27
-0.58 -1.71 1.13 1.13
-2.57 -3.76 1.19 1.19
1.12 0.00 1.12 1.12

-2.28 -2.46 0.18 0.18
-2.78 -3.06 0.27 0.27
-3.35 -3.28 -0.08 0.08

mean 0.30 0.53
stddev 0.62 0.44

min -0.86 0.04
max 1.57 1.57

Table 3.1: Comparison of the automatically measured angles and the standard
of reference, using an independent validation set.
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trial 1 trial 2 diff abs diff
left 0.32 0.2626 0.06 0.06

-0.27 0.359 -0.63 0.63
-9.65 -9.4312 -0.22 0.22
-1.70 -2.0044 0.31 0.31
2.10 2.3132 -0.21 0.21

-2.64 -2.5855 -0.05 0.05
-3.03 -3.4308 0.41 0.41
-1.07 -1.1344 0.07 0.07
3.79 4.1691 -0.38 0.38

-2.24 -2.2617 0.03 0.03
3.89 3.4661 0.43 0.43

right -0.86 -1.35 0.49 0.49
-2.48 -2.67 0.19 0.19
-8.98 -8.51 -0.47 0.47
8.80 10.59 -1.79 1.79

-1.06 -0.34 -0.72 0.72
-0.58 -1.25 0.67 0.67
-2.57 -2.87 0.31 0.31
1.12 1.24 -0.12 0.12

-2.28 -2.15 -0.13 0.13
-2.78 -2.62 -0.16 0.16
-3.35 -3.12 -0.23 0.23

mean -0.10 0.37
stddev 0.52 0.38

min -1.79 0.03
max 0.67 1.79

Table 3.2: Comparison of repeated automatic measurements, performed on an
independent validation set.
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autom msrmt std of ref diff abs diff
left -0.51 -0.21 -0.31 0.31

0.96 0.90 0.07 0.07
-0.24 -1.21 0.98 0.98
-1.02 -1.06 0.04 0.04
-7.13 -7.32 0.19 0.19
-1.66 -1.61 -0.05 0.05
-5.46 -4.74 -0.72 0.72
-3.94 -2.68 -1.26 1.26
3.52 3.48 0.04 0.04

-2.71 -3.19 0.48 0.48
3.72 2.74 0.98 0.98
2.28 2.10 0.17 0.17
7.95 7.11 0.84 0.84

-2.30 -1.69 -0.61 0.61
0.40 0.93 -0.53 0.53

right -2.54 -2.80 0.26 0.26
-3.44 -4.55 1.10 1.10
-0.05 -0.76 0.71 0.71
-9.30 -9.60 0.29 0.29
0.67 0.63 0.04 0.04

-10.07 -10.14 0.07 0.07
-2.28 -2.14 -0.14 0.14
12.04 12.63 -0.58 0.58
-2.69 -3.53 0.84 0.84
7.88 7.08 0.80 0.80
0.86 -0.28 1.15 1.15

-3.89 -2.64 -1.26 1.26
-0.95 0.73 -1.69 1.69

mean 0.07 0.58
stddev 0.74 0.46

min -1.69 0.04
max 1.15 1.69

Table 3.3: Comparison of the automatically measured angles and the standard
of reference. The automatic measurements were conducted by performing a
LOOCV.
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trial 1 trial 2 diff abs diff
left -0.51 -0.59 0.08 0.08

0.96 0.86 0.10 0.10
-0.24 -0.12 -0.12 0.12
-1.02 -1.07 0.05 0.05
-7.13 -7.38 0.25 0.25
-1.66 -1.40 -0.27 0.27
-5.46 -5.31 -0.15 0.15
-3.94 -4.76 0.81 0.81
3.52 3.54 -0.01 0.01

-2.71 -2.83 0.11 0.11
3.72 3.64 0.08 0.08
2.28 2.08 0.20 0.20
7.95 8.01 -0.06 0.06

-2.30 -2.14 -0.17 0.17
0.40 0.36 0.04 0.04

right 7.47 7.45 0.02 0.02
-2.54 -2.59 0.05 0.05
-3.44 -3.19 -0.25 0.25
-0.05 -0.08 0.03 0.03
-9.30 -9.26 -0.04 0.04
0.67 0.68 -0.02 0.02

-10.07 -10.26 0.19 0.19
-2.28 -2.44 0.16 0.16
12.04 11.96 0.09 0.09
-2.69 -2.74 0.06 0.06
-0.10 0.12 -0.22 0.22
7.88 7.88 0.00 0.00
0.86 0.14 0.72 0.72

-3.89 -3.75 -0.14 0.14
-0.95 -0.68 -0.27 0.27

mean 0.04 0.16
stddev 0.24 0.19

min -0.27 0.00
max 0.81 0.81

Table 3.4: Comparison of repeated automatic measurements, conducted by per-
forming a LOOCV.
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Figure 3.9: Results of the LOOCV: automatically assessed results plotted
against standard of reference, with line of equality
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Figure 3.10: Results of the LOOCV: difference between automatic measurement
and standard of reference, plotted against their mean, with bias and limits of
agreement

lower bound, we can consider this to be comparable to the results of the digi-
tal method presented by [GB07]. However, while this digital method involves
a number of user interactions at different levels of the application, the results
described in this thesis are achieved fully automatic.

The limits of agreement between the automatically measured angles and the
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Figure 3.11: Results of the LOOCV: difference between automatic measure-
ments with varied clipping of the radiograph against their mean. The black
lines show the limits of agreement.

standard of reference are below the inter-reader variability reported in [GB07].
So, the automatically measured angles can replace manual readings without loss
of accuracy.

The algorithm can cope with a certain amount of ambiguous image content,
overlapping structures and missing data. However, the results generally depend
on the “quality” of the image, where “bad quality” refers to the presence of a
prosthesis, screws or plates, cropping and grave pathological deformations of the
bones. The outlier in Fig. 3.7 (differences between repeated measurements) is
caused by a deformation of the right tibia and the right ankle joint. This makes
the algorithm unstable and the result highly depends on optimal initialization.
The image where the automatically measured angle most deviates from the
standard of reference in Fig. 3.9 shows a plate and screws in the left knee joint.
The outliers in Fig. 3.10 are caused by a femoral head prosthesis and a large
intramedullary pin, respectively.
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Chapter 4

Conclusion

This thesis proposes a method to automatically measure the knee alignment an-
gles on full-limb radiographs. Measuring the angles without any user interaction
aims at improving accuracy and repeatability and thereby allow for detection
of even small changes. High accuracy of the measured angles is a prerequisite
for precise preoperative planning, for assessing the success of surgical correction
and for the prediction of the clinical outcome.

The method involves three main steps. First, the positions of the bones
in the target image are coarsely estimated using Sparse Markov Random Field
Appearance Models. This technique integrates local descriptor similarities and
deformation constraints in a single optimization step. It operates on configu-
rations of symmetry-based interest points which are represented by graphs and
Markov random fields, and performs matching by the max-sum algorithm. As
an alternative to the Sparse MRF Appearance Models, an application specific
approach was used. In this approach the legs and the hip are segmented from
the background using a filter. Calculating the medial axis transform of the
result yields a “skeleton”, which approximates the location of the bones.

The next step is to use the resulting estimations to initialize a multi-
resolution Active Shape Model (ASM) search. ASMs allow to utilize a priori
knowledge about shape and appearance of the objects of interest. The search
procedure is enhanced by strategies for increasing robustness by estimating fit
confidence and asserting plausibility of the global configuration. These estimates
are used to control the search and, if necessary, to trigger re-initialization proce-
dures and repeat the search. The use of sub models allows to refine delineation
of the joint regions, where all landmarks reside, that define the mechanical axes.

The final step is to identify these landmarks and calculate the alignment
angles. The final estimates of fit confidence and plausibility of the global con-
figuration of the bones are used for failure detection, which allows to inform the
user about low confidence in the results.

To improve the result robustness, this thesis introduces enhancements of
the standard ASM search procedure, which use the Fit Confidence to control
the search. Experimental results show, that these enhancements improved the
accuracy of the results significantly. Further, the distribution of the landmark
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errors highly depends on the Fit Confidence. Hence, thresholding Fit Confidence
yields an effective predictor of success and failure of the segmentation.

The method proposed in this thesis outperforms the manual state of the
art reported by [GB07] with respect to the agreement between repeated mea-
surements. The variability can be considered comparable to the results of the
digital method presented by [GB07]. However, while this digital method in-
volves a number of user interactions at different levels of the application, the
results described in this thesis are achieved fully automatic.

The limits of agreement between the automatically measured angles and
manual readings are below the inter-reader variability reported in [GB07]. Thus,
the automatic angle measurements performed with the method introduced in
this thesis can replace manual readings without loss of accuracy.
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