
DISSERTATION

A Transparent Online Test Approach for

Time-Triggered Communication Protocols

ausgeführt zum Zwecke der Erlangung des akademischen Grades
eines Doktors der technischen Wissenschaften

unter der Leitung von

a.o.Univ.-Prof. Dipl.-Ing. Dr. A. Steininger

Inst.-Nr. E182/2
Institut für Technische Informatik

Embedded Computing Systems Group

eingereicht an der Technischen Universität Wien
Fakultät für Informatik

von

Dipl.-Ing. Eric Armengaud

Matr.-Nr. 0126956

Andritzer Reichsstraße 47 / 8
8045 Graz

Graz, im Juni 2008

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Abstract

Modern cars comprise different Electronic Computer Units that are interconnected
by shared communication medias. This architecture enables a better apprehension
of the environment and results in improved car behavior. At the same time, the
resulting system complexity and further, the introduction of electronics for safety-
critical applications raises dependability problems; human life and health are depending
on the correct operation of the car. The time-triggered architecture [KB03] has been
introduced in this context to cope with the growing complexity and to support highly
dependable systems. While this architecture substantially eases system design and
development, it does not explicitly support verification and maintenance operations.

This work is focused on the network, since this resource has been quickly recog-
nized as playing a central role in maintaining the system in a safe state [NSSLW05].
Our intention is to provide an approach to test the reliability (continuity of correct
services) of the communication system as well as the availability (readiness for correct
services [ALRL04]) of the associated error detection mechanisms. We propose a new
test approach that is generic (not rely on dedicated services), non-intrusive (no modi-
fication of the system), and transparent (to avoid deviation of normal service delivery).
This last attribute enables test operation to be performed concurrently to normal op-
eration, and thus decreases the test period, even if the system can not be halted for
maintenance. This in turn minimizes the probability of system failure due to fault
accumulation.

Our test approach is first based on the monitoring of the bus traffic. This is because
the deterministic behavior of time-triggered communication systems provides a-priori
known properties that can be efficiently checked for correctness. This pure monitoring
approach is further complemented by a subtle stimulation of the clock synchronization
mechanisms to test the error detection mechanisms within the nodes’ receive path.
This second approach exploits the tolerance boundaries of the clock correction and
drives the system into a non-natural but still correct state. Since this state can only be
reached and maintained with correct operation of the tester, the node reaction therefore
provides information whether the tester frames have been correctly processed.

A main concern of this work is to prove the transparency of our approach. More
especially, we introduce deterministic replay operation as a technique to remotely con-
trol the nodes’ clock correction and prove that our method results in no threats for
the system operation. Moreover, we show that the nodes’ logical clocks always return
within the accuracy of their underlaying oscillators. This property provides information
about the current forces within the system and more especially on whether the addi-
tional test frames have been received or not. The theses presented in this work focus
on the TTP/C and FlexRay communication protocols and the results are supported
by simulations and experimental evaluations.

i

Kurzfassung

Moderne Autos umfassen eine Vielzahl an elektronischen Steuergeräten, die mittels
verteilter Kommunikationssysteme verbunden sind. Diese Architektur ermöglicht ei-
ne bessere Wahrnehmung der Umgebung und daher eine bessere Reaktion des Autos.
Gleichzeitig zieht jedoch die resultierende Komplexität des Systems und im weiteren
die Einführung von sicherheitskritischen Anwendungen Verlässlichkeitsprobleme mit
sich: Leben und Gesundheit von Menschen sind von der korrekten Funktion des Autos
abhängig. In diesem Zusammenhang wurde die zeitgesteuerte Architektur [KB03] ein-
geführt, um einerseits die Komplexität des Systems besser bewältigbar zu machen und
anderseits eine zuverlässige Architektur für sicherheitskritische Anwendungen anzubie-
ten. Diese Architektur erleichtert zwar das Design und die Entwicklung des Systems,
bietet jedoch keine direkte Unterstützung für Test und Wartung.

Diese Doktorarbeit ist auf das Netzwerk fokussiert, da diese Ressource eine zen-
trale Rolle für das Einhalten eines sicheren Systemzustandes darstellt [NSSLW05]. Es
wird eine Methode vorgeschlagen, die sowohl die Zuverlässigkeit des Kommunikations-
systems als auch die Verfügbarkeit [ALRL04] der darunterliegenden Fehlererkennungs-
mechanismen testet. Unsere Ansatz ist generisch (unabhängig von der Applikation),
nicht intrusiv (keine Änderung des Systems) und transparent (keine Änderung der
erbrachten Dienste). Die letztere Eigenschaft ermöglicht vor allem das Durchführen
von Testoperationen gleichzeitig zur normalen Systemoperation. Infolgedessen kann
die Testperiode minimiert werden, womit sich die Wahrscheinlichkeit eines Absturzes
in Folge von Fehlerakkumulation verringert.

Unser Ansatz beruht zunächst auf der Überwachung des Kommunikationsmediums,
denn das deterministische Verhalten des zeitgesteuerten Systems bietet voraussehbare
Ereignisse an, die leicht zu verifizieren sind. Dieser Ansatz wird durch eine Stimu-
lierung der Uhrensynchronisation weiter vervollständigt, um die Fehlererkennungsme-
chanismen innerhalb der Empfangspfade der Knoten zu testen. Dieser Ansatz macht
sich die Toleranzgrenze der Uhrkorrektur zunutze und bewegt das System in einen
nicht-natürlichen aber trotzdem gültigen Zustand. Da dieser Zustand nur aufgrund
der Stimulation durch unseren Tester erreichbar ist, liefert die Reaktion der Knoten
Informationen, ob die Tester Frames richtig verarbeitet worden sind oder nicht.

Ein wichtiger Beitrag in dieser Arbeit besteht darin, die Transparenz unseres An-
satzes zu beweisen. Im Besonderen führen wir die deterministische Replay Operation
als eine Methode zur Fernsteuerung der Uhrensynchronisation des Knotens ein und
beweisen weiter, dass dieser Ansatz keine Gefahr für das System darstellt. Wir zeigen
außerdem, dass die Genauigkeit der logischen Uhrzeit eines Knotens immer innerhalb
der Genauigkeit des Quarzes zurückkehrt. Diese Eigenschaft liefert Informationen über
die aktuellen Kräften im System und insbesondere Informationen, ob die Tester-Frames
richtig bearbeitet wurden. Die Ergebnisse dieser Arbeit sind auf TTP/C und FlexRay
fokussiert und werden durch Simulationen und Experimente gestützt.

ii

Résumé

Les voitures modernes sont composées de plusieurs dizaines d’unités de contrôle
électronique interconnectés par des bus de terrain. Cette architecture améliore
l’appréhension de l’environnement et permet ainsi une réaction de l’automobile plus
adaptée. Cependant, la complexité résultante ainsi que l’introduction de composants
électroniques pour des applications critiques amènent des problèmes de fiabilités : la vie
et la santé d’êtres humains dépendent du bon fonctionement de leur voiture. L’architec-
ture à temps partagé TTP [KB03] à été introduite dans le but de gérer la complexité
et de supporter le développement de systèmes critiques. Bien que cette architecture
supporte la conception et le développement de ce type de systèmes, elle n’offre que peu
de support pour les opérations de vérification et de maintenance.

Ce travail est focalisé sur le réseau car cette ressource joue un rôle fondamental pour
la stabilité du système [NSSLW05]. Notre intention est de proposer une approche pour
tester la fiabilité (continuité du service) du réseau ainsi que la disponibilité [ALRL04]
des méthodes de détection d’erreurs associées. Nous proposons dans ce sens une nouvelle
méthode de test générique (pas de support de la part de l’application), non-intrusive
(pas de modification du système) et transparente (évite les modifications dans la pres-
tation de service du système). Cette dernière propriété rend possible l’exécution du
test parallèlement au fonctionnement standard du système et donc réduit le temps
moyen entre deux exécutions du test. Cette propriété réduit à son tour la probabilité
d’accumulation de fautes et de défaillance du système.

Notre approche est basée premièrement sur la surveillance du traffic réseau. Effec-
tivement, le comportement déterministique de l’architecture à temps partagé génère
un comportement à-priori connu qui peut être utilisé de manière très efficace durant la
phase de test. Cette première approche est de plus complémentée par une subtile sti-
mulation du méchanisme de resynchronisation d’horloge afin de tester les méchanismes
de détection d’erreurs au sein des nœuds. Cette deuxième approche utilise l’intervalle
de tolérance pour la correction d’horloges et entrâıne le système dans un état correct
bien que non-naturel. Etant donné que le système ne peut atteindre – et rester dans
– cet état que avec un fonctionnement correct de notre testeur, la réaction des nœuds
donne des indications sur le status du traitement des messages de notre testeur.

Un point important de ce travail est de prouver la transparence de notre approche.
Pour ce faire, nous introduisons la reproduction déterministique de traffic réseau comme
méthode pour contrôler à distance la correction d’horloge des nœuds et prouvons que
cette méthode ne représente pas de danger pour le système. De plus, nous montrons que
l’exactitude des horloges est bornée par l’exactitude de leurs quartz. Cette propriété
donne des indications sur les forces exercées sur le système et plus particulièrement si
les messages de notre testeur ont été effectivement reçus. Les thèses présentées dans ce
document sont focalisées sur les protocoles de communication TTP/C et FlexRay et
sont illustrées par des simulations et expériences sur prototype.

iii

Acknowledgments

This thesis was carried out during my employment as research assistant within the
Embedded Computing Systems group at the Technical University of Vienna. The first
round of thanks goes to my supervisor, Prof. Andreas Steininger, for introducing me
to the area of testing and supporting this work with stimulating discussions. He gave
me motivation when mine was down, and also helpful critiques when my enthusiasm
lead me to forget some of the basics.

Further I would like to thank my colleagues at the department for the good atmo-
sphere and the fruitful discussions that help me to improve the quality of this work.
Hereby special thanks to Thomas Handl for his time, for listening and providing pre-
cious assistance in all those everyday annoying problems, and for the high-quality hints,
reviews and comments.

This work wouldn’t have obtained this quality without the help of my former col-
leagues from Elektrobit Vienna (formerly Decomsys). They introduced me to the fasci-
nating world of FlexRay and supported me during my first industrial experiences with
digital design. I would like to thank more especially the chip design team for teaching
me the “Viennese way-of-life” and helping me to understand the subtleties of the Vi-
ennese dialect. Many thanks to Oliver Maischberger, Wolfgang Forster, Hannes Friedl
and Florian Rothensteiner for their support during the organization and improvement
of the prototype and for the interesting discussions.

Moving to the more private part of the acknowledgments, I would like to thank
my parents for their support during my studies in France and for providing me the
possibility to come abroad to Austria.

Special thanks goes to my daughter for coming to me each morning with her smile
and saying “ayo papa!”, thus giving me the energy required during the hard work of
writing this document. Last but not least, my best thanks goes to my partner, Christina
Kugi, for her precious support during everyday life, for the passionate discussions and
for her love.

Merci!

Supported by the Austrian BM:vit FIT-IT project ExTraCT, project no. 810834.

iv

Contents

1 Introduction 1
1.1 Contributions and Objectives . 2
1.2 Structure of the Thesis . 3

2 About Testing Automotive Electronics 5
2.1 Electronics in Cars . 5

2.1.1 History . 5
2.1.2 A Hostile Environment . 7
2.1.3 Actual Situation and Challenges 7
2.1.4 System Model . 9

2.2 Testing Distributed Systems . 11
2.2.1 Concepts and Definitions . 11
2.2.2 Purposes of Testing . 13
2.2.3 The Challenges of Testing Safety-Critical Distributed Real-Time

Systems . 14
2.2.4 Monitoring Distributed Systems 15
2.2.5 Improving the System’s Controllability 17

2.3 The Time-Triggered Architecture . 20
2.3.1 Requirements for Safety-Critical Applications 20
2.3.2 The Time-Triggered Computational Model 22
2.3.3 Event- versus Time-Triggered Architecture 24
2.3.4 Time-Triggered Communication 26
2.3.5 Fault-Tolerant Middleware . 28
2.3.6 Testing Time-Triggered Architectures 29

2.4 The STEACS Project . 31
2.4.1 Motivation and Requirements 31
2.4.2 Problem Decomposition . 32
2.4.3 The Systematic Test Approach 35
2.4.4 Summary and Outlook of the STEACS project 37

2.5 Chapter Summary . 38

v

3 A New Approach for Transparent Testing 40
3.1 Problem Description . 40

3.1.1 Motivation . 40
3.1.2 Problem Statement . 41
3.1.3 Classification of our Approach 43

3.2 From Monitoring to Transparent Online Testing 45
3.2.1 Remote Online Monitoring . 45
3.2.2 Toward a Novel Approach for Transparent Online Testing 49
3.2.3 Taking Control of the Clock Synchronization Service for the

Loop-back . 51
3.3 Chapter Summary . 55

4 Transparent Test Approach Validation 56
4.1 Definitions and System Model . 57

4.1.1 Quartz Modeling . 57
4.1.2 Definitions . 58
4.1.3 Clock Synchronization . 60

4.2 Safe Deterministic Replay Operation 63
4.2.1 Deterministic Replay Operation 64
4.2.2 Computation of the System Precision 65
4.2.3 Numerical Examples with Different Replay Attributes 68
4.2.4 Experimental Validation . 69
4.2.5 Online Test of the Oscillator Stability 72

4.3 Accuracy of the Logical Clocks . 74
4.3.1 Analysis for TTP/C . 76
4.3.2 Analysis for FlexRay . 77
4.3.3 Experimental Validation – Static behavior 78
4.3.4 Experimental Validation – Dynamic behavior 80

4.4 Remote Evaluation of the QoS . 82
4.4.1 Remote Offset Correction Monitoring 82
4.4.2 Remote Precision Approximation 84

4.5 Chapter Summary . 85
4.5.1 Illustrative Fault Injection Experiment 85
4.5.2 Summary . 87

5 Experimental Setup 89
5.1 System Under Test . 89

5.1.1 Hardware . 89
5.1.2 Software . 90
5.1.3 System Initialization . 91

5.2 Tester Node Architecture . 93

vi

5.2.1 Overview . 93
5.2.2 The Dedicated FPGA Design 93
5.2.3 Firmware . 96
5.2.4 Host PC . 98

5.3 Evaluation of the FlexRay Clock Synchronization 100
5.3.1 Overview . 100
5.3.2 Testing the Offset Correction 101
5.3.3 Testing the Rate Correction . 103
5.3.4 Emulating Fast Quartz Rate Changes 103

5.4 Chapter Summary . 106

6 Conclusion 107
6.1 Summary . 107
6.2 Outlook . 108

Bibliography 110

Index 125

List of Publications 127

Curriculum Vitae 130

vii

List of Figures

2.1 Example of an automotive network . 10
2.2 Fault, error, failure . 11
2.3 Sparse time model . 23
2.4 TDMA scheme . 26
2.5 Time hierarchy for FlexRay . 27
2.6 Push - pull combination . 29
2.7 Mechanisms and Abstraction Levels . 34
2.8 Remote testing . 35
2.9 Test approach for one layer . 36

3.1 Observation and control path for testability 42
3.2 Loop-back via the clock synchronization service 47
3.3 Actively influencing the clock synchronization 49
3.4 Transparent test approach . 52
3.5 Fault injection experiment . 53

4.1 Clock Deviation Interval (CDI) . 60
4.2 Damping factor for the FlexRay protocol (from [Fle05] Fig. 8-15) . . . 63
4.3 Deterministic replay . 65
4.4 Precision computation . 66
4.5 Drift and precision with TTP/C . 70
4.6 Real nodes with oscillator drift . 71
4.7 Characterization of the offset correction for different clock deviations . 73
4.8 Deviation with sudden jump . 75
4.9 Deviation with fast drift . 75
4.10 Global time behavior with respect to dynamic oscillator deviation for

FlexRay systems . 81
4.11 Global time behavior with respect to dynamic oscillator deviation for

TTP/C systems . 82
4.12 Remote nodes’ offset correction measurement 83
4.13 Offset and rate correction computation measurement for FlexRay [Fle05] 84
4.14 Remote precision measurement . 85

viii

4.15 Remote test of the fault-detection mechanisms 86

5.1 Quartz drift measurement . 92
5.2 Overview of the tester’s architecture 94
5.3 Tester’s FPGA architecture . 95
5.4 Maximal offset correction . 102
5.5 Maximal rate correction . 104
5.6 Fast quartz rate changes . 105

ix

List of Tables

2.1 Classification of automotive networks 9

3.1 Test coverage comparison . 54

4.1 Convergence results . 69
4.2 Static convergence point depends on cold starter 79
4.3 Deviation of global time within the clock deviation interval 80

5.1 Long term quartz drift . 92
5.2 bdConnector register interface . 96

x

Chapter 1

Introduction

Imagine if every Thursday your shoes exploded if you tied them the usual way. This
happens to us all the time with computers, and nobody thinks of complaining.

Jef Raskin (1943 – 2005)

Dozens of complaints like “...during the drive the electronics gave out, the engine
switched off for one second and also the servo-steering dropped to a crawl” were listed by
an Austrian automotive magazine [Zei06]. This survey describes the problem with the
complexity of the electronic architecture that confronts the car industry nowadays, and
with which every car maker is equally concerned. Electronic Component Units (ECUs)
were introduced in the 80’s to reduce manufacturing costs, improve functionality and
even enable new, complex services. However, the part of electronics in cars is growing
more and more and it is nowadays a science in itself to manage the resulting complexity.
This trend is amplified, considering the use of ECUs for fundamental applications such
as engine control.

Since the 90’s, the car manufacturers are moving from centralized, wire connected
architectures to distributed architectures using shared communication protocols. This
architecture decreases the number of connections required, thus saving weight and
reducing the number of potential error sources. Additionally, the information is globally
available, which enables a better apprehension of the environment and therefore better
suited reactions. Moreover, the distribution of the computation among different ECUs
allows for the development of fault-tolerant architectures, architectures that can deliver
correct services even if parts of the system have failed. This attribute is strongly
required for safety-critical operation to avoid catastrophe with the possible loss of
human life [Kop97].

1

1.1 Contributions and Objectives

The network has been soon recognized as playing a central role in maintaining
the system in a safe state [NSSLW05]. Hence, this resource represents a fundamental
building block of the system, and even sporadic faults might have severe consequences
to the higher layers relying on it. Parallel to that, this resource is exposed to a hostile
environment (electric and electromagnetic fields, large thermal gradients, splashes from
oils, petrol, chemicals...) and particularly subject to fail.

The time-triggered paradigm [KB03] has been introduced in this context to pro-
vide a highly dependable architecture for safety-critical applications. One important
feature is to provide a predictable behavior, such that the different subscribers know
precisely whether the expected services are delivered or if the module has failed (error
detection). Moreover, this timed behavior can be further used for fault-tolerant archi-
tectures where services are provided redundantly and the results merged to improve
the system robustness (fault tolerance).

The limitation of this approach, however, is the definition of the fault hypothesis.
Hence, the system is designed to support a given fault model – service deviation defined
by its effect (value domain) and its occurrence (time domain) – and assumes this fault
model to represent a worst-case scenario for the given environment. A problem can
happen when the current fault is outside of the fault hypothesis. This can occur as
a consequence of a previous ECU failure or more generally due to fault accumulation
in the system [SS03]. Hence, the superposition of several faults can lead to a fault
pattern or occurrence outside of the specified hypothesis and thus to a system failure.
Consequently, periodic tests of the system as well as detailed diagnosis are required to
complement the fault-tolerant architecture and test the system robustness as well as
to perform recovery actions and restore the system fault tolerance.

1.1 Contributions and Objectives

The motivation for this work is to present a remote, transparent test approach for test-
ing the reliability of time-triggered communication systems as well as the availability
of the associated error detection mechanisms. We focus our work on the network, since
the low-level mechanisms involved with the information exchange between different
nodes delivers fundamental services to the system. Hence, without message exchange,
the distributed application can not work. Moreover, we position our work to late prod-
uct life-cycle and suppose a highly integrated system, during normal operation, and
without explicit test support. This requires our test approach to be generic (not rely on
dedicated services), non-intrusive (no modification of the system), and transparent (to
avoid deviation of normal service delivery, both in the value and in the time domain).
This last attribute enables test operation to be performed concurrently to normal op-
eration, and thus decreases the mean time between successive test operations, even if
the system can not be halted for maintenance. This in turn minimizes the probability

2

1.2 Structure of the Thesis

of fault accumulation.
The contributions of this work are the following:

• Proposal for a remote, transparent test approach for time-triggered
communication systems: During this work, we analyze which diagnostic in-
formation is globally available (observable at the communication medium) and
which information can be additionally gathered using a subtle stimulation of the
communication services and without disturbing normal system operation.

• Detailed analysis of FlexRay and TTP/C clock synchronization algo-
rithms: Our test approach relies on specific attributes of convergence-average
based clock synchronization algorithms used in time-triggered communication
systems. We present in this work a detailed analysis of these distributed algo-
rithms and explore their characteristics as well as their limitations.

• Proof for the transparency behavior of the test approach: Since this test
operation is expected to be performed concurrently to normal operation, we have
to guarantee that the system is not jeopardized and that the robustness is not
decreased (i.e. the system presents the same tolerance to faults).

• Architecture for a dedicated tester node: The approaches proposed in
this work require a dedicated tester node with tight connections between the
monitoring path and a real-time computer unit. The architecture developed
within this work is presented.

• Dedicated test application: An important part of this work was the validation
of our approach. We have developed a dedicated test application with the main
features (a) to calibrate the oscillators between the nodes and (b) to make local
information globally available. Notice that these services are not required for our
test approach and were only needed for the validation of our method.

1.2 Structure of the Thesis

The thesis is organized as follows: Chapter 2 presents the state of the art concerning
testing automotive electronics. It starts with a description of the evolution of auto-
motive electronics during the last fifty years in order to point out the system model
and current problems. During a second part, the challenges of testing distributed sys-
tems are discussed. We review the different aims for testing, which mainly depend on
the current life-cycle of the product, as well as the state of the art. After that, the
time-triggered architecture is presented as a solution for supporting highly dependable

3

1.2 Structure of the Thesis

systems. The last part of this chapter is dedicated to the STEACS project and sum-
marizes the results achieved so far with regard to testing automotive communication
systems.

The aim of Chapter 3 is to describe the problem statement. The motivation for
this work is presented and the term transparent is defined. Further, a survey about
the diagnosis information which can be gathered using pure monitoring is provided.
While having a good coverage for transmitter modules, the resources allocated for
message reception are not observable. To complement pure monitoring, a transparent
test approach for stimulating the clock synchronization mechanism and thus gaining
remote insights in the nodes’ reception status is introduced. This chapter concludes
with the identification of three main challenges for the validation of our test approach.

Chapter 4 is dedicated to the validation of our approach. We start with a formal
description of quartz oscillators as well as clock synchronization algorithms to provide
a formal background for the further validation. Then, we prove that our clock synchro-
nization stimulation method (deterministic replay operation) poses no threat to the
system since the precision property is not violated. In fact, we propose a method to
compute the system precision according to the replay attributes (slew rate). After that,
we focus on the observability of the system and show that the accuracy of the global
time base is bounded by the accuracy of the physical clocks. This attribute is required
during the test approach since the tester emulates a node with a bad quality (virtual)
physical clock. The reaction of the standard nodes (clock synchronization behavior)
provides information about their reception status with regard to the tester frames and
thus about the test result. Moreover, this chapter provides remote evaluation methods
for attributes of the clock synchronization and concludes with an illustrative example
summarizing the results achieved so far.

We present in Chapter 5 our experimental setup. It consists on a four nodes FlexRay
cluster and a dedicated tester node. The standard nodes have been modified to im-
plement a voltage controlled oscillator. Their frequency can be configured by the dis-
tributed application, and different quartz drift scenarios can be thus emulated. More-
over, internal nodes’ information such as offset and rate correction as well as current
oscillator configuration is made globally available. The dedicated tester node provides
a FPGA where a measurement controller as well as a microcontroller core have been
integrated to provide the required functionality. The interface with the host as well
as the results which are automatically generated are also described. During the last
part of this chapter, we present a test campaign for the FlexRay clock synchronization
algorithm. We illustrate that both bounded quartz accuracy and quartz stability are
required for correct operation of this complex mechanism.

Finally, Chapter 6 concludes this work and provides an outlook on what can be
expected from future research in this area.

4

Chapter 2

About Testing Automotive
Electronics

Science... never solves a problem without creating ten more.

George Bernard Shaw (1856 – 1950)

Electronics are present everywhere in today’s car. Electrical window control, radio
and keyless entry form the visible part of the iceberg. Most of the control functions
are realized or at least supported nowadays by electronic control units. The aim of
this chapter is to explain the current situation, present the current challenges, and to
review the current steps towards testing embedded automotive electronic components.

2.1 Electronics in Cars

2.1.1 History

The aggressive competition that occurs in the automotive domain leads to a high de-
mand for improvements by the car manufacturers. New safety, convenience, security
and environmental features are being implemented in cars, and existing systems are
continuously optimized. This strong requirement for innovation has been largely sup-
ported by electronics for the last 30 years. The main reason for that is the low cost
due to the mass market and the high development rate. Hence, Moore correctly pre-
dicted in 1965 that the number of transistors on a chip would double every 18 months
[Moo65], and this trend is still true.

5

2.1 Electronics in Cars

This fast development not only shrinks the price for the sake of functionality, but
enables the integration of new (complex) functionalities, too. For example, the number
of transistors for a microcontroller in charge of power train control was increased by a
factor 300 (from 20,000 to over 6 million) between 1982 and 1999 [Ban99]. Concerning
the memory requirements, less than 10kB were required in 1980 for the Electronic
Control Units (ECU) against more than 500kB in 2000 [Run98]. Nowadays, experts
estimate that for a luxury car 20% to 30% of the manufacturing costs comes from
electronics [LH02, Run98], and that one third of the development costs are spent for
electric/electronics [WW02]. Furthermore, it is agreed that more than 80% of all
automotive innovations stem from electronics [FP05, LH02, Mar03].

This fast increase of electronic components lead to a parallel increase on the con-
nection amount. In the middle of the 50’s, 45 meters of wiring [LH02] were required
to connect the different electrical components. Today, the VW Phaeton for example
requires about 4 km of wiring resulting in an additional weight of 64 kg [Vas04]. Until
the beginnings of the 90’s, the communication between sensors, controllers and actu-
ators were realized by point-to-point wiring. This communication scheme, however,
presents the following main drawbacks [LHD99, NSSLW05], [Zur05]-7:

• Decreased reliability – each additional link reduces the mean time of failure

• Low maintainability – difficulty in undergoing modification and repair [ALRL04]

• Low flexibility and modularity for future enhancements

• High weight leading to increased fuel consumption

• High costs: the information is inefficiently distributed by the discrete channels

• High complexity during manufacturing and assembly operations

• Shrinking layout space from the cabin

The car industry recognized the limitation of point-to-point wiring and developed
in the late 80’s and 90’s different proprietary solutions for centralized or distributed
networks (see [LHD99] for an overview). Presently, more than 70 ECUs exchanging
up to 2500 signals [Han05, FP05] (elementary information such as sensor output) can
be found in middle-class cars, and automotive applications are evolving into complex
distributed systems. The use of networks not only increases car reliability and per-
formance, it enables further cost reduction and the development of centralized control
strategies that are more optimized than decentralized ones [Sav06]. For example, car
stability can be improved in combining steering and braking information.

6

2.1 Electronics in Cars

2.1.2 A Hostile Environment

The electronic equipment in a car is subject to an extremely hostile environ-
ment [LHD99, Nob92, ZP93]:

• Mechanical vibrations up to 30 G

• High temperature range from -40◦C to +150◦C (exhaust temperature might in-
crease up to 650◦C)

• Large thermal gradients (40◦C/min) leading to thermal fatigue phenomena

• Splashes from oil, petrol, water or ice

• High humidity (up to 99 percent), dust, sand storms, corrosive chemicals

• Conducted emissions (due to, e.g., commutation of electric motors) leading to
positive over-voltages superimposed on the 12V power supply. Their amplitudes
might be up to 120V and usually last 40ns to 400ms

• Radiated emissions leading to electromagnetic fields (electric power lines, broad-
cast radio or TV transmitters, radars, mobile transmitters – mobile radio, cellular
phones) that can can exceed 200V/m; for comparison, domestic is about 3V/m
and industrial 10V/m

This hostile environment is a source of transient faults and can prohibit the use of
defined technologies (e.g. hard disks due to mechanical vibrations). Moreover, the fast
increase of electronics in this difficult environment has led to a parallel increase of the
fault rate due to electric and electronic components. Hence, about 20% of the faults
were related to electric and electronic equipment in 1989 [ADA89], which represents
a Mean Time To Failure (MTTF) of 5*106 hours. This rate has evolved to 38% in
2006 [ADA06]. According to [SMM00] and [GS91], 30% (36%) of electrical failures
are attributed to connection problems in the automotive domain (respectively aircraft
domain). Concerning vehicle safety, the aim identified by the automotive industry is
to have less than one incidence per year and per million cars. Considering that the car
is operating 5% of the calendar time (i.e. 500h per year), this requirement equals a
failure rate of 10−9/hour [Kop99], which corresponds to a SIL4 conformance [IEC98].

2.1.3 Actual Situation and Challenges

Application domain

Kopetz [Kop99] defines an automobile as “a complex mass product that is composed
of a number of sophisticated subsystems”. The application domain for electronics

7

2.1 Electronics in Cars

ranges from powertrain, chassis, security, telematics, driver interface, to body and
comfort [FP05]. These different application domains have hugely varying constraints
of bandwidth, cost and safety. More generally, it is usual to distinguish between system
electronics and body electronics.

System Electronics, on one side, regroups powertrain and chassis and is con-
cerned with the services related to the car movement. Such functions, while making
use of development in the computer data network area, are control oriented and thus
driven by control strategies. The control loop periods are typically in the range of some
milliseconds [Kop99, NSSLW05]. Moreover, the latency jitter between sampling of the
sensors and update of the actuators has to be tightly controlled. Such systems are typ-
ically safety-critical, since a failure might lead to a catastrophe with the possible loss
of human life [Kop97]. For example, if steering is delayed because of a system failure,
then car passengers are threatened. Consequently, the focus is set to the development
of safe modules and mastering the interferences between functions.

Body electronics, on the other side, regroups the services not directly related to
the movement of the car. It consists of security (against theft), telematics (for audio
and video in cars), driver interface (information display), and comfort. An example
of body electronics is the introduction of local area networks in the four doors of a
BMW that reduced the weight by 15 kg while enhancing functionality [LH02]. While
the emphasis for telematics services are set to bandwidth, (soft) real-time and confi-
dentiality, the requirements for comforts electronics are much lower since the response
time is determined by the reaction time of the human operator (range of 100msec to
200msec). Furthermore, body electronics are usually not safety-critical and a safe state
is usually available (termination of current operation) [Kop99]. Indeed, the abnormal
termination of an audio or video system due to a failure will (fortunately) not lead to
a safety hazard.

The diversification of requirements combined with low-cost constraints have made
today’s vehicles to concurrently implement different types of networks, see Figure 2.1.

The need for standardization

As highlighted previously, electronics in cars are becoming more and more complex. In
order to cope with this complexity and to create high quality products, the automo-
tive industry is moving from proprietary solutions to standardized architectures. This
presents, among other things, the following main advantages:

• lower costs for development and maintenance

• better quality, since a module has a much larger target audience and problems
can be fixed earlier

8

2.1 Electronics in Cars

• interchangeability between the suppliers and therefore more competition for bet-
ter end products

• Concentration on the core business, i.e. application development, which is valu-
able to the customer

The standardization trend is taking place at different levels. At the communi-
cation level, the Society of Automotive Engineers1 has classified networks into four
types [SAE92], see Table 2.1. Alongside this, de-facto industry standards such as CAN
[Law97], LIN [LIN03], MOST [MOS05] or FlexRay [MT06] communication protocols
are being introduced or already prevail. A state of the art summary about industrial
communication technology is provided in [Zur05].

network classification speed application
Class A <10kbits/s low speed convenience features
Class B 10-125 kbits/s medium speed general information transfer
Class C 125 kbits/s - 1Mbits/s high speed real-time control
Class D >1Mbits/s multimedia applications

Table 2.1: Classification of automotive networks

The Operating System (OS) is also being standardized. OSEK/VDX was intro-
duced in 1998 [Joh98, ZP98] to provide a standardized operating system. Main fea-
tures are the economic usage of memory resources and CPU performance while pro-
viding very fast response time and the capacity to manage task activation with short
periods (>1KHz) for quick control loops. A state of the art summary concerning the
implementation can be found in [BBFT06]. Due to the challenges facing the devel-
opment of safe automotive software (reported in [KTWE03]), standardization moved
one step forward and an industrial consortium2 proposed the AUTomotive Open Sys-
tem ARchitecture (AUTOSAR) [HSF+04, FBH+06]. The experience of introducing
reference architectures into the automotive development process is further described in
[EOAG+05], thus illustrating the importance of standardization at different levels.

2.1.4 System Model

As stated previously, car electronics are evolving into complex distributed systems.
Hence, several networks can co-exist, implementing different communication protocols.
Each single network is building a cluster as illustrated in Figure 2.1. A (compu-
tational) cluster is defined in [KN97] as “a set of nodes that cooperate to perform

1http://www.sae.org
2http://www.autosar.org

9

2.1 Electronics in Cars

the intended service for the cluster environment”. The different networks are inter-
connected using gateway-nodes, whose aim is to filter the incoming messages and trans-
mit the selected ones to the other network. The clusters further consist of nodes –
“self-contained computer with their own hardware and software [KN97]”– on which
the distributed application is computed. The nodes typically present a standardized
architecture comprising:

• the physical layer, which is in charge of physically accessing the communication
medium and digitizing the data for further processing.

• the communication controller, which builds the interface between the high-level
view required by the host and the serialized bit stream required by the physical
layer. This part is moreover responsible for managing the access on the commu-
nication medium to avoid collision and guarantee correct message transmission.

• the operating system, whose aim is to provide standardized, high level function-
ality for the efficient application development.

• the application, which computes the local part of the distributed application.
This application might be connected to sensors and/or actuators and build an
interface to its environment.

The set of communication controllers plus the physical layer within a cluster are
building the communication system [KN97]. �����������	�
���������
������������
����������������������
�
������������������
����
�
������ ���
��������������� ���
��������������������
����
 �!�������""" #������$�������
���"
��������������� �

�%��%&��
���$
%��%&��
�����
�������"""'�
(���)*+, -./ 0123456

#����������789:;<=;<8<>?;@A: 789:;<=BCDEFAC>GC=; 789:;<=AH?::@:IJKLMNOPKQRSTPU
Figure 2.1: Example of an automotive network

10

2.2 Testing Distributed Systems

2.2 Testing Distributed Systems

We have seen in Section 2.1 that automotive electronics are organized into distributed
systems. We will now review the challenges and present a survey of the existing test
approaches in order to improve the quality of the system.

2.2.1 Concepts and Definitions

Taxonomy

Aviz̆ienis et al [ALRL04] define correct service delivery as the correct implementation
of the system function. A failure, on the contrary, occurs when the delivered service
deviates from the correct service. A failure is caused by an error, which is a deviation
of the system from the correct state. The root of an error is a fault. The fault is
said to be active when it activates an error, otherwise it is dormant. The time interval
between the fault occurrence and its activation is called dormancy. The time interval
between error and failure is called latency. Figure 2.2 illustrates the dependencies.����� ����� ������	
��
�������������������������������� �!" #�$�!"%�&�������'����(����)������ %�&�������'������&�����*�&��(+,-./0123/4562-73/48.762

Figure 2.2: Fault, error, failure

The total state of a system is defined in [ALRL04] as the set of states comprising
computation, communication, stored information, interconnection and physical con-
dition. According to the previous definition, a fault is the root of a (microscopic or
macroscopic) system deviation (error). However, this error does not necessarily lead
to a system failure. Take the example of heavy ions hitting a chip. The heavy ions
will change the electron distribution in part of the chip, thus changing the physical
state of this chip. However, this new electron distribution might still be within the
allowed bounds and thus does not lead to glitches (i.e. error at a higher abstraction
level). If the heavy ions are leading to a glitch, there is still a non-zero probability
that the resulting error (here a deviation of the computation state) is not latched into
a memory element and disappears before appearing to the output pins. Following the
same reasoning, even a latched glitch (stored information state) might not lead to a
system failure if this bit is not used (or overruled) for the output computation.

11

2.2 Testing Distributed Systems

To summarize, a fault per definition does lead to an error, but this error does not
necessarily lead to a system failure. It is in fact the goal of fault tolerance mechanisms
to act as a “shield” [ACL95] and prevent errors from leading to system failures. These
mechanisms are designed according to a given fault hypothesis (description of the fault
model in the value domain – e.g., number of ions hitting the chip or strength of the
EMC field – and in the time domain – e.g., transient, burst, stuck-at). The coverage
of this shield has a direct impact on the reliability of the system.

The operation of the error detection mechanisms is more complex because of two
points. First, the ability for a fault to “hide” (dormant state) and activate at any
arbitrary point in time can lead to fault accumulation. This effect might lead to fault
patterns or occurrences outside of the fault hypothesis as defined during the design of
the system, and can represent a threat for the system. Secondly, in the case of complex
system, a failure in one module can propagate to another module and lead to a fault
for this other module.

Improving the dependability

The concept of dependability is defined in [ALRL04] as “the ability to deliver a
service that can justifiably be trusted”. It regroups the notions of:

• availability : readiness for correct service

• reliability : continuity of correct service

• safety : absence of catastrophic consequences on the user(s) and the environment

• integrity : absence of improper system alterations

• maintainability : ability to undergo modifications and repairs

There are different possibilities for improving the system’s dependability. During
system design, fault tolerant architectures based on error detection and system recovery
can be proposed. During system development, fault prevention techniques (e.g. design
rules) can be used. Fault removal, which consists of the verification, diagnosis and
correction of the system, can be applied either during system development or during
system operation. The verification can be static (e.g. data flow analysis, formal veri-
fication [SL95]) or dynamic (e.g. testing) when the system is exercised. Fault removal
during system operation is defined as corrective or preventive maintenance. Finally,
fault forecasting is performed during system evaluation to forecast (qualitatively or
quantitatively) the scenarios that can lead to a system failure. More information can
be found in [ALRL04]. In practice, testing is frequently used because of the represen-
tativeness of the results – the system is exercised – and because of its fast execution
time.

12

2.2 Testing Distributed Systems

2.2.2 Purposes of Testing

According to [Het88], “testing is any activity aimed at evaluating an attribute or ca-
pability of a program or system and determining that it meets its required results”.
Depending on the current stage in the life cycle of the system, this common definition
can be applied to testing a system with different goals in mind.

Verification is a common test procedure during system development that involves
checking whether the system adheres to given properties [ALRL04]. It aims at re-
vealing implementation faults, and the tests are focused on the investigation of a few
mechanisms at a time. Typically, at this early point of development a complete target
environment is often not available. Models or early prototypes of the system are used,
and a suitable emulation of the target environment is required (sensor inputs, e.g.).

Conformance testing or validation [IEE90] represents the process of evaluating
whether the parameters of an implemented system conform to a specification or a
standard. At this point, correct system operation must be validated for the entire
range of possible inputs and parameters. This test is usually executed with some kind
of prototype system. In practice, however, these tests are restricted to a subset of
relevant configurations, since an exhaustive test of all possible configurations is not
feasible.

Robustness testing is defined in [MS97] as the characterization of the system
behavior in the presence of erroneous and/or stressful input conditions. In the context
of hardware, we have to extend this definition to stressful operating conditions. Prior
to test execution, an appropriate fault hypothesis must be defined. Ideally, all possible
inputs and operating conditions (including illegal ones) should be tested; again, how-
ever, only a subset will be feasible in practice. Therefore, fault-injection techniques
are used either (a) to execute and check the implemented error detection and handling
mechanisms, or (b) to derive a forecast for the systems robustness in field operation.

According to [MRW03], the purpose of interoperability testing is to prove end-
to-end functionality between (at least) two fully assembled systems according to the
standard(s) on which those systems are based. Typically, nodes from different vendors
are integrated into a distributed system in order to test whether these nodes are able
to communicate under a set of possible configurations.

Performance testing, or system evaluation, is used to assess the performance
of a given system by means of metrics that can be used to compare the different imple-
mentations using a benchmark suite. Its main focus is on measuring the performance
of a system for a well defined set of tasks [AKM+01], and not to verify or validate a
system. In contrast to verification, efforts are set to the standardization of the test
procedure and the tests are typically run on an early product implementation.

Finally, the goal of maintenance testing is to detect and localize faults that
emerge during the mission phase of a system. The scope is typically narrowed to
(physical) faults that occurred since the last maintenance actions (e.g., due to ageing

13

2.2 Testing Distributed Systems

effects) [ALRL04].
Obviously these different testing aims span a large scope. During protocol and

application development, experienced engineers use the test tool in a lab environment
for debugging, and flexibility is the key issue. In context with maintenance testing, on
the other hand, repair personnel with comparatively low protocol expertise are using
the test tool in a rough environment with limited access, and for that reason standard-
ization and ease of use are most crucial. Verification, conformance, interoperability,
and maintenance tests are qualitative tests with the purpose of proving whether an
assumption is correct or wrong, whereas robustness and performance tests are quan-
titative tests that aim at deriving a numerical characterization for a given attribute.
This list does not claim to be exhaustive but aims at illustrating the diversity of testing
with respect to the goal targeted, methods required and fault model applied.

2.2.3 The Challenges of Testing Safety-Critical Distributed
Real-Time Systems

Distributed systems consist of a set of nodes that are running their own program in
parallel (see Section 2.1.4). Testing distributed systems is therefore more complex than
testing sequential ones because of the state explosion due to the concurrent process
operations. In fact, the test scope is not merely limited to the different single processes
but is enlarged to the (complex) process of interaction as well. For example, in a
system that reacts to its environment, each new input combination might lead to a
new program execution flow and a new order of task invocation.

Another problem is the precise ordering of events occurring in distinct, con-
currently executing processes. Hence, because of the inherent geographical diversity of
distributed system, means to precisely and globally time-stamp the events monitored
or the stimulus to inject are required.

The test complexity is further increased by the non-reproducible behavior of
distributed systems according to their inputs [MH89]. In fact, races are taking place
between the different processes, and their outcome may depend on non-deterministic
elements (e.g. CPU load, non-determinism in the communication protocol or non-
deterministic statements in the application software [Sch94b]). Slight changes in one
of these factors may change the outcome of such a race, which in turn leads to a totally
different system behavior. The probe effect [Gai86], or Heisenberg uncertainty [LMC87],
which typically influences the existing races while improving system’s observability,
should be thus minimized. The sparse time base introduced by the time-triggered
architecture solves this problem, see Section 2.3.2.

The presence of timing constraints makes the situation even worse. Correctness,
in the context of real-time systems, not only depends on the logical results of the
computations but also on the time when these results are produced [Kop97]. Deadlines

14

2.2 Testing Distributed Systems

can be soft if the result of computation is even of utility after the deadline has occurred
(e.g. audio, video). Otherwise, a deadline is firm when the results can not be used
after the deadline. In case of safety-critical systems, a deadline is hard if a catastrophe
can occur when a deadline is missed. Consequently, the probe effect is much more
stringent in real-time systems since the system’s behavior in value and time domain
should be kept unmodified.

Automotive electronics are further characterized by their high degree of integra-
tion due to their embedded nature, intensified by the aggressive costs and performance
metrics that the automobile industry demands [Mar03]. The system’s architecture is
tailored to its requirements and consequently little or no test support or interface is
available [Sch94b]. However, testing requires system changes and additional resources,
which is incompatible with the automobile requirements and increases the unwanted
probe effect.

Additionally, test operations are by nature intrusive, since test vectors are applied
to the system. The stimulus application might not be compliant with normal system
operation and requires service interruption. In case of safety-critical services, which
can not be interrupted, this can constrain the test execution to time windows when
the service is not required and thus decrease test coverage, and additionally reduce
the environment’s representativeness. A representative environment is all the more
important to validate a system for a given context, since exhaustive tests (for every
possible environment) are not feasible due to the system’s complexity.

2.2.4 Monitoring Distributed Systems

The quality of a test result (in terms of test speed and coverage) attainable with
given efforts strongly depends on the testability of the system under test. According
to [BMS87] the two key aspects for testability are controllability and observability.
Controllability is an indicator of how easy it is to bring the system or node under
test to a given state. Observability is a measure of how easy it is to observe certain
activities of the system or node under test. Both measures are largely determined by
the accessibility of the system under test. In short, good accessibility leads to good
testability.

Monitoring operation aims at improving the system’s observability. It is defined
in [Sch94a] as “the process of extracting and gathering information regarding the be-
havior of a particular system”. The definition given by Tsai et al [TBYS96] “collect
run-time information on the target system that can not be obtained by merely studying
the program text” insists on the online nature of monitoring operations. Application
domains range from testing and debugging, dynamic safety checking to performance
analysis and program optimization [Sch95, TBYS96]. Schmid [Sch94a] insists, more-
over, on applying monitoring to improve the environmental model. In this case, mon-
itoring provides a kind of loop-back during system development [PS99], which is used

15

2.2 Testing Distributed Systems

for tailoring a system to its environment. This loop-back can be implemented during
field operation as well as input for recovery actions (“Feedback Monitoring”, [Sma04]).

There are two main approaches to implement monitoring services: software and
hardware monitoring. First, during software monitoring, specific services are added
in the software. Thane [Tha00] identifies four different approaches:

• Probe-tasks : Dedicated tasks are developed to monitor the status of the system.
In [KHM05], the diagnosis tasks are automatically distributed over the nodes to
maximize the system’s reliability while minimizing resource requirement. As for
the Inline probes, this method requires modifications within the node’s software
and / or the system architecture.

• Kernel-probes : the operating system provides means to monitor and log task
activation, preemption, termination, interrupts and system calls. Examples for
this approach are described in [DR92, Mah01]

• Inline-probes : the developer explicitly inserts a debug command (typically some
kind of “printf” function) to return the actual state of the program. The approach
proposed in [MSSP02] presents the advantage to split the program source from the
debug commands and provides automated ways to generate the executable, and
thus avoids the risks of screwing things up by accident. The use of a preprocessor
switch is also a common method to optionally add debug comments.

• Probe-nodes : dedicated nodes are connected to the system to monitor the bus
traffic. This approach can not be considered as a purely software-oriented
method, since additional hardware (to get access on the communication medium)
is required. This method will be discussed later.

The main problems of software monitoring are the probe effect – the system has to
be modified – and the resource overhead. Notice one possibility for avoiding the probe
effect is to leave the monitoring services in the system permanently. This implies that
enough resources are available, which is not always the case in embedded systems.

The second main direction to improve the observability of the system is called
hardware monitoring. This approach requires a (dedicated) hardware to collect
the data [TBYS96], and thus presents the main advantage of minimizing the inter-
ference with the target system. Typically, the monitoring hardware is connected to
the communication system from the node’s CPU and monitors each memory trans-
fer [BV89, FAF06a, TFCB90]. This approach uses architectural partitioning and con-
centrates on inter-unit communication. The main drawback is the low abstraction level
(electrical signal) of the data being monitored.

The probe-node approach presented previously is an enhancement of hardware mon-
itoring for distributed systems. Here, the communication system is external and usu-
ally a serial one, and the units are self-contained computer systems. Depending on

16

2.2 Testing Distributed Systems

the abstraction level under consideration, this approach might be classified either as
a hardware- or software-monitoring method. In the case of a single node, it would
represent a hardware monitoring method; The node is then considered as a black box,
and the inputs / outputs are monitored. On the other hand, this approach can be
classified as software monitoring for the whole cluster, since changes in the system
architecture might be required. Additionally, the scope is then the distributed applica-
tion and the additional node can then interpret the messages exchanged by the other
nodes. Their main advantage is to enable remote monitoring: information about the
node’s input and outputs can be obtained without having to modify the node itself.
However, as in a black box test, this method does not provide insights within the node.
Examples for this approach are [DJM95, DGMK00, HP03, Sma04, ZS02]. Notice that
according to Olsson et al [OBRB01], this method of monitoring at the system level (in-
ter node communication) is more efficient and effective for testing distributed systems
than monitoring at the node level (intra node communication).

Hybrid monitoring takes advantage of both hardware and software monitoring.
In Hybrid monitoring, the triggering (more complex) is usually accomplished in soft-
ware and the recording (easier to automate) in hardware [TBYS96]. Perturbation of
the monitored system is greatly reduced, while high level data can be monitored. This
approach is extremely welcome in highly integrated systems such as System on Chip.
Examples for hybrid monitoring are [ESL01, KBG98, Tho05].

2.2.5 Improving the System’s Controllability

Controllability is the complement of observability. While the main focus of observabil-
ity is to provide information about the system’s status, the aim of controllability is
to move the system under test to a desired state. For that, a workload generator and
fault injection methods are required to drive the system through its regular states and
exercise the exceptional states [FAF06b]. The main challenges are (a) reachability, to
reach each state of the system under test, and (b) reproducibility, to deterministically
apply and reproduce a test scenario.

Different approaches can be found in the literature. Perhaps the most common
one is to directly control the inputs of the system under test to generate the work-
load [Sch91, TH99] (black-box test [IEE90]). This requires an environment simula-
tor [Sch92] when the test environment is expected to react according to the system’s
response. Otherwise, the test scenario can be generated off-line and statically applied
to the system. One advantage of using a simulated environment rather than that of
the real test environment is [Sch94b] safety and/or cost : Correct operation can not
be guaranteed at this point, however, since confidence in the system being developed
is still low or functionality might be lacking. Another advantage is flexibility : The
tester generally has better control over a simulated environment than over a real one.
It results in easier test execution, and enables system evaluation under invalid envi-

17

2.2 Testing Distributed Systems

ronment. However, the test representativeness (or representativity [Sch94b]) is usually
a challenge. How can the tester be sure (a) that its test vectors are representative
for the given environment, and (b) that every (realistic) scenario has been covered by
its test campaign? This approach is non-intrusive for the system under test. Nei-
ther the nodes composing the system nor the system architecture has to be modified.
However, it implies that at least a description of the system (for a simulator) or a
prototype is available (unlike model-based testing that only requires an algorithm but
no implementation of it, and therefore can be performed earlier).

A more intrusive approach for workload generation is the replay of event histo-
ries [MH89]. It uses the node’s internal bus architecture to replay recorded interac-
tions between the processing unit and the node’s externals (memory, I/O...) [TFCB90,
TH00]. One advantage of this approach is the reproducibility of the test execution. To
compare, the reproduction of a human controlled test case can not be performed with
the same exactitude in the time domain. The small time differences might influence
the existing race condition (probe effect) and make the system react differently. Replay
operation thus strongly supports cyclic debugging, when the test scenario is applied
recurrently until the problem is corrected. Another advantage of this approach is to
reduce interactions between the node under test and the external world to memory
accesses. In such a context, the simulation of the environment is much easier, since it
is limited to the interface of the processing unit. For example, in case of a temperature
sensor, the room temperature does not require to be controlled anymore but only the
sensor output.

This approach has been extended to the serial network of distributed embedded
systems in [Arm06]. The benefit of this extension is to enlarge the test scope to several
nodes at the same time. The replay of event histories is an off-line method, in the
sense that the stimulus is applied statically and no interaction with the system under
test is possible. In the case of distributed systems, cluster simulation [Gal99] can be
used to interact with the system under test while still controlling the communication
medium (the answer of the tester is computed online according to the reaction of
the system). Notice that these approaches are more intrusive than the use of an
environment simulator. While the nodes composing the system are left unchanged,
the system architecture has to be modified. In return, the replay or simulation of a
group of nodes enables the verification and validation of single nodes or another group
of nodes before integration in a whole cluster.

Another method by which to improve controllability is the use of fault injection
techniques. Contrary to the two previous approaches, this one is not directed toward
the generation of a specific workload but rather in the activation of exceptional paths.
While control of the system inputs aims at exploring the system states for correct
behavior (testing for correctness, e.g. verification, validation), fault injections methods
are more directed toward dependability evaluation. More especially, fault injection
requires a workload and is performed on top with two main goals [ACL95]. First, fault

18

2.2 Testing Distributed Systems

removal aims at checking the error detection and fault tolerance mechanisms. Primary
concerns are determinism and reproducibility to activate specific fault sets which are
identified during design specification. The second goal, fault forecasting, aims at rating
the efficiency of the test procedures or the attributes (e.g. coverage, error latency) of the
error detection mechanisms. The focus is then set to the estimation of a representative
statistical distribution of the fault space, and to a large number of experiments so as
to be confident of the measure. Four main approaches are usually referenced in the
literature [BP03]:

• Hardware-based methods use dedicated hardware to allow the injection of faults
into the target. There exist two types of hardware-based fault injection meth-
ods: Forcing techniques and Insertion techniques [BP03]. Using forcing tech-
niques, the fault injector forces a logical level at the selected points (e.g. MES-
SALINE [AAA+90], AFIT [BG03], using heavy-ions [KLD+94] or laser fault in-
jection [SMF98]). On the contrary, insertion techniques use a special device to
replace part of the circuit and inject the required faults (e.g. FIDYCO [RSH04]).

• Software-based fault injection (SWIFI) consists of changing the content of mem-
ory or registers based on specified fault models to emulate the consequences
of hardware faults (e.g. [ACK+03], DOCTOR [HSR95], XCEPTION [CMS98],
GOOFI [AVFK01]) or to inject software faults either in the operating system
(e.g. MACH [DJM95], DOCTOR [HSR95], MAFALDA-RT [RAA02], [Ade03])
or in the distributed application (e.g. LOKI [CLJ+04]).

• Simulation-based methods are using a simulation model of the system (e.g. in
Hardware Description Language) into which the faults are injected. The main
advantages are high controllability and observability of the target. However,
they are typically time (and resource) consuming, and depend on the accuracy of
the simulation- and fault- model used. Example are MEPHISTO [JAR+94] and
VERIFY [STB97].

• Hybrid approaches are combining two or more fault injection techniques to
combine the advantages of the different methods (e.g. LIVE [AIMP97], NF-
TAPE [SFB+00]).

A major challenge in testing a system is the creation of representative workload
and test vectors. Hence, the use of inaccurate fault model not only increase valida-
tion effort (the system would be tolerant to faults not present during field operation)
but might reduce the resulting dependability, too, since real fault models are not cov-
ered. Online Test aims at overcoming this problem and enables test operation during
field operation. In the works described in [DJ94, DDS02, SFB+00], the test vectors
are directly applied to the distributed system. To that aim, a framework to connect

19

2.3 The Time-Triggered Architecture

lightweight fault injectors is presented in [SFB+00]. The focus is set to the interfacing
of fault injection modules to enable the efficient enhancement of the test platform.
In [DJ94], dedicated layers are locally inserted up to or below the layer under test.
Higher test layers are focusing on the creation of new messages, while lower test layers
aim at manipulating messages generated by other participants in the protocol. Both
methods are highly intrusive since they require changes within the targeted node. The
approach described in [DDS02] is more oriented toward the control of the environment
for the validation of the system, and the changes are localized to the system’s interface.
Contrary to the previous works, the test scope in [SV02] is focused to the communica-
tion controller hardware instead of the whole system. During this work, local off-line
and online [Nic96] BIST methods are investigated. In [ST99], the system produces its
own stimulus through normal operation and the test coverage is analyzed. This on-
line test approach is very interesting, since it is totally transparent and concurrent to
normal system operation. However, the test coverage is not deterministic (it depends
on system operation) and some paths (e.g. error detection mechanisms) have a low
probability to be exercised.

Another important focus of online testing is the detection of dormant faults [SS03].
Since fault-tolerance is usually based on the single-fault assumption, the accumulation
of faults might lead to a system failure. The periodic (online) test of the system reduces
the error detection latency and decreases the probability of multiple faults within the
system.

2.3 The Time-Triggered Architecture

Throughout the previous sections, we have seen (a) the organization of automotive
electronics to be made of complex distributed real-time systems, and have discussed
(b) the challenges of testing these systems and providing the required system quality.
The time-triggered architecture [KB03] has been introduced in this context to provide
a reliable architecture for safety-critical systems. We will review in this section the
requirements and the concepts for this new architecture, as well as the main components
such as the communication protocol and the middleware.

2.3.1 Requirements for Safety-Critical Applications

A safety-critical system is a system where a failure might lead to a catastrophe with the
possible loss of human life [Kop97]. A typical example for that are “break-” or “steer-
by-wire” systems, where the mechanic or hydraulic systems are replaced by electric
ones. The following requirements have been listed in [WNSSL04, XbWP98]: (a) a sys-
tem failure should not jeopardize human life, economics or environment. Moreover, (b)
a single component failure should not lead to a failure of the whole system, and finally,

20

2.3 The Time-Triggered Architecture

(c) the system is able to tolerate one major critical fault without losing functionality
for a time long enough so that there is enough time to reach a safe parking area.

“X-by-wire” systems are real-time distributed systems implementing complex multi-
variable control laws and delivering real-time service [WNSSL04]. We will now detail
the requirements to support these kinds of safety-critical operations.

• low and deterministic communication jitter to enable the design of pre-
dictable control applications which have a fast response time for high speed con-
trol loops [KS97]. Additionally, the recovery time (outage time) must be kept
low (< 50ms according to [HT98]).

• independent node development to cope with the system complexity and
enable the independent development of different nodes by different groups. This
attribute is based on the precise specification of the node both in the time and
value domain, and on an abstract model of the node services. Only then can the
system designer know which function can be expected from the node, and which
information is required for correct operation [KO02].

• stability of prior services means that “the validated services of a node – both in
the value domain and in the time domain – is not refuted by the integration of the
node into an encompassing system-of-systems” [KO02]. This requirement aims
at enabling sequential node development and making the integration of different
modules into a single computer unit easier. It reduces efforts significantly, since a
module requires to be validated only once and not after every development stage.

• constructive integration to ensure that the integration of the n+1 node will
not disturb the operation of the n nodes already integrated [KB03]. While the
stability requirement is focused to the design at the node level, this requirement
has implication for the management of the network resources. Hence, the timing
constraints (or timeliness) of the application must be satisfied even at the critical
instant (i.e. when all nodes request the network resource at the same instant). It
aims at saving time during system integration by avoiding sporadic failures due
to the integration of an additional node in the system.

• fault tolerance and redundancy – the replication of a function – is strongly
required in safety-critical systems in order to improve the system dependability
and avoid that a single fault leads to a system failure [KS97]. At the physical
layer a redundant communication channel might be used. From the communica-
tion services view, babbling idiots (one faulty node monopolizing the bus) must
be avoided, for example by the use of bus guardians [Tem99]. From the applica-
tion view, the realization of active replication demands mechanisms such as e.g.
replica coordination, voting and internal state alignment [Bau01, KB03].

21

2.3 The Time-Triggered Architecture

• the availability of a global time base with a precision under the microsecond
range is required to synchronize the distributed control loops [KS97].

2.3.2 The Time-Triggered Computational Model

An event-triggered architecture is characterized by the fact that all system activi-
ties are initiated by an event [Kop97] and consequently reacts to its environment (an
operation is started as soon as the event is received, regardless the current processing
status). On the contrary, in the time-triggered architecture, every action is derived
solely from the progression of real-time and thus follows the progression of its en-
vironment (an operation is started at a pre-defined starting point and processes the
information that has occurred since the last computation; conflicts about processing
resources are avoided per construction).

The time-triggered computational model is based on the representation of the con-
trolled system as a Real-time Entity (RT entity), which represents the system as
“a subset of significant state variables” [Kop98]. This RT entity can be observed at a
particular point in time. The observation is then a Real-Time Image (RT image) – a
current picture of a RT entity that is “an accurate representation of the RT entity, both
in the value and the time domains” [Kop98]. Each node is provided with a RT image of
the controlled system, which is processed locally according to a static, a-priori defined
schedule. This deterministic progression of the system enables task multiplexing in the
time domain in order to avoid conflicts and race conditions. This attribute, applied
at the system level, then supports independent node development and the stability
of prior service requirements, and when applied at the communication level, it helps
support the requirement of constructive integration.

Furthermore, the static schedule is based on the concept of sparse time
base [Kop92]. Because of the finite precision of synchronization algorithms and the ef-
fects of digitalization of time, it is usually impossible to consistently order events on the
basis of their global time stamp. For example, an event occurring at time ti+ε might
be assigned different time stamps ti and ti+1 by two clocks which are not perfectly
synchronized. This problem is solved by the introduction of a sparse time base, which
divides the time progression in an infinite sequence of activity and silence periods with
a granularity larger than the clock synchronization precision, see Fig 2.3.

Using this model, the different clocks are re-synchronized during the silence intervals
and agree on a global time base during the activity intervals. Events within the sphere
of control of the system are allowed to occur only during an activity interval. External
events have to be synchronized with the time base. Using this time model, the events
are either simultaneous (e.g. Fig. 2.3, Events 2 and 3) or totally ordered within the
system (e.g. events 1 and 2).

The synchronization of the system progression and the alignment of the communi-
cation with this sparse time base provides the following properties [Kop92]:

22

2.3 The Time-Triggered Architecture

Clock k

Clock i

Clock j

time

A: activity S: silence

A A AS S S S S S A S

E1 E2 E3

Ei: Event i

Figure 2.3: Sparse time model

• consistent order property, meaning that all nodes act in the same order on differ-
ent observations and thus avoid state divergence. This can be guaranteed with
this computational model, since all nodes receive all messages before the next
one is sent.

• simultaneity property, the nodes act at about the same time on the same ob-
servation. This aims at keeping temporal coordination between the nodes and
avoiding unsynchronized behavior of the system. Within the system, all nodes
are acting on the messages at about the same time (defined by the precision of
the clock synchronization).

• temporal order property, so that the nodes react on different observations in the
temporal order of their occurrence. Notice that the temporal order property
implies the consistent order property. Using this scheme, the messages are either
simultaneous (within the same activity interval) or totally ordered.

Additionally, this concept improves the testability of the system [Sch91] since the
size of the input space (in the time domain) is significantly reduced. Furthermore, the
use of a sparse time base solves the problem of temporal order and simultaneity of
actions without agreement protocols. It is argued in [Kop92] that the responsiveness
of the system is actually improved, since the time units resulting from the granularity
of the time base are shorter than the execution of an agreement protocol would take.

The sparse time base is also required for service replication to tolerate faults within
the system. A fault tolerant unit [Kop97] consists of “a set of replicated nodes that
are intended to produce [...] the same results at approximately the same time”. Their
role is two-fold [WNSSL04]: they make the system resilient (a) to transmission errors
(since the computation result is transmitted more than once) and (b) to measurement
and computation errors (occurring before transmission). For that, they require [Kop97]:

• Agreement on inputs : all the nodes forming the fault tolerant unit must agree on
the inputs in order to process the same data

23

2.3 The Time-Triggered Architecture

• Agreement on computation time: The point in time when the results are available
should be deterministic: the control structure should be static (to avoid dynamic
task preemption and unpredictable task interference) and the message reception
time should be known. The simultaneity property of the sparse time-base sup-
ports this requirement.

• Deterministic algorithms : Each algorithm should provide the same results.

2.3.3 Event- versus Time-Triggered Architecture

A lot of comparisons between event- and time-triggered architectures have already been
published (e.g., [Alb04, GB06, SB06, APF02, NSL05] for some recent ones) without
having clearly identified the “best” solution. In fact, the two architectures focus on
different properties. Event-triggered architectures provide flexibility and try to improve
the overall performance while the focus is set to timeliness and worst-case execution
time for the time-triggered architecture [APF02, SB06].

Most of the communication protocols belong to the class of event-triggered archi-
tectures. These architectures, however, present some limitations with respect to the
requirements presented in Section 2.3.1 for the development of safety-critical systems:

• the system complexity increases more than linear with the system size (num-
ber of elements and intensity of the interaction) [KBE+95]. Structuring – the
description of a system at an abstract level – is required to cope with the com-
plexity. Two methods are listed in [Kop98]: horizontal structuring (or layering)
and vertical structuring (partitioning). Layering, on one hand, is related to the
representation of the system at different abstraction levels and can be used both
in event- and time-triggered systems. Partitioning, on the other hand, splits a
system into a number of nearly independent subsystems with their own resources
and well-specified interfaces, both in the temporal and value domain [Kop98].
This concept requires the system to be composable [KO02, Alb04] and adhere
to the four principles previously explained:

1. independent development of nodes at the architecture level.

2. stability of prior services at the node level.

3. constructive integration of the communication system.

4. replica determinism is required for redundant nodes to provide the same
external visible state at approximately the same time and to build a fault
tolerant unit.

Event-triggered architectures are not composable, since the temporal behavior
of the communication system depends on the application software [KO02]. The

24

2.3 The Time-Triggered Architecture

performability of the communication system can be affected by adding nodes,
since the critical delay (when all nodes require the network at the same instant)
increases with the number of nodes. Moreover, the addition of nodes might cause
queue overflow within the receivers, thus affecting the system and the stability
of prior services.

• robustness to their environment: Time-triggered architectures are not driven
by interrupts outside their sphere of control, but instead decide autonomously
when to observe their environment. Consequently, and contrary to event-
triggered architectures, there is no possibility for a malicious device to upset
a time-triggered system [KBE+95].

• fault containment: The time-triggered architecture provides an interface free
of temporal control signals, (temporal firewall, see Section 2.3.4) thus providing
error containment regions within the system. This attribute increases the overall
system’s dependability since errors are contained and do not lead to a system
failure.

• time-triggered architectures are based on a static scheduling and on the off-line
analysis of each module’s execution time within the system. The static sched-
ule simplifies the inter-task synchronization in resolving data dependencies
of the temporal control structures, hence solving inter-task synchronization and
avoiding race conditions. Additionally, timing analysis enables the validation
of time constraints required for (hard) real-time systems. The work presented
in [Ebn98] illustrates the difficulty to validate time constraints in event-triggered
architectures and the improvements achieved with the time-triggered architec-
ture.

• the periodic and a-priori defined task execution can be used for fast fault de-
tection and the message transmission can be used as “heartbeat” to detect failed
node [NSL05].

• deterministic communication with guaranteed worse-case transmission time
and low jitters.

One important advantage of event-triggered architectures is that fewer assump-
tions are required to build a system [GB06]. Adding a node into a system does
not require any change in the other nodes, but it can invalidate the temporal be-
havior [KO02]. This makes the event-triggered architecture more flexible and avoids
a restrictive design process as required for the time-triggered architecture [Alb04].
Moreover, event-triggered systems make better use of the bandwidth due to better
average transmission time (the messages are transmitted as soon as the communication
medium is available). This leads also to a better average system reactivity.

25

2.3 The Time-Triggered Architecture

To conclude, event-triggered systems are well suited for sporadic transmission,
alarm, low-power sleep modes and best effort soft real-time systems. Time-triggered
systems, on the other hand, trade the the flexibility for more predictability, determin-
ism and guaranteed latencies.

2.3.4 Time-Triggered Communication

TDMA scheme

In a distributed system, the communication services are forming the foundation for
the system since they enable the exchange of messages (actualization of RT-images
in time-triggered architectures or events in event-triggered architectures) between the
computing units. Kopetz [Kop98] compares the operation of time-triggered commu-
nication protocols to train systems between stations. There exists an a-priori known
schedule when the train arrives or leaves a station, and the client has to adapt to the
time base. Furthermore, the train system operates deterministically and independently
from the activity at the station and is synchronized to a known time standard.

Examples of Time-Triggered communication protocols are TTP/C [EBK03] for air-
crafts or FlexRay [MHB+01] for cars. These protocols implement a Time Division
Multiple Access (TDMA) scheme based on a-priori defined, time windows (“commu-
nication slots”), which are uniquely assigned to the nodes for message transmission
within a periodic communication cycle, see Fig. 2.4. The messages are broadcasted
above the communication medium and consequently are available for each node of the
cluster. A fundamental principle is that the transmission depends only on the time
progression and is not triggered by any external (not-deterministic) event.

Node A Node B Node DNode C

 time

Periodic
communication cycles

communication slots

IDLE
Communication

Medium

Receiver A

Receiver B

Receiver C

Receiver D

A D B A D B

D B D B

A D A D

A D B A D B

A B A B

Figure 2.4: TDMA scheme

26

2.3 The Time-Triggered Architecture

Time representation and clock synchronization

The FlexRay and TTP/C protocols defines the microtick as a node’s internal time
interval directly derived from the oscillator. The macrotick is the shortest time unit
defined cluster wide and represents the granularity of the synchronized time base.
The macrotick is defined as an integral number of microticks. A slot represents a time
window eventually assigned to a node for the transmission of exactly one message. The
FlexRay protocol further defines static and dynamic segments consisting of several slots
and finally communication cycles as periodic communication elements. The equivalent
to a communication cycle in TTP/C is the TDMA round . Figure 2.5 illustrates the
time hierarchy for FlexRay. ����������������	
������������ ������������� ������������ ����������������
��
�� ���� ���� ��������	�� � � � � ������!����"���!����" # # # # ��� ������������$%&'()*+,-)%.$/%01.-)2

Figure 2.5: Time hierarchy for FlexRay

It seems evident that the establishment of a global notion of time among the node
is a pre-requisite for the TDMA scheme for avoiding collision on the communication
medium. Hence, periodic re-synchronization is required in order to correct the quartz
drift and assure that the nodes’ time bases are not drifting apart (the nodes within
the system have approximately the same vision of the macrotick counter). For TTP/C
and FlexRay, each node locally measures the time difference between the nodes’ time
bases and correct accordingly its own clock. A more formal description is provided in
Section 4.1.3.

The central role of the clock synchronization mechanism for time-triggered commu-
nication protocols leads to an important behavior: the point in time when transmission
occurs depends on the node’s time base and thus on the node’s clock correction mech-
anism. Notice also that the correction term depends on the messages received (in fact
the reception time is used to measure the current time base deviation). This mecha-
nism thus builds an implicit internal loop-back between the receive and the transmit
path: A correctly received message has the potential to move the node’s start of trans-
mission. A detailed survey concerning clock synchronization algorithms is presented in
Section 4.1.3.

27

2.3 The Time-Triggered Architecture

Temporal firewall

Communication between two systems is commonly based on a master-slave control
scheme. Data exchange can be initiated by the sender (push style) or by the receiver
(pull style). In both cases the requester generates the control flow, and thus can start
a transmission at any time. While this scheme is very comfortable for the master, the
slave has to stay available at any time, which may result in high resource costs and
difficult scheduling. Time-triggered communication protocols are using a combination
of push and pull communication model [EBK03]. As stated before, the communi-
cation services are transporting a message from point A to point B according to a
pre-defined schedule. The sender implements then a push style and transfers its data
to a local memory, while the receiver implements a pull style to obtain the data (see
Fig. 2.6). The communication services are in charge of transmitting the data from
a memory to the other. This combination is ideal both for the sender and receiver
since they can transmit and access the data whenever they want and do not need to be
watchful for transmission request. This communication scheme is building a tempo-
ral firewall [KN97], a fully specified interface for the unidirectional exchange of data.
Additionally to the resource saving, this interface is free of end to end control signals
and thus avoids the possibility of control-error propagation.

2.3.5 Fault-Tolerant Middleware

The time-triggered communication system provides important attributes to sup-
port safety-critical operation (e.g., deterministic communication, channel redun-
dancy). However, additional services are required to make the system tolerant to
faults [TPDF99, NSSLW05]:

• Membership [Cri91, KGR89, RSV06] in order to consistently distribute the
information concerning which nodes are currently operating correctly and which
node has failed (agreement between the nodes)

• Clique avoidance to avoid the formation of cliques within the network

• Message agreement (replication of messages): the same information can be
duplicated on the network to increase the probability of correct transmission, even
in the presence of faults. The duplicated information is then filtered during the
reception to present only one (fault-free) version of the message to the application.

• Active replication (replication of nodes): the same function is computed several
times on different platforms. An agreement function is then required to extract
one result out of the n computations (e.g., pick first, average). Note that the
function also can be computed twice on the same platform (double execution).

28

2.3 The Time-Triggered Architecture�����������	�
�������
�������
������
�������
� ������
�������
������� ������������
�������
��������
�����������	�����������
������
����
������ ����
������������
����
��������������������

Figure 2.6: Push - pull combination

• Recovery and re-integration of nodes, after a fault has been detected

• Assertion framework to evaluate the correctness of the system during run-time.
An assertion can either test the pre-conditions (respectively post-conditions) be-
fore (after) an operation or test the invariants of the system [TPDF99].

Other services are also usually provided by the operating system (OS) such as
resources administration and validity checks, signature checks, the packing / unpack-
ing of signals into messages and synchronization of the OS. These services are being
standardized within the OSEK/VDX OS or the open architecture AUTOSAR (see
Section 2.1.3).

2.3.6 Testing Time-Triggered Architectures

Time-triggered communication systems and fault-tolerant middleware are providing
different services for fast fault detection (e.g. periodic message transmission working
as a “heartbeat”) and informing about the current status of the system (e.g., which
node has failed). Moreover, the concepts proposed by the time-triggered architecture

29

2.3 The Time-Triggered Architecture

support the system development by providing a work-around that eliminates the typ-
ical challenges of distributed systems (such as, e.g., race conditions). However, no
explicit support is provided for testing or diagnosis, and the methods presented in the
Sections 2.2.4 and 2.2.5 still apply.

Additionally, commercial tools are available for the analysis and diagnosis of the
most popular automotive or real-time communication protocols. Examples are CAN-
alyzer3 for the CAN protocol, TTView4 for the TTP protocol, or the BusDoctor5 and
the CANalyzer expansion for the FlexRay protocol. Implementation issues of these and
similar tools along with some use-case scenarios can be found, e.g., in [POEL02, RV04].
All these solutions, however, only enable the monitoring of the bus traffic on top of the
data link or higher layer employing COTS network controllers and device drivers in a
promiscuous mode (if available) where even corrupt frames are forwarded to the pro-
cessing CPU (plus some error flags). For the systematic, in-depth testing of a FlexRay
based communication subsystem, this needs to be complemented by bus monitoring
and dedicated measurements on lower abstraction levels, as well as an appropriate data
analysis.

In addition to these monitoring approaches, a mechanism in the reverse direction
that allows some kind of stimulus generation and injection or replay is required. In
principle, any fault injection tool serves this purpose; see [HTI97] for a survey. Ob-
viously, however, some protocol specific support is essential for performing efficient,
well-aimed experiments that can be triggered by events on diverse protocol layers, e.g.,
and that also facilitates the generation of bus traffic with specific properties. The
Disturbance Node6 represents such a solution for a time-triggered protocol; with its
particular strength for injecting physical faults like bus noise, short circuits, delays,
etc., its focus, however, is on the physical layer itself rather than the communication
services or the system. The BusDoctor7, parallel to that, is focused on the data link
layer and has the capability to send single frames on the network (and eventually
simulate a collision, thus destroying a frame sent by another controller).

AUTOSAR (AUTomotive Open System ARchitecture [FBH+06]) defines an open
and standardized software architecture for vehicle applications. This platform includes
two main error handling mechanisms: The Development Error Tracer is targeted for
integration support and reports node internal error messages. The Diagnostic Event
Manager enables the tracing of status and errors during field operation. These mecha-
nisms, however, are intrusive and dedicated to the application more than to the under-
lying architecture. Hence, they require explicit integration within the application and

3http://www.vector-informatik.com
4http://www.ttautomotive.com
5http://www.decomsys.com
6http://www.tttech-automotive.com/products/doc/TTTech Automotive-TTX-

Disturbance Node-Flyer.pdf
7http://www.decomsys.com/flyer/Datasheet BUSDOCTOR 2.pdf

30

2.4 The STEACS Project

are thus application specific. Furthermore, they require node internal resources (CPU
time and memory), and finally the gathered data is focused to high level information,
while detailed information about the communication status is difficult to obtain.

2.4 The STEACS Project

The acronym STEACS stands for Systematic Test of Embedded Automotive Commu-
nication Systems. In the automotive electronics, the network has been recognized as
playing a central role in maintaining the system in a safe state, since the (critical)
functions are now distributed and need to communicate [NSSLW05]. Moreover, the
communication system is particularly exposed to EMI [NSL05], which usually increases
its fault rate and decreases its quality of service (QoS). The aim of this research project
was to address the arising test problems for the system integration of distributed em-
bedded automotive electronics with a special focus on the communication subsystem.
The main results are presented here.

2.4.1 Motivation and Requirements

To serve the various test purposes listed in Section 2.2.2, an ideal tester for a distributed
embedded system based on FlexRay has the following properties regarding its practical
employment:

Accessibility: For tests late in the product development cycle (conformance, main-
tenance), test points on individual nodes within the SUT are rarely accessible, since
they are deeply embedded and sealed. This suggests a remote test approach. In prin-
ciple, the communication network is an excellent access point for a tester due to its
unique and central role for the communication among the distributed nodes. Still, how-
ever, all information that is local to a node, such as its status, is a priori not available
at the communication network.

For tasks during early development phases, such as debugging during system design,
the information thus gained will certainly not be sufficient. Fortunately, much better
accessibility can be assumed during these phases, so the use of a remote test approach
is not mandatory here.

Intrusiveness: The inter-operation of the nodes in a distributed system often
suffers from very subtle effects, and this is where a probe effect is most troublesome. In
this situation, the user might be willing to pay the price for keeping the test transparent
for the ongoing system operation, which at the same time qualifies this strategy for on-
line testing. In particular, this means that (i) the test must not change any application
data, and (ii) in a real-time environment the test must not influence the timing behavior
of the application (including the bus access pattern). Online monitoring fulfills this
extremely difficult requirement.

31

2.4 The STEACS Project

For tests concentrating on a small subset of nodes it is often desirable to have some
environment simulation provided by the tester. For this purpose, the tester cannot be
“non-intrusive” – its visible bus activity is a desired property here.

Explicit test support: It would be quite unrealistic to assume that specific “test
hooks” will be appended to an established protocol standard, or that series applications
will take care for providing support for the tester. Therefore one requirement will be
to come along without any supportive provisions or architectural changes in the SUT.
Notice that this requirement prevents the explicit transmission of any node internal
information (e.g. status) to the tester, which further aggravates the problem with the
remote test mentioned above. Although it would well be possible to implement test
support during early development phases, e.g., this option is not further pursued in
order to keep the proposed approach generic.

At this point it becomes obvious that it will not be possible to achieve these con-
tradicting goals with a single, monolithic tool. Rather, a bundle of complementary
techniques is required to serve a given purpose.

Throughout this section the tester is assumed to be fault-free. Since it is a some-
what unique component, the test designer can allow higher cost as well as increased
efforts for the tester, and an extensive self-test can be performed before putting it into
operation. Additionally, a fault-tolerant architecture with redundant computing units
can be proposed.

2.4.2 Problem Decomposition

It is well known that test complexity rises by far more than linearly – typically O(n2)
– with the complexity of the SUT. The usual approach to combat this effect is “divide
and conquer”, i.e., partition the system into small portions that are relatively easy to
test. In fact, the ability to easily decompose a system into parts with well defined
behavior is one of the major merits of the time-triggered approach (see Section 2.3).

For the reasons explained above, however, it is necessary to perform a test of the as-
sembled system even though all components may have already been tested in isolation.
Here, of course, a decomposition of the system into single components is counterpro-
ductive. Performing an unstructured functional test of the configured system, on the
other hand, results in excessive test duration and poor coverage (this is essentially the
problem system integrators are going through today). Thus, some different kind of test
structuring is needed.

The strategy proposed here is not to structure the physical system into compo-
nents, but instead to identify and separate all services and break them into sub-services
(which are called mechanisms) as far as possible. Note that these services and mech-
anisms are not necessarily bound to one physical node or component, but may rather
be distributed. By virtue of this “vertical” decomposition into (ideally independent)
mechanisms the problem is substantially simplified , while still retaining the system

32

2.4 The STEACS Project

level view. For the implementation of this concept the use of a layer model for the
system has been chosen, since the layer definition is generally based on the notion
of services and hence, naturally suits this purpose. The vertical decomposition thus
attained provides the following key advantages:

• It can be performed in a systematic manner, which aids in achieving a complete
picture.

• It facilitates a systematic exploration of the fault space along orthogonal single
mechanism failures (“basic faults”). Note that the granularity of the fault model
chiefly depends on the decomposition granularity.

• Physical faults which are not directly reflected by one basic fault can be mapped
to unique combinations thereof (“syndromes”), thus aiding in the generation of
a fault dictionary.

• The global picture of involved individual mechanisms and the explicit visibility
of their interrelations can substantially simplify diagnosis and an inspection of
fault propagation, cf. [HJS01].

• If potential error signals issued by a mechanism are included in the model, a
hierarchy of error signals can be constructed that further eases diagnosis.

• It aids in determining the abstraction level at which stimulation/monitoring
should be performed to test a particular mechanism.

Let us illustrate this concept with the example of the network controller’s receive
service: Its task is to transform a serial signal received from the FlexRay bus via the
physical line interface into the enclosed payload data that can finally be used within
the application context. This involves many tasks in order to assemble, strip and
check the received information (frame). Following this concept, this complex process
is decomposed into a set of individual mechanisms Mk. Ideally, a mechanism has
one single information input, one single information output and a status output. Its
operation is entirely described by a simple model in a generic way, and one or several
attributes can be used to characterize it (see Figure 2.7). Attributes can either be
protocol configuration parameters (e.g., number of static slots) or protocol constants
(e.g., maximum clock frequency deviation).

Based on this model, the system test can be projected to a check whether all
attributes are in the allowed range. The test of an error detection mechanism, in turn,
implies observing the reaction of the system to a message that has been generated with
the associated attribute(s) being erroneous.

This approach is somewhat similar to the OSI layer model, however, is finer-grained.
In [ASH+04] the complete model for the FlexRay communication services has been

33

2.4 The STEACS Project

����������	
�����������	����������	������������������	
�����������������	������������������������������������
Figure 2.7: Mechanisms and Abstraction Levels

illustrated. The following key property of this model which will become important
later on shall be highlighted: Mechanisms can be hierarchically ordered in levels, such
that a high-level mechanism Mk builds upon the services provided by the lower-layer
mechanisms Mk−1 . . .M1. Therefore the service of mechanism Mk does not suffer from
an erroneous behavior or incorrect configuration of a higher-layer mechanism Mk+i,
while it does suffer from an error of a lower layer mechanism Mk−i. This property
allows us to check the sub-services one by one, starting with the lowest level mechanism
and successively increasing the level. Thereby, every step builds upon the results of
the previous one(s). In some rare cases, mechanisms comprise two attributes which are
mutually dependent on each other, such that the test space becomes two-dimensional
– still resulting in a significant saving.

It is easy to observe the activities of every node’s transmit service on the FlexRay
bus, which facilitates a completely transparent remote test approach: The tester is
connected to the bus, passively observes the traffic and draws the appropriate con-
clusions. Due to the high regularity of the transmission service, all mechanisms are
sufficiently exercised during normal operation, such that simple monitoring is indeed
a sufficient test here [ST99]. The identification of a faulty node is easily possible due
to the static TDMA schedule. Diagnosis with respect to the faulty mechanism can be
based on the hierarchical structure of the mechanisms outlined above: Should, e.g.,
the sender’s CRC generation mechanism be faulty (or incorrectly configured, in case
of another mechanism), then all mechanisms below (encoding etc.) will still operate
properly such that a message containing the incorrect CRC will finally be transmitted.
The tester will receive this message, decode it, strip all of the framing information,
etc., until it comes to CRC decoding. At this point, an error is signalled. Assuming a
fault free tester (and physical line), this error can be directly projected to the sender’s
CRC encoding mechanism. This correspondence between the sender’s and the tester’s
abstraction levels is illustrated in Figure 2.8.

Testing the receive service, however, requires additional provisions. The first prob-

34

2.4 The STEACS Project�����������������	�

�	���	����������������� �����������������	�

�	���	����������������� �����������������	�

�	���	���������������������� ����� �����
�����������	�����

�������������	 ��������	�
����
Figure 2.8: Remote testing

lem is that the operation of the receive service cannot be directly observed on the
FlexRay bus. There are two options here: (a) Directly access diagnostic information
on the nodes of the SUT. This is a very powerful approach but obviously inhibits a
remote test. (b) Draw conclusions from the node’s behavior that can be observed on
the FlexRay bus. Here, the tester can exploit (with some limits) the fact that a node
that does not receive messages on the bus will run out of sync, since clock synchro-
nization is based on the reception of (valid) messages. The second problem is that
the receive service includes many error detection mechanisms which are not regularly
executed during normal operation. Therefore active stimulation will be required.

2.4.3 The Systematic Test Approach

With the layer approach the entire communication system can be decomposed into a
collection of services and mechanisms, and the remaining task is to check the values
of the attributes that characterize every mechanism of interest. For this purpose,
access to its inputs and outputs are needed as well as to the configuration interface
for monitoring and – in some cases – for control. Beyond just this mere physical
access, an elaborate strategy of how to interpret the observed information and how
to prepare a stimulation is mandatory. Here the concept relies on generic building
blocks as illustrated in Figure 2.9 for one abstraction layer. The same approach can
be reused for every other abstraction layer within the communication system, and, in
principle, can be targeted effortlessly to other bus-protocols as well. For more details
see [ASH05, ARS+05].

For either path reference, values are provided by the correct behavior generation
module. This reference behavior is built from data obtained by the service specification
library and by the current configuration. The specification of the system attributes (e.g.

35

2.4 The STEACS Project

����������	����
��������	��
����������
��		���������	����	����
������	�	������ �����������������		���������	���� ����������
����	�����	�����
�������	���� ����������������� �!"#$%�&!��%"'�(�#�%")�$���"(�*�"��!��%"

+,-#�(!�!((�##.���	��������	������/��	�����0	���1 2#���"���$!(� 3������/��	�����0	���	����1����	��������������	����� 4567879.���	����������	������	�������������:;<=>;?=<@AB>C D<EFG>=;<AB>C
Figure 2.9: Test approach for one layer

min/max values for every attribute) is constant over time and, consequently, can be
linked as a library to the test environment. The configuration, however, is specific for
the actual system setup and must be provided by the test engineer (e.g. the actual
duration of a static slot). Finally, an optional system model can be used to generate a
bus traffic conforming to the specification and an optional fault model can be deployed
to map a user defined fault model with the actual faults being injected.

In this model, the monitoring path aims at providing means for observing ongoing
system operation, for (automatically) extracting the attributes of interest and evalu-
ating their correctness (e.g. whether they are within the expected limits). The data
monitoring module processes the received data up to the abstraction layer where the
selected attributes can be best analyzed. Therefore, this module takes as input the bus
traffic at the physical layer and de-encapsulates all data up to the particular layer by
removing information used solely by the lower layers. The data transformation mod-
ule takes the de-encapsulated information and reduces its dimensionality by extracting
information relevant for processing the attribute values and for relating it to its source
(node). The data interpretation module interprets the monitored attribute values and
thus the corresponding system behavior by comparing it with reference values. The
result may be either a match/no-match (useful for conformance tests) or the distance
from the observed towards the expected reference values (useful for robustness tests).
Furthermore, with this module one can easily record a result log for attributes over
time, thus gaining insight to the evolution of attribute values. This feature is espe-
cially useful during system operation to obtain information for preventive maintenance,
e.g. to identify the weakness of certain components. Another typical application of the

36

2.4 The STEACS Project

monitoring path is automatic configuration parameter identification, see also [ASH06].
The injection path provides means to automatically select and modify one or a set

of attribute(s) and emulate the resulting behavior in the communication. The stimulus
activation module determines which and how attributes need to be modified. In par-
ticular, attributes are either selected based on information provided by a user-specified
fault model (i.e. for robustness tests) or based on all the relevant attributes for the
service being tested (i.e. for conformance tests). The data generation module modifies
a given “normal” bus traffic in order to emulate the malfunction of one (or several)
services by altering its/their corresponding attributes for a defined time interval. This
data modification is performed at the location of the target service layer. This is ac-
complished by combining the information from the stimulus activation module either
with recorded data obtained from the data monitoring module or with data derived
from a system model. The data injection module takes as input the data file and per-
forms all required processing down to the physical layer. THe last step is to push the
data onto the wires with the appropriate timing.

Note that the underlying bus traffic for the data generation module might be either
generated (from the system model module) or monitored and then modified (from
the data monitoring module). Obtaining data from a running cluster presents the
advantage of producing representative test vectors, but requires an operational system
prototype and does not necessarily conform to the specification. This approach is well
suited for robustness tests where good representativeness plays an important role and
a running system is usually already present. In contrast, “perfect” bus traffic can be
generated from a reference model. This approach does not require a running cluster
and provides bus traffic which conforms to the specification, which is more appropriate,
e.g., for conformance tests. While additional efforts are required to design the reference
model, this second method typically allows more freedom in generating suitable bus
traffic.

2.4.4 Summary and Outlook of the STEACS project

The main contribution of the STEACS project is the definition of a fined-grained layer
model based on the concepts of attribute, mechanism and abstraction level. Using
this decomposition, the distributed communication service can be divided into simple
sub-services that can be easily tested and evaluated. Methods for getting access to the
abstraction level of consideration have also been presented.

The broadcast nature of the communication network was used during the STEACS
project to enable partial remote testing: an error within a node’s transmit path results
in a corrupted transmission that can be monitored when accessing only to the network.
This one-to-n communication can be exploited to obtain status information about the
node’s transmission. However, the receive path is more difficult to monitor, since its
status is only internally visible. During this project, dedicated test applications were

37

2.5 Chapter Summary

required in order to monitor the system reaction while performing fault injection.
This limitation provided the context for our ExTraCT project: how can we obtain

information of the node’s receive path (more specifically, about the reception status)
without influencing the application?

2.5 Chapter Summary

Electronics are currently present at every level of vehicle design. Both in the con-
trol domain or for the human-machine interface, electronic components are reducing
the overall costs, while providing optimized or even new functions. Vehicles are now
developing into complex distributed real-time systems, that almost always implement
several clusters and different technologies. This current trend is confronted with two
main challenges. First, cars are operating in a very harsh environment that might
disturb operation and/or cause component failures. Second, electronic components
have been introduced for safety-critical operations where a system failure might have
catastrophic consequences. It seems evident that methods to test the system and pro-
vide guarantees of correct operation are mandatory for the sake of preventing such
consequences.

This survey of test methods for distributed systems has highlighted different chal-
lenges coming from the state explosion, the race conditions and synchronization be-
tween the processes, the timing constraints and the high degree of integration. These
challenges are additionally made more difficult to satisfy because of the large scope of
testing, the different tools, knowledge and support required and the current constraints
(e.g., possibility to insert debug code).

The time-triggered architecture has been introduced in this context to support
the development of safety-critical systems. One of its most important attributes is
enabling deterministic operation (both for communication and task execution) based
on an a-priori known schedule. This planning is used to avoid per construction any
conflicts or race conditions, to support constructive design (composability) and fault
tolerance. While this architecture provides efficient support for fault-tolerant oper-
ations, the industry still requires means to test and diagnose the assembled system,
and more specifically the communication subsystem (which plays a central role in this
architecture and is especially exposed to EMI).

Toward that end, the STEACS project has made a first step. A fine-grained layer
model was proposed to structure the communication service in mechanisms and ab-
straction levels. This decomposition was further used to achieve systematic testing of
the communication functionalities. One primary requirement was to propose a remote
solution in order to minimize the intrusiveness of the test approach. The remote tester
which was proposed was indeed able to finely analyze the information available at the
communication medium and was also able to inject patterns at the bus level. However,

38

2.5 Chapter Summary

the node’s internal information (e.g., reception status) was not available for the tester
and modification of the system under test was required, thus rendering the approach
intrusive.

39

Chapter 3

A New Approach for Transparent
Testing

Everyone knows that debugging is twice as hard as writing a program in the first place.
So if you’re as clever as you can be when you write it, how will you ever debug it?

Brian Kernighan (1942 –)

Important improvements have been realized in the last few years to develop reliable
architectures for automotive electronics. This helps improve the overall system quality
and supports the introduction of safety-critical applications. The contribution of this
work is the proposition of a transparent, online test approach focused on the communi-
cation services. First, we describe the problem statement define the term transparent.
Next, we analyze the diagnostic information which is globally available at the network
and then introduce our transparent test approach. We conclude by the identification
of three challenges for the validation of our approach.

3.1 Problem Description

3.1.1 Motivation

We have seen in the previous chapter that the network plays a central role in main-
taining the system in a safe state. At the same time, this service is the one which is
most exposed with regard to external disturbances. The goal of this work is to pro-
vide an approach to test the reliability (continuity of correct services [ALRL04]) of the

40

3.1 Problem Description

communication system and the availability (readiness for correct services [ALRL04]) of
the associated error detection mechanisms. This second point is of utmost importance,
since it represents the capacity of the system to correct its state before a failure occurs.

The time-triggered architecture (combination of communication services plus fault
tolerant middleware) already provides different services for error detection and correc-
tion as well as fault tolerance. Our main concerns are error diagnosis and online
testing. Error diagnosis aims at identifying the service that is currently deviating
(which kind of deviation, which module has failed). This information is required for
system recovery and during maintenance in order to decide the action to perform (e.g.,
new start of the system, replacement of one module).

Online testing focuses on error detection and fault-tolerant mechanisms, and aims
at periodically exercising mechanisms which are infrequently used, in order to detect
dormant faults and to avoid fault accumulation [SS03]. Hence, fault accumulation
represents a real threat for the system since this effect can lead to a violation of the
specified fault hypothesis and cause a failure of the system. The availability of the
error detection mechanisms has a direct impact on the robustness of the system.

Our work applies to a late product life-cycle and assumes a highly integrated system,
functioning during normal operation, and without explicit test support. Therefore,
our test approach presents the following requirements (similar as in Section 2.4.1):
test points on individual nodes are rarely accessible and we require a remote test
approach. Additionally, we need a non-intrusive approach, since we can not afford
any probe-effect that might be a threat for correct service delivery. Moreover, we need
a generic approach which avoids any explicit support of the test operation, in order
to save resources (CPU, bandwidth) and to avoid complex standardization processes.

Possible applications are online testing and diagnosis during field operation, as well
as periodic maintenance in a garage. Hence, our approach enables the online checking
of assertions and the access of various information, such as the current service quality
or availability.

3.1.2 Problem Statement

According to [BMS87] the two key aspects for testability are controllability and ob-
servability. In a system with good controllability it is easy to apply test vectors and
to propagate them to the suspected target location. Observability is a measure of how
easy it is to observe certain activities of the SUT, particularly at the target location.
Both measures are largely determined by the accessibility of the SUT. In short, good
accessibility leads to good testability. The main challenge of our approach is the ac-
cessibility to the system. Communication controllers are building an interface between
the application and the communication channel, and typically implement two inde-
pendent processing paths to (a) send and (b) receive messages from/to the network.
Figure 3.1-a pictures a typical setup to test the transmit path of a node. Since the

41

3.1 Problem Description

inputs are provided by higher layers, intrusive by-passes are required from the tester
in order to control the transmitter and apply the stimulus. In contrast, the outputs of
the transmit path can be directly observed through the communication medium.

Testing the receive path (Figure 3.1-b) presents similar problems. Indeed, this
module can be controlled by the physical medium, but an additional communication
channel is required for observation. While a dedicated application could autonomously
apply a-priori defined test vectors to the transmitter, the observation of the receive path
does require an additional communication channel for test purposes. Such approaches
are consequently not suited for validation and maintenance in the automotive context
due to their high intrusiveness (the nodes have to be modified) and / or resource
overhead.

����������	

������	��	���	�������
�����������	� ���
�����������	� ��������������� ����������	

������	��	���	���������� !"#!"
...

(b) $%&�'%(%)�*'+*
����������	

������	��	���	�������
�����������	� ���
�����������	� ��������������� ����������	

������	��	���	���������� !"#!"

...
(c) $%&�'%(

����������	

������	��	���	�������
�����������	� ���
�����������	� ��������������� ����������	

������	��	���	���� !"#!"
...

(a)
������$%&�'%(%)�*'+*

%)�*'+*,		�-.�/
Figure 3.1: Observation and control path for testability

The periodic and a-priori known schedule implemented by time-triggered architec-
tures is convenient for test operation, since a tester knows a-priori when and how a

42

3.1 Problem Description

mechanism will perform. This periodic stimulation allows to remotely test the syn-
tactic correctness of the messages generated and therefore also the correct operation
of the mechanisms which are exercised within each node’s transmit path. The re-
ceive path, on the other side, can not be easily observed. The use of an internal
loop-back, as illustrated in Figure 3.1-c could be used to improve the observability.
This approach presents the primary advantage of using the available communication
channel to return the observation to the tester node, which saves resources and limits
intrusiveness. While a traditional loop-back typically requires additional resources and
dedicated services to confirm the information received, the key idea here is to use the
implicit internal loop-back provided by the clock synchronization mechanism (see Sec-
tion 2.3.4): A correctly received message has the potential to move the node’s start of
transmission, an effect which can be observed by our tester. It is the aim of this work
to present a novel framework for the transparent testing of time-triggered
communication protocols such as TTP/C and FlexRay, based on this very principle.

3.1.3 Classification of our Approach

We consider our approach to be basically a remote online monitoring method, with an
extension towards transparent online testing, as presented in Section 3.2.2. To clarify
this statement, we will briefly survey the related terminology in the following section.

Monitoring vs. testing

The normal test procedure is a stimulus/response measurement: Well-chosen test vec-
tors are applied to the system under test and the response is observed and compared
to a known good reference. This approach, by its very nature causes an interference
with a potentially ongoing operation of the system under test, which contradicts with
the requirements presented in Section 3.1.2.

However, under certain conditions the normal system operation can be considered a
sufficient set of test vectors, and hence, the requirement to explicitly apply stimuli may
be relaxed. It is sufficient rather to observe the ongoing system operation and check
whether or not it meets the expectations. For this purpose some kind of rule checking is
usually employed, e.g. [HP03]. The main question when using this monitoring approach
is whether all relevant system functions are exercised during normal system operation
within the observation time. Usually, without explicit stimulation some exceptional
states (e.g., emergency handling) are very likely not to be entered and the associated
resources hence not to be exercised and tested. This limited test coverage may cause
problems in context with latent errors, as outlined in [SS03]. The major advantage of
monitoring is that – since no active stimulation occurs – it is not necessarily intrusive,
since it can be performed in a transparent way. In addition, the sequence of test vectors

43

3.1 Problem Description

comes for free and is representative for the actual application. Our first strategy will
therefore be to rely on monitoring the network traffic (see Section 3.2.1).

Online vs. off-line testing

In the classical sense, the test is a very specific mode of operation of the system under
test: The system is taken off-line, a well chosen comprehensive set of test vectors is
sequentially applied to the system under test in order to step through a sequence of
states and thoroughly execute all relevant functions. The resulting system behavior
is monitored and compared to a known good reference [Sch94b, TH99]. The theory
for this off-line test approach is well developed and the test usually achieves good
coverage, since having complete control over the system facilitates good testability.
Online testing, in contrast, is performed while the system under test is still providing
its service. The main advantages of online testing are the following:

• Online testing may be continuously ongoing, which allows very fast detection
of errors – as compared with off-line tests that are usually performed in long
intervals. Specifically, online testing is a means to prevent fault accumulation.
While the test activities might jeopardize the reliability of the system, it has
been shown in [SS03] that the negative impact of fault accumulation may be
even worse.

• The continuous operation of the online test allows collecting a comprehensive
and representative test record. This in turn facilitates statistical assessment and
projections, e.g., the identification of “weak” components that are liable to fail
soon (“preventing maintenance [ALRL04]”).

Transparent testing

We define transparent testing as the capability to perform test operation without the
system taking notice of it. As for online testing, it signifies that the system’s status
and service delivery is not modified in an observable way. As a consequence, it has no
probe effect.

This means additionally that the test operation does not require extra processor
time or chip area or does not compete with other system tasks for resources. This saving
is especially important for the purpose of meeting the aggressive cost and performance
goals required in the automotive industry. Moreover, it facilitates test execution, since
no modification is required and standard hardware can be used for that purpose.

44

3.2 From Monitoring to Transparent Online Testing

3.2 From Monitoring to Transparent Online Test-

ing

The use of probe-nodes (see Section 2.2.4) is a common way of monitoring inter-node
communication. In this section, we review which diagnosis information can be ex-
tracted only by monitoring the system and why the time-triggered scheme is especially
beneficial for our purpose. We present further how the clock synchronization algorithm
can be used for transparent test operation.

3.2.1 Remote Online Monitoring

Direct diagnosis

Being restricted to remote access, we have to carefully exploit every nuance of infor-
mation which we are able to observe on the communication network. And indeed, the
FlexRay specification facilitates a lot of checks to be performed on a message:

• Time domain: The static transmission schedule makes it possible to determine
in advance, precisely when a node must transmit a message. A failure may be
identified not merely because a message was sent at the wrong instant (incorrect
temporal alignment) but also when it was omitted.

• Value domain/syntax: The syntactic correctness of a message can be checked
with respect to coding, CRC, header integrity, etc.

• Value domain/semantics: Given that the tester is provided with application-
specific knowledge, several assertions can be applied to the semantic correctness
of a message, such as boundary checks, plausibility tests, model-based checks,
etc.

This last option, however, is out of the scope of a generic communication service
test.

For our remote test setup this means that the tester can indeed passively listen to
the traffic on the communication network and perform the above checks to judge the
integrity of the messages. As soon as an abnormal behavior is detected, the tester can
– thanks to the static schedule – easily project this error to the producing node (except
for severe errors in the time domain). On the other hand, if the tester receives correct
messages from a remote node, we may draen some important conclusions:

• After having received at least one correct message from each node that partici-
pates in the communication, we can conclude that there must be an intact link
between the tester and any other node. For passive bus topologies this also means
that an operational link between any two nodes exists as well.

45

3.2 From Monitoring to Transparent Online Testing

• The basic services of the transmit path of that node must work properly, otherwise
we would have encountered syntactic errors.

• The basic clock synchronization services must work properly, otherwise the frame
would not be properly aligned.

• Depending on application and assertions we may be able to conclude that the
application has produced correct output messages based on correctly received
input messages.

This is already a very useful amount of diagnostic information, and in context
with a clever interpretation the status of the communication subsystem can already be
characterized quite well. Let us briefly summarize the coverage that we have attained
so far:

Transmit path: We can detect permanent and transient errors in the transmit path
safely, since the output of this path is directly observable. Moreover, due to the time-
triggered nature of the communication, the services within the transmit path are pe-
riodically exercised. In the transmitter there are no exceptional paths and no mecha-
nisms for error detection, whose status must be observed. The correspondence between
the service layers of sender and receiver pointed out in Section 2.4.2 allows us to use
the error symptoms at the tester’s receive path for diagnosing the actual error in the
sender’s transmit path.

Receive path: The situation is much more difficult here: The receive path processes
information from the network and provides it to the application, which means that
we can observe its input but not its output. The receive path additionally maintains
an error status which is in fact much more important for diagnosis than the actual
message contents (these can be derived from the observed network traffic anyway).
Obviously what we are lacking here is some mechanism to loop back this reception
status information to the network where it can be observed. We may use assertions on
the application level to serve this purpose. However, even if these are available, fault
tolerance features of the application tend to mask the loss of single messages.

Clock synchronization service: The function of the clock synchronization service
can, in principle, either be judged by the alignment of the transmitted frame, or by the
absence of scheduled transmissions: Without a synchronization, the node will go into a
silent mode. Identifying the failing node is possible, but further diagnostic information
is not available.

46

3.2 From Monitoring to Transparent Online Testing

In conclusion, we may be quite satisfied with the coverage of the transmit path.
What we definitely lack is a way to observe the status of the receive path with our
remote tester. Therefore we will investigate the clock synchronization service in order
to be able to loop back this information to the communication network.

Exploiting the loop-back via the clock synchronization service

The basic service provided by the clock synchronization algorithm in time-triggered
architectures is a system-wide, globally synchronized (sparse) local time base main-
tained by a so-called Macrotick count. Among other things this time base forms a
fundamental prerequisite to maintain the TDMA scheme as described in Section 2.3.4.
Based on the local clock and the static bus schedule every node determines the points
in time within a cluster cycle when it is supposed to send. Should its local time (or
its understanding of the global schedule) deviate, the node will incorrectly align its
message with the global schedule. This in turn can be perceived by the tester either as
a shifted message, as a truncated message or a message omission, when an optional bus
guardian prevents the node from sending outside its pre-assigned transmission slot.

In short, this means that every sync message that is received correctly by a node
Nx contributes to Nx’s clock correction, which, in turn, is visible at the alignment of
the messages sent by Nx. So apparently, the clock synchronization service forms the
desired loop-back of the receive path error status to the communication network. This
is illustrated in Figure 3.2.

Remote
tester

Figure 3.2: Loop-back via the clock synchronization service

In order to exploit this loop-back let us summarize several important properties of
the clock synchronization service from the description above:

1. The algorithm only considers sync messages. All other messages (and their loss
or failure of reception, respectively) have no influence on the local clock synchro-
nization.

2. For a sync message to be considered by the algorithm it must have passed se-
mantic checks in the value domain (like CRC check) and a frame alignment check

47

3.2 From Monitoring to Transparent Online Testing

in the time domain, which are quite selective. With a faulty receiver, it is very
unlikely for a message to pass these tests.

3. The algorithm can tolerate the loss of sync messages without problems, and
only requires two sync frames per cluster cycle (for FlexRay) to maintain its
synchronization.

4. If too few sync messages are received, then the node changes its mode to “listen
only” for some cycles and switches off after a pre-configured time-out, unless it
can successfully receive further sync frames.

From (2) we can conclude that permanent errors in the receive path will eventually
lead to loss of synchrony and hence be detected by the remote tester – according to (4)
as a message omission. Furthermore, it follows from (1) and (3) that the loss of single
messages due to transient faults in the node under test’s receive path is not detectable
by the remote tester, even if a sync message is affected. According to (3) a transient
fault must affect a sufficient number of sync messages during several succeeding cycles
to become detectable. Hence, transient faults are very unlikely to lead to a loss of
synchrony – which is good news from the point of view of robustness, but inhibits their
remote detection.

From the proper function of the clock synchronization services, on the other hand,
we can conclude that the clock synchronization algorithm must have received sync
messages recently. Otherwise, the node would have eventually lost synchronization.
This further implies with high probability that

• the basic services of the receive path must work at least up to the frame check
level (this is where the decision is made whether or not to consider a sync message
for clock correction) and that

• there must have been at least one successful reception during the previous com-
munication cycle, otherwise the node would have gone into turned silent mode.

Beyond this “go/no-go” check as to whether or not the messages sent by the node are
properly aligned within the schedule, it is conceivable to additionally perform a more
subtle test on the position of the node’s messages within the allowed time window.
This position, however, is influenced by many effects and the variation resulting from
the loss of one sync message is very small. Therefore, even if the tester can resolve the
frame position precisely enough to recognize such variations, it is extremely difficult to
distinguish the desired effect from variations caused by other sources.

48

3.2 From Monitoring to Transparent Online Testing

3.2.2 Toward a Novel Approach for Transparent Online Test-
ing

In the previous section we have identified the loop-back formed by the clock synchro-
nization service and employed it for a rough go/no-go check of a node’s receive path.
Still, the diagnostic capabilities of this approach are far from satisfactory, and we still
have no means to test the error detection capabilities in the receive path. At the same
time, we already know that there is more information hidden in the frame position
than we currently make use of. So let us go one step further.

We already know that it makes a difference for the result of the clock synchroniza-
tion algorithm whether a sync message has been correctly received by a node or not,
and that this difference becomes visible in the position of the frame transmitted by
this node. Unfortunately – for our purpose – the individual local clocks are tightly
synchronized, and potential outliers are suppressed by the FTM algorithm. So the loss
of one sync message won‘t make much difference in practice. But what if our tester
actively transmits messages that do have a measurable influence on the frame position
if they are correctly received? In that care, the lack of such a reaction will in turn
allow us to conclude that the test message has not been correctly received.

All the tester has to do for this purpose is to send one regular message (“stimulus
message”) within one communication round that (i) is a sync message, (ii) exhibits a
sufficient deviation from the “normal” time base to cause a visible impact on the clock
synchronization algorithm (i.e. represents a “stimulus”), but (iii) is still considered as
valid. Condition (i) is easy to fulfil. Conditions (ii) and (iii) can, in principle, be met
by positioning the stimulus message to an extreme location within the allowed time
window. Figure 3.3 shows an illustrative numerical example:

T T

Time base
node C

Scenario (1)

0-7 321-1-2-3-4-5-6-11 -8-9-10

0 7654321-1-2-3-4-5 98

0 7654321-1-2-3 1098 11

0-7 654321-1-2-3-4-5-6-8

0-7 7654321-1-2-3-4-5-6

C E D A B

Time base
node E

Time base
node D

Time base
node A

Time base
node B

Scenario (2)

Scenario (3)

Scenario (4)

Scenario
Node (1) (2) (3) (4)

A,B,DC,E

A,B,DC,E

A,B,C,D,E

A,B,C,D,E

B -4 -5 -3 -7

D 0 -1 +1 -3
E +1 0 +3 -1

C +3 +2 +5 +1

-1A -2 0 -4

Legend

Sync frame from node C

Sync frame from tester node

Resulting clock correction
for nodes A and B

C

A,B

FTM Algorithm

T

TT

C E D A B

C E D A B

C E D A B

Figure 3.3: Actively influencing the clock synchronization

The upper left part of the figure represents the mutual alignment of the internal

49

3.2 From Monitoring to Transparent Online Testing

time bases from the different nodes. The lower part shows how the individual messages
transmissions fit into this time base. Notice that a message is always sent at time ’0’
according to the sender’s time base. For example, the message transmitted by node
D has an offset of -1 for node A and an offset of +4 for node C. Four scenarios are
pictured here: First, as reference, without tester node (scenario 1), then with a single
tester frame with negative offset (scenario 2) and positive offset (scenario 3) and finally
with a tester sending two frames with an important negative offset (scenario 4). The
results of the clock correction algorithm (FTM) are summarized in the top right of the
figure for the different scenarios.

Let assume now that node D in the system under test perceives the following
individual deviations from its local time base {-4, -2, 0, +1, +4} measured in “time
units”, which might be ticks of the local clock. If the tester did not interfere, the FTM
algorithm would discard the highest (+4) and the lowest (-4) deviation and compute a
(truncated) average over the remaining interval borders, which yields (0). By sending
a stimulus message with a deviation of (-7) or (+7), respectively, the tester can cause
node D to move the result of its FTM to offsets (-1) or (1), respectively, in this example.

Notice that the stimulus message was in fact not considered in the midpoint, but
rather discarded as an outlier. By occupying the outlier position, however, it caused
the original outlier to be considered, which yielded a visible effect. In practice, how-
ever, true outliers will be rare – in the fault free case the clock synchronization will
keep all local clocks within tight bounds. Therefore, pushing a value from the outlier
position into the average will not necessarily cause a noticeable effect. Obviously the
solution is to let the tester occupy all outlier positions plus one or more values with
stimulus messages (Scenario 4 of Figure 3.3) to actively influence the result. This is
relatively easy to achieve, since the FlexRay protocol [Fle05] defines a maximum of 15
synchronization frames per communication cycle and a maximum of four outliers (the
two highest and the two lowest) to discard. Hence, the generation of 3 synchroniza-
tion frames is enough to directly influence the result of the FTM. If more than the
15 allowed synchronization frames are sent within a cycle (e.g. when the application
already sends 15 sync frames and the tester additionally three), then the first 15 are
taken into account and an error is signaled to the hosts. Consequently, this method
only requires three empty slots (out of the 2047 possible identifiers) prior to the 13th

synchronization frame.
As compared with the mere monitoring approach discussed in Section 3.2.1 the

proposed careful control of the clock synchronization services explicitly exercises the
loop-back path and enables observability of the receiver status, which provides impor-
tant advantages:

• For a node that adapts to the above changes properly we can conclude that it
must have properly received the tester’s stimulus message(s). Otherwise we can
conclude that the receiver has encountered an error upon reception of the stimuli.

50

3.2 From Monitoring to Transparent Online Testing

• By exercising the ability of the clock synchronization service to adapt to changes
in the network timing, we attain a better coverage of the clock synchronization
services.

It is important to notice here, that this approach is still completely transparent for
the application. The tester’s stimulus messages simply remain unused by the appli-
cation, and even if they should fail to be received (e.g., due to an overly aggressive
choice of their displacement) this makes no difference. Moreover, we still do not re-
quire any changes on the system under test, we only exploit the existence of the clock
synchronization services in a transparent way. The only resources we consume is the
bandwidth for three frames. One might argue here that the “unaligned” tester messages
tend to unduely exhaust the fault-tolerance of the clock synchronization. In general,
the negative impact of fault accumulation, which can be eliminated by the proposed on-
line testing (as shown in [SS03]) constitutes a much more severe dependability threat.
Further discussion can be found in Section 4.2.

The requirement on the tester for this type of test is the ability to send messages
according to a very fine-grained time scale. In order to observe the reaction of the
global time base, the tester must be able to sufficiently resolve the position of a message
within the assigned time slot. In practice, it is necessary to influence several consecutive
communication cycles.

3.2.3 Taking Control of the Clock Synchronization Service for
the Loop-back

The next step in exploiting the clock synchronization service for testing is to have
the tester generate sync frames in such a way that it essentially takes control of the
remote nodes’ clock correction mechanisms over time and forces them to follow a non
conventional but still correct time pattern. This approach is known as deterministic
replay [TH00] and is further discussed in Section 4.2.1. Sections 5.3.2, 5.3.3 and 5.3.4
describe test campaigns where deterministic replay is used to evaluate the limits of
the FlexRay clock synchronization algorithm. In these experiments the tolerance of
the clock synchronization service has been overstressed, and as a result, the nodes
under test go into silent mode and communication breaks down. While such a test is
still valuable for an off-line characterization of cluster parameters (e.g., conformance
testing), it is not suitable any more for the transparent online testing we are aiming
at.

However, we need not go that far. Depending on the perceived fault scenario a
FlexRay node can exhibit different reactions: It may (1) discard the faulty message
and continue providing its services, (2) turn into a listen only mode or (3) shut down
after a timeout. In context with our transparent testing scenario (1) seems much more

51

3.2 From Monitoring to Transparent Online Testing

interesting: We can again use our tester to force the time synchronization to a “non-
natural” state, however, we do not go beyond the capabilities of the clock synchroniza-
tion services. This still allows us to distinguish whether or not the stimulus messages
have been received. By modifying these stimulus messages (insertion of faults, e.g., for
a possible strategy see [ASH05]) we can exercise exceptional paths and remotely trigger
the node’s error detection mechanisms. While this remains completely transparent for
the application (the stimulus messages are not considered by the application), we can
exploit the loop-back to observe the reaction of the receive path to the stimulus.�����������	
������������� ������������������� !�"�!����#$����%��&�'�������������������(��)!�$*�'!���+�(����%&�!�)��������,-�����������(��)!�$. / 0 1 2.32/310

Figure 3.4: Transparent test approach

Figure 3.4 illustrates the approach: During a first time, the tester (silently) syn-
chronize to the system (phase 1). After that, our tester performs deterministic replay
and drives the global time outside of some interval (phase 2). The objective is to move
the system into a correct but non-natural state which the SUT will move from as soon
as the tester stop sending messages. During the third phase, the tester frames are cor-
rupted (e.g., CRC error), and consequently removed from the nodes’ clock correction
computation. The SUT starts moving back to a natural state, thus illustrating the
correct rejection of the corrupted tester frames and thus the correct operation of the
node’s internal CRC decoder. A node that still follows the corrupted tester frames
would indicate a corrupted error detection mechanism. During the (optional) fourth
phase the tester performs correct deterministic replay again and finally the tester ends
operation (phase 5).

The experiment pictured in Figure 3.5 illustrates this claim: We are considering a
(simplified) cluster consisting of two nodes that transmit one frame each. They are
configured for a communication cycle length of 3000µs and assumed to be fault free
during the whole experiment. In addition a tester generates two stimulus messages
with the aim of driving the communication cycle length down to 2998µs. All messages
are fault free but for communication cycles 1930 to 1939 during which both stimu-

52

3.2 From Monitoring to Transparent Online Testing

lus messages exhibit header CRC errors (a total of 10 frames for each channel were
modified).

We first started up the tester alone. After 1000 cycles we allowed the nodes under
test to integrate into the ongoing network traffic. After further 1000 cycles the tester
stopped generating messages and the nodes under test were free running. If our above
hypotheses are true we can expect that:

• The SUT will be able to integrate on the network traffic generated by the tester,
even if the cycle length slightly differs from the one configured

• The SUT will stay synchronized and thus provide its normal services

• The SUT will produce an observable but specification compliant reaction to the
fault injected and still deliver its services without any alteration.

Tester frames

Fault injection

Tester driven SUT SUT aloneTester alone

Figure 3.5: Fault injection experiment

Figure 3.5 pictures the cycle length of the four frames over time. As expected,
the SUT integrated to the existing network traffic (shortly before communication cycle
1000), and stayed synchronous although the cycle length was shortened by 2µs. When
the stimuli messages ceased, the transmission period of the cluster returned close to the
configured value of 3000µs. Indeed the faulty frames sent between the cycles 1930 and
1940 lead to a reaction of the nodes under test but did not crash the communication
services. The errors contained in these messages were correctly detected (thus providing
evidence for the proper operation of the CRC checker) and discarded from the internal

53

3.2 From Monitoring to Transparent Online Testing

clock correction computation. During these 10 cycles, the cluster started to move
back towards the configured 3000µs transmission period until the tester messages were
fault-free again.

This simple experiment illustrated the transparency of the approach for the appli-
cation. Indeed, the standard communication service was provided without noticeable
modification (the two frames representing the application-related communication were
transmitted without any disturbance), and the additional frames generated by the
tester were ignored by the application. This behavior results from the constructive
integration attribute of time-triggered systems: “If n nodes are already integrated, the
integration of n + 1 node must not disturb the system” [KB03].

From the communication service point of view, the cycle length deviation (600
ppm) of the stimuli stayed within the range tolerated by the FlexRay protocol and
hence did not drive the clock synchronization out of range, therefore they do not affect
the application related network traffic. In practice, this means that this test of the error
detection mechanisms can be performed in simultaneously for each node of the system
while the system operation is ongoing. The only requirement is a number of time
slots for the tester to send its stimuli through. Since this uses existing mechanisms, it
requires no changes in the nodes or system architecture.

Table 3.2.3 illustrates the improvement in coverage between the monitoring method
and the transparent approach presented here. In both cases, the transmit path is pe-
riodically exercised and our tester can observe its operation. The output of the clock
synchronization service is also observable through the node’s transmission time. How-
ever, it is likely that normal system operation will only partially exercise the mecha-
nism. The active stimulation performed by our tester provides a better test coverage
for this service. Notice that clock synchronization relies on the correct reception of
frames. For a node which adapts to the above changes properly, we can conclude that
it must have properly received the tester’s stimulus message(s). Otherwise, we can
conclude that the receiver has encountered an error upon reception of the stimuli. One
further advantage of our approach is clearly the capacity to test the node’s internal
error detection mechanisms within the receive path.

Functional unit monitoring deterministic replay
Transmit path X X

Clock synchronization X X (improved)
Receive path (data flow) − X (indirect)

Receive path (err. detection) − X

Table 3.1: Test coverage comparison

54

3.3 Chapter Summary

3.3 Chapter Summary

We have presented in this chapter the rationales for this work. We described our main
contribution as the proposition of a framework for the transparent test of time-triggered
communication systems such as TTP/C and FlexRay. We have defined transparent as
non-intrusive with respect to resources, since the node (both software and hardware)
are left unmodified. Moreover, our approach is non-intrusive with respect to system op-
eration and enables concurrent service delivery. This is a major requirement for online
testing and qualifies our approach for use during field operation or during maintenance.

After that, we have seen that a pure monitoring approach already provides detailed
information about nodes’ transmit path and global information about the receive path
and the clock synchronization mechanism. A further step for our approach was to send
slightly shifted frames in order to remotely stimulate the clock synchronization of each
node. Using the composability attribute of time-triggered communication systems and
the fact that the tester frames are automatically filtered out by the application, we can
argue that this test approach is transparent for the system.

The last stimulation step consists of taking control of the global time using deter-
ministic replay and sending corrupted frames to test the fault detection mechanisms.
However, this presents the following challenges:

• controllability : the proposed replay operation takes control of the global time.
However, the test node is required to send several frames within a communi-
cation cycle and does not implement clock correction. We have to show that
this approach is not a threat for the system and that the clock synchronization
mechanism still provides its services with a comparable quality.

• observability : we argue that the system presents an observable reaction after the
replay operation has finished (or while corrupted frames are sent). We have to
show whether or not this behavior can be expected in any case and we must
explore the bounds of this reaction (how much should the replay operation drift
to drive the system out of this interval, how fast the system returns back to a
stable state)

• quality of service (QoS): metrics are strongly desirable in order to measure the
quality of the services delivered during test operation. Nodes’ local information
such as offset correction or logical clock rate, and global information such as
system precision are required to measure the effects of our approach and interpret
the system reaction. The information should be gathered without any support
from the nodes.

55

Chapter 4

Transparent Test Approach
Validation

By three methods we may learn wisdom:
First, by reflection, which is the noblest;

second, by imitation, which is the easiest;
and third by experience, which is the bitterest

Confucius (around 551 – 479 B.C.)

This chapter is devoted to the analysis of our transparent test approach. Since our
test approach relies on the distributed clock synchronization mechanism, we propose
first a model for oscillators and review clock synchronization algorithms. Based on this
information, we analyze the controllability of our approach and show that the proposed
deterministic replay operation is not a threat for the clock synchronization algorithm
or for the system in general. Another objective is to investigate the observability of
our approach and to remotely detect whether the tester’s frames have been taken
into account for the clock synchronization or not. This information enables us to draw
conclusions on each node’s receive path and, more specifically, to test whether the tester
frames have been processed correctly. Finally, we propose two methods to remotely
measure the quality of service of the clock synchronization mechanism. These metrics
are used to measure the influence of our test approach (and can be further used for
evaluating the current system performance).

56

4.1 Definitions and System Model

4.1 Definitions and System Model

The aim of this section is to introduce the background information required for this
study. Our approach relies on clock synchronization and this algorithm aims at cor-
recting drifting oscillators. Therefore, we start with proposing a model for quartz,
then we review clock synchronization algorithms and finally we introduce the terms
and concepts required further on in this work.

4.1.1 Quartz Modeling

We have seen in Section 2.1.4 that each node is a self-contained computer with its own
(imperfect) quartz. However, quartz elements are very sensitive to their environment
and there are different reasons why a quartz might drift from its nominal frequency. An
interesting overview of phase noise in oscillators is provided in [Rub05]. We now propose
a model based on the one presented in [GLS06], with f 0

p as the nominal frequency of

node p’s quartz and ρp(t) its relative frequency deviation such as ρp(t) = fp(t)

f0
p
− 1.

fp(t) = f 0
p · [1 + ρi

p + ρa
p(t) + ρn

p (t) + ρe
p(t)] (4.1)

Here ρi
p is the initial frequency deviation at start-time, ρa

p(t) considers the age-
ing effect, ρn

p (t) the jitter due to short-term noise and finally ρe
p(t) the jitter due

to the environment. The short-term noise ρn
p (t) has a typical magnitude of 10−8 to

10−12 [Com97, Sch95]. Parallel to this, the major influence of the environment jitter
ρe(t) is the temperature. Experiments show that in case of large temperature variation
jitters in the order of 10−6 to 10−5 are possible [Com97, Sch95]. Additional influences
are the stability of the power source, and mechanical effects such as shock and vibration
(in the order of 10−9 per G [Com97]). The ageing effect ρa(t) increases in the order of
10−7 per month [Com97]. Finally, the systematic deviation ρi represents the initial fre-
quency when restarting an oscillator and can grow up to a magnitude of 10−5 [Sch95].
The relative frequency deviation ρp(t) is then defined as the sum of the different effects.

We will make two assumptions in the following: First, for a given time window, the
relative frequency deviation is bounded by a constant Π such that:

∀t |ρp(t)| < Π (4.2)

Secondly, we will assume for a small time window and for a nearly constant en-
vironment (minor changes in temperature and acceleration) that the initial offset ρi

p

dominates the other effects (with these assumptions, the magnitude of ρi
p is at least a

factor of 100 larger than the other effects). This means that both the stochastic jitter
and the short-term variation are assumed to be negligible in comparison to the long-
term variation. Similar assumptions have been made in [Sch98] (Assumption 4.1): the

57

4.1 Definitions and System Model

stability condition bounds the variation of the instantaneous frequencies during ∆t > 0
for any t > t0, where σ is the oscillator stability :

|fp(t + ∆t)

fp(t)
− 1| 6 σ∆t (4.3)

Numerical examples illustrated for a stable environment (no more than 1◦ C temper-
ature deviation within 10 sec.) that the short-term variations are negligible compared
to the initial quartz deviation ρi

p [Sch98].
In the context of the digital systems considered in this work, the quartz oscillator

delivers a pulse (microtick, see Section 2.3.4) which has been digitized in the value
domain and alternatingly delivers a logical zero and a logical one. The length of the
kth microtick for node p is denoted micp(k). With a reasonable stability σ we may
assume the frequency to be constant during one microtick, such that mic(k) = 1

fp(k)

with fp(k) being the (constant or averaged) frequency during the kth microtick. We can
define the quartz’ relative period deviation δp(k) such that micp(k) = mic0

p · [1 + δp(k)],

with mic0
p being the nominal period. We obtain by identification δp(k) = −ρp(k)

1+ρp(k)
. If

we now assume ρp(k) << 1 we obtain δp(k) ' −ρp(k). Not surprisingly, the relative
frequency- and period deviation have approximately the same amplitude but are of
opposite sign. For the following, we will use the term of oscillator deviation for δp(k).

4.1.2 Definitions

Each node p implements a physical clock for measuring time [DHSS95, Kop97]. This
physical clock consists of a counter Cp(t) that is incremented by one every microtick,
and of a physical oscillation mechanism (usually a quartz) that generates the microticks.
This counter is furthermore periodically adjusted to build a logical clock Lp(t) that is
synchronized with the rest of the system (see Section 4.1.3 for a discussion about clock
synchronization algorithms). Notice that the oscillator deviation δp(k) at node p is the
cause of the drift rate ρp

k of the physical clock p at microtick k as defined in [Kop97]
p.49. This is also the cause of the rate of drift of physical clocks as defined in [ST87].
The accuracy denotes the maximum offset of a given clock from the external time
reference during the time interval of interest in [Kop97] p.50. It is defined as a narrow
envelope of real-time for the clocks in [ST87]. In both definitions, accuracy represents
a (bounded) distance between a clock under observation and a reference time source
(real-time). The oscillator deviation definitely influences the physical clock, which in
turn deviates from real-time. The accuracy of the physical- and logical clocks thus
depends on the oscillator deviation.

The length (duration) of one communication cycle (re-synchronization period) for
a node p is given by the number of microticks counted by the node’s logical clock
multiplied by the duration of each microtick. If we define Lp(t

m
p) (resp. Lp(t

m+1
p)) as

58

4.1 Definitions and System Model

the counter value of node p at the beginning of cycle m (resp. m+1), the length clp(m)
of communication cycle m is then:

clp(m) = tm+1
p − tmp = Σ

Lp(tm+1
p)

k=Lp(tmp)mic(k) (4.4)

The number of microticks to count for communication cycle m is given by the con-
figured cycle length CL0 adjusted by the correction term CORRp(m) that has been
computed during the previous communication cycle by node p. If we further consider
the quartz deviation to be nearly constant during two consecutive communication cy-
cles, we finally obtain:

clp(m) = (CL0 + CORRp(m)) ·mic0 · (1 + δp(m)) (4.5)

Similar to Section 4.1.1, we define the logical clock’s deviation δLp(m) for a node p
as the actual length of the communication cycle m divided by the theoretically ideal
cycle length minus one (for the FlexRay protocol, whose correction is based on double
cycles, the average of two consecutive cycles can be used). The logical clock’s deviation
is influenced both by the deviation of its oscillator and by the correction value.

δLp(m) =
clp(m)

cl0
− 1 =

clp(m)

CL0 ·mic0

− 1

δLp(m) = δp(m) +
(1 + δp(m)) · CORRp(m)

CL0

(4.6)

Assuming the system to be synchronous, then all the (correct) logical clocks are at
most π apart from each other. Using this property, we can state that the measurement
of the same time interval (and more especially of one communication cycle) by any two
nodes is at most 2π apart (start and end measurement both introduce an uncertainty
of at most π). For the specific case of a communication cycle of length cl0 our interval
measurement therefore yields a relative precision of χ = 2π

cl0
.

We define the global time as the set of fault-free logical clocks within the system.
Notice that this value is defined within a maximum jitter of π representing the precision
between the nodes within the system. Its relative precision deviation is χ. Evaluating
the global time with respect to real time is known as evaluating the accuracy of a clock
synchronization algorithm. An important limitation is provided in [ST87]: The accu-
racy of a synchronized system is bounded by the accuracy of the underlying physical
clocks.

We define further the clock deviation interval (CDI) as the interval between the
current largest and the smallest oscillator deviations within the system (±χ). Figure 4.1
illustrates our definition applied to an exemplary oscillator drift. During the first phases
the oscillators are drifting with moderate increase or decrease of drift. Then, nodes 3
and 4 fail and the quartz deviation interval suddenly becomes narrower.

59

4.1 Definitions and System Model

������������	�
����
����������������������������� !"#������� !"$������� !"% &' ()*"+,��, �-��"�+�' �"'��,+".�"(,/, �!"+,��, �������� !"01"�'2�,3"4!"+,��, �567
Figure 4.1: Clock Deviation Interval (CDI)

4.1.3 Clock Synchronization

Overview

Clock synchronization algorithms are required to provide a commonly agreed time base
within the system and correct the local oscillator drifts. Several important properties
are listed in [LWL88, ST87]:

Pcs1: Agreement (or precision enhancement [Sch87]): Correct logical clocks within
the system are at most π from each other, where π is the precision of the system.

Pcs2: Bounded adjustment: The correction term at re-synchronization is bounded.

Pcs3: Accuracy: The logical clock of a correct node is within a narrow envelope of
real-time. This property is equivalent to the (α1, α2, α3) validity from [LWL88].

We refer to an algorithm as an internal clock synchronization when its purpose is
to maintain the maximal clock state deviation bounded by a precision π between any
two nodes of the system. External clock synchronization aims at synchronizing a node
with an external time standard (such as e.g. UTC or GPS). Note that an externally
synchronized system is also implicitly internally synchronized. The contrary is not
always true.

Different structures are available [Hor04]. Asymmetric (master-slave) structures
are typically using one master node to provide the time reference to the other nodes
(slaves). Their main advantage is the low cost in terms of algorithm complexity and
number of messages exchanged. However the master represents a single point of fail-
ure, a fact that can not be tolerated when high reliability is required. In symmetric
structures, each active node executes the same clock synchronization algorithm. This

60

4.1 Definitions and System Model

improves the system robustness at the cost of resources (computing and bandwidth).
Hierarchical structures also exist, where the synchronization strategy is spread at dif-
ferent levels.

Three computation steps common to all synchronization algorithms have been high-
lighted in [AP98]: (a) synchronization event detection, (b) remote clock estimation and
(c) clock correction.

The aim of the synchronization event detection is to determine a point in time for
triggering a re-synchronization. This event should occur approximately simultaneously
on all nodes. Two main approaches exist: First, the computation can be triggered when
the internal clock reaches a given value (usually a multiple of the cycle length). This
approach supposes an initially synchronized system. The second method is to trigger
the re-synchronization by the reception of one (or more) message(s). With this second
approach, the precision of algorithms depends on message transmission latencies and
communication delay jitter.

The goal of remote clock estimation is to provide information about the clock
values within the system. Two main approaches exist: The Time Transmission (TT)
technique, where the node autonomously transmits (broadcast) its local clock value,
and the Remote Clock Reading (RCR) technique, where a node p sends a request to
another node q to read its clock. The main advantage of the RCR technique is the
possibility of assessing information on the transmission delay and jitter. However, this
method requires more bandwidth.

The last computation step is the clock correction itself. On one hand, convergence-
averaging or convergence function based techniques use a set of remote clock estimates
to compute a correction term [AP98]. Convergence-nonaveraging techniques, on the
other hand, only use the fact that a given number of messages have been correctly
received in order to perform the correction. Convergence functions might be determin-
istic or probabilistic. Deterministic functions give a guarantee on the system precision
as long as their assumptions (e.g. wrt. quartz drift, number of faults within the system)
are fulfilled. Probabilistic functions, however, provide a probabilistic guarantee that
might fail to hold sometimes but with a known or bounded failure probability [Arv94].

Offset correction aims at correcting the accumulated clock state difference between
the nodes within the system. This mechanism is thus required to reach an agreement
on the global time base. The clock correction value can be applied discretely or con-
tinuously (amortized). While a discrete adjustment causes a discontinuity in the time
base, a continuous adjustment modifies the rate of the logical clock during a given time
interval. Notice that both methods are equivalent as long as the entire correction can
be applied within a re-synchronization period [SC90].

The main goal of the rate correction is to artificially modify the frequency of the
nodes logical clocks in order to minimize the future clock state differences. This mecha-
nism, while not mandatory for synchronization, usually improves the effective precision
of the system.

61

4.1 Definitions and System Model

Time-Triggered Communication

Both TTP/C and FlexRay implement convergence-averaging clock correction and re-
mote clock estimation based on the time transmission technique. Hence, for both
protocols, a subset of nodes (e.g. with better oscillators) transmit sync frames (nor-
mal frames with the synchronization flag set), thus actively taking part in the clock
correction process. The other nodes are passively synchronizing to the resulting global
time. Re-synchronization is triggered when the node’s local time base reaches a pre-
configured value.

The TTP/C protocol foresees a four entry stack to store the remote clock mea-
surements. Offset correction based on the fault tolerant average (FTA, see [KO87])
convergence function is computed with these four entries, where in practice the largest
and smallest are discarded to average the remaining two. The correction value is ap-
plied continuously. The FlexRay protocol, on the other hand, implements both rate
and offset correction based on the Fault Tolerant Midpoint (FTM, see [LWL88]) com-
putation. This protocol foresees a sixteen entry stack, which is cleared at the beginning
of each second cycle. Depending on the number of sync frames received, the k (k ≤ 2)
largest and k smallest measurements are removed. The remaining largest and smallest
entries are finally averaged to compute a rate and an offset correction term.

The ability to persistently tune the frequency of the local time base to a value that
is essentially different from the original oscillator frequency introduces the risk of a
common mode drift of the global time base (precision is established when the nodes
agree on any frequency). In order to avoid such a common mode drift, the Flexray pro-
tocol implements a damping factor, that locally tries to drive the rate correction back
to zero. Consequently, each node tries to move its logical clock (and thus the approxi-
mately synchronized global time) to its own oscillator frequency. Figure 4.2 highlights
the function of the damping factor in FlexRay for the node’s rate calculation. The
local rate correction (vRateCorrection) is first updated using the fault-tolerant mid-
point of the measured rate differences. Then, depending on the result, the damping
factor pClusterDriftDamping is applied to move the rate correction towards zero. The
FlexRay specification [Fle05] recommends to configure the damping factor to approxi-
mately the same value for all nodes. Its range is limited from 0 to 20 microticks, and
thus in every case smaller than the granularity of the global time base (macrotick, at
least 1 microsecond or 40 microticks).

Impairing factors

Different effects are affecting the synchronization quality in a distributed system. Nat-
urally, both the oscillator stability and the re-synchronization period have a direct
impact on the system precision, but also the following factors are playing a role:

Clock reading error: In convergence-average clock synchronization, each node

62

4.2 Safe Deterministic Replay Operation

vRateCorrection := (call midterm
(zsMRateAB)) + vRateCorrection;

vRateCorrection := 0;
vRateCorrection :=
 vRateCorrection -
 pClusterDriftDamping;

vRateCorrection :=
 vRateCorrection +
 pClusterDriftDamping;

vRateCorrection?

else

<= -pClusterDriftDamping>= pClusterDriftDamping

Figure 4.2: Damping factor for the FlexRay protocol (from [Fle05] Fig. 8-15)

needs to read the local time of all other nodes, in order to compute its correction value
and correct its time base. The clock reading error represents the difference between the
measured and the actual clock state of a remote node at re-synchronization. There are
two main reasons for this phenomenon. A first reason is the jitter during the communi-
cation (due to e.g. internal processing, quantization error, queuing or non-deterministic
communication schemes). This can be minimized using deterministic communication
schemes and time stamping the frames at a low level and with a high granularity (as
in TTP/C and FlexRay). A second source of errors shows up when the clock readings
are done long before the re-synchronization point. Hence, at re-synchronization, the
actual clock state differences might be larger than the ones previously measured (the
nodes have further drifted apart).

System history: State correction based clock synchronization algorithms compute
their adjustment term according to the clock state differences measured during the
previous cycle(s) only. Some algorithms, however, do implement rate correction and
are additionally using a history of the system. One such example is FlexRay, where the
last rate correction term is used for the computation of the new one. Consequently, the
correction term (and thus the global time) not only depends on the current physical
clock drifts but on the system history, too.

Faults within the system: For example, Byzantine clocks (presenting different
values to the different nodes) might let two correct nodes drift apart. A faulty quartz
(drifting apart its bounds) might let the logical time of a remote node drift beyond
some bounds too, thus inhibiting the application to perform its tasks on time.

4.2 Safe Deterministic Replay Operation

The aim of this section is to study the controllability of our approach and to answer the
following questions: Is it possible to remotely control the global time? Is this operation

63

4.2 Safe Deterministic Replay Operation

safe? We have proposed in [AFS08] a formal proof for the correctness of replay opera-
tion in TTP/C systems that is based on the Schneider’s proof [Sch87]. Unfortunately
this proof does not apply to FlexRay (in particular it does not allow for rate correc-
tion), and we are not aware of any other formal proof for the clock synchronization
in FlexRay either. Therefore, we present here a more informal approach, in order to
compute the precision of the system according to the attributes of the replay operation
and to show that the agreement property Pcs1 of Section 4.1.3 holds (the system does
not drift apart).

4.2.1 Deterministic Replay Operation

In a distributed system, the global time is a function of the nodes’ oscillator deviations
and of the system history. We introduce in this work the notion of deterministic replay
as a method to drive the distributed clock synchronization algorithm into a desired
state and to observe the system reaction. More precisely, we aim at influencing the
clock synchronization mechanism and dictating a given behavior. For that we use a
tester node with the capability to send a pre-defined bus traffic (containing more than
one sync frame per communication cycle or round), regardless how the other nodes
react.

Our tester sends N frames per cycle with N > f , where f represents the number
of faults that can be tolerated by the algorithm. In general, the tester will influence
the clock synchronization with a factor N−f

M
where N represents the number of frames

sent by the tester, f the fault tolerance grade of the system (and on the same time the
number of extremum rejected before the computation of the algorithm, usually the f
slowest and the f fastest) and M the number of nodes averaged by the convergence
function. Note that we focus here on FlexRay or TTP/C clock synchronization where
the convergence function is averaging exactly two values (M = 2, see Section 4.1.3).
In our case, N = f +1 frames are sufficient to influence the clock synchronization with
a factor of 1/2. For example, a system of four nodes can tolerate f = 1 fault and
the tester then sends two sync frames per cycle. These frames are delayed and will
be thus taken into account as one extremum of the convergence-average calculation.
The second extremum is provided by the nodes themselves. Since we can assume that
the nodes are tightly synchronized to another, they will correct half the clock state
difference to the tester at each re-synchronization. The tester does not correct its time
base, but the node does, and consequently the nodes will follow the tester’s logical
time.

Figure 4.3 illustrates deterministic replay operations. Six frames are transmitted
in this example: four from standard nodes (N0, N1, N2, N3) and the two last (T1,
T2) from a tester node. The standard nodes are tightly synchronized to each other,
while the tester presents a larger deviation to the node. Notice that the tester frames
are syntactically and timely correct (within the slot boundaries), otherwise the frames

64

4.2 Safe Deterministic Replay Operation�� �� �� ������	�
���� ������������� ���� ������������������ �������� �� ������ �� ��
Figure 4.3: Deterministic replay

would have been removed from the clock’s correction computation. The convergence
function (here the Fault Tolerant Midpoint, FTM) applied to the four standard nodes
returns a correction of zero. However, when the tester is taken into account, the
correction result is shifted to -3, which represents half the clock state difference between
the standard nodes and the tester.

An important question here is whether this deterministic replay operation can be
a threat for the distributed clock synchronization algorithm. In fact, the tester sends
f +1 frames per communication cycle (instead of one) and does not implement a clock
correction mechanism as required. We will see in the following section under which
conditions the tester operation can be qualified as safe and therefore whether or not
it is a threat for the system. Some limitations are further experimentally evaluated in
Section 5.3.

4.2.2 Computation of the System Precision

Our approach is based on the analytical computation of the system precision. We aim
at finding some bounds to guarantee the agreement property of Section 4.1.3. Figure 4.4
illustrates replay operation. A tester node performs a deterministic replay (and thus
does not execute clock correction) with an increasing deviation, while a standard node
performs clock correction and tries to follow the tester.

Our analysis is based on the following assumptions:
(B1) The tester is initially synchronized to the system under test. This can be
performed with every kind of synchronization algorithm before starting the replay.

(B2) The oscillator deviation of a standard node is bounded and constant during the
replay activity. Here we refer to the quartz model from Section 4.1.1, and assume a
very small σ in Equation (4.2) for the moment, which is not unrealistic in practice.

65

4.2 Safe Deterministic Replay Operation

����
�������	��

��
��	�������������������������	����������� �������� π��
π�� ���������
Figure 4.4: Precision computation

(B3) Tester nodes do not fail. This assumption simplifies the reasoning, but a fault
tolerant tester architecture can be proposed as well.

(B4) Typical replay operation: The standard nodes are supposed to form a tightly
synchronized clock group while the tester (i.e., the two virtual testers) is forming a
second tightly synchronized clock group (see Section 4.2.1).

In the following we will treat time and microticks in the same way, i.e., we will
assume for the sake of simplicity that logical clocks have unit [ns]. We define π0

n as
the system precision, i.e., the maximum difference of any two correct nodes’ logical
clocks, at the beginning of cycle n (just after re-synchronization) and π+

n as the system
precision at the end of cycle n (before the (n + 1)th re-synchronization). In case
of convergence-average correction, for the purpose of re-synchronizing, every node p
subtracts an offset correction term from its current logical clock value at the end of
each round. In the following, node p’s offset correction term at cycle n will be denoted
by OCp

n. Note, that each node’s correction term OCp
n can be expressed as a fraction

γp of the system’s clock state difference, i.e., its precision, at cycle n (with |γp| ≤ 1)

OCp
n = γp · π+

n (4.7)

For each cycle there exists a node M (respectively a node m) which maximizes (re-
spectively minimizes) the offset correction. Thus we have:

OCM
n = α · π+

n (4.8)

OCm
n = β · π+

n (4.9)

66

4.2 Safe Deterministic Replay Operation

We further define T as the nominal re-synchronization period (in [ns]) and devn as the
maximum rate deviation between any two correct nodes’ logical clocks, i.e., T · devn

gives the time interval any two correct processes may diverge in a single round. Due
to assumption (B4), during the process of testing one extreme is always formed by
a tester while the other extreme is formed by a standard node i, yielding devn =
ρLi

(n) − ρLtester(n), with ρLi
(n) and ρLtester(n) being the logical clock deviation of

standard node i and of the tester at cycle n, respectively. With this in mind we obtain:

π+
n = π0

n + T · devn (4.10)

π0
n = π+

n−1 − (OCM
n−1 −OCm

n−1) + ε (4.11)

where ε is the error made by offset correction (including quantization and the error
made by measuring the other node’s clocks). Equations (4.10) and (4.11) describe
the system precision behavior. The precision π+

n at the end of a cycle is given by the
precision at the beginning of this cycle plus the deviation of the logical clocks during the
period T . Concerning the term π0

n, the precision after re-synchronization is provided
by the precision before re-synchronization minus the difference in correction performed
by the outliers M and m. The precision can be re-written as the following series:

π+
n = (1− (α− β)) · π+

n−1 + T · devn + ε (4.12)

In the following we compare two scenarios: (i) standard operation, where all nodes
are standard nodes and thus both M and m apply offset correction and (ii) replay
operation where the tester (either M or m) does not apply offset correction:
ad (i) In this case M and m correct part of the precision, s.t., OCM

n−1 − OCm
n−1 in

Equation (4.11) yields π+
n−1, i.e., α− β = 1. Typically both m and M correct half the

precision, i.e., α = −β = 1/2. Equation (4.12) thus becomes:

π+
n = T · devn + ε (4.13)

ad (ii) Wlog. assume that m is the tester node (which does not apply offset correction).
Thus β = 0, yielding:

π+
n = (1− α)n · π0 + T

n−1∑
i=0

(1− α)idevn−i + ε

n−1∑
i=0

(1− α)i (4.14)

Remember that limn→∞
∑n

i=0 φi = 1
1−φ

for |φ| < 1. Thus for growing n, we finally
obtain

π+
n =

1

α
· ε + T

n−1∑
i=0

(1− α)idevn−i (4.15)

Notice, that in case of a constant logical clock deviation (devn−i = k) precision π+
n

converges to 1
α
·Tk+ 1

α
·ε, i.e., is worsened by the factor 1

α
in comparison to the precision

67

4.2 Safe Deterministic Replay Operation

of a system containing only standard nodes (Equation 4.13). Hence, instead of having
all the nodes correcting the entire clock state difference (as in (i)), in (ii) some nodes
are correcting α (with |α| < 1) of the current clock state difference. However, the offset
correction term is expected to exactly correct the clock state difference accumulated
during a cycle for both (i) standard and (ii) replay operation; otherwise the system
would drift apart. In both scenarios we have the same logical clock deviation, the
same convergence function and the same final cumulated offset correction. However,
the asymmetry of system (ii) leads to a larger clock state difference and thus to a
worsened precision. Though worsened, the system precision can still be computed
(and bounded), if the logical clock deviation devi, which itself depends on the tester’s
replay attributes, is known. Consequently, we can argue that deterministic replay is
not a threat for the system if and only if this operation is precisely controlled. The
next section presents numerical examples for different kinds of replay operations.

4.2.3 Numerical Examples with Different Replay Attributes

Definitely devn differs whether a rate correction mechanism is instantiated or not, as
a rate correction leads to an adaption of ρLi

towards ρLtester and thus to a decreasing
devn. In the following we explore two test scenarios: (i) The tester makes a step
in its deviation, i.e., ρLtester(0) = ρLm(0) and ρLtester(n > 0) = ρLm(0) + ∆. (ii)
The tester increases its deviation in a linear manner, i.e., ρLtester(0) = ρLm(0) and
ρLtester(n) = ρLm(0)+nθ. We will study the effect of both (i) and (ii) on systems which
perform (a) offset correction only (e.g. TTP/C) and those which perform (b) offset
plus rate correction (e.g. FlexRay).

We assume moreover that the standard node contributes for half of the offset correc-
tion (β = −1

2
) and define the virtual oscillator drift ρvir as the oscillator drift required

by a standard node to reach the same logical clock deviation as a tester, which does
not apply any correction. The motivation is to find an equivalence between a standard
node whose oscillator is drifting (with ρvir) and our tester. We will see that the devia-
tion of the logical clocks are the same, but the system precision is worsened by a factor
1
β
. The virtual deviation of round n is computed as the sum of the tester’s deviation

in round n plus the deviation that emerges from the missing tester’s correction (offset
& rate).
(i.a) Step with offset correction: The deviation of the standard nodes’ logical clocks
equals their physical deviation (ρLi

(n) = ρi), which is constant by assumption (B2).
Therefore, we obtain devn = ρi − ρLtester = ∆. The correction term then converges to
T∆ and using Equation (4.15) system precision converges to 2T∆ + 2ε. The virtual
oscillator drift is ρvir(n) = ρLtester(0) + 2∆.
(i.b) Step with offset & rate correction: Contrary to the first case, the standard
nodes’ logical clock rates are continuously corrected. We have dev0 = 0, dev1 = ∆
and devn>1 = 1

2
devn−1. We can easily see that the standard node’s logical clock rate

68

4.2 Safe Deterministic Replay Operation

converges to the tester’s logical clock rate. We obtain devn = κ ¿ ρi − ρLtester .
The system precision then converges to 2Tκ + 2ε (logical clock deviation applied to
the re-synchronization cycle). Note, that (i.b) definitely yields a better precision as
0 ≈ κ ¿ ∆. Virtual oscillator drift is ρvir(n) = ρLtester(0) + 2∆ + 2κ.
(ii.a) Ramp with offset correction: Using the fact that devn−i = (n − i)θ and
that

∑n−1
i=0 (n− i)(1

2
)i ≈ 2n− 2 for large n, we can see that the precision converges to

π = Tθ(2n− 2) + 2ε. Note, that π is bounded iff n and θ are bounded. This confirms
the intuitive result that the ramp must be bounded both in time and value (slew rate).
The virtual deviation is then ρvir(n) = ρLtester(0) + 2θ(n− 1).
(ii.b) Ramp with offset & rate correction: In contrast to (ii.a), the standard
node’s logical clock rate is following the tester’s logical clock rate. More specifically, if
we assume that the standard node’s rate correction mechanism corrects half the rate
difference we get devn>0 = 1

2
devn−1 + θ. The logical clock deviation between tester

and standard nodes finally converges to devn = 2θ. The correction term at cycle n
thus converges to 2Tθ and the system precision to π = 4Tθ + 2ε. For virtual oscillator
deviation we obtain ρvir(n) = ρLtester(0) +

∑n
i=0 devi = ρLtester(0) + 2θn. We will see

later that the FlexRay clock synchronization algorithm implements a damping factor
that slightly shifts the result of the rate correction towards the nominal frequency of
the underlying oscillator. This does not invalidate the agreement attribute but slightly
worsens the precision.

Table 4.1 summarizes the results achieved. As expected, the precision of the system
is bounded for a “bounded” replay operation (bounded deviation). Furthermore, it
makes a difference for the precision whether rate correction is used or not. Interestingly,
the virtual oscillator drift is approximately the same with and without rate correction.

correction step
π ρvir

offset 2T∆ + 2ε ρLtester (0) + 2∆
offs & rate 2Tκ + 2ε ρLtester (0) + 2∆ + 2κ

correction ramp
π ρvir

offset 2Tθ(n− 1) + 2ε ρLtester (0) + 2θ(n− 1)
offs & rate 4Tθ + 2ε ρLtester (0) + 2θn

Table 4.1: Convergence results

4.2.4 Experimental Validation

In the previous sections we have proposed a strategy for taking control of the global
time via a tester node. We have further proven that this does not jeopardize normal
system operation, as long as it is performed with care, i.e. certain conditions are met.

69

4.2 Safe Deterministic Replay Operation

In the following discussion, we are going to give experimental validations for these
claims, thus substantiating that our approach indeed works in practice.

The first experiment presents a simulation of a 5 nodes TTP/C network performed
with the SIDERA simulation tool [Han06]. In our experiment the round length was set
to 1000 µs (five slots of 200 µs each). Nodes S1, S2, T0 and T1 transmit sync frames
and thus influence the clock synchronization, while S0 only passively synchronizes to
the global time. The oscillator deviations of S0, S1 and S2 were set to constant, while
those of T0 and T1 are both increased by 50e−6 each cycle. Note that T0 and T1
are standard nodes and thus are playing the “virtual nodes” as described previously.
According to Table 4.1, we expect then the global time deviation to be approximately
half the deviation of T0 and T1.

 999.5
 1000

 1000.5
 1001

 1001.5
 1002

 1002.5
 1003

 1003.5
 1004

 1004.5

 0 10 20 30 40 50 60 70 80

C
yc

le
 le

ng
th

 [m
ic

ro
se

co
nd

s]

Global Drift

S0
S1
S2
T0
T1

Global time

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70 80

S
ys

te
m

 P
re

ci
si

on
 (

ns
)

Time (communication cycle)

System precision

Figure 4.5: Drift and precision with TTP/C

Figure 4.5 illustrates the results. The upper diagram shows as expected that the
global time approximately follows half way the drift imposed by the nodes T0 and T1.
We are in the typical case where the groups (TO, T1) and (S1, S2) both influence for
half the correction term. The lower diagram shows the linear dependence of the system
precision with respect to the deviation, as predicted by Table 4.1. Therefore, as long
as we keep the tester’s clock deviation within bounds (i.e. stop increasing the ramp
before ∆’s borderline is crossed), the precision will remain within bounds as well.

Figure 4.6 (left part) illustrates an experiment performed with a four nodes FlexRay
network. Nodes 2 and 3 have a constant oscillator deviation (respectively −150e−6

and −250e−6) during the experiments. The oscillator deviations of nodes 0 and 1

70

4.2 Safe Deterministic Replay Operation

are initialized with −200e−6 and – starting with cycle 420 – present a linear varying
oscillator deviation of 5e−6 every 3 communication cycles. Figure 4.6 (right part)
illustrates the equivalent experiment performed with our tester node [FA07]. The
reference nodes (2 and 3) present the same oscillator deviation as in the previous
experiment.

-300

-200

-100

 0

 100

 200

 300

 400 450 500 550 600 650 700

G
lo

ba
l d

rif
t 1

0e
-6

 [s
/s

]

Global Drift - Standard System

osc. dev. node 0
osc. dev. node 1
osc. dev. node 2
osc. dev. node 3

 0

 100

 200

 300

 400

 500

 400 450 500 550 600 650 700

S
ys

te
m

 P
re

ci
si

on
 (

ns
)

Time (communication cycle)

System precision - Standard System

-300

-200

-100

 0

 100

 200

 300

 50 100 150 200 250 300 350

G
lo

ba
l d

rif
t 1

0e
-6

 [s
/s

]

Global Drift - Replay Operation

virtual dev. tester 0 and 1
osc. dev. node 2
osc. dev. node 3

 0

 100

 200

 300

 400

 500

 50 100 150 200 250 300 350

S
ys

te
m

 P
re

ci
si

on
 (

ns
)

Time (communication cycle)

System precision - Replay Operation

Figure 4.6: Real nodes with oscillator drift

Regarding the experiment with a standard system, several important observations
can be made. First, before cycle 450, the oscillator deviations of nodes 0 and 1 are
within the interval spanned by the oscillator deviations of node 2 and 3. During this
interval, nodes 2 and 3 are thus rejected as outliers and the logical time exactly follows
nodes 0 and 1 (these two nodes are influencing the clock correction with a factor 1).
During a second time (after cycle 450), the oscillator deviations of nodes 0 and 1 are
higher than the ones of node 2 and 3. Consequently, either node 0 or node 1 is now
rejected as outlier while the other one influences the correction with a factor 1/2. As
expected, we can observe that the global time deviation grows with half the amplitude
of the oscillator deviation from nodes 0 and 1. Furthermore, the precision of the system
is bounded and does not depend on the current clock deviation interval.

Regarding the replay operation, as expected, the virtual oscillator deviations com-
puted by our tester are similar to the real oscillator drift of nodes 0 and 1. The

71

4.2 Safe Deterministic Replay Operation

steps observed arise from the timestamping granularity of our tester node (25ns). It
is important to notice that the precision of the system is bounded for this experiment
(agreement property of Section 4.1.3). This experimental measurement provides an ad-
ditional check during deterministic replay operation. As expected, the precision here
is approximately twice the precision of the previous experiment. Notice additionally
that the maximal clock state deviation between the standard nodes (system precision
when the tester is not taken into account) is below 100ns.

Moreover, the results for TTP/C and FlexRay confirm the results presented in
Table 4.1. While the same oscillator deviation is required both for TTP/C (offset
correction) and FlexRay (offset + rate correction) to achieve the same effect, the system
precision with rate correction is bounded and does not depend on the current difference
between the physical clock deviations.

4.2.5 Online Test of the Oscillator Stability

The results presented before are based on the assumption that the nodes under test
present a constant oscillator deviation during the experiment time. We will now de-
scribe an algorithm that checks online whether the oscillator deviation of the nodes
within the system has changed, which would invalidate our initial assumption, or not.
This computation is important, in order to allow interrupting test operations before
the system precision exceeds the specified bounds (and thus introduces a fault into the
system). Note that this extension is required for FlexRay since the actual oscillator
frequency of the nodes is masked by the rate correction mechanism. For TTP/C, the
actual oscillator frequencies are directly visible through the offset correction value and
thus can be easily tested online (see [AS07]).

Characterization of the offset correction

We have seen that during deterministic replay operation, the offset correction is an
illustration of the instantaneous frequency difference between a node’s and the tester’s
logical clocks. In the case of FlexRay, the nodes are implementing a rate correction and
thus are correcting the rate of their logical clock. However, the deterministic replay
presented here (ramp) continuously modifies the speed (frequency) of its logical time
base and the nodes under test are following the tester. Their offset correction depends
then (a) on the slew rate of the tester’s global time and (b) on frequency variations
of their respective own oscillators. Since we can control the slew rate during replay
operation, the offset correction is thus a good indicator for the stability of the node’s
internal oscillator.

For the case of FlexRay, whose re-synchronization period is based on a double cycle
basis (see Section 4.1.3), the rate deviation dev2n at cycle 2n is given by the rate

72

4.2 Safe Deterministic Replay Operation

deviation dev2n−2 from cycle 2n − 2 plus the additional deviation of the tester ρLtester

minus the rate correction RateCorr2n.

dev2n = dev2n−2 + 2θ −RateCorr2n (4.16)

If we now use the fact that the rate correction at cycle 2n is half the rate deviation
of cycle 2n− 2 minus the damping factor (see Section 4.1.3) DampFact, we obtain for
Equation (4.16):

dev2n =
1

2
· dev2n−2 + 2θ +

DampFact

T
(4.17)

Similarly to Section 4.2.3, we obtain for the precision and for the offset correction
(remember that the re-synchronization period is 2 · T and that the offset correction is
half the system precision):

OCn = 4 · (T · 2θ + DampFact) + ε (4.18)

Equation (4.18) illustrates the linear dependency between the logical clocks dif-
ference (θ) and the node’s offset correction OC. Assuming the tester’s ramp linear,
a modification of the offset correction indicates a modification of the instantaneous
node’s logical clock difference, which in turns indicates that the node’s oscillator drift
has changed (remember the effect of the oscillator deviation to the node’s logical clock,
see Equation (4.5)).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 2 4 6 8 10 12 14 16 18 20

of
fs

et
 c

or
re

ct
io

n
[n

s]

Deviation [PPM / cycle]

measurements
lower bound
upper bound

Figure 4.7: Characterization of the offset correction for different clock deviations

We have experimentally measured the correction term for different frequency dif-
ferences. In total, 17 frequency differences have been measured during 200 communi-

73

4.3 Accuracy of the Logical Clocks

cation cycles and each experiment has been repeated 5 times. The results are pictured
in Figure 4.7. The graph compares the measured averaged offset correction (given in
nanoseconds) with a lower and upper bound for different slew rate of the logical time
during replay (given in PPM – or 10e−6 s/s – per communication cycle). The lower
bound as been defined as ε = 0 and the upper bound as ε = 3θ · T . This arbitrary
value represents a measurement error of θ during the rate correction (influencing the
term OCn for 2θ · T) and of θ · T due to the offset correction.

We can notice that the measurement curve is not straight-line. This is due to the
limited granularity of our tester. Hence, in our configuration a slew rate of 2 PPM
per cycle translates to a speed-up of the tester’s logical time by two microticks every
5 cycles. This leads to a punctual step of the global time every five cycles and slightly
increases the average offset correction. The next measurement (2,5 PPM per cycle), in
comparison, represents a jump of one microtick every two cycles and the measurement
error is minimized.

Experimental validation

During the following, we illustrate how the above approach can be used to detect non-
regularity of the node’s internal oscillator during deterministic replay operation. For
both experiments, the tester is sending two frames (replay operation) and the system
under test consists of four nodes. The two following figures illustrate the oscillator
drift of the four nodes under test (part A) and a filtered (averaged) view of the node’s
offset correction (part B).

During the first experiment, two nodes present a constant oscillator deviation (-50
PPM) while the other two ones perform periodic jumps of their oscillator deviation
(from -50 PPM to -100 PPM for node 0 and from -50 PPM to 0 PPM for node 1). As
expected, it can be observed in Figure 4.8 that the (filtered) offset corrections present
local jumps just after a oscillator deviation modification.

For the second experiment, three of the four nodes present a constant oscillator
deviation of -50 PPM. The fourth node exhibits a linearly varying oscillator deviation
between -60 PPM and -160 PPM. As expected, the offset correction amplitude of
this node is increased by 3 microticks or 75ns. According to our characterization
(see Figure 4.7 and Equation 4.18), this represents an additional frequency change of
approximately 2 PPM per cycle.

4.3 Accuracy of the Logical Clocks

The objective of this section is to study the observability of our test approach. We want
to show that the global time (set of logical clocks within the system) always converges
to the clock deviation interval (CDI) as defined in Section 4.1.2. This attribute is

74

4.3 Accuracy of the Logical Clocks

-120

-100

-80

-60

-40

-20

 0

 100 110 120 130 140 150 160 170 180 190

Q
ua

rt
z

D
rif

t [
10

e-
6

s/
s]

A-Quartz Drift (10e-6 s/s)

ID 15
ID 16
ID 17
ID 18

-16

-14

-12

-10

-8

-6

-4

-2

 100 110 120 130 140 150 160 170 180 190

O
ffs

et
 c

or
re

ct
io

n
[m

T
]

Time (communication cycle)

B-Filtered Offset Correction (mT)

ID 15
ID 16
ID 17
ID 18

Figure 4.8: Deviation with sudden jump

-180

-160

-140

-120

-100

-80

-60

-40

 100 110 120 130 140 150 160 170 180 190

Q
ua

rt
z

D
rif

t [
10

e-
6

s/
s]

A-Quartz Drift (10e-6 s/s)

ID 15
ID 16
ID 17
ID 18

-14

-13

-12

-11

-10

-9

-8

-7

 100 110 120 130 140 150 160 170 180 190

O
ffs

et
 c

or
re

ct
io

n
[m

T
]

Time (communication cycle)

B-Filtered Offset Correction (mT)

ID 15
ID 16
ID 17
ID 18

Figure 4.9: Deviation with fast drift

required for our test approach, in order to detect whether the system under test has
accepted or rejected the test pattern. More specifically, we want to prove that:

P1a: if the global time deviation is initially within the CDI, it will stay within this

75

4.3 Accuracy of the Logical Clocks

interval as long as the CDI does not change faster than the dynamics of the
synchronization algorithm allow a tracking, and that

P1b: if the global time deviation is outside of the CDI, it will return to within this
interval as fast as the dynamics of its clock synchronization algorithm allows.

4.3.1 Analysis for TTP/C

This communication protocol implements state correction and the adjustment is com-
puted as the Fault Tolerant Average (FTA) of the logical clock differences [TTT05].
The state correction is not applied instantaneously but amortized during the begin-
ning of the communication cycle. We claim that for a fault-free system and for sta-
ble oscillator drift, the global time deviation will stay within the CDI. This means
there exist at least two nodes a and b, such that for each node p, the logical clock
deviation δLp is comprised between these two oscillator deviations: (∃a, b ∈ Nok

∀p ∈ Nok, δa(m) − χ 6 δLp(m) 6 δb(m) + χ). To prove this claim, let’s suppose
at cycle m the logical clock deviation of every node p be smaller than its underlying
oscillator deviation:

∀p ∈ Nok : δLp(m) < δp(m) (4.19)

This condition implies that the correction term CORRp(m) is negative for each
node (see Equation 4.6):

Eq 4.19 ⇔ ∀p ∈ Nok : CORRp(m) < 0 (4.20)

However, this correction term is computed as a fault tolerant average of the logical
clock differences. This means that a node subset (NFTA ⊂ Nok) is selected from which
the clock difference average is computed. Therefore, assuming that each correction is
negative is equivalent to assuming that each single logical clock runs faster than an
average of a subset of these clocks:

Eq 4.20 ⇔ ∀p ∈ Nok :
∑

i∈NFTA

Li(m−1)−Lp(m−1)

|NFTA| < 0

⇔ ∀p ∈ Nok :
∑

i∈NFTA

Li(m−1)
|NFTA| < Lp(m− 1) (4.21)

This last hypothesis is mathematically false, since an average of a subset cannot
be strictly less than each element of this subset. We can therefore conclude that
Equation 4.19 was false as well. We would demonstrate similarly that the logical clock
of each node cannot be slower than its underlying oscillator (∀p ∈ Nok, δLp(m) > δp(m)
is falsified). Consequently, there exists at least one node whose logical clock is faster
and one node whose logical clock is slower than its underlying oscillator:

76

4.3 Accuracy of the Logical Clocks

∃a, b ∈ Nok : δLa(m) > δa(m)

δLb
(m) 6 δb(m) (4.22)

Using the agreement property (Pcs1) we have δLa ' δLb
, and we can finally conclude

that the global time is within the CDI as defined in Section 4.1.2. Note that this
proof is not specific for TTP/C but can be generalized to every clock synchronization
algorithm that uses convergence-average based state correction. More specifically, this
also applies to the state correction part of the FlexRay protocol.

4.3.2 Analysis for FlexRay

This communication protocol implements both a state and a rate correction [Fle05].
While the state correction directly processes the last clock measurements, the rate
correction uses an internal history for computation. The result of the rate correction
is further influence by the damping factor (see Section 4.1.3), and consequently, each
node tries to move its logical clock (and thus the approximately synchronized global
time) to its own oscillator frequency. We will show that important properties arise
from this attribute:

• When the global time is outside of the clock deviation interval (e.g. after test
operation, or when some outliers have failed), the global time will move back
towards the nearest oscillator deviation bound.

• The damping factor is a constant and is not dependent on the difference between
the global time and the oscillator frequency. Consequently, the global time does
not converge to some kind of oscillator frequency average – its actual position
within the clock deviation interval depends on the system history.

Let’s explore more formally our two previous statements through the analysis of
three scenarios:

Scenario 1: C1 : ∀i ∈ Nok δLi
(m) < δi(m). For cycle m, the oscillator deviation of

each node is larger than its corresponding logical clock deviation (and thus the global
time deviation is outside of the CDI). Therefore, the correction value is strictly negative
(see Equation 4.6). We have seen previously that the state correction alone can not
be the reason for this behavior. This implies that the rate correction of each node at
communication cycle m is strictly negative (C1 ⇒ ∀i ∈ Nok vRateCorrectioni(m) < 0).
If this overrun is larger than the damping factor, then each node will reduce its local rate
correction, thus increasing its logical clock’s period. Otherwise, the rate correction will
be set to zero (see Figure 4.2). In both cases we have ∀i ∈ Nok vRateCorrectioni(m +
1) > vRateCorrectioni(m) and thus the relative period deviation of the logical clock

77

4.3 Accuracy of the Logical Clocks

(global time) is increased until scenario C1 is left (the logical clock has moved back
within the CDI).

Notice that condition C1 is more general than C1a : ∀i, j ∈ Nok δLi
(m) < δj(m)

(the logical clock period deviation of each node is smaller than every underlying oscil-
lator period deviation). We have C1a ⊂ C1. We are interested in C1a, and since the
argumentation is valid for C1 it will hold for C1a too.

Scenario 2: C2 : ∀i ∈ Nok δLi
(m) > δi(m). For cycle m, the logical clock deviation

of each node is greater than its underlying oscillator deviation (and thus the global
time deviation is outside of the CDI). Using the previous argumentation the logical
clocks will move back toward the CDI until C2 is not valid anymore.

Scenario 3: C3 : ∃i, j ∈ Nok such that δLi
(m) > δi(m) and δLj

(m) 6 δj(m).
For cycle m, there exists at least one logical clock deviation that is faster (or equal)
and one logical clock deviation that is slower (or equal) than its underlying oscillator
deviation (C3 = C1 ∪ C2; the global time deviation is within the CDI). Consequently,
their respective rate correction term will have a different sign (C3 ⇒ ∃i, j ∈ Nok

vRateCorrectioni(m) 6 0 6 vRateCorrectionj(m)). Similarly to the state correction,
the rate correction is updated as the average of a subset of logical clocks’ rate dif-
ferences. Consequently, it is mathematically impossible that the next rate correction
terms for every node are all strictly positive or strictly negative (see Section 4.3.1).
Moreover, the damping factor can not modify the rate correction computation, such
that Scenario 3 is left, since this mechanism always tries to move locally the rate cor-
rection term toward zero (see Figure 4.2). Scenario 3 is then a stable state (as long as
the CDI is not changing faster than the dynamics of the synchronization algorithm)
and we have ∃i, j ∈ Nok vRateCorrectioni(m + 1) 6 0 6 vRateCorrectionj(m + 1).

4.3.3 Experimental Validation – Static behavior

The aim of this Section is to highlight the behavior of clock synchronization algo-
rithms and validate the formal analysis presented in Sections 4.3.1 and 4.3.2. Two
approaches have been selected: First, the SIDERA tool [Han06] has been used to
simulate the behavior of the TTP/C protocol. Second, Decomsys’ NODE<ARM>1

hardware equipped with FlexIM2 boards has been used to implement a FlexRay clus-
ter and experimentally study its behavior (see Section 5 for further information on the
experimental setup).

For both environments, the system under test consists of four nodes, whose oscilla-
tors can be controlled. This function is available in the user interface of the SIDERA
simulator, while dedicated boards with digital to analog converters and voltage con-
trolled oscillators have been developed for the FlexRay nodes. The actual cycle length

1http://www.decomsys.com/flyer/NODE ARM.pdf
2http://www.decomsys.com/flyer/FLEXIM.pdf

78

4.3 Accuracy of the Logical Clocks

for each node has been measured by our tester node as the distance between two con-
secutive frames with the same identifier. The cycle (respectively round) length has
been configured to 5 ms for the FlexRay cluster and 0,8 ms for the TTP/C cluster. In
the following tables, N1...N4 stands for the relative oscillator period deviation of node
1 to node 4, the cycle length (cl) is given in ns and GT stands for the resulting global
time deviation. Each drift is given in 10−6.

For the first campaign, we define a set of oscillator deviations {−400 · 10−6,−300 ·
10−6,−200 · 10−6,−100 · 10−6} that we assign to every node in a cyclic manner during
the four test cases. The cold starter node (i.e. the one which performs the start-up
and thus initializes the global time) is fixed and set to node 1 for this experiment.
Since every oscillator deviation is sequentially assigned to node 1, the initialization
of the global time is set to four different values. Table 4.2 summarizes the drift of
the global time with respect to the cold start node (for this experiment always node
1). As expected, for the TTP/C protocol the cycle length remains nearly constant for
the chosen oscillator deviation set (between 800.170ns and 800.190ns – the minimal
differences that have been observed are due to the clock reading errors and are within
the precision of the system). Concerning the FlexRay protocol, we can clearly identify
two groups. The results of the first two experiments are nearly identical (cycle length of
5.001.050ns and 5.001.100ns – within the precision window of 200ns) but considerably
differ from the results of the last two experiments (5.001.400ns and 5.001.420ns). We
can thus confirm that, for FlexRay systems, not only the set of oscillator deviation
values matters but also the previous correction value – the global time thus depends
on the system history.

Exp. N1 N2 N3 N4 cl GT
TTP/C – Fault Tolerant Average

1 -100 -400 -300 -200 800.180 -225
2 -200 -100 -400 -300 800.190 -235
3 -300 -200 -100 -400 800.170 -210
4 -400 -300 -200 -100 800.170 -210

FlexRay – Fault Tolerant Midpoint
1 -100 -400 -300 -200 5.001.100 -220
2 -200 -100 -400 -300 5.001.050 -210
3 -300 -200 -100 -400 5.001.400 -280
4 -400 -300 -200 -100 5.001.420 -285

Table 4.2: Static convergence point depends on cold starter

The aim of this second campaign is to check if the deviation of the global time
stays within the clock deviation interval (CDI). For that purpose, we have used sixteen
different oscillator deviation sets (four groups that we have permutated between the
nodes) and measured the resulting cycle lengths. This experiment validates our claim
that the global time is bounded by the clock deviation interval in a stable environment.

79

4.3 Accuracy of the Logical Clocks

Notice that for a very narrow CDI, the global time deviation was slightly slower than
the slowest oscillator. This interval, however, represents a few nanoseconds and is much
smaller than the relative precision χ. Consequently we can claim that the global time
is within the clock deviation interval as defined in Section 4.1.2.

Exp. N1 N2 N3 N4 GT Min GT Max GT Variation
TTP/C – Fault Tolerant Average

1 – 4 -400 -300 -200 -100 -240 -210 30
5 – 8 400 300 200 100 260 300 40
9 – 12 400 400 400 350 398 399 1
13 – 16 -400 -400 -400 -350 -402 -401 1

FlexRay – Fault Tolerant Midpoint
1 – 4 -400 -300 -200 -100 -285 -210 75
5 – 8 400 300 200 100 200 280 80
9 – 12 400 400 400 350 395 396 1
13 – 16 -400 -400 -400 -350 -403 -400 3

Table 4.3: Deviation of global time within the clock deviation interval

These two campaigns have highlighted three important properties of convergence-
averaging based clock synchronization algorithms. First, the global time for FlexRay
does not only depend on the oscillator drifts but also on the history (here, which node
has performed the start-up). This dependency is not true for the TTP/C protocol,
and the global time only depends on the oscillator drift set within the system. Second,
the accuracy of the global time is bounded by the clock deviation interval. Third, the
global time deviation stays approximately constant for a constant oscillator drift.

4.3.4 Experimental Validation – Dynamic behavior

The aim of this campaign is to illustrate the behavior of the global time with respect to
a changing CDI. In particular, we focus on uncorrelated and ”slow” drifts (slower than
the dynamics of the clock synchronization algorithm), and on node crashes. Figure 4.10
pictures the experiment for a FlexRay system: Both the oscillator- and the logical time
deviations of the four nodes are illustrated. During a first part of the experiment (until
communication cycle 300), the CDI stays constant. Then, between communication
cycles 300 and 750, the CDI is slowly moved. Finally, a node crash is simulated for
node 3 and node 4 at cycle 780 while the deviations of node 1 and node 2 stay constant.
As a result, the CDI is suddenly narrowed.

Two important behaviors can be observed here. First, the global time deviation
“follows” the CDI, even when the latter is slowly drifting. This is an important behav-
ior, since it illustrates property P1a: In a fault-free system, if the global time deviation
is initially within the CDI, it will stay within this interval. Second, when the CDI
is abruptly modified (e.g. due to node crash, communication cycle 780), the global

80

4.3 Accuracy of the Logical Clocks

-50

 0

 50

 100

 150

 200

 250

 300

 350

 200 300 400 500 600 700 800 900

G
lo

ba
l d

rif
t 1

0e
-6

 [s
/s

]

Time (communication cycle)

Figure 4.10: Global time behavior with respect to dynamic oscillator deviation for
FlexRay systems

time deviation returns back toward the new CDI with a speed defined by the size
of the damping factor (which determines in fact the dynamics of the FlexRay clock
synchronization). This represents Scenario 1 of Section 4.3.2. The observed behavior
illustrates property P1b: Even if the global time deviation is outside of the CDI, it will
converge back to this interval. Notice that during a small amount of time (communi-
cation cycles 780 to 810) the global time deviation is outside the CDI. This state is
however bounded in time and only consecutive to an abrupt modification of the CDI.

Figure 4.11 illustrates a similar CDI behavior for a TTP/C system. Two main
differences can be noticed: First, the global time deviation is always approximately the
fault tolerant average of the oscillator deviations within the system. Second, the global
time deviation returns instantaneously (within the next cycle) to the CDI. These two
behaviors are due to a correction algorithm solely based on clock measurements (there
is no rate correction using the system history).

These two experiments illustrate the principles of our test approach. In a first
time, a tester node (emulating several nodes) enlarges the CDI and shifts the global
time. At the end of the experiment, the tester node stops sending messages (fail-silent
behavior). This fact can be detected using the fast ramp followed by the global time
while it returns to the new CDI.

81

4.4 Remote Evaluation of the QoS

-20

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100 120 140 160

G
lo

ba
l d

rif
t 1

0e
-6

 [s
/s

]

Time (communication cycle)

Figure 4.11: Global time behavior with respect to dynamic oscillator deviation for
TTP/C systems

4.4 Remote Evaluation of the QoS

We present now two methods for the remote Quality of Service evaluation with respect
to clock synchronization. First, we propose a method to remotely assess the nodes’
offset correction value both for convergence functions implementing offset correction
(e.g. TTP/C) and offset plus rate correction (e.g. FlexRay). Second, a remote method
for precision approximation is presented. The assessment of the nodes’ offset correction
term and of the system precision are totally transparent for the system under test.

4.4.1 Remote Offset Correction Monitoring

This method requires the oscillator deviation to be stable (approximately constant)
during consecutive re-synchronization periods, which can be usually assumed with
our quartz model (see Section 4.1.1). In the general case, a tester node with a time
base synchronized to the network is required. The transmission times of the different
nodes during a communication cycle are recorded (remote clock estimation process,
see Section 4.1.3). In a fault-free case, each node will correct its own time base such
that it converges approximately to the same value (agreement property of the clock
synchronization, see Section 4.1.3). Therefore, the local nodes’ offset correction values
can be computed as the difference between the remote clock estimation and the tester’s
offset correction (in the case of a perfectly synchronized tester with a correction of
0, the node’s offset correction represents exactly the remote clock estimation). The
remote clock estimation delivers an information about the current state of the node’s

82

4.4 Remote Evaluation of the QoS

time base while the next tester’s offset correction provides an (agreed) result after re-
synchronization (see Figure 4.12). The precision of this measurement is bounded by
the system precision. This method can be applied both for convergence functions using
offset only or offset plus rate correction. ����������	��
��
������	���������������� ������� ������������ ����� �� !"! ���!#$ %& ����� !"! ���!#$ %& ����� !"! ���!#$ %& �#��#������� �����

Figure 4.12: Remote nodes’ offset correction measurement

In case of FlexRay, the fact that the offset is corrected only every two communica-
tion cycles (during the odd cycle) can be used to lower the requirements on the tester.
Hence, a direct comparison between two successive cycle lengths enables the assess-
ment of the offset correction (see Figure 4.13). Note that we do not know precisely the
cycle start of each node. Instead of this, we measure the cycle length for a node k as
the distance between two successive frames with the same identifier sent by this node.
The even cycle length is the effect of the node’s oscillator deviation plus rate correction
while the previous cycle length had the same rate correction and same oscillator devi-
ation with the additional offset correction. Consequently, a direct comparison between
two successive cycles suffices to get a node’s local offset correction. With this method,
the tester does not require anymore to synchronize to the network or to perform clock
correction. A simple time counter triggered by each frame reception suffices.

This measurement assumes physical clock deviation and rate correction changes
between consecutive cycles to be negligible. With respect to the clock deviation, we
refer to the stability condition in equation 4.3. The rate correction remains the same for
an even and the subsequent odd cycle, and would therefore not require consideration
in the ideal case. In practice, however, the cycle length is measured from a frame to
another and not from one re-synchronization point to the other. Consequently, during
the measurement of the odd cycle, the new, potentially modified rate correction value is
already applied. Therefore we must require the rate correction changes to be negligible
as well. In a standard system, the rate is varying very slowly (slower than one clock
tick per cycle, see Section 4.1.1) anyway. In our specific case with deterministic replay,
we do change the rate but have full control over it. It would therefore be possible to
account for the error thus introduced, but experiments have shown that it can still be

83

4.4 Remote Evaluation of the QoS

rate correction [2n-1] rate correction [2n-1] rate correction [2n+1] rate correction [2n+1]

OC
2n+1

OC
2n+3

MP[2n] MP[2n+1] MP[2n+2] MP[2m+3]
OCC

2n
OCC
2n+1

RCC
2n+1

OCC
2n+2

OCC
2n+3

RCC
2n+3

MP: measurement phase

OC: offset correction

OCC: offset correction computation

RCC: rate correction computation

F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3

Fx: Frame from node x

cycle length
measurement

cycle 2n cycle 2n+1 cycle 2n+2 cycle 2n+3

Figure 4.13: Offset and rate correction computation measurement for FlexRay [Fle05]

neglected.

4.4.2 Remote Precision Approximation

The precision of a distributed system is defined as the maximal distance between any
two logical clocks (see Section 4.1.3). This metric is difficult to measure, since the
logical clocks are not visible outside of the nodes (and therefore not globally visible
at the network). What we need here is (a) a snapshot of each node time base in
isolation and (b) a common reference to compare the time bases and actually compute
the precision.

The a-priori-known schedule from time-triggered communication system can be
used: the transmission time from node k represents node k’s schedule interpretation
according to its local time base. Moreover, the periodic transmission delivers periodic
and successive snapshots of each node’s time base. The next problem is the serial
behavior of the communication. Hence, transmission is multiplexed in time to avoid
collision on the bus. The logical clocks snapshots are then not simultaneous and can
not be directly used for precision measurement. We have two solutions to solve this
problem:

• a tester node implementing clock synchronization can be used as reference. Then
the precision is computed as the largest interval between any two time mea-

84

4.5 Chapter Summary

surements within one communication cycle (see Figure 4.14, precision A). This
approach presents high requirements on the tester hardware since a clock synchro-
nization algorithm has to be available as well as a processing engine to compute
online the precision and/or to forward the information.

• the instantaneous rate of the nodes’ logical clocks can be used to interpolate
the measured snapshot to a common point in time and perform the precision
approximation (see Figure 4.14, precision B). This naturally requires the capa-
bility to remotely measure the rate of each node’s logical clock. In the case of
TTP/C, the averaged offset correction terms during a given time window pro-
vide information about the average node’s clock rate in comparison with the
other nodes within the system. Notice that the logical clock and the physical
clock are running at the same rate when the correction term has been processed.
We require a reference node (whose nominal frequency is known) in this case and
this method works only under the assumption that the oscillator deviation stays
approximately constant during the measurement phase. In case of FlexRay, the
double-cycle re-synchronization scheme can be advantageously used here again to
perform this measurement (see previous section). Note that due to rate correc-
tion the rate of the physical clock and of the logical clock of a given node usually
differ.���������������	�����
 ������ ���������� �������������� ����������� !�"�#$!�"�%

Figure 4.14: Remote precision measurement

4.5 Chapter Summary

4.5.1 Illustrative Fault Injection Experiment

Figure 4.15 presents an exemplary fault injection experiment for a FlexRay network.
This test case regroups the findings made in this chapter and illustrates how they can
be combined to perform a transparent online test of the error detection mechanisms.
The “tester’s cycle length” graph (part A) describes the tester operation. During the

85

4.5 Chapter Summary

 4.9994e+06

 4.9995e+06

 4.9996e+06

 4.9997e+06

 4.9998e+06

 4.9999e+06

 5e+06

 5.0001e+06

 5.0002e+06

 5.0003e+06

 0 50 100 150 200 250

C
yc

le
 le

ng
th

 (
ns

)

A- Tester’s Cycle Length

-200

-150

-100

-50

 0

 50

 100

 150

 0 50 100 150 200 250

G
lo

ba
l d

rif
t 1

0e
-6

 [s
/s

]

Time (communication cycle)

B- Relative Frequency Deviation

Node 0
Node 1
Node 2
Node 3

 4.9995e+06

 4.9996e+06

 4.9997e+06

 4.9998e+06

 4.9999e+06

 5e+06

 5.0001e+06

 5.0002e+06

 5.0003e+06

 5.0004e+06

 0 50 100 150 200 250

C
yc

le
 L

en
gt

h
(n

s)

Time (communication cycle)

C- Filtered Cycle Length

Node 0
Node 1
Node 2
Node 3

 4.9994e+06

 4.9995e+06

 4.9996e+06

 4.9997e+06

 4.9998e+06

 4.9999e+06

 5e+06

 5.0001e+06

 5.0002e+06

 5.0003e+06

 0 50 100 150 200 250

C
yc

le
 le

ng
th

 (
ns

)

A- Tester’s Cycle Length

-15

-10

-5

 0

 5

 10

 0 50 100 150 200 250

O
ffs

et
 c

or
re

ct
io

n
(u

T
)

Time (communication cycle)

D- Computed Offset Correction

Node 0
Node 1
Node 2
Node 3

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 50 100 150 200 250

P
re

ci
si

on
 (

ns
)

Time (communication cycle)

E- Precision

precision SUT
precision with tester

Figure 4.15: Remote test of the fault-detection mechanisms

first 30 cycles the tester listens to the application and initializes its cycle length to the
current system value (start-up operation). After that, it performs a replay operation
with the constant deviation of 50e−6 (or 250ns more than the 5000µs configured, which
corresponds to the current global time deviation of the system) during further 25 cycles.
Then, our tester replays a ramp in order to drive the global time outside of the former
CDI, which is, in our case, located between 0 and 100e−6 (see Figure 4.15-B). Finally,
the tester performs a replay with a constant deviation of −100e−6 and corrupts its
frames between cycles 151 and 155 (fault injection) before stopping operation at cycle
175. Note that a second tester has validated the presence of corrupted frames during
fault injection.

The graph B (“relative frequency deviation”) plots the oscillator deviation (CDI)

86

4.5 Chapter Summary

as well as the global time deviation (response of the system). The graphs C, D and E
present different measurements performed online by our tester. Figure 4.15-C presents
the rate of the nodes’ logical clock (without the offset correction term). This value
illustrates the nodes physical clock plus their rate correction. The nodes’ local offset
correction term, computed as described in Section 4.4.1, is illustrated in Figure 4.15-
D. Finally, Figure 4.15-E presents the precision approximation as described in Sec-
tion 4.4.2. Different important behaviors can be observed here:

The precision of the system under test (without considering the tester) is always
under 200ns during the whole experiment. The total precision (when taking the tester
into account) is bounded, as well, and does not depend on the current tester’s deviation.
This result is consistent with the analysis presented in Section 4.2 and more especially
in Table 4.1.

The tester sends corrupted frames between the cycles 151 and 155. The correct
rejection of these frames by the different nodes is particularly visible with the offset
correction (graph D), and also with the precision graph. Notice that during this inter-
val, the filtered cycle length of the four nodes moves back toward the CDI as analyzed
in Section 4.3. The clock state deviation between the nodes and the tester increases
(since this last does not correct its clock) until the tester sends correct frames again
(cycle 156), which represents an extremum for the precision graph (and for the nodes’
offset correction). Finally, the nodes’ logical clocks return to within the original CDI
after the tester has stopped transmission.

At the beginning of the ramp (cycles 60 to 80), the filtered cycle length of node 0
does not exactly coincide with the three other nodes. This corresponds to the interval
where the tester is faster than the physical clocks of node 1 to 3 but slower than the
physical clock of node 0 (see graph B). After cycle 80 and until cycle 120 the tester
is faster than all four physical clocks and the filtered cycle length of all four nodes
perfectly coincides. This behavior is due to the damping factor which slightly modifies
the rate correction [Fle05] toward the own physical clock deviation, and can be used
to remotely measure the oscillator drifts within a distributed system (see [AS07] for a
detailed analysis). This effect can be further used by our tester to detect whether the
global time is still within the CDI or not, and thus optimize the test operation.

4.5.2 Summary

We have provided background knowledge required for this study. We have identified two
attributes regarding the frequency deviation of quartz oscillators: bounded deviation
and stability. Moreover, we have identified time-triggered communication protocols to
implement convergence-average clock correction functions and we have defined terms
such as global time, logical clock (deviation) and clock deviation interval (CDI).

Further, we presented three important analyses for our transparent test approach
in this chapter. The first one concerns the controllability: We have shown that it is

87

4.5 Chapter Summary

indeed possible to perform deterministic replay operation and to take control of the
clock synchronization of an operating network without posing a threat to the system.
We have seen that the resulting precision is bounded for a carefully chosen replay
operation. With this method, we are then in measure to modify the clock deviation
interval during the test operation and to safely drive the global time outside of its
former CDI.

The second analysis has shown that the global time always converges to within the
accuracy of its underlying physical clocks (CDI) independently of the system history.
This behavior provides an indication on the current “forces” that are driving the logical
clocks. More especially, when replay operation is driving the global time out of the clock
deviation interval, the reception of corrupted tester frames can be remotely identified.
Hence, the nodes’ logical clocks will start to move back to the CDI, thus providing
information about the correct processing of the tester frames.

During the last part of this chapter we discussed different remote methods for
the evaluation of the clock synchronization mechanism. We have seen how the local
nodes’ offset correction as well as the system precision can be assessed. These two
measurements can be further used independently from our test approach to evaluate
the quality of the service provided.

88

Chapter 5

Experimental Setup

Always listen to experts. They’ll tell you what can’t be done and why. Then do it.

Robert Heinlein (1907 – 1988)

The goal of this chapter is to describe the experimental setup used to perform the
different evaluations presented during this work. This setup principally consists of a
FlexRay cluster of four standard nodes running a dedicated test application, and an
additional tester node with the capability to monitor the network and perform replay
operation. Further, we present a study on the FlexRay clock synchronization, in order
to provide additional insights and explore the limits of this distributed mechanism.

5.1 System Under Test

5.1.1 Hardware

Our test application consists of four Decomsys FLEXIM boards1 each one hosted by
a NODE<ARM>2. The FLEXIM board is an Industry Pack module and offers a
FlexRay controller as well as two FlexRay physical layers. The NODE<ARM>, on
the other side, is a stand-alone automotive prototyping platform providing an ARM
CPU, a FPGA, and two Industry Pack interfaces to connect up to two Industry Pack
modules. The FLEXIM boards have been modified such that the onboard oscillator
has been disconnected. Instead, an additional board providing a voltage controlled

1http://www.decomsys.com/flyer/FLEXIM.pdf
2http://www.decomsys.com/flyer/NODE ARM.pdf

89

5.1 System Under Test

oscillator generates the required pulses. The quartz frequency is controlled by the
application using the analog output of the node’s platform. This setup allows the
calibration of the nodes’ oscillators to minimize the initial frequency difference as well
as the emulation of different oscillator deviation scenarios during the test campaigns.

5.1.2 Software

FlexRay configuration

The test application is based on the Decomsys’ skDemo3 application (additional in-
formation available in [Dec06]). This configuration defines a cycle length of 5000µs
with a static segment containing 52 static slots of 87µs each and a payload length for
the static frames of 64 bytes (32 words). Further, a dynamic segment containing 58
minislots of 6µs are defined as well as a NIT segment of 125 µs. The slots 15 to 18 are
assigned for transmission to the nodes 0 to 3, respectively.

In case an error in the clock correction mechanism has been detected, the node
turns into a silent mode (either normal passive or halt mode [Fle05]). Depending on the
configuration, the communication controller hardware might be able to re-synchronize
automatically to the bus traffic, or an action from the application might be explicitly
required. In our case, neither the hardware nor the software can restart a node after
it has failed. For a normal application, this would decrease the system robustness; for
our experiments, however, it permits to detect more precisely when a node has first
failed.

Concerning the application, each node implements two tasks that are synchronized
with the FlexRay communication cycle. The system task, on one side, is started 4800µs
after the cycle start (i.e. 200 µs before the end of a cycle) and aims at re-synchronizing
the operating system to the FlexRay global time and testing the current controller
status. The application task, on the other side, is started 200µs after the cycle start
and delivers the services for our test application.

The test application

Our dedicated test task delivers different services common to the four nodes. First,
it reads the internal offset and rate correction values as well as the current quartz
configuration and makes this information globally available (the information is packed
into a frame and transmitted on the FlexRay network). The information, which is
concatenated with the node status as well as the reception statistics, is printed out
via a serial interface. A terminal can be connected to each single node to see its
diagnosis information. Finally, each node implements a state machine to control its
own oscillator drift in accordance with the other nodes. The rough synchronization of
the four state machines is performed using message exchange; a master node (usually

90

5.1 System Under Test

node 0) triggers the start of operation and further transitions at cycle level. The fine
synchronization between the nodes relies on the FlexRay global time (precision of few
hundreds of nanoseconds), and its local synchronization to the operating system (si-
multaneity property of the time-triggered architecture, see Section 2.3.2). Notice that
these three services are very useful for the investigations performed in this work. They
are, however, definitely not required for the application of our approach in practice.

5.1.3 System Initialization

Nodes’ oscillators calibration

We have seen in Section 4.1.1 that oscillators are deviating from their nominal fre-
quency. We describe here the calibration method we have applied to minimize the
initial drift between the standard nodes. This operation was required to minimize the
side effects during the experiments.

Our calibration consists of two steps. First, the quartz of node 0 is manually tuned
to obtain the desired frequency. After that, we developed a master-slave application
to automatically calibrate the oscillator of the three other nodes to the first one. This
application basically tunes the oscillators of these nodes to minimize the offset and
rate correction difference with the reference node (remember that this information is
globally available with our test application). This new kind of synchronization algo-
rithm makes the oscillator configuration converge, such that the resulting frequencies
are close to the reference one. The output is available at the serial interface and can
be used to update the corresponding header files. Note that this file further defines
for each single quartz the configuration corresponding to the deviations from -500e−6

to 500e−6 with a granularity of 50e−6. These definitions are relative and only a zero
reference needs to be corrected after a calibration.

The tester node does not provide a voltage-controlled oscillator, but its initial cycle
length can be adjusted to hit the nominal cycle length of the monitoring node as
close as possible. The granularity for the calibration of the replay node is 25ns while
the granularity for the standard node calibration is better than 10ns. The attainable
accuracy of the calibration is presented in the following.

Experimental assessment of the quartz accuracy within the prototype

We have furthermore measured the frequency stability of our system. Figure 5.1 il-
lustrates the oscillator drift rate for the replay node (with identifier 14) during 18,000
communication cycles (90 seconds) and for the standard nodes (identifiers 15 to 18)
during 60,000 communication cycles (300 seconds). The initial rate offset is located
between -8 and 8ns per communication cycle. It corresponds to a drift below 2e−6s/s.
The drift rate variation is below 2e−11s/s2 for the standard nodes and below 1e−12s/s2

91

5.1 System Under Test

for the replay node.

-8

-6

-4

-2

 0

 2

 4

 6

 8

 0 10000 20000 30000 40000 50000 60000 70000

Q
ua

rt
z

D
rif

t [
ns

/C
om

m
. c

yc
le

]

Time (communication cycle)

Quartz Drift

ID 14
ID 15
ID 16
ID 17
ID 18

Figure 5.1: Quartz drift measurement

During a second experiment, we have periodically measured the drift rate variation
of the different nodes for a duration of two hours. Table 5.1 shows the results (maximal
and minimal quartz drift rate) for the different nodes. We can observe, as expected,
that the short term rate variation is very low (below than 6e−11s/s2) and that for
an experiment time of a few seconds this effect can be neglected in comparison to the
stimulus applied. Additionally, the quartz stability increases with the time after power-
up. Furthermore, the replay node presents a better quartz stability than the standard
nodes. Recall that the standard nodes implement an oscillator control mechanism that
introduces some noise. This oscillator characterization illustrates that a calibration
before starting the experiments is required and that further drifts are negligible. These
results are coherent with the oscillator model presented in Section 4.1.1.

Node minimal drift [s/s2] maximal drift [s/s2]
Replay node < 1e−12 < 1e−12

Standard Nodes 1e−11 6e−11

Table 5.1: Long term quartz drift

92

5.2 Tester Node Architecture

5.2 Tester Node Architecture

The core of our test concept relies on a dedicated tester node with the ability to monitor
the FlexRay bus traffic and perform replay operation. We present here the internal
architecture as well as the support required by a host PC to control the test execution
and interpret the data gathered.

5.2.1 Overview

The hardware platform for our tester node is the Decomsys’ NODE<MPC5200>3. It
consists of a Motorola PowerPC MPC52004 connected to a 32MB SDRAM block and
to an Altera’s Cyclone II FPGA (EP2C705) providing different interfaces (FlexRay,
CAN, LIN, Ethernet, USB, Analog and Digital inputs / outputs). The FPGA design
comprises a dedicated measurement controller [ASH+04] as well as a SPEAR proces-
sor [Fle07] for accessing and processing online the data coming from a FlexRay network.
The MPC5200 is running RedBoot6 and the interface to a host computer is performed
using a telnet connection. This interface affords simple instructions such as memory
read / write operations. Note that the FPGA interface is mapped in memory and
therefore its registers are available for direct host access. At the host side, a Perl7

script is used to configure the hardware, control the operation and post-process the
data. Figure 5.2 illustrates our tester’s architecture.

5.2.2 The Dedicated FPGA Design

Architecture Overview

As pictured in Figure 5.3, our tester node basically consists of different monitoring
units delivering data from the different sources (e.g. CAN, LIN, digital or analog
input). These data are ordered in the data interface (monitoring) and further sent
to the host through the wrapper. An opposite architecture (data interface (replay)) is
provided for the transmission of data. The interface to the FlexRay bus uses a FlexRay
protocol engine. More information concerning our prototype is available in [ASH+04].

The tester node enhancement is achieved by the integration of the SPEAR micro-
controller for the processing of complex stimuli. The motivation for this IP is first
to be platform independent (in contrary to Altera’s NIOS8 or Xilinx’s Microblaze9).

3http://www.decomsys.com/flyer/Datasheet NODE MPC5200.pdf
4http://www.freescale.com/files/32bit/doc/data sheet/MPC5200BDS.pdf
5http://www.altera.com/literature/hb/cyc2/cyc2 cii5v1.pdf
6http://www.sourceware.org/redboot/
7http://www.perl.org/
8http://www.altera.com/
9http://www.xilinx.com

93

5.2 Tester Node Architecture������������		
	�������������������
����������	���	��������
�	�
���� !��
�����	������"�#��$%	��&�� '!(%	��&�� !	�����	�)
�
���%	��&�� ���	�
	��&�� ���	�
	��&��*������'�	&
�����
�	+
,���$*������'�	����+
,���$)���%	��-����
�	+
,���$.��,	���/01�2340526/2789:��;<=�
Figure 5.2: Overview of the tester’s architecture

Moreover, we need real-time properties to guarantee the computation of the next stim-
ulus iteration before the next communication cycle starts. This is provided by using
an instruction set of constant execution time. Finally, we are in a prototyping phase
and require a flexible, extendable computing unit. One main concept of SPEAR is the
support of Hardware Extension Modules [HD02], which provides an environment for
easy addition of new modules to this core. The integration is supported in hardware by
well defined interfaces and in software by simple module access using memory mapping.

The SPEAR core requires four dedicated connections to our bus analyzer (in gray in
Figure 5.3). The first one (programming connector) goes from the CPU to the parallel
programmer module so as to load the program to execute. The second one, the replay
connector, transfers the generated packets together with a 25ns accurate timestamp to
the FlexRay transmitter. This timestamp precisely defines the transmission time of the
frame for deterministic replay. The third dedicated interface, the receiver connector,
is concerned with gathering the time differences between the tester node’s time base
and the received frames. This input is required to further compute the stimulus for the
next communication cycle. Finally, the monitoring connector is used to send SPEAR
status information to the user.

In order to minimize the programming time of the SPEAR core, the programming
connector is implemented as a dual clock FIFO. The replay connector uses the asyn-
chronous concept developed in [FA07] with a 16 bits to 16 bits interface. Since the

94

5.2 Tester Node Architecture�����������	

����������������� �����������	��� �� ������� !"#"$"�%&'(&�) %*���������������������+,�� -
��������+,��-
.���,���+,��-

�������+,�� ����

/012345621789:
;<2=>5?@01234562

� A*B��#C"!D E���������,����E���������,����E���������,����FG HIFG HIJ37K35LL@0K67002617332J<5?670026173 3262@M23670026173L70@173@0K670026173
Figure 5.3: Tester’s FPGA architecture

packets to transmit are larger than 16 bits (between 128 bits and 2176 bits), several
successive accesses are required. The receiver and monitoring connectors are imple-
mented as 32 bits to 16 bits (respectively 16 bits to 16 bits) asynchronous connectors.
The main advantages of our asynchronous, delay-insensitive connector in comparison
to standard synchronous serial or parallel is the data transfer efficiency pro intercon-
nect wire as well as the flexibility during design and robustness during operation. More
information are available in [FA07].

The main advantages of having the SPEAR microcontroller implemented within
the measurement controller are (i) the high interaction between these two modules and
(ii) the fast response time. Hence, each internal status data can be directly mapped to
SPEAR’s extension units to provide more accurate information (both in the time and
value domain). The firmware running on the SPEAR microcontroller has moreover a
better control to the replay operation. The minimization of data exchange latencies
is important to maximize the CPU time available for processing and avoid missing
deadlines.

95

5.2 Tester Node Architecture

The SPEAR Extension

Our SPEAR implementation provides a 4kB internal data memory as well as a 8kB
program memory for loading and executing programs. The parallel programmer module
replaces the original UART module and presents the same interface to the SPEAR core
while using a different programming environment. The FlexRay (FR) replay module
prepares and send the data for deterministic replay operation to the measurement
controller. The FR receive module is in charge of buffering the frames information
received on the FlexRay bus and presenting a compacted form to the SPEAR. Finally,
the FR status module stores the (diagnosis) information the SPEAR wants to send to
the host and generates a packet to the measurement controller when triggered.

The interface from the parallel programmer module is the same as the one of the
miniUART [Sei07], in order to ensure compatibility and save development time. The
three other modules have been regrouped into a bdConnector module, whose program-
ming interface is described in Table 5.2. The status register delivers information to
the SPEAR core about the completion of data transmission (SPEAR status and replay
data) as well as data availability from the FlexRay protocol engine. This last flag is set
once per cycle and is used to trigger a new computation step. The configuration register
provides control about monitoring operation and informs the measurement controller
that a new data packet from SPEAR is available. The type and version registers are
providing version and type number for tracking. Finally, the FlexRay receive Data,
Replay Data and SPEAR Status Data registers are building the actual data interface.

Offset [bytes] Register name Operation

BASE + 0 Status read
BASE + 2 Configuration write
BASE + 4 Type read
BASE + 6 Version read
BASE + 8 FlexRay receive Data read
BASE + 10 Replay Data write
BASE + 12 SPEAR Status Data write

Table 5.2: bdConnector register interface

5.2.3 Firmware

In this section we focus on the dedicated firmware running on the SPEAR microcon-
troller. Concerning the MPC5200 CPU, a standard RedBoot is managing the interface
to the host computer and thus will not be considered any further. The firmware run-
ning on the SPEAR is executed once per cycle and triggered by the TCU available
flag that signals the end of a static segment and thus the availability of new frames to

96

5.2 Tester Node Architecture

process. Note that the computation has to be finished before the end of the current
cycle in order to timely generate the frames to transmit for the next cycle.

The firmware basically consists of a state machine to control the system operation,
dedicated drivers to control the bdConnector extension, and a diagnosis function to
compute the current nodes’ offset correction and logical clock rate as well as the system
precision. The state machine provides the following basic states:

• Initialization: system initialization

• Measurement : the software is listening silently to the bus traffic and averages the
current cycle length over time

• InitCycleLength: the tester’s cycle length is initialized (according to the measure-
ment phase) and replay operation is started. The logical clock deviation between
the tester and the standard nodes is approximately zero for stable quartz (see
section 4.1.1)

• ReplayStatic: the tester operates a deterministic replay without changing the
cycle length (its logical clock deviation is constant)

• ReplayRamp: the tester operates a deterministic replay and linearly changes its
cycle length. The slew rate of the ramp can be configured

• End : current operation (replay, monitoring) are stopped

The development of a state machine for a given experiment is made very flexible.
Hence, the designer is free to define both the sequences of states to perform as well
as the transition conditions. Moreover, both absolute transition conditions (e.g., 50
cycles after start) and relative transition condition (when the nodes’ offset correction
is negative) can be used, thus increasing further the test flexibility.

The firmware provides additionally drivers to control the bdConnector module.
More especially, four functions are available:

• SendMonFrame: to send diagnosis data to the host (using the FR status module)

• SendReplayFrame: to send a frame to replay including timestamp (using the FR
replay module)

• ReadTCUData: to read the frame information monitored and store it into a
pre-defined structure (FR receive module)

• HCRC : to compute a FlexRay header CRC for frame generation

97

5.2 Tester Node Architecture

Parallel to the replay operation, our tester is able to monitor the FlexRay bus
traffic (including its own frames). Through the SendMonFrame function, the firmware
can insert diagnosis information for the end user within the data flow. The messages
contain the following fields:

• absolute cycle counter : counter incremented for each cycle since the beginning of
the experiment.

• current state: current state of the state machine.

• current cycle length: current cycle length applied for deterministic replay. This
information is only relevant in the ReplayStatic and ReplayRamp states.

• offset correction: results of the offset correction for each node (as described in
Section 4.4.1)

• filtered cycle length: nodes’ cycle length after their respective offset correction
has been removed. This information represents the current speed of the node’s
logical clock (speed of the physical clock corrected by the rate correction term)

• virtual quartz deviation: quartz deviation a standard node should have to present
the same logical clock deviation as the tester

Additionally, some fields are left blank for debugging purposes or for further devel-
opments. Note that for most of the experiment presented, a second (silent) tester was
used to test the correct operation of the first tester.

5.2.4 Host PC

Different important tasks are also required from the host PC to support test execution.
Hence, the host is in charge of configuring the hardware prior the test campaign, of
controlling the data exchange during the experiment and finally of processing the data
received for interpretation.

Hardware configuration

The configuration part, before the experiment can be started, consists of three main
points. After a power-up of the platform, the MPC5200 CPU executes the boot loader
and stays in a default state where FPGA accesses are not possible. The first step is
then to configure the interface such that FPGA registers can be mapped in memory.

The second configuration point concerns the FlexRay protocol engine and the
FPGA in general. Hence, the embedded FlexRay core is expected to synchronize
to the running cluster and thus requires to be accordingly configured and started.

98

5.2 Tester Node Architecture

The third and last point is to load the compiled SPEAR program into the FPGA.
The SPEAR’s parallel programmer module (see Figure 5.3) provides an internal FIFO
for loading the firmware. The FIFO size is large enough to enable write burst and
thus optimize the memory access but unfortunately not large enough to save the entire
program. Therefore, the host is expected to split the compiled program into blocks and
poll the programmer module for availability before transmitting a new block. As soon
as a data is available in the programmer module, the internal SPEAR’s bootloader
moves it into its internal program memory. The end of a program is signalized using a
special character. After reception of this character, the SPEAR performs an internal
reset and starts operation according to the program previously loaded (see [Fle07]).

Data interface

Contrary to the configuration process, the data exchange between host and FPGA
presents real-time constraints. Hence, during monitoring operation, the data are stored
into local, small sized memories (128kB) and need to be periodically read out before an
overflow occurs. Moreover, our tester presents the capability to perform deterministic
replay with off-line generated data, which have to be transferred to the FPGA platform
while ensuring that a memory underflow does not occur (otherwise a transmit deadline
could be missed).

For both data transfer we use the 32MB SDRAM block available to the MPC5200
CPU as intermediate memory (see Figure 5.3). During monitoring operation, the
monitored data are periodically saved into this larger memory area and transmitted
afterward to the host, thus releasing the real-time constraints. The internal memory
operations are triggered in real-time by the host and performed locally by the RedBoot
(thus decreasing the execution time in comparison with memory operations to the host).
Concerning replay, the entire bus traffic logfile is transferred to the SDRAM area prior
test execution. During the experiment, the FPGA FIFO is filled (in real-time) using
internal memory operations controlled by the host. This solution still presents some
limitations with regard to the data volume. For our configuration, however, 32MB
represents several minutes of logging and is enough for our purpose.

Data post-processing

After the completion of the experiment, the data are stored to the host as a memory
dump. The first part of the operation is to extract the firmware diagnosis information
from the monitored data. The two resulting files are then parsed and the following
graphs are automatically generated:

• cycle length: The evolution of the cycle length both for the tester and the sys-
tem (standard nodes plus tester) are illustrated. These two graphs pictures the
stimulus and system response.

99

5.3 Evaluation of the FlexRay Clock Synchronization

• nodes’ offset correction: Two different illustrations of the local nodes’ offset cor-
rection are available. On the one hand, this information is made globally available
by our dedicated test application (see Section 5.1.2). This graph exactly reflects
the reality, but data gathering is intrusive (requires bandwidth and dedicated
node’s local services). On the other hand, the nodes’ offset correction is remotely
extracted by our tester as explained in Section 4.4.1. The resulting plot includes
measurement errors, but the information is gathered transparently. An additional
advantage of these two concurrent plots concerns the evaluation of the remote
approach.

• nodes’ rate correction: The node’s rate correction term is also made available by
our test application (see Section 5.1.2) and then can also be plotted. The filtered
cycle length (see Section 5.2.3) is also pictured.

• physical and logical clock deviation: This graph concerns the deviation of the
physical and logical clocks. The current physical clock deviation information is
provided by our test application. Each node periodically transmits its current
quartz configuration, information that can be used to compute the node’s physical
clock deviation. The logical clock deviation information is obtained from the cycle
length information.

• system precision: Finally, the precision of the system is approximated as de-
scribed in Section 4.4.2 and made graphically available. Notice that our approach
enables us to graph both the precision of the SUT (maximal clock state difference
within the four standard nodes constituting the SUT) as well as the precision of
the entire system (including the tester).

5.3 Evaluation of the FlexRay Clock Synchroniza-

tion

The aim of this section is to present different experiments performed with the intention
of evaluating the FlexRay clock synchronization mechanism. During this campaign,
we perform deterministic replay and emulate oscillators that deviate within and be-
yond their tolerance interval. In particular, we will show how (a) frequency steps, (b)
slow and (c) fast frequency drifts are handled by the FlexRay clock synchronization
algorithm and might pose a threat to the system.

5.3.1 Overview

Each test campaign is described in five graphs (see the previous Section). The two
firsts are representing the cycle length (respectively for the tester – graph A – and for

100

5.3 Evaluation of the FlexRay Clock Synchronization

the SUT – graph B). The third and fourth figures illustrate the internal nodes’ rate
(graph C) and offset correction (graph D) while the last figure represents the system
precision (graph E).

We provide in the following two distinct precision measurements: The first one only
concerns the four standard nodes (SUT) while the second one additionally includes the
replay node. From the point of view of the application, only the first precision graph
is interesting, since the replay node transmits frames without any content (the frames
are discarded by the application). We will see that the precision of the SUT is not
significantly worsened while applying the different stimuli. This is explained by the
fact that the standard nodes are all submitted to the same stimuli and are expected to
react identically (in fault-free case). However, this is not the case for the replay node,
which does not implement a standard clock synchronization mechanism.

During the following experiments, the maximal offset correction is configured to
20 microticks (clock pulse; 25ns period) or 500ns while the maximal rate correction is
bounded at 180 microticks (4500ns). Note that these boundaries are set arbitrary. Each
node has been calibrated to the monitoring node at the beginning of the experiment
as described in Section 5.1.3.

5.3.2 Testing the Offset Correction

The aim of this experiment is to test the response of the SUT to frequency jumps
(stimulating the offset correction). For that, the replay node abruptly modifies its
cycle length. More especially, we applied 25 steps of different amplitudes (from 25ns
up to 625ns, with a granularity of 25ns). Figure 5.4 represents the cycle length of
the replay node plus nodes under test, the offset and rate correction of each standard
node, and the system precision. It can be observed that the precision of the SUT is
always much better than 100ns, which can be expected, since the quartz have been
calibrated and the nodes are computing the same convergence function with the same
inputs. Furthermore, if the replay node is taken into account, the precision is punctually
worsened just after changes of the cycle length; otherwise it stays under 200ns. As
expected, the standard nodes turn into silent as soon as the precision relative to the
replay node is larger than 1000ns, which represents in fact the configured maximal
offset correction of 500ns or 20 microticks (remember that during a replay operation,
the nodes are correcting half the clock state difference).

Different important behaviors can be observed here. First, the offset is corrected
substantially only once after the cycle length has been changed. The rate correction,
on the contrary, follows the cycle length changes. For the FlexRay protocol, the offset
correction mechanism only corrects instantaneous clock state differences, while long
term frequency differences are corrected by the rate correction mechanism. Second,
the cycle length of the SUT presents an overrun just after a (positive or negative)
step. This effect is due to the cumulative action of both correction mechanisms, on

101

5.3 Evaluation of the FlexRay Clock Synchronization

 4.9996e+06

 4.9998e+06

 5e+06

 5.0002e+06

 5.0004e+06

 5.0006e+06

 5.0008e+06

 0 200 400 600 800 1000 1200

C
yc

le
 le

ng
th

 (
ns

)

A- Cycle length tester

 ID 13
ID 14

 4.9996e+06

 4.9998e+06

 5e+06

 5.0002e+06

 5.0004e+06

 5.0006e+06

 5.0008e+06

 0 200 400 600 800 1000 1200

C
yc

le
 le

ng
th

 (
ns

)

B- Cycle length SUT

 ID 15
ID 16
ID 17
ID 18

-5

 0

 5

 10

 15

 20

 0 200 400 600 800 1000 1200

R
at

e
co

rr
ec

tio
n

(u
T

)

Time (communication cycle)

C- Rate correction

 ID 15
ID 16
ID 17
ID 18

 4.9996e+06

 4.9998e+06

 5e+06

 5.0002e+06

 5.0004e+06

 5.0006e+06

 5.0008e+06

 0 200 400 600 800 1000 1200

C
yc

le
 le

ng
th

 (
ns

)

A- Cycle length tester

 ID 13
ID 14

-20

-15

-10

-5

 0

 5

 10

 15

 20

 0 200 400 600 800 1000 1200

O
ffs

et
 c

or
re

ct
io

n
(u

T
)

D- Offset correction

 ID 15
ID 16
ID 17
ID 18

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

S
ys

te
m

 P
re

ci
si

on
 (

ns
)

Time (communication cycle)

E- System Precision

SUT
tester

Figure 5.4: Maximal offset correction

one side to correct the delay accumulated (due to the frequency step in the past) and
on the other side to adjust the rate of the logical clock (for the future). Third, the
SUT nodes turned already to silent for a logical clock state deviation of 450ns (instead
of the 500ns or 20 microticks configured). This last effect is a limitation of our test
approach. Hence, the tester is performing deterministic replay and does not correct its
time base (and more specifically the rate of its logical clock). The nodes, which have
already accumulated a delay, only correct half of their logical clock rate and accumulate
additional delay at the next computation step. This accumulation leads to the overrun
of the offset correction for steps lower than the configured 500ns.

According to [Kop97] (p.52) the precision of the system has to be better than the

102

5.3 Evaluation of the FlexRay Clock Synchronization

granularity of the logical time base. Considering two nodes that are drifting apart
and a time base granularity of one microsecond, we obtain a maximal offset correction
of 500ns per node (the two nodes’ time base are at most 1 microsecond or one time
base unit apart). For this configuration, it corresponds to an instantaneous deviation
(frequency step) of 100e−6 s/s, which is far below the ±1500e−6 s/s defined in the
FlexRay specifications. The situation is even worse for longer cycle length.

5.3.3 Testing the Rate Correction

During this experiment, the replay node generates a bus traffic whose cycle length
is continuously slowed down from the configured 5000µs to 5006µs. This behavior
emulates a logical clock drifting from an ideal value of 0 s/s down to −1200e−6 s/s.
The standard nodes stay synchronized as long as their internal rate correction values
are lower than the configured 180 microticks (representing 4,5µs or a drift of −900e−6

s/s). Figure 5.5 presents the results.
As expected, the nodes under test detect an error and turn into silent when the

cycle length is longer than 5004,5µs (representing the configured 5000µs plus the 4,5µs
maximal rate correction). This point in time (short after cycle 1200) corresponds to
a required rate correction larger than the configured boundary. The offset correction,
on the other side, does not go beyond its boundaries, since the instantaneous cycle
length deviation (logical clock’s state difference during two consecutive communication
cycles) is quite small. Figure 5.5-E pictures the precision of the nodes under test and
nodes under test plus replay node. It can be observed that the precision of the nodes
under test stays under 100ns, while the clock state difference with the replay node can
grow up to 500ns.

5.3.4 Emulating Fast Quartz Rate Changes

This last experiment illustrates the behavior of the FlexRay clock synchronization
mechanism for quartz whose drift rate is changing fast. This change (quartz accelera-
tion) represents the derivative of the quartz drift rate, similarly to the drift rate being
the derivative of the quartz drift. The results are presented in Figure 5.6.

The FlexRay protocol does not implement a clock acceleration correction, and con-
sequently the rate and offset correction have to be continuously corrected. We can
observe that the rate correction stays within its configured bounds during the whole
experiment. However, the offset correction does increase and lets the standard nodes
turn to silent after communication cycle 2100. This behavior can be locally explained:
The cycle length of the replay node is continuously stretched, thus (a) modifying the
rate of the logical clocks and (b) making the replay node drift away from the standard
nodes. The amplitude of this drift depends of the slew rate of the replay node’s cycle
length, which in turns influences the instantaneous drift between the tester and the

103

5.3 Evaluation of the FlexRay Clock Synchronization

 4.999e+06

 5e+06

 5.001e+06

 5.002e+06

 5.003e+06

 5.004e+06

 5.005e+06

 5.006e+06

 5.007e+06

 0 200 400 600 800 1000 1200 1400 1600

C
yc

le
 le

ng
th

 (
ns

)

A- Cycle length tester

 ID 13
ID 14

 4.999e+06

 5e+06

 5.001e+06

 5.002e+06

 5.003e+06

 5.004e+06

 5.005e+06

 5.006e+06

 5.007e+06

 0 200 400 600 800 1000 1200 1400 1600

C
yc

le
 le

ng
th

 (
ns

)

B- Cycle length SUT

 ID 15
ID 16
ID 17
ID 18

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000 1200 1400 1600

R
at

e
co

rr
ec

tio
n

(u
T

)

Time (communication cycle)

B- Cycle length SUT

 ID 15
ID 16
ID 17
ID 18

 4.999e+06

 5e+06

 5.001e+06

 5.002e+06

 5.003e+06

 5.004e+06

 5.005e+06

 5.006e+06

 5.007e+06

 0 200 400 600 800 1000 1200 1400 1600

C
yc

le
 le

ng
th

 (
ns

)

A- Cycle length tester

 ID 13
ID 14

-4

-2

 0

 2

 4

 6

 8

 10

 0 200 400 600 800 1000 1200 1400 1600

O
ffs

et
 c

or
re

ct
io

n
(u

T
)

D- Offset correction

 ID 15
ID 16
ID 17
ID 18

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 200 400 600 800 1000 1200 1400 1600

P
re

ci
si

on
 (

ns
)

Time (communication cycle)

D- Offset correction

SUT
tester

Figure 5.5: Maximal rate correction

nodes’ logical clocks. For a large slew rate, the standard nodes have to apply a large
offset correction that might be beyond their configured boundaries, thus generating an
error. Notice furthermore that the absolute value of the quartz deviation is quite low
at error time (approximately 200e−6 s/s). Important here is not the absolute quartz
drift value but the relative quartz drift variation from a node to another.

An important behavior can be observed in Figure 5.6. Depending on whether the
replay node is drifting toward or apart from the standard node’s nominal quartz fre-
quency, the precision (respectively the offset correction) presents a different amplitude.
This effect results from the damping factor, which slightly modifies the rate correc-
tion toward the underlaying quartz. This effect is advantageous when the replay node

104

5.3 Evaluation of the FlexRay Clock Synchronization

is drifting toward to the quartz frequency, since the standard node’s logical clock is
(correctly) overcorrected. On the other hand, this leads to an undercorrection (thus
worsening the system’s precision) when the replay node is drifting apart from the quartz
nominal frequency. This behavior has been successfully used in [AS07] to propose a
method for non-intrusive remote quartz measurement.

 4.996e+06

 4.998e+06

 5e+06

 5.002e+06

 5.004e+06

 0 500 1000 1500 2000 2500

C
yc

le
 le

ng
th

 (
ns

)

A- Cycle length tester

 ID 13
ID 14

 4.996e+06

 4.998e+06

 5e+06

 5.002e+06

 5.004e+06

 0 500 1000 1500 2000 2500

C
yc

le
 le

ng
th

 (
ns

)

B- Cycle length SUT

 ID 15
ID 16
ID 17
ID 18

-200

-150

-100

-50

 0

 50

 100

 150

 200

 0 500 1000 1500 2000 2500

R
at

e
co

rr
ec

tio
n

(u
T

)

Time (communication cycle)

C- Rate correction

 ID 15
ID 16
ID 17
ID 18

 4.996e+06

 4.998e+06

 5e+06

 5.002e+06

 5.004e+06

 0 500 1000 1500 2000 2500

C
yc

le
 le

ng
th

 (
ns

)

A- Cycle length tester

 ID 13
ID 14

-20

-15

-10

-5

 0

 5

 10

 15

 20

 0 500 1000 1500 2000 2500

O
ffs

et
 c

or
re

ct
io

n
(u

T
)

D- Offset correction

 ID 15
ID 16
ID 17
ID 18

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000 2500

S
ys

te
m

 P
re

ci
si

on
 (

ns
)

Time (communication cycle)

E- System Precision

SUT
tester

Figure 5.6: Fast quartz rate changes

Figure 5.6-E illustrates the precision of the system. We can observe here that
the precision within the standard nodes is always better than 100ns, and that the
nodes turn to silent when the clock difference to the replay node is larger than 1000ns.
This behavior is coherent with the maximal offset correction term which is set to 20
microticks (see Section 5.3.2).

105

5.4 Chapter Summary

5.4 Chapter Summary

We presented in this chapter the experimental setup we used for the different evalu-
ations during this work. Our setup principally consists of a four nodes system with
a dedicated tester. The four nodes are providing two main services for improving the
system controllability and observability. First, their oscillator can be individually con-
trolled and thus different kinds of deviations can be emulated. Second, node’s internal
information such as current oscillator deviation or offset and rate correction are made
globally available.

We presented additionally the internal architecture of our tester node. It basically
consists of a dedicated measurement controller with an additional microcontroller which
enables the stimulus computation on the fly. This capability is especially interesting
when performing online tests because it can interrupt test execution when a condition
is violated (see Section 4.2.5). We have described further a modular approach for the
design of the firmware. The decomposition in basic blocks largely supports the fast
and efficient generation of new test programs. Moreover, we have listed all information
available during test execution as well as the standard outputs of our test environment.

The last part of this chapter presented a test campaign regarding the clock syn-
chronization mechanism. During this study, the following stability behavior has been
experimentally confirmed: as long as (1) the logical clock modification does not intro-
duce an instantaneous state difference larger than the maximal offset correction, and
(2) the logical clock rate does not differ from the node’s quartz rate by more than
the maximal rate correction, then the clock synchronization’s error detection mech-
anisms will not let the nodes enter a silent mode. While condition (2) leads to the
well-known requirement of bounded quartz drifts, condition (1) requires the quartz to
present a stable frequency behavior. Specifically, the maximal quartz drift within a
re-synchronization period must be bounded by half the granularity of the logical time
base. This is usually the case due to the naturally stable behavior of oscillators. How-
ever, this has to be taken into account for our test approach or when the environment
can not be assumed to be constant anymore (e.g., temperature step due to engine
start).

106

Chapter 6

Conclusion

This is not the end. It is not even the beginning of the end.
But it is, perhaps, the end of the beginning.

Winston Churchill (1874 – 1965)

6.1 Summary

The main contribution of this thesis is the proposal for a remote, transparent test
approach for time-triggered communication systems such as FlexRay and TTP/C. The
benefit is the ability to test the availability of the error detection mechanisms as well as
the reliability of the communication services concurrently to normal system operation,
and thus to minimize the time interval between consecutive checks. This, in turns,
helps minimize the probability of fault accumulation and of system failure. Moreover,
the diagnosis information can be logged for further maintenance or directly used for
system recovery.

The proposed test approach is divided into two main parts. On the one hand,
passive monitoring from the bus traffic is sufficient to get diagnosis information from
the node’s transmission services. The cyclic transmission scheme provides a periodic
stimulation of these mechanisms. On the other hand, active stimulation is required to
gather status information from the nodes’ internal clock synchronization mechanism
as well as from the receive services. We use the fact that (i) correct reception is
required to influence the clock synchronization and (ii) a tolerance region exists for
the clock correction. Our stimulation strategy is based on the replay of frames which

107

6.2 Outlook

are syntactically correct but slightly shifted in the time domain. These frames, when
correctly received, influence the nodes’ internal clock synchronization. Finally, this can
be observed according to the nodes’ transmission point during the next cycles.

Since this test operation is intended to be performed concurrently to normal system
operation, we have paid special attention to the transparency of our approach. We have
shown that normal service delivery is not disturbed by our test approach due to the
temporal composability attribute of time-triggered communication. The approach does
not require any resource at the node level; neither their hardware nor their software
are modified. At the architecture level, at most three communication slots must be
available. Moreover, we have proved that deterministic replay is not a threat for the
system (the system presents the same robustness).

The thesis presented in this work are supported by simulations and experimental
evaluations. For this purpose, we have developed a test application that can modify
the oscillator drifts online and that makes node internal status information globally
available. Moreover, we have enhanced a tester node with a microcontroller core to
enable the online computation of complex replay scenarios. The test setup was further
used for evaluating the FlexRay clock synchronization with regard to atypical oscillator
drifts. We have shown that not only bounded oscillator accuracy but also stable oscil-
lator (whose frequency is not changing too fast with respect to the re-synchronization
period) are required to avoid failure of the FlexRay clock synchronization algorithm.

6.2 Outlook

This thesis has led to complex analysis and different findings concerning the behavior
of convergence-average based clock synchronization. Nevertheless, some questions are
still open:

• Formal proof of the FlexRay clock synchronization algorithm: This com-
munication protocol is also expected to be used for safety-critical applications.
Although many studies have been published and much experience has been gained
with this new protocol, to the best of our knowledge, no formal proof for this
complex algorithm exists at this point in time. The proof presented in [LWL88]
focuses on fault tolerant midpoint offset correction. While an additional rate
correction mechanism is expected to improve the system precision (we have ex-
perimentally confirmed this behavior for fault-free systems), further studies are
still required to ensure correct operation also in presence of faults.

• Deterministic replay operation for external clock synchronization: We
have shown that deterministic replay operation can be used to safely control
the global time. This specific test operation introduces an additional hierarchy
between the nodes: the tester nodes synchronize internally while standard nodes

108

6.2 Outlook

are synchronizing both to the tester nodes and the other standard nodes and thus
follow the tester nodes. For external synchronization, the tester nodes could be
connected to an external time base which the cluster should synchronize to.

• Efficient integration of this module test to a global test approach: The
proposed method is focused on the communication services. It would be interest-
ing to investigate transparent test approaches for other modules and to combine
them to cover the whole system. A challenging point will be to find a trade-off
between the modules that can be efficiently tested using a generic approach and
the modules that require a dedicated test approach (typically application tasks
that are not standardized).

• Fault-tolerant tester node: The tester node proposed in this work has the
ability of sending more than one “sync” frames within a communication cycle.
From the network point of view, this node is emulating several nodes at once and
a single failure of our tester might overrule the fault detection mechanisms and
hazard the whole system. A fault-tolerant architecture for our tester would make
our approach more robust (no single point of failure anymore).

109

Bibliography

[AAA+90] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie,
E. Martins, and D. Powell. Fault Injection for Dependability Validation:
a Methodology and some Applications. IEEE Transactions on Software
Engineering, 16(2):166–182, Feb. 1990.

[ACK+03] J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs, and G.H. Leber.
Comparison of Physical and Software-Implemented Fault Injection Tech-
niques. IEEE Transactions on Computers, 52(9):1115–1133, Sept. 2003.

[ACL95] J. Arlat, Y. Crouzet, and J. Laprie. Fault Injection for Dependability Val-
idation of Fault-Tolerant Computing Systems. In Twenty-Fifth Interna-
tional Symposium on Fault-Tolerant Computing ’Highlights from Twenty-
Five Years’, pages 400–407, June 1995.

[ADA89] Motorwelt ADAC. Die ADAC Pannenstatistik 1989, April 1989.

[ADA06] Motorwelt ADAC. Die ADAC Pannenstatistik 2006, April 2006.

[Ade03] Astrit Ademaj. Assessment of Error Detection Mechanisms of the Time-
Triggered Architecture Using Fault Injection. PhD thesis, Technische Uni-
versität Wien, Institut für Technische Informatik, Treitlstr. 3/3/182-1,
1040 Vienna, Austria, 2003.

[AFS08] Eric Armengaud, Matthias Fuegger, and Andreas Steininger. Safe Deter-
ministic Replay for Stimulating the Clock Synchronization Algorithm in
Time-Triggered Systems (to appear). In 7th IEEE International Work-
shop on Factory Communication Systems (WFCS’08), page 10 p., May
2008.

[AIMP97] A.M. Amendola, L. Impagliazzo, P. Marmo, and F. Poli. Experimen-
tal Evaluation of Computer-Based Railway Control Systems. In Twenty-
Seventh Annual International Symposium on Fault-Tolerant Computing,
pages 380–384, June 1997.

110

Bibliography

[AKM+01] J. Arlat, K Kanoun, H. Madeira, J.V. Busquests, T. Jarboui, A. Johans-
son, and R Linström. State of the Art. DBench project deliverables, Aug.
2001.

[Alb04] Amos Alber. Comparison of Event-Triggered and Time-Triggered Con-
cepts with Regard to Distributed Control Systems. In Embedded World,
pages 235–252, 2004.

[ALRL04] A. Aviz̆ienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic Concepts
and Taxonomy of Dependable and Secure Computing. IEEE Transactions
on Dependable and Secure Computing, 1(1):11–33, Jan. 2004.

[AP98] Emmanuelle Anceaume and Isabelle Puaut. Performance Evaluation of
Clock Synchronization Algorithms. Technical Report RR-3526, INRIA -
Institut National de Recherche en Informatique et en Automatique, 1998.

[APF02] Luis Almeida, Paulo Pedreiras, and Jose Alberto G. Fonseca. The FTT-
CAN Protocol: Why and How. IEEE Trans. on Industrial Electronics
(TIE), 49(6):1189–1201, December 2002.

[Arm06] Eric Armengaud. Low Level Bus Traffic Replay for the Test and De-
bugging of Time-Triggered Communication Systems. In IEEE Workshop
on Design & Diagnostics of Electronic Circuits & Systems (DDECS’06),
pages 155–156, Apr. 2006.

[ARS+05] Eric Armengaud, Florian Rothensteiner, Andreas Steininger, Roman Pal-
lierer, Martin Horauer, and Martin Zauner. A Structured Approach for
the Systematic Test of Embedded Automotive Communication Systems.
In IEEE International Test Conference (ITC’05), pages 1–8, Nov. 2005.

[Arv94] K. Arvind. Probabilistic Clock Synchronization in Distributed Systems.
IEEE Trans. Parallel Distrib. Syst., 5(5):474–487, 1994.

[AS07] Eric Armengaud and Andreas Steininger. Non-Intrusive Remote Oscillator
Drift Monitoring for Preventive Maintenance of Time-Triggered Systems.
Technical Report RR-62/2007, Vienna University of Technology, Insti-
tute of Computer Engineering, Treitlstr. 3/3/182-1, 1040 Vienna, Austria
(http://vmars.tuwien.ac.at/frame-papers.html), 2007.

[ASH+04] Eric Armengaud, Andreas Steininger, Martin Horauer, Roman Pallierer,
and Hannes Friedl. A Monitoring Concept for an Automotive Distributed
Network - The FlexRay Example. In 7th IEEE Workshop on Design &
Diagnostics of Electronic Circuits & Systems (DDECS’04), pages 173–
178, Strana Lesna, Slovakia, April 2004.

111

Bibliography

[ASH05] Eric Armengaud, Andreas Steininger, and Martin Horauer. Efficient Stim-
ulus Generation for Remote Testing of Distributed Systems – The FlexRay
Example. In Locia Lo Bello and Thilo Sauter, editors, 10th IEEE Inter-
national Conference on Emerging Technologies and Factory Automation
(ETFA’05), volume 1, pages 763–770, Catania, Italy, September 2005.

[ASH06] Eric Armengaud, Andreas Steininger, and Martin Horauer. Automatic
Parameter Identification in FlexRay based Automotive Communication
Networks. In 11th IEEE International Conference on Emerging Technolo-
gies and Factory Automation (ETFA’06), pages 897–904, Sept. 2006.

[AVFK01] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson. GOOFI: Generic
Object-Oriented Fault Injection Tool. In Proceedings of the International
Conference on Dependable Systems and Networks, pages 83–88, July 2001.

[Ban99] R. Bannatyne. Semiconductor Developments for Automotive Systems. In
IEEE 49th Vehicular Technology Conference, volume 2, pages 1392–1396,
Jul. 1999.

[Bau01] Günther Bauer. Transparent Fault Tolerance in a Time-Triggered Archi-
tecture. PhD thesis, Technische Universität Wien, Institut für Technische
Informatik, Treitlstr. 3/3/182-1, 1040 Vienna, Austria, 2001.

[BBFT06] Jean-Luc Bechennec, Mikael Briday, Sebastien Faucou, and Yvon Trin-
quet. Trampoline, An OpenSource Implementation of the OSEK/VDX
RTOS Specification. In 11th IEEE International Conference on Emerg-
ing Technologies and Factory Automation (ETFA’06), pages 62–69, Sep.
2006.

[BG03] S. Blanc and P.J. Gil. Improving the Multiple Errors Detection Coverage
in Distributed Embedded Systems. In Proceedings of the 22nd Interna-
tional Symposium on Reliable Distributed Systems, pages 303–312, Oct.
2003.

[BMS87] Paul H. Bardell, William H. McAnney, and Jacob Savir. Built-in test
for VLSI: pseudorandom techniques. Wiley-Interscience, New York, NY,
USA, 1987.

[BP03] Alfredo Benso and Paolo Prinetto. Fault Injection Techniques and Tools
for Embedded Systems Reliability Evaluation. Kluwer Academic Publish-
ers, Norwell, MA, USA, 2003.

112

Bibliography

[BV89] V.P. Banda and R.A. Volz. Architectural Support for Debugging and
Monitoring Real-Time Software. In Euromicro Workshop on Real Time,
pages 200–210, June 1989.

[CLJ+04] Ramesh Chandra, R.M. Lefever, K.R. Joshi, M. Cukier, and W.H.
Sanders. A Global–State-Triggered Fault Injector for Distributed Sys-
tem Evaluation. IEEE Transactions on Parallel and Distributed Systems,
15(7):593–605, July 2004.

[CMS98] J. Carreira, H. Madeira, and J.G. Silva. XCEPTION: a Technique for the
Experimental Evaluation of Dependability in Modern Computers. IEEE
Transactions on Software Engineering, 24(2):125–136, Feb. 1998.

[Com97] Hewlett-Packard Company. Fundamentals of Quartz Oscillators. In HP
Application Note 200-2, 1997.

[Cri91] F. Cristian. Reaching Agreement on Processor-Group Membership in
Synchronous Distributed Systems. Distributed Computing, 4(4):175–188,
1991.

[DDS02] P.H. Deussen, G. Din, and I. Schieferdecker. An On-Line Test Platform
for Component-Based Systems. In Proceedings of the 27th Annual NASA
Goddard/IEEE Software Engineering Workshop, pages 96–103, Dec 2002.

[Dec06] Decomsys. Getting Started Guide, v1.3a. Technical report, Decomsys
GmbH, Stumpergasse 48/28, 1060 Vienna, Austria, 2006.

[DGMK00] S. Deb, S. Ghoshal, V.N. Malepati, and D.L. Kleinman. Tele-Diagnosis:
Remote Monitoring of Large-Scale Systems. IEEE Aerospace Conference
Proceedings, 6:31–42, March 2000.

[DHSS95] Danny Dolev, Joseph Y. Halpern, Barbara Simons, and Ray Strong.
Dynamic Fault-Tolerant Clock Synchronization. Journal of the ACM,
42(1):143–185, 1995.

[DJ94] Scott Dawson and Farnam Jahanian. Deterministic Fault Injection of
Distributed Systems. In Dagstuhl Seminar on Distributed Systems, pages
178–196, 1994.

[DJM95] S. Dawson, F. Jahanian, and T. Mitton. A Software Fault Injection Tool
on Real-Time Mach. In Proceedings of the 16th IEEE Real-Time Systems
Symposium, pages 130–140, Dec. 1995.

113

Bibliography

[DR92] Paul S. Dodd and Chinya V. Ravishankar. Monitoring and Debugging
Distributed Real-Time Programs. Software - Practice and Experience,
22(10):863–877, 1992.

[EBK03] Wilfried Elmenreich, Gnther Bauer, and Hermann Kopetz. The Time-
Triggered Paradigm. In Proceedings of the Workshop on Time-Triggered
and Real-Time Communication, Manno, Switzerland, Dec. 2003.

[Ebn98] C. Ebner. Efficiency Evaluation of a Time-Triggered Architecture for
Vehicle Body-Electronics. In Proceedings of the 10th Euromicro Workshop
on Real-Time Systems, pages 62–67, June 1998.

[EOAG+05] Ulrik Eklund, Örjan Askerdal, Johan Granholm, Anders Alminger, and
Jakob Axelsson. Experience of Introducing Rference Architectures in the
Development of Automotive Electronic Systems. In SEAS ’05: Proceed-
ings of the second international workshop on Software engineering for au-
tomotive systems, pages 1–6, New York, NY, USA, 2005. ACM Press.

[ESL01] M. El Shobaki and L. Lindh. A Hardware and Software Monitor for
High-Level System-on-Chip Verification. In International Symposium on
Quality Electronic Design, pages 56–61, March 2001.

[FA07] Wolfgang Forster and Eric Armengaud. A Novel Interconnection Approach
for Globally Asynchronous Locally Synchronous Circuits. In 15th Austrian
Workshop on Microelectronics (Austrochip’07), pages 107–114, Oct. 2007.

[FAF06a] André V. Fidalgo, Gustavo R. Alves, and José M. Ferreira. A Modified
Debugging Infrastructure to Assist Real-Time Fault Injection Campaigns.
In IEEE Workshop on Design & Diagnostics of Electronic Circuits &
Systems (DDECS’06), pages 174–179, Apr. 2006.

[FAF06b] André V. Fidalgo, Gustavo R. Alves, and José M. Ferreira. A Modified
Debugging Infrastructure to Assist Real Time Fault Injection Campaigns.
In IEEE Workshop on Design & Diagnostics of Electronic Circuits &
Systems (DDECS’06), pages 174–179, Apr. 2006.

[FBH+06] Helmut Fennel, Stefan Bunzel, Harald Heinecke, Juergen Bielefeld, Simon
Fuerst, Klaus-Peter Schnelle, Walter Grote, Nico Maldener, Thomas We-
ber, Florian Wohlgemuth, Jens Ruh, Lennart Lundh, Thomas Sanden,
Peter Heitkaemper, Robert Rimkus, Jean Leflour, Alain Gilberg, Ulrich
Virnich, Stefan Voget, Kenji Nishikawa, Kazuhiro Kajio, Klaus Lange,
Thomas Scharnhorst, and Bernd Kunkel. Achievements and Exploita-
tion of the AUTOSAR Development Partnership. In Convergence 2006,
page 10, October 2006.

114

Bibliography

[Fle05] FlexRay. Flexray Communications Systems – Protocol Specification Ver-
sion 2.1 (available at http://www.flexray.com). FlexRay Consortium,
2005.

[Fle07] Martin Fletzer. SPEAR2 Handbuch. Technical report, Vienna University
of Technology, Institute of Computer Engineering, Treitlstr. 3/3/182-1,
1040 Vienna, Austria, 2007.

[FP05] Oliver Falkner and Christiane Picard. Quo vadis Kfz-Elektronik? Elek-
tronik Automotive, 1:82–85, Jan. 2005.

[Gai86] Jason Gait. A Probe Effect in Concurrent Programs. Source SoftwarePrac-
tice & Experience, 16(3):225–233, Mar. 1986.

[Gal99] Thomas Galla. Cluster Simulation in Time-Triggered Real-Time Systems.
PhD thesis, Technische Universität Wien, Institut für Technische Infor-
matik, Treitlstr. 3/3/182-1, 1040 Vienna, Austria, 1999.

[GB06] D.A. Gwaltney and J.M. Briscoe. Comparison of Commu-
nication Architectures for Spacecraft Modular Avionics Systems.
NASA/TM2006214431, 2006.

[GLS06] Georg Gaderer, Patrick Loschmidt, and Thilo Sauter. Quality monitor-
ing in clock synchronized distributed systems. In 6th IEEE International
Workshop on Factory Communication Systems (WFCS’06), pages 13–22,
Juni 2006.

[GS91] D. Galler and G. Slenski. Causes of Aircraft Electrical Failures. Aerospace
and Electronic System Magazine, 6(8):3–8, Aug. 1991.

[Han05] P. Hansen. New S-Class Mercedes: Pioneering Electronics. The Hansen
Report on Automotive Electronics, 18(8):1–2, October 2005.

[Han06] Alexander Hanzlik. SIDERA - a Simulation Model for Time-Triggered
Distributed Real-Time Systems. International Review on Computers and
Software (IRECOS), 1(3):181–193, Nov. 2006.

[HD02] Wolfgang Huber and Martin Delvai. Peripherieanbindung an SPEAR Ex-
tension Modules. Technical report, Vienna University of Technology, Insti-
tute of Computer Engineering, Treitlstr. 3/3/182-1, 1040 Vienna, Austria,
2002.

[Het88] William Hetzel. The Complete Guide to Software Testing, Second Edition.
Wiley, 1988.

115

Bibliography

[HJS01] Martin Hiller, Arshad Jhumka, and Neeraj Suri. An approach for
analysing the propagation of data errors in software. In DSN ’01: Pro-
ceedings of the 2001 International Conference on Dependable Systems and
Networks (formerly: FTCS), pages 161–172, Washington, DC, USA, 2001.
IEEE Computer Society.

[Hor04] Martin Horauer. Clock Synchronization in Distributed Systems. PhD
thesis, Technische Universität Wien, Faculty of Technical and Natural
Sciences, Dept. of Automation, Treitlstr. 3/3/182-1, 1040 Vienna, Austria,
2004.

[HP03] R. Husemann and C.E. Pereira. BR-Tool: a Real-Time Bus Monitor-
ing and Validation System for Fieldbus-Based Industrial Automation Ap-
plications. In IEEE Conference on Emerging Technologies and Factory
Automation, pages 145–152, September 2003.

[HSF+04] Harald Heinecke, Klaus-Peter Schnelle, Helmut Fennel, Jürgen Borto-
lazzi, Lennart Lundh, Jean Leflour, Jean-Luc Maté, Kenji Nishikawa,
and Thomas Scharnhorst. AUTomotive Open System ARchitecture - An
Industry-Wide Initiative to Manage the Complexity of Emerging Auto-
motive E/E architectures. In Proceedings of Convergence, SAE-2004-21-
0042, March 2004.

[HSR95] Seungjae Han, K.G. Shin, and H.A. Rosenberg. DOCTOR: an Integrated
Software Fault Injection Environment for Distributed Real-Time Systems.
In Proceedings of the International Computer Performance and Depend-
ability Symposium, pages 204–213, Apr. 1995.

[HT98] G. Heiner and T. Thurner. Time-Triggered Architecture for Safety-
Related Distributed Real-Time Systems in Transportation Systems. In
Twenty-Eighth Annual International Symposium on Fault-Tolerant Com-
puting, pages 402–407, June 1998.

[HTI97] Mei-Chen Hsueh, Timothy K. Tsai, and Ravishankar K. Iyer. Fault In-
jection Techniques and Tools. Computer, 30(4):75–82, April 1997.

[IEC98] IEC/SC65A. Iec61508-1 Functional Safety of Electrical Electronic Pro-
grammable Electronic Safety-Related Systems - Part 1 : General Require-
ments, 1998.

[IEE90] IEEE. IEEE Standard Glossary of Software Engineering Terminology.
IEEE Std 610.12-1990, 1990.

116

Bibliography

[JAR+94] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson. Fault Injection
into VHDL Models: the MEFISTO Tool. In Twenty-Fourth International
Symposium on Fault-Tolerant Computing, pages 66–75, June 1994.

[Joh98] D. John. OSEK/VDX History and Structure. In OSEK/VDX Open Sys-
tems in Automotive Networks (Ref. No. 1998/523), IEE Seminar, pages
2/1–214, Nov. 1998.

[KB03] Hermann Kopetz and Günther Bauer. The Time-Triggered Architecture.
Proceedings of the IEEE, 91(1):112 – 126, January 2003.

[KBE+95] H. Kopetz, M. Braun, C. Ebner, A. Kruger, D. Millinger, R. Nossal, and
A. Schedl. The Design of Large Real-Time Systems: the Time-Triggered
Approach. In Proceedings of the 16th IEEE Real-Time Systems Sympo-
sium, pages 182–187, Dec. 1995.

[KBG98] A. Kirschbaum, J. Becker, and M. Glesner. Run-Time Monitoring of
Communication Activities in a Rapid Prototyping Environment. In Ninth
International Workshop on Rapid System Prototyping, pages 52–57, June
1998.

[KGR89] Hermann Kopetz, G. Grunsteidl, and Johannes Reisinger. Fault-Tolerant
Membership Service in a Distributed Real-Time System. In IFIP WG10.4
Int’l Working Conference on Dependable Computing for Critical Applica-
tions, pages 167–174, Aug. 1989.

[KHM05] N. Kandasamy, J.P. Hayes, and B.T. Murray. Time-Constrained Fail-
ure Diagnosis in Distributed Embedded Systems: Application to Actua-
tor Diagnosis. IEEE Transactions on Parallel and Distributed Systems,
16(3):258–270, March 2005.

[KLD+94] J. Karlsson, P. Liden, P. Dahlgren, R. Johansson, and U. Gunneflo. Us-
ing Heavy-Ion Radiation to Validate Fault-Handling Mechanisms. IEEE
Micro, 14(1):8–23, Feb. 1994.

[KN97] H. Kopetz and R. Nossal. Temporal Firewalls in Large Distributed Real-
Time Systems. In Proceedings of the Sixth IEEE Computer Society Work-
shop on Future Trends of Distributed Computing Systems, pages 310–315,
Oct. 1997.

[KO87] H. Kopetz and W. Ochsenreiter. Clock Synchronization in Distributed
Real-Time Systems. IEEE Transactions on Computers, 36(8):933–940,
1987.

117

Bibliography

[KO02] H. Kopetz and R. Obermaisser. Temporal Composability. Computing &
Control Engineering Journal, 13(4):156–162, Aug. 2002.

[Kop92] H. Kopetz. Sparse Time versus Dense Time in Distributed Real-Time Sys-
tems. In Proceedings of the 12th International Conference on Distributed
Computing Systems, pages 460–467, June 1992.

[Kop97] Hermann Kopetz. Real-Time Systems: Design Principles for Distributed
Embedded Applications. Kluwer Academic Publishers, Norwell, MA, USA,
1997.

[Kop98] H. Kopetz. The Time-Triggered Model of Computation. In Proceedings of
the 19th IEEE Real-Time Systems Symposium, pages 168–177, Dec. 1998.

[Kop99] H. Kopetz. Automotive Electronics. In Proceedings of the 11th Euromicro
Conference on Real-Time Systems, pages 132–140, 1999.

[KS97] M. Krug and A.V. Schedl. New Demands for Invehicle Networks. In
Proceedings of the 23rd EUROMICRO Conference, pages 601–605, Sep.
1997.

[KTWE03] Hermann Kopetz, Ken Tindell, Fabian Wolf, and Rolf Ernst. Safe Auto-
motive Software Development. In Design, Automation and Test in Europe
Conference and Exhibition, pages 616–621, Mar. 2003.

[Law97] Wolfhard Lawrenz. CAN System Engineering. From Theory to Practical
Applications. Springer Verlag, New York, NY, USA, 1997.

[LH02] G. Leen and D. Hefferman. In-Vehicle Networks, Expanding Automotive
Electronic Systems. In IEEE Transaction on Computers, pages 88–93,
January 2002.

[LHD99] G. Leen, D. Heffernan, and A. Dunne. Digital Networks in the Automotive
Vehicle. Computing & Control Engineering Journal, 10(6):257–266, 1999.

[LIN03] LIN. LIN Specification Package - Revision 2.0 (available at
http://www.lin-subbus.org/). LIN Consortium, 2003.

[LMC87] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging Parallel Programs
with Instant Replay. IEEE Transactions on Computers, 36(4):471–487,
Apr. 1987.

[LWL88] J. Lundelius-Welch and N. Lynch. A New Fault-Tolerant Algorithm for
Clock Synchronization. Information and Computation, 77(1):1–36, 1988.

118

Bibliography

[Mah01] D. Mahrenholz. Minimal Invasive Monitoring. In Proceedings of the Fourth
IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing, pages 251–258, May 2001.

[Mar03] D. Marsh. Network Protocols Compete for Highway Supremacy. In EDN
Europe, pages 26–38, June 2003.

[MH89] Charles E. McDowell and David P. Helmbold. Debugging Concurrent
Programs. ACM Comput. Surv., 21(4):593–622, 1989.

[MHB+01] R. Mores, G. Hay, R. Belschner, J. Berwanger, C. Ebner, S. Fluhrer,
E. Fuchs, B. Hedenetz, W. Kuffner, A. Krüger, P. Lohrmann, D. Millinger,
M. Peller, J. Ruh, A. Schedl, and M. Sprachmann. FlexRay - The Com-
munication System for Advanced Automotive Control Systems. In Society
of Automotive Engineers (SAE) 2001 World Congres, March 2001.

[Moo65] Gordon E. Moore. Cramming More Components Onto Integrated Circuits.
Electronics, 38:114–117, April 1965.

[MOS05] MOST. MOST Specification, Revision 2.4 (available at
http://mostnet.de). MOST Cooperation, 2005.

[MRW03] Scott Mosely, Steve Randall, and Anthony Wiles. Experience within ETSI
of the Combined Roles of Conformance Testing and Interoperability Test-
ing. The 3rd Conference on Standardization and Innovation in Information
Technology, pages 177–189, Oct 2003.

[MS97] Arup Mukherjee and Daniel P. Siewiorek. Measuring software depend-
ability by robustness benchmarking. IEEE Transactions on Software En-
gineering, 23(6):366–378, June 1997.

[MSSP02] D. Mahrenholz, O. Spinczyk, and W. Schroder-Preikschat. Program In-
strumentation for Debugging and Monitoring with AspectC++. In Pro-
ceedings of the Fifth IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing, pages 249–256, Apr. 2002.

[MT06] Rainer Makowitz and Christopher Temple. FlexRay – A Communica-
tion Network for Automotive Control Systems. In 6th IEEE International
Workshop on Factory Communication Systems (WFCS’06), pages 207–
212, Juni 2006.

[Nic96] M. Nicolaidis. Theory of Transparent BIST for RAMs. IEEE Transactions
on Computers, 45(10):1141–1156, Oct. 1996.

119

Bibliography

[Nob92] I Noble. EMC and the Automotive Industry. Electronics & Communica-
tion Engineering Journal, pages 263–271, October 1992.

[NSL05] Nicolas Navet and Franoise Simonot-Lion. Fault Tolerant Services for Safe
In-Car Embedded Systems. CRC Press / Taylor & Francis, 2005.

[NSSLW05] Nicolas Navet, Ye-Qiong Song, Francoise Simonot-Lion, and Cedric Wilw-
ert. Trends in Automotive Communication Systems. Proceedings of the
IEEE, 93(6):1204–1223, June 2005.

[OBRB01] T. Olsson, N. Bauer, P. Runeson, and L. Bratthall. An Experiment on
Lead-Time Impact in Testing of Distributed Real-Time Systems. In Pro-
ceedings of the Seventh International Software Metrics Symposium, pages
259–168, April 2001.

[POEL02] Philipp Peti, Roman Obermaisser, Wilfried Elmenreich, and Thomas
Losert. An Architecture supporting Monitoring and Configuration in Real-
Time Smart Transducer Networks. In Proceedings of the IEEE Sensors
2002, volume 2, pages 1479–1484, June 2002.

[PS99] B. Plale and K. Schwan. Run-Time Detection in Parallel and Distributed
Systems: Application to Safety-Critical Systems. In Proceedings of the
19th IEEE International Conference on Distributed Computing Systems,
pages 163–170, June 1999.

[RAA02] M. Rodriguez, A. Albinet, and J. Arlat. MAFALDA-RT: a Tool for De-
pendability Assessment of Real-Time Systems. In Proceedings of the Inter-
national Conference on Dependable Systems and Networks, pages 267–272,
June 2002.

[RSH04] B. Rahbaran, A. Steininger, and T. Handl. Built-in Fault Injection in
Hardware – The FIDYCO Example. In Second IEEE International Work-
shop on Electronic Design, Test and Applications, pages 327–332, Jan
2004.

[RSV06] Valrio Rosset, Pedro F. Souto, and Fransisco Vasques. A Group Member-
ship Protocol for Communication Systems with both Static and Dynamic
Scheduling. In 6th IEEE International Workshop on Factory Communi-
cation Systems (WFCS’06), pages 207–212, Juni 2006.

[Rub05] Enrico Rubiola. The Leeson Effect – Phase Noise in Quasilinear Oscillators
(available at http://www.rubiola.org), Feb. 2005.

120

Bibliography

[Run98] W. Runge. Development Tendencies in Automotive Electronics. In
Twenty-Second IEEE/CPMT International Electronics Manufacturing
Technology Symposium, pages 5–9, Apr. 1998.

[RV04] M. Sonza Reorda and M. Violante. On-Line Analysis and Perturbation of
CAN Networks. In DFT ’04: Proceedings of the Defect and Fault Toler-
ance in VLSI Systems, 19th IEEE International Symposium on (DFT’04),
pages 424–432, Washington, DC, USA, 2004. IEEE Computer Society.

[SAE92] SAE. SAE Handbook. SAE International, 1992.

[Sav06] Sergio Matteo Savaresi. The Role of Real-Time Communication for Dis-
tributed or Centralized Architectures in Vehicle Dynamics Control Sys-
tems. In 6th IEEE International Workshop on Factory Communication
Systems (WFCS’06), pages 67–72, Juni 2006.

[SB06] Jason J. Scarlett and Robert W. Brennan. Re-evaluating Event-Triggered
and Time-Triggered Systems. In 11th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA’06), pages 655–
661, Sept. 2006.

[SC90] Frank Schmuck and Flaviu Cristian. Continuous Clock Amortization Need
not Affect the Precision of a Clock Synchronization Algorithm. In PODC
’90: Proceedings of the ninth annual ACM symposium on Principles of
distributed computing, pages 133–143, New York, NY, USA, 1990. ACM
Press.

[Sch87] Fred B. Schneider. Understanding Protocols for Byzantine Clock Synchro-
nization. Technical Report TR 87–859, Cornell University, Ithaca, NY,
USA, Dept. of Computer Science, Upson Hall, Ithaca, NY 14853, 1987.

[Sch91] W. Schütz. On the Testability of Distributed Real-Time Systems. In Pro-
ceedings of the Tenth Symposium on Reliable Distributed Systems, pages
52–61, Oct. 1991.

[Sch92] W. Schütz. The Testability of Distributed Real-Time Systems. PhD thesis,
Technische Universität Wien, Institut für Technische Informatik, Treitlstr.
3/3/182-1, 1040 Vienna, Austria, 1992.

[Sch94a] Ulrich Schmid. Monitoring Distributed Real-Time Systems. Real Time
System Journal, 7(1):33–56, 1994.

[Sch94b] W. Schütz. Fundamental Issues in Testing Distributed Real-Time Sys-
tems. Real Time System Journal, 7(2):129–157, 1994.

121

Bibliography

[Sch95] B.A. Schroeder. On-Line Monitoring: a Tutorial. Computer, 28(6):72–78,
June 1995.

[Sch98] Klaus Schossmaier. Interval-based Clock State and Rate Synchronization.
PhD thesis, Technische Universität Wien, Faculty of Technical and Nat-
ural Sciences, Dept. of Automation, Treitlstr. 3/3/182-1, 1040 Vienna,
Austria, 1998.

[Sei07] Roman Seiger. miniUART Dokumentation. Technical report, Vienna
University of Technology, Institute of Computer Engineering, Treitlstr.
3/3/182-1, 1040 Vienna, Austria, 2007.

[SFB+00] D.T. Stott, B. Floering, D. Burke, Z. Kalbarczpk, and R.K. Iyer. NF-
TAPE: a Framework for Assessing Dependability in Distributed Systems
with Lightweight Fault Injectors. In Proceedings of the Computer Perfor-
mance and Dependability Symposium IPDS, pages 91–100, March 2000.

[SL95] D.P. Sidhu and T.-K. Leung. Formal Methods for Protocol Testing: a
Detailed Study. IEEE Transactions on Software Engineering, 15(4):413–
426, Apr. 1995.

[Sma04] Idriz Smaili. Real-Time Monitoring for the Time-Triggered Architecture.
PhD thesis, Technische Universität Wien, Institut für Technische Infor-
matik, Treitlstr. 3/3/182-1, 1040 Vienna, Austria, 2004.

[SMF98] Jr. Samson, J.R., W. Moreno, and F. Falquez. A Technique for Automated
Validation of Fault Tolerant Designs Using Laser Fault Injection (LFI). In
Twenty-Eighth Annual International Symposium on Fault-Tolerant Com-
puting, pages 162–167, June 1998.

[SMM00] J. Swingler, J. Mcbride, and C. Maul. Degradation of Road Tested Au-
tomotive Connectors. IEEE Transactions on Components and Packaging
Technologies, 23(1):157–164, Mar. 2000.

[SS03] C. Scherrer and A. Steininger. Dealing with Dormant Faults in an Embed-
ded Fault-Tolerant Computer System. IEEE Transactions on Reliability,
52(4):512–522, Dec. 2003.

[ST87] T. K. Srikanth and Sam Toueg. Optimal Clock Synchronization. Journal
of the ACM, 34(3):626–645, 1987.

[ST99] A. Steininger and C. Temple. Economic Online Self-Test in the Time-
Triggered Architecture. In Design and Test of Computers, IEEE, vol-
ume 16, pages 81–89, July–Sept 1999.

122

Bibliography

[STB97] V. Sieh, O. Tschache, and F. Balbach. VERIFY: Evaluation of Reliabil-
ity using VHDL-Models with Embedded Fault Descriptions. In Twenty-
Seventh Annual International Symposium on Fault-Tolerant Computing,
pages 32–36, June 1997.

[SV02] A. Steininger and J. Vilanek. Using Offline and Online BIST to Improve
System Dependability - the TTPC-C Example. In Proceedings of the 2002
IEEE International Conference on Computer Design: VLSI in Computers
and Processors, pages 277–280, Sept 2002.

[TBYS96] J.P. Tsai, Y.-D. Bi, S. Yang, and R. Smith. Distributed Real Time System:
Monitoring, Visualization, Debugging and Analysis. Wiley-Interscience,
New York, NY, USA, 1996.

[Tem99] Christopher Temple. Enforcing Error Containment in Distributed Time-
Triggered Systems: The Bus Guardian Approach. PhD thesis, Technische
Universität Wien, Institut für Technische Informatik, Treitlstr. 3/3/182-1,
1040 Vienna, Austria, 1999.

[TFCB90] J.J.P. Tsai, K.-Y. Fang, H.-Y. Chen, and Y.-D. Bi. A Noninterference
Monitoring and Replay Mechanism for Real-Time Software Testing and
Debugging. IEEE Transactions on Software Engineering, 16(8):897–916,
August 1990.

[TH99] H. Thane and H. Hansson. Towards Systematic Testing of Distributed
Real-Time Systems. In Proceedings of the 20th IEEE Real-Time Systems
Symposium, pages 360–369, December 1999.

[TH00] H. Thane and H. Hansson. Using Deterministic Replay for Debugging
of Distributed Real-Time Systems. In Proceedings of the 12th Euromicro
Conference on Real-Time Systems, pages 265–272, June 2000.

[Tha00] Henrik Thane. Monitoring, Testing and Debugging of Distributed Real-
Time Systems. PhD thesis, Mlardalen Real-Time Research Centre
(MRTC), Department of Computer Engineering, Mlardalen University
(MDH), 2000.

[Tho05] M. Thoss. Automated High-Accuracy Hybrid Measurement for Dis-
tributed Embedded Systems. In Third International Workshop on In-
telligent Solutions in Embedded Systems, page May, 39–48 2005.

[TPDF99] C. Tanzer, S. Poledna, E. Dilger, and T. Fuhrer. A fault-tolearnce layer
for distributed fault-tolerant hard real-time systems. In Proceedings of

123

Bibliography

the Annual IEEE Workshop on Fault-Tolerant Parallel and Distributed
Systems, page 21p, 1999.

[TTT05] TTA Group TTTech. Time-Triggered Protocol TTP/C High
Level Specification Document Protocol Version 1.1, available at
http://www.tttech.com/technology/specification.htm, 2005.

[Vas04] Thomas Vasek. Rechner auf Rädern. Technology Review, 7:80–41, July
2004.

[WNSSL04] Cedric Wilwert, Nicolas Navet, Ye-Qiong Song, and Francoise Simonot-
Lion. Design of automotive X-by-wire systems. CRC Press, 2004.

[WW02] M. Weber and J. Weisbrod. Requirements Engineering in Automotive
Development-Experiences and Challenges. In IEEE Joint International
Conference on Requirements Engineering, pages 331–340, 2002.

[XbWP98] Brite-EuRaum 111 Program X-by Wire Project. X-by-Wire - Safety Re-
lated Fault Tolerant Systems in Vehicales, Final Report, 1998.

[Zei06] Kurt Zeillinger. Fehler im System. auto touring, das ÖAMTC Magazin
(in German), 6:6–10, 2006.

[ZP93] Enrico Zanoni and Paolo Pavan. Improving the reliability and safety of
automotive electronics. IEEE Micro, 13(1):30–48, 1993.

[ZP98] A. Zahir and P. Palmieri. OSEK/VDX-Operating Systems for Automotive
Applications. In OSEK/VDX Open Systems in Automotive Networks (Ref.
No. 1998/523), IEE Seminar, pages 4/1–418, Nov. 1998.

[ZS02] M. Zulkernine and R.E Seviora. A Compositional Approach to Monitoring
Distributed Systems. In International Conference on Dependable Systems
and Networks, pages 763–772, June 2002.

[Zur05] R. Zurawski, editor. The Industrial Communication Technology Handbook.
CRC Press, Feb. 2005.

124

Index

A

accuracy . 58, 60
attribute . 33
AUTOSAR . 29
availability .12

C

clock deviation interval 59
clock reading error 62
clock synchronization.26, 60

asymmetric structure 60
convergence-averaging 61
external .60
hierarchical structure 61
internal . 60
offset correction.101
rate correction 103
remote clock estimation 61
symmetric structure.60
synchronization event detection . 61

cluster . 9
communication controller 10
communication cycle 27
controllability . 17
cycle length . 58

D

damping factor . 62
dependability . 12
deterministic replay 18, 64

E

event-triggered architecture 21, 24

F

fault injection. .18
hardware based 19
hybrid . 19
simulation based 19
software based 19

fault, error, failure 11
fault-tolerant middleware 29
fault-tolerant unit.23
filtered cycle length 98
FlexRay . 62

clock synchronization evaluation100

G

global time . 59

I

integrity . 12

L

logical clock . 58
logical clock deviation.59

M

macrotick . 26
maintainability . 12
mechanism. .32
microtick. .26, 58
monitoring. .15

hardware . 16
hybrid . 17

125

Index

software . 15

N

node . 9

O

observability . 15
offset correction. .61
operating system 9 f.
oscillator. .57

calibration . 91
deviation . 58

OSEK . 29

P

physical clock . 58
physical layer . 10
precision . 60
probe effect . 14
probe node . 16

Q

quartz . 57

R

rate correction . 61
real-time entity . 22
real-time image . 22
relative frequency deviation 57
relative precision . 59
reliability . 12
round. 27

S

SAE . 9
safety . 12
segment

dynamic . 27
static . 27

service . 32
slot . 27
sparse time base . 22
SPEAR. 93
STEACS . 31
system under test 89

T

TDMA . 26
temporal firewall . 27
tester node . 93
testing . 13

challenges . 14
conformance testing 13
evaluation . 13
interoperability testing 13
maintenance . 13
online . 19
performance testing 13
robustness testing 13
validation . 13
verification. .13

time-triggered architecture 21, 24
TTP/C . 62

V

virtual quartz deviation 98

126

List of Publications

[1] Eric Armengaud, Matthias Fuegger, and Andreas Steininger. Safe Deterministic
Replay for Stimulating the Clock Synchronization Algorithm in Time-Triggered
Systems (to appear). In 7th IEEE International Workshop on Factory Communi-
cation Systems (WFCS’08), page 10 p., May 2008.

[2] Eric Armengaud. Experimental Evaluation of the FlexRay Clock Synchronization
Service. In 20. ITG/GI/GMM Workshop, Testmethoden und Zuverlässigkeit von
Schaltungen und Systemen, pages 85–90, Feb. 2008.

[3] Wolfgang Forster and Eric Armengaud. A Novel Interconnection Approach for
Globally Asynchronous Locally Synchronous Circuits. In 15th Austrian Workshop
on Microelectronics (Austrochip’07), pages 107–114, Oct. 2007.

[4] Eric Armengaud, Andreas Steininger, and Alexander Hanzlik. The Effect of
Quartz Drift on Convergence-Average based Clock Synchronization. In 12th

IEEE International Conference on Emerging Technologies and Factory Automa-
tion (ETFA’07), pages 1123–1130, Sept. 2007.

[5] Martin Horauer, Eric Armengaud, and Andreas Steininger. Concepts and Tools
for the Test of the Communication Sub-System of Time-Triggered Distributed
Embedded Systems. In International Conference on Design Engineering Technical
Conferences & Computers and Information in Engineering (ASME 2007), page 8,
Sept. 2007.

[6] Eric Armengaud, Andreas Steininger, and Martin Horauer. Automatic Parameter
Identification in FlexRay based Automotive Communication Networks. In 11th

IEEE International Conference on Emerging Technologies and Factory Automa-
tion (ETFA’06), pages 897–904, Sept. 2006.

[7] Eric Armengaud and Andreas Steininger. Pushing the Limits of Remote Online
Diagnosis in FlexRay based Networks. In 6th IEEE International Workshop on
Factory Communication Systems (WFCS’06), pages 45–54, June 2006.

127

List of Publications

[8] Eric Armengaud and Andreas Steininger. A Remote and Transparent Approach
for the Test and Diagnosis of Automotive Networks. In Junior Scientist Conference
(JSC’06), pages 11–12, Apr. 2006.

[9] Eric Armengaud. Low Level Bus Traffic Replay for the Test and Debugging
of Time-Triggered Communication Systems. In IEEE Workshop on Design &
Diagnostics of Electronic Circuits & Systems (DDECS’06), pages 155–156, Apr.
2006.

[10] Eric Armengaud. ExTraCT: A New Approach for the Transparent Test of Time-
Triggered Communication Services. In 18. ITG/GI/GMM Workshop, Testmetho-
den und Zuverlässigkeit von Schaltungen und Systemen, pages 63–67, March 2006.

[11] Eric Armengaud, Florian Rothensteiner, Andreas Steininger, Roman Pallierer,
Martin Horauer, and Martin Zauner. A Structured Approach for the Systematic
Test of Embedded Automotive Communication Systems. In IEEE International
Test Conference (ITC’05), pages 1–8, Nov. 2005.

[12] Eric Armengaud, Andreas Steininger, and Martin Horauer. Efficient Stimulus
Generation for Remote Testing of Distributed Systems – The FlexRay Example.
In Locia Lo Bello and Thilo Sauter, editors, 10th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA’05), volume 1, pages
763–770, Catania, Italy, September 2005.

[13] Eric Armengaud, Andreas Steininger, and Martin Horauer. An Efficient Test
and Diagnosis Environment for Communication Controllers. In Proceedings of
Austrochip 2005, pages 67–70, October 2005.

[14] Eric Armengaud, Florian Rothensteiner, Andreas Steininger, and Martin Horauer.
A Flexible Hardware Architecture for Fast Access on Large Non-Volatile Memo-
ries. IEEE Workshop on Design & Diagnostics of Electronic Circuits & Systems
(DDECS’05), Apr. 2005.

[15] Eric Armengaud, Andreas Steininger, and Martin Horauer. A Method for Bit
Level Test and Diagnosis of Communication Services. In 8th IEEE Workshop on
Design & Diagnostics of Electronic Circuits & Systems (DDECS’05), pages 69–74,
Hungary, April 2005.

[16] Roman Pallierer, Martin Horauer, Martin Zauner, Andreas Steininger, Eric Ar-
mengaud, and Florian Rothensteiner. A Generic Tool for Systematic Tests in
Embedded Automotive Communication Systems. In Embedded World 2005 Con-
ference, pages 42–49, Germany, Feb. 2005.

128

List of Publications

[17] Martin Horauer, Florian Rothensteiner, Martin Zauner, Eric Armengaud, An-
dreas Steininger, Hannes Friedl, and Roman Pallierer. An FPGA based SoC De-
sign for Testing Embedded Automotive Communication Systems employing the
FlexRay Protocol. In Proceedings of the Austrochip 2004 Conference, pages 119–
125, September 2004.

[18] Eric Armengaud, Andreas Steininger, Martin Horauer, and Roman Pallierer. A
Layer Model for the Systematic Test of Time-Triggered Automotive Communi-
cation Systems. In 5th IEEE International Workshop on Factory Communication
Systems (WFCS’04), pages 275–283, Austria, September 2004.

[19] Eric Armengaud, Andreas Steininger, Martin Horauer, and Roman Pallierer. De-
sign Trade-offs for Systematic Tests of Embedded Communication Systems. In
Supplemental Volume of the International Conference on Dependable Systems and
Networks (DSN’04), pages 118–119, Florence, Italy, June 2004.

[20] Eric Armengaud, Andreas Steininger, Martin Horauer, Roman Pallierer, and
Hannes Friedl. A Monitoring Concept for an Automotive Distributed Network
- The FlexRay Example. In 7th IEEE Workshop on Design & Diagnostics of Elec-
tronic Circuits & Systems (DDECS’04), pages 173–178, Strana Lesna, Slovakia,
April 2004.

[21] Eric Armengaud. Commercial Break Detection Device. US. Patent Application:
US 2001-0055463, 2001.

129

Curriculum Vitae

Eric Armengaud

Oct. 6th1978 Born in Paris, France

Sept. 1984 – Elementary school
Jul. 1989 Nogent sur Marne, France

Sept. 1989 – High School, Edouard Branly
Jul. 1996 Nogent sur Marne, France

Jul. 1996 Graduation from High School
with distinction

Sept. 1996 – Studies of Computer Sciences
Jul. 2002 ESIEE Paris

Sept. 1999 – Working student at Philips, Vienna
Aug. 2000 development of µC-based modules

May 2001 – Working student at Siemens, Vienna
Jul. 2001 development of DSP-based modules

Jul. 2002 Master’s Degree in Computer Sciences

Aug. 2002 – Digital Designer
Aug. 2007 Decomsys, Vienna

Since Sept. 2003 PhD Studies and research assistant
Vienna University of Technology

130

