Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universitat Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/). TECHNISCHE

- UNIVERSITAT
I lj WIEN
VIENNA

W I E N Yuiemery o

DIPLOMARBEIT

Quality of Service IP Networking with
Multiservice Admission Control

ausgefithrt zum Zwecke der Erlangung des akademischen Grades eines

Diplom-Ingenieur der technischen Wissenschaften unter der Leitung von

0. Univ. Prof. Dr.-Ing. Harmen R. van As
und
Dipl.-Ing. Brikena Statovci-Halimi
E 388 Institut fiir Breitbandkommunikation

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht an der Fakultéat fiir Informatik der
Technischen Universitat Wien

von
Vincent Chimaobi Emeakaroha

Matr.-Nr. 0027525. Kennzhl. 066 937

Wien, October 16, 2008 e s
(Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Kurzfassung

Das Internet protocol (IP) unterstiitzte urspriinglich nur “Best Effort” Zustel-
lungsstrategien fiir IP Verkehrsfliisse. Mit der schnellen Evolution von Kommu-
nikationsnetzen und der Transformation des Internets in eine kommerzielle Infras-
truktur, ergab sich das Verlangen nach Dienstgiite(Quality of Service). Durch die
Verbindung von urspriinglich isolierten Netzen entstand die Notwendigkeit von
Mehrdienst-Netzen, wodurch die Differenzierung von Dienstgiite, bedingt durch
die unterschiedlichen Dienste, zur zentralen Herausforderung wurde.

Das Streben um Service-Qualitét in [P Netzen zu garantieren fithrt zu Definitio-

nen von Technologien wie Integrated Service, Differentiated Service und Multipro-
tocol Label Switching. Unterschiedliche technologische Ansétze verwenden Ad-
mission Control (AC) Mechanismen um Ressourcen-Verfiigharkeit sicherzustellen,

und dadurch ausreichende Qualitat, in Applikations-Verkehrsfliissen, zu gewahrleisten.
Es gibt unterschiedliche Ansatze fiir Admission Control - der Measurement-Based
Admission Control (MBAC) Ansatz trifft seine Entscheidung, ob Verbindungsan-
fragen angenommen oder abgelehnt werden, anhand von aktuellen Netzlastmes-
sungen.

Diese Diplomarbeit erarbeitet einen Ansatz und eine Implementierung eines Mehr-
dienste Frameworks, um Dienstgiite fiir mehrere priorisierte, unterschiedliche,
Verkehrsfliisse, welche gleichzeitig ein Netz passieren, zu garantieren. Das Frame-
work implementiert vier MBAC Algorithmen um Verkehrsfliisse zu steuern, sowie
einen statischen und einen dynamischen Bandbreitenallokations-Mechanismus um
die Zuteilung der Netzressourcen, zu den Verkehrsklassen, abhangig von ihrer Pri-
oritat, durchzufithren. Die Funktionalitat des Frameworks wird durch sorgfiltige
Netzsimulationen mit VoIP, Video und “Best Effort” Applikations-Verkehrsfliissen,
unter Verwendung des ns-2 Simulators, untersucht. Das Verhalten der Algorith-
men wird durch Evaluierung von Netzauslastung, Paketverlust und Verzogerung,
erforscht.

Abstract

Internet protocol (IP) networks are originally designed to provide best effort de-
livery services to IP traffic lows. With the rapid evolution of communication
networks and the transformation of the Internet into a commercial infrastruc-
ture, demand for quality of service arised. Nevertheless, the interconnection of
earlier isolated networks created the need for multiservice networks where the dif-
ferentiation of service quality provided by the network became the central issue.

The quest to ensure service quality in IP networks leads to the definition of
technologies like the integrated service, differentiated service, and multiprotocol
label switching. Several technology designs use admission control (AC) mech-
anism to provide quality communication by ensuring resources availability for
customer traffic flows. There are different approaches to admission control. The
measurement-based admission control (MBAC) bases its decision of accepting or
rejecting a new flow request, on the measurement of the current network load.

This thesis provides a proposal and an implementation of a multiservice frame-
work for guaranteeing service quality to prioritized multi-class traffic flows, simul-
tanously traversing a packet network. The framework implements four MBAC
algorithms for controlling the flow admission process, as well as a static and a dy-
namic bandwidth allocation mechanism to manage the allocation of the network
resources to the traffic classes according to their priority. The performance of the
framework is proven by thorough network simulations for VoIP, video, and best
effort applications using the ns-2 simulator. The behaviours of the algorithms are
studied by evaluating network utilization, drop rate, packet loss, and the delay
experienced by the traffic flows.

Acknowledgment

This work is the result of my master’s thesis at the Institute of Broadband Com-
munication (Institut fiir Breitbandkommunikation) at the Vienna University of
Technology (Technische Universitit Wien).

I cannot adequately express my deep sense of gratitude and thanksgiving to God
who crowns all human efforts with success and whose love has been carrying me
through. His blessings and protection have always been upon me.

I would like to express my deepest and sincere gratitude to my supervisor, DIPL.-
ING. BRIKENA STATOVCI-HALIMI and 0. UNIV. PROF. DR.-ING. HARMEN
R. VAN As for giving me the opportunity to write this thesis and for their
constructive support and guardiance throughout the work.

With overwhelming joy, i sincerely thank the family of Gisela & Oliver Prisching
for making it possible for me to study here in Austria and for their hospitality,
love and support all these years. May the good lord reward you abundantly.

I remain sincerely grateful to my close friends Lucia € Michael Zehndorfer,
Marianne € Kurt Zehndorfer, Opa Johann Radlherr & Barbara, Oma € Opa
Prisching, Brigitta & Gehard Kuntner without your friendship, love and sup-
port, i couldn’t have achieved this success. [pray that the good Lord shall
reward, guide and protect you all.

I owe lots of appreciations to my best friend and college Bakk.techn Oliver
Gundonner for his time, technical advises and help throughout my studies. I
will ever remain grateful to you.

My profound gratitude goes to em. o. Univ. Prof. Dr Norbert Leser for his
friendship, help and making life enjoyable in Vienna. May the good lord bless
and reward you.

Finally, i dedicate this work to my whole family especially my parents Chief
Prince ¢ Lady FEugene Emeakaroha and my big brother Rev. Fr. Mag. Dr.
Emeka Emeakaroha thank you for steady encouragement, support and love. May
God bless and protect you all.

Vienna, October 2008 Vincent Chimaobi Emeakaroha

11

Contents

Contents II1
List of Figures VII
List of Tables XI
1 Introduction 1
1.1 The Organisation of the Work 3

2 QoS in the Internet 5
2.1 Customer/Provider Service Level Agreement 6
2.1.1 Service Level Agreement Concept 6

2.1.2 Service Level Specification 7

2.1.3 Service Classification 8

2.2 QoS Definitions 9
2.3 QoS Specification and Parameters 11
2.3.1 QoS Parameters 12

2.3.1.1 Intrinsic Parameters 13

2.3.1.2 Operational Parameters 14

2.3.2 Required Conditions for QoS 15

2.4 QoS Technologies 15
2.4.1 Integrated Services (IntServ) 16

2.4.1.1 Packet Classification 18

2.4.1.2 Packet Scheduling and Queue Management . . . 18

2.4.1.3 Admission Control Algorithm 18

24.14 Service Classes 19

2.4.1.5 Guaranteed Service (GS) 20

2.4.1.6 Controlled-Load Service (CLS) 21

24.1.7 RSVPsignallingo 22

2.4.2 Differentiated Services (DiffServ) 24

2.4.2.1 Differentiated Services Classes 25

2.4.2.2 Differentiated Services Traffic Classification and
Conditioning oL 26

CONTENTS

2.4.3 Comparison of Differentiated Service and Integrated Service 29

2.4.4 Multi-Protocol Label Switching (MPLS) 30
2.4.4.1 MPLS Basic Architecture 31
2.4.4.2 MPLS Label Distribution 31
24.4.3 Packet Forwarding in MPLS 32
2.4.4.4 Traffic Engineering in MPLS Networks 33
2.5 SUmMmMAary ... oL 34
Admission Control Description 37
3.1 Required situations for Admission Control 38
3.2 Related Work and Research in this Area 39
3.3 Admission Control Approaches 40
3.3.1 Parameter-based Admission Control 41
3.3.2 Measurement-based Admission Control 42
3.3.2.1 Different MBAC Paradigma 43
3.3.2.2 MBAC Components 45
3.3.2.3 Traffic Descriptor 46
3.3.2.4 Admission Decision Algorithms 47
3.3.2.5 Measurement Mechanism 49
3.4 A Multiservice Framework Using MBAC inns-2 51
3.4.1 The Enhanced Link for the New Framework 54
3.4.1.1 Signal-Support 54
3.4.1.2 Queue Scheduler 54
3.4.1.3 Classifier 54
3.4.1.4 Measurement, Estimation, Admission Control . . 55
3.4.2 Dynamic Bandwidth Allocation Mechanism 55
3.5 Summary ... 58

Studying Network Performance with the Network Simulator Tool
(ns-2) 59
4.1 Basicsofns-2 59
4.1.1 Tool Concept 60
4.1.2 Target Groups, Goals, Components, and Features 61
4.1.3 Cautions forns-2o 63
4.2 Sources and Installation 63
4.2.1 System Requirements and Platform 63
4.3 Methodic Teaching with ns-2 Tool 64
4.3.1 Lecture 1: Introduction to Tcl/OTecl Programming Language 64
43.1.1 Tcl/OTcl Basics and Syntax 65

4.3.1.2 File Operation and Application Command execu-

tion 66
4.3.1.3 Tcl Control Structures 67

4.3.1.4 Adding New Commands to Tel 68

CONTENTS Vv
4.3.1.5 Object-Oriented Programming in OTcl 69
4.3.1.6 Lecture Assignments 71
4.3.2 Lecture 2: Writing Simulation Scripts and Simulating in ns-2 71
4.3.2.1 Initialization and Trace Setup 72
4.3.2.2 Create Topology and Nam Setup 73
4.3.2.3 Create Transport Agents and Application Sources 75
4.3.2.4 Simulation Process and Termination 78

4.3.2.5 Nam Visualization and Simulation Result Post-
Processing oL 81
4.3.2.6 Lecture Assignments 86
4.3.3 Lecture 3: Adding Custom Functionality tons-2 86
4.3.3.1 ns-2 Directory Structure Overview 87
4.3.3.2 How to Add a New Class Object to ns-2 89
4.3.3.3 Testing and Result of the New Class Object . . . 93
4.4 Summary ... 95
5 Code Description of the Multiservice Framework 97
5.1 Multiservice Queue Scheduler Implementation 98
5.1.1 Queue Components description 99
5.2 Signalling Mechanism Implementation 99
5.2.1 Signalling Components Description 100
5.3 Multiservice Enhanced Link Implementation 102
5.3.1 Multiservice Link Components Description 103
5.4 Implementation of Admission Control Algorithms 104
5.4.1 Admission Control Classes Description 106
5.4.1.1 Measured Sum Algorithm Code Description . . . 107

5.4.1.2 Hoeffding Bounds Algorithm Code Description . 107
5.4.1.3 Acceptance Region Tangent at Peak Algorithm

Code Description 109

5.4.1.4 Acceptance Region Tangent at Origin Algorithm
Code Description 110
5.4.2 Estimator Classes Description 111
5.4.2.1 Time-Window Estimator Code Description 113
5.4.2.2 Exponential Averaging Estimator Code Description113
5.4.2.3 Point Sample Estimation Code Description . . . 114
5.5 SUmmary ... 114
6 Simulation Scenarios and Results 115
6.1 Static Bandwidth Allocation Mechanism 116
6.1.1 Simulation with the Two-Node Network Topology 116
6.1.1.1 Simulation Scenario One 117
6.1.1.2 Simulation Scenario Two. 123
6.1.2 Simulation with the Eight-Node Network Topology 129

VI CONTENTS
6.1.2.1 Simulation Scenario One 129
6.1.2.2 Simulation Scenario Two. 135
6.1.3 Performance Comparison of the Two Network Topologies . 140
6.2 Dynamic Bandwidth Allocation Mechanism 143
6.2.1 Simulation with the Two-Node Network Topology 143
6.2.1.1 Simulation Scenario One 143
6.2.1.2 Simulation Scenario Two. 149
6.2.2 Simulation with the Eight-Node Network Topology 154
6.2.2.1 Simulation Scenario One 154
6.2.2.2 Simulation Scenario Two. 160
6.2.3 Performance Comparison of the Two Network Topologies . 166
6.3 Performance Comparison: Static vs. Dynamic Bandwidth Alloca-
tion Mechanism 168
6.3.1 General Comments About Achieved Results 168
6.3.2 Selected Results and Comparison 169
6.4 Summary 170
7 Conclusions 171
Bibliography 173
Index 187

List of Source Codes 189

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10

2.11
2.12
2.13

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2

Example of service level agreement 6
Inter—provider SLA 8
A general QoS modelo 10
The service intrinsic and operational parameters 13
The integrated service model 17
The integrated service class types 19
RSVP signalling mechanism in IntServ 23
DiffServ network modelo 24
Traffic classification and conditioning clock 27
The comparison of DiffServ, IntServ and best effort in term of QoS

guarantee level and implementation complexity 29
The MPLS header 31
Creation and processing of MPLS header 32
Combination of three QoS technologies 35
Components of measurement-based admission control 46
Token bucket operation 47
Time-window measurement mechanism 50
Existing single service framework inns-2 52
Enhanced linko 54
Example of class hierarchy design 60
Asimplex link 74
Nam user interface 82
Nam output of simulated example script 82
Tracing objects in simplex-link 84
Trace entry fieldso 84
ns-2 directory structureo 87
Class linkage between hierarchies 89
ns-2 directory structure extendedo 94
Multiservice framework components 97

UML class diagram of multi-queue scheduler 98

VIII LIST OF FIGURES
5.3 Signalling mechanism class diagram 100
5.4 Multiservice link class diagram 102
5.5 Admission control and estimator class diagrams 105
6.1 Two-node network topology 116
6.2 Actual and estimated utilization: MS algorithm; two-node topol-

0OgY; SCENATI0 ONE o o o e e 119
6.3 Actual and estimated utilization: HB algorithm; two-node topol-

OgY; SCENATIO ONE v o v o e e 120
6.4 Actual and estimated utilization: ACTO algorithm; two-node topol-

OgY; SCENATIO ONE vt e 121
6.5 Actual and estimated utilization: ACTP algorithm; two-node topol-

OgY; SCENATI0 ONE v o e e 122
6.6 Actual and estimated utilization: MS algorithm; two-node topol-

ogy; scenario two Lo 124
6.7 Actual and estimated utilization: HB algorithm; two-node topol-

ogy; scenario two Lo 125
6.8 Actual and estimated utilization: ACTO algorithm; two-node topol-

ogy; scenario two Lo 127
6.9 Actual and estimated utilization: ACTP algorithm; two-node topol-

ogy; scenario two 128
6.10 The eight-node network topology 129
6.11 Actual and estimated utilization: MS algorithm; eight-node topol-

OgVY; SCENATI0 ONE o v e e 131
6.12 Actual and estimated utilization: HB algorithm; eight-node topol-

0OgY; SCENATIO ONE o o e e 132
6.13 Actual and estimated utilization: ACTO algorithm; eight-node

topology; scenario one 133
6.14 Actual and estimated utilization: ACTP algorithm; eight-node

topology; scenario one 134
6.15 Actual and estimated utilization: MS algorithm using eight-node

topology for scenario two 136
6.16 Actual and estimated utilization: HB algorithm; eight-node topol-

ogy; scenario two oo 137
6.17 Actual and estimated utilization: ACTO algorithm; eight-node

topology; scenario twoo 138
6.18 Actual and estimated utilization: ACTP algorithm; eight-node

topology; scenario twoo 140
6.19 Delays experienced by VoIP traffic for scenario one 142
6.20 Delays experienced by VoIP traffic for scenario two 142
6.21 Actual and estimated utilization: MS algorithm; two-node topol-

OgY; SCENATIO ONE« . o o v vt e 145

LIST OF FIGURES IX

6.22

6.23

6.24

6.25

6.26

6.27

6.28

6.29

6.30

6.31
6.32

6.33

6.34

6.35

6.36

6.37
6.38

Actual and estimated utilization: HB algorithm; two-node topol-

OgY; SCENATIO ONE v o o e e 146
Actual and estimated utilization: ACTO algorithm; two-node topol-

OgY; SCENATI0 ONE o o e 147
Actual and estimated utilization: ACTP algorithm; two-node topol-

OgY; SCENATIO ONE o vt e 148
Actual and estimated utilization: MS algorithm; two-node topol-

ogy; scenario two 150
Actual and estimated utilization: HB algorithm; two-node topol-

ogy; scenario two 151
Actual and estimated utilization: ACTO algorithm; two-node topol-

ogy; scenario two Lo 152
Actual and estimated utilization: ACTP algorithm; two-node topol-

ogy; scenario two Lo 154
Actual and estimated utilization: MS algorithm; eight-node topol-

OgY; SCENATIO ONE o vttt 156
Actual and estimated utilization: HB algorithm; eight-node topol-

OgY; SCENATIO ONE o o o v e e 157
ACTO algorithm using eight-node topology for scenario one . . . 158
Actual and estimated utilization: ACTP algorithm; eight-node
topology; scenario one 159
Actual and estimated utilization: MS algorithm; eight-node topol-

ogy; scenario two L. 161
Actual and estimated utilization: HB algorithm; eight-node topol-

ogy; scenario two Lo 162
Actual and estimated utilization: ACTO algorithm; eight-node
topology; scenario twoo 164
Actual and estimated utilization: ACTP algorithm; eight-node
topology; scenario two Lo 165
Delays experienced by VoIP traffic for scenario one 167

Delays experienced by VoIP traffic for scenario two 168

LIST OF FIGURES

List of Tables

2.1
2.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19

6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29

Assured forwarding code point 26
IntServ and DiffServ complementary features 30
Simulation scenarioone L. 117
Measured sum performance results 117
Hoeffding bounds performance results 119
Acceptance region tangent at origin performance results. 121
Acceptance region tangent at peak performance results 122
Simulation scenario two 123
Measured sum performance results 124
Hoeffding bounds performance results 125
Acceptance region tangent at origin performance results. 126
Acceptance region tangent at peak performance results 127
Measured sum performance results 130
Hoeftding bounds performance results 131
Acceptance region tangent at origin performance results. 132
Acceptance region tangent at peak performance results 134
Measured sum performance results 135
Hoeffding bounds performance results 136
Acceptance region tangent at origin performancs results 138
Acceptance region tangent at peak performance results 139
Performance comparison of the network topologies using static al-

located bandwidth 141
Measured sum performance results 144
Hoeffding bounds performance results 145
Acceptance region tangent at origin performance results. 146
Acceptance region tangent at peak performance results 148
Measured sum performance results 149
Hoeftfding bounds performance results 150
Acceptance region tangent at origin performance results. 152
Acceptance region tangent at peak performance results 153
Measured sum performance result 155

Hoeffding bounds performance results 156

XII LIST OF TABLES
6.30 Acceptance region tangent at origin performance results. 158
6.31 Acceptance region tangent at peak performance results 159
6.32 Measured sum performance results 160
6.33 Hoeffding bounds performance results 162
6.34 Acceptance region tangent at origin performance results. 163
6.35 Acceptance region tangent at peak performance results 164
6.36 Performance comparison of the two network topologies using dy-

namic allocated bandwidth 166
6.37 Performance comparison of the static and dynamic bandwidth al-

location mechanism 169

1 Introduction

Traditionally, the Internet Protocol (IP) networks have solely provided a “best ef-
fort” delivery service for IP traffic. In these best-effort IP networks, all traffic
is treated equally, it is processed as fast as possible, but there is no guarantee
of actual delivery or how much could be delivered (throughput). This best ef-
fort mechanism has proven to be scalable, but with the increase in the number
of connected host, it makes demands exceed network capacity. This condition
noticeably degrades the delivered service and causes situation like excess packet
loss, long delay and jitter.

In the last years, a big growth of Internet applications and a high increase of Inter-
net users are experienced. These applications which include video conferencing,
voice over IP, and video/audio streaming brought a high growth in demand for
bandwidth and quality requirement. Nevertheless, the ongoing transformation of
the Internet into a universal commercial infrastructure forces new changes to IP-
Service infrastructure, both in bandwidth demand and in service requirements.
Electronic sales, banking, finance, and collaborative work are few examples of this
trend. They require real-time transfer of information, this consequently means
that the [P Network must be upgraded in a fashion to fulfill these requirements.
Hence the integration of multiservice over the Internet, is one of the main rea-
sons behind the essence of provisioning quality of service (QoS) guarantee to end
users. For an Internet-based web service the quality of service percieved by its
users is the dominant factor for success [14].

The telecommunication environment in the recent years experienced the deregu-
lation process, which brought many meaningful changes in the telecommunication
laws that made increase in competition among service/network providers possible.
The high competition is mainly provoked by the high performance requirement
of the customers. Consequently, providers have to differentiate their products
from those of their competitors. This requires the description of the roles of all
entities that take part in the service provision and their requirements. The tool
used to formalize the requirement of these entities is the service level agreement
(SLA). An SLA is the fully specified and documented result of a negotiation be-
tween two parties; a customer and a service /network provider, that defines service
characteristics, responsibilites and priorities of every party. An SLA may include

2 Introduction

statements about tariffing and billing, service delivery and compensations [77].

According to [19], QoS (either pronounced as “Q-O-S” or “kwos”) is the term
used to describe the science of engineering a network to make it work well for
applications by treating traffic from applications differently depending upon their
SLA requirement.

Several techniques and technologies have been developed to meet the demand of
provisioning guaranteed QoS to end users. They include integrated service, re-
source reservation protocol, differentiated service, multiprotocol label switching,
etc. These technologies work toward guaranteeing specific aspects of services, for
example guaranteeing no packet loss and bounded delay for Voice over IP (VoIP)
traffic flows. Some aspects of services like reliability, availability and dependabil-
ity could be grouped as quality of communication services.

The QoS mechanism pointed out so far requires that some of the network com-
ponents have to make decision at some point in time about admitting new flows
into the network. Admission control mechanism provides decision algorithms
that can be implemented in a router or gateway host to decide whether a new
request could be admitted into the network without compromising the agreed
QoS commitment of the existing flows in the network (RFC 1633) [7].

There are many different approaches to admission control which are discussed
in detail in this thesis. Traditional approaches to admission control require an
apriori specification of traffic characteristics in form of particular parameters.
The admission decision is then based on comparing the specified parameters
with the network load. This is the simplest and widely implemented model, and
it guarantees absolute bound to QoS parameters with the drawbacks of poor
network ultilization. This model is called parameter-based admission control

algorithms (PBAC).

Another approach is the measurement-based admission control mechanism (MBAC).
This approach does not rely on static specified parameters, rather its admission
decision is based on the measured traffic characteristic in the network. This
approach doesn’t guarantee absolute bound on QoS parameters but promises

a reliable bound. Thus this approach achieves high network utilization at the
expense of weakened QoS commitments.

IP is becoming the convergence technology for multimedia services and conse-
quently QoS is one of the hottest topics in IP networking. Although researchers
have addressed many isolated areas of (QoS provisioning in IP networks includ-
ing admission control algorithms, little attension has so far been paid to the
measurement-based admission control algorithms for multiservice traffic flows.
In this master thesis, this deficiency is addressed by extending the existing
measurement-based admission control modules in ns-2 to accomodate multiser-
vice traffic flows. The algorithms are further extended with two resource alloca-

1.1 The Organisation of the Work 3

tion mechanism to share the network resources among the traffic classes.

Measurement-based admission control in computer networks uses three methods
of verification: formal methods, experiments in real networks, or network simu-
lation [56]. Formal methods are not suitable for measurement-based admission
control algorithms, because they are based on measurement of the current net-
work traffic flows. Experiments in laboratory for MBAC is expensive and not

flexible. So network simulation is a well suited and widely used method of veri-
fying MBAC algorithms.

1.1 The Organisation of the Work

This master thesis is organised in seven chapters. A short description of their
contents is given in the following:

o Chapter 2 QoS in the Internet: This chapter provides an introduction and
overview to the research area quality of service. QoS practically involves
a range of functions and features like classification, scheduling, policing,
and shaping within the context of QoS technologies (e.g Integrated service,
Differentiated service) in order to ensure that a network delivers the SLA
characteristics required by applications. Service level agreements (SLA)
provide the context for IP quality of service. Application and service SLA
requirements are inputs and also the qualification criteria for measuring
success in a QoS design. Chapter 2 further compares the differentiated
service with the integrated service and then discusses the multiprotocol

label switching (MPLS) which is a traffic routing and forwarding mechanism
introduced by IETF.

o Chapter 3 Admission Control Description: This chapter discusses the ad-
mission control mechanism, as a process used to determine if a new flow can
be granted its requested QoS without affecting those flow already granted
admission. The admission control process consist of different approaches
and algorithms. Some of the approaches are still evolving. Chapter 3
presents different approaches, algorithms and mechanisms for measurement-
based admission control. It further discusses the new proposed multiservice
framework implemented to accomodate multiservice admission control in
ns-2.

o Chapter 4 Studying Network Performance with the Network Simulator Tool
(ns-2): The network simulator tool version 2 (ns-2) is an open source soft-
ware developed and maintained at the information science institute (ISI)
of the unversity of southern California. This chapter describes the usage of
this tool, starting from downloading, installing, simulating, gathering and
processing the achieved simulation results. The chapter further presents

Introduction

lectures with this tool that are beneficiary to researchers unfamiliar with
the tool and for students interested in computer networks, to give them
some practical feeling of how data are transported over networks.

Chapter 5 Code Description of the Multiservice Framework: The code used
to extend the existing MBAC algorithms in ns-2 to accomodate the simu-
lation of multiservice traffic flows is described in this chapter. The chapter
describes also the implementation of the bottleneck link for building the
topology through which multiservice traffic transverses.

Chapter 6 Stmulation Scenarios and Results: This chapter describes two dif-
ferent simulation scenarios and two network topologies used for the simula-
tion to verify the performance of the extended existing MBAC algorithms in
ns-2 (multiservice framework). There are two bandwidth allocation mech-
anism integrated in the framework. One of the mechanism statically share
the total bandwidth among the traffic classes and the other also does band-
width sharing but with the extra capability of dynamically borrowing best
effort class bandwidth to the higher priority classes. These two mechanisms
are simulated and their achieved results compared.

Chapter 7 Conclusion: This chapter concludes the master thesis and sum-
marizes once more the essential points of the research work.

2 QoS in the Internet

The Internet protocol (IP) was created as a connectionless network layer pro-
tocol that makes no attempt to distinguish between different application types.
Hence with the introduction of new delay or loss sensitive applications the IP
networks are moving in current time from best effort level to networks that can
provide different service levels. The resource requirements of these applications
ranges from real-time delay sensitive interactive applications like voice over IP
that requires low packet loss, bounded delay and jitter, to delay tolerant appli-
cations like e-mail and file transfer protocol (FTP). The essential difference in
handling real-time delay sensitive and delay tolerance applications are that real—
time applications must receive data within some short specified period of time
otherwise the packets become worthless. In respect of this, Internet providers are
facing the challenge of designing their networks to accommodate the customer’s
requirement of fast, reliable and differentiated services.

The term service in the telecommunications context is very popular. It boils
down to the capability to exchange information through a telecommunication
medium, provided to a customer by a service provider. Services have well specified
features and parameters. The international telecommunication union (ITU)

defines service in an IP environment (IP-based service) as a service provided by
the service plane to an end user and which utilises the IP transfer capabilities and
associated control and management functions, for delivery of the user information
specified by the service level agreements (ITU-T Y.1241) [42] . ITU describes
parameters, attributes and classes of [P-based services. The term quality can
be defined as the totality of characteristics of an entity that bear on its ability
to satisfy stated and implied needs. This definition is not so exact. In fact,
the meaning of this term is very broad. For example, in telecommunications the
term quality is commonly used in determining whether the service satisfies the
user’s expectations. The judgement, however, depends on various criteria related
to the party rating the service. Customers assess it on the basis of a personal
impression and in comparison to their expectations, while an engineer expresses
quality in terms of technical parameters. This discrepancy may sometimes lead to
misunderstandings. Hence, the term QoS is used in many meanings ranging from
the user’s perception of the service to a set of connection parameters necessary
to achieve particular quality of service. Before diving into the definitions and

6 QoS in the Internet

details of quality of service, it is considered wise to first of all take a closer look
at the service level agreement, which provides qualification criteria for measuring
success in a QoS design [19].

2.1 Customer/Provider Service Level Agreement

Due to the deregulation process experienced in the telecommunication environ-
ment in the last decade, there arises high competition among service/network
providers. This situation is further provoked by high performance requirements
from customers arising due to the introduction of new applications. The ser-
vice/network providers moved to upgrade their services so as to remain compet-
itive and maintain their customers. Consequently this caused the definition of
roles of all the entities that take part in service provisioning and their relationship.
i.e the responsibility of the provider to assure quality of service required by the
customer and the responsibility of the customer to compensate the provider. A
useful tool to formalise the above mentioned inter-relationship between customer
and provider is the service level agreement (SLA) .

2.1.1 Service Level Agreement Concept

SLA provides the context for IP quality of service. Application and service SLA
requirements are the inputs and also the qualification criteria for measuring suc-
cess in a quality of service design.

The ITU recommendation E.860 [39] defined service level agreement as a formal
agreement between two or more entities that is reached after a negotiating activity
with the scope to assess service characteristics, responsibilities and priorities of
every party. An SLA may include statements about performance, tariffing and
billing, service delivery and compensations. The content of the SLA varies de-
pending on the service to be provisioned and includes the QoS parameters needed
for the negotiated agreement [56]. Figure 2.1 shows graphically an example of
SLA between a user and a service provider.

) D)

Service Level Agreement

Service description
QoS agreement
Legal issues
Billing

Provider — m— User

C

Figure 2.1: Example of service level agreement

The Internet engineering task force (IETF) introduced another definition of SLA

2.1 Customer/Provider Service Level Agreement 7

in context of differentiated services. Based on [6], an SLA is a service contract
between a customer and a service/network provider that specifies the forwarding
service a customer should receive. A customer may be a user, an organisation,
or other DiffServ domain. An SLA may include service conditioning rules which
comprises a traffic conditioning agreement in whole or in parts. In order to solve
the problem of assurance of QoS in a multi-provider environment, the concept of
one stop responsibility was introduced [56]. This concept allows a user to retain a
primary service provider with whom he agreed on SLA, as the only one responsible
for the overall QoS the user receives. According to [55], service provider maybe an
operator, a carrier, an Internet service provider (ISP), or an application service
provider (ASP). Also the term customer could refer to companies, organisations
or individuals that make use of telecommunication services provided by a service
provider.

The service level agreement should be made up of service level objectives, service
monitoring component, financial and compensation component, an expiry date,
and authentication component. Because of this composition, the SLA should be
formulated and expressed in a way the customer understands. Furthermore, it
should contain rules governing the consequences of breaking the contract by any
party. By means of an SLA, the provider can proof to the customer that the
agreed services are being delivered and the customer can complain or demand
compensation from the provider if the agreed service is not being delivered.

Normally, an SLA is seen as a contract between a customer and a service provider.
This is referred as intra-domain SLA. SLA is not limited to this, but could also
exist among different service providers which is then known as inter-ISP SLA. Fig-
ure 2.2 shows how the inter-provider SLA could be achieved. An SLA is created
when a customer subscribes to a service offered by a service provider organisa-
tion. First of all the customer and the provider outlines their contract and agree
to it. After this, the provider makes the necessary configuration like granting
access, setting up the billing mechanism, to accommodate the new subscription.
Lastly, the quality of service requirement from the customer are mapped into
SLA parameters.

2.1.2 Service Level Specification

The service level specification (SLS) represents the technical part of an SLA. It
is a set of technical parameters and their associated semantics that describes the
service to be provisioned (network availability, throughput, latency). An SLS can
be defined in template, then for a specific customer this template is instantiated,
for example by setting the actual values per threshold.

The focus on service level rather than on network level enables the definition of
service/SLA/QoS independently from the underlying network technology [55].
Service should be exactly defined by using service level specifications. The fol-

8 QoS in the Internet

Provider

SLA Provider L T S
""""""""""""" User
User .

Provider
Provider) T
User

Figure 2.2: Inter—provider SLA

lowing type of information should be described:

e QoS metrics and corresponding thresholds that must be guaranteed by the
service provider.

e Service performance measurement methods, measurement periods, provided
reports (contents, format, frequency).

e Service schedule (activation time period).

The SLS should also define commitment over aggregated parameters. For exam-
ple maximal unavailability time for all the service access points. Nevertheless, it
should support various network interconnection models (e.g cascade, star, hub)
and various traffic models. Currently, there exist different types of SLS but they
all are based on the following criteria:

1. Specified service: The scope of services that can be defined with the SLS
template.

2. Information model: The model of the SLS including categories used to
classify the data.

3. Data presentation: The formalism used to describe the SLS data (e.g.,
XML, DTD, UML).

To guarantee that customers respect the agreements, traffic conditioning compo-
nents (classifier, meter, shaper, dropper) are configured at the boundary between
provider and customer.

2.1.3 Service Classification

Service can be consolidated in different categories. There are many ways to
consolidate distinct services, their classification depends on the SLS parameters.

2.2 QoS Definitions 9

Service classification in IP networks is known as class of service (CoS). It is
a broad term describing a set of characteristics available with a specific service.
Both ITU and European telecommunication standard institute (ETSI) have their
own definition for CoS, but IETF defined CoS as the definition of the semantics
and parameters of a specific type of QoS [15]. Services belonging to the same
class are described by the same set of parameters, which can have qualitative
or quantitative values. Usually, the set of parameters within the class is defined
without assignment of concrete values, but these values can be bounded.

The idea of service classification is relatively mature. For example the original IP
was intended to provide a simple way of classifying packets, but this capability
of IP is rarely used. Traffic in asynchronous transfer mode (ATM) network is
divided into classes as well. Currently, concrete service classes have been defined
within the IP QoS architecture proposed by IETF, such as IntServ and DiffServ.

The following three classes of services are defined within the IntServ architec-
ture: guaranteed service, controlled load service, and best effort service. Also in
DiffServ architecture, the classification is based on the differentiated service code
point (DSCP) coding. This coding allows the definition of 64 classes of service.
Details about DiffServ are given in subsection 2.4.2 and for IntServ in subsection
24.1.

2.2 QoS Definitions

The term service is defined in telecommunications as the capability to exchange
information through a telecommunication medium, provided to a customer by a
service provider.

The ITU and ETSI used the quality of service definition first stated in the ITU
document E.800 [38] as the collective effect of service performance which deter-
mines the degree of satisfaction of a user of the service. Further, the definition of
quality of service was refined in 2002 and documented in E.860 [39] as the degree
of conformance of the service delivered to a user by a provider in accordance with
an agreement between them.

There exist three notions of QoS as defined in [34], named intrinsic, perceived,
and assessed QoS. The intrinsic QoS relates to service features originating from
technical aspects. Thus the intrinsic quality is decided by the network design and
the provisioning of network access. Intrinsic quality is evaluated by comparing
measured characteristic against expected performance characteristic. How the
user perceived the service does not influence the grading of intrinsic QoS. The
assessed QoS manifests in the decision of the customer whether to continue using
the service or not. Such decisions depends mostly on the perceived quality, service
price, and response of the provider to customer complaints and problems. It

10 QoS in the Internet

follows that even a customer service representative’s attitude to a client maybe
an important factor in rating the assessed QoS [26]. Neither ITU nor ETSI deals
with the assessed QoS.

As the above definition suggests, QoS in the ITU/ETSI approach adheres mainly
to perceived QoS rather than to intrinsic QoS. Nevertheless, they introduce the
idea of network performance to cover technical facets. They make a clear distinc-
tion between QoS, understood as something focused on user—perceivable effects,
and network performance, encompassing all network functions essential to provide
a service. QoS parameters are user—oriented and do not directly translate into
network parameters. On the other hand, the network performance parameters
determine the quality observed by customers but are not necessarily meaningful
to them [33]. But there must exist a consistent mapping between the QoS and
network performance parameters.

ITU/ETSI approach IETF approach
QoS perceived |, QoS requirements
! by the customer of the customer
i Perceived QoS T QoS l
: QoS achieved — QoS offered
by the provider N by the provider
Intrinsic QoS Network performance Quality of service

Figure 2.3: A general QoS model

Figure 2.3 shows the relationship between the network performance and QoS.
Network performance, as mentioned above, corresponds to intrinsic QoS. It is
defined in E.800 [38] as the ability of a network or network portion to provide
the functions related to communications between users. Network performance
is defined and measured in terms of parameters of particular network compo-
nents involved in provisioning a service. These parameters are the key to net-
work efficiency and effectiveness in service provisioning. A high level of network
performance is achieved by appropriate system design, configuration, operation,
and maintenance. Some network performance parameters are defined by I'TU in
E.800, Y.1541, G.1000, and 1.350 recommendations [38, 44, 40, 41]. To cover
important aspects of QoS, I'TU and ETSI distinguish four particular definitions
(Figure 2.3):

e QoS achieved by the provider.

e QoS offered by the provider.

2.3 QoS Specification and Parameters 11

e QoS perceived by the customer.
e QoS requirements of the customer.

The customer requirements state their preferences for a particular service quality.
They may be expressed in technical or nontechnical language understandable to
both the customer and the service provider. The provider designs the service
offered to the customer on the basis of the customer’s requirements, even though
the service provider may not always be in a position to meet the customer’s
expectations. The QoS offered may be influenced by the considerations of a
service provider’s strategy, benchmarking, service deployment cost, and other
factors [40]. The quality requirements are mostly expressed in values assigned
to parameters understandable to the customer e.g., a basic telephony service
availability is planned to be 99.95% in a year with not more than 15-minute
break at any one occasion, and not more than 3 breaks over the year. The QoS
achieved is usually expressed by the same set of parameters. Comparison of the
quality offered and achieved gives the service provider a preliminary grading of
perceived service performance. However, the most important feedback, from the
service provider’s perspective, is QoS perceived by the customer, who finally rates
the service quality comparing the experienced quality to his/her requirements.
The ITU defines a set of QoS parameters in the E.800 recommendation [38].

QoS and network performance are closely interrelated. Ensuring high network
performance is crucial to a successful service provision. The offered QoS param-
eters can be grouped into network— and non—network-related parameters. The
former, in turn, can be translated into network performance parameters. These
parameters are assigned target values. The achieved network performance is ob-
tained on the basis of a parameter measurement. This serves as feedback to the
network provider. The combination of the network performance achieved and
non-network-related QoS constitutes the QoS achieved.

2.3 QoS Specification and Parameters

QoS specification is concerned with capturing application level QoS requirements
and management policies. QoS specification is generally different at each system
layer and is used to configure and maintain QoS mechanisms residing in the
end-system and network. For example, at the distributed system platform level
QoS specification is primarily application—oriented rather than system—oriented.
Consideration in lower levels such as tightness of synchronization of multiple
related audio and video flows, the rate and burst size of flows, or the details
of thread scheduling in the end-system should all be hidden at this level [84].
QoS specification is therefore declarative in nature: applications specify what is
required rather than how this is to be achieved by underlying QoS mechanisms.
Quality of service specification encompasses the following:

12 QoS in the Internet

o Flow synchronization specification: This characterizes the degree of syn-
chronization (i.e.tightness) between multiple related flows. For example,
simultaneously recorded video perspectives must be played in precise frame
by frame synchrony so that relevant features may be simultaneously ob-
served.

e Flow performance specification: This expresses the user’s flow performance
requirements. The ability to guarantee traffic throughput rates, delay, jit-
ter and loss rates, is especially relevant for multimedia communications.
These performance-based metrics are likely to vary from one application
to another. To be able to commit necessary end-system and network re-
sources QoS frameworks must have prior knowledge of the expected traffic
characteristics associated with each flow before resource guarantees can be
met.

e Level of service: This specifies the degree of end—to—end resource commit-
ment required (e.g, deterministic, predictive and best effort). While the
flow performance specification permits the user to express the required per-
formance metrics in a quantitative manner, the level of service allows these
requirements to be refined in a qualitative way to allow a distinction to
be made between hard and soft performance guarantees. Level of service
expresses a degree of certainty that the QoS levels requested at the time of
flow establishment or renegotiation will be honoured.

o (Cost of service: This specifies the price the user is willing to pay for the
level of service. Cost of service is a very important factor when considering
QoS specification. If there is no idea of cost of service involved in QoS
specification, there is no reason for the user to select anything other than
maximum level of service, (e.g., guaranteed service).

2.3.1 QoS Parameters

This subsection defines several TP QoS parameters supported by systems, in-
cluding intrinsic and operational parameters. A quantification of these parame-
ters constitutes an entire line of work, allowing to touch on the most important
requirements based on IP. The ITU telecommunication standardization sector
(ITU-T) , as well as the Internet engineering task force (IETF), and IP perfor-
mance metrics (IPPM) working group, have made efforts to define a standard
framework and provide definitions for IP QoS parameters. The ITU-T docu-
mented the results of its efforts as regards to standardizing IP QoS parameters
in the Y.1540 recommendation [43]. The IPPM standard parameter framework
is described in (RFC 2330) [68], where additional requests for comments (RFCs)
exist for each IP QoS parameter. Asin [33], IP QoS parameters are divided into

2.3 QoS Specification and Parameters 13

two separate groups, namely the service—intrinsic group of parameters and the
operational parameters, as represented in Figure 2.4.

One — way delay

One — way packet loss /
Others /

Service intrinsic
parameters

Quiality of Service

)) (Qos)
Time to restore service

Mean time between failures \

Senvice availability \
Others \

Operational
parameters

Figure 2.4: The service intrinsic and operational parameters

2.3.1.1 Intrinsic Parameters

The intrinsic QoS parameters expose the exact requisites that must be met for
the service to conform to its SLA commitment. In packet networks, the intrinsic
QoS parameters are expressed by the following [33]:

e Throughput: This represents the amount of data moved successfully from
one place to another in a given period of time. Capacity and available
bandwidth are the two bandwidth-related parameters.

e Delay: Defined as the notion of time experienced by packets while passing
through the network. It may be considered either in an end-to—end relation
or with regard to a particular network element. Packet delay has following
components: network access delay, propagation delay, transmission delay,
and queueing delay.

e Jitter: Expressed as one-way IP packet delay variation (IPDV) in RFC
3393 [18]. RFC 2679 [1] defined it as the difference between the one-way
delay of a selected pair of packets within the same stream, going from one
measurement point to the other measurement point.

e Packet loss rate: This is usually defined as the ratio of the number of
undelivered packets to number of sent packets.

e Network availability: Defined as the probability that the network can
perform its required functions.

These parameters describe the treatment experienced by packets while passing
through the network. They can be translated into particular parameters of the

14 QoS in the Internet

network architecture components used to ensure QoS. They are finally mapped
into the configuration of network elements. They are also closely connected with
protocols used in the network and equipment abilities.

QoS is usually an end-to—end characteristic of communication between end hosts.
It should be ensured along the whole path between peers, but the path may cross
several autonomous systems belonging to various network providers, thus perfor-
mance of all autonomous systems contributes to the final service quality. It is to
a large extent difficult to define the parameters of perceived QoS, because they
depend not only on the network architecture, nor technique, nor mechanisms
used to ensure service quality. They are usually expressed in different terms but
should be always somehow translatable into specific network parameters regard-
less of the network architecture. An example of an extensive set of parameters
of the perceived QoS is provided by ITU in the E.800 recommendation [38].
These parameters are grouped into four subsets namely: service support, service
operability, service servability and service security.

2.3.1.2 Operational Parameters

The operational parameters are related to the performance of an organization and
reflect the overall quality of the organization’s operational processes. Operational
parameters are always service/technology—independent, they have therefore quite
general characters. This implies that the definition of these operational parame-
ters can be reused in service level agreements (SLAs) for different services more
often than parameters directly depending on the provisioned service. The main
operational parameters are described as follows:

e Service availability percentage (SA): This is defined as a percentage
that indicates the time during which a contracted service specified in an
SLA is operational at its respective service access points (SAPs) with re-
spect to the scheduled service time. The service availability percentage thus
indicates how well the service provider is doing in providing the customer
with the service that it requested. The service availability parameter is the
most important operational parameter to customers.

e Reliability performance: According to ITU-T recommendation E.800,
it is defined as the ability of an item to perform a required function under
stated conditions for a given time interval.

e Mean time to failure (MTTF): This is expressed as the expectation of
the time to failure [38].

e Mean time to restoration (MTTR): Defined as the expectation of the
time required to restore a device to an available status once it has entered
a state of unavailability.

2.4 QoS Technologies 15

e Mean time between failures (MTBF): This is the average time be-
tween service outages applicable to a given period of observation [38]. It
can be considered also as the mean time to failure plus the mean time to
restoration.

The ITU-T recommendation E.800 notes that QoS can be characterized by the
combined aspects of service support, operability, serveability, security (integrity)
and other factors specific to each service. QoS thus depends on aspects directly
related to network performance but is also influenced by so called human aspects,
for example the ease of use of a particular service, which is a service aspect covered
by operability performance. Each of the aspects should be considered as being
characterized by many parameters.

2.3.2 Required Conditions for QoS

In order to provide QoS for more demanding of applications types (e.g., voice,
multimedia), a network must satisfy two necessary conditions. The first con-
dition is that bandwidth must be guaranteed for an application under various
circumstances, including congestion and failures. The second condition is that
as an application flow traverses the network, it must receive the appropriate
class—based treatment, including scheduling and packet discarding. These two
conditions could be thought as orthogonal. A flow may get sufficient bandwidth
but get delayed on the way (the first condition is met but not the second). Al-
ternatively, a flow may be appropriately serviced in most network nodes but get
terminated or severely distorted by occasional lack of bandwidth (the second
condition is met but not the first). Therefore, it is necessary to satisfy both of
these conditions in order to achieve the hard QoS guarantees that are required
by service providers and their customers.

2.4 QoS Technologies

A level of QoS assurance in an IP network depends on the amount of resource
allocated to the traffic served. Different resource management techniques are used

for resource allocation. In IP networks two resource management techniques can
be used [26]. They are:

e Over-provisioning.
e Explicit resource management.

Over-provisioning is a resource allocation technique that aims at avoiding conges-
tion and shortage of resources in a network In networks where such a technique is
used, there is no differentiation of traffic flows i.e., all traffic is treated as a single

16 QoS in the Internet

service class. Therefore, all traffic is served with the same QoS level. The mecha-
nism of guaranteeing QoS in such networks is to grant excess resources to traffic.
The main argument for such a resource management technique is based on the
fact that it is very simple and can easily be applied for a new traffic type. On the
other side, this technique is less profitable for ISPs because there is no possibility
to differentiate between services of different users, thereby causing problem for
SLA, tariffing and billing.

Explicit resource management techniques are based on the concept of dividing
all served flows into traffic classes that are served with various QoS levels. This
requires additional traffic control mechanisms to be introduced to the standard IP
network, such as admission control, policing, classification and scheduling. There
are two well known QoS technologies that support explicit resource management.
They are integrated service (IntServ) and differentiated service (DiffServ). There
is also another technology that supports explicit resource management and is
applicable to IP network called multiprotocol label switching (MPLS). These
three technologies are described in the following subsections.

2.4.1 Integrated Services (IntServ)

The IETF has been examining how the Internet can be improved to provide QoS
to traffic flows. They proposed a model for this purpose called integrated service
(IntServ) [7]. This technique attempts to merge the advantages of two different
paradigms: packet switched networks (which maximize network utilisation and
adapt to network dynamics) and circuit switched network (which provide service
guarantee and have difficulties in adapting to link failure) [13]. The IntServ
makes the following assumption:

e Resources must be explicitly managed by applications in order to meet their
requirements.

e New architecture should be an extension of the existing best effort IP net-
work model, which supports real-time and elastic application with an ex-
pected QoS level.

e Data flows are independently served and cannot influence each other.

The IntServ model is characterized by per-flow resource reservation, which de-
scribes how an application negotiates the QoS level. IntServ support the integra-
tion of real-time and non-real-time traffic flows into a single Internet infrastruc-
ture, thereby enabling statistical sharing between these two traffic classes. Before
a real-time application sents traffic over IntServ, it must first setup paths and
reserve resources. Resource reservation protocol (RSVP) is a signalling protocol
for setting up paths and reserving resources in the integrated service architecture.

2.4 QoS Technologies 17

Control Plane

QoS Routing agent Admission Control

$ $

Reservation setup agent

!

Resource Reservation table

v v
—ﬁ Flow identification H Packet scheduler ‘——»

Data Plane

Figure 2.5: The integrated service model

The integrated service model can be divided into two parts: the control plane
and the data plane as shown in Figure 2.5. The control plane is responsible for
resource reservation and the data plane for forwarding the data packets based on
the reservation state.

To setup a resource reservation, an application first characterizes its traffic flow
and specifies the QoS requirements, a process often referred to in integrated
service as flow specification. The reservation setup request can then be sent to the
network. When a router receives the requests, it has to perform two tasks. First,
it has to interact with the routing module to determine the next hop to which
the reservation requests should be forwarded. Second, it has to coordinate with
the admission control to decide whether there are sufficient resources to meet the
requested resources. Once the reservation setup is successful, the information for
the reserved flow is installed into the resource reservation table. The information
in the resource reservation table is then used to configure the flow identification
module and the packet scheduling module in the data plane. When packets
arrive, the flow identification module selects packets that belong to the reserved
flows and puts them to the appropriate queues; the packet scheduler allocates
the resources to the flows based on the reservation information [33].

The control plane and the data plane must work together to guarantee the op-
eration of the integrated service. A router that support the integrated service
architecture, must at least implement the following components:

e Packet classification.
e Packet scheduling and queue management

e Admission control algorithm.

The router should also support the resource reservation protocol. In IntServ
model, traffic flows are handled per—flow. A flow is defined as the unidirectional

18 QoS in the Internet

succession of packets relating to one instance of an application. Some times
referred to as microflow [56].

2.4.1.1 Packet Classification

The process of categorizing packets into flows in an Internet router is called packet
classification [32]. All packets belonging to the same flow obey predefined rules
and are processed in the same manner by the router. Packet classification in
the current IPv4 model is based on five IP header fields: source and destination
addresses, source and destination ports, and protocol field [69]. These IP header
fields are used to create a packet filter or rule, which is used to match the packets
so as to differentiate them into flows. For example all packets with the same
source and destination IP address maybe defined to form a flow. In IPv6, the
20-bit flow label field is introduced and used in flow identification. This label
together with source and destination address can be used in 3-tuple packet clas-
sification as they are able to sufficiently distinguish packets belonging to various
flows from different pairs of host.

2.4.1.2 Packet Scheduling and Queue Management

The task of the scheduler is to allocate resources to the individual traffic flows,
and forward different packet flows using a set of queues. The packet scheduler
must be implemented at the point where packets are queued [7], for example
in the router. The router implements different queueing mechanisms ranging
from very simple to complicated queueing mechanism. Examples of queueing
mechanisms mostly found in routers today are: first in first out (FIFO)queueing,
fair queueing (FQ), weighted fair queueing (WFQ), priority queueing (PQ), low
latency queueing (LLQ), and round robin queueing (RR) [37]

The selection of a scheduling mechanism, which should operate at the output
port of a router is one of the key design criterias for QoS networks. The router
needs to distinguish between flows requiring different QoS (and possibly sort
them into separate queues) and then, based on the scheduling algorithm send
these packets to the outgoing link. Thus, a sophisticated scheduling algorithm
is required to prioritize user traffic to meet various QoS requirements while fully
utilizing network resources.

2.4.1.3 Admission Control Algorithm

Considering the fact that network capacity is limited, and the issue of guarantee-
ing QoS to flows, it is then necessary to control the access and the effects of new
flows to the network. The solution to this problem can either be reactive (control
schemes) or proactive (admission control) [56]. The reactive method detects and
reacts immediately to congestion (e.g., flow control in TCP) but makes it difficult

2.4 QoS Technologies 19

to guarantee QoS. The admission control method, assures that there are enough
resources in the network for a new flow before accepting it.

In the IntServ model, the admission control component implements the decision
algorithm used by a router or a host to decide whether a new data flow can be
granted its required resources or not based on the fact of not compromising the
QoS of the existing flow in the network. The admission control is also concerned
with enforcing administrative policies on resource reservation |[7]. Some of these
policies may demand authentication of those requesting reservation.

The admission control mechanism should not be confused with policy control,
which is performed at the edge of the network to ensure that host do not violate
their traffic characteristics. This mechanism is rather considered a part of the
packet scheduling mechanism [7].

2.4.1.4 Service Classes

The IntServ model defines three traffic flow classes. These classes are presented
graphically on Figure 2.6 and are as follows:

Link-Share
\4
Guaranteed Restricted
) . No guarantee

service Guaranteed services
al |]

uarantee - Controlled Controlled

Predictive
delay ‘ delay load ‘ Best effort

Figure 2.6: The integrated service class types

1. Guaranteed class: This class guarantees delay, bandwidth and packet loss.
It can be used for real-time applications such as video and audio.

2. Controlled load class: This class offers better service than the best effort
class. It is reliable for applications which require weak bound on maximum
delay over the network and occasionally accept packet loss.

3. Best effort class: This is the default service class in the IP network. It is
for applications that do not require strict quality of service like the email
and file transfer protocol (FTP).

20 QoS in the Internet

2.4.1.5 Guaranteed Service (GS)

Guaranteed service provides guaranteed bandwidth and strict bounds on end—
to—end queueing delay for conforming flows. The service provides assured level
of bandwidth or link capacity for the data flow. It imposes a strict upper bound
on the end—to—end queueing delay as data flows through the network. The delay
bound is usually large enough even to accommodate cases of long queueing delays.
Guaranteed service in IP is described in RFC 2212 [76].

An application invokes guaranteed service by providing the traffic specification
(TSpec) and the service specification (RSpec) to the network. The guaranteed
service uses the general token_bucket_TSpec parameter to describe a data flow’s
traffic characteristics [76]. The flow specification Flowspec is used to set param-
eters in the node’s packet scheduler or other link layer mechanisms, and the filter
specification Filterspec is used to set parameters in the packet classifier, which is
used to classify the incoming packet flows. Traffic specification describes traffic
sources with the following parameters [33]:

e Bucket rate (r [Byte/s]) is the rate at which tokens arrive at token bucket.
e Peak rate (p [Byte/s]) is the maximum rate at which packets can transmit.
e Bucket depth (b [Byte]) is the size of the token bucket.

e Minimum policed unit (m [Byte]) is any packet with a size smaller than m
which can be counted as m bytes.

e Maximum packet size (M [Byte|) is the maximum packet size that can be
accepted (m >0, M >0, and m < M).

The service specification describes the service requirements with two parameters:
e Service rate (R [Byte]) which is the service rate or bandwidth requirement.

o Slack term (S [us]) is the extra amount of delay that a node may add and
still meets the end-to—end delay requirement.

Each router characterizes the guaranteed service for a specific low by allocating
a bandwidth R, and buffer space B, that the flow may consume. This is done by
approximating the fluid model of service [66] so that the flow effectively sees a
dedicated wire of bandwidth R between source and receiver.

A network element’s (router or host’s) implementation of guaranteed service is
characterized by two error terms C' and D, which represent how the element’s
implementation of the guaranteed service deviates from the fluid model. The
error term C' is the rate dependent one. It represents the delay a datagram in
the flow might experience due to the rate parameters of the flow. The error

2.4 QoS Technologies 21

term D is the rate independent, per element one and represents the worst case
non rate based transit time variation through the service element. By definition
[23, 76]each network element j must ensure the delay of any packet of the flow
be less than:

d< b + Y + D, (2.1)

R R ! ’

Consider generalized processor sharing (GPS) [66, 67, 17| implementing the
bandwidth guarantee mechanism. A newly arriving flow packet may experience
a maximum delay of:

[T — % + % + link propagation delay (2.2)
before it reaches the downstream element, where the first term is the worst case
service time for this packet, the second term is the time for this element to
transmit a packet with size equal to the maximum transmission unit (MTU) as
its outgoing link capacity, and the third term is simply the physical propagation
delay of the outgoing link [33].

2.4.1.6 Controlled—Load Service (CLS)

The controlled-load service (CLS) does not accept or make use of specific target
values for control parameters such as delay or loss. Instead, the acceptance
of a request for controlled—load service is defined to imply a commitment by
the network elements to provide a service closely equivalent to that provided
to uncontrolled (best effort) traffic under lightly loaded conditions. The service
aims at providing the same QoS under heavy loads as under unloaded conditions.
Though there is no specified strict bound on delay, it ensures that a very high
percentage of packets do not experience delays highly greater than the minimum
transit delay due to propagation and router processing [83]. The controlled—
load service is conceived for adaptive real-time applications, which are highly
sensitive to overloaded conditions. These applications have been shown to work
well under unloaded networks but to degrade quickly under overloaded conditions.
Thus some capacity (admission) control is needed to ensure that controlled—load
application traffic flows are received even when the network element is overloaded.

A simple means of implementing controlled-load service is based on the existing
capabilities of network elements, that support traffic classes based on mechanisms
such as WFQ or class-based queueing. With these mechanism and a packet
classifier, the CLS packet flows are mapped into a class with adequate capacity
to avoid overload.

In order to achieve their stated goals and provide the proposed services, the
IntServ models included various traffic parameters such as rate and slack term for
guaranteed service; and average rate, peak rate and burst size for controlled load
service [33]. To install these parameter values in a network and to provide service

22 QoS in the Internet

guarantees for the real-time traffic, the resource reservation protocol (RSVP) was
developed as a signalling protocol for reservations and explicit admission control.

2.4.1.7 RSVP signalling

The resource reservation protocol (RSVP) is an IETF-defined signalling proto-
col that uses IntServ to convey QoS requests to the network [8]. The IntServ
architecture specifies extensions to the best effort traffic model. RSVP messages
identify which application and user is requesting QoS, the service level requested
from the network, the bandwidth requested, and the end nodes (source and des-
tination addresses). Based on administrator defined admission control policies
and network resource availability, the QoS request is either approved or denied
by the host performing admission control duties. If the request is approved, QoS
mechanisms are invoked to classify and schedule the traffic flow, logically allocate
bandwidth, and notify the requesting host of the approval so that it might begin
sending priority traffic flows. Until this occurs, the transmission is treated as
standard traffic by the network. Information encapsulated in RSVP messages is
per data flow and the messages may carry the following information:

o Traffic classification information: They are the source and destination [P
addresses and the port numbers to identify the traffic flow (i.e., the filter
specification Filterspec).

e Traffic parameters: They are expressed using IntServ’s token—bucket model,
these identify the data rate of the flow (i.e., flow specification Flowspec).

e Service level information: They originate from the IntServ—defined service
types, and convey the flow requirements for the RSVP request.

e Policy information: This allows the system to verify that the requester is
entitled to the resources and to the amount of resources being requested.

RSVP is a soft—state protocol, meaning that the reservation must be periodically
refreshed or it expires. The reservation information, or state, is cached in each
hop tasked with managing resources. If the network’s routing protocol alters
the data path, RSVP attempts to reinstall the reservation state along the new
route. When refresh messages are not received, reservations time out and are
dropped, releasing bandwidth. The sender refreshes Path messages, and the
receiver refreshes Resv messages. Because RSVP sends its messages as best effort
datagrams with no reliability enhancement, some messages might be lost, but the
periodic transmission of refresh messages by hosts and routers compensates for
the occasional loss of a signalling message. To ensure receipt of refresh messages,
the network traffic control mechanism must be statically configured to grant
some minimal bandwidth for signalling messages to protect them from congestion

2.4 QoS Technologies 23

losses. At any time, the sender, receiver, or other network devices providing QoS,
can terminate the session by sending a Path_tear or Resv_tear message. Figure
2.7 presents an example of the RSVP signalling mechanism.

Application rely on RSVP to
Signal their QoS demands

Router perform connection
Admission control to reserve
Resource to each flow

Figure 2.7: RSVP signalling mechanism in IntServ

Policy is checked by the RSVP-aware routers and switches along the path. De-
vices might reject resource reservation requests based on the results of these
policy checks. If the reservation is rejected due to lack of resources, the requested
application is immediately informed that the network cannot currently support
that amount and type of bandwidth or the requested service level. The applica-
tion determines whether to wait and repeat the request later or to send the data
immediately using best effort delivery [33]. QoS-aware applications, such as
those controlling multicast transmissions, generally begin sending immediately
on a best effort basis, which is then upgraded to QoS when the reservation is
accepted.

The IntServ technology decouples routing from the reservation process, and uses
the path established by the standard routing protocol like the open shortest path
first (OSPF) [59] and the routing information protocol (RIP) to determine the
next hops. Resource reservation protocol provides the highest level on QoS in
terms of service guarantees, granularity of resource allocation and details of feed-
back to QoS—enabled applications [56]. However, per microflow service guarantee
in the IntServ/RSVP architecture caused the well-know scalability problem [26].
This is not only a signalling processing problem but a problem of serving indi-
vidual streams in all nodes in the network (microflow policing, classification and
scheduling problems).

24 QoS in the Internet

2.4.2 Differentiated Services (DiffServ)

The DiffServ is an alternative QoS model developed by the IETF to solve the
scalability problem encountered in the IntServ/RSVP model [6]. The DiffServ
is an architecture based on the idea of grouping traffic flows into a finite number
of traffic classes [37]. As DiffServ is based on aggregates, it offers a scalable
way of provisioning QoS, which was lacking in the IntServ architecture that uses
per—flow resource reservation for individual traffic flows.

DiffServ networks have two main type of routers: edge and core router. The edge
router is located at the boundary to the network and the core router in the heart
of the network. Figure 2.8 presents an example of the DiffServ architecture.

Customer A / % \\

Edge router

Core router Customer B

Figure 2.8: DiffServ network model

Traffic flows entering the DiffServ network are classified and conditioned at the
boundary of the network only, and assigned to different behaviour aggregates.
A DiffServ behaviour aggregate is a collection of packets with the same DiffServ
code point (DSCP), crossing a link in a particular direction. The DSCP defines
the service a packet should get in the network and its treatment within routers.
Thus, independent flows select a predefined service and are served in the same
way as other flows that choose the same service. Flows (packets) served by the
same service are aggregated and experience the same QoS level. Aggregated
packets processed by a network node are called per hop behaviour (PHB). A per
hop behaviour describes the treatment for traffic (packets) belonging to a certain
behaviour aggregate at an individual network node (router). If a PHB specifies
to forward a packet preferential to all others, and is applied within all routers of
a network this would result in a service providing noticeable better throughput

2.4 QoS Technologies 25

and low delay to all packets with the appropriate DSCP.

The six bit wide DSCP allows to differentiate between 26 = 64 different PHBs.
Hence only twelve DSCPs are predefined for general usage. But there is no
theoretical limit for an Internet service provider (ISP) to use non-specified DSCP.
For example, a provider might map DSCPs at his border routers to provide a
similar PHB within his own network. Router implementations should support
the recommended code point to PHB mappings [33].

2.4.2.1 Differentiated Services Classes

During the introduction of DiffServ model by the IETF DiffServ working group,
different service classes for different applications were proposed. Out of the many
service classes proposals, only two are currently standardized as PHB. They are:
expedited forwarding service and assured forwarding service.

Expedited Forwarding Service (EF): This service class is used to support
applications with low—delay, low—jitter, low—loss, assured bandwidth re-
quirement, such as VoIP [16]. The characteristics of an implementation
which supports the requirements of this class are that, it is able to service
the EF traffic at a specified rate or higher, measurable over a defined time
interval and independent of the offered load of any non—EF traffic at the
point where the EF PHB is applied [19]. The recommended code point
for the EF PHB is 101110. The following properties characterize expedited
forwarding service:

1. Peak bit rate: Used on flows or on aggregated flows.
2. No bursts: Allowed only within the peak bit rate.

3. Low queueing delay: Proposed for real-time applications.

Some scheduler implementations may attempt to support EF traffic using a
scheduling algorithm such as weighted round robin (WRR) or WFQ. How-
ever, with such implementations the worst case delay bounds for EF traffic
depends upon the particular scheduling algorithm used and may also be
dependant upon the number of queues used in the particular scheduler im-
plementation. Consequently, the EF PHB is typically implemented using
a strict priority queueing mechanism. Using priority and short queues en-
sures that the arrival rate of EF traffic flows must not exceed the service
rate at the interface.

Assured Forwarding Service (AF): This group defines a set of classes, which
are designed to support data applications with assured bandwidth require-
ments such as absolute or relative minimum bandwidth guarantee, with a
work—conserving property [19]. The key concept behind the AF PHB group

26 QoS in the Internet

definition is that a particular class could be used by a DiffServ domain to
offer service, to a particular site for example, with an assurance that IP
packets within that class are forwarded with a high probability as long as
the class rate from the site does not exceed a defined contracted rate. If
the rate is exceeded, then the excess traffic maybe forwarded, but with
a probability that maybe lower than for traffic flows which are below the
contracted rate. According to RFC 2597 [35], four AF service classes are
defined. Each of these classes has three level of dropping precedence (low,
medium, and high). Within a class, the drop precedence therefore indicates
the relative importance of the packet. A set of twelve recommended DSCP
values has been allocated to indicate the four classes and the three drop
precedence levels within each class, as shown in Table 2.1.

Dropping precedence | Classl | Class2 | Class3 | Class4
Low 001010 | 010010 | 011010 | 100010

Medium 001100 | 010100 | 011100 | 100100

High 001110 | 010110 | 011110 | 100110

Table 2.1: Assured forwarding code point

Although only four AF classes are defined, in theory there is nothing, apart
from the size of the DSCP field, to limit the number of different class of
services that can be used with the AF forwarding behaviour. If more than
four AF classes are required, then as the recommended DSCP markings are
only defined for four classes, non-recommended DSCP values need to be
used for the additional AF classes.

A particular AF class is realized by combining condition behaviours on
ingress router at the boundary to the DiffServ domain, where a particular
class is offered to a customer, which controls the amount of traffic accepted
at each level of drop precedence within that class and mark the traffic
accordingly. At that node and subsequent nodes, the AF class bandwidth
is allocated to ensure that traffic within the contracted rate is delivered
with a high probability. If congestion is experienced within the class, the
congested node aims to ensure that packets of a higher drop precedence are
dropped with a higher probability than packets of a lower drop precedence
[19].

2.4.2.2 Differentiated Services Traffic Classification and Conditioning

The DiffServ model includes two conceptual elements in the ingress point of the
network: a classifier and conditioning elements. These conditioning elements, are
in general composed of markers, meters, policers, and shapers, as shown in Figure

2.4 QoS Technologies 27

2.9. When a traffic stream at the input port of a router is classified, it then might
have to travel through a meter (used where appropriate) to measure the traffic
behaviour against a traffic profile which is a subset of a SLA. The meter classifies
particular packets as in—profile or out—of-profile depending on SLA conformance
or violation.

Conditioner

A4

Meter

C——>| Classifier Marker E—> Shaper / ~
Packetin Dropper Packet out

P ——
Control flow

Packets flow

Figure 2.9: Traffic classification and conditioning clock

The traffic conditioning elements ensure that on average, each behaviour aggre-
gate gets the agreed service. They can be applied at any congested network node
when the total amount of in bound traffic exceeds the output capacity of the
router. As the number of routers grows in a network, congestion increases due to
expanded volume of traffic and hence proper traffic conditioning becomes more
important. Traffic conditioners might not need all four elements. If no traffic
profile exists, packets may only pass through a classifier and a marker.

Traffic Classifier: The traffic classifier identifies incoming packets and group
them into aggregated streams based on the information in the packet header.
It matches received packets to statically or dynamically allocated service
profiles and passes those packets to an element of traffic conditioner for
further processing. There are two types of classifier used for traffic classifi-
cation [37]:

e Behaviour aggregation (BA) classifier: This type works on behaviour
aggregates and classifies packets based on patterns of the DiffServ
byte (DSCP) only. It is used mainly at the core network due to its
simplicity.

o Multi-field (MF) classifier: 1t classifies packets based on any combi-
nation of the DiffServ field, protocol ID, source address, destination
address, source port, destination port or even application level pro-
tocol information. It is usually used at the edge of the network to
classify incoming packets.

28 QoS in the Internet

Metering: This is a process to determine whether the behaviour of a packet
stream after classification is within the specified profile for the stream (ag-
gregate). The output result of metering is used to trigger events in other
conditioning blocks. There are many estimators that can be used in im-
plementing metering. According to [37], the most known and widely used
estimator in the packet network is the token bucket estimator. (see Figure
3.2 in subsection 3.3.2 for detail explanation of token bucket)

Marker: Packet marking is a process where packets are marked to belong
to a certain aggregated service class using predefined DSCP values. The
marker can mark all packets which are mapped to a single code point, or
mark a packet to one of a set of code points to select a PHB in a group,
according to the state of a meter. The approach of DiffServ and especially
the assured forwarding service with its different drop precedence levels,
requires specialized marking components.

Shaper: The shaping process delays some packets in a traffic stream using a
token bucket in order to force the stream into compliance with a predefined
traffic profile. Dropping has similar objective as shaping but it drops pack-
ets in order to get the traffic stream into compliance with the predefined
profile. A shaper usually has a finite—size buffer and packets are discarded if
there is not sufficient buffer space to hold the delayed packets. Shapers are
generally placed after each type of classifier. For example, shaping for EF
traffic at the interior nodes helps to improve end to end performance and
also prevents the other classes from being over flooded by a big EF burst.
Hence, either a policer or a shaper is supposed to appear in the same traffic
conditioner.

Policier: When classified packets arrive at the policer it monitors the dynamic
behaviour of the packets and discards or re-marks some or all of the packets
in order to force the stream into compliance (i.e., force them to comply
with configured properties like rate and burst size) with a traffic profile.
By setting the shaper buffer size to zero (or a few packets) a policer can be
implemented as a special case of a shaper. Like shapers policers can also
be placed after each type of classifier. Policers, in general, are considered
suitable to police traffic between DiffServ domains (e.g., a customer and
a provider) and after BA classifiers in backbone routers. However, most
researchers agree that policing should not be done at interior nodes since
it unavoidably involves flow classification. Policers are usually present in
ingress nodes and could be based on simple token bucket filters.

2.4 QoS Technologies 29

2.4.3 Comparison of Differentiated Service and Integrated Service

The differentiated service model is different to the integrated service model in
many aspects like the following:

e The amount of state information in DiffServ is proportional to the number
of aggregated classes, rather than to the number of flows, as resources are
allocated to individual classes that represents aggregated traffic.

e The fact that DiffServ classifies and marks packets only at the edge of the
network and the core routers in the network performs only packet forward-
ing based on marking at the network edge makes DiffServ more scalable
than the IntServ architecture which must perform classification, schedul-
ing, admission control for each immediate node on the path.

e In the IntServ architecture, an application specifies the QoS requirements
choosing a service and a related set of parameters, therefore a network must
be ready to treat a large number of different QoS requests. In the contrary
in DiffServ architecture, an application specifies a service selecting a per
hop behaviour (PHB) in a limited set of choices.

Although the DiffServ architecture is quite scalable and simpler than the IntServ
architecture, it still has some drawbacks in terms of guaranteeing quality of ser-
vice. The DiffServ does not offer an end-to—end QoS guarantee, rather an edge—-
to—edge QoS. This makes IntServ to be better than DiffServ in this aspect. Figure
2.10 shows the comparison of DiffServ with IntServ and the default best effort
service with regards to the level of QoS they can guarantee and the complexity
of their implementation.

A

Level of QoS
Guarantee

Integrated
Service

Differentiated

Service
Best effort

Figure 2.10: The comparison of DiffServ, IntServ and best effort in term of QoS guarantee level
and implementation complexity

»

Implementation
Complexity

30 QoS in the Internet

A more detailed comparison of IntServ architecture with DiffServ architecture,
shows that they have some complementary features as shown in Table 2.2.

Feature IntServ DiffServ
QoS assurance Per flow Per aggregate
QoS assurance | End-to-end Domain(edge-to—edge) or DiffServ
range (application—to— region
application)

Resource reserva-
tion

Controlled by applica-
tion

Configured at edge node based on
SLA

Resource man- | Distributed Centralized within DiffServ domain

agement

Signalling Dedicated protocol | Based on DSCP carried in IP packet
(RSVP) header

Scalability Not recommended for | Scalable in all parts of network

core network

Class of service | Guarateed service, | Expedited forwarding, assured for-
(CoS) controlled-load, best | warding, and best effort
effort

Table 2.2: IntServ and DiffServ complementary features

According to RFC 2998 [5], IETF has proposed an interoperability framework for
the IntServ and DiffServ architectures. The integrated IntServ—DiffServ model
is used to provide QoS in the end—to—end relation [26]. To avoid per microflow
servicing in the core, the proposed architecture uses DiffServ in the core to sup-
port aggregated IntServ microflows. The IntServ model is used at the access part
of the network to provide applications the signalling interface for them to place
their resource reservation request and after granting them access, forwards their
flows to the network. The QoS signalling is end-to—end. It takes place between
the communicating terminals. Apart from per microflow resource reservation,
RSVP signalling can be used to aid resource management in a DiffServ domain
and some extension to RSVP supporting DiffServ are developed by the IETF.

2.4.4 Multi-Protocol Label Switching (MPLS)

The multiprotocol label switching (MPLS) is defined and standardized by the
IETF [73]. It presents a core networking environment capable of carrying multi-
ple traffic types over a common infrastructure while delivering class of service and
true quality of service (QoS). It is a versatile solution to address the problems
faced by today’s network speed, scalability, QoS management, traffic engineering,
and virtual private network support. MPLS has emerged as an elegant solution
to meet the bandwidth management and service requirements for next generation

2.4 QoS Technologies 31

[P-based backbone networks [33].

By combing the best of network layer routing and link-layer switching, MPLS
introduces a new forwarding paradigm for IP networks, and brings connection
oriented properties similar to that of traffic engineering capabilities of ATM to
IP networks, but in a very scalable and cost effective way. In addition, MPLS
introduces a forwarding paradigm for IP networks by eliminating the need for
routers to perform an address lookup for every packet. Thereby speeding up
packet forwarding with improved efficiency.

2.4.4.1 MPLS Basic Architecture

The basic idea behind MPLS is to assign short, fixed—length labels (which are
used as local identifiers) to packets at the ingress of an MPLS domain, based on
the concept of forwarding equivalence classes (FEC). A forwarding equivalence
class is a subset of packets that are all treated in the same way by a router. In
the MPLS domain, the labels attached to packets are used to make forwarding
decisions without recourse to the original packet headers.

4 Bytes >
19 22 23 31

ol

Label stack Label EXP | s TTL
entry format

Label - label value, 20bits (0-16 reserved)

EXP - experimental, 3bits (was class of service)

S - bottom of stack, 1bit (1 = last entry in label stack)
TTL - time to live, 8bits

Figure 2.11: The MPLS header

An MPLS packet has a header, as illustrated in Figure 2.11 that is placed
between the link layer (layer-2) header and the network layer (layer—3) header.
The MPLS header, called a shim header, contains a 20-bit label, a three bit
experimental (EXP) field (or class of service (CoS) field), a one bit label stack
indicator, and an eight-bit time to live (TTL) field. When tunnelling labelled
packets through multiple administrative MPLS domains, MPLS uses an ordered
set of labels called label stack.

When a packet enters an MPLS domain, it is assigned a label, which specifies
the path the packet must take while being inside this domain. Each MPLS
router switches the packet to the outgoing port based only on its label. The
experimental field is used to choose the correct service queue of the outgoing
port. At the egress of the domain, the MPLS header is removed and the packet
is sent to its destination using normal IP routing, as shown in Figure 2.12.

2.4.4.2 MPLS Label Distribution

In order that alabel switched path (LSP), which is a predetermined path, be used,
the forwarding tables at each label switched router (LSR) must be populated with

32 QoS in the Internet

3. Process
1. Create IP 2. Map FEC t MPLS Label
header MPLS

4. Decapsulate 5. Process
LS label IP header

A ILER1l ll LSRZII\ "IJ LSR3II ILER4| »(B
Layer-3 routt Layer-2 switching Layer-3 routing
IP Payload] IP Hdr] L_2 Hdr I I IP Payload] IP Hdr] MPLS Hdr] L_2 Hdr I I IP Payload] IP Hdr] L_2 Hdr
Hdr — header
LER - label edge router
LSR — label switched router 31 0

L_2 - layer-2

FEC - forwarding equivalence class TTL| S

Exp. I Label

Figure 2.12: Creation and processing of MPLS header

the mappings from incoming interface label value to outgoing interface label value.
This process is called LSP setup, or label distribution. The MPLS forwarding
architecture document RFC 2547 [72], does not mandate a single protocol for
the distribution of labels between LSRs. In fact it specifically allows multiple
different label distribution protocols for use in different scenarios, including the
following.

e Label distribution protocol (LDP).
e Constraint based routing label distribution protocol (CR-LDP).

e Resource reservation protocol extended for traffic engineering (RSVP-TE).

Border gateway protocol (BGP).

Open shortest path first extended for traffic engineering (OSPF-TE).

Intermediate system intermediate system extended for traffic engineering

(IS-IS-TE).

Several different approaches to label distribution can be used depending on the
requirements of the hardware that forms the MPLS network, and the adminis-
trative policies used on the network. The underlying principles are that a path
is setup either in response to a request from the ingress LSR (downstream—on—
demand), or preemptively by routers in the network, including the egress LSR
(downstream unsolicited). It is possible for both to take place at once, and for
the LSP setup to meet in the middle.

2.4.4.3 Packet Forwarding in MPLS

In an MPLS network, layer—3 routing takes place at the edge and layer—2 switch-
ing is involved in the core. The labels effectively construct an LSP, which is used

2.4 QoS Technologies 33

to forward the packets. After setting up the LSP, each core router in an MPLS
network uses only the assigned label to make forwarding decision (layer—2 switch-
ing), without having to look into the original IP packet header. Label lookup and
label switching are faster than an IP lookup because they could take place di-
rectly within the switched fabric and not in the central processing unit (CPU).
An LSP is similar to an asynchronous transfer mode (ATM) virtual circuit and it
is unidirectional from sender to receiver [85]. The packet forwarding using labels
in MPLS network could be described as follows:

e When packets arrive at the ingress of an MPLS network, a decision is made
based on the destination address or any other information contained in the
IP header to determine the appropriate label value to be attached. This
label value identifies the forwarding equivalence class (FEC). Apart from
the packet’s destination address, the ingress router may use some policy
based consideration such as the packet’s inbound port, its application type,
or the class of service (CoS) written in the packet’s header. The router
attaches the label to the packet and forward it to the next hop. The label
is locally important because two router can agree to use a label to signify
a particular FEC among themselves.

e At the next hub the router uses the label as an index into a table that
specifies the next hop and a new label for the destination. The label switch
router attaches the new label to the packet and forwards it to the next hop
in the destination direction.

e At the network boundary, the egress LSR receives the packet and removes
the attached label, and then forwards the packet based on the content of
the IP header to its destination.

2.4.4.4 Traffic Engineering in MPLS Networks

A practical function of traffic engineering in IP networks is mapping of traffic
onto the network infrastructure to achieve specific performance objectives. High
service quality, efficiency, survivability, and economy are crucial objectives in
today’s commercial, competitive, and mission—critical Internet [33]. Traffic en-
gineering requires precise control over the routing function in order to achieve
the objectives. An essential requirement for traffic engineering in IP networks
is the capability to compute and establish a forwarding path from one node to
another. This path must fulfil some requirements, while also satisfying network
and policy constraints. Generally, performance objectives can be traffic-oriented
and/or resource-oriented [3].

Traffic—oriented performance objectives relate to the improvement of the QoS
provisioned to Internet traffic. Traffic—oriented performance metrics include packet
loss, delay, delay variation, and throughput. The effectiveness of traffic-oriented

34 QoS in the Internet

policies can also be measured in terms of the relative proportion of offered traffic
achieving their performance requirements. When service level agreements (SLAs)
are involved, protecting traffic streams that comply with their SLAs from those
that are non—compliant becomes an important factor in the attainment of traffic—
oriented performance objectives.

Resource—oriented performance objectives relate to the optimization of the
utilization of network assets. Efficient resource allocation is the basic approach
to secure resource—oriented performance objectives. A traffic engineering system
is said to be "rational” if it addresses traffic-oriented performance problems while
simultaneously utilizing network resource efficiently. Traffic engineering in con-
ventional IP networks is a challenging problem. Singularities and discontinuities
characterize Internet growth. Very rapid growth occurs over a relatively short
interval time. This rapid growth is then followed by modest growth over rela-
tively longer intervals of time. Accurate forecasting is therefore quite difficult.
Furthermore, Internet traffic exhibits very dynamic behaviours with characteris-
tics that are not yet well understood. Traffic also tends to be highly asymmetric.
The operating environment is also in a continual state of flux. New resources
are added constantly. New Internet applications with bandwidth requirements,
which may have significant global impact, are introduced all the time. Facility
location is also an issue. Sometimes network resources are sited in less then ideal
locations due to facility constraints [33]. Additional complications are introduced
by inter-domain traffic traversing autonomous system’s boundaries. These en-
vironmental factors result in the network topology not usually correlating with
the traffic matrix. The addressing of these issues requires continual monitoring
and performance optimization of public IP networks. MPLS allows sophisticated
control capabilities to be introduced in IP networks. These capabilities are based
on the fact that MPLS efficiently supports origination connection control through
explicit label switched paths (LSPs). For an explicit LSP the route is determined
at the origination node. Once an explicit route is determined, a signalling pro-
tocol is then used to install the LSP. Through explicit LSPs, MPLS enables a
reliable and efficient traffic engineering of core IP networks.

2.5 Summary

IP networks are originally designed for best effort services. Due to the intro-
duction of real-time applications which are sensitive to resources availability and
place performance demands on the underlying networks, the original IP networks
could no longer satisfy the new requirements of these applications, hence there
arises needs for improvement in the IP architecture to support quality of service.
The notion of service level agreement laids the basis for specifying and agreeing

2.5 Summary 35

on certain QoS for applications..

Some QoS technologies evolved over the past decade. The integrated service
model together with resource reservation protocol are one of the first QoS mech-
anism introduced in the IP architecture. The IntServ had the assumption that
resources must be explicitly managed by applications in order to meet their QoS
requirements. IntServ with RSVP provided a genuine QoS architecture but how-
ever, had scalability and operational complexity problems. To solve these prob-
lems the IETF introduced the DiffServ model, which is scalable and does not
require signalling protocol. Later, MPLS was introduced by IETF as connection—
oriented approach to connectionless IP—based networks, and it supports traffic
engineering. Figure 2.13 presents a possible combination of the three QoS as-
suring technologies.

{ Application

Application

QoS-aware

application Presentation

Presentation

Session Session

QoS API -
RSVP { Transport

nod 30~~0T O~ TOH

Transport

DiffServ { Network
SBM {

Network

Data Link Data Link

Physical

802 SBM 802 SBM

RSVP DiffServ and MPLS l RSVP

End-to-end QoS

Figure 2.13: Combination of three QoS technologies

36

QoS in the Internet

3 Admission Control
Description

Emerging real-time multimedia applications traversing over IP networks place
QoS requirements on their underlying transport medium. Connection—oriented
network technologies such as ATM have an implicit admission control (AC) ca-
pability, which is used in establishing the path between the sender and the re-
ceiver, to ensure the required QoS for the connection. In contrast, IP network is
connection-less, and has no implicit admission control capability.

In order to achieve tightly bound service levels for real-time traffic flows and
to assure consistent service within the SLA bounds, resource reservation and
admission control mechanisms are needed to ensure that the actual load of a
class does not exceed acceptable levels. In the absence of admission control, a
situation might occur where the available capacity for real-time traffic maybe
exceeded implying a service quality degradation for that particular class. Thus,
where admission control is not supported for traffic classes used for real-time
applications like VoIP and packet video the bandwidth for that class must be
over—provisioned with respect to the peak load in order to ensure that congestion
does not occur [19].

Bandwidth over—provisioning causes significant financial cost. And, practically
it may not be viable to provision every segment of the network to cope with the
peak load. Further, if network planning and provisioning is inaccurate, or not
reactive enough to new traffic demand, or there is a network failure, this may lead
to situation where congestion is unavoidable. In such cases, all calls or streams
in progress are degraded.

Admission control (AC) is in general a mechanism of traffic management, which
consist of admitting a new traffic source if and only if the network can accommo-
date the new flow while still supporting existing commitments made to sources
already accepted [57, 58]. An AC procedure is employed to maintain a high
utilization of network resources while still preserving the QoS of existing flows.
In this thesis, the considered admission control algorithms make their decision
on a per flow basis.

38 Admission Control Description

3.1 Required situations for Admission Control

In general terms, admission control is practically useful, if the following situations
are present:

1. The offered load may exceed the awvailable capacity in the ab-
sence of admission control: If there is always enough bandwidth for
a flow or a class to support the offered load then you simply do not need
admission control. Thus, one approach to providing guaranteed support for
service such as voice is to provision sufficient class bandwidth throughout
the network to be able to ensure that the peak voice load can be serviced.
However, one needs to consider the limitation of network component fail-
ure to provisioning of sufficent bandwidth throughout the network. In such
cases, some part of the network may lack the required bandwidth to service
the peak voice load. This leads to failure in delivering the required QoS.
Therefore admission control can be used to overcome such situations.

2. Service utility degrades unaccaptably as a consequence of ex-
ceeding available capacity for that flow or class of service: For
real-time applications, as bandwidth availble for its traffic class decreases,
the utility of the applicatioin reduces. For example, consider a link, which
has class capacity to support a maximum of twenty concurrent VolP calls,
within the bounds of the required SLA. If a twenty—first call is allowed to
be setup, congestion will occur within that class and the service to all of
the calls are degraded. In such a case, admission control can be used to
block the twenty-first call, thereby preventing the existing calls from being
degraded. The mantra for applications which need admission control is that
it is much better to refuse a new call than to degrade service for many calls
in progress [19].

3. The source application knows how to respond to an admission
control failure: Admission control is only useful if there is some way
of communicating an unsuccessful admission control decision back to the
end-system application such that it does not establish the requested flow
or stream, and such that it can communicate the failure back to the end
user. e.g., for a VoIP call by returning a busy signal.

4. It s acceptable from a service perspective to reject a request:
If from a service perspective, it is not acceptable for admission control to
reject a requested call or session, then more bandwidth is needed instead
of using admission control. For example, for a residential broadcast video
service, it would be unacceptable to have an admission control failure while
simply changing a channel.

3.2 Related Work and Research in this Area 39

3.2 Related Work and Research in this Area

Admission control has long been considiersed a key mechanism to ensure quality
of service objectives in IP networks. There is a significant amount of research
done, and many papers written in the area of admission control algorithms. Most
of the admission control algorithms are concentrated on providing QoS for a
single guaranteed service using parameter-based admission control algorithms or
ensuring QoS for single predictive or single controlled-load services using the
measurement-based admission control algorithms. The area of supporting QoS
for multiclass of controlled-load or predictive service has not exprienced much
research work when compared to the single class case.

Reference [82], presesents a tutorial on admission control in multi-service IP
networks. The paper took on the ontological perspective within which to catago-
rize admissioin control schemes. It summarizes the characteristics of existing
admission control schemes and went on to investigate the linkage of AC with the
capacity planning process, examination of applications in typical core and access
network architectures, and consideration of the factors involved in scaling up AC
as an [P network function for large-scale, multiservice wide-area networks.

Within service management, admission control has been recognised as a convinent
mechanism to keep service under controlled load and ensure the required QoS
levels, bringing consistency to the services offered. The authors of [54], studied
different AC approaches and the role of AC in multiservice IP networks. They
identified the following high-level characteristics distinguishing AC approaches:

e Underlying network paradigm: The type of network models under
which AC can operate, which ranges from single service to multiservice
architectures.

e Type of service to control: The application characteristics usually spec-
ifies the type of service, whether they are rigid or adaptive and whether they
have quantitative or qualitative QoS targets that determines service level
guarantees to be provided.

e Signalling supported: The means of the application to explicitly inform
the network of their needs. Commonly expressed in terms of service profile,
using soft or hard state signalling.

e Location of the AC decision: This aspect involves the centralized or
distributed nature of the AC. This is further dependant on which nodes are
involved in the AC process.

e Admission decision criteria: The decision criteria is determined by
the nature of the algorithm. Whether it is parameter-based, measurement
based, or hybrid.

40 Admission Control Description

In [53], a distributed admission control for multiservices in IP network is pre-
sented. The paper discusses the handling of concurrent admission control deci-
sions. It notes that distributed AC model by its nature is likely to involve multiple
and simultaneous AC decisions, consequently presenting the need to handle the
concurrency which arises from having multiple decision points. This offers a way
to avoid over /false acceptance of flow entering the network, which causes resource
overload and service degradation. This paper proposes some alternatives to tackle
the problem of concurrent AC decision in multiservice IP network. The proposed
alternatives include the definition of:

e A per-class concurreny index.
e A token-based system.
e A rate-based credit system controlled by the egress nodes.

These alternatives are an extension of the work done in [4]. The work in [4],
defined an AC limit for acceptance of traffic flow within a class. The AC lim-
its are defined off-line at an initial provisioning phase taking as input: (i) the
network topology, (ii) the long-term expected traffic metrices, and (iii) the band-
width sharing policies among classes. The initial static limit can be extended
dynamically by sharing unused AC limit between egress routers. The authors of
[53], also outline the issues with centralized AC approaches. They argued that
the main advantage of centralized AC approaches is that centralizing state infor-
mation and control task allows global vision of the domain’s QoS and operation,
relieving the control plane inside the network. The centralization process also
supports creating and changing service policies and control mechanism such as
AC algorithms. The cost of centralized approaches is however high. Central en-
tities need to store and manage large amount of information, which in large and
highly dynamic networks with many signalling messages and information updates
requiring to be processed in real-time are even hard or impossible to realize.

3.3 Admission Control Approaches

As already discussed in section 3.2, there are different approaches to admission
control mechanism. In this thesis, the admission decision criteria and distributed
approaches to admission control are consider closely. Examples of these ap-
proaches include parameter-based admission control (PBAC), which is explained
in subsection 3.3.1, and measurement-based admission control (MBAC), which
is detailed in subsection 3.3.2. The main criteria ([49]) used in evaluating any
admission control algorithm are the following:

e How well it fulfils its primary role of ensuring that service commitments are
not violated.

3.3 Admission Control Approaches 41

e How high a level of network utilisation an admission control algorithm can
achieve while still meeting its service commitment.

e The implementation and operational cost of the admission control algo-
rithm.

These three criteria are going to be considered while discussing the different
approaches to admission control.

3.3.1 Parameter-based Admission Control

In this approach, admission control is based on the assumption that the algorithm
has perfect knowledge of each traffic source type that traverses every link. It also
knows the current number of established service instances. This information
enables admission control to compute the total amount of bandwidth required.
Hence it will only accept a new service request if the minimum amount of band-
width required by the total number of established service instances, including the
new one is less than the available service rate (bandwidth). Typically sources are
characterized by either peak and average rates [21] or a filter like token bucket
[64]. These source characterizations provide upper bound on the traffic flows
that can be generated by the source. It is obvious that this approach is optimal
if the traffic is accurately characterized and used for admission control decision.
Thus, the performance of this approach provides the upper bound for all other
admission control approaches as far as the traffic sources are conformant.

Traditional real-time services provide a hard or absolute bound on the delay of
every packet. According to reference [13], such service model is called guaran-
teed service. It uses a prior characterization of traffic sources. Network utilization
under this model is usually acceptable when the provided traffic characteristics
represents the actual behaviour of the source. However, when traffic character-
istics do not depict the actual network behaviour, network utilization degrades
inevitably low, since no traffic measurement is taken into consideration. PBAC
algorithms can be analysed by formal methods, this makes the algorithms simple
and easy to implement.

The simple sum algorithm is a representative of the parameter-based admission
control algorithms. It can be described as follows:

Simple Sum: This admission control algorithm is based on the a prior well
characterization of the traffic source. It simply ensures that the sum of reserved
resources plus the new flow request does not exceed link capacity. Let v be the
sum of reserved rate, p the link bandwidth, o the name of a flow requesting
admission, and r, the rate requested by flow a. This algorithm accepts a new
flow if the following condition is true [49]:

Vtre < i (3.1)

42 Admission Control Description

Due to the simplicity of this algorithm, it is one of the most widely implemented
by switch and routers vendors.

The PBAC algorithms are simple and easy to implement. They can be used to
provide guaranteed quality of service to hard real-time applications in terms of
packet loss and delay. In reference [51], the authors evaluated many algorithms of
this family. The problem of algorithms in this family is that, when the description
of the source traffic does not match the traffic behaviour in the network, the
algorithm may either incorrectly admit too many flow which leads to violation
of the QoS commitment, or it may deny access to flows which could have been
admitted successfully and this causes poor network utilization.

3.3.2 Measurement-based Admission Control

There are different types of measurement-based admission control algorithm.
These result from work based upon a wide variety of theoretical foundations,
different system requriements, different policies controlling the admission pro-
cess and thus different behaviour requirements to satisfy certain service models
(25, 57, 22, 46, 28, 49, 78, 13, 52, 75, 24, 29, 71, 70, 80, 81]. In this subsection,
some introduction and explanation of MBACs and the services they can support
are first presented. After that, different approaches to MBAC from different au-
thors are disscussed. Lastly, the components of MBAC are described and four
algorithms from the MBAC algorithm family are presented.

The MBAC algorithms provide an alternate approach to admission control. This
approach tries to solve the problems of parameter-based admission control by
shifting the task of source traffic specification from the user to the network [28].
Rather than the user specifying their traffic characteristics, the network attempts
to learn the characteristics of existing flows by making on-line measurements
[29]. This approach has a number of advantages such as the user—specified traffic
descriptor can be very simple e.g., using peak rate which can be easily policed.
An overly conservative specification does not result in over—allocation of resource
for the entire duration of the service session [78].

Measurement—based admission control schemes were designed to statistically share
network resource among flows so as to achieve high network utilization. The IETF
developed an architecture in an effort to support real-time applications in the
integrated service packet network [7]. The beauty of this architecture lies in
the fact that many real-time applications can be adaptive, i.e., could adjust to
network situations and tolerate some SLA violation in terms of packet loss and
delay. This architecture is known as predictive service. Algorithms supporting
predictive services use measurement of current network load instead of relying on
a prior traffic characteristics. They use the a prior traffic characterization only
for incoming flows, and measure the characteristics of the traffic already admitted

3.3 Admission Control Approaches 43

into the network.

Based on the fact that MBAC algorithms rely on measurements and the traffic
source behaviour is not always static, service commitment made by such algo-
rithms can never be absolute [49]. Thus measurement—based approach to admis-
sion control can only be used in the context of predictive service and other more
relaxed service commitment. The gain in network utilization becomes very sig-
nificant when there is a high level of traffic multiplexing, because when different
flows are multiplexed, the quality of service experienced depends often on their
aggregate behaviour. According to the law of large numbers, the statistic of an
aggregate traffic is easier to estimate than those of individual flows [56].

Applications requesting controlled-load service [83] may assume that its packet
loss rate is on the order of the transmission medium’s error rate and its typical
experienced delay should be on the order of the path’s transmission and prop-
agation delays. More specifically, average packet queueing delay should not be
greater than the flow burst time (where flow burst time can be defined as the time
required to serve the flow’s mazximum burst at the flow’s reserved rate) and there
should be minimal loss rate averaged over time—scales larger than the burst time.
For a flow described by the token bucket filter (see subsection 3.3.2.3), the burst
time is b/r, where b is the token bucket depth and r is the arrival rate.

3.3.2.1 Different MBAC Paradigma

In this subsection, different approaches of measurement-based admission control
mechanisms are presented.

In [22], Floyd presented a measurement-based admission control procedure for
the controlled-load service that is based on the approach of equivalent capacity.
The paper defined equivalent capacity of a class of traffic as that value C'(¢) such
that the stationary arrival rate for the class exceed C'(€) with probability at most
€. An admission control scheme that esimates the equivalent capacity of a class
is proposed. A connection is admitted to a class of traffic, if with the addition of
the new connection, the equivalent capacity of that class would be less than the
allocated bandwidth for the class. This allows a simple fairly easily computed
admission control procedure. For this MBAC algorithm, it is assumed that traffic
description include token bucket parameters with the token rate and bucket size as
in the controlled-load service, and that these token bucket parameter are policed
at the router. Traffic from admitted connection that exceeds these token bucket
parameter is forwarded on a best effort basis if resources are available but does
not have to be considered by the admission control procedure. The admission
control procedure uses the policed token bucket parameter to infer a peak rate for
each flow over some fixed time interval. For such an admission control procedure,
a request for admission is most likely to be accepted if the token rate is set close

44 Admission Control Description

to the peak rate of the flow, and the bucket size is set to some small value to
accommodate the accumulated jitter as packets are pushed in the network.

The authors of reference [46], described a measurement—based admission control
algorithm for predictive service. Their admission control algorithm mechanism
consist of two logically distinct aspects. One aspect is a set of criteria controlling
whether to admit a new flow. This aspect is based on an approximate model of
traffic flows and used measured quantities as inputs. The second aspect is the
measurement process itself. In this mechanism, sources requesting the service
must characterize the worst-case behaviour of their flows. Flows are characterized
by token bucket filter, which has two parameters - its token generation rate r and
the depth of its token bucket b. It is assumed that packets are of fixed size and
each token is worth of a packet. Sending a packet consumes one token. When
admitting a new flow not only must the admission mechanism decide whether the
flow can get the service requested, but it must also decide if admitting the flow
will prevent the network from keeping its prior commitments. Let us assume for
the moment, that admission control can not allow any delay violation. Then the
admission mechanism must analyze the worst-case impact of the newly arriving
flow on existing flows’ queueing delay.

The second aspect, which is the measurement process, is based on a simple time
window mechanism. The measurement process uses the constants A, S, and
T. The authors of [46] made two measurements: the experienced delay and
utilization. To estimate delay, the queueing delay (cZ) of every packet is measured.
To estimate utilization, the usage rate of guaranteed service, V5 and of each
predictive class j, VjS , over a sampling period of length S packet transmission
unit is sampled. To measure the delay, the measurement variable D; tracks the
estimated maximum queueing delay for class j. A measurement window of T’
packet transmission units is used for the basic measurement block. The value
of D; is updated on three occasions. At the end of the measurement block,
D; is updated to reflect the maximal packet delay seen in the previous block.
Whenever an individual delay measurement exceeds this estimated maximum
queueing delay, it shows that the estimated delay is wrong and D; should be
immediately updated to be A times this sampled delay. The parameter A allows
the estimation to be more conservative by increasing D; to a value higher than
the actual sampled delay. Finally D; is updated whenever a new flow is admitted.
The utilisation is measure analog like the delay.

Authors of [75], proposed a dynamic call admission control in ATM networks.
This procedure is based on measurement of the number of cells arriving during
a fixed interval. They pointed out that an admission procedure based on actual
measurement of the arrival rates at the gateway tolerates possible errors in the
policing at the edge of the network. In the paper, after a new connection is
admitted, the traffic parameters of the new connection are used to update the
estimate of the distribution of cell arrival. This estimated distribution is then

3.3 Admission Control Approaches 45

updated using exponential weighted moving averages.

In reference [28], the authors presented a framework for robust measurement-
based admission control. They studied the performance of admission control
schemes under measurement uncertainty and flow dynamics. They proposed the
use of appropriate amount of memory for the estimator. By means of heavy-
traffic approximations, the analysis of the resulting dynamical system is simplified
through linearization around a nominal operating point and by Gaussian approx-
imations of the statistic. The gain they obtain showed the impact estimation
error could have on the QoS performance of MBAC schemes. As a consequence,
it was demostrated by the authors how the memory time scale affects the perfor-
mance, and they went on to show which memory time scale choice could achieve
robust performance.

There are principally different motivations to MBAC, but in general they show
some common features like [9]:

1. Many of the existing MBAC algorithms are greedy, in the sense that they
admit new flows as soon as resources become available. For example in the
presence of heterogenous flows (in terms of bandwidth requirement) the
greedy nature of the algorithms leads them to discriminate against larger
flows. In the limit of large demand, the MBACs will only admit small flows.
Anytime there is room for a small flow one will be admitted, so there will
never be enough bandwidth available for a larger flows.

2. The algorithms are local in the sense that an independent admission control
is made at each hop along a path. Consider a situation where the traditional
per-hop admission is applied, a flow is then only admitted if the flow passes
the local admission criterion at every hop. If it fails at a single hop the flow
is rejected. In the limit of large demand, the network will tend to admit
only flows that traverse relatively short path.

These two features tend to define an implicit policy to admit small flow rather
than large ones and flows traversing short paths (in terms of network hops) rather
than long ones. Nevertheless, the authors of [48], pointed out another feature,
which several of the existing MBAC have in common, that is their admission
control equations give essentially the same performance. So they suggested that
further research on MBAC should not focus on the design of the admission control
equations, instead should focus on the settings of the measurement parameters
and on global issues involed in MBAC such as the issue of admitting small flows
and flows traversing short paths.

3.3.2.2 MBAC Components

The measurement-based admission control is made up of three components, which
work together to admitt or reject flows so as to control the network load. They

46 Admission Control Description

are named as follows:
e Traffic descriptor.
e Admission decision algorithm.

e Measurement mechanism.

The third component is made up of estimation modules. The interaction among
the components is presented in Figure 3.1:

Measurement
Mechanism ieai
Fow - Agml_s§|on Flow
Flow | . » . ecision —>
Descriptor Measuring Algorithm
Module

Figure 3.1: Components of measurement-based admission control

3.3.2.3 Traffic Descriptor

The traffic descriptor is a set of parameters that is used to characterize a traffic
source. A typical traffic descriptor is the token bucket. The token bucket is a
policing unit in the network [45]. It monitors the traffic that is generated by
a single source and if necessary, limits the traffic flows by dropping individual
packets. Figure 3.2 presents the function of a simple token bucket (STB). The
token bucket can be described by two parameters: token generation rate r and
the token bucket size b. The depth of the token bucket determines the maximum
burst size that can be sent to the link. If the token overflows, they are simply
discarded and not stored. To transmit a packet of B size, the corresponding
amount of tokens are reduced from the token bucket. Each token represents a
number of bytes, and the packet can only be sent if there are enough tokens in
the bucket. Thus, when the token bucket is empty arriving packets are either
queued or dropped.

If the token bucket is full, a maximum burst of b bytes can pass the token bucket
without being affected. However, in the long run the average data rate cannot
be greater than r.

The complex token bucket (CTB) is a more advanced type of token bucket filter
[45]. In addition to STB’s functionality, it has the capability of limiting the peak
rate p of a source. Even if the bucket is full, the source cannot necessary sent
packet burst with link speed [56]. Every traffic source can now be characterized
by the given token bucket parameter (r,b) or (r,b,p) for STB and CTB respec-
tively. For example a source seeking admission will characterize its traffic with
token parameter r and b such that over a period of time 7', the traffic generated
by the source will not exceed rT" + b [11].

3.3 Admission Control Approaches

47

Token fill rate r

Bucket size b

Link
speed

Burst size
Shaped traffic

Input traffic

Figure 3.2: Token bucket operation

3.3.2.4 Admission Decision Algorithms

In this masters thesis, four measurement-based admission control algrithms are

discussed. The algorithms are as follows:

e Measured Sum (MS)

e Equivalent Bandwidth based on Hoeffding Bounds (HB)

e Acceptance Region (Tangent at Peak (TP) and Tangent at Origin

(TO))

Measured Sum (MS): The measured sum algorithm ([49]) uses measurement

to estimate the load of existing network traffic flows. Let ¢) be the measured
load of existing traffic, u the link bandwidth, o the name of a flow requesting
admission, and r, the rate requested by the flow a. This algorithm admits
the new flow if the following condition is true:

Y41 <V (3.2)

where v is a user-defined utilization target intended to limit the maximum
link load. This algorithm uses the time-window estimating mechanism to
derive the estimated rate of existing flows. This mechnism will be explained
in subsection 3.3.2.5 later in this work. Upon admission of a new flow, the
load estimate is increased using Q/A} = 1) +1,. According to [47], in a simple
M/M/1 queue, variance in queue length diverges as the system approaches
full utilization. A measurement-based approach is doomed to fail when
delay variation is very large, which will occur at very high utilization [49].
Thus, it is deemed necessary to specify a utilization target and require that
the admission control algorithm works towards keeping the link utilization
below this specified target level.

48 Admission Control Description

Equivalent Bandwidth based on Hoeffding Bounds (HB): This MBAC
algorithm described in [22], computes the equivalent bandwidth for a set
of flows using the Hoeffing bounds. The equivalent bandwidth for a set of
flows is defined in references [22, 30] as the bandwidth C'(¢) such that the
stationary bandwidth of a set of flows exceeds this value with probability
at most €. The measured equivalent bandwidth based on Hoeffding bounds
(Cy) of n flows, assuming peak rate policing, is:

Cu({pihi<icn€) =¥ + \/ln(l/e) 22:?:1(101')2 (3.3)

where 1) is the measured average arrival rate of existing traffic and € is the
probability that arrival rate exceeds the link capacity. This algorithm makes
use of the exponential averaging measurement mechanism (see subsection
3.3.2.5) to estimate the measured average. The admission control decision
to admit a new flow’s () requests, is then stated as:

CH + Do < M. (34)

Upon admission of a new flow, the load estimate is increased using @/3 =
U+ po. If a flow’s peak rate is unknown, it is derived from its token-bucket
filter parameters (r, b) using the following equation:

p=r+b/U, (3.5)

where U is a user-defined averaging period. Similarly to the algorithm in
[25], if a flow is denied admission, no other flow of a similar type will be
admitted until an existing one departs [48].

Acceptance Region: The MBAC algorithm proposed in [25], computes an ac-
ceptance region that maximizes the reward of utilization against the penalty
of packet loss. Given link bandwidth, switch buffer space, a flow’s token
bucket filter parameters, the flow’s burstiness, and the desired probability
of actual load exceeding bounds, one can compute an acceptance region for
a specific set of flow types, beyond which no more flows of those particular
type should be accepted [49]. For example, let a and p be the average
and peak rates of an ON/OFF source, the equivalent bandwidth (C) of the
source can be computed using the following equation [24, 50] :

Cls) = élog {1 + %(ew - 1)] | (3.6)

where s is a space parameter, and s > 0. One can then draw an equivalent
bandwidth curve varying the average rate on the x — axis and with the

3.3 Admission Control Approaches 49

resulting equivalent bandwidth on the y —axis. A linear bounds at different
points of this curve can be composed as tangent at that point:

ct+ap <p (3.7)

where ¢ determines the location and « the slope of the tangent. This linear
bound at different points can then be used as MBAC algorithms [48]. The
reference [24], presented four MBACs, each based on a different tangent
of the equivalent bandwidth curve. In this thesis, only the following two of
the four algorithms are of interest:

1. Tangent at Peak: The first algorithm based on the tangent at the
peak of the equivalent bandwidth curve computed from the Chernoff
Bounds, admits a new flow if the following condition is true [10]:

n(l—e™P)+e "y < p, (3.8)

where n is the sum of the number of admitted flow peak rates, p is the
peak rate of the flows, s is the space parameter of the Chernoff Bounds,
1 is the estimate of the current load and g is the link bandwidth.

2. Tangent at the Origin: The second algorithm is based on the tan-
gent to the equivalent bandwidth curve at the origin. Here, a new flow
is admitted if the following equation is true:

e < p. (3.9)

Both of the algorithms uses the point sample estimation mechanism (see
subsection 3.3.2.5) to measure the current load. The measured load used
in equation 3.8 and 3.9 is not artificially adjusted upon admittance of a
new flow. For flows described by a token bucket filter (r,b) but not peak
rate, equation 3.5 is used to derive the peak rate. If a flow is rejected, the
admission control algorithm does not admitt another flow until an existing
one departs.

3.3.2.5 Measurement Mechanism

In this subsection, the three measurement mechanisms! used by the MBAC al-
gorithms described in the previous subsection are discussed. The measurement
mechanisms are the following:

1. Time-window (TW).
2. Point Sample (PS).

' Measurement mechanism is synonymously used as the estimator

50 Admission Control Description

3. Exponential Averaging (EA).

These measurement mechanisms may not be the most efficient nor the most
rigorous measurement mechanisms. They are however, very simple, which helps
to isolate the admission patterns caused by particular admission control algorithm
from those caused by the measurement mechanisms itself [49].

Time-window: According to [47], a simple time-window measurement mecha-
nism can be used to measure the network load as input to the MS algorithm.
As shown in Figure 3.3, the average load is computed every S sampling
period. At the end of a measurement window 7', the highest average load
from the just ended T is used as the load estimate for the next T" window.
When a new flow is admitted to the network, the estimate is increased with
the parameters of the new flow admitted into the network. If a newly com-
puted average is above the estimate, the estimate is immediately raised to
the new average. At the end of every T', the estimate is adjusted to the
actual load measured in the previous 7. A smaller S will give a higher
maximal average, which results in a more conservative admission control
algorithm. A larger T keeps longer measurement history, again resulting
in a more conservative admission control algorithm. To get a statistically
meaningful number of sample, reference [49], suggests keeping the value of

T/ > 10.
load]
New flow | , ,
| Sample above H Rat_e
| estimate H estimate
Load = max sample 1 H
in previous window | \ i /
AN o
F o |
------ @ e
o o i o
o) < | < ©
o O 9 oo)
(@) : | Restart T !
: ; .O time
st TTTTTTTTTSS TTTTTTTTT T IsTITTTTTI
il T ” I« T ”

Figure 3.3: Time-window measurement mechanism

Point Sample: The measurement mechanism used with both of the acceptance
region MBAC algorithms (ACTO and ACTP). It takes an average load
sample every S period. Or this can be equivalently described as the time-
window measurement mechanism with a 7'/S ratio of 1.

Exponential Averaging: An exponential average is used as input to the ho-
effding bounds MBAC algorithm. The average arrival rate (1)) is measured

3.4 A Multiservice Framework Using MBAC in ns-2 51

once every S sampling period [49, 47]. The average arrival rate is then
computed using an infinite impulse response function with weight w:

~

v=(1—w)*x+wx*g, (3.10)

where w is an averaging weight which determines how fast the estimated
average adapt to the new measurement. A larger w makes the averaging
process more adaptive to load changes, a smaller w gives a smoother aver-
age by keeping a longer history. As stated in section 3.3, the equivalent
bandwidth based admission control algorithms require peak rate policing,
and derive a flow’s peak rate from its token bucket parameters using equa-
tion 3.5, when the peak rate is not explicitly specified. To be on the safer
side, the averaging period U in equation 3.5 should be smaller than or
equal to S, the measurement sampling period. A smaller S not only makes
the measurement mechanism more sensitive to burst, it also makes the peak
rate derivation more conservative. A larger S may result in lower averages,
however it also means that the measurement mechanism keeps a longer
history because the averaging process (Eqn 3.10) is invoked less often [49].

3.4 A Multiservice Framework Using MBAC in ns-2

This section presents a proposal for a multiservice framework, which uses the four
MBAC algorithms for simulating the effects of transmitting multiclass traffic lows
over a packet network. In the previous section the mathematical formulations
and theoretical descriptions of the four measurement-based admission control
algorithms were presented. These algorithms as they are described in subsection
3.3.2.4 together with some other components (described later in this section)
formed a framework already embedded in network simulator version two tool
(ns-2) (detail explanations of ns-2 tool are the main topic of chapter 4 of this
thesis) for simulating a single predictive? application traffic. In this section, this
already exiting framework is described together with its components after which
the new multiservice framework is described.

The already existing framework in ns-2 shown in Figure 3.4, is based on the
IntServ architecture ([7]).

As mentioned previously, this framework contains the four MBAC algorithms
and one PBAC algorithm for controlling the network traffic load. Basically, it is
made up of the following two components:

e End-to-End signalling mechanism for requesting a new connection.

2Please note that predictive service and controlled-load service are used synonymly in this
work.

52 Admission Control Description
Admission —
Control « EstLrJngtt|on
Unit A
A,
In Flow' signalling | Packet | Measurement | Queue Out Flow
Support Classifier Unit Scheduler

Figure 3.4: Existing single service framework in ns-2

e An enhanced link structure.

End-to-End signalling mechanism: This is a very simple end-to-end sig-

nalling protocol based on RSVP (described in subsection 2.4.1.7). It is
implemented in ns-2 for requesting services. It uses a three way handshake.
The signalling protocol is sender—initiated, whereby the sender sends a re-
quest message (PT_REQUEST) with the token bucket parameters (r,b).
The message goes all the way to the receiver through the IntServ enhanced
link (explained below).

The receiver reverses the request message as a reply message (PT_REPLY)
to the sender. The sender then resends the reply message as confirm mes-
sage (PT_CONFIRM) to the receiver. The reply message is needed to
indicate to the sender about the successful establishment of a connection,
after which it may start transmitting data packets. If the reply is a reject,
then the source sends the confirm message and no more packets.

Since in this framework, the reply message traverses through a different
simple-link than the request message, a confirm message is required to in-
dicate to the signal-support component about the fate of the connection.
This is particulary important for the state of those links which said “yes” to
a connection but the connection got rejected on a downstream link. Finally
the sender sends a tear down message (PT_TEARDOWN) at the end of
the connection.

The enhanced link: The enhanced link is the medium through which data

(messages) travel from source to destination. It is made of four components
for supporting controlled-load service. The components are the following:

e Signal-Support: This component is used to maintain some transient
state about flows requesting service. Specifically the link need to re-
member its decision for a new flow until it gets the PT_CONFIRM
message.

e Queue Scheduler: This is a simple queue scheduler for the controlled-
load service. It is implemented as a two level service priority queue.

3.4 A Multiservice Framework Using MBAC in ns-2 53

First level high priority for controlled-load service and the second level
low priority for best-effort service. In the practice, this framework
simulates only controlled-load service. Also all signalling messages are
explicitly prevented from drops.

e Classifier: The classifier in this framework is a flow classifier. It
treats all the flow with flow ID greater than zero as controlled-load
traffic and flows with zero flow ID as best-effort traffic3.

e Measurement, Estimator, AC: The measurement object is a very
simple object that measures per-class packets. The estimator es-
timates the used bandwidth based on the estimation algorithm in
play which could be one of Time-Window, PointSample, or Exponen-
tial Average (see subsection 3.3.2.5). The admission control object
(AC) makes an admission control decision based on the load estimate
from the estimator and the admission control algorithm in play which
could be one of Measured Sum, Hoeffding bounds, Acceptance region-
Tangent at Origin, or Acceptance region-Tangent at Peak (see subsec-
tion 3.3.2.4). These are the same algorithms and estimators presented
in the last section.

When a new connection request comes to a link, the signal-support module
ask the admission control for a decision which will in turn look at the current
load estimate and the new flow parameters. Interested readers are directed
to reference [56] for full details of this framework.

Based on this existing framework, a new framework for simulating multi-controlled-
load services in ns-2 is proposed. This framework is designed to support three
classes of service:

e VoIP class service.
e Video class service.
e Best effort class service.

Among these service classes, the VoIP class has the highest priority, followed by
the video class and the best effort class has the lowest priority. In this new frame-
work, the logic of the end-to-end signalling mechanism component is not changed.
So changes (or extensions) are only made to the components of the enhanced link
component. The next subsection describes the changes made to these enhanced
link components. After describing them, a new dynamic bandwidth allocation
mechanism designed for the new framework is presented.

3This framework does not practically simulate best-effort traffic.

54 Admission Control Description

3.4.1 The Enhanced Link for the New Framework

This subsection decribes the enhanced link for the new proposed multiservice
framework. In this framework the components of the enhanced link in the already
existing framework are extended to accommodate multiservice functionalities.
Figure 3.5 presents the enhanced link.

I |

Admission Estimation Estimation Estimation
Control Unit Unit 1 Unit 2 Unit 3
T t A
Measurement {
/ Unit 1
In Traffic | Signalling Packet | Measurement Queue [Out Traffic
Support Classifier Unit 2 Scheduler
/V
Measurement/
Unit 3

Figure 3.5: Enhanced link

The changes made to the components are described in the subsequent subsections.

3.4.1.1 Signal-Support

This component is only extended to allow traffic flows with the predefined flow
IDs to place connection request to the admission control algorithm. And then
maintain transient states for these flows.

3.4.1.2 Queue Scheduler

For the controlled-load multi-flow classes, a queue scheduler with three service
level priority queues were implemented. The scheduler schedules the traffic flows
based on the flow ID, which indicates the priority of the flow class. The low
priority class has a smaller queue size, which means that they are easily dropped
when there is congestion. It also explicitly prevents the signalling message packets
from drops.

3.4.1.3 Classifier

In the new framework, a flow classifier is also used to distinguish the traffic flow
packets into different classes. The classifier uses the flow ID to filter the traffic
flows. It then groups the packets with the same flow ID into one class, thereby
making it possible to treat all traffic packets of this class equally.

3.4 A Multiservice Framework Using MBAC in ns-2 55

3.4.1.4 Measurement, Estimation, Admission Control

These three modules are been explained together because they are highly depen-
dant on each other. The three modules are not logically changed but extended
to accommodate multiclass service. The changes made to the estimation module
can be better explained together with the code which will be done in the next
chapter (chapter 5). The changes to the admission control algorithms are shown
in the following:

e Measured Sum: To accomodate the multiclass, the admission decision
equation (Eqn 3.2) of the measured sum algorithm is extended to become:

Vi + Tai < U (3.11)

¢ Equivalent Bandwidth based on Hoeffding Bounds: This algorithm
admission decision equation (Eqn 3.3) is extended to accommodate the
multiclass services as shown below:

Cri+ Pai < i (3.12)

e Acceptance region-Tangent at Origin: The admission decision equa-
tion (Eqn 3.9) of this algorithm is extended in the following way to accom-
modate the multiclass service:

BSPi@ZJz‘ < - (3.13)

e Acceptance region-Tangent at Peak: This algorithm’s admission de-
cision equation (Eqn 3.8) is equally extended to support the multiclass
services as follows:

ni(1 — e *P) 4+ e *Pigh; < p,. (3.14)

where ¢ € [1,m]. For all equations i represents the class of the traffic flow and
m represents the maximal number of traffic classes. The extension of these ad-
mission decision algorithms is based on the fact that the different traffic class are
assigned different portion of the total bandwidth according to the class priority.
So each of the admission decision algorithms has to make its decision based on
the utilization of its assigned bandwidth portion.

3.4.2 Dynamic Bandwidth Allocation Mechanism

The static sharing of bandwidth among different classes of service in a network,
produces under ideal conditions an acceptable utilization of the network resources.
In practice, ideal conditions are far from the reality. Thus, some mechanism has
to be devised to regulate the bandwidth sharing in some unusual situations so as
to support high network utilisation.

The static bandwidth sharing among the traffic classes is done as follows:

56 Admission Control Description

e The VoIP class has highest priority and 50% of the total bandwidth.
e The video class has lower priority and 35% of the total bandwidth.
e The best effort class has lowest priority and 15% of the total bandwidth.

The problem with this type of bandwidth portioning is that, when a class band-
width is not good utilised, the unused bandwidth is wasted. This causes poor
utilisation of the total network resources. To alleviate this problem, the dynmanic
bandwidth allocation mechanism is devised. This mechanism borrows bandwidth
from best effort class to the higher priority classes, when they have exceeded a
certain threshold of their class bandwidth and the best effort class bandwidth is
uderutilised. The mechanism can be explained with the following psuedocodes:

Algorithm 3.4.1: VOIP CrLAsS BANDWIDTH BORROW (M bit/s)

if voipClUtil > 85% voipClBw && beClUtil < 50% beClBw
if beClUtil < 15% beClBw

then {VoipClBW = voipCIBw + 60% of 85% beClBw
if beClUtil > 15% beClBw

then {voipCIBw = voipCIBw + 60% of 50% beClBw

then

Where voipClUtil = VoIP class utilization, voipClBw = VoIP class bandwidth
beClUtil = Best effort class utilization, beCIBw = Best effort class bandwidth

Algorithm 3.4.1, presents the dynamic bandwidth borrowing mechanism for the
VoIP traffic class. When the VoIP utilization level is over 85 % of its class
bandwidth, it checks if there is unused bandwidth in the best effort class that can
be borrowed. When this condition is true, it borrows 60 % of the free bandwidth
from best effort class, and when it is false, it borrows nothing. There are two
types of bandwidth borrowing from best effort traffic class.

e The first type is when the best effort class utilization level is below 15 %
of the class bandwidth capacity. In this case 85 % of the best effort class
bandwidth is made available for borrowing.

e The second type is when the best effort utilization level is above 15 % but
below 50 % of the class bandwidth capacity. In this case 50 % of the best
effort class bandwidth is made available for borrowing.

Note, these two bandwidth borrowing types are exclusive to one another (i.e.,

3.4 A Multiservice Framework Using MBAC in ns-2 57

only one of them can be executed).
Algorithm 3.4.2: VIDEO CLASS BANDWIDTH BORROW (Mbit/s)

if viClUtil > 90% viCIBw && beClUtil < 50% beClBw

then

if beClUtil < 15% beClBw

then {viCIBw = viCIBw + 40% of 85% beClBw
if beClUtil > 15% beClBw

then {ViClBW = viCIBw + 40% of 50% beClBw

Where viClUtil = Video class utilization, viClBw = Video class bandwidth
Algorithm 3.4.2, describes the dynamic bandwidth borrowing mechanism for the
video traffic class. When this class utilization level is above 90 % of its class
bandwidth, it checks if there is unused bandwidth in the best effort class that can
be borrowed. When this condition is true, it borrows 40 % of the free bandwidth

from best

effort class, and when it is false, it borrows nothing.

Algorithm 3.4.3: BEST EFFORT CLASS BANDWIDTH RECOVERY (Mbit/s)

if beClUtil > 10% beClBw && beClUtil < 47% beClBw

then

else if

then

(exclusiveCheck = false
if voipCIBw > voipCIBw + (1/2 borrowed bw) && voipClUtil < initial voipCIBw
then voipClBw = voipCIBw - 50% borrowed bw
beClBw = beClBw + 50% borrowed bw
if viCIBw > viCIBw + (1/2 borrowed bw) && viClUtil < initial viClBw
then {ViClBW = viCIBw - 50% borrowed bw
\ beClBw = beClBw + 50% borrowed bw

beClUtil > 47% beClBw && exclusiveCheck

(if voipCIBw > voipCIBw + (1/2 borrowed bw) && voipClUtil < initial voipClBw
then voipCIBw = voipCIBw - 50% borrowed bw

beClBw = beClBw + 50% borrowed bw

if viCIBw > viCIBw + (1/2 borrowed bw) && viClUtil < initial viClBw

beClBw = beClBw + 50% borrowed bw

viClBw = viCIBw - 50% borrowed bw
then
\

if beClUtil > 70% beClBw

then

(if voipCIBw > initial voipCIBw && voipClUtil < initial voipClBw
then voipClBw = voipCIBw - 50% borrowed bw

beCIBw = beCIBw + 50% borrowed bw
if viCIBw > initial viClBw && viClUtil < initial viClBw

then viCIBw = viCIBw - 50% borrowed bw
\ ¢ beClBw = beClBw + 50% borrowed bw

Where bw = Bandwidth

58 Admission Control Description

Algorithm 3.4.3 depicts the bandwidth recovery mechanism for the best effort
traffic class. Similar to the borrowing mechanism, there are two type of recovery
mechanisms - the first is carried out when 85 % of the best effort class bandwidth
is borrowed, and the second type is performed when 50 % is borrowed. For each
of the recovery mechanism, the recovery process is performed in two steps. The
first step recovers 50 % of the borrowed bandwidth. This step is performed when
the best effort utilization level is over 10 % or 47 % “of the class bandwidth
capacity. The second bandwidth recovery step returns the rest 50 % of the
borrowed bandwidth. It is carried out, when the best effort utilization level is
over 70 % of the class bandwidth capacity. The bandwidth recovery is only
possible if the VoIP and video classes are not using the borrowed bandwidth
otherwise the bandwidth cannot be returned and the best effort class is starved.

3.5 Summary

It can be observed that supporting today’s Internet service heterogeneity and
integration of current emerging applications, while at the same time ensuring
consistent QoS level requires enhanced service management and control mecha-
nisms. The admission control mechanism provides a convienent means to ensure
high-quality communication by safeguarding enough resources availability for cus-
tomer traffic. There are different approaches to admission control mechanisms.
The parameter-based approach uses pre-specified traffic characteristics to com-
pute the network load and thus make its admission decision whether to accept
or reject a new traffic flow. This approach is conceived for guaranteed services
because it can ensure absolute delay bounds. It has the disadvantage of not
utilising the network resources well, thereby causing poor network utilization.
The measurement-based (MBAC) approach provides an alternative solution by
making an on-line measurement of current network load and based on this mea-
sured load, takes its admission decision to accept or reject a new flow. The
MBAC approach solves the problem of poor network utilization experienced in
parameter-based admission control. This approach is conceived for relaxed and
adaptive application in term of delay bounds and packet loss, because it uses
traffic measurements and for the fact that measurements can’t reflect the exact
nature of the traffic flows, it doesn’t ensure absolute bounds. There is a frame-
work implemented in the ns-2 tool to simulate admission control mechanism for
a single controlled-load service. This framework is extended to support applica-
tions with different class priorities. To support adequate resource utilization for
the multi-class controlled-load service network, a dynamic bandwidth allocation
mechanism is designed.

4Depending on the type of bandwidth borrowing performed.

4 Studying Network
Performance with the Network
Simulator Tool (ns-2)

This chapter presents the network simulation tool called network simulator ver-

sion 2 (ns-2). The ns-2 covers a very large number of applications, protocols,
network types, network elements, and traffic models. These are named simu-
lated objects. This chapter has two main goals: on one hand, to introduce and
explain in details the ns-2 simulator tool, and on the other hand to practically
apply the knowledge gained from this tool in teaching the operations of some
of the simulated objects. This helps the reader to gain more understanding of
the new multiservice framework proposed in this thesis (chapter 3, section 3.4).
Therefore this chapter presents not only some basics and introduction to ns-2
simulator tool, but also some lectures on OTcl programming, how to design sim-
ulation script, and how to add new class to the simulator. The chapter starts
with ns-2 introduction, describing its basics and features. It goes on to discuss
the sources from where ns-2 tool can be downloaded and the platform where ns-2
could be installed. Next, the lectures on ns-2 are presented. The lectures provide
fundamental information and guiding steps to fast mastering of this tool. It also
offers the reader practical usage examples of the tool. Finally, the chapter is
summarized at the end.

4.1 Basics of ns-2

The ns-2 tool is an object-oriented discrete event simulator targeted at networking
research. It is written in C4++, with an OTcl (Object-oriented extension of Tcl
script language) interpreter as frontend. The simulator supports a class hierarchy
in C4++ known as compiled hierarchy, and a similar class hierarchy within the
OTecl interpreter known as interpreted hierarchy [20]. The two hierarchies are
closely related to each other. From a user’s perspective, there is a one-to-one
correspondance between a class in the compiled hierarchy and a class within the
interpreted hierarchy. The root of these hierarchies is the class TclObject. Figure
4.1 presents an example of the class hierarchy.

Studying Network Performance with the Network Simulator Tool
60 (ns-2)

OTcl class | | C++ Class
@ Hierarchy | | Hierarchy @
Agent/TCP TCPAgent

*tcp
Agent/TCP
C++ Object

Figure 4.1: Example of class hierarchy design

Agent/TCP
Otcl Shadow
Object

A user can create new simulator objects through the interpreter, the objects are
instantiated within the interpreter and are closely mirrored to the corresponding
objects in the compiled hierarchy (see subsection 4.3.3.2). The interpreted class
hierarchy is automatically established through methods defined in the TclClass.
User instantiated objects are mirrored through methods defined in the T'cl/Object
class.

The ns tool began as a variant of the REAL network simulator in 1989 and has
evolved substantially over the past few years. In 1995 the ns development was
supported by Defense Advanced Research Project Agency (DARPA) through the
Virtual InterNetwork Testbed (VINT) project at LBL, Xerox PARC, UCB, and
USC/ISI. Currently ns development is supported through DARPA with Simula-
tion Augmented by Measurement and Analysis for Networks (SAMAN) project
and through National Science Foundation (NSF) with Collaborative Simulation
for Education and Research (CONSER), both in collaboration with other re-
searches. The ns tool has always included substantial contributions from other
researches including wireless code from UCB Daedelus and CMU Monarch project
and Sun Microsystems [62]. The ns-3 project is currently being developed with
the aim of replacing the ns-2 tool.

4.1.1 Tool Concept

The ns-2 is realised with two programming languages due to the fact that it has
two primary objectives: detailed simulations and network research. On the one

4.1 Basics of ns-2 61

hand, detailed simulation of protocols requires a system programming language
which can efficiently manipulate bytes, packet headers, and implement algorithms
that can run over large set of data. For this task run-time speed is important
and turn-around time (run simulation, fix bug, re-run) is less important.

On the other hand, a large part of network research involves slightly varying
parameters or configurations, or quickly exploring a number of scenarios. In
these cases, iteration time (change the model and re-run) is more important.

The ns-2 tool uses C++ and OTcl to meet these two requirements. C++ is fast
to run but slower to change, making it suitable for implementation of detailed
protocols and algorithms. OTecl is slower to run but can be changed quickly,
making it suitable for easy varying of simulation configurations. ns-2 provides
glue through TCLCL component to make objects and variables appear and have
same values on both language spaces [20].

The ns-2 tool is a discrete even simulator, where the advance of time depends on
the timing of events which is maintained by a scheduler. An event is an object
in the compiled hierarchy with a unique ID, a scheduled time, and the pointer to
the object that handles the event [2]. There are presently four schedulers availble
in the simulator, each of which is implemented using a different data structure:
a simple linked-list, heap, calender queue (used by default), and a special type
called real-time [20]. The scheduler runs by selecting the next earliest event,
executing it to completion, and returning to execute the next event. The unit
of time used by the scheduler is seconds. At the present, the simulator is single-
threaded, which means only one event can be executed at any given time. If
more than one event are scheduled to execute at the same time, their execution
is performed on the first-scheduled first-executed manner.

4.1.2 Target Groups, Goals, Components, and Features

The ns-2 tool is developed and designed for the following target user group [36]:
e Students interested in learning networking protocols.
e Engineers.

e Professors/teachers who are interested in illustrating TCP/IP protocol dy-
namics using animated examples (ns-2 and Nam combination).

e Researchers who need to evaluate their design using simulations but does
not have a trusted simulation tool.

e Users of commercial simulators who are considering switching to a free
simulator.

Studying Network Performance with the Network Simulator Tool
62 (ns-2)

e Users of home-bred simulators who are considering switching to a more
extendible simulator.

The simulator is designed for two primary goals, which will address two com-
pelling needs in networking today. They are:

1. Research: For development and evaluation of protocol.

2. Teaching: For teaching of existing networking concept, and protocols of
new networking models.

In respect of the primary goals of this tool, it presents much features and func-
tionalities, which include the following [60]:

e Support for wired networks which includes:

Local area networking

Routing DV, LS, PIM-SM

Transportation protocol: TCP and UDP

— Traffic sources: web, FTP, CBR, Telnet

— Queueing disciplines: Drop-Tails, RED, FQ, SFQ, DRR

— Quality of service: Integrated service architecture and differentiated
service architecture.

e Support for wireless networks made up of:

— Ad Hoc wireless networks

— Sensor networks

— Mobile IPv4, IPv6, UMTS, GPRS
e Support for satellite networks.

e Support for large-scale network topology generating, packet tracing, and
visualising.

The ns-2 software package in a whole is made up of the following components:
e The simulator itself,
e The network animator (Nam) used to visualize the output of simulations,

e The Tcl/Tk component,

e Pre-processing component used to generate network topology and data traf-
fic flows,

e Post-processing utilities used to analyse and process the results of the sim-
ulation such as Xgraph.

4.2 Sources and Installation 63

4.1.3 Cautions for ns-2

The developers and maintainers of ns-2 ([62]) gave some warnings, which any-
body interested in ns-2 has to be aware of. The warnings are as quoted:

e While we have considerable confidence in ns-2, it is not a polished and
finished product, but the result of an on-going effort of research and devel-
opment. In particular, bugs in the software are still being discovered and
corrected.

e Users of ns-2 are responsible for verifying for themselves that their simula-
tions are not invalidated by bugs. We are working to help the user with this
by significantly expanding and automating the validation tests and demos.

o Similarly, users are responsible for verifying for themselves that their simu-
lations are not invalidated because the model implemented in the simulator
18 not the model that they were expecting.

4.2 Sources and Installation

The ns-2 tool is a free open source software package which is still currently
evolving. That is, undergoing continual development, bug fixing and maintaince.
There are many stable released version of the ns-2 software package.

ns-2 depends on some external components such as Tcl/Tk, OTcl, Nam, etc.
These components and ns-2 itself are available for free download at the build
home page ([61]). The ns-2 tool releases are in two varients:

1. The Allinone package: Made for people who want to quickly and easily try
out ns-2.

2. Single packages: For people doing detail development, or people who want
to save disk space or having problem with the allinone package.

ns-2 is fairly large. The allinone package requires about 320MB of disk space to
build. Building ns-2 from pieces can save some disk space.

4.2.1 System Requirements and Platform

To build and install ns-2, a computer and C++ compiler are needed. The com-
puter should at least have a minimum of 500MB free disk space. It does not place
strict requirements for RAM and processor speed. But it is recommended to use
a computer with a minimal of 256 MB RAM and processor speed of 500MHz and
above.

ns-2 is developed on several kinds of UNIX platforms like:

Studying Network Performance with the Network Simulator Tool
64 (ns-2)

e FreeBSD
e Linux
e Solaris
e SunOS

It runs very smoothly on those platforms. ns-2 is also developed to run on window
platforms under cygwin for Windows 9x/2000/XP. For interested readers, detail
information on running ns-2 on windows using cygwin can be found in reference

74).

4.3 Methodic Teaching with ns-2 Tool

The ns-2 tool is an asset in the teaching and learning environments. This section
presents some lectures on this tool. The lectures are designed to teach the usage
of ns-2, the process of simulating protocol in ns-2, and the process of extending
the tool with new custom functionalities. The essence of presenting this part
of the chapter in lectures is to offer the reader a systematical learning sequence
and to demonstrate a possible practical application of ns-2 tool in a teaching
environment.

At the end of the lectures, the reader should be in the position to master the
following:

e Designing and writting simulation scripts.
e Carrying out simulation processes.
e Interpreting and post-processing simulation results.

e How ns-2 tool could be extended with custom functionalities.

4.3.1 Lecture 1: Introduction to Tcl/OTcl Programming Language

Before starting to learn how to write simulation script and run simulations with
ns-2, it is a good idea to start with the learning of the Tcl/OTcl programming
language which is a basic step and for the fact that this language is not so common
like the C or C++ programming language. Another reason for starting with the
learning of OTecl programming languages is for the fact that many simulation
script examples are included in ns-2 tool, which are ready for immediate trial. So
without understanding this scripting languages, it is very difficult to understand
the example simulation scripts provided with the ns-2 tool. Please note that OTcl
is an extension of Tcl, thus they have mostly the same buit-in commands. So

4.3 Methodic Teaching with ns-2 Tool 65

references to Tcl implicitly refer to OTcls as well, but the reverse is not necessarily
true.

The goals of this lecture is to teach the reader the following:
e The general syntax of Tcl programming language.
e The construct and syntax of writing procedures in Tcl.
e How Linux commands can be executed in Tcl scripts
e Object-oriented programming in OTcl programming language.

The tool command language (Tcl) is a simple scripting language created by John
Ousterhout for use by scripted applications. Tcl has the following characteristics:

e [t is a free package.

It allows fast development.

It provides a graphical interface.

It allows easy integration with other programming languages.

e [t is easy to use.

4.3.1.1 Tcl/OTcl Basics and Syntax

In Tcl, to assign a value to a variable, the command set is used. For example:
set x 2

This assigns to z the value of 2. This is equivalent to z=2 in C programming
language. If one wants to use the value assigned to a variable, one has to place
the $ sign before the variable. For example, if one wants to assign the value of
the variable z to another variable g, it can be done as follows:

set g $x.

A mathematical operation in Tcl, is executed with the expression (expr) com-
mand. For example, if one wants to assign to a variable d the sum of two variables
u and u, one writes:

set d [expr $u + $v]

The square brackets ([|) return the result of the expression command. Tt is
equivalent to a return statement in C functions.

Tcl variables are not typed. So a variable can be a string or an integer depending
on the value one assigns to the variable. For example, assuming one wants to
print out the result of the division 1/60. One may write:

Studying Network Performance with the Network Simulator Tool
66 (ns-2)

puts [expr 1 / 60]

This expression outputs the value 0. To get the correct result, one has to indicate
that the operands are not integer values but double values and the desired result
is a double value by writing:

puts [expr 1.0 / 60.0]

The puts command is used to print by default to the standard output the value
of its argument. If the argument is more than one, they have to be enclosed in
double quote or in a brace ({}). By default, this command prints a new line after
each call. This behaviour can be supressed by specifying the command option
—nonewline.

The # sign indicates the beginning of a line of comment in a Tcl program, so Tcl
intepreter will not execute this line.

4.3.1.2 File Operation and Application Command execution

Tcl provides several methods to read from and write to files on disk [79]. It
provides the following command options to regulate file accessing:

e 1: Open the file for reading. The file must already exist.
e r+: Open the file for reading and writing. The file must already exist.

e w: Open the file for writing. Create the file if it doesn’t exist, or set the
length to zero if it does exist.

e w-+: Open the file for reading and writing. Create the file if it doesn’t exist,
or set the length to zero if it does exist.

e a: Open the file for writing. The file must already exist. Set the current
location to the end of the file.

e a+: Open the file for writing. The file does not exist, create it. Set the
current location to the end of the file.

To create a file, one has to give a name (i.e. filename) and assign the file descriptor
to a variable (pointer), that can be used in Tecl program to access the file. For
example:

set fileptr [open filename w]

The file is opened for writing and the file descriptor is assigned to the variable
fileptr. To write something into the file, one could do the following:

puts $fileptr 4

4.3 Methodic Teaching with ns-2 Tool 67

This will write the value 4 into the file. After using a file, it is recommended to
close the file so that the operating system releases the resource consumed by this
file. File closing is done with the close command. For example:

close $fileptr

The execution of an application command within a Tcl script can be done with
the exec command, passing to it the name of the application’s command and its
options. For example, one might want to plot the result of a simulation dumped
in a file named data using the xgraph application. The calling statement looks
like:

exec xgraph data &

The & sign on the argument list, tells the Tcl intepreter to run the xgraph
application in the background.

4.3.1.3 Tcl Control Structures

Like most programming languages, Tcl supports control structures like if, for,
while, switch, and so on. For example, the structure of an if command is as
follows:

if {expression} {

<execute some commands>
telse {

<execute some other commands>
}

The if command can be nested with other ifs and their corresponding else coun-
terpart. The test expression returns a string yes/no or true/false, the case of
the return value is not checked, i.e., True/FALSE or YeS/nO are legitimate re-
turns. If the test expression returns true the <execute some commands> body is
executed, otherwise the <ezxecute some other commands> body is executed. It
should be noted that when testing for equality, one should use “ ==" sign like in
C and not the sign “ =". Inequality is also tested with “! =" as in C.

The for loop in Tcl has an iterated construct similar to the for loop in C. The
for command in Tcl takes four arguments; an initialization, a test, an increment,
and the body of code to evaluate on each pass through the loop. An example of
the for command is:

for {set i 0} {$i < 10} {incr i} {
<execute some code>
}

During evaluation of the for command, the initialization code is evaluated once,
before any other arguments are evaluated. After the initialization code has been

Studying Network Performance with the Network Simulator Tool
68 (ns-2)

evaluated, the test is evaluated. If the test evaluates to true, then the body is
evaluated, and finally, the increment argument is evaluated. After evaluating
the increment argument, the interpreter loops back to the test, and repeats the
process. If the test evaluates to false, then the loop exits immediately. Details of
the other control structures can be found in reference [79].

4.3.1.4 Adding New Commands to Tcl

The Tcl commands are equivalent to functions in C language. In Tcl, functions
are known as procedures and have the abbreviation proc. There is a list of built-in
commands that the intepreter loads when it starts up. One can also create some
commands that the intepreter should execute using the proc command. The proc
command creates a new command in Tcl. The syntax for the command is:

proc name args body

When proc is evaluated, it creates a new command with name name that takes
arguments args. When the procedure name is called, it then runs the code con-
tained in body. For example, one can define the following new command sum
using the proc command as follows:

proc sum {argl arg2} {
set x [expr {$argl + Sarg2}];
return $x

}

The procedure can have parameters that could be files, objects, or variables. In
this example the sum procedure takes two parameters arg! and arg2 and returns
a value. These parameters are used as named within the body of the procedure
to do an addition and the result of the addition is returned as the sum. The
procedure can be invoked as:

sum a b
where a and b represent the two parameters declared.

To demonstrate all of the above explanations, a command named test is written
as follows:

proc test {a b} {

set ¢ [expr $a + $b]

set d [expr [expr $a — $b] x $c]
puts "¢ = $¢ d = $d”

for{set k 0} {k < 10} {incr k} {
if{%k < 5} {
puts "k < 5, pow = [expr pow($d, $k)]”
} else {

4.3 Methodic Teaching with ns-2 Tool 69

puts "k > 5, mod = [expr $d % $k|”

}
}
}

The command test takes two integer values as parameter, does some arithmetic
operations in the body of the procedure and in one case in the loop, power
operations are executed and the result printed to the standard output, and in the
other case, modula operations are executed and the result printed to the standard
output. The command can be invoked for example, as:

test 43 27

4.3.1.5 Object-Oriented Programming in OTcl

In this part of the lecture, it is assumed that the reader is already familiar with
one of the object-oriented programming languages like Java, C++ and so on. For
simplicity, the lecture omits many details of the OTcl programming language.
The details can be found in reference [63].

An experienced C++ programmer may feel uncomfortable writing object-oriented
programing in OTcl at first contact. So to help the C++ programmer to quickly
get used to the OTcl language, some important characteristics of OTcl and their
equivalence in C++ are presented below:

e Instead of a single class declaration in C+4++, multiple class definitions can
be done in OTcl. Methods are referred to as an instance procedure with
abbreviation instproct. Each definition of a method with instproc command
adds a method to a class. Instance variable is defined with the set command
but within the body of a method, with the instvar command. Each instance
variable definition adds an instance variable to an object.

e Instead of a constructor in C++, write an init instproc in OTcl. Instead of
a destructor in C++, write a destroy instproc in OTcl. Unlike constructors
and destructors, init and destroy instruction procedures do not combine
with base classes automatically. They should be explicitly combined with
the help of the next command.

e Unlike C++, OTcl methods are always called through the object. The
name self, which is equivalent to this in C++, may be used inside method
bodies. Unlike C4++, OTcl methods are always virtual.

!Note that this method is only used in object-oriented programming context in OTcl. This
is a difference between Tcl and OTcl.

Studying Network Performance with the Network Simulator Tool
70 (ns-2)

e Instead of calling shadowed methods by naming the method explicitly as in
C++, call them with next command. next searches further up the inheri-
tance graph to find shadowed methods automatically. It allows methods to
be combined without naming dependencies.

e Avoid using static methods and variables, since there is no exact analogue
in OTcl. Place shared variables on the class object and access them from
methods by using $class. This behavior is inherited. If inheritance is not
needed, use proc methods on the class object.

e The word -superclass is used to declare the inheritance of a class from
another.

The following example demonstrate object-oriented programming in OTecl:

Class mom

mom instproc init {age} {
$self instvar age_
set age_ $age

}

mom instproc greet {} {
$self instvar age_
puts $age_ years old mom: How are you doing?

}

Class kid —superclass mom
kid instproc greet {} {
$self instvar age_
puts $age_ years old kid: What s up, dude?

}

set a [new mom 45]
set b [new kid 15]

In the example a class mom is defined with a constructor, which accepts one
parameter age, and a method greet, which does not accept any parameter but
prints out a greetings for a mom’s object. A second class kid is defined to inherit
from the base class mom. The kid class inherits the constructor from the base
class and defines its own version of the greet method to print out greetings for
its own objects. At the end in the example, the two classes are instantiated. The
execution of this example outputs the following results:

45 years old mom: How are you doing?
15 years old kid: What’s up, dude?

4.3 Methodic Teaching with ns-2 Tool 71

4.3.1.6 Lecture Assignments

At the end of this lecture the reader is recommended to do the following assign-
ments which will help the reader to practically assess his/her understanding of
the lecture content:

e Write a procedure that takes three integer values as parameter and outputs
the square root of the highest value.

e Write a base class hat that has a constructor to set the colour of a hat.
Write extra three classes to inherit from this class and let them print out
the colour of their hats.

4.3.2 Lecture 2: Writing Simulation Scripts and Simulating in ns-2

This lecture describes the structure of a simulation script, the simulation process
in ns-2, and how to post-process the results of simulations.

The goal of this lecture is to teach the reader the following points:

e How to setup a simulation script.

e How to create a network topology.

e How to create traffic sources.

e How to trace t