
DIPLOMARBEIT

Quality of Service IP Networking with
Multiservice Admission Control

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines

Diplom-Ingenieur der technischen Wissenschaften unter der Leitung von

o. Univ. Prof. Dr.-Ing. Harmen R. van As

und

Dipl.-Ing. Brikena Statovci-Halimi

E 388 Institut für Breitbandkommunikation

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht an der Fakultät für Informatik der
Technischen Universität Wien

von

Vincent Chimaobi Emeakaroha

Matr.-Nr. 0027525. Kennzhl. 066 937

Wien, October 16, 2008 ..................... .....................
(Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

 
 
Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der 
Hauptbibliothek der Technischen Universität Wien aufgestellt  
(http://www.ub.tuwien.ac.at). 
 
The approved original version of this diploma or master thesis is available at the 
main library of the Vienna University of Technology   
(http://www.ub.tuwien.ac.at/englweb/). 

 





Kurzfassung

Das Internet protocol (IP) unterstützte ursprünglich nur “Best Effort” Zustel-
lungsstrategien für IP Verkehrsflüsse. Mit der schnellen Evolution von Kommu-
nikationsnetzen und der Transformation des Internets in eine kommerzielle Infras-
truktur, ergab sich das Verlangen nach Dienstgüte(Quality of Service). Durch die
Verbindung von ursprünglich isolierten Netzen entstand die Notwendigkeit von
Mehrdienst-Netzen, wodurch die Differenzierung von Dienstgüte, bedingt durch
die unterschiedlichen Dienste, zur zentralen Herausforderung wurde.

Das Streben um Service-Qualität in IP Netzen zu garantieren führt zu Definitio-
nen von Technologien wie Integrated Service, Differentiated Service und Multipro-
tocol Label Switching. Unterschiedliche technologische Ansätze verwenden Ad-
mission Control (AC) Mechanismen um Ressourcen-Verfügbarkeit sicherzustellen,
und dadurch ausreichende Qualität, in Applikations-Verkehrsflüssen, zu gewährleisten.
Es gibt unterschiedliche Ansätze für Admission Control - der Measurement-Based
Admission Control (MBAC) Ansatz trifft seine Entscheidung, ob Verbindungsan-
fragen angenommen oder abgelehnt werden, anhand von aktuellen Netzlastmes-
sungen.

Diese Diplomarbeit erarbeitet einen Ansatz und eine Implementierung eines Mehr-
dienste Frameworks, um Dienstgüte für mehrere priorisierte, unterschiedliche,
Verkehrsflüsse, welche gleichzeitig ein Netz passieren, zu garantieren. Das Frame-
work implementiert vier MBAC Algorithmen um Verkehrsflüsse zu steuern, sowie
einen statischen und einen dynamischen Bandbreitenallokations-Mechanismus um
die Zuteilung der Netzressourcen, zu den Verkehrsklassen, abhängig von ihrer Pri-
orität, durchzuführen. Die Funktionalität des Frameworks wird durch sorgfältige
Netzsimulationen mit VoIP, Video und “Best Effort” Applikations-Verkehrsflüssen,
unter Verwendung des ns-2 Simulators, untersucht. Das Verhalten der Algorith-
men wird durch Evaluierung von Netzauslastung, Paketverlust und Verzögerung,
erforscht.



Abstract

Internet protocol (IP) networks are originally designed to provide best effort de-
livery services to IP traffic flows. With the rapid evolution of communication
networks and the transformation of the Internet into a commercial infrastruc-
ture, demand for quality of service arised. Nevertheless, the interconnection of
earlier isolated networks created the need for multiservice networks where the dif-
ferentiation of service quality provided by the network became the central issue.

The quest to ensure service quality in IP networks leads to the definition of
technologies like the integrated service, differentiated service, and multiprotocol
label switching. Several technology designs use admission control (AC) mech-
anism to provide quality communication by ensuring resources availability for
customer traffic flows. There are different approaches to admission control. The
measurement-based admission control (MBAC) bases its decision of accepting or
rejecting a new flow request, on the measurement of the current network load.

This thesis provides a proposal and an implementation of a multiservice frame-
work for guaranteeing service quality to prioritized multi-class traffic flows, simul-
tanously traversing a packet network. The framework implements four MBAC
algorithms for controlling the flow admission process, as well as a static and a dy-
namic bandwidth allocation mechanism to manage the allocation of the network
resources to the traffic classes according to their priority. The performance of the
framework is proven by thorough network simulations for VoIP, video, and best
effort applications using the ns-2 simulator. The behaviours of the algorithms are
studied by evaluating network utilization, drop rate, packet loss, and the delay
experienced by the traffic flows.



Acknowledgment

This work is the result of my master’s thesis at the Institute of Broadband Com-
munication (Institut für Breitbandkommunikation) at the Vienna University of
Technology (Technische Universität Wien).

I cannot adequately express my deep sense of gratitude and thanksgiving to God
who crowns all human efforts with success and whose love has been carrying me
through. His blessings and protection have always been upon me.

I would like to express my deepest and sincere gratitude to my supervisor, Dipl.-

Ing. Brikena Statovci-Halimi and o. Univ. Prof. Dr.-Ing. Harmen

R. van As for giving me the opportunity to write this thesis and for their
constructive support and guardiance throughout the work.

With overwhelming joy, i sincerely thank the family of Gisela & Oliver Prisching
for making it possible for me to study here in Austria and for their hospitality,
love and support all these years. May the good lord reward you abundantly.

I remain sincerely grateful to my close friends Lucia & Michael Zehndorfer,
Marianne & Kurt Zehndorfer, Opa Johann Radlherr & Barbara, Oma & Opa
Prisching, Brigitta & Gehard Kuntner without your friendship, love and sup-
port, i couldn’t have achieved this success. I pray that the good Lord shall
reward, guide and protect you all.

I owe lots of appreciations to my best friend and college Bakk.techn Oliver
Gündonner for his time, technical advises and help throughout my studies. I
will ever remain grateful to you.

My profound gratitude goes to em. o. Univ. Prof. Dr Norbert Leser for his
friendship, help and making life enjoyable in Vienna. May the good lord bless
and reward you.

Finally, i dedicate this work to my whole family especially my parents Chief
Prince & Lady Eugene Emeakaroha and my big brother Rev. Fr. Mag. Dr.
Emeka Emeakaroha thank you for steady encouragement, support and love. May
God bless and protect you all.

Vienna, October 2008 Vincent Chimaobi Emeakaroha



II



Contents

Contents III

List of Figures VII

List of Tables XI

1 Introduction 1
1.1 The Organisation of the Work . . . . . . . . . . . . . . . . . . . . 3

2 QoS in the Internet 5
2.1 Customer/Provider Service Level Agreement . . . . . . . . . . . . 6

2.1.1 Service Level Agreement Concept . . . . . . . . . . . . . . 6
2.1.2 Service Level Specification . . . . . . . . . . . . . . . . . . 7
2.1.3 Service Classification . . . . . . . . . . . . . . . . . . . . . 8

2.2 QoS Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 QoS Specification and Parameters . . . . . . . . . . . . . . . . . . 11

2.3.1 QoS Parameters . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1.1 Intrinsic Parameters . . . . . . . . . . . . . . . . 13
2.3.1.2 Operational Parameters . . . . . . . . . . . . . . 14

2.3.2 Required Conditions for QoS . . . . . . . . . . . . . . . . . 15
2.4 QoS Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Integrated Services (IntServ) . . . . . . . . . . . . . . . . . 16
2.4.1.1 Packet Classification . . . . . . . . . . . . . . . . 18
2.4.1.2 Packet Scheduling and Queue Management . . . 18
2.4.1.3 Admission Control Algorithm . . . . . . . . . . . 18
2.4.1.4 Service Classes . . . . . . . . . . . . . . . . . . . 19
2.4.1.5 Guaranteed Service (GS) . . . . . . . . . . . . . . 20
2.4.1.6 Controlled–Load Service (CLS) . . . . . . . . . . 21
2.4.1.7 RSVP signalling . . . . . . . . . . . . . . . . . . 22

2.4.2 Differentiated Services (DiffServ) . . . . . . . . . . . . . . 24
2.4.2.1 Differentiated Services Classes . . . . . . . . . . . 25
2.4.2.2 Differentiated Services Traffic Classification and

Conditioning . . . . . . . . . . . . . . . . . . . . 26



IV CONTENTS

2.4.3 Comparison of Differentiated Service and Integrated Service 29
2.4.4 Multi-Protocol Label Switching (MPLS) . . . . . . . . . . 30

2.4.4.1 MPLS Basic Architecture . . . . . . . . . . . . . 31
2.4.4.2 MPLS Label Distribution . . . . . . . . . . . . . 31
2.4.4.3 Packet Forwarding in MPLS . . . . . . . . . . . . 32
2.4.4.4 Traffic Engineering in MPLS Networks . . . . . . 33

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Admission Control Description 37
3.1 Required situations for Admission Control . . . . . . . . . . . . . 38
3.2 Related Work and Research in this Area . . . . . . . . . . . . . . 39
3.3 Admission Control Approaches . . . . . . . . . . . . . . . . . . . 40

3.3.1 Parameter-based Admission Control . . . . . . . . . . . . . 41
3.3.2 Measurement-based Admission Control . . . . . . . . . . . 42

3.3.2.1 Different MBAC Paradigma . . . . . . . . . . . . 43
3.3.2.2 MBAC Components . . . . . . . . . . . . . . . . 45
3.3.2.3 Traffic Descriptor . . . . . . . . . . . . . . . . . . 46
3.3.2.4 Admission Decision Algorithms . . . . . . . . . . 47
3.3.2.5 Measurement Mechanism . . . . . . . . . . . . . 49

3.4 A Multiservice Framework Using MBAC in ns-2 . . . . . . . . . . 51
3.4.1 The Enhanced Link for the New Framework . . . . . . . . 54

3.4.1.1 Signal-Support . . . . . . . . . . . . . . . . . . . 54
3.4.1.2 Queue Scheduler . . . . . . . . . . . . . . . . . . 54
3.4.1.3 Classifier . . . . . . . . . . . . . . . . . . . . . . 54
3.4.1.4 Measurement, Estimation, Admission Control . . 55

3.4.2 Dynamic Bandwidth Allocation Mechanism . . . . . . . . 55
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Studying Network Performance with the Network Simulator Tool
(ns-2) 59
4.1 Basics of ns-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.1 Tool Concept . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1.2 Target Groups, Goals, Components, and Features . . . . . 61
4.1.3 Cautions for ns-2 . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Sources and Installation . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.1 System Requirements and Platform . . . . . . . . . . . . . 63

4.3 Methodic Teaching with ns-2 Tool . . . . . . . . . . . . . . . . . . 64
4.3.1 Lecture 1: Introduction to Tcl/OTcl Programming Language 64

4.3.1.1 Tcl/OTcl Basics and Syntax . . . . . . . . . . . . 65
4.3.1.2 File Operation and Application Command execu-

tion . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.1.3 Tcl Control Structures . . . . . . . . . . . . . . . 67
4.3.1.4 Adding New Commands to Tcl . . . . . . . . . . 68



CONTENTS V

4.3.1.5 Object-Oriented Programming in OTcl . . . . . . 69
4.3.1.6 Lecture Assignments . . . . . . . . . . . . . . . . 71

4.3.2 Lecture 2: Writing Simulation Scripts and Simulating in ns-2 71
4.3.2.1 Initialization and Trace Setup . . . . . . . . . . . 72
4.3.2.2 Create Topology and Nam Setup . . . . . . . . . 73
4.3.2.3 Create Transport Agents and Application Sources 75
4.3.2.4 Simulation Process and Termination . . . . . . . 78
4.3.2.5 Nam Visualization and Simulation Result Post-

Processing . . . . . . . . . . . . . . . . . . . . . . 81
4.3.2.6 Lecture Assignments . . . . . . . . . . . . . . . . 86

4.3.3 Lecture 3: Adding Custom Functionality to ns-2 . . . . . . 86
4.3.3.1 ns-2 Directory Structure Overview . . . . . . . . 87
4.3.3.2 How to Add a New Class Object to ns-2 . . . . . 89
4.3.3.3 Testing and Result of the New Class Object . . . 93

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Code Description of the Multiservice Framework 97
5.1 Multiservice Queue Scheduler Implementation . . . . . . . . . . . 98

5.1.1 Queue Components description . . . . . . . . . . . . . . . 99
5.2 Signalling Mechanism Implementation . . . . . . . . . . . . . . . 99

5.2.1 Signalling Components Description . . . . . . . . . . . . . 100
5.3 Multiservice Enhanced Link Implementation . . . . . . . . . . . . 102

5.3.1 Multiservice Link Components Description . . . . . . . . . 103
5.4 Implementation of Admission Control Algorithms . . . . . . . . . 104

5.4.1 Admission Control Classes Description . . . . . . . . . . . 106
5.4.1.1 Measured Sum Algorithm Code Description . . . 107
5.4.1.2 Hoeffding Bounds Algorithm Code Description . 107
5.4.1.3 Acceptance Region Tangent at Peak Algorithm

Code Description . . . . . . . . . . . . . . . . . . 109
5.4.1.4 Acceptance Region Tangent at Origin Algorithm

Code Description . . . . . . . . . . . . . . . . . . 110
5.4.2 Estimator Classes Description . . . . . . . . . . . . . . . . 111

5.4.2.1 Time-Window Estimator Code Description . . . . 113
5.4.2.2 Exponential Averaging Estimator Code Description113
5.4.2.3 Point Sample Estimation Code Description . . . 114

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 Simulation Scenarios and Results 115
6.1 Static Bandwidth Allocation Mechanism . . . . . . . . . . . . . . 116

6.1.1 Simulation with the Two-Node Network Topology . . . . 116
6.1.1.1 Simulation Scenario One . . . . . . . . . . . . . . 117
6.1.1.2 Simulation Scenario Two . . . . . . . . . . . . . . 123

6.1.2 Simulation with the Eight-Node Network Topology . . . . 129



VI CONTENTS

6.1.2.1 Simulation Scenario One . . . . . . . . . . . . . . 129
6.1.2.2 Simulation Scenario Two . . . . . . . . . . . . . . 135

6.1.3 Performance Comparison of the Two Network Topologies . 140
6.2 Dynamic Bandwidth Allocation Mechanism . . . . . . . . . . . . 143

6.2.1 Simulation with the Two-Node Network Topology . . . . . 143
6.2.1.1 Simulation Scenario One . . . . . . . . . . . . . . 143
6.2.1.2 Simulation Scenario Two . . . . . . . . . . . . . . 149

6.2.2 Simulation with the Eight-Node Network Topology . . . . 154
6.2.2.1 Simulation Scenario One . . . . . . . . . . . . . . 154
6.2.2.2 Simulation Scenario Two . . . . . . . . . . . . . . 160

6.2.3 Performance Comparison of the Two Network Topologies . 166
6.3 Performance Comparison: Static vs. Dynamic Bandwidth Alloca-

tion Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.3.1 General Comments About Achieved Results . . . . . . . . 168
6.3.2 Selected Results and Comparison . . . . . . . . . . . . . . 169

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7 Conclusions 171

Bibliography 173

Index 187

List of Source Codes 189



List of Figures

2.1 Example of service level agreement . . . . . . . . . . . . . . . . . 6
2.2 Inter–provider SLA . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 A general QoS model . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 The service intrinsic and operational parameters . . . . . . . . . . 13
2.5 The integrated service model . . . . . . . . . . . . . . . . . . . . . 17
2.6 The integrated service class types . . . . . . . . . . . . . . . . . . 19
2.7 RSVP signalling mechanism in IntServ . . . . . . . . . . . . . . . 23
2.8 DiffServ network model . . . . . . . . . . . . . . . . . . . . . . . . 24
2.9 Traffic classification and conditioning clock . . . . . . . . . . . . . 27
2.10 The comparison of DiffServ, IntServ and best effort in term of QoS

guarantee level and implementation complexity . . . . . . . . . . 29
2.11 The MPLS header . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.12 Creation and processing of MPLS header . . . . . . . . . . . . . . 32
2.13 Combination of three QoS technologies . . . . . . . . . . . . . . . 35

3.1 Components of measurement-based admission control . . . . . . . 46
3.2 Token bucket operation . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Time-window measurement mechanism . . . . . . . . . . . . . . . 50
3.4 Existing single service framework in ns-2 . . . . . . . . . . . . . . 52
3.5 Enhanced link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Example of class hierarchy design . . . . . . . . . . . . . . . . . . 60
4.2 A simplex link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3 Nam user interface . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4 Nam output of simulated example script . . . . . . . . . . . . . . 82
4.5 Tracing objects in simplex-link . . . . . . . . . . . . . . . . . . . . 84
4.6 Trace entry fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.7 ns-2 directory structure . . . . . . . . . . . . . . . . . . . . . . . . 87
4.8 Class linkage between hierarchies . . . . . . . . . . . . . . . . . . 89
4.9 ns-2 directory structure extended . . . . . . . . . . . . . . . . . . 94

5.1 Multiservice framework components . . . . . . . . . . . . . . . . . 97
5.2 UML class diagram of multi-queue scheduler . . . . . . . . . . . . 98



VIII LIST OF FIGURES

5.3 Signalling mechanism class diagram . . . . . . . . . . . . . . . . . 100

5.4 Multiservice link class diagram . . . . . . . . . . . . . . . . . . . . 102

5.5 Admission control and estimator class diagrams . . . . . . . . . . 105

6.1 Two-node network topology . . . . . . . . . . . . . . . . . . . . . 116

6.2 Actual and estimated utilization: MS algorithm; two-node topol-
ogy; scenario one . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.3 Actual and estimated utilization: HB algorithm; two-node topol-
ogy; scenario one . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.4 Actual and estimated utilization: ACTO algorithm; two-node topol-
ogy; scenario one . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.5 Actual and estimated utilization: ACTP algorithm; two-node topol-
ogy; scenario one . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.6 Actual and estimated utilization: MS algorithm; two-node topol-
ogy; scenario two . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.7 Actual and estimated utilization: HB algorithm; two-node topol-
ogy; scenario two . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.8 Actual and estimated utilization: ACTO algorithm; two-node topol-
ogy; scenario two . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.9 Actual and estimated utilization: ACTP algorithm; two-node topol-
ogy; scenario two . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.10 The eight-node network topology . . . . . . . . . . . . . . . . . . 129

6.11 Actual and estimated utilization: MS algorithm; eight-node topol-
ogy; scenario one . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.12 Actual and estimated utilization: HB algorithm; eight-node topol-
ogy; scenario one . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.13 Actual and estimated utilization: ACTO algorithm; eight-node
topology; scenario one . . . . . . . . . . . . . . . . . . . . . . . . 133

6.14 Actual and estimated utilization: ACTP algorithm; eight-node
topology; scenario one . . . . . . . . . . . . . . . . . . . . . . . . 134

6.15 Actual and estimated utilization: MS algorithm using eight-node
topology for scenario two . . . . . . . . . . . . . . . . . . . . . . 136

6.16 Actual and estimated utilization: HB algorithm; eight-node topol-
ogy; scenario two . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.17 Actual and estimated utilization: ACTO algorithm; eight-node
topology; scenario two . . . . . . . . . . . . . . . . . . . . . . . . 138

6.18 Actual and estimated utilization: ACTP algorithm; eight-node
topology; scenario two . . . . . . . . . . . . . . . . . . . . . . . . 140

6.19 Delays experienced by VoIP traffic for scenario one . . . . . . . . 142

6.20 Delays experienced by VoIP traffic for scenario two . . . . . . . . 142

6.21 Actual and estimated utilization: MS algorithm; two-node topol-
ogy; scenario one . . . . . . . . . . . . . . . . . . . . . . . . . . . 145



LIST OF FIGURES IX

6.22 Actual and estimated utilization: HB algorithm; two-node topol-
ogy; scenario one . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.23 Actual and estimated utilization: ACTO algorithm; two-node topol-
ogy; scenario one . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.24 Actual and estimated utilization: ACTP algorithm; two-node topol-
ogy; scenario one . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.25 Actual and estimated utilization: MS algorithm; two-node topol-
ogy; scenario two . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.26 Actual and estimated utilization: HB algorithm; two-node topol-
ogy; scenario two . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.27 Actual and estimated utilization: ACTO algorithm; two-node topol-
ogy; scenario two . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.28 Actual and estimated utilization: ACTP algorithm; two-node topol-
ogy; scenario two . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.29 Actual and estimated utilization: MS algorithm; eight-node topol-
ogy; scenario one . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.30 Actual and estimated utilization: HB algorithm; eight-node topol-
ogy; scenario one . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.31 ACTO algorithm using eight-node topology for scenario one . . . 158
6.32 Actual and estimated utilization: ACTP algorithm; eight-node

topology; scenario one . . . . . . . . . . . . . . . . . . . . . . . . 159
6.33 Actual and estimated utilization: MS algorithm; eight-node topol-

ogy; scenario two . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.34 Actual and estimated utilization: HB algorithm; eight-node topol-

ogy; scenario two . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.35 Actual and estimated utilization: ACTO algorithm; eight-node

topology; scenario two . . . . . . . . . . . . . . . . . . . . . . . . 164
6.36 Actual and estimated utilization: ACTP algorithm; eight-node

topology; scenario two . . . . . . . . . . . . . . . . . . . . . . . . 165
6.37 Delays experienced by VoIP traffic for scenario one . . . . . . . . 167
6.38 Delays experienced by VoIP traffic for scenario two . . . . . . . . 168



X LIST OF FIGURES



List of Tables

2.1 Assured forwarding code point . . . . . . . . . . . . . . . . . . . . 26
2.2 IntServ and DiffServ complementary features . . . . . . . . . . . . 30

6.1 Simulation scenario one . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2 Measured sum performance results . . . . . . . . . . . . . . . . . 117
6.3 Hoeffding bounds performance results . . . . . . . . . . . . . . . . 119
6.4 Acceptance region tangent at origin performance results . . . . . . 121
6.5 Acceptance region tangent at peak performance results . . . . . . 122
6.6 Simulation scenario two . . . . . . . . . . . . . . . . . . . . . . . 123
6.7 Measured sum performance results . . . . . . . . . . . . . . . . . 124
6.8 Hoeffding bounds performance results . . . . . . . . . . . . . . . . 125
6.9 Acceptance region tangent at origin performance results . . . . . . 126
6.10 Acceptance region tangent at peak performance results . . . . . . 127
6.11 Measured sum performance results . . . . . . . . . . . . . . . . . 130
6.12 Hoeffding bounds performance results . . . . . . . . . . . . . . . . 131
6.13 Acceptance region tangent at origin performance results . . . . . . 132
6.14 Acceptance region tangent at peak performance results . . . . . . 134
6.15 Measured sum performance results . . . . . . . . . . . . . . . . . 135
6.16 Hoeffding bounds performance results . . . . . . . . . . . . . . . . 136
6.17 Acceptance region tangent at origin performancs results . . . . . . 138
6.18 Acceptance region tangent at peak performance results . . . . . . 139
6.19 Performance comparison of the network topologies using static al-

located bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.20 Measured sum performance results . . . . . . . . . . . . . . . . . 144
6.21 Hoeffding bounds performance results . . . . . . . . . . . . . . . . 145
6.22 Acceptance region tangent at origin performance results . . . . . . 146
6.23 Acceptance region tangent at peak performance results . . . . . . 148
6.24 Measured sum performance results . . . . . . . . . . . . . . . . . 149
6.25 Hoeffding bounds performance results . . . . . . . . . . . . . . . . 150
6.26 Acceptance region tangent at origin performance results . . . . . . 152
6.27 Acceptance region tangent at peak performance results . . . . . . 153
6.28 Measured sum performance result . . . . . . . . . . . . . . . . . . 155
6.29 Hoeffding bounds performance results . . . . . . . . . . . . . . . . 156



XII LIST OF TABLES

6.30 Acceptance region tangent at origin performance results . . . . . . 158
6.31 Acceptance region tangent at peak performance results . . . . . . 159
6.32 Measured sum performance results . . . . . . . . . . . . . . . . . 160
6.33 Hoeffding bounds performance results . . . . . . . . . . . . . . . . 162
6.34 Acceptance region tangent at origin performance results . . . . . . 163
6.35 Acceptance region tangent at peak performance results . . . . . . 164
6.36 Performance comparison of the two network topologies using dy-

namic allocated bandwidth . . . . . . . . . . . . . . . . . . . . . . 166
6.37 Performance comparison of the static and dynamic bandwidth al-

location mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 169



1 Introduction

Traditionally, the Internet Protocol (IP) networks have solely provided a “best ef-
fort” delivery service for IP traffic. In these best-effort IP networks, all traffic
is treated equally, it is processed as fast as possible, but there is no guarantee
of actual delivery or how much could be delivered (throughput). This best ef-
fort mechanism has proven to be scalable, but with the increase in the number
of connected host, it makes demands exceed network capacity. This condition
noticeably degrades the delivered service and causes situation like excess packet
loss, long delay and jitter.

In the last years, a big growth of Internet applications and a high increase of Inter-
net users are experienced. These applications which include video conferencing,
voice over IP, and video/audio streaming brought a high growth in demand for
bandwidth and quality requirement. Nevertheless, the ongoing transformation of
the Internet into a universal commercial infrastructure forces new changes to IP-
Service infrastructure, both in bandwidth demand and in service requirements.
Electronic sales, banking, finance, and collaborative work are few examples of this
trend. They require real–time transfer of information, this consequently means
that the IP Network must be upgraded in a fashion to fulfill these requirements.
Hence the integration of multiservice over the Internet, is one of the main rea-
sons behind the essence of provisioning quality of service (QoS) guarantee to end
users. For an Internet-based web service the quality of service percieved by its
users is the dominant factor for success [14].

The telecommunication environment in the recent years experienced the deregu-
lation process, which brought many meaningful changes in the telecommunication
laws that made increase in competition among service/network providers possible.
The high competition is mainly provoked by the high performance requirement
of the customers. Consequently, providers have to differentiate their products
from those of their competitors. This requires the description of the roles of all
entities that take part in the service provision and their requirements. The tool
used to formalize the requirement of these entities is the service level agreement
(SLA). An SLA is the fully specified and documented result of a negotiation be-
tween two parties; a customer and a service/network provider, that defines service
characteristics, responsibilites and priorities of every party. An SLA may include



2 Introduction

statements about tariffing and billing, service delivery and compensations [77].

According to [19], QoS (either pronounced as “Q-O-S” or “kwos”) is the term
used to describe the science of engineering a network to make it work well for
applications by treating traffic from applications differently depending upon their
SLA requirement.

Several techniques and technologies have been developed to meet the demand of
provisioning guaranteed QoS to end users. They include integrated service, re-
source reservation protocol, differentiated service, multiprotocol label switching,
etc. These technologies work toward guaranteeing specific aspects of services, for
example guaranteeing no packet loss and bounded delay for Voice over IP (VoIP)
traffic flows. Some aspects of services like reliability, availability and dependabil-
ity could be grouped as quality of communication services.

The QoS mechanism pointed out so far requires that some of the network com-
ponents have to make decision at some point in time about admitting new flows
into the network. Admission control mechanism provides decision algorithms
that can be implemented in a router or gateway host to decide whether a new
request could be admitted into the network without compromising the agreed
QoS commitment of the existing flows in the network (RFC 1633) [7].

There are many different approaches to admission control which are discussed
in detail in this thesis. Traditional approaches to admission control require an
apriori specification of traffic characteristics in form of particular parameters.
The admission decision is then based on comparing the specified parameters
with the network load. This is the simplest and widely implemented model, and
it guarantees absolute bound to QoS parameters with the drawbacks of poor
network ultilization. This model is called parameter-based admission control
algorithms (PBAC).

Another approach is the measurement-based admission control mechanism (MBAC).
This approach does not rely on static specified parameters, rather its admission
decision is based on the measured traffic characteristic in the network. This
approach doesn’t guarantee absolute bound on QoS parameters but promises
a reliable bound. Thus this approach achieves high network utilization at the
expense of weakened QoS commitments.

IP is becoming the convergence technology for multimedia services and conse-
quently QoS is one of the hottest topics in IP networking. Although researchers
have addressed many isolated areas of QoS provisioning in IP networks includ-
ing admission control algorithms, little attension has so far been paid to the
measurement-based admission control algorithms for multiservice traffic flows.
In this master thesis, this deficiency is addressed by extending the existing
measurement-based admission control modules in ns-2 to accomodate multiser-
vice traffic flows. The algorithms are further extended with two resource alloca-



1.1 The Organisation of the Work 3

tion mechanism to share the network resources among the traffic classes.

Measurement-based admission control in computer networks uses three methods
of verification: formal methods, experiments in real networks, or network simu-
lation [56]. Formal methods are not suitable for measurement-based admission
control algorithms, because they are based on measurement of the current net-
work traffic flows. Experiments in laboratory for MBAC is expensive and not
flexible. So network simulation is a well suited and widely used method of veri-
fying MBAC algorithms.

1.1 The Organisation of the Work

This master thesis is organised in seven chapters. A short description of their
contents is given in the following:

• Chapter 2 QoS in the Internet: This chapter provides an introduction and
overview to the research area quality of service. QoS practically involves
a range of functions and features like classification, scheduling, policing,
and shaping within the context of QoS technologies (e.g Integrated service,
Differentiated service) in order to ensure that a network delivers the SLA
characteristics required by applications. Service level agreements (SLA)
provide the context for IP quality of service. Application and service SLA
requirements are inputs and also the qualification criteria for measuring
success in a QoS design. Chapter 2 further compares the differentiated
service with the integrated service and then discusses the multiprotocol
label switching (MPLS) which is a traffic routing and forwarding mechanism
introduced by IETF.

• Chapter 3 Admission Control Description: This chapter discusses the ad-
mission control mechanism, as a process used to determine if a new flow can
be granted its requested QoS without affecting those flow already granted
admission. The admission control process consist of different approaches
and algorithms. Some of the approaches are still evolving. Chapter 3
presents different approaches, algorithms and mechanisms for measurement-
based admission control. It further discusses the new proposed multiservice
framework implemented to accomodate multiservice admission control in
ns-2.

• Chapter 4 Studying Network Performance with the Network Simulator Tool
(ns-2): The network simulator tool version 2 (ns-2) is an open source soft-
ware developed and maintained at the information science institute (ISI)
of the unversity of southern California. This chapter describes the usage of
this tool, starting from downloading, installing, simulating, gathering and
processing the achieved simulation results. The chapter further presents



4 Introduction

lectures with this tool that are beneficiary to researchers unfamiliar with
the tool and for students interested in computer networks, to give them
some practical feeling of how data are transported over networks.

• Chapter 5 Code Description of the Multiservice Framework: The code used
to extend the existing MBAC algorithms in ns-2 to accomodate the simu-
lation of multiservice traffic flows is described in this chapter. The chapter
describes also the implementation of the bottleneck link for building the
topology through which multiservice traffic transverses.

• Chapter 6 Simulation Scenarios and Results: This chapter describes two dif-
ferent simulation scenarios and two network topologies used for the simula-
tion to verify the performance of the extended existing MBAC algorithms in
ns-2 (multiservice framework). There are two bandwidth allocation mech-
anism integrated in the framework. One of the mechanism statically share
the total bandwidth among the traffic classes and the other also does band-
width sharing but with the extra capability of dynamically borrowing best
effort class bandwidth to the higher priority classes. These two mechanisms
are simulated and their achieved results compared.

• Chapter 7 Conclusion: This chapter concludes the master thesis and sum-
marizes once more the essential points of the research work.



2 QoS in the Internet

The Internet protocol (IP) was created as a connectionless network layer pro-
tocol that makes no attempt to distinguish between different application types.
Hence with the introduction of new delay or loss sensitive applications the IP
networks are moving in current time from best effort level to networks that can
provide different service levels. The resource requirements of these applications
ranges from real–time delay sensitive interactive applications like voice over IP
that requires low packet loss, bounded delay and jitter, to delay tolerant appli-
cations like e-mail and file transfer protocol (FTP). The essential difference in
handling real–time delay sensitive and delay tolerance applications are that real–
time applications must receive data within some short specified period of time
otherwise the packets become worthless. In respect of this, Internet providers are
facing the challenge of designing their networks to accommodate the customer’s
requirement of fast, reliable and differentiated services.

The term service in the telecommunications context is very popular. It boils
down to the capability to exchange information through a telecommunication
medium, provided to a customer by a service provider. Services have well specified
features and parameters. The international telecommunication union (ITU)
defines service in an IP environment (IP-based service) as a service provided by
the service plane to an end user and which utilises the IP transfer capabilities and
associated control and management functions, for delivery of the user information
specified by the service level agreements (ITU–T Y.1241) [42] . ITU describes
parameters, attributes and classes of IP–based services. The term quality can
be defined as the totality of characteristics of an entity that bear on its ability
to satisfy stated and implied needs. This definition is not so exact. In fact,
the meaning of this term is very broad. For example, in telecommunications the
term quality is commonly used in determining whether the service satisfies the
user’s expectations. The judgement, however, depends on various criteria related
to the party rating the service. Customers assess it on the basis of a personal
impression and in comparison to their expectations, while an engineer expresses
quality in terms of technical parameters. This discrepancy may sometimes lead to
misunderstandings. Hence, the term QoS is used in many meanings ranging from
the user’s perception of the service to a set of connection parameters necessary
to achieve particular quality of service. Before diving into the definitions and



6 QoS in the Internet

details of quality of service, it is considered wise to first of all take a closer look
at the service level agreement, which provides qualification criteria for measuring
success in a QoS design [19].

2.1 Customer/Provider Service Level Agreement

Due to the deregulation process experienced in the telecommunication environ-
ment in the last decade, there arises high competition among service/network
providers. This situation is further provoked by high performance requirements
from customers arising due to the introduction of new applications. The ser-
vice/network providers moved to upgrade their services so as to remain compet-
itive and maintain their customers. Consequently this caused the definition of
roles of all the entities that take part in service provisioning and their relationship.
i.e the responsibility of the provider to assure quality of service required by the
customer and the responsibility of the customer to compensate the provider. A
useful tool to formalise the above mentioned inter-relationship between customer
and provider is the service level agreement (SLA) .

2.1.1 Service Level Agreement Concept

SLA provides the context for IP quality of service. Application and service SLA
requirements are the inputs and also the qualification criteria for measuring suc-
cess in a quality of service design.

The ITU recommendation E.860 [39] defined service level agreement as a formal
agreement between two or more entities that is reached after a negotiating activity
with the scope to assess service characteristics, responsibilities and priorities of
every party. An SLA may include statements about performance, tariffing and
billing, service delivery and compensations. The content of the SLA varies de-
pending on the service to be provisioned and includes the QoS parameters needed
for the negotiated agreement [56]. Figure 2.1 shows graphically an example of
SLA between a user and a service provider.

Service Level Agreement

Service description
QoS agreement

Legal issues
Billing

…

Provider User

Figure 2.1: Example of service level agreement

The Internet engineering task force (IETF) introduced another definition of SLA



2.1 Customer/Provider Service Level Agreement 7

in context of differentiated services. Based on [6], an SLA is a service contract
between a customer and a service/network provider that specifies the forwarding
service a customer should receive. A customer may be a user, an organisation,
or other DiffServ domain. An SLA may include service conditioning rules which
comprises a traffic conditioning agreement in whole or in parts. In order to solve
the problem of assurance of QoS in a multi-provider environment, the concept of
one stop responsibility was introduced [56]. This concept allows a user to retain a
primary service provider with whom he agreed on SLA, as the only one responsible
for the overall QoS the user receives. According to [55], service provider maybe an
operator, a carrier, an Internet service provider (ISP), or an application service
provider (ASP). Also the term customer could refer to companies, organisations
or individuals that make use of telecommunication services provided by a service
provider.

The service level agreement should be made up of service level objectives, service
monitoring component, financial and compensation component, an expiry date,
and authentication component. Because of this composition, the SLA should be
formulated and expressed in a way the customer understands. Furthermore, it
should contain rules governing the consequences of breaking the contract by any
party. By means of an SLA, the provider can proof to the customer that the
agreed services are being delivered and the customer can complain or demand
compensation from the provider if the agreed service is not being delivered.

Normally, an SLA is seen as a contract between a customer and a service provider.
This is referred as intra-domain SLA. SLA is not limited to this, but could also
exist among different service providers which is then known as inter-ISP SLA. Fig-
ure 2.2 shows how the inter-provider SLA could be achieved. An SLA is created
when a customer subscribes to a service offered by a service provider organisa-
tion. First of all the customer and the provider outlines their contract and agree
to it. After this, the provider makes the necessary configuration like granting
access, setting up the billing mechanism, to accommodate the new subscription.
Lastly, the quality of service requirement from the customer are mapped into
SLA parameters.

2.1.2 Service Level Specification

The service level specification (SLS) represents the technical part of an SLA. It
is a set of technical parameters and their associated semantics that describes the
service to be provisioned (network availability, throughput, latency). An SLS can
be defined in template, then for a specific customer this template is instantiated,
for example by setting the actual values per threshold.

The focus on service level rather than on network level enables the definition of
service/SLA/QoS independently from the underlying network technology [55].
Service should be exactly defined by using service level specifications. The fol-



8 QoS in the Internet

User

Provider

Provider

SLA Provider

User

Provider

User

Provider

User

Figure 2.2: Inter–provider SLA

lowing type of information should be described:

• QoS metrics and corresponding thresholds that must be guaranteed by the
service provider.

• Service performance measurement methods, measurement periods, provided
reports (contents, format, frequency).

• Service schedule (activation time period).

The SLS should also define commitment over aggregated parameters. For exam-
ple maximal unavailability time for all the service access points. Nevertheless, it
should support various network interconnection models (e.g cascade, star, hub)
and various traffic models. Currently, there exist different types of SLS but they
all are based on the following criteria:

1. Specified service: The scope of services that can be defined with the SLS
template.

2. Information model: The model of the SLS including categories used to
classify the data.

3. Data presentation: The formalism used to describe the SLS data (e.g.,
XML, DTD, UML).

To guarantee that customers respect the agreements, traffic conditioning compo-
nents (classifier, meter, shaper, dropper) are configured at the boundary between
provider and customer.

2.1.3 Service Classification

Service can be consolidated in different categories. There are many ways to
consolidate distinct services, their classification depends on the SLS parameters.



2.2 QoS Definitions 9

Service classification in IP networks is known as class of service (CoS). It is
a broad term describing a set of characteristics available with a specific service.
Both ITU and European telecommunication standard institute (ETSI) have their
own definition for CoS, but IETF defined CoS as the definition of the semantics
and parameters of a specific type of QoS [15]. Services belonging to the same
class are described by the same set of parameters, which can have qualitative
or quantitative values. Usually, the set of parameters within the class is defined
without assignment of concrete values, but these values can be bounded.

The idea of service classification is relatively mature. For example the original IP
was intended to provide a simple way of classifying packets, but this capability
of IP is rarely used. Traffic in asynchronous transfer mode (ATM) network is
divided into classes as well. Currently, concrete service classes have been defined
within the IP QoS architecture proposed by IETF, such as IntServ and DiffServ.

The following three classes of services are defined within the IntServ architec-
ture: guaranteed service, controlled load service, and best effort service. Also in
DiffServ architecture, the classification is based on the differentiated service code
point (DSCP) coding. This coding allows the definition of 64 classes of service.
Details about DiffServ are given in subsection 2.4.2 and for IntServ in subsection
2.4.1.

2.2 QoS Definitions

The term service is defined in telecommunications as the capability to exchange
information through a telecommunication medium, provided to a customer by a
service provider.

The ITU and ETSI used the quality of service definition first stated in the ITU
document E.800 [38] as the collective effect of service performance which deter-
mines the degree of satisfaction of a user of the service. Further, the definition of
quality of service was refined in 2002 and documented in E.860 [39] as the degree
of conformance of the service delivered to a user by a provider in accordance with
an agreement between them.

There exist three notions of QoS as defined in [34], named intrinsic, perceived,
and assessed QoS. The intrinsic QoS relates to service features originating from
technical aspects. Thus the intrinsic quality is decided by the network design and
the provisioning of network access. Intrinsic quality is evaluated by comparing
measured characteristic against expected performance characteristic. How the
user perceived the service does not influence the grading of intrinsic QoS. The
assessed QoS manifests in the decision of the customer whether to continue using
the service or not. Such decisions depends mostly on the perceived quality, service
price, and response of the provider to customer complaints and problems. It



10 QoS in the Internet

follows that even a customer service representative’s attitude to a client maybe
an important factor in rating the assessed QoS [26]. Neither ITU nor ETSI deals
with the assessed QoS.

As the above definition suggests, QoS in the ITU/ETSI approach adheres mainly
to perceived QoS rather than to intrinsic QoS. Nevertheless, they introduce the
idea of network performance to cover technical facets. They make a clear distinc-
tion between QoS, understood as something focused on user–perceivable effects,
and network performance, encompassing all network functions essential to provide
a service. QoS parameters are user–oriented and do not directly translate into
network parameters. On the other hand, the network performance parameters
determine the quality observed by customers but are not necessarily meaningful
to them [33]. But there must exist a consistent mapping between the QoS and
network performance parameters.

QoS

Quality of serviceNetwork performance

QoS perceived 
by the customer

QoS requirements
of the customer

QoS achieved 
by the provider

QoS offered
by the provider

ITU/ETSI approach IETF approach

Intrinsic QoS

Perceived QoS

Figure 2.3: A general QoS model

Figure 2.3 shows the relationship between the network performance and QoS.
Network performance, as mentioned above, corresponds to intrinsic QoS. It is
defined in E.800 [38] as the ability of a network or network portion to provide
the functions related to communications between users. Network performance
is defined and measured in terms of parameters of particular network compo-
nents involved in provisioning a service. These parameters are the key to net-
work efficiency and effectiveness in service provisioning. A high level of network
performance is achieved by appropriate system design, configuration, operation,
and maintenance. Some network performance parameters are defined by ITU in
E.800, Y.1541, G.1000, and I.350 recommendations [38, 44, 40, 41]. To cover
important aspects of QoS, ITU and ETSI distinguish four particular definitions
(Figure 2.3):

• QoS achieved by the provider.

• QoS offered by the provider.



2.3 QoS Specification and Parameters 11

• QoS perceived by the customer.

• QoS requirements of the customer.

The customer requirements state their preferences for a particular service quality.
They may be expressed in technical or nontechnical language understandable to
both the customer and the service provider. The provider designs the service
offered to the customer on the basis of the customer’s requirements, even though
the service provider may not always be in a position to meet the customer’s
expectations. The QoS offered may be influenced by the considerations of a
service provider’s strategy, benchmarking, service deployment cost, and other
factors [40]. The quality requirements are mostly expressed in values assigned
to parameters understandable to the customer e.g., a basic telephony service
availability is planned to be 99.95% in a year with not more than 15–minute
break at any one occasion, and not more than 3 breaks over the year. The QoS
achieved is usually expressed by the same set of parameters. Comparison of the
quality offered and achieved gives the service provider a preliminary grading of
perceived service performance. However, the most important feedback, from the
service provider’s perspective, is QoS perceived by the customer, who finally rates
the service quality comparing the experienced quality to his/her requirements.
The ITU defines a set of QoS parameters in the E.800 recommendation [38].

QoS and network performance are closely interrelated. Ensuring high network
performance is crucial to a successful service provision. The offered QoS param-
eters can be grouped into network– and non–network–related parameters. The
former, in turn, can be translated into network performance parameters. These
parameters are assigned target values. The achieved network performance is ob-
tained on the basis of a parameter measurement. This serves as feedback to the
network provider. The combination of the network performance achieved and
non-network-related QoS constitutes the QoS achieved.

2.3 QoS Specification and Parameters

QoS specification is concerned with capturing application level QoS requirements
and management policies. QoS specification is generally different at each system
layer and is used to configure and maintain QoS mechanisms residing in the
end–system and network. For example, at the distributed system platform level
QoS specification is primarily application–oriented rather than system–oriented.
Consideration in lower levels such as tightness of synchronization of multiple
related audio and video flows, the rate and burst size of flows, or the details
of thread scheduling in the end–system should all be hidden at this level [84].
QoS specification is therefore declarative in nature: applications specify what is
required rather than how this is to be achieved by underlying QoS mechanisms.
Quality of service specification encompasses the following:



12 QoS in the Internet

• Flow synchronization specification: This characterizes the degree of syn-
chronization (i.e.tightness) between multiple related flows. For example,
simultaneously recorded video perspectives must be played in precise frame
by frame synchrony so that relevant features may be simultaneously ob-
served.

• Flow performance specification: This expresses the user’s flow performance
requirements. The ability to guarantee traffic throughput rates, delay, jit-
ter and loss rates, is especially relevant for multimedia communications.
These performance–based metrics are likely to vary from one application
to another. To be able to commit necessary end–system and network re-
sources QoS frameworks must have prior knowledge of the expected traffic
characteristics associated with each flow before resource guarantees can be
met.

• Level of service: This specifies the degree of end–to–end resource commit-
ment required (e.g, deterministic, predictive and best effort). While the
flow performance specification permits the user to express the required per-
formance metrics in a quantitative manner, the level of service allows these
requirements to be refined in a qualitative way to allow a distinction to
be made between hard and soft performance guarantees. Level of service
expresses a degree of certainty that the QoS levels requested at the time of
flow establishment or renegotiation will be honoured.

• Cost of service: This specifies the price the user is willing to pay for the
level of service. Cost of service is a very important factor when considering
QoS specification. If there is no idea of cost of service involved in QoS
specification, there is no reason for the user to select anything other than
maximum level of service, (e.g., guaranteed service).

2.3.1 QoS Parameters

This subsection defines several IP QoS parameters supported by systems, in-
cluding intrinsic and operational parameters. A quantification of these parame-
ters constitutes an entire line of work, allowing to touch on the most important
requirements based on IP. The ITU telecommunication standardization sector
(ITU–T) , as well as the Internet engineering task force (IETF), and IP perfor-
mance metrics (IPPM) working group, have made efforts to define a standard
framework and provide definitions for IP QoS parameters. The ITU–T docu-
mented the results of its efforts as regards to standardizing IP QoS parameters
in the Y.1540 recommendation [43]. The IPPM standard parameter framework
is described in (RFC 2330) [68], where additional requests for comments (RFCs)
exist for each IP QoS parameter. As in [33], IP QoS parameters are divided into



2.3 QoS Specification and Parameters 13

two separate groups, namely the service–intrinsic group of parameters and the
operational parameters, as represented in Figure 2.4.

Time to restore service

Mean time between failures

Service availability

Others

One – way delay

One – way packet loss

Others

Quality of Service
(QoS)

S
er

vi
ce

 in
tr

in
si

c
pa

ra
m

et
er

s
O

pe
ra

tio
na

l
pa

ra
m

et
er

s

Figure 2.4: The service intrinsic and operational parameters

2.3.1.1 Intrinsic Parameters

The intrinsic QoS parameters expose the exact requisites that must be met for
the service to conform to its SLA commitment. In packet networks, the intrinsic
QoS parameters are expressed by the following [33]:

• Throughput: This represents the amount of data moved successfully from
one place to another in a given period of time. Capacity and available
bandwidth are the two bandwidth–related parameters.

• Delay: Defined as the notion of time experienced by packets while passing
through the network. It may be considered either in an end–to–end relation
or with regard to a particular network element. Packet delay has following
components: network access delay, propagation delay, transmission delay,
and queueing delay.

• Jitter: Expressed as one–way IP packet delay variation (IPDV) in RFC
3393 [18]. RFC 2679 [1] defined it as the difference between the one–way
delay of a selected pair of packets within the same stream, going from one
measurement point to the other measurement point.

• Packet loss rate: This is usually defined as the ratio of the number of
undelivered packets to number of sent packets.

• Network availability: Defined as the probability that the network can
perform its required functions.

These parameters describe the treatment experienced by packets while passing
through the network. They can be translated into particular parameters of the



14 QoS in the Internet

network architecture components used to ensure QoS. They are finally mapped
into the configuration of network elements. They are also closely connected with
protocols used in the network and equipment abilities.

QoS is usually an end–to–end characteristic of communication between end hosts.
It should be ensured along the whole path between peers, but the path may cross
several autonomous systems belonging to various network providers, thus perfor-
mance of all autonomous systems contributes to the final service quality. It is to
a large extent difficult to define the parameters of perceived QoS, because they
depend not only on the network architecture, nor technique, nor mechanisms
used to ensure service quality. They are usually expressed in different terms but
should be always somehow translatable into specific network parameters regard-
less of the network architecture. An example of an extensive set of parameters
of the perceived QoS is provided by ITU in the E.800 recommendation [38].
These parameters are grouped into four subsets namely: service support, service
operability, service servability and service security.

2.3.1.2 Operational Parameters

The operational parameters are related to the performance of an organization and
reflect the overall quality of the organization’s operational processes. Operational
parameters are always service/technology–independent, they have therefore quite
general characters. This implies that the definition of these operational parame-
ters can be reused in service level agreements (SLAs) for different services more
often than parameters directly depending on the provisioned service. The main
operational parameters are described as follows:

• Service availability percentage (SA): This is defined as a percentage
that indicates the time during which a contracted service specified in an
SLA is operational at its respective service access points (SAPs) with re-
spect to the scheduled service time. The service availability percentage thus
indicates how well the service provider is doing in providing the customer
with the service that it requested. The service availability parameter is the
most important operational parameter to customers.

• Reliability performance: According to ITU–T recommendation E.800,
it is defined as the ability of an item to perform a required function under
stated conditions for a given time interval.

• Mean time to failure (MTTF): This is expressed as the expectation of
the time to failure [38].

• Mean time to restoration (MTTR): Defined as the expectation of the
time required to restore a device to an available status once it has entered
a state of unavailability.



2.4 QoS Technologies 15

• Mean time between failures (MTBF): This is the average time be-
tween service outages applicable to a given period of observation [38]. It
can be considered also as the mean time to failure plus the mean time to
restoration.

The ITU–T recommendation E.800 notes that QoS can be characterized by the
combined aspects of service support, operability, serveability, security (integrity)
and other factors specific to each service. QoS thus depends on aspects directly
related to network performance but is also influenced by so called human aspects,
for example the ease of use of a particular service, which is a service aspect covered
by operability performance. Each of the aspects should be considered as being
characterized by many parameters.

2.3.2 Required Conditions for QoS

In order to provide QoS for more demanding of applications types (e.g., voice,
multimedia), a network must satisfy two necessary conditions. The first con-
dition is that bandwidth must be guaranteed for an application under various
circumstances, including congestion and failures. The second condition is that
as an application flow traverses the network, it must receive the appropriate
class–based treatment, including scheduling and packet discarding. These two
conditions could be thought as orthogonal. A flow may get sufficient bandwidth
but get delayed on the way (the first condition is met but not the second). Al-
ternatively, a flow may be appropriately serviced in most network nodes but get
terminated or severely distorted by occasional lack of bandwidth (the second
condition is met but not the first). Therefore, it is necessary to satisfy both of
these conditions in order to achieve the hard QoS guarantees that are required
by service providers and their customers.

2.4 QoS Technologies

A level of QoS assurance in an IP network depends on the amount of resource
allocated to the traffic served. Different resource management techniques are used
for resource allocation. In IP networks two resource management techniques can
be used [26]. They are:

• Over-provisioning.

• Explicit resource management.

Over-provisioning is a resource allocation technique that aims at avoiding conges-
tion and shortage of resources in a network In networks where such a technique is
used, there is no differentiation of traffic flows i.e., all traffic is treated as a single



16 QoS in the Internet

service class. Therefore, all traffic is served with the same QoS level. The mecha-
nism of guaranteeing QoS in such networks is to grant excess resources to traffic.
The main argument for such a resource management technique is based on the
fact that it is very simple and can easily be applied for a new traffic type. On the
other side, this technique is less profitable for ISPs because there is no possibility
to differentiate between services of different users, thereby causing problem for
SLA, tariffing and billing.

Explicit resource management techniques are based on the concept of dividing
all served flows into traffic classes that are served with various QoS levels. This
requires additional traffic control mechanisms to be introduced to the standard IP
network, such as admission control, policing, classification and scheduling. There
are two well known QoS technologies that support explicit resource management.
They are integrated service (IntServ) and differentiated service (DiffServ). There
is also another technology that supports explicit resource management and is
applicable to IP network called multiprotocol label switching (MPLS). These
three technologies are described in the following subsections.

2.4.1 Integrated Services (IntServ)

The IETF has been examining how the Internet can be improved to provide QoS
to traffic flows. They proposed a model for this purpose called integrated service
(IntServ) [7]. This technique attempts to merge the advantages of two different
paradigms: packet switched networks (which maximize network utilisation and
adapt to network dynamics) and circuit switched network (which provide service
guarantee and have difficulties in adapting to link failure) [13]. The IntServ
makes the following assumption:

• Resources must be explicitly managed by applications in order to meet their
requirements.

• New architecture should be an extension of the existing best effort IP net-
work model, which supports real–time and elastic application with an ex-
pected QoS level.

• Data flows are independently served and cannot influence each other.

The IntServ model is characterized by per-flow resource reservation, which de-
scribes how an application negotiates the QoS level. IntServ support the integra-
tion of real–time and non–real–time traffic flows into a single Internet infrastruc-
ture, thereby enabling statistical sharing between these two traffic classes. Before
a real–time application sents traffic over IntServ, it must first setup paths and
reserve resources. Resource reservation protocol (RSVP) is a signalling protocol
for setting up paths and reserving resources in the integrated service architecture.



2.4 QoS Technologies 17

QoS Routing agent Admission Control

Reservation setup agent

Resource Reservation table

Flow identification Packet scheduler

Control Plane

Data Plane

Figure 2.5: The integrated service model

The integrated service model can be divided into two parts: the control plane
and the data plane as shown in Figure 2.5. The control plane is responsible for
resource reservation and the data plane for forwarding the data packets based on
the reservation state.

To setup a resource reservation, an application first characterizes its traffic flow
and specifies the QoS requirements, a process often referred to in integrated
service as flow specification. The reservation setup request can then be sent to the
network. When a router receives the requests, it has to perform two tasks. First,
it has to interact with the routing module to determine the next hop to which
the reservation requests should be forwarded. Second, it has to coordinate with
the admission control to decide whether there are sufficient resources to meet the
requested resources. Once the reservation setup is successful, the information for
the reserved flow is installed into the resource reservation table. The information
in the resource reservation table is then used to configure the flow identification
module and the packet scheduling module in the data plane. When packets
arrive, the flow identification module selects packets that belong to the reserved
flows and puts them to the appropriate queues; the packet scheduler allocates
the resources to the flows based on the reservation information [33].

The control plane and the data plane must work together to guarantee the op-
eration of the integrated service. A router that support the integrated service
architecture, must at least implement the following components:

• Packet classification.

• Packet scheduling and queue management

• Admission control algorithm.

The router should also support the resource reservation protocol. In IntServ
model, traffic flows are handled per–flow. A flow is defined as the unidirectional



18 QoS in the Internet

succession of packets relating to one instance of an application. Some times
referred to as microflow [56].

2.4.1.1 Packet Classification

The process of categorizing packets into flows in an Internet router is called packet
classification [32]. All packets belonging to the same flow obey predefined rules
and are processed in the same manner by the router. Packet classification in
the current IPv4 model is based on five IP header fields: source and destination
addresses, source and destination ports, and protocol field [69]. These IP header
fields are used to create a packet filter or rule, which is used to match the packets
so as to differentiate them into flows. For example all packets with the same
source and destination IP address maybe defined to form a flow. In IPv6, the
20-bit flow label field is introduced and used in flow identification. This label
together with source and destination address can be used in 3-tuple packet clas-
sification as they are able to sufficiently distinguish packets belonging to various
flows from different pairs of host.

2.4.1.2 Packet Scheduling and Queue Management

The task of the scheduler is to allocate resources to the individual traffic flows,
and forward different packet flows using a set of queues. The packet scheduler
must be implemented at the point where packets are queued [7], for example
in the router. The router implements different queueing mechanisms ranging
from very simple to complicated queueing mechanism. Examples of queueing
mechanisms mostly found in routers today are: first in first out (FIFO)queueing,
fair queueing (FQ), weighted fair queueing (WFQ), priority queueing (PQ), low
latency queueing (LLQ), and round robin queueing (RR) [37]

The selection of a scheduling mechanism, which should operate at the output
port of a router is one of the key design criterias for QoS networks. The router
needs to distinguish between flows requiring different QoS (and possibly sort
them into separate queues) and then, based on the scheduling algorithm send
these packets to the outgoing link. Thus, a sophisticated scheduling algorithm
is required to prioritize user traffic to meet various QoS requirements while fully
utilizing network resources.

2.4.1.3 Admission Control Algorithm

Considering the fact that network capacity is limited, and the issue of guarantee-
ing QoS to flows, it is then necessary to control the access and the effects of new
flows to the network. The solution to this problem can either be reactive (control
schemes) or proactive (admission control) [56]. The reactive method detects and
reacts immediately to congestion (e.g., flow control in TCP) but makes it difficult



2.4 QoS Technologies 19

to guarantee QoS. The admission control method, assures that there are enough
resources in the network for a new flow before accepting it.

In the IntServ model, the admission control component implements the decision
algorithm used by a router or a host to decide whether a new data flow can be
granted its required resources or not based on the fact of not compromising the
QoS of the existing flow in the network. The admission control is also concerned
with enforcing administrative policies on resource reservation [7]. Some of these
policies may demand authentication of those requesting reservation.

The admission control mechanism should not be confused with policy control,
which is performed at the edge of the network to ensure that host do not violate
their traffic characteristics. This mechanism is rather considered a part of the
packet scheduling mechanism [7].

2.4.1.4 Service Classes

The IntServ model defines three traffic flow classes. These classes are presented
graphically on Figure 2.6 and are as follows:

Figure 2.6: The integrated service class types

1. Guaranteed class: This class guarantees delay, bandwidth and packet loss.
It can be used for real–time applications such as video and audio.

2. Controlled load class: This class offers better service than the best effort
class. It is reliable for applications which require weak bound on maximum
delay over the network and occasionally accept packet loss.

3. Best effort class: This is the default service class in the IP network. It is
for applications that do not require strict quality of service like the email
and file transfer protocol (FTP).



20 QoS in the Internet

2.4.1.5 Guaranteed Service (GS)

Guaranteed service provides guaranteed bandwidth and strict bounds on end–
to–end queueing delay for conforming flows. The service provides assured level
of bandwidth or link capacity for the data flow. It imposes a strict upper bound
on the end–to–end queueing delay as data flows through the network. The delay
bound is usually large enough even to accommodate cases of long queueing delays.
Guaranteed service in IP is described in RFC 2212 [76].

An application invokes guaranteed service by providing the traffic specification
(TSpec) and the service specification (RSpec) to the network. The guaranteed
service uses the general token bucket TSpec parameter to describe a data flow’s
traffic characteristics [76]. The flow specification Flowspec is used to set param-
eters in the node’s packet scheduler or other link layer mechanisms, and the filter
specification Filterspec is used to set parameters in the packet classifier, which is
used to classify the incoming packet flows. Traffic specification describes traffic
sources with the following parameters [33]:

• Bucket rate (r [Byte/s]) is the rate at which tokens arrive at token bucket.

• Peak rate (p [Byte/s]) is the maximum rate at which packets can transmit.

• Bucket depth (b [Byte]) is the size of the token bucket.

• Minimum policed unit (m [Byte]) is any packet with a size smaller than m
which can be counted as m bytes.

• Maximum packet size (M [Byte]) is the maximum packet size that can be
accepted (m > 0, M > 0, and m ≤ M).

The service specification describes the service requirements with two parameters:

• Service rate (R [Byte]) which is the service rate or bandwidth requirement.

• Slack term (S [µs]) is the extra amount of delay that a node may add and
still meets the end–to–end delay requirement.

Each router characterizes the guaranteed service for a specific flow by allocating
a bandwidth R, and buffer space B, that the flow may consume. This is done by
approximating the fluid model of service [66] so that the flow effectively sees a
dedicated wire of bandwidth R between source and receiver.

A network element’s (router or host’s) implementation of guaranteed service is
characterized by two error terms C and D, which represent how the element’s
implementation of the guaranteed service deviates from the fluid model. The
error term C is the rate dependent one. It represents the delay a datagram in
the flow might experience due to the rate parameters of the flow. The error



2.4 QoS Technologies 21

term D is the rate independent, per element one and represents the worst case
non rate based transit time variation through the service element. By definition
[23, 76]each network element j must ensure the delay of any packet of the flow
be less than:

d <
b

R
+

Cj

R
+ Dj (2.1)

Consider generalized processor sharing (GPS) [66, 67, 17] implementing the
bandwidth guarantee mechanism. A newly arriving flow packet may experience
a maximum delay of:

dmax =
M

R
+

MTU

link capacity
+ link propagation delay (2.2)

before it reaches the downstream element, where the first term is the worst case
service time for this packet, the second term is the time for this element to
transmit a packet with size equal to the maximum transmission unit (MTU) as
its outgoing link capacity, and the third term is simply the physical propagation
delay of the outgoing link [33].

2.4.1.6 Controlled–Load Service (CLS)

The controlled–load service (CLS) does not accept or make use of specific target
values for control parameters such as delay or loss. Instead, the acceptance
of a request for controlled–load service is defined to imply a commitment by
the network elements to provide a service closely equivalent to that provided
to uncontrolled (best effort) traffic under lightly loaded conditions. The service
aims at providing the same QoS under heavy loads as under unloaded conditions.
Though there is no specified strict bound on delay, it ensures that a very high
percentage of packets do not experience delays highly greater than the minimum
transit delay due to propagation and router processing [83]. The controlled–
load service is conceived for adaptive real–time applications, which are highly
sensitive to overloaded conditions. These applications have been shown to work
well under unloaded networks but to degrade quickly under overloaded conditions.
Thus some capacity (admission) control is needed to ensure that controlled–load
application traffic flows are received even when the network element is overloaded.

A simple means of implementing controlled-load service is based on the existing
capabilities of network elements, that support traffic classes based on mechanisms
such as WFQ or class-based queueing. With these mechanism and a packet
classifier, the CLS packet flows are mapped into a class with adequate capacity
to avoid overload.
In order to achieve their stated goals and provide the proposed services, the
IntServ models included various traffic parameters such as rate and slack term for
guaranteed service; and average rate, peak rate and burst size for controlled load
service [33]. To install these parameter values in a network and to provide service



22 QoS in the Internet

guarantees for the real–time traffic, the resource reservation protocol (RSVP) was
developed as a signalling protocol for reservations and explicit admission control.

2.4.1.7 RSVP signalling

The resource reservation protocol (RSVP) is an IETF–defined signalling proto-
col that uses IntServ to convey QoS requests to the network [8]. The IntServ
architecture specifies extensions to the best effort traffic model. RSVP messages
identify which application and user is requesting QoS, the service level requested
from the network, the bandwidth requested, and the end nodes (source and des-
tination addresses). Based on administrator defined admission control policies
and network resource availability, the QoS request is either approved or denied
by the host performing admission control duties. If the request is approved, QoS
mechanisms are invoked to classify and schedule the traffic flow, logically allocate
bandwidth, and notify the requesting host of the approval so that it might begin
sending priority traffic flows. Until this occurs, the transmission is treated as
standard traffic by the network. Information encapsulated in RSVP messages is
per data flow and the messages may carry the following information:

• Traffic classification information: They are the source and destination IP
addresses and the port numbers to identify the traffic flow (i.e., the filter
specification Filterspec).

• Traffic parameters: They are expressed using IntServ’s token–bucket model,
these identify the data rate of the flow (i.e., flow specification Flowspec).

• Service level information: They originate from the IntServ–defined service
types, and convey the flow requirements for the RSVP request.

• Policy information: This allows the system to verify that the requester is
entitled to the resources and to the amount of resources being requested.

RSVP is a soft–state protocol, meaning that the reservation must be periodically
refreshed or it expires. The reservation information, or state, is cached in each
hop tasked with managing resources. If the network’s routing protocol alters
the data path, RSVP attempts to reinstall the reservation state along the new
route. When refresh messages are not received, reservations time out and are
dropped, releasing bandwidth. The sender refreshes Path messages, and the
receiver refreshes Resv messages. Because RSVP sends its messages as best effort
datagrams with no reliability enhancement, some messages might be lost, but the
periodic transmission of refresh messages by hosts and routers compensates for
the occasional loss of a signalling message. To ensure receipt of refresh messages,
the network traffic control mechanism must be statically configured to grant
some minimal bandwidth for signalling messages to protect them from congestion



2.4 QoS Technologies 23

losses. At any time, the sender, receiver, or other network devices providing QoS,
can terminate the session by sending a Path tear or Resv tear message. Figure
2.7 presents an example of the RSVP signalling mechanism.

Figure 2.7: RSVP signalling mechanism in IntServ

Policy is checked by the RSVP–aware routers and switches along the path. De-
vices might reject resource reservation requests based on the results of these
policy checks. If the reservation is rejected due to lack of resources, the requested
application is immediately informed that the network cannot currently support
that amount and type of bandwidth or the requested service level. The applica-
tion determines whether to wait and repeat the request later or to send the data
immediately using best effort delivery [33]. QoS–aware applications, such as
those controlling multicast transmissions, generally begin sending immediately
on a best effort basis, which is then upgraded to QoS when the reservation is
accepted.

The IntServ technology decouples routing from the reservation process, and uses
the path established by the standard routing protocol like the open shortest path
first (OSPF) [59] and the routing information protocol (RIP) to determine the
next hops. Resource reservation protocol provides the highest level on QoS in
terms of service guarantees, granularity of resource allocation and details of feed-
back to QoS–enabled applications [56]. However, per microflow service guarantee
in the IntServ/RSVP architecture caused the well–know scalability problem [26].
This is not only a signalling processing problem but a problem of serving indi-
vidual streams in all nodes in the network (microflow policing, classification and
scheduling problems).



24 QoS in the Internet

2.4.2 Differentiated Services (DiffServ)

The DiffServ is an alternative QoS model developed by the IETF to solve the
scalability problem encountered in the IntServ/RSVP model [6]. The DiffServ
is an architecture based on the idea of grouping traffic flows into a finite number
of traffic classes [37]. As DiffServ is based on aggregates, it offers a scalable
way of provisioning QoS, which was lacking in the IntServ architecture that uses
per–flow resource reservation for individual traffic flows.

DiffServ networks have two main type of routers: edge and core router. The edge
router is located at the boundary to the network and the core router in the heart
of the network. Figure 2.8 presents an example of the DiffServ architecture.

Figure 2.8: DiffServ network model

Traffic flows entering the DiffServ network are classified and conditioned at the
boundary of the network only, and assigned to different behaviour aggregates.
A DiffServ behaviour aggregate is a collection of packets with the same DiffServ
code point (DSCP), crossing a link in a particular direction. The DSCP defines
the service a packet should get in the network and its treatment within routers.
Thus, independent flows select a predefined service and are served in the same
way as other flows that choose the same service. Flows (packets) served by the
same service are aggregated and experience the same QoS level. Aggregated
packets processed by a network node are called per hop behaviour (PHB). A per
hop behaviour describes the treatment for traffic (packets) belonging to a certain
behaviour aggregate at an individual network node (router). If a PHB specifies
to forward a packet preferential to all others, and is applied within all routers of
a network this would result in a service providing noticeable better throughput



2.4 QoS Technologies 25

and low delay to all packets with the appropriate DSCP.

The six bit wide DSCP allows to differentiate between 26 = 64 different PHBs.
Hence only twelve DSCPs are predefined for general usage. But there is no
theoretical limit for an Internet service provider (ISP) to use non–specified DSCP.
For example, a provider might map DSCPs at his border routers to provide a
similar PHB within his own network. Router implementations should support
the recommended code point to PHB mappings [33].

2.4.2.1 Differentiated Services Classes

During the introduction of DiffServ model by the IETF DiffServ working group,
different service classes for different applications were proposed. Out of the many
service classes proposals, only two are currently standardized as PHB. They are:
expedited forwarding service and assured forwarding service.

Expedited Forwarding Service (EF): This service class is used to support
applications with low–delay, low–jitter, low–loss, assured bandwidth re-
quirement, such as VoIP [16]. The characteristics of an implementation
which supports the requirements of this class are that, it is able to service
the EF traffic at a specified rate or higher, measurable over a defined time
interval and independent of the offered load of any non–EF traffic at the
point where the EF PHB is applied [19]. The recommended code point
for the EF PHB is 101110. The following properties characterize expedited
forwarding service:

1. Peak bit rate: Used on flows or on aggregated flows.

2. No bursts: Allowed only within the peak bit rate.

3. Low queueing delay: Proposed for real–time applications.

Some scheduler implementations may attempt to support EF traffic using a
scheduling algorithm such as weighted round robin (WRR) or WFQ. How-
ever, with such implementations the worst case delay bounds for EF traffic
depends upon the particular scheduling algorithm used and may also be
dependant upon the number of queues used in the particular scheduler im-
plementation. Consequently, the EF PHB is typically implemented using
a strict priority queueing mechanism. Using priority and short queues en-
sures that the arrival rate of EF traffic flows must not exceed the service
rate at the interface.

Assured Forwarding Service (AF): This group defines a set of classes, which
are designed to support data applications with assured bandwidth require-
ments such as absolute or relative minimum bandwidth guarantee, with a
work–conserving property [19]. The key concept behind the AF PHB group



26 QoS in the Internet

definition is that a particular class could be used by a DiffServ domain to
offer service, to a particular site for example, with an assurance that IP
packets within that class are forwarded with a high probability as long as
the class rate from the site does not exceed a defined contracted rate. If
the rate is exceeded, then the excess traffic maybe forwarded, but with
a probability that maybe lower than for traffic flows which are below the
contracted rate. According to RFC 2597 [35], four AF service classes are
defined. Each of these classes has three level of dropping precedence (low,
medium, and high). Within a class, the drop precedence therefore indicates
the relative importance of the packet. A set of twelve recommended DSCP
values has been allocated to indicate the four classes and the three drop
precedence levels within each class, as shown in Table 2.1.

Dropping precedence Class1 Class2 Class3 Class4

Low 001010 010010 011010 100010

Medium 001100 010100 011100 100100

High 001110 010110 011110 100110

Table 2.1: Assured forwarding code point

Although only four AF classes are defined, in theory there is nothing, apart
from the size of the DSCP field, to limit the number of different class of
services that can be used with the AF forwarding behaviour. If more than
four AF classes are required, then as the recommended DSCP markings are
only defined for four classes, non–recommended DSCP values need to be
used for the additional AF classes.

A particular AF class is realized by combining condition behaviours on
ingress router at the boundary to the DiffServ domain, where a particular
class is offered to a customer, which controls the amount of traffic accepted
at each level of drop precedence within that class and mark the traffic
accordingly. At that node and subsequent nodes, the AF class bandwidth
is allocated to ensure that traffic within the contracted rate is delivered
with a high probability. If congestion is experienced within the class, the
congested node aims to ensure that packets of a higher drop precedence are
dropped with a higher probability than packets of a lower drop precedence
[19].

2.4.2.2 Differentiated Services Traffic Classification and Conditioning

The DiffServ model includes two conceptual elements in the ingress point of the
network: a classifier and conditioning elements. These conditioning elements, are
in general composed of markers, meters, policers, and shapers, as shown in Figure



2.4 QoS Technologies 27

2.9. When a traffic stream at the input port of a router is classified, it then might
have to travel through a meter (used where appropriate) to measure the traffic
behaviour against a traffic profile which is a subset of a SLA. The meter classifies
particular packets as in–profile or out–of–profile depending on SLA conformance
or violation.

Classifier Marker Shaper / 
Dropper 

Conditioner

Packet In

Packets flow

Control flow

Packet out

Meter

Figure 2.9: Traffic classification and conditioning clock

The traffic conditioning elements ensure that on average, each behaviour aggre-
gate gets the agreed service. They can be applied at any congested network node
when the total amount of in bound traffic exceeds the output capacity of the
router. As the number of routers grows in a network, congestion increases due to
expanded volume of traffic and hence proper traffic conditioning becomes more
important. Traffic conditioners might not need all four elements. If no traffic
profile exists, packets may only pass through a classifier and a marker.

Traffic Classifier: The traffic classifier identifies incoming packets and group
them into aggregated streams based on the information in the packet header.
It matches received packets to statically or dynamically allocated service
profiles and passes those packets to an element of traffic conditioner for
further processing. There are two types of classifier used for traffic classifi-
cation [37]:

• Behaviour aggregation (BA) classifier: This type works on behaviour
aggregates and classifies packets based on patterns of the DiffServ
byte (DSCP) only. It is used mainly at the core network due to its
simplicity.

• Multi–field (MF) classifier: It classifies packets based on any combi-
nation of the DiffServ field, protocol ID, source address, destination
address, source port, destination port or even application level pro-
tocol information. It is usually used at the edge of the network to
classify incoming packets.



28 QoS in the Internet

Metering: This is a process to determine whether the behaviour of a packet
stream after classification is within the specified profile for the stream (ag-
gregate). The output result of metering is used to trigger events in other
conditioning blocks. There are many estimators that can be used in im-
plementing metering. According to [37], the most known and widely used
estimator in the packet network is the token bucket estimator. (see Figure
3.2 in subsection 3.3.2 for detail explanation of token bucket)

Marker: Packet marking is a process where packets are marked to belong
to a certain aggregated service class using predefined DSCP values. The
marker can mark all packets which are mapped to a single code point, or
mark a packet to one of a set of code points to select a PHB in a group,
according to the state of a meter. The approach of DiffServ and especially
the assured forwarding service with its different drop precedence levels,
requires specialized marking components.

Shaper: The shaping process delays some packets in a traffic stream using a
token bucket in order to force the stream into compliance with a predefined
traffic profile. Dropping has similar objective as shaping but it drops pack-
ets in order to get the traffic stream into compliance with the predefined
profile. A shaper usually has a finite–size buffer and packets are discarded if
there is not sufficient buffer space to hold the delayed packets. Shapers are
generally placed after each type of classifier. For example, shaping for EF
traffic at the interior nodes helps to improve end to end performance and
also prevents the other classes from being over flooded by a big EF burst.
Hence, either a policer or a shaper is supposed to appear in the same traffic
conditioner.

Policier: When classified packets arrive at the policer it monitors the dynamic
behaviour of the packets and discards or re–marks some or all of the packets
in order to force the stream into compliance (i.e., force them to comply
with configured properties like rate and burst size) with a traffic profile.
By setting the shaper buffer size to zero (or a few packets) a policer can be
implemented as a special case of a shaper. Like shapers policers can also
be placed after each type of classifier. Policers, in general, are considered
suitable to police traffic between DiffServ domains (e.g., a customer and
a provider) and after BA classifiers in backbone routers. However, most
researchers agree that policing should not be done at interior nodes since
it unavoidably involves flow classification. Policers are usually present in
ingress nodes and could be based on simple token bucket filters.



2.4 QoS Technologies 29

2.4.3 Comparison of Differentiated Service and Integrated Service

The differentiated service model is different to the integrated service model in
many aspects like the following:

• The amount of state information in DiffServ is proportional to the number
of aggregated classes, rather than to the number of flows, as resources are
allocated to individual classes that represents aggregated traffic.

• The fact that DiffServ classifies and marks packets only at the edge of the
network and the core routers in the network performs only packet forward-
ing based on marking at the network edge makes DiffServ more scalable
than the IntServ architecture which must perform classification, schedul-
ing, admission control for each immediate node on the path.

• In the IntServ architecture, an application specifies the QoS requirements
choosing a service and a related set of parameters, therefore a network must
be ready to treat a large number of different QoS requests. In the contrary
in DiffServ architecture, an application specifies a service selecting a per
hop behaviour (PHB) in a limited set of choices.

Although the DiffServ architecture is quite scalable and simpler than the IntServ
architecture, it still has some drawbacks in terms of guaranteeing quality of ser-
vice. The DiffServ does not offer an end–to–end QoS guarantee, rather an edge–
to–edge QoS. This makes IntServ to be better than DiffServ in this aspect. Figure
2.10 shows the comparison of DiffServ with IntServ and the default best effort
service with regards to the level of QoS they can guarantee and the complexity
of their implementation.

Figure 2.10: The comparison of DiffServ, IntServ and best effort in term of QoS guarantee level
and implementation complexity



30 QoS in the Internet

A more detailed comparison of IntServ architecture with DiffServ architecture,
shows that they have some complementary features as shown in Table 2.2.

Feature IntServ DiffServ

QoS assurance Per flow Per aggregate

QoS assurance
range

End–to–end
(application–to–
application)

Domain(edge–to–edge) or DiffServ
region

Resource reserva-
tion

Controlled by applica-
tion

Configured at edge node based on
SLA

Resource man-
agement

Distributed Centralized within DiffServ domain

Signalling Dedicated protocol
(RSVP)

Based on DSCP carried in IP packet
header

Scalability Not recommended for
core network

Scalable in all parts of network

Class of service
(CoS)

Guarateed service,
controlled-load, best
effort

Expedited forwarding, assured for-
warding, and best effort

Table 2.2: IntServ and DiffServ complementary features

According to RFC 2998 [5], IETF has proposed an interoperability framework for
the IntServ and DiffServ architectures. The integrated IntServ–DiffServ model
is used to provide QoS in the end–to–end relation [26]. To avoid per microflow
servicing in the core, the proposed architecture uses DiffServ in the core to sup-
port aggregated IntServ microflows. The IntServ model is used at the access part
of the network to provide applications the signalling interface for them to place
their resource reservation request and after granting them access, forwards their
flows to the network. The QoS signalling is end–to–end. It takes place between
the communicating terminals. Apart from per microflow resource reservation,
RSVP signalling can be used to aid resource management in a DiffServ domain
and some extension to RSVP supporting DiffServ are developed by the IETF.

2.4.4 Multi-Protocol Label Switching (MPLS)

The multiprotocol label switching (MPLS) is defined and standardized by the
IETF [73]. It presents a core networking environment capable of carrying multi-
ple traffic types over a common infrastructure while delivering class of service and
true quality of service (QoS). It is a versatile solution to address the problems
faced by today’s network speed, scalability, QoS management, traffic engineering,
and virtual private network support. MPLS has emerged as an elegant solution
to meet the bandwidth management and service requirements for next generation



2.4 QoS Technologies 31

IP–based backbone networks [33].

By combing the best of network layer routing and link–layer switching, MPLS
introduces a new forwarding paradigm for IP networks, and brings connection
oriented properties similar to that of traffic engineering capabilities of ATM to
IP networks, but in a very scalable and cost effective way. In addition, MPLS
introduces a forwarding paradigm for IP networks by eliminating the need for
routers to perform an address lookup for every packet. Thereby speeding up
packet forwarding with improved efficiency.

2.4.4.1 MPLS Basic Architecture

The basic idea behind MPLS is to assign short, fixed–length labels (which are
used as local identifiers) to packets at the ingress of an MPLS domain, based on
the concept of forwarding equivalence classes (FEC). A forwarding equivalence
class is a subset of packets that are all treated in the same way by a router. In
the MPLS domain, the labels attached to packets are used to make forwarding
decisions without recourse to the original packet headers.

Label stack
entry format

4 Bytes

Label EXP S TTL

0                                                               19                22     23                   31 

Label - label value, 20bits (0-16 reserved)
EXP - experimental, 3bits (was class of service)
S - bottom of stack,  1bit (1 = last entry in label stack)
TTL - time to live, 8bits

Figure 2.11: The MPLS header

An MPLS packet has a header, as illustrated in Figure 2.11 that is placed
between the link layer (layer–2) header and the network layer (layer–3) header.
The MPLS header, called a shim header, contains a 20–bit label, a three bit
experimental (EXP) field (or class of service (CoS) field), a one bit label stack
indicator, and an eight–bit time to live (TTL) field. When tunnelling labelled
packets through multiple administrative MPLS domains, MPLS uses an ordered
set of labels called label stack.
When a packet enters an MPLS domain, it is assigned a label, which specifies
the path the packet must take while being inside this domain. Each MPLS
router switches the packet to the outgoing port based only on its label. The
experimental field is used to choose the correct service queue of the outgoing
port. At the egress of the domain, the MPLS header is removed and the packet
is sent to its destination using normal IP routing, as shown in Figure 2.12.

2.4.4.2 MPLS Label Distribution

In order that alabel switched path (LSP), which is a predetermined path, be used,
the forwarding tables at each label switched router (LSR) must be populated with



32 QoS in the Internet

L_2 HdrIP Payload IP Hdr

1. Create IP 
header

MPLS Hdr L_2 HdrIP Payload IP Hdr

LabelExp .STTL

2. Map FEC to 
MPLS label

3. Process 
MPLS Label 4. Decapsulate

MPLS label

L_2 HdrIP Payload IP Hdr

5. Process 
IP header

Layer-3 routing Layer-2 switching Layer-3 routing

Hdr – header
LER – label edge router
LSR – label switched router
L_2 – layer-2
FEC – forwarding equivalence class

31                                                   0

LER1A LSR2
LSR3 LER4 B

Figure 2.12: Creation and processing of MPLS header

the mappings from incoming interface label value to outgoing interface label value.
This process is called LSP setup, or label distribution. The MPLS forwarding
architecture document RFC 2547 [72], does not mandate a single protocol for
the distribution of labels between LSRs. In fact it specifically allows multiple
different label distribution protocols for use in different scenarios, including the
following.

• Label distribution protocol (LDP).

• Constraint based routing label distribution protocol (CR–LDP).

• Resource reservation protocol extended for traffic engineering (RSVP–TE).

• Border gateway protocol (BGP).

• Open shortest path first extended for traffic engineering (OSPF–TE).

• Intermediate system intermediate system extended for traffic engineering
(IS–IS–TE).

Several different approaches to label distribution can be used depending on the
requirements of the hardware that forms the MPLS network, and the adminis-
trative policies used on the network. The underlying principles are that a path
is setup either in response to a request from the ingress LSR (downstream–on–
demand), or preemptively by routers in the network, including the egress LSR
(downstream unsolicited). It is possible for both to take place at once, and for
the LSP setup to meet in the middle.

2.4.4.3 Packet Forwarding in MPLS

In an MPLS network, layer–3 routing takes place at the edge and layer–2 switch-
ing is involved in the core. The labels effectively construct an LSP, which is used



2.4 QoS Technologies 33

to forward the packets. After setting up the LSP, each core router in an MPLS
network uses only the assigned label to make forwarding decision (layer–2 switch-
ing), without having to look into the original IP packet header. Label lookup and
label switching are faster than an IP lookup because they could take place di-
rectly within the switched fabric and not in the central processing unit (CPU).
An LSP is similar to an asynchronous transfer mode (ATM) virtual circuit and it
is unidirectional from sender to receiver [85]. The packet forwarding using labels
in MPLS network could be described as follows:

• When packets arrive at the ingress of an MPLS network, a decision is made
based on the destination address or any other information contained in the
IP header to determine the appropriate label value to be attached. This
label value identifies the forwarding equivalence class (FEC). Apart from
the packet’s destination address, the ingress router may use some policy
based consideration such as the packet’s inbound port, its application type,
or the class of service (CoS) written in the packet’s header. The router
attaches the label to the packet and forward it to the next hop. The label
is locally important because two router can agree to use a label to signify
a particular FEC among themselves.

• At the next hub the router uses the label as an index into a table that
specifies the next hop and a new label for the destination. The label switch
router attaches the new label to the packet and forwards it to the next hop
in the destination direction.

• At the network boundary, the egress LSR receives the packet and removes
the attached label, and then forwards the packet based on the content of
the IP header to its destination.

2.4.4.4 Traffic Engineering in MPLS Networks

A practical function of traffic engineering in IP networks is mapping of traffic
onto the network infrastructure to achieve specific performance objectives. High
service quality, efficiency, survivability, and economy are crucial objectives in
today’s commercial, competitive, and mission–critical Internet [33]. Traffic en-
gineering requires precise control over the routing function in order to achieve
the objectives. An essential requirement for traffic engineering in IP networks
is the capability to compute and establish a forwarding path from one node to
another. This path must fulfil some requirements, while also satisfying network
and policy constraints. Generally, performance objectives can be traffic–oriented
and/or resource–oriented [3].

Traffic–oriented performance objectives relate to the improvement of the QoS
provisioned to Internet traffic. Traffic–oriented performance metrics include packet
loss, delay, delay variation, and throughput. The effectiveness of traffic–oriented



34 QoS in the Internet

policies can also be measured in terms of the relative proportion of offered traffic
achieving their performance requirements. When service level agreements (SLAs)
are involved, protecting traffic streams that comply with their SLAs from those
that are non–compliant becomes an important factor in the attainment of traffic–
oriented performance objectives.

Resource–oriented performance objectives relate to the optimization of the
utilization of network assets. Efficient resource allocation is the basic approach
to secure resource–oriented performance objectives. A traffic engineering system
is said to be ”rational” if it addresses traffic–oriented performance problems while
simultaneously utilizing network resource efficiently. Traffic engineering in con-
ventional IP networks is a challenging problem. Singularities and discontinuities
characterize Internet growth. Very rapid growth occurs over a relatively short
interval time. This rapid growth is then followed by modest growth over rela-
tively longer intervals of time. Accurate forecasting is therefore quite difficult.
Furthermore, Internet traffic exhibits very dynamic behaviours with characteris-
tics that are not yet well understood. Traffic also tends to be highly asymmetric.
The operating environment is also in a continual state of flux. New resources
are added constantly. New Internet applications with bandwidth requirements,
which may have significant global impact, are introduced all the time. Facility
location is also an issue. Sometimes network resources are sited in less then ideal
locations due to facility constraints [33]. Additional complications are introduced
by inter–domain traffic traversing autonomous system’s boundaries. These en-
vironmental factors result in the network topology not usually correlating with
the traffic matrix. The addressing of these issues requires continual monitoring
and performance optimization of public IP networks. MPLS allows sophisticated
control capabilities to be introduced in IP networks. These capabilities are based
on the fact that MPLS efficiently supports origination connection control through
explicit label switched paths (LSPs). For an explicit LSP the route is determined
at the origination node. Once an explicit route is determined, a signalling pro-
tocol is then used to install the LSP. Through explicit LSPs, MPLS enables a
reliable and efficient traffic engineering of core IP networks.

2.5 Summary

IP networks are originally designed for best effort services. Due to the intro-
duction of real–time applications which are sensitive to resources availability and
place performance demands on the underlying networks, the original IP networks
could no longer satisfy the new requirements of these applications, hence there
arises needs for improvement in the IP architecture to support quality of service.
The notion of service level agreement laids the basis for specifying and agreeing



2.5 Summary 35

on certain QoS for applications..

Some QoS technologies evolved over the past decade. The integrated service
model together with resource reservation protocol are one of the first QoS mech-
anism introduced in the IP architecture. The IntServ had the assumption that
resources must be explicitly managed by applications in order to meet their QoS
requirements. IntServ with RSVP provided a genuine QoS architecture but how-
ever, had scalability and operational complexity problems. To solve these prob-
lems the IETF introduced the DiffServ model, which is scalable and does not
require signalling protocol. Later, MPLS was introduced by IETF as connection–
oriented approach to connectionless IP–based networks, and it supports traffic
engineering. Figure 2.13 presents a possible combination of the three QoS as-
suring technologies.

I
E

End-to-end QoS

RSVP RSVPDiffServ and MPLS

802 SBM 802 SBM

QoS API

SBM

DiffServ

QoS-aware 
application

RSVP

Physical

Data Link

Network

Transport

Session

Presentation

Application

Physical

Data Link

Network

Transport

Session

Presentation

Application
T
o
p

t
o

b
o
t
t
o
m

Q
o
S

Figure 2.13: Combination of three QoS technologies



36 QoS in the Internet



3 Admission Control
Description

Emerging real–time multimedia applications traversing over IP networks place
QoS requirements on their underlying transport medium. Connection–oriented
network technologies such as ATM have an implicit admission control (AC) ca-
pability, which is used in establishing the path between the sender and the re-
ceiver, to ensure the required QoS for the connection. In contrast, IP network is
connection–less, and has no implicit admission control capability.

In order to achieve tightly bound service levels for real–time traffic flows and
to assure consistent service within the SLA bounds, resource reservation and
admission control mechanisms are needed to ensure that the actual load of a
class does not exceed acceptable levels. In the absence of admission control, a
situation might occur where the available capacity for real-time traffic maybe
exceeded implying a service quality degradation for that particular class. Thus,
where admission control is not supported for traffic classes used for real–time
applications like VoIP and packet video the bandwidth for that class must be
over–provisioned with respect to the peak load in order to ensure that congestion
does not occur [19].

Bandwidth over–provisioning causes significant financial cost. And, practically
it may not be viable to provision every segment of the network to cope with the
peak load. Further, if network planning and provisioning is inaccurate, or not
reactive enough to new traffic demand, or there is a network failure, this may lead
to situation where congestion is unavoidable. In such cases, all calls or streams
in progress are degraded.

Admission control (AC) is in general a mechanism of traffic management, which
consist of admitting a new traffic source if and only if the network can accommo-
date the new flow while still supporting existing commitments made to sources
already accepted [57, 58]. An AC procedure is employed to maintain a high
utilization of network resources while still preserving the QoS of existing flows.
In this thesis, the considered admission control algorithms make their decision
on a per flow basis.



38 Admission Control Description

3.1 Required situations for Admission Control

In general terms, admission control is practically useful, if the following situations
are present:

1. The offered load may exceed the available capacity in the ab-

sence of admission control: If there is always enough bandwidth for
a flow or a class to support the offered load then you simply do not need
admission control. Thus, one approach to providing guaranteed support for
service such as voice is to provision sufficient class bandwidth throughout
the network to be able to ensure that the peak voice load can be serviced.
However, one needs to consider the limitation of network component fail-
ure to provisioning of sufficent bandwidth throughout the network. In such
cases, some part of the network may lack the required bandwidth to service
the peak voice load. This leads to failure in delivering the required QoS.
Therefore admission control can be used to overcome such situations.

2. Service utility degrades unaccaptably as a consequence of ex-

ceeding available capacity for that flow or class of service: For
real–time applications, as bandwidth availble for its traffic class decreases,
the utility of the applicatioin reduces. For example, consider a link, which
has class capacity to support a maximum of twenty concurrent VoIP calls,
within the bounds of the required SLA. If a twenty–first call is allowed to
be setup, congestion will occur within that class and the service to all of
the calls are degraded. In such a case, admission control can be used to
block the twenty-first call, thereby preventing the existing calls from being
degraded. The mantra for applications which need admission control is that
it is much better to refuse a new call than to degrade service for many calls
in progress [19].

3. The source application knows how to respond to an admission

control failure: Admission control is only useful if there is some way
of communicating an unsuccessful admission control decision back to the
end–system application such that it does not establish the requested flow
or stream, and such that it can communicate the failure back to the end
user. e.g., for a VoIP call by returning a busy signal.

4. It is acceptable from a service perspective to reject a request:

If from a service perspective, it is not acceptable for admission control to
reject a requested call or session, then more bandwidth is needed instead
of using admission control. For example, for a residential broadcast video
service, it would be unacceptable to have an admission control failure while
simply changing a channel.



3.2 Related Work and Research in this Area 39

3.2 Related Work and Research in this Area

Admission control has long been considiersed a key mechanism to ensure quality
of service objectives in IP networks. There is a significant amount of research
done, and many papers written in the area of admission control algorithms. Most
of the admission control algorithms are concentrated on providing QoS for a
single guaranteed service using parameter-based admission control algorithms or
ensuring QoS for single predictive or single controlled-load services using the
measurement-based admission control algorithms. The area of supporting QoS
for multiclass of controlled-load or predictive service has not exprienced much
research work when compared to the single class case.

Reference [82], presesents a tutorial on admission control in multi-service IP
networks. The paper took on the ontological perspective within which to catago-
rize admissioin control schemes. It summarizes the characteristics of existing
admission control schemes and went on to investigate the linkage of AC with the
capacity planning process, examination of applications in typical core and access
network architectures, and consideration of the factors involved in scaling up AC
as an IP network function for large-scale, multiservice wide-area networks.

Within service management, admission control has been recognised as a convinent
mechanism to keep service under controlled load and ensure the required QoS
levels, bringing consistency to the services offered. The authors of [54], studied
different AC approaches and the role of AC in multiservice IP networks. They
identified the following high-level characteristics distinguishing AC approaches:

• Underlying network paradigm: The type of network models under
which AC can operate, which ranges from single service to multiservice
architectures.

• Type of service to control: The application characteristics usually spec-
ifies the type of service, whether they are rigid or adaptive and whether they
have quantitative or qualitative QoS targets that determines service level
guarantees to be provided.

• Signalling supported: The means of the application to explicitly inform
the network of their needs. Commonly expressed in terms of service profile,
using soft or hard state signalling.

• Location of the AC decision: This aspect involves the centralized or
distributed nature of the AC. This is further dependant on which nodes are
involved in the AC process.

• Admission decision criteria: The decision criteria is determined by
the nature of the algorithm. Whether it is parameter-based, measurement
based, or hybrid.



40 Admission Control Description

In [53], a distributed admission control for multiservices in IP network is pre-
sented. The paper discusses the handling of concurrent admission control deci-
sions. It notes that distributed AC model by its nature is likely to involve multiple
and simultaneous AC decisions, consequently presenting the need to handle the
concurrency which arises from having multiple decision points. This offers a way
to avoid over/false acceptance of flow entering the network, which causes resource
overload and service degradation. This paper proposes some alternatives to tackle
the problem of concurrent AC decision in multiservice IP network. The proposed
alternatives include the definition of:

• A per-class concurreny index.

• A token-based system.

• A rate-based credit system controlled by the egress nodes.

These alternatives are an extension of the work done in [4]. The work in [4],
defined an AC limit for acceptance of traffic flow within a class. The AC lim-
its are defined off-line at an initial provisioning phase taking as input: (i) the
network topology, (ii) the long-term expected traffic metrices, and (iii) the band-
width sharing policies among classes. The initial static limit can be extended
dynamically by sharing unused AC limit between egress routers. The authors of
[53], also outline the issues with centralized AC approaches. They argued that
the main advantage of centralized AC approaches is that centralizing state infor-
mation and control task allows global vision of the domain’s QoS and operation,
relieving the control plane inside the network. The centralization process also
supports creating and changing service policies and control mechanism such as
AC algorithms. The cost of centralized approaches is however high. Central en-
tities need to store and manage large amount of information, which in large and
highly dynamic networks with many signalling messages and information updates
requiring to be processed in real-time are even hard or impossible to realize.

3.3 Admission Control Approaches

As already discussed in section 3.2, there are different approaches to admission
control mechanism. In this thesis, the admission decision criteria and distributed
approaches to admission control are consider closely. Examples of these ap-
proaches include parameter-based admission control (PBAC), which is explained
in subsection 3.3.1, and measurement-based admission control (MBAC), which
is detailed in subsection 3.3.2. The main criteria ( [49]) used in evaluating any
admission control algorithm are the following:

• How well it fulfils its primary role of ensuring that service commitments are
not violated.



3.3 Admission Control Approaches 41

• How high a level of network utilisation an admission control algorithm can
achieve while still meeting its service commitment.

• The implementation and operational cost of the admission control algo-
rithm.

These three criteria are going to be considered while discussing the different
approaches to admission control.

3.3.1 Parameter-based Admission Control

In this approach, admission control is based on the assumption that the algorithm
has perfect knowledge of each traffic source type that traverses every link. It also
knows the current number of established service instances. This information
enables admission control to compute the total amount of bandwidth required.
Hence it will only accept a new service request if the minimum amount of band-
width required by the total number of established service instances, including the
new one is less than the available service rate (bandwidth). Typically sources are
characterized by either peak and average rates [21] or a filter like token bucket
[64]. These source characterizations provide upper bound on the traffic flows
that can be generated by the source. It is obvious that this approach is optimal
if the traffic is accurately characterized and used for admission control decision.
Thus, the performance of this approach provides the upper bound for all other
admission control approaches as far as the traffic sources are conformant.

Traditional real–time services provide a hard or absolute bound on the delay of
every packet. According to reference [13], such service model is called guaran-
teed service. It uses a prior characterization of traffic sources. Network utilization
under this model is usually acceptable when the provided traffic characteristics
represents the actual behaviour of the source. However, when traffic character-
istics do not depict the actual network behaviour, network utilization degrades
inevitably low, since no traffic measurement is taken into consideration. PBAC
algorithms can be analysed by formal methods, this makes the algorithms simple
and easy to implement.

The simple sum algorithm is a representative of the parameter-based admission
control algorithms. It can be described as follows:

Simple Sum: This admission control algorithm is based on the a prior well
characterization of the traffic source. It simply ensures that the sum of reserved
resources plus the new flow request does not exceed link capacity. Let ν be the
sum of reserved rate, µ the link bandwidth, α the name of a flow requesting
admission, and rα the rate requested by flow α. This algorithm accepts a new
flow if the following condition is true [49]:

ν + rα < µ (3.1)



42 Admission Control Description

Due to the simplicity of this algorithm, it is one of the most widely implemented
by switch and routers vendors.

The PBAC algorithms are simple and easy to implement. They can be used to
provide guaranteed quality of service to hard real–time applications in terms of
packet loss and delay. In reference [51], the authors evaluated many algorithms of
this family. The problem of algorithms in this family is that, when the description
of the source traffic does not match the traffic behaviour in the network, the
algorithm may either incorrectly admit too many flow which leads to violation
of the QoS commitment, or it may deny access to flows which could have been
admitted successfully and this causes poor network utilization.

3.3.2 Measurement-based Admission Control

There are different types of measurement-based admission control algorithm.
These result from work based upon a wide variety of theoretical foundations,
different system requriements, different policies controlling the admission pro-
cess and thus different behaviour requirements to satisfy certain service models
[25, 57, 22, 46, 28, 49, 78, 13, 52, 75, 24, 29, 71, 70, 80, 81]. In this subsection,
some introduction and explanation of MBACs and the services they can support
are first presented. After that, different approaches to MBAC from different au-
thors are disscussed. Lastly, the components of MBAC are described and four
algorithms from the MBAC algorithm family are presented.

The MBAC algorithms provide an alternate approach to admission control. This
approach tries to solve the problems of parameter-based admission control by
shifting the task of source traffic specification from the user to the network [28].
Rather than the user specifying their traffic characteristics, the network attempts
to learn the characteristics of existing flows by making on–line measurements
[29]. This approach has a number of advantages such as the user–specified traffic
descriptor can be very simple e.g., using peak rate which can be easily policed.
An overly conservative specification does not result in over–allocation of resource
for the entire duration of the service session [78].

Measurement–based admission control schemes were designed to statistically share
network resource among flows so as to achieve high network utilization. The IETF
developed an architecture in an effort to support real–time applications in the
integrated service packet network [7]. The beauty of this architecture lies in
the fact that many real–time applications can be adaptive, i.e., could adjust to
network situations and tolerate some SLA violation in terms of packet loss and
delay. This architecture is known as predictive service. Algorithms supporting
predictive services use measurement of current network load instead of relying on
a prior traffic characteristics. They use the a prior traffic characterization only
for incoming flows, and measure the characteristics of the traffic already admitted



3.3 Admission Control Approaches 43

into the network.

Based on the fact that MBAC algorithms rely on measurements and the traffic
source behaviour is not always static, service commitment made by such algo-
rithms can never be absolute [49]. Thus measurement–based approach to admis-
sion control can only be used in the context of predictive service and other more
relaxed service commitment. The gain in network utilization becomes very sig-
nificant when there is a high level of traffic multiplexing, because when different
flows are multiplexed, the quality of service experienced depends often on their
aggregate behaviour. According to the law of large numbers, the statistic of an
aggregate traffic is easier to estimate than those of individual flows [56].

Applications requesting controlled–load service [83] may assume that its packet
loss rate is on the order of the transmission medium’s error rate and its typical
experienced delay should be on the order of the path’s transmission and prop-
agation delays. More specifically, average packet queueing delay should not be
greater than the flow burst time (where flow burst time can be defined as the time
required to serve the flow’s maximum burst at the flow’s reserved rate) and there
should be minimal loss rate averaged over time–scales larger than the burst time.
For a flow described by the token bucket filter (see subsection 3.3.2.3), the burst
time is b/r, where b is the token bucket depth and r is the arrival rate.

3.3.2.1 Different MBAC Paradigma

In this subsection, different approaches of measurement-based admission control
mechanisms are presented.

In [22], Floyd presented a measurement-based admission control procedure for
the controlled-load service that is based on the approach of equivalent capacity.
The paper defined equivalent capacity of a class of traffic as that value C(ǫ) such
that the stationary arrival rate for the class exceed C(ǫ) with probability at most
ǫ. An admission control scheme that esimates the equivalent capacity of a class
is proposed. A connection is admitted to a class of traffic, if with the addition of
the new connection, the equivalent capacity of that class would be less than the
allocated bandwidth for the class. This allows a simple fairly easily computed
admission control procedure. For this MBAC algorithm, it is assumed that traffic
description include token bucket parameters with the token rate and bucket size as
in the controlled-load service, and that these token bucket parameter are policed
at the router. Traffic from admitted connection that exceeds these token bucket
parameter is forwarded on a best effort basis if resources are available but does
not have to be considered by the admission control procedure. The admission
control procedure uses the policed token bucket parameter to infer a peak rate for
each flow over some fixed time interval. For such an admission control procedure,
a request for admission is most likely to be accepted if the token rate is set close



44 Admission Control Description

to the peak rate of the flow, and the bucket size is set to some small value to
accommodate the accumulated jitter as packets are pushed in the network.

The authors of reference [46], described a measurement–based admission control
algorithm for predictive service. Their admission control algorithm mechanism
consist of two logically distinct aspects. One aspect is a set of criteria controlling
whether to admit a new flow. This aspect is based on an approximate model of
traffic flows and used measured quantities as inputs. The second aspect is the
measurement process itself. In this mechanism, sources requesting the service
must characterize the worst-case behaviour of their flows. Flows are characterized
by token bucket filter, which has two parameters - its token generation rate r and
the depth of its token bucket b. It is assumed that packets are of fixed size and
each token is worth of a packet. Sending a packet consumes one token. When
admitting a new flow not only must the admission mechanism decide whether the
flow can get the service requested, but it must also decide if admitting the flow
will prevent the network from keeping its prior commitments. Let us assume for
the moment, that admission control can not allow any delay violation. Then the
admission mechanism must analyze the worst-case impact of the newly arriving
flow on existing flows’ queueing delay.

The second aspect, which is the measurement process, is based on a simple time
window mechanism. The measurement process uses the constants λ, S, and
T . The authors of [46] made two measurements: the experienced delay and
utilization. To estimate delay, the queueing delay (d̂) of every packet is measured.
To estimate utilization, the usage rate of guaranteed service, V S

G and of each
predictive class j, V S

j , over a sampling period of length S packet transmission
unit is sampled. To measure the delay, the measurement variable Dj tracks the
estimated maximum queueing delay for class j. A measurement window of T
packet transmission units is used for the basic measurement block. The value
of Dj is updated on three occasions. At the end of the measurement block,
Dj is updated to reflect the maximal packet delay seen in the previous block.
Whenever an individual delay measurement exceeds this estimated maximum
queueing delay, it shows that the estimated delay is wrong and Dj should be
immediately updated to be λ times this sampled delay. The parameter λ allows
the estimation to be more conservative by increasing Dj to a value higher than
the actual sampled delay. Finally Dj is updated whenever a new flow is admitted.
The utilisation is measure analog like the delay.

Authors of [75], proposed a dynamic call admission control in ATM networks.
This procedure is based on measurement of the number of cells arriving during
a fixed interval. They pointed out that an admission procedure based on actual
measurement of the arrival rates at the gateway tolerates possible errors in the
policing at the edge of the network. In the paper, after a new connection is
admitted, the traffic parameters of the new connection are used to update the
estimate of the distribution of cell arrival. This estimated distribution is then



3.3 Admission Control Approaches 45

updated using exponential weighted moving averages.

In reference [28], the authors presented a framework for robust measurement-
based admission control. They studied the performance of admission control
schemes under measurement uncertainty and flow dynamics. They proposed the
use of appropriate amount of memory for the estimator. By means of heavy-
traffic approximations, the analysis of the resulting dynamical system is simplified
through linearization around a nominal operating point and by Gaussian approx-
imations of the statistic. The gain they obtain showed the impact estimation
error could have on the QoS performance of MBAC schemes. As a consequence,
it was demostrated by the authors how the memory time scale affects the perfor-
mance, and they went on to show which memory time scale choice could achieve
robust performance.

There are principally different motivations to MBAC, but in general they show
some common features like [9]:

1. Many of the existing MBAC algorithms are greedy, in the sense that they
admit new flows as soon as resources become available. For example in the
presence of heterogenous flows (in terms of bandwidth requirement) the
greedy nature of the algorithms leads them to discriminate against larger
flows. In the limit of large demand, the MBACs will only admit small flows.
Anytime there is room for a small flow one will be admitted, so there will
never be enough bandwidth available for a larger flows.

2. The algorithms are local in the sense that an independent admission control
is made at each hop along a path. Consider a situation where the traditional
per-hop admission is applied, a flow is then only admitted if the flow passes
the local admission criterion at every hop. If it fails at a single hop the flow
is rejected. In the limit of large demand, the network will tend to admit
only flows that traverse relatively short path.

These two features tend to define an implicit policy to admit small flow rather
than large ones and flows traversing short paths (in terms of network hops) rather
than long ones. Nevertheless, the authors of [48], pointed out another feature,
which several of the existing MBAC have in common, that is their admission
control equations give essentially the same performance. So they suggested that
further research on MBAC should not focus on the design of the admission control
equations, instead should focus on the settings of the measurement parameters
and on global issues involed in MBAC such as the issue of admitting small flows
and flows traversing short paths.

3.3.2.2 MBAC Components

The measurement-based admission control is made up of three components, which
work together to admitt or reject flows so as to control the network load. They



46 Admission Control Description

are named as follows:

• Traffic descriptor.

• Admission decision algorithm.

• Measurement mechanism.

The third component is made up of estimation modules. The interaction among
the components is presented in Figure 3.1:

Figure 3.1: Components of measurement-based admission control

3.3.2.3 Traffic Descriptor

The traffic descriptor is a set of parameters that is used to characterize a traffic
source. A typical traffic descriptor is the token bucket. The token bucket is a
policing unit in the network [45]. It monitors the traffic that is generated by
a single source and if necessary, limits the traffic flows by dropping individual
packets. Figure 3.2 presents the function of a simple token bucket (STB). The
token bucket can be described by two parameters: token generation rate r and
the token bucket size b. The depth of the token bucket determines the maximum
burst size that can be sent to the link. If the token overflows, they are simply
discarded and not stored. To transmit a packet of B size, the corresponding
amount of tokens are reduced from the token bucket. Each token represents a
number of bytes, and the packet can only be sent if there are enough tokens in
the bucket. Thus, when the token bucket is empty arriving packets are either
queued or dropped.
If the token bucket is full, a maximum burst of b bytes can pass the token bucket
without being affected. However, in the long run the average data rate cannot
be greater than r.

The complex token bucket (CTB) is a more advanced type of token bucket filter
[45]. In addition to STB’s functionality, it has the capability of limiting the peak
rate p of a source. Even if the bucket is full, the source cannot necessary sent
packet burst with link speed [56]. Every traffic source can now be characterized
by the given token bucket parameter (r,b) or (r,b,p) for STB and CTB respec-
tively. For example a source seeking admission will characterize its traffic with
token parameter r and b such that over a period of time T , the traffic generated
by the source will not exceed rT + b [11].



3.3 Admission Control Approaches 47

Figure 3.2: Token bucket operation

3.3.2.4 Admission Decision Algorithms

In this masters thesis, four measurement-based admission control algrithms are
discussed. The algorithms are as follows:

• Measured Sum (MS)

• Equivalent Bandwidth based on Hoeffding Bounds (HB)

• Acceptance Region (Tangent at Peak (TP) and Tangent at Origin
(TO))

Measured Sum (MS): The measured sum algorithm ( [49]) uses measurement
to estimate the load of existing network traffic flows. Let ψ be the measured
load of existing traffic, µ the link bandwidth, α the name of a flow requesting
admission, and rα the rate requested by the flow α. This algorithm admits
the new flow if the following condition is true:

ψ + rα < υµ (3.2)

where υ is a user-defined utilization target intended to limit the maximum
link load. This algorithm uses the time-window estimating mechanism to
derive the estimated rate of existing flows. This mechnism will be explained
in subsection 3.3.2.5 later in this work. Upon admission of a new flow, the
load estimate is increased using ψ̂ = ψ + rα. According to [47], in a simple
M/M/1 queue, variance in queue length diverges as the system approaches
full utilization. A measurement-based approach is doomed to fail when
delay variation is very large, which will occur at very high utilization [49].
Thus, it is deemed necessary to specify a utilization target and require that
the admission control algorithm works towards keeping the link utilization
below this specified target level.



48 Admission Control Description

Equivalent Bandwidth based on Hoeffding Bounds (HB): This MBAC
algorithm described in [22], computes the equivalent bandwidth for a set
of flows using the Hoeffing bounds. The equivalent bandwidth for a set of
flows is defined in references [22, 30] as the bandwidth C(ǫ) such that the
stationary bandwidth of a set of flows exceeds this value with probability
at most ǫ. The measured equivalent bandwidth based on Hoeffding bounds
(CH) of n flows, assuming peak rate policing, is:

CH(ψ, {pi}1≤i≤n, ǫ) = ψ +

√

ln(1/ǫ)
∑n

i=1(pi)2

2
(3.3)

where ψ is the measured average arrival rate of existing traffic and ǫ is the
probability that arrival rate exceeds the link capacity. This algorithm makes
use of the exponential averaging measurement mechanism (see subsection
3.3.2.5) to estimate the measured average. The admission control decision
to admit a new flow’s (α) requests, is then stated as:

CH + pα ≤ µ. (3.4)

Upon admission of a new flow, the load estimate is increased using ψ̂ =
ψ + pα. If a flow’s peak rate is unknown, it is derived from its token-bucket
filter parameters (r, b) using the following equation:

p = r + b/U, (3.5)

where U is a user-defined averaging period. Similarly to the algorithm in
[25], if a flow is denied admission, no other flow of a similar type will be
admitted until an existing one departs [48].

Acceptance Region: The MBAC algorithm proposed in [25], computes an ac-
ceptance region that maximizes the reward of utilization against the penalty
of packet loss. Given link bandwidth, switch buffer space, a flow’s token
bucket filter parameters, the flow’s burstiness, and the desired probability
of actual load exceeding bounds, one can compute an acceptance region for
a specific set of flow types, beyond which no more flows of those particular
type should be accepted [49]. For example, let a and p be the average
and peak rates of an ON/OFF source, the equivalent bandwidth (C) of the
source can be computed using the following equation [24, 50] :

C(s) =
1

s
log

[

1 +
a

p
(esp − 1)

]

, (3.6)

where s is a space parameter, and s > 0. One can then draw an equivalent
bandwidth curve varying the average rate on the x − axis and with the



3.3 Admission Control Approaches 49

resulting equivalent bandwidth on the y−axis. A linear bounds at different
points of this curve can be composed as tangent at that point:

c + αψ ≤ µ (3.7)

where c determines the location and α the slope of the tangent. This linear
bound at different points can then be used as MBAC algorithms [48]. The
reference [24], presented four MBACs, each based on a different tangent
of the equivalent bandwidth curve. In this thesis, only the following two of
the four algorithms are of interest:

1. Tangent at Peak: The first algorithm based on the tangent at the
peak of the equivalent bandwidth curve computed from the Chernoff
Bounds, admits a new flow if the following condition is true [10]:

n(1 − e−sp) + e−spψ ≤ µ, (3.8)

where n is the sum of the number of admitted flow peak rates, p is the
peak rate of the flows, s is the space parameter of the Chernoff Bounds,
ψ is the estimate of the current load and µ is the link bandwidth.

2. Tangent at the Origin: The second algorithm is based on the tan-
gent to the equivalent bandwidth curve at the origin. Here, a new flow
is admitted if the following equation is true:

espψ ≤ µ. (3.9)

Both of the algorithms uses the point sample estimation mechanism (see
subsection 3.3.2.5) to measure the current load. The measured load used
in equation 3.8 and 3.9 is not artificially adjusted upon admittance of a
new flow. For flows described by a token bucket filter (r,b) but not peak
rate, equation 3.5 is used to derive the peak rate. If a flow is rejected, the
admission control algorithm does not admitt another flow until an existing
one departs.

3.3.2.5 Measurement Mechanism

In this subsection, the three measurement mechanisms1 used by the MBAC al-
gorithms described in the previous subsection are discussed. The measurement
mechanisms are the following:

1. Time-window (TW).

2. Point Sample (PS).

1Measurement mechanism is synonymously used as the estimator



50 Admission Control Description

3. Exponential Averaging (EA).

These measurement mechanisms may not be the most efficient nor the most
rigorous measurement mechanisms. They are however, very simple, which helps
to isolate the admission patterns caused by particular admission control algorithm
from those caused by the measurement mechanisms itself [49].

Time-window: According to [47], a simple time-window measurement mecha-
nism can be used to measure the network load as input to the MS algorithm.
As shown in Figure 3.3, the average load is computed every S sampling
period. At the end of a measurement window T , the highest average load
from the just ended T is used as the load estimate for the next T window.
When a new flow is admitted to the network, the estimate is increased with
the parameters of the new flow admitted into the network. If a newly com-
puted average is above the estimate, the estimate is immediately raised to
the new average. At the end of every T , the estimate is adjusted to the
actual load measured in the previous T . A smaller S will give a higher
maximal average, which results in a more conservative admission control
algorithm. A larger T keeps longer measurement history, again resulting
in a more conservative admission control algorithm. To get a statistically
meaningful number of sample, reference [49], suggests keeping the value of
T/S ≥ 10.

S
T T

Load = max sample 

in previous window

New flow

Sample above 

estimate

Rate 

estimate

SS

time

load

Restart T

Figure 3.3: Time-window measurement mechanism

Point Sample: The measurement mechanism used with both of the acceptance
region MBAC algorithms (ACTO and ACTP). It takes an average load
sample every Ŝ period. Or this can be equivalently described as the time-
window measurement mechanism with a T/S ratio of 1.

Exponential Averaging: An exponential average is used as input to the ho-
effding bounds MBAC algorithm. The average arrival rate (ψS) is measured



3.4 A Multiservice Framework Using MBAC in ns-2 51

once every S sampling period [49, 47]. The average arrival rate is then
computed using an infinite impulse response function with weight w:

ψ̂ = (1 − w) ∗ ψ + w ∗ ψS, (3.10)

where w is an averaging weight which determines how fast the estimated
average adapt to the new measurement. A larger w makes the averaging
process more adaptive to load changes, a smaller w gives a smoother aver-
age by keeping a longer history. As stated in section 3.3, the equivalent
bandwidth based admission control algorithms require peak rate policing,
and derive a flow’s peak rate from its token bucket parameters using equa-
tion 3.5, when the peak rate is not explicitly specified. To be on the safer
side, the averaging period U in equation 3.5 should be smaller than or
equal to S, the measurement sampling period. A smaller S not only makes
the measurement mechanism more sensitive to burst, it also makes the peak
rate derivation more conservative. A larger S may result in lower averages,
however it also means that the measurement mechanism keeps a longer
history because the averaging process (Eqn 3.10) is invoked less often [49].

3.4 A Multiservice Framework Using MBAC in ns-2

This section presents a proposal for a multiservice framework, which uses the four
MBAC algorithms for simulating the effects of transmitting multiclass traffic flows
over a packet network. In the previous section the mathematical formulations
and theoretical descriptions of the four measurement-based admission control
algorithms were presented. These algorithms as they are described in subsection
3.3.2.4 together with some other components (described later in this section)
formed a framework already embedded in network simulator version two tool
(ns-2) (detail explanations of ns-2 tool are the main topic of chapter 4 of this
thesis) for simulating a single predictive2 application traffic. In this section, this
already exiting framework is described together with its components after which
the new multiservice framework is described.

The already existing framework in ns-2 shown in Figure 3.4, is based on the
IntServ architecture ( [7]).

As mentioned previously, this framework contains the four MBAC algorithms
and one PBAC algorithm for controlling the network traffic load. Basically, it is
made up of the following two components:

• End-to-End signalling mechanism for requesting a new connection.

2Please note that predictive service and controlled-load service are used synonymly in this
work.



52 Admission Control Description

Figure 3.4: Existing single service framework in ns-2

• An enhanced link structure.

End-to-End signalling mechanism: This is a very simple end-to-end sig-
nalling protocol based on RSVP (described in subsection 2.4.1.7). It is
implemented in ns-2 for requesting services. It uses a three way handshake.
The signalling protocol is sender–initiated, whereby the sender sends a re-
quest message (PT REQUEST) with the token bucket parameters (r,b).
The message goes all the way to the receiver through the IntServ enhanced
link (explained below).

The receiver reverses the request message as a reply message (PT REPLY)
to the sender. The sender then resends the reply message as confirm mes-
sage (PT CONFIRM) to the receiver. The reply message is needed to
indicate to the sender about the successful establishment of a connection,
after which it may start transmitting data packets. If the reply is a reject,
then the source sends the confirm message and no more packets.

Since in this framework, the reply message traverses through a different
simple-link than the request message, a confirm message is required to in-
dicate to the signal-support component about the fate of the connection.
This is particulary important for the state of those links which said “yes” to
a connection but the connection got rejected on a downstream link. Finally
the sender sends a tear down message (PT TEARDOWN) at the end of
the connection.

The enhanced link: The enhanced link is the medium through which data
(messages) travel from source to destination. It is made of four components
for supporting controlled-load service. The components are the following:

• Signal-Support: This component is used to maintain some transient
state about flows requesting service. Specifically the link need to re-
member its decision for a new flow until it gets the PT CONFIRM
message.

• Queue Scheduler: This is a simple queue scheduler for the controlled-
load service. It is implemented as a two level service priority queue.



3.4 A Multiservice Framework Using MBAC in ns-2 53

First level high priority for controlled-load service and the second level
low priority for best-effort service. In the practice, this framework
simulates only controlled-load service. Also all signalling messages are
explicitly prevented from drops.

• Classifier: The classifier in this framework is a flow classifier. It
treats all the flow with flow ID greater than zero as controlled-load
traffic and flows with zero flow ID as best-effort traffic3.

• Measurement, Estimator, AC: The measurement object is a very
simple object that measures per-class packets. The estimator es-
timates the used bandwidth based on the estimation algorithm in
play which could be one of Time-Window, PointSample, or Exponen-
tial Average (see subsection 3.3.2.5). The admission control object
(AC) makes an admission control decision based on the load estimate
from the estimator and the admission control algorithm in play which
could be one of Measured Sum, Hoeffding bounds, Acceptance region-
Tangent at Origin, or Acceptance region-Tangent at Peak (see subsec-
tion 3.3.2.4). These are the same algorithms and estimators presented
in the last section.

When a new connection request comes to a link, the signal-support module
ask the admission control for a decision which will in turn look at the current
load estimate and the new flow parameters. Interested readers are directed
to reference [56] for full details of this framework.

Based on this existing framework, a new framework for simulating multi-controlled-
load services in ns-2 is proposed. This framework is designed to support three
classes of service:

• VoIP class service.

• Video class service.

• Best effort class service.

Among these service classes, the VoIP class has the highest priority, followed by
the video class and the best effort class has the lowest priority. In this new frame-
work, the logic of the end-to-end signalling mechanism component is not changed.
So changes (or extensions) are only made to the components of the enhanced link
component. The next subsection describes the changes made to these enhanced
link components. After describing them, a new dynamic bandwidth allocation
mechanism designed for the new framework is presented.

3This framework does not practically simulate best-effort traffic.



54 Admission Control Description

3.4.1 The Enhanced Link for the New Framework

This subsection decribes the enhanced link for the new proposed multiservice
framework. In this framework the components of the enhanced link in the already
existing framework are extended to accommodate multiservice functionalities.
Figure 3.5 presents the enhanced link.

Figure 3.5: Enhanced link

The changes made to the components are described in the subsequent subsections.

3.4.1.1 Signal-Support

This component is only extended to allow traffic flows with the predefined flow
IDs to place connection request to the admission control algorithm. And then
maintain transient states for these flows.

3.4.1.2 Queue Scheduler

For the controlled-load multi-flow classes, a queue scheduler with three service
level priority queues were implemented. The scheduler schedules the traffic flows
based on the flow ID, which indicates the priority of the flow class. The low
priority class has a smaller queue size, which means that they are easily dropped
when there is congestion. It also explicitly prevents the signalling message packets
from drops.

3.4.1.3 Classifier

In the new framework, a flow classifier is also used to distinguish the traffic flow
packets into different classes. The classifier uses the flow ID to filter the traffic
flows. It then groups the packets with the same flow ID into one class, thereby
making it possible to treat all traffic packets of this class equally.



3.4 A Multiservice Framework Using MBAC in ns-2 55

3.4.1.4 Measurement, Estimation, Admission Control

These three modules are been explained together because they are highly depen-
dant on each other. The three modules are not logically changed but extended
to accommodate multiclass service. The changes made to the estimation module
can be better explained together with the code which will be done in the next
chapter (chapter 5). The changes to the admission control algorithms are shown
in the following:

• Measured Sum: To accomodate the multiclass, the admission decision
equation (Eqn 3.2) of the measured sum algorithm is extended to become:

ψi + rαi < υµi. (3.11)

• Equivalent Bandwidth based on Hoeffding Bounds: This algorithm
admission decision equation (Eqn 3.3) is extended to accommodate the
multiclass services as shown below:

CHi + pαi ≤ µi. (3.12)

• Acceptance region-Tangent at Origin: The admission decision equa-
tion (Eqn 3.9) of this algorithm is extended in the following way to accom-
modate the multiclass service:

espiψi ≤ µi. (3.13)

• Acceptance region-Tangent at Peak: This algorithm’s admission de-
cision equation (Eqn 3.8) is equally extended to support the multiclass
services as follows:

ni(1 − e−spi) + e−spiψi ≤ µi. (3.14)

where i ∈ [1,m]. For all equations i represents the class of the traffic flow and
m represents the maximal number of traffic classes. The extension of these ad-
mission decision algorithms is based on the fact that the different traffic class are
assigned different portion of the total bandwidth according to the class priority.
So each of the admission decision algorithms has to make its decision based on
the utilization of its assigned bandwidth portion.

3.4.2 Dynamic Bandwidth Allocation Mechanism

The static sharing of bandwidth among different classes of service in a network,
produces under ideal conditions an acceptable utilization of the network resources.
In practice, ideal conditions are far from the reality. Thus, some mechanism has
to be devised to regulate the bandwidth sharing in some unusual situations so as
to support high network utilisation.

The static bandwidth sharing among the traffic classes is done as follows:



56 Admission Control Description

• The VoIP class has highest priority and 50% of the total bandwidth.

• The video class has lower priority and 35% of the total bandwidth.

• The best effort class has lowest priority and 15% of the total bandwidth.

The problem with this type of bandwidth portioning is that, when a class band-
width is not good utilised, the unused bandwidth is wasted. This causes poor
utilisation of the total network resources. To alleviate this problem, the dynmanic
bandwidth allocation mechanism is devised. This mechanism borrows bandwidth
from best effort class to the higher priority classes, when they have exceeded a
certain threshold of their class bandwidth and the best effort class bandwidth is
uderutilised. The mechanism can be explained with the following psuedocodes:

Algorithm 3.4.1: VoIP Class Bandwidth Borrow(Mbit/s)

if voipClUtil > 85% voipClBw && beClUtil < 50% beClBw

then















if beClUtil < 15% beClBw
then

{

voipClBw = voipClBw + 60% of 85% beClBw
if beClUtil > 15% beClBw

then
{

voipClBw = voipClBw + 60% of 50% beClBw

Where voipClUtil = VoIP class utilization, voipClBw = VoIP class bandwidth
beClUtil = Best effort class utilization, beClBw = Best effort class bandwidth

Algorithm 3.4.1, presents the dynamic bandwidth borrowing mechanism for the
VoIP traffic class. When the VoIP utilization level is over 85 % of its class
bandwidth, it checks if there is unused bandwidth in the best effort class that can
be borrowed. When this condition is true, it borrows 60 % of the free bandwidth
from best effort class, and when it is false, it borrows nothing. There are two
types of bandwidth borrowing from best effort traffic class.

• The first type is when the best effort class utilization level is below 15 %
of the class bandwidth capacity. In this case 85 % of the best effort class
bandwidth is made available for borrowing.

• The second type is when the best effort utilization level is above 15 % but
below 50 % of the class bandwidth capacity. In this case 50 % of the best
effort class bandwidth is made available for borrowing.

Note, these two bandwidth borrowing types are exclusive to one another (i.e.,



3.4 A Multiservice Framework Using MBAC in ns-2 57

only one of them can be executed).
Algorithm 3.4.2: Video Class Bandwidth Borrow(Mbit/s)

if viClUtil > 90% viClBw && beClUtil < 50% beClBw

then















if beClUtil < 15% beClBw
then

{

viClBw = viClBw + 40% of 85% beClBw
if beClUtil > 15% beClBw

then
{

viClBw = viClBw + 40% of 50% beClBw

Where viClUtil = Video class utilization, viClBw = Video class bandwidth

Algorithm 3.4.2, describes the dynamic bandwidth borrowing mechanism for the
video traffic class. When this class utilization level is above 90 % of its class
bandwidth, it checks if there is unused bandwidth in the best effort class that can
be borrowed. When this condition is true, it borrows 40 % of the free bandwidth
from best effort class, and when it is false, it borrows nothing.

Algorithm 3.4.3: Best Effort Class Bandwidth Recovery(Mbit/s)

if beClUtil > 10% beClBw && beClUtil < 47% beClBw

then







































exclusiveCheck = false
if voipClBw > voipClBw + (1/2 borrowed bw) && voipClUtil < initial voipClBw

then

{

voipClBw = voipClBw - 50% borrowed bw
beClBw = beClBw + 50% borrowed bw

if viClBw > viClBw + (1/2 borrowed bw) && viClUtil < initial viClBw

then

{

viClBw = viClBw - 50% borrowed bw
beClBw = beClBw + 50% borrowed bw

else if beClUtil > 47% beClBw && exclusiveCheck

then































if voipClBw > voipClBw + (1/2 borrowed bw) && voipClUtil < initial voipClBw

then

{

voipClBw = voipClBw - 50% borrowed bw
beClBw = beClBw + 50% borrowed bw

if viClBw > viClBw + (1/2 borrowed bw) && viClUtil < initial viClBw

then

{

viClBw = viClBw - 50% borrowed bw
beClBw = beClBw + 50% borrowed bw

if beClUtil > 70% beClBw

then































if voipClBw > initial voipClBw && voipClUtil < initial voipClBw

then

{

voipClBw = voipClBw - 50% borrowed bw
beClBw = beClBw + 50% borrowed bw

if viClBw > initial viClBw && viClUtil < initial viClBw

then

{

viClBw = viClBw - 50% borrowed bw
beClBw = beClBw + 50% borrowed bw

Where bw = Bandwidth



58 Admission Control Description

Algorithm 3.4.3 depicts the bandwidth recovery mechanism for the best effort
traffic class. Similar to the borrowing mechanism, there are two type of recovery
mechanisms - the first is carried out when 85 % of the best effort class bandwidth
is borrowed, and the second type is performed when 50 % is borrowed. For each
of the recovery mechanism, the recovery process is performed in two steps. The
first step recovers 50 % of the borrowed bandwidth. This step is performed when
the best effort utilization level is over 10 % or 47 % 4of the class bandwidth
capacity. The second bandwidth recovery step returns the rest 50 % of the
borrowed bandwidth. It is carried out, when the best effort utilization level is
over 70 % of the class bandwidth capacity. The bandwidth recovery is only
possible if the VoIP and video classes are not using the borrowed bandwidth
otherwise the bandwidth cannot be returned and the best effort class is starved.

3.5 Summary

It can be observed that supporting today’s Internet service heterogeneity and
integration of current emerging applications, while at the same time ensuring
consistent QoS level requires enhanced service management and control mecha-
nisms. The admission control mechanism provides a convienent means to ensure
high-quality communication by safeguarding enough resources availability for cus-
tomer traffic. There are different approaches to admission control mechanisms.
The parameter-based approach uses pre-specified traffic characteristics to com-
pute the network load and thus make its admission decision whether to accept
or reject a new traffic flow. This approach is conceived for guaranteed services
because it can ensure absolute delay bounds. It has the disadvantage of not
utilising the network resources well, thereby causing poor network utilization.
The measurement-based (MBAC) approach provides an alternative solution by
making an on-line measurement of current network load and based on this mea-
sured load, takes its admission decision to accept or reject a new flow. The
MBAC approach solves the problem of poor network utilization experienced in
parameter-based admission control. This approach is conceived for relaxed and
adaptive application in term of delay bounds and packet loss, because it uses
traffic measurements and for the fact that measurements can’t reflect the exact
nature of the traffic flows, it doesn’t ensure absolute bounds. There is a frame-
work implemented in the ns-2 tool to simulate admission control mechanism for
a single controlled-load service. This framework is extended to support applica-
tions with different class priorities. To support adequate resource utilization for
the multi-class controlled-load service network, a dynamic bandwidth allocation
mechanism is designed.

4Depending on the type of bandwidth borrowing performed.



4 Studying Network
Performance with the Network
Simulator Tool (ns-2)

This chapter presents the network simulation tool called network simulator ver-
sion 2 (ns-2). The ns-2 covers a very large number of applications, protocols,
network types, network elements, and traffic models. These are named simu-
lated objects. This chapter has two main goals: on one hand, to introduce and
explain in details the ns-2 simulator tool, and on the other hand to practically
apply the knowledge gained from this tool in teaching the operations of some
of the simulated objects. This helps the reader to gain more understanding of
the new multiservice framework proposed in this thesis (chapter 3, section 3.4).
Therefore this chapter presents not only some basics and introduction to ns-2
simulator tool, but also some lectures on OTcl programming, how to design sim-
ulation script, and how to add new class to the simulator. The chapter starts
with ns-2 introduction, describing its basics and features. It goes on to discuss
the sources from where ns-2 tool can be downloaded and the platform where ns-2
could be installed. Next, the lectures on ns-2 are presented. The lectures provide
fundamental information and guiding steps to fast mastering of this tool. It also
offers the reader practical usage examples of the tool. Finally, the chapter is
summarized at the end.

4.1 Basics of ns-2

The ns-2 tool is an object-oriented discrete event simulator targeted at networking
research. It is written in C++, with an OTcl (Object-oriented extension of Tcl
script language) interpreter as frontend. The simulator supports a class hierarchy
in C++ known as compiled hierarchy, and a similar class hierarchy within the
OTcl interpreter known as interpreted hierarchy [20]. The two hierarchies are
closely related to each other. From a user’s perspective, there is a one-to-one
correspondance between a class in the compiled hierarchy and a class within the
interpreted hierarchy. The root of these hierarchies is the class TclObject. Figure
4.1 presents an example of the class hierarchy.



60
Studying Network Performance with the Network Simulator Tool

(ns-2)

Figure 4.1: Example of class hierarchy design

A user can create new simulator objects through the interpreter, the objects are
instantiated within the interpreter and are closely mirrored to the corresponding
objects in the compiled hierarchy (see subsection 4.3.3.2). The interpreted class
hierarchy is automatically established through methods defined in the TclClass.
User instantiated objects are mirrored through methods defined in the TclObject
class.

The ns tool began as a variant of the REAL network simulator in 1989 and has
evolved substantially over the past few years. In 1995 the ns development was
supported by Defense Advanced Research Project Agency (DARPA) through the
Virtual InterNetwork Testbed (VINT) project at LBL, Xerox PARC, UCB, and
USC/ISI. Currently ns development is supported through DARPA with Simula-
tion Augmented by Measurement and Analysis for Networks (SAMAN) project
and through National Science Foundation (NSF) with Collaborative Simulation
for Education and Research (CONSER), both in collaboration with other re-
searches. The ns tool has always included substantial contributions from other
researches including wireless code from UCB Daedelus and CMU Monarch project
and Sun Microsystems [62]. The ns-3 project is currently being developed with
the aim of replacing the ns-2 tool.

4.1.1 Tool Concept

The ns-2 is realised with two programming languages due to the fact that it has
two primary objectives: detailed simulations and network research. On the one



4.1 Basics of ns-2 61

hand, detailed simulation of protocols requires a system programming language
which can efficiently manipulate bytes, packet headers, and implement algorithms
that can run over large set of data. For this task run-time speed is important
and turn-around time (run simulation, fix bug, re-run) is less important.

On the other hand, a large part of network research involves slightly varying
parameters or configurations, or quickly exploring a number of scenarios. In
these cases, iteration time (change the model and re-run) is more important.

The ns-2 tool uses C++ and OTcl to meet these two requirements. C++ is fast
to run but slower to change, making it suitable for implementation of detailed
protocols and algorithms. OTcl is slower to run but can be changed quickly,
making it suitable for easy varying of simulation configurations. ns-2 provides
glue through TCLCL component to make objects and variables appear and have
same values on both language spaces [20].

The ns-2 tool is a discrete even simulator, where the advance of time depends on
the timing of events which is maintained by a scheduler. An event is an object
in the compiled hierarchy with a unique ID, a scheduled time, and the pointer to
the object that handles the event [2]. There are presently four schedulers availble
in the simulator, each of which is implemented using a different data structure:
a simple linked-list, heap, calender queue (used by default), and a special type
called real-time [20]. The scheduler runs by selecting the next earliest event,
executing it to completion, and returning to execute the next event. The unit
of time used by the scheduler is seconds. At the present, the simulator is single-
threaded, which means only one event can be executed at any given time. If
more than one event are scheduled to execute at the same time, their execution
is performed on the first-scheduled first-executed manner.

4.1.2 Target Groups, Goals, Components, and Features

The ns-2 tool is developed and designed for the following target user group [36]:

• Students interested in learning networking protocols.

• Engineers.

• Professors/teachers who are interested in illustrating TCP/IP protocol dy-
namics using animated examples (ns-2 and Nam combination).

• Researchers who need to evaluate their design using simulations but does
not have a trusted simulation tool.

• Users of commercial simulators who are considering switching to a free
simulator.



62
Studying Network Performance with the Network Simulator Tool

(ns-2)

• Users of home-bred simulators who are considering switching to a more
extendible simulator.

The simulator is designed for two primary goals, which will address two com-
pelling needs in networking today. They are:

1. Research: For development and evaluation of protocol.

2. Teaching: For teaching of existing networking concept, and protocols of
new networking models.

In respect of the primary goals of this tool, it presents much features and func-
tionalities, which include the following [60]:

• Support for wired networks which includes:

– Local area networking

– Routing DV, LS, PIM-SM

– Transportation protocol: TCP and UDP

– Traffic sources: web, FTP, CBR, Telnet

– Queueing disciplines: Drop-Tails, RED, FQ, SFQ, DRR

– Quality of service: Integrated service architecture and differentiated
service architecture.

• Support for wireless networks made up of:

– Ad Hoc wireless networks

– Sensor networks

– Mobile IPv4, IPv6, UMTS, GPRS

• Support for satellite networks.

• Support for large-scale network topology generating, packet tracing, and
visualising.

The ns-2 software package in a whole is made up of the following components:

• The simulator itself,

• The network animator (Nam) used to visualize the output of simulations,

• The Tcl/Tk component,

• Pre-processing component used to generate network topology and data traf-
fic flows,

• Post-processing utilities used to analyse and process the results of the sim-
ulation such as Xgraph.



4.2 Sources and Installation 63

4.1.3 Cautions for ns-2

The developers and maintainers of ns-2 ( [62]) gave some warnings, which any-
body interested in ns-2 has to be aware of. The warnings are as quoted:

• While we have considerable confidence in ns-2, it is not a polished and
finished product, but the result of an on-going effort of research and devel-
opment. In particular, bugs in the software are still being discovered and
corrected.

• Users of ns-2 are responsible for verifying for themselves that their simula-
tions are not invalidated by bugs. We are working to help the user with this
by significantly expanding and automating the validation tests and demos.

• Similarly, users are responsible for verifying for themselves that their simu-
lations are not invalidated because the model implemented in the simulator
is not the model that they were expecting.

4.2 Sources and Installation

The ns-2 tool is a free open source software package which is still currently
evolving. That is, undergoing continual development, bug fixing and maintaince.
There are many stable released version of the ns-2 software package.

ns-2 depends on some external components such as Tcl/Tk, OTcl, Nam, etc.
These components and ns-2 itself are available for free download at the build
home page ( [61]). The ns-2 tool releases are in two varients:

1. The Allinone package: Made for people who want to quickly and easily try
out ns-2.

2. Single packages: For people doing detail development, or people who want
to save disk space or having problem with the allinone package.

ns-2 is fairly large. The allinone package requires about 320MB of disk space to
build. Building ns-2 from pieces can save some disk space.

4.2.1 System Requirements and Platform

To build and install ns-2, a computer and C++ compiler are needed. The com-
puter should at least have a minimum of 500MB free disk space. It does not place
strict requirements for RAM and processor speed. But it is recommended to use
a computer with a minimal of 256MB RAM and processor speed of 500MHz and
above.

ns-2 is developed on several kinds of UNIX platforms like:



64
Studying Network Performance with the Network Simulator Tool

(ns-2)

• FreeBSD

• Linux

• Solaris

• SunOS

It runs very smoothly on those platforms. ns-2 is also developed to run on window
platforms under cygwin for Windows 9x/2000/XP. For interested readers, detail
information on running ns-2 on windows using cygwin can be found in reference
[74].

4.3 Methodic Teaching with ns-2 Tool

The ns-2 tool is an asset in the teaching and learning environments. This section
presents some lectures on this tool. The lectures are designed to teach the usage
of ns-2, the process of simulating protocol in ns-2, and the process of extending
the tool with new custom functionalities. The essence of presenting this part
of the chapter in lectures is to offer the reader a systematical learning sequence
and to demonstrate a possible practical application of ns-2 tool in a teaching
environment.

At the end of the lectures, the reader should be in the position to master the
following:

• Designing and writting simulation scripts.

• Carrying out simulation processes.

• Interpreting and post-processing simulation results.

• How ns-2 tool could be extended with custom functionalities.

4.3.1 Lecture 1: Introduction to Tcl/OTcl Programming Language

Before starting to learn how to write simulation script and run simulations with
ns-2, it is a good idea to start with the learning of the Tcl/OTcl programming
language which is a basic step and for the fact that this language is not so common
like the C or C++ programming language. Another reason for starting with the
learning of OTcl programming languages is for the fact that many simulation
script examples are included in ns-2 tool, which are ready for immediate trial. So
without understanding this scripting languages, it is very difficult to understand
the example simulation scripts provided with the ns-2 tool. Please note that OTcl
is an extension of Tcl, thus they have mostly the same buit-in commands. So



4.3 Methodic Teaching with ns-2 Tool 65

references to Tcl implicitly refer to OTcls as well, but the reverse is not necessarily
true.

The goals of this lecture is to teach the reader the following:

• The general syntax of Tcl programming language.

• The construct and syntax of writing procedures in Tcl.

• How Linux commands can be executed in Tcl scripts

• Object-oriented programming in OTcl programming language.

The tool command language (Tcl) is a simple scripting language created by John
Ousterhout for use by scripted applications. Tcl has the following characteristics:

• It is a free package.

• It allows fast development.

• It provides a graphical interface.

• It allows easy integration with other programming languages.

• It is easy to use.

4.3.1.1 Tcl/OTcl Basics and Syntax

In Tcl, to assign a value to a variable, the command set is used. For example:

set x 2

This assigns to x the value of 2. This is equivalent to x=2 in C programming
language. If one wants to use the value assigned to a variable, one has to place
the $ sign before the variable. For example, if one wants to assign the value of
the variable x to another variable g, it can be done as follows:

set g $x .

A mathematical operation in Tcl, is executed with the expression (expr) com-
mand. For example, if one wants to assign to a variable d the sum of two variables
u and u, one writes:

set d [ expr $u + $v ]

The square brackets ([ ]) return the result of the expression command. It is
equivalent to a return statement in C functions.

Tcl variables are not typed. So a variable can be a string or an integer depending
on the value one assigns to the variable. For example, assuming one wants to
print out the result of the division 1/60. One may write:



66
Studying Network Performance with the Network Simulator Tool

(ns-2)

puts [ expr 1 / 60 ]

This expression outputs the value 0. To get the correct result, one has to indicate
that the operands are not integer values but double values and the desired result
is a double value by writing:

puts [ expr 1 . 0 / 60 . 0 ]

The puts command is used to print by default to the standard output the value
of its argument. If the argument is more than one, they have to be enclosed in
double quote or in a brace ({}). By default, this command prints a new line after
each call. This behaviour can be supressed by specifying the command option
−nonewline.

The # sign indicates the beginning of a line of comment in a Tcl program, so Tcl
intepreter will not execute this line.

4.3.1.2 File Operation and Application Command execution

Tcl provides several methods to read from and write to files on disk [79]. It
provides the following command options to regulate file accessing:

• r: Open the file for reading. The file must already exist.

• r+: Open the file for reading and writing. The file must already exist.

• w: Open the file for writing. Create the file if it doesn’t exist, or set the
length to zero if it does exist.

• w+: Open the file for reading and writing. Create the file if it doesn’t exist,
or set the length to zero if it does exist.

• a: Open the file for writing. The file must already exist. Set the current
location to the end of the file.

• a+: Open the file for writing. The file does not exist, create it. Set the
current location to the end of the file.

To create a file, one has to give a name (i.e. filename) and assign the file descriptor
to a variable (pointer), that can be used in Tcl program to access the file. For
example:

set f i l e p t r [open f i l ename w]

The file is opened for writing and the file descriptor is assigned to the variable
fileptr. To write something into the file, one could do the following:

puts $ f i l e p t r 4



4.3 Methodic Teaching with ns-2 Tool 67

This will write the value 4 into the file. After using a file, it is recommended to
close the file so that the operating system releases the resource consumed by this
file. File closing is done with the close command. For example:

close $ f i l e p t r

The execution of an application command within a Tcl script can be done with
the exec command, passing to it the name of the application’s command and its
options. For example, one might want to plot the result of a simulation dumped
in a file named data using the xgraph application. The calling statement looks
like:

exec xgraph data &

The & sign on the argument list, tells the Tcl intepreter to run the xgraph
application in the background.

4.3.1.3 Tcl Control Structures

Like most programming languages, Tcl supports control structures like if, for,
while, switch, and so on. For example, the structure of an if command is as
follows:

i f { exp r e s s i on } {
<execute some commands>

} else {
<execute some other commands>

}

The if command can be nested with other ifs and their corresponding else coun-
terpart. The test expression returns a string yes/no or true/false, the case of
the return value is not checked, i.e., True/FALSE or YeS/nO are legitimate re-
turns. If the test expression returns true the <execute some commands> body is
executed, otherwise the <execute some other commands> body is executed. It
should be noted that when testing for equality, one should use “ ==′′ sign like in
C and not the sign “ =′′. Inequality is also tested with “! =′′ as in C.

The for loop in Tcl has an iterated construct similar to the for loop in C. The
for command in Tcl takes four arguments; an initialization, a test, an increment,
and the body of code to evaluate on each pass through the loop. An example of
the for command is:

for { set i 0} { $ i < 10} { incr i } {
<execute some code>

}

During evaluation of the for command, the initialization code is evaluated once,
before any other arguments are evaluated. After the initialization code has been



68
Studying Network Performance with the Network Simulator Tool

(ns-2)

evaluated, the test is evaluated. If the test evaluates to true, then the body is
evaluated, and finally, the increment argument is evaluated. After evaluating
the increment argument, the interpreter loops back to the test, and repeats the
process. If the test evaluates to false, then the loop exits immediately. Details of
the other control structures can be found in reference [79].

4.3.1.4 Adding New Commands to Tcl

The Tcl commands are equivalent to functions in C language. In Tcl, functions
are known as procedures and have the abbreviation proc. There is a list of built-in
commands that the intepreter loads when it starts up. One can also create some
commands that the intepreter should execute using the proc command. The proc
command creates a new command in Tcl. The syntax for the command is:

proc name args body

When proc is evaluated, it creates a new command with name name that takes
arguments args. When the procedure name is called, it then runs the code con-
tained in body. For example, one can define the following new command sum
using the proc command as follows:

proc sum {arg1 arg2} {
set x [ expr {$arg1 + $arg2 } ] ;
return $x

}

The procedure can have parameters that could be files, objects, or variables. In
this example the sum procedure takes two parameters arg1 and arg2 and returns
a value. These parameters are used as named within the body of the procedure
to do an addition and the result of the addition is returned as the sum. The
procedure can be invoked as:

sum a b

where a and b represent the two parameters declared.

To demonstrate all of the above explanations, a command named test is written
as follows:

proc t e s t {a b} {
set c [ expr $a + $b ]
set d [ expr [ expr $a − $b ] ∗ $c ]
puts ”c = $c d = $d”

for{ set k 0} {k < 10} { incr k} {
i f {$k < 5} {

puts ”k < 5 , pow = [ expr pow( $d, $k ) ] ”
} else {



4.3 Methodic Teaching with ns-2 Tool 69

puts ”k > 5 , mod = [ expr $d % $k ] ”
}

}
}

The command test takes two integer values as parameter, does some arithmetic
operations in the body of the procedure and in one case in the loop, power
operations are executed and the result printed to the standard output, and in the
other case, modula operations are executed and the result printed to the standard
output. The command can be invoked for example, as:

t e s t 43 27

4.3.1.5 Object-Oriented Programming in OTcl

In this part of the lecture, it is assumed that the reader is already familiar with
one of the object-oriented programming languages like Java, C++ and so on. For
simplicity, the lecture omits many details of the OTcl programming language.
The details can be found in reference [63].

An experienced C++ programmer may feel uncomfortable writing object-oriented
programing in OTcl at first contact. So to help the C++ programmer to quickly
get used to the OTcl language, some important characteristics of OTcl and their
equivalence in C++ are presented below:

• Instead of a single class declaration in C++, multiple class definitions can
be done in OTcl. Methods are referred to as an instance procedure with
abbreviation instproc1. Each definition of a method with instproc command
adds a method to a class. Instance variable is defined with the set command
but within the body of a method, with the instvar command. Each instance
variable definition adds an instance variable to an object.

• Instead of a constructor in C++, write an init instproc in OTcl. Instead of
a destructor in C++, write a destroy instproc in OTcl. Unlike constructors
and destructors, init and destroy instruction procedures do not combine
with base classes automatically. They should be explicitly combined with
the help of the next command.

• Unlike C++, OTcl methods are always called through the object. The
name self, which is equivalent to this in C++, may be used inside method
bodies. Unlike C++, OTcl methods are always virtual.

1Note that this method is only used in object-oriented programming context in OTcl. This
is a difference between Tcl and OTcl.



70
Studying Network Performance with the Network Simulator Tool

(ns-2)

• Instead of calling shadowed methods by naming the method explicitly as in
C++, call them with next command. next searches further up the inheri-
tance graph to find shadowed methods automatically. It allows methods to
be combined without naming dependencies.

• Avoid using static methods and variables, since there is no exact analogue
in OTcl. Place shared variables on the class object and access them from
methods by using $class. This behavior is inherited. If inheritance is not
needed, use proc methods on the class object.

• The word -superclass is used to declare the inheritance of a class from
another.

The following example demonstrate object-oriented programming in OTcl:

Class mom
mom in s tp r o c i n i t {age} {

$ s e l f i n s t v a r age
set age $age

}

mom in s tp r o c g r e e t {} {
$ s e l f i n s t v a r age
puts $ a g e years o ld mom: How are you doing ?

}

Class kid − superc las s mom
kid i n s tp r o c g r e e t {} {

$ s e l f i n s t v a r age
puts $ a g e years o ld k i d : W h a t s up, dude?

}

set a [ new mom 45 ]
set b [ new kid 15 ]

In the example a class mom is defined with a constructor, which accepts one
parameter age, and a method greet, which does not accept any parameter but
prints out a greetings for a mom’s object. A second class kid is defined to inherit
from the base class mom. The kid class inherits the constructor from the base
class and defines its own version of the greet method to print out greetings for
its own objects. At the end in the example, the two classes are instantiated. The
execution of this example outputs the following results:

45 years o ld mom: How are you doing ?
15 years o ld k i d : What ’ s up, dude?



4.3 Methodic Teaching with ns-2 Tool 71

4.3.1.6 Lecture Assignments

At the end of this lecture the reader is recommended to do the following assign-
ments which will help the reader to practically assess his/her understanding of
the lecture content:

• Write a procedure that takes three integer values as parameter and outputs
the square root of the highest value.

• Write a base class hat that has a constructor to set the colour of a hat.
Write extra three classes to inherit from this class and let them print out
the colour of their hats.

4.3.2 Lecture 2: Writing Simulation Scripts and Simulating in ns-2

This lecture describes the structure of a simulation script, the simulation process
in ns-2, and how to post-process the results of simulations.

The goal of this lecture is to teach the reader the following points:

• How to setup a simulation script.

• How to create a network topology.

• How to create traffic sources.

• How to trace traffic packets.

• How to run simulations.

• How to setup and use the network animator tool (Nam)

• The post-processing of simulation results.

The simulation script in ns-2 tool has the following generic structure:

• Create simulator object.

• Setup for tracing by opening files where the trace data are written. The
step can be optional.

• Create topology, which includes setting up nodes and creating links to link
them up.

• Create traffic agents.

• Create applications or traffic sources to run over the traffic agents.

• Post-process procedures.

• Start simulation.

These steps are grouped together and are described in the subsequent subsections.



72
Studying Network Performance with the Network Simulator Tool

(ns-2)

4.3.2.1 Initialization and Trace Setup

An ns-2 simulation script starts with the creation of the simulator object ( [27]),
which is done with the following statement:

set ns [ new Simulator ]

This should be the first statement in the Tcl script after maybe some comments.
The line declares a new variable ns using the set command. One can name
this variable as one wishes but in general, it is declared as ns because it holds
an instance of the Simulator class, thus an object. The code [new Simulator]
is indeed the instantiation of the Simulator class using the reserved word new.
So with the declared variable ns, all the methods of the Simulator class can be
used. When a new Simulator object is created in tcl, the initialization procedure
performs the following three operations [20]:

1. Initialize the packet format: This sets up field offsets within packets used
by the entire simulation.

2. Create a scheduler: The scheduler runs the simulation in an event-driven
manner and maybe replaced by an alternative scheduler, which provides
somewhat different semantics. The default scheduler is the calender sched-
uler.

3. Create a null agent: This agent is generally useful as a sink for dropped
packets or as a destination for packets that are not counted or recorded.

There are several approaches to collecting simulation results. In this lecture, the
tracing approach is applied. Tracing can be done in two formats: the general
trace format and the Nam trace format. They can be setup as follows:

1 set t r a c e f i l e [open ou t . t r w]
2 $ns t r a c e−a l l $ t r a c e f i l e
3

4 set namf i l e [open out.nam w]
5 $ns namtrace−all $namf i l e

The above setups create a data trace file called out.tr and a Nam visualization
trace file named out.nam. Within the Tcl script, these files are not explicitly
referred to by their names, instead by the pointers declared to hold their file
descriptors. In the setup, the pointers are tracefile and namfile. In the code, at
line one a file is opened for writing trace data, at line two the simulator member
method trace-all, which accepts a file pointer as parameter, is set up for recording
the simulation results in the general trace format. At line four, a file is opened for
writing Nam trace data, at line five the simulator member method namtrace-all,
which accepts a file pointer as parameter, sets up for record the simulation result
in Nam input format. The Nam data are written by the execution of flush-trace
member method (This method is explained later).



4.3 Methodic Teaching with ns-2 Tool 73

4.3.2.2 Create Topology and Nam Setup

Network topologies in ns-2 are made up of nodes and link. A node can be created
with the statement:

set n0 [ $ns node ]

The statement instantiates a node and assigns it to the declared variable n0. The
instance procedure node constructs a node out of more simple classifier objects.
All nodes has the following components:

• an address or id , monotonically increasing by one across the simulation
namespace as more nodes are created. The initial value is zero,

• a list of neighbors (neighbor ),

• a list of agents (agent ),

• a node type identifier (nodetype ), and

• a routing module.

After creating nodes, they have to be linked up so that packets can travel from
one node to the other. There are two link types in ns-2. They are simplex-link
and duplex-link . The simplex-link is the basic link and it connects only in one
direction. The duplex-link is bi-directional and it is made up of two simplex-
links. The link is a compound object containing some basic objects and could be
extended by inserting more objects. The link has the following make ups:

s implex− l ink <node0> <node1> <bandwidth> <delay> <queue−type>

In this basic form, the link is made up of a source node (node0 ) to be connected
to a destination node (node1 ), a link capacity (bandwidth), a propagation delay
(delay), and a queue type (queue-type). The queueing type can be fair queueing,
stochastic fair queueing, droptail, or a custom queueing type defined by the user.
These queueing types provide different mechanism for handling buffer overflows.
For example, two nodes can be connected as follows:

$ns duplex− l ink $n0 $n1 10Mb 1ms DropTail

This statement means that two nodes $n0 and $n1 are connected to communicate
bi-directionally with a link capacity of 10 Mbit, a propagation delay of 1 ms, and
a DropTail queueing type. The droptail queueing handles buffer overflows at
the output queue by dropping the last arriving packets. The buffer size can be
defined with the following code:

$ns queue− l imit $n0 $n1 30



74
Studying Network Performance with the Network Simulator Tool

(ns-2)

This states that the link between node $n0 and node $n1 has a queue buffer of
30 packets. i.e., it can only hold 30 packets pending transmission, after which
subsequent ones are dropped. If this limit is not set, it takes the default value of
502. Figure 4.2 shows the internal structures of a simplex-link. A queue overflow
is implemented by sending dropped packets to the Null Agent. The time to live
(TTL) object computes the time each received packet has to live

Figure 4.2: A simplex link

The Nam tool has a graphical interface for displaying the network topology. It
can be configured to give the nodes in the topology certain positions. For two
nodes in a topology, this can be done with the statements:

$ns duplex−link−op $n0 $n1 o r i e n t right−down

This statement means to position the two nodes $n0 and $n1 so that $n1 should
be in down right side of $n0 position. More details of this command and other
configuration parameters for positioning nodes in a topology can be found in the
ns-2 manual ( [20]).

After discussing how nodes and links are created, they can be put together to
create a network topology. For example, a network topology with four nodes can
be created with the following code:

#Create four nodes
set n0 [ $ns node ]
set n1 [ $ns node ]
set n2 [ $ns node ]
set n3 [ $ns node ]

#Create l i n k between the nodes
$ns duplex− l ink $n0 $n2 10Mb 1ms DropTail
$ns duplex− l ink $n1 $n2 10Mb 1ms DropTail
$ns duplex− l ink $n2 $n3 5Mb 1ms DropTail

2The default value is set in ns-default.tcl file, which contains default values for the ns-2 tool.



4.3 Methodic Teaching with ns-2 Tool 75

4.3.2.3 Create Transport Agents and Application Sources

Now the basic network setup is done. The next thing is to make traffic packets
flow through the network by creating traffic agents such as TCP and UDP, and
traffic sources such as FTP and CBR, and attach them to the nodes and agents.

Agents represent endpoints where network-layer packets are constructed or con-
sumed, and are used in the implementation of protocols at various layer. The
class Agent has an implementation partly in OTcl and partly in C++. The
C++ class Agent includes enough internal states that can be assigned to the
different fields of a simulated packets before it is sent [20]. These states are the
following:

• addr : Node address of myself (source address of a packet).

• dst : Destination address of a packet.

• size : The size of the packet in bytes placed in the common header.

• type : Type of packet in the common header.

• fid : The IP flow identifier.

• prio : The IP priority field.

• flags : Packet flags.

• defttl : Default IP TTL value.

These state variables maybe modified by any class derived from Agent, although
not all of them maybe needed by any particular agent. There are several agents
supported in the ns-2 simulator such as TCP, UDP, TCPSink, and so on (see
ns-2 manuel [20] for full list).

Applications in ns-2, sit on top of transport agents. There are two basic types
of applications: Traffic generator and simulated applications. Traffic generator
objects generate traffic and can be of four types namely: exponential, pareto,
CBR, and traffic trace.

Application/Traffic/Exponential Objects: Exponential traffic objects gen-
erate On/Off traffic. During “on” periods, packets are generated at a con-
stant burst rate. During “off” period no packet is generated. Burst times
and idle times are taken from exponential distributions. Configuration pa-
rameters are:

• PacketSize : constant size of packets generated.

• burst time : average on time for generator.



76
Studying Network Performance with the Network Simulator Tool

(ns-2)

• idle time : average off time for generator.

• rate : sending rate during on time.

Application/Traffic/Pareto Objects: Pareto objects generate On/Off traffic
packets with burst times and idle times taken from pareto distributions.
Configuration parameters are:

• PacketSize : constant size of packets generated.

• burst time : average on time for generator.

• idle time : average off time for generator.

• rate : sending rate during on time.

• shape : the shape parameter used by pareto distribution.

Application/Traffic/CBR Objects: CBR objects generate packets at con-
stant bit rate. $cbr start causes the source to start generating packets
and $cbr stop causes the source to stop generating packets. Configuration
parameters are:

• PacketSize : constant size of packets generated.

• rate sending rate.

• interval : (optional) interval between packets.

• random : Whether or not to introduce random noise in the scheduled
departure times. Default is off.

• maxpkts : Maximum number of packets to send.

Application/Traffic/Trace Objects: Trace objects are used to generate traf-
fic from a trace file. For example, $trace attach-tracefile tfile attaches
the Tracefile object tfile to this trace. The Tracefile object specifies the
trace file from which traffic data is to be read. Multiple Application/Traf-
fic/Trace objects can be attached to the same Tracefile object. A random
start place with the Tracefile is chosen for each Application/Traffic/Trace
object. There is no configuration parameter for this object.

Tracefile objects are used to specify the trace file that is used for generating
traffic. $tracefile is an instance of the Tracefile object. $tracefile file-
name <file-input> sets the file name from which the traffic trace data is
to be read to trace-input. There are no configuration parameters for this
object. A trace file consists of any number of fixed length records. Each
record consist of two 32 bit fields. The first indicates the interval until the
next packet is generated in microseconds. The second indicates the length
of the next packet in bytes.



4.3 Methodic Teaching with ns-2 Tool 77

A simulated application object can be of two types, Telnet and FTP.

Application/Telnet: TELNET objects produce individual packets with inter-
arrival times as follows. If interval is non-zero, then inter-arrival times
are chosen from an exponential distribution with average interval . If in-
terval is zero, then inter-arrival times are chosen using the “tcplib” telnet
distribution. $telnet start causes the Application/Telnet object to start
producing packets. $telnet stop causes the Application/Telnet object to
stop producing packets. $telnet attach <agent> attaches a Telnet object
to agent. Configuration parameters are:

• interval : The average inter-arrival time in seconds for packets gen-
erated by the Telnet object.

Application/FTP: FTP objects produce bulk data for a TCP object to send.
$ftp start causes the source to produce maxpkts packets. $ftp produce
<n> causes the FTP object to produce n packets instantaneously $ftp
stop causes the attached TCP object to stop sending data. $ftp attach
agent attaches an Application/FTP object to agent. $ftp producemore
<count> causes the Application/FTP object to produce count more pack-
ets. Configuration parameters are:

• maxpkts : The maximum number of packets generated by the source.

For example, the following OTcl code creates a TCP agent, which transmits FTP
data traffic flows, and a UDP agent, which sents CBR data traffic flows:

#Setup TCP Connection
set tcp [ new Agent/TCP] ;#crea t e sender agent
$tcp set f i d 2 ;#set IP− layer f l ow ID
$ns attach−agent $n0 $tcp ;#put sender on node n0
set s ink [ new Agent/TCPSink ] ;#crea t e r e c e i v e r agent
$ns attach−agent $n3 s ink ;#put r e c e i v e r on node n3
$ns connect $tcp $s ink ;#e s t a b l i s h TCP connect ion

#Setup an FTP over TCP connect ion
set f t p [ new Appl i ca t ion /FTP] ;#crea t e an FTP source app l i c a t i o n
$ f tp attach−agent $tcp ;#as s o c i a t e FTP with the TCP sender
$ f tp set type FTP ;#set the t r a f f i c type to FTP

#Setup UDP Connection
set udp [ new Agent/UDP] ;#crea t e sender agent
$udp set f i d 2 ;#set IP− layer f l ow ID
$ns attach−agent $n1 $udp ;#put sender on node n1
set nu l l [ new Agent/Nul l ] ;#crea t e r e c e i v e r agent



78
Studying Network Performance with the Network Simulator Tool

(ns-2)

$ns attach−agent $n3 $nu l l ;#put r e c e i v e r on node n3
$ns connect $udp $nu l l ;#e s t a b l i s h UDP connect ion

#Setup a CBR over UDP Connection
set cbr [ new Appl i ca t ion / T r a f f i c /CBR] ;#crea t e a CBR source app l i c a t i o n
$cbr attach−agent $udp ;#as s o c i a t e CBR with the UDP sender
$cbr set type CBR ;#set the t r a f f i c type to CBR
$cbr set p a c k e t s i z e 1000 ;#set the packe t s ize
$cbr set r a t e 1mb ;#set the packe t ra t e

4.3.2.4 Simulation Process and Termination

Before describing how the simulation is started, a description of the termination
procedure is necessary. This procedure is scheduled to stop the simulation at
the appropriate time. The termination procedure contains commands such as
those to write trace data into an already opened trace file, or to start the Nam
application to visualize the simulation, or close opened file descriptors. The most
important command in this procedure is the exit command which terminates
the simulation process. The following code shows an exmaple of a termination
procedure:

proc f i n i s h {} {
global ns t r a c e f i l e namf i l e
$ns f lu sh− t race
close $ t r a c e f i l e
close $namf i l e
# Execute the name t o o l
exec nam out.nam &
exit 0

}

The word global is used to access variables declared outside the procedure. The
command flush-trace is responsible for writting the Nam trace data into the
Nam trace file. The close command closes the opened file descriptors. The exec
command is used to start the Nam application which visualizes the simulation
results gathered in Nam trace file. The exit command terminates the simulation.

The ns-2 tool is a discrete event-driven simulator. The events on the simulation
script are scheduled to execute at a certain point in time. The event scheduler is
created when the simulator object is instantiated (see subsection 4.3.2.1). Events
are scheduled using the format:

$ns at <time> <event>



4.3 Methodic Teaching with ns-2 Tool 79

The time unit is in seconds. For example, the FTP and CBR applications ex-
amples described in the previous subsection ( 4.3.2.3) could be schduled with
starting and stopping times, as shown by the following piece of code:

$ns at 0 . 1 ” $cbr s t a r t ”
$ns at 1 . 0 ” $ f tp s t a r t ”
$ns at 4 . 0 ” $ f tp stop ”
$ns at 4 . 5 ” $cbr stop ”

At this point, all the necessary steps in writing a simulation script have been
learned. So the simulation process can be started with the following command:

$ns run

Combining all the steps learned so far, one can easily write a simulation script
for wired packet network. For example the following code:

#Create a s imu la tor o b j e c t
set ns [ new Simulator ]

#Define d i f f e r e n t co l ou r s for data f l ows ( for Nam)
$ns c o l o r 1 Blue
$ns c o l o r 2 Red

#Open a genera l trace f i l e
set t r a c e f i l e [open ou t . t r w]
$ns t r a c e−a l l $ t r a c e f i l e

#Open the Nam trace f i l e
set namf i l e [open out.nam w]
$ns namtrace−all $namf i l e

#Define a ” f i n i s h ” procedure
proc f i n i s h {} {

global ns t r a c e f i l e namf i l e
$ns f lu sh− t race
close $ t r a c e f i l e
close $namf i l e
# Execute the name t o o l
exec nam out.nam &
exit 0

}

#Create four nodes
set n0 [ $ns node ]
set n1 [ $ns node ]



80
Studying Network Performance with the Network Simulator Tool

(ns-2)

set n2 [ $ns node ]
set n3 [ $ns node ]

#Create l i n k between the nodes
$ns duplex− l ink $n0 $n2 10Mb 1ms DropTail
$ns duplex− l ink $n1 $n2 10Mb 1ms DropTail
$ns duplex− l ink $n2 $n3 5Mb 1ms DropTail

#Set queue s ize o f l i n k (n2−n3) to 20
$ns queue− l imit $n2 $n3 20

#Give node po s i t i o n ( for Nam)
$ns duplex−link−op $n0 $n2 o r i e n t right−down
$ns duplex−link−op $n1 $n2 o r i e n t right−up
$ns duplex−link−op $n2 $n3 o r i e n t r i g h t

#Monitor the queue for l i n k (n2−n3) ( for Nam)
$ns duplex−link−op $n2 $n3 queuePos 0 . 5

#Setup TCP Connection
set tcp [ new Agent/TCP]
$tcp set f i d 1
$tcp set c l a s s 2 ;#mark the t r a f f i c wi th red co l o r
$ns attach−agent $n0 $tcp
set s ink [ new Agent/TCPSink ]
$ns attach−agent $n3 $s ink
$ns connect $tcp $s ink

#Setup an FTP over TCP connect ion
set f t p [ new Appl i ca t ion /FTP]
$ f tp attach−agent $tcp
$ f tp set type FTP

#Setup UDP Connection
set udp [ new Agent/UDP]
$udp set f i d 2
$udp set c l a s s 1 ;#mark the t r a f f i c wi th b l u e co l o r
$ns attach−agent $n1 $udp
set nu l l [ new Agent/Nul l ]
$ns attach−agent $n3 $nu l l
$ns connect $udp $nu l l

#Setup a CBR over UDP Connection



4.3 Methodic Teaching with ns-2 Tool 81

set cbr [ new Appl i ca t ion / T r a f f i c /CBR]
$cbr attach−agent $udp
$cbr set type CBR
$cbr set p a c k e t s i z e 1000
$cbr set r a t e 1mb

#Schedule even t s for CBR and FTP app l i c a t i o n s
$ns at 0 . 1 ” $cbr s t a r t ”
$ns at 1 . 0 ” $ f tp s t a r t ”
$ns at 4 . 0 ” $ f tp stop ”
$ns at 4 . 5 ” $cbr stop ”

#c a l l the f i n i s h procedure after 5 seconds o f s imu la t i on time
$ns at 5 . 0 ” f i n i s h ”

#s t a r t the s imu la t i on proces s
$ns run

This code can be copied into a file (e.g. exam.tcl) and run it with the ns-2 tool.
The code statements for setting packet colours are optional and have no effect on
the actual simulation [12].

4.3.2.5 Nam Visualization and Simulation Result Post-Processing

After simulating a network protocol, the simulation process can be virtualized by
the network animator tool. Nam is a Tcl/TK based animation tool for viewing
network simulation traces and real world packet trace data [65]. The first step
to use Nam is to produce the trace file. The trace file should contain topology
information, e.g., nodes, links, as well as packet traces. Usually, the trace file is
generated by ns-2 during a simulation process.

When the trace file is generated, it is ready to be animated by Nam. Upon
startup, Nam will read the trace file, create topology, pop up a window, do
layout settings if necessary, then pause at the time of the first packet in the trace
file. Through its user interface (Figure 4.33), Nam provides control over many
aspects of animation.
If the example simulation script described in the last subsection ( 4.3.2.4) is
runned, the Nam tool will display a four node network as shown in Figure 4.4.
The position of the nodes in Figure 4.4 could have been chosen at random, if
the following piece of code were not added to the simulation script:

#Give node po s i t i o n ( for Nam)

3This graphic is extracted from reference [27]



82
Studying Network Performance with the Network Simulator Tool

(ns-2)

Figure 4.3: Nam user interface

Figure 4.4: Nam output of simulated example script



4.3 Methodic Teaching with ns-2 Tool 83

$ns duplex−link−op $n0 $n2 o r i e n t right−down
$ns duplex−link−op $n1 $n2 o r i e n t right−up
$ns duplex−link−op $n2 $n3 o r i e n t r i g h t

Nevertheless, if a script is wrote to choose random positions for nodes, when the
position is not satisfactory, one can press the “re-layout” button (see Figure 4.3)
which makes the tool choose another random position. If the positioning code is
writting, this button will be unavailable. In the Nam display, the CBR packets
flowing from node $n1 to node $3 are coloured blue and the TCP packets flowing
from node $n0 to node $n3 are coloured red. Also the TCP acknowledgement
packets from node $n3 to node $n0 are coloured red but they are smaller in size.
The colour is obtained with the following code in the simulation script:

$ns c o l o r 1 Blue
$ns c o l o r 2 Red

$udp set c l a s s 1 ;#mark the t r a f f i c wi th b l u e co l o r
$tcp set c l a s s 2 ;#mark the t r a f f i c wi th red co l o r

If a Nam trace file already exist, one does not need to run ns-2 in order to display
the simulation on the Nam graphical interface but instead run the command nam
<file name> from the directory containing the Nam trace file. There are some
other things that can be configured for Nam like:

• Colouring node: For example, if node $n0 is to appear in red, one could
write: $n0 color red

• Shape of node: By default they are round, but can appear differently.
For example, to have a node with the shape of a box, one can write: $n1
shape box

• Colouring link: Links can be given different colours. For example, to
colour a link green, one can write: $ns duplex-link-op $n0 $n1 color green

The general trace file registers all the events that occur in the network. If tracing
is set up, ns-2 inserts four objects in the link: EnqT, DeqT, RecvT, and DrpT
as shown in Figure 4.5.
EnqT registers information concerning a packet that arrives and is queued at
the input queue of the link. If the packet overflows, then information concerning
the dropped packets is handled by DrpT. DeqT registers information at the
instance the packet is queued. Lastly, RecvT records information about packets
that have been received at the output of the link.

Tracing all the events in the network, creates a large trace trace file, which occu-
pies much disk space and is difficult to process. There is a means of tracing only
subset of events in the network, this could be achieved by replacing the command



84
Studying Network Performance with the Network Simulator Tool

(ns-2)

Figure 4.5: Tracing objects in simplex-link

$ns trace-all <filename> with the command $ns trace-queue. For example, one
can type:

$ns trace−queue $n2 $n3 $ f i l e d e s c r i p t o r

which results in an output trace file that contains only events that occurred
over the link between node $n2 and node $n3. There is a similar command
namtrace-queue that has the same effect for tracing in Nam input format. The
command trace-queue should ofcourse appear after the definition of the link in
the simulation script.

The trace file entries are organised in twelve fields as shown in Figure 4.6.

Figure 4.6: Trace entry fields

The fields have the following meaning:

1. The first field represents the event type, which can be one of four possible
symbols r, +,−, d meaning receive (at the output of the link), enque, deque,
and drop respectively.

2. The second field is the time at which event occurs.

3. The Third field is the input node from which event occurs.

4. The fourth field is the output node to which event occurs.

5. The fifth field is the packet type. e.g. TCP, UDP, CBR

6. The sixth field is the packet size.

7. The seventh field is a set of packet flags.

8. The eighth field is the IP flow ID.



4.3 Methodic Teaching with ns-2 Tool 85

9. The ninth field is the source address and port number given in the form
“node.port”.

10. The tenth field is the destination address and port number given in the
form “node.port”.

11. The eleventh field is the network layer protocol’s sequence number. Even
though UDP implementation in a real network does not use sequence num-
ber, ns-2 keeps track of UDP packet sequence number for analysis purposes.

12. The twelfth field is the packets unique ID.

The following snipet from the trace file produced by the example simulation
script, shows an example of entries in a trace file:

r 1 .002096 2 3 tcp 40 − − − − − − − 2 0 . 0 3 . 0 0 113
+ 1 .002096 3 2 ack 40 − − − − − − − 2 3 . 0 0 . 0 0 114
− 1 .002096 3 2 ack 40 − − − − − − − 2 3 . 0 0 . 0 0 114
r 1 .00316 3 2 ack 40 − − − − − − − 2 3 . 0 0 . 0 0 114
+ 1 .00316 2 0 ack 40 − − − − − − − 2 3 . 0 0 . 0 0 114
− 1 .00316 2 0 ack 40 − − − − − − − 2 3 . 0 0 . 0 0 114
+ 1 .004 1 2 cbr 1000 − − − − − − − 1 1 . 0 3 . 1 113 115
− 1 .004 1 2 cbr 1000 − − − − − − − 1 1 . 0 3 . 1 113 115
r 1 .004192 2 0 ack 40 − − − − − − − 2 3 . 0 0 . 0 0 114
+ 1 .004192 0 2 tcp 1040 − − − − − − − 2 0 . 0 3 . 0 1 116
− 1 .004192 0 2 tcp 1040 − − − − − − − 2 0 . 0 3 . 0 1 116
+ 1 .004192 0 2 tcp 1040 − − − − − − − 2 0 . 0 3 . 0 2 117
− 1 .005024 0 2 tcp 1040 − − − − − − − 2 0 . 0 3 . 0 2 117
r 1 .0058 1 2 cbr 1000 − − − − − − − 1 1 . 0 3 . 1 113 115

There are fourteen trace entries in the snipet. Four receive events (indicated
by r), five enque events (indicated by +), and five deque events (indicated by
-). The trace file can be processed by several utilities such as awk scripts, perl
script, etc., to extract information for calculating factors like jitter, delay, or for
plotting purposes using xgraph or gnuplot.

As an example, one can calculate the number of packets received from a node
with flow ID 1 from the trace file, using the following awk script:

BEGIN {
# I n i t i a l i z a t i o n . Set a variable to count the
#number o f packe t s r e c e i v ed wi th f l ow id 1

numPack = 0 ;
}
{

ac t i on = $1 ;
f l ow i d = $8 ;



86
Studying Network Performance with the Network Simulator Tool

(ns-2)

i f ( ac t i on == ” r ” && flow id==1 )
numPack++;

}
END {

p r i n t f ( ”number o f packets r e c e i v ed with f low id 1 i s : %d\n” , numPack ) ;
}

if the above awk script code is saved in a file e.g., pktcount.awk and the trace file
was saved in a file named out.tr, then the awk script can be called to post-process
the trace file as follows:

awk −f pktcount.awk ou t . t r

The -f option tells the awk interpreter, that the script code to execute is saved
in a file. Interested readers are referred to the awk user guide ( [31]) for details
about the interpreter and its command options.

The ns-2 tool allows also other means of getting information from simulated
networks such as queue monitoring and flow monitoring mechanisms. Interested
readers are referred to ns-2 manuel ( [20]) for detailed information about these
mechanisms.

4.3.2.6 Lecture Assignments

At the end of this lecture, the reader is recommended to do the following assign-
ments.

• Rewrite the example simulation script to use exponential traffic source over
UDP instead of CBR. Visualize the simulation with the Nam tool.

• Extend the example simulation script with two nodes. Detach the sink and
null agents from node n3, attach each of the agents to one of the two new
nodes. The connections should not be changed. Visualize the simulation
with the Nam tool.

4.3.3 Lecture 3: Adding Custom Functionality to ns-2

The third lecture in this series, gives insight of the directory structures of the
ns-2 software package at a whole, which includes the external components such
as Xgraph, Nam, Tcl, and so on. It also describes how C++ and OTcl class
hierarchies can be linked, and how to access a C++ member variable from OTcl
class hierarchy. An illustrative example of adding a new class object to the ns-2
software package is presented.

The aim of this lecture is to give the reader some impressions of:

• How the source code of ns-2 is structured.



4.3 Methodic Teaching with ns-2 Tool 87

• Where to find which source file.

• How a new class object can be added to the ns-2 software.

• The linkage of C++ and OTcl class hierarchies.

• How to access C++ member variable from OTcl class hierarchy.

This lecture is spread across the following subsections.

4.3.3.1 ns-2 Directory Structure Overview

The ns-2 tool is a big software package. So for a new user or developer to easily
find the source code of a particular protocol, he/she must have a concept of how
the source code is organised in the package. Also the fact that ns-2 is written in
two programming languages, makes it more difficult to locate the implementation
files of a protocol.

Figure 4.7 presents an overview of a part of the important directories of ns-
2 software package. It is assumed that the user installed the ns-allinone-2.33
package.

Figure 4.7: ns-2 directory structure

Among the subdirectories of the ns-allinone-2.33 as shown in Figure 4.7, ns-2 is
the directory containing all of the simulator implementation files (either in C++
or in OTcl). Within this directory, all OTcl code including the test/example



88
Studying Network Performance with the Network Simulator Tool

(ns-2)

OTcl scripts are located in the subdirectory tcl. C++ codes implementing some-
thing like event scheduling, agents, queue monitor, flow monitor are found in the
directories common and tool. There are many other subdirectories inside the ns-2
directory. For example, if one wants to see the implementation of the measured
sum admission control algorithm, it is located in the directory ns-2/adc with the
file name ms-adc.cc.

The directory tcl, has subdirectories among them is the lib directory which con-
tains the OTcl implementation of some of the most important basic components
like agent, address, link, queue and so on. Note that the OTcl source codes for
LAN, web, and multicast implementations are located in separate subdirectories
of tcl. The following are some explanations of the contents of some of the files in
the tcl/lib directory:

• ns-lib.tcl: This file contains the simulator class and most of its member
functions except those for LAN, web, and multicast. If one is looking for
the implementation of the simulator class and its member function, this file
is a nice place to start.

• ns-default.tcl: The default values for configurable parameters of various
network components/protocols are contained in this file. Since most of the
network components are implemented in C++, the configuration param-
eters are actually C++ member variable made available to OTcl through
and an OTcl linkage function bind. This function is explained in subsection
4.3.3.2 together with how to make OTcl linkage from C++ code.

• ns-packet.tcl: The implementation of the packet header format initial-
ization is located here. If one creates a new packet header, it should be
registered in this file to make the packet header initialization process to
include the new packet header in the header stack format and give it an
offset in the stack.

• Other OTcl files: Other OTcl files in this directory, contain the imple-
mentations of compound network objects or the front end (control part)
of network objects implemented in C++. The link network component is
entirely implemented in OTcl and the source code is contained in the file
ns-link.tcl. More information about these files can be found in the ns-2
manuel ( [20]).

The two subdirectories of the tcl directory, ex and test might be interesting for
someone looking for practical examples of how to design a specific simulation
script.



4.3 Methodic Teaching with ns-2 Tool 89

4.3.3.2 How to Add a New Class Object to ns-2

Adding a real protocol to ns-2 is not so easy and requires much experience with
the tool, C++ and OTcl programming languages. So to put a beginner on a fast
track to gain much experience with ns-2 tool, a simple new class addition example
is used here to demonstrate how to extend a class hierarchy and to show how the
linkage (Figure 4.8) between OTcl and C++ class hierarchies is realised.

Figure 4.8: Class linkage between hierarchies

Figure 4.8 shows how a class hierarchy in C++ is connected one-to-one with
an equivalent class hierarchy in OTcl. There are also some class hierarchies that
only exist in compiled space or in interpreted space.

The new class example used for demonstration in this part of the lecture, extends
the Agent class. The reason for this extension is to add the new class to the agent
class hierarchy. It could have been possible to make the class a standalone, i.e.,
to have its own class hierarchy but it is more complex to implement. So it is
considered less complex and simple (at least for beginner) to add the new class
to an existing class hierarchy. This class simply accepts commands to output
prepared messages to the standard output.

Like other networking protocols in ns-2, the new class named MyTest is imple-
mented in C++ and mirrored to OTcl so that its object can be instantiated from
OTcl space. The following C++ code shows the new class declaration:

#include <s t d i o . h>
#include ” agent . h”

class MyTest : public Agent{



90
Studying Network Performance with the Network Simulator Tool

(ns-2)

public :
MyTest ( ) ;
int command( int argc , const char∗const∗ argv ) ;
void s a yh e l l o (void ) ;
void outputmydata (void ) ;
void saygoodbye (void ) ;

protected :
int mysize ;
int mystate ;

} ;

This code could be saved in a file named mytest.h. To be able to instantiate an
object of this class in OTcl, a linkage object e.g., MyTestClass, which is derived
from TclClass, has to be created. This linkage object creates an OTcl object
with a specific name (e.g., MyTestOtcl), and creates a linkage between the OTcl
object (MyTestOtcl) and the C++ object (MyTest), using the TclObject member
function create. As shown in the following code:

stat ic class MyTestClass : public TclClass {
public :

MyTestClass ( ) : Tc lClass ( ”Agent/MyTestOtcl” ) {}
TclObject∗ c r e a t e ( int , const char∗const ∗) {

return (new MyTest ( ) )
}

} c l a s s my t e s t ;

When ns-2 is first started, it executes the constructor for the static variable
class my test, and thus an instance of MyTestClass is created. In this process, the
MyTestOtcl class and its methods (member functions) are created in OTcl space
(class hierarchy). Whenever a user in OTcl space tries to create an instance of
this object using the command [new MyTestOtcl], it invokes MyTestClass::create
method, which creates an instance of MyTest object and returns the address. Be
aware that creating a compiled (C++) object instance from intepreted (OTcl)
space does not mean that one can freely invoke member functions or access mem-
ber variables of the compiled object instance from intepreted space.

There are mechanisms implemented in compiled classes for preparing compiled
member variables and member functions for accessing or invoking from inter-
preted space. These mechanisms are described as follows:

Setting compiled member variables from intepreted space: In normal
case, access to compiled member variables is restricted to compiled code,
and access to interpreted member variables is likewise confined to access via
access interpreted code. However, it is possible to establish bi-directional
binding such that both the compiled member variables and the interpreted
member variables access the same data, and changing the value of either



4.3 Methodic Teaching with ns-2 Tool 91

varible, changes the value of the corresponding paired variable to the same
value.

The binding is established by the compiled constructor when that object is
instantiated. It is then automatically accessible by the interpreted object
as an instance variable. The ns-2 tool supports the binding of five differ-
ent data types (Real, Integer, Bandwidth, Time, Boolean) and they have
different syntax for specifying their values in OTcl:

1. Real and Integer variables: The method for binding these types of
data variable is known as bind(). Their values in OTcl can be specified
in normal form like for exmaple, $object set realvar 1.2e3 or $object
set intvar 12.

2. Bandwidth variable: The method for binding bandwidth variable
is known as bind bw(). Bandwidth in OTcl can be specified as a real
value, optionally suffixed by a k or K to mean kilo-quantities, or m or
M to mean mega-quantities. By default bandwidth is specified in bits
per seconds. e.g., $object set bwvar 1500k or equivalently $object set
bwvar 1.5m.

3. Time variable: The method for binding time variables is known as
bind time(). In OTcl, time variable can be specified as real values,
optionally suffixed by a m to express time in milli-seconds, n to ex-
press time in nano-seconds, and p to express time in pico-seconds. By
default time is expressed in seconds. e.g., $object set timevar 1500m
which is equivalent to $object set timevar 1.5.

4. Boolean variable: The method for binding boolean variable is known
as bind bool(). In OTcl, boolean values can either be expressed as
integer or T or t for true. If the value is neither an Integer value, nor
a true value, it is then assumed to be false. e.g., $object set boolvar t
or equivalently $object set boolvar 1.

In the new class, the two member variables can be binded in the constructor
definition with the following code:

MyTest : : MyTest ( ) : Agent (PT UDP) {
bind ( ”mysize ” , &mysize ) ;
b ind boo l ( ”mystate ” , &mystate ) ;

}

The first parameter in the bind method is the name of the variable in the
interpreted space and the second parameter is the address of the variable in
the compiled space. Be aware that whenever a compiled member variable
is binded, it is recommended to set a default value for it in the interpreted



92
Studying Network Performance with the Network Simulator Tool

(ns-2)

space (in the file ns-default.tcl). Otherwise a warning message will be issued
when one tries to create an instance of the compiled object.

Invoking compiled member function from interpreted space: To invoke
a C++ member method from OTcl, a command() method is defined in
C++ object class, which works as an OTcl command interpreter. This
command() method is invoked by the following means: for every Tclobject
that is created, ns-2 establishes the instance procedure cmd{}, as a hook
to executing methods through the compiled shadow object. The procedure
cmd{} invokes the method command() of the shadow object automatically
passing the arguments to cmd{} as an argument vector to the command()
method.

The user can call the cmd{} procedure by implicitly specifying the name of
the desired C++ member function as if there exist an instance procedure
of the same name. For example if the member function name is distance,
one can invoke it as:

$ob j e c t d i s t anc e <args>

since there is no instance procedure called distance, the interpreter will in-
voke the instance procedure unknown{}, defined in the base class Tclobject.
The unknown procedure then invokes the cmd{} as shown below:

$ob j e c t cmd d i s t ance <args>

to execute the operation through the compiled object’s command() method.

As an example, the command member method of the new class object is defined
with the following C++ code:

int MyTest : : command( int argc , const char∗const∗ argv ) {
i f ( argc==2) {

i f ( strcmp ( argv [ 1 ] , ” s ayh e l l o ” ) == 0) {
s a yh e l l o ( ) ;
return (TCL OK) ;

} else i f ( strcmp ( argv [ 1 ] , ”outputmydata” ) == 0) {
outputmydata ( ) ;
return (TCL OK) ;

} else i f ( strcmp ( argv [ 1 ] , ” saygoodbye” ) == 0) {
saygoodbye ( ) ;
return (TCL OK) ;

}
}

return (Agent : : command( argc , argv ) ) ;
}



4.3 Methodic Teaching with ns-2 Tool 93

The member functions are defined as follows:

// s a y h e l l o method d e f i n i t i o n
void MyTest : : s a yh e l l o ( ) {

p r i n t f ( ”\nHel lo ! Welcome to the t e s t i n g o f OTcl/C++ l inkage .\n” ) ;
p r i n t f ( ”The con f i gu r ed data are outputted in a whi l e \n\n” ) ;

}

// outputmydata method d e f i n i t i o n
void MyTest : : outputmydata ( ) {

i f ( mystate ) {
p r i n t f ( ”The va r i ab l e mystate i s t rue and mysize i s %d\n\n” , mysize ) ;

} else {
p r i n t f ( ”The va r i ab l e mystate i s f a l s e and mysize i s %d\n\n” , mysize ) ;

}
}

// saygoodbye method d e f i n i t i o n
void MyTest : : saygoodbye ( ) {

p r i n t f ( ” I hope you enjoyed the l e c t u r e s ! T i l l next time\n” ) ;
}

The new class constructor definition and the member functions definitions can be
saved in a file named mytest.cc, which includes the class declaration (mytest.h)
as a header file. The two files could be put in a folder named myclass and added
to the ns-2 directory as shown in Figure 4.9.

The default configuration values should be written to the lib/ns-default.tcl file.
In order to compile the new class, the path of the output file (myclass/mytest.o)
should be added to the class object list in the Makefile.in file. Then the configure
command should be called to generate the makefile and the make command
should be called to compile the whole files.

4.3.3.3 Testing and Result of the New Class Object

The new class implemented in the last subsection to demonstrate the linkage
between compiled class hierarchy and interpreted class hierarchy can be tested
with a simulation script. The script configures the member variables and invokes
the member functions at scheduled times.

The test simulation script is named test-suite-mytest.tcl and designed as follows:

#con f i gu r e the member v a r i a b l e s
#t h i s w i l l o v e rwr i t e the va l u e s con f i gured in n s− d e f a u l t . t c l
Agent/MyTestOtcl set mysize 40
Agent/MyTestOtcl set mystate t



94
Studying Network Performance with the Network Simulator Tool

(ns-2)

Figure 4.9: ns-2 directory structure extended

#crea t e s imu la tor in s tance for s chedu l i n g
set ns [ new Simulator ]

#crea t e in s tance o f the new c l a s s
set mytest [ new Agent/MyTestOtcl ]

#wr i t e a f i n i s h procedure
proc f i n i s h {} {

exit 0
}

#schedu l e the time to c a l l member f unc t i on s
$ns at 0 . 2 ”$mytest s ayh e l l o ”

$ns at 0 . 8 ”$mytest outputmydata”

$ns at 1 . 0 ”$mytest saygoodbye”

$ns at 1 . 2 ” f i n i s h ”

#s t a r t the s imu la tor
$ns run



4.4 Summary 95

This test script can added to the ex directory in the ns-2 directory structure (see
Figure 4.9). If the installation path of ns-2 is added to the system path, the
simulation can be executed with the command:

ns t e s t− su i t e−myte s t . t c l

The simulation produces the following result:

He l l o ! Welcome to the t e s t i n g o f OTcl/C++ l i n k a g e .
The con f i gu r ed data are outputted in a while

The variable mystate i s f a l s e and mysize i s 30

I hope you enjoyed the l e c t u r e s ! T i l l next time

If the default values are not configured for the member variables, the following
warning message is outputted:

warning: no c l a s s variable Agent/MyTestOtcl : :mysize

s ee t c l− o b j e c t . t c l in t c l c l for info about t h i s warning.

warning: no c l a s s variable Agent/MyTestOtcl : :mystate

Note: The new class example presented here is a dummy class object. That
is why its implementation and integration is fast and straight forward. Readers
should not think that adding a real network protocol to ns-2 is so simple and
easy. It requires fairly much experience with the tool and much more changes
or extensions to the source files. Interested readers are referred the tutorials in
reference [27, 12] for examples of how to add real network protocol to ns-2 tool.

4.4 Summary

The ns-2 tool is an object-oriented discrete event driven simulator targeted for
network research. It is widely used today in many institutions and research cen-
ters for teaching and carrying out research in internetworking area. It covers
a large set of networking protocols, which includes wired networks, wireless net-
works, and satellite networks. The tool is an open source software package, which
is free to download and it is possible to make changes to the source code. The
network simulator is written in two programming languages (C++ and OTcl),
with the primary aim of supporting detailed simulations and fast testing of dif-
ferent parameter configurations. C++ is fast to run and can be used for detailed
system programming such as byte/packet header manipulations, and algorithm
implementations but it is slow to change. OTcl is slow to run but fast to change
making it suitable for quickly testing various configurations for different scenarios.
The classes written in C++ are known as the compiled hierarchy and the classes



96
Studying Network Performance with the Network Simulator Tool

(ns-2)

written in OTcl are known as the interpreted hierarchy. The compiled hierarchy
and the interpreted hierarchy are linked together so that member variables in
compiled hierarchy could be accessed and configured from the interpreted hierar-
chy making it possible to have the same variable values on both sides. Simulation
scenarios are designed and written only in OTcl. There are the possibilities of
extending ns-2 with custom functionalities. Users of ns-2 must be aware that
inspite the considerable confidence of the developers in the tool, ns-2 is not a
polished and finished product, but the result of an on-going effort of research and
development. In particular, bugs in the software are still being discovered and
corrected. So users are responsible for verifying for themselves that their simu-
lations are not invalidated by bugs. The developers are aiding the users in this
aspect by develping many validation scripts and test scripts included in the tool.
The ns-3 project currently being developed to replace the current ns-2 version of
the tool.



5 Code Description of the
Multiservice Framework

This chapter describes the implementation of the multiservice framework intro-
duced in chapter 3, section 3.4. The framework is added to ns-2 as a compo-
nent, designed for simulating and measuring quality of service of simultaneous
data traffic flows traversing in a packet network. The multiservice framework is
an extension of an already existing single service framework for simulating and
measuring quality of service of a single controlled-load service.

This framework is made up of four basic components (Figure 5.1) namely:

1. Queue scheduler.

2. Signalling mechanism.

3. Enhanced link.

4. Admission control, which includes the estimation mechanism.

Figure 5.1: Multiservice framework components



98 Code Description of the Multiservice Framework

These components work together to achieve the functionalities of the multiservice
framework. The components are lined up in a multiservice link through which
the packets of each traffic class traverse and they handle each packet according to
its class priority. The codes of the components are explained in the subsequent
sections of this chapter.

5.1 Multiservice Queue Scheduler Implementation

This section deals with the code description of the multi-queue scheduler class.
This class is named MultiClassServ, its declaration and members definitions are
contained in the C++ file ns-2.33/adcextension/multi-class-serv.cc. It is a queue
management class derived from a hierarchy of C++ base classes with the direct
base class Queue. Figure 5.2 shows UML class diagrams depicting the Multi-
ClassServ class and its direct parent Queue class.

Figure 5.2: UML class diagram of multi-queue scheduler

In Figure 5.2, the class attributes and operations1 are listed. More attension

1In UML, the class member variables are known as attributes and the class member functions
are known as operations.



5.2 Signalling Mechanism Implementation 99

is paid to the MultiClassServ queue management class and not its base class2.
The queue management is used to schedule the data packets generated from the
three different classes of traffic flows defined in the multiservice framework. The
scheduling mechanism is based on the FIFO scheduling with the improvement of
queues being assigned different level of network resources based on the priority
of the traffic class.

5.1.1 Queue Components description

This queue management class (MultiClassServ) is made of two member variables
and three member functions. Their importance in the class are described as
follows:

• MultiClassServ(): This is the class constructor, which is used for creating
the packet queues and initializing member variables. It also binds the array
member variable qlimit so that it can be configured from OTcl scripts.

• enque(): A member function with void return value. It is used for adding
the data traffic flows to their respective packet queues. The function drops
packets to any queue that is full, but it ensures that the signalling protocol
packets are never droped.

• deque(): A member function with Packet type return value. It deques
packets from their queues and passing them to the next hop along their
destination direction.

• q [..]: An array pointer variable from data type PacketQueue. It holds
pointers to the addresses of the three different packet queues created in this
class. The three packet queues are conceived for the three data traffic types
defined in the multiservice framework.

• qlimit [..]: An Integer array variable of size three, defined to specify the
sizes of the three packet queues.

5.2 Signalling Mechanism Implementation

The signalling mechanism is a simple end-to-end signalling protocol, that uses a
three way handshake in requesting flow connections. The signalling mechanism
is based on the RSVP protocol, but it does not implement a full RSVP protocol
suite.

This section describes the C++ implementation of the signalling mechanism.
It is realised as a C++ class named MultiSALink. The class declaration and

2Interested readers are referred to the ns-2 manual for details about the queue class.



100 Code Description of the Multiservice Framework

member variables definitions are contained in a C++ header file named ns-
2.33/adcextension/multisalink.h, and the member functions definitions are found
in the C++ source file with the name ns-2.33/adcextension/multisalink.cc. The
class is derived from a hierarchy of base classes. The direct base class is the Con-
nector class, which provides the functions for sending packets to next hop. Figure
5.3 presents UML class diagrams of the Connector and MultiSALink classes.

Figure 5.3: Signalling mechanism class diagram

The inclusion of the Connector class in the class diagram is done due to com-
pleteness, the discussion here is focused on the MultiSALink class. The UML
class diagrams present only some member functions and member variables of the
classes. Interested readers are referred to the list of source codes at the end of the
thesis for the full list of member functions and member variables of the classes.

5.2.1 Signalling Components Description

The MultiSALink class is made up of member functions and member variables.
These components together achieve the functionalities of this class. The meaning



5.2 Signalling Mechanism Implementation 101

and importance of these components are described as follows:.

• MultiSALink(): This is the class constructor. It is responsible for initial-
izing member variables, the reservation state table, and binding member
variables so that they can be accessed from the OTcl space.

• command(): This function is used for executing C++ member functions
invoked from OTcl space. It accepts the command invoked in OTcl space
with it arguments vectors and executes the corresponding member function
in the C++ space. The two parameters of this function: argc represents
the number of arguments passed to the invoked command in OTcl space,
and argv represents the arguments passed. It returns an error code to the
OTcl interpreter in the case of error, otherwise success code is returned.

• trace(): A member function with return type void. It is used for logging
trace events during the network operations. It takes one parameter:v from
type TracedVar, which gives the name of the event to be logged.

• recv(): This function returns a void type. It receives the reservation mes-
sages and carrys out the resource reservation processes, which includes call-
ing the admission decision algorithm to decide on flow request and then send
the flow down to the next hop on the reservation path. It also controls the
inserting and removal of flow states in the resource reservation table. The
two parameters: p represents the packet carrying the reservation message,
and h is a handler instance for the event scheduler.

• lookup(): It returns an Integer value. The function is responsible for
checking if a flow already exists in the resource reservation state table. It
takes one parameter flowid which is the ID of the flow to be looked up in
the table. It returns the flow ID on success and minus one if it doesn’t exist
in the table.

• get nxt(): A member function with return type Integer. The function
checks for available space in the resource reservation state table. On success,
it returns the available space otherwise it returns an error message showing
that the table is full.

• adc : A pointer member variable from the type ADC. It is used here to
invoke the admission decision algorithms.

• numfl : A member variable from the type TracedInt. It used to count the
number of reserved flows.

• tchan : A member variable from the type Tcl Channel. It represents the
trace file descriptor ID for writing trace events during network operations.



102 Code Description of the Multiservice Framework

5.3 Multiservice Enhanced Link Implementation

The enhanced link in ns-2 is realised as a class entirely written in OTcl. This
section describes the OTcl implementation of the link class and the composition
of the link as a network component.

The multiservice link class has the name MultiServLink. Its declaration and
the definition of the components is contained in the Tcl file lib/ns-multiserv.tcl.
The MultiServLink class is derived from a hierarchy of OTcl base classes with
SimpleLink as its direct base class. Figure 5.4 shows UML diagrams of the link
classes.

Figure 5.4: Multiservice link class diagram

The class diagrams present the MultiServLink class and the SimpleLink class.
The member functions and member variables of the SimpleLink class are not
complete in the diagram and the description of this class is not the focus in this
section. Interested readers are referred to the ns-2 manual ( [20]) for complete
details of this class. To avoid confusion, note that member functions in C++ are
known as instance procedures in OTcl as already explained in chapter 4, section



5.3 Multiservice Enhanced Link Implementation 103

4.3.1.5.

The multiservice link as a network component is a compound object, composing
of queue object, admission control object, resource reservation mechanism object,
measurement object, estimator object, and the classifier object. These objects
work together to guarantee quality of service to application traffic flows traversing
the link.

5.3.1 Multiservice Link Components Description

As shown in Figure 5.4, the MultiServLink class diagram is made of attributes
and procedures, which are known as instance procedures and instance variables in
OTcl language. This section describes their essences in the MultiServLink class.

• init{}: This instance procedure is equivalent to the constructor in C++
programming language. It is responsible for initializing the class object. As
mentioned earlier that the multiservice link as a network object is made up
of other objects, the set up and initialization of those objects are done in this
procedure. Class instance variable declarations and the calling of inheritted
instance procedures are made in this instance procedure. The parameters
of this procedure are: src the source address of a traffic traversing the link,
dst the destination address of a traffic, bw the link bandwidth value, delay
the delay component, q the queueing type, and arg the list of the rest
arguments passed to the link.

• create-meas-classifier{}: This instance procedure is responsible for cre-
ating the flow classifier object and setting up the classification table, which
is then used to classify the traffic packets according to their flow ID.

• trace-sig{}: An instance procedure used to invoke a C++ function to log
trace events. For example to log trace events of reserved flow in the resource
reservation mechanism. It has one parameter f, which is the file descriptor
of the trace file to store the trace events.

• trace-util{}: This instance procedure is designed to log the network uti-
lization value and the network average load every specific interval of time.
This logging is done for each of the traffic types traversing the network. The
data written by this instance procedure are used to plot the network utiliza-
tion and network estimation graphs. This procedure has four parameters,
one required and three are optional. The required parameter interval is the
time value at which to log the utilization and estimation values. The three
optional parameters f1, f2, f3 are the file descriptors to store the values.
When no file descriptor is given for a class of traffic flow, the utilization
and estimation values of this class is not logged.



104 Code Description of the Multiservice Framework

5.4 Implementation of Admission Control Algorithms

This section describes the implementation of the four measurement-based ad-
mission control algorithms (see chapter 3, section 3.3.2.4) integrated in ns-2 to
support the single service framework (explained in chapter 3, section 3.4) and the
modifications made to these algorithms to support the multiservice framework.
The admission control mechanism relies on the estimation mechanism for making
its admission decisions. Thus, the estimation mechanism is an indispensible part
of the admission control mechanism.

The admission control mechanism is realised as a C++ abstract base class with
the name ADC. The class declaration and member variables definitions are con-
tained in the header file ns-2/adc/adc.h, and the member functions definitions
are contained in the C++ file ns-2/adc/adc.cc. The ADC class is an abstract
class3 derived from a hierarchy of base classes. It forms the base class for the
admission control algorithms.

The estimation mechanism is implementated as a C++ abstract base class with
the name Estimator. The class declaration and member variables definitions
are stored in the header file ns-2/adc/estimator.h, and the member functions
definitions are stored in the C++ file ns-2/adc/estimator.cc. The Estimator
class like the ADC class is an abstract class derived from a hierarchy of base
classes. It forms the base class for the three measurement mechanisms4 described
in chapter 3, section 3.3.2.5.

Figure 5.5 presents UML class diagrams of the ADC class with its child classes,
and the Estimator class with its child classes. The class diagrams expose the
dependencies of the admission control mechanism on the estimation mechanism
and how the admission control classes use the estimation classes. Generally, for
reasons of better performance, it is recommended to pair the admission decision
algorithms with the estimation mechanism as follows:

• Measured sum algorithm with time-window estimation mechanism.

• Hoeffding bound algorithm with the exponential averaging estimation mech-
anism.

• Acceptance region tangent at origin and acceptance region tangent at peak
with the point sample estimation mechanism.

This recommended pairing is also depicted in Figure 5.5. They are realised
through the estimator interface in the admission control base class. Note that

3An abstract class can not be instantiated, i.e., create an object of the class. It is mainly
used as a base class to implement general functions for child classes.

4Note that the estimation mechanism is based on measurement, so it is sometimes referred
to as measurement mechanism.



5.4 Implementation of Admission Control Algorithms 105

Figure 5.5: Admission control and estimator class diagrams



106 Code Description of the Multiservice Framework

other pairing forms could also achieve good performance in certain situations.
The admission control classes and the estimation classes are described in more
details in the subsequent subsections.

5.4.1 Admission Control Classes Description

The admission control base class ADC presents abstract interfaces through which
the decision algorithms classes are invoked. The concrete implementation of the
interface functions declared in this class is done in the child classes. This class
defines the following basic member functions:

• ADC(): This is the class constructor used to initialize member variables
and also bind some of the variables that is desired to be configured from
the OTcl space.

• setest(): A member function used in pairing an admission control object
with an estimator object. It has two parameters: cl an Integer variable
which identifies the position of the estimator object in an array of estimators
object, and est a pointer to the estimator object.

• peak rate(): A member function that returns a double. It is used to
calculate a traffic’s peak rate, using the token bucket parameters. The
function has three parameters: cl an Integer value to specify the class of
the traffic flow, r a double value which specifies the token rate, and b an
Integer value specifying the token bucket size.

• command(): This function implements the possibilities of executing ADC
and Estimator member functions from OTcl space. For the multiservice
framework an extension is made to this function to start the estimator
objects for the three class of services. The two parameters of this function:
argc represents the number of arguments passed to the invoked command
in OTcl space, and argv represents the arguments passed. It returns an
error code to the OTcl interpreter in the case of error, otherwise success
code is returned.

This class is extended by the four admission decision algorithms. The mathe-
matical description and explanation of these algorithms have been done earlier
in chapter 3, section 3.3.2.4. The implementation of the dynamic bandwidth
allocation mechanism is integrated with the implementation of these algorithms
but due to the fact that this mechanism is fully explained in chapter 3, section
3.4.2, the code description is not done here. Thus, only the implementational
description of the algorithms are feautured in the next subsections.



5.4 Implementation of Admission Control Algorithms 107

5.4.1.1 Measured Sum Algorithm Code Description

The measured sum algorithm is realised as a C++ class named MC MS ADC. The
class declaration and the definition of its member functions and member variables
are contained in the C++ file ns-2/adcextension/multi-ms-adc.cc. The composed
member functions and member variable are of the following importance:

• MC MS ADC(): The class constructor, responsible for initializing the
member variables and binding the member variable utilization thereby
making it possible to be configured from OTcl space. It also initializes
the bandwidth allocation and borrowing mechanism.

• admit flow(): This function is very essential to the class. It is used for
admitting new flows into the network as far as bandwidth is available for the
existing flow plus the requirements of the new flow. During the admission
process, this function calls the time-window estimator class, which produces
the average current network load of each traffic class. It then adds the class
traffic rate to the class average load and compare the sum aginst the class
bandwidth before admitting a new flow of the class type. When a new flow
is admitted, the average network load of that flow class is increased by the
rate of that flow. The dynamic bandwidth allocation mechanism is invoked
in this function to dynamically allocate the best effort class bandwidth to
the higher priority VoIP and video flow classes when appropriate. This
function has three parameters: cl an Integer value to specify the class of
the traffic flow, r a double value which specifies the token rate, and b an
Integer value specifying the token bucket size. The function returns an
Integer. It returns the value one when the flow is admitted otherwise the
value zero.

• rej action(): A member function that returns a void. It is used to decre-
ment the average network load when traffic flows are rejected at the ad-
mission point in the network. It has three parameters: cl an Integer value
to specify the class of the traffic flow, r a double value which specifies the
token rate, and b an Integer value specifying the token bucket size. The
parameters are used to characterize the traffic flow.

• get rate(): This member function is used to extract the rate of the traffic
flow. It returns the traffic rate as a double value.

• utilization : A member variable for setting the utilization factor for the
algorithm that controls the network utilization threshold.

5.4.1.2 Hoeffding Bounds Algorithm Code Description

The implementation of this algorithm is achieved with a C++ class named
MC HB ADC. The class declaration and definitions of its member functions



108 Code Description of the Multiservice Framework

and member variables are contained in the C++ file ns-2/adcextension/multi-
hb-adc.cc. The member functions and member variables together achieve the
functionalities of this class. The details of these components are as follows:

• MC HB ADC (): This function is the class constructor. It initializes the
member variables and binds the epsilon member variable so that it can be
configured from the OTcl space. It also initializes the bandwidth allocation
and borrowing mechanism.

• admit flow(): This function returns an Integer value. It is the function
that implements the admission decision functionality. It admits a new flow
into the network if there is available bandwidth for the existing flows plus
the requirements of the new flow. During the admission process, it invokes
the exponential averaging estimator object, which provides the current net-
work average load of each of the traffic classes. The sum of this average load
with the other parameters of the algorithm equation is compared against the
class bandwidth before accepting a new flow of a class traffic type. When
a new flow is admitted, the square of the peak rate of the flow is added
to the sum of the squares of the peak rates of already admitted flows of
this class and the network average load of this class is artificially increased.
It also calls the dynamic bandwidth allocation mechanism used to allocate
best effort class bandwidth to the higher priority VoIP and video classes
when it is appropriate. This function has three parameters: cl an Integer
value to specify the class of the flow traffic, r a double value which specifies
the token rate, and b an Integer value specifying the token bucket size. It
calculates the peak rate of the traffic flows with the help of these param-
eters, which is used in the decision algorithm. When a flow is admitted,
it returns the value one, otherwise it returns the value zero and sets the
rejected member variable.

• teardown action(): A member function that is called when a connection
in the network is terminated to decrease the sum of the peak rates of ac-
cepted flows in the network by the square of the flow’s peak rate and clears
the rejected variable to indicate to the admission decision function to ac-
cept once more the flows of this type that just exited the network. It has
three parameters: cl an Integer value to specify the class of the flow traf-
fic, r a double value which specifies the token rate, and b an Integer value
specifying the token bucket size. These parameters are used to calculate
the peak rate of the flow. The function returns a void.

• rej action(): This member function is responsible for decrementing the
sum of the peak rates of flows in the network when a flow is rejected by the
square of the flow’s peak rate. It has three parameters: cl an Integer value
to specify the class of the flow traffic, r a double value which specifies the



5.4 Implementation of Admission Control Algorithms 109

token rate, and b an Integer value specifying the token bucket size. These
parameters are used to calculate the peak rate of the flow. The function
returns a void.

• rejected : This member variable is set to indicate to the admission function
that a flow of this traffic type should be denied connection until a flow of
its traffic type leaves the network.

• sump2[..]: An array of member variables to store the sum of the squared
peak rates of the different traffic classes.

• epsilon : A member variable representing the equivalent bandwidth in the
decision algorithm.

5.4.1.3 Acceptance Region Tangent at Peak Algorithm Code Descrip-
tion

The acceptance region tangent at peak algorithm is implemented as a C++ class
named MC ACTP ADC. The class declaration and definitions are contained in
the C++ file ns-2/adcextension/multi-actp-adc.cc. It is composed of member
functions and member variables. The essence of the member functions and some
of the member variables are detailed as follows:

• MC ACTP ADC(): This is the class constructor, it initializes the mem-
ber variables and binds the s member variable so that it can be configured
from the OTcl space. It also initializes the bandwidth allocation and bor-
rowing mechanism.

• admit flow(): The member function is very essential in the class. It re-
turns an Integer value. The function implements the admission decision
process which admits a new flow if there is enough class bandwith for the
existing flows in the network and for the resources required by the new
flow. During the admission process, it invokes the point sample estimator
object, which provides the current network average load for each of the
traffic classes. This average load is added to the other parameters of the al-
gorithm equation and compare the sum against the class bandwidth before
accepting a new flow for a class of traffic. When a new flow is admitted, it
adds the flow’s peak rate to the sum of the peak rates of the existing flows
of this traffic class. It is manually decided whether to artificially increase
this flow class average network load by the peak rate of the new flow or
not. The function also calls the dynamic bandwidth allocation mechanism
used to allocate best effort class bandwidth to the higher priority VoIP and
video classes when it is appropriate. This function has three parameters:
cl an Integer value to specify the class of the traffic flow, r a double value
which specifies the token rate, and b an Integer value specifying the token



110 Code Description of the Multiservice Framework

bucket size. It calculates the peak rate of the traffic flows with the help of
these parameters, which is used in the decision algorithm. When a flow is
admitted, this function returns the value one otherwise it returns the value
zero and the rejected member variable is setted.

• teardown action(): This member function is called when a connection in
the network is terminated to decrease the sum of the peak rates of accepted
flows in the network by the flow’s peak rate and clears the rejected variable
to indicate to the admission decision function to accept once more the flows
of this type that just exited the network. It has three parameters: cl an
Integer value to specify the class of the flow traffic, r a double value which
specifies the token rate, and b an Integer value specifying the token bucket
size. These parameters are used to calculate the peak rate of the flow. The
function returns a void.

• rej action(): This member function is used for decrementing the sum of
the peak rates of flows in the network when a flow is rejected. It has three
parameters: cl an Integer value to specify the class of the flow traffic, r a
double value which specifies the token rate, and b an Integer value specifying
the token bucket size. These parameters are used to calculate the peak rate
of the flow. The function returns a void.

• rejected : This member variable is set to indicate to the admission function
that a flow of this traffic type should be denied connection until a flow of
its traffic type leaves the network.

• sump[..]: An array of member variables to store the sum of the peak rates
of the different traffic classes.

• s : A member variable representing space parameter of the chernoff bounds
in the decision algorithm.

5.4.1.4 Acceptance Region Tangent at Origin Algorithm Code De-
scription

The implementation of this algorithm is realized as a C++ class with the name
MC ACTO ADC. The class declaration and definitions are contained in the C++
file ns-2/adcextension/multi-acto-adc.cc. The class is made up of member func-
tions and member variables. These components collectively achieve the function-
ality of the class. The importance of these components are described as follows:

• MC ACTO ADC(): This is the class constructor, it initializes the mem-
ber variables and binds the s member variable so that it can be configured
from the OTcl space. It also initializes the bandwidth allocation and bor-
rowing mechanism.



5.4 Implementation of Admission Control Algorithms 111

• admit flow(): This member function is very important in the class. It
returns an Integer value. This function implements the admission decision
function, which admits a new flow if there is enough class bandwith for the
existing flows in the network plus the resources required by the new flow.
During the admission process, it invokes the point sample estimator object,
which provides the current average network load for each of the flow traffic
classes. This average load is added to the other parameters of the algorithm
equation and the resulting sum is compared against the class bandwidth
before accepting a new flow for a traffic class. When a new flow is admitted,
it is manually decided whether to artificially increase the average network
load of this flow class by the flow’s peak rate or not. The function also
calls the dynamic bandwidth allocation mechanism used to allocate best
effort class bandwidth to the higher priority VoIP and video classes when it
is appropriate. This function has three parameters: cl an Integer value to
specify the class of the flow traffic, r a double value which specifies the token
rate, and b an Integer value specifying the token bucket size. It calculates
the peak rate of the traffic flows with the help of these parameters, which
is used in the decision algorithm. When a flow is admitted, the function
returns the value one otherwise it returns the value zero and the rejected
member variable is set.

• teardown action(): This member function is called when a connection in
the network is terminated to clear the rejected variable, which indicates
to the admission decision function to accept once more the flows of this
traffic type that just exited the network. It has three parameters cl an
Integer value to specify the class of the traffic flow, r a double value which
specifies the token rate, and b an Integer value specifying the token bucket
size. These parameters are used to calculate the peak rate of the flow. The
function does not return any value.

• rejected : This member variable is set to indicate to the admission function
that a flow of this traffic type should be denied connection until a flow of
its traffic type leaves the network.

• s : A member variable representing space parameter of the chernoff bounds
in the decision algorithm.

5.4.2 Estimator Classes Description

The admission control mechanism is dependent on the estimation mechanism.
The Estimator base class provides abstract interfaces through which the admis-
sion control classes access the estimation classes. This base class is composed of
some other classes like the MeasureMod, which performs the bits/packets mea-



112 Code Description of the Multiservice Framework

surement, and TracedDouble class, which provides a data type for storing the
average network load.

The Estimator base class provides some general member functions and member
variables, which are inherited by its three child classes. The details of some of
these components are given as follows:

• Estimator(): This is the class constructor. It initializes the member vari-
ables including the composed objects and binds the period , dst , and src
member variables so that they can be configured from the OTcl space.

• avload(): A member function that returns double values. It is called to
return the measured average newtork load casted to a double value.

• change avload(): A member function that is used to artificially increase
or decrease the network average load. It has one parameter: incr from
type double, which represents the value by which the network average load
is artificially increased or decreased. The function returns no value due to
its void return type.

• command(): This member function is used to execute other member func-
tions invoked from the OTcl space. It executes the commands to log the
network utilization, the estimated average load, and to attach trace files.
It returns an error code back to OTcl interpreter in case of error occurance
otherwise a success code is returned.

• start(): A member function to start the estimation process. It resets the
avload and measload member variables and then schedules the estimation
period. It has no return value.

• stop (): This member function is used to cancel the estimation process. It
has no return value.

• setmeasmod(): This member function hooks the measurement object to
the estimation object. It returns no value.

• period : A member variable that specifies the interval of time between
different estimation processes.

• avload : A member variable used to store the calculated network average
load.

• measload : A member variable used to store the current measured network
average load.

The three different estimation mechanisms have been theoretically and mathe-
matically described earlier in chapter 3, section 3.3.2.5. Thus, the subsequent
subsections describe only their implementations.



5.4 Implementation of Admission Control Algorithms 113

5.4.2.1 Time-Window Estimator Code Description

The time-window estimation mechanism is realised as a C++ child class derived
from the Estimator base class. The class is named TimeWindow Est and its
declaration and definitions are contained in the C++ file ns-2/adc/timewindow-
est.cc. The class is made up of three member functions and three member vari-
ables. The essence of these components are detailed as follows:

• TimeWindow Est(): This function is the class constructor. It initializes
the member variables and binds the T member variable so that it could be
configured from the OTcl space.

• estimate(): This member function implements the estimation process. It
invokes the measurement object to measure the current network average
load every specified interval of time and then use a time window frame to
actualize the average network load. The function continually repeats this
process. It does not return a value but continually actualizes the average
network load.

• change avload(): A member function that is used to artificially increase
or decrease the network average load. It has one parameter: incr from
type double, which represents the value by which the network average load
is artificially increased or decreased. When the average network load is
increased, the sampling count variable (scnt) is cleared to restart the time
window frame. The function returns no value due to its void return type.

• scnt: A member variable that keeps the count of sampling periods to indi-
cate the end of a time window frame.

• T : A member variable to stores the time window frame value.

• maxp: A member varible to store the maximum network average load
recorded in the last time window frame.

5.4.2.2 Exponential Averaging Estimator Code Description

This estimation mechanism is implemented as a C++ class with the name Ex-
pAvg Est. The class declaration and definitions of its member functions and
member variables are found in the C++ file ns-2/adc/expavg-est.cc. It is derived
from the Estimator base class and composed of two member functions and one
member variable. The importance of these components are the following:

• ExpAvg Est(): This is the class constructor function. It only binds the
member variable w so that it can be configured from OTcl space.



114 Code Description of the Multiservice Framework

• estimate(): This function implements the estimation process. It invokes
the measurement object to measure the current network average load every
specified interval of time. This value is then used in an impulse response
function together with the w member variable and the existing average
network load to estimate the actual average network laod. It does not
return a value but continually actualizes the average network load.

• w : A member variable that represents the averaging weight in the impulse
response function.

5.4.2.3 Point Sample Estimation Code Description

The point sample estimation mechanism is realized as a C++ class with the
name PointSample Est. It is a child class derived from the Estimator base class.
The class declaration and definitions of its member functions are found in ns-
2/adc/pointsample-est.cc. This class defines only two member functions and their
importance are described as follows:

• PointSample Est(): This function is the class constructor. It is empty
and does only the default work of allowing access to the class.

• estimate() This member function implements the estimation process. It
invokes the measurement object to measure the current network average
load every specified interval of time. It does not return a value but contin-
ually actualizes the average network load.

5.5 Summary

The new multiservice framework is composed of four components, which together
realises the funtionalities of the framework. The primary aim of this framework
is to simulate the effects of simultaneous transmission of three traffic classes, each
with different quality of service requirement over a packet network. The compo-
nents of this framework are the queue scheduler, the signalling mechanism, the
enhanced link, and the admission control, which includes the estimation mech-
anism. The components are either implemented in C++ or in OTcl language
both using the object-oriented mechanism. The classes of these components are
presented in UML diagrams showing the class name, some of the class member
functions and some of the class member variables for a quick overview of the
class. Furthermore, some of the class member functions and member variables
are explained in details.



6 Simulation Scenarios and
Results

This chapter presents the simulation results of the new multiservice framework
designed and implemented in this master thesis. The simulations serve as a test-
ing methodology to validate the implemented functionalities of this framework.
The framework is designed for differentiated handling of the three traffic classes
simultaneously traversing over a packet network and thereby ensuring their dif-
ferent QoS requirements.

The multiservice framework is designed with static and dynamic bandwidth al-
location mechanisms. These two mechanisms are simulated using the two-node
and eight-node network topologies defined in this chapter. There are two simula-
tion scenarios designed to fully cover and evaluate the performances of different
aspects of the multiservice framework.

In all the simulations, the multiservice link is set up with a 10 Mbit/s bandwidth
capacity and 1 ms propagation delay. The simulation runs for 3000 seconds.
The performance for each of the four admission control algorithms introduced
in chapter 3, section 3.3.2.4 is calculated by measuring the average packet
delay, actual link utilization and the drop rate. These numbers are measured
starting after an intial warmup period of 1500 seconds and stored in files for
postprocessing at the end of the simulation. In addition gnuplot is used to plot
snap shots of estimated and actual bandwidth utilized in the period between
2000 and 2200 seconds of the simulation time, and the delays experienced by the
traffic packets between 2800 and 3000 seconds of the simulation time. Note that
in all simulations, the measured sum algorithm is configured with a 95 percent
utilization factor, which means that the algorithm cannot achieve a total network
utilization greater than this factor.

This chapter is divided into four sections, the first section covers the simulation
of the static bandwidth allocated version of the multiservice framework. It sim-
ulates the two scenarios using each of the network topology type for the four
measurement-based admission control algorithms. The second section simulates
the dynamic bandwidth allocated version of this framework. It also simulates two
scenarios using each of the network topology types for the MBAC algorithms. The
achieved performance results are also compared. The third section presents some



116 Simulation Scenarios and Results

performance comparisons between the static and dynamic bandwidth allocated
version of the multiservice framework. The last section summarizes the chapter.

6.1 Static Bandwidth Allocation Mechanism

The multiservice framework supports the transmission of three different traffic
classes (VoIP, video, and best effort). In order to achieve different quality of
service demands of these traffic classes, the total network bandwidth is shared
among the traffic classes according to the class priorities. In the static version of
the multiservice framework, the bandwidth sharing is static. i.e., it is done once
and each class operates only with its allocated class bandwidth. When there is
little or no traffic flows for the best effort class, its class bandwidth is wasted and
can’t be borrowed by the other higher priority classes that might require of extra
bandwidth.

The simulation of this static bandwidth allocated version is carried out for two
types of network topologies using two simulation scenarios for each as described
in the subsections below.

6.1.1 Simulation with the Two-Node Network Topology

The first network topology type is made up of two nodes and the multiservice
bottle-neck link connecting them. The traffic agents and the traffic application
source generators are connected directly to the first node (Node 0 ), and the
receiver agents and the traffic application sinks are directly connected to the
second node (Node 1 ) as shown in Figure 6.1.

Figure 6.1: Two-node network topology

The VoIP, video and best effort application traffic sources generate data packets,
which are sent through node one over the 10 Mbit/s bottleneck link to their
respective sink applications. The bottleneck link is where the quality of service is
ensured by executing different operations like data packets classification, network



6.1 Static Bandwidth Allocation Mechanism 117

load estimations, delay measurements, and packet lost measurements.

To simulate the traffic of the three applications types in ns-2, the different appli-
cation traffic generators defined in ns-2 (see ns manual [20]) are used. The VoIP
application traffic is represented by the constant bit rate source traffic type, the
video application traffic is represented by video trace source traffic type, and the
best effort application traffic is represented by the exponential traffic source type.

In order to fully test this static bandwidth allocated version, two simulation
scenarios are created using the above mentioned source traffic types and their
different configuration parameters. They are presented together with the achieved
performance results of the MBAC algorithms in the two subsections below.

6.1.1.1 Simulation Scenario One

The first simulation scenario for the static bandwidth allocated version using the
two-node network topology is illustrated in Table 6.1.

CBR Traffic Video

Trace

Exponential Traffic

Packet size
(byte)

Rate
(kbit/s)

Target rate
(kbit/s)

Packet size
(byte)

Burst time
(ms)

Idle time
(ms)

Rate
(kbit/s)

125 200 256 125 313 325 64

Table 6.1: Simulation scenario one

This simulation scenario represents a standard situation where the different class
bandwidths are good utilized by their respective application traffic. In Table 6.1,
packet size means the traffic packet size, rate means the traffic sending rate, target
rate means the target rate for the video traces, burst time means the On time
of the exponential traffic, and idle time means the Off time of the exponential
traffic.

The results of the first simulation scenario using the two-node network topology
are presented for the four MBAC algorithms as follows:

Measured Sum
The performance results achieved by the measured sum algorithm are displayed
in Table 6.2 and in Figure 6.2.

Traffic

class

Received

packets

(pkt)

Received

packets

size (byte)

Lost

packets

(pkt)

Average

packets

delay (ms)

Total

drops (%)
Total uti-

lizations

(%)

VoIP 14509310 1812059980 62460 9.347 0.332 93.03

Video 282837 1176755809 0 5.781

Best effort 4036428 502916760 0 1.845

Table 6.2: Measured sum performance results



118 Simulation Scenarios and Results

Table 6.2, illustrates the simulation results obtained by the three different traffic
classes. The column headers in the table are described as follows:

• Received packets : This is the number of packets received for each traffic
class.

• Received packets size: This is the size in byte of the total received packets
for each traffic class.

• Lost packets : Shows the number of packets lost by each traffic class.

• Average packet delay : This represents the total delay suffered by a packet on
the outgoing link due to queueing and transmission including the processing
time at the node, and the propagation delay of the link averaged over a
number of measurements.

• Total Drops : This represents the percentage of the total packets dropped
in the bottleneck link.

• Total utilization: Defined as a fraction of the time during which the out-
going link queue was not empty. It represents the percentage of the total
network utilizations achieved by the traffic classes.

The received packet column in Table 6.2 shows which traffic occupies larger por-
tions of the network link. The VoIP traffic has highest priority and the largest
bandwidth share followed by the video traffic, and the best effort traffic has
the least priority and smallest bandwidth share. The results also show that the
algorithm achieved high total network utilization and low packet drop rate.

Figure 6.2 displays the estimated and actual utilized average network load for
each of the traffic classes and the delay experienced by the traffic flows.
Figures 6.2(a), 6.2(b), and 6.2(c) illustrate how good the time-window estimator
could estimate the actual network utilization for the measured sum algorithm
while transmitting VoIP, video, and best effort application packets in a packet
network. From the graphics, it is noticable that there is a better estimation and
actual utilization correspondances for VoIP traffic flows as compared with that of
video traffic flows. The figures also show the degree of utilization of the respective
allocated class bandwidths. Figure 6.2(d) shows the delays experienced by VoIP,
video, and best effort traffic flows. It can be observed from the graphic that the
traffic classes show variable delay behaviours but their highest delays are still
below the maximum acceptable delay thresholds for their respective applications.



6.1 Static Bandwidth Allocation Mechanism 119

 4.4e+06

 4.6e+06

 4.8e+06

 5e+06

 5.2e+06

 5.4e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(a) VoIP traffic

 2.4e+06

 2.6e+06

 2.8e+06

 3e+06

 3.2e+06

 3.4e+06

 3.6e+06

 3.8e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(b) Video traffic

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(c) Best effort traffic

 5

 10

 15

 20

 25

 30

 35

 40

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

VoIP
Video
BestE

(d) VoIP, video, and best effort packets delay
behaviours

Figure 6.2: Actual and estimated utilization: MS algorithm; two-node topology; scenario one

Hoeffding Bounds
The performance results achieved by the equivalent bandwidth based on hoeffding
bounds algorithm are shown in Table 6.3 and in Figure 6.3.

Traffic

class

Received

packets

(pkt)

Received

packets

size (byte)

Lost

packets

(pkt)

Average

packets

delay (ms)

Total

drops (%)
Total uti-

lizations

(%)

VoIP 14113472 1762579810 14397 6.773 0.0816 88.54

Video 267972 1101984148 0 5.617

Best effort 3269366 407041360 0 1.804

Table 6.3: Hoeffding bounds performance results

The algorithm achieves high network utilisation performance and low drop rates.
The most drops packets are from VoIP class which occupies the largest portion
of the network. Figure 6.3 depicts the estimation behaviours of the exponen-
tial averaging estimator and the admittance behaviours of the hoeffding bounds
admission control algorithm.
Figures 6.3(a), 6.3(b), and 6.3(c) illustrate how good the exponential averaging
estimator could estimate the actual network utilization for the hoeffding bounds



120 Simulation Scenarios and Results

 4e+06

 4.2e+06

 4.4e+06

 4.6e+06

 4.8e+06

 5e+06

 5.2e+06

 5.4e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(a) VoIP traffic

 2e+06

 2.2e+06

 2.4e+06

 2.6e+06

 2.8e+06

 3e+06

 3.2e+06

 3.4e+06

 3.6e+06

 3.8e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(b) Video traffic

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(c) Best effort traffic

 5

 10

 15

 20

 25

 30

 35

 40

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

VoIP
Video
BestE

(d) VoIP, video and best effort packets delays

Figure 6.3: Actual and estimated utilization: HB algorithm; two-node topology; scenario one

algorithm while transmitting VoIP, video, and best effort application packets in
a packet network. From the graphics, the exponential averaging achieves better
estimations of the actual utilizations for VoIP traffic flows as for video and best
effort traffic flows. They also show the degree of utilization of the respective
allocated class bandwidths. Figure 6.3(d) shows the delay behaviours of VoIP,
video and best effort traffic flows. The delay behaviours varies for each of the
traffic classes but they are below the maximum delay tolerable by their respective
applications.

Acceptance Region Tangent at Origin
The performance results achieved by the acceptance region tangent at origin
algorithm are illustrated in Table 6.4 and in Figure 6.4.

The algorithm obtains good total utilization performance while maintaining low
drop rate. From the results, it is the most strict algorithm in VoIP packet ad-
mission as compared to the other algorithms. This behaviour is obvious with the
number of packets it accepts for this class. Figure 6.4 depicts the behaviour of
the point sample estimator and the acceptance region tangent at origin admission
control algorithm.



6.1 Static Bandwidth Allocation Mechanism 121

Traffic

class

Received

packets

(pkt)

Received

packets

size (byte)

Lost

packets

(pkt)

Average

packets

delay (ms)

Total

drops (%)
Total uti-

lizations

(%)

VoIP 13562102 1693660030 66759 6.076 0.3835 83.55

Video 237437 984322558 0 5.209

Best effort 3606468 449179215 0 1.759

Table 6.4: Acceptance region tangent at origin performance results

 4e+06

 4.2e+06

 4.4e+06

 4.6e+06

 4.8e+06

 5e+06

 5.2e+06

 5.4e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(a) VoIP traffic

 1.8e+06

 2e+06

 2.2e+06

 2.4e+06

 2.6e+06

 2.8e+06

 3e+06

 3.2e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(b) Video traffic

 1e+06

 1.1e+06

 1.2e+06

 1.3e+06

 1.4e+06

 1.5e+06

 1.6e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(c) Best effort traffic

 2

 4

 6

 8

 10

 12

 14

 16

 18

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

VoIP
Video
BestE

(d) VoIP, video and best effort packets delays

Figure 6.4: Actual and estimated utilization: ACTO algorithm; two-node topology; scenario
one

Figures 6.4(a), 6.4(b), and 6.4(c) illustrate how good the point sample estimator
could estimate the actual network utilization for the acceptance region tangent
at origin algorithm while transmitting VoIP, video, and best effort application
packets in a packet network. As shown in the graphics, the VoIP and video
classes show good correspondances of the estimation and actual utilizations as
compared to the best effort traffic class. They also show the degree of utilization
of the respective allocated class bandwidths. Figure 6.4(d) displays the delay
behaviours of VoIP, video and best effort traffic flows. The delay behaviours are
not constant but are still below the maximum tolerable delay thresholds for their



122 Simulation Scenarios and Results

applications.

Acceptance Region Tangent at Peak
The performance results achieved by the acceptance region tangent at peak al-
gorithm are illustrated in Table 6.5 and in Figure 6.5.

Traffic

class

Received

packets

(pkt)

Received

packets

size (byte)

Lost

packets

(pkt)

Average

packets

delay (ms)

Total

drops (%)
Total uti-

lizations

(%)

VoIP 16347350 2041807420 1374799 22.074 6.7398 99.13

Video 321800 1359630466 0 5.448

Best effort 3729278 464524900 0 1.939

Table 6.5: Acceptance region tangent at peak performance results

This algorithm achieved the highest total network utilization as compared to the
others for this scenario. But it also suffers the highest delays for VoIP traffic
flows. Figure 6.5 depicts the behaviour of the point sample estimator and the
acceptance region tangent at peak admission control algorithm.

 4.8e+06

 5e+06

 5.2e+06

 5.4e+06

 5.6e+06

 5.8e+06

 6e+06

 6.2e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(a) VoIP traffic

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(b) Video traffic

 1e+06

 1.1e+06

 1.2e+06

 1.3e+06

 1.4e+06

 1.5e+06

 1.6e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(c) Best effort traffic

 10

 20

 30

 40

 50

 60

 70

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

VoIP
Video
BestE

(d) VoIP, video and best effort packets delays

Figure 6.5: Actual and estimated utilization: ACTP algorithm; two-node topology; scenario
one

Figures 6.5(a), 6.5(b), and 6.5(c) illustrate how good the point sample estimator



6.1 Static Bandwidth Allocation Mechanism 123

could estimate the actual network utilization for the acceptance region tangent
at peak algorithm while transmitting VoIP, video, and best effort application
packets in a packet network. According to the graphics, it is noticable that the
estimator does good estimations of the actual utilizations for the traffic classes.
The graphics also show the degree of utilization of the respective class bandwidth.
Figure 6.5(d) illustrates the delay behaviours of VoIP, video and best effort traffic
flows. It is very obvious from the figure that the VoIP class exhibits the highest
delay. This is caused by the excess accaptance of VoIP traffic by the algorithm.
But the delays are still below the maximum tolerable delay thresholds for their
applications.

6.1.1.2 Simulation Scenario Two

The second simulation scenario is presented in Table 6.6. In this scenario, the
best effort applications are purposely set to transmit packets at a low sending rate
to investigate the effects of underutilized class bandwidth in the total network
utilization performance.

CBR Traffic Video

Trace

Exponential Traffic

Packet size
(byte)

Rate
(kbit/s)

Target rate
(kbit/s)

Packet size
(byte)

Burst time
(ms)

Idle time
(ms)

Rate
(kbit/s)

125 200 256 125 313 325 6

Table 6.6: Simulation scenario two

The reason for setting only the best effort applications to send at low rate is
based on the assumption that the higher priority VoIP and video applications
are of higher demand and more important to the network, i.e., both applications
make up more than 80% of the network traffic. The low sending rate of best
effort application causes under utilization of its class bandwidth. Thus, this
scenario shows how a class bandwidth that could be used by other traffic classes,
is wasted in a network where bandwidth is statically shared among traffic classes.
This consequently leads to a poor total network utilization level.

Below are the simulation results achieved by the four MBAC algorithms for
the three traffic classes.

Measured Sum
The performance results achieved by the measured sum for this scenario are
displayed in Table 6.7 and in Figure 6.6.
Inspite of the underutilized best effort class bandwidth, the algorithm achieves
high total network utilization level and lower drop rates as compared to scenario
one. Figure 6.6 displays the behaviour of the time-window estimator and the
measured sum admission control algorithm for this scenario.



124 Simulation Scenarios and Results

Traffic

class

Received

packets

(pkt)

Received

packets

size (byte)

Lost

packets

(pkt)

Average

packets

delay (ms)

Total

drops (%)
Total uti-

lizations

(%)

VoIP 14523736 1813863335 28462 7.662 0.158 90.74

Video 283501 1172753596 0 5.227

Best effort 3180903 395665860 0 1.818

Table 6.7: Measured sum performance results

 4.4e+06

 4.6e+06

 4.8e+06

 5e+06

 5.2e+06

 5.4e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(a) VoIP traffic

 2.4e+06

 2.6e+06

 2.8e+06

 3e+06

 3.2e+06

 3.4e+06

 3.6e+06

 3.8e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(b) Video traffic

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(c) Best effort traffic

 5

 10

 15

 20

 25

 30

 35

 40

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

VoIP
Video
BestE

(d) VoIP, video and best effort packets delays

Figure 6.6: Actual and estimated utilization: MS algorithm; two-node topology; scenario two

Figures 6.6(a), 6.6(b), and 6.6(c) illustrate how good the time-window estima-
tor could estimate the actual network utilization for the measured sum algorithm
while transmitting VoIP, video, and best effort application packets in a packet
network. From the figures, it is clearly recogniseable that the best effort class
bandwidth is underutilized following from the large difference between the esti-
mations and the actual network utilizations. Figure 6.6(d) displays the packet
delay behaviours of VoIP, video and best effort traffic. From the figure, the traf-
fic delay behaviours varies but they are still below the maximum tolerable delay
thresholds for their applications.



6.1 Static Bandwidth Allocation Mechanism 125

Hoeffding Bounds
The performance results achieved by the equivalent bandwidth based on hoeffding
bounds algorithm are shown in Table 6.8 and in Figure 6.7.

Traffic

class

Received

packets

(pkt)

Received

packets

size (byte)

Lost

packets

(pkt)

Average

packets

delay (ms)

Total

drops (%)
Total uti-

lizations

(%)

VoIP 14343716 1791360835 2236 4.456 0.0148 80.55

Video 267302 1108477294 0 5.115

Best effort 546807 66699015 0 1.724

Table 6.8: Hoeffding bounds performance results

The algorithm achieves good total network utilization and low drop rate for this
scenario. Although the influence of the low utilized best effort class bandwidth is
seen at the total utilization obtained as compared to the first scenario. Figure 6.7
depicts the behaviour of the exponential averaging estimator and the hoeffding
bounds admission control algorithm for this scenario.

 4.2e+06

 4.4e+06

 4.6e+06

 4.8e+06

 5e+06

 5.2e+06

 5.4e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(a) VoIP traffic

 2.4e+06

 2.6e+06

 2.8e+06

 3e+06

 3.2e+06

 3.4e+06

 3.6e+06

 3.8e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(b) Video traffic

 100000

 200000

 300000

 400000

 500000

 600000

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(c) Best effort traffic

 5

 10

 15

 20

 25

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

VoIP
Video
BestE

(d) VoIP, video and best effort packets delays

Figure 6.7: Actual and estimated utilization: HB algorithm; two-node topology; scenario two

Figures 6.7(a), 6.7(b), and 6.7(c) illustrate how good the exponential averaging
estimator could estimate the actual network utilization loads for the hoeffding



126 Simulation Scenarios and Results

bounds algorithm while transmitting VoIP, video, and best effort application
packets in a packet network. From the figures, it is observable that the estimator
does better estimations for VoIP traffic flows as for video traffic flows. The graphic
also shows the underutilization of the best effort class bandwidth. Figure 6.7(d)
displays the delay behaviours of VoIP, video and best effort traffic flows. The
delay behaviours shown in the figure vary for each of the traffic classes but they
fall below the maximum tolerable delay thresholds required by their applications.

Acceptance Region Tangent at Origin
The performance results achieved by the acceptance region tangent at origin
algorithm are illustrated in Table 6.9 and in Figure 6.8.

Traffic

class

Received

packets

(pkt)

Received

packets

size (byte)

Lost

packets

(pkt)

Average

packets

delay (ms)

Total

drops (%)
Total uti-

lizations

(%)

VoIP 13548345 1691942190 4875 3.366 0.0343 72.85

Video 240608 995685638 0 5.011

Best effort 420073 50871125 0 1.610

Table 6.9: Acceptance region tangent at origin performance results

The algorithm achieves acceptable total utilization and better drop rates as com-
pared to scenario one. Figure 6.8 depicts the behaviour of the point sample
estimator and the acceptance region tangent at origin admission control algo-
rithm during the simulation of the second scenario.
Figures 6.8(a), 6.8(b), and 6.8(c) illustrate how good the point sample estima-
tor could estimate the actual network utilization loads for the acceptance region
tangent at origin algorithm while transmitting VoIP, video, and best effort ap-
plication packets in a packet network. From the figures, it is observable that the
estimator does good estimations of the actual network utilizations for the traffic
classes. It is also oberservable that the best effort class bandwidth is clearly under
utilized, the application can only make use of about 180 kbit/s bandwidth while
the class has a 1.5 Mbit/s allocated bandwidth. Figure 6.8(d) displays the delay
behaviours of VoIP, video and best effort traffic flows. The variance in delays for
all traffic classes are noticeable from the figure, but the highest delay observed is
within range of tolerable delay thresholds for their applications.



6.1 Static Bandwidth Allocation Mechanism 127

 4e+06

 4.5e+06

 5e+06

 5.5e+06

 6e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(a) VoIP traffic

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(b) Video traffic

 100000

 120000

 140000

 160000

 180000

 200000

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(c) Best effort traffic

 2

 4

 6

 8

 10

 12

 14

 16

 18

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

VoIP
Video
BestE

(d) VoIP, video and best effort packets delays

Figure 6.8: Actual and estimated utilization: ACTO algorithm; two-node topology; scenario
two

Acceptance Region Tangent at Peak
The performance results achieved by the acceptance region tangent at origin
algorithm are illustrated in Table 6.10 and in Figure 6.9.

Traffic

class

Received

packets

(pkt)

Received

packets

size (byte)

Lost

packets

(pkt)

Average

packets

delay (ms)

Total

drops (%)
Total uti-

lizations

(%)

VoIP 16834594 2102714390 213454 11.947 1.1976 95.16

Video 322294 1357666381 0 5.465

Best effort 666200 81612220 0 1.889

Table 6.10: Acceptance region tangent at peak performance results

The algorithm achieves much lower drop rates and still high total network uti-
lization level as compared to the first simulation scenario. Figure 6.9 depicts
the behaviour of the point sample estimator and the acceptance region tangent
at peak admission control algorithm for this simulation scenario.

Figures 6.9(a), 6.9(b), and 6.9(c) illustrate how good the point sample es-
timator could estimate the actual network utilization loads for the acceptance



128 Simulation Scenarios and Results

 5.2e+06

 5.4e+06

 5.6e+06

 5.8e+06

 6e+06

 6.2e+06

 6.4e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(a) VoIP traffic

 3.2e+06

 3.4e+06

 3.6e+06

 3.8e+06

 4e+06

 4.2e+06

 4.4e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(b) Video traffic

 200000

 220000

 240000

 260000

 280000

 300000

 320000

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(c) Best effort traffic

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

VoIP
Video
BestE

(d) VoIP, video and best effort packets delays

Figure 6.9: Actual and estimated utilization: ACTP algorithm; two-node topology; scenario
two

region tangent at peak algorithm while transmitting VoIP, video, and best effort
application packets in a packet network. It is noticeable from the figures that the
best effort class bandwidth is poorly utilized. It could only make use of about
300 kbit/s bandwidth out of its class for which 1.5 Mbit/s bandwidth capacity is
allocated. They also show the degree of utilization of the other class bandwidth.
Figure 6.9(d) shows the delay behaviours of VoIP, video and best effort traffic.
From the figure, the delays experienced by the traffic classes varies but they are
still below tolerable boundaries for such applications. It is also interesting to
notice that the average delay suffered by VoIP traffic is 50 % lower as in scenario
one.



6.1 Static Bandwidth Allocation Mechanism 129

6.1.2 Simulation with the Eight-Node Network Topology

The second network topology type is made up of eight nodes connected as shown
in Figure 6.10. The traffic agents for VoIP, video and best effort and their

Figure 6.10: The eight-node network topology

application traffic generators are each attached to a different node. The three
source nodes send the application traffic through node 3 which acts as a router, to
their respective sink agents on the other end, which are also attached to different
destination nodes. The three source nodes are each connected to the router
node with a duplex-link. The link connecting VoIP traffic to the router node is
made up of 6 Mbit/s bandwidth capacity, 1 ms propagation delay, and DropTail
queueing mechanism, while the links connecting video and best effort traffic are
each made up of 5 Mbit/s bandwidth capacity, 1 ms propagation delay, and also
DropTail queueing mechanism. These link bandwidths capacities are set bigger
than the biggest class bandwidth share in the multiservice link, thereby ensuring
insignificant packet lost between the source node and the router node. At the
other end, duplex-links with the same parameters are also used to connect router
node 4 with the respective destination nodes.

Similarly as for the two-node network topology in subsection 6.1.1, two simu-
lation scenarios are performed for the eight-node topology too. The simulation
scenarios are designed in this way to create a common basis for comparing the
performances of the two network topologies.

6.1.2.1 Simulation Scenario One

The first simulation scenario is exactly the same as the scenario presented in
subsection 6.1.1.1. That means the same application traffic source generators and



130 Simulation Scenarios and Results

their defined parameters are used for this simulation too. This simulation scenario
is used to simulate the four measurement-based admission control algorithms and
their achieved performance results are each presented below.

Measured Sum
The performance results achieved by the measured sum for this scenario are
displayed in Table 6.11 and in Figure 6.11.

Traffic

class

Received

packets

(pkt)

Received

packets

size (byte)

Lost

packets

(pkt)

Average

packets

delay (ms)

Total

drops (%)
Total uti-

lizations

(%)

VoIP 14512053 1812445905 66410 9.867 0.3526 93.14

Video 281277 1173995547 0 5.670

Best effort 4041399 503535930 0 1.876

Table 6.11: Measured sum performance results

The algorithm achieved a very good total network utilization level, considering
the fact that the utilization factor is configured for 95 percent utilization. Figure
6.11 displays the behaviour of the time-window estimator and the measured sum
admission control algorithm for this simulation scenario using the eight-node
network topology.
Figures 6.11(a), 6.11(b), and 6.11(c) illustrate how good the time-window
estimator could estimate the actual network utilization for the measured sum
algorithm while transmitting VoIP, video, and best effort application packets in
a packet network. The figures show better estimations of actual utilization for the
VoIP traffic as for video and best effort. They also show the degree of utilization
of the respective class bandwidth. Figure 6.11(d) depicts the delays behaviours
experienced by VoIP, video, and best effort traffic packets. As shown on the
figure, the VoIP and video delays vary much more as compared to the best effort
delays. But all the delays are below the maximum tolerable boundaries for their
respective applications.



6.1 Static Bandwidth Allocation Mechanism 131

 4.4e+06

 4.6e+06

 4.8e+06

 5e+06

 5.2e+06

 5.4e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(a) VoIP traffic

 2.4e+06

 2.6e+06

 2.8e+06

 3e+06

 3.2e+06

 3.4e+06

 3.6e+06

 3.8e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(b) Video traffic

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(c) Best effort traffic

 5

 10

 15

 20

 25

 30

 35

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

VoIP
Video
BestE

(d) VoIP, video and best effort packets delays

Figure 6.11: Actual and estimated utilization: MS algorithm; eight-node topology; scenario
one

Hoeffding Bounds
The performance results achieved by the equivalent bandwidth based on hoeffding
bounds algorithm are shown in Table 6.12 and in Figure 6.12.

Traffic

class

Received

packets

(pkt)

Received

packets

size (byte)

Lost

packets

(pkt)

Average

packets

delay (ms)

Total

drops (%)
Total uti-

lizations

(%)

VoIP 14051663 1754878255 15226 6.623 0.0865 88.84

Video 265638 1110417684 0 5.309

Best effort 3285906 409108860 0 1.806

Table 6.12: Hoeffding bounds performance results

The algorithm achieved high network utilization level while maintaining low drop
rate. Figure 6.12 depicts the behaviour of the exponential averaging estimator
and the hoeffding bounds admission control algorithm for this simulation scenario.

Figures 6.12(a), 6.12(b), and 6.12(c) illustrate how good the exponential av-
eraging estimator could estimate the actual network utilization for the hoeffding
bounds algorithm while transmitting VoIP, video, and best effort application



132 Simulation Scenarios and Results

 4.4e+06

 4.6e+06

 4.8e+06

 5e+06

 5.2e+06

 5.4e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(a) VoIP traffic

 2.2e+06

 2.4e+06

 2.6e+06

 2.8e+06

 3e+06

 3.2e+06

 3.4e+06

 3.6e+06

 3.8e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(b) Video traffic

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(c) Best effort traffic

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

VoIP
Video
BestE

(d) VoIP, video and best effort packets delays

Figure 6.12: Actual and estimated utilization: HB algorithm; eight-node topology; scenario
one

packets in a packet network. As shown in the figure, the estimator does better
estimations of VoIP traffic actual utilizations as for video and best effort traf-
fic estimations. The figures also show the degree of utilization of the respective
class bandwidths. Figure 6.12(d) displays the delay behaviours of VoIP, video
and best effort traffic flows. From the figure, the delay behaviours of the traffic
classes are not constant but the highest delay behaviours of each class are below
the tolerable boundaries for their respective applications

Acceptance Region Tangent at Origin
The performance results achieved by the acceptance region tangent at origin
algorithm are illustrated in Table 6.13 and in Figure 6.13.

Traffic

class

Received

packets

(pkt)

Received

packets

size (byte)

Lost

packets

(pkt)

Average

packets

delay (ms)

Total

drops (%)
Total uti-

lizations

(%)

VoIP 13510478 1687227400 87462 3.523 0.5053 83.08

Video 244863 1020296399 0 4.846

Best effort 3553177 442515845 0 1.659

Table 6.13: Acceptance region tangent at origin performance results



6.1 Static Bandwidth Allocation Mechanism 133

According to Table 6.13, the algorithm obtaines good network utilization level
while maintaining low drop rates. Figure 6.13 depicts the behaviour of the point
sample estimator and the acceptance region tangent at origin admission control
algorithm for this simulation scenario.

 4e+06

 4.2e+06

 4.4e+06

 4.6e+06

 4.8e+06

 5e+06

 5.2e+06

 5.4e+06

 5.6e+06

 5.8e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(a) VoIP traffic

 1.8e+06

 2e+06

 2.2e+06

 2.4e+06

 2.6e+06

 2.8e+06

 3e+06

 3.2e+06

 3.4e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(b) Video traffic

 1e+06

 1.1e+06

 1.2e+06

 1.3e+06

 1.4e+06

 1.5e+06

 1.6e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(c) Best effort traffic

 5

 10

 15

 20

 25

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

VoIP
Video
BestE

(d) VoIP, video and best effort packets delays

Figure 6.13: Actual and estimated utilization: ACTO algorithm; eight-node topology; scenario
one

Figures 6.13(a), 6.13(b), and 6.13(c) illustrate how good the point sample
estimator could estimate the actual network utilization levels for the acceptance
region tangent at origin algorithm while transmitting VoIP, video, and best effort
application packets in a packet network. From the figures, the estimator does
better estimations of actual utilizations for VoIP and video traffic flows as for
best effort traffic flows. The figures also show the degree of utilization of the
respective class bandwidths. Figure 6.13(d) displays the delay behaviours of
VoIP, video and best effort traffic flows. As shown in the figure, the traffic flows
exhibits variable delay behaviours but their highest delays are still below the
tolerable boundaries for such applications.



134 Simulation Scenarios and Results

Acceptance Region Tangent at Peak
The performance results achieved by the acceptance region tangent at peak al-
gorithm are illustrated in Table 6.14 and in Figure 6.14.

Traffic

class

Received

packets

(pkt)

Received

packets

size (byte)

Lost

packets

(pkt)

Average

packets

delay (ms)

Total

drops (%)
Total uti-

lizations

(%)

VoIP 16296295 2035526345 1294828 22.846 6.3625 99.01

Video 320631 1348950565 0 5.719

Best effort 3734140 465130760 0 1.982

Table 6.14: Acceptance region tangent at peak performance results

As shown in Table 6.14, this algorithm achieves the highest network utilization
level while suffering the highest drop rates as compared to the other algorithms
for this scenario. Figure 6.14 depicts the behaviour of the point sample estimator
and the acceptance region tangent at peak admission control algorithm for this
simulation scenario.

 4.5e+06

 5e+06

 5.5e+06

 6e+06

 6.5e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(a) VoIP traffic

 3e+06

 3.2e+06

 3.4e+06

 3.6e+06

 3.8e+06

 4e+06

 4.2e+06

 4.4e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(b) Video traffic

 1.1e+06

 1.2e+06

 1.3e+06

 1.4e+06

 1.5e+06

 1.6e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(c) Best effort traffic

 10

 20

 30

 40

 50

 60

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

VoIP
Video
BestE

(d) VoIP, video and best effort packets delays

Figure 6.14: Actual and estimated utilization: ACTP algorithm; eight-node topology; scenario
one

Figures 6.14(a), 6.14(b), and 6.14(c) illustrate how good the point sample



6.1 Static Bandwidth Allocation Mechanism 135

estimator could estimate the actual network utilization levels for the acceptance
region tangent at peak algorithm while transmitting VoIP, video, and best effort
application packets in a packet network. The figures show better estimations for
VoIP and video traffic flows as for best effort traffic flows. They also show the
degree of utilization of the respective class bandwidths. Figure 6.14(d) illustrates
the delay behaviours of VoIP, video and best effort traffic flows. The figure depicts
variable delays for the traffic flows. The VoIP traffic shows the highest delay
behaviours but all the traffic flow delays are still below the tolerable boundaries
for such applications.

6.1.2.2 Simulation Scenario Two

The second simulation scenario using the eight-node network topology is defined
with the same application source traffic generators and their parameters as the
simulation scenario presented in Table 6.6, subsection 6.1.1.2. This simulation
scenario is used to simulate the four MBAC algorithms and their obtained per-
formance results are presented below.

Measured Sum
The performance results achieved by the measured sum for this scenario are
displayed in Table 6.15 and in Figure 6.15.

Traffic

class

Received

packets

(pkt)

Received

packets

size (byte)

Lost

packets

(pkt)

Average

packets

delay (ms)

Total

drops (%)
Total uti-

lizations

(%)

VoIP 14517540 1813128945 31041 7.627 0.1727 90.68

Video 281654 1173803884 0 5.072

Best effort 3171237 394455930 0 1.837

Table 6.15: Measured sum performance results

As shown in Table 6.15, the algorithm obtained high total utilization level with
low drop rate inspite of the poor utilization of the best effort class bandwidth.
Figure 6.15 displays the behaviour of the time-window estimator and the mea-
sured sum admission control algorithm for this simulation scenario using the
eight-node network topology.

Figures 6.15(a), 6.15(b), and 6.15(c) illustrate how good the time-window
estimator could estimate the actual network utilization for the measured sum
algorithm while transmitting VoIP, video, and best effort application packets in
a packet network. As can be observed from the figures, the estimator does good
estimations of actual utilizations for VoIP traffic flows as for video and best effort
traffic flows. It is also clearly noticeable that the best effort class bandwidth is
poorly utilized. Figure 6.15(d) shows the delay behaviours experienced by VoIP,
video, and best effort traffic packets. As shown in the figure, the delays display
high variances among the measurements, but the highest delay behaviours of



136 Simulation Scenarios and Results

 4.4e+06

 4.6e+06

 4.8e+06

 5e+06

 5.2e+06

 5.4e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(a) VoIP traffic

 2.4e+06

 2.6e+06

 2.8e+06

 3e+06

 3.2e+06

 3.4e+06

 3.6e+06

 3.8e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(b) Video traffic

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(c) Best effort traffic

 5

 10

 15

 20

 25

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

VoIP
Video
BestE

(d) VoIP, video and best effort packets delays

Figure 6.15: Actual and estimated utilization: MS algorithm using eight-node topology for
scenario two

each traffic class is below the maximum tolerable delay thresholds defined for
their applications.

Hoeffding Bounds
The performance results achieved by the equivalent bandwidth based on hoeffding
bounds algorithm are shown in Table 6.16 and in Figure 6.16.

Traffic

class

Received

packets

(pkt)

Received

packets

size (byte)

Lost

packets

(pkt)

Average

packets

delay (ms)

Total

drops (%)
Total uti-

lizations

(%)

VoIP 14254447 1780221635 1898 4.747 0.0126 80.28

Video 264183 1111463333 0 5.638

Best effort 567712 69308465 0 1.729

Table 6.16: Hoeffding bounds performance results

As presented in Table 6.16, the algorithm obtaines good total utilization level
while keeping low drop rates inspite of the poor utilized best effort class band-
width. Figure 6.16 depicts the behaviour of the exponential averaging estimator
and the hoeffding bounds admission control algorithm for this simulation sce-



6.1 Static Bandwidth Allocation Mechanism 137

nario.

 4.2e+06

 4.4e+06

 4.6e+06

 4.8e+06

 5e+06

 5.2e+06

 5.4e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(a) VoIP traffic

 2.2e+06

 2.4e+06

 2.6e+06

 2.8e+06

 3e+06

 3.2e+06

 3.4e+06

 3.6e+06

 3.8e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(b) Video traffic

 100000

 200000

 300000

 400000

 500000

 600000

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(c) Best effort traffic

 5

 10

 15

 20

 25

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

VoIP
Video
BestE

(d) VoIP, video and best effort packets delays

Figure 6.16: Actual and estimated utilization: HB algorithm; eight-node topology; scenario
two

Figures 6.16(a), 6.16(b), and 6.16(c) illustrate how good the exponential av-
eraging estimator could estimate the actual network utilization levels for the
hoeffding bounds algorithm while transmitting VoIP, video, and best effort ap-
plication packets in a packet network. As displayed in the figures, the estimator
does better estimations of actual utilizations for VoIP traffic flows as for video
and best effort traffic flows. It is also clearly observable from the figures that
the best effort class bandwidth is poorly utilized. The best effort actual utiliza-
tion is below 300 kbit/s while the class has allocated bandwidth of 1.5 Mbit/s
capacity. Figure 6.16(d) displays the packet delay behaviours of VoIP, video and
best effort traffic. According to the figure, the delay behaviours are not constant
but the highest delays are still below the tolerable boundaries for their respective
applications.

Acceptance Region Tangent at Origin
The performance results achieved by the acceptance region tangent at origin
algorithm are illustrated in Table 6.17 and in Figure 6.17.



138 Simulation Scenarios and Results

Traffic

class

Received

packets

(pkt)

Received

packets

size (byte)

Lost

packets

(pkt)

Average

packets

delay (ms)

Total

drops (%)
Total uti-

lizations

(%)

VoIP 13598159 1698183955 19197 5.063 0.1328 73.94

Video 251227 1043418543 0 5.118

Best effort 601993 73593695 0 1.771

Table 6.17: Acceptance region tangent at origin performancs results

According to Table 6.17, the algorithm achieved acceptable network utilization
level while keeping low drop rate regardless of the poor utilized best effort class
bandwidth. Figure 6.17 depicts the behaviour of the point sample estimator
and the acceptance region tangent at origin admission control algorithm for this
simulation scenario.

 4e+06

 4.5e+06

 5e+06

 5.5e+06

 6e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(a) VoIP traffic

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(b) Video traffic

 200000

 220000

 240000

 260000

 280000

 300000

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(c) Best effort traffic

 5

 10

 15

 20

 25

 30

 35

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

VoIP
Video
BestE

(d) VoIP, video and best effort packets delays

Figure 6.17: Actual and estimated utilization: ACTO algorithm; eight-node topology; scenario
two

Figures 6.17(a), 6.17(b), and 6.17(c) illustrate how good the point sample es-
timator could estimate the actual network utilization levels for the acceptance
region tangent at origin algorithm while transmitting VoIP, video, and best ef-
fort application packets in a packet network. The figures show relatively good



6.1 Static Bandwidth Allocation Mechanism 139

estimations of the actual utilizations for the three traffic classes. The low uti-
lization of the best effort class bandwidth is also observable in the figure. Figure
6.17(d) displays the delay behaviours of VoIP, video and best effort traffic flows.
As shown in this figure, the traffic classes experiences variable delay behaviours
but their highest delays are still below the maximum tolerable delay boundaries
for their applications.

Acceptance Region Tangent at Peak
The performance results achieved by the acceptance region tangent at peak al-
gorithm are illustrated in Table 6.18 and in Figure 6.18.

Traffic

class

Received

packets

(pkt)

Received

packets

size (byte)

Lost

packets

(pkt)

Average

packets

delay (ms)

Total

drops (%)
Total uti-

lizations

(%)

VoIP 16774938 2095392315 231074 10.231 1.2997 95.07

Video 325460 1371553432 0 6.008

Best effort 679340 83250835 0 1.887

Table 6.18: Acceptance region tangent at peak performance results

As presented in Table 6.18, this algorithm achieved the highest network utilization
level while suffering the largest drop rate as compared to the other algorithms for
this scenario. Figure 6.18 depicts the behaviour of the point sample estimator
and the acceptance region tangent at peak admission control algorithm for this
simulation scenario.

Figures 6.18(a), 6.18(b), and 6.18(c) illustrate how good the point sample
estimator could estimate the actual network utilization levels for the acceptance
region tangent at peak algorithm while transmitting VoIP, video, and best effort
application packets in a packet network. As shown in the figures, the estimator
does better estimations of actual network utilization for VoIP traffic flows as for
video and best effort traffic flows. It can also be noticed that the best effort
class bandwidth is under utilized due the fact that its highest actual utilization
is below 320 kbit/s bandwidth whereas its class bandwidth is 1.5 Mbit/s. Figure
6.18(d) displays the delay behaviours of VoIP, video and best effort traffic flows.
As shown in the figure, the traffic classes exhibit variable delay behaviours where
the VoIP class shows the highest delays. But the delays are within the tolerable
boundaries for their respective applications.



140 Simulation Scenarios and Results

 5e+06

 5.2e+06

 5.4e+06

 5.6e+06

 5.8e+06

 6e+06

 6.2e+06

 6.4e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(a) VoIP traffic

 3.2e+06

 3.4e+06

 3.6e+06

 3.8e+06

 4e+06

 4.2e+06

 4.4e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(b) Video traffic

 200000

 220000

 240000

 260000

 280000

 300000

 320000

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(c) Best effort traffic

 5

 10

 15

 20

 25

 30

 35

 40

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

VoIP
Video
BestE

(d) VoIP, video and best effort packets delays

Figure 6.18: Actual and estimated utilization: ACTP algorithm; eight-node topology; scenario
two

6.1.3 Performance Comparison of the Two Network Topologies

In this section, the simulation results obtained for the two network topologies
with the static bandwidth allocation mechanism are compared. The essence of
this comparison is not to declare a winner but to create basis and motivation for
further investigation of the effects that network topologies could have on overall
network performances.

Two simulation scenarios with each of the network topology were investigated.
Therefore, two result groups are compared against each other for the two topolo-
gies. These results comparison are based on the achieved network performances of
the four measurement-based admission control algorithms with the two network
topologies. Table 6.19 presents an overview of the results.

The results in Table 6.19 illustrate the achieved utilizations and the drop rates
of the four MBAC algorithms for the two simulation scenarios using the two
network topologies. It is interesting to notice the difference in performance of
the two network topologies for the same simulation scenarios. For example, the



6.1 Static Bandwidth Allocation Mechanism 141

Two-node network topology Eight-node network topology

Simulation scenario one Simulation scenario one

Admission
algorithm

Total drops
(%)

Total util
(%)

Admission
algorithm

Total drops
(%)

Total util
(%)

MS 0.3317 93.03 MS 0.3526 93.14

HB 0.0816 88.54 HB 0.0865 88.84

ACTO 0.3835 83.55 ACTO 0.5053 83.08

ACTP 6.7398 99.13 ACTP 6.3625 99.01

Simulation scenario two Simulation scenario two

Admission
algorithm

Total drops
(%)

Total util
(%)

Admission
algorithm

Total drops
(%)

Total util
(%)

MS 0.1582 90.74 MS 0.1727 90.68

HB 0.0148 80.55 HB 0.0126 80.26

ACTO 0.0343 72.85 ACTO 0.1328 73.94

ACTP 1.1976 95.16 ACTP 1.2997 95.07

Table 6.19: Performance comparison of the network topologies using static allocated bandwidth

acceptance region tangent at origin admission control algorithm obtained a lower
drop rate with the two-node network topology for simulation scenario two as
compared to its drop rate achieved with the eight-node network topology for
simulation scenario two. On the other hand the same algorithm achieved better
network utilization with the eight-node network topology.

The delay behaviours are compared here only for the VoIP traffic, since it hast
the most strict delay requirements from a network. Figure 6.19 depicts the flow
delays revealed by the four MBAC algorithms using the two network topologies
for simulation scenario one.
Figure 6.19(a) presents the flow delays experienced by the four MBAC algo-
rithms using the two-node network topology and Figure 6.19(b) illustrates the
packet delays sensed by the four algorithms using the eight-node nework topol-
ogy. The figures depict the delays experienced by the VoIP traffic classes flows
while traversing the multiservice bottleneck link. Taking some closer look at the
figures one could notice the different delays exhibitted by the same algorithms
between the two network topologies. For example, the ACTO algorithm shows
higher delays in two-node network topology as in eight-node network topology.

Figure 6.20 illustrates the traffic flow delay behaviours sensed by the four MBAC
algorithms using the two network topologies for simulation scenario two.

Figure 6.20(a) presents the flow delays experienced by the four algorithms using



142 Simulation Scenarios and Results

 10

 20

 30

 40

 50

 60

 70

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

MS
HB

ACTO
ACTP

(a) With two-node topology

 10

 20

 30

 40

 50

 60

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

MS
HB

ACTO
ACTP

(b) With eight-node topology

Figure 6.19: Delays experienced by VoIP traffic for scenario one

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

MS
HB

ACTO
ACTP

(a) With two-node topology

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

MS
HB

ACTO
ACTP

(b) With eight-node topology

Figure 6.20: Delays experienced by VoIP traffic for scenario two

the two-node network topology and Figure 6.20(b) illustrates the flow delays in
case of the eight-node nework topology for the same simulation scenario. The
figures show the delays experienced by the VoIP traffic classes while sending
their flows over the multiservice bottle-neck link. It is noticed from the figures
that the same MBAC algorithm displays different delay behaviours in the two
network topologies. For example, the ACTO algorithm displays lower delays
for the same simulation scenario in two-node network topology as in eight-node
network topology. The reason for such behaviours are subject to further research.

Although, the numerical results in Table 6.19, and the traffic flow delay be-
haviours shown in Figure 6.19 and 6.20 does not show magnificant differences,
they do demonstrate the effects of the two network topologies in simulating si-
multaneous multi-class traffic traversing over a packet network controlled by the
MBAC algorithms.



6.2 Dynamic Bandwidth Allocation Mechanism 143

6.2 Dynamic Bandwidth Allocation Mechanism

In this section, the dynamic bandwidth allocation mechanism integrated into the
multiservice framework is simulated to evaluate its effects for the drop rate, packet
delays, and network utilization performances. The static bandwidth allocation
mechanism simulated in the previous section ( 6.1) shares the network bandwidth
among the traffic classes according to the class priorities. Each class then operates
only with the allocated bandwidth share. Consider the situation where the low
priority best effort applications, which requires loose QoS is sending their packets
at low rate thereby not utilizing their class bandwidth, and the higher priority
VoIP and video classes, which are of high demands and require more strict QoS
are short of bandwidths. In this situation, using the static bandwidth allocation
mechanism causes waste of the unutilized best effort bandwidth as it was the case
in the second simulation scenario of the previous section.

In an effort to allivate this problem of bandwidth wastage and strive to improve
the total network performance, the dynamic bandwidth allocation mechanism is
devised. This mechanism makes it possible for the VoIP and video classes to
borrow the unused best effort bandwidth when they ran short of their own class
bandwidths and the best effort bandwidth is underutilized.

There are two simulation scenarios in this section designed to test the multiservice
framework using the two network topologies. The achieved performance results
of the four measurement-based admission control algroithms using each of the
network topology are presented and compared at the end of the section.

6.2.1 Simulation with the Two-Node Network Topology

The two-node network topology used in this section to evaluate the multiservice
framework with dynamic bandwidth allocation mechanism has the same structure
and parameters as the one introduced in subsection 6.1.1. It is made up of two
nodes. The source agents and application traffic generators are attached to the
sending node on one side and on the other side the receiver agents and the
application traffic sinks are attached to the receiving node.

This network topology is used to carry out the two simulations scenarios for the
multiservice framework in this subsection. The scenarios are presented in the
subsequent subsections.

6.2.1.1 Simulation Scenario One

The first simulation scenario is designed to evaluate the effects of transmitting
three traffic classes (VoIP, video, and best effort) packets over a packet network
using the dynamic bandwidth allocation mechanism. The four MBAC algorithms
control the admission of new traffic flows into the network. The scenario stimu-



144 Simulation Scenarios and Results

lates the standard situation, where the three traffic classes are sending at their
full rates and striving to fully utilize their class bandwidths.

This simulation scenario uses the same application source traffic generators and
their parameters for generating and sending traffic of the three traffic classes as
the ones described in Table 6.1, in subsection 6.1.1.1. As mentioned earlier the
CBR traffic generator is used to generate VoIP packets, video trace file is used to
generate video packets, and exponential traffic generator is used for generating
best effort traffic.

The performance results achieved by each of the four measurement-based admis-
sion control algorithms are presented below.

Measured Sum
The performance results achieved by the measured sum for this scenario are
displayed in Table 6.20 and in Figure 6.21.

Traffic

class

Received

packets

(pkt)

Received

packets

size (byte)

Lost

packets

(pkt)

Average

packets

delay (ms)

Total

drops (%)
Total uti-

lization

(%)

VoIP 14523740 1813863835 73056 9.594 0.3961 93.57

Video 294916 1235298236 0 5.403

Best effort 3627192 451765200 0 1.887

Table 6.20: Measured sum performance results

As shown in Table 6.20, the algorithm obtained high network utilization level
while suffering low packet drop rate, considering the fact that the utilization
factor is configured for 95 percent, i.e., the algorithm cannot achieve a utilization
level higher than 95 percent. Figure 6.21 displays the behaviour of the time-
window estimator and the measured sum admission control algorithm for this
simulation scenario.

Figures 6.21(a), 6.21(b), and 6.21(c) illustrate how good the time-window esti-
mator could estimate the actual network utilization levels for the measured sum
algorithm while transmitting VoIP, video, and best effort application packets in
a packet network. According to the graphics, the estimator does better estima-
tion of the actual utilization for VoIP traffic flows as for video and best effort
traffic flows. They also illustrate the degree of utilization of the respective class
bandwidths. Figure 6.21(d) displays the delay behaviours of VoIP, video and
best effort traffic flows. As shown in the figure, the delay behaviours of the traffic
classes are not constant but they are still below the tolerable boundaries of their
respective applications.



6.2 Dynamic Bandwidth Allocation Mechanism 145

 4.4e+06

 4.6e+06

 4.8e+06

 5e+06

 5.2e+06

 5.4e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(a) VoIP traffic

 2.8e+06

 3e+06

 3.2e+06

 3.4e+06

 3.6e+06

 3.8e+06

 4e+06

 4.2e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(b) Video traffic

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(c) Best effort traffic

 5

 10

 15

 20

 25

 30

 35

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

VoIP
Video
BestE

(d) VoIP, video and best effort packets delays

Figure 6.21: Actual and estimated utilization: MS algorithm; two-node topology; scenario one

Hoeffding Bounds
The performance results achieved by the equivalent bandwidth based on hoeffding
bounds algorithm are shown in Table 6.21 and in Figure 6.22.

Traffic

class

Received

packets

(pkt)

Received

packets

size (byte)

Lost

packets

(pkt)

Average

packets

delay (ms)

Total

drops (%)
Total uti-

lization

(%)

VoIP 13939180 1740795935 12717 5.964 0.0741 86.44

Video 267787 1118597571 0 5.153

Best effort 2961891 368611710 0 1.785

Table 6.21: Hoeffding bounds performance results

As illustrated in Table 6.21, the algorithm achieves high total utilization level
while suffering low packet drop rate. Figure 6.22 depicts the behaviour of the
exponential averaging estimator and the hoeffding bounds admission control al-
gorithm for this simulation scenario.
Figures 6.22(a), 6.22(b), and 6.22(c) illustrate how good the exponential av-
eraging estimator could estimate the actual network utilization levels for the
hoeffding bounds algorithm while transmitting VoIP, video, and best effort ap-



146 Simulation Scenarios and Results

 4.2e+06

 4.4e+06

 4.6e+06

 4.8e+06

 5e+06

 5.2e+06

 5.4e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(a) VoIP traffic

 2.4e+06

 2.6e+06

 2.8e+06

 3e+06

 3.2e+06

 3.4e+06

 3.6e+06

 3.8e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(b) Video traffic

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(c) Best effort traffic

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

VoIP
Video
BestE

(d) VoIP, video and best effort packets delays

Figure 6.22: Actual and estimated utilization: HB algorithm; two-node topology; scenario one

plication packets in a packet network. As it can be seen from the graphics, the
estimator performs better for VoIP traffic flows as for video and best effort traffic
flows. The graphics also depicts the degree of utilization of the respective class
bandwidths. Figure 6.22(d) displays the delay behaviours of VoIP, video and
best effort traffic flows. It can be observed from the graphic that the traffic classes
show variable delay behaviours but their highest delays are below the maximum
tolerable delay thresholds for their applications.

Acceptance Region Tangent at Origin
The performance results achieved by the acceptance region tangent at origin
algorithm are illustrated in Table 6.22 and in Figure 6.23.

Traffic

class

Received

packets

(pkt)

Received

packets

size (pkt)

Lost

packets

(pkt)

Average

packets

delay (ms)

Total

drops (%)
Total uti-

lization

(%)

VoIP 14090656 1759729175 86516 5.265 0.5261 83.35

Video 268542 1112276408 0 5.274

Best effort 2085562 259078775 0 1.751

Table 6.22: Acceptance region tangent at origin performance results



6.2 Dynamic Bandwidth Allocation Mechanism 147

It is observable from Table 6.22 that the algorithm achieved high utilization
level and low drop rate. Figure 6.23 depicts the behaviour of the point sample
estimator and the acceptance region tangent at origin admission control algorithm
for this simulation scenario.

 4.2e+06

 4.4e+06

 4.6e+06

 4.8e+06

 5e+06

 5.2e+06

 5.4e+06

 5.6e+06

 5.8e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(a) VoIP traffic

 2e+06

 2.2e+06

 2.4e+06

 2.6e+06

 2.8e+06

 3e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(b) Video traffic

 500000

 550000

 600000

 650000

 700000

 750000

 800000

 850000

 900000

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(c) Best effort traffic

 5

 10

 15

 20

 25

 30

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

VoIP
Video
BestE

(d) VoIP, video and best effort packets delays

Figure 6.23: Actual and estimated utilization: ACTO algorithm; two-node topology; scenario
one

Figures 6.23(a), 6.23(b), and 6.23(c) illustrate how good the point sample es-
timator could estimate the actual network utilization for the acceptance region
tangent at origin algorithm while transmitting VoIP, video, and best effort ap-
plication packets. As it can be noticed in the graphics, the estimator does good
estimations of the actual utilizations for the three traffic classes. The graphics
also show the degree of utilization of the respective class bandwidths. Figure
6.23(d) displays the delay behaviours of VoIP, video and best effort traffic flows.
It can be observed from the graphic that the traffic classes exhibit variable delay
behaviours but their highest delays are still below the tolerable delay thresholds
for their respective applications.

Acceptance Region Tangent at Peak



148 Simulation Scenarios and Results

The performance results achieved by the acceptance region tangent at peak al-
gorithm are illustrated in Table 6.23 and in Figure 6.24.

Traffic

class

Received

packets

(pkt)

Received

packets

size (byte)

Lost

packets

(pkt)

Average

packets

delay (ms)

Total

drops (%)
Total uti-

lization

(%)

VoIP 17028934 2127007625 1622781 19.600 8.1650 99.28

Video 346025 1459232821 0 5.713

Best effort 2500008 310880640 0 2.002

Table 6.23: Acceptance region tangent at peak performance results

As shown in Table 6.23, the algorithm achieved high network utilization level
with a higher packet drop rate. For this scenario, this algorithm achieved the
highest utilization level but with highest packet drop rate. Figure 6.24 depicts
the behaviour of the point sample estimator and the acceptance region tangent
at peak admission control algorithm for this simulation scenario.

 5.4e+06

 5.6e+06

 5.8e+06

 6e+06

 6.2e+06

 6.4e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(a) VoIP traffic

 3.4e+06

 3.6e+06

 3.8e+06

 4e+06

 4.2e+06

 4.4e+06

 4.6e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(b) Video traffic

 600000

 650000

 700000

 750000

 800000

 850000

 900000

 950000

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(c) Best effort traffic

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

VoIP
Video
BestE

(d) VoIP, video and best effort packets delays

Figure 6.24: Actual and estimated utilization: ACTP algorithm; two-node topology; scenario
one

Figures 6.24(a), 6.24(b), and 6.24(c) illustrate how good the point sample es-
timator could estimate the actual network utilizations for the acceptance region



6.2 Dynamic Bandwidth Allocation Mechanism 149

tangent at peak algorithm while transmitting VoIP, video, and best effort appli-
cation packets. As it can be observed from the graphics, the estimator performs
well for all three traffic flows. The grahics also show the degree of utilization
of the respective class bandwidths. Figure 6.24(d) depicts the delay behaviours
of VoIP, video and best effort traffic flows. It can be noticed from the graphic
that the traffic classes show variable delay behaviours and the VoIP class shows
the highest delays, but the delays are still below the maximum tolerable delay
boundaries for their respective applications.

6.2.1.2 Simulation Scenario Two

The second simulation scenario using the two-node network topology demon-
strates a situation where the best effort application traffic flows can’t fully utilize
their class bandwidth. The sending rate of the best effort applications is pur-
posely reduced so that they only send their traffic packets at a low rate thereby
causing a low utilization of their class bandwidth. The idea behind this scenario
is to create a situation where the dynamic bandwidth allocation mechanism can
be effectively evaluated.

This simulation scenario is configured with the same application source traffic
generators and their parameters as presented in Table 6.6, subsection 6.1.1.2.
The four measurement-based admission control algorithms are used in controlling
the admission of new traffic flows into the network. The obtained performance
results are described as shown below.

Measured Sum
The performance results achieved by the measured sum for this simulation sce-
nario are displayed in Table 6.24 and in Figure 6.25.

Traffic

class

Received

packets

(pkt)

Received

packets

size (byte)

Lost

packets

(pkt)

Average

packets

delay (ms)

Total

drops (%)
Total uti-

lization

(%)

VoIP 15728663 1964475430 66210 8.214 0.3742 91.98

Video 305587 1279337427 0 5.401

Best effort 1659330 205643850 0 1.850

Table 6.24: Measured sum performance results

As shown in Table 6.24, the algorithm achieved high utilization level while
suffering low packet drop rates. This results reflects the better usage of the
unused best effort class bandwidth. Figure 6.25 displays the behaviour of the
time-window estimator and the measured sum admission control algorithm for
this simulation scenario.

Figures 6.25(a), 6.25(b), and 6.25(c) illustrate how good the time-window
estimator could estimate the actual network utilizations for the measured sum
algorithm while transmitting VoIP, video, and best effort application packets. As



150 Simulation Scenarios and Results

 4.7e+06

 4.8e+06

 4.9e+06

 5e+06

 5.1e+06

 5.2e+06

 5.3e+06

 5.4e+06

 5.5e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(a) VoIP traffic

 2.8e+06

 3e+06

 3.2e+06

 3.4e+06

 3.6e+06

 3.8e+06

 4e+06

 4.2e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(b) Video traffic

 450000

 500000

 550000

 600000

 650000

 700000

 750000

 800000

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(c) Best effort traffic

 5

 10

 15

 20

 25

 30

 35

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

VoIP
Video
BestE

(d) VoIP, video and best effort packets delays

Figure 6.25: Actual and estimated utilization: MS algorithm; two-node topology; scenario two

it can be seen from the graphics, the estimator does better estimations of the
actual utilizations for VoIP traffic flows as for video and best effort traffic flows.
It can also be observed from the grahics that the best effort class bandwith is
not optimally utilized. Figure 6.25(d) illustrates the delay behaviours of VoIP,
video and best effort traffic flows. It is noticed from the graphic that the traffic
classes exhibits variable delay behaviours but their highest delays are still below
tolerable delay threshold for their respective applications.

Hoeffding Bounds
The performance results achieved by the equivalent bandwidth based on hoeffding
bounds algorithm are shown in Table 6.25 and in Figure 6.26.

Traffic

class

Received

packets

(pkt)

Received

packets

size (byte)

Lost

packets

(pkt)

Average

packets

delay (ms)

Total

drops (%)
Total uti-

lization

(%)

VoIP 15482510 1933708615 15912 5.874 0.0975 87.01

Video 289176 1205962436 0 5.093

Best effort 544252 66381635 0 1.791

Table 6.25: Hoeffding bounds performance results



6.2 Dynamic Bandwidth Allocation Mechanism 151

As presented in Table 6.25, the algorithm achieves high network utilization
level while suffering low packet drop rates regardless of the low sending rate
of the best effort traffic. This shows the efficincy of the dynamic bandwidth
allocation mechanism. Figure 6.26 depicts the behaviour of the exponential
averaging estimator and the hoeffding bounds admission control algorithm for
this simulation scenario.

 4.6e+06

 4.8e+06

 5e+06

 5.2e+06

 5.4e+06

 5.6e+06

 5.8e+06

 6e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(a) VoIP traffic

 2.2e+06

 2.4e+06

 2.6e+06

 2.8e+06

 3e+06

 3.2e+06

 3.4e+06

 3.6e+06

 3.8e+06

 4e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(b) Video traffic

 100000

 200000

 300000

 400000

 500000

 600000

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(c) Best effort traffic

 5

 10

 15

 20

 25

 30

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

VoIP
Video
BestE

(d) VoIP, video and best effort packets delays

Figure 6.26: Actual and estimated utilization: HB algorithm; two-node topology; scenario two

Figures 6.26(a), 6.26(b), and 6.26(c) illustrate how good the exponential aver-
aging estimator could estimate the actual network utilizations for the hoeffding
bounds algorithm while transmitting VoIP, video, and best effort application
packets. As it can be observed from the graphics, the estimator performs bet-
ter for VoIP traffic flows as for video and best effort traffic flows. The graphics
also illustrate the degree of utilization of the respective class bandwidths. Figure
6.26(d) displays the delay behaviours of VoIP, video and best effort traffic flows.
It can be observed from the graphic that the traffic classes show variable delay
behaviours, but their highest delays are still below the maximum tolerable delay
thresholds for their respective applications.



152 Simulation Scenarios and Results

Acceptance Region Tangent at Origin
The performance results achieved by the acceptance region tangent at origin
algorithm are illustrated in Table 6.26 and in Figure 6.27.

Traffic

class

Received

packets

(pkt)

Received

packets

size (byte)

Lost

packets

(pkt)

Average

packets

delay (ms)

Total

drops (%)
Total uti-

lization

(%)

VoIP 15835990 1977892460 31165 4.208 0.1879 83.63

Video 259391 1083880737 0 4.974

Best effort 494085 60116745 0 1.691

Table 6.26: Acceptance region tangent at origin performance results

As presented in Table 6.26, the algorithm obtainea a high network utilization
level while suffering low packet drop rate inspite of the low sending rate of the best
effort traffic flows. The results confirms the efficiency of the dynamic bandwidth
allocation mechanism for the algorithm. Figure 6.27 depicts the behaviour of
the point sample estimator and the acceptance region tangent at origin admission
control algorithm for this simulation scenario.

 4.5e+06

 5e+06

 5.5e+06

 6e+06

 6.5e+06

 7e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(a) VoIP traffic

 2e+06

 2.2e+06

 2.4e+06

 2.6e+06

 2.8e+06

 3e+06

 3.2e+06

 3.4e+06

 3.6e+06

 3.8e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(b) Video traffic

 160000

 170000

 180000

 190000

 200000

 210000

 220000

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(c) Best effort traffic

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

VoIP
Video
BestE

(d) VoIP, video and best effort packets delays

Figure 6.27: Actual and estimated utilization: ACTO algorithm; two-node topology; scenario
two



6.2 Dynamic Bandwidth Allocation Mechanism 153

Figures 6.27(a), 6.27(b), and 6.27(c) illustrate how good the point sample
estimator could estimate the actual network utilizations for the acceptance region
tangent at origin algorithm while transmitting VoIP, video, and best effort traffic.
As it can be observed from the graphics, the estimator does good estimations of
the actual utilizations for the three traffic classes. The grahics also show the
degree of utilization of the respective class bandwidths. In the case of best effort,
it can be seen that the class bandwidth utilization is in kbit/s range instead of
Mbit/s. Figure 6.27(d) displays the delay behaviours of VoIP, video and best
effort traffic flows. It is noticable from the graphic that the traffic classes exhibit
variable delay behaviours but their highest delays are still below the maximum
tolerable delay thresholds for their respective applications.

Acceptance Region Tangent at Peak
The performance results achieved by the acceptance region tangent at peak al-
gorithm are illustrated in Table 6.27 and in Figure 6.28.

Traffic

class

Received

packets

(pkt)

Received

packets

size (byte)

Lost

packets

(pkt)

Average

packets

delay (ms)

Total

drops (%)
Total uti-

lization

(%)

VoIP 17937099 2240524365 847206 17.048 4.4837 98.44

Video 341535 1449645871 0 5.380

Best effort 616552 75410210 0 1.939

Table 6.27: Acceptance region tangent at peak performance results

As presented in Table 6.27, the algorithm achieved high network utilization level
while suffering a little higher packet drop rate, regardless of the low sending
rate of the best effort application traffic. These results show the efficiency of the
dynamic bandwidth allocation mechanism for the algorithm. Figure 6.28 depicts
the behaviour of the point sample estimator and the acceptance region tangent
at peak admission control algorithm for this simulation scenario.

Figures 6.28(a), 6.28(b), and 6.28(c) illustrate how good the point sample
estimator could estimate the actual network utilizations for the acceptance re-
gion tangent at peak algorithm while transmitting VoIP, video, and best effort
application packets. As it can be observed from the graphics, the estimator per-
forms good estimations of the actual utilizations for all three traffic classes. The
graphics also show the degree of utilization for the respective class bandwidths.
Figure 6.28(d) displays the delay behaviours of VoIP, video and best effort traffic
flows. It can be noticed from the graphic that the traffic classes show variable
delay behaviours but their highest delays are still below the maximum acceptable
delay for their respective applications.



154 Simulation Scenarios and Results

 5.6e+06

 5.8e+06

 6e+06

 6.2e+06

 6.4e+06

 6.6e+06

 6.8e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(a) VoIP traffic

 3.4e+06

 3.6e+06

 3.8e+06

 4e+06

 4.2e+06

 4.4e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(b) Video traffic

 200000

 210000

 220000

 230000

 240000

 250000

 260000

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(c) Best effort traffic

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

VoIP
Video
BestE

(d) VoIP, video and best effort packets delays

Figure 6.28: Actual and estimated utilization: ACTP algorithm; two-node topology; scenario
two

6.2.2 Simulation with the Eight-Node Network Topology

The eight-node network topology used for simulation in this section is the same
as the one presented in Figure 6.10, subsection 6.1.2. As already described, the
source agents and the application source traffic generators for the three traffic
classes are attached to separate nodes and they send their traffic through a router
node on one side and on the other side the receiving agents and the application
sink agents are attached to separate nodes and they receive traffic through a
router node.

This network topology is used for two simulation scenarios in this section. The
simulation scenarios are described in the following two subsections.

6.2.2.1 Simulation Scenario One

The first simulation scenario using the eight-node network topology and the dy-
namic bandwidth allocation mechanism is designed to provide a standard situ-
ation in a packet network where the three traffic classes are fully utilizing their



6.2 Dynamic Bandwidth Allocation Mechanism 155

class bandwidths.

The scenario uses the same application traffic source generators and their pa-
rameters as those specified in Table 6.1, subsection 6.1.1.1. The four MBAC
algorithms are used to control the admission of new traffic flows into the net-
work. The performance results obtained by each of the four MBAC algorithms
are presented below.

Measured Sum
The performance results achieved by the measured sum for this scenario are
displayed in Table 6.28 and in Figure 6.29.

Traffic

class

Received

packets

(pkt)

Received

packets

size (byte)

Lost

packets

(pkt)

Average

packets

delay (ms)

Total

drops (%)
Total uti-

lization

(%)

VoIP 14512053 1812445905 66410 9.867 0.3526 93.14

Video 281277 1173995547 0 5.670

Best effort 4041399 503535930 0 1.876

Table 6.28: Measured sum performance result

As depicted in Table 6.28, the algorithm achieves high network utilizations while
maintaining low packet drop rate. Figure 6.29 displays the behaviour of the
time-window estimator and the measured sum admission control algorithm for
this simulation scenario.

Figures 6.29(a), 6.29(b), and 6.29(c) illustrate how good the time-window
estimator could estimate the actual network utilizations for the measured sum
algorithm while transmitting VoIP, video, and best effort application packets
in a packet network. As it can be observed from the graphics, the estimator
performs better for VoIP traffic flows as for video and best effort traffic flows. The
graphics also show the degree of utilization of the respective class bandwidths.
Figure 6.29(d) displays the delay behaviours of VoIP, video and best effort traffic
flows. It can be seen from the graphic that the traffic classes exhibits variable
delay behaviours but their highest delays are still below the maximum acceptable
delay thresholds for their respective applications.



156 Simulation Scenarios and Results

 4.4e+06

 4.6e+06

 4.8e+06

 5e+06

 5.2e+06

 5.4e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(a) VoIP traffic

 2.4e+06

 2.6e+06

 2.8e+06

 3e+06

 3.2e+06

 3.4e+06

 3.6e+06

 3.8e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(b) Video traffic

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(c) Best effort traffic

 5

 10

 15

 20

 25

 30

 35

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

VoIP
Video
BestE

(d) VoIP, video and best effort packets delays

Figure 6.29: Actual and estimated utilization: MS algorithm; eight-node topology; scenario
one

Hoeffding Bounds
The performance results achieved by the equivalent bandwidth based on hoeffding
bounds algorithm are shown in Table 6.29 and in Figure 6.30.

Traffic

class

Received

packets

(pkt)

Received

packets

size (byte)

Lost

packets

(pkt)

Average

packets

delay (ms)

Total

drops (%)
Total uti-

lization

(%)

VoIP 13966262 1744206175 13147 6.877 0.0765 87.60

Video 270628 1123911437 0 5.092

Best effort 2956413 367928745 0 1.791

Table 6.29: Hoeffding bounds performance results

As presented in Table 6.29, the algorithm obtaines good total network utilization
level while keeping low packet drop rate. Figure 6.30 depicts the behaviour of
the exponential averaging estimator and the hoeffding bounds admission control
algorithm for this simulation scenario.

Figures 6.30(a), 6.30(b), and 6.30(c) illustrate how good the exponential aver-
aging estimator could estimate the actual network utilizations for the hoeffding



6.2 Dynamic Bandwidth Allocation Mechanism 157

 4.2e+06

 4.4e+06

 4.6e+06

 4.8e+06

 5e+06

 5.2e+06

 5.4e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(a) VoIP traffic

 2e+06

 2.2e+06

 2.4e+06

 2.6e+06

 2.8e+06

 3e+06

 3.2e+06

 3.4e+06

 3.6e+06

 3.8e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(b) Video traffic

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(c) Best effort traffic

 2

 4

 6

 8

 10

 12

 14

 16

 18

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

VoIP
Video
BestE

(d) VoIP, video and best effort packets delays

Figure 6.30: Actual and estimated utilization: HB algorithm; eight-node topology; scenario
one

bounds algorithm while transmitting VoIP, video, and best effort application
packets. As it can be seen from the grahics, the estimator does better estima-
tions of actual utilizations for VoIP traffic flows as for video and best effort traffic
flows. The graphics also depict the degree of utilization of the respective class
bandwidths. Figure 6.30(d) displays the delay behaviours of VoIP, video and
best effort traffic flows. As shown on the graphic, the three traffic classes show
variable delay behaviours, but their highest delays are still below the maximum
tolerable delay boundaries for their respective applications.

Acceptance Region Tangent at Origin
The performance results achieved by the acceptance region tangent at origin
algorithm are illustrated in Table 6.30 and in Figure 6.31.
As presented in Table 6.30, the algorithm achieves a good total network utilization
while maintaining a low packet drop rate. Figure 6.31 depicts the behaviour of
the point sample estimator and the acceptance region tangent at origin admission
control algorithm for this simulation scenario.

Figures 6.31(a), 6.31(b), and 6.31(c) illustrate how good the point sample es-



158 Simulation Scenarios and Results

Traffic

class

Received

packets

(pkt)

Received

packets

size (byte)

Lost

packets

(pkt)

Average

packets

delay (ms)

Total

drops (%)
Total uti-

lization

(%)

VoIP 14346259 1791702335 12123 4.086 0.0727 80.80

Video 239251 986021143 0 4.834

Best effort 2081926 258623015 0 1.673

Table 6.30: Acceptance region tangent at origin performance results

 4.4e+06

 4.6e+06

 4.8e+06

 5e+06

 5.2e+06

 5.4e+06

 5.6e+06

 5.8e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(a) VoIP traffic

 1.6e+06

 1.8e+06

 2e+06

 2.2e+06

 2.4e+06

 2.6e+06

 2.8e+06

 3e+06

 3.2e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(b) Video traffic

 450000

 500000

 550000

 600000

 650000

 700000

 750000

 800000

 850000

 900000

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(c) Best effort traffic

 2

 4

 6

 8

 10

 12

 14

 16

 18

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

VoIP
Video
BestE

(d) VoIP, video and best effort packets delays

Figure 6.31: ACTO algorithm using eight-node topology for scenario one

timator could estimate the actual network utilization for the acceptance region
tangent at origin algorithm while transmitting VoIP, video, and best effort ap-
plication packets. It is observable from the graphics that the estimator performs
good estimations for all three traffic classes. The graphics also show the degree
of utilization of their respective class bandwidths. Figure 6.31(d) displays the
delay behaviours of VoIP, video and best effort traffic flows. As it can be seen on
the graphic, the traffic classes exhibit variable delay behaviours but their highest
delays are still below the maximum acceptable delay threshold for their respective
applications.



6.2 Dynamic Bandwidth Allocation Mechanism 159

Acceptance Region Tangent at Peak
The results achieved by the acceptance region tangent at peak algorithm are
illustrated in Table 6.31 and in Figure 6.32.

Traffic

class

Received

packets

(pkt)

Received

packets

size (byte)

Lost

packets

(pkt)

Average

packets

delay (ms)

Total

drops (%)
Total uti-

lization

(%)

VoIP 16632595 2077596500 1357079 19.652 6.9463 99.37

Video 343052 1452878192 0 5.820

Best effort 2560763 318474595 0 1.993

Table 6.31: Acceptance region tangent at peak performance results

As shown in Table 6.31, the algorithm achieves high total network utilization
level while suffering a relatively high packet drop rate. The algorithm achieved
the highest total network utilization level among the other algorithms for this
scenario. Figure 6.32 depicts the behaviour of the point sample estimator and the
acceptance region tangent at peak admission control algorithm for this simulation
scenario.

 5.4e+06

 5.6e+06

 5.8e+06

 6e+06

 6.2e+06

 6.4e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(a) VoIP traffic

 3.4e+06

 3.6e+06

 3.8e+06

 4e+06

 4.2e+06

 4.4e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(b) Video traffic

 650000

 700000

 750000

 800000

 850000

 900000

 950000

 1e+06

 1.05e+06

 1.1e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(c) Best effort traffic

 10

 20

 30

 40

 50

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

VoIP
Video
BestE

(d) VoIP, video and best effort packets delays

Figure 6.32: Actual and estimated utilization: ACTP algorithm; eight-node topology; scenario
one



160 Simulation Scenarios and Results

Figures 6.32(a), 6.32(b), and 6.32(c) illustrate how good the point sample es-
timator could estimate the actual network utilization for the acceptance region
tangent at peak algorithm while transmitting VoIP, video, and best effort ap-
plication packets. As can be seen on the graphics, the estimator performs good
estimations for all three traffic classes. The graphics also illustrate the degree
of utilization of their respective class bandwidths. Figure 6.32(d) displays the
delay behaviours of VoIP, video and best effort traffic flows. As shown on the
graphic, the traffic classes exhibit variable delay behaviours but their highest de-
lays are still below the maximum tolerable delay thresholds for their respective
applications.

6.2.2.2 Simulation Scenario Two

The second simulation scenario using eight-node network topology and the dy-
namic bandwidth allocation mechanism is created to demonstrate a situation
in a packet network where the best effort applications are sending their traffic
packets at a low rate, thereby not being able to fully utilize their allocated class
bandwidth.

The best effort applications are purposely configured to send their packets at
low rate so as to evaluate the behaviour of the dynamic bandwidth allocation
mechanism, which should then allocate the unused best effort class bandwidth to
the higher priority VoIP and video classes.

This simulation scenario is set up with the same application traffic source gen-
erators and their parameters like the ones presented in Table 6.6, in subsec-
tion 6.1.1.2. The four measurement-based admission control algorithms are used
to regulate the acceptance of new traffic flows into the network. The performance
results obtained by these algorithms are described below.

Measured Sum
The performance results achieved by the measured sum for this scenario are
illustrated in Table 6.32 and in Figure 6.33.

Traffic

class

Received

packets

(pkt)

Received

packets

size (byte)

Lost

packets

(pkt)

Average

packets

delay (ms)

Total

drops (%)
Total uti-

lization

(%)

VoIP 15667109 1956860455 60913 8.678 0.3454 92.30

Video 305920 1283982609 0 5.308

Best effort 1664347 206267825 0 1.870

Table 6.32: Measured sum performance results

As shown in Table 6.32, the algorithm achieves a high total network utilization
level while maintaining low packet drop rate, inspite of the fact that the utilization
factor is set for 95 percent and the best effort applications are sending at a low
rate. This result confirms the efficiency of the dynamic bandwidth allocation



6.2 Dynamic Bandwidth Allocation Mechanism 161

mechanism for this algorithm. Figure 6.33 displays the behaviour of the time-
window estimator and the measured sum admission control algorithm for this
simulation scenario.

 4.9e+06

 5e+06

 5.1e+06

 5.2e+06

 5.3e+06

 5.4e+06

 5.5e+06

 5.6e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(a) VoIP traffic

 2.6e+06

 2.8e+06

 3e+06

 3.2e+06

 3.4e+06

 3.6e+06

 3.8e+06

 4e+06

 4.2e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(b) Video traffic

 500000

 550000

 600000

 650000

 700000

 750000

 800000

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(c) Best effort traffic

 5

 10

 15

 20

 25

 30

 35

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

VoIP
Video
BestE

(d) VoIP, video and best effort packets delays

Figure 6.33: Actual and estimated utilization: MS algorithm; eight-node topology; scenario
two

Figures 6.33(a), 6.33(b), and 6.33(c) illustrate how good the time-window
estimator could estimate the actual network utilizations for the measured sum
algorithm while transmitting VoIP, video, and best effort application packets in a
packet network. As it can be seen on the graphics, the estimator performs better
estimations for VoIP traffic as for video and best effort traffic flows. The graphics
also show the degree of utilization of their respective class bandwidths. In the
case of best effort traffic class, it is clearly observable that the class bandwidth
is not optimally utilized. Figure 6.33(d) displays the delay behaviours of VoIP,
video and best effort traffic flows. It can be noticed from the graphic that the
traffic classes exhibit variable delay behaviours but their highest delays are still
below the maximum tolerable delay thresholds for their respective applications.



162 Simulation Scenarios and Results

Hoeffding Bounds
The performance results achieved by the equivalent bandwidth based on hoeffding
bounds algorithm are shown in Table 6.33 and in Figure 6.34.

Traffic

class

Received

packets

(pkt)

Received

packets

size (byte)

Lost

packets

(pkt)

Average

packets

delay (ms)

Total

drops (%)
Total uti-

lization

(%)

VoIP 15488303 1934485975 17507 6.362 0.1072 86.83

Video 286090 1200911655 0 5.494

Best effort 554886 67710885 0 1.814

Table 6.33: Hoeffding bounds performance results

As shown in Table 6.33, the algorithm obtaines good total network utilization
level while maintinaing low drop rate regardless of the fact that the best effort
traffic is sending at low rate. This result shows the efficiency of the dynamic
bandwidth allocation mechanism for this algorithm. Figure 6.34 depicts the
behaviour of the exponential averaging estimator and the hoeffding bounds ad-
mission control algorithm for this simulation scenario.

 4.9e+06

 5e+06

 5.1e+06

 5.2e+06

 5.3e+06

 5.4e+06

 5.5e+06

 5.6e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(a) VoIP traffic

 2.6e+06

 2.8e+06

 3e+06

 3.2e+06

 3.4e+06

 3.6e+06

 3.8e+06

 4e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(b) Video traffic

 100000

 200000

 300000

 400000

 500000

 600000

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(c) Best effort traffic

 5

 10

 15

 20

 25

 30

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

VoIP
Video
BestE

(d) VoIP, video and best effort packets delays

Figure 6.34: Actual and estimated utilization: HB algorithm; eight-node topology; scenario
two



6.2 Dynamic Bandwidth Allocation Mechanism 163

Figures 6.34(a), 6.34(b), and 6.34(c) illustrate how good the exponential aver-
aging estimator could estimate the actual network utilizations for the hoeffding
bounds algorithm while transmitting VoIP, video, and best effort application
packets. As it can be seen from the graphics, the estimator performs better es-
timations for VoIP traffic flows as for video and best effort traffic flows. The
graphics also show the degree of utilization of their respective class bandwidths.
In the case of best effort, it can be seen that only a small portion of the band-
width is utilized by its applications. Figure 6.34(d) displays the delay behaviours
of VoIP, video and best effort traffic flows. It can be noticed from the graphic
that the traffic classes show variable delay behaviours, but their highest delays
are still below the maximum tolerable delay thresholds for their applications.

Acceptance Region Tangent at Origin
The performance results achieved by the acceptance region tangent at origin
algorithm are illustrated in Table 6.34 and in Figure 6.35.

Traffic

class

Received

packets

(pkt)

Received

packets

size (byte)

Lost

packets

(pkt)

Average

packets

delay (ms)

Total

drops (%)
Total uti-

lization

(%)

VoIP 15791637 1972395375 92061 3.959 0.5539 80.96

Video 255508 1074959017 0 4.820

Best effort 573116 69988585 0 1.639

Table 6.34: Acceptance region tangent at origin performance results

From Table 6.34, it can be seen that the algorithm achieves an acceptable total
network utilization while keeping low packet drop rate, inspite of the fact that the
best effort applications are sending at low rate. This result shows the efficiency
of the dynamic allocation mechanism for this algorithm.
Figures 6.35(a), 6.35(b), and 6.35(c) illustrate how good the point sample
estimator could estimate the actual network utilizations for the acceptance region
tangent at origin algorithm while transmitting different traffic. It can be observed
from the graphics that the estimator performs well for all the flows of the three
traffic classes. The grahpics also depict the degree of utilization of their respective
class bandwidths. It can be noticed that only small portion of the best effort
class bandwidth is actually utilized. Figure 6.35(d) shows the delay behaviours
of VoIP, video and best effort traffic flows. As displayed on the graphic, the traffic
classes show variable delay behaviours but their highest delays are still below the
maximum acceptable delay boundaries for their respective applications.



164 Simulation Scenarios and Results

 4.5e+06

 5e+06

 5.5e+06

 6e+06

 6.5e+06

 7e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(a) VoIP traffic

 2.2e+06

 2.4e+06

 2.6e+06

 2.8e+06

 3e+06

 3.2e+06

 3.4e+06

 3.6e+06

 3.8e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(b) Video traffic

 200000

 210000

 220000

 230000

 240000

 250000

 260000

 270000

 280000

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(c) Best effort traffic

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

VoIP
Video
BestE

(d) VoIP, video and best effort packets delays

Figure 6.35: Actual and estimated utilization: ACTO algorithm; eight-node topology; scenario
two

Acceptance Region Tangent at Peak
The performance results achieved by the acceptance region tangent at peak al-
gorithm are illustrated in Table 6.35 and in Figure 6.36.

Traffic

class

Received

packets

(pkt)

Received

packets

size (byte)

Lost

packets

(pkt)

Average

packets

delay (ms)

Total

drops (%)
Total uti-

lization

(%)

VoIP 17748730 2217161150 676000 15.476 3.6055 98.13

Video 341567 1438923892 0 5.961

Best effort 658876 80694620 0 1.908

Table 6.35: Acceptance region tangent at peak performance results

As shown in Table 6.35, the algorithm obtaines high total network utilization
level while suffering lower packet drop rate inspite of the fact that the best effort
applications are sending their traffic at low rate. This algorithm achieves the
highest total network utilization level among the other algorithms for this simu-
lation scenario. Figure 6.36 depicts the behaviour of the point sample estimator
and the acceptance region tangent at peak admission control algorithm for this



6.2 Dynamic Bandwidth Allocation Mechanism 165

simulation scenario.

 5.4e+06

 5.6e+06

 5.8e+06

 6e+06

 6.2e+06

 6.4e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(a) VoIP traffic

 3.5e+06

 3.6e+06

 3.7e+06

 3.8e+06

 3.9e+06

 4e+06

 4.1e+06

 4.2e+06

 4.3e+06

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(b) Video traffic

 190000

 200000

 210000

 220000

 230000

 240000

 250000

 260000

 270000

 280000

 2000  2050  2100  2150  2200

B
an

dw
id

th
 (

bi
t/s

)

Time (s)

Estimation
Utilization

(c) Best effort traffic

 5

 10

 15

 20

 25

 30

 35

 40

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

VoIP
Video
BestE

(d) VoIP, video and best effort packets delays

Figure 6.36: Actual and estimated utilization: ACTP algorithm; eight-node topology; scenario
two

Figures 6.36(a), 6.36(b), and 6.36(c) illustrate the performance of the ACTP
policy algorithm and the point sample estimator. It can be seen from the graphic
that the estimator does good estimations of actual utilizations for the flows of
the three traffic classes. The graphics also show the degree of utilization of their
respective class bandwidths. It is noticable that only a small portion of the best
effort class bandwidth is utilized. Figure 6.36(d) displays the delay behaviours
of VoIP, video and best effort traffic flows. As shown on the graphic, the traffic
classes exhibit variable delay behaviours, but their highest delays are still below
the maximum acceptable delay boundaries for their respective applications.



166 Simulation Scenarios and Results

6.2.3 Performance Comparison of the Two Network Topologies

In this section, the results achieved by the two-node and the eight-node network
topologies using the dynamic bandwidth allocation mechanism and the two sim-
ulation scenarios are compared. The essence of this comparison is to highlight
the effects of these network topologies in the performances obtained by the four
measurement-based admission control algorithms and to create a basis for making
possible assumptions and further research in this area.

There are totally four groups of simulations to be compared. Two results were
achieved using each of the two network topologies. The comparison is based on
the achieved network utilizations, drop rates and packet delays experienced by
the traffic classes using the four measurement-based admission control algorithms.
Table 6.36 displays an overview of the achieved results.

Two-node network topology Eight-node network topology

Simulation scenario one Simulation scenario one

Admission
algorithm

Total drops
(%)

Total util
(%)

Admission
algorithm

Total drops
(%)

Total util
(%)

MS 0.3960 93.57 MS 0.3526 93.14

HB 0.0741 86.44 HB 0.0765 87.60

ACTO 0.5261 83.35 ACTO 0.0727 80.80

ACTP 8.1650 99.28 ACTP 6.9464 99.38

Simulation scenario two Simulation scenario two

Admission
algorithm

Total drops
(%)

Total util
(%)

Admission
algorithm

Total drops
(%)

Total util
(%)

MS 0.3742 91.98 MS 0.3454 92.30

HB 0.0975 87.01 HB 0.1072 86.83

ACTO 0.1879 83.63 ACTO 0.5539 80.96

ACTP 4.4837 98.44 ACTP 3.6055 98.13

Table 6.36: Performance comparison of the two network topologies using dynamic allocated
bandwidth

The performance results in Table 6.36 illustrate the achieved utilization and the
drop rates of the four MBAC algorithms simulated. It is interesting to notice
the difference in performance between the two network topologies. For example,
the equivalent bandwidth based on hoeffding bound admission control algorithm
obtained both a lower drop rate and a higher utilization level for simulation sce-
nario two using the two-node network topology as compared to its achievement
for the same scenario using the eight-node network topology. On the other side,



6.2 Dynamic Bandwidth Allocation Mechanism 167

the measured sum algorithm achieved better drop rate and higher network uti-
lization for simulation scenario two using the eight-node topology as compared
to its achievement for the same scenario using the two-node network topology.

The delay behaviours are here compared only for the VoIP traffic, since it has
the most strict delay requirements from a network. Figure 6.37 depicts the delay
experienced by traffic flows that are controlled by the four MBAC algorithms for
simulation scenario one using both network topologies.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

MS
HB

ACTO
ACTP

(a) With two-node topology

 10

 20

 30

 40

 50

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

MS
HB

ACTO
ACTP

(b) With eight-node topology

Figure 6.37: Delays experienced by VoIP traffic for scenario one

Figure 6.37(a) presents the packet delays experienced by the traffic flows with the
four MBAC algorithms using the two-node network topology and Figure 6.37(b)
illustrated the packet delays sensed by the traffic flows with the four MBAC
algorithms using the eight-node nework topology. The figures depict the delays
sensed by the VoIP traffic class packets while traversing the multiservice bottle-
neck link. Taking some closer look at the graphics one could notice the different
delays exhibitted by the same algorithms between the two network topologies. For
example, the acceptance region tangent at origin shows lower delay behaviours
with the eight-node network topology as compared to its delays with the two-node
network topology.

The delay behaviours shown by the VoIP traffic flows with the admission control
algorithms for simulation scenario two using both of the network topologies are
presented in Figure 6.38.

Figure 6.38(a) presents the packet delays experienced by the VoIP traffic flow
with the four MBAC algorithms using the two-node network topology and Fig-
ure 6.38(b) illustrates the packet delays revealed by the VoIP traffic flows with
the four MBAC algorithms using the eight-node nework topology. The graphics
show different delay behaviours for the same algorithm type while using the two
network topologies. Observing the graphics carefully one notices that the mea-
sured sum algorithm exhibits lower delay behaviours with the two-node network



168 Simulation Scenarios and Results

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

MS
HB

ACTO
ACTP

(a) With two-node topology

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2800  2850  2900  2950  3000

D
el

ay
 [m

s]

Time [s]

MS
HB

ACTO
ACTP

(b) With eight-node topology

Figure 6.38: Delays experienced by VoIP traffic for scenario two

topology as compared to its delays with the eight-node network topology.

6.3 Performance Comparison: Static vs. Dynamic Band-
width Allocation Mechanism

This section presents the comparison of the performance results achieved by the
four measurement-based admission control algorithm for the static and dynamic
bandwidth allocation mechanisms using the two network topologies and the two
simulation scenarios.

The comparison offers the opportunity to study the importance of these mecha-
nisms for the proposed multiservice framework. It also creates ideas for possible
further enhancement of the framework and more research in this area. Before
going into the performance results comparison, some general comments about
the results should be noted.

6.3.1 General Comments About Achieved Results

In the above evaluated tables showing the achieved performance results, it is
noticable that the number of received packets from best effort application traffic
flows is bigger than from video traffic flows inspite of the fact that video traffic
class has larger bandwidth share than best effort traffic class. This situation is
caused by the variable large sizes of the video packets. Taking a closer look at the
size of the received packets in byte, one can then prove that the received video
traffic flows are actually bigger than the received best effort traffic flows. This
situation is noticed in all simulations in this thesis where video trace is used.

From the achieved average delay and the plotted delay behaviours, it can be
noticed that the VoIP traffic, which has the highest priority and is most sensitive



6.3 Performance Comparison: Static vs. Dynamic Bandwidth
Allocation Mechanism 169

to delay shows in the most cases1 the largest delays behaviours. This is due
to the fact that the VoIP traffic class has the highest number of flows in the
network and in the multiservice link each traffic class is served with a seperate
queue. Therefore, the VoIP queue is steadily filled and due to that reason, the
packets suffers larger delays. Regardless of this situation, the experienced delay
is below the maximium defined tolerable delay threshold of 150-200 ms for VoIP
applications [19].

6.3.2 Selected Results and Comparison

There are many results achieved in this thesis but for this comparison, only se-
lected results are evaluated. Based on these results, the effects of the static and
dynamic bandwidth allocation mechanism can be clearly observed. The compari-
son is carried out with the performance results obtained for the second simulation
using the two network topologies in each bandwidth allocation mechanism.

Table 6.37 presents the performance results selected for the comparison.

Static bandwidth allocation mechanism Dynamic bandwidth allocation mechanism

Two-node network topology Two-node network topology

Simulation scenario two Simulation scenario two

AC Total
drops
(%)

Total
util
(%)

VoIP
avg
delay
(ms)

Video
avg
delay
(ms)

bestE
avg
delay
(ms)

AC Total
drops
(%)

Total
util
(%)

VoIP
avg
delay
(ms)

Video
avg
delay
(ms)

bestE
avg
delay
(ms)

MS 0.1582 90.74 7.662 5.227 1.818 MS 0.3742 91.98 8.214 5.401 1.850

HB 0.0148 80.55 4.456 5.115 1.724 HB 0.0975 87.01 5.874 5.093 1.791

ACTO 0.0343 72.85 3.366 5.011 1.610 ACTO 0.1877 83.63 4.208 4.974 1.691

ACTP 1.1976 95.16 11.947 5.465 1.889 ACTP 4.4837 98.44 17.048 5.380 1.939

Eight-node network topology Eight-node network topology

Simulation scenario two Simulation scenario two

AC Total
drops
(%)

Total
util
(%)

VoIP
avg
delay
(ms)

Video
avg
delay
(ms)

bestE
avg
delay
(ms)

AC Total
drops
(%)

Total
util
(%)

VoIP
avg
delay
(ms)

Video
avg
delay
(ms)

bestE
avg
delay
(ms)

MS 0.1727 90.68 7.267 5.072 1.837 MS 0.3454 92.30 8.678 5.308 1.870

HB 0.0126 80.28 4.747 5.638 1.729 HB 0.1072 86.83 6.362 5.494 1.814

ACTO 0.1328 73.94 5.063 5.118 1.771 ACTO 0.5539 80.96 3.959 4.820 1.639

ACTP 1.2997 95.07 10.231 6.008 1.887 ACTP 3.6055 98.13 15.476 5.961 1.908

Table 6.37: Performance comparison of the static and dynamic bandwidth allocation mechanism

As it can be observed in Table 6.37, the dynamic bandwidth allocation mechanism
achieved up to 11 % total network utilization difference in comparison to the static
bandwidth allocation mechanism. It can be noticed that the dynamic bandwidth
allocation mechanism shows different efficiency levels for the four measurement-
based admission control algorithms. For example the acceptance region tangent

1The ACTO algorithm achieved lower average delay for VoIP as for video in all the cases
except for simulation scenario one using static allocated bandwidth and two-node network
topology



170 Simulation Scenarios and Results

at origin admission control algorithm achieved about 11 % difference using the
two-node network topology whereas the measured sum algorithm achieved about
1.4 % differece using the same network topology.

Furthermore, it is noticed that generally the drop rates are lower for the static
bandwidth allocation mechanism. This can be attributed to the lower number of
traffic flows traversed in the network while using this mechanism for simulation
scenario two.

6.4 Summary

The proposed multiservice framework designed for simulating the performance
effects of simultaneous transmission of multi-class traffic flows over a packet net-
work is thoroughly evaluated in this chapter. There are three traffic classes (VoIP,
video, and best effort) defind with different class priorities for this framework.
The VoIP class has the highest priority, followed by the video class and the best
effort has the lowest priority. The framework includes two powerful bandwidth
allocation mechanism, which are responsible for differentiated resource allocation
to these traffic classes according to their priorities.

Two network topologies and two simulation scenarios were defined for this evalu-
ation. The first simulation scenario demonstrates a standard situation in a packet
network where all the traffic classes are striving to make full use of their class
bandwidth. This scenario evaluates the performance of the multiservice frame-
work in such situations. The second simulation scenario depicts a situation where
the best effort class bandwidth is underutilized. The essence of this scenario is
to show and evaluate the efficiency of the dynamic bandwidth allocation mech-
anism with the four measurement-based admission control algorithms. For the
evaluation, the simulation scenarios are ran for the static bandwidth allocation
mehanism using each of the two network topologies. The same is also done for
the dynamic bandwidth allocation mechanism. The obtained performances of
the four MBAC algorithms are measured.

The measurement parameters include the number of packets recieved for each
traffic class, the size of the packets in byte, the number of lost packets, the
average delay experienced by the packets, the total network drop rate, and the
total network utilization level achieved. The achieved performances using each
of the network topologies for each of the bandwith allocation mechanism are
compared to investigate the effects of the network topologies in the total network
performance. At the end the results achieved for the two bandwidth allocation
mechanisms are compared to show the advantages of the dynamic bandwidth
allocation mechanism.



7 Conclusions

IP networks are originally designed for best effort services. Due to the introduc-
tion of real–time applications, which are sensitive to resources availability and
place performance requirements on the underlying networks, the original IP net-
works could no longer satisfy the new requirements of these applications. Hence,
there arises a need for improvement in the IP architecture to support quality of
service. The notion of service level agreement laids the basis for specifying and
agreeing on certain QoS for applications.

Some QoS technologies evolved over the past decade. The integrated service
model together with resource reservation protocol is one of the first QoS mech-
anism introduced in the IP architecture. The IntServ had the assumption that
resources must be explicitly managed by applications in order to meet their QoS
requirements. IntServ with RSVP provided a genuine QoS architecture but how-
ever, had scalability and operational complexity problems. To solve these prob-
lems the IETF introduced the DiffServ model, which is scalable and does not
require signalling protocol. Later, MPLS was introduced by IETF as connection–
oriented approach to connectionless IP–based networks, and it supports traffic
engineering.

Some designs of the integrated service networks use admission control (AC) mech-
anism to provide quality communication by ensuring resources availability for
customer traffic flows. There are different approaches to admission control mech-
anism. The parameter-based approach uses prespecified traffic characteristics to
compute the network load and thus make its admission decision whether to accept
or reject a new traffic flow. It has the disadvantage of not utilising the network
resources well, thereby causing poor network utilization. The measurement-based
approach provided an alternative solution by making an on-line measurement of
current network load and based on this measured load, makes its admission deci-
sion upon the arrival of a new flow. Four examples of the MBAC algorithms are
implemented in the ns-2 tool for network simulations.

The ns-2 tool is an object-oriented discrete event driven simulator targeted for
network research. It is widely used today in many institutions and research cen-
ters for teaching and carrying out research in internetworking area. It covers
a large set of networking protocols, which includes wired networks, wireless net-
works, and satellite networks. The tool is an open source software package, which



172 Conclusions

is free to download and it is possible to make changes to the source code. The
network simulator is written in two programming languages (C++ and OTcl),
with the primary aim of supporting detailed simulations and fast testing of dif-
ferent parameter configurations. Simulation scenarios are designed and written
only in OTcl.

A single service framework based on integrated service is embedded in ns-2 for
evaluating quality of service of a single controlled-load service in a packet network.
It is made up of two basic components known as end-to-end signalling mechanism
and enhanced link. The enhanced link contains the four measurement-based ad-
mission control algorithms. Based on this existing framework, a new multiservice
framework is designed and implemented within this thesis for simulating service
quality of multi-class traffic flows simultaneously traversing a packet network.
The new framework contains two bandwidth allocation mechanisms for sharing
the total network resources among the traffic classes according to their priorities.

The new framework is thoroughly investigated by numerous network simulations
to evaluate its performance and correctness. Two simulation scenarios and two
network topologies are used for this purpose. The achieved performance results
proved the capability and efficiency of the framework.



Bibliography

[1] G. Almes, S. Kalidindi, and M. Zekauskas. A One–way Delay Metric for
(IPPM). IETF RFC 2679, September 1999.

[2] E. Altman and T. Jimenez. NS Simulator for Beginners. University de Los
Andes, Merida, Venezuela, and ESSI, Sophia-Antipolis, France, December
2003.

[3] D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell, and J. McManus. Re-
quirement for Traffic Engineering Over MPLS. IETF RFC 2702, September
1999.

[4] A. Bak, W. Burakowski, F. Ricciato, S. Salsano, and H. Tarasiuk. Traf-
fic Handling in AQUILA QoS IP Network. In Lecture Notes in Computer
Science, volume 2156, pages 243–260, January 2001.

[5] Y. Bernet, P. Ford, R. Yavatkar, F. Baker, L. Zhang, M. Speer, R. Braden,
B. Davie, J. Wroclawski, and E. Felstaine. A Framework for Integrated
Services Operation over DiffServ Networks. IETF RFC 2998, November
2000.

[6] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An
Architecture for Differentiated Services. IETF RFC 2475, December 1998.

[7] R. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet
Architecture: an Overview. IETF RFC 1633, June 1994.

[8] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource ReSer-
Vation Protocol (RSVP). IETF RFC 2205, September 1997.

[9] L. Breslau, S. Jamin, and S. Shenker. Measurement-Based Admission Con-
trol: What is the Research Agenda? In Seventh International Workshop on
Quality of Service, pages 3–5, London, UK, June 1999.

[10] L. Breslau, S. Jamin, and S. Shenker. Comments on the Performance of
Measurement-Based Admission Control Algorithms. In Proceeding of the



174 BIBLIOGRAPHY

Nineteenth Annual Joint Conference of the IEEE Computer and Communi-
cation Societies (INFOCOM 2000), volume 3, pages 1233–1242, Tel Aviv,
Israel, March 2000.

[11] C. Casetti, J. F. Kurose, and D. F. Towsley. An Adaptive Algorithm for
Measurement-based Admission Control in Integrated Services Packet Net-
works. In Computer Communications, volume 23, pages 1363–1376, 2000.

[12] J. Chung and M. Claypool. Ns By Example Tutorial.
http://nile.wpi.edu/NS/.

[13] D. D. Clark, S. Shenker, and L. Zhang. Supporting Real-Time Applications
in an Integrated Services Packet Network; Architecture and Mechanism. In
ACM SIGCOMM ’92, volume 22, pages 14–26, August 1992.

[14] M. Conti, M. Kumar, S.K. Das, and B.A. Shirazi. Quality of Service Issues
in Internet Web Services. In Transactions on computers, volume 51, pages
593–594. IEEE, June 2002.

[15] E. Crawley, R. Nair, B. Rajagopalan, and H. Sandick. A Framework for
QoS–based Routing in the Internet. IETF RFC 2386, August 1998.

[16] B. Davie, A. Charny, J.C.R Bennett, K. Benson, J.Y Le Boudec, W. Court-
ney, S. Davari, V. Firoiu, and D. Stiliadis. An Expedited Forwarding PHB
(Per-Hop Behavior). IETF RFC 3246, March 2002.

[17] A. Demers, S. Shenker, and S. Keshav. Analysis and Simulation of a Fair
Queueing Algorithm. In ACM Symposium proceedings on Communication
Architecture & Protocols, pages 1–12, Austin-Texas, USA., 1989.

[18] C. Demichelis and P. Chimento. IP Packet Delay Variation Metric for IP
Performence Metrics (IPPM). IETF RFC 3393, November 2002.

[19] J. Evans and C. Filsfils. Deploying IP and MPLS QoS for Multiservice
Networks. Morgen Kaufmann, San Francisco, USA, 2007.

[20] K. Fall and K. Varadhan. The NS Manuel (Documentation), May 2008.
http://www.isi.edu/nsnam/ns/ns-documentation.html.

[21] D. Ferrari and D. C. Verma. A Scheme for Real-Time Channel Establishment
in Wide-Area Networks. In JSAC, volume 8:3, pages 368–379, April 1990.

[22] S. Floyd. Comments on measurement-based admissions control for
controlled-load services. Technical Report, July 1996.

[23] L. Georgiadis, R. Gurin, V. Peris, and R. Rajan. Efficient Support of De-
lay and Rate Guarantees in an Internet. In ACM SIGCOMM Computer
Communication Review, volume 26, pages 106–116, October 1996.



BIBLIOGRAPHY 175

[24] R. J. Gibbens and F. P. Kelly. Measurement-based Connection Admission
Control. In 15th International Teletraffic Congress Proceeings, pages 879–
888, Amsterdam, June 1997.

[25] Richard J. Gibbens, Frank P. Kelly, and Peter B. Key. A Decision-Theoretic
Approach to Call Admission Control in ATM Networks. In IEEE Journal
on Selected Areas in Communications, volume 13, pages 1102–1114, August
1995.

[26] J. Gozdecki, A. Jajszczyk, and R. Stankiewicz. Quality of Service Terminol-
ogy in IP Networks. In Communication Magazine, volume 41, pages 153 –
159. IEEE, March 2003.

[27] M. Greis. Marc Greis Tutorial. http://www.isi.edu/nsnam/ns/tutorial/index.html.

[28] M. Grossglauser and D. N. C. Tse. A Framework for Robust Measurement-
Based Admission Control. In IEEE/ACM Transactions on Networking, vol-
ume 7, pages 293 – 309, June 1999.

[29] M. Grossglauser and D. N. C. Tse. A Time-Scale Decomposition Approach
to Measurement-based Admission Control. In IEEE/ACM Transactions on
Networking, volume 11, pages 550 – 563, August 2003.

[30] R. Guerin, H. Ahmadi, and M. Naghshineh. Equivalent Capacity and its
application to bandwidth allocation in high-speed networks. In IEEE Journal
on selected areas in communications, volume 9, pages 968 – 981, September
1991.

[31] AWK User Guide. http://www.gnu.org/manual/gawk/html node/index.html.

[32] P. Gupta and N. McKeown. Algorithm for Packet Classification. In IEEE
Networks, volume 15, pages 24–32, March/April 2001.

[33] A. Halimi. Quality of Service Networking with MPLS. PhD thesis, Vienna
University of Technology, November 2004.

[34] W. C. Hardy. QoS Measurement and Evaluation of Telecommunication Qual-
ity of Service. John Wiley & Sons Ltd., August 2001.

[35] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Assured Forwarding
PHB Group. IETF RFC 2597, June 1999.

[36] P. Huang. Internet Simulations with the NS Simulator. In 2nd European
ns-2 Workshop, Vienna, Austria, April 2001.

[37] J. Huttunen. Measurement on Differentiation of Internet Traffic. Master’s
thesis, Helsinki University of Technology, January 2005.



176 BIBLIOGRAPHY

[38] ITU-T Recommendation E.800. Terms and Definitions related to Quality of
Service and Network Performance including Dependability, August 1994.

[39] ITU-T Recommendation E.860. Framework of a Service Level Agreement,
June 2002.

[40] ITU-T Recommendation G.1000. Communications Quality of Service: A
Framework and Definitions, November 2001.

[41] ITU-T Recommendation I.350. General Aspect of Quality of Service and
Network Performance in Digital Networks, Including ISDNs, March 1993.

[42] ITU-T Recommendation Y.1241. Support of IP-based Service using IP
Transfer Capabilities, March 2001.

[43] ITU-T Recommendation Y.1540. Internet Protocol Data Communication
Service - IP Packet Transfer and Availability Performance Parameters, De-
cember 2002.

[44] ITU-T Recommendation Y.1541. Network Performance Objectives for IP-
based Services, May 2002.

[45] J. Glasmann and M. Czermin and A. Riedl. Estimation of Token Bucket Pa-
rameters for Videoconferencing Systems in Corporate Networks. SoftCOM,
pages 10–14, September 2000.

[46] S. Jamin, P. B. Danzig, S. J. Shenker, and L. Zhang. A Measurement-based
Admission Control Algorithm for Integrated Service Packet Networks. In
IEEE/ACM Transactions on Networking, volume 5, pages 56–70, February
1997.

[47] S. Jamin, P. B. Danzig, S. J. Shenker, and L. Zhang. A Measurement-based
Admission Control Algorithm for Integrated Service Packet Networks (Ex-
tended Version). IEEE/ACM Transactions on Networking, February 1997.

[48] S. Jamin and S. J. Shenker. Measurement-based Admission Control Algo-
rithms for Controlled-load Service: A Structural Examination. Technical
Report CSE-TR-333-97, Computer Science and Engineering, University of
Michigan, April 1997.

[49] S. Jamin, S. J. Shenker, and P. B. Danzig. Comparison of Measurement-
based Admission Control Algorithms for Controlled-Load Service. In Pro-
ceeding of the sixteenth Annual Joint Conference of the IEEE Computer
and Communication Societies (INFOCOM ’97), volume 3, pages 973 – 980,
Kobe, Japan, April 1997.



BIBLIOGRAPHY 177

[50] F. Kelly. Notes on Effective Bandwidths. In In Stochastic Networks: Theory
and Applications, pages 141–168. Royal Statistical Society Lecture Notes
Series, February 1996.

[51] E. W. Knightly. On the Accuracy of Admission Control Tests. In Proceed-
ing of the International Conference on Network Protocols, pages 125–133,
Atlanta, GA USA., October 1997. IEEE.

[52] Y. Lai and S. Tsai. Unfairness of Measurement-Based Admission Controls
in a Heterogeneous Environment. In Proceedings of Eighth International
Conference on Parallel and Distributed Systems, pages 667 – 674, Kyongju
City, South Korea, June 2001.

[53] S. R. Lima, P. Carvalho, and V. Freitas. Distributed Admission Control in
Multiservice IP Networks: Concurrency Issues. In Journal of Communica-
tions (JCM), volume 1, pages 1–9, June 2006.

[54] S. R. Lima, P. Carvalho, and V. Freitas. Admission Control in Multiservice
IP Networks: Architectural Issues and Trends. In IEEE Communications
Magazine, volume 45, pages 114–121, April 2007.

[55] E. Marilly, O. Martinot, S. Betg-Brezetz, and G. Delgue. Requirements for
Service Level Agreement Management. In Workshop on IP operations and
management, volume 51, pages 57–62. IEEE, June 2002.

[56] B. Mayayo. Call Admission Control for IP Networks. Master’s thesis, Vienna
University of Technology, August 2004.

[57] A. W. Moore. Measurement-Based Management of Network Resources. PhD
thesis, Computer Laboratory, University of Cambridge, April 2002.

[58] A. W. Moore. An Implementation-based Comparison of Measurement-Based
Admission Control algorithms. In J. High Speed Networks, volume 13, pages
87–102, 2004.

[59] J. Moy. OSPF Version 2. IETF RFC 2178, July 1997.

[60] M. K. Naveen. Internet Protocol Design & Testing: Network Simulator 2.
Technical report, Electrical Communication Engineering, Indian Institute of
Science, 2006.

[61] NS2 Download Page. http://www.isi.edu/nsnam/ns/ns-build.html.

[62] NS2 Home Page. http://www.isi.edu/nsnam/ns/.

[63] Object-Oriented Tcl Tutorial. http://bmrc.berkeley.edu/research/cmt/cmtdoc/otcl/tutorial.html,
September 1995.



178 BIBLIOGRAPHY

[64] H. Ohnishi, T. Okada, and K. Noguchi. Flow Control Schemes and Delay-
Loss Tradeoff in ATM Networks. In IEEE Journal. Selected Areas in Com-
munications (Special Issue: Broadband Packet Communications), volume 6,
pages 1609–1616, December 1988.

[65] Network Animator (Nam) Manual Page.
http://www.isi.edu/nsnam/ns/tutorial/nam.txt.

[66] A. K. Parakh and G. Gallager. A Generalized Processor Sharing Approach
to Flow Control in Integrated Services Networks: The Single–Node Case. In
IEEE/ACM Transactions on Networking, volume 1, pages 344 – 357, June
1993.

[67] A.K. Parakh and G. Gallager. A Generalized Processor Sharing Approach to
Flow Control in Integrated Services Networks: The Multiple–Node Case. In
IEEE/ACM Transactions on Networking, volume 2, pages 137 – 150, April
1994.

[68] V. Paxson, G. Almes, J. Mahdavi, and M. Mathis. Framework for IP Per-
formance Metrics. IETF RFC 2330, May 1998.

[69] E.C.K. Poh and H.T. Ewe. IPv6 Packet Classification based on Flow Label,
Source and Destination Adresses. In IEEE Proceeding of the Third Inter-
national Conference on Information Technology and Application, volume 2,
pages 659–664, Sydney, Australia, July 2005.

[70] J. Qiu. Measurement-Based Admission Control in Integrated-Service Net-
works. Master’s thesis, Rice University, Houston Texas, April 1998.

[71] J. Qiu and E. W. Knightly. QoS Control via Robust Envelope-Based MBAC.
In Sixth International Workshop on Quality of Service, pages 62–64, Napa,
CA, USA, May 1998.

[72] E. Rosen and Y. Rekhter. BGP/MPLS VPNs. IETF RFC 2547, March
1999.

[73] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label Switching
Architecture. IETF RFC 3031, January 2001.

[74] Running Ns under Window Using Cyg-
win. http://nsnam.isi.edu/nsnam/index.php/ Run-
ning Ns and Nam Under Windows 9x/2000/XP Using Cygwin.

[75] H. Saito and K. Shiomoto. Dynamic Call Admission Control in ATM Net-
works. In IEEE Journal on Selected Areas in Communications, volume 9,
pages 982–989, September 1991.



BIBLIOGRAPHY 179

[76] S. Shenker, C. Partridge, and R. Guerin. Specification for Guarateed Quality
of Service. IETF RFC 2212, September 1997.

[77] B. Statovci-halimi and A. Halimi. QoS Management through Service Level
Agreements: A Short Overview. e&i, (6):243–246, June 2004.

[78] G. Stylianos, T. Panos, and P. George. Joint Measurement- and Traffic
Descriptor-based Admission Control at real-time Traffic Aggregation Points.
In IEEE International Conference on Communication, volume 4, Paris,
France, June 2004.

[79] Tcl Tutorial. http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html,
September 2006.

[80] D. N. C. Tse and M. Grossglauser. Measurement-Based Call Admission
Control: Analysis and Simulation. In Proceedings of the sixteenth Annual
Joint Conference of the IEEE Computer and Communication Societies (IN-
FOCOM ’97), pages 981 – 989, Kobe, Japan, April 1997.

[81] Z. Turányi, A. Veres, and A. Oláh. A Family of Measurement-based Ad-
mission Control Algorithms. In IFIP TC6/WG6.3 Seventh International
Conference on Performance of Information and Communication Systems,
volume 127, Lund, Schweden, May 1998. Chapman & Hall.

[82] S. Wright. Admission Control in Multi-Service IP Networks: A Tutorial.
In IEEE Communications Surveys & Tutorials, volume 9, pages 72–87, 2nd
Quarter 2007.

[83] J. Wroclawski. Specification of the Controlled-Load Network Element Ser-
vice. IETF RFC 2211, September 1997.

[84] X. Xiao, B. Bailey, A. Hannan, and L.M. Ni. Traffic Engineering with MPLS
in the Internet. In IEEE Networks, volume 14, pages 28–33, March/April
2000.

[85] X. Xiao and L. M. Ni. Internet QoS: A Big Picture. In IEEE Networks,
volume 13, pages 8–18, March/April 1999.



180 BIBLIOGRAPHY



Glossary

AC (Admission Control) A mechanism to con-
trol the network load by admitting a new flow
into a network, if there is enough resource for
the new flow and the QoS commitment of the
existing flows will not be violated.

ASP (Application Service Provider) A busi-
ness that provide computer–based service to
customer over a network.

ATM (Asynchronous Transfer Mode) A cell re-
lay packet switching network and data link
layer protocol which encodes data traffic flows
into a small fixed–sized cell.

BGP (Border Gateway Protocol) A core routing
protocol of the Internet. Which can be used
in MPLS for label distribution

CBR (Constant Bit Rate) A data traffic source
that sends packets at constant bit rates.

CLS (Controlled-Load Service) A QoS mecha-
nism which does not assure strict bounds on
delay and packet loss. It provide a service
closely equivalent to that provided to uncon-
trolled best effort traffic under lightly loaded
conditions.

Compiled Hierarchy A set of classes written in C++ which has de-
pendancy relationships

CoS (Class of Service) A service classification
mechanism in IP networks. That is used to
group packet flows into service classes.



182 Glossary

CR–LDP (Constraint–based Routing Label Dis-
tribution Protocol) An extension of LDP
for capabilities such as setup path beyond
what is available for the routing protocol.

DiffServ (Differential Service) A computer–
networking architecture that specify a simple,
scalable, and coarse–grained for classifying,
managing network traffic flows and providing
quality of service on modern IP network

DSCP (Differentiated Service Code Point) is a
field in the header of IP packets for packet
classification purpose.

EA (Exponential Averaging) A measurement
mechanism best used to estimate the network
load for the HB algorithm.

ETSI (European Telecommunication Stan-
dard Institute) An Independent non-for-
profit standardization organisation of the
telecommunication industry in Europe with
worldwide projection.

FEC (Forward Equivalence Class) A term used
in MPLS to describe a set of packets with
similar and or identical characteristics which
maybe forwarded the same way; that is, they
maybe bounded to the same label.

FIFO (First In, First Out) The most basic queue
scheduling discipline. In FIFO, all packets are
treated equally by placing them into a single
queue, and then servicing them in the same
order that they were placed into the queue.

FQ (Fair Queueing) A scheduling Algorithm
used in computer and telecommunication net-
works to allow multiply packet flow to fairly
share the link capacity.

FTP (File Transfer Protocol) is a network pro-
tocol used to transfer data from one computer
to another through a network, such as the In-
ternet. In ns-2, it is a simulated application
traffic source.



Glossary 183

GS (Guaranteed Service) A service which pro-
vides assured level of bandwidth and strict
bounds on end-to-end delay and packet loss
for conforming flows.

HB (Hoeffding Bounds) An MBAC algorithm
which computes the equivalent bandwidth for
a set of flows using the Hoeffding bounds.

IETF (Internet Engineering Task Force) An
open standard organisation with no formal
membership. It deals with standard for
TCP/IP and Internet protocol suite.

Interpreted Hierarchy A set of classes written in OTcl which has de-
pendancy relationships

IntServ (Integrated Service) A networking archi-
tecture that specifies the elements to guaran-
tee quality of service on IP networks.

IP (Internet Protocol) A conectionless trans-
port protocol

IPPM (IP Performance Metrics) An IETF work-
ing group developing a set of metrics that can
be applied to the quality, performance and re-
liability of Internet data delivery service.

ISI (Information Science Institute) An insti-
tute of the university of southern California
that manages ns-2

ISP (Internet Service Provider) An organisa-
tion that offer users access to the Internet and
related services.

ITU (International Telecommunication
Union) An international organisation
established to regulate radio and telecommu-
nication standards

ITU–T (ITU Telecommunication) The ITU
telecommunication standardization sector.

LDP (Label Distribution Protocol) A protocol
defined by the IETF for the purpose of dis-
tributing labels in an MPLS environment.



184 Glossary

LSP (Label Switched Path) A path through an
MPLS network set up by a signalling protocol
such as RSVP–TE.

LSR (Label Switch Router) A type of router lo-
cated at the middle of a MPLS network. It
is responsible for switching the labels used to
route packets

MBAC (Measurement-Based Admission Con-
trol) An AC approach that uses on-line mea-
surement to measure the network current load.

MPLS (Multiprotocol Label Switching) In com-
puter networking and telecommunication, it
is a data–carrying mechanism that belongs to
the family of packet switched networks

MS (Measured Sum) An MBAC algorithm
which uses measurement to estimate the load
caused by the existing network traffic flows.

MTU (Maximum Transmission Unit) The size
of the largest packet that a network protocol
can transmit.

Nam (Network Animator) A tool used to visu-
alize simulation results gathered in a special
trace format.

ns-2 (Network Simulator version 2) A network
simulation tool used to verify the performance
of the algorithm implemented in this thesis.

OSPF (Open Shortest Path First) A dynamic
routing protocol for use in Internet protocol
networks to navigate data packets from source
to destination.

OTcl (Object-oriented Tcl) Used for configura-
tion and writing simulation scripts in ns-2.

PBAC (Parameter-Based Admission Control)
An AC approach which uses prespecified traf-
fic parameter to compute the network load.

PHB (Per–Hop Behaviour) Defines the policy
and priority applied to a packet when travers-
ing a hop in a DiffServ network.



Glossary 185

PQ (Priority Queueing) The arrangement of
jobs to be carried out in a list according to
their relative importance, with the most im-
portant first.

PS (Point Sample) A measurement mechanism
best used for both TP and TO algorithm to
estimate the network load.

QoS (Quality of Service) A collective effects of
service performance which determines the de-
gree of satisfaction of a user on the service.

RIP (Routing Information Protocol) A dy-
namic routing protocol used in local area net-
work to create paths for delivering data pack-
ets from source to destination.

RR (Round Robin) A scheduling algorithm
which repeatedly runs through a list of users,
giving each user opportunity to service its re-
quest in succession.

RSVP (Resource ReSerVation Protocol) A
transport layer protocol designed to reserve
resources across a network for an integrated
service Internet.

RSVP–TE (Resource ReSerVation Protocol–Traffic
Engineering) An extension of the RSVP pro-
tocol for traffic engineering. Which can serve
the purpose of distributine label in MPLS.

SAP (Service Access Point) An identifying la-
bel for network endpoints used in open source
interconnection (OSI) networking

SLA (Service Level Agreement) A formal
agreement between two or more entities that
is reached after a negotiating activity with the
scope to assess service characteristics, respon-
sibilities and priorities of every party

SLS (Service Level Specification) Represents
the technical part of an SLA

Tcl (Tool Command Language) A scripting
language used for scripted applications.



186 Glossary

TCP (Transmission Control Protocol) A trans-
port layer four protocol, that is one of the core
protocols of the Internet protocol suite. In ns-
2, it is implemented as an agent.

TELNET (Terminal Emulation) Generally a program
for remote network accessing. In ns-2, it is a
simulated application traffic source.

TO (Tangent at Origin) An MBAC algorithm
which is based on the tangent to the equivalent
bandwidth at the origin.

Token Bucket A common algorithm used to control the
amount of data that is injected into a network,
allowing for bursts of data to be sent.

TP (Tangent at Peak) An MBAC algorithm
which is based on the tangent at the peak
of the equivalent bandwidth curve computed
from the Chernoff Bounds.

TTL (Time To Live) A limit of the period of time
or number of transmission in computer net-
working that a unit of data (e.g a packet) can
experience before it should be discarded.

TW (Time-Window) A simple measurement
mechanism used to estimate a network load.
It is best suited to the MS algorithm.

UDP (User Datagram Protocol) A transport
layer protocol that is one of the core proto-
cols in the Internet protocol suite. In ns-2, it
is implemented as an agent.

UML (Unified Modeling Language) A standard-
ized general-purpose modelling language used
in the field of software engineering.

VoIP (Voice over IP) A traffic type that specifies
real–time audio data

WFQ (Weighted Fair Queueing) A data
packet scheduling technique allowing dif-
ferent scheduling priorities to statistically
multiplexed data flows.

WRR (Weighted Round Robin) A best–effort
connection scheduling discipline.



Index

AC, 37, 39, 53
AF, 25
Agent, 75
ASP, 7
ATM, 9, 33, 37, 44

BA, 27
Best effort, 21
BGP, 32
Bucket rate, 20

CBR, 75
CBR traffic source, 76
CLS, 21, 43
Compiled hierarchy, 59, 61
CONSER, 60
CoS, 9, 31, 33
CPU, 33
CR–LDP, 32
CTB, 46

DARPA, 60
Delay, 13
DiffServ, 9, 16, 24, 27
Downstream unsolicited, 32
Downstream–on–demand, 32
DSCP, 9, 24, 25
duplex-link, 73

EA, 48, 50
EF, 25
ETSI, 9
Event, 61
EXP, 31
Exponential traffic source, 75

FEC, 31, 33
FIFO, 18, 99
Filterspec, 20, 22
Flowspec, 20, 22
FQ, 18, 73
FTP, 19, 75, 77

Guaranteed Service, 20, 41

HB, 47, 50, 55

IETF, 6, 9, 16, 30, 42
Interpreted hierarchy, 59
IntServ, 9, 16, 24, 51
IP, 1, 5, 37
IPDV, 13
IPPM, 12
IS–IS–TE, 32
ISI, 3
ISP, 7, 16, 25
ISPN, 42
ITU, 5, 6, 9
ITU–T, 12

Jitter, 13

LDP, 32
Link, 73
LSP, 31, 32, 34
LSR, 31, 33

MA, 47
Marker, 28
Maximum packet size, 20
MBAC, 2, 40, 42, 43, 49–51, 104, 115,

117, 143, 149, 155, 166



188 INDEX

Metering, 28
MF, 27
Minimum policed unit, 20
MPLS, 3, 16, 30
MS, 50, 55
MTBF, 15
MTTF, 14
MTTR, 14
MTU, 21

Nam, 62, 72, 74, 78, 81
Network availability, 13
Node, 73
ns-2, 51, 59–61, 63, 64, 71, 73, 86, 104
NSF, 60

OSPF, 23
OSPF–TE, 32
OTcl, 59, 61, 64, 69

Packet loss rate, 13
Pareto traffic source, 76
PBAC, 2, 40, 51
Peak rate, 20
PHB, 24
Policier, 28
PQ, 18
Predictive Service, 42
PS, 49

QoS, 1, 2, 5, 9, 10, 12, 17, 37, 38, 42,
103, 115, 143

Quality, 5

Reliability performance, 14
RIP, 23
RR, 18
RSpec, 20
RSVP, 16, 22, 52, 99
RSVP–TE, 32

SA, 14
SAMAN, 60
SAP, 14
Serveability, 15

Service, 5
Service rate, 20
SFQ, 73
Shaper, 28
simplex-link, 73
SLA, 1, 3, 6, 7, 14, 27, 34, 37, 38, 42
Slack term, 20
SLS, 7
STB, 46

Tcl, 65, 68, 72
TCP, 75
TELNET, 77
Throughput, 13
TO, 47, 55
Token Bucket, 28, 44, 46, 48, 51
token bucket TSpec, 20
TP, 47, 55
Trace traffic source, 76
Traffic Classifier, 27
TSpec, 20
TTL, 31, 74
TW, 47, 49

UDP, 75
UML, 98

VINT, 60
VoIP, 2, 25, 38, 53, 56, 116–118, 128,

143

WFQ, 18, 21, 25
WRR, 25



List of Source Codes

Listing 1: Admission control header file
1
2 /∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

3 ∗ Author : Vincent Chimaobi Emeakaroha
4 ∗ Email : e0027525@student . tuwien . ac . a t
5 ∗ Address : I n s t i t u t e f o r broadband communication
6 ∗ Vienna un i v e r s i t y o f Technology (TU)
7 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗/
8
9#ifndef ns adc h

10#define ns adc h
11
12 /∗ Act i va t e dynamic bandwidth borrowing ∗/
13#define BORROW
14
15 /∗ Act i va t e ou t pu t t i n g o f debug messages ∗/
16#define DBUG MS
17
18#include ” es t imator . h”
19
20 /∗ The maximum number o f measurement o b j e c t s to be used f o r

e s t ima t ion ∗/
21#define CLASS 10
22
23 /∗ The admission con t r o l base c l a s s d e c l a r a t i on ∗/
24 class ADC : public NsObject {
25
26 /∗ d e c l a r a t i on o f p u b l i c member f unc t i on s ∗/
27 public :
28 ADC() ;
29 int command( int , const char∗const ∗) ;
30 virtual int admit f low ( int c l , double r , int b)=0;
31 virtual void r e j a c t i o n ( int , double , int ) {} ;
32 virtual void teardown act ion ( int , double , int ) {} ;
33 inl ine void recv ( Packet ∗ , Handler ∗) {}
34 inl ine void s e t e s t ( int c l , Estimator ∗ e s t ) { e s t [ c l ]= e s t ;



190 List of Source Codes

35 e s t [ c l ]−> s e tac type
( type ) ;}

36 double peak rate ( int c l , double r , int b) {return r+b/ e s t [ c l
]−>per iod ( ) ;}

37 char ∗ type ( ) {return type ;}
38
39 /∗ Dec lara t ion o f p ro t e c t ed member v a r i a b l e s ∗/
40 protected :
41 Estimator ∗ e s t [CLASS ] ; /∗ Array o f e s t imator po in t e r

v a r i a b l e s ∗/
42 double bandwidth ; /∗ The network t o t a l bandwidth ∗/
43 char ∗ type ; /∗ The p a r t i c u l a r type o f a l gor i thm

in p lay ∗/
44 Tcl Channel tchan ; /∗ A va r i a b l e f o r a t t a ch ing t race

f i l e d e s c r i p t o r s ∗/
45 int s r c ; /∗ The source address o f a packe t

∗/
46 int ds t ; /∗ The d e s t i n a t i o n address o f a

packe t ∗/
47 int backo f f ; /∗ A boo len v a r i a b l e to r e g u l a t e HB

, ACTO & ACTP admission proces s ∗/
48 int dobump ; /∗ A boo len v a r i a b l e to r e g u l a t e

the change on av load in ACTO & ACTP admission proces s ∗/
49 } ;
50
51#endif

Listing 2: Admission control base class source file

1
2#ifndef l i n t
3 stat ic const char r c s i d [ ] =
4 ”@(#) $Header : / cv s roo t /nsnam/ns−2/adc/adc . cc , v 1 .8

2005/08/26 05 : 05 : 27 tomh Exp $” ;
5#endif

6
7#include ”adc . h”
8#include <s t d l i b . h>
9

10 /∗ The cons t ruc t o r func t i on d e f i n i t i o n ∗/
11 ADC: :ADC( ) : bandwidth (0 ) , tchan (0 )
12 {
13 /∗ Bind the s e member v a r i a b l e s so t ha t they can be

a c c e s s i b l e f o r OTcl s c r i p t s ∗/
14 bind bw ( ”bandwidth ” ,&bandwidth ) ;
15 b ind boo l ( ” ba cko f f ” ,& backo f f ) ;
16 bind ( ” s r c ” , &s r c ) ;
17 bind ( ” d s t ” , &ds t ) ;
18 b ind boo l ( ”dobump ” , &dobump ) ;
19 }
20
21 /∗ The command func t i on to execu te member f unc t i on s invoked from



191

OTcl s c r i p t s ∗/
22 int ADC: : command( int argc , const char∗const∗argv )
23 {
24
25 Tcl& t c l = Tcl : : i n s t ance ( ) ; /∗ ge t the Tcl in s tance f o r

pas s ing r e s u l t s back and forward b/w C++ and OTcl ∗/
26 i f ( argc==2) {
27 i f ( strcmp ( argv [ 1 ] , ” s t a r t ” ) ==0) {
28 /∗ $adc s t a r t f o r s i n g l e s e r v i c e c o n t r o l l e d

load ∗/
29 e s t [1]−> s t a r t ( ) ;
30 }
31 return (TCL OK) ;
32 } else i f ( argc == 3) {
33 i f ( strcmp ( argv [ 1 ] , ” s t a r t ” ) ==0) {
34 /∗ $adc s t a r t f o r mu l t i s e r v i c e 3 d i f f e r e n t

c l a s s e s o f f l ow s added f o r the
mu l t i s e r v i c e framework∗/

35 int cl num = ato i ( argv [ 2 ] ) ; /∗ e x t r a c t the
number o f e s t ima to r s to s t a r t ∗/

36 for ( int b = 1 ; b <= cl num ; b++){
37 e s t [ b]−> s t a r t ( ) ; /∗ s t a r t the

e s t ima to r s ∗/
38 }
39 return (TCL OK) ;
40 }
41 } else i f ( argc==4) {
42 i f ( strcmp ( argv [ 1 ] , ” attach−measmod” ) == 0) {
43 /∗ s e t the measurement o b j e c t i n s t a n t i a t e d

f o r a c l a s s o f t r a f f i c ∗/
44 /∗ $adc at tach−measmod $meas $ c l ∗/
45 MeasureMod ∗meas mod = (MeasureMod ∗)

TclObject : : lookup ( argv [ 2 ] ) ; /∗ ge t the
measurement o b j e c t ∗/

46 i f (meas mod== 0) {
47 t c l . r e s u l t f ( ”no measuremod found” ) ;
48 return (TCL ERROR) ;
49 }
50 int c l=a t o i ( argv [ 3 ] ) ; /∗ e x t r a c t the c l a s s

o f t r a f f i c ∗/
51 e s t [ c l ]−>setmeasmod (meas mod ) ; /∗ s e t the

measurement o b j e c t ∗/
52 return (TCL OK) ;
53 } else i f ( strcmp ( argv [ 1 ] , ” attach−e s t ” ) == 0 ) {
54 /∗ s e t the e s t imator o b j e c t i n s t a n t i a t e d f o r

a c l a s s o f t r a f f i c ∗/
55 /∗ $adc at tach−e s t $ e s t $ c l ∗/
56 Estimator ∗ est mod = ( Estimator ∗) TclObject

: : lookup ( argv [ 2 ] ) ; /∗ ge t the e s t imator
o b j e c t ∗/

57 i f ( est mod== 0) {



192 List of Source Codes

58 t c l . r e s u l t f ( ”no estmod found” ) ;
59 return (TCL ERROR) ;
60 }
61 int c l=a t o i ( argv [ 3 ] ) ; /∗ e x t r a c t the c l a s s

o f t r a f f i c ∗/
62 s e t e s t ( c l , est mod ) ; /∗ s e t the e s t imator

o b j e c t ∗/
63 return (TCL OK) ;
64 }
65 }
66 else i f ( argc == 3) {
67 i f ( strcmp ( argv [ 1 ] , ” attach ” ) == 0) {
68 /∗ a t t ach a f i l e d e s c r i p t o r f o r wr i t i n g

t race even t s ∗/
69 int mode ;
70 const char∗ id = argv [ 2 ] ;
71 tchan = Tcl GetChannel ( t c l . i n t e rp ( ) , (char

∗) id , &mode) ;
72 i f ( tchan == 0) {
73 t c l . r e s u l t f ( ”ADC: t r a c e : can ’ t

attach %s f o r wr i t i ng ” , id ) ;
74 return (TCL ERROR) ;
75 }
76 return (TCL OK) ;
77
78 }
79 i f ( strcmp ( argv [ 1 ] , ” s e tbu f ” ) == 0) {
80 /∗ some sub c l a s s e s a c t u a l l y do something

here ∗/
81 return (TCL OK) ;
82 }
83
84
85 }
86 return ( NsObject : : command( argc , argv ) ) ;
87 }

Listing 3: Measured sum admission control source file

1
2#ifndef l i n t
3 stat ic const char r c s i d [ ] =
4 ”@(#) $Header : / cv s roo t /nsnam/ns−2/adc/ms−adc . cc , v 1 .7

2005/08/26 05 : 05 : 27 tomh Exp $” ;
5#endif

6
7
8#include ”adc . h”
9#include <s t d i o . h>

10#include <s t d l i b . h>
11#include ”bandwidthAlloc . h”
12



193

13 /∗ The measured sum c l a s s d e c l a r a t i on ∗/
14 class MC MS ADC : public ADC {
15
16 /∗ pu b l i c member f unc t i on s d e c l a r a t i on ∗/
17 public :
18 MC MS ADC() ;
19 void r e j a c t i o n ( int , double , int ) ;
20
21 /∗ p ro t e c t ed member f unc t i on s and member v a r i a b l e s d e c l a r a t i on ∗/
22 protected :
23 int admit f low ( int , double , int ) ;
24 /∗ the g e t ra t e member func t i on d e f i n i t i o n to re turn the

ra t e o f t r a f f i c f l ow s ∗/
25 inl ine virtual double g e t r a t e ( int /∗ c l ∗/ , double r , int /∗b

∗/ )
26 { return r ; } ;
27 double u t i l i z a t i o n ; /∗ member v a r i a b l e to ho ld the va lue

con f i gured f o r the u t i l i z a t i o n f a c t o r ∗/
28
29 /∗ Member v a r i a b l e f o r the dynamic bandwidth borrowing

mechanism ∗/
30 double voClAvgLd , viClAvgLd , stdClAvgLd ;
31 BandwidthAlloc bw ;
32 } ;
33
34 /∗ The c l a s s cons t ruc t o r d e f i n i t i o n ∗/
35 MC MS ADC: :MC MS ADC()
36 {
37 /∗ Bind t h i s v a r i a b l e so t ha t i t w i l l be con f i gured from

OTcl s c r i p t s ∗/
38 bind ( ” u t i l i z a t i o n ” ,& u t i l i z a t i o n ) ;
39 type = new char [ 5 ] ;
40 s t r cpy ( type , ”MSAC” ) ; /∗ s e t the type o f admission

a l gor i thm in use ∗/
41
42 voClAvgLd = 0 . 0 ; viClAvgLd = 0 . 0 ; stdClAvgLd = 0 . 0 ;
43 /∗ make the t o t a l network bandwidth a v a i l a b l e to the

bandwidth shar ing func t i on ∗/
44 //bw = new BandwidthAl loc ( ) ;
45
46 /∗ I n i t i a l i z e the bandwidth shar ing and dynamic bandwidth

borrowing mechanism ∗/
47 bw. bwAl loc In i t ( bandwidth ) ;
48 }
49
50 /∗ A member func t i on f o r decreas ing the average network load when a

f l ow i s r e j e c t e d ∗/
51 void MC MS ADC: : r e j a c t i o n ( int c l , double r , int b)
52 {
53 double r a t e = g e t r a t e ( c l , r , b ) ; /∗ ge t the ra t e o f

the f l ow ∗/



194 List of Source Codes

54 e s t [ c l ]−>change avload(− r a t e ) ; /∗ reduce the f l ow
c l a s s average network load by the f l ow ra t e ∗/

55 }
56
57 /∗ The member func t i on r e s p on s i b l e f o r admi t t ing f l ow in to the

network ∗/
58 int MC MS ADC: : admit f low ( int c l , double r , int b)
59 {
60 double r a t e = g e t r a t e ( c l , r , b ) ; /∗ ge t the f l ow ra t e ∗/
61
62 /∗ s e l e c t the c l a s s o f the t r a f f i c f l ow ∗/
63 switch ( c l )
64 {
65 case 1 :
66 /∗ Admission po in t f o r vo ip f l ow t r a f f i c c l a s s . t h i s

c l a s s has the h i g h e s t p r i o r i t y ∗/
67 voClAvgLd = rate+e s t [ c l ]−>avload ( ) ;
68 i f ( voClAvgLd < u t i l i z a t i o n ∗ bw. cl bw [ c l −1]) {
69 e s t [ c l ]−>change avload ( ra t e ) ; /∗

a r t i f i c i a l l y ad j u s t the vo ip c l a s s
average load ∗/

70#ifde f BORROW
71 /∗ f unc t i on c a l l to dynamica l l y borrow

bandwidth from standard c l a s s ∗/
72 bw. voipBorrowBw (voClAvgLd , stdClAvgLd ) ;
73#endif

74
75#ifde f DBUG MS
76 /∗ p r i n t out the f l ow id , average load and

c l a s s bandwidth va l u e s ∗/
77 p r i n t f ( ” c l : %d , AVGL: %f , bw : %f \n” , c l ,

voClAvgLd , u t i l i z a t i o n ∗bw. cl bw [ c l −1]) ;
78#endif

79 return 1 ;
80 }
81 return 0 ;
82 break ;
83
84 case 2 :
85 /∗ Admission po in t f o r v ideo f l ow t r a f f i c c l a s s .

t h i s c l a s s has middle p r i o r i t y ∗/
86 viClAvgLd = rate+e s t [ c l ]−>avload ( ) ;
87 i f ( viClAvgLd < u t i l i z a t i o n ∗ bw. cl bw [ c l −1]) {
88 e s t [ c l ]−>change avload ( ra t e ) ; /∗

a r t i f i c i a l l y ad j u s t the v ideo c l a s s
average load ∗/

89#ifde f BORROW
90 /∗ f unc t i on c a l l to dynamica l l y borrow

bandwidth from standard c l a s s ∗/
91 bw. videoBorrowBw ( viClAvgLd , stdClAvgLd ) ;
92#endif



195

93
94#ifde f DBUG MS
95 /∗ p r i n t out the f l ow id , average load and

c l a s s bandwidth va l u e s ∗/
96 p r i n t f ( ” c l : %d , AVGL: %f , bw : %f \n” , c l ,

viClAvgLd , u t i l i z a t i o n ∗bw. cl bw [ c l −1]) ;
97#endif

98 return 1 ;
99

100 }
101 return 0 ;
102 break ;
103
104 case 3 :
105 /∗ Admission po in t f o r s tandard f l ow t r a f f i c c l a s s .

t h i s c l a s s has l owe s t p r i o r i t y ∗/
106 stdClAvgLd = rate+e s t [ c l ]−>avload ( ) ;
107 i f ( stdClAvgLd < u t i l i z a t i o n ∗ bw. cl bw [ c l −1]) {
108 e s t [ c l ]−>change avload ( ra t e ) ; /∗

a r t i f i c i a l l y ad j u s t the s tandard c l a s s
average load ∗/

109#ifde f BORROW
110 /∗ f unc t i on c a l l to recover the dynamical

borrowed bandwidth from voip and v ideo
c l a s s e s ∗/

111 bw. stdRecoverBw (voClAvgLd , viClAvgLd ,
stdClAvgLd ) ;

112#endif

113
114#ifde f DBUG MS
115 /∗ p r i n t out the f l ow id , average load and

c l a s s bandwidth va l u e s ∗/
116 p r i n t f ( ” c l : %d , AVGL: %f , bw : %f \n” , c l ,

stdClAvgLd , u t i l i z a t i o n ∗bw. cl bw [ c l −1]) ;
117#endif

118 return 1 ;
119 }
120 return 0 ;
121 break ;
122
123 default :
124 p r i n t f ( ” Inva l i d f low id \n” ) ;
125 return 0 ;
126 }
127
128 }
129
130 /∗ A s t a t i c l i n k a g e c l a s s to make the MC MS ADC c l a s s o b j e c t s

a c c e s s i b l e from In t ep r e t e d h i e rarchy ∗/
131 stat ic class MC MS ADCClass : public TclClass {
132 public :



196 List of Source Codes

133 MC MS ADCClass ( ) : Tc lClass ( ”ADC/MC MS” ) {}
134 TclObject ∗ c r e a t e ( int , const char∗const ∗) {
135 return (new MC MS ADC() ) ;
136 }
137 } c lass mc ms adc ;

Listing 4: Hoeffding bounds admission control source file

1
2#ifndef l i n t
3 stat ic const char r c s i d [ ] =
4 ”@(#) $Header : / cv s roo t /nsnam/ns−2/adc/hb−adc . cc , v 1 .6

2005/08/26 05 : 05 : 27 tomh Exp $” ;
5#endif

6
7
8#include ”adc . h”
9#include <s t d i o . h>

10#include <s t d l i b . h>
11#include <math . h>
12#include ”bandwidthAlloc . h”
13
14
15 /∗ The hoe f f d i n g bound c l a s s d e c l a r a t i on ∗/
16 class MC HB ADC : public ADC {
17
18 /∗ Pub l i c member f unc t i on s d e c l a r a t i o n s ∗/
19 public :
20 MC HB ADC() ;
21 void teardown act ion ( int , double , int ) ;
22 void r e j a c t i o n ( int , double , int ) ;
23
24 /∗ Protec ted member func t i on d e c l a r a t i o n s ∗/
25 protected :
26 int admit f low ( int , double , int ) ;
27 int r e j e c t e d ; /∗ a member v a r i a b l e to

i n d i c a t e t ha t a f l ow i s r e j e c t e d admission ∗/
28 double e p s i l o n ; /∗ a member v a r i a b l e t h a t

ho l d s the e q u i v a l e n t bandwidth va lue in the d e c i s i on
a l gor i thm ∗/

29 double sump2 [ 3 ] ; /∗ array member v a r i a b l e to
s t o r e the sum of the square o f peak r a t e s o f the t h r ee
d i f f e r e n t t r a f f i c f l ow s ∗/

30
31 /∗ Member v a r i a b l e f o r the dynamic bandwidth borrowing

mechanism ∗/
32 double voClAvgLd , viClAvgLd , stdClAvgLd ;
33 BandwidthAlloc bw ;
34 } ;
35
36 /∗ c l a s s cons t ruc t o r d e f i n i t i o n ∗/
37 MC HB ADC: :MC HB ADC() : r e j e c t e d (0 )



197

38 {
39 /∗ bind t h i s member v a r i a b l e so t ha t i t can be con f i gured

from OTcl s c r i p t s ∗/
40 bind ( ” e p s i l o n ” , &ep s i l o n ) ;
41 type = new char [ 3 ] ;
42 s t r cpy ( type , ”HB” ) ; /∗ s e t the type o f admission

a l gor i thm in use ∗/
43
44 /∗ member v a r i a b l e s i n i t i a l i z a t i o n s ∗/
45 for ( int s = 0 ; s < 3 ; s++)
46 {
47 sump2 [ s ]= 0 ;
48 }
49 voClAvgLd = 0 . 0 ; viClAvgLd = 0 . 0 ; stdClAvgLd = 0 . 0 ;
50
51 /∗ I n i t i a l i z e the bandwidth shar ing and dynamic bandwidth

borrowing mechanism ∗/
52 bw. bwAl loc In i t ( bandwidth ) ;
53
54 }
55
56 /∗ The member func t i on r e s p on s i b l e f o r admi t t ing f l ow in to the

network ∗/
57 int MC HB ADC: : admit f low ( int c l , double r , int b)
58 {
59 double p=peak rate ( c l , r , b ) ; /∗ ge t the f l ow peak

ra t e ∗/
60
61 /∗ when the f l ow o f a t r a f f i c c l a s s shou ld not be admitted ,

r e j e c t the f l ow immediate ly ∗/
62 i f ( ba cko f f ) {
63 i f ( r e j e c t e d )
64 return 0 ;
65 }
66
67 /∗ s e l e c t the c l a s s o f the t r a f f i c f l ow ∗/
68 switch ( c l )
69 {
70 /∗ Admission po in t f o r vo ip f l ow t r a f f i c c l a s s . t h i s c l a s s

has the h i g h e s t p r i o r i t y ∗/
71 case 1 :
72 // Admit f l ow accord ing to c l a s s bandwidth share
73 voClAvgLd = (p+e s t [ c l ]−>avload ( )+sq r t ( l og (1/

e p s i l o n ) ∗sump2 [ c l −1]/2) ) ;
74 i f ( voClAvgLd <= bw. cl bw [ c l −1]) {
75 sump2 [ c l −1] += p∗p ;
76 e s t [ c l ]−>change avload (p) ; /∗

a r t i f i c i a l l y ad j u s t the vo ip c l a s s
average load ∗/

77#ifde f BORROW
78 /∗ f unc t i on c a l l to dynamica l l y borrow



198 List of Source Codes

bandwidth from standard c l a s s ∗/
79 bw. voipBorrowBw (voClAvgLd , stdClAvgLd ) ;
80#endif

81
82#ifde f DBUG MS
83 /∗ p r i n t out the f l ow id , average load and

c l a s s bandwidth va l u e s ∗/
84 p r i n t f ( ” c l : %d , AVGL: %f , bw : %f \n” , c l ,

voClAvgLd , bw . cl bw [ c l −1]) ;
85#endif

86 return 1 ;
87 }
88 else {
89 r e j e c t e d =1; /∗ i n d i c a t e to r e j e c t

f u r t h e r connect ions o f t h i s f l ow type ∗/
90 return 0 ;
91 }
92 break ;
93
94 case 2 :
95 /∗ Admission po in t f o r v ideo f l ow t r a f f i c c l a s s .

t h i s c l a s s has middle p r i o r i t y ∗/
96 viClAvgLd = (p+e s t [ c l ]−>avload ( )+sq r t ( l og (1/

e p s i l o n ) ∗sump2 [ c l −1]/2) ) ;
97 i f ( viClAvgLd <= bw. cl bw [ c l −1]) {
98 sump2 [ c l −1] += p∗p ;
99 e s t [ c l ]−>change avload (p) ; /∗

a r t i f i c i a l l y ad j u s t the v ideo c l a s s
average load ∗/

100#ifde f BORROW
101 /∗ f unc t i on c a l l to dynamica l l y borrow

bandwidth from standard c l a s s ∗/
102 bw. videoBorrowBw ( viClAvgLd , stdClAvgLd ) ;
103#endif

104
105#ifde f DBUG MS
106 /∗ p r i n t out the f l ow id , average load and

c l a s s bandwith va l u e s ∗/
107 p r i n t f ( ” c l : %d , AVGL: %f , bw : %f \n” , c l ,

viClAvgLd , bw . cl bw [ c l −1]) ;
108#endif

109 return 1 ;
110 }
111 else {
112 r e j e c t e d =1; /∗ i n d i c a t e to r e j e c t

f u r t h e r connect ions o f t h i s f l ow type ∗/
113 return 0 ;
114 }
115 break ;
116
117 case 3 :



199

118 /∗ Admission po in t f o r s tandard f l ow t r a f f i c c l a s s .
t h i s c l a s s has l owe s t p r i o r i t y ∗/

119 stdClAvgLd = (p+e s t [ c l ]−>avload ( )+sq r t ( l og (1/
e p s i l o n ) ∗sump2 [ c l −1]/2) ) ;

120 i f ( stdClAvgLd <= bw. cl bw [ c l −1]) {
121 sump2 [ c l −1] += p∗p ;
122 e s t [ c l ]−>change avload (p) ; /∗

a r t i f i c i a l l y ad j u s t the s tandard c l a s s
average load ∗/

123#ifde f BORROW
124 /∗ f unc t i on c a l l to recover the dynamical

borrowed bandwidth from voip and v ideo
c l a s s e s ∗/

125 bw. stdRecoverBw (voClAvgLd , viClAvgLd ,
stdClAvgLd ) ;

126#endif

127
128#ifde f DBUG MS
129 /∗ p r i n t out the f l ow id , average load and

c l a s s bandwidth va l u e s ∗/
130 p r i n t f ( ” c l : %d , AVGL: %f , bw : %f \n” , c l ,

stdClAvgLd , bw . cl bw [ c l −1]) ;
131#endif

132 return 1 ;
133 }
134 else {
135 r e j e c t e d =1; /∗ i n d i c a t e to r e j e c t

f u r t h e r connect ions o f t h i s f l ow type ∗/
136 return 0 ;
137 }
138 break ;
139
140 default :
141 p r i n t f ( ”Wrong c l a s s f low id ” ) ;
142 return 0 ;
143 }
144
145 }
146
147 /∗ The member func t i on to r e j e c t admission r e que s t when the network

i s over loaded ∗/
148 void MC HB ADC: : r e j a c t i o n ( int c l , double r , int b)
149 {
150 double p=peak rate ( c l , r , b ) ; /∗ ge t the f l ow peak ra t e ∗/
151 sump2 [ c l −1] −= p∗p ; /∗ decrease the sum

of the square o f the f l ow peak ra t e ∗/
152
153 }
154
155 /∗ The member func t i on to t ea r down a connect ion ∗/
156 void MC HB ADC: : teardown act ion ( int c l , double r , int b)



200 List of Source Codes

157 {
158 r e j e c t e d =0; /∗ i n d i c a t e

to accep t once more connect ions o f t h i s f l ow type ∗/
159 double p=peak rate ( c l , r , b ) ; /∗ ge t the f l ow peak

ra t e ∗/
160 sump2 [ c l −1] −= p∗p ; /∗ decrease

the sum of the square o f the f l ow peak ra t e ∗/
161
162 }
163
164 /∗ A s t a t i c l i n k a g e c l a s s to make the MC HB ADC c l a s s o b j e c t s

a c c e s s i b l e from In t ep r e t e d h i e rarchy ∗/
165 stat ic class MC HB ADCClass : public TclClass {
166 public :
167 MC HB ADCClass ( ) : Tc lClass ( ”ADC/MC HB” ) {}
168 TclObject ∗ c r e a t e ( int , const char∗const ∗) {
169 return (new MC HB ADC() ) ;
170 }
171 } c la s s mc hb adc ;

Listing 5: Acceptance region tangent at origin admission control source file

1
2#ifndef l i n t
3 stat ic const char r c s i d [ ] =
4 ”@(#) $Header : / cv s roo t /nsnam/ns−2/adc/acto−adc . cc , v 1 .7

2005/08/26 05 : 05 : 27 tomh Exp $” ;
5#endif

6
7
8#include ”adc . h”
9#include <s t d i o . h>

10#include <s t d l i b . h>
11#include <math . h>
12#include ”bandwidthAlloc . h”
13
14 /∗ The acceptance reg ion tangent at o r i g i n c l a s s d e c l a r a t i on ∗/
15 class MC ACTO ADC : public ADC {
16
17 /∗ pu b l i c member f unc t i on s d e c l a r a t i o n s ∗/
18 public :
19 MC ACTO ADC() ;
20 void teardown act ion ( int , double , int ) ;
21
22 /∗ p ro t e c t ed member func t i on and member v a r i a b l e s d e c l a r a t i on s ∗/
23 protected :
24 int admit f low ( int , double , int ) ;
25 int r e j e c t e d ; /∗ a member v a r i a b l e to i n d i c a t e

t ha t a f l ow i s r e j e c t e d admission ∗/
26 double s ; /∗ a member v a r i a b l e

r ep r e s en t i n g the space parameter o f the che rno f f bounds
in the d e c i s i on a l gor i thm ∗/



201

27
28 /∗ Member v a r i a b l e f o r the dynamic bandwidth borrowing

mechanism ∗/
29 double voClAvgLd , viClAvgLd , stdClAvgLd ;
30 BandwidthAlloc bw ;
31 } ;
32
33 /∗ c l a s s con s t ruc t r o r d e f i n i t i o n ∗/
34 MC ACTO ADC: :MC ACTO ADC() : r e j e c t e d (0 )
35 {
36 /∗ bind t h i s member v a r i a b l e so t ha t i t can be con f i gured

from OTcl s c r i p t s ∗/
37 bind ( ” s ” , &s ) ;
38 type = new char [ 5 ] ;
39 s t r cpy ( type , ”ACTO” ) ; /∗ s e t the type o f admission

a l gor i thm in use ∗/
40
41 /∗ member v a r i a b l e s i n i t i a l i z a t i o n s ∗/
42 voClAvgLd = 0 . 0 ; viClAvgLd = 0 . 0 ; stdClAvgLd = 0 . 0 ;
43
44 /∗ I n i t i a l i z e the bandwidth shar ing and dynamic bandwidth

borrowing mechanism ∗/
45 bw. bwAl loc In i t ( bandwidth ) ;
46 }
47
48 /∗ The member func t i on r e s p on s i b l e f o r admi t t ing f l ow in to the

network ∗/
49 int MC ACTO ADC: : admit f low ( int c l , double r , int b)
50 {
51 double p=peak rate ( c l , r , b ) ; /∗ ge t the f l ow peak

ra t e ∗/
52
53 /∗ when the f l ow o f a t r a f f i c c l a s s shou ld not be admitted ,

r e j e c t the f l ow immediate ly ∗/
54 i f ( ba cko f f ) {
55 i f ( r e j e c t e d )
56 return 0 ;
57 }
58
59 /∗ s e l e c t the c l a s s o f the t r a f f i c f l ow ∗/
60 switch ( c l )
61 {
62 case 1 :
63 /∗ Admission po in t f o r vo ip f l ow t r a f f i c c l a s s . t h i s

c l a s s has the h i g h e s t p r i o r i t y ∗/
64 voClAvgLd = exp (p∗ s ) ∗ e s t [ c l ]−>avload ( ) ;
65 i f ( voClAvgLd <= bw. cl bw [ c l −1]) {
66
67 /∗ when the c l a s s average load shou ld be

a r t i f i c i a l l y increased , do i t ∗/
68 i f (dobump ) {



202 List of Source Codes

69 e s t [ c l ]−>change avload (p) ;
70 }
71#ifde f BORROW
72 /∗ f unc t i on c a l l to dynamica l l y borrow

bandwidth from standard c l a s s ∗/
73 bw. voipBorrowBw (voClAvgLd , stdClAvgLd ) ;
74#endif

75
76#ifde f DBUG MS
77 /∗ Print out the f l ow id , average load and

c l a s s bandwidth va l u e s ∗/
78 p r i n t f ( ” c l : %d , AVGL: %f , bw : %f \n” , c l ,

voClAvgLd , bw . cl bw [ c l −1]) ;
79#endif

80 return 1 ;
81 }
82 else {
83 r e j e c t e d =1; /∗ i n d i c a t e to r e j e c t

f u r t h e r connect ions o f t h i s f l ow type ∗/
84 return 0 ;
85 }
86 break ;
87
88 case 2 :
89 /∗ Admission po in t f o r v ideo f l ow t r a f f i c c l a s s .

t h i s c l a s s has middle p r i o r i t y ∗/
90 viClAvgLd = exp (p∗ s ) ∗ e s t [ c l ]−>avload ( ) ;
91 i f ( viClAvgLd <= bw. cl bw [ c l −1]) {
92
93 /∗ when the c l a s s average load shou ld be

a r t i f i c i a l l y increased , do i t ∗/
94 i f (dobump ) {
95 e s t [ c l ]−>change avload (p) ;
96 }
97#ifde f BORROW
98 /∗ f unc t i on c a l l to dynamica l l y borrow

bandwidth from standard c l a s s ∗/
99 bw. videoBorrowBw ( viClAvgLd , stdClAvgLd ) ;

100#endif

101
102#ifde f DBUG MS
103 /∗ p r i n t out the f l ow id , average load and

c l a s s bandwidth va l u e s ∗/
104 p r i n t f ( ” c l : %d , AVGL: %f , bw : %f \n” , c l ,

viClAvgLd , bw . cl bw [ c l −1]) ;
105#endif

106 return 1 ;
107
108 }
109 else {
110 r e j e c t e d =1; /∗ i n d i c a t e to r e j e c t



203

f u r t h e r connect ions o f t h i s f l ow type ∗/
111 return 0 ;
112 }
113 break ;
114
115 case 3 :
116 /∗ Admission po in t f o r s tandard f l ow t r a f f i c c l a s s .

t h i s c l a s s has l owe s t p r i o r i t y ∗/
117 stdClAvgLd = exp (p∗ s ) ∗ e s t [ c l ]−>avload ( ) ;
118 i f ( stdClAvgLd <= bw. cl bw [ c l −1]) {
119
120 /∗ when the c l a s s average load shou ld be

a r t i f i c i a l l y increased , do i t ∗/
121 i f (dobump ) {
122 e s t [ c l ]−>change avload (p) ;
123 }
124#ifde f BORROW
125 /∗ f unc t i on c a l l to recover the dynamical

borrowed bandwidth from voip and v ideo
c l a s s e s ∗/

126 bw. stdRecoverBw (voClAvgLd , viClAvgLd ,
stdClAvgLd ) ;

127#endif

128
129#ifde f DBUG MS
130 /∗ p r i n t our the f l ow id , average load and

c l a s s bandwidth va l u e s ∗/
131 p r i n t f ( ” c l : %d , AVGL: %f , bw : %f \n” , c l ,

stdClAvgLd , bw . cl bw [ c l −1]) ;
132#endif

133 return 1 ;
134 }
135 else {
136 r e j e c t e d =1; /∗ i n d i c a t e to r e j e c t

f u r t h e r connect ions o f t h i s f l ow type ∗/
137 return 0 ;
138 }
139 break ;
140
141 default :
142 p r i n t f ( ” Inva l i d f low id \n” ) ;
143 return 0 ;
144 }
145 }
146
147 /∗ The member func t i on to t ea r down a connect ion ∗/
148 void MC ACTO ADC: : teardown act ion ( int /∗ c l ∗/ ,double /∗ r ∗/ , int /∗b∗/ )
149 {
150 r e j e c t e d =0; /∗ i n d i c a t e to accep t once more connect ions

o f t h i s f l ow type ∗/
151 }



204 List of Source Codes

152
153 /∗ A s t a t i c l i n k a g e c l a s s to make the MC ACTO ADC c l a s s o b j e c t s

a c c e s s i b l e from In t ep r e t e d h i e rarchy ∗/
154 stat ic class MC ACTO ADCClass : public TclClass {
155 public :
156 MC ACTO ADCClass ( ) : Tc lClass ( ”ADC/MC ACTO” ) {}
157 TclObject ∗ c r e a t e ( int , const char∗const ∗) {
158 return (new MC ACTO ADC() ) ;
159 }
160 } c l a s s mc ac to adc ;

Listing 6: Acceptance region tangent at peak admission control source file

1
2#ifndef l i n t
3 stat ic const char r c s i d [ ] =
4 ”@(#) $Header : / cv s roo t /nsnam/ns−2/adc/actp−adc . cc , v 1 .6

2005/08/26 05 : 05 : 27 tomh Exp $” ;
5#endif

6
7#include ”adc . h”
8#include <s t d l i b . h>
9#include <s t d i o . h>

10#include <math . h>
11#include ”bandwidthAlloc . h”
12
13 /∗ The acceptance reg ion tangent at peak c l a s s d e c l a r a t i on ∗/
14 class MC ACTP ADC : public ADC {
15
16 /∗ pu b l i c member f unc t i on s d e c l a r a t i o n s ∗/
17 public :
18 MC ACTP ADC() ;
19 void teardown act ion ( int , double , int ) ;
20 void r e j a c t i o n ( int , double , int ) ;
21
22 /∗ p ro t e c t ed member func t i on and member v a r i a b l e s d e c l a r a t i on s ∗/
23 protected :
24 int admit f low ( int , double , int ) ;
25 int r e j e c t e d ; /∗ a member v a r i a b l e to i n d i c a t e

t ha t a f l ow i s r e j e c t e d admission ∗/
26 double s ; /∗ a member v a r i a b l e

r ep r e s en t i n g the space parameter o f the che rno f f bounds
in the d e c i s i on a l gor i thm ∗/

27 double sump [ 3 ] ; /∗ array member v a r i a b l e to s t o r e
the sum of the peak r a t e s o f the t h r ee d i f f e r e n t t r a f f i c
f l ow s ∗/

28
29 /∗ Member v a r i a b l e f o r the dynamic bandwidth borrowing

mechanism ∗/
30 double voClAvgLd , viClAvgLd , stdClAvgLd ;
31 BandwidthAlloc bw ;
32 } ;



205

33
34 /∗ c l a s s cons t ruc t o r d e f i n i t i o n ∗/
35 MC ACTP ADC: :MC ACTP ADC() : r e j e c t e d (0 )
36 {
37 /∗ bind t h i s member v a r i a b l e so t ha t i t can be con f i gured

from OTcl s c r i p t s ∗/
38 bind ( ” s ” , &s ) ;
39 type = new char [ 5 ] ;
40 s t r cpy ( type , ”ACTP” ) ; /∗ s e t the type o f admission

a l gor i thm in use ∗/
41
42 /∗ member v a r i a b l e s i n i t i a l i z a t i o n s ∗/
43 for ( int g = 0 ; g < 3 ; g++)
44 {
45 sump [ g ] = 0 ;
46 }
47 voClAvgLd = 0 . 0 ; viClAvgLd = 0 . 0 ; stdClAvgLd = 0 . 0 ;
48
49 /∗ I n i t i a l i z e the bandwidth shar ing and dynamic bandwidth

borrowing mechanism ∗/
50 bw. bwAl loc In i t ( bandwidth ) ;
51
52 }
53
54 /∗ The member func t i on r e s p on s i b l e f o r admi t t ing f l ow in to the

network ∗/
55 int MC ACTP ADC: : admit f low ( int c l , double r , int b)
56 {
57 double p=peak rate ( c l , r , b ) ; /∗ ge t the f l ow peak ra t e ∗/
58
59 /∗ when the f l ow o f a t r a f f i c c l a s s shou ld not be admitted ,

r e j e c t the f l ow immediate ly ∗/
60 i f ( ba cko f f ) {
61 i f ( r e j e c t e d )
62 return 0 ;
63 }
64
65 /∗ s e l e c t the c l a s s o f the t r a f f i c f l ow ∗/
66 switch ( c l )
67 {
68 case 1 :
69 /∗ Admission po in t f o r vo ip f l ow t r a f f i c c l a s s . t h i s

c l a s s has the h i g h e s t p r i o r i t y ∗/
70 voClAvgLd = sump [ c l −1]∗(1−exp(−p∗ s ) )+exp(−p∗ s ) ∗

e s t [ c l ]−>avload ( ) ;
71 i f ( voClAvgLd <= bw. cl bw [ c l −1]) {
72 sump [ c l −1] += p ; /∗ i n c r ea se the sum

of the f l ow ’ s peak ra t e ∗/
73
74 /∗ when the c l a s s average load shou ld be

a r t i f i c i a l l y increased , do i t ∗/



206 List of Source Codes

75 i f (dobump ) {
76 e s t [ c l ]−>change avload (p) ;
77 }
78#ifde f BORROW
79 /∗ f unc t i on c a l l to dynamica l l y borrow

bandwidth from standard c l a s s ∗/
80 bw. voipBorrowBw (voClAvgLd , stdClAvgLd ) ;
81#endif

82
83#ifde f DBUG MS
84 /∗ p r i n t the f l ow id , average load and c l a s s

bandwidth va l u e s ∗/
85 p r i n t f ( ” c l : %d , AVGL: %f , bw : %f \n” , c l ,

voClAvgLd , bw . cl bw [ c l −1]) ;
86#endif

87 return 1 ;
88 }
89 else {
90 r e j e c t e d =1; /∗ i n d i c a t e to r e j e c t

f u r t h e r connect ions o f t h i s f l ow type ∗/
91 return 0 ;
92 }
93 break ;
94
95 case 2 :
96 /∗ Admission po in t f o r v ideo f l ow t r a f f i c c l a s s .

t h i s c l a s s has middle p r i o r i t y ∗/
97 viClAvgLd = sump [ c l −1]∗(1−exp(−p∗ s ) )+exp(−p∗ s ) ∗

e s t [ c l ]−>avload ( ) ;
98 i f ( viClAvgLd <= bw. cl bw [ c l −1]) {
99 sump [ c l −1] += p ; /∗ i n c r ea se the sum

of the f l ow ’ s peak ra t e ∗/
100
101 /∗ when the c l a s s average load shou ld be

a r t i f i c i a l l y increased , do i t ∗/
102 i f (dobump ) {
103 e s t [ c l ]−>change avload (p) ;
104 }
105#ifde f BORROW
106 /∗ f unc t i on c a l l to dynamica l l y borrow

bandwidth from standard c l a s s ∗/
107 bw. videoBorrowBw ( viClAvgLd , stdClAvgLd ) ;
108#endif

109
110#ifde f DBUG MS
111 /∗ p r i n t the f l ow id , average load and c l a s s

bandwidth va l u e s ∗/
112 p r i n t f ( ” c l : %d , AVGL: %f , bw : %f \n” , c l ,

viClAvgLd , bw . cl bw [ c l −1]) ;
113#endif

114 return 1 ;



207

115 }
116 else {
117 r e j e c t e d =1; /∗ i n d i c a t e to r e j e c t

f u r t h e r connect ions o f t h i s f l ow type ∗/
118 return 0 ;
119 }
120 break ;
121
122 case 3 :
123 /∗ Admission po in t f o r s tandard f l ow t r a f f i c c l a s s .

t h i s c l a s s has l owe s t p r i o r i t y ∗/
124 stdClAvgLd = sump [ c l −1]∗(1−exp(−p∗ s ) )+exp(−p∗ s ) ∗

e s t [ c l ]−>avload ( ) ;
125 i f ( stdClAvgLd <= bw. cl bw [ c l −1]) {
126 sump [ c l −1] += p ; /∗ i n c r ea se the sum

of the f l ow ’ s peak ra t e ∗/
127
128 /∗ when the c l a s s average load shou ld be

a r t i f i c i a l l y increased , do i t ∗/
129 i f (dobump ) {
130 e s t [ c l ]−>change avload (p) ;
131 }
132#ifde f BORROW
133 /∗ f unc t i on c a l l to recover the dynamical

borrowed bandwidth from voip and v ideo
c l a s s e s ∗/

134 bw. stdRecoverBw (voClAvgLd , viClAvgLd ,
stdClAvgLd ) ;

135#endif

136
137#ifde f DBUG MS
138 /∗ p r i n t the f l ow id , average load and c l a s s

bandwidth va l u e s ∗/
139 p r i n t f ( ” c l : %d , AVGL: %f , bw : %f \n” , c l ,

stdClAvgLd , bw . cl bw [ c l −1]) ;
140#endif

141 return 1 ;
142 }
143 else {
144 r e j e c t e d =1; /∗ i n d i c a t e to r e j e c t

f u r t h e r connect ions o f t h i s f l ow type ∗/
145 return 0 ;
146 }
147 break ;
148 default :
149 p r i n t f ( ” Inva l i d f low id \n” ) ;
150 return 0 ;
151 }
152 }
153
154 /∗ The member func t i on to r e j e c t admission r e que s t when the network



208 List of Source Codes

i s over loaded ∗/
155 void MC ACTP ADC: : r e j a c t i o n ( int c l , double r , int b)
156 {
157 double p=peak rate ( c l , r , b ) ; /∗ ge t the f l ow peak

ra t e ∗/
158 sump [ c l −1] −= p ; /∗ decrease

the sum of the f l ow s peak ra t e ∗/
159
160 }
161
162 /∗ The member func t i on to t ea r down a connect ion ∗/
163 void MC ACTP ADC: : teardown act ion ( int c l , double r , int b)
164 {
165 r e j e c t e d =0; /∗ i n d i c a t e

to accep t once more connect ions o f t h i s f l ow type ∗/
166 double p=peak rate ( c l , r , b ) ; /∗ ge t the f l ow peak

ra t e ∗/
167 sump [ c l −1] −= p ; /∗ decrease

the sum of the f l ow peak ra t e ∗/
168
169 }
170
171 /∗ A s t a t i c l i n k a g e c l a s s to make the MC ACTP ADC c l a s s o b j e c t s

a c c e s s i b l e from In t ep r e t e d h i e rarchy ∗/
172 stat ic class MC ACTP ADCClass : public TclClass {
173 public :
174 MC ACTP ADCClass ( ) : Tc lClass ( ”ADC/MC ACTP” ) {}
175 TclObject ∗ c r e a t e ( int , const char∗const ∗) {
176 return (new MC ACTP ADC() ) ;
177 }
178 } c l a s s mc ac tp adc ;

Listing 7: Estimator header file

1
2#ifndef ns e s t imato r h
3#define ns e s t imato r h
4
5#include <s t d i o . h>
6#include ” connector . h”
7#include ”measuremod . h”
8#include ” timer−handler . h”
9

10 /∗ Dec lara t ion o f the e s t imator c l a s s ∗/
11 class Estimator ;
12
13 /∗ Dec lara t ion o f a t imer hand ler f o r s chedu l i n g e s t ima t ing even t s

∗/
14 class Estimator Timer : public TimerHandler {
15 public :
16 Estimator Timer ( Estimator ∗ e s t ) : TimerHandler ( ) {
17 e s t = e s t ;



209

18 }
19
20 protected :
21 virtual void exp i r e ( Event ∗e ) ;
22 Estimator ∗ e s t ;
23 } ;
24
25 /∗ Dec lara t ion o f e s t imator member f unc t i on s and member v a r i a b l e s ∗/
26 class Estimator : public NsObject {
27
28 /∗ Dec lara t ion and d e f i n i t i o n s o f p u b l i c member f un t i on s ∗/
29 public :
30 Estimator ( ) ;
31 inl ine double avload ( ) { return double ( av load ) ; } ; /∗

member func t i on to re turn the es t imated network average
load ∗/

32 inl ine virtual void change avload (double i n c r ) { av load +=
in c r ;} /∗ member func t i on to a r t i f i c i a l l y change the
network average load ∗/

33 inl ine virtual void newflow (double ) {} ;
34 int command( int argc , const char∗const∗ argv ) ;
35 virtual void t imeout ( int ) ;
36 inl ine void recv ( Packet ∗ , Handler ∗) {} /∗member func t i on f o r

r e c e i v i n g packe t s ( not used here ) ∗/
37 virtual void s t a r t ( ) ;
38 void stop ( ) ;
39 void setmeasmod (MeasureMod ∗) ;
40 void s e tac type ( const char∗) ;
41 inl ine double &per iod ( ) { return pe r i od ;} /∗ member

func t i on to re turn the sampling per iod in the e s t ima t ion
proces s ∗/

42 void t r a c e ( TracedVar∗ v ) ;
43
44 /∗ Dec lara t ion o f p ro t e c t ed member func t i on and member v a r i a b l e s ∗/
45 protected :
46 MeasureMod ∗meas mod ; /∗ a po in t e r to the

measurement module o b j e c t ∗/
47 TracedDouble av load ; /∗ a v a r i a b l e f o r

s t o r i n g a c t u a l i z e d network average load ∗/
48 double pe r i od ; /∗ the

sampling per iod o f the e s t ima t ion proces s ∗/
49 virtual void es t imate ( ) =0;
50 Estimator Timer e s t t im e r ; /∗ t imer v a r i a b l e

f o r s chedu l i n g e s t ima t ing even t s ∗/
51 TracedDouble measload ; /∗ a v a r i a b l e f o r

s t o r i n g current network average load ∗/
52 Tcl Channel tchan ; /∗ v a r i a b l e

f o r ho l d ing f i l e d e s c r i p t o r s f o r w r i t t i n g t race even t s ∗/
53 int s r c ; /∗

source address o f packe t s ∗/
54 int ds t ; /∗



210 List of Source Codes

d e s t i n a t i o n address o f packe t s ∗/
55 double omeasload ; /∗ he l p e r

v a r i a b l e f o r w r i t t i n g measured network u t i l i z a t i o n in
t race f i l e ∗/

56 double oav load ; /∗ he l p e r
v a r i a b l e f o r w r i t t i n g es t imated network u t i l i z a t i o n in
t race f i l e ∗/

57 char ∗ actype ; /∗ a po in t e r
v a r i a b l e to the type o f e s t imator in use ∗/

58 } ;
59
60#endif

Listing 8: Estimator base class source file

1
2#ifndef l i n t
3 stat ic const char r c s i d [ ] =
4 ”@(#) $Header : / cv s roo t /nsnam/ns−2/adc/ es t imator . cc , v 1 .8

2005/08/26 05 : 05 : 27 tomh Exp $” ;
5#endif

6
7#include ” es t imator . h”
8
9 /∗ The es t imator c l a s s cons t ruc t o r f o r i n i t i a l i n g and b ind ing member

v a r i a b l e s ∗/
10 Estimator : : Estimator ( ) : meas mod (0) , av load ( 0 . 0 ) , e s t t im e r ( this ) ,

measload ( 0 . 0 ) , tchan (0 ) , omeasload (0 ) , oav load (0 )
11 {
12 /∗ bind t h e s e member v a r i a b l e s to make them a c c e s s i b l e f o r

OTcl s c r i p t s ∗/
13 bind ( ” pe r i od ” ,& pe r i od ) ;
14 bind ( ” s r c ” , &s r c ) ;
15 bind ( ” d s t ” , &ds t ) ;
16
17 av load . t r a c e r ( this ) ;
18 av load . name( ”\”Estimated Ut i l .\” ” ) ;
19 measload . t r a c e r ( this ) ;
20 measload . name( ”\”Measured Ut i l .\” ” ) ;
21 }
22 /∗ The command func t i on to execu te C++ member f unc t i on s invoked in

OTcl ∗/
23 int Estimator : : command( int argc , const char∗const∗ argv )
24 {
25 Tcl& t c l = Tcl : : i n s t ance ( ) ; /∗ ge t the Tcl in s tance f o r

t r a n s f e r i n g r e s u l t s back and forward b/w C++ and OTcl ∗/
26 i f ( argc==2) {
27 i f ( strcmp ( argv [ 1 ] , ” load−e s t ” ) == 0) {
28 /∗ t r a n s f e r the es t imated network average

load re turn in C++ to OTcl ∗/
29 t c l . r e s u l t f ( ”%.3 f ” , avload ( ) ) ;
30 return (TCL OK) ;



211

31 } else i f ( strcmp ( argv [ 1 ] , ” l ink−ut l zn ” ) == 0) {
32 /∗ t r a n s f e r the l i n k u t i l i z a t i o n measured in

C++ to OTcl ∗/
33 t c l . r e s u l t f ( ”%.3 f ” ,meas mod −>b i t cn t ( ) /

pe r i od ) ;
34 return (TCL OK) ;
35 }
36 }
37 i f ( argc == 3) {
38 i f ( strcmp ( argv [ 1 ] , ” attach ” ) == 0) {
39 /∗ a t t ach a f i l e d e s c r i p t o r f o r w r i t t i n g

t race even t s ∗/
40 int mode ;
41 const char∗ id = argv [ 2 ] ;
42 tchan = Tcl GetChannel ( t c l . i n t e rp ( ) , (char

∗) id , &mode) ;
43 i f ( tchan == 0) {
44 t c l . r e s u l t f ( ”Estimator : t r a c e : can ’ t

attach %s f o r wr i t i ng ” , id ) ;
45 return (TCL ERROR) ;
46 }
47 return (TCL OK) ;
48 }
49 i f ( strcmp ( argv [ 1 ] , ” s e tbu f ” ) == 0) {
50 /∗ some sub c l a s s e s a c t u a l l y do something

here ∗/
51 return (TCL OK) ;
52 }
53 }
54 return NsObject : : command( argc , argv ) ;
55 }
56 /∗ a member func t i on to s e t an i n s t a n t i a t e d measurement o b j e c t from

OTcl∗/
57 void Estimator : : setmeasmod (MeasureMod ∗measmod)
58 {
59 meas mod =measmod ;
60 }
61
62 /∗ a member func t i on to s t a r t the e s t ima t ion proces s ∗/
63 void Estimator : : s t a r t ( )
64 {
65 av load =0;
66 measload = 0 ;
67 e s t t im e r . re sched ( pe r i od ) ;
68 }
69
70 /∗ a member func t i on to s top the e s t ima t ion proces s ∗/
71 void Estimator : : s top ( )
72 {
73 e s t t im e r . cance l ( ) ;
74 }



212 List of Source Codes

75
76 /∗ a member func t i on f o r s chedu l i n g the e s t ima t ion proces s ∗/
77 void Estimator : : t imeout ( int )
78 {
79 es t imate ( ) ;
80 e s t t im e r . re sched ( pe r i od ) ;
81 }
82
83 /∗ a func t i on f o r check ing the end o f e s t ima t ion proces s and

r e s ch edu l i n g i t ∗/
84 void Estimator Timer : : e xp i r e ( Event∗ /∗e∗/ )
85 {
86 e s t −>t imeout (0 ) ;
87 }
88
89 /∗ a member func t i on to wr i t e e s t ima t ion t race even t s to a t race

f i l e ∗/
90 void Estimator : : t r a c e ( TracedVar∗ v )
91 {
92 char wrk [ 5 0 0 ] ;
93 double ∗p , newval ;
94
95 /∗ check f o r r i g h t v a r i a b l e ∗/
96 i f ( strcmp (v−>name ( ) , ”\”Estimated Ut i l .\” ” ) == 0) {
97 p = &oavload ;
98 }
99 else i f ( strcmp (v−>name ( ) , ”\”Measured Ut i l .\” ” ) == 0) {

100 p = &omeasload ;
101 }
102 else {
103 f p r i n t f ( s tde r r , ”Estimator : unknown t ra c e var %s\n” ,

v−>name ( ) ) ;
104 return ;
105 }
106
107 newval = double (∗ ( ( TracedDouble ∗) v ) ) ;
108
109 i f ( tchan ) {
110 int n ;
111 double t = Scheduler : : i n s t ance ( ) . c l o ck ( ) ;
112 /∗ f −t 0 .0 −s 1 −a SA −T v −n Num −v 0 −o 0 ∗/
113 s p r i n t f (wrk , ” f −t %g −s %d −a %s :%d−%d −T v −n %s −

v %g −o %g” ,
114 t , s r c , actype , s r c , dst , v−>name ( ) ,

newval , ∗p) ;
115 n = s t r l e n (wrk ) ;
116 wrk [ n ] = ’ \n ’ ;
117 wrk [ n+1] = 0 ;
118 (void ) Tcl Write ( tchan , wrk , n+1) ;
119 }
120



213

121 ∗p = newval ;
122 return ;
123 }
124
125 /∗ a member func t i on f o r s e t t i n g the type o f e s t imator in use ∗/
126 void Estimator : : s e tac type ( const char∗ type )
127 {
128 actype = new char [ s t r l e n ( type ) +1] ;
129 s t r cpy ( actype , type ) ;
130 return ;
131 }

Listing 9: Time window estimator source file

1
2#ifndef l i n t
3 stat ic const char r c s i d [ ] =
4 ”@(#) $Header : / cv s roo t /nsnam/ns−2/adc/timewindow−e s t . cc , v

1 .7 2005/08/26 05 : 05 : 28 tomh Exp $” ;
5#endif

6
7
8#include ” es t imator . h”
9#include <s t d l i b . h>

10
11 /∗ The time window es t imator c l a s s d e c l a r a t i on ∗/
12 class TimeWindow Est : public Estimator {
13 public :
14 /∗ the c l a s s consruc tor d e f i n i t i o n f o r i n i t i a l i z i n g and

b ind ing member v a r i a b l e s ∗/
15 TimeWindow Est ( ) : s cnt (1 ) ,maxp(0)
16 {
17 /∗ bind t h i s member v a r i a b l e so t ha t i t w i l l be

a c c e s s i b l e from OTcl s c r i p t s ∗/
18 bind ( ”T ”,&T ) ;
19 } ;
20
21 /∗ a member func t i on to a r t i f i c i a l l y change the network

average load ∗/
22 inl ine void change avload (double i n c r )
23 { av load += in c r ;
24 i f ( i n c r >0) scnt =0; /∗ r e s t a r t the time window

frame count ∗/
25 }
26 protected :
27 void es t imate ( ) ;
28 int scnt ; /∗ a v a r i a b l e to count the sampling per i od s

to i n d i c a t e the end o f a time window frame ∗/
29 double maxp ; /∗ the maximum network average load measured

in the prev ious time window frame ∗/
30 int T ; /∗ v a r i a b l e t h a t ho ld the va lue f o r

the time window frame ∗/



214 List of Source Codes

31 } ;
32
33 /∗ The time window es t ima t ion func t i on ∗/
34 void TimeWindow Est : : e s t imate ( ) {
35 measload = meas mod −>b i t cn t ( ) / pe r i od ; /∗ measure

the current network average load ∗/
36 i f (meas mod −>b i t cn t ( ) / pe r i od >av load ) /∗ t e s t i f

the current network average load i s g r ea t e r than the
prev ious ∗/

37 av load =meas mod −>b i t cn t ( ) / pe r i od ; /∗ a c t u a l i z e
the network average load wi th the current va lue

∗/
38 i f (maxp < meas mod −>b i t cn t ( ) / pe r i od ) /∗ check i f

the maximum va lue in the prev ious time window frame i s
l e s s than the current va lue ∗/

39 maxp=meas mod −>b i t cn t ( ) / pe r i od ; /∗
make the current va lue the maximum va lue ∗/

40
41 /∗ check i f the end o f the time window frame has been reach

∗/
42 i f ( scnt == T )
43 {
44 scnt−=T ; /∗ reduce the

sampling count by the time window frame
va lue ∗/

45 av load =maxp ; /∗ a c t u a l i z e the average
load wi th the maximum average load
measured in prev ious time window frame ∗/

46 maxp=0; /∗ r e s e t the
prev ious maximum va lue ∗/

47 }
48
49 meas mod −>r e s e t b i t c n t ( ) ; /∗ r e s e t the measured va lue at the

end o f each sampling ∗/
50 scnt++; /∗ i n c r ea se the sampling count ∗/
51 }
52
53 /∗ A s t a t i c l i n k a g e c l a s s to make the TimeWindow Est c l a s s o b j e c t s

a c c e s s i b l e from In t ep r e t e d h i e rarchy ∗/
54 stat ic class TimeWindow EstClass : public TclClass {
55 public :
56 TimeWindow EstClass ( ) : Tc lClass ( ”Est/TimeWindow” ) {}
57 TclObject ∗ c r e a t e ( int , const char∗const ∗) {
58 return (new TimeWindow Est ( ) ) ;
59 }
60 } c l a s s t imewindow es t ;

Listing 10: Exponential averaging estimator source file

1
2#ifndef l i n t
3 stat ic const char r c s i d [ ] =



215

4 ”@(#) $Header : / cv s roo t /nsnam/ns−2/adc/expavg−e s t . cc , v 1 .4
2005/08/26 05 : 05 : 27 tomh Exp $” ;

5#endif

6
7
8#include <math . h>
9#include ” es t imator . h”

10
11 /∗ The exponen t i a l averag ing es t imator c l a s s d e c l a r a t i on ∗/
12 class ExpAvg Est : public Estimator {
13 public :
14 /∗ the c l a s s con t ruc to r d e f i n i t i o n ∗/
15 ExpAvg Est ( )
16 {
17 /∗ bind t h i s member v a r i a b l e to make i t a c c e s s i b l e

from OTcl s c r i p t s ∗/
18 bind ( ”w ”,&w ) ;
19 } ;
20 protected :
21 void es t imate ( ) ;
22 double w ; /∗ a member v a r i a b l e to ho ld the

va lue o f the averag ing we igh t in the impulse response
func t i on ∗/

23 } ;
24
25 /∗ The exponen t i a l averag ing e s t ima t ion func t i on ∗/
26 void ExpAvg Est : : e s t imate ( )
27 {
28 /∗ e s t ima t ing the average network load wi th the impulse

response func t i on ∗/
29 av load =(1−w ) ∗ av load +w ∗meas mod −>b i t cn t ( ) / pe r i od ;
30
31 meas mod −>r e s e t b i t c n t ( ) ; /∗ r e s e t the measured va lue at the

end o f each sampling ∗/
32 }
33
34 /∗ A s t a t i c l i n k a g e c l a s s to make the ExpAvg Est c l a s s o b j e c t s

a c c e s s i b l e from In t ep r e t e d h i e rarchy ∗/
35 stat ic class ExpAvg EstClass : public TclClass {
36 public :
37 ExpAvg EstClass ( ) : Tc lClass ( ”Est/ExpAvg” ) {}
38 TclObject ∗ c r e a t e ( int , const char∗const ∗) {
39 return (new ExpAvg Est ( ) ) ;
40 }
41 } c l a s s e xpavg e s t ;

Listing 11: Point sample estimator source file

1
2#ifndef l i n t
3 stat ic const char r c s i d [ ] =
4 ”@(#) $Header : / cv s roo t /nsnam/ns−2/adc/pointsample−e s t . cc , v



216 List of Source Codes

1 .4 2005/08/26 05 : 05 : 28 tomh Exp $” ;
5#endif

6
7#include ” es t imator . h”
8#include <s t d l i b . h>
9#include <math . h>

10
11 /∗ The po in t sample e s t imator c l a s s d e c l a r a t i on ∗/
12 class PointSample Est : public Estimator {
13 public :
14 /∗ the c l a s s cons t ruc t o r d e f i n i t i o n ∗/
15 PointSample Est ( ) {} ;
16 protected :
17 void es t imate ( ) ;
18 } ;
19
20 /∗ The po in t sample e s t ima t ion func t i on ∗/
21 void PointSample Est : : e s t imate ( )
22 {
23 /∗ measure the current average network load ∗/
24 av load =meas mod −>b i t cn t ( ) / pe r i od ;
25
26 meas mod −>r e s e t b i t c n t ( ) ; /∗ r e s e t the measured va lue at

the end o f each sampling per iod ∗/
27 }
28
29 /∗ A s t a t i c l i n k a g e c l a s s to make the PointSample Est c l a s s o b j e c t s

a c c e s s i b l e from In t ep r e t e d h i e rarchy ∗/
30 stat ic class PointSample EstClass : public TclClass {
31 public :
32 PointSample EstClass ( ) : Tc lClass ( ”Est/PointSample” ) {}
33 TclObject ∗ c r e a t e ( int , const char∗const ∗) {
34 return (new PointSample Est ( ) ) ;
35 }
36 } c l a s s p o i n t s amp l e e s t ;

Listing 12: Multi-queue scheduler source file

1
2#ifndef l i n t
3 stat ic const char r c s i d [ ] =
4 ”@(#) $Header : / cv s roo t /nsnam/ns−2/adc/ simple−i n t s e rv−sched . cc , v

1 .7 2005/08/26 05 : 05 : 28 tomh Exp $ (LBL) ” ;
5#endif

6
7
8#include <s t d i o . h>
9#include ” con f i g . h”

10#include ”queue . h”
11
12 // de f i n e the number o f queue c l a s s e s to be crea t ed
13#define CLASSES 3



217

14
15 /∗ A queue management c l a s s used to c r ea t e packe t queues and

schedu l e packe t s ∗/
16 class Mult iClassServ : public Queue {
17 public :
18 /∗ Class cons t ruc t o r f o r c r ea t i n g packe t queues and

i n t i a l i z i n g member v a r i a b l e s ∗/
19 Mult iClassServ ( ) {
20 int i ;
21 char buf [ 1 0 ] ;
22 for ( i =0; i<CLASSES ; i++) {
23 q [ i ] = new PacketQueue ; // c rea t e the

queues and s t o r e the po in t e r s in array
24 q l im i t [ i ] = 0 ; // i n i t i a l i z e the

queue l e n g t h s
25 s p r i n t f ( buf , ” q l im i t%d ” , i ) ;
26 bind ( buf ,& q l im i t [ i ] ) ; // bind the

queue l en g t h so t ha t i t w i l l be
c on f i g u r a b l e from OTcl s c r i p t s .

27 }
28 }
29 protected :
30 void enque ( Packet ∗) ; //member func t i on to add packe t s to

queues
31 Packet ∗deque ( ) ; //memeber v a r i a b l e to remove packe t s

from queues
32 PacketQueue ∗q [CLASSES ] ; //an array to ho ld po in t e r s to

the packe t queues address
33 int q l im i t [CLASSES ] ; //an i n t e g e r array to s p e c i f y the

s i z e s o f the packe t queues .
34 } ;
35
36 /∗ A s t a t i c l i n k a g e c l a s s to make the Mul t iC lassServ c l a s s a v a i l a b l e

in the i n t e r p r e t e d c l a s s h i e rarchy ∗/
37 stat ic class Mult iServClass : public TclClass {
38 public :
39 Mult iServClass ( ) : Tc lClass ( ”Queue/ Mult iClassServ ” ) {}
40 TclObject ∗ c r e a t e ( int , const char∗const ∗) {
41 return (new Mult iClassServ ) ;
42 }
43 } mu l t i c l a s s s e r v ;
44
45 /∗The enqueue member func t i on d e f i n i t i o n . I t has one func t i on

parameter : the packe t to be
46 ∗ added to a queue
47 ∗/
48 void Mult iClassServ : : enque ( Packet∗ p)
49 {
50 hdr ip ∗ iph=hdr ip : : a c c e s s (p) ; // acces s the ip header

v a r i a b l e s
51 int c l= iph−>f l ow id ( ) ; // ge t the packe t s f l ow id



218 List of Source Codes

52
53 /∗ check i f the f l ow id i s among the de f ined c l a s s f l ow i d s

∗/
54 i f ( c l >= 1 && c l <= 4)
55 {
56 /∗Check i f the queue s i z e i s g r ea t e r than the

s p e c i f i e d queue s i z e ∗/
57 i f ( q [ c l − 1]−> l ength ( ) >= ( q l im i t [ c l −1]−1) ) {
58 hdr cmn∗ ch=hdr cmn : : a c c e s s (p) ; //

acces s the common header v a r i a b l e s
59 packe t t ptype = ch−>ptype ( ) ; // check

the type o f the pre sen t packe t
60 /∗do not a l l ow the s i g n a l l i n g p ro t o co l

packe t s to be dropped ∗/
61 i f ( ( ptype != PT REQUEST) && ( ptype !=

PT REJECT) && ( ptype != PT ACCEPT) && (
ptype != PT CONFIRM) && ( ptype !=
PTTEARDOWN) ) {

62 drop (p) ;
63 }
64 else {
65 q [ c l − 1]−>enque (p) ; //add packe t s

to queues even i f they are
o v e r s i z e d .

66 }
67 }
68 else {
69 q [ c l − 1]−>enque (p) ; //add packe t s to

under s i z e d queues
70 }
71 }
72 else

73 {
74 p r i n t f ( ” Inva l i d f low id \n” ) ;
75 }
76
77 }
78
79 /∗ The deque member func t i on d e f i n i t i o n to remove packe t s from

queues ∗/
80 Packet ∗Mult iClassServ : : deque ( )
81 {
82 int i ;
83 /∗ s e l e c t the queue from where to remove packe t ∗/
84 for ( i=CLASSES−1; i >=0; i−−)
85 i f ( q [ i ]−> l ength ( ) ) // check i f t h e r e i s any

packe t t h e r e at a l l
86 return q [ i ]−>deque ( ) ; // remove the packe t

from the queue
87 return 0 ;
88 }



219

Listing 13: Signalling mechanism header file
1
2#ifndef MULTISALINK H
3#define MULTISALINK H
4
5 //no o f pending f l ows d e c i s i on s
6#define NFLOWS 5000
7
8 /∗ St ruc ture to save the number o f r e s e rved f l ows ∗/
9 struct pending {

10 int f l ow id ;
11 int s t a tu s ;
12 } ;
13 /∗ A c l a s s d e c l a r a t i on f o r r e a l i s i n g the s i g n a l p r o t o co l mechanism

∗/
14 class MultiSALink : public Connector {
15 public :
16 MultiSALink ( ) ; /∗ c l a s s cons t ruc t o r ∗/
17 int command( int argc , const char∗const∗ argv ) ; /∗ member

func t i on to execu te OTcl commands ∗/
18 void t r a c e ( TracedVar∗ v ) ; /∗ member func t i on f o r t r a c i n g

f l ows ∗/
19
20 protected :
21 void recv ( Packet ∗ , Handler ∗) ; /∗ member func t i on to

r e c e i v e f l ow re que s t packe t s ∗/
22 ADC ∗ adc ; /∗ v a r i a b l e f o r c a l l i n g the ADC dec i s i on

a l gor i t hms ∗/
23 // i n t RTT;
24 pending pending [NFLOWS] ; /∗ s t r u c t to ho ld the s t a t e o f

r e que s t ed f l ows ∗/
25 int lookup ( int ) ; /∗ member func t i on to check i f a f l ow i s

a l r eady accepted ∗/
26 int ge t nxt ( ) ; /∗ member func t i on to ge t the next empty

s t a t e f o r a f l ow r e qu e s t i n g admission ∗/
27 TracedInt numfl ; /∗ s t o r e the number o f f l ow s accepted

∗/
28 Tcl Channel tchan ; /∗ po in t e r to the t race f i l e ∗/
29 int onumfl ; /∗ XXX: s t o r e prev ious va lue o f numfl f o r nam

∗/
30 int s r c ; /∗ i d o f node we ’ re connected to ( f o r nam t ra c e s

) ∗/
31 int ds t ; /∗ i d o f node at end o f the l i n k ∗/
32 int l a s t ; /∗ prev ious ac de c i s i on on t h i s l i n k ∗/
33 } ;
34
35
36#endif /∗MULTISALINK H ∗/

Listing 14: Signalling mechanism source file
1



220 List of Source Codes

2#include <s t d i o . h>
3#include ”packet . h”
4#include ” ip . h”
5#include ” re sv . h”
6#include ” connector . h”
7#include ”adc . h”
8#include ” mu l t i s a l i nk . h”
9

10 /∗ A s t a t i c l i n k a g e c l a s s to make the Mul t iSAl ink c l a s s o b j e c t s
a c c e s s i b l e from In t ep r e t e d h i e rarchy ∗/

11 stat ic class MultiSALinkClass : public TclClass {
12 public :
13 MultiSALinkClass ( ) : Tc lClass ( ”MultiSALink” ) {}
14 TclObject ∗ c r e a t e ( int , const char∗const ∗) {
15 return (new MultiSALink ( ) ) ;
16 }
17 } c l a s s mu l t i s a l i n k ;
18
19 /∗ Class Constructor f o r i n i t i a l i s i n g Member v a r i a b l e and

r e s e r v a t i on s t a t e s ∗/
20 MultiSALink : : MultiSALink ( ) : adc (0 ) , numfl (−1) , tchan (0 ) , onumfl

(0 ) , l a s t (−1)
21 {
22 int i ;
23 /∗ I n i t i a l i z e the r e s e r v a t i on s t a t e s ∗/
24 for ( i =0; i<NFLOWS; i++) {
25 pending [ i ] . f l ow id=−1;
26 pending [ i ] . s t a tu s =0;
27 }
28 /∗Make the s r c and d s t member v a r i a b l e to be a c c e s s i b l e

from the i n t e p r e t e d h i e rarchy ∗/
29 bind ( ” s r c ” , &s r c ) ;
30 bind ( ” d s t ” , &ds t ) ;
31
32 numfl . t r a c e r ( this ) ;
33 numfl . name( ”\”Admitted Flows\”” ) ;
34 }
35
36 /∗ The r e c e i v e member func t i on r e c e i v e s the r e s e r v a t i on r e que s t and

proces s i t a c co rd ing l y
37 ∗ Parameter P: i s the r e que s t packet , Parameter h : i s a hand ler

in s tance f o r the s chedu l e r ∗/
38 void MultiSALink : : recv ( Packet ∗p , Handler ∗h)
39 {
40 int dec ide ; /∗ to ho ld the admission a l gor i t hms dec i s i on ∗/
41 int j ; /∗ Running v a r i a b l e f o r the r e s e r v a t i on s t a t e ∗/
42
43 hdr cmn ∗ch=hdr cmn : : a c c e s s (p) ; /∗ ge t acces s to the

common header v a r i a b l e s ∗/
44 hdr ip ∗ iph=hdr ip : : a c c e s s (p) ; /∗ ge t acces s to the IP

header v a r i a b l e s ∗/



221

45 hdr re sv ∗ rv=hdr re sv : : a c c e s s (p) ; /∗ ge t acces s to the
r e s e r v a t i on header v a r i a b l e s ∗/

46
47 /∗ Store the f l ow id o f the current packe t ∗/
48 int c l=iph−>f l ow id ( ) ;
49
50 /∗ Check the r e s e r v a t i on message type ∗/
51 switch ( ch−>ptype ( ) ) {
52 case PT REQUEST: /∗ the case o f f l ow re que s t ∗/
53 dec ide=adc −>admit f low ( c l , rv−>r a t e ( ) , rv−>bucket ( ) ) ;

/∗ the admission de c i s i on f o r a f l ow ∗/
54 i f ( tchan ) /∗ when t r a c i n g i s des i red , l o g the

r e s e r v a t i on proces s in the t race f i l e ∗/
55 i f ( l a s t != dec ide ) {
56 int n ;
57 char wrk [ 5 0 ] ;
58 double t = Scheduler : : i n s t ance ( ) .

c l o ck ( ) ;
59 s p r i n t f (wrk , ” l −t %g −s %d −d %d −S

COLOR −c %s” ,
60 t , s r c , dst , dec ide ? ”

MediumBlue” : ” red ” ) ;
61 n = s t r l e n (wrk ) ;
62 wrk [ n ] = ’ \n ’ ;
63 wrk [ n+1] = 0 ;
64 (void ) Tcl Write ( tchan , wrk , n+1) ;
65 l a s t = dec ide ;
66 }
67 /∗ i n c l ude the admission de c i s i on in the r e s e r v a t i on

packe t header ∗/
68 rv−>de c i s i o n ( ) &= dec ide ;
69 i f ( dec ide ) { /∗ when a f l ow i s admitted , add i t s

s t a t e to the r e s e r v a t i on s t a t e s ∗/
70 j=get nxt ( ) ;
71 pending [ j ] . f l ow id=iph−>f l ow id ( ) ;
72 // pending [ j ] . s t a t u s=dec ide ;
73 numfl ++; /∗ Increase the number o f

admit ted f l ows ∗/
74
75#ifde f DBUG MS
76 /∗ show f l ow i d s admit ted ∗/
77 p r i n t f ( ”Flow id %d admitted\n” , iph−>f l ow id

( ) ) ;
78#endif

79 }
80 break ;
81 case PT ACCEPT:
82 case PT REJECT:
83 break ;
84
85 case PT CONFIRM: /∗ the case o f r e que s t con f i rmat ions ∗/



222 List of Source Codes

86 {
87 j=lookup ( iph−>f l ow id ( ) ) ; /∗ ge t the s t a t e o f

the f l ow from the r e s e r v a t i on s t a t e s ∗/
88 i f ( j !=−1) {
89 i f ( ! rv−>de c i s i o n ( ) ) {
90 /∗ when the f l ow i s r e j e c t e d

decrease the av load f o r
i t s c l a s s ∗/

91 adc −>r e j a c t i o n ( c l , rv−>r a t e
( ) , rv−>bucket ( ) ) ;

92 numfl −−; /∗ decrement the
number o f f l ow s admit ted
∗/

93
94#ifde f DBUG MS
95 /∗ show f l ow i d s r e j e c t e d ∗/
96 p r i n t f ( ”Flow id %d r e j e c t e d \

n” , iph−>f l ow id ( ) ) ;
97#endif

98 }
99 pending [ j ] . f l ow id=−1; /∗ r e l e a s e

i t s s t a t e from the r e s e r v a t i on
s t a t e s ∗/

100 }
101 break ;
102 }
103 case PTTEARDOWN: /∗ the case o f b reak ing down a connect ion

∗/
104 {
105 /∗ when the connect ion i s d isconnected ,

decrease the av load o f the f l ow ’ s c l a s s
∗/

106 adc −>teardown act ion ( c l , rv−>r a t e ( ) , rv−>

bucket ( ) ) ;
107 numfl −−; /∗ decrement the number o f f l ow s

admit ted ∗/
108 break ;
109 }
110 default :
111#ifde f notde f
112 e r r o r ( ”unknown s i g n a l l i n g message type : %d” , ch−>

ptype ( ) ) ;
113 abort ( ) ;
114#endif

115 break ;
116 }
117 send (p , h) ; /∗ send the packe t to the next hub ∗/
118 }
119
120 /∗ the command member func t i on f o r invok ing C++ func t i on s from OTcl
121 ∗ the two parameters r ep r e s en t s the argument v e c t o r s o f the invoked



223

f unc t i on ∗/
122 int MultiSALink : : command( int argc , const char∗const∗ argv )
123 {
124 Tcl& t c l = Tcl : : i n s t ance ( ) ; /∗ the Tcl in s tance f o r

communicating r e s u l t s in C++ back to OTcl space ∗/
125 char wrk [ 5 0 0 0 ] ; /∗ b u f f e r f o r ho l d ing t race data ∗/
126
127 i f ( argc ==3) {
128 i f ( strcmp ( argv [ 1 ] , ” attach−adc” ) == 0 ) {
129 adc =(ADC ∗) TclObject : : lookup ( argv [ 2 ] ) ;
130 i f ( adc ==0 ) {
131 t c l . r e s u l t f ( ”no such node %s” , argv

[ 2 ] ) ;
132 return (TCL ERROR) ;
133 }
134 return (TCL OK) ;
135 }
136 i f ( strcmp ( argv [ 1 ] , ” attach ” ) == 0) {
137 int mode ;
138 const char∗ id = argv [ 2 ] ;
139 tchan = Tcl GetChannel ( t c l . i n t e rp ( ) , (char

∗) id , &mode) ;
140 i f ( tchan == 0) {
141 t c l . r e s u l t f ( ”MultiSALink : t r a c e : can

’ t attach %s f o r wr i t i ng ” , id ) ;
142 return (TCL ERROR) ;
143 }
144 return (TCL OK) ;
145 }
146 }
147 i f ( argc == 2) {
148 i f ( strcmp ( argv [ 1 ] , ”add−t r a c e ” ) == 0) {
149 i f ( tchan ) {
150 s p r i n t f (wrk , ”a −t ∗ −n %s :%d−%d −s

%d” ,
151 adc −>type ( ) , s r c , dst ,

s r c ) ;
152 int n = s t r l e n (wrk ) ;
153 wrk [ n ] = ’ \n ’ ;
154 wrk [ n+1] = 0 ;
155 (void ) Tcl Write ( tchan , wrk , n+1) ;
156 numfl = 0 ;
157 }
158 return (TCL OK) ;
159 }
160 }
161 return Connector : : command( argc , argv ) ;
162 }
163
164 /∗ member func t i on f o r check ing the s t a t e o f a f l ow in the resource

r e s e r v a t i on s t a t e t a b l e



224 List of Source Codes

165 ∗ the parameter i s the f l ow id . I t r e turns −1 when the s t a t e i s not
in the r e s e r v a t i on t a b l e ∗/

166 int MultiSALink : : lookup ( int f l ow id )
167 {
168 int i ;
169 for ( i =0; i<NFLOWS; i++)
170 i f ( pending [ i ] . f l ow id==f l ow id )
171 return i ;
172 return(−1) ;
173 }
174
175 /∗ member func t i on to ge t the next a v a i l a b l e f r e e s t a t e in the

resource r e s e r v a t i on s t a t e t a b l e
176 ∗ i t r e tu rns a s t a t e when a v a i l a b l e or a warning message i f t h e r e

i s no s t a t e a v a i l a b l e ∗/
177 int MultiSALink : : ge t nxt ( )
178 {
179 int i ;
180 for ( i =0; i<NFLOWS; i++)
181 {
182 i f ( pending [ i ] . f l ow id==−1)
183 return i ;
184 }
185 p r i n t f ( ”Ran out o f pending space \n” ) ;
186 e x i t (1 ) ;
187 // re turn i ;
188 }
189
190 /∗ member func t i on f o r wr i t i n g the t race data .
191 ∗ Parameter : the t raced data to be wr i t t en ∗/
192 void MultiSALink : : t r a c e ( TracedVar∗ v )
193 {
194 char wrk [ 5 0 0 0 ] ;
195 int ∗p , newval ;
196
197 i f ( strcmp (v−>name ( ) , ”\”Admitted Flows\”” ) == 0) {
198 p = &onumfl ;
199 }
200 else {
201 f p r i n t f ( s tde r r , ”MultiSALink : unknown t ra c e var %s\n

” , v−>name ( ) ) ;
202 return ;
203 }
204
205 newval = int (∗ ( ( TracedInt ∗) v ) ) ;
206
207 i f ( tchan ) {
208 int n ;
209 double t = Scheduler : : i n s t ance ( ) . c l o ck ( ) ;
210 /∗ f −t 0 .0 −s 1 −a SA −T v −n Num −v 0 −o 0 ∗/
211 s p r i n t f (wrk , ” f −t %g −s %d −a %s :%d−%d −T v −n %s −



225

v %d −o %d” ,
212 t , s r c , adc −>type ( ) , s r c , dst , v−>name ( )

, newval , ∗p) ;
213 n = s t r l e n (wrk ) ;
214 wrk [ n ] = ’ \n ’ ;
215 wrk [ n+1] = 0 ;
216 (void ) Tcl Write ( tchan , wrk , n+1) ;
217
218 }
219
220 ∗p = newval ;
221
222 return ;
223 }

Listing 15: Bandwidth allocation mechanism header file

1
2#ifndef BANDWIDTHALLOC H
3#define BANDWIDTHALLOC H
4
5
6 /∗ A s t r u c t u r e to ho ld data f o r the bandwidth a l l o c a t i o n mechanism

∗/
7 struct BandwidthAlloc {
8 double netBandwidth ; /∗ s t o r e the t o t a l bandwidth capac i t y

∗/
9 double cl bw [ 3 ] ; /∗ array v a r i a b l e to ho ld

the c l a s s bandwidth f o r each o f the t h r ee c l a s s e s o f
s e r v i c e ∗/

10
11 /∗ Group o f member v a r i a b l e s f o r r e a l i z i n g the dynamic

bandwidth a l l o c a t i o n ∗/
12 double voClThold , viClThold , stdClMidThold , stdClNorBwBor ,

stdClMaxThold ;
13 double stdClMinAvgLd , stdClMinThold , stdClMaxBwBor ;
14 bool voBorFrStd , viBorFrStd , voBorMaxFrStd , viBorMaxFrStd ;
15 bool stdRcvMax1BorFrVo , stdRcvMax1BorFrVi , stdRcv1BorFrVo ,

stdRcv1BorFrVi , stdRcvMax2BorFrVo ;
16 bool stdRcvMax2BorFrVi , stdRcv2BorFrVo , stdRcv2BorFrVi ,

stdNRcvBor ;
17
18
19
20 /∗ Function d e c l a r a t i o n s ∗/
21 void bwAl loc In i t (double& band ) ;
22 void voipBorrowBw (double& voClAvgLd , double& stdClAvgLd ) ;
23 void videoBorrowBw (double& viClAvgLd , double& stdClAvgLd ) ;
24 void stdRecoverBw (double& voClAvgLd , double& viClAvgLd ,

double& stdClAvgLd ) ;
25
26 } ;



226 List of Source Codes

27#endif /∗BANDWIDTHALLOC H ∗/

Listing 16: Bandwidth allocation mechanism source file

1
2#include ”bandwidthAlloc . h”
3
4
5 /∗ I n i t i a l i z a t i o n func t i on ∗/
6 void BandwidthAlloc : : bwAl loc In i t (double& band )
7 {
8 netBandwidth = band ; /∗ the t o t a l bandwidth capac i t y ∗/
9

10 /∗ member v a r i a b l e i n i t i a l i z a t i o n ∗/
11 voBorFrStd = true ; viBorFrStd = true ;
12 voBorMaxFrStd = true ; viBorMaxFrStd = true ;
13
14 /∗ s t a t i c shar ing o f the net bandwidth among the t r a f f i c

f l ow c l a s s e s ∗/
15 cl bw [ 0 ] = 0 .5 ∗ netBandwidth ; /∗ Voip c l a s s bandwidth

share ∗/
16 cl bw [ 1 ] = 0 .35 ∗ netBandwidth ; /∗ v ideo c l a s s bandwith

share ∗/
17 cl bw [ 2 ] = 0 .15 ∗ netBandwidth ; /∗ s tandard c l a s s bandwidth

share ∗/
18
19 voClThold = cl bw [ 0 ] ∗ 0 . 8 5 ; /∗ vo ip c l a s s

t h r e s h o l d f o r borrowing bandwidth ∗/
20 viClThold = cl bw [ 1 ] ∗ 0 . 9 ; /∗ v ideo c l a s s

t h r e s h o l d f o r borrowing bandwidth ∗/
21 stdClMinThold = cl bw [ 2 ] ∗ 0 . 1 ; /∗ s tandard c l a s s

minimum th r e s h o l d f o r c o l l e c t i n g back h a l f o f the maximum
borrowed bandwidth ∗/

22 stdClMidThold = cl bw [ 2 ] ∗ 0 . 4 7 ; /∗ s tandard c l a s s
middle t h r e s h o l d f o r c o l l e c t i n g back h a l f o f the normal
borrowed bandwidth ∗/

23 stdClNorBwBor = cl bw [ 2 ] ∗ 0 . 5 ; /∗ s tandard c l a s s
t h r e s h o l d under which normal bandwidth borrow shou ld take
p l ace ∗/

24 stdClMinAvgLd = cl bw [ 2 ] ∗ 0 . 1 5 ; /∗ s tandard c l a s s
minimum average load under which maximum bandwidth borrow

shou ld take p l ace ∗/
25 stdClMaxThold = cl bw [ 2 ] ∗ 0 . 7 ; /∗ s tandard c l a s s

maximum th r e s h o l d f o r c o l l e c t i n g back the r e s t o f the
borrowed bandwidth ∗/

26 stdClMaxBwBor = cl bw [ 2 ] ∗ 0 . 8 5 ; /∗ s tandard c l a s s
maximum bandwidth to be borrowed ∗/

27 }
28
29 /∗ f unc t i on t ha t i s used by the vo ip c l a s s to borrow bandwidth from

standard c l a s s ∗/
30 void BandwidthAlloc : : voipBorrowBw (double& voClAvgLd , double&



227

stdClAvgLd )
31 {
32
33 /∗ When the vo ip c l a s s average load i s more than 85% of i t s

c l a s s bandwidth and the standard c l a s s
34 average load i s l e s s than 15% or 50% of i t s c l a s s

bandwidth , borrow some bandwith from the standard
c l a s s ∗/

35 i f ( voClAvgLd > voClThold && stdClAvgLd < stdClNorBwBor )
36 {
37 /∗ when the standard c l a s s average load i s l e s s than

15% of i t s c l a s s bandwidth , borrow maximum
bandwidth ∗/

38 i f ( stdClAvgLd < stdClMinAvgLd && voBorMaxFrStd )
39 {
40 cl bw [ 2 ] −= (stdClMaxBwBor ∗ 0 . 6 ) ; /∗

borrow 60% of the maximum borrowab le
bandwidth from standard c l a s s ∗/

41 cl bw [ 0 ] += ( stdClMaxBwBor ∗ 0 . 6 ) ; /∗
add the borrowed bandwidth to the vo ip
c l a s s bandwidth ∗/

42 voBorMaxFrStd = fa l se ;
/∗ check t ha t t h i s borrow

i s done once u n t i l the bandwidth i s
r e l e a s e d back ∗/

43 stdRcvMax1BorFrVo = true ;
/∗ check t ha t the f i r s t s t ep o f

r e cove r ing h a l f o f the maximum borrowed
bandwidth i s done once u n t i l the
bandwidth i s borrowed again by vo ip c l a s s
∗/

44 stdRcvMax2BorFrVo = true ;
/∗ check t ha t the second s t ep o f

r e cove r ing the r e s t o f the maximum
borrowed bandwidth i s done once u n t i l the
bandwidth i s borrowed again by vo ip

c l a s s ∗/
45 voBorFrStd = fa l se ;

/∗ when maximum bandwidth
i s borrowed , do not a l l ow normal

bandwidth borrow ∗/
46 }
47
48 /∗ when the standard c l a s s average load i s l e s s than

50% of i t s c l a s s bandwidth , borrow normal
bandwidth ∗/

49 i f ( stdClAvgLd > stdClMinAvgLd && stdClAvgLd <

stdClNorBwBor && voBorFrStd )
50 {
51 cl bw [ 2 ] −= ( stdClNorBwBor ∗ 0 . 6 ) ; /∗

borrow 60% of the normal borrowab le



228 List of Source Codes

bandwidth from standard c l a s s ∗/
52 cl bw [ 0 ] += ( stdClNorBwBor ∗ 0 . 6 ) ; /∗

add the borrowed bandwidth to the vo ip
c l a s s bandwidth ∗/

53 voBorFrStd = fa l se ;
/∗ check t ha t t h i s borrow

i s done once u n t i l the bandwidth i s
r e l e a s e d back ∗/

54 stdRcv1BorFrVo = true ;
/∗ check t ha t the f i r s t s t ep o f

r e cove r ing h a l f o f the normal borrowed
bandwidth i s done once u n t i l the
bandwidth i s borrowed again by vo ip c l a s s
∗/

55 stdRcv2BorFrVo = true ;
/∗ check t ha t the second s t ep o f

r e cove r ing the r e s t o f the normal
borrowed bandwidth i s done once u n t i l the
bandwidth i s borrowed again by vo ip

c l a s s ∗/
56 voBorMaxFrStd = fa l se ;

/∗ when normal bandwidth i s
borrowed , do not a l l ow maximum bandwidth
borrow ∗/

57 }
58 }
59
60 }
61
62 /∗ f unc t i on t ha t i s used by the v ideo c l a s s to borrow bandwidth from

standard c l a s s ∗/
63 void BandwidthAlloc : : videoBorrowBw (double& viClAvgLd , double&

stdClAvgLd )
64 {
65 /∗ When the v ideo c l a s s average load i s more than 90% of i t s

c l a s s bandwidth and the standard c l a s s
66 ∗ average load i s l e s s than 15% or 50% of i t s c l a s s

bandwidth , borrow some bandwith from the standard c l a s s
∗/

67 i f ( viClAvgLd > viClThold && stdClAvgLd < stdClNorBwBor )
68 {
69 /∗ when the standard c l a s s average load i s l e s s than

15% of i t s c l a s s bandwidth , borrow maximum
bandwidth ∗/

70 i f ( stdClAvgLd < stdClMinAvgLd && viBorMaxFrStd )
71 {
72 cl bw [ 2 ] −= (stdClMaxBwBor ∗ 0 . 4 ) ; /∗

borrow 40% of the maximum borrowab le
bandwidth from standard c l a s s ∗/

73 cl bw [ 1 ] += ( stdClMaxBwBor ∗ 0 . 4 ) ; /∗
add the borrowed bandwidth to the v ideo



229

c l a s s bandwidth ∗/
74 viBorMaxFrStd = fa l se ;

/∗ check t ha t t h i s borrow
i s done once u n t i l the bandwidth i s

r e l e a s e d back ∗/
75 stdRcvMax1BorFrVi = true ;

/∗ check t ha t the f i r s t s t ep o f
r e cove r ing h a l f o f the maximum borrowed
bandwidth i s done once u n t i l the
bandwidth i s borrowed again by v ideo
c l a s s ∗/

76 stdRcvMax2BorFrVi = true ;
/∗ check t ha t the second s t ep o f

r e cove r ing the r e s t o f the maximum
borrowed bandwidth i s done once u n t i l the
bandwidth i s borrowed again by v ideo

c l a s s ∗/
77 viBorFrStd = fa l se ;

/∗ when maximum bandwidth
i s borrowed , do not a l l ow normal

bandwidth borrow ∗/
78 }
79
80 /∗ when the standard c l a s s average load i s l e s s than

50% of i t s c l a s s bandwidth , borrow normal
bandwidth ∗/

81 i f ( stdClAvgLd > stdClMinAvgLd && viBorFrStd )
82 {
83 cl bw [ 2 ] −= ( stdClNorBwBor ∗ 0 . 4 ) ; /∗

borrow 40% of the normal borrowab le
bandwidth from standard c l a s s ∗/

84 cl bw [ 1 ] += ( stdClNorBwBor ∗ 0 . 4 ) ; /∗
add the borrowed bandwidth to the v ideo
c l a s s bandwidth ∗/

85 viBorFrStd = fa l se ;
/∗ check t ha t t h i s borrow

i s done once u n t i l the bandwidth i s
r e l e a s e d back ∗/

86 stdRcv1BorFrVi = true ;
/∗ check t ha t the f i r s t s t ep o f

r e cove r ing h a l f o f the normal borrowed
bandwidth i s done once u n t i l the
bandwidth i s borrowed again by v ideo
c l a s s ∗/

87 stdRcv2BorFrVi = true ;
/∗ check t ha t the second s t ep o f

r e cove r ing the r e s f o f the normal
borrowed bandwidth i s done once u n t i l the
bandwidth i s borrowed again by v ideo

c l a s s ∗/
88 viBorMaxFrStd = fa l se ;



230 List of Source Codes

/∗ when normal bandwidth i s
borrowed , do not a l l ow maximum bandwidth
borrow ∗/

89 }
90 }
91
92 }
93
94 /∗ f unc t i on t ha t i s used by the s tandard c l a s s to recover borrowed

bandwidth from voip and v ideo c l a s s e s ∗/
95 void BandwidthAlloc : : stdRecoverBw (double& voClAvgLd , double&

viClAvgLd , double& stdClAvgLd )
96 {
97 /∗ when the standard c l a s s average load i s more than 10% and

l e s s than 47% of i t s c l a s s bandwidth ,
98 ∗ c o l l e c t back h a l f o f the maximum borrowed bandwidth from

voip and v ideo c l a s s e s ∗/
99 i f ( stdClAvgLd > stdClMinThold && stdClAvgLd < stdClMidThold

)
100 {
101 /∗ when vo ip c l a s s borrowed maximum bandwidth from

standard c l a s s bandwidth and i t i s not us ing i t
a t the moment

102 ∗ and standard c l a s s has not recovered t h i s
bandwidth f o r the f i r s t time , then g i v e h a l f o f
the borrowed bandwidth back ∗/

103 i f ( c l bw [ 0 ] > ( ( netBandwidth ∗ 0 . 5 ) + ( stdClNorBwBor
∗ 0 . 3 ) ) && voClAvgLd < ( netBandwidth ∗ 0 . 5 ) &&

stdRcvMax1BorFrVo )
104 {
105 cl bw [ 0 ] −= (stdClMaxBwBor ∗ 0 . 3 ) ; /∗

remove the borrowed bandwidth from voip
c l a s s bandwidth ∗/

106 cl bw [ 2 ] += ( stdClMaxBwBor ∗ 0 . 3 ) ; /∗
add back the bandwidth to the s tandard
c l a s s bandwidth ∗/

107 stdRcvMax1BorFrVo = fa l se ;
/∗ do not a l l ow standard c l a s s to

r e que s t f o r t h i s bandwidth again u n t i l
vo ip c l a s s borrows i t again ∗/

108 }
109
110 /∗ when v ideo c l a s s borrowed maximum bandwidth from

standard c l a s s bandwidth and i t i s not us ing i t
a t the moment

111 ∗ and standard c l a s s has not recovered t h i s
bandwidth f o r the f i r s t time , then g i v e h a l f o f
the borrowed bandwidth back ∗/

112 i f ( c l bw [ 1 ] > ( ( netBandwidth ∗ 0 . 35 ) + (
stdClNorBwBor ∗ 0 . 2 ) ) && viClAvgLd < (
netBandwidth ∗ 0 . 35 ) && stdRcvMax1BorFrVi )



231

113 {
114 cl bw [ 1 ] −= (stdClMaxBwBor ∗ 0 . 2 ) ; /∗

remove the borrowed bandwidth from video
c l a s s bandwidth ∗/

115 cl bw [ 2 ] += ( stdClMaxBwBor ∗ 0 . 2 ) ; /∗
add back the bandwidth to the s tandard
c l a s s bandwidth ∗/

116 stdRcvMax1BorFrVi = fa l se ;
/∗ do not a l l ow standard c l a s s to

r e que s t f o r t h i s bandwidth again u n t i l
v ideo c l a s s borrows i t again ∗/

117 }
118
119
120 }
121 /∗ when the standard c l a s s average load i s more than 47% of

i t s c l a s s bandwidth ,
122 ∗ c o l l e c t back the r e s t o f the borrowed bandwidth from voip

and v ideo c l a s s e s ∗/
123 else i f ( stdClAvgLd > stdClMidThold )
124 {
125 /∗ when vo ip c l a s s borrowed normal bandwidth from

standard c l a s s bandwidth and i t i s not us ing i t
a t the moment

126 ∗ and standard c l a s s has not recovered t h i s
bandwidth f o r the f i r s t time , then g i v e h a l f o f
the borrowed bandwidth back ∗/

127 i f ( c l bw [ 0 ] > ( ( netBandwidth ∗ 0 . 5 ) + ( stdClNorBwBor
∗ 0 . 3 ) ) && voClAvgLd < ( netBandwidth ∗ 0 . 5 ) &&

stdRcv1BorFrVo )
128 {
129 cl bw [ 0 ] −= ( stdClNorBwBor ∗ 0 . 3 ) ; /∗

remove the borrowed bandwidth from voip
c l a s s bandwidth ∗/

130 cl bw [ 2 ] += ( stdClNorBwBor ∗ 0 . 3 ) ; /∗
add back the bandwidth to the s tandard
c l a s s bandwidth ∗/

131 stdRcv1BorFrVo = fa l se ;
/∗ do not a l l ow standard c l a s s to

r e que s t f o r t h i s bandwidth again u n t i l
vo ip c l a s s borrows i t again ∗/

132 }
133
134 /∗ when v ideo c l a s s borrowed normal bandwidth from

standard c l a s s bandwidth and i t i s not us ing i t
a t the moment

135 ∗ and standard c l a s s has not recovered t h i s
bandwidth f o r the f i r s t time , then g i v e h a l f o f
the borrowed bandwidth back ∗/

136 i f ( c l bw [ 1 ] > ( ( netBandwidth ∗ 0 . 35 ) + (
stdClNorBwBor ∗ 0 . 3 ) ) && voClAvgLd < (



232 List of Source Codes

netBandwidth ∗ 0 . 35 ) && stdRcv1BorFrVi )
137 {
138 cl bw [ 1 ] −= ( stdClNorBwBor ∗ 0 . 2 ) ; /∗

remove the borrowed bandwidth from video
c l a s s bandwidth ∗/

139 cl bw [ 2 ] += ( stdClNorBwBor ∗ 0 . 2 ) ; /∗
add back the bandwidth to the s tandard
c l a s s bandwidth ∗/

140 stdRcv1BorFrVi = fa l se ;
/∗ do not a l l ow standard c l a s s to

r e que s t f o r t h i s bandwidth again u n t i l
v ideo c l a s s borrows i t again ∗/

141 }
142 }
143
144 /∗ when the standard c l a s s average load i s more than 70% of

i t s c l a s s bandwidth ,
145 ∗ c o l l e c t back the r e s t o f the borrowed bandwidth from voip

and v ideo c l a s s e s ∗/
146 i f ( stdClAvgLd > stdClMaxThold )
147 {
148 /∗ when vo ip c l a s s borrowed maximum bandwidth from

standard c l a s s bandwidth and i t i s not us ing i t
a t the moment

149 ∗ and standard c l a s s has not recovered t h i s
bandwidth f o r the f i r s t time , then g i v e the r e s t
o f the borrowed bandwidth back ∗/

150 i f ( c l bw [ 0 ] > ( netBandwidth ∗ 0 . 5 ) && voClAvgLd < (
netBandwidth ∗ 0 . 5 ) && stdRcvMax2BorFrVo )

151 {
152 cl bw [ 0 ] −= (stdClMaxBwBor ∗ 0 . 3 ) ; /∗

remove the borrowed bandwidth from voip
c l a s s bandwidth ∗/

153 cl bw [ 2 ] += ( stdClMaxBwBor ∗ 0 . 3 ) ; /∗
add back the bandwidth to the s tandard
c l a s s bandwidth ∗/

154 stdRcvMax2BorFrVo = fa l se ;
/∗ do not a l l ow standard c l a s s to

r e que s t f o r t h i s bandwidth again u n t i l
vo ip c l a s s borrows i t again ∗/

155 voBorMaxFrStd = true ;
/∗ a l l ow vo ip c l a s s to borrow

maximum bandwidth again from standard
c l a s s ∗/

156 }
157
158 /∗ when v ideo c l a s s borrowed maximum bandwidth from

standard c l a s s bandwidth and i t i s not us ing i t
a t the moment

159 ∗ and standard c l a s s has not recovered t h i s
bandwidth f o r the f i r s t time , then g i v e the r e s t



233

o f the borrowed bandwidth back ∗/
160 i f ( c l bw [ 1 ] > ( netBandwidth ∗ 0 . 35 ) && viClAvgLd < (

netBandwidth ∗ 0 . 35 ) && stdRcvMax2BorFrVi )
161 {
162 cl bw [ 1 ] −= (stdClMaxBwBor ∗ 0 . 2 ) ; /∗

remove the borrowed bandwidth from video
c l a s s bandwidth ∗/

163 cl bw [ 2 ] += ( stdClMaxBwBor ∗ 0 . 2 ) ; /∗
add back the bandwidth to the s tandard
c l a s s bandwidth ∗/

164 stdRcvMax2BorFrVi = fa l se ;
/∗ do not a l l ow standard c l a s s to

r e que s t f o r t h i s bandwidth again u n t i l
v ideo c l a s s borrows i t again ∗/

165 viBorMaxFrStd = true ;
/∗ a l l ow v ideo c l a s s to borrow

maximum bandwidth again from standard
c l a s s ∗/

166 }
167
168
169 /∗ when vo ip c l a s s borrowed normal bandwidth from

standard c l a s s bandwidth and i t i s not us ing i t
a t the moment

170 ∗ and standard c l a s s has not recovered t h i s
bandwidth f o r the f i r s t time , then g i v e the r e s t
o f the borrowed bandwidth back ∗/

171 i f ( c l bw [ 0 ] > ( netBandwidth ∗ 0 . 5 ) && voClAvgLd < (
netBandwidth ∗ 0 . 5 ) && stdRcv2BorFrVo )

172 {
173 cl bw [ 0 ] −= ( stdClNorBwBor ∗ 0 . 3 ) ; /∗

remove the borrowed bandwidth from voip
c l a s s bandwidth ∗/

174 cl bw [ 2 ] += ( stdClNorBwBor ∗ 0 . 3 ) ; /∗
add back the bandwidth to the s tandard
c l a s s bandwidth ∗/

175 stdRcv2BorFrVo = fa l se ;
/∗ do not a l l ow standard c l a s s to

r e que s t f o r t h i s bandwidth again u n t i l
vo ip c l a s s borrows i t again ∗/

176 voBorFrStd = true ;
/∗ a l l ow vo ip c l a s s to

borrow normal bandwidth again from
standard c l a s s ∗/

177 }
178
179 /∗ when v ideo c l a s s borrowed normal bandwidth from

standard c l a s s bandwidth and i t i s not us ing i t
a t the moment

180 ∗ and standard c l a s s has not recovered t h i s
bandwidth f o r the f i r s t time , then g i v e the r e s t



234 List of Source Codes

o f the borrowed bandwidth back ∗/
181 i f ( c l bw [ 1 ] > ( netBandwidth ∗ 0 . 35 ) && viClAvgLd < (

netBandwidth ∗ 0 . 35 ) && stdRcv2BorFrVi )
182 {
183 cl bw [ 1 ] −= ( stdClNorBwBor ∗ 0 . 2 ) ; /∗

remove the borrowed bandwidth from video
c l a s s bandwidth ∗/

184 cl bw [ 2 ] += ( stdClNorBwBor ∗ 0 . 2 ) ; /∗
add back the bandwidth to the s tandard
c l a s s bandwidth ∗/

185 stdRcv2BorFrVi = fa l se ;
/∗ do not a l l ow standard c l a s s to

r e que s t f o r t h i s bandwidth again u n t i l
v ideo c l a s s borrows i t again ∗/

186 viBorFrStd = true ;
/∗ a l l ow v ideo c l a s s to

borrow normal bandwidth again from
standard c l a s s ∗/

187 }
188 }
189
190 }


	Contents
	List of Figures
	List of Tables
	Introduction
	The Organisation of the Work

	QoS in the Internet
	Customer/Provider Service Level Agreement
	Service Level Agreement Concept
	Service Level Specification
	Service Classification

	QoS Definitions
	QoS Specification and Parameters
	QoS Parameters
	Intrinsic Parameters
	Operational Parameters

	Required Conditions for QoS

	QoS Technologies
	Integrated Services (IntServ)
	Packet Classification
	Packet Scheduling and Queue Management
	Admission Control Algorithm
	Service Classes
	Guaranteed Service (GS)
	Controlled--Load Service (CLS)
	RSVP signalling

	Differentiated Services (DiffServ)
	Differentiated Services Classes
	Differentiated Services Traffic Classification and Conditioning

	Comparison of Differentiated Service and Integrated Service
	Multi-Protocol Label Switching (MPLS)
	MPLS Basic Architecture
	MPLS Label Distribution
	Packet Forwarding in MPLS
	Traffic Engineering in MPLS Networks


	Summary

	Admission Control Description
	Required situations for Admission Control
	Related Work and Research in this Area
	Admission Control Approaches
	Parameter-based Admission Control
	Measurement-based Admission Control
	Different MBAC Paradigma
	MBAC Components
	Traffic Descriptor
	Admission Decision Algorithms
	Measurement Mechanism


	A Multiservice Framework Using MBAC in ns-2
	The Enhanced Link for the New Framework
	Signal-Support
	Queue Scheduler
	Classifier
	Measurement, Estimation, Admission Control

	Dynamic Bandwidth Allocation Mechanism

	Summary

	Studying Network Performance with the Network Simulator Tool (ns-2)
	Basics of ns-2
	Tool Concept
	Target Groups, Goals, Components, and Features
	Cautions for ns-2

	Sources and Installation
	System Requirements and Platform

	Methodic Teaching with ns-2 Tool
	Lecture 1: Introduction to Tcl/OTcl Programming Language
	Tcl/OTcl Basics and Syntax
	File Operation and Application Command execution
	Tcl Control Structures
	Adding New Commands to Tcl
	Object-Oriented Programming in OTcl
	Lecture Assignments

	Lecture 2: Writing Simulation Scripts and Simulating in ns-2
	Initialization and Trace Setup
	Create Topology and Nam Setup
	Create Transport Agents and Application Sources
	Simulation Process and Termination
	Nam Visualization and Simulation Result Post-Processing
	Lecture Assignments

	Lecture 3: Adding Custom Functionality to ns-2
	ns-2 Directory Structure Overview
	How to Add a New Class Object to ns-2
	Testing and Result of the New Class Object


	Summary

	Code Description of the Multiservice Framework
	Multiservice Queue Scheduler Implementation
	Queue Components description

	Signalling Mechanism Implementation
	Signalling Components Description

	Multiservice Enhanced Link Implementation
	Multiservice Link Components Description

	Implementation of Admission Control Algorithms
	Admission Control Classes Description
	Measured Sum Algorithm Code Description
	Hoeffding Bounds Algorithm Code Description
	Acceptance Region Tangent at Peak Algorithm Code Description
	Acceptance Region Tangent at Origin Algorithm Code Description

	Estimator Classes Description
	Time-Window Estimator Code Description
	Exponential Averaging Estimator Code Description
	Point Sample Estimation Code Description


	Summary

	Simulation Scenarios and Results
	Static Bandwidth Allocation Mechanism
	Simulation with the Two-Node Network Topology 
	Simulation Scenario One
	Simulation Scenario Two

	Simulation with the Eight-Node Network Topology
	Simulation Scenario One
	Simulation Scenario Two

	Performance Comparison of the Two Network Topologies

	Dynamic Bandwidth Allocation Mechanism
	Simulation with the Two-Node Network Topology
	Simulation Scenario One
	Simulation Scenario Two

	Simulation with the Eight-Node Network Topology
	Simulation Scenario One
	Simulation Scenario Two

	Performance Comparison of the Two Network Topologies

	Performance Comparison: Static vs. Dynamic Bandwidth Allocation Mechanism 
	General Comments About Achieved Results
	Selected Results and Comparison

	Summary

	Conclusions
	Bibliography
	Index
	List of Source Codes

