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1. Abstract

Models are used to simulate and calculate individual muscle forces and
body mass acceleration because their direct measurement is impractical.
Among other parameters, the parameters which describe and define the char-
acteristic of the elements of the muscle-tendon model are important input
variables. Since they are difficult to obtain and cannot be measured in vivo,
they are estimated values. The purpose of this work is to conduct a sensitivity
analysis to those parameters on the output of an inverse-dynamic gait model.

It was desired to show how muscle parameters contribute to the body mass
acceleration. Body mass acceleration can be broken down to all accelerations
delivered by the individual muscles. Hence, muscle parameters are varied and
a new sets of muscle forces are calculated. Those new muscle forces are in-
put to a perturbation analysis which calculates the contribution of muscle
induced acceleration to the body mass acceleration. The comparison of the
nominal values and the values due to the variation give a conclusion about
sensitivity of accelerations to muscle parameters.

The analysis of this study includes the variation of pennation angle, opti-
mal muscle force, resting fiber length and tendon slack length (specific values
for each muscle) as well as maximal shortening velocity, activation and deac-
tivation time (constants for all muscles). The model of walking includes 54
muscles (each leg 24, upper body 6), of which 13 have been included in this
study. The analysis was examined over the stance phase of the gait cycle for
normal walking.

Muscles were most sensitive to a variation of tendon slack length. The
combined muscles plantar flexors were found to be the most sensitive muscle
group and, additionally, variation of their parameters had a considerable in-
fluence on other muscles. The results clearly show dependencies between the
several muscles contributing to locomotion. The variation of a parameter for
a muscle can have a similar or even larger impact on the other muscles than
on the muscle which was changed. The findings of this work emphasize the
importance of accurate parameter setting and consideration of interactivity
of muscles and muscle groups.

4



2. Zusammenfassung

Modelle werden verwendet um einzelne Muskelkräfte und die Beschleu-
nigung des Körperschwerpunkts zu berechnen, da deren direkte Messung
nicht möglich ist. Unter vielen anderen Parametern sind diejenigen, welche
die Eigenschaften der Elemente des Muskel-Sehnen Modells beschreiben,
wichtige Eingangsgrößen. Da diese sehr schwierig zu bestimmen sind und
in vivo nicht gemessen werden können, sind sie geschätzte Größen. In dieser
Arbeit wurde eine Sensitivitätsanalyse bezüglich dieser Parameter an einen
invers-dynamischen Gangmodell durchgeführt.

Es sollte gezeigt werden wie Muskelparameter die Beschleunigung des
Körperschwerpunktes beeinflussen. Diese Körperschwerpunktsbeschleunigung
kann aus den Beschleunigungen, die von den einzelnen Muskeln beigesteuert
werden, zusammengesetzt werden. Es werden die Muskelparameter variiert
und Sets von Muskelkräften berechnet. Diese neuen Muskelkräfte sind die
Eingangsdaten für eine Perturbationsanalyse, welche den Beitrag eines jeden
einzelnen Muskels zu der Beschleunigung des Körperschwerpunktes ermit-
telt. Der Vergleich von nominalen mit variierten Werten gibt Rückschlüsse
über die Sensitivität von Beschleunigungen zu Parametern.

Die Analyse umfasst die Variation von Fiederungswinkel, optimaler Muskel-
kraft, optimaler Muskelfaserlänge und Sehnenruhelänge (für jeden Muskel
spezifische Werte) wie auch maximale Verkürzungsgeschwindigkeit, Aktivier-
ungs- und Deaktivierungszeit (konstant für alle Muskeln). Das Gangmodel
beinhaltet 54 Muskeln (jedes Bein 24, Oberkörper 6) von denen 13 unter-
sucht wurden. Durchgeführt wurde die Analyse über die Standphase eines
Gang-Zyklus bei normalem Gehen.

Muskeln zeigten größte Sensitivität zu einer Variation der Sehnenruhelänge.
Als sensitivste Muskel Gruppe stellten sich die zusammengefassten Muskeln
der plantar flexoren heraus. Außerdem hatte eine Variation ihrer Param-
eter einen beträchtlichen Einfluss auf die anderen Muskeln. Die Resultate
zeigen deutlich Abhängigkeiten zwischen den verschiedenen Muskeln, die zur
Fortbewegung beitragen. Die Ergebnisse dieser Arbeit unterstreichen die
Wichtigkeit Parameterwerte richtig zu setzen und veranschaulichen die wech-
selseitige Beeinflussung von Muskeln und Muskelgruppen.
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3. Introduction

Individual muscle forces produced by humans in every-day tasks and athletic activities
are important quantities. The knowledge about that has numerous applications in hu-
man biology, orthopedics, and motor control. Methods of mathematical modeling are
used to estimate individual muscle forces in the human body because their direct mea-
surements are difficult to make. [28]

The accuracy of any modeling approach is determined, in part, by the values of the
parameters assumed in the model. Muscle models are defined by numerous parameters,
which cannot be measured directly due to the invasiveness of determining some muscle
parameters. A model of movement can incorporate various elements, including a model
of the skeleton, a model of the muscle paths, a model of muscle actuation, and a model
of excitation-contraction coupling. Many studies have examined the sensitivity of model
calculations to variations in body anthropometry but few have quantified the sensitivity
of muscle force estimates to changes in muscle properties. The latter is important in
view of the wide variation in muscle properties reported in the literature, even for the
same muscles in humans, as well as the fact that muscle properties can change as a
function of both age and activity level. [29]

The influence of different parameter values on musculoskeletal models is not well un-
derstood [31]. Some authors report that predicted muscle forces correlate reasonable
well with muscle activations of the selected task, whereas others report that these or
similar criteria do not predict magnitudes and patterns satisfactorily. Possible reasons
for these contradictions are that calculated muscle forces are very sensitive to model
parameters and different authors use different sets of model parameters [28].

Musculoskeletal simulations of human movement commonly use Hill muscle models to
predict muscle forces, but their sensitivity to model parameter values is not clear. Scovil
and Ronsky [31] say that the sensitivities of their running and walking simulations were
reduced compared to the sensitivity of the muscle model alone. Results demonstrate
the importance of evaluating sensitivity of a musculoskeletal simulation in a controlled
manner and provide an indication of which parameters must be selected most carefully
based on the sensitivity of a given movement. Further Raikova and Prilutsky [28] say that
the sensitivity of the optimal solution to model parameters should be investigated for
the model of interest and, preferably, analytical relationships between predicted muscle
forces and model parameters should be obtained so that the effect of model parameters
can be clearly seen.

Hence, not just a reliable model is necessary to receive useful data (in matters of
describing the reality well enough) but the setting of the model describing parameters
is also crucial. That is why sensitivity analyses have to be executed on a model. It
must be understood how a model reacts to its input parameters to receive reliable data.
Especially when the input parameters can be set in a wide range and there is not yet
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a consensus found of which are the most important parameters and how values have to
be set. There is not yet a consensus found of which are the most important parameters
and how values have to be set.

The purpose of this work is to improve the understanding of how far and to which
amount the muscle describing parameters are able to affect the model output. Each pa-
rameter can not just affect the force and so accelerations of its own muscle but also forces
produced by all the other muscles. Calculating those sensitivities will give knowledge
about dependencies of muscles and muscle groups and which parameters and so muscle
characteristics have to be treated more carefully. It might help to find more consistent
parameter ranges and so improve the simulation of movement.

3.1. Biomechanical modeling and simulation

Muscles control body movement by developing forces and exerting torques about the
joints. Direct measurement of muscle force in vivo is currently not practical, and so
mathematical models of the musculoskeletal system are often used to estimate muscle
forces non-invasively. Muscle forces cannot be determined uniquely, however, as the
muscles form a mechanically redundant system (i.e. the number of muscles crossing a
joint is usually greater than the number of degrees of freedom prescribing joint motion)
as well as the activation strategy of the central-nerve-system is unknown. One method
used to resolve this redundancy involves the application of optimization theory, in which
physiological cost function is minimized subject to the constraints imposed by the mus-
culoskeletal system and the motor task being modelled. [29]

Creating a muscle-driven simulation of a motor task requires two basic steps: (1) the
formulation of a dynamical model of the musculoskeletal system and its interaction with
the environment (e.g. the ground in walking); and (2) a method to find the muscle exci-
tations to be applied as inputs to the model. A simulation is evaluated by how well the
simulated kinematics, kinetics, and muscle excitation pattern agree with the measured
kinematics, kinetics, and EMGs in the context of the intended use of the simulation. [35]
The kinematic information are the dynamical joint angles during the whole gait cycle.
In three dimensional measurements there are three orthogonal rotational components to
be considered. The kinetic data is joint moment and joint power. The joint moment is
a vector with three orthogonal components, corresponding to the kinematic data. [22]

3.1.1. Gait Analysis

Gait analysis is important for several clinical applications like orthopedics, physical
medicine and rehabilitation. The systematic analysis of locomotion helps in pretreat-
ment assessment, surgical decision making and postoperative follow-up. It has played
a key role in advancement of surgical treatment of children with cerebral palsy. From
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isolated treatment and procedures the current comprehensive multi-level approach cor-
rections could be emerged. Gait analysis is also a useful tool for study of neuromuscular
disorders, the evaluation of prosthetic joint replacement and the study of athletic in-
juries, amputees, orthotics and assisting devices.

There are three main clinical applications. Simulation of gait can be used as a part
of clinical assessment. Gait analysis can support to follow the progress of a disease as a
monitoring tool and is used as a quantitative measurement for research. [22]
Those topics were subjects or inspiration for numerous papers and research-projects
(e.g. [7], [5], [12], [9], [20]). Premise for such surveys are working and reliable models
for simulation of locomotion.

3.1.2. Different methods to calculate muscle forces

In biomechanics, the general distribution or force-sharing problem is aimed at predicting
the forces of individual musculoskeletal structures from known resultant joint forces
and moments. The problem is the determination of individual muscle forces during
movement. The difficulty in determining individual muscle forces arises from the inherent
redundancy of musculoskeletal systems; that is, movements can typically be produced
by an infinite number of muscle force patterns. [21] Therefore, different methods were
developed to compute those muscle forces.

Inverse dynamics (IVD): Inverse dynamics use link-segment models to represent the
mechanical behavior of the body. From observation of movement inverse dynam-
ics analysis compute the associated moments which lead to that movement. It has
been used extensively to estimate in vivo muscle forces during gait. By static opti-
mization those computed joint torques can be decomposed into individual muscle
forces. Static optimization is based on the idea that movements are controlled in a
way to optimize some physiological criterion. For example that muscular fatigue is
minimized in cyclic, low effort movement tasks [21] or the level of muscle activation
or muscle stress is minimized. Such models are computationally efficient (obtained
realtively quickly on single-processor computers), allow full three-dimensional mo-
tion and can incorporate large numbers of muscles. Although this approach is
computationally efficient, it has several shortcomings, beginning with the inaccu-
racies of IVD. This makes it highly influenced by the accuracy of collected and
processed body segmental kinematics (this is experimental data). Static methods
perform a separate optimization at each instant during the task, and therefore
cannot take into account physiological cost functions, such as total muscular ef-
fort or metabolic energy consumption, which are evaluated over time. Also due
to the time-independent nature of static optimization, it is relatively difficult to
incorporate the objected motor task properly. [3], [4], [6]

Dynamic optimization (DO): Dynamic optimization is potentially more powerful than
static optimization. It is inherently a forward-dynamics method, and so the prob-
lem may be formulated independent of experimental data. It executes a forward
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simulation to evaluate performance over the entire motor task period, a time-
dependent criterion can be posed. For example, the optimization problem could
be to calculate the muscle excitation histories, muscle force and limb motions by
the cost function of minimizing the metabolic energy expenditure per unit distance
traveled. Muscle metabolic energy can be calculated by summing five terms: the
basal or resting heat, activation heat, maintenance heat, shortening heat and the
mechanical work done by all the muscles in the model [4]. These attributes allow
the motor patterns and kinematics of movement to be predicted and is more likely
to provide realisticly estimated muscle forces. The main disadvantage is that it
is computationally very expensive, this requiring that dynamic models are greatly
simplified. The Number of muscles included are significantly less than those used
in analogous static optimization work. The question occurs whether this is com-
putational expense is justified. [4], [3] Generally speaking, dynamic optimization
is impractical for common use due to the calculating time issue caused by the
numerical methods used to solve these problems. [6]

Neuromusculoskeletal tracking (NMT): The method estimates muscle forces from ob-
served motion data. The NMT method combines skeletal motion tracking and op-
timal neuromuscular tracking to produce forward simulations of human movement
quickly and accurately. The skeletal motion tracker calculates the joint torques
needed to actuate a skeletal model and track observed segment angles and ground
forces in a forward simulation of the motor task. The optimal neuromuscular
tracker resolves the muscle redundancy problem dynamically and finds the mus-
cle excitations (and muscle forces) needed to produce the joint torques calculated
by the skeletal motion tracker. The NMT method requires 3 orders-of-magnitude
less CPU time than DO done by parameter optimization. NMT method is an
alternative to the conventional approach of combining inverse dynamics and static
optimization to compute muscle forces in human movement. [6]

Anderson and Pandy [3] aimed to asses whether or not dynamic optimization provides
more realistic estimates of muscle forces than static optimization (for normal gait). They
address two questions, first if the large computational cost of dynamic optimization is
justified and second if it is important to account activation dynamics and force-length-
velocity properties to describe muscle physiology truthfully.

They found similarity between the static and dynamic solution which suggests that
this computational expenditure does not significantly improve predictions of muscle or
joint contact forces. Further it appears that a time-independent performance criterion
is adequate and that both activation dynamics and the force-length-velocity properties
can be neglected. The striking similarity between the solutions of the methods also
suggest that the different optimization criteria, minimizing muscle fatigue at each time
step (static optimization) and minimizing metabolic energy expended per unit distance
traveled (dynamic optimization), are roughly the same. To conclude, if one can ac-
curately solve the inverse dynamics problem for normal gait and if one seeks only to
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estimate muscle and joint contact forces, the use of dynamic optimization is currently
not justified. But dynamic optimization may be preferred or even necessary when accu-
rate experimental data are not available, activation dynamics plays an important role,
an appropriate time-independent performance criterion is not available or prediction of
novel movement is desired. [3]

3.1.3. Hill-type muscle model

The mechanical behavior of muscle is described as a traditional three- component Hill
muscle model which consists of a contractile element (CE), that models active muscle
force, the series elastic element (SEE), that models stretch soft tissue and the parallel
elastic element (PEE), that models passive muscle force (see Figures 1 and 2).

The muscle-tendon unit is the muscle fiber in series with tendon. The pennation angle
α is the angle between the lines of action of the tendons and the muscle fiber. lmo is the
optimal length of the muscle, lts is the length of the tendon, and lmt is the muscle-tendon
length. The width w of the muscle remains constant as muscle length changes. (Figure
1) The contractile element produces the active force as a function of fiber length (Fig-
ure 2)and fiber velocity (Figure 3). The elastic component gives passive force (Figure 2).

PEE

SEE CE

lmt

Muscle

Tendon

w

ls

l o m

t

 

Figure 1: Schematic of the musculotendon model. Muscle is described by a three element Hill-type
model.
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Figure 2: The force development of a muscle due to the contractile and parallel-elastic element ac-
cording to its length. Source: http://www.elitefts.com/ documents/power and strength.htm, 1.09.08

The force producing characteristics of an actuator depend on the maximum isometric
strength of the muscle and its corresponding fiber length and pennation angle, the
maximum shortening velocity and the rest length of the tendon. A nonlinear differential
equation defines the relationship between the time rate of change of musculotendon
force (ḞMT ) and musculotendon length (lMT ), musculotendon velocity (vMT ) and muscle
activation (a) [2] :

ḞMT = f(FMT , lMT , vMT , a); 0.01 ≤ a ≤ 1 (1)

Given the instantaneous values of FMT , lMT , vMT and a the force developed by the
actuator at the next time instant is found by numerically integrating equation (1).

Muscle cannot be activated or relaxed instantaneously. This behavior is explained by
the time course of muscle activation. A first-order differential equation relates the time
rate of change of the muscle activation (ȧ) to muscle excitation (u) [2]:

ȧ =
1

τrise
(u2 − ua) +

1

τfall
(u− a) u = u(t); a = a(t) (2)

The constants τrise and τfall are the rise and decay times of the muscle activation. τrise
is the time which the muscle requires to reach 70% of the maximum force. τfall is the
time which it takes until the muscle produces just 30% of the maximum force anymore.
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Figure 3: The Force velocity power relationship for skeletal muscle. Vm, Pm and Fm are maximum
movement velocity, maximum power output and maximum isometric force output respec-
tively. The mechanical power output is maximized at approximately 30% of maximum short-
ening velocity and a load of 30% of maximum isometric strength. Source: http://www.fittech.com.

au/products/kms.asp?loc=training, 1.09.08
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3.1.4. Muscles function in human gait

A muscle can perform many mechanical functions. It can develop force and power, and
over time produce work output. Or it can dissipate mechanical energy if its active fibers
are stretched. When its tendon and other in series elastic elements are stretched, energy
is stored. The force-length-velocity property of muscle can stabilize movement.

Muscles coordinate multi-joint motion by generating forces that cause reaction forces
throughout the body. Thus, a muscle can redistribute existing segmental energy by
accelerating some segments and decelerating others. In the process, a muscle may also
produce or absorb energy, in which case its summed energetic effect on the segments
is positive or negative, respectively. If the segments are not at rest, segmental energy
increases in the accelerated segments and decreases in the decelerated ones. The func-
tion of a muscle to cause energy to be exchanged among segments, whether the muscle
is isometric (muscle is activated but holding its constant length), eccentric (muscles are
lengthened while they are active), or concentric (the muscle shortens, the force which is
generated is always less then the muscle’s maximum), can be more important to task ex-
ecution than its role in producing energy and delivering that energy to the segments. [35]

When any muscle in the human musculoskeletal system is damaged, other muscles
and ligaments tend to compensate for the role of the damaged muscle by exerting extra
effort. Deactivation of one muscle can often lead to increment/decrement of force devel-
oped by muscles with completely different primary functions. For example, deactivation
of the iliopsoas leads to a large reduction in force by the soleus. [23]
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3.2. Literature review

The first task for this thesis was to investigate two methods which could be suitable to
conduct a sensitivity analysis of muscle forces. These methods being the Monte-Carlo
simulation and the perturbation analysis. Following, the findings of the research are
shortly presented, as well as investigated through different aspects to get an overview of
how they work and which problems they can be applied to solve. A whole subsection
is dedicated to summarize Liu et al’s paper [24] (“Muscles that support the body also
modulate forward progression during walking”, section 3.2.3) because the perturbation
analysis presented there is used in this work and was foundation to develop several ideas
(see section 4.2). In the last section of this chapter the findings about sensitivity analysis
in recent publications are briefly presented (section 3.2.4).

3.2.1. Monte-Carlo Simulation

The Monte Carlo Simulation, also known as stochastic simulation, is a technique which
uses random numbers to solve a modeled problem. The parameters of the model are var-
ied by a probability distribution. Using these variations several simulations are executed.
The goal is to determine how random variation, lack of knowledge or measurement errors
can affect the sensitivity, performance or reliability of the system that is being modeled.1

The result is an amount of solutions which are statistically evaluated in the next step.
[11]

According to Halton [17] the Monte Carlo Method can be described as followed:
“Within the Monte Carlo Method, the solution to a problem is represented as parame-
ters of a hypothetical totality. By using randomly chosen numbers a potential sample
is constructed and the value of the parameters of interest are estimated by statistical
methods.”

To simplify, the method can be characterized and implemented by five steps:

1. Creating a parametric model : y = f(x1, x2, . . . , xq)

2. Generating a random set of inputs: xi1, xi2, . . . , xiq

3. Calculating the model and storing the result as yi

4. Repeating step 2 and 3 for i = 1 . . . n

5. Analyzing the results by histograms, summary statistics, confidence intervals etc.

The key to the MC-Method is the use of random numbers. One way to generate these
numbers is to identify statistical properties for the parameters. Such properties are
sometimes given directly by the description of the model (e. g. the parameters describe

1http://www.vertex42.co,/ExcelArticles/mc/MonteCarloSimulation.html, 10.06.2007
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the durability of a working piece). Another possible way is to conduct a series of mea-
surements on the real system to receive different values for the parameters. For those
numbers several statistical tests are carried out to identify a certain distribution of the
values. Based on that, one is able to find a known distribution (e. g. normal distribution,
exponential distribution,...) that is close to the actual surveyed distribution of the pa-
rameters. The parameter is determined by an interval, so can therefore be simulated by a
continuous equal distribution or by dividing the interval by the number of test runs. [11]

Ermakov [14] sums it up like this: “The Monte Carlo Method can be defined as a
method for modeling random variables, whereas the objective is to calculate specific
characteristics of the distribution.”

To generate random numbers is not as easy as one would think. Random numbers (i. e.
independent realization of a random variable) can only be obtained by a random process,
which means carrying out a random experiment. There are existing charts of random
numbers but often a big quantity of numbers is required to get the sufficient results. Due
to that limitation, pseudo random numbers are often used instead, which are much easier
to generate. These are “random numbers” which are built by a mathematical law. That
means they are deterministic (using the same initial value, the same numbers can be
calculated again), and really anything but random. Despite the obvious contradiction,
these pseudo random numbers are very suitable for practical use. They just need to pass
certain given tests like the real random numbers are able to.[18]

Historical Background Since the method relies on random numbers which could be
produced by a roulette game, the name Monte Carlo Simulation derives from the place
Monte-Carlo, which is famous for its gambling.

Already in the 1940’s, when the first computers were developed, Monte Carlo Methods
had been used for solving numerical problems. Particularly for the construction of the
atomic bomb was the simulation of random processes already used on a grand scale.
Here they wanted to forecast theoretically the interaction between neutrons and matter.2

Since the 1950’s the application of the method has broadened.

Applications In principle, the Monte Carlo Method is suitable for any kind of process
which is influenced by random factors. It allows a simulation of the studied process, but
also deterministic problems which are not random at all. For example, the calculation
of a surface area or an integral, can be solved. Therefore, a stochastic model equivalent
to the mathematical system can be built. The solution of the problem results from a
parameter of the model (e. g. as the expectation value of a distribution). Hence, in-
solvable analytical problems can be solved numerically. The justification for using that
kind of method is the law of large numbers (typically a simulation that can include over
10 000 runs). So generally, any method which uses random numbers to solve either

2http://www.exp.univie.ac.at/sc/sim.html, 10.06.07
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deterministic or stochastic problems is a Monte Carlo Method[18]. It is also a common
method to treat problems which are in fact numerically solvable but the exact solution
cannot be received for some reason (e. g. matter of time)

An easy example is the calculation of the mean value of a function within a certain
interval. Points are randomly chosen out of the interval for which the function is cal-
culated. Afterwards the mean value of those function values is worked out. The more
function values are calculated, the more precise becomes the solution. [33]

First of all, the method is very suitable for problems which can be described using
probability. But also for strict deterministic problems it can be very helpful to create
a stochastic model. Therefore the problem is randomized and the MC-Method can be
applied. Characteristics and input parameters often have a certain measurement error.
For that reason it is very important to know how those parameters and their possible
deviation influence the model. Sometimes even small changes can have a great impact on
the result of the simulation. Information about the character of such parameters gives
a sensitivity analysis of the system of equations. In most of the cases the deviations of
the parameters which have to be analyzed can be simulated by a distribution. [11]

Some examples for which the MC-Method can be applied:

• Analytically unsolvable problems of mere mathematical background (e. g. approx-
imation of pi, integrals of higher dimensions 3)

• Physical/nature constants

• Distribution character of random numbers with unknown type of distribution 4

• Simulation of complex processes which cannot be simulated straight forward (e. g.
processes of production to avoid shortages, weather and climate 5)

• For the simulation of uncertainties and statistical characteristics (e. g. path of a
water drop) 6

• Cross Impact Analysis

• Electrical circuits [33]

• Biology and Economy: Simulation of external influences on an ecosystem (e. g.
predator-prey System [33], queueing theory)

3http://de.wikipedia.org/wiki/Monte Carlo Simulation, 10.06.07
4http://de.wikipedia.org/wiki/Monte Carlo Simulation, 10.06.07
5http://de.wikipedia.org/wiki/Monte Carlo Simulation, 10.06.07
6http://de.wikipedia.org/wiki/Monte Carlo Simulation, 10.06.07
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Monte Carlo Method as an optimization method The main principle is: Numbers
are produced by a random generator and assigned to the parameters which should be
optimized. With those parameters the simulation is executed and the results are com-
pared with the previous best solution. If the new given solution is the best one it is
stored as the new best solution. This procedure is repeated until the desired accuracy
of the result is reached. The advantage of this linear searching is that less simulations
are required to get the same result. This is especially an effective method for systems
with a high number of parameters. [16]

Sensitivity analysis by the Monte Carlo Method The principle structure is shown
by a system of ordinary differential equations.

~y = ~g(t; y0, y1, . . . , yn−1) whereas ~y(t0) = ~x

One parameter of the initial value problem is not known whereas the disturbed pa-
rameter is either the initial value ~x or any other parameter of the ordinary differen-
tial equation. The disturbed parameter is seen as a stochastic value. Due to pre-
vious knowledge or experiences is a n-dimensional distribution defined (e. g. Normal
distribution N(~x(0), σ2)). A certain number a of random vectors ~x(j) is picked out
of the distribution. Thus, a disturbed initial value problems are received. To com-
pare the varied solutions with the original solutions certain moments ti are chosen for
which the comparison shall be done. For every moment ti the mean value is built
~y1(ti), ~y

2(ti), . . . , ~y
a(ti) =⇒ ym(ti). Hence, at every moment ti one is interested in the

comparison between ~y0(ti) and ~ym(ti) can be done. [18]

To actually calculate this sensitivity analysis the simulation system MOSIS (MOdular
SImulation System), which was developed at the TU Vienna, could be used.
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3.2.2. Perturbation analysis

It is the nature of data material never being disposal in an absolute exact form. To cite
from a more philosophical viewpoint from Avrachenkov [8]: “As long as we have to work
with data, we have to deal with its perturbations”. Therefore, it is very important to
analyze the influence of perturbations (i. e. the deviation of the nominal value of the data
material). Sometimes even small perturbations cause a dramatic change in the problem
properties. Such sensitivity analysis can be efficiently done by the technique developed
for singular analytic perturbations. Usually data material is stored and worked with in
matrix form. This general idea of perturbation can be written mathematically in the
following additive form:

Ã = A+D

Where Ã is the matrix of the perturbed data, A the matrix of nominal data and D is
the matrix of the perturbation itself, and additionally the rank of Ã is different from
the rank of A, the perturbation is said to be singular. If they have the same rank
the perturbation is regular. Since the additive form is very inconvenient for singular
problems, a perturbation parameter ε is introduced [8]:

A(ε) = A+ εB

ε reflects the value of the deviation of the perturbed data from the nominal set and B
represents the likely direction of the data deviation. This model is called linear pertur-
bation.

The Perturbation Analysis is likely to be used for the numerical calculation of sensi-
tivities. To calculate the influence of a single parameter on the output, each parameter
of the perturbed model answer has to be calculated. In the case where there are large
matrices involved, the calculation can become computationally intensive. In some cases
the differential quotients can be that small that they are numerical distorted due to
small rounding errors. [25]

The literature review on perturbation analysis has shown that the key word “Pertur-
bation Analysis” gives many and diversified results. For every single problem the ap-
plications are very specific and often difficult to comprehend. Because on the one hand
one needs a good mathematical know-how, and on the other hand specialist knowledge
in the field is required for the understanding. Now, there are just a few examples given
where Perturbation analysis is used:

• Economics: “Optimization of a single-component maintenance system: A smoothed
perturbation analysis approach” [19]

• Physics: “Acoustical Klein-Gordon equations: A Time-Independent Perturbation
Analysis” [15], preparative fluid chromatographic, fracture mechanics: to solve fast
forward expanding cracks analytically
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• Mathematics: often mentioned in connection with Markov Chains [8]

As an example for an application of a perturbation analysis on a bio-mechanical
problem, look at section 3.2.3

Variation-Perturbation Usually the terms perturbation and variation are used equally.
But when talking about perturbation analysis and variation of a parameter those two
terms can have a specific and different meaning which should be defined (see also Figure
4).

Variation: Is the change of an input value at the beginning of the simulation. It is
observed how an initial disturbance develops over time until the end of simulation.
It is a normal simulation proceeded with a different input value.

Perturbation: Is a small deviation applied on an input value and then simulated forward
in time. The duration of the perturbation is defined by ∆t. At each time step ti the
function is evaluated. In comparison to the variation the perturbation just runs
for this interval ∆t and it is observed how the values of the function change. New
starting point for the next perturbation simulated forward in time is the original
(unperturbed) value of the function at ti. (compare to perturbation analysis in
section 3.2.3)

Figure 4: The difference between variation and perturbation.
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3.2.3. Application of the perturbation analysis on a bio-mechanical problem, Liu
at al. [24]

The purpose of the study was to characterize the contribution of individual muscles to
the forward progression and the vertical support during walking. Therefore, forces of the
54 muscles of the 3-dimensional gait-model were systematically perturbed. Afterwards,
the changes in the for-aft and vertical acceleration of the body mass center due to the
altered muscle forces during the stance phase were computed. The simulation of walking
was obtained by solving a dynamic optimization problem that minimizes the metabolic
energy expenditure per distance. A suitable formula for the perturbation analysis to
estimate the acceleration caused by a specific muscle is:

ẍm(ti) ≈ 2
x(Fm + ∆Fm, ti + ∆t)− x(Fm, ti + ∆t)

∆t2∆Fm
Fm (3)

ti . . . current time in the simulation
ẍm(ti) . . . contribution of muscle m to fore-aft

acceleration of body mass center
Fm . . . force generated due to muscle m
∆Fm . . . small perturbation of Fm
∆t . . . duration of the perturbation, a short

interval over that the simulation is run

Derivation of the equation:

ẍm(ti) =
∂ẍ

∂Fm
Fm =

ẍ(Fm + ∆Fm, ti)− ẍ(Fm, ti)

∆Fm
Fm (4)

ẍ . . . fore-aft acceleration of body mass center

Since the accelerations can be assumed as being constant over the short interval ∆t,
the observed changes in position can be related to the acceleration using the following
relations (according to the Taylor-Theorem, a linearization at Fm within a small interval
∆t) :

x(Fm, ti + ∆t) ≈ x(Fm, ti) + ẋ(Fm, ti)∆t+
1

2
ẍ(Fm, ti)∆t

2 (5)

and

x(Fm + ∆Fm, ti + ∆t) ≈ x(Fm + ∆Fm, ti) + ẋ(Fm + ∆Fm, ti)∆t+
1
2
ẍ(Fm + ∆Fm, ti)∆t2 (6)
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where x(Fm, ti + ∆t) and x(Fm + ∆Fm, ti + ∆t) are the unperturbed and perturbed
for-aft positions, respectively, of the mass center at ti + ∆t. One should notice that
x(Fm + ∆Fm, ti) is equal to x(Fm, ti) and ẋ(Fm + ∆Fm, ti) is equal to ẋ(Fm, ti) because
positions and velocities cannot change instantaneously in response to a force perturba-
tion. Subtracting equation (5) from equation (6) and substituting the result into (4)
provides the formula for estimating the acceleration of a muscle (3).

Those transformations are an elegant way to turn the continuous problem into a dis-
crete one. For this a computer program can be written easily, the velocity and the
acceleration have been eliminated of the formula for the perturbation analysis as well as
it was achieved that the perturbation ∆Fm is part of the formula.

∆Fm was set as 1N , the perturbation has to be small because the system is very sen-
sitive to force changes. If the variation of force is to big, kinematics and spring reactions
start to behave very different and results become wrong. The acceleration due to each
muscle was evaluated every 0.02s during the simulation.

The accelerations were calculated during the stance phase, accelerations from muscles
during the swing phase were very small. Since left and right side muscle forces are sym-
metric, only data for the right-side muscles is presented. The stance phase was divided
into halves, the first half from initial contact to midstance (0 − 32% of the gait cycle),
and the second half from midstance to toe-off (32− 65% of the gait cycle). Exactly the
stance phase was considered to be 67.5% of the gait cycle which equates 0.754 seconds.

Several muscles were found to contribute most to the body mass acceleration in the
three orthogonal directions (1, 2 and 3 respectively forward, vertical and lateral). The
five greatest peaks for individual muscle for-aft accelerations in each half of stance were
due to just four muscle groups. The combined accelerations from vasti, gluteus maximus,
gluteus medius, dorsifelxors, soleus and gastrocnemius accounted for almost all of the
net fore-aft acceleration. The combined accelerations from from vasti, gluteus maximus,
gluteus medius, dorsiflexors, soleus, gastrocnemius and other plantarflexors accounted
for most of the net vertical acceleration.
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3.2.4. A short literature study for sensitivity analysis

Sensitivity illustrates how a certain change of input data effects the output data. It
is a measure for how a system reacts to a variation of its parameters or any kind of
value which is input for producing the systems outcome. The higher the sensitivity, the
stronger a system responses to even small disturbances.

While muscle models are commonly used, limited evaluation of muscle model sensi-
tivity to input parameters has been reported [31]. Musculoskeletal models have been
found to be sensitive to tendon slack length, optimal muscle fiber length and muscle
moment arm (as well as the muscle activation time constant). Other parameters were
found to have a low sensitivity in a musculoskeletal model, including the parallel elastic
element parameters, pennation angle and muscle deactivation time constant. Several
studies have reported differing sensitivities to muscle parameters. Model insensitivity
to series elastic compliance has been reported, while other models were found to be
sensitive to compliance. Two cycling simulations were insensitive to maximal force after
re-optimization of the muscle activation timings, while other models were sensitive to
that parameter. The variation in reported sensitivities may be due to differences in
models or types of motion simulated, but comparison between studies is confounded by
the use of different sensitivity analysis techniques. [31]

But literature has also shown that different authors used methods for processing their
data which are quite similar, if looked at them closer. All of the considered ones were
dealing with muscle outputs. One concept, slightly modified, stands behind the several
applications.

In Liu at al. [24], as introduced above in section 3.2.3, the following expression can
be found; a partial derivative of the muscle acceleration multiplied by the muscle force:

ẍm(ti) =
∂ẍ

∂Fm
Fm (7)

Scovil and Ronsky [31] evaluate muscle model sensitivity to perturbations in 14 Hill-
type muscle model parameters in forward-dynamic simulations of running and walking.
They refer to a standardized method to calculate sensitivity which has been employed
in several studies. This method divides the normalized change in a model output by the
normalized change in a model parameter.

Sij =

MiP−Mi0

Mi0

PjP−Pj0

Pj0

(8)
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where

Sij . . . sensitivity for a model with i outputs and j defining parameters
MiP . . . model output
Mi0 . . . model output original
PjP . . . model parameter
Pj0 . . . unperturbed parameter value

As a more general method, also discussed in Scovil and Ronsky [31], they describe the
calculation of the partial derivative of the muscle equations with respect to each model
parameter. The following partial derivative, gives the instantaneous rate of change in
the muscle output (MUSOUT ) as a function of the change in a parameter (X).

∂MUSOUT
∂X

(9)

In their work Redl et al.[29] introduce the instantaneous sensitivity ratio (which is
presented into more detail in section 4.6):

εij =

Fm
new,ij−Fm

nom,ij

Fm
nom,ij

pnew,j−pnom,j

pnom,j

(10)

where

εij . . . instantaneous sensitivity ratio for muscle j (j=1..27) at
time step i (i=1..135)

Fm
nom,ij . . . nominal value of muscle force
Fm
new,ij . . . perturbed value of muscle force
pnom,j . . . nominal value of given parameter
pnew,j . . . perturbed value of given parameter

Obviously, sensitivity in (8) and instantaneous sensitivity ratio in (10) are equivalent.
The partial derivative in (9) provides a continuous equation for the sensitivity of model
outputs to each input parameter value, which can be evaluated over time and the range
of model inputs. That is how they describe by the continuous equation the models sen-
sitivity. Liu at al. use the partial derivative to calculate the contribution of a particular
muscle to the body mass acceleration. For that the rate of change of the body mass ac-
celeration due to the force muscle m produces, is multiplied by the muscles force. Thus,
turning the ratio into a real value and so representing the magnitude of Fm. Again
acceleration is given, a value with physical relevance. For a continuous sensitivity Redl
et al. integrate the values of the instantaneous sensitivity ratio over the entire gait cycle.

Additionally the partial derivative and the sensitivity ratio can be connected easily.
At a certain time step, the partial derivative can be written as the differential quotient
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(e. g. according to formula (4)). The values of the function at the time-steps t + ∆t
and t can be thought of as the varied and original output, respectively, and ∆Fm as
the change of the parameter value. The formula is transfered into the formulas for the
sensitivity seen above. Dividing by the original values provides a normalized ratio which
is free from units.

The following gives a short summary of what parameters have been investigated and
some of the major findings which have been found in literature. It is also summarized
which muscles have been matter of interest.

Redl/Gföhler/Pandy [29]: They calculated the sensitivity of muscle forces by changing
the parameters from 2.5% to 10% of the nominal value in incrediments of 2.5 .
Parameters are:

• optimal muscle fiber length

• tendon rest length

• muscle physiological cross-sectional area (PCSA = vM

lM
, where vM is muscle

volume and lM is muscle fiber length)

Redl [30]: He compared the nominal parameter values of the model with those found
in the literature and picked a certain percentage of reduction or increase of the
parameter and described the effects on the force-graphs. The parameters in the
study are:

• optimal muscle fiber length

• tendon rest length

• PCSA which is proportional to PCSA optimal muscle force

• joint torques

Scovil/Ronsky [31]: They investigated the influence of 14 parameters on the muscle
model. They looked at the general sensitivity according to the parameter class
and not muscles in specific. Three evaluations of the muscle model were performed
based on:

• calculating sensitivity of muscle model only

• determining the continuous partial derivatives of the muscle equations with
respect to each parameter

• evaluating the effects on the running and walking simulation

Input states are the optimal muscle length , the properties of the CE and the
muscle activation level. Output states are muscle force and velocity of the CE.
Model evaluations were found to be very sensitive to parameters defining:

• elastic components (tendon)

• force-length curve of the contractile element

• maximum isometric force
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Raikova/Prilutsky [28]: The optimal muscle force for the joint moments was calculated
changing one parameter ceteris paribus :

• muscle moment arms (doi), nominal values were were calculated from the joint
angles and changed from 0 to 2.0doi in increments of 0.02doi

• PCSA (Aoi), each PCSA was changed from 0.05 to 2Aoi in increments of
0.01Aoi

They found that, generally, the non-zero optimal force of each muscle depends
in a very complex non-linear way on moments at all joints and moment arms
and PCSA of all muscles. Deviation of the model parameters within the feasible
range affected not only the magnitude of the forces predicted, but also the number
and combination of muscles with non-zero forces. Muscle force magnitudes could
change several times as the model parameters changed, whereas patterns of muscle
forces were typically not as sensitive.

Chumanov/Heiderscheit/Thelen [12]: The purpose of this study was to characterize
the effect of speed and the influence of individual muscles on hamstrings stretch,
loading and work during the swing phase of sprinting. Perturbations of the double
float simulations were used to asses the influence of individual muscles on biceps
femoris long head muscolotendon stretch. For each muscle the nominal force tra-
jectory was perturbed by a fixed ratio (0.1%), while excitation for all other muscles
was held constant→ a set of perturbed joint musculotendon kinematic trajectories
was produced. The influence of an individual muscle was defined as the change
of peak stretch of biceps femoris longhead (BF), scaled by the inverse of the force
perturbation magnitude. Perturbations with a fixed force magnitude (1N) were
also performed to asses the potential of muscles to influence BF stretch per unit
force.

Thelen et al. [32]: They investigated the effects of tendon compliance on the excur-
sion and power development of the muscle and tendinous components of the biceps
femoris, respectively peak muscle stretch and negative muscle work. They investi-
gated:

• ±0.5% and ±1% perturbation of the tendon compliance

• effects of larger variations, because of a large range of estimates in literature

A sensitivity ratio was computed by normalizing the percent change in the output
to the percent change in the model parameter. The sensitivity ratios were con-
formed to be highly linear for these small perturbations.

Liu/Anderson/Pandy [24]: They did not investigate any muscle parameters but per-
form a perturbation analysis to determine the contribution of each muscle to the
body mass acceleration.
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The following are the muscles and muscle groups summarized which have been in-
vestigated in the above papers. This should give an idea which muscles are likely to
be subject of an investigation. The papers [12] and [32] investigated just one muscle
(biceps femoris long head) or muscle group (hamstrings, one part is the biceps femoris
long head). The hamstrings were found in two other papers ([30] and [31]). [30] and
[28] investigated the biceps femoris short head. Just two muscles have been subject
in all papers (except those which just looked at one muscle), namely soleus and vasti,
although in [31] as quadriceps muscles which is vasti combined with rectus femoris. The
single rectus femoris was treated by two other ones ([30]and [31]). Gluteus maximus and
gastrocnemius have been considered in all works except in [29]. In this paper they just
surveyed four muscles but as the only ones sartorius, because of its long moment arm,
and gluteus minimus, as a part of gluteus medius. In one paper [24] gluteus medius was
divided into its anterior and posterior part and just one paper [28] did not put it into the
study. The same paper also did not take the combined hamstring muscles but the short
and long head compartment of bicep femoris. The last muscle which was mentioned
more than once is tibialis anterior, once in combination with extensor hallucis longum.
Paper [24] investigated the combined plantar flexors and and the dorsi flexors.
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4. Method

Following shortly summarizes the method to receive data to perform a sensitivity analysis
on: One parameter at time is varied ceteris paribus by different percentages (p) in the
different muscles and resultant muscle forces are calculated by static optimization. The
result is a set of new muscle forces Fm = F new

m . Those new muscle forces F new
m are input

for the perturbation analysis according to Liu et al. [24]. It is calculated how each
muscles’ induced acceleration contributes to the body mass acceleration. The output
shows how specific muscles are contributing to the body mass acceleration and how
this contribution changes due to the different input forces. The comparison of the
varied result (ẍnewm ) to the nominal result (ẍm) indicates the impact of this variation
on the varied muscle as well as on all the other muscles contributing to the body mass
acceleration, since this was the only variable which was changed. For example:

p = 5% ⇒ F new
m ⇒ ẍnewm

compared to↔ ẍm ... acceleration of muscle m

4.1. The muscle-skeleton model

For calculating muscle forces which are produced during the task of walking, a 3D mus-
culoskeletal model of the body, which is described in detail by Anderson and Pandy [2],
was used for this work.

Briefly, the body was represented as a 10-segment, 23 degree-of-freedom (dof) me-
chanical linkage, actuated by 54 muscle-tendon units (each leg actuated by 24 muscles
and the upper body by 6, see Figure 6). The pelvis was modeled as a rigid segment
that could translate and rotate in three dimensions relative to the ground. Each hip was
modeled as a ball-and-socket joint, each knee as a hinge joint, each ankle-subtalar joint
as a universal joint, and each metatarsal joint as a hinge joint. The head, arms, and
torso (HAT) were represented as a single rigid segment that articulated with the pelvis
via a ball-and-socket joint located at approximately the 3rd lumbar vertebra. Contact
between each foot and the ground was characterized by five stiff spring-damper units
distributed under the sole of the foot. Therefore this model can be used to simulate a
wide range of activities. Ligaments were modeled as passive torques that prevent hy-
perextension or extreme flexion.

Each of the 54 muscle-tendon units was represented as a three-element, Hill-type mus-
cle (see section 3.1.3) in series with tendon. The muscle parameters, as well as the origin
and insertion sites of each actuator, were based on data reported by Delp [13] (parame-
ters and values see section 4.4 and Table 2).
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Figure 5: Gait pattern of the two-legged musculoskeletal walking simulation. The simulation starts
and ends with right heel-strike. Regions of the stance phase are indicated in percent of the
gait cycle. Heel-strike and toe-off occur at 0% and 60% of the gait cycle, respectively. Early
stance and pre-swing correspond to approximately double-leg stance [26].

The gait cycle was assumed to be bilateral symmetric, meaning that stance phase and
swing phase of the left and the right leg being congruent (Figure 5). Therefore just half
of the gait cycle has to be simulated, which saves computing time. The optimization
problem was solved using a gradient-based sequential quadratic programming algorithm.
[4]

The following diagram shows the muscles included in the walking model (Figure 6).
In the table of the abbreviations for the muscles, there are also some listed which are
not shown in the diagram but still included in the model (Table 1).
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Figure 6: Muscles used in the model [2]
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ERCSPN erector spinae

EXTOBL external abdominal obliques

INTOBL internal abdominal obliques

ILPSO iliopsoas (musculus psoas and illiacus)

ADLB adductor longus brevis

ADM adductor magnus

GMEDA anterior gluteus medius

GMEDP posterior gluteus medius and posterior gluteus minimus

GMAXM medial gluteus maximus

GMAXL lateral gluteus maximus

TFL tensor fasciae latae

SAR sartorius

GRA gracilis

HAMS hamstrings (semimembranosus, semitendinosus and

biceps femoris longhead)

RF rectus femoris

VAS vastus medialis, vastus intermedius and vastus lateralis

BFSH biceps femoris short head

GAS gastrocnemius

SOL soleus

DFEV peroneus tertius and extensor hallucis longus

DFIN tibialis anterior and flexor hallucis longus

PFEV peroneus brevis and peroneus longus

PFIN tibialis posterior, flexor digitorum longus and flexor

hallucis longus

PIRI piriformis

PECT pectinius

FDH flexor digitorum longus/brevis and flexor hallucis longus/brevis

EDH extensor digitorum longus/brevis and extensor hallucis

longus/brevis

Table 1: Abbreviations of muscles included in the model which are illustrated in Figure 6
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4.2. Drawing a relationship between parameters and body mass
acceleration

In developing a method to survey sensitivity of muscle parameters and studying the
paper of Liu at al [24] (see section 3.2.3), several ideas were precipitated which should
be discussed. Liu et al. present their results in graphs which show how a single muscle
contributes to the body mass acceleration. Notably, it could be useful if the contribution
of a parameter to the acceleration could be shown in a similar way.

This could be done by adapting the formula of the partial derivative in equation (4) to
something similar to ∂ẍ

∂pmi
, the instantaneous rate of change of the body mass accelera-

tion as function of the parameters of the individual muscles; hence the sensitivity of the
body mass acceleration to the parameters describing the muscles. Another conceivable
partial derivative could be ∂ẍm

∂pi
, the instantaneous rate of change of the acceleration due

to muscle m as a function of parameter i, hence the sensitivity of muscle acceleration to
muscle parameters.

So far the theoretical consideration but it must not be forgotten that this is not a pure
mathematical problem but has real physical relevance. Hence, for further development
of the formulas the assumptions and conditions which were made for the original prob-
lem have to be investigated. To express the partial derivative exactly as the differential
quotient as shown in equation (4), a linear dependency between ẍ and Fm must exist.
Further simplifications are applied because velocity and position cannot change instan-
taneously in response to a force perturbation (compare to section 3.2.3). The question
is whether those restrictions are crucial or not. Since all models are simplifications of
the reality, sufficient accuracy has to be achieved. So even nonlinear dependencies as
well as the other simplifications could provide sufficiently accurate results. Even though
in the case parameters are set instead of forces, which might have no physical relevance.

The fact is that acceleration and forces are linear dependent (
∑
F = m ∗ a) but pa-

rameters and forces are not. Further, parameters are not all of the same type and so
each of them differently (indirect by the forces) connected to the accelerations. To close
the circle and go back to the desire to show graphically how parameters contribute to
the body mass acceleration, one can easily see the difference. The sum of accelerations
contributed by the force of a muscle gives the body mass acceleration, this analogy can-
not be drawn as easily to parameters. Therefore acceleration cannot be simply split up
into the contribution of the several parameters by its partial derivative.

However, it might be possible to achieve such a connection between accelerations and
parameters and illustrate it clearly but this would go beyond the scope of this work. The
final solution of receiving data for a sensitivity analysis was to calculate sets of muscle
forces with varied input parameters. Using those varied muscle forces to calculate their
contribution to the body mass acceleration (according to the method presented in section
3.2.3), and performing a sensitivity analysis.
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4.3. The simulation: Basic formulas and the program

On this point an overview about the simulation program and how it is applied on this
work and the kind of output it produces is given. The code was written in MATLAB and
using Frank Andersons [2] modified hard-constrained method in an upgraded version by
Hyung Joo Kim.

Input data, this being joint angular displacements, joint angular velocities and mus-
cular joint moments, is required for the static optimization. Here it is received from
a dynamic optimization. Formula 11 is used to solve the optimization problem, giving
many possible combinations to satisfy this equation:

Fm
54R = T17 (11)

The Vector Fm
54 contains the muscle forces produced by the 54 involved muscles, R is

the matrix of moment arms and T17 the vector of the 17 torques acting about the joint
axes. [3]

The vector of the muscle forces is constrained by the muscles force-length-velocity
properties:

Fm
54 = amf(Fm

o , lm, vm) (12)

The function f(Fm
o , lm, vm) is the force-velocity-length surface of a muscle assumed

in the musculoskeletal model, Fm
o is the maximum isometric force, lm is the length and

vm the shortening velocity of muscle m and am is the activation level of each muscle.
Obviously the system is highly redundant. The condition for optimization (Ji) is to
minimize the squared activations, summed across all muscles. Note that i = 172, half
of the gait cycle is simulated because of its symmetry. [3]

Ji =
54∑
m=1

am(ti)
2 i = 1, . . . , 172 (13)

Muscle forces are calculated by running an MATLAB m-file called pso (physiological
muscle model static optimization) which calculates a set of 54 muscle forces at each of
the 346 time steps of the gait cycle. The time for one cycle is 1.12 seconds.
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The muscle forces are dependent on many different parameters which can be manip-
ulated in the muscle model (mm). Thus giving the opportunity to calculate sets of new
muscle forces, where the input parameters were varied. The m-file plotkimm33 plots all
the by static optimization calculated forces, including also the ground reaction forces
(not shown in following graphics). Also data from a neuro-muscular tracking is available.
That data and the data from a dynamic optimization can be compared in a plot (see
Figures 7, 8 and 9). All right side muscles (left and right are considered to be symmetric)
which are included in the model are presented in the three plots. The force development
over a full cycle of gait for each muscle is shown.

RunMia (muscle induced acceleration) performs the above (section 3.2.3) described
perturbation analysis. It calculates the contribution of each muscle to the body mass ac-
celeration at each of the 135 time steps during the stance phase of the gait cycle (67.5%
or 0.754 seconds). Just the stance phase is considered because accelerations from muscles
during the swing phase are very small. 27 muscles are considered in the simulation, since
left and right foot are assumed to be equivalent. Accelerations of all three directions
are calculated. The x direction is the direction of locomotion (fore-aft acceleration) and
the y direction describes the vertical acceleration. Lateral acceleration is the third or
z direction. Those acclerations of the orthogonal directions over the stance phase are
shown in Figure 10, 11 and 12. The muscles which are considered to contribute the most
to the body mass acceleration are chosen to be presented in the graphs.

The following abbreviations are used in Figure 7 to Figure 12. Compare also to the
graphic of gait pattern (Figure 5).

rHS . . . right heel strike
lTO . . . left toe off
lHS . . . left heel strike
rTO . . . right toe off
lHS . . . left heel strike
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Figure 7: Muscle forces calculated with dynamic optimization, static optimization and neuro-muscular
tracking over a full cycle of gait.
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Figure 8: Muscle forces calculated with dynamic optimization, static optimization and neuro-muscular
tracking over a full cycle of gait
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Figure 9: Muscle forces calculated with dynamic optimization, static optimization and neuro-muscular
tracking over a full cycle of gait
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Figure 10: For-aft body mass acceleration and the contribution of the for gait most important muscles
over the stance phase. Top panel: GMAX, GMEDP, GMEDA, ILPSO, middle panel:
HAM, VAS, RF, BFSH, bottom panel: DF; OPF, SOL, GAS
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Figure 11: Vertical body mass acceleration and the contribution of the for gait most important muscles
over the stance phase. Top panel: GMAX, GMEDP, GMEDA, ILPSO, middle panel:
HAM, VAS, RF, BFSH, bottom panel: DF; OPF, SOL, GAS
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Figure 12: Lateral body mass acceleration and the contribution of the for gait most important muscles
over the stance phase. Top panel: GMAX, GMEDP, GMEDA, ILPSO, middle panel:
HAM, VAS, RF, BFSH, bottom panel: DF; OPF, SOL, GAS
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4.4. The muscle parameters and their range of variation

Compared to the number of considered parameters in other studies, relatively many are
surveyed in this work. This shall enable a more rounded down view on the sensitivity
of the muscle model. Out of the same reason, also parameters which have been found
to be less sensitive in other studies are chosen for the investigation.

These are the parameters which describe the muscle model which have been considered
in this work. All muscle parameters were taken from Anderson and Pandy (1999) [2].
The values for lmo , lts, F

m
o and α are found in Table 2.

lmo . . . resting (optimal) fiber length
lts . . . tendon slack length
Fm
o . . . optimal muscle force
α . . . pennation angle
τA . . . activation time is constant = 0.011
τD . . . deactivation time is constant = 0.068
vmmax . . . shortening velocity , changed indirectly via τc

vmvmax = lmo
τc

, τc is constant = 0.1

Note that changing the parameters Fm
o and PCSA has the same effect since those

variables are linked by a scalar. The formula for the ideal force generator is:

Fm
o = σm ∗ PCSA (14)

Fm
o . . . optimal muscle force
PCSA . . . physiological cross-sectional area
σm . . . muscle stress

Perturbations were made in increments of 2.5% of the nominal value of the parameter
for the first four parameters (lmo , lts, α, Fm

o ), and ranged from 2.5% to 10%. Since τA,
τD and vmmax showed little response to those variations the range was extended to 50%
and the increments increased to 10%.

Some other parameters which describe the muscle model but are not considered in this
work are for instance a muscle damping coefficient, a normalized tendon strain modulus
and the proportion of the slow twitch fibers.
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Actuator Fm
o [N] lmo [m] lts [m] α [deg]

FDH 1184 0.04 0.03 8

EDH 760 0.11 0.32 7

DFIN 1003 0.105 0.026 5

DFEV 609 0.1 0.3 9

PFIN 2149 0.04 0.37 10

PFEV 1556 0.05 0.3 7

SOL 3016 0.05 0.254 25

GAS 1651 0.06 0.395 17

BFSH 681 0.173 0.005 23

VAS 6865 0.087 0.14 3

RF 1320 0.114 0.32 5

HAMS 2814 0.109 0.34 8

GRA 183 0.352 0.135 3

TFL 262 0.095 0.425 3

SAR 176 0.579 0.04 0

GMAXL 1730 0.145 0.106 2

GMAXM 686 0.154 0.12 5

GMEDA 1319 0.0653 0.0551 4

GMEDP 1215 0.065 0.0484 7

ADM 1245 0.121 0.12 4

ADLB 994 0.128 0.042 6

ILPSO 1627 0.0104 0.135 8

PECT 301 0.133 0.001 0

PIRI 502 0.03 0.102 10

ERCSPN 2974 0.12 0.03 0

INTOBL 712 0.125 0.165 0

EXTOBL 864 0.125 0.211 0

Table 2: Values of the optimal muscle force Fm
o , resting fiber length lmo , tendon slack lenght lts and

muscle pennation angle α assumed in the model. Left and right actuators of the body are
assumed to have the same parameter values [2].
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4.5. The muscles which have been investigated

54 muscles have been implemented in the gait simulation, 24 for each leg and 6 for the
upper body (see Figure 6). For the sensitivity analysis 13 muscles, respectively combined
muscles, which are considered to be important for the walking task, have been chosen
(for the abbreviations look at table 1):

• The exteriors rotator and hip extenders GMAXL and GMAXM, both have been
varied but they are combined to GMAX

• The hip joint abductors GMEDP and GMEDA

• The strongest flexor of the hip joint ILOPS, also exterior rotator of the thigh

• The extensors of the knee joint, the VAS group

• The biarticular knee extensor and hip flexor RF

• The biarticular knee joint flexor and hip joint extensor HAM

• The knee flexor BFSH, biceps femoris is the only muscle with the ability to perform
an exterior rotation of the knee

• SAR, exterior rotation and abduction of the thigh and interior rotation of the
shank as well as flexion of hip and knee joint. SAR is chosen because its potential
to contribute to hip and knee joint acceleration is relatively large [7]

• The plantar flexors GAS (biarticular) and SOL, together with the musculus plan-
taris they are called musculus triceps surae and merge to the Achilles tendon

• The combined dorsi flexors DF (DFIN and DFEV), just DFIN was varied

• The combined plantar flexors OPF (OPFIN and OPFEV), just OPFIN was varied
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4.6. Metrics

The perturbation analysis delivers accelerations for three orthogonal directions. For the
further analysis, the resultant vector combining the accelerations of the fore-aft direc-
tion and the vertical direction is calculated. The lateral direction is neglected since it
does not deliver significant values. To not loose information about the direction of the
resultant vector, the angle between the resultant vector and the horizontal is calculated.

Instantaneous sensitivity ratio: As the first step to prepare the data for the analysis
the instantaneous sensitivity ratio was calculated, as introduced by Redl et al. [29]
in a slightly modified form (input forces became input accelerations).

εij =

am
new,ij−am

nom,ij

am
nom,ij

pnew,j−pnom,j

pnom,j

(15)

εij . . . instantaneous sensitivity ratio for muscle j (j=1..27)
at time step i (i=1..135)

amnom,ij . . . nominal value of muscle induced acceleration
amnew,ij . . . perturbed value of muscle induced acceleration
pnom,j . . . nominal value of given parameter
pnew,j . . . perturbed value of given parameter

In theory, the absolute value of εij can range from zero to infinity. εij = 0 implies
that any change in the tendon rest length of SOL, for example, will have no effect
on the acceleration developed by SOL; whereas large values of εij imply that even
small changes in SOL’s tendon rest length will have a significant effect on the ac-
celeration developed by SOL. εij = 1 means that a 5% change in the tendon rest
length of SOL will produce a 5% change in the acceleration developed by SOL. εij
could also be negative, implying that an increase in the value of a given parame-
ter will cause a decrease in the acceleration produced by the muscle, and vice versa.

The idea to this metric was driven by the in economic well known price elasticity. It
is calculated how a change of prices effects the quantity of demand. The computed
ε value can be interpreted as following:

ε = 0 no changes, the system does not react to
any input change

−1 < ε < 1 inelastic, under proportional change
ε < −1 v ε > 1 elastic, over proportional change
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Integrated sensitivity ratio: Second metric introduced by Redl et al. [29] is the in-
tegrated sensitivity ratio, it is the instantaneous sensitivity ratio integrated over
time:

εj =

∫ tf

0

|εij|dt (16)

εj . . . integrated sensitivity ratio for muscle j
tf . . . final time of stance phase

Smoothening grade: Looking at the formula above (15) one will notice that there is
divided by the nominal acceleration. To prevent the sensitivity ratio of being large
just due to small values of the nominal acceleration a smoothening grade was ap-
plied (peaks in the graph of the instantaneous sensitivity ratio due to small values
in the denominator are smoothened). If the original acceleration is lower than this
value, it is set equal to this value. A high sensitivity during a phase where the
muscle is not contributing significantly to the overall body mass acceleration is not
of much relevance. This condition was implemented to avoid this bias and make
the result more meaningful. It was decided to set the smoothening grade to 0.01

Relevance of sensitivity: Also to improve the significance of a muscles sensitivity a rel-
evance of sensitivity was introduced. The idea was to make use of the information
given by how much each muscle contributes to the body mass acceleration. This
in comparison to previous analysis where just the magnitudes of the forces of the
several muscles are calculated, thus not giving exact information about how much
they really influence the forward progression. Dividing the muscle induced accel-
erations by the overall acceleration at that instant of time gives the relevance of
this muscle for the body mass acceleration. At each time step the instantaneous
sensitivity ratio of a muscle is multiplied by its relevance. Those values are input
for the calculation of the integrated sensitivity ratio and so the muscle’s ability to
influence locomotion is considered.

εrelij =
amnom,ij
anom,i

∗ εij (17)

εrelij . . . instantaneous sensitivity of relevance for
muscle j (j=1..27) at time step i (i=1..135)

εij . . . instantaneous sensitivity ratio for muscle j at
time step i

amnom,ij . . . nominal induced acceleration by muscle j
at time step i

anom,i . . . nominal body mass acceleration at time step i
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Sensitivity over the interval of variation: The sensitivity over the interval of varia-
tion is the sum of the integrated sensitivity ratios of a muscle calculated by the
variation of a parameter from −10% till +10% in incrediments of 2.5%. Those
integrated sensitivity ratios according to the change in percent of the parameter
are shown in a graphic. To illustrate that the change of one parameter of a cer-
tain muscle influences also the performance of the other muscles, the integrated
sensitivity ratios of the other muscles are found in the same graphic (see charts in
section 5 and appendix A).

εjvar =
8∑
v=1

εjv (18)

εjvar . . . sensitivity over the interval of variation for muscle j
εjv . . . integrated sensitivity ratio for muscle j at each

variation v (−10% . . . +10%) of the interval of variation

Significance of sensitivity: A significance of the sensitivity was calculated by dividing
the sensitivity over the interval of variation by the sensitivity of relevance over
the interval of variation and multiplying by 100. The higher this percentage is the
more actively the muscle has contributed to the body mass acceleration when its
sensitivity was measured. It can happen that this percentage is greater than 100%
because sometimes a single muscles acceleration exceeds the resulting accumulated
muscle accelerations, as seen in figures 10, 11 and 12 (e.g. DF in early stance).

sj =
εreljvar
εjvar

∗ 100 (19)

sj . . . significance of muscle j
εjvar . . . integrated sensitivity ratio for muscle j over the

interval of variation
εreljvar . . . integrated sensitivity ratio of relevance for muscle j

over the interval of variation
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Summed-cross-sensitivity Also introduced by Redl et al. [29] was the summed-cross-
sensitivity, which is computed in this work as well. Here it is the sum of the
values of the sensitivities over the interval of variation except of the one which
was varied. This metric quantifies the effects of changes on the muscle coordination
of walking. In other words, the higher this value is, the more a deviation of this
specific muscles affects the other muscles.

σ =
26∑
j=1

εjvar (20)

σ . . . summed cross sensitivity
εjvar . . . integrated sensitivity ratio for muscle j over the

interval of variation
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5. Results

After the variation of a muscle parameter and running the simulation with the disturbed
input values, a set of muscle induced accelerations was delivered. At each time step the
instantaneous sensitivity was calculated. The panels in Figure 13 show those instanta-
neous sensitivities over the percentage of the stance phase of the gait cycle for a -10%
variation of tendon slack length of SOL. Sensitivity for all muscles considered in this
study are included. The last graph on the right side bottom (see Figure 13), accS, is the
sensitivity of the body mass acceleration. This sensitivity is, as expected, always very
small since it is a criteria for the model to produce given joint moments. The human
body tries to keep the total acceleration constant even though the contribution to the
acceleration of the several muscles has changed.

Figure 13: Instantaneous sensitivity for the variation of −10% of tendon slack length of soleus. It
is shown how sensitive the several muscles react to SOL’s variation of lts over the stance
phase
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Those graphs of the instantaneous sensitivities clearly show that not only the muscle
whose parameter was changed is affected but also other muscles react sensitive; some-
times even more then the varied muscle. In this case, for instance, the dorsi flexors peak
down to a sensitivity of about 1800 at 68 % of the stance phase. The other plantar
flexors (OPF) also peak at this part of the gait cycle. GAS shows a notable sensitivity
in the beginning of gait cycle and also over a longer period in late stance, as well as
RF and BFSH. It cannot been established from these graphs, if those sensitive reac-
tions happen when the muscle is actually contributing significantly to the body mass
acceleration. Therefore, a relevance measurement is applied like described in section 4.6.

Note that the muscles GMAXL and GMAXM are individually varied but in the results
presented as the combined GMAX. This means a sensitive reaction of GMAX is always
a combination of the effects on GMAXM and GMAXM but it is distinguished between
a variation of those two.

The following tables (3 to 17) summarize the integrated sensitivity ratios over the
interval of variation during the stance phase (as introduced in section 4.6). Each vari-
ation per muscle and per parameter delivers 8 values of integrated sensitivity; for the
varied muscle and for each of the other muscles. Those values are accumulated over the
interval of variation and presented in the tables. The summed-cross-sensitivity and the
significance of sensitivity, as described in section 4.6, can also be found. Those matrices
give an overview of the findings of this work and the dependencies of the muscles.

alpha . . . pennation angle
Fom . . . optimal muscle force
Lo . . . resting fiber length
Lst . . . tendon slack length
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Table 3: Results for variation of BFSH. The matrix includes integrated sensitivity ratio, sensitivity of
relevance, summed-crossed-sensitivity and significance over the interval of variation.
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Table 4: Results for variation of DF. The matrix includes integrated sensitivity ratio, sensitivity of
relevance, summed-crossed-sensitivity and significance over the interval of variation.
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Table 5: Results for variation of GAS. The matrix includes integrated sensitivity ratio, sensitivity of
relevance, summed-crossed-sensitivity and significance over the interval of variation.
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Table 6: Results for variation of GMAXL. The matrix includes integrated sensitivity ratio, sensitivity
of relevance, summed-crossed-sensitivity and significance over the interval of variation.
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Table 7: Results for variation of GMAXM. The matrix includes integrated sensitivity ratio, sensitivity
of relevance, summed-crossed-sensitivity and significance over the interval of variation.
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Table 8: Results for variation of GMEDA. The matrix includes integrated sensitivity ratio, sensitivity
of relevance, summed-crossed-sensitivity and significance over the interval of variation.
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Table 9: Results for variation of GMEDP. The matrix includes integrated sensitivity ratio, sensitivity
of relevance, summed-crossed-sensitivity and significance over the interval of variation.
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Table 10: Results for variation of HAM. The matrix includes integrated sensitivity ratio, sensitivity
of relevance, summed-crossed-sensitivity and significance over the interval of variation.
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Table 11: Results for variation of ILPSO. The matrix includes integrated sensitivity ratio, sensitivity
of relevance, summed-crossed-sensitivity and significance over the interval of variation.
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Table 12: Results for variation of OPF. The matrix includes integrated sensitivity ratio, sensitivity of
relevance, summed-crossed-sensitivity and significance over the interval of variation.
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Table 13: Results for variation of RF. The matrix includes integrated sensitivity ratio, sensitivity of
relevance, summed-crossed-sensitivity and significance over the interval of variation.
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Table 14: Results for variation of SAR. The matrix includes integrated sensitivity ratio, sensitivity of
relevance, summed-crossed-sensitivity and significance over the interval of variation.
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Table 15: Results for variation of SOL. The matrix includes integrated sensitivity ratio, sensitivity of
relevance, summed-crossed-sensitivity and significance over the interval of variation.
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Table 16: Results for variation of VAS. The matrix includes integrated sensitivity ratio, sensitivity of
relevance, summed-crossed-sensitivity and significance over the interval of variation.
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Table 17: Results for variation of activation time, deactivation time and maximal shortening velocity.
The matrix includes integrated sensitivity ratio, sensitivity of relevance, summed-crossed-
sensitivity and significance over the interval of variation.
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5.1. Sensitivity to pennation angle

The sensitivities for the pennation angle (α) are by far the smallest. The highest value
of the integrated sensitivity ratio over the interval of variation is 895, reached by SOL
(see Table 15 and Figure 75). Highest sensitivities show SOL, BFSH and GAS which
are also the muscles with the greatest pennation angles (Figures 75, 53 and 57) The sen-
sitivity curves of those muscles are far above the curves of the other muscles, indicating
their variation has not much effect on the other muscles. The smaller the integrated
sensitivity ratios, the more spiky and inconsistent the graphs (e.g. Figure 67) and 68)
become, where curves are spread over the entire panel. This is due to their small values.
Curves of the more sensitive muscles are flat or going up slightly to +10%. Often, those
muscles which have a small pennation angle affect other ones much more than they react
themselves. GMAXL/M and GMEDA show this behaviour (e.g. Figure 61. Muscles
which are most likely to be affected are GAS and SOL with high pennation but also VAS
which has a pennation of only 3 degrees. Interestingly, BFSH with the second highest
pennation of 23 degrees is not affected by other muscles. The DFs which have a small
sensitivity to α react to variations of the other muscles, especially when the relevance is
considered.

Figure 14: Integrated sensitivity ratios of the variation for BFSH to the parameter alpha.
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Figure 15: Integrated sensitivity ratios of the variation for GAS to the parameter alpha.

Figure 16: Integrated sensitivity ratios of the variation for GMAXM to the parameter alpha.
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Figure 17: Integrated sensitivity ratios of the variation for GMAXM to the parameter alpha.

Figure 18: Integrated sensitivity ratios of the variation for GMAXM to the parameter alpha when
relevance is considered.
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Figure 19: Integrated sensitivity ratios of the variation for SOL to the parameter alpha. Graphs for
all muscles and parameters can be found in section A.
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5.2. Sensitivity to optimal muscle force

Three muscles were found to be most sensitive out of all parameters to optimal muscle
force (Fm

o ); GMEDP, SAR and GMAXM (Tables 9, 14 and 7). Considering the rele-
vance of sensitivity a fourth one, GMEDA shows the same behavior (Table 8) . The
highest value reached for GMEDP was 4491 (Table 9) which is the sum of the integrated
sensitivity ratios over the interval of variation (Figures 91 and 92). The smallest value
was 145 (Table 9) for GMAXM; a muscle which shows very little sensitivity for all pa-
rameters. Generally, muscles are much more sensitive to Fm

o than to α. But sensitivity
to muscle force in general is less than to resting fiber length (lmo ) and even smaller to
tendon slack length (lts). The curves of integrated sensitivities are much more flat (con-
stant sensitivity) than they are for lts and lmo .

RF is likely to be strongly affected but does not affect other muscles much. When
GAS, HAM and SOL are varied, the sensitivity curve of RF is far above the curves of
those muscles (Figures 83, 93 and 103). The panel for the variation of SOL shows that
sensitivity of RF goes up at a variation of -10% and HAM is in an almost glock shaped
curve also above SOL’s sensitivity (Figure 103). In comparison ILPSO is a muscle which
is not affected by other muscles at all but has influence on several muscles (e.g. BFSH,
SAR, GAS, HAM, Figure 95). If the relevance is considered GAS and DF are much more
sensitive than ILPSO itself (Figure 96). SAR is a muscle which has little potential to
affect muscles but very often reacts to the variation of others. In the cases of variation
of VAS and HAM, its sensitivity graph is much above the graphs of the changed mus-
cles (Figures 93 and 105). Most often influenced by other actuators is GAS. Also when
relevance is considered, this muscle is very likely to be still one of the affected muscles.
GAS itself mostly influences RF and HAM (Figure 83). The graph of relevance is more
offset relative to other graphs. It is also notable that SOL comes close (Figure 84).

Within the gluteus group, GMEDP is the one which reacts greatly to changes of other
muscles. Additionally, it is the most sensitive muscle to this parameter. When GMAXL
and GMEDA are varied, GMEDP is much more sensitive than those muscles (Figures 85
and 89). In the panels of the sensitivity of relevance for GMAXL and VAS, the sensitiv-
ity curve of GMEDP is also above the curves of GMAX and VAS (Figures 86 and 106).
GMEDP mostly affects RF, GMAX and SAR. The variation of GMEDA (Figure 89)
has on three muscles (GMAX, GMEDP and HAM) a greater effect than on GMEDA,
and two have approximately the same sensitivity (RF and SAR).

Another observation of HAM is that this muscle group, in different intensities, is very
often affected by other muscles. It remains and sometimes strengthens its significance in
the relevance of sensitivity. According to the relevance of sensitivity, the DFs have the
characteristic to increase and overtake the respectively perturbed muscle (e.g. BFSH,
GMAXM, HAM (Figure 94) , ILPS (Figure 96), SAR; Figures for all muscles can be
found in the Appendix A).
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Figure 20: Integrated sensitivity ratios of the variation for GAS to the parameter optimal muscle
force.

Figure 21: Integrated sensitivity ratios of the variation for SOL to the parameter optimal muscle force
when relevance is considered.
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Figure 22: Integrated sensitivity ratios of the variation for GMAXL to the parameter optimal muscle
force.

Figure 23: Integrated sensitivity ratios of the variation for GMAXL to the parameter optimal muscle
force when relevance is considered..
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Figure 24: Integrated sensitivity ratios of the variation for GMEDA to the parameter optimal muscle
force.

Figure 25: Integrated sensitivity ratios of the variation for GMEDP to the parameter optimal muscle
force.
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Figure 26: SIntegrated sensitivity ratios of the variation for GMEDP to the parameter optimal muscle
force when relevance is considered.

Figure 27: Integrated sensitivity ratios of the variation for HAM to the parameter optimal muscle
force.
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Figure 28: Integrated sensitivity ratios of the variation for HAM to the parameter optimal muscle
force when relevance is considered.

Figure 29: Integrated sensitivity ratios of the variation for ILPSO to the parameter optimal muscle
force.
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Figure 30: Integrated sensitivity ratios of the variation for ILPSO to the parameter optimal muscle
force when relevance is considered.

Figure 31: Integrated sensitivity ratios of the variation for SOL to the parameter optimal muscle force.
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Figure 32: Integrated sensitivity ratios of the variation for VAS to the parameter optimal muscle force.

Figure 33: Integrated sensitivity ratios of the variation for VAS to the parameter optimal muscle force
when relevance is considered.
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5.3. Sensitivity to resting fiber length

The curves showing the sensitivity to resting fiber length (lmo ) have a tendency to be
more sensitive when the length is reduced; 10 out of 14 go up to a variation of -10%.
Interestingly, the slopes for the muscles GMAXL and VAS are the opposite for the rel-
evance of sensitivity. In this case they are more sensitive to an extension of the resting
fiber length. Integrated sensitivity rations over the interval of variation range between
117 for GMAXM (Table 7) and 9370 for OPF (Table 7).

GMEDP has not much influence on other muscles’ sensitivity when its fiber length is
changed. But this muscle responds to the variation of others. For the sensitivities of
relevance even more; in the cases of GMAXL/M, GMEDA and VAS it is by far more
sensitive than the varied muscle (e.g. Figures 114 and 134) . The DF’s sensitivity
graphs, similar to as it is described in section 5.2, characteristically move upwards when
the relevance is calculated (e.g. GAS, ILPSO; figures in Appendix A) or even overtake
the varied muscles graph (e.g. GMEDA, HAM, SAR; figures in Appendix A). The
OPFs have a great influence on DF in both graphs (Figures 125 and 126). When the
VAS muscles are varied, RF and SAR react very sensitive; the more the longer the VAS
fibers are (Figure 134). The HAM group is also mostly influencing RF and secondly
(but much less) SAR (Figure 121). The RF impact on other muscles is, vice versa,
also the most causing a sensitivity for HAM (Figure 127). When decreasing ILPSO’s
resting fiber length by 10%, the integrated sensitivity ratio over the interval of variation
of VAS increases to 4000 which is more than two and a half times higher then the value
for ILPSO (Table 11). Also, other muscles had a tendency to increase sensitivity (GAS
followed by SAR, GMAX, RF, BFSH) to the variation of ILPSO (Figure 123). The most
sensitive muscle to lmo , OPF, also affects three other muscles greatly. These muscles are
DF, GAS and SOL (Figure 125). The pattern remains noticeable similar when relevance
is applied, only SOL disappears (Figure 126).
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Figure 34: Integrated sensitivity ratios of the variation for GMAXL to the parameter resting fiber
length when relevance is considered.

Figure 35: Integrated sensitivity ratios of the variation for HAM to the parameter resting fiber length.
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Figure 36: Integrated sensitivity ratios of the variation for ILPSO to the parameter resting fiber
length.

Figure 37: Integrated sensitivity ratios of the variation for OPF to the parameter resting fiber length.
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Figure 38: Integrated sensitivity ratios of the variation for OPF to the parameter resting fiber length
when relevance is considered.

Figure 39: Integrated sensitivity ratios of the variation for RF to the parameter resting fiber length.
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Figure 40: Integrated sensitivity ratios of the variation for VAS to the parameter resting fiber length.

Figure 41: Integrated sensitivity ratios of the variation for VAS to the parameter resting fiber length
when relevance is considered.
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5.4. Sensitivity to tendon slack length

In general, the sensitivity graphs of tendon slack length lts and resting fiber length lmo
look similar. Often just the values are different but the pattern remains. Especially
similar sensitivities and patterns are shown for muscles GMAXL, GMEDP and ILOPS
(figures can be found in the Appendix A). Notably, muscles are most sensitive to tendon
slack length. Highest integrated sensitivity ratio over the interval of variation reached
by GAS was 138 387, followed by SOL with 102 907 and OPF with 96 356 (Tabels 5, 15
and 12). Once again least sensitive is GMAXM with 118.

When tendon length of GAS is reduced the sensitivity shoots up immensely, but not
just for GAS itself; VAS has almost the same sensitivity. Thereafter, but still with large
sensitivity values are DF and RF (Figure 139). When the relevance is considered, the
distribution changes and DF becomes the most sensitive muscle (Figure 140). Sensitivity
due to a variation of HAM looks different to most other panels. A peak is reached at
+2.5% and RF is more affected by the disturbance of HAM than HAM itself (Figure
149). In the graph of sensitivity with relevance, muscles are most sensitive at +10% and
DF and GAS reach the highest values (Figure 154). The tendon length of OPF cannot
be decreased more than 7.5%, as no results are delivered by the simulation. DF and
VAS are even more sensitive to this certain variation than OPF (Figure 149). However,
this is not the case when relevance is considered and the DFs now reach their maximal
sensitivity at 5% (Figure 154). Sensitivity of RF is small compared to the average values
of this parameter and even more so when the relevance is considered. Interestingly, RF
is first most sensitive to a shorting then changes to being most sensitive to a lengthening
of tendon in the sensitivity of relevance (Figures 155 and 156). Due to its anatomy
(i.e. very long muscle, very short tendon) SAR does not show reaction to a variation.
SOL’s sensitivity increases in a steep slope with shortening lts and is mostly influencing
DF which is similar shaped as SOL. VAS and RF become more sensitive when SOL’s
tendon is lengthened (Figure 154). The behavior of VAS to a variation of lts is similar to
the behavior when lmo is perturbed (Figures 161 and 133). Just the absolute values are
much higher and RF highly affected (at +10% ten times greater then VAS’s sensitivity).

81



Figure 42: Integrated sensitivity ratios of the variation for GAS to the parameter tendon slack length.

Figure 43: Integrated sensitivity ratios of the variation for GAS to the parameter tendon slack length
when relevance is considered.
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Figure 44: Integrated sensitivity ratios of the variation for HAM to the parameter tendon slack length.

Figure 45: Integrated sensitivity ratios of the variation for HAM to the parameter tendon slack length
when relevance is considered.
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Figure 46: Integrated sensitivity ratios of the variation for OPF to the parameter tendon slack length.

Figure 47: Sensitivity over the interval of variation for OPF to the parameter tendon slack length
when relevance is considered.
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Figure 48: Integrated sensitivity ratios of the variation for RF to the parameter tendon slack length.

Figure 49: Integrated sensitivity ratios of the variation for RF to the parameter tendon slack length
when relevance is considered.
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Figure 50: Integrated sensitivity ratios of the variation for SOL to the parameter tendon slack length.

Figure 51: Integrated sensitivity ratios of the variation for VAS to the parameter tendon slack length.
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5.5. Sensitivity to activation time, deactivation time and maximal
shortening velocity

Although those parameters were varied by up to 50%, muscles do not show any significant
sensitivity to them. The maximum value is 14 for VAS to the shortening velocity (Table
17. The graphs to the shortening velocity are bell-shaped for all muscles. They are
most sensitive to a small variation, meaning the greater the change the less the relative
impact on the output (Figure 167).

Figure 52: Integrated sensitivity ratios of the variation for maximal shortening velocity.
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5.6. Summary of results

Muscles were found to be most sensitive to variation of their tendon slack length lts, with
the maximum value (integrated sensitivity ratio over the interval of variation) being
almost 15 times greater than the maximum value reached for the resting fiber length lmo .
The maximal sensitivity for resting fiber length was 2 times greater than for optimal
muscle force Fm

o and 10.5 times greater then for the variation of the pennation angle (α).

The absolutely highest integrated sensitivity ratio over the interval of variation is
reached for DF (187 991) when OPF’s lts is varied (Table 12). The OPF muscles are the
most sensitive ones. They are most sensitive for lmo and third for lts. When relevance is
considered they are the most sensitive muscles to the parameters α, lmo and lts, and second
for Fm

o . Additionally, they are mostly influencing other muscles in the categories lmo and
lts, both with and without relevance, and α just for relevance (Summed-cross-sensitivity
in Table 12). For α and Fm

o , with calculated relevance, they are third in ability to affect
other muscles. Also, their significance is high, which indicates that they are actually
contributing much to induce body mass acceleration when sensitivity is measured. Thus,
and because the plantarflexors are the key muscle group for generating both support and
progression during late stance [24], it is particularly important to set their parameters
right.

The significance was generally very high for DS, mostly when the respective sensitivity
values were little. Nevertheless, this muscle group should be considered since relatively
small sensitivities can have a great impact because they are very active at early stance
(see Figures 10 and 11). BFSH is one of the most sensitive muscles to α, Fm

o and lmo
but only when it does not contribute much to gait which is indicated by low values of
significance and sensitivity of relevance (Table 3). GAS and SOL are the other muscles
being somewhat sensitive to α. Keeping in mind muscles are not very sensitive to penna-
tion angle at all. GAS and SOL are extremely sensitive to lts and also have affection on
the other muscles in those parameter classes showed by a large summed-cross-sensitivity
(Tables 5 and 15).

Variations of GMAXL have a general impact on other muscles, all ahead GMEDP.
Values of GMEDP for the sensitivity of relevance and significance in three parameters
(Fm

o , lmo and lts) are considerable (Table 6). GMEDP is also the most sensitive muscle
to Fm

o for integrated sensitivity ratio and summed-cross sensitivity, and this with high
significance. Additionally, Fm

o is the parameter which GMEDP is absolutely (out of all
parameter categories) most sensitive to.
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Results emphasize that changing the parameter of one muscle can greatly influence
the performance of another one. Specifically, some muscles show sensitivities which are
higher than the result of the variation of their own parameter. For instance when lts of
GAS is varied DF (3.7 times), VAS (18.8 times), HAM (1.6 times), SAR (18.8 times) and
BFSH (2.5 times) reach greater values for the sensitivity over the interval of variation
than when their own parameter is changed. And SOL has almost the same, very high
sensitivity value as if it was changed itself. Conversely, changing tendon slack length of
SOL does not generate a high sensitivity for GAS, it has much less influence on VAS
but much more on RF.

Also the variation of a parameter can cause higher sensitivity for other muscles than for
the muscle which was varied; or even lead to sensitivities which are almost as high as the
maximum values of sensitivity over the interval of variation in this parameter-category.
Examples are the variation of Fm

o for GMEDP (Table 9) and SOL (Table 15). According
to GMEDP, the sensitivity of RF would be second highest and sensitivities of GMAX
and SAR third highest in this parameter-class. When SOL is investigated concerning op-
timal force, HAM is 1.7 and RF 2.5 as sensitive (and second in this parameter-category)
as SOL. This ability to influence other muscles is reflected in the relatively high summed-
cross-sensitivity.
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6. Discussion

Beside the graphs of the integrated sensitivity ratios, four different types of metrics are
summarizing the results of this work. The sensitivity over the interval of variation of a
muscle to a parameter, which is simply the sum of the integrated sensitivity ratios of each
of the eight variations. The relevance of sensitivity, meaning that this value incorporates
information about the degree of activity when the instantaneous sensitivity was mea-
sured. These two metrics give similar information, but also contrast in aspects of what
is focused on. The other two are significance of sensitivity and summed-cross-sensitivity.

The integrated sensitivity ratio can be seen as a qualitative approach. It gives infor-
mation on a muscle’s ability to react sensitively to a disturbed parameter and also on the
impact this variation has on the rest of the involved muscles. Thus providing a general
understanding of how muscles are connected and depend on each others performance. A
high integrated sensitivity ratio reflects the muscles potential to respond to this specific
parameter. The limitation of this sensitivity is that it does not provide any information
about, when this sensitivity was measured. The muscle could have been very active or
producing negligible forces.

If one is interested in how relevant the measured sensitivity is for the muscles’ contri-
bution to locomotion, the second sensitivity metric (sensitivity of relevance) is of more
use. It is a rather quantitative approach in aspects of the actual effect of a sensitive
behavior. If the muscles generate little acceleration when relatively high sensitivity is
given, this value of sensitivity shrinks although the muscle is actually reacting sensitively.
But anyway, a sensitivity which has no impact on the output is in practice not of much
interest. The drawback of only looking at those sensitivities of relevance is that smaller,
little force producing muscles tend to decrease disproportionately. This is because com-
pared to the stronger muscle their delivered acceleration is just a little percentage of
the accumulated body mass acceleration. So the information about an isolated muscle’s
sensitivity gets blurred in the context of the combined generation of acceleration. An
example of this is the sartorius muscle. It shows relatively high sensitivity, for instance,
to optimal muscle force and also is often affected by others muscles. But when focus is
placed on the sensitivity of relevance none of these characteristics can be seen.

The significance of sensitivity, being the percentage of the the sensitivity of relevance
to the integrated sensitivity ratio, should be used with care and just in combination
with the two other metrics, as described above. It mainly reflects how much sensitivity
is left when the relevance is considered, and thus how much effect this certain sensitivity
has on the overall output (gait). A high significance does not necessarily mean that the
associated muscle and parameter are of substantial sensitivity. Often high significance
occurs when the respective sensitivities are negligible. But it gives an indication that
those muscles should be considered because their impact on the body mass acceleration
is greater the higher the significance. Therefore, even actuators with mediocre sensitiv-
ities can have an noticeable influence.
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The presented adjustments of the data smoothening grade and relevance of sensi-
tivity, which is output of the parameter variation and perturbation analysis, are an
approach to improve limitations which were mentioned in previous studies. For instance
Redl/Gföhler/Pandy [29] say that sometimes the largest instantaneous sensitivity ratios
occurred during periods of the gait cycle when the respective muscle force was negligible.
So, even though the integrated sensitivity ratio was high, the resultant effect on muscle
force was relatively minor, as the muscle remained inactive at these times. This shall be
improved by taking the relevance of sensitivity into account. Secondly, they take into
consideration that the instantaneous sensitivity ratio was high when the muscle was
inactive because this quantity was found by dividing by the value of the nominal muscle
force. That problem the smoothening grade is meant to solve.

Komura and Nagano [23] investigated what influence the deactivation of one muscle
has on the other muscles which maintain the gait motion. Their findings about muscle
dependencies can be related to and agreed with the results of this work. Here it is stated
that sensitivities which are induced for the other muscles when one muscles’ parameter
was varied, hold information about how muscles are connected and affect each other.
Muscles which cross same joints and so can be expect to influence each other since they
have similar functions or being antagonists confirm this (e.g. GAS and SOL or GAS,
SOL, OPF and DF; see graphics in Appendix (A)). Therefore, those interdependencies
shown by the sensitivity graphs should correlate to Komura and Naganos findings. For
example they say when GMAX was deactivated, the hip extension moment was pro-
duced by GMED and HAM. Looking at the panels for GMAX, it clearly can be seen
that HAM and GMEDP are sensitive to a perturbation of each of the parameters of
GMAX. GMEDP is actually more sensitive than GMAX itself. The matrix of depen-
dence of muscles, which can be found in the mentioned paper, suggests high influence
of VAS on RF when deactivated. Also here the sensitivity graphs for VAS show high
values for RF. Additionally other correlations can be found, like ILOPS having a great
influence on several other muscles. However, their results as well as the findings in this
work emphasize that some muscles affect performance of other actuators with quite dif-
ferent functions. Specifically, biarticular muscles such as HAM, GAS, RF tend to have
strong influence on all muscles and joints of the leg.
Previous work (Raikova and Prilutsky [28]) has also shown that variation in one model
parameter (in this case moment arm and PCSA) profoundly changes not only force
magnitude of this and other muscles but also the number of active muscles in the set of
muscles with active/silent states.

Evaluation of the sensitivity of muscle model to parameter perturbations indicates
that the muscle output (i.e. acceleration) is extremely sensitive to lts, and sensitive to
lmo and Fm

o . Those findings are very similar to Scovil and Ronsky [31] although they
evaluated a muscle models output and not sensitivities of single muscles. And also in
contrast, the present analysis quantifies the sensitivity over the whole stance phase of
walking and not just the impact of a perturbed input value on an output value. Same
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findings about muscles’ general sensitivity to those parameters are reported by Redl et
al. [29]. For instance they found SOL being the most sensitive muscle to lts and the
integrated sensitivity ratios 11-38 times greater for changes to lts than to lmo . Those
results are confirmed in this survey. SOL is the second most sensitive actuator, only
GAS exceeds but Redl et al. did not consider this muscle. The integrated sensitivity
ratios over the interval of variation of lts are 15 times greater than the ones for lmo , which
is perfectly consistent with their results. However, GAS and SOL produce the majority
of the forward acceleration during the second half of stance; and the second peak of
vertical acceleration was large due to those two muscles [24]. Additionally, across all
muscles, SOL (followed by GAS) store and recover the largest amount of elastic energy
[27]. Therefore it is suggested to choose parameters for those muscles with special care,
since they play an important roll in several aspects of walking.

Only Redl et al’s [29] findings about VAS differ significantly; here it turned out to be
much less sensitive than they report. This is interesting since the VASs are the strongest
muscle group and are responsible for significant parts of acceleration and deceleration
during stance [24]. But in the present work VAS was found to be affected much by other
muscles (e.g. variationm of lts of GAS and OPF, variation lmo of ILOPS).

As third parameter, Redl et al. [29] investigated the PCSA (physiological cross section
area) which is the equivalent to the optimal muscle force. In contrast to this analysis
it was found that the parameter had relatively small effect on the integrated sensitivity
ratio. Raikova and Prilutsky [28] on the other hand say that although sensitivity of the
optimal force to changes in PCSAs was smaller than to moment arms, the effects were
also rather large for some muscles.

The activation and deactivation times τA and τD did not cause any reaction, even
though they were changed by 50%. This insensitivity was also reported by Scovil and
Ronsky [31], which was similar to several other studies.

In Redl et al. [29] the authors state that they chose to include SAR even though it
does not develop much force during normal walking, because of the virtue of its geome-
try. Similar applies for HAM and ILOPS. In Arnold et al. [7] this high potential of SAR
is shown. When hip and knee acceleration per unit force are calculated, SAR reaches
the highest values. That high potential to significantly contribute to locomotion is also
reflected in the findings of this work. SAR is sensitive to optimal muscle force. Because
of its relatively large moment arm, small changes of the muscle force cause a notable
change of the joint accelerations.

In the figure of the instantaneous sensitivity ratios (Figure 13), there is also a panel
of the body mass acceleration which does not show any remarkable response to the vari-
ation of a muscle. This is because the movement simulations are able to compensate for
changes in muscle parameters better than the muscle model alone. The combined sys-
tem can react by internal or damping effects, by reduction of muscle forces and velocity
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changes due to interactions and by evaluation of movement over time [31]. Therefore,
those sensitivities to the global muscle-model output were not further considered.

Redl et al. [29] who investigated the sensitivity of four muscles (SOL, VAS, GMEDP,
SAR) found an interesting feature. The sensitivity of muscle force to changes in tendon
rest length (lts) and resting fiber length (lmo ) was governed by the ratio of these param-
eters. When the ratio of lts to lmo was greater than 1, muscle force estimates were most
sensitive to changes in tendon lengths. Conversely, when this ratio was less than one,
the calculated values of muscle force were most sensitive to fiber length.
This result is understandable when one considers the difference between the force re-
sponse of a compliant actuator (lts/l

m
o > 1 ) and that of a stiff one ( lts/l

m
o < 1 ). Because

compliant actuators have longer tendons than muscle fibers, their force response is gov-
erned by the force-length curve of tendon; conversely, stiff actuators with shorter tendons
than muscle fibers have a force response that is governed by the force-length curve of
muscle.

Actuator lts/l
m
o Sensitivity lts/l

m
o Sensitivity with

relevance lts/l
m
o

BFSH 0.29 0.27 0.26

DF 2.73 3.7 4.9

GAS 6.58 64.0 105.9

GMAXL 0.73 1.5 1.4

GMAXM 0.78 1.01 1.0

GMEDA 0.84 1.09 1.18

GMEDP 0.75 0.86 0.85

HAM 3.12 5.0 8.67

ILPSO 1.3 1.3 1.24

OPF 7.44 10.3 10.8

RF 2.8 5.4 4.86

SAR 0.069 0.08 0.086

SOL 5.08 34.2 23.2

VAS 1.61 2.85 5.4

Table 18: Ratios of tendon slack length and resting fiber length compared to the ratios of the integrated
sensitivity over the interval of variation of lts and lmo , respectively sensitivity with applied
relevance. Illustrating that if lts/l

m
o < 1 muscle is more sensitive to a variation of resting

fiber length and if lts/l
m
o > 1 sensitivity to tendon slack length is greater.
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The findings in this work reinforce this relation. Table 18 includes ratios of the resting
fiber length and tendon slack length as well as the ratios of the integrated sensitivity
summed over the interval of variation of lts and lmo . The higher the ratio of lts/l

m
o , the

more (nonlinear) the sensitivity to tendon length differs from the sensitivity of fiber
length (i.e., GAS, OPF and SOL). Just one muscle (GMAXL) does not fulfill this the-
ory. This one should be more sensitive to the fiber length but in fact is slightly more
sensitive to tendon length. GMAXM and GEMDA show equal sensitivity to the two
parameters although their fiber length is slightly longer than their tendon length. This
is an indication that this rule of governed sensitivity might become less strong for ratios
being close to 1.

Limitation of this study is that it only covers normal gait, which has to be kept
in mind when results are applied. Muscle function is strongly task-dependent, as the
pattern of force development changes and so results of sensitivity analysis are likely to
change. Scovil and Ronsky [31] found different results for parameter sensitivity of for-
ward simulations of running and walking. Neptune et al. [27] investigated and identified
the functional and energetic adaptations in individual muscles in response to different
walking speeds. They found that some muscles change more than others to increasing
speed (SOL and GMAX in stance and tibialis anterior, ILPS and HAM in swing).

Even though many of the most relevant muscles for gait have been considered in this
sensitivity analysis, there are more incorporated in the used model and even more in
reality. The range of variation was just ±10% and in only one case the simulation could
not deliver a result. It might give more information and a better understanding of
muscle’s sensitive characteristic and interdependencies when the interval of variation is
exceeded and maximal variation which still can be realized in the simulation is reached.
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7. Conclusion

The main purpose of this diploma thesis was to conduct a sensitivity analysis to muscle
describing parameters in an inverse simulation of human gait. Resultant body mass ac-
celerations were calculated and it was investigated how much they changed compared to
when nominal parameter values were used. This analysis is time dependent; at discrete
time steps of the stance phase of the gait cycle, sensitivity was evaluated.

Compared to other studies, a relatively large number of leg-muscles was considered
in this sensitivity analysis. In the study not only the effect on the perturbed muscles
is illustrated but also the sensitive reaction of all the other muscles which were taken
into account in the analysis. For those who want to use the results of this investigation,
panels of graphs and tables of data are provided (Tables 3 to 17 and figures in sections
5 and A). Those panels present graphically the value of the integrated sensitivity at a
percentage of variation. They hold information about how much sensitivity changes to
decreasing and increasing parameters. There is a graphic for each muscle which was var-
ied and each parameter incorporating both the graphs for the muscle whose parameter
was disturbed and the 12 other muscles (Figures in section A). There is a table for each
muscle including the metrics sensitivity over the interval of variation (sum of the inte-
grated sensitivity ratios from all variations), sensitivity of relevance (a time-dependent
contribution to body mass acceleration is considered compared), significance of sensitiv-
ity (percentage of sensitivity of relevance to sensitivity) and summed-cross sensitivity
(summed sensitivity of all muscles but the varied one), which are all to find in section 5.

The findings reinforce that accurate parameter setting is crucial for reliable muscu-
loskeletal models. In particular, this is most important for tendon slack length but also
for resting fiber length and optimal muscle force. Unfortunately, in vivo measurements
of the parameters are difficult to carry out and dissection of cadaver specimens provide
unsatisfactory results. It is difficult to distinguish the aponeurotic part of tendon from
muscle belly and tissue might be stretched when measured post-mortem. Also, settings
of parameters might change for different groups of people (e.g. state of health and
training, age etc.). When better methods to estimate parameters are developed , the
simulation of gait can be improved substantially and more accurate predictions of force
and acceleration values as well as patterns can be done.
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Figure 53: Sensitivity for BFSH to pennation angle.

Figure 54: Sensitivity of relevance for BFSH to pennation angle.
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Figure 55: Sensitivity for DF to pennation angle.

Figure 56: Sensitivity of relevance for DF to pennation angle.
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Figure 57: Sensitivity for GAS to pennation angle.

Figure 58: Sensitivity of relevance for GAS to pennation angle.
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Figure 59: Sensitivity for GMAXL to pennation angle.

Figure 60: Sensitivity of relevance for GMAXL to pennation angle.

110



Figure 61: Sensitivity for GMAXM to the parameter alpha.

Figure 62: Sensitivity of relevance for GMAXM to pennation angle.
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Figure 63: Sensitivity for GMEDA to pennation angle.

Figure 64: Sensitivity of relevance for GMEDA to pennation angle.
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Figure 65: Sensitivity for GMEDP to pennation angle.

Figure 66: Sensitivity of relevance for GMEDP to pennation angle.
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Figure 67: Sensitivity for HAM to pennation angle.

Figure 68: Sensitivity of relevance for HAM to pennation angle.
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Figure 69: Sensitivity for ILPSO to pennation angle.

Figure 70: Sensitivity of relevance for ILPSO to pennation angle.
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Figure 71: Sensitivity for OPF to pennation angle.

Figure 72: Sensitivity of relevance for OPF to pennation angle.
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Figure 73: Sensitivity for RF to pennation angle.

Figure 74: Sensitivity of relevance for RF to pennation angle.
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Figure 75: Sensitivity for SOL to pennation angle.

Figure 76: Sensitivity of relevance for SOL to pennation angle.
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Figure 77: Sensitivity for VAS to pennation angle.

Figure 78: Sensitivity of relevance for VAS to pennation angle.
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Figure 79: Sensitivity for BFSH to optimal muscle force.

Figure 80: Sensitivity of relevance for BFSH to optimal muscle force.
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Figure 81: Sensitivity for DF to optimal muscle force.

Figure 82: Sensitivity of relevance for DF to optimal muscle force.
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Figure 83: Sensitivity for GAS to optimal muscle force.

Figure 84: Sensitivity of relevance for GAS to optimal muscle force.
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Figure 85: Sensitivity for GMAXL to optimal muscle force.

Figure 86: Sensitivity of relevance for GMAXM to optimal muscle force.
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Figure 87: Sensitivity for GMAXM to optimal muscle force.

Figure 88: Sensitivity of relevance for GMAXM to optimal muscle force.
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Figure 89: Sensitivity for GMEDA to optimal muscle force.

Figure 90: Sensitivity of relevance for GMEDA to optimal muscle force.
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Figure 91: Sensitivity for GMEDP to optimal muscle force.

Figure 92: Sensitivity of relevance for GMEDP to optimal muscle force.
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Figure 93: Sensitivity of relevance for HAM to optimal muscle force.

Figure 94: Sensitivity of relevance for HAM to optimal muscle force.
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Figure 95: Sensitivity for ILPSO to optimal muscle force.

Figure 96: Sensitivity of relevance for ILPSO to optimal muscle force.
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Figure 97: Sensitivity for OPF to optimal muscle force.

Figure 98: Sensitivity of relevance for OPF to optimal muscle force.
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Figure 99: Sensitivity for RF to optimal muscle force.

Figure 100: Sensitivity of relevance for RF to optimal muscle force.
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Figure 101: Sensitivity for SAR to optimal muscle force.

Figure 102: Sensitivity of relevance for SAR to optimal muscle force.
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Figure 103: Sensitivity for SOL to optimal muscle force.

Figure 104: Sensitivity of relevance for SOL to optimal muscle force.
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Figure 105: Sensitivity for VAS to optimal muscle force.

Figure 106: Sensitivity of relevance for VAS to optimal muscle force.
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Figure 107: Sensitivity for BFSH to resting fiber length.

Figure 108: Sensitivity of relevance for BFSH to resting fiber length.
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Figure 109: Sensitivity for DF to resting fiber length.

Figure 110: Sensitivity of relevance for DF to resting fiber length.
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Figure 111: Sensitivity for GAS to resting fiber length.

Figure 112: Sensitivity of relevance for GAS to resting fiber length.
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Figure 113: Sensitivity for GMAXL to resting fiber length.

Figure 114: Sensitivity of relevance for GMAXL to resting fiber length.
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Figure 115: Sensitivity for GMAXM to resting fiber length.

Figure 116: Sensitivity of relevance for GMAXM to resting fiber length.
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Figure 117: Sensitivity for GMEDA to resting fiber length.

Figure 118: Sensitivity of relevance for GMEDA to resting fiber length.
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Figure 119: Sensitivity for GMEDP to resting fiber length.

Figure 120: Sensitivity of relevance for GMEDP to resting fiber length.
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Figure 121: Sensitivity for HAM to resting fiber length.

Figure 122: Sensitivity of relevance for HAM to resting fiber length.
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Figure 123: Sensitivity for ILPSO to resting fiber length.

Figure 124: Sensitivity of relevance for ILPSO to resting fiber length.
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Figure 125: Sensitivity for OPF to resting fiber length.

Figure 126: Sensitivity of relevance for OPF to resting fiber length.
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Figure 127: Sensitivity for OPF to resting fiber length.

Figure 128: Sensitivity of relevance for RF to resting fiber length.
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Figure 129: Sensitivity for SAR to resting fiber length.

Figure 130: Sensitivity of relevance for SAR to resting fiber length.
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Figure 131: Sensitivity for SOL to resting fiber length.

Figure 132: Sensitivity of relevance for SOL to resting fiber length.
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Figure 133: Sensitivity for VAS to resting fiber length.

Figure 134: Sensitivity of relevance for VAS to resting fiber length.
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Figure 135: Sensitivity for BFSH to tendon slack length.

Figure 136: Sensitivity of relevance for BFSH to tendon slack length.
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Figure 137: Sensitivity for DF to tendon slack length.

Figure 138: Sensitivity of relevance for DF to tendon slack length.
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Figure 139: Sensitivity for GAS to tendon slack length.

Figure 140: Sensitivity of relevance for GAS to tendon slack length.
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Figure 141: Sensitivity for GMAXL to tendon slack length.

Figure 142: Sensitivity of relevance for GMAXL to tendon slack length.
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Figure 143: Sensitivity for GMAXM to tendon slack length.

Figure 144: Sensitivity of relevance for GMAXM to tendon slack length.
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Figure 145: Sensitivity for GMEDA to tendon slack length.

Figure 146: Sensitivity of relevance for GMEDA to tendon slack length.
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Figure 147: Sensitivity for GMEDP to tendon slack length.

Figure 148: Sensitivity of relevance for GMEDP to tendon slack length.
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Figure 149: Sensitivity for HAM to tendon slack length.

Figure 150: Sensitivity of relevance for HAM to tendon slack length.
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Figure 151: Sensitivity for ILPSO to tendon slack length.

Figure 152: Sensitivity for of relevance ILPSO to tendon slack length.
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Figure 153: Sensitivity for OPF to tendon slack length.

Figure 154: Sensitivity of relevance for OPF to tendon slack length.
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Figure 155: Sensitivity for RF to tendon slack length.

Figure 156: Sensitivity of relevance for RF to tendon slack length.
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Figure 157: Sensitivity for SAR to tendon slack length.

Figure 158: Sensitivity of relevance for SAR to tendon slack length.
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Figure 159: Sensitivity for SOL to tendon slack length.

Figure 160: Sensitivity of relevance for SOL to tendon slack length.
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Figure 161: Sensitivity for VAS to tendon slack length.

Figure 162: Sensitivity of relevance for VAS to tendon slack length.
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Figure 163: Sensitivity to deactivation time

Figure 164: Sensitivity of relevance to actiavation time
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Figure 165: Sensitivity to deactiavation time

Figure 166: Sensitivity of relevance to deactiavation time
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Figure 167: Sensitivity to maximum shortening velocity

Figure 168: Sensitivity of relevance to maximum shortening velocity
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