Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universitat Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

TU

TECHNISCHE UNIVERSITAT WIEN

DIPLOMARBEIT

<EIN BEITRAG ZUR PLC PROGRAMMIERUNG>

ausgefiihrt zum Zwecke der Erlangung des akademischen Grades eines Diplom-

Ingenieurs unter der Leitung von

Em.O.Univ.Prof. Projektass. Dipl.-Ing. Dr.h.c.mult. Dr.techn. Peter KOPACEK
E325
Institut fiir Mechanik und Mechatronik

Eingereicht an der Technischen Universitidt Wien

Fakultat fiir Maschinenwesen und Betriebswissenschaften

von

Yunus Emre CETIN
0325009
Untere Augartenstrasse 31/105 A-1020 Wien

Wien, am




TABLE OF CONTENTS

ABSTRACT ..ttt ettt ettt et be et s at ettt e naeeaees 1
1. PLC (PROGRAMMABLE LOGIC CONTROLLER)......cccccecteviriiniiienienieeienene 2
1.1.  Advantages of the PLCS ......c.cooiiiiiiiiieeeeecee et 3
1.2.  Disadvantages 0f the PLCS.......cccooiiiieiiieiiiceeeece et 3
1.3.  History of PLCs (Melore, 2001 )........cceiiiiriiieeiieeeiie et eveeesaee e 4

2. SIMATIC .ttt ettt ettt ettt sbt et st saeebeeaeens 6
2.1. S300 SEALION ....eiueiiiiiiieieeieeitee ettt sttt st 7
2.1.1.  Components of the STImatic Station ...........cceccveeevieeriieeniie e 8

3. SIMATIC STEP 7 .ottt et st 12
3.1.  The Programming Languages in SteP 7 ....ccccovveeuienieniienieeieeieeieeiee e 12
3.1.1.  Ladder Logic Diagram ..........cccceevieriiiniieiiieiieeieeeeeee e 13
3.1.2.  Function Block DIagram .........ccccceeeiiiieiiiiieniie e 13
.13 Statement LiSt..co.eoiiiiiiiiiieieeeee e 13

3.2, FUNCHONS TN STEPT evienrieiiiieiieeie ettt ettt ettt et e s sbeeneeas 14
32,1, AND FUNCHON ..ttt 14
3.2.2. OR FUNCHON ..ottt 14
3.2.3.  NAND Function (Negation AND) .......cccviiriiiiiiieeiieecieeceeeeee e 15
3.2.4.  NOR Function (Negation OR) .......ccccceeiiriiiiiiiniieieceeeee e 15
3.2.5. XOR Function (Exclusive OR) .......cccceeiiiiiiiiieiiieeieeceeeeee e 15
3.2.6. SR (Set-Reset) FIIP FIOP ..ooeeiiieiiiieiieeeee e 16
3.2.7. Positive RLO (Result of Logic Operation) Edge Detection.................... 16
3.2.8.  PulSe S5 TIMET ...eoouiiiiiiiiieiee ettt 16
3.2.9.  On-Delay S5 TIMET ..cccueriiriiiiiiiiieeeeteseee et 17
3.2.10. Off-Delay S5 TIMET.....cccccuieeiiieeiieeeiieeeiee e eteeeeee e eeesaeeesaee e 18
3.2.11. Counting Up and Down S CUD .......cccceiiiiiiiiiniieiecieeieeeee e 19

4. INSTALLATION ..ottt ettt ettt et ettt et sseebeesaesseeseensensaenseeneans 20

410 WITIIIZ ettt ettt ettt st sbe et e anesbe et eanen 21



4110 WIrIng the PS: oo 21

4.1.2. WIrIng the CPU ....oooiiiiiiieciceee et 21
4.1.3.  Wiring the signal modules:...........cccoeeviiiriiiiiiiiieeee e 22
4.2, Configuring the Station .........cccceecieiiiiiieiiiecceece e 22
4.3, AdIESSINEZ.c.uiiiiiieiieeiie ettt ettt ennee e 25
4.3.1. Default channel addressing: ...........cceecveriiierieiiiienieeieeecee e 25
4.3.2.  User-defined AddressSing:........cceevveeeiiieeiieeniie et eree e 26
4.4,  Connecting to a Programming DevVICE .........ccceeevviiriiiinciieeniie e 28
PROGRAMMING WITH STEP 7....ooiiiiiiiiiiiiieiieteeeeeeeeeeeeee e 30
5.1.  Creating a program in OB1 (Organisation Block): .......cccccoceviiiiniininnennne. 31
5.2.  Creating a Function Block (FB) and Function (FC): ........ccccceovviieiiienieeneen. 32
5.3.  Downloading the Program: ............ccccoeeiiiriiieniiieeiee e 33
S7-PLCSIM (SIMULATION PROGRAM)......cootiiiriiniiiieniierieeieeeenieee e 36
6.1.  CPU Operating MOAES: ......c.ceviieiieiiieiieeie ettt ettt ettt ebee e e 36
6.2, CPU INAICALOTS: ..eoutiiniieiiiiiieeiie ettt ettt sttt e 37
6.3, ODJECT VIEWINE: ..veeeiiieeiiiieeiiieeiiieeeitteesteeesseeesteeesereeessseeensseeesseessseesseeessseens 38
6.4.  Scan Mode OPLIONS: .....cccueeiiiiiiieiieeie ettt ettt ee e et esaee b e eaeeneeas 39
6.5. Opening and saving a simulated PLC: ............cociiiiiiiiniieeee, 39
FUTURE ASPECTS ..ttt 41
7.1.  Trends in autOMAtION SYSLEIMNS .....eeeviieriieeriieeeieeerieeerteeeireeeereeeaaeesaaeesnneees 41
711, ViSual Control ....ooviiiiiiiiiiiiiieeicteeeee e 41
7.1.2. DecentraliSation..........cceeierieriiriinieienienieeieet et 41
DIFFERENT EXAMPLES OF PLC APPLICATIONS .....cccooiiiiiieieieeeeeene 43
8.1.  Pump Motor Control .........c.ceoviiiiiiiiiiieceeceece e 43
8.1.1.  Simulation of control pump mMotor...........cccveeriiieeriiieeiieeiee e 48
8.2.  Conveyor Belt Controller.........ccccoceriiriiiiniiniiiiinieeeceeeeee e 51
8.2.1.  Simulation of conveyor belt controller...........oceverveniineniiniinenicnne 53
8.3.  Determining the Direction of the Rotating Shaft .............ccccoeeveriiiiiiiinnnnn 55
8.3.1.  Simulation of the Rotating Shaft............cccoeiiriiiiiiiiiieeeeee 59
8.4.  Sorting and Packing of PIPes........ccccoveeviriiniiiiniiniciciceccecee 61
8.4.1.  Simulation of Pipe Sorting and Packing...........cccccecereininiiniincnnicnnne. 67

i



8.5.  Garage Door CONtrOLLEr........ccuiiiiiiiiieiieiie ettt 70

8.5.1.  Simulation of Garage Door Controller............cccceeevvierieriiienieniieiieeene 74
9. CONCLUSION ...ttt ettt sb et et seeseeseensensensensesseene e 77
REFERENCES ...ttt ettt ettt se s s e esesensessenseas 80
LIST OF FIGURES ... .ottt sttt 82
LIST OF TABLES ...ttt sttt ettt sbenae e 84

il



ABSTRACT

Firstly the work in this thesis aspires to present one of the most important notions in
industrial automation: Programmable Logic Control. If we take a look at the evolution
of the industrial automation, it is easily noticed that the development of the PLC has
greatly influenced mass production techniques over forty years. After the short
description of the PLC and its specifications, this thesis takes an interest in the history of

PLCs from 1960’s till today by mentioning important milestones and developments.

This thesis mainly focuses on S7-300 Simatic Station, which is a very popular PLC
station around the world and belongs to Siemens, one of the biggest manufacturers of the
PLC systems. Before the main components of a S7-300 station are described, an
overview of the other Simatic stations such as S7-200, -400, Simatic TDC and Simatic

WinAC has been provided.

Step 7 is used to configure and program the Simatic S7 automation systems. One section
of this thesis is dedicated to the description of the programming languages and most
used basic functions such as OR, AND, SR (Set Reset) flip flop, ON Delay timer and

etc.

The aim of this work is to give different examples of industrial automation applications
for educational purposes, characterise problems and find solutions. At first, the whole
process is described step by step: how a S7-300 station should be installed, wired,
configured and addressed properly. After preparing the station for use, this thesis shows
also how you can control program flow and design structured programs. Additionally,
each example is simulated by integrated simulation software S7-Plcsim to test user

programs offline without using any hardware.



1. PLC (PROGRAMMABLE LOGIC CONTROLLER)

A programmable logic controller is a device which is used for automation of industrial
processes, such as control of several machines which working on assembly lines. With
the PLC many inputs and output ports can be easily configured and programmed with
many different arrangements. Programmable logic controllers are designed for real-time
use, because the outputs results have to be produced according to input values within a
bounded time. Programs to control the machine operations are written mostly in logic
ladder diagram, Basic or C. Programs are stored in non-volatile memory (They can

retain the stored information even when they are not powered).

Since PLCs can read not only digital but also analog process variables such as rotations,
temperature or pressure, they can be used almost in every automation process. Thus,
controlling hydraulic and pneumatic components, electric motors, magnetic valves and
other possible analog outputs is quite simple and easy. Maybe the most important thing
that makes PLCs so popular in automation processes is that so many inputs and outputs
can be wired and configured by one CPU and changing the configuration or developing
the system is so easy and not comparable with the other automation controllers. Before
PLC, the main problem in automation of industrial processes was to change the
processes or programming, since all the devices on assembly lines were individually

wired and these devices have to be connected with each others individually.

A PLC scans a program continually. It searches every input to determine whether the
inputs are on or off and stores the inputs’ value in its memory. Then PLC executes the
program according to program structure and decides which outputs are to be turned on
or off. Finally PLC updates the outputs’ values. After that, PLC repeats the process

continuously. Figure 1.1 shows how PLCs work:



CPU
H Signal Processing H
%]
g ; E Acressregister |5 ; g
5 5 e = 5
=

a H E Timer a H a

— Counter —

Figure 1.1 Data Flow of a typical PLC

1.1. Advantages of the PLCs

Flexibility: One single Programmable Logic Controller can easily run many machines.

Correcting Errors: Correcting errors in PLC are extremely short and cost effective.

Programming Language: PLCs offer different programming language, which are easy to

understand and program.

Space Efficient: Thousands of timers and counters can be connected in a single PLC.

Modularity: Another component can be easily mounted and connected to the CPU.

Low Cost: Prices of PLC are very reasonable and cannot be compared to the prices of
the contact and coils and timers that you would pay to match the same thing.

Testing: The program can be tested, validated and corrected saving very valuable time.

Visual Observation: When running a PLC program a visual operation can be seen on the

screen.

1.2. Disadvantages of the PLCs

Redundant Cabling: Since every component communicate with others and CPU, too

much cable connection in the whole system.

Fault Tolerance: If any problem occurs and system fails, downtime is not predictable,

can take long.



Centralized Controller: If the master controller fails, whole system fails.

Figure 1.2 Typical PLCs

1.3. History of PLCs (Melore, 2001)

The evolution of PLCs began as a response to the demands of the American automotive
manufacturing industry. First PLC is introduced in the late 1960’s. Bedford Associates
(Bedford, MA) produced its new product called a Modular Digital Controller
(MODICON). MODICON was the Bedford’s Associates’ eighty-fourth project that

brought the first commercial PLC into the automotive industry.

In the mid70’s the dominate PLC technologies were sequencer state-machines and the
bit-slice based CPU. The AMD 2901 and 2903 were quite popular in MODICON PLC’s.
Communications abilities began to appear in approximately 1973. The first such system
was Modicon’s Modbus. The PLC could now talk to other PLCs and they could be far
away from the actual machine they were controlling. They could also now be used to

send and receive varying voltages to allow them to enter the analog world. (Melore,



2001)

General Motor started to standardize communication with its automation protocol MAP
in the 80’s. The size of the PLC got smaller with the development of the electronic parts
and circuits. Symbolic programming on personal computers became possible instead of

programming terminals or handheld programmers.

The 90’s have seen a gradual reduction in the introduction of new protocols, and the
modernization of the physical layers of some of the more popular protocols that survived
the 1980’s (Melore, 2001). According to the latest standard (IEC 1131-3) plc
programming languages are tried to be standardized in one international standard. PLC
programming softwares offer now different programming languages, such as function

block diagrams, instruction lists, ladder logic diagrams, C and structured text.



2. SIMATIC

The Simatic S7 series are electronic programmable logic controller from Siemens.
Simatic is programmed with the help of STEPS or STEP7 and softwares from other
program developers. All controlling-functions are saved as a program in the memory
card and read by CPU. Simatic series are modular design and many inputs, outputs and

other modules can be connected with the CPU.

The name of Simatic was registered by patent office in Germany in 1958 and Simatic is
the abbreviated form of Siemens and Automatic. First Simatic was designed as a
hardwired controller (VPS-Verbindungsprogrammierte Steuerung). If any change in
automation process is required, wiring and assembling of the components must be
changed too. In 1973 Simatic S3, which can be called as the first programmable logic
controller, was ready for end-user. But Simatic was not so popular, until Simatic S5
appeared on the markets in 1979. The Simatic S5 was developed continuously and
consequently. The user programs could be written in three programming languages LAD
(Ladder Logic Diagram), FBD (Function Block Diagram), STL (Statement List), which
made programming much easier than ever. In 1996 with Simatic S7 Totally Integrated
Automation-TIA has been developed and this strategy defines the interaction of
extensive single components, tools and the services to achieve an automation solution.
According to TIA, a whole automation process is customer-oriented and every single
component can be integrated specifically that the limits of the automation solutions can

be extended.

The interaction performs integration across the four automation levels of the automation
pyramid:

1. Management Level

2. Operator’s level
3. Controller’s level
4. Field level (“Totally Integrated Automation”)



Simatic S7 series offer five different controllers:

1. 87-200: the first generation of Simatic S7, up to 24 Kbyte program memory and min.
bit operation time 0,22 us. Communication with the other devices is possible over RS-

485-Interface.

2. §7-300: the most popular serie of Simatic S7 controllers, up to 8 Mbyte program
memory and min. bit operation time 0,01ps. Communication with the other devices is

possible over RS-485, Profibus or Ethernet-Interface.
3. §7-400: most sophisticated serie of Simatic S7 controllers, up to 16 Mbyte program
memory and min. bit operation time 0.03 ps. Communication with the other devices is

possible over RS-485, Profibus or Ethernet-Interface.

4. Simadyn D, Simatic TDC: special serie of Simatic S7 for the press machines, rolling

mills, gas and oil conveyors and power plants.

5. Simatic WinAC: Simatic WinAC is used when high performace, high data volumes

and at the same time hard real time are required for the automation task, especially if
different tasks has to be integrated on a pc such as data processing, communication or

visualization. (Siemens AG, 2008)

2.1.  S300 Station

It 1s the second generation of Simatic S7 automation systems. The S7-300 controller is a
modular design. The modules can be configured directly by the CPU or distributed
modules can be connected to the CPU by PROFIBUS DP. With the centralized
configuration up to eighth I/O modules can be plugged into the central rack. If this
single-tier configuration is insufficient, then up to four-tier configuration can be chosen

and each rack can be connected with eight modules.



Main specifications are written below (Siemens AG, 2007):

- CPUs are able to be integrated with Industrial Ethernet/PROFINET interface,

integrated technological functions and fail-safe designs.

- The S7-300 can be set up in a modular configuration

- The Micro Memory Card can be used during operation for storing and accessing data

- Safety technology and motion control can also be integrated

- Extended temperature range (-25...+60°C)

2.1.1. Components of the Simatic Station
An S7-300 station consists of several modules that depend on the requirements of the
automation system. The components of the S7-300 station which is to be installed are

described below:

Mounting rack:

It accommodates and connects the modules. Its length is determined by the number of

the modules.

Power supply (PS):

Provides internal supply voltage, converts power system voltage 120/230 V AC into 24
V DC for the Simatic stations.

Central Processing Unit (CPU):

Executes the user programs and communicates with the programming device and the



other stations. It controls the central and distributed /O modules and supplies the

backplane bus with 5 V.

The station has the CPU 314C-2DP:

e MPI interface onboard
e PROFIBUS DP master/slave interface
e Technological functions (Siemens AG,2008):
e Counting
e (losed Loop Control
e Frequency Measurement
e Pulse Width Modulation
e Pulse Generator

e Positioning

Signal Module (I/O Modules):

Signal modules are available as input/output modules for digital and analog signals. This
module adapts the signals from process to the signal level or controls contactors,
sensors, actuators, etc.

Digital and analog modules differ as regards the number of channels, voltage and current

ranges, electrical isolation, diagnostics and alarm functions, etc. (Siemens AG, 2007)

The station has 4 different signal modules:
e DI16/DO 16 x DC24V (16 digital inputs and 16 digital outputs)
e SM 331 AI 8 x RTD (Analog input 8 channels with resistance temperatur
detector)
e SM 331 AI8x 12 Bit
e SM 332 AO 4 x 12 Bit (Analog output 4 channels, 12 Bit)

Interface module (IM):

By means of this module the mounting racks can be connected with each other. The



station has no interface module.

Communication Processor (CP):

It connects the station with the subnets. It can be over integrated RS 485, Ethernet,
Profibus or serial point to point connection.

The station has the standard CP 343-1 Industrial Ethernet.

A typical S7-300 Structure is shown in Figure 2.1

(il Power supply (PS) al |
[Z] Central processing unit (CPU)
(@] Signal module (SM)

(4 PROFIBUS bus cable

(5] Programming device cable

0 B0 |=
a

I

H—

B

Figure 2.1 S7300 Structure with two racks

Micro Memory Card (MMC):

The memory module used on the CPU is a Simatic Micro Memory Card. User program

can be saved in the MMC and read by CPU.

MPI (Multi Point Interface):

The Siemens MPI protocol is used by Siemens PLCs to communicate with external

10



devices like operator interfaces. MPI supports baud rates (state changes) of 187.5 kbps
to 12 Mbps. The addresses of the MPI nodes must be unique and are set with the
programming device PC. PROFIBUS bus line for building up the network or Repeater
RS 485 for coupling segments can be used at MPI.

Digital and analog signal modules, interface module, communication processor and

other possible components communicate with CPU and others through the backplane

bus.

11



3. SIMATIC STEP 7

Simatic Step 7 is the standard software for the Simatic S7, Simatic C7 and Simatic
WinAC automation systems. Step 7 enables the user to control the whole automation
process with different functions. Designing the program structure, configuring and
parameterizing the station, hardware and networks, programming automation process
step by step, specifying the communication, simulating, testing and monitoring the
program to diagnose possible errors are the most important features of Step 7. Step 7
offers the user basically three different programming languages, which are FBD

(Function Block Diagram), LAD (Ladder Logic Diagram) and STL (Statement List).

3.1. The Programming Languages in Step 7

There are several programming languages and programming methods to write a user
program, for instance LAD, STL, FBD, SCL and etc. The most known and used
programming languages are LAD (ladder logic diagram), FBD (function block diagram)
and STL (statement list). For the complex structures Structural Control Language (SCL)
is preferred, since its language is like PASCAL and very suitable for programming

complex algorithms.

STL is a text-oriented language, the functions are written in the form of a list. LAD and
FBD are graphics-oriented languages; the structure will be described by connecting the
function-blocks or -boxes in series or parallel arrangements. The program which is
written in FBD or LAD can be completely converted into STL, but some expressions in
STL cannot be converted into FBD and LAD. With these programming languages not

only binary signals but also digital values in different formats can be processed.

Basically there are two kinds of functions:

Binary Functions: these kinds of functions process signals of data type BOOL which

12



means that a bit can have two states “1” or “0”.

Digital Functions: The digital functions operate on variable with digital values. These

values can be the data types INT (Integer), DINT (Double Integer), and REAL.

3.1.1. Ladder Logic Diagram

On the left side of the diagram called rung a point is selected and there any program
element can be inserted. These elements are called as inputs (contacts). As an output
coils are used. For the elements with non-binary functions boxes are used. There are
two types of standard boxes: boxes with EN/ENO parameters (e.g. data type conversion,
MOVE and mathematical functions) and boxes without EN/ENO parameters (e.g.

Set/Reset functions, timers, counters and compare boxes) (Berger, 2005)

3.1.2. Function Block Diagram

In the program editor the networks can be created from left to right and from top to
bottom. The inputs are on the left and the outputs are on the right. Every function is
shown with the boxes and the assigned logic operations are written in the boxes. Binary
functions are used to check the signal states of bit addresses, like AND, OR, XOR and
etc. Simple boxes operate on bit addresses, like outputs. Complex boxes are used for the

non-binary functions, like time functions.

3.1.3. Statement List

In statement list the program is written in the form of a series of statements. Each
statement contains a logical operation or instruction. For instance, AND functions is

defined in STL as A, OR as O, NOR as NO, SET as S and so on.

13



3.2. Functions in Step7

The most common functions used in PLC programming language are below:

3.2.1. AND Function

The output of the AND-function has the value “1”, if every single input of the function

has the value “1”.

11.0 11.1 04.0
0 0 0
a "I 1.0" 0 1 0
ST R . 0 0 1
= : 1 1 1
Table 3.1 AND-Function
)
FBD T 10" — ngo4_Qn
MT 1.1" — —
‘ III l_l:l" III l_lll III:I 4_':'"
| | | i |
L) 1

LAD ‘ 10 1

3.2.2. OR Function

The output value of the OR-function is “1”, if any input of the function has the value

“1”
l:l III l-DII
STL a i T
= "g o4 Q"
=1
III l_l:lll_
FBD
N 11" —

"go4_ Q"

11.0 1.1 04.0
0 0 0
1 0 1
0 1 1
1 1 1

Table 3.2 OR-Function

14



nT 1.40" g4 Q"
| | {1 |

LAD

3.2.3. NAND Function (Negation AND)

NAND-function has the output value “0”, if all of the input values are “1”.

FBD III l_D"— III:I 4_':'"
8 S O - -

OAA_\h

~|lo|=|o™

Table 3.3 NAND-Function

3.2.4. NOR Function (Negation OR)

Negates the OR-Function.

11.0 11.1 04.0
il 0 0 1
I:I n I l i I:I n 1 0 0
STL ; :
o Tt I 0 1 0
! 1 1 0
i . Table 3.4 NOR-Function

3.2.5. XOR Function (Exclusive OR)

The output value is 1, when the input value of one of the two specified addresses is 1.

1 04.0

HOR |
III l_D"— III:I 4_|:|II

8 S T L — |

4.
0
1
1
0

]

Table 3.5 XOR-Function

15



3.2.6. SR (Set-Reset) Flip Flop

Set-Reset Flip Flop is set when the signal state at input S is 1 and the signal state at input
Ris 0. If input S is 0 and input R is 1, the flip flop is reset. If the RLO at both inputs is 1
the flip flop is reset which means R input has the priority.

"go4_ Q"
iR

T S T s L

FBD

NT 1. 1" = ) =

3.2.7. Positive RLO (Result of Logic Operation) Edge Detection

The positive edge detection function detects a change from 0 to 1 at the specified
address and after it detects the rising edge; its value will be 1.

"Memoryl" "0 4_0"

P SR
FBD NT 10" —

T 1. 1" =T Q-

. S1: Signal value

a ¥ I Q: P-function value

Figure 3.1 Positive Edge Detection

Memoryl stores the signal state and as a temporary data defined.

3.2.8. Pulse S5 Timer

Pulse Timer function starts a specified timer, if there is a change in signal state from 0 to
1 at the Start (S) input. The timer continues to run for the time defined at the time value

TV until the defined time elapsed. While the timer is running the value of the signal is 1.

16



If there is a change from 1 to O at the S input before the time has elapsed, the timer is

stopped. While the timer is running, a change from 0 to 1 at the Reset (R) input resets

the timer.
Tl
5 PULSE
"T 1.0" =& Elj=__.
FBD
SETHES = TV ECD pm_ _ "0 4.0
"T 1.1" =t u]

As it is seen above in the diagram, output value will be 1 for two seconds, if there is a
change from 0 to 1 at the S or R input.
I t T

_t_

RLO at S input

RLO at R input

Timer running | |
Scan for "1" |
Scan for "0" ' | |

t = Programmed time
Figure 3.2 S PULSE Time-Diagram

3.2.9. On-Delay S5 Timer

On-Delay timer starts a specified timer, if there is a change from 0 to 1 at the S input.
The timer continues to run for the time defined at the time value TV until the defined
time elapsed. After the defined time elapsed, output value will be 1. While the timer is
running, a change from 0 to 1 or 1 to 0 at the S input resets the timer, just like a change

from 0 to 1 at the R input.

17



Tl

5 _ooT
"I 10" —g EIf-...

FBD SETH48 — TV  BCD . .. "0 4.0
III l-lll_R D

After four seconds the output value will be 1, if there is no change at R and S input.

RLO at 5 input

RLO at R input

i t &
Timer running
Scan for "1" | [ ]
| L]

t = Programmed time
Figure 3.3 S _ODT Time-Diagram

Scan for "0"

3.2.10. Off-Delay S5 Timer

Off-Delay timer starts a specified timer, if there is a change in signal state from 1 to 0 at
S input. The output value remains 1, until the defined time elapsed or input value at the
S is 1. While the timer is running, a change from 0 to 1 at S input resets the timer and
remains until input value at S from 1 to 0 changes. A change from 0 to 1 at R input

resets the timer.

Tl
5_OFFOT
"I 10" =g EIp=. ..
FBD SET#3% — TV  EBCD ... ng 40"
"T 11" —E Q

18



As shown above, after a change from 1 to 0 at S input, the output value remains for three

seconds 1, then will be 0.

RLC at 5 input

FELO at R input

Timer running

Scan for "1"

Scan for "0

W

== —t—j

| i

= L L | =
[ [ ] [ =

t = Programmed time

Figure 3.4 S OFFDT Time-Diagram

3.2.11. Counting Up and Down S_CUD

"Counterl"
5_cuno
"T 1.0" = CTT
"T 1.1" = CD
ML N e 1y CW (=171
CHEQ —— PUVCY_BECD =071 "o

"I 1.3 —dp

1!

"
[}

With the counter function S CTUD, it is possible to count up and down. The count value

is changed by a rising edge on inputs. At input / /.0 (CU) the count value is incremented

by 1 and at input / /.7 (CD) the count value is decremented by 1. The input 7 1.2 (S)

presets the counter to the value defined by PV (in the example its value is 20). The input

1 1.3 resets the counter value to “0”. The counter value can be read on output O 4.0 or

CVand CV_BCD.

19



4. INSTALLATION

S7-300 can be installed in a horizontal or vertical position.

@ | PS CPU

SM1

SM2 |SM3

Sh4

SM5 (BME |SMT |SMB

Figure 4.1 S7-300 Module Arrangement on a Single Rack

In the first row power supply
(PS) is mounted and CPU is
always next to PS. Signal
modules, function modules and
communication processor can be
installed to the right of the CPU
(more than eight modules are not
allowed). All the modules are
connected with each other and
with the CPU by means of
backplane bus connector. If a
single rack is insufficient, it can
be connected with other racks
(up to four) by interface module

(IM).

1° ]

JUITIE

I
I
T

U
il

il

JUIIY

0T

1M

cable

[
fs7}
@
(9]
o
=
=1
1]
=R
3

=]

© == =
Cl. = = = ] |
=l (= —
(=] — = — )
= | | o | |5 3 — —
M 368 Connecting cable
a=) - o
— | | o ! —
1M 368 Connecting cable

o 1o

Figure 4.2 Module Arrangement on four Mounting Racks

20



4.1. Wiring

4.1.1. Wiring the PS: |

Power cable has to be stripped and then can be connected J
to L1, N and to the protective earth (PE) terminal of the
PS 307. The power supply module is equipped with two
additional 24 V DC terminals L+ and M for supplying the
I/O modules.

g

L@

L@

L 1@

L@

]2

L@

1@

l/lj_j'}_

i
L+

E Tl

Figure 4.3 Power Supply module

4.1.2. Wiring the CPU:

The terminal M on the CPU must be wired to the terminal M on the PS307 and the

terminal L+ must be wired on CPU must be wired to the terminal on the PS307. If the

terminal M is wired to the terminal L+, then internal fuse on the CPU will be tripped.

] L =l=
B - ‘ % —
M iy =
=i =
e |4 .
‘-:E._N i/
m%: =Rl=
Figure 4.4 Wiring the CPU

21



4.1.3. Wiring the signal modules:

0.7

| E— |
:L-r L+
ol [T 1|0 o
5 DC24 v Sl d' O .
230V [E4 & I 0.4
] g 5 5 @ \_|
Bl & (n«-

[C ]

g =
R |
Iil—l:;
Igj

[&] 3|

e L = ol e

1@ [N g 1 1 8

e z 2 (g

o |b i A=

:m |+ el & 4. 2]
=&+ EEdl dis

= s B
— | =& ot %'F 7 9

q @ 8 ;
x. I.l

Figure 4.5 Wiring Signal Modules

As it is shown in the Figure 4.5, L+ terminal on PS307 is wired to the terminal L+ on the
signal modules and M terminal on PS307 to the M terminal on signal modules. In the
example two inputs (/ 0.3 and / 0.4) and one output (O 0.7) are wired to the signal

module.

4.2. Configuring the Station
After power supply (PS), CPU and other modules are installed and wired properly; these

have to be configured in Step 7. First we need to create a new project in Simatic

Manager.

22



’E?L new

Inzert Mew -:::nl:rje.:t . SIMATIC 400 Skation
PLC | SIFATIC 300°5kation

SIMATIC H Skakion
SIMATIC PC Station
Other station
SIMATIC 55

lef{

Rename Fz
Chiject Properties, ., Alt+Return

MPI

PROFIELS
Industrial Ethernet
PTP

57 Program
M7 Prograrn

Figure 4.6 Creating S300 Station

S7-300 Station can be added to the project as shown in figure 4.6

After S7-300 Station is added to the project, we need to configure PS, CPU and signal
modules. This can be done by clicking hardware and then View>Catalog. A catalog of
the CPUs, PS, signal modules and other single components appears at the right side of

the station window.

First a rail (can be found in the list RACK-300) should be added to the station window
in order to insert PS, CPU and other required components. The appropriate types of
CPUs, PS and signal modules are to found in the hardware catalog and can be inserted

on a mounting rail by drag&drop with right mouse click (shown in figure 4.7).

23



+ S PROFIBLUS DP
- B PROFIBUS P4
+ B PROFINET IO
=@ SIMATIC 300

B -3 L7
= 8] LA F-[E7]. CP-200
| 1 Ps 070 -
B CPU 314L-2 DP e FM-300
q op ] Gateway
(2 IM-300
fﬁjﬂ?m (L] MP-EXTEMSION

=21 PS-300
i Ps3
~F

ot
Pozdion

07 104

£

4 AIB-RTD

5 4181 2Bt

B AD4x12Ri

7 CP 343-1 Advanced-T

B

g

-

-
# [ Do-300
= {23 10-SENSE

# (] Special 300
+-[ff SIMATIC 400
+-[{fl SIMATIC PC Bazed Control 300,400
+ -5 SIMATIC PC Station

Figure 4.7 Adding components to the station

The slot rules for the S7-300 Station are below:

Slot 1: Only for power supply or empty. Three different types of PS are available, which
work with 2A, 5A or 10A.

Slot 2: CPU only. The station has CPU 314C-2 DP. (If more than one rack is used, slot
for the CPU should be always empty except central rack.)

Slot 3: Interface module only or empty.

Slots 4 through 11: Signal, function modules and communications processors or empty.

24



The lower part of the station window shows a detailed view of the inserted components.
The order numbers, input-output addresses of the modules can be read below in table

form (figure 4.8).

Slot E Module o | Order number Fir... | MPI ... | | addresz | @ address | Comment
1 PS 307 104 BEST 307-1KADD-0440

2 CPU 314C-2 DP GES57 314-6CF02-DABO (V2.0 |2

A L FeEnT

S (] SERETE A e [ )
ST Al dns ST R | e
S| ] St SEETER | RS ST
e Ll SR | R
2

4 AlBRTD BEST 331-FPFO0-0AED 286 271

5 A8 2RI BEST 331-7KFO1-04E0 272 28T

G AQdx12Bit EEST 332-5HD01-04B0 288,295
7 CP 3431 AdvancedT [BGKTF 343-1G=21-0<E0 [V1.0 |3 an4. 319 |3nd. 319
a

9

10

Figure 4.8 Station window with added components

By double clicking on the inserted components detailed information and properties of

selected item are shown and in appearing window some settings can be changed.
After all of the components are inserted and configured properly, S7-300 Station can be

saved and compiled by clicking on corresponding icon or under the menu Station>Save

and Compile.

4.3. Adressing

4.3.1. Default channel addressing:

Step 7 automatically assigns a module start address and this can be viewed in the lower

part of the station window. Default addressing is a slot based addressing. It means that

25



the modules get their start addresses according to their slot numbers. Start addresses for

the signal modules on four-racks are shown below in the table (Berger, 2006):

Rack| module Slot Number
start
addresses| 1 2 3 4 5 6 7 8 9 | 10 | 11
0 digital 0 4 8 | 12|16 | 20 | 24 | 28
analog | PS |CPU|[IM [ 256|272 | 288|304 | 320 | 336 | 352 | 368
1 digital 32 136|140 | 44 | 48 | 52 | 56 | 60
analog IM | 384400 | 416 | 432 | 448 | 464 | 480 | 496
2 digital 64 | 68 | 72 | 76 | 80 | 84 | 88 | 92
analog IM | 512|528 | 544 [ 560 | 576 | 592 | 608 | 624
3 digital 96 | 100|104 [ 108 | 112 | 116 | 120 | 124
analog IM | 640 | 656 | 672 [ 688 | 704 | 720 | 736 | 752

4.3.2. User-defined Addressing:

Table 4.1 Default Channel Addressing

It means that the user is free to allocate any module an address of his choice. The user

defines the start address of the module and the other addresses are based on this start

address.

Example to digital modules:

The address of a digital module consists of a bit address and byte address.

E.g. Q0.7
0: Byte address

Q: Output

7: Bit address

The byte address depends on the module start address.

The bit address is the number printed on the module.

26



Figure 4.9 shows how the addresses for a digital module are obtained:

Example to analog modules:

CPU

SM (digital module)

% .
-
g

U

- o R a3

- W R B

4 Address 0.0
T Address 0.1

T Address 0.7

Address 1.0
Address 1.1

T Address 1.7

Figure 4.9 Addressing for digital modules

Figure 4.10 shows how the addresses for an analog module are obtained:

PS5

cCPU

Cale=]

| O

SM (analog module)

Inputs

Channel 0. Address 256
Channel 1. Address 258

Outputs

Channel 0. Address 256
Channel 1. Address 258

Figure 4.10 Addressing for analog modules

27



4.4. Connecting to a Programming Device

After the S7-300 Station is installed, wired and configured properly, it can be connected
to a programming device. The programming device must have an integrated MPI
interface or MPI card and connection can be established with a programming device
cable. If more than one station (networked) is available, they can be connected to a

programming device over PROFIBUS bus cable.

After power supply module is switched on:
- 24V DC LED on the power supply module comes on
- CPU 5V DC LED comes on
- CPU STOP LED comes on after the memory reset
- If there 1s no backup battery in the CPU, BATF LED comes on

%Ei SF LED: Error Displays
UM
ﬁmn BF LED: Battery Fault
B s DC5V: Power supply to the CPU
LJMRES

FRCE: Force request is active
RUN: Run Mode

STOP: Stop Mode

MRES: Reset Switch

X1: MPI (Multipoint interface)
X2: PROFIBUS-DP interface

e aaen
palil
oo
LA

Figure 4.11 Control and Display Elements of CPU

CPU 314C-2DP does not have any integrated memory, but an external Micro Memory
Card can be inserted to the station. If CPU requests a memory card reset (MRES-STOP

28



LED blinking at 1-second intervals), it can be done as follows:
- Switch is set to MRES and is hold in this position until the STOP LED lights
continuously, it takes approximately 9 seconds.
- Within the next 3 seconds the switch has to be released and set again to MRES.
The STOP LED blinks during the delete procedure.

29



3. PROGRAMMING WITH STEP 7

First all of the inputs, outputs, timers, counters and other required functions must be

defined in the symbol table. This can be found in the Simatic Manager window under
CPU 314C-2DP>S7 Program>Symbols.

In symbol table symbolic names can be assigned to absolute addresses of the inputs and

outputs.

R newW pro]ert oz IPmgran’nmnﬁwn‘uena‘us?plu]"-.nnw pln]

- £H Blocks

Figure 5.1 Opening Symbol Window

:I '?J ngram {Symbuls}

new pru]m tASIMATIC 3004. ..

E Il_l['?]

‘ Statuz | Symbol Addrezs Data type ‘Camment
1 hain Programim o 1 0B 1

2 Impoat 1 | oo BOGL

3 Impt 2 | oA BOGL

4 Irpost 3 | 0z BOGL

| 5 Ot 1 8! 0o BOGL

| G Timer 1 T 1 TIMEF:

| 7 Courter 1 C 1 COUNTER

B Memary 1 M 100  |BOoL

5

Figure 5.2 Editing Symbols

As it is shown above, under symbol we can assign names to the addresses, under address

we can define the absolute addresses, under data type software shows automatically

which data type is chosen and under comment we can describe the inputs, outputs and

30



other symbols so that automation process can be easily understood by other users.

According to inputs, outputs, timers or counters Step 7 uses different data types, most

used are shown below in the table 5.1:

Size in
Type Bits Format Options Example in STL
BOOL 1 Boolean text TRUE
BYTE 8 Hexadecimal number B#16#12
WORD 16 Binary number 2#0
Hexadecimal number W#16#1000
BCD C#55
Decimal number
unsigned B#(100,200)
DWORD 32 Binary number 2#0
Hexadecimal number DW#16#0000 1111
Decimal number
unsigned B#(0,13,43,127)
Decimal number
INT(integer) 16 signed 2732

Decimal number

DINT 32 signed L#12345

IEEE Floating-point
REAL 32 number 1,54E+30
SSTIME 16 S7 time S5T#3M 158

Table 5.1 Data Types

5.1. Creating a program in OB1 (Organisation Block):

OB1 window can be opened by clicking on corresponding icon, this can be found in

Simatic Manager under CPU 314C-2DP>S7 Program>Blocks>OB1. By clicking on

Empty Box icon on the toolbar or by right mouse clicking and then choosing insert

31



empty box, a new box can be added.

In appearing box a list of functions can be found. Here we can

choose any function required, and then inputs and outputs can be s
<=0
inserted. —f==0 v

An example of AND-Function is shown below:

"Input 1" =— "Output 1"

"Input Z" =— oo

Program can be written not only in FDB, but also in STL or LAD. In OB window under

View language settings can be changed.

HHx

A new network can be inserted by clicking on new network icon. £

If any function must be negated, first a path should be selected, where negation is

required, then by clicking on negate binary input 1icon, a function can be negated. |{|

By clicking on Bin.Input icon |E[ , another input can be inserted to the box.

By clicking on Branch icon E, one more output can be inserted to the box.

5.2. Creating a Function Block (FB) and Function (FC):

Function block (FB) is below the organization block in program hierarchy. Function

block contains just a part of the main program that can be called in OB1. FB can be

32



added by clicking right mouse button on Blocks which can be found in Simatic Manager
under CPU 314C-2DP>S7 Program>Blocks, and then Insert New Object>Function
Block. The upper part of the appearing window, variable declaration window can be seen
and there inputs, outputs and other variables can be defined. After programming FB, a
data block (DB), which is assigned to a function block, has to be generated so that FB
can be called by OBI1.

When the control function does not have to store any of its own data, a function (FC)

can be programmed. In contrast to a function block (FB), a function (FC) has no instance

data block.

5.3. Downloading the Program:

The operating mode must be in STOP position, the red STOP led comes on.

The program can be downloaded by clicking in the Simatic Manager window under

PLC>Download or on corresponding button @ .

Under View>Online online status of the station can be observed. The offline window
shows the situation on the programming device, the online window shows the situation
on the CPU. The online and offline windows are indicated by the different colored

headers.

After turning the operating mode to RUN, the green RUN led comes on and the red
STOP led goes out. It means the CPU is ready for operation. If the red STOP led

remains lit, an error has occurred.

All the automation process can be online observed by clicking on Monitor @ button or
under Debug>Monitor in the OB window. If any error occurs, monitoring is a good

way to find out, where the process hangs. An example is given below:

33



For Inputl (10.0):1, Input2 (10.1): 0

1 & i
"Inputl" — t “Outpucl
0! = & -
"Inputz" --.'_ __________ el N
1 l =
"Irnputl" — "Outpatl”
T =
"Input " 1 i

FPath: inew project\SIMATIC 300MCRU 31402 DF Operating mode of the CPLU: (& STOP

Statuz: OFK
Time System Baformancelata ] LCommunication ] Stacks ]
General Diagrostic Buffer Fd @pnioy ] Scan Cycle Time ]
doaltime difference

Ewents: [~ Filfer settings active [T Tiresimeiie

3 050032526 pm 09/14/08  Mode transition fram S TUP to RILIM il

4 050032526 pm 09/14/08  Request for manual warm restart

5 05:00:32: 526 pm 0941408  Mode transition from STOP ta STARTLP

B 05:00:32:526 pm 03/14/08  Mew startup information in STOF mode

7 04:00:03412 pm 0974408 Mew startup information in STOP mode

a 04:00:02:412 pm 09/14/08  STOP cauzed by stop switch being activated

] 025737371 pm 09/14/08 Mode transition from STARTUR ho RLIM .
Detailz on Event: 20of 32 Event |D: 168 4303

STOF cauzed by stop switch being activated
Previous operating mode: RUM

Fequested operating mode: STOP (internal]
|nzarming event

Save Az | Sethingsz.. ] [ pen Block | Help on Ewent
Cloze | Update ] Frint... ] Help

Figure 5.3 Diagnostic/Module Information

As it is shown in the Figure 5.3, if the CPU goes into STOP, while processing a program
or if the CPU does not go into RUN mode after downloading the program, the reason of

34



the error can be determined in the diagnostic buffer. This can be found in the Simatic

Manager under PLC>Diagnostic/Setting>Module Information.

35



6. S7-PLCSIM (SIMULATION PROGRAM)

Without additional hardware it is possible to test the user program with the S7-PLCSIM
software. It simulates a PLC completely on the programming device and by means of it
there is no need to be connected to any S7 hardware. S7-PLCSIM provides an interface
to monitor how the input changes effect on the outputs, beside this bit memories, timer
functions, counters can be monitored too.

S7-PLCSIM can be started by clicking on the simulation icon or by selecting the menu
commands Options — Simulate Modules. After starting the application S7-PLCSIM
user interface appears in a separate window. In the standard setting, CPU-subwindow
appears in the main window, which shows the control switches and the LEDs of the

CPU.

% S 7-PLCSIM - SimView1

o

[ Iy
=DE_ ™ RUN
CIRUM

Top ¥ STOP MRES

Press F1 o get Help, rap1 A

Figure 6.1 PLCSIM Simulation Program

6.1. CPU Operating Modes:

RUN mode: The CPU runs the program, by reading the inputs, executing the program,
storing output values and updating the outputs. Downloading any program or changing

any parameters is not allowed, when the CPU is in RUN mode.

36



RUN-P mode: The CPU runs the program and it is possible to change the program and

its parameters, while the program is running.

STOP mode: The CPU does not work the program

MRES: Memory Reset Button

6.2. CPU Indicators:
SF: (System Fault) alerts that the CPU encountered a system error. These could be
hardware faults, programming errors, timing errors, faulty memory card, battery fault,

communication error etc.

DP: (Distributed Peripherals, or remote 1/O) indicates the status of communication with

distributed I/O.

DC: (Power Supply) indicates whether power to the CPU is on or off.

RUN: indicates that the CPU is in RUN mode.

STOP: indicates that the CPU is in STOP mode.

After the sub windows are inserted by clicking corresponding icons, the changes on

outputs, timers, counters and bit memories can be monitored, as shown in the figure 6.2:

37



L7 S7-PLCSIM - SimView1 =13
Fille Edit %iew Insert PLC Execute Tools  Window Help

D@d =0 BEuR | Eeanoas gaaa
BB 11

-

| I~ RUNP
|Eoc T RUM

MrI=2

Figure 6.2 PLCSIM Window with Variables

Input Variable View Object:

— Variable window for binary signals

— Input-Addresses (e.g. I 1.x)

The CPU overwrites the I (Input) memory with the PI (Peripheral Input) memory at the
beginning of every scan. If an I memory value is changed, the simulator immediately
copies the changed value to the peripheral area. By this way, the desired change is not

lost when the peripheral value overwrites the process input value on the next scan.

6.3. Object viewing:

Output Variable View Object: With this view object it can be monitored, how the input

and other changes effect on the outputs.

38



Bit Memory View Object: This view object allows monitoring and modifying bit

memory.

Counter View Object: Monitoring and modifying the counters used by the program is

with this view object possible.

Timer View Object: It monitors the timers used by the program and displays the actual

timer value and the time base.

6.4. Scan Mode Options:

S7-PLCSIM can be run in two different modes:
Single Scan: the CPU executes one scan and then CPU waits for next scan that is started

by the user. Another scan can be started under Execute>Next Scan or by clicking

+ . .
1 . To choose single scan mode, click ix or under menu

corresponding item
Execute>Scan Mode>Single Scan.
Continuous Scan: the CPU executes one scan and then starts another one. CPU reads the

peripheral inputs, executes the program and writes the results to the peripheral outputs.

Continuous Scan can be chosen by clicking corresponding item fit or under menu

Execute>Scan Mode>Continuous Scan.

6.5. Opening and saving a simulated PLC:

When S7-PLCSIM is started, a new, untitled simulated PLC is opened. If you want to
open an archived simulation, it can be found under File>Open PLC. Before you close a

simulated PLC, the simulation program asks, whether it should be saved or not and it

can be saved as .PLC or .LAY file.

39



.PLC File: This file contains information about the simulated PLC. If any changes are

made in data, they will be saved in the .PLC file.
.LAY File: This file is used to save information about the physical layout of the

simulated PLC. If you want the arrangement of the view objects in a certain order, save

itas .LAY file and next time the view object will be displayed in that order.

40



7. FUTURE ASPECTS

So what brings the future? Over 20 years it has been predicted that PLC approaches its
end asa a control platform. Contrary to claims, PLCs sold $6 billion worth around the
world each year and sales are growing at over 5 percent each year, as Wardzel reported
in Siemens User Conference in 2006. After all we can say that as long as PLCs continue
to transform itself and satisfy the demands of the industrial automation, they will be still

in need.

Since industrial automation requirements get complicated, some demands become more
important than others. PLCs have to deal with following conditions for next years, if
they continue to grow:

- Shorter Processing Time

- Strong Modularity

- More Intelligence

- Higher Quantity of DataStream

- Self-Configuration

7.1. Trends in automation systems

7.1.1. Visual Control

Image processing is used in many automation systems to bring more intelligence and
simplicity. Instead of using several sensors, one camera can be integrated to the systems

for detecting and checking machine parts or goods on a conveyor band.

7.1.2. Decentralisation

In the future more intelligence will be required in the automation systems. Longer

processing time, higher quantities of DataStream are important impediments to bring the

41



intelligence in PLCs. Since every component, input and output are wired to a central
controller; system suffers from the consumed time for the maintenance and unscheduled
downtime. Main disadvantage of the centralized system is: if the central controller fails,

rest of the system fails too.

Communications in the centralized systems are not very sufficient. The central controller
sends signals or commands to each node and wait for a response. If two nodes needed to
communicate with each other, it can be done through the central controller. Thus CPU

will be fully engaged and reaction-time will be longer.

That’s why decentralisation is the most mentioned trend in automation systems today.
For instance, a sensor is equipped with a processor. Hence sensor will be no longer
engaged with the central controller and processing time gets shorter. Also the actuators
can be directly controlled by sensors. Having more controllers in the system allows us
to build more complicated controlling strategies and processes. If one controller fails,
rest of the system can still function. Decentralised controllers allow putting other plant

parts into operation separately.

42



8. DIFFERENT EXAMPLES OF PLC APPLICATIONS

8.1. Pump Motor Control (Kopacek, 1993)

N’
ﬁ |£ ﬂ ggrt\g:olling
I

no

I'|'I(_jr'I:D

nl
ne

| |1 =

Signal
Processing

Figure 8.1 Plant Schema of Pump Motor Control

Two fluid containers will be filled by a pump. The pump motor can work with different
speed values according to the fluid status of the containers. The conditions of these

different speed values are described below:

If the containers are full: n=0

If one of the containers is full and the other one is more than half:

n=750 rpm
If both of them are more than half or one of them more than half and the other one is less
than half: n=1450 rpm
If both of them are less than half: n=2850 rpm

43



Changing the filling sequence of the containers is done by using two-way valve.

Inputs and outputs of the system:

10.1 Sensor A The sensor at the top of the first container
10.2 Sensor B The sensor at the top of the second container
10.3 Sensor C The sensor in the middle of the first container
10.4 Sensor D The sensor in the middle of the second container
Q0.0 n=0 Motor does not work

Q 0.1 n=750 Motor’s speed at 750 rpm

Q0.2 n=1450 Motor’s speed at 1450 rpm

Q0.3 n=2850 Motor’s speed at 2850 rpm

Q0.4 Valve for the value 1: filling the first container

Table 8.1 Input and Output Table of Pump Motor

The status of the sensor signals according to the container fluid level:

First Container Second Container
A Cc B D
empty to half 1 1 1 1
half to full 1 0 1 0
full 0 0 0 0

Table 8.2 Sensor Signal Status of Pump Motor

44



The speed of the motor and status of the valve according to the sensor values:

A B C D n=0 n=750 | n=1450 | n=2850 | valve
0 0 0 1 0 0 0 1
0 0 0 1 X X X X 1
0 0 1 0 X X X X 1
0 1 0 0 0 1 0 0 1
1 0 0 0 0 1 0 0 0
0 0 1 1 X X X X 1
0 1 0 1 0 0 1 0 1
1 0 0 1 X X X X 1
0 1 1 0 X X X X 1
1 0 1 0 0 0 1 0 0
1 1 0 0 0 1 0 0 0
0 1 1 1 X X X X 1
1 0 1 1 0 0 1 0 1
1 1 1 0 0 0 1 0 0
1 1 0 1 0 0 1 0 1
1 1 1 1 0 0 0 1 1

Table 8.3 Function Table of Pump Motor

Status | Swmbaol Address Diata type Comment

1 ni=0 2 .o BOOL
2 n=750 2 0 BOOL
3 n=1450 2 0.2 BOOL
4 n=2850 2 ns BOOL
5 TENIOr & | 0.1 BioOL
(o] zenzor B | 02 BioOL
7 Tensar C | 0.3 BioOL
g zenzar D | 0.4 BioOL
9 valve ] 0.4 BioOL
1

Table 8.4 Symbol Table of Pump Motor

45



After all the input and output variables are defined in the program by clicking the
symbols icon, the networks can be created. The pump motor works with three different
speed values (with the value n=0 four different values). Also each of these situations

requires one network and one network for the status of the valve, totally five networks.

The networks are created in the organization block window by clicking new network.

The first network is for the situation that the motor does not work:
If the sensor values of A and B are “0”, this means that the containers are

full, the motor does not work (n=0).

Network 1: Title:

Comment :

"sensor A" =X "n=0"

"sensor B" =} —

The second network defines the situation when the motor works at 750 rpm:

Comment.:

"Zensor A" e

"sensor B" =)

=1
"sensor C" =3 e

"sensor A" =3

"ge1rnsor B e "n=TE0"

"gansor D" =) E— T

If one of the container’s fluid level is more than half (4 or B is set to “1”’), the motor

works at 750 rpm.

46



The third network defines the situation that the motor works at 1450 rpm:

Netwwork 3 : Title:

Comment :

"sensor Q" =—

"sensor D" =3 o

"sensor OV =0}

"sensor D" — e

"sensor A" —

"sensor B" =

"sensor C" =X "n=l450"

"sensor D" =Y — —

The motor works at 1450 rpm under these conditions:
- If one of the container’s fluid level is less than half and the other one’s more than
half,

- If both container’s fluid levels are more than half.

The fourth network defines the situation that the motor works at 2850 rpm:

Netwvwork 4 : Title:

Conment :

"zensolr 0" e— "n=g850"

"zensolr D" e —

If both of the container’s fluid levels are less than half, the motor works at 2850 rpm.

47



The last network is required to define the status of the two-way valve:

Netwwork & - Title:

Comment :

=1
"sensor A" —={} Mg lve"

"sensor D" —— e

For the value “1”: Filling the second container

For the value “0”: Filling the first container

Sensor D has here priority, as long as sensor D is set to “1”, the pump fills the second
container. After the second container is half-filled (it means D is set to “0”), first
container can be filled and then the second container can be fulfilled. If both of

containers are full, valve status is set to “1”.

8.1.1. Simulation of control pump motor

If both containers are full, the program runs as shown in Figure 8.2:

{71 S7-PLCSIM - SimView1 =13
FI|E-' E|:||I: "."IE-'W Insert PLC Execute Tools MWindow Help

> @ BEwN EEEIFIIEa I3

Figure 8.2 Simulation Pump Motor 1

48



All of the sensors are set to “0”, valve is set to “1” (Q 0.4) and n=0 (Q 0.0) (Figure 8.3)

L0 S7-PLCSIM - SimView1
File Edit View Insert FLC Exzecute Tools ‘Window  Help

|DE-E| -—.EF'|%E-D=1|E"|J.ED|ZI“|'_'IEDCIIEI‘CICI

|
| Eoc
EEITJI;JPF STOP MAES !

MPL=2 Y

Figure 8.3 Simulation Pump Motor 2

If the first container’s fluid level is more than half and the other one full, motor works at

750rpm (QO.1) and valve is set to “0” (it means first container is fulfilled.). (Figure 8.4)

£ S7-PLCSIM - SimView1
Eile Edit Wew Insert PLC Execute Tools Window  Help

|Dc=~EI| b B ?|%E-w|k‘?|||ﬂ£l1:|:|f:|:||:| aa &

o | RUNP
Eoc ™ RUN

BP0y croe s

Figure 8.4 Simulation Pump Motor 3

Motor works at 1450rpm (Q0.2), if first container’s fluid level is more than half (/0.1)
and the second one’s less than half (/0.2 and 10.4) and valve is set to “1” (Q0.4). (Figure

49



8.5)

£ ST-PLCSIM - SimView1

File Edit Wew Insert PLC Execute Tools Window Help

DEE /e mE«w¥ eparcaa 8an
AR o ]

| ‘ |

Ooc W RUMW

MPI = 2 i

Figure 8.5 Simulation Pump Motor 4

If both container’s fluid levels are less than half (all the input values are set to “1”),

motor works at 2850rpm and valve is set to “1” (second container is filled.).

50



8.2. Conveyor Belt Controller (Kopacek, 2003)

e Sonois
A
| ;/
% —>
s
B
| 4
7/ ——
H 7
% —=
L 2
% —>

There are four conveyor belts available for transporting goods and they are all working

Figure 8.6 Conveyor Belt Controller

with same speed and transport capacity. Only one or two conveyor belts should work at

the same time, because more than two conveyor belts cause overload and the

transporting process can be clogged. Turning on the third and fourth working conveyor

belt has to be locked to avoid overloading.

Inputs and outputs of the system:

10.0

10.1

10.2

10.3

Q0.0

Band A
Band B
Band C
Band D

Locking

First conwveyor belt
Second conweyor belt
Third conveyor belt
Fourth conveyor belt

To lock third and fourth working conveyor belts

Table 8.5 Input and Output Table of Conveyor Belt

51



Band A Band B Band C Band D Locking
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 1 1 1
0 1 0 1 1
1 0 0 1 1
0 1 1 0 1
1 0 1 0 1
1 1 0 0 1
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

Symbol Address Data type
Band &, oo BOOL

Band B 0.1 BOOL
Band C 0.2 BOOL
Band O 0.3 BOOL

|
|
|
|
Locking o] 0.0 Bl

Table 8.7 Symbol Table of Conveyor Belt

All of the inputs and outputs are defined in the symbol editor.

In this example we have just one output, which is used to lock turning on the conveyor

belts. Thus one network is enough to define all of the conditions.

52



OBl : "Main Program Sweep (Cycle)"

Commert
Commerit :
=1
"Band A" =—
&
"Band B" = e
=1
"Band C" =
=1
"BEI:I.d DII — — —
&
"Bard A" =—
"Band B" — e
&
"Band C" = "Locking"
"Band D" =— e [

After two conveyor belts are turned on, locking will be activated and turning on any

other conveyor belt will not be possible. Thus overloading of feed belts is avoided.

8.2.1. Simulation of conveyor belt controller

As it is shown in Figure 8.7, Band B and Band D (QO0.1 and Q0.3) are working and

locking (QO0.0) is activated to prevent turning on any other belt.

53



£ S7-PLCSIM - SimView1

File Edit Miew _lnsé(t PLZ Executs Tools ‘Window Help

]D BH R BRERN BREDEEa 3 & (E]
(BB 0 s [0

-DF' |Bits [[oe 0 [Bits
=gENpHUN' 7E B4 3210 dibabd 3 2
Cletop| STOF wres|fr rr- wrerC frrrcr rrr

Press F1 to get Help, MPI=2 e

Figure 8.7 Simulation Conveyor Belt 1

In this situation Band A and Band B are working and locking (Q0.0) is activated.(Figure
8.8)

£ S7-PLCSIM - SimView1

Eile Edit Wiew Insett PLC Execute Tools Window Help

DEd =8 BE&Y BRI RE@a8a aaas
(BJBR[ 0 o+1 | o]

qu|

o W RUN

CIRUN
| Clstop ! STOP

MRES

Press F1 ko gek Help, [MPI = 2 -

Figure 8.8 Simulation Conveyor Belt 2

54



8.3. Determining the Direction of the Rotating Shaft (Kopacek, 2003)

A

=

<F__

Figure 8.9 Rotating Shaft

The direction of the shaft can be determined by shaft-rotation due to the changes of the
pneumatic sensor’s signals. Within 45° rotation of the shaft the value of sensor A or B
has to change “0” to “1” or “1” to “0”. In order to observe the rotation of the shaft, a disc
is mounted on the shaft and the sensors get the value “1” with the beginning of the rising

edge of the disc.

Inputs and outputs of the system are shown in the table 8.8

10.0 Sensor A First Sensor

10.1 Sensor B Second Sensor

Q0.0 Clockwise Shaft Rotates Clockwise

Q0.1 Counter-clockwise Shaft Rotates Counter-clockwise
S ON-Button Shaft Starts Rotating

Table 8.8 Input and Output Table of Rotating Shaft

Possible signal changes according to the rotation direction of the shaft:

55



AB 00to 10
10to 11
11to 01

01 to 00 ; these changes show that shaft rotates clockwise.

AB 00to 10
0lto11
11to 10
10 to 00 ; these changes show that shaft rotates counter-

Clockwise.

81 57 Program(1) (Symbols) - direction of shaft\SIMATIC 300(1)\cPU 314... [= |[B][X]

Sjmbui / Addrezz Data type Comment
A oo BiooL First Sensor

B 01 BiooL Second Sensor
clockwize 0.1 BiooL - direction

courter-clockwize 0.0 BiooL + direction

h1 100 BooL
10 111 BooL
101 BooL
0.2 BooL
103 BooL
10.4 BooL
105 BooL
106 BooL
107 BooL
11.0 BooL
nz BooL Start Button

hi2

h3
hi4
R
hiG
R
hig
hi3
=

TEEEIEIEEEIEIEIEOD|TT

Table 8.9 Symbol Table of Rotating Shaft

All inputs, outputs and memory variables are defined in the symbol editor.

The shaft can rotate clockwise or counter-clockwise. We have two outputs and for each

output one network is required.

First network defines all situations that shaft rotates clockwise:

56



Netvwork 1: - direction

Comment -

nE"
M &
LU p—
»=1
L) =R p—
npgLo
M &
L1 —
upn _{:l
g
R &
L) R —
Ly —
npn
R &
[ — "
SR
ugn _C' o
=1 "clockwise
nEn u
NHE " e B i}

For instance, if sensor A is “1” and sensor B changes “0” to “1” (positive edge
detection-M4) or sensor B is “1” and sensor A changes “1” to “0” (negative edge
detection-M6), the output is set to “1” and shows that shaft rotates clockwise. If shaft
stops rotating (S is set to “0”) or starts to rotate counter-clockwise (M2 is set to “1”), the

variables S or M2 will reset M 1.

57



Second network is required for all situations so that shaft rotates counter-clockwise:

Network 2 : Title:

Comment :

"Hll:l"
M =3
-
=1
"B" _Cl
nppg
M 2
IIBII e
e
IIHB n
P =
npn
IIBII e
nppn
P 2
U npE "
iR
AT - =
=1 "counter—
"EN -y clockuwise"
IIHlII P R D

If sensor A is set to “0” and sensor B changes “0” to “1” (positive edge detection-M7) or
sensor A is set to “1” and sensor B changes “1” to “0” (negative edge detection-M9),
output is set to “1” and shows that shaft rotates counter-clockwise. If S is set to “0” or

MI to “1”, M2 will be reset.

58



8.3.1. Simulation of the Rotating Shaft

Sensor A (1 0.0) and B (1 0.1) are set to “0” and S is set to “1”. No output is activated yet.
(Figure 8.10)

£} S 7-PLCSIM - SimView]1
File Edt MWew Insert PLC Execute Tools  Window  Help

|"Dca.|;|| LB RERY EREReaalaad
.IIJIﬂl

(=19

.|'ru|

oc W RUN

EIRUNM
| ClsTop ! STOP

MRES

Press F1 toget Help,

Figure 8.10 Simulation Rotating Shaft 1

Then the sensor B’s (I 0.1) signal value changes “0” to “1” (positive edge detection) and

the output counter-clockwise (Q0.0) is automatically set to “1”. (Figure 8.11)

(=13

£11 S7-PLCSIM - SimView1
File Edit Wew Insert PLC Execute Tools Window  Help
|DEEI| B RERY  EREREaalaas
.IIl iR

.|'ru|

oc W RUN

EIRUN I~ sTOP MFIESi

| [sToP
Press F1 toget Help.,

Figure 8.11 Simulation Rotating Shaft 2

59



S ({0.2), sensor A (I 0.0) and B (I 0.1) are set to “1”, no output is activated yet. (Figure

8.12)

(=19

£} S 7-PLCSIM - SimView1
File Edt Wew Insert PLC Execute Tools  Window  Help

|"ma.n| LB RERY EREReaalaad
.IIJIﬂl

.|'ru|

& :
Eoc W RUN

EIRUN I~ sTOP MFIESi

| E15TOR

MPI=2 =

Figure 8.12 Simulation Rotating Shaft 3

Then sensor A’s (I 0.0) signal value changes “1” to “0” (negative edge detection) and the
output clockwise (Q 0.1) is automatically set to “1”. Output keeps this signal value, until

shaft stops rotating or starts to rotate counter-clockwise.

H=1E3

£11 S7-PLCSIM - SimView1
File Edit Wew Insert PLC Execute Tools Window  Help

|"DEE|| LR RERY ErEReaalaad
o

.|'ru|

Ooc
EIrRUM
| 1sTOP

[~ STOF MHESi |

Figure 8.13 Simulation Rotating Shaft 4

60



8.4. Sorting and Packing of Pipes (Wellenreuther and Zastrow, 2002)

S3 S84 §5

S1 s2 0 B2 B Q2 S6

c 1 | 104
N\

N P

/
\4 s7
-

03

Figure 8.14 Sorting and Packing of Pipes

Pipes are carried by a conveyor belt and are stored in the buffer in order to keep the
machine working, if any maintenance or repairment is required. The capacity of the
buffer is 200 pipes and if the number of pipes reaches 200, the first conveyor belt is
turned off, which delivers the pipes into the buffer. If the number of the pipes in the
buffer is less than 30, the warning lamp is turned on. There are two types of pipe, which
are to differ by their lengths. If the longer one comes, all three sensors S3, §4, S5 are set
to “1” at the same time. For the longer pipes Q2 is set to “1” and the conveyor belt runs
forward, for the short pipes Q2 is set to “0” and pipes will be transported through the
right conveyor belt. After the pipes are sorted according to their lengths, they will be
packed. Each package should contain 10 pipes for the longer pipes and 15 pipes for the
short pipes.

61



Inputs and outputs of the system are shown in the table 8.10

I 0.0 SO motor sensor

| 0.1 S1 buffer sensor-input

| 0.2 S2 buffer sensor-output

| 0.3 S3 length determining sensor
| 0.4 S4 length determining sensor
| 0.5 S5 length determining sensor
| 0.6 S6 counter for the long pipes
| 0.7 S7 counter for the short pipes
| 1.0 S8 long package blocking

| 1.1 S9 short package blocking
Q 0.0 Q1 motor ON/OFF

Q 0.1 Q2 conweyor belt changing
Q 0.2 Q3 long package release
Q 0.3 Q4 short package release
Q 0.4 Warning lamp warning lamp

Table 8.10 Input and Output Table of Pipe Packing

All of the inputs, outputs and counter variables are defined in the symbol editor as

shown below in the table 8.11:

62



£1 57-Programm(1) (Symbole) -- sorting and packing\SIMATIC 300(1... [2 |[B](X]
Symhbol Diata type
1 1 Bl
a2 : BOOL
&3 ; BOOL
a4 ! BOOL
warning lamp k BOOL
=0 / BOOL
=1 ; BOOL
=2 ; BOOL
=3 ; BOOL
=4 i BOOL
S5 ; BOOL
SEB i BOOL
=7 i BOOL
=8 ; BOOL
=9 ; BOOL
1 COUMTER
2 COUMTER
I3 COUMTER

Table 8.11 Symbol Table of Pipe Packing

In this example we need totally eight networks to define the process.

First network defines the counter-function that counts how many pipes are in the buffer:

Netvwork 1: Title:

Comm et ©

i
5_cUD
"Sl" — CT-T
IISZII — CD
. —= CF |-l

. = MY CYV_EBCD =0l

. =R 1

By means of counter-function, we can control all the time how many pipes are stored in

63



the buffer. As a result of incoming pipes, sensor S1 values changes “0” to “1” and with
every change of sensor S1 value, Z1 will be counted up by 1 and Z1 will be counted

down according to the change of sensor S2 value (outcoming pipes).

Second network defines when the conveyor belt will be stopped in order to prevent

exceeding the capacity of the buffer:

Hetrvwork 2 : Title:

Comment. :

ChP <l
Mifl =~ TIHN1 "QL"
Z00 =—— INZ —

This function compares two input values and if MW1 is smaller than 200, QI is set to

“1”. It means if 200 pipes are in the buffer, the first conveyor belt (Q1 is set to “0”) is
turned off.

Third network is required to define when the warning lamp will be turned on:
If the number of pipes in the buffer is smaller than 30, warning lamp will be turned on
and shows that few pipes are left in the buffer.

Netwwork 3 : Title:

Comment :

ChiP <l "TMarning
MWl ——{IN1 1 amp "
30 —— INZ —

Fourth network defines that with which conveyor belt the pipes should be transported

according to their lengths:

64



Hetvwork 4 : Title:

Commernt

-

L= R — ngEm
SR

- o

O -

R —

HEEY ) 7 Q=

There are two length types of pipes and if the longer one comes all three sensors S3, S4
and S5 are set to “1” and conveyor belt transports the goods straight forward. But if the
short pipe comes, then just S3 and S4 will be set to “1” and S5 will be set to “0”. As a
result Q2 is set to “0” and pipes will be transported by the right conveyor belt.

Fifth network defines the counter-function which is needed to count the incoming long

pipes:

Netwmork 5 @ Title:

Commert -

ngsn
5 CUD
"SR =T
. =—{CD
. s CW =Mz
. = PVCY _ECD ...
"gar —dp 0=

With every incoming long pipe, sensor S6 value changes “0” to “1” and each change is
counted up by 1. The number of the long pipes in the package can be read by the counter
function Z2 which is reset by 03.

65



Sixth network defines when the package for long pipes is fulfilled and should be

transported:

Hetvwork 6 : Title:

Comment :

ChiP =]
Mz —— INL "Qa3
SR
10 —— INZ —1a
g A Q=

As long as the number of long pipes in the package is smaller than 10, O3 is set to “0”.
If totally ten pipes are in the package, the package blocker release the package and waits

for another one.

Seventh network defines the counter-function which is needed to count the incoming

short pipes:

Netwwork 7T : Title:

Comment -

wggn
5_CUD
"gT —{CT
. —{cD
.=z CV (=73
. —{PVCV_BCD |-. ..
vgar —n ol

With every incoming short pipe, sensor S7 value changes “1” to “0” and each change is
counted up by 1 and the number of the short pipes in the package can be read by Z3. Z3
is reset by O4.

Eighth network defines when the package for short pipes is fulfilled and should be

66



transported:

Hetrvwork & : Title:

F@'mﬁ_r;&;

ChiP :=|
T3 et TH1 "Q4"
SR
15 wem THZ e =1
neogn Ip Q=

As long as the number of long pipes in the package is smaller than 15, 04 is set to “0”.
If totally fifteen pipes are in the package, the package blocker releases the package and

waits for another one.

8.4.1. Simulation of Pipe Sorting and Packing

7-PLCSIM. - SimView1
File Edit }iiew Insert PLC Executs Tools  Window  Help
DEed 28 2w/ oeasagn aas
B1ER| n o+ 0

0

Press F1 ko get Help, MPT =2 7

Figure 8.15 Simulation Pipe Packing 1

67



As we start the simulation, Q 0.0 (motor) and Q 0.1(warning lamp) are set to “1”. If Q
0.0 is set to “1”, it means that the conveyor belt runs, which transports the pipes into the
buffer. O 0.1 is set to “1”, because the number of the pipes in the buffer is less than 30.
(Figure 7.15)

The number of the pipes in the buffer can be read from the counter function C/. As it is
shown above, if there are 200 (C/=200) pipes in the buffer, then motor will be stopped
(Q 0.0 is “0), which runs the conveyor belt, and remains so until minimum one pipe

leaves the buffer. (Figure 8.16)

ST-PLCSIM - SimView1
Eile  Edit _\_I'iew Insert PLC Execute Tools Mfindow Help

D@@d e Ba@Ew W @egadadas 388
IR 0|

I~ RUNF
Ooc W RUN
EIRUN
| CsToP

o

Press F1 to get Help, |[I§1PI =2 A

Figure 8.16 Simulation Pipe Packing 2
If the incoming pipe is a longer one, then all the sensors S3, §4 and S5 are set to “1” and

0O 0.1 is set to “1”, which makes conveyor belt transport the pipe straight forward.
(Figure 8.17)

68



TS 7-PLCSIM - SimView1

File Edit ‘iew Insert PLC Executs Tools Window Help
R L e
BIEE o1 [

ama

Press F1 ko gek Help, MPI=2 A

Figure 8.17 Simulation Pipe Packing 3

If the packages of the long and short pipes are full, they will be released by activating
the outputs Q 0.2 (long package release) and Q 0.3 (short package release). (Figure
8.18)

100 S7-PLCSIM - SimView?

File  Edit }x_-'iew lrgs'ErJ:: PLE Executs. Tools Window  Help

DEH =0 B@EwW peaEasa
BIER| n i

saa

[ STOP MRES |

- lax] =

Iecimal _vJ

i

Press F1 ko get Help. MPI=2 i

Figure 8.18 Simulation Pipe Packing 4

69



8.5. Garage Door Controller

Figure 8.19 Garage Door Controlling

The garage door is opened by activating the sensor SO or the door is opened
automatically (e.g. On/Off switch or remote switch), if a car which is close enough to
the garage door, is noticed by the sensor S3. If there is already a car in the garage and the
sensor S3 or SO is activated by another car then the warning lamp H/ is turned on for
five seconds and shows that the garage is already full (the sensor S5 controls whether the
garage is full or not). The garage door is closed by activating the sensor S/ but if any
obstacle which prevents closing the garage door is noticed by the sensor S2 and stops the
operation immediately. If the door remains opened, then it closes itself automatically
after two minutes. By activating the sensor S4 all the operations can be stopped
(Emergency Stop). If the door is opened completely, the sensor S6 stops opening the
door just as the sensor S7 stops closing the door.

Firstly we need to define all the bit memories, timers, inputs and outputs in the symbol

editor:

70



&1 57 Program(1) {Symbols) -- Garage door openeriSIMATIC 300 Station\CPU314C... e

Status | Symbol - Address Diata type Comment
1 Cyicle Execution oB 1 o5 1
2 H1-wearning lamgp Mo 107 BooL wearning lamg
3 11 M09 BOCL
4 a2 Mo10.2 BOCL
5 o -opening the doar o 41 BOOL opening the door
G 02-closing the doar o] 42 BOoOL cla=ing the daor
v S0-0N switch | 0.0 BOCL the door O switch
g S1-0FF switch | 01 BOOL the doar OFF switch
3 S2-obstacle control | 0.2 BOCL obstacle contral
10 S3-automsticaly ape... || 03 BOOL gutomatically opening the door
1 Sd-emergency stop | 04 BOoOL emergency stap
12 S5-garage full or not | 0s BOOL garage full or not
13 SB-the doar iz opened || 0B BooL the door iz completely opened
14 STthe door iz closed ] (1) BooL the door iz completely closed
15 T1imer cloging door [T 1 TIMER after 2 minutes close the door automatically
16 T2-timer warning lamp [T 2 TIMEFR: wearning lamp for 5 zeconds
17

Table 8.12 Symbol table of Garage Door Controller

For programming the garage door we need four networks. The networks can be inserted

by mouse right-clicking and then clicking on Insert Network.

The first network is for opening the garage door:

Netwwork 1: opening the door

Comment :

"E0-0N
Sitch! m—

"Ea-

automatica ML
1lvy iR

Opening m— e =1

"5
ELEY ency
Stop " m—

VHME " — "ol-
opening
"Ze-the the door"
door is =

opernad" et Tt 1] e

The conditions for opening the door are to activate SO or S3 sensors. On the other hand

71



the values of S§4 (emergency stop), M2 (it means OFF- and ON-Switch can not be
activated simultaneously) and S6 (door is opened) have to be “0”. If one of these values

is 1, it resets M1 and O2 (opening the door) remains “0”.

The second network for closing the garage door:

Netwwork 2 : closing the door

Comment :

=1
"21-0FF
Switch" m—

"Tl-timer "ME"
closing iR
door " — — &

=1
n 54_

ENEY JRICT
staop" —

L, L e—

"B7-the
door is=s
closed" =— LS
closing

"y5z- the door"
ochstacle =
CONTEDL" m— i E. [ e

The conditions for closing the door are to activate SI (Off-switch) or waiting for 2
minutes that the T/ (timer closing door) closes the door automatically. The values of S4,
MIl, S§7 and S2 (obstacle control) have to be “0”, otherwise they reset M2 and O2

(closing the door) remains “0”.

The third network for warning lamp:
If there is already a car in the garage (S5 is “1”) and SO or S3 is activated, then warning
lamp will be ON for five seconds. But once the timer 72 is “0” (it means S0, S3 and S5

are “0”), then the warning lamp will be immediately OFF.

72



Netwwork 3 : warning lamp

Comment :
=1
"E0-0N
switch" =——
IISS_
automatica
11 2
opening" — —
"TZ-timer
L warning
garage lamp"
full or 5_PULSE
not " — P— BIf=—... FHI=
warhing
BEETHES = TV ECD . . . lanp"
SR
et e B 1] B
"TZ-timer
warning
lanp" =R (1]

The fourth network for automatically closing the door after 2 minutes:

Netwwork 4 - after 2 minutes close the door automatically

Comment :
"Tl-timer
closing
door"
5_ooT
"g6-the
door is
opened" =—= BI f—_ ..

SETHZM — TV BCD . ..

The garage door closes itself, if it remains opened for two minutes. By this way the user

does not have to close the door after he left the garage.

73




8.5.1.

Simulation of Garage Door Controller

S0 is activated and as a result O/ and M1 are set to “1°. After the door is completely

opened S6 is set to “1”. (Figure 8.20)

ES7-PLCSIM - SimView1

Eile Edit Wiew Insert PLC Execute Tools Window Help
D@ L8 B@Ew R eennaas aaa
(BJER et [ra

HEor

o :
Eoc T RUN s

TIRUN ahsits
Clstop | STOF O

£

Press F1 to gat Help, MPI=2

Figure 8.20 Simulation Garage Door 1

After a change from 0 to 1 at the S6, O/ and M1 are set to “0” and the timer T1 is set to
120 seconds. (Figure 8.21)

il $7-PLCSIM. - SimView!

DM /8 2B« gE@naad 3am
BIEE om0

-'gp' W RUNF
Ooc I RUN

RN
Clstop | STOP

Press F1 ta get Help. MPI=Z

Figure 8.21 Simulation Garage Door 2

74



After 2 minutes elapsed, O2 and M2 are set to “1”. (Figure 8.22)

1 57-PLCSIM - SimView1

File Edit Wiew Insert PLC  Execube Tools window  Help

DEd =8 28w araEaan aan
BIEE o1

I

Press F1 to get Help. MPI=2

Figure 8.22 Simulation Garage Door 3

If any obstacle is noticed by S2 while the door is closing, O2 and M2 are set to “0”.
(Figure 8.23)

Eil S 7-PLCSIM - SimView

File Edit Miew Insert PLC Execute Tools Windaw  Help

DEd "0 BE« R s Eaaad aas
BIER o1 |7

Press F1 ko get Help, MPI=2

Figure 8.23 Simulation Garage Door 4

75



The warning lamp (S7) will be ON, if there is already a car in the garage (S5 is set to

“1”)and S3 or O1 is set to “1”. T2 is set to 5 seconds. (Figure 8.24)

e

f-:: S7-PLCSIM - SimView1
File Edit Wiew Insert PLC  Execute Tools Window Help

ma&8a 8aa

" A

a'.k_

Ded e
BB o1 |0

TN oy 3 £ 1B

0 ¥ RUN-P
o I RUN

B o

MAES

Press F1 ta get Help, MPI=2 b

Figure 8.24 Simulation Garage Door 5

After 5 seconds elapsed, the warning lamp is OFF (S7). (Figure 8.25)

:'L-: S7-PLCSIM - SimView1

File Edit Wiew Insert PLC Execute Tools Window Help
= R

BB v |'r=u'|

AEasa aaam

R

BERUN e

[IsT0P e

Press F1 to get Help, MPI=2 i

Figure 8.25 Simulation Garage Door 6

76



9. CONCLUSION

This work presented some of the most important issues in the field of Programmable
Logic Controller. A whole process was described, how a S7-300 station could be taken
into operation. In each chapter, different steps of the process were explained and

illustrated with simple examples.

In the first chapter, general informations about PLCs and working principles were
provided. The main advantages and disadvantages were mentioned with starting the use
of PLCs in automation processes. Also according the demands of industrial
manufacturers, the evolution of the PLC was described with mentioning the most

important milestones in its history.

In the next chapter, an overview of Simatic controllers was given and Simatic S7
controller series and their specifications were described. This chapter focused especially

on S7-300 station and its components.

Step7 is the software to program the Simatic controllers. Thus in the chapter 3 main
features of Step7 were mentioned. The programming languages offered by Step7 are
Ladder Logic Diagrams, Statement Lists, Function block Diagram and Structural
Control Language. Advantages, disadvantages and the main differences between these
languages are given in this chapter. The most used functions were explained with simple

examples such as AND, OR, XOR, SR Flip Flop, On Delay Timer etc.

In the chapter Installation, it was described how the power supply, CPU and signal
modules can get wired. Then the station has to be configured in the software program
Step7. It has been shown, how to find station components in the program catalog and
add them to their slots appropriately. After addressing the signal modules, it was shown,

how the station can be connected to a programming device.

S7-PLCSIM is used to simulate user programs without additional hardware. Chapter 6

77



was dedicated to introduce the simulation program S7-PLCSIM. This program is
especially important for us, because all examples given in the last chapter were

simulated with S7-PLCSIM.

Future will show how the PLCs will evolve. The most important issues and challenges in
the field of automation controllers were mentioned in the chapter 7. The developments
and trends in automation systems were explained in order to understand what the future
may bring and whether the PLCs will behave like a modern computer or like a usual

PLC.

In the last chapter, different PLC applications were chosen, programmed and simulated.
First example is a pump motor that works with different speed according to the fluid
status of the containers. Since only AND and OR functions were used to program this
application, it was easy to understand basic principles of programming and how to use

the simulator.

Conveyor belts are used in many automation processes to transport goods or machine
parts. Thus conveyor belts were programmed and simulated in the second application. In
this example only AND and OR functions were used like the first one, but in different

way.

In the third example a rotating shaft was simulated. To determine the direction of
rotation, SR (Set-Reset) Flip Flop function, Positive RLO Edge Detection, Negative
RLO Edge Detection and memories were used additionally. SR Flip Flop function is
required often at programming where the signal values have to be saved. This example
was also suitable to show, how Positive and Negative RLO Edge detection function and

can be used.

The example “sorting and packing pipe” was chosen, thus it was possible and easy to
explain, how counter functions and compare function can be used in the program. Since

we have to deal with the numbers of the pipes, this time another data type has to be used

78



too. Simulator program counts the pipes by using WORD data type.

The last application of PLC was garage door opener. In this example timer functions
S ODT (On Delay Timer) and S Pulse (Pulse Timer) were used and shown how the
timers are set. By using timers automatic loops can be created and the system can work

by itself.

79



REFERENCES

Berger, Hans (2005). Automating with STEP 7 in LAD and FBD. Publicis Corporate
Publishing, Germany.

Berger, Hans (2006). Automating with Simatic. Publicis Corporate Publishing, Germany.

Wellenreuther, G. and Zastrow, D. (2002). “Automatisieren mit SPS Theorie und

Praxis.” Der Verlag Vieweg, Germany.

Kopacek, Peter (1993). “Einfiihrung in die Automatisierungstechnik.” R. Oldenbourg
Verlag, Vienna/Austria.

SIEMENS AG, “Function Block Diagram (FBD) for S7-300 and S7-400 Programming —
Reference Manual”, (Edition 01/2004)

Wardzel, Filomena (2006). “Long Live the PLC”. Siemens Automation Summit — Users

Conference.

Melore, Phil. “PLC History.” (2001). Retrieved 19.July.2008 <http://www.plcs.net/
chapters/history2.htm>.

SIEMENS AG, “Simatic S7-300 Introduction.” (2007). Siemens Simatic Catalog ST70.
128

SIEMENS AG, “Software PLC - SIMATIC WinAC RTX 2008.” (2008). Retrieved
28.July.2008 <http://www.automation.siemens.com/simatic/controller/html 76/

produkte/ software-plc-winac-rtx.htm>

SIEMENS AG, “Technical Specifications of the S7-300 digital input modules.”(2007).
Retrieved 23.10.2008 <http://www.automation.siemens.com/download/internet/cache/
3/1438553/pub/de/tech-data-s7-300-i0-en.pdf>

80


http://www.automation.siemens.com/simatic/controller/html_76/%20produkte/software-plc-winac-rtx.htm
http://www.automation.siemens.com/simatic/controller/html_76/%20produkte/software-plc-winac-rtx.htm
http://www.automation.siemens.com/download/internet/cache/3/1438553/pub/de/tech-data-s7-300-io-en.pdf
http://www.automation.siemens.com/download/internet/cache/3/1438553/pub/de/tech-data-s7-300-io-en.pdf

“Totally Integrated Automation.” (2008). Retrieved 23.July.2008
<http://en.wikipedia.org/w/index.php?title=Totally Integrated Automation&oldid=1858
26305>

81



LIST OF FIGURES

2740 (S I USRS 3
Figure 1.2 (http://www.angelcontrols.com/Graphics/PLC_Group Shot.jpg,

23USEPE.08).c et et 4
Figure 2.1 (Siemens Simatic S7-300 Programmable Controller Hardware

and Installation Manual Edition 1, 1998, P.1-2)....ccciiiiriiiiiiieeieeeeee e 10
FIGUIE 3.1ttt ettt ettt ettt et e st e et e nbeenbeeentaens 16
Figure 3.2 (Function Block Diagram (FBD) for S7-300 and S7-400

Programming — Reference Manual, 2004, p.13-6) .....ccooiiiiiiiiiiiiiiieeceeeeeeee 17
Figure 3.3 (Function Block Diagram (FBD) for S7-300 and S7-400

Programming — Reference Manual, 2004, p.13-10). .c..coceenieiiniiniininienieieeeeneeeene 18
Figure 3.4 (Function Block Diagram (FBD) for S7-300 and S7-400

Programming — Reference Manual, 2004, p.13-14) ..c..ooiiiiiiiiiiieeeee 19
Figure 4.1 (SIEMENS AG, S7-300 CPU 31xC und CPU 31x: Aufbauen,

2000, P- 4-3) oottt 20
Figure 4.2. (SIEMENS AG; S7-300 Programmable Controller Hardware

and Installation Edition 1, 2008, P, 2-8) ...ececuiieeiiieeiieeciee ettt 20
Figure 4.3 (SIEMENS AG, S7-300 CPU 31xC und CPU 31x: Aufbauen, 2006). ......... 21
Figure 4.4 (SIEMENS AG, S7-300 CPU 31xC und CPU 31x: Aufbauen,

2000, P. 0-7) ettt 21
FIgUIE 4.5 ettt st ettt e 22
FIGUIE 4.6 ettt sttt ettt e 23
FIGUIE 4.7 ettt st ettt 24
FIUIE 4.8 ettt ettt sttt 25
Figure 4.9 (SIEMENS AG, S7-300 Programmable Controller Hardware and Installation,
L0008, P 3m0) it 27
Figure 4.10 (SIEMENS AG, S7-300 Programmable Controller Hardware and
Installation, 1998, P. 3=7) oo sttt e 27
FIGUIE 4. 11 ettt et sttt 28
FIgUIE 5.1 et ettt et e 30

82


http://www.angelcontrols.com/Graphics/PLC_Group_Shot%20.jpg

FIGUIE 5.2 ettt ettt ettt ettt et e st e bt e enbeebaeeabeens 30

FAgUIE 5.3 ottt ettt e et e st e e bt e nbeeteeenbeens 34
FIGUIE 0.1 oottt e et e et e e ta e e eat e e etbeeeaaeeeaaeenaaeeenraeens 36
FIGUIC 0.2 oottt e et e et e e e ta e e et e e eabeeetteeebeeenaeeeenraeens 38
Figure 8.1 (Kopacek, Peter, 1993,Einfiihrung in die Automatisierungstechnik, p.67). .. 43
FIGUIE 8.2 ettt ettt ettt et e e e ebaeeabeens 48
FIGUIE 8.3 oottt et e et e et e et e e e b e e eaa e e e bae e e aeeeennaeens 49
FIGUIC 8.4 ottt e e e et e e et e e et e e eaa e e e aaeeebeeeenraeens 49
FAgUIE 8.5 ettt ettt ettt e et e st et eeearaens 50
Figure 8.6 (Kopacek, Peter, 1993 Einfiihrung in die Automatisierungstechnik, p.61)... 51
FIGUIC 8.7 oottt ettt e et e et e e et e e etbe e e aa e e e aae e e beeeenaaeens 54
FIgUIE 8.8 ettt ettt e 54
Figure 8.9 (Kopacek, Peter, 1993,Einfiihrung in die Automatisierungstechnik, p.98)... 55
FIGUIE 8.10 ettt 59
FIGUIE 8. 11 ottt ettt ettt 59
FIGUIE 8. 12 ettt ettt ettt e 60
FIUIE .13 ettt st 60
Figure 8.14 (Wellenreuther, G. and Zastrow, D., 2002, “Automatisieren mit SPS Theorie
UNA PFAXIS, P82 eveeeiee ettt e e ettt e e e st e e seteeessaeeetaeeessseeensseeenssaesnsneesnseeennsaeens 61
FIgUIE 8. LS et st ettt e 67
FIGUIE 8.16 ettt st 68
FIUIE .17 ettt ettt st 69
FIUIE 8. 18 et ettt ettt e 69
FIUIE 810 ettt ettt e 70
FIGUIE 8.200 et ettt e 74
FIGUIE 8.21 oottt st ettt 74
FIGUIE 8.22 oottt et sttt et 75
FagUIe 8.2 ettt ettt 75
FIGUIE 8.24 oottt ettt 76
FIGUIE 8.25 oottt sttt et 76

83



LIST OF TABLES

Table 3.1
Table 3.2
Table 3.3
Table 3.4
Table 3.5
Table 4.1
Table 5.1
Table 8.1
Table 8.2
Table 8.3
Table 8.4
Table 8.5
Table 8.6
Table 8.7
Table 8.8
Table 8.9

Table 8.10 ......
Table 8.11 .....
Table 8.12 ..

84



	ABSTRACT
	1. PLC (PROGRAMMABLE LOGIC CONTROLLER)
	1.1. Advantages of the PLCs
	1.2. Disadvantages of the PLCs
	1.3. History of PLCs (Melore, 2001)

	2. SIMATIC
	2.1. S300 Station
	2.1.1. Components of the Simatic Station


	3. SIMATIC STEP 7
	3.1. The Programming Languages in Step 7
	3.1.1. Ladder Logic Diagram
	3.1.2. Function Block Diagram
	3.1.3. Statement List

	3.2. Functions in Step7
	3.2.1. AND Function
	3.2.2. OR Function
	3.2.3. NAND Function (Negation AND)
	3.2.4. NOR Function (Negation OR)
	3.2.5. XOR Function (Exclusive OR)
	3.2.6. SR (Set-Reset) Flip Flop
	3.2.7. Positive RLO (Result of Logic Operation) Edge Detection
	3.2.8. Pulse S5 Timer
	3.2.9. On-Delay S5 Timer
	3.2.10. Off-Delay S5 Timer
	3.2.11. Counting Up and Down S_CUD


	4. INSTALLATION
	4.1. Wiring
	4.1.1. Wiring the PS:
	4.1.2. Wiring the CPU:
	4.1.3. Wiring the signal modules:

	4.2. Configuring the Station
	4.3. Adressing
	4.3.1. Default channel addressing:
	4.3.2. User-defined Addressing:

	4.4. Connecting to a Programming Device

	5. PROGRAMMING WITH STEP 7
	5.1. Creating a program in OB1 (Organisation Block):
	5.2. Creating a Function Block (FB) and Function (FC):
	5.3. Downloading the Program:

	6. S7-PLCSIM (SIMULATION PROGRAM)
	6.1. CPU Operating Modes:
	6.2. CPU Indicators:
	6.3. Object viewing:
	6.4. Scan Mode Options:
	6.5. Opening and saving a simulated PLC:

	7. FUTURE ASPECTS
	7.1. Trends in automation systems
	7.1.1. Visual Control
	7.1.2. Decentralisation


	8. DIFFERENT EXAMPLES OF PLC APPLICATIONS
	8.1. Pump Motor Control (Kopacek, 1993)
	8.1.1. Simulation of control pump motor

	8.2. Conveyor Belt Controller (Kopacek, 2003)
	8.2.1. Simulation of conveyor belt controller

	8.3. Determining the Direction of the Rotating Shaft (Kopacek, 2003)
	8.3.1. Simulation of the Rotating Shaft

	8.4. Sorting and Packing of Pipes (Wellenreuther and Zastrow, 2002)
	8.4.1. Simulation of Pipe Sorting and Packing

	8.5. Garage Door Controller
	8.5.1. Simulation of Garage Door Controller


	9. CONCLUSION
	REFERENCES
	LIST OF FIGURES
	LIST OF TABLES



