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Abstract

The DECOS integrated architecture tries to combine the benefits of federated
and integrated architectures by decomposing a large real-time system into nearly-
independent distributed application subsystems (DASs) and integrating them on
a single distributed computer system.
The communication infrastructure for the DASs is provided by virtual networks
that are implemented on top of a time-triggered core architecture. Often it is
necessary for a DAS to exchange information with another DAS, which is the task
of a gateway. Gateways in the DECOS architecture are implemented as hidden
gateways (i. e. transparent to the application). Gateways not only have to forward
messages from one network to another, they are also used to resolve operational
or semantic property mismatches between the interconnected networks. Another
important task of gateways is the provision of an encapsulation service that is
responsible for error containment and the selective redirection of messages in order
to save bandwidth.
The goal of this thesis is the validation of the gateway services by experimental
evaluation. To solve this task in a convenient way, we proposed the use of a
measurement framework that has the ability to monitor the system under test and
is capable of automated execution of testruns.
First we show a model of a framework that is generally applicable. The model
consists of a test controller and monitor and an execution environment in which
the tests are executed. The test controller feeds the execution environment with
parameters that are extracted from test descriptions and controls and monitors
the target hard- and software at runtime. We pursue the approach of software
implemented fault injection at runtime. Faults are injected by providing faulty
parameters to the application.
Then we present an actual implementation for the evaluation of our exemplary
DECOS cluster. Test descriptions are written in XML and are read by the control
application that extracts the necessary parameters for the test runs and provides
them to the target system. The application jobs on the target system are respon-
sible for the execution of testruns and recording their operations which are then
analyzed by the control application. The properties we are interested in are laten-
cies and bandwidths via the gateways as well as the correct functionality of their
error containment and selective redirection mechanisms.





Kurzfassung

Die DECOS Architektur ist eine integrierte Architektur und versucht, die Vorteile
von verteilten und integrierten Architekturen zu vereinen. Dazu wird das Gesamt-
system in nahezu unabhängige Teilsysteme, sogenannte Distributed Application
Subsystems (DASs), unterteilt.
Die Kommunikationsinfrastruktur für die DASs wird von virtuellen Netzwerken
zur Verfügung gestellt, welche auf einer zeitgesteuerten Basisarchitektur implemen-
tiert sind. Oft ist es notwendig für ein DAS, Information mit einem anderen DAS
auszutauschen, dies ist die Aufgabe eines Gateways. Gateways sind in der DECOS
Architektur als virtuelle versteckte Gateways implementiert (d.h. unsichtbar für
die Applikation). Neben dem Weiterleiten von Nachrichten von einem Netzwerk
ins andere, sind Gateways auch dafür verantwortlich, etwaige semantische oder op-
erative Unstimmigkeiten zwischen den verbundenen Netzwerken aufzulösen. Eine
weitere wichtige Aufgabe von Gateways ist das Encapsulation Service, welches für
die Fehlereingrenzung verantwortlich ist, sowie für die selektive Weiterleitung von
Nachrichten, um Bandbreite zu sparen.
Ziel dieser Arbeit ist die Validierung der Gateway Services durch experimentelle
Evaluierung. Um diese Aufgabe bequem zu lösen, stellen wir ein Framework vor,
das die Möglichkeit bietet, das System zur Laufzeit zu überwachen und welches
automatische Testläufe unterstützt.
Zuerst präsentieren wir ein Modell, welches allgemein anwendbar ist. Es besteht
aus einem Testcontoller und -monitor und dem Zielsystem. Der Testcontroller
gewinnt aus Testbeschreibungen die Parameter für die Testläufe und steuert und
überwacht das Zielsystem während der Laufzeit. Wir verfolgen den Ansatz der
software-implementierten Fehlereinstreuung. Fehler werden dadurch ins Ziel-
system eingestreut, indem wir der Zielanwendung fehlerhafte Parameter zur
Verfügung stellen.
Danach gehen wir auf die Implementierung eines konkreten Frameworks für un-
seren Beispiel DECOS Cluster ein. Testbeschreibungen im XML Format werden
von der Kontrollanwendung gelesen, welche die notwendigen Parameter für die
Testläufe extrahiert und sie dem Zielsystem zur Verfügugng stellt. Die Anwen-
dungen auf dem Zielsystem sind für die Ausführung der Testläufe, sowie für das
Aufzeichen der Operationen verantwortlich, welche im Anschluss an einen Test
von der Kontrollanwendung ausgewertet werden. Die Eigenschaften, die uns dabei
am meisten interessieren sind die minimalen, maximalen und durchschnittlichen
Laufzeiten und Bandbreiten über die Gateways, sowie die korrekte Funktionalität
deren Fehlereingrenzungsmechanismen.
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Chapter 1

Introduction

Large distributed safety-critical real-time systems like they are in use in the au-
tomotive and avionics domain are often implemented as federated systems. In
a federated system, every application subsystem has its own dedicated computer
system that is only loosely coupled to other subsystems. The main advantage of
this approach is the inherence of fault containment, i. e. it is very unlikely that a
fault in one application subsystem influences the function of another subsystem. A
big drawback, on the other hand, are the high costs due to the need for a dedicated
computer system for every new application subsystem.

An alternative approach is the use of an integrated architecture where several
application subsystems are integrated within a single distributed computer system.
Obviously, integrated systems reduce hardware costs as well as costs regarding
wiring, space, weight, cooling and maintenance.

An architecture that tries to combine the benefits of both, the federated and the
integrated approach, is the DECOS integrated architecture [OPT07] where the
real-time computer system is decomposed into a set of nearly-independent subsys-
tems called distributed application subsystems (DASs), each of which provides a
part of the of the overall system’s functionality. The DASs are distributed across
several components, interconnected by a time-triggered core network.

On top of the physical core network, virtual networks [OPK05b] are implemented
as overlay networks that provide the communication infrastructure for the dis-
tributed application subsystems. Due to the fact that DASs may need to commu-
nicate among one another, gateways are needed to interconnect virtual networks.
Gateways in the DECOS architecture [OPK05a] do not only serve the purpose of
forwarding messages from one virtual network to another but also provide selective
redirection of messages and error containment between subsystems. The encap-
sulation service of virtual networks and gateways is a prerequisite for spatial and
temporal partitioning [Rus99] between applications in an integrated system which

1



1.1. OBJECTIVE OF THE THESIS CHAPTER 1. INTRODUCTION

is inherent in federated systems.

1.1 Objective of the Thesis

The main purpose of this thesis is to show that the gateways of a DECOS cluster
ensure spatial and temporal partitioning in the presence of faults.

For the purpose of experimental evaluation of the gateways in our prototype im-
plementation, we identified the need for a measurement framework that supports
automated testing and easy parametrization to offer a wide variety of test scenar-
ios. The framework has to fulfill the following requirements:

Monitoring of the system under test without probe effects:
This means, that the exertion of measurements must not affect the
intended function of the system in the temporal or value domain.

The ability to induce faults into the system: In our framework,
we want to induce controlled (i. e. with a specific timing) software faults
resulting in a timing message failure or a naming message failure.

Reproducibility of tests: This requirement claims the ability of an
experiment to be accurately reproduced by someone else or some time
else.

In our solution, we pursue the approach of a measurement framework that accepts
testcase specifications written in XML which describe the communication behavior
of the target applications. The parameters are extracted from the specifications
and during the startup phase of the cluster, they are written to a shared memory
that provides a point-to-point communication between a server and the application
jobs. Faults are injected into the system by providing faulty parameters to the
application. The target application jobs are also responsible for data acquisition
for subsequent analysis of the executed tests.

The measurements gathered by the target applications are transferred to the server
after an experiment is finished and not sent during its execution. This prevents
the earlier mentioned probe effect.

1.2 Structure of the Thesis

In chapter 2 we give an overview of projects that are closely related to the context
of this thesis.

2
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Chapter 3 is dedicated to the concepts that are used throughout this thesis. We
begin with a comparison of federated and integrated architectures and some exam-
ples for integrated architectures in section 3.1. Section 3.2 introduces the DECOS
integrated architecture which is the chosen architecture for our validation frame-
work. In section 3.3, we compare the event-triggered and the time-triggered control
paradigm. The fundamental concepts of dependability are described in section 3.4.
Section 3.6 explains partitioning mechanisms that are crucial for fault containment
in an integrated architecture. The remainder of this chapter is dedicated to virtual
networks and gateways that are important for the integration and interconnection
of multiple subsystems on a single platform.

Chapter 4 describes the model of a validation framework with automated test
procedures. Section 4.1 starts with the logical structuring of the DECOS architec-
ture into virtual networks and jobs, interconnected by gateways. In section 4.5, we
describe a model for automated test procedures. In section 4.3 we distinguish soft-
ware and hardware faults and section 4.5.1 introduces fault injection techniques
that are used in the automated tests.

The actual implementation of the measurement framework is the topic of chapter 5.
We begin with the description of the hardware and software setup of the prototype
cluster in section 5.1 and section 5.2. The implementation details of the framework
are subject of section 5.3.

Chapter 6 is dedicated to the experimental evaluation of of the implementation.
We begin with the hypothesis for the experiments in section 6.1 followed by a set
of test cases in section 6.2. In section 6.3, we discuss the results of the experiments
and finish with a concluding interpretation of those results.

We finish with a conclusion in chapter 7 that summarizes this theses and proposes
the future work.

3
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Chapter 2

Related Work

2.1 Assessment of Error Detection Mechanisms

in the Time-Triggered Architecture

Ademaj’s thesis [Ade03] is dedicated to the evaluation of error detection mecha-
nisms in the Time-Triggered Architecture [Kop98]. Fault injection is introduced
as a valuable methodology for the validation of computer systems.

Ademaj uses software fault injection to emulate physical faults in the components
of a TTP [TTT02a] node.

2.1.1 Hardware Setup

The cluster setup for Ademaj’s validation framework consists of four active TTP
nodes, a passive node and a PC [Ade03].

• The fault injection node (FI-node) is the node exposed to fault in-
jection

• The golden node is an exact replica of the FI-node and produces the
same outpust results as the FI-node in a fault-free run.

• The comperator node compares the messages of the FI-node and the
golden node and detects fail-silent violations in the value domain.

The fourth active node is required for the correct function of the clock synchro-
nization algorithm. The passive node does not send messages on the bus, instead
it forwards all messages transmitted from the active nodes to a PC. It is also used
for reconfiguration of the cluster.

5
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2.1.2 Software Setup

The software setup for the SWIFI environment comprises the following parts
[Ade03]:

• Fault injection code for the TTP/C controller that is executed along
with the protocol code.

• Fault injection code for the host controller that is executed along with
a host application or the FTcom layer tasks.

• Monitoring code for the host controller.

• Fault injection manager that is responsible for providing fault injection
data and triggering fault injection.

2.2 Fault Injection Experiments Using FIAT

FIAT (Fault Injection-Based Automated Testing) is a tool for the experimental
validation of a system’s dependability. Barton et al. [BCSS90] review the exper-
imental validation environment of FIAT and show that software fault injection is
a viable method to test and validate systems [BCSS90]. FIAT uses the following
abstractions for the fault injection process:

A workload is an observable set of real-time tasks that are commu-
nicating via observable communication channels. The fault injector is
linked together with the task code of the workload.

A fault class describes a set of workload modifications that represent
a group of logical or physical faults with common properties.

Data collection is the process of recording the events during a test.
FIAT distinguishes between history (the normal behavior of the sys-
tem) and error reports (exceptions and abnormal events).

Experiments are transformed by an Experiment Description Transla-
tor (EDT) into an experiment script that contains a command sequence
for controlling fault injection at runtime.

The FIAT hardware consists of two types of components, namely the fault injection
manager (FIM) and the fault injection receptor (FIRE).

6
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The fault injection manager (FIM) supports the experiment de-
velopment and data collection/analysis. FIM is also responsible for
runtime control of an experiment.

The fault injection receptor (FIRE) provides the execution envi-
ronment for the experiments and is controlled by commands from the
FIM based on the experiment descriptions.

2.3 NFTAPE: A Framework for Assessing De-

pendability in Distributed Systems with

Lightweight Fault Injectors

NFTAPE [SFKI00] represents a fault injection framework that composes auto-
mated test fault injection experiments from other readily available lightweight
fault injectors. According to the authors, no single tool is sufficient for injecting
all fault models.

The key features of NFTAPE are identified as follows:

• Multiple Fault Models

• Multiple Fault Triggers

• Multiple Targets

• Versatile Error Reporting Methods

Stott’s paper [SFKI00] discribes two actual implementations of an NFTAPE frame-
work, one uses a hardware fault injector with a Myrnet LAN while the other one
uses a SWIFI fault injector.

2.4 Comparison to this thesis

The framework presented in this thesis can best be compared to the FIAT fault
injector [BCSS90] because we also use a control application, comparable to the
FIM, that generates the parameters for the experiments and controls the execution
environment. One significant difference is the user application running on the
execution environment which doesn’t interact directly with the control application
but uses parameters provided by the control application at startup.

7



2.4. COMPARISON CHAPTER 2. RELATED WORK

The most important difference is our integrated architecture which integrates sev-
eral application subsystems within a single distributed computer system. Since we
use a time-triggered core architecture, we can make use of the global time base
which allows us to inject faults at predefined points in time.

When we compare our framework to NFTAPE [SFKI00], the most important com-
monality is the support for multiple fault models, in our case naming message
failures and timing message failures.

8



Chapter 3

Concepts

This chapter begins with an introduction to integrated systems and a short
overview about the DECOS integrated architecture as it is the underlying ar-
chitecture for our validation framework. The following sections explain some fun-
damental concepts that are used throughout this thesis. Section 3.3 compares
event-triggered and time-triggered systems and section 3.4 explains the funda-
mental concepts of dependability. The last sections of this chapter introduce the
mechanisms that are crucial for the implementation of an integrated system, those
are partitioning (cf. section 3.6), virtual networks (section 3.7) and gateways (sec-
tion 3.8).

3.1 Federated vs. Integrated Systems

In the context of real-time systems for distributed applications, we can distinguish
between two classes of systems, federated and integrated systems. In a federated
system each application subsystem has its own dedicated computer system which
is only loosely coupled to other application subsystems. Federated systems have
been preferred for ultra-dependable systems, because fault containment is inherent.

Integrated Systems are characterized by integrating several application subsys-
tems in a single distributed computer system with internal replication to provide
fault tolerance. Since a single component in an integrated system hosts functions of
multiple application subsystems, there is a potential to diminish fault containment
between those functions. Therefore, an integrated system must provide partition-
ing to ensure protection against fault propagation among functions [OPT07].

This paper will focus on the DECOS integrated architecture [OPT07] which will
be described in detail in the following section 3.2. AUTOSAR [AUT07], Inte-
grated Modular Avionics (IMA) [Rus99] and PAVE PILLAR [OSB+87] are other

9
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examples for integrated architectures.

IMA is a distributed real-time system that is in use aboard civil as well as military
aircraft. It is capable to host multiple applications of differing criticality levels on a
single component. Furthermore, IMA is intended to make technology transparent
to the applications [Rus99].

PAVE PILLAR was developed for military aircraft, especially for advanced tactical
fighters. It allows to implement the core avionics tasks, Digital Signal Processing,
Mission Processing, Vehicle Management Processing, and Avionics Systems Con-
trol, with common hardware and computer programs [OSB+87].

AUTOSAR (Automotive Open System Architecture) [AUT07] is an example for
an integrated architecture for the automotive industry. Its key features are the
definition of a modular software architecture for electronic control units (ECUs),
the standardization of interfaces and a runtime environment that provides inter-
and intra-ECU communication across all nodes of a vehicle network [AUT07].

3.2 The DECOS Integrated Architecture

The DECOS (Dependable Embedded Components and Systems) integrated archi-
tecture [OPT07] provides a framework for the development of distributed embed-
ded real-time systems. It combines the benefits of federated and integrated systems
by subdividing the real-time system into nearly-independent distributed applica-
tion subsystems (DASs) with different criticality levels and different requirements.
Those DASs are implemented on top of a time-triggered core architecture that
supports the safety requirements of the highest considered criticality class. Ac-
cording to [OPT07], the core architecture for safety-critical real-time systems must
provide the following services:

• deterministic and timely transport of messages

• fault-tolerant clock synchronization

• strong fault isolation

• consistent diagnosis of failing nodes

DASs are grouped into a safety-critical subsystem and into a non safety-critical
subsystem. The DAS-specific high-level services (Virtual Network Service, Encap-
sulation Service, etc.) form an abstraction and are intended to hide the imple-
mentation of the core architecture from the applications. Details about the logical
structure of the DECOS architecture are described in section 4.1.

10
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3.3 Event-Triggered vs. Time-Triggered Archi-

tectures

Temporal control signals for the activation of a task can arise from two different
sources [Kop97]:

1. If the control signal is derived from a significant state change (called
an event) in the environment or within the system, the system is called
an event-triggered system. An event can be the arrival of a message at
a node or an external interrupt like a pushed button.

2. A system where control signals are derived from the progression of
real-time is called time-triggered system. The temporal control signal
is generated whenever the real-time clock reaches a priori determined
global points in time, specified in the scheduling table.

The different nodes of a distributed real-time computer system are interconnected
via a real-time communication network. Within a node, the host computer is
connected to the communication controller via a communication network interface
(CNI) [Kop97]. There are two different types of messages that are exchanged via
the communication system, namely event messages and state messages.

Event messages combine event semantics with external control [Kop97]. They
require exactly-once processing and synchronization between sender and receiver
to prevent loss of information.

State messages combine state-value semantics with autonomous control [Kop97].
There is no need for synchronization between sender and receiver, because state
variables are updated in place. The CNI is usually implemented as a dual-ported
RAM and no control signals need to cross the CNI.

3.3.1 Event-Triggered Communication

Event-triggered (ET) communication systems are designed for the transport of
event messages. The temporal control is external to the communication system
[Kop97], it is triggered by the host computer or by the arrival of a request message
from another node. Temporal control in an ET system depends on the behavior
of all nodes in the system and therefore they are not composable.
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Figure 3.1: The dependability tree [ALR01]

3.3.2 Time-Triggered Communication

In at time-triggered (TT) communication system, temporal control resides within
the communication system [Kop97]. It is not dependent on the behavior of the
host computers of the nodes. The communication system autonomously transports
state messages from the sender’s output port to the receiver’s input port at a
priori determined global points in time, and no control signals cross the ports.
The CNI acts as temporal firewall [KN97], isolating the temporal behavior of the
host computer from the temporal behavior of the communication system [Kop97].

3.4 Dependability

The Definition of dependability of a computing system according to [ALR01] is
the ability to deliver a service that can be justifiably trusted. Correct service is
delivered, when the service implements the system’s function (i. e. what the system
is intended to do). Dependability consists of three parts, namely the threats
to, the attributes of and the means by which dependability is attained. This
characterization is shown in the dependability tree [ALR01] in figure 3.1.
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3.4.1 Attributes

Availability means dependability with respect to readiness for usage. It is a
measure of the delivery of correct service with respect to the alternation of correct
and incorrect service. Availability is measured by the fraction of time that the
system is ready to provide service.

Reliability quantifies the continuity of service. It indicates the probability that
a system provides a specified service until a given time.

Safety means absence of catastrophic consequences on the user and the environ-
ment [ALR01]. Kopetz [Kop97] differentiates between malign (critical) failure
modes and benign (noncritical) failure modes. A failure mode is said to be malign
if the cost of a failure can be orders of a magnitude higher than the utility of the
system during normal operation [Kop97].

Confidentiality stands for the absence of unauthorized disclosure of information
[ALR01].

Integrity is intended to avoid incorrect system state modifications and is a pre-
requisite for availability, reliability and safety.

Maintainability describes the ability of a system to be repaired and modified. It
is a measure of the time needed to repair a system after the occurrence of a failure
[Kop97].

3.4.2 Means

Fault prevention is intended to prevent the occurrence of faults by employing
quality control mechanisms during design and manufacturing phases of a hardware
or software product. Those mechanisms can be design rules for hardware and
structured programming or modularization for software.

Fault tolerance is the ability of a system to deliver correct service in the presence
of faults. This is achieved by error detection and system recovery. Error detection
can be concurrent (during service delivery) or preemptive (while service delivery
is suspended). System recovery means the transition from an erroneous system
state i. e. a state that contains one or more errors to an error-free system state.
Error handling can be obtained in three ways: rollback returns the system to a
saved state called checkpoint, compensation eliminates errors by making use of
redundancy and rollforward carries the system to a new state without errors. In
order to prevent faults from being activated again, four steps have to be followed:
fault diagnosis to locate and typify the fault, fault isolation for logical exclusion
of faulty components, system reconfiguration (e. g. activating spare components)
and system reinitialization.
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Fault removal is intended to reduce faults during the development phase and
the operational phase of a system. Validation is a technique to check the sys-
tem behavior against its specification. If any deviation from the intended system
behavior is revealed, fault diagnosis and corrective mechanisms are performed to
prevent the fault from being activated again.

Fault forecasting evaluates the system behavior with respect to occurrence or
possible activation of faults. This evaluation process can either be qualitative
(ordinal) or quantitative (probabilistic).

3.4.3 Threats

A system is said to have failed if the service perceived by the user deviates from
the specified service. A failure is the consequence of an unintended system state
called error. The physical or logical cause of an error is called fault. A fault is
active if it produces an error and is dormant otherwise [ALR01] [Kop97].

Faults

Faults are the physical or logical causes of errors, and thus the indirect cause
of a subsequent failure. They can be categorized into Fault Nature (by chance
or intentional), Fault Perception, Fault Boundaries (internal or external), Fault
Origin (development or operation) and Fault Persistence (permanent, intermittent
or transient) [Kop97].

Transient faults occur at a particular point in time, remain for some time and
then disappear. Possible reasons for transient faults are temperature, pressure, UV
light, electromagnetic interference, etc. Faults that occur from time to time are
called intermittent faults. They are caused for example by loose interconnections
or aging of components. Permanent faults occur at a particular point in time and
remain until the faulty component is repaired. A possible example is a defective IC
board due to the manufacturing process (solder splashes) or a design fault [Ade03].

Errors

An error is an incorrect, an thus unintended system state. If an error exists only for
some time and then disappears, it is called a transient error. If the error persists
until the erroneous component is repaired, it is called a permanent error [Kop97].

Transient errors are typical for systems, where operation can be characterized by
periodic duty cycles (e. g. control loops). An error in the previous duty cycle can
not affect the result of the current or subsequent duty cycles. An example for a
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system prone to permanent errors is a database application where the corruption
of one data element can influence the future system behavior.

Failures

Kopetz [Kop97] defines a failure as an event that denotes a deviation between the
actual service and the specified or intended service. Failures can be classified by
Failure Nature (value or timing), Failure Perception (consistent or inconsistent),
Failure Effect (benign or malign) and by Failure Oftenness (permanent, intermit-
tent or transient).

A value failure occurs when the value of a delivered service does not comply with
the specification. A timing failure means that a service is delivered too early, too
late, or not at all (infinitely late) [Ade03].

Regarding the perception of a failure, we can distinguish between consistent fail-
ures where all users see the same (possibly wrong) result and inconsistent failures.
In an inconsistent failure scenario, the malicious subsystem can present contradic-
tory behavior to each of the correctly operating subsystems. They are also called
two-faced failures, malicious failures or Byzantine failures [Kop97].

3.5 Fault Injection

Faults are rare events that occur infrequently during system operation but in order
to evaluate the behavior of a system in the presence of faults, fault occurrence has
to be accelerated. A technique to insert artificial faults into the system is called
fault injection. Ademaj identifies two purposes of fault injection:

Verification checks if the system behaves as specified in the presence
of faults [Ade03].

Validation is a technique to produce experimental data about the likely
dependability of fault-tolerant systems [Ade03].

Fault injection can be classified into software implemented fault injection and
hardware fault injection.

3.5.1 Software Implemented Fault Injection

Software implemented fault injection (SWIFI) is performed by a piece of code
in order to emulate faults in locations which are accessible to software (memory
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locations and registers). Its main advantages are the high controllability in the
space and time domain and the reproducibility of fault injection experiments.
Faults can be injected either pre-runtime or during runtime:

Pre-runtime SWIFI: When a program instruction is modified be-
fore it is executed on the target hardware we talk about pre-runtime
SWIFI. The fault is activated when the modified part of the program
is executed.

Runtime SWIFI requires additional code that is added to the target
software and is executed along with the target program. There are
several ways to trigger the injection of faults. One way is to use a
time-out mechanism (timer interrupt) to specify the time when a fault
is activated. Fault injection can also be triggered by external hardware
exceptions (interrupts) or by the use of a software trap instruction
before a particular program instruction. When the fault injector is
implemented as part of the user program, we talk about code insertion.

3.5.2 Hardware Fault Injection

Hardware fault injection causes stress of the target system by inserting physical
perturbations like an electromagnetic field or radiation. Hardware injection tech-
niques can be classified into two categories, depending on the way how faults are
injected into the system:

Hardware fault injection with contact: In this case, the fault in-
jector has direct physical contact with the target system. An example
of hardware fault injection with contact is pin-level fault injection which
alters the logical level of signals at the pins of an IC.

Hardware fault injection without contact: The fault injector has
no direct physical contact with the target system. Examples of this
technique are radiation based fault injection, electro-magnetic interfer-
ence (EMI) fault injection and laser based fault injection.

3.6 Partitioning

The main purpose of partitioning is fault isolation. As mentioned in the pre-
vious section, in an integrated system a single physical component is shared by
multiple functions. To ensure that a fault in one function does not propagate to
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another function, each function has its own dedicated partition. Partitioning is
not intended to protect against a hardware failure of a component and therefore,
all functions located on a physical component have a high probability of common
mode failures.

Without partitioning, a failure of a low-criticality function could cause a function
of a higher criticality class to fail which means that all functions have to be assured
to the level of the most critical function. Partitioning eliminates that need and
allows every function to be assured independently to its criticality class.

Rushby [Rus99] distinguishes two dimensions of partitioning, namely spatial and
temporal partitioning which will be described in detail in the next paragraphs.

3.6.1 Spatial Partitioning

Spatial partitioning has to ensure that software in one partition cannot corrupt
software in another partition nor corrupts the use of private devices of other par-
titions [Rus99].

Spatial Partitioning within a single processor

Spatial Partitioning is concerning the possibility that software of one partition
overwrites memory of other partitions. Modern processors usually use a Memory
Management Unit (MMU) to avoid violations of spatial partitioning. Memory
accesses from user applications are translated by the use of tables. The OS kernel
is responsible for managing those MMU tables and providing each partition with
disjoint memory locations. The kernel also uses the MMU mechanisms to protect
itself from being corrupted by user software. The kernel is furthermore responsi-
ble for arranging context switches between partitions so that a partition can be
suspended and resume execution at a later point in time. Rushby [Rus99] distin-
guishes two types of partition swapping arrangements, referred to as restoration
and restart models, respectively.

The wide functionality of MMUs of today’s processors usually exceeds the require-
ments for embedded systems, instead a simple, fixed allocation scheme would be
more adequate.

Another technique to ensure spatial partitioning is Software Fault Isolation (SFI)
[WLAG93]. This method performs array bounds checking not only on references
indexed into an array but on all memory references. This is done by checking
machine code statically or during runtime for instructions using register interdict
addressing mode prior to its use.

To minimize pathways for fault propagation it is important to restrict inter-
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partition communications to those that are needed. Since inter-partition com-
munication is usually asynchronous it is important to take care when dealing with
time-sensitive data. There is a possibility when reading a sample from another
partition that the value is already out of date (temporally inaccurate). Kopetz
proposes a solution called temporal firewall , where an accuracy interval is pro-
vided along with state-data that tells that the sample is accurate until the indicated
time [KN97].

Communication also takes place between partitions and devices. Devices have
to be protected against access by the wrong partition, they must not violate the
partitioning scheme and they may be partitioned themselves. When a partition
has exclusive access to a device, memory mapped I/O is the usual way and MMU
mechanisms are sufficient. If a device is shared among partitions, there are two
cases. The first case where different partitions have read access to a device is not
problematic. In the second case where more than one partition has write access to
a device, things are more complicated. In this case a device management partition
is needed to coordinate accesses to the device.

3.6.2 Temporal Partitioning

Temporal partitioning has to ensure that software in one partition does not corrupt
the temporal properties of another partition, including performance, latency, jitter
and the duration to access its service [Rus99].

Temporal Partitioning within a single processor

In the context of real-time embedded systems it is important not only that results
are correct but they are also delivered at the right time.

The worst concern is that faulty software in one partition might monopolize the
CPU, crash the whole component or it might issue a dangerous instruction like
a HALT and thus denying service to all partitions running on the same compo-
nent. System crashes are usually prevented by spatial partitioning mechanisms
and instructions that can halt the cpu are not allowed in user mode but there are
a number of bugs reported where user-mode instructions can halt the CPU when
supplied with certain parameters [SPL95].

The usual way to deal with overrunning tasks is taking control away from the
affected partition by some kind of timeout mechanism. This will ensure each
partition to get enough access to the CPU but in real-time systems this is not
sufficient. Real-time tasks need to be executed at the right time with predictable
latencies and jitter.

Real-time systems can be scheduled statically or dynamically. In a dynamically

18



CHAPTER 3. CONCEPTS 3.6. PARTITIONING

scheduled systems the points in time when a task is executed is decided at runtime.
This is usually done by assigning a fixed priority to each task. Priorities have to
be chosen in a way that the overall system behavior is predictable and that all
tasks satisfy their deadlines. The most common algorithm for dynamic scheduling
is rate monotonic scheduling (RMS) [LL73]. In a statically scheduled system,
tasks are executed cyclically at a fixed rate. The schedule is calculated during
system development according to the maximum execution time of every task. The
advantage of static scheduling is the complete predictability of the system behavior
and the simplicity of its implementation. The drawback of this scheduling scheme
is the wasteful handling of sporadic tasks (since they are statically scheduled too)
and that long-running tasks have to be split up because of a more frequent task.

3.6.3 Partitioning in a Distributed System

Components in a distributed system usually share a communication medium, such
as a bus. When communicating between partitions on two different processors the
receiving partition can either be scheduled dynamically or statically. While the
dynamic case is less complicated, a static schedule requires interrupts to be latched
until next execution of the particular partition or that partition is guaranteed to
execute at the arrival of interrupts. A useful way to avoid these consequences is
the use of a concentrator device that buffers incoming data without imposing load
on the CPU.

Babbling idiot failures are failures where one transmitter constantly sends (ran-
dom) data and thus denying service to other transmitters by monopolizing the
bus. Rushby [Rus99] distinguishes between babbling partitions and babbling pro-
cessors. A babbling partition can be controlled by a global scheduling scheme. A
babbling processor has to be prevented at the transmitter by the use of a mediator
component which has to be aware of the communication schedule and allows the
transmitting component to access the bus only at specific points in time according
to the schedule. It is important that the mediating component is guaranteed to
fail independently.

Globally scheduled time-triggered systems guarantee that the bus is free when a
component is supposed to transmit but locally scheduled event-triggered systems
have to deal with contention between components attempting to access the bus at
the same time. In CAN (Controller Area Network) [Bos99] for example a priority
based arbitration scheme is used to resolve contention. Such systems only provide
probabilistic bus-access delays and are weak in the presence of faults.
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3.7 Virtual Networks

A virtual network is an overlay network on top of a physical core network. In the
DECOS architecture, virtual networks are implemented on top of a time-triggered
core network. As described in section 3.2, the distributed real-time system is
subdivided into distributed application subsystems, in order to achieve the benefits
from both, federated and integrated system architecture. Each of those DASs is
provided a dedicated virtual network that fits the requirements of the specific DAS.

3.7.1 Characterization of Virtual Networks

A virtual network provides the communication infrastructure of a DAS and can
be characterized by the following properties [OPK05b]:

Functionality: The transport of messages is the basic functionality
that a virtual network has to provide. Different communication topolo-
gies like point-to-point or broadcasting can be distinguished. The
functionality may encompass additional services such as flow control
[OPK05b].

Operational Properties: The operational properties describe the
characteristics in the value and temporal domain. The temporal prop-
erties specify available bandwidths, transmission latencies, and the
employed control paradigm (time-triggered or event-triggered). The
syntactic properties describe message format used in a specific virtual
network.

Namespace: Message names are either explicit (part of message syn-
tax) or implicit (defined by send and receive instants) and are defined
according to the respective DAS. In order to preserve existing names-
paces of legacy applications and to achieve the ability of independent
development of DASs, virtual networks provide a separate namespace
to each DAS [OPK05b].

Dependability: A virtual network can be described by the depend-
ability properties discussed in section 3.4. Those properties arise from
the underlying core architecture and from the implementation of the
virtual network’s high-level services.
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3.7.2 Time-Triggered Virtual Networks

Considering properties like predictability, error detection, fault tolerance and
replica determinism, the time-triggered control paradigm is better applicable
[Kop95], [Rus01]. On this account, safety-critical DASs are strictly time-triggered.
Time-triggered virtual networks can also be employed for a non-safety critical DAS
if state messages are appropriate.

The sender pushes information into the memory element of its output port, while
the receiver pulls information from the corresponding input port. The virtual
network autonomously transports state messages from the sender’s output port
to the receiver’s input port at a priori determined global points in time, and no
control signals cross the ports. This is the concept of a temporal firewall [KN97]
which prevents temporal fault propagation by design. Due to the fact that no
acknowledgement messages are necessary and therefore no back pressure is exerted
on the sender, we talk about implicit flow control.

3.7.3 Event-Triggered Virtual Networks

Event-triggered virtual networks are designed for the sporadic exchange of event
messages. In order to maintain state synchronization between sender and receiver,
exactly-once processing is inevitable. Therefore, messages have to be buffered in
message queues at the input and output ports.

Event-triggered virtual networks can support implicit and explicit flow control. Ex-
plicit flow control occurs when acknowledgement messages are sent by the receiver
and thus back pressure is exerted on the sender. The transmission of a message
through the sender depends on control flow in the opposite direction [OPK05b].

3.8 Gateways

In an integrated system as introduced in [OPT07], communication takes place not
only within a subsystem but also between subsystems. In order to couple those
subsystems, gateways are required. Transparently forwarding information is the
minimum function of a gateway [GZ79]. In the DECOS architecture, three types
of gateways are discussed, namely hidden gateways, virtual gateways and physical
gateways.

A hidden gateway is a gateway at the architectural level. It is trans-
parent to jobs at the application level.
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A virtual gateway is a gateway within a cluster. It connects two virtual
networks within a cluster. Virtual gateways not only have to forward
messages from one network to another, they need to resolve discrep-
ancies in the operational specifications of two distributed application
subsystems (DASs) [OPT07].

A physical gateway connects the physical networks of two different
clusters. It can be situated within a distributed application subsystem
(DAS) or between two DASs.

Gateways are used to resolve differences in the operational specifications (property
mismatches) of two different DASs. If for example an event-triggered DAS and a
time-triggered DAS are connected, there are obvious differences in the temporal
specifications.

3.8.1 Property Mismatches

According to Jones, a property mismatch is a disagreement among connected inter-
faces in one or more of their properties [J+02]. If such a mismatch is not resolved,
a failure can occur during system operation.

When dealing with virtual gateways that are built on top of the same physical
network, property mismatches occur only at the operational and semantic levels
[OPK05a].

Semantic Level

We talk about a semantic mismatch, if the receiver of a message interprets its
meaning differently from the meaning originally intended by the sender of the
message.

A particular case of a semantic mismatch is incoherent naming, where the same
name is assigned to different entities in two different subsystems. Consider for
example two CAN networks linked together by a gateway, where the same identifier
can refer to a temperature value in one network and an engine control value in the
other.

Another case of a semantic mismatch between two DASs occurs when one subsys-
tem uses messages with state semantics, while the other one uses event semantics.
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Operational Level

If there are differences in the operational specifications of ports and links, we talk
about an operational property mismatch. Those mismatches can be of syntactic
nature (e. g. different data types or message lengths) or can arise from different
temporal specifications of the interconnected networks. In the latter case, this hap-
pens when connecting a time-triggered with an event-triggered network or when
two time-triggered networks operate with different periods or phase-shift relation-
ships [OPK05a].

3.8.2 Property Transformation

In order to resolve property mismatches as described in the previous section 3.8.1,
the gateway performs transformations on the information exchanged via the gate-
way.

Semantic Level

Property mismatches at the semantic level are usually resolved by an application-
level gateway instead of a generic gateway because the mismatches are typically
highly application specific [OPK05a].

In the integrated architecture, incoherent naming is resolved by providing a differ-
ent name space to each DAS. If a message has different names in different DASs,
it is necessary for the gateway to change the message name before forwarding the
message to the target network.

Operational Level

Operational mismatches are resolved through generic hidden gateways. In order
to perform syntactic property transformations, the gateway requires a description
of the syntactic format of a message.

When the gateway connects two time-triggered networks, the a priori knowledge
about the send and receive instants is available through port specifications. If the
interconnected DASs use different periods or if they follow different paradigms,
the gateway requires buffering functionality.

3.8.3 Encapsulation

Another purpose of a gateway is the encapsulation of a DAS. Not every message
exchanged within a DAS needs to be visible outside the DAS. This helps under-
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standing the complexity of a DAS and reduces bandwith costs between DASs.
Encapsulation is also used to perform error containment by preventing the prop-
agation of faulty messages through the gateway.

Selective Redirection

If the gateway has the ability to decide whether messages are forwarded or blocked,
we talk about selective redirection. This requires filtering mechanisms in the tem-
poral and value domain to be applied. In the value domain, the gateway checks
the message contents (i. e. user data, message names and types). In the temporal
domain, the temporal patterns of the traffic is monitored [OPK05a].

Complexity Control

Selective redirection reduces the messages that are visible outside a specific DAS.
This feature also helps to minimize the mental effort required to understand a
DAS and therefore reduces the complexity of the system.

Error Containment

Fault Containment Regions (FCRs) are used to restrict the impact of a fault to
a specific region, but if faulty messages are exchanged between DASs, erroneous
data can propagate across the boundaries of an FCR. In order to provide error
containment to avoid the propagation of erroneous messages to another DAS, the
selective redirection of messages at a gateway must be controlled by error detection
mechanisms [OPK05a].
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Chapter 4

A Model for an Integrated
Architecture with Automated
Tests

In this chapter, we develop a model for our validation framework but before we
can do that, we need to take a look at the logical structure of DECOS which is our
target architecture. Then we introduce the fault model to describe which types of
faults we want to cover with our experiments. Finally, in section 4.5, we present
the actual model of our framework.

4.1 Logical Structure of the DECOS Architec-

ture

As already mentioned in section 3.2, the DECOS architecture provides a frame-
work for the development of distributed embedded real-time systems. The over-
all system is divided into nearly-independent distributed application subsystems
(DASs), possibly of different levels of criticality. Every DAS has its own dedicated
computational and communication resources.

4.1.1 Services of an Integrated Architecture

There are a number of architectural services that separate the applications from
the underlying platform technology. In order to maximize the number of platforms
and applications that can be covered, those services are grouped into a minimal
set of core services and into an open-ended number of high-level services that are
built on top of the core services. This abstraction is depicted in figure 4.1
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Figure 4.1: DECOS Integrated architecture [OPK05b]

Core Services

A platform for an architecture that supports the integration of multiple DASs with
different levels of criticality must support the safety requirements of the highest
considered criticality class. According to [OPT07], the core architecture for safety-
critical real-time systems must provide the following services:

Deterministic and Timely Transport of Messages: This service
is responsible for the transport of state messages from the sender’s
communication network interface (CNI) to the CNI of the receiver.
The timely transport of messages with minimal latency and jitter is
crucial for control stability in real-time applications [OPT07].

Fault-Tolerant Clock Synchronization: Because of the fact that
the clocks of different nodes will drift apart with the progression of time,
it is necessary to perform synchronization algorithms on the clocks to
keep them in close relation with respect to each other. Clock synchro-
nization is a fundamental service in a time-triggered system [OPT07].

Strong Fault Isolation: Fault Containment Regions (FCRs) are
used to restrict the impact of a fault to a specific region, but fault
effects manifested in erroneous data can propagate across FCR bound-
aries. To avoid error propagation, the system must also provide error
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containment by applying error detection mechanisms. The error detec-
tion mechanisms must be part of a an FCR different from the sender
of the erroneous message. Therefore, at least two FCRs are necessary
to perform error containment. The set of FCRs that perform error
containment is called Error Containment Region (ECR) [OPT07].

Consistent Diagnosis of Failing Nodes: A membership service at
component level keeps track of the operational state of nodes in the
cluster. In a time-triggered system, the receiver knows a priori when
messages are about to arrive and therefore, the arrival of messages is
interpreted as a life sign from the sending node.

Any architecture that provides these core services can be used as the
core architecture of the DECOS integrated architecture. Examples
of suitable architectures are the Time-Triggered Architecture (TTA)
[Kop98] and FlexRay [Fle05].

High-Level Services

The high-level services are based on the core services. They are DAS specific and
provide the interface for the jobs (cf. section 5.3.5) to the underlying platform.

Encapsulation Service: This service is responsible for spatial and
temporal error containment [Rus99] at component level. We distinguish
between error containmemt between the safety-critical and the non
safety-critical subsystem and error containment between jobs at each
subsystem.

Virtual Network Service: cf. section 3.7

Gateway Service: cf. section 3.8

Fault-Tolerance Service: In order to remain available despite the
occurrence of component failures, an application service can be imple-
mented by a group of redundant jobs at independent components. A
group can mask failures of its members if the number and types of
failures is covered by the failure mode assumptions. A prerequisite for
systematic fault-tolerance is replica determinism [Pol96] by the archi-
tecture and the application [OPT07].

Diagnostic Service: This service is an extension of the core diagnos-
tic service. We can distinguish between diagnostic acquisition service
that monitors the port state of each job, and the diagnostic dissemi-
nation service that is forwarding information for a subsequent analysis
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and must not depend on any control signals from the information con-
suming system.

4.1.2 Virtual Networks

Virtual networks provide the communication infrastructure for DASs. Each DAS
has its own dedicated virtual network that fits its specific requirements. We can
distinguish between time-triggered virtual networks and event-triggered virtual
networks (3.7).

The interface between the virtual network and the applications running on it are
called links, consisting of one or more state or event ports.

A port is dedicated to the transport or reception of a single message. A port spec-
ification captures the syntactic and temporal properties of the message instances
and has a statically defined data direction (input or output port).

4.1.3 Jobs

Jobs are basic units of work that are scheduled periodically. They are host to the
user application of a DAS that can be distributed across jobs in different nodes of
the cluster.

A Job can access the communication infrastructure by fetching links that contain
the required port specifications of the input or output ports the job is intended to
send to or to receive messages from.

4.1.4 Gateways

In section 3.8 we defined gateways as a coupling between subsystems and distin-
guished three different kinds of gateways, namely, hidden gateways, virtual gate-
ways and physical gateways.

In our model of an integrated architecture we use hidden virtual gateways in order
to interconnect virtual networks at the architectural level, transparent to jobs at
the application level.

Within a gateway, we can distinguish three different parts [OHP07]:

The Feeder Network Adaptor receives messages from ports to-
wards the virtual network where the sender of the message is located.
It then dissects a message into its convertible elements (i. e. parts of a
message that need no further subdivision) and pushes them into the
gateway repository.
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The Gateway Repository is a real-time database that stores the
convertible elements of messages sent via the gateway. It is also re-
sponsible for resolving property mismatches in the value domain. The
resolving of property mismatches in the time domain is within the re-
sponsibility of the network adaptors.

The Retrieval Network Adaptor is responsible for constructing the
messages from convertible elements of the gateway repository. It then
transmits the message via a port towards the receiving virtual network
according to the properties from the port specification.

4.2 Communication Model

In our communication model, we differentiate between three types of messages,
namely, periodic messages, sporadic messages and aperiodic messages.

Periodic messages are sent at equidistant points in time. The time
between two message transmissions is called a period. This commu-
nication model is typical for time-triggered networks, where message
transmissions are scheduled at a priori defined points in time.

Sporadic messages are typical for event-triggered networks where
message transmission is triggered by events at unknown points in time.

When we consider messages without constraints regarding their tim-
ing, we talk about aperiodic messages.

4.2.1 Message Bursts

When a sender is allowed to send multiple messages in immediate succession, this
is called a messages burst. The sender then has to maintain a specified inactivity
interval before starting the next burst.

The activity interval where the sender is allowed to send a maximum number of
burstcount messages is called burst time. We refer to the inactivity interval as
silence time.

4.3 Fault Model

In the fault model, we describe which faults we take into consideration and the
computer system should be able to tolerate. Therefore we need to specify fault
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containment regions (FCRs) and error containment regions (ECRs).

Faults can be categorized into software faults and hardware faults.

4.3.1 Software Faults

Looking at the software of a node computer, we can distinguish between system
software (operating system) and application software (jobs). All software on a
node computer is dependent on the correct behavior of the system software and
therefore, all node computers on which a particular system software is deployed
represent a common FCR for software faults affecting the system software [OP06].

For software faults affecting the application software, we regard a software com-
ponent as an FCR [OP06]. A software component component consists of one ore
more jobs and my be replicated across several nodes. All replicas depend on the
same program and inputs and can not be assumed to fail independently. Figure
4.2 shows the fault containment regions and the error containment region that is
formed by a faulty job along with the gateway that prevents error propagation.

Figure 4.2: Fault and Error Containment Regions for Software Faults [OHP07]

We distinguish between two types of failures resulting from software faults:

A timing message failure occurs when information is written into
a port at an unspecified point in time.

A value message failure occurs when the contents of a message
that is written into the port do not comply with the specification.
These incorrect message contents can encompass the message name
(for explicit names only) and/or the message data (implicit and explicit
names).

4.3.2 Hardware Faults

A hardware fault affects physical resources like mechanical or electrical compo-
nents. They originate from development (design faults) or from conditions during
operation (e. g. wearout or perturbations like electro-magnetic interference).
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A node computer contains shared physical resources (e. g. processor, memory,
power supply oscillator) and if any of this resources is corrupted by a fault, several
or all of the software components running on a node could be affected. Therefore,
we regard every node computer along with the software components running on
that node as a fault containment region (cf. figure 4.3) [OP06]. The failure modes
are the same as they are for software faults, only, they affect multiple ports.

Figure 4.3: Fault and Error Containment Regions for Hardware Faults [OHP07]

4.4 Error Containment

In section 4.1.4, we distinguished three different parts of a gateway, the feeder
network adaptor, the retrieval network adaptor and the gateway repository, each
of which can exert error containment mechanisms (cf. figure 4.4).

Figure 4.4: Error Containment Stages in the Gateway [OHP07]

4.4.1 Spatial Partitioning

Spatial partitioning (cf. section 3.6) is concerned with error containment with
respect to value message failures. In the fault model 4.3, we defined a value
message failure as the case when a the content of a message written into a port
does not comply with the specification. If a message contains an explicit message
name, a timing message failure could lead to spatial interference:
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An invalid source address results in a masquerading failure because
the origin of the message is falsified.

An invalid destination address can be the cause of harmful effects
at the unintended receiver while the intended receiver never receives
the message.

If the message identifier is corrupted, the content of a message is
likely to be misinterpreted (e. g. a temperature value mistaken for a
speed value).

Spatial Partitioning using Message Objects

A gateway receives messages from a virtual network and dissects its contents into
convertible elements. The network adaptors of the gateway are implemented as
timed gateway automata (TGA) and the convertible elements are stored as TGA
variables. The messages that are sent by the gateway are assembled from a set of
those TGA variables. We define a message object by the following tuple:

Message object: < Ports, TGA Variable, Name >

The element ports specifies the ports, where the messages are sent and received.
TGA variable defines the content of the message and name is used to distinguish
message objects. The gateway is provided with information about the structure of
the messages is handles at startup. It uses this information to compare the struc-
ture messages with the intended structure during operation and discards messages
that do not conform with the specification. Figure shows an example of this pro-
cess for a set of CAN messages. Two TGA variables accept messages from the
same port, but exhibit different message names. A third message which is located
in the port is discarded, since it is not associated with a TGA variable.

Figure 4.5: Example for Spatial Partitioning by Feeder Network Adaptor [OHP07]
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Spatial Partitioning using TGA

The use of TGA allows to specify criteria whether messages should be forwarded
or discarded by the gateway. Figure 4.6 depicts the simplest case of spatial par-
titioning realized using a TGA in the feeder network adaptor. The TGA specifies
a transaction that starts with a message reception to acquire a message from a
port (i. e. , transition label ”rcv(m)”) and ends with a push operation to forward
the information into the gateway repository (i. e. , transition label ”push(m)”). In
between, the transaction executes a check (i. e. , transition label ”f(m)”) on the
message contents that determines whether the message is discarded.

Figure 4.6: Partitioning in Feeder Network Adaptor using TGA [OHP07]

Spatial partitioning at the retrieval network adaptor works in the same manner,
only that the specified criteria are applied to convertible elements pulled from the
gateway repository. A simple automaton is shown in figure 4.7.

Figure 4.7: Partitioning in Retrieval Network Adaptor using TGA [OHP07]

The gateway repository has the ability to perform syntax conversion by the use of
a so called transfer syntax. If the arrival of a new convertible element triggers a
conversion, the target convertible element is computed. Criteria can be specified
whether an update of the target element should be performed or not.
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4.4.2 Temporal Partitioning

Error containment with respect to timing message failures results in temporal
partitioning (cf. 3.6). The gateways preserve predefined temporal properties (i. e.
bandwidths, latencies) of the interconnected networks despite the redirection of
messages.

Temporal Partitioning at the Feeder Network Adaptor

The feeder network adaptor has a priori knowledge about minimum interarrival
time and discards messages that represent timing message failures (a message
that violates interarrival times). Figure 4.8 shows two examples for temporal
partitioning using TGA in the feeder network adaptor. The TGA on the left hand
side (cf. 4.8(a)) maintains an interarrival time of 20 ms, meaning that a receive
operation with a subsequent push into the repository starts a silence interval of
20 ms. The TGA on the right hand side (cf. 4.8(b)) supports 10 message receptions
in immediate succession and enforces an inactivity interval of 20 ms between any
two bursts.

(a) minimum interarrival time (b) minimum interarrival time with burst

Figure 4.8: Temporal Partitioning in Feeder Network Adaptor using TGA

Temporal Partitioning at the Retrieval Network Adaptor

The retrieval NWA reads from the gateway repository and uses a priori knowledge
about temporal properties to discard messages representing timing message fail-
ures. The TGA of the retrieval NWA maintains interarrival times and supports
burst like the TGA of the feeder NWA.

Temporal Partitioning at the Gateway Repository

The gateway repository supports separate buffering of different convertible ele-
ments and a timing message failure resulting in the overload of one convertible
element does not affect the other convertible elements.
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4.5 A Framework for Automated Tests

As we already stated in the introduction, our approach for convenient experimental
evaluation is the development of a framework that is capable of automatic execu-
tion of tests and the ability to monitor the system under test. In our model, the
framework consists of a test controller and monitor and an execution environment
in which the tests are executed. The model is depicted in figure 4.9.

Figure 4.9: Model of a Test

Test cases are manifested in a test description that serves as input to the test
controller. The controller then feeds the execution environment with the param-
eters from the test description and controls and monitors the target hard- and
software at runtime. At the end of a testrun the controller fetches the gathered
measurements and analyzes the results.

The following paragraphs describe how fault injection and monitoring are per-
formed at runtime.

4.5.1 Fault Injection

We want to evaluate the behavior of the system in the presence of faults and
therefore, an important requirement for a validation framework is the ability to
induce faults into the system. We pursue the approach of software implemented
fault injection at runtime [Ade03].

SWIFI at Runtime via Jobs

The target application jobs send and receive messages according to the parameters
they get from the test controller at startup. Faults are injected into the system by
providing faulty parameters to the jobs. The following parameters can be specified:
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Initial Delay specifies the point in time when a particular message is
sent for the first time.

Fixed Delay is a constant constant period of time between the trans-
mission of two consecutive messages.

Random Delay allows us to randomize the gap between message
transmissions. Fixed delay and random delay together specify peri-
odic, aperiodic or sporadic behavior.

Direction specifies the data direction for a particular message.

Mode specifies if a message should be sent only once (one-shot mode)
or repeatedly (continuous mode).

Message ID identifies a message.

Message Length indicates the length of the message in bytes.

The parametrization of the message transmission behavior of jobs allows us to
create a wide variety of fault scenarios without changing the target application’s
source code. By setting the parameter initial delay, we can specify the point in time
when a fault is injected into the system. By setting Fixed delay and random delay
accordingly, we can achieve periodic, aperiodic or sporadic behavior and allows
us to produce timing message failures. Naming message failures are produced by
setting wrong message ids or message lengths.

4.5.2 Monitoring

Our framework provides the possibility to monitor the system under test. The
monitoring service is integrated within the target application. The application
jobs produce records for every send and receive operation that are analyzed by the
test controller after the test has finished. The jobs also have the possibility to send
diagnostic messages to the controller that are sent over a separate communication
channel instead of the tested network. This situation is illustrated in figure 4.10.

4.5.3 Requirements

In the introduction, we identified three major requirements our framework has to
meet, namely:

• Monitoring of the system under test without probe effects
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Figure 4.10: Monitoring Access

• The ability to induce faults into the system

• Reproducibility of tests

As mentioned in section 4.5.2, monitoring is performed by the application jobs
running on the execution environment. The measurements of an experiment are
fetched by the test controller after the experiment has finished execution and not
transmitted during the test in order to prevent probe effects.

The message formats, contents and timings are derived by the application jobs
from parameter files provided by the test controller. Fault injection is achieved by
providing faulty parameters, representing naming or timing message failures, to
the jobs.

The parameters needed for the execution of a specific testcase are derived from
files containing testcase descriptions. Those testcase descriptions are stored on a
server which allows us to reproduce tests anytime and by anyone.
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Chapter 5

Implementation of the Framework

This chapter begins with a description of the prototype implementation of a DE-
COS cluster. Section 5.1 describes the hardware of the DECOS cluster, while sec-
tion 5.2 is dedicated to the node software, including the operating system, virtual
networks and gateways, as well as the execution environment for the application
software. The rest of this chapter is dedicated to the measurement framework that
has been set up to evaluate the virtual gateways of the prototype implementation.

5.1 Cluster Hardware

This implementation comprises a cluster with five integrated components, inter-
connected by a physical TTP core network. Each of those components consists
of three single board computers, using 100 Mbps Ethernet for component-internal
communication. One of them implements the Basic Connector Unit (BCU) and
provides the DAS independent core services of such an integrated architecture.
The other two represent the secondary connector units, one for the safety-critical
subsystem (SCU) and one for the non safety-critical subsystem (XCU). They host
the application soft-ware and provide DAS specific high-level services. The cluster
is depicted in figure 5.1.

The basic connector unit hardware is a TTTech monitoring node [TTT02b],
equipped with an embedded PowerPC processor from Motorola with on-chip fast
Ethernet for component internal communication and a TTP/C [TTT02a] commu-
nication controller for time-triggered communication with other components.

For the secondary connector units we use the Soekris Engineering net4521 sin-
gle board computers. They are based on a 133 MHz 486 class Elan processor
from AMD. They have two 10/100 Mbit Ethernet ports, 64 Mbyte SDRAM main
memory and use CompactFlash modules for program and data storage. Two
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Figure 5.1: DECOS Prototype Cluster [HPOS05]

PC-Card/Cardbus adapters allow us to equip the nodes with a PCMCIA-based
LIN/CAN interface card that can thus work as physical gateways to a physical
CAN or LIN network.

Every target computer has an NFS connection to a server from where it can fetch
the latest applications. This connection can also be used for monitoring purposes.
The monitoring access is described in detail in section 5.3. Figure 5.2 shows
the interaction between BCU, SCU and XCU in a DECOS component and the
connection to the server.

5.2 Node Software

The node software consists of the operating system, the real-time scheduler, the
high-level services (VN Service, Gateway Service, Task Wrapper) and the user
applications. Every part will be described in detail in the following subsections.

5.2.1 Operating System

Every node, BCUs as well as secondary connector units, uses the embedded real-
time variant RTAI (Real Time Application Interface) [BBD+00] as its operating
system. It combines a real-time hardware abstraction layer (RTHAL) with a real-
time application interface, thus making Linux suitable for hard real-time applica-
tions. In our case, RTAI v3.1 on a Linux 2.6 Kernel including the real-time RTnet
Ethernet driver suite is used. While in the BCUs only kernel modules are used,
the net4521 nodes make use of the partitioning capabilities of the RTAI/LXRT
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Figure 5.2: A DECOS Component

extension. LXRT enables the development of hard real-time programs running
in user space instead of kernel space. Furthermore, LXRT eases the communica-
tion between hard real-time and non real-time processes, which can be utilized
for monitoring and debugging of the hard real-time processes, without affection
their real-time behavior [HPOS05]. In case of software failures within a job, the
LXRT-based execution environment prevents the software in one partition from
disrupting the software of any other partition, i. e. partitioning inhibits the prop-
agation of software failures between jobs. According to the fault hypothesis of
the DECOS integrated architecture, a job is regarded as FCR for software faults
[OPT07]. In our prototype implementation, secondary connector units and ap-
plication computer share the same computational resources. Thus, in case of a
software failure of one or more jobs, partitioning ensures the undisturbed execu-
tion of the high-level services as well as of the remaining jobs.

5.2.2 Virtual Networks

The virtual network configuration [OPK05b] that has been set up on the prototype
cluster for the evaluation process consists of four virtual networks. There are
two safety-critical time-triggered networks and two event-triggered networks. The
safety-critical TT networks are called By-Wire DAS and Navigation DAS. The

41



5.2. NODE SOFTWARE CHAPTER 5. IMPLEMENTATION

Network Description Paradigm Criticality

NETWORK BYWIRE By-Wire DAS TT safety-critical
NETWORK COMFORT Comfort DAS ET non safety-critical
NETWORK NAVIGATION Navigation DAS TT safety-critical
NETWORK LIGHTS Lights DAS ET non safety-critical

Table 5.1: Virtual Network Configuration

ET networks are both non safety-critical and are called Comfort DAS and Lights
DAS. The messages exchanged over the ET networks are either CAN messages
(Extended CAN Message format) [Bos99] or IP messages. Table 5.1 gives an
overview of the virtual networks named above. They are all intended to apply to
typical applications in the automotive industry.

5.2.3 Global Time Service

The DECOS integrated architecture uses a uniform 64 bit long time format which
is closely related to the GPS time format. It has been standardized by the OMG in
the smart transducer interface standard [OMG, 2003]. The smart transducer time
format has a granularity of 2-24 seconds (about 60 nanoseconds) and a horizon of
240 seconds (more than 30000 years). The epoch starts with the epoch of the GPS
time i. e. , January 1980. The global time is accessible by the user applications
through a shared memory on every component.

5.2.4 Gateways

In the exemplary setup, only hidden virtual gateways [OPK05a] are used. The
gateways are listed in table 5.2. Table 5.3 shows the communication partners for
the gateways.

The following paragraphs will describe the gateways in detail.

Gateways between two time-triggered networks

This type of gateway interconnects two time-triggered networks (By-Wire DAS
and Navigation DAS), so no queues are necessary. The Feeder NWA reads the
state variable from the input port and updates the convertible element (a 4 byte
sequence number) in the repository. The Retrieval NWA reads out the convertible
element from the repository and updates the state variable in the output port.
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Gateways between two event-triggered networks

There are four gateways that interconnect the two ET networks (Comfort DAS
and Lights DAS), one for CAN messages (named ET1 to ET2) and the other
one for IP messages (IP GW, IP2CAN and CAN2IP). At ET1 to ET2 a semantic
property mismatch occurs, because the CAN message from the feeder network
has another identifier than the CAN message that has to be sent on the retriever
network (because of different name spaces). This mismatch is resolved by storing
the appropriate identifiers at the corresponding NWAs.

The Feeder NWA consumes messages from the queue at the input port, extracts the
convertible element (a 4 byte sequence number) and pushes it into the repository
(with queue length 10). The Retrieval NWA pulls a convertible element from the
repository creates an ET message with the appropriate syntactic (CAN or IP) and
semantic (correct CAN identifier) properties and inserts it into the queue at the
output port.

Gateways connecting time-triggered and event-triggered networks

Event-triggered to time-triggered

Two different control paradigms have to be combined at this gateway. As in the
ET to ET gateways, the Feeder NWA receives messages from an incoming queue
and pushes the convertible element into the repository (queue length 10). When
a convertible element is available in the repository, the Retrieval NWA updates
the state variable in the output port. The difference is, that, according to the TT
paradigm, a message containing the state variable is sent across the network in
every TDMA round anyway.

Time-triggered to event-triggered

This gateway combines a TT and an ET network (By-Wire DAS and Comfort
DAS). The Feeder NWA receives a state message in every activation round and
updates the data in the repository in place (no queue). The Retrieval NWA has
to recognize a change in the state variable as an event, create an ET message and
inserts it into the outgoing queue.

Gateways implementing a client/server architecture

This type of gateway implements a client/server architecture where the gateway
acts as the server. It receives requests from the ET network (Comfort DAS) and
answers with a response message containing the required data (the state variable
from the TT network (By-Wire DAS)). In this case we can’t really talk of a Feeder
and a Retrieval NWA. Instead, there is one network adaptor that receives state
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Figure 5.3: Functionality of the Request/Reply Gateway

messages from the TT network and updates the repository once per TDMA round,
while the other network adaptor implements the request/reply mechanism. Every
request message contains a sequence number that has to be packed into the reply
message along with the real-time data. The behavior of the gateway is depicted
in figure 5.3.

The spatial partitioning mechanisms are implemented at the Feeder NWA. There-
fore two messages are stored at the gateway, a reference message and a mask
message. The message received from the input port is masked with the mask
message and then compared to the reference message. If there is a mismatch in
the length or in the message name, the message will be discarded. If the message
passes the comparison, it will be processed by the gateway.

In order to perform temporal partitioning, the Feeder NWA makes use of the global
time. The gateways were created with the Gateway Code Generator (gwcg) [H0̈6]
and were enhanced with a so called burst mode. This allows the gateway to limit
the bandwidth across virtual networks and to enforce different timing schemes of al-
ternating burst and silence periods. Figure 5.4 shows the automaton of the Feeder
NWA. It can be seen that the gateway starts in the waiting state. If a message is
available in the incoming queue, a new burst starts and burstTime and silenceTime
are set using the predefined values BURST TIME and SILENCE TIME from a
global header file. A burst lasts until burstTime has elapsed and the GW accepts
BURST COUNT at maximum. Any messages exceeding that value are deleted
(i. e. removed from the queue without forwarding). When in silence the gateway
does not accept any messages. An overview of the important parameters can be
found in table 5.4. Since the global time is updated only once per activation, the
burst and silence times are limited to multiples of the TDMA round length (10 ms)
of the cluster.

The source code of the Feeder NWA automaton of an ET to TT gateway can be
found in listing 5.1. At the beginning of every activation, currentTime is updated
with the global time. The initial state is waiting (line 8), where burstTime and si-
lenceTime are set. State burst action (line 20) is where the receive operation takes
place and the convertible element is pushed into the repository, if the reception
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Figure 5.4: Timed Gateway Automaton of the Feeder Network Adaptor

Parameter Description

BURST TIME duration of burst in µs
SILENCE TIME duration of silence in µs
BURST TIME maximum number of messages per burst
ROUND TIME duration of one TDMA round

Table 5.4: Parameters for Burst Mode

succeeded and the state is switched to burst wait (line 38). As long as the burst
is active and messages are available in the incoming queue, the gateway toggles
between burst action and burst wait.

1 stat ic void atm0 number export ( void ) {
2

3 short guardEnabled = 0 ;
4 currentTime = shmTime−>time ;
5

6 do {
7 switch ( s t a t e ) {
8 case wait ing :
9 i f ( avai l m (&( gw messages [ 0 ] ) ) ) {

10 a v a i l t o t a l ++;
11 burstTime = actTime + US TO GT64(BURST TIME) ;
12 s i l enceTime = burstTime + US TO GT64(SILENCE TIME ) ;
13 guardEnabled = 1 ;
14 rcv msgs = 0 ;
15 s t a t e = b u r s t a c t i o n ;
16 } else {
17 guardEnabled = 0 ;
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18 }
19 break ;
20 case b u r s t a c t i o n :
21 i f ( rcv msgs < BURST COUNT) {
22 i f ( rcv (&( gw messages [ 0 ] ) ) ) {
23 atm0 rep ce000=atm0 m000 ce000 ;
24 push(&( atm0 rep ce000 ) ) ;
25 rcv msgs++;
26 }
27 } else {
28 // remove msg
29 while ( avai l m (&( gw messages [ 0 ] ) ) ) {
30 a v a i l t o t a l ++;
31 rcv (&( gw messages [ 0 ] ) ) ;
32 r c v t o t a l ++;
33 r emove tota l++;
34 }
35 }
36 s t a t e = bur s t wa i t ;
37 break ;
38 case bur s t wa i t :
39 i f ( currentTime < burstTime ) {
40 i f ( avai l m (&( gw messages [ 0 ] ) ) ) {
41 a v a i l t o t a l ++;
42 s t a t e = b u r s t a c t i o n ;
43 guardEnabled = 1 ;
44 } else {
45 guardEnabled = 0 ;
46 }
47 } else {
48 s t a t e = s i l e n c e ;
49 guardEnabled = 1 ;
50 }
51 break ;
52 case s i l e n c e :
53 i f ( currentTime >= si l enceTime ) {
54 guardEnabled = 1 ;
55 s t a t e = wait ing ;
56 } else {
57 guardEnabled = 0 ;
58 // remove messages
59 while ( avai l m (&( gw messages [ 0 ] ) ) ) {
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60 a v a i l t o t a l ++;
61 rcv (&( gw messages [ 0 ] ) ) ;
62 r c v t o t a l ++;
63 r emove tota l++;
64 }
65 }
66 break ;
67 default :
68 break ;
69 }
70 } while ( guardEnabled ) ;
71 }

Listing 5.1: Gateway Automata

5.2.5 Execution Environment

The execution environment consists of a static scheduler and the task-wrapper
that periodically executes high-level services and application jobs.

The scheduler is an RTAI kernel module. It runs in kernel space with highest
system priority and is responsible for all LXRT tasks of its scope. If some task
fails to finish within its associated time slot, the scheduler suspends this task to
ensure that temporal partitioning can be guaranteed. For more details about the
temporal partitioning in the DECOS prototype implementation see [HPOS05].

Every component in the cluster hosts three application jobs (job1, job2 and job3).
The jobs run in user space and allow the user to access the virtual networks by
fetching links according to the VN configuration.

Application jobs have two entry points, one called once for initialization named
init point() and another one called periodically named entry point(). Those entry
points are called by the task-wrapper that is linked with the jobs. What the
application jobs actually do is part of the measurement application that is discussed
in the following section 5.3.

More details about the execution environment of the prototype cluster and the
high-level services can be found in [HPOS05] and [H0̈6].
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5.3 The Measurement Framework

A measurement framework has been implemented in order to evaluate the virtual
gateways of the prototype implementation described in the previous sections of
this chapter. The results of the experimental evaluation are discussed in chapter
6. The framework consists of the following parts:

• A control application with a graphic user interface (GUI) that in-
cludes an XML parser and the analysis tool that is used to analyze the
results of a test. It is also responsible for the coordination of a test.

• The XML parser of the control application takes XML files containing
the specification of a test case as input and generates a file in the
character separated value (CSV) format that is readable by the test
run generator running on the target nodes.

• A test run generator is installed on the target nodes. It reads the
parameters from a CSV file and writes them into a shared memory for
every job running on the node.

• The application jobs act as senders and receivers of the system and
act according to the parameters stored in the shared memory. They
are also responsible for recording their operations for the analysis after
the test.

• The control application comes with an analysis tool that gathers the
records of all the test runs of a test and analyzes the properties we are
interested in (i. e. minimum, maximum and average latencies, band-
widths, message loss).

• Test cases for the experimental evaluation are specified in XML files
that provide the input for the control application

• Monitoring access to the target nodes is provided via the serial in-
terface.

Figure 5.5 shows the data flow in the measurement framework, beginning with the
XML specifications as input and resulting in the output of CSV files containing
the statistics of a test.

The dataflow in a target node (SCU or XCU)during a test run is shown in figure
5.6. At cluster start-up, the file containing the parameters is fetched from the
DECOS server via NFS. It is then read by the test run generator that writes the
parameters into a shared memory. Every application job has its own dedicated
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Figure 5.5: Data Flow in the Framework

shared memory. During a test run, the jobs send and receive messages according
to the specified parameters and record their operations. At the end of a test run,
the jobs write their records to a file that is copied to the DECOS server.

Figure 5.6: Data Flow at SCUs / XCUs

The following subsections describe the particular parts of the measurement frame-
work in detail.

5.3.1 Control Application (GUI)

The control application for the measurement framework can be installed on any
computer with a connection to the internet. It is written in Java and provides a
graphic user interface (GUI) through which the user can specify, coordinate and
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Figure 5.7: GUI of the Measurement Framework

monitor a test. A screenshot of the GUI is depicted in figure 5.7.

The user begins by opening an XML file containing the specification of a particular
test case which is then processed by the application. The parameters are then
stored in a local CSV file. If the user decides to start a test, the application opens
an SSH (secure shell) connection to the DECOS server (decos.vmars.tuwien.ac.at)
and uses the secure copy protocol (SCP) to transfer the parameters to the server.
The cluster is switched on via a remote controlled power switch via IP or the
RS232 interface.

At the end of a test run, the records are available at the DECOS server. The control
application opens an SSH connection and creates a zipped file that contains the
records of all nodes in the cluster. The file is copied to the local host via SCP and
is then processed by the analysis tool. The analysis tool is described in section
5.3.6.

The control application can also be used to manually turn the DECOS cluster on
and off via the remote controlled power switch.

5.3.2 XML Specifications

An XML specification contain all the parameters that are necessary to execute a
test on the DECOS cluster. First of all, it contains the name of the test case and
the number of test runs that specifies how often the test should be repeated. It
may as well contain a brief description to describe the purpose of the particular
test case for a human reader.

Every test run consists of at least one message and at least one record. A message
element requires a network and at least one link in this network to specify the
sending communication partner(s) for this type of message. The attributes of a
message describe the syntactic format and the temporal properties for the message.

52



CHAPTER 5. IMPLEMENTATION 5.3. FRAMEWORK

A record defines a communication partner that is intended to record receive oper-
ations. Like a message, it consists of a network and links in the network but has
no further attributes.

A link has a link id and consists of one ore more ports along with their port id. If
no ports are specified, every port of the link is used.

The networks, links and ports used in the specifications have to match the setup
in the virtual network configuration of the cluster.

Listing 5.2 shows the document type definition (DTD) for the specifications.

1 <?xml version=’ 1 .0 ’ encoding=’ utf−8 ’ ?>
2 < !ELEMENT t e s t c a s e ( ( d e s c r i p t i o n )? , ( t e s t run ) )>
3 < !ATTLIST t e s t c a s e
4 name CDATA #REQUIRED
5 nTestruns CDATA #REQUIRED>
6

7 < !ELEMENT d e s c r i p t i o n (#PCDATA)>
8

9 < !ELEMENT t e s t run ( ( message )+ , ( record )+)>
10

11 < !ELEMENT message ( ( l i n k )+ , ( network ) )>
12 < !ELEMENT r ecord ( ( l i n k )+ , ( network ) )>
13 < !ATTLIST message
14 type (REPEAT | ONE SHOT) #REQUIRED
15 i n i t i a l d e l a y CDATA #REQUIRED
16 f i x e d d e l a y CDATA #REQUIRED
17 random delay CDATA #REQUIRED
18 msg len CDATA #REQUIRED
19 msg id CDATA #REQUIRED>
20

21 < !ELEMENT l i n k ( ( port )∗ )>
22 < !−− i f no por t s p e c i f i e d , s e l e c t a l l p o r t s o f t h a t l i n k −−>
23 < !ELEMENT port EMPTY>
24 < !ELEMENT network EMPTY>
25 < !ATTLIST l i n k l i n k i d CDATA #REQUIRED>
26 < !ATTLIST port p o r t i d CDATA #REQUIRED>
27 < !ATTLIST network network id CDATA #REQUIRED>

Listing 5.2: Document Type Definition of a Test Case
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5.3.3 XML Parser

The control application includes an XML parser that is invoked whenever the user
opens a test case specification. It is a SAX (Simple API for XML) parser that is
capable of validating the input file against the document type definition (DTD).

After data extraction, the application stores the parameters in a CSV file that is
transferred to the server at the begin of a test run and can be processed by the
test run generator running on the target computers.

5.3.4 Test Run Generator

During the start-up phase of the DECOS cluster, the target nodes establish an NFS
(Network File System) to the DECOS server in order to fetch the user applications
as well as the parameters for the current test run.

The parameters for the test jobs for all nodes are contained in a single CSV file.
Before the jobs are started, the test run generator is executed to process the file,
extract the parameters, arranges them into execution blocks (cf. section 5.3.5)
and writes them into a shared memory. Every job has its own dedicated shared
memory location.

5.3.5 Application Jobs

The application jobs are the most important part of the measurement framework.
They are time aware, by making use of the global time service discussed in section
5.2.3. The jobs are responsible for sending and receiving messages across the
network and to log the send and receive operations.

The operations of a job are divided into so called execution blocks. Execution blocks
are data structures located in shared memory location and contain parameters used
by the job to derive the message format and the send instants used in the current
test. The shared memories are written by the test run generator during start-up,
read by the application jobs when the job’s init point() is invoked and then stored
locally. Listing 5.3 contains the type definition of the execution blocks.

1 typedef struct e x e c s t r u c t {
2

3 // temporal parameters
4 unsigned int i n i t i a l d l y ;
5 unsigned int f i x e d d l y ;
6 unsigned int random dly ;
7
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8 // s p a t i a l parameters
9 unsigned char msg len ;

10 unsigned int msg id ;
11 unsigned char p o r t i d ;
12

13 // c o n t r o l par t
14 unsigned char d i r ; // 0 . . . in , 1 . . . out
15 unsigned char mode ;
16 unsigned char s t a t u s ;
17 gt64 s e n d i n s t a n t ;
18

19 } t e x e c b l o c k ;

Listing 5.3: Type definition of Execution Blocks

The temporal parameters are initial delay, fixed delay and random delay. Initial
delay tells the job, when the message has to be sent for the first time. Fixed delay
and random delay allow us to achieve either periodic, aperiodic or sporadic send
behavior. The spatial parameters for the messages are message length, message
ID and port ID. In the control part of the execution block we can set the direction
(in or out) and the mode (i.e. continuous ore one-shot). Status tells the job, if the
execution block is still active. The data structure furthermore contains the next
send instant for the message and its value is updated after every send operation
based on the temporal parameters mentioned above. The missing parameters,
virtual network and link, are passed to the job as arguments at start-up because
they are needed to calculate the ID of the shared memory and can thus not be
contained in the shared memory itself.

Execution of Test Run

Every time a job’s entry point is invoked, the send instant of every execution block
is compared to the current global time. If the send instant is reached, the message
is sent and the next send instant is set.

In case of a TT receiver, the data in the port is read, while an ET receiver checks
the queue and, if available, receives messages from the queue. Every operation is
stored in a record data structure as defined in listing 3.1 3. A record contains the
number of the current test run, a global address of the job in the form u.c:s.n.j
(cluster, component, subsystem, network and job), its link and port, message ID
and length as well as the timestamps for send or receive operations and sequence
number.

1 typedef struct r e c o r d s t r u c t {
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2

3 unsigned short t e s t run ;
4 unsigned short c l u s t e r ;
5 unsigned short component ;
6 unsigned short subsystem ;
7 unsigned short vn ;
8 unsigned short job ;
9 unsigned short l i n k ;

10 unsigned short port ;
11 unsigned char msg len ;
12 unsigned int msg id ;
13 unsigned int sequence ;
14 gt64 s e n d i n s t a n t ;
15 gt64 r c v i n s t a n t ;
16

17 } t r e c o r d ;

Listing 5.4: Type definition of Records

End of Test Run

After a test run is over, the jobs stop communication and write the recorded data
into file in CSV format on a server via NFS. The duration of a test run can be
predefined in a global header file.

5.3.6 Analysis Tool

The control application mentioned explained in section 5.3.1 is responsible for the
course of the test. It collects the records after every test run and restarts the
cluster. After the last test run, the analysis tool is invoked in order to generate
the statistics of the whole test.

Collection of Records

When a test run is over, the records generated by the application jobs are now
available in a specific folder on the DECOS server. The control application estab-
lishes an SSH connection to the server, compresses all the files into a zip archive
and transfers the archive via SCP to the local host.
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Cluster Restart

After the records of the expired test run are saved, the cluster can be restarted for
the execution of the next test run. This is done via the remote controlled power
switch. The total number of test runs for the current test case is part of the XML
specifications.

Analysis of Test Results

When the last test run has expired and the last zip archive is copied from the server,
the user can execute the analysis tool to generate the statistics for the current
test. The parameters for the analyzer are the message ID and the participating
communication partners. The results encompass the minimum, maximum and
average latencies in µs, the effective bandwidth in kilobit per second (kbps), and
the number of discontinuities (loss of messages) and are stored in the CSV format
for further processing in a database or spreadsheet application.

5.3.7 Monitoring Access

There are two different ways to interface with the DECOS cluster. Besides the
NFS connection between the cluster and the server, the serial interface provides
monitoring access to the target nodes of the cluster. Following connection options
have to be set:

• Baud rate: 19.200 bps

• Data bits: 8

• Parity: none

• Stop bits: 1

• Flow control: none

The serial interface provides a minimal shell at the target nodes and can also be
used by the application jobs to print out messages. The printing of messages is
not useful during a test run, because the print operations are an unnecessary load
for the CPU, but the gateways use the serial interface to print out the summaries
after a test run expires. The summary contains the total number of messages
handled by the gateway and opposes valid messages that were forwarded to the
target network and invalid messages that are filtered out at the gateway.
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Chapter 6

Experimental Evaluation

This chapter deals with the experimental evaluation of our implementation. We
begin with a definition of hypotheses for our experiments and then describe a set
of test cases to validate those hypothesis. Section 6.3 presents the results of the
experiments which are then interpreted in section 6.4.

6.1 Hypotheses for Experiments

The hypotheses for our experiments can be categorized into two groups. The first
group is dedicated to temporal partitioning and makes assumptions about timing
message failures while the second part concerns spatial partitioning and naming
message failures.

6.1.1 Temporal Partitioning

Temporal partitioning guarantees that the behavior of a job in one DAS does not
corrupt the temporal properties (i. e. latencies of message transmissions, bandwidth
of communication channels) of another job in the same DAS or the temporal
properties of the service of another DAS (independent or separated by a gateway).

The gateways of the experimental implementation can enforce specific transmis-
sion patterns on the communication channel between two different DASs. The
adjustable parameters are as follows:

• Inter-arrival times
The gateway maintains a minimum gap between two successive message
transfers, called inter-arrival time.
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• Inter-arrival times with burst
The gateway can be operated in a so called burst mode with successive
periods of activation time and silence time in order to perform traffic
shaping and regulating the bandwidth across two DASs. Messages are
only accepted during activation time, any other messages are discarded.

• Periodic time-triggered behavior
If the destination DAS follows the time-triggered paradigm, the gate-
way has to suit to the time-triggered schedule of that network. There-
fore it has to generate a state message in every round regardless of the
timing pattern of the sending job.

Considering those parameters we can make following assumptions:

Hypothesis 1: The gateway maintains a minimum gap between two
successive message transfers.

Hypothesis 2: The gateway can perform traffic shaping and band-
width regulation.

Hypothesis 3: The gateway resolves temporal property mismatches.

6.1.2 Spatial Partitioning

The spatial partitioning mechanisms guarantee data integrity between two DASs,
i. e. if a faulty job corrupts a message of another job in the same DAS, the gateway
prevents spatial interference with another DAS by making use of the following
naming information:

• Message identifier
Every message has its own dedicated identifier included in the message
header. The identifier designates the content of the message and is
also used for bus arbitration in some protocols (e. g. CAN, [Bos99]).
The gateway is able to filter out messages with incorrect identifiers
by applying a mask to the message header. Only valid messages are
forwarded, while invalid messages are discarded.

• Source address
Some communication protocols use a source address in the message
header which identifies the sender of the message. This address can ei-
ther be logical (i. e. IP) and/or physical. The gateway checks the source
address of incoming messages and filters out messages from unintended
senders.
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• Destination address
The destination address identifies the intended receiver of a message. It
is either logical (i. e. IP) and/or physical and is included in the message
header.

We can make the following assumptions:

Hypothesis 4: The gateway is able to handle naming mes-
sage failures.

Hypothesis 5: The gateway has the ability of selective
redirection of messages.

6.2 Experiments

This section describes the various experiments that have been executed in order
to evaluate the error containment and selective redirecting mechanisms of the
exemplary virtual network and gateway setup according to the fault hypothesis of
the previous section 6.1. The tables in this section show a brief description of every
experiment, the assumed erroneous scenario and the how the gateway handles the
occurrence of errors.

6.2.1 Temporal Partitioning

The first blocks of experiments deals with message timing failures, i. e. violation of
minimum inter-arrival times, as well as different settings for the burst mode. The
experiments are broken down into a set of tests where the sender is located in an
event-triggered network and another set with a sender following the time-triggered
paradigm.

Event-triggered sender

The experiments covering communication with a sender in an event-triggered net-
work can be divided into three blocks. First, there is unidirectional communica-
tion with an event-triggered receiver, second, unidirectional communication with
a time-triggered receiver and last, bidirectional communication in a client/server
(request/reply) architecture, where the gateway acts as a server and replies to
requests from an event-triggered job.

Table 6.1 lists the experiments created for unidirectional communication with
solely event-triggered communication partners. The upper half shows the case
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Test case description
Temporal Behavior

Scenario Detection/Handling

ET sender sends exactly
one ET message per
activation interval; The
Gateway does not support
bursts and handles exactly
one message per activation
interval; The Receiver
records message receptions

Minimum interar-
rival time < 100% of
TDMA round

Gateway, Receiver;
Gateway discards
messages exceeding
bandwidth limit at
Feeder NWA;
Receiver observes
message loss

Minimum interar-
rival time ≥ 100% of
TDMA round

correct behavior ex-
pected

ET sender sends multiple
ET messages per activation
interval (burst); The
Gateway operates in burst
mode and handles messages
according to parameter
settings; The Receiver
records message receptions

Minimum interar-
rival time < 100% of
TDMA round

Gateway, Receiver;
Gateway discards
messages violating
burst timing pattern
at Feeder NWA;
Receiver observes
message loss

Minimum interar-
rival time ≥ 100% of
TDMA round

correct behavior ex-
pected

Table 6.1: Exemplary timing message failures for unidirectional event-triggered
communication without bursts

where only one message is sent per activation interval while the lower half is ded-
icated to the gateway operating in burst mode. In burst mode, the bandwidth
is not only limited by buffer sizes and capacities of the communication channel
but also by the parameter settings of the gateway. When not in burst mode,
the parameter setting is as follows: BURST COUNT = 1, BURST TIME = 10 ms,
SILENCE TIME = 0 ms.

If the gateway connects an ET and a TT network, exactly one message per activa-
tion interval is sent on the target network. If more than one message arrives at the
gateway, the Feeder NWA updates the value in place and overwrites the old value
in the gateway repository. The outgoing message only contains the last pushed
value. As before, the experiments listed in table 6.2 cover cases where the gateway
does not support burst and where the gateway is operating in burst mode.

Experiments for evaluating temporal partitioning mechanisms for bidirectional
data flow are shown in tables 6.3 and 6.4. An event-triggered client sends request
messages and expects reply messages containing the required information. There
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Test case description
Temporal Behavior

Scenario Detection/Handling

ET sender sends exactly
one ET message per
activation interval; The
Gateway does not support
bursts and handles exactly
one message per activation
interval; The TT receiver
records message receptions

Minimum interar-
rival time < 100% of
TDMA round

Gateway, Receiver;
Gateway discards
messages exceeding
bandwidth limit at
Feeder NWA;
Receiver observes
message loss

Minimum interar-
rival time ≥ 100% of
TDMA round

correct behavior ex-
pected

ET sender sends multiple
ET messages per activation
interval (burst); The
Gateway operates in burst
mode and handles messages
according to parameter
settings; The TT receiver
records message receptions

Minimum interar-
rival time < 100% of
TDMA round

Gateway, Receiver;
Gateway discards
messages violating
burst timing pattern
at Feeder NWA;
Receiver observes
message loss

Minimum interar-
rival time ≥ 100% of
TDMA round

correct behavior ex-
pected

Table 6.2: Exemplary timing message failures for unidirectional ET to TT com-
munication

are differences in the gateway automata regarding the paradigm of the network
providing the required information. Whereas the ET to ET gateway automaton
only acts as a forwarder of messages, the ET to TT gateway automaton needs to
read the desired state information from the TT network and compute and send an
ET reply message to the requesting job.

Time-triggered sender

Table 6.5 list experiments for evaluating temporal partitioning with a TT sender
and either and either an ET or a TT receiver. There are differences in the layout
of the gateway repository and the retrieval NWA since ET messages have to be
buffered and state variables are updated in place.
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Test case description
Temporal Behavior

Scenario Detection/Handling

ET client sends exactly one
request message per
activation interval; The
Gateway does not support
bursts and forwards one
request message per
activation interval to the
target network; ET server
is triggered by requests and
answers with reply
messages

Minimum interar-
rival time < 100% of
TDMA round

Gateway, Receiver;
Gateway discards
messages exceeding
bandwidth limit at
Feeder NWA;
Receiver observes
message loss

Minimum interar-
rival time ≥ 100% of
TDMA round

correct behavior
expected

ET client sends multiple
request messages per
activation interval (burst);
The Gateway operates in
burst mode and forwards
request messages according
to parameter settings; ET
server is triggered by
requests and answers with
reply messages

Minimum interar-
rival time < 100% of
TDMA round

Gateway, Receiver;
Gateway discards
messages violating
burst timing pattern
at Feeder NWA;
Receiver observes
message loss

Minimum interar-
rival time ≥ 100% of
TDMA round

correct behavior
expected

Table 6.3: Exemplary timing message failures for bidirectional ET to ET commu-
nication

6.2.2 Spatial Partitioning

The second block of experiments is intended to evaluate the gateways’ spatial
partitioning mechanisms. The tests encompass invalid source addresses, destina-
tion addresses, and identifiers according to the fault hypothesis. The partitioning
mechanisms are implemented in the Feeder NWA where the selective redirection
of messages takes place.

Event-triggered sender

Table 6.6 lists test cases for the evaluation of spatial partitioning for unidirectional
message flow. The Feeder NWA checks message lengths, identifiers (for CAN) and
source and destination addresses (for IP). If a mismatch is detected, the message
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Test case description
Temporal Behavior

Scenario Detection/Handling

ET client sends exactly one
request message per
activation interval; The
Gateway acts as server and
answers to one request per
round from the ET
network; On the TT side,
the gateway automaton
receives TT state messages
and updates the variable in
the repository

Minimum interar-
rival time < 100% of
TDMA round

Gateway, Receiver;
Gateway discards
messages exceeding
bandwidth limit at
Feeder NWA;
Receiver observes
message loss

Minimum interar-
rival time ≥ 100% of
TDMA round

correct behavior
expected

ET client sends multiple
request messages per
activation interval (burst);
The Gateway acts as server
(in burst mode) and
answers requests according
to parameter settings. On
the TT side, the gateway
automaton receives TT
state messages and updates
the variable in the
repository

Minimum interar-
rival time < 100% of
TDMA round

Gateway, Receiver;
Gateway discards
messages violating
burst timing pattern
at Feeder NWA;
Receiver observes
message loss

Minimum interar-
rival time ≥ 100% of
TDMA round

correct behavior
expected

Table 6.4: Exemplary timing message failures for bidirectional ET to TT commu-
nication

will be discarded with a notification on the gateway node.

Table 6.7 lists test cases for the evaluation of spatial partitioning for bidirectional
message flow in a client/server architecture. All communication partners make
validity checks on the message.

Time-triggered sender

There is no need for making validity checks on time-triggered messages, because
a time-triggered message does not contain any meta information concerning its
contents.
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Test case description
Temporal Behavior

Scenario Detection/Handling

TT sender sends
periodically; The Gateway
simply forwards messages
according to paradigm of
the target network;
Receiver records message
receptions

Update less than once
per round

Gateway, Receiver;
Receiver observes
duplicate sequence
numbers

Update exactly once
per round

correct behavior ex-
pected

Update more than
once per round

Gateway, Receiver;
Receiver observes loss
of sequence numbers

Table 6.5: Exemplary timing message failures for unidirectional time-triggered
communication

Test case description
Naming

Scenario Detection/Handling

ET sender; Gateway makes
validity check in Feeder
NWA and forwards valid
msgs; ET receiver checks
message and records
reception

invalid CAN identifier Enabled identifier set

invalid IP destination
address

Enabled destination
addresses

invalid IP source ad-
dress

Enabled source
addresses

ET sender; Gateway makes
validity check in Feeder
NWA and forwards valid
msgs; TT receiver checks
message and records
reception

invalid CAN identifier Enabled identifier set

invalid IP destination
address

Enabled destination
addresses

invalid IP source ad-
dress

Enabled source
addresses

Table 6.6: Exemplary naming message failures with unidirectional event-triggered
communication

6.3 Results

This section covers the results of the experiments discussed earlier (cf. section 6.2).
The first part is dedicated to temporal partitioning. The analysis concentrates
on the latencies, bandwidths and discontinuities of the communication over the
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Test case description
Naming

Fault Detection

ET client sends request
messages; Gateway makes
validity check in Feeder
NWA and forwards valid
msgs; ET server checks
message, generates reply
and records reception

invalid CAN identifier Enabled identifier set

invalid IP destination
address

Enabled destination
addresses

invalid IP source ad-
dress

Enabled source
addresses

ET client sends request
messages; Gateway acts as
server, checks validity in
Feeder NWA and generates
reply message from TT
state variable in repository

invalid CAN identifier Enabled identifier set

invalid IP destination
address

Enabled destination
addresses

invalid IP source ad-
dress

Enabled source
addresses

Table 6.7: Exemplary naming message failures with bidirectional event-triggered
communication

Network Sender Job /
Component

Receiver Job /
Component

Associated Tests

Navigation DAS job2 navigation /
SCU1

job4 navigatoin /
SCU0

used for tests with an
ET sender

Lights DAS job2 lights /
XCU3

job4 lights /
XCU4

used for tests with an
ET sender

Table 6.8: Independent communication partners

gateway. The figures also show the communication of two jobs in a network that
is independent from the networks connected by the gateway. Throughout the
experiments it can be seen that the gateways do not affect the communication in
the independent network.

The communication partners in the independent network are listed in Table 6.8.

The second part of this section presents the result of the test evaluating spatial
partitioning. The tables show the number of faulty messages sent vs. the number
of messages filtered out by the gateway.
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Figure 6.1: Denotation [OHP07]

6.3.1 Temporal Partitioning

As discussed in section 6.1, temporal partitioning is concerned with the contain-
ment of the effects of a timing message failure as introduced in the fault model.
The virtual or physical gateway preserves the predefined temporal properties (i. e.
bandwidths, latencies, variability of latencies) of the interconnected networks de-
spite the redirection of messages. Consequently, a job connected to one network
cannot affect the temporal properties of messages transmitted by jobs on another
networks.

Figure 6.1 illustrates the denotation used in the result figures of this section.
The upper part of the figure shows the communication over the gateway, the re-
sults resolving from this communication are denoted as bandwidth, discontinuities,
µs(min), µs(max), µs(avg) at GW. The reference jobs’ results are denoted as
bandwidth, discontinuities, µs(min), µs(max), µs(avg) at job.

Two types of figures are used in this section, bandwidth vs. discontinuities dia-
grams and latency diagrams:

• Bandwidth vs. discontinuities
The x-axis is assigned to the target bandwidth (i. e. the bandwidth
at which the sender tries to send) in kilobit per second (kbps). The
primary y-axis (right hand side) shows the effective bandwidth observed
at the receiver (and thus achieved by the gateway), while the secondary
y-axis (left hand side) shows the discontinuities observed at the receiver.

• Latencies
The x-axis shows the target bandwidth of the sender while the y-axis is
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assigned to the minimum, maximum and average latencies of message
transmissions.

Event-triggered periodic tests

In the first test, the gateway is configured to allow 2 messages per activation
(BURST COUNT = 2, BURST TIME = 10 ms, SILENCE TIME = 0 ms). This is
the maximum number of messages that can be achieved by the communication
channel and limits the bandwidth to 19.2 kbps. If the sender tries to send more
messages per round, the number of discontinuities (loss of messages) increases
because of queue overflows at the sender. The latencies, especially the maximum
latency will also increase significantly because messages have to be buffered. When
the target bandwidth is below or equal to 19.2 kbps, everything works as intended,
i. e. the effective bandwidth matches the target bandwidth, the latencies remain
constant at 70 ms (7 TDMA rounds) and no messages are lost. This behavior can
be seen in figure 6.2(a) and 6.2(b).

(a) Bandwidth vs. discont. (b) Latencies

Figure 6.2: ET1 to ET2, BC = 2, BT = 10 ms, ST = 0 ms

In the second case, the same gateway is tested with BURST COUNT = 1, which
means that the gateway allows only one message per burst (one round in this
case). This limits the effective bandwidth to 9.6 kbps and results in discontinuities
at a target bandwidth above 9.6 kbps. Like in the first test case, the latencies
increase at bandwidths above 19.2 kbps, because the communication channel is
not designed to support higher bandwidths. The results are depicted in figure
6.3(a) and 6.3(b).

Figure 6.4(a) and figure 6.4(b) show the behavior of the ET1 to ET2 gateway work-
ing in burst mode (BURST COUNT = 4, BURST TIME 20 ms, SILENCE TIME
10 ms), which means that there are alternating periods of burst and silence time.
The gateway only accepts messages in the burst period and rejects discards mes-
sages in the silence state. In the first case (cf. figure on left hand side), the sender
supports the burst mode and does not send messages in silence time. Thus there
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(a) Bandwidth vs. discont. (b) Latencies

Figure 6.3: ET1 to ET2, BC = 1, BT = 10 ms, ST = 0 ms

are no discontinuities, but the effective bandwidth is below the theoretical target
bandwidth most of the time. In the second case, the sender is not aware of the
burst mode and sends messages according to the target bandwidth. The effec-
tive bandwidth is again below the target bandwidth. Since the sender does not
maintain the silence periods, the results in Figure 6.1 6 show a significantly large
number of discontinuities. This leads us to the conclusion, that the burst mode
with dedicated patterns of burst/silence periods is only useful, when sender and
gateway are adjusted to the same pattern. Figures 6.4(a) and 6.4(b) use a different
denotation. They show the deviation of the effective bandwidth from the target
bandwidth and the discontinuities along the executed test runs.

(a) Sender supports burst mode (b) Sender doesn’t support burst

Figure 6.4: ET1 to ET2, BC = 4, BT = 20 ms, ST = 10 ms

The results of the tests for temporal partitioning at the Request/Reply gateway
look exactly the same as the results of the ET1 to ET2 gateway. This is no
surprise since the temporal partitioning mechanisms implemented at the feeder
network adaptor are the same. Figures 6.5(a) and 6.5(b) depict the results when
the gateway allows two messages per round. In the test depicted in Figure 6.6(a)
and figure 6.6(b) the gateway limits the bandwidth at 9.6 kbps by only accepting
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one message per activation. Again, the latencies remain constant below a sender
bandwidth of 19.2 kbps.

(a) Bandwidth vs. discont. (b) Latencies

Figure 6.5: Request/Reply, BC = 2, BT = 10 ms, ST = 0 ms

(a) Bandwidth vs. discont. (b) Latencies

Figure 6.6: Request/Reply, BC = 1, BT = 10 ms, ST = 0 ms

Figure 6.3.1 depicts the behavior of the ET to TT gateway. It can be seen that if
the sender sends more then one message per round (at a bandwidth above 9.6 kbps),
messages are lost. This is because in the TT network, exactly one message is sent
per round. The most conspicuous characteristic of the figure is that the maximum
latency increases in steps at low bandwidths. When the sender sends less than
one message per round, it happens, that the TT receiver reads the same value in
two consecutive TDMA rounds, thus the maximum latency increases exactly by
10 ms. The next step occurs when the ET job sends less than one message in two
rounds, so the receiver reads the same value trice.

Event-triggered sporadic tests

In the first case, messages are sent with a fixed delay of 15 ms and a random
delay from 10 ms to 100 ms. The diagram in figure 6.3.1 shows that the bandwidth
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Figure 6.7: ET1 to TT1, bandwidth vs. latencies and discontinuities

decreases with increasing random delay, while the latencies remain constant at
70 ms (7 TDMA rounds). In the second case, 10 test runs are executed with
the same parameters, 15 ms fixed delay and 10 ms random delay. One should
expect that the effective bandwidth varies around the expectancy of 4.8 kbps, but
the bandwidth remains stable at 4.78 kbps because of the weak random number
generator in C. But what’s really important is, that the latencies are stable again
at 70 ms (cf. figure 6.3.1). The figures use a different denotation, because the
variable parameter is the random delay instead of the target bandwidth.

Time-triggered periodic tests

The results for the periodic tests of the TT1 to TT2 gateway can be seen in figures
6.10(a) and 6.10(b). In the figure on the left hand side, the sender job updates
the state variable once per round, which leads to constant latencies of 57.5 ms and
no discontinuities (i. e. no loss of messages). In figure 6.10(b) on the right hand
side the sender works at 50% update rate, which means that the state variable
is updated once in two rounds (every 20 ms). Since TT messages are sent across
the network in every round anyway, the receiver gets every message twice, once
after 57.5 ms and once after 67.5 ms, exactly on TDMA round later. This leads to
an average latency of 62.5 ms. The bandwidths remain stable at 3.2 kbps in both
cases.

The TT1 to ET1 gateway has been tested in three different ways. In the first
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Figure 6.8: ET1 to ET2, bandwidth and latencies, increasing random delay

Figure 6.9: ET1 to ET2, bandwidth and latencies, constant random delay

case, the TT sender works at 100% update rate, which means, the state variable
is updated in every TDMA round and the gateway has to send an ET message in
every round too. The results are depicted in figure 6.3.1. Since TT messages are
4 bytes long and ET messages are 12 bytes long, the bandwidth on the ET side is
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(a) Update rate 100% (b) Update rate 50%

Figure 6.10: TT1 to TT2

three times higher (3.2 vs. 9.6 kbps). The latencies remain constant at 67.5 ms
throughout the test runs.

Figure 6.11: TT1 to ET1, update rate 100%

In the second case the TT sender works at 50% update rate and the gateway
is configured to forward a message only when the convertible element (the state
variable in the TT message) has changed. This leads to a lower bandwidth of
4.8 kbps at the receiver, to constant latencies at 67.5 ms and no discontinuities.
This behavior is depicted in figure 6.12(a). Figure 6.12(b) on the right hand side
shows the behavior when the gateway is configured to forward every message, even
though the convertible element does not change. This leads to a higher bandwidth
of 9.6 kbps on the ET side and to a higher maximum latency of 77.5 ms, because
the receiver receives every message twice, one TDMA round shifted. This behavior
does not comply with the ET behavior, so the duplicate messages are counted as
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discontinuities.

(a) GW forwards when variable changes (b) GW forwards periodically

Figure 6.12: TT1 to ET1, update rate 50%

Time-triggered sporadic tests

Sporadic tests are not necessary for the TT paradigm, because messages are sent
at a priori specified global points in time, in our case, once per TDMA round.

6.3.2 Spatial Partitioning

The spatial partitioning mechanisms of the gateways are implemented in the Feeder
NWAs. If a message with an invalid identifier arrives at the gateway, the message
will be consumed from the queue but no data will be forwarded (i. e. pushed into
the repository and sent by the Retrieval NWA). The tables in this section show a
summary of the valid and invalid messages sent on the feeder network. An invalid
message is a message with an invalid CAN identifier or an invalid IP address. The
number of invalid messages ranges from 100 to 0% in steps of 20%. The sender is
configured to send at 100% (one message per TDMA round) throughout the tests.

Event-triggered sender

Table 6.9 shows the results for the spatial partitioning tests of the ET1 to ET2
gateway. The sender works with 9.6 kbps, i. e. one 12 byte message per TDMA
round. The table shows the percentage of invalid messages sent over the network,
reaching from 100 to 0% in steps of 20%. It can be seen that the numbers of valid
and invalid messages of the sender and the gateway match, so the gateway recog-
nizes all invalid messages and discards them. Thus the gateway works correctly.

The Request/Reply gateway that connects a TT and an ET network receives
request messages from the ET network, checks its CAN identifiers sends a reply
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invalid messages in percent 100% 80% 60% 40% 20% 0%
valid messages sent 0 588 1176 1764 2352 2940
invalid messages sent 2940 2352 1764 1176 588 0
overall sent messages 2940 2940 2940 2940 2940 2940
valid messages received at gw 0 588 1176 1764 2352 2940
invalid messages received at gw 2940 2352 1764 1176 588 0
overall received messages at gw 2940 2940 2940 2940 2940 2940

Table 6.9: GW ET1 to ET2, sender at 9.6 kbps

invalid messages in percent 100% 80% 60% 40% 20% 0%
valid messages sent 0 588 1176 1764 2352 2940
invalid messages sent 2940 2352 1764 1176 588 0
overall sent messages 2940 2940 2940 2940 2940 2940
valid messages received at gw 0 588 1176 1764 2352 2940
invalid messages received at gw 2940 2352 1764 1176 588 0
overall received messages at gw 2940 2940 2940 2940 2940 2940

Table 6.10: GW REQUEST/REPLY, sender at 9.6 kbps

invalid messages in percent 100% 80% 60% 40% 20% 0%
valid messages sent 0 588 1176 1764 2352 2940
invalid messages sent 2940 2352 1764 1176 588 0
overall sent messages 2940 2940 2940 2940 2940 2940
valid messages received at gw 0 588 1176 1764 2352 2940
invalid messages received at gw 2940 2352 1764 1176 588 0
overall received messages at gw 2940 2940 2940 2940 2940 2940

Table 6.11: GW ET1 to TT1, sender at 9.6 kbps

message, containing the sequence number of the request message and the state
variable of the TT message, back to the requesting job. There is no check necessary
for the T message. Since the partitioning mechanisms for this gateway do not differ
from those of the ET to ET gateway, it is not surprising that the tests show the
same results. This can be seen in Table 6.10.

The next table, Table 6.11, shows the test results for the ET to TT gateway.
The Feeder NWA is the same for the ET to TT and the ET to ET gateway. This
results in the same output and leads us to the conclusion that the gateway correctly
performs spatial partitioning.

The IP gateway is tested twice, once with messages containing invalid destination
addresses and once with invalid source addresses. Since the IP header is much
longer than the CAN header (20 vs. 4 bytes), the necessary bandwidth is signifi-
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invalid messages in percent 100% 80% 60% 40% 20% 0%
valid messages sent 0 588 1176 1764 2352 2940
invalid messages sent 2940 2352 1764 1176 588 0
overall sent messages 2940 2940 2940 2940 2940 2940
valid messages received at gw 0 588 1176 1764 2352 2940
invalid messages received at gw 2940 2352 1764 1176 588 0
overall received messages at gw 2940 2940 2940 2940 2940 2940

Table 6.12: GW IP, sender at 22.4 kbps, invalid Destination Address

invalid messages in percent 100% 80% 60% 40% 20% 0%
valid messages sent 0 588 1176 1764 2352 2940
invalid messages sent 2940 2352 1764 1176 588 0
overall sent messages 2940 2940 2940 2940 2940 2940
valid messages received at gw 0 588 1176 1764 2352 2940
invalid messages received at gw 2940 2352 1764 1176 588 0
overall received messages at gw 2940 2940 2940 2940 2940 2940

Table 6.13: GW IP, sender at 22.4 kbps, invalid Source Address

invalid messages in percent 100% 80% 60% 40% 20% 0%
valid messages sent 0 588 1176 1764 2352 2940
invalid messages sent 2940 2352 1764 1176 588 0
overall sent messages 2940 2940 2940 2940 2940 2940
valid messages received at gw 0 588 1176 1764 2352 2940
invalid messages received at gw 2940 2352 1764 1176 588 0
overall received messages at gw 2940 2940 2940 2940 2940 2940

Table 6.14: GW IP2CAN, sender at 22.4 kbps, invalid Source Address

cantly higher. Again, one message per TDMA round is sent, which leads us to the
same results as before in both cases. The test results can be found in Table 6.12
and Table 6.13.

The results for the IP2CAN and the CAN2IP gateway are shown in Table 6.14
and Table 6.15.

Time-triggered sender

Since time-triggered messages only contain the state variable itself and no addi-
tional information (like a message header), there is no need to perform checks for
spatial correctness upon them.
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invalid messages in percent 100% 80% 60% 40% 20% 0%
valid messages sent 0 588 1176 1764 2352 2940
invalid messages sent 2940 2352 1764 1176 588 0
overall sent messages 2940 2940 2940 2940 2940 2940
valid messages received at gw 0 588 1176 1764 2352 2940
invalid messages received at gw 2940 2352 1764 1176 588 0
overall received messages at gw 2940 2940 2940 2940 2940 2940

Table 6.15: GW CAN2IP, sender at 9.6 kbps, invalid CAN identifier

6.4 Interpretation

This section summarizes the results of the experimental evaluation and interprets
the satisfactory outcomes regarding the hypotheses proposed in section 6.1.

6.4.1 Temporal Partitioning

To demonstrate partitioning it is necessary that the communication latencies and
communication jitter for messages sent by one job are independent from the com-
munication activities of other jobs. In the same manner the gateway should not
affect the communication resources of the jobs of the component. Concerning the
results in section 6.3, where the gateway communication and the communication
of an independent job in another virtual network than the feeder or retriever net-
work is shown, the conclusion can be drawn, that the gateway service does not
affect the bandwidths and latencies of other virtual networks. The test cases were
performed with maximum payload on every virtual network except the networks
used for the gateway (parametric variation of the bandwidth over the gateway).
The latencies of the reference networks are, depending on the physical location
of the reference jobs, at 22.5 and 30 ms. Throughout the whole test period there
was no noticeable impact on the reference communication structure. Thus the
conclusion can be drawn that the gateway service is executed independently and
does not block resources needed by other services.

The gateway can enforce the temporal behavior of the feeder network with the in-
troduced variables BURST COUNT, BURST TIME and SILENCE TIME. There-
fore the sender jobs need to know the settings of the gateway to be able to send
timely messages. These configuration parameters make it possible to limit the
bandwidth (in bits per second) of the feeder network to a desired value, which can
be calculated by following formula:

bandwidth(bc, bt, st, rt,ml) =
bc
bt
∗ml∗8
rt
∗ bt

bt+st
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Abbreviation Name Unit

bc BURST COUNT Messages [1]
bt BURST TIME Rounds [1]
st SILENCE TIME Rounds [1]
rt ROUND TIME Seconds [s]
ml MESSAGE LENGTH Bytes [B]

Table 6.16: Parameters for bandwidth formula

bc
bt

is formed by the virtual network service as cause of the limited buffer size of the
outgoing port queue. This value equals 3 messages per round in the TTP based
cluster. The parameters are explained in table 6.16.

6.4.2 Spatial Partitioning

Masquerading is defined as the sending or receiving of messages imitating another
sender without authority [CDK94]. Masquerading failures are often performed
by systems that only rely on an explicit name stored in a message to identify
the transported message. Therefore one single faulty component can masquerade
other components, possibly overwriting correct messages from other components.
For the receiver it is a major problem to detect those faulty messages, and as a
result such messages can have a significant impact on the application. The tested
gateway implementation is capable to detect such faults by relying on the correct
behavior of the underlying virtual network service and by performing name checks
on the incoming messages.

Spatial Partitioning with Explicit Message Names

The explicit name is part of the content of a message transported over a commu-
nication channel. For the different protocols implemented in the event triggered
paradigm it can consist of an identifier in CAN messages, or the source and des-
tination address in IP messages, which were both implemented and tested in our
environment. The result tables in sections 6.3.1 and 6.3.2 reveal the correct be-
havior of the gateway concerning spatial partitioning with explicit message names.
The gateway only forwards messages with specified identifier, source and destina-
tion addresses and drops invalid messages at his receiving port for preventing
masquerading behavior at the port.
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Spatial Partitioning with Implicit Message Names

Due to the virtual network service, each job is allocated to a dedicated input
port (spatial context), which maps to a static TDMA slot of the underlying time
triggered communication schedule (temporal context). Because of the allocation of
time slots to components and their jobs, it is always possible to find out the identity
of the communication partner. It was not possible to design test cases, which
directly target on the verification of spatial partitioning with implicit message
names, but there were no noticeable problems during a large period of test runs.

6.4.3 Property Transformation

In general, gateways have to deal with property mismatches at the semantic level or
at the operational level [OPK05a]. A semantic mismatch occurs, when the meaning
of a message is interpreted differently in the networks connected by the gateway.
This is the case when the two networks use a different namespace. An operational
property mismatch occurs, when the connected networks follow different control
paradigms, or when different syntactic message formats are used.

The results in the previous section have shown that the gateways in the validation
setup are able to resolve differences at the operational level of two networks, as
well as differences at the semantic level.

6.4.4 Performance

The virtual networks support a certain amount of data per activation round (cf.
formula stated earlier in this section 6.4 and table 6.17), which depends on the
round time (10 ms) and message lengths.

This maximum transfer rate is not limited by the gateway in any test case, because
its execution time remains below the worst case maximum execution time of the
components and therefore there is enough time to handle all incoming messages
without loss.

The latencies of messages sent over the gateway are dependable on the communi-
cation partners and keep between 60 to 90 milliseconds at the TTP based cluster
and remain between these bounds. The minimum latency ranges from 60 to 70
milliseconds.
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Network Name Message Length Maximum Transfer Rate

NETWORK ET COMFORT 28 Bytes 22.4 kbps
NETWORK ET LIGHTS 12 Bytes 9.6 kbps
NETWORK TT BYWIRE 4 Bytes 3.2 kbps
NETWORK TT NAVIGATION 4 Bytes 3.2 kbps

Table 6.17: Maximum transfer rate according to the configuration
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Chapter 7

Conclusion

The DECOS integrated architecture tries to combine the benefits of federated
and integrated systems by decomposing a large real-time system into nearly-
independent subsystems. Those so called distributed application subsystems
(DASs) are integrated within a single distributed computer system which con-
siderably helps reducing costs.

On top of the time-triggered core architecture, virtual networks are implemented,
that provide the communication infrastructure for the different DASs. It is the task
of a gateway to interconnect DASs if they are required to communicate among each
other. Gateways in the DECOS architecture are implemented as virtual hidden
gateways (i. e. transparent to the application). Besides the transparent forwarding
of messages from one network to another, gateways have to resolve mismatches if
the interconnected networks exhibit different operational or semantic properties.
The gateways also provide an encapsulation service that is responsible for error
containment and the selective redirection of messages in order to reduce bandwidth
costs.

The main purpose of this thesis is the validation of the services provided by the
gateways by experimental evaluation. To solve this task in a convenient way, we
proposed the use of a measurement framework that has the ability to monitor the
system under test and is capable of automated execution of testruns. First we
showed a model of a framework that is generally applicable and then presented an
actual implementation for the evaluation of our exemplary DECOS cluster.

Several test cases have been created to test the gateways developed for the DE-
COS architecture with respect to error containment, property transformation and
performance. The experimental evaluation shows that the gateways are able to
handle timing and value message failures, allow the selective redirection of mes-
sages and are capable of enforcing a particular timing pattern on the exchange of
messages (traffic shaping).
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