Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universitat Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

TECHNISCHE
| UNIVERSITAT —
[lj Wien =~
VIENNA L
VIENNA UNIVERSITY OF
TECHNOLOGY

Master Thesis
Scalable Video for Peer-to-Peer Streaming

Jakob Rieckh
e0225766@student.tuwien.ac.at

Institute of Communications and Radio-Frequency Engineering
Technical University of Vienna
Summer, 2008

Prof. Dr. Markus Rupp
Mobile Communications Group

Advisors: Luca Superiori MSc.

Abstract

Pulsar is a peer-to-peer streaming software that allows the distribution of live and
on-demand video files. Pulsar clients are typically comprised of a very diverse group of
peers with varying local computing resources or network conditions. Thereby, scalable
video coding provides an efficient solution to serve the different requirements as it allows
to trade between bit rate and subjective quality.

This report concentrates on the topic of scalable video with respect to its application
in peer-to-peer networks. In a first step various aspects of scalable video are discussed by
an introduction on the existing Scalable Video Coding (SVC) standard of the Joint Video
Team (JVT). Building on those explanations the implementation of scalable video in
Pulsar is presented. Different parts of the software are discussed that had to be modified
in order to allow Pulsar to cope with scalable video streams. The report is concluded
by results from evaluation test runs regarding SVC alone as well as its application in
Pulsar.

Contents

1 Introduction

2 Related Work

2.1 Scalable Video
2.2 Peer-to-Peer Networks
2.3 Scalable Video and Peer-to-Peer
2.4 Commercial Peer-to-Peer Video Streaming

3 Scalable Video

3.1 Benefits of Scalable Video L.
3.2 Scalable Video Coding Extension
3.2.1 Temporal Scalability
3.2.2 Spatial Scalability 0o
3.2.3 Quality Scalability oL
3.2.4 Combination of the Scalability Dimensions
4 Pulsar
4.1 Pushing e
4.2 Pulling
5 SVC and Pulsar
5.1 Modifications concerning Pulsar
5.1.1 Protocol
5.1.2 Layered Video Stream
5.2 Modifications concerning JSVM oL Lo
5.2.1 Quality Scalability 0oL
5.2.2 Temporal Scalability L.
5.2.3 Decoding or Rewriting oL
5.24 Rewriter Lo
5.2.5 JNIInterfaces.
6 Evaluation
6.1 SVC Evaluation
6.1.1 Single Layer vs. Multiple Layers
6.1.2 Quality Parameters. oL oL
6.1.3 Varying Parameters
6.1.4 PSNR
6.2 Pulsar Evaluationo o
6.2.1 Number of decoded bytes
7 Conclusion
7.1 Discussion e e
7.2 Outlook e e

Chapter 1

Introduction

Networks with an underlying peer-to-peer structure (e.g. BitTorrent [1], Gnutella [2],
eDonkey [3], Skype [4]) have evolved over the past few years to a point where they
form the basis for broadly used and established systems (e.g. Kazaa [5], LimeWire [6],
Morpheus [7], eMule [8]). Thus, they are no longer solely of interest to the research
community, but found their way to a wide range of mainstream applications. As peer-
to-peer networks are gaining strength with a growing number of participants, their
popularity will presumably not only sustain, but further rise.

The crucial feature of peer-to-peer networks that distinguishes them from conven-
tional server-client architectures lies in their decentralized approach. Not a single server
is responsible for distributing the content, but every interconnected peer acts as client
and server at the same time. Therefore, a growing number of participants do not pro-
duce a heavier burden on the network, as it is the case with central servers. The opposite
is true for peer-to-peer networks. Every new peer contributes more resources to the net-
work, supporting the overall bandwidth and availability of content within the network.

The most widespread use of peer-to-peer networks can be found in the field of file-
sharing systems ([5], [6], [7], [8]). They connect a vast amount of users for the purpose of
sharing (i.e. interchanging) files. While the idea of peer-to-peer enjoys great popularity
with file sharing systems the same cannot be confirmed when dealing with streaming
content. Although the idea of peer-to-peer could equally well be expanded to streaming
content, by now it is not yet a popular way of consuming audio or video sequences
directly (without downloading it first) over the Internet.

One of the main reasons behind this slower adaption of the peer-to-peer concept
in the field of streaming media lies in the inherent time-constrained nature of audio
and video. In the case of only downloading a file, variations of bandwidth, only alters
the point in time when the file is completely available. Whereas the same fluctuations
can yield severe impacts on the perceptual quality of continuous audio or video streams.
Thus, particular attention is required that the transfer of streaming content obeys certain
restrictions regarding a constant bit rate over time.

The peer-to-peer streaming software Pulsar [9] takes care of exactly those constraints.
It connects the peers within the network through a special routing protocol ([10], [11])
that strives to supply all members with a continuous stream of data. But managing
and assuring a certain quality of service for all consumers within the network becomes
a more challenging task as the requirements differ extensively between peers. They can
vary among other points in regard to their local resources (e.g. computing power or
screen size) and in available network bandwidth (e.g. up or down link bit rate). Such a
variety of needs can turn out a challenging task for a network protocol to serve.

This is where scalable video comes into play. One possible solution to the challenge
of a diverse group of peers could be to provide several different versions of the same
video stream, each tailored to specific end user capacities - so called simulcast. Besides
the increasing complexity in managing all those versions, simulcast also causes the peer-

to-peer network to break apart. Since the various versions of the stream are conveyed
completely independently from each other, peers requesting two different versions can no
longer support each other. Hence, the group breaks apart into several smaller groups -
each for one version of the media stream in question. This fact makes switching between
different bit rates of a video stream a complex task. It not only requires the refresh of all
packet buffers, it also induces the replacement of all neighbors. Therefore, adjusting the
bit rate of a simulcasted video stream requires a complete reconstruction of the neighbor
structure.

Scalable video strives to overcome this problem by avoiding the partition of peers
according to their capabilities. With scalable video the different versions of a media file
(in this case video) are consecutively build upon each other and therefore provide means
for serving a variety of bit rates with a single stream. This increasing flexibility prevents
the network from breaking apart and therefore simplifies the adjustment to the right bit
rate.

This master thesis studies the characteristics of scalable video and what advantages
it brings to applications in peer-to-peer environments. Furthermore a prototype imple-
mentation of a scalable video decoder in connection with Pulsar and comparing results
from various test runs are presented. In addition the necessary modifications to the
peer-to-peer protocol of Pulsar which enable the use of scalable video are discussed.

The remaining report is structured as follows: the following Chapter 2 provides an
overview of already published work on the topic of scalable video in relationship with
peer-to-peer networks. Chapter 3 introduces basic ideas of scalable video with specific
focus on the Scalable Video Coding (SVC) extention of the H.264/AVC standard. In
order to provide the necessary basis for further discussions, Chapter 4 gives a brief
overview over the concepts behind the peer-to-peer streaming software Pulsar. Building
on these explanations, Chapter 5 reviews those parts of Pulsar that were affected by
the integration of scalable video. Chapters 6 and 7 finish the report by, respectively,
presenting results from evaluation test runs and by giving a conclusion on the conducted
work.

Chapter 2

Related Work

Papers related to the application of scalable video in peer-to-peer networks can broadly
be categorized into three groups. The first one is comprised by publications out of the
scalable video domain. Whereas the second group concentrates on the topic of peer-
to-peer networks. Bringing both fields together forms a third group, which covers the
deployment of scalable video standards in peer-to-peer networks.

2.1 Scalable Video

Probably the most important representative out of the first group would be the Scalable
Video Coding (SVC) standard from the Joint Video Team (JVT). It originated from
a proposal ([12], [13]) of the Heinrich-Hertz-Institute, which is part of the Fraunhofer
Institute in Berlin. In its latest version the SVC standard is integrated as an amendment
into the H.264/AVC specification [14]. A brief overview of the standard is provided in
the subsequent paragraph of this report, while a more detailed outline is given by the
paper of H. Schwarz, D. Marpe and T.Wiegand from the Heinrich-Hertz-Institute [15].
The reference software for the SVC standard (called Joint Scalable Video Model) can
be found on the Internet [16]. Several related papers with different focuses on SVC can
be found as well (Streaming: [17], Performance: [18], RTP: [19] and Mobile: [20]).

Another concept besides scalable video that is in some way related to it is Multi
Description Coding [21]. MDC has similar intensions like SVC - altering the bit rate of
a video - while using a completely different approach. The idea of MDC is to divide the
coded video into several sub streams (i.e. descriptions). Each description alone can be
decoded to a valid (but low quality) video stream. The final quality of the video improves
with the number of available descriptions, until all descriptions decoded together finally
form the original video stream.

The crucial difference of MDC to SVC lies in the prioritization of different parts of
the video. While in SVC the layers bear a clear hierarchy (from the base layer to the
last enhancement layer) the opposite is true for different MDC descriptions. Therefore,
all parts within a MDC coded bit stream are equally important and contribute the
same amount to the final quality. This property of MDC descriptions can be both: an
advantage or disadvantage. Beneficial is the fact that two distinct descriptions never
depend on each other. That means no matter which descriptions are available; they can
always be assembled to form a valid video stream. The same is not possible with SVC
layers, if one layer underneath is missing. On the other hand SVC utilized the fact that
not all parts of a video are equally important to the final quality. Thus, it is possible to
convey the essential parts in the base layer with enhancement layers only adding details
to the final video. Furthermore, data portioning of MDC demands a substantial amount
of coding overhead and increases the complexity of the decoder. That is why MDC is
not yet considered by any of the traditional video coding standards.

2.2 Peer-to-Peer Networks

In the field of peer-to-peer networks the variety of scientific publications is even wider.
Most peer-to-peer streaming networks of today use a neighbor selecting strategy that
can be described as either tree-based or unstructured. Hence, first those two principal
groups of networks and their prominent representatives are introduced. Followed by
projects that - like Pulsar - apply Distributed Hash Tables (DHT) as a combination of
those groups. Comprehensive overview papers discussing various types of peer-to-peer
architectures are given by [22], [23] and [24].

Tree Based Overlays

Protocols based on a tree structure connect all peers via a rigid overlay. Each peer is
obligated to forward incoming data packets to all of its children peers. Since the depth
of such a tree stays rather small (logarithmic to the number of peers), information can
be transmitted rapidly to all members of the network. Generally, transmission of data
packets to other peers without having them explicitly requesting those packets is called
a push operation.

Two main disadvantages hinder the application of basic tree based protocols: on
the one hand maintenance overhead is large. Since the construction of a tree can be a
complex and time consuming task, they form rather static structures that react inflexible
if peers are constantly joining and leaving the network (called churn). The second
drawback of trees is also related to their rigid nature: in their basic form each peer in
the tree is only connected to one single parent peer. This not only puts a heavy upload
burden on the parent node, it also makes the child node directly depended from the
parent’s capacities. Hence, all peers following further down in the tree as well suffer
from a weak predecessor peer. Besides, peers functioning as leafs of the tree have no
children and can therefore receive packets without contributing to other peers.

Narada [25], Overcast [26], PeerCast [27] or FreeCast [28] can be considered typical
examples of the first group, the tree based peer-to-peer streaming networks. To overcome
the problems imposed by a single tree structure, CoopNet [29] for example relies on
multiple trees. In addition CoopNet provides a certain degree of video scalability and
error resilience by coding the data in multiple descriptions (see section 2.3 on Multiple
Description Coding). The same approach with MDC is also followed by the system
called Split Stream [30]. The overlay of CoolStreaming [31] does use a structured overlay,
but it resembles more a mesh [32] than a conventional tree.

Unstructured Overlays

Due to the mentioned disadvantages of tree based peer-to-peer networks, some systems
avoid a rigid structure between the peers. Instead, each peer keeps just a list of its direct
neighbors while there exists no global overlay on top of all peers. As a result peers are
only aware of their direct neighbors. This leads to an improved flexibility in case of
churn and avoids the time consuming task of setting up a tree structure. Moreover,
peers joining or leave the network only cause very local modifications of the network.

Like tree-based overlays, also unstructured networks suffer from two downsides - both
related to a missing global structure for coordinating the distribution of data packets.
First, in contrast to pushing, peers in an unstructured overlay must explicitly request
needed packets (called pulling). Such notify-and-request communication between two
peers leads to an increased overhead and delays the delivery of packets. Second, due to
the lack of a global overlay special attention is needed that the network stays connected
as a whole. For example if peers strive to connect to neighbors that are physically
closely located, a worldwide network can very easily break apart into local sub-groups.
Nevertheless, unstructured overlays are in most cases favored over tree based ones, due
to their better robustness against churn.

Two examples that follow the approach of an unstructured neighbor selection strat-
egy are: Chainsaw [33] and GridMedia [34]. They differ primarily in the number of
neighbor nodes that each peer has to keep. Also file sharing protocols like BitTor-
rent [1], Gnutella [2] and Napster [35] use similar concepts.

Distributed Hash Tables

Due to the mentioned disadvantages of tree-based and unstructured peer-to-peer net-
works, Pulsar relies a combination of both concepts (see Section 4). The employed
prefix routing algorithm is comprehensively explained in [11]. The idea of prefix rout-
ing itself is based on the concept of Distributed Hash Tables (DHT). DHTs originated
from the routing algorithm of Plazton [36], which was originally devised for managing
of web queries. For an introduction to DHT or the latest developments in this field the
reader is referred to [37] and [38] respectively. The first four systems that started to use
DHT about the same time were: CAN [39], Chord [40], Pastry [41], and Tapestry [42].
Especially the last two rely on routing algorithms simliar to the one used in Pulsar.

2.3 Scalable Video and Peer-to-Peer

Although both fields - scalable video as well as peer-to-peer networks - have attracted
much attention from the research community, the amount of scientific papers focusing
on their interaction is rather small. A very recent publication [43] employs SVC to
guarantee smooth delivery of video content among the peers within the network. Their
performance tests were carried out with a quality scalable video stream delivered over a
Gnutella like (i.e. unstructured) peer-to-peer network. The evaluation indeed shows an
improved video throughput rate to the peers (measured in kBits/sec) and an enhanced
quality of the received video (measured in Peak Signal To Noise Ratio - PSNR). Still,
it should be pointed out, that like with Gnutella the topology among the peers is built
up arbitrarily (i.e. without a structured overlay).

The system described in [44] as well uses SVC in a peer-to-peer environment. Their
theoretical analysis concentrates on quantifying the advantage of SVC with respect to
single layer video coding. The quality gains are measured in PSNR and are calculated
depended on the bandwidth capacities of the peers. Especially in networks with a
heterogeneous bandwidth distribution the strength of SVC becomes obvious. Their
practical tests were conducted on the real time streaming protocol called Stanford Peer-
to-Peer Multicast (SPPM) [45]. The results prove that especially in cases of a congested
network SVC outperforms single layer coding. That is due to fact that prioritization
of the layers allows to play at least the most important layers, even if the video is not
completely received. Whereas, if bandwidth is not the bottle neck, single layer coding
benefits from its better coding efficiency.

Besides SVC, some interesting papers about MDC have been published in the context
of peer-to-peer. An older but still comprehensive overview of MDC video streaming in
peer-to-peer networks is given by [46]. The paper also compares MDC to the scalability
functionality of MPEG-2 and MPEG-4 - the predecessor of the SVC standard today. The
approach presented in [47] employs a method called flexible Multi Descriptions Coding
(F-MDC) which is based on wavelet compression. F-MDC simplifies the partitioning
of an encoded video stream into a specific number of descriptions. This video codec is
subsequently deployed in a receiver centric (many to one) peer-to-peer network. A paper
concentrating more on the incentives aspect of MDC can be found in [48]. It is based
on the principal that peers contributing more to other peers also get a larger number of
different descriptions and consequently enjoy a better video quality.

2.4 Commercial Peer-to-Peer Video Streaming

Currently many peer-to-peer clients are available on the web that offer free video stream-
ing (but without the functionality for scalable video). Among the most prominent ones
are systems like Zattoo [49], Tribler [50] or Joost [51]. All of them rely on similar
concepts: offering professional TV shows alongside private content and making money
through advertisement. The advantage for TV stations is that they can make their
program worldwide available, while shifting the costs for broadcasting to the individual
users. Also in Asia P2PTV applications like TVUPlayer [52], PPLive [53] or Cool-
Streaming [31] are becoming more and more popular.

10

Chapter 3

Scalable Video

The term ”scalable” in the context of video stands for the general concept of coding an
image sequence in a progressive (i.e. scalable) manner. Meaning, the internal structure
of the coded video allows for a trade-off between bit rate and subjective quality. The
additional flexibility is provided if parts of the video bit stream can be discarded with
the result still representing a valid video sequence. This requires a layered structure
within the coded video that distinguishes basic information from parts that represent
only details. In this way, a video can be adjusted in a fast and easy way to changing
network conditions or the specific capabilities of the end users. With this concept in
mind, scalable video can also be compared to progressive JPEG [54] in the still image
domain. Progressive JPEG offers the possibility to transmit the low frequency parts of
the image first, giving a preliminary impression of what the final image would look like.
All following higher frequency information builds upon the first version and accumulates
finer details.

3.1 Benefits of Scalable Video

Previous to any further discussion about relevant aspects of encoding a video in a scalable
manner, the motivation behind this idea should be outlined. Broadly speaking, scalable
in comparison to non-scalable videos provides the following advantages.

e In case of simulcasting, several different versions of the same video must be avail-
able in order to serve diverse user requirements. Obviously those different versions
bear a high degree of redundancy. Although encoded for different bit rates, they
all represent the same content. Scalable video strives to reduce this redundancy
and can therefore produce a video stream that requires significantly less storage
space than the sum over all versions of a simulcast video stream.

e In addition, scalable video streams can be encoded in a way to offer more than a
limited number of different bit rate points (see Section 3.2.3 on Quality Scalability).
With this fine graduation the choice among bit rates is expanded to a whole range
of possible values.

e The management of different bit rate versions for the same video is avoided. With
scalable video just one bit stream can serve a diversity of client needs. As a
consequence the adjustment of the bit rate is simplified. It no longer involves
switching between two separate bit streams, but can be carried out within the
same video stream. This convenience improves the flexibility of the video stream
and increases the resilience against variations or failures of the transmission link.

e In representing the encoded video in a layered structure, scalable video assigns
different importance to each layer. The base layer of a scalable video stream

11

comprises information that is fundamental for the playback of the video. Thus,
it represents the most important parts of the video stream. As the order of the
enhancement layers on top increases their importance decreases.

The advantage of this layered structure is that specific parts of the encoded video
stream can be prioritized. In a network environment with limited band width
capacity this prioritization enables to prefer those data packets that are essential
for the playback of the video. Hence, in cases were not enough band width is
available to receive the whole video, scalable video offers at least a low quality
version of that video.

e Especially for peer-to-peer networks scalable video offers another advantage that
is related to the previous one. Generally, all peers of a network do not form a
homogenous group, but differ in their bandwidth or computing capacities. Thus,
in case of simulcast, they would demand different bit rates of the video and conse-
quently also request different streams. This leads to the problem that the overlay
of the peer-to-peer network is breaking apart into smaller sub-groups. Each sub-
group shares only one version (i.e. bit rate) of the video stream.

14 /
/'\’__I \ /'\,._/ \
(a) Simulcast) Scalable Video

Figure 3.1: Break-up of Peer-to-Peer Network

In Figure 3.1 the source offers three different bit rates for one video. The peers are
grouped according to the requested bit rate (indicated by shades of gray). In case of
simulcast (3.1(a)) the bit rates are represented by three different streams. Therefore,
peers with different bit rates cannot exchange data packets and form separate sub-
groups. This

This separation of peers becomes in particular problematic in cases of STARK band
width fluctuations. If the available band width changes, peers may react to the new
situation by requesting a different bit rate of the current video stream. In case of
a simulcasted video streams, the only way to do so is to request a different stream.
Since the old and the new stream are independent from each other, switching between
them requires leaving one group of peers and joining another one. Therefore, the whole
neighbor structure has to be rebuilt.

Scalable video overcomes this complex switching task by offering one stream that
can serve a variety of bit rates (Figure 3.1(b)). Hence, all peers stay within the same
group, regardless of the requested bit rate. This simplifies switching between bit rates
and consequently improves the robustness of the system.

In addition, the robustness of the peer-to-peer network further benefits from another
advantage of wide group of peers. The performance of a peer-to-peer network relies on a
profound number of peers that are willing to share their upload capacity. If more peers
offer the same video stream the robustness of the whole network is improved, because a
failure of one peer can very easily be compensated by other peers.

However, it is important to notice that the increased flexibility of scalable video
also produces a certain amount of data overhead that reduces the coding efficiency
of the video stream. This overhead is studied more closely in the evaluation part of

12

Section 6.1.1. In addition, the complexity of scalable video encoders and decoders is
considerable higher in comparison to their non-scalable counterparts.

After this brief analysis of the arguments for employing scalable video in peer-to-peer
networks, the remainder of this chapter concentrates on specific aspect of scalable video.

3.2 Scalable Video Coding Extension

Scalable video has been an active research area in the video coding community for more
than a decade (and still continues to do so). The latest standard out of this effort
derives from the Joint Video Team (JVT) of the ITU-T Video Coding Group (VCEG)
and the ISO/IEC Moving Picture Expert Group (MPEG). In 2007 they published the
standard called Scalable Video Coding (SVC)[14], which as an extension forms part of
the H.264/AVC standard [55]. Since the SVC standard considers most of the aspects of
scalable video and furthermore plays an important role within the scalable video proto-
type of Pulsar, the following paragraphs give a short overview over the basic concepts
found in this standard.

As an extension SVC depends upon the main design decisions found in the regular
H.264/AVC video coding standard. Therefore it reuses concepts like hybrid video cod-
ing (i.e. inter-frame prediction in combination with intra-frame prediction), transform
coding or the underlying macro block structure. A detailed description of those princi-
pals can be found in [55]. The core design concept of SVC which distinguishes it from
its parent standard is the layered structure of the coded video. Specific parts of the
bit stream are grouped according to their importance on the final quality of the video.
Within the SVC standard three different possibilities are described to divide the video
into several layers. In accordance with the SVC reference paper [15] this report uses the
term scalability dimensions for those three criteria. They are namely: Temporal Scala-
bility, Spatial Scalability and Quality Scalability and will be described more closely in
the next few paragraphs.

3.2.1 Temporal Scalability

Scaling a video via its temporal resolution basically means altering its frame rate. Simply
discarding random frames from the video sequence is not feasible, because other frames
may depend upon them for motion compensation. So, in order to provide the choice
between several frame rates, the frames must be encoded in a certain manner - also
called hierarchical prediction structure ([56], [57]). A sketch of this prediction order is
found in Figure 3.2. The numbers underneath the frames indicate their ordering within
the coded bit stream.

Figure 3.2(a) shows consecutive frames and their dependencies from motion predic-
tion. As can be seen, the reference frames are not arbitrarily chosen, but in a way that
a hierarchy is arranged between all frames. In the graphic those levels of hierarchy are
marked in different shades of gray and are denoted by T} with k being the identifier
of one temporal layer. Frames between two successive frames from the lowest frame
rate (i.e. highest hierarchy Tj) together with the subsequent Tj-frame are referred to
as a Group of Pictures (GOP). The crucial thing about this prediction structure is that
frames of one temporal layer k only depend on frames from the same or lower layers.
Therefore, layers with an identifier larger than k can be discarded from the bit stream
without influencing frames further up the prediction hierarchy.

The following two figures (3.2(b) and 3.2(c)) show further examples of hierarchical
prediction. Example 3.2(b) depicts a possible solution, where motion prediction is still
conducted in a hierarchical fashion, while avoiding a structural delay in the decoding
process of the sequence. Also noticeable by the lack of backward prediction (i.e. refer-
ence images from the future) and the steadily increasing encoding order of the frames.
However, this solution comes at the price of lower coding efficiency, as shown in the

13

evaluation part (Section 6) further down. In Figure 3.2(c) the frames are arranged in a
non-dyadic way. Thus, the frame rate does not increase by a factor of 2 from one layer
to the next.

Basically the concept of different temporal resolutions can just as well be achieved
through pure H.264/AVC. The advanced flexibility of H.264/AVC for choosing and con-
trolling reference frames [55] already enables the use of hierarchical motion prediction.
SVC just adds methods of signaling and labeling the temporal layers in order to subse-
quently extract them without difficulties.

0o 4 3 5 2 7 6 8 1 12 11 13 10 15 14 16 9
To Ts T2 T3 Ty T3 T2 T3 To Tz T2 Tz To Tz T2 T3 T

(a) Four Temporal Layers

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
To T3 T, T3 Ty T3 T, T3 To T3 T, T3 T4 T3 T, T3 T

(b) Non-Delay Motion Predication

0 3 4 5 2 6 7 8 1 11 12 13 10 14 15 16 9
To T, T, T, Ty T, T, T To To T T, Ty T, T, T, T

(¢) Non-Dyadic Temporal Layers

Figure 3.2: Hierachical Motion Predication

3.2.2 Spatial Scalability

While the previous paragraph dealt with temporal resolution, spatial scalability cor-
responds to different image resolutions. Similar to image pyramids, every new layer
within a spatial scalable bit stream improves the final image resolution [58]. Figure 3.3
demonstrates this idea with one base layer Sy and two enhancement layers (S7 and Ss).
In this case not only the size, but also the number of pictures in each layer differs, which
leads to a combination of spatial (S;) and temporal resolution (7}).

The main advantage of SVC over simulcasting each layer separately, is marked in this
graphic by the vertical arrows connecting two layers. They illustrate the concept called
inter-layer prediction. This prediction method strives to reuse as much information
as possible from one layer to the next. This avoids redundancy between the layers
and subsequently improves coding efficiency. Similar to motion prediction within one

14

layer, in the case of inter-layer prediction first the final image is predicted from the
corresponding picture in the reference layer and only the differences to the actual image
(also called residuals) are finally encoded.

Sz

S,

So

To T3 T, T3 T4 T3 T, T3 Tg

Figure 3.3: Three Spatial Layers

The most efficient way to perform inter-layer prediction would be to depend on the
completely reconstructed or decoded picture from the layer underneath. This straight
forward method, however, would significantly increase the complexity of the decoder, due
to the requirement of fully decoding all underlying layers. In order to keep the decoding
process simple and avoid multiple decoding loops, the SVC standard provides inter-
layer prediction methods that permit so called single-loop motion compensation. With
single-loop compensation, motion estimation at the encoder is conducted in all layers,
while the expensive process of motion compensation at the decoder is only required in
the target layer. This is guaranteed if information from the lower layers can be used
in the target layer without decoding. Though single loop motion compensation slightly
decreases coding efficiency, it significantly simplifies the structure of the decoder [59],
[60]. Hence, the following three inter-layer prediction techniques recycle information
from low level layers without entirely decoding them.

Inter-Layer Motion Prediction

When thinking of conventional motion prediction from H.264/AVC and similar stan-
dards, there are two main components that are encoded for each B or P (i.e. motion
predicted) macro block: the motion vector and the corresponding residual information.
In accordance with this, the first two inter-layer prediction methods concentrate on those
two parts. Since motion vectors are not likely to change too much from one layer to
the next (except for the scaling factor), they offer a good opportunity to reduce redun-
dancy. Inter-layer motion prediction makes use of this fact by copying motion vectors
and additional information (macro block partition and reference picture indices) to lay-
ers that are further up the hierarchy. After rescaling, the copied motion information
either functions as prediction for the actual motion vectors or is directly used for motion
compensation.

Inter-Layer Residual Prediction

In addition to motion vectors SVC also provides means for reusing residual information.
Therefore only the difference signal to the up scaled residual from the lower layer needs
to be encoded. Although inter-layer motion and residual prediction together exploit
most of the information present in the lower layer, it is still not necessary to decode the
reference layer. Hence, the concept of single loop motion compensation is still satisfied.

15

Inter-Layer Intra Prediction

This prediction technique goes one step further. Inter-layer intra prediction applies a
reconstructed version of the corresponding picture in the reference layer as prediction.
This does require the decoding of the lower layer and is therefore only allowed for intra
predicted macro blocks. Those kinds of macro blocks are predicted without motion
references to other frames, which guarantees that they can be decoded without running
a separate motion compensation loop.

3.2.3 Quality Scalability

During encoding the textural information for each macro block is transformed to the fre-
quency domain. For efficiency reasons those transform coefficients are quantized before
they are finally encoded. In this way, the coefficients are mapped to a limited number of
quantization levels. What quality scalability (also called fidelity or signal-to-noise scal-
ability) basically does is influencing the number of these quantization levels. Thereby,
quality scalability achieves refinement in image quality through gradual downsizing of
the quantization steps. Smaller quantization steps yield more quantization levels and
consequently a finer graduation of the transform coefficients (Figure 3.4). This leads
finally to an improved image quality with a higher degree of details.

(a) Four Quantization Levels (b) Ten Quantization Levels

Figure 3.4: Quantization of Transform Coefficients

Looking more closely, this method can be considered a special case of spatial scalabil-
ity. If the image resolution does not change from one spatial layer to the next, refinement
is also solely achieved through smaller quantization steps. This approach of dividing the
video into several quality layers is called Coarse Grain Scalability (CGS). Therefore,
CGS layers can be considered special cases of spatial layers. One disadvantage of CGS
is inherent to spatial scalable layers. Motion estimation is conducted in each spatial
layer separately (see Figure 3.5(a)), which makes switching between two spatial layers
only possible at well defined points within the video stream (i.e. at I-frames). Another
drawback of CGS is already revealed by its name: the choice among different bit rates
is limited to the number of CGS-layers. Fine graduation in between two CGS layers is
not possible.

Hence, the SVC draft also considers other means for quality scalability besides CGS.
All those alternatives take place within one spatial layer and therefore all quality layers
rely on the same motion compensation loop. In Figures 3.5(b), 3.5(c) and 3.5(d) this
fact is pointed out by the lack of gaps between the quality layers. Because all quality
layers within the same spatial layer are based on the same motion prediction loop, the
crucial question then is, which quality level of the reference picture is used for motion
compensation?

16

(a) Coarse Grain Scalability (b) Fine Grain Scalability

(c) Drift (d) Medium Grain

Figure 3.5: Different Quality Scalability Methods

One possible solution called Fine Grain Scalability (FGS) is exemplified in Fig-
ure 3.5(b). FGS always performs motion compensation on the lowest quality level of the
reference picture. The advantage of FGS is that motion estimation at the encoder and
motion compensation at the decoder always use the same quality level of the reference
picture. This is guaranteed by the fact that at least the base layer is always available at
the receiver. If motion prediction is only conducted in the lowest fine grain quality layer,
a loss of refinement packets (e.g. in the third frame of Figure 3.5(b)) does not influence
the motion compensation loop. This fact allows to scale the bit rate of a video stream
on a packet based level, by simply discarding specific packets out of the enhancement
layer. Therefore, FGS ensures that the encoder and decoder are synchronized at all
times. However, the cost of this solution arises in a reduced coding efficiency, because
the more accurate information from the quality enhancement layers cannot be exploited
for motion prediction.

The obvious way to reuse as much information from the reference picture as pos-
sible would be to perform motion prediction in the highest of the quality layers. This
technique together with its major disadvantage can be seen in Figure 3.5(c). While the
reference picture is used in a very efficient way, the video stream becomes susceptible
for a phenomenon called drift. Drift describes a situation when the encoder and decoder
motion predictions loops are no longer working on the same reference images (i.e. are
running out of synch). If some packets of the enhancement layer have been discarded
during transmission, the decoder cannot detect this situation and applies a lower quality
reference picture for motion compensation as the encoder did. In Figure 3.5(c) motion
estimation at the encoder is conducted in the enhancement layer, while for the third
frame only the base layer arrives at the decoder. Hence, the reference picture of the
fourth frame is incomplete, which can lead to visual artifacts in the decoded video se-
quence. Furthermore, the effects due to drift accumulate over time, leading to a severe
loss in video quality over time.

Therefore, SVC introduces a tradeoff between CGS and FGS, in order to fine tune
the video quality, while keeping the drift at an acceptable level. The idea of the so called
Medium Grain Scalability (MGS) concept is depicted in Figure 3.5(d). The improvement
in respect to the already mentioned FGS lies in the flexibility to choose, which quality

17

layer is employed for motion prediction. In this way motion prediction can still be
conducted in the enhancement layer, but with periodic updates in the base layer. Those
periodic updates happen at so called key pictures and synchronize the decoder motion
compensation loop with the one from the encoder. In Figure 3.5(d) at every fourth
frame is a key picture where motion prediction is synchronised by updates in the base
layer. Thus, MGS guarantees that the effects of drift are not getting too acute.

3.2.4 Combination of the Scalability Dimensions

All of the three introduced scalability dimensions can be combined with each other. The
schematic structure of such a bit stream can be seen in Figure 3.6. The most important
classification refers to the spatial layers of the SVC video stream. Within one spatial
layer there can reside one or more temporal and quality layers.

Quality Layer 2
g
Quality Layer 1 &
S
©
Quality Layer0 | &
Frequency Layers
Quality Layer 2
o
g
Quality Layer 1 | &
S
©
Quality Layer 0 | &
Frequency Layers

Figure 3.6: Combined Scalability Dimensions

18

Chapter 4

Pulsar

In order to keep the report self-contained this chapter is dedicated to the Push-to-Pull
protocol that forms the foundation of the Pulsar streaming software. It outlines the
principal concepts and provides the basis for a discussion about aspects relevant to the
integration of scalable video (see Chapter 5). For those characteristics of the protocol
that are not covered by this brief overview the corresponding papers [10] and [11] are
recommended.

As already stated in the section about related work in Chapter 2, peer-to-peer net-
works can broadly be classified according how individual peers select their neighbors.
Those neighbor selecting strategies subsequently induce the structural overlay of the
network. Due to the mentioned problems of the two main groups of overlay structures,
tree-based and unstructured overlays, Pulsar strives to combine both concepts. This
combination is achieved by conducting a two phase approach for distributing data pack-
ets. In this way strengths of one concept can tackle weaknesses of the second one. Hence,
the next two paragraphs are dedicated to the initial pushing and the subsequent pulling
phase.

4.1 Pushing

The intention of the first pushing phase is the rapid distribution of data packets to a
majority of peers. Therefore, the efficiency of tree-based overlays is exploited. Concern-
ing the structure of the tree, ideas from Distributed Hash Tables (DHT) are borrowed.
As explained in [37] DHTSs are special hash tables with their values (i.e. buckets) dis-
tributed among several locations (i.e. peers). More precisely, a DHT provides means
for deciding where to store and subsequently retrieve data in a distributed environment.
Therefore, for each value to be stored, a unique key is generated (usually a bit string),
which determines the final node for depositing the value. In peer-to-peer networks for
example those keys are used for routing through the overlay to the final destination
peer.

Pulsar itself does not utilize DHTSs for storing data. It just borrows the idea of
routing for pushing packets along a tree-like overlay. The difference in Pulsar is that
packets should not be routed to a single destination (as for storing), but to as many
peers as possible. Therefore, each peer hands incoming packets to all its children instead
of just one.

In order to avoid a rigid tree structure, each peer should have a certain degree of
freedom for choosing children nodes. This is achieved by the so called prefix routing
technique (figure 4.1). The term ”prefix” refers to the first digits of the peer identifier.
When choosing children nodes to forward a packet, parent nodes can decide between
several peers. The choice between children is restricted to peers that satisfy the following
three constraints:

19

| 0011 1110

Figure 4.1: Prefix Routing (Prefixes are underlined)

e The child node is new to the tree (i.e. no loop).
e The child prefix equals the parent prefix.
e All child identifiers must differ in the first digit after the prefix.

Figure 4.1 illustrates the concept of prefix routing on a simple example. The bit
strings in the middle of every peer indicate the identifiers with the prefix comprising
the first underlined digits. Each peer can now choose its child nodes under the before
mentioned constraints. The source (0000) for example selects two child nodes that
start with 0XXX and 1XXX respectively (with X being eather 0 or 1). At every hop the
prefix is expanded to comprise one more digit of the identifier. Therefore, the peer
0011 is restricted to choose child nodes with the follwing pattern: 00XX and 01XX. This
restriction in connection with the first constraint further limits the freedom of choosing
child nodes at each hop. At the same time the second constraint ensures an equal
distribution of packets within the network.

While profiting from the efficiency of a tree based structure, prefix routing still avoids
a rigid overlay. Therefore, the flexibility of choosing a neighbor can for example be used
to favor closer peers or to react to churn.

4.2 Pulling

Distributing packets by solely relying on prefix-based pushing does not guarantee that
all peers within the network are actually reached. That is why the push phase is followed
by subsequent pull operations. In this second phase peers that were not reached during
the pushing phase request missing packets in an unstructured manner. Meaning that
peers notify their neighbors about received packets and they in turn can request these
available packets. The latency of pull operations is diminished in this case, because the
prior push step already brought the data packet close to almost all peers.

In addition, the pulling phase offers the possibility to incorporate incentive mecha-
nisms for motivating peers to share their upload capacity and provide other peers with
received packets. Incentive mechanisms are essential for all peer-to-peer networks, since
they rely on the upload contribution from all peers and would suffer from ”selfish” peers
that consume packets without further forwarding them. Basically, pull based packet
distribution simplifies the task of controlling fair collaboration from all peers, because a
bidirectional packet exchange takes place. Thereby Pulsar employs an incentive mech-
anism similar to the tit-for-tat-concept of [61]. With the tit-for-tat-concept peers only
offer packets, if they receive other packets in return. Since the only way to get packets
is to exchange them with other packets, selfish peers can be avoided to some degree.

By combining push and pull based packet distribution Pulsar is able to rapidly reach
all peers while still staying robust against churn. For a comprehensive assessment of this
property the reader is referred to the evaluation part of [10]. After this general overview
of the Pulsar protocol we want to take a closer look in the next chapter on those aspects
that are important for integrating scalable video.

20

Chapter 5

SVC and Pulsar

The last two sections concentrated on scalable video and Pulsar separately. In the
following paragraphs both fields are brought together by discussing the actual modifi-
cations that were necessary in order to integrate scalable video streams into Pulsar. All
necessary modifications are dealing eather with Pulsar or the JSVM reference software.
Thus, the follwing two paragraphs concentrate on those topics respectively.

Although this chapter almost exclusively talks about scalability in the field of video,
all concepts were designed to be as generic as possible. This offers the possibility to
expand the idea of scalability to other media content types such as audio. Furthermore,
a different scalable video format could be used as well. Only in places where SVC is
explicitly mentioned the discussion is restricted to the scalable video coding standard of
the same name.

5.1 Modifications concerning Pulsar

The following modifications on the Pulsar protocol presented in Section 4 were necessary
in order to integrate scalable video streams. They can either be classified as concerning
the Push-to-Pull protocol or the layered structure of a video stream. Adaptations to the
protocol of Pulsar consider the modified communication between peers, when distribut-
ing a scalable video stream. In addition, the internal layered structure of a scalable
video stream demands further attention besides the protocol.

5.1.1 Protocol

Theoretically, a scalable video stream could be transmitted via the same overlay struc-
ture, which is also used for non-scalable streams. But to fully benefit from the possible
advantages of scalable video, the protocol has to consider the fact that peers might re-
quest different layers of the same video stream. Thus, the following paragraphs describe
those parts of the Pulsar protocol that need to be expanded in order to handle peers
requesting different layers.

Neighbor Selection

Each peer within the Pulsar network keeps its own list of neighboring peers (see Sec-
tion 5.1.2). This group of peers is not only used to select children nodes for pushing
packets, but also for exchanging packets during the pull phase of packet distribution.
Hence, the composition of this group strongly influences the distribution of packets in
the Pulsar network. In order to gradually improve the group of neighbors with respect
to the available bandwidth and to adjust to variation within the group, Pulsar provides
means for periodically updating the members of the group. Therefore, all neighbors are

21

ordered according to a specific criterion and those neighbors that appear at the end of
the list are replaced by other peers.

Thus, the composition of neighbors is determined by two aspects: the strategy for
scoring current neighbors and the strategy for scoring candidates for possible new neigh-
bors. In Pulsar both scoring strategies can be implemented separately by the so called
Neighbor Scoring Strategy and the Candidates Scoring Strategy, respectively. Hence,
neighbors with a low value according to the Neighbor Scoring Strategy are likely to be
replaced by peers that perform well with respect to the Candidates Scoring Strategy. For
scalable video streams it is important that both strategies also take the number of layers
that each neighbor offers into account. In order to fully benefit from the advantages
that scalable video offers, two new strategies were devised: Scalable Neighbor Scoring
Strategy and Scalable Candidates Scoring Strategy.

The Scalable Neighbor Scoring Strategy has to consider the fact that only neighbors
from the same or higher layers can provide all packets needed to play a specific layer.
Although for example neighbors from the base layer can assist in constructing the base
layer, their contribution is not sufficient to receive any enhancement layer. Since the
Scalable Neighbor Scoring Strategy determines which neighbors are replaced by new
peers, it is therefore important to ensure that at least one peer from the same or higher
layers remains in the group of neighbors.

In particular, the Scalable Neighbor Scoring Strategy of Pulsar implements this con-
straint using a little trick. Usually all peers are scored according to their upload capacity.
Only if one neighbor is the last one from the group of neighbors that offers the same or
a higher layer, this peer obtains a virtual bandwidth boost. This boost guarantees that
the Scalable Neighbor Scoring Strategy never chooses this neighbor for replacement.

Candidates Selection

The Candidates Scoring Strategy used by Pulsar for non-scalable video streams, relies
on the computation of the packet Round Trip Time (RTT) to neighbor candidates.
Thus, locality is taken into account in selection new neighbors by preferring peers with
a shorter RTT. The reason behind using RTT is that information about the available
bandwidth is not known prior to any packet exchange over a longer period of time.

In case of the Scalable Candidates Scoring Strategy the number of layers plays an
even more important role. Generally all peers strive to connect to peers, who are in the
same or higher layers. Therefore, initially only peers from the same or higher layers are
considered as neighbor candidates. Within one layer the candidates are scored accoring
the RTT similar to non-scalable streams. Only if no more peers from the same or higher
layers are available, peers from lower layers are chosen as new neighbors.

Since the source of a scalable video stream determines the maximum number of
layers, this Scalable Candidates Scoring Strategy aims at distributing packets first to
the higher layers and subsequently also supply lower layers. Figure 5.1 illustrates this
concept on an example with three layers (the source is marked with a white point).

The idea behind this Candidates Scoring Strategy is two-folded.

e First, it can be assumed that peers in the highest layer have a high bandwidth
at their disposal. Therefore, distribution among them can be conducted in a fast
and efficient way. As soon as all peers in the higher layers are reached, they can
further support colleagues from layers underneath. In this way the packets are
rapidly distributed to as much peers as possible, which helps in reaching every
peer in a short period.

e Second, without a preference for peers in the same (or higher) layers, clustering of
peers that only request the base layer becomes a threat. This happens due to the
fact that only peers from higher layers can entirely serve peers from lower layers
and not the other way around. Peers in the lowest layer only receive packets from
the base layer of the video stream and therefore cannot support any requests for

22

Layer 1 o
=
N2 S — =
Layer 0 = / >
v
\ S —

Figure 5.1: SVC Neighbor Selection

enhancement layer packets. Thus, for peers that need more than just the base
layer it is crucial to connect to enough neighbors from the same or higher layers.

Incentives

Essentially the basic incentive mechanisms of Pulsar outlined in Section 4.2 also work
fine for scalable video streams. However, the varying importance of layers within a scal-
able video stream can be incorporated into the tit-for-tat-strategy. Generally speaking,
Pulsar implements the tit-for-tat-mechanism by assigning each packet a so called pay-
back ratio. The higher this ratio is the more packets one peer can expect to receive in
return for offering one packet. In other words, payback ratio influences the " motivation”
for sharing packets by determining their ”prices”.

The tit-for-tat-mechanism can further be used to assign packets from different lay-
ers corresponding importance. Two contrary strategies for this purpose are feasible,
depending on which layers are regarded most valuable:

e One strategy would be to conform to the layered structure of the scalable video
stream and consider the base layer most important, since it is essential for all
higher layers. In doing so, packets from the base layer would be assigned higher
payback ratios than the ones from enhancement layers. For example the payback
ratio could double from one layer to the next higher layer, leading to an exchange
rate, that allows to receive two enhancement packets instead of one base layer
packet. This strategy clearly favors weak peers, since the base layer packets they
receive during the pushing phase are more valuable in the subsequent tit-for-tat-
pull phase. Thus, it is easier for weak peers to obtain all base layer packets
they need. However, at the same time strong peers are not motivated to offer
their packets from enhancement layers, which could hinder the distribution of
enhancement packets.

e Due to the problems of the first solution and the fact that stronger pees also need
more packets to display high layers the allocation of payback ratios to layers could
be reversed. This strategy would follow the idea that enhancement packets are
rare and therefore more valuable than packets from lower layers. Hence, strong
peers have no problems to obtain all packets up to the highest layer, while weak
peers have to struggle to complete their base layer.

The decision between those two strategies can be chosen depending on the band-
width distribution of the peers and other parameters. Additionally, more test runs are
necessary in Pulsar to study both solutions more profound and identify their advantages
and disadvantages. From a solely theoretical perspective the first strategy seems more
robust and fair concerning the overall distribution of packets for all layers and peers.

23

5.1.2 Layered Video Stream

In addition to the protocol aspcets the internal layered structure of a scalable video
stream bears further challenges for Pulsar in comparison to single layer video streams
(i.e. H.264/AVC). For the remaining of this report the term ”frame” refers to a set of
layers that together form a complete picture of the final video sequence.

Parts

Pulsar employs for each non-scalable video stream exactly one overlay structure and
consequently also only one set of strategies for requesting and notifying packets. This
concept proves too rigid for a scalable bit stream containing different layers, since it
would be favorable to adjust those strategies for each layer individually. Thus, the con-
cept of an overlay structure was expanded to cope with several layers. Now, each overlay
can be comprised of several so called parts. Each part is responsible for distributing
one layer. An individual set of strategies can be assigned to each part, which allows for
specific strategies targeted at each layer. Although all parts of a scalable video stream
employ their own set of strategies, they are all united under the same overlay structure.
Accordingly, all parts rely on a unique list of neighbors as well as on a unique strategy
to update them. This fact ensures that the overall overlay stays connected and does not
break apart into smaller sub-group for each layer. The basic structure of the modified
overlay is shown in Figure 5.2.

The concept of parts can further be generalized by the fact that their application is
not restricted to layers of a scalable video stream. Also other data types that are related
to the scalable video stream can be conveyed via parts. This is especially important for
meta data such as general information about the stream or security information.

- Neighbor List - Packet Buffer
- Capacity Strategy g - Notification Strategy
- Response Queue g - Request Strategy
- Request Queue - Push Strategy
> - Packet Buffer
= + - Notification Strat
= | - Notification Strategy
() @© -
2 & Request Strategy
(o) - Push Strategy
t
g - Hash List Buffer - Packet Buffer
> Notification Strategy g - Notification Strategy
g - Request Strategy (S| - Request Strategy
§ - Push Strategy - Push Strategy

Figure 5.2: One overlay containing three layer parts

Packet Buffer

On the receiver side Pulsar collects all data packets of a non-scalable video stream in a
buffer. There all incoming packets are sorted; missing packets are requested and after
a specified time period the available packets are finally handed over to a buffer reader.

24

Those buffer readers are responsible for providing an interface for fetching available
packets from the buffer. The general concept of buffers and buffer readers is outlined
for three layers in Figure 5.3. Due to the modifications of overlay parts (Section 5.1.2)
the buffer for incoming SVC packets has to be modified as well. Similar to the concept
of parts, each layer handles incoming packets in its individual buffer. Thus, it remains
the task of combining those buffers to form a single output stream. This is realized by
an additional buffer reader, which functions as a wrapper around all layer buffers and
merges their output to a single output stream.

v

——p Layer 1 Buffer ~» Reader1 Scalable Reader

N

——p Layer 0 Buffer ~» Reader0

Figure 5.3: Three Part Buffers

Scalable Payload

H.264/AVC uses a basic data structures called Network Abstraction Layer (NAL) Units
to divide the encoded video into data packets [55]. As an amendment to H.264/AVC the
SVC standard employs this concept as well and in addition defines its own NAL unit
types [62], [63]. For all following considerations it is assumed that each layer within one
frame is allocated exactly one NAL unit. Pulsar on its part encapsulates data into so
called StreamPackets before sending them over the network. Therefore, a new payload
type for StreamPackets was introduced: ScalablePayload. This payload type is designed
for the purpose of conveying scalable media content (especially scalable video). In the
header of the ScalablePayload the following information is bit-wise encoded.

Pseudocode 1 Scalable Payload Header

Bit Size Name Comment

1 firstComplete

1 lastComplete

6 nPackets

16 * nPackets refSeqgs Golomb variable length coding
6 refOffsets

12 * nPackets datalOffsets

1 * nPackets contentIds more possible in the future

3 * nPackets temporallds Golomb variable length coding

The first two bits (firstComplete and lastComplete) indicate whether the first or
the last) NAL unit of the StreamPacket is part of a large NAL unit or completed. If
lastComplete is 0, the next StreamPacket should have firstComplete also equal to 0.
Otherwise parts of a divided NAL unit are missing in between. The next field nPackets
counts the number of NAL units included in the StreamPacket and together with the
previous two bits they form the first byte of the ScalablePayload header with the most
important information.

refSeqs and ref0ffsets store references to StreamPackets in the next higher layer
(Section 5.1.2). For each NAL unit included in the StreamPacket refSeqs holds the

25

sequence number of the StreamPacket that contains the next higher NAL unit. This
information is important for the scalable reader (Section 5.1.2) to reconstructe all layers
from the base up to the last enhancement layer. The references are likely to increase
only by one or at most a few steps from one NAL unit to the next. That is why only
the first value is directly encoded and for all subsequent references only the difference to
the prior value is conveyed. Furthermore, Golomb variable length entropy coding [64]
is employed to further reduce the necessary bits. In addition to the sequence number
references, refOffsets points to the first NAL unit in the next higher StreamPacket
that depends on the current StreamPacket. This information is necessary for recovery
after packet losses (see next next Section 5.1.2).

In order to safe further bytes ScalablePayload does not separate NAL units using the
usual H.264/AVC three bytes delimiter 001. Instead dataOffsets indicates the limits
between several NAL units. The following bit contentIds is yet always equal to 0, but
in the future it is intended to distinguish between audio and video data. In addition
contentId could be expanded to comprise more than one bit in order to support other
content types as well (e.g. speech, meta information or subtitles). At the end of the
header, the fields temporallds signal to which temporal layer each of the following
NAL units belong. This information enables the extraction of a specific temporal layer
without the need for parsing any of the NAL units. The difference between the values
for temporallIds are also likely to differ only by one. Therefore, the same variable length
coding schema as for refSeqs is adopted.

Packeting of Scalable Payload

Besides the payload a new method for packing SVC NAL units into StreamPackets
had to be devised. For this propose different techniques tailored to specific needs were
developed. In all cases the maximum size of a StreamPacket is assumed to be 1350
bytes.

The first solution fills the StreamPackets with NAL units until the next NAL unit
does not fit in any more. Then a new StreamPackets is started with the complete new
NAL unit at the first position. If the size of a single NAL unit is larger than one
stream packet (most often the case at I-frames), the NAL unit is partitioned among
several StreamPackets. Finally, the rest of a divided NAL unit is allocated a separate
StreamPacket (Figure 5.4(a)). The firstComplete and lastComplete fields of the
ScalablePayload (see 5.1.2) signal if the StreamPacket includes parts or complete NAL
units. This simple and robust packing technique fits the needs of Live Streaming. On
the one hand packets are not completely filled, which produces a certain amount of
overhead, but on the other hand it limits the aftermath of lost StreamPackets.

In some cases the varying size of StreamPackets can turn out less useful. This is
especially the case for On-Demand Streaming where the whole video stream is stored
at the end user’s hard disk. Random access of this file is simplified, if StreamPackets of
constant size are used for storing.

Therefore, a second method for packing SVC NAL units into StreamPackets was
devised. The difference to the first packing method is that StreamPackets are entirely
filled up untill the maximum capacity is reached (Figure 5.4(b)). Thus, NAL units are
not only divided in cases where they exceed the size of one StreamPacket, but also if the
remaining space in a StreamPacket can be completed by parts of the next NAL unit.
Due to the fact that this method utilizes the StreamPackets in a more efficient way, the
average overhead for each NAL unit is reduced. However, if a single StreamPacket gets
lost, also NAL units from other StreamPackets can be affected, since they were divided
among several StreamPackets.

For an expansion of the scalability functionality to handle different temporal resolu-
tions in addition to quality layers, a third packing strategy might be of interest. Thereby,
the coding order of frames is considered during the packaging of NAL units. In order
to enable a hierarchical prediction structure, the frames need to be encoded in a spe-

26

NAL 0 H NAL 1 ‘ NAL 3 NAL 3 NAL 4 EIE

(a) Packing for Live-Streaming

NAL 0 H NAL 1 ‘ 3 NAL 3 NAL 3 H NAL4‘5 5 ‘ 6 H NAL 7

(b) Packing for OnDemand-Streaming

Figure 5.4: Allocation of NAL units to StreamPackets

cific succession that mostly does not match their actual order within the video sequence
(Figure 3.2(a)). For each Group of Pictures first the frames of the lowest temporal layer
are encoded, because all following frames depend upon them.

The two packing methods discussed so far did not consider those dependencies be-
tween frames. The only criterion was the remaining space in the StreamPacket to be
filled. However, in order to offer several temporal resolutions, it is important that
temporal layers can easily be extracted from the complete video stream. This is only
possible, if frames from different temporal layers are not placed in the same Stream-
Packet. Therefore, the temporal layer of each NAL unit has to be considered during
packing of StreamPackets. Figure 5.5 illustrates this idea on the same example already
used in Figure 3.2(a). The difference is that frames are now ordered according their
encoding succession and the numbers underneath indicate the playback sequence num-
bers. Of course, this method does not use the capacity of StreamPackets in an optimal
way, but in return different temporal resolutions can be extracted without unpacking
any StreamPacket.

r——1——T--———- T——————————-— T~ —T————- T——————————- =1
I | | | | | | | | |
| | | | | | | | | |
I I | | | | I | | |
| | | | | | | | | |
| l I I |

:8:4:2 6:1 3 5 7:16:12:10 14:9 11 13 15:24:
:To:T1:T2 T2:T3 T3 T3 Ta:To:T1:T2 T2:T3 Tz T3 Ts:To:

Figure 5.5: Packing of Frames according their Temporal Layers

Reference Structure

After receiving StreamPackets from different layers they are rearranged by the scalable
reader (Section 5.1.2) according to the information found in the header (Section 5.1.2).
Every ScalablePayload includes a reference to the related StreamPacket in the next
higher layer, as well as an offset to the right NAL unit within this StreamPacket, as
illustrated in Figure 5.6. With this information the order and dependencies between the
NAL units from different layers can be reconstructed.

Even in case of packet lost, the remaining NAL units can be reassembled as illus-
trated in Figure 5.7. In this example the second StreamPacket from Layer 1 was lost
during transmission. Since the NAL units of frame number 2 and 3 were included in
this StreamPacket, only the base layer can be used for those frames. As soon as new
StreamPackets are available again in Layer 1 (at frame number 4), the quality of the
output video gets back to the highest layer. This example furthermore shows the need
for the ref0ffsets-field of the scalable payload (see 5.1.2). In order to recover at Frame

27

Layer 2 0 lI' 2 3
A ;
| A\

Layer 1 0 ‘ 1 2
il

f
| /
]
Layer 0 0 1 2 3

A/—7 -h/—7 IS
D

Figure 5.6: References between NAL units from three Layers

4 from the missing StreamPacket the receiver not just needs the reference to the Stream-
Packet that includes Frame 4, but also its position inside this StreamPacket. In cases of
missing StreamPackets from the base layer, all of the included frames have to be skipped
completely. This is due to the layered structure of SVC, where the base layer is essential
for all enhancement layers.

Layer 2 0 ‘ ‘ 1 ‘ % ‘ ’ 3 5 ‘
X 3 ;I X
/ / | \ N\
7 / \ L
Layer 1 0 ‘ ‘ 1 ‘ 2 ‘ ‘ 3 4 ‘
x X X . e
])] /
Layer 0 0 1 %‘ @ ‘ 4 ‘ 5] ‘

Figure 5.7: Recovery after lost SreamPacket

Since all layers are encoded as MGS layers, the whole SVC stream is robust against
lost NAL units from enhancement layers. As pointed out in Section 3.2.3, MGS streams
can be scaled on a packet base level, because all layers rely on the same motion prediction
loop. Hence, single packet losses do not cause the complete layer to collapse. This benefit
simplifies the task of error resilience, since no special care has to be taken on detecting
lost enhancement layer packets. However, if packets from the base layer get lost, the
complete frame has to be skipped (even if enhancement packets are available), as well
as all frames that are dependent via motion prediction.

5.2 Modifications concerning JSVM

The first attempt to implement an own SVC decoder in order to use it in Pulsar turned
out as too time consuming. Although, some parts of the already written code could
be reused for further purposes (e.g. the code for parsing NAL units in a SVC encoded
video stream). Due to the limited time we decided to rely on the JSVM software and
integrate its code into Pulsar.

5.2.1 Quality Scalability

Before integrating scalable video into the Pulsar streaming software various test runs
were conducted with the SVC reference software called Joint Scalable Video Model
(JSVM) [16]. The results are presented in Section 6.1. After those tests we decided to
first concentrate on quality scalability as a starting point, with the following motivation.

28

When scaling a video on the basis of its quality, the consumer may notice the lower bit
rate by block patterns or other visual artifacts. However, the spatial and temporal
resolution of the video sequence is kept intact, which guarantees a smooth playback.
Furthermore, with medium grain scalability (MGS) the choices of different bit rates is not
restricted to the number of layers and the bit rate can be scaled on a packet based level.
This feature essentially improves the flexibility of the scalable video stream and at the
same time makes it to some extent robust against lost packets. Although other scalability
options (namely spatial and temporal scalability) as well offer interesting possibilities,
quality scalability seems to best fit the requirements of a peer-to-peer environment.

5.2.2 Temporal Scalability

In contrast to Spatial and Quality Scalability, a standard H.264/AVC video stream
can already include different frame rates. Since hierarchical B-frames (Figure 3.2) can
be encoded by the sole use of H.264/AVC concepts, regular non-scalable decoders are
also capable of handling temporal scalable video streams. Especially for MGS streams
temporal scalability forms an integral part of the primarily quality scalable video stream.
This is due to the fact that all frames from the lowest temporal layer are encoded as
key frames (see Section 3.2.3). Motion prediction for key pictures is conducted in the
base quality layer in contrast to all other frames, where the highest quality is used for
this purpose. Therefore, every MGS stream offers quality and temporal scalability at
the same time. In order to make use of the temporal layers special methods for packing
and signaling those layers are needed.

5.2.3 Decoding or Rewriting

Another interesting question that came up during testing the JSVM software was the
relation of SVC and basic H.264/AVC. Since Pulsar is already working with the common
H.264/AVC decoder of FFmpeg [65], it would be nice to expand its functionality to also
cope with scalable video. In this way the redundancy of two parallel decoders - one for
single layer H.264/AVC and one for SVC - could be avoided. One way to achieve this
goal would be to directly integrate scalable video functionality into the existing code of
FFmpeg. Our efforts in this direction are still not finished yet, but under continuous
progress.

This report however concentrates on a second solution. Thereby a scalable bit stream
is first transformed to a regular H.264/AVC stream and subsequently handed over to
the FFmpeg-decoder of Pulsar (see Figure 5.8). The specification of SVC considers such
rewriting concepts [66], which will be outlined in the following paragraph.

Incoming Packets

il

Pulsar

SvC

AAA

Rewriter

H.264 Output
ffmpeg >

\ 4

Figure 5.8: SVC-to-H.264 Rewriter

29

5.2.4 Rewriter

The basic idea of rewriting a SVC video is to encode the contained layers in a way
that merging them to a H.264/AVC bit stream only requires simple and fast operations.
This is possible if all operations can be completed in the transform coefficient domain
without having to entirely decode each layer. The scalability dimensions present in the
SVC stream determine the complexity of the rewriting process.

Since encoding and decoding of hierarchical B-frames is just as well possible with
pure H.264/AVC means, a solely temporal scalable video stream already represents a
valid H.264/AVC stream. Thus, a common H.264/AVC decoder can handle different
temporal layers within a video stream, which makes rewriting needless. For spatial scal-
ability things are not that simple. The fact that each spatial layer represents a different
spatial resolution complicates the attempt to merge all layers to a single H.264/AVC
stream. Merging spatial layers would require almost complete decoding of each layer
with subsequent re-encoding to a H.264/AVC stream. That is why rewriting spatial
scalable video streams is not supported by the SVC standard. In case of the third
scalability dimension, concerning the quality, rewriting is possible, as long as certain
constraints are regarded. Especially three modifications to the syntax of a basic SVC
bit stream are necessary to enable fast rewriting of quality layers. Those changes are
briefly explained in the following paragraphs, while the reader is referred to [66] for an
in-depth discussion.

e The first modification concerns residual predicted macro blocks (Section 3.2.2).
Normally those kinds of blocks take the residual information from the reference
layer, inverse transform it back to the spatial domain and finally use the result
as a prediction for the residual in the current layer. Since in H.264/AVC residual
information is also stored in the frequency domain, for the purpose of rewriting it
makes more sense to conduct residual prediction directly in the frequency domain.

e Additionally, also intra predicted macro blocks require modifications in order to
transform them into H.264/AVC ones. As described in Section 3.2.2 intra pre-
dicted macro blocks need to completely decode the reference layer in order to use
it as prediction. To avoid this step inter-layer intra prediction is omitted and
normal intra prediction is performed in each layer separately. This simplifies the
transformation into non-scalable intra macro blocks.

e Fspecially for MGS video streams a third restriction becomes relevant. The fact
that for key pictures of a MGS stream the base layer representation is employed
as reference for motion prediction handicaps the rewriting task. In the rewrit-
ten H.264/AVC stream it is not longer possible to distinguish between motion
prediction from the base layer (key pictures) and the highest enhancement layer
(non-key pictures). Therefore, key pictures are not allowed in rewritable MGS
streams. Without key pictures problems due to drift (Section 3.2.3) become dif-
ficult to handle. However, our test runs regarding drift revealed no severe visual
faults due to this phenomenon even without key pictures. Nevertheless we decided
to rely on periodic I-frames in order to limit any possible impacts caused by drift.

If all the restrictions are considered during encoding, the final quality scalable bit
stream can easily be rewritten to a valid H.264/AVC video. However, this comes at the
price of a slightly decreased coding efficiency. The impact of the described modifications
on the final bit rate is studied in the evaluation part of this report (Section 6.1.3).

5.2.5 JNI Interfaces

Two obstacles were to overcome in order to use the JSVM rewriter in Pulsar:
First, the gap between two programming languages had to be closed: Pulsar is
implemented in Java in contrast to JSVM which is written in Visual C++. To let

30

both applications collaborate with each other, we made use of the so called Java Native
Interface (JNT) [67]. This library provides interfaces that allow Java code running in the
virtual machine (JVM) to call functions written in a different programming language
(i.e. native code like C++, C or other implementations). Also the opposite direction, a
native program calling Java code, is possible through the JNI.

As far as it concerns the integration of the JSVM rewriter into Pulsar, we employed
both the writing and reading functionality of the JNI. The first one for sending packets
received by a Pulsar peer to the rewriter and the second one for subsequently collect-
ing the rewritten H.264/AVC frame. The basic concept is seen in Figure 5.8. Direct
Byte Buffers are used as data structures for actually exchanging bytes between both
applications (see Pseudocode 2).

Pseudocode 2 Rewriter Interface for waiting on available NAL units (C++)

// finding method for fetching next packet from Pulsar
fetchPacketMethod* = GetMethodID("fetchNextNALunit");

// actually waiting till next NAL unit is available
javaObject* nalUnitByteBuffer = CallMethod(fetchPacketMethod);

// get address of new NAL unit
unsigned char* nalUnitAddress = GetByteBufferAddress(nalUnitByteBuffer);

Second, the code of the JSVM rewriter had to be modified in order to work with
a consecutive stream of video data. Before, the software assumed that a complete and
finished video file is available. In our solution the rewriter is now running parallel to
Pulsar waiting to rewrite one frame as soon as it is received. Code snippets for this
function are listed below (see Pseudocode 3).

Pseudocode 3 Pulsar Interface for sending available NAL units to Rewriter (Java)

public ByteBuffer fetchNextNALunit(){
ArrayList<ByteBuffer> availableNalUnits;

while (true){
if (availableNalUnits.size > 0){
availableNalUnits.returnFirstInLine();
availableNalUnits.removeFirstInLine();
}
}
}

For the actual integration into Pulsar a new FFmpeg-codec was generated, which uses
the rewriter to transform SVC NAL units into H.264/AVC ones. Therefore, FFmpeg can
handle SVC streams by simply utilizing the new rewriter-codec in connection with the
regular H.264/AVC decoder. Furthermore, the interface outlined above is not restricted
to the JSVM rewriter. It could equally be expanded for encoding or completely decoding
(not just rewrite) SVC bit streams. Nevertheless, the performance issues of the JSVM
implementation outlined in Section 7.1 should be pointed out as well.

31

32

Chapter 6

Evaluation

6.1 SVC Evaluation

All of the following test runs were conducted with the Joint Scalable Video Model
(JSVM) - Version 9.12.2 - which serves as the reference software behind the SVC stan-
dard. It is maintained by the Joint Video Team (JVT) and freely available over the
Internet [16].

After conducting a few test runs with JSVM we recognized that the provided test
sequences [68] are not representative enough for our purpose. In some test cases their
short length of only a few seconds was not sufficient to produce stable results. Therefore,
we created our own test sequence on the basis of the open source movie Elephants

Dream [69] and the Trailor for the movie Michael Clayton.

Pseudocode 4 Main Configuration File for three MGS Layers

JSVM Main Configuration File

OutputFile ed/ed_400x224.svc # Bitstream file
FrameRate 25.0 # Frame rate
FramesToBeEncoded 1749 # Number of frames
GOPSize 16 # GOP Size

IntraPeriod 32 # Intra Period
BaseLayerMode 1 # Base layer mode
SearchMode 4 # Search mode
SearchRange 32 # Search range
CgsSnrRefinement 1 # 1: MGS; 0: CGS
EncodeKeyPictures 1 # O:none, 1:MGS, 2:all
MGSControl 2 # ME/MC for non-key pics
NumLayers 3 # Number of layers
LayerCfg layerO.cfg # Layer O config file
LayerCfg layerl.cfg # Layer 1 config file
LayerCfg layer2.cfg # Layer 2 config file

33

6.1.1 Single Layer vs. Multiple Layers

The first question studied during the evaluation was concerning the overhead of scal-
able video in comparison to non-scalable video streams. Therefore, several SVC test
sequences with different numbers of quality layers (MGS) were compared to single layer
H.264/AVC. In all test cases a resolution of 400 x 224 pixel was used with similar
parameters to the ones presented in Pseudocode 4. All layers were encoded at a con-
stant frame rate of 25 frames/sec. Furthermore, SVC-to-H.264/AVC rewriting ability
was disabled (AvcRewriteFlag 0) and inter-layer prediction was set on to adaptive
(InterLayerPred 2).

The most important parameter during encoding a quality scalable bit stream repre-
sents the quantization parameter (called QP). This parameter influences the quantiza-
tion of transform coefficients by specifying the quantization step size. Thus, a smaller
QP value increases the number of quantization levels and consequently sustains more
details of the original video in the encoded version. In particular, an increment of QP
by 1 corresponds to a larger quantization step size of approximately 12% [70] and a
corresponding decrease in bit rate of about the same percentage. Hence, a difference of
6 QPs should lead to circa a doubling of bit rate (1.12% = 1.97).

Figure 6.1 illustrates the overhead induced by SVC, by comparing different QP values
with their corresponding bit rates. For both test sequences (Elephants Dream and Lost)
the bit rates of the non-scalable bit streams are illustrated as single points. In contrast
to SVC streams, they are not connected via a curve in order to clarify that they represent
separate streams. Each of these H.264/AVC streams was encoded with a different QP
ranging from 38 to 26. Thus, for H.264/AVC streams the lowest bit rate (128 kBits/sec)
forms roughly 1/4 of the highest one (512 kBits/sec).

kBits / sec kBits [sec

700 700

600 / —&— 5 layers 600
——5 layers
3 layers
500 — 500 3layers
2 layers

2 layers

400 X single 400 v 4
layer /‘ X single
*® l:d
layer
300 300
X
X
200 - 200 1

/? —%

(a) Elephants Dream Test Sequence (b) Lost Test Sequence

Figure 6.1: SVC overhead in comparison to H.264/AVC

Taking a look at the SVC video streams (illustrated as solid curves in Figure 6.1),
it can be seen, that in all cases the lowest layer (i.e. the base layer) comprises the same
bit rate as the base H.264/AVC version does. This is not surprising since the base layer
of a SVC video always represents a valid H.264/AVC stream. However, when adding
more layers to the SVC stream, a certain amount of overhead compared to H.264/AVC
becomes apparent.

The most important characteristic of the three SVC streams illustrated in addition
to the H.264/AVC stream is their number of MGS layers. The more different bit rates
a SVC stream offers, the higher is its overhead in comparison to the corresponding
H.264/AVC version. When concentrating on the highest bit rate (i.e. QP of 26) the fol-
lowing overhead (as percentage) can be measured for the Elephants Dream test sequence:

34

12%, 22% and 40% for two, three and five layers respectively. Whereas the correspond-
ing results for the Lost sequence reveal 13%, 24% and 44% of overhead. Thus, as a rule
of thumb it can be stated that one additional enhancement layer yields approximately
12% of overhead. This statement also holds true in cases of lower bit rates. For ex-
ample SVC layers of the Elephants Dream sequence encoded with a QP of 32 bear an
overhead of about 12% and 24% (3 and 5 MGS layers respectively) in comparison to the
corresponding H.264/AVC stream at a similar QP.

6.1.2 Quality Parameters

The aim of the next test runs was to find the right QPs for encoding a three-layered
MGS bit stream. The layers were supposed to encompass the following bit rates: 128
kBits/sec, 256 kBits/sec and 512 kBits/sec. In order to compare different resolutions, the
test runs were conducted on video sequnces with constant aspect ratio but varying frame
sizes. All other parameters were chosen similar to the previous example (Section 6.1.1)
and to the ones listed in Pseudocode 4.

Figure 6.2 presents the results for five different resolutions of each test sequence.
For each MGS layer on the horizontal axis the corresponding QPs are measured on the
vertical axis. Obvious is the constant trend of declining QPs with increasing bit rate.
This is not surprising since smaller QPs decrease quantization step size and consequently
lead to higher bit rates. But looking more closely some other interesting aspects emerge.

ap Qp
50,0 50,0
450 b 450 —

\\ —4—500x450 \\ —+—B00x450
40,0 \' 700x394 400 700x394
\ —h— 600x338 —&—600x338
35.0 =—=500x282 35.0 \ =——500x282

\\\\ o N o
30,0 300

T Y T .
128,0 256,0 512,0 KkBits/ sec 128,0 256,0 512,0 kBits / sec

(a) Elephants Dream Test Sequence (b) Lost Test Sequence

Figure 6.2: Five different resolutions, each with three MGS layers

One interesting question of Figure 6.2 is the difference in QPs from one layer to the
next. For both test sequences those differences fall into a constant interval from 4.5 to
5.5 (with slightly larger differences on average for the Lost test sequence). The actual
interesting aspect about this fact is that while the bit rates double from one layer to the
next (128 kBits/sec to 256 kBits/sec and 512 kBits/sec), the corresponding QPs differ
in less than 6 QPs. As noticed in the previous example, twice as much bit rate in a
H.264/AVC stream allowed for the QP to decrease about 6 levels. For SVC streams this
is apparently not the case. Responsible for this is the overhead induced by SVC. Hence,
only an improvement of roughly 5 QPs is possible for a doubled bit rate. Referring to
the prior comments that a step of 1 in the QP parameter relates to variations of the bit
rate by approximately 12%, the following rule of thumb can be stated: one new MGS
layer with twice the bit rate imposes an overhead of about 12% to the bit stream. This
result matches similar findings of the previous example in Section 6.1.1.

Another notable aspect of the Diagram 6.2 is the comparable large difference in QP
from the lowest resolution (400 x 224) to the next higher one (500 x 282). This can be

35

explained by the fact that the JSVM encoder always expands the resolution of the input
sequence to a multiple of the macro block size (16 x 16 pixel). Therefore, 400 x 224 is
the only resolution that is kept intact, while all other frames need to be expanded in
order to form a multiple of 16 x 16.

6.1.3 Varying Parameters

The objective of the third test scenarios was to analyze the impact of varying encoding
parameters on the coded bit stream. Therefore, five different MGS streams were encoded
in order to compare their final bit rates. All streams encompassed 3 MGS layers with
constant quantization parameters (QPs) of 38, 32 and 26. Again the test runs were
conducted on two different test sequences: FElephants Dream and Lost.

kBits/ sec kBits [sec
900 900
GOP 4 GOP4

800 ™ 800
nodelay no delay

700 e ——rewrite 700 —H—rewrite

/ ——normal —k—normal
600 rd 600

o . / —%—IB8P N ; —%—IBBP
400 // 400 - /
300 // 300 //

38 32 26 QP 38 32 26 QP

(a) Elephants Dream Test Sequence (b) Lost Test Sequence
Figure 6.3: Varying parameters for a three layered MGS stream

As a starting point served a three layered MGS stream encoded using the same
parameters as in the previous test scenario (Pseudocode 4). Since also the same values
for QP were chosen, this video is identical to the three layer version of the previous
example with exactly the same bit rates. Starting from here specific encoding parameters
were altered to study their impacts on the output bit rate.

As mentioned in the Section 3.2.1 about temporal scalability, a hierarchical prediction
structure can still be obtained, while avoiding a structural delay in the decoding process.
Such a prediction structure avoids references to future frames (illustrated for example in
Figure 3.2(b)) and therefore only employs I or P-frames. Accordingly, this prediction
structure is sometimes referred to as: IPPP. The advantage of no delay during decoding
comes at the price of a lower coding efficiency and subsequently a higher bit rate. The
actual impact on the bit rate can be seen in Figure 6.3(a) and Figure 6.3(b). Around
30% (£5%) more bits per second are necessary in comparison to normal hierarchical
B-frames.

The next test runs again concentrated on the prediction structure of the encoded
SVC stream. The group of picture size (GOP) (see Section 3.2.1) was reduced to 4
frames, while all other parameters were kept constant (hierarchical B-frames with I-
frames every 32"? frame). The advantage of this prediction structure is that negative
impacts due to lost reference frames or discarded packets is limited to less frames, which
makes the video sequence more robust against interruptions on the transmission link.
Though, one disadvantage is that the number of temporal layers is reduced from five
to three. An even severer downside reveals the considerable higher bit rate. In the
diagrams of Figures 6.3(a) and 6.3(b) those additional bits represent about 40% (+3%)
of the reference bit rate (GOP size of 16). Both results from the no delay and the

36

4-frame GOP test runs show that the structure of hierarchical prediction does have a
considerable impact on the final bit rate.

Until now all test sequences were encoded with I-frame updates at every 32"¢ frame.
At a frame rate of 25 frames/sec this corresponds to approximately one I-frame every
one and a half second. I-frames as well limit the impacts of lost reference frames.
Moreover, they are especially important if no key pictures are encoded in a MGS stream
in order to serve as an alternative for controlling the drift. Since key pictures are not
allowed for rewriteable MGS streams (5.2.4), I-frames are also important for our system
configuration. That is why the differences in sequences with and without periodic I-
frames updates were in particular studied during the test runs. As can be seen from the
diagrams, the overhead of periodic I-frame updates is not dramatic (less than 5%). Thus,
I-frames for drift prevention can idead be inserted in MGS streams without severely
impairing the coding efficiency.

The last test configuration also dealt with the rewrite functionality of SVC. Sec-
tion 5.2.4 pointed out the necessary modifications to common SVC video streams in
order to enable rewriting to a regular H.264/AVC video. Since the presented system
relies mainly on this rewriting process, the impact of these modifications on the coding
efficiency was also investigated during the experiments. The results show that for both
test sequences (Figures 6.3(a) and 6.3(b)) the overhead due to the rewriting modifi-
cations of Section 5.2.4 is limited to less than 10%. Together with the findings of the
pervious paragraph those results prove that the rewriting functionality for MGS streams
can be used without sacrificing too much bit rate.

6.1.4 PSNR

After studying extensively the relationship between quantization parameters (QPs) and
corresponding bit rates, the last test scenario focused on their actual impacts on the
final video quality. Therefore, outputs from different layers of a scalable video stream
were compared. The experiments should consider subjective measurements as well as
objective ones to assess the quality of the encoded layers. For a subjective analysis the
decoded frames were compared, while the objective analysis relied on the evaluation of
the Peak Signal-to-Noise Ratio (PSNR).

At a bit rate distribution of 128 kBit/sec, 256 kBit/sec and 512 Kbit/sec for each
of the three MGS layers, the base layer already provides a decent image quality for a
resolution of 400 x 224 pixel. In order to make the differences between the layers more
apparent, the resolution of the test sequences was therefore expanded to 800 x 450 pixel.
All other parameters were adopted from the test scenario in Section 6.1.2.

As input stream for this test scenario functioned an uncompressed version of the
FElephants Dream test sequence (Figure 6.4(a)). The results after compression are illus-
trated in the next three figures. They show screenshots from each of the three MGS
layers encoded at bit rates of 128 kBit/sec, 256 kBit/sec and 512 Kbit/sec. The gradual
improvement from the lowest up to the highest layer is apparent. Although the base
layer (Figure 6.4(b)) already provides a blurry impression of the scene, it cannot be con-
sidered a satisfying quality. Therefore, the higher layers build upon the base layer by
further downsizing the quantization step size for improving the image quality. Finally,
in the output of the highest layer (Figure 6.4(d)) almost no difference can be recognized
in comparison to the one from the non-scalable H.264/AVC stream at the same bit rate
(Figure 6.4(e)). However, for all screenshots of decoded frames, especially at a low bit
rate, it must be kept in mind that their block patterns were reduced by a post process-
ing deblocking filter. The Figures 6.5 show more screenshots from different MGS layers.
This time the frames were enlarged in order point out their varying richness in details.

After the subjective analysis of the output from different MGS layers, those findings
are yet to be confirmed by a quantitative examination. For this purpose, the PSNR
between the original and the reconstructed video sequences is computed. To simplify
matters the PSNR is only studied for the luma channel (Y) of the decoded YUV frames.

37

(a) Uncompressed Frame

(b) MGS at 128 kBit/sec (c) MGS at 256 kBit/sec

(d) MGS at 512 kBit/sec (e) Single-layer at 512 kBit/sec

Figure 6.4: Comparions of different quality layers

38

(a) 128 kBits/sec (b) 256 kBits/sec (c) 512 kBits/sec

Figure 6.5: Comparions of three different MGS layers

Again, PSNR values in Figure 6.6 for H.264/AVC streams are illustrated as separate
points in the diagram to underline their independency from other single-layer streams.
As expected, in both cases - SVC and H.264/AVC - the PSNR increases with the avail-
able bit rate. Starting at the base layer with a similar PSNR, the differences between
scalable and non-scalable streams enlarge up to 2 dB at a bit rate of 512 kBit/sec. Be-
tween the lowest and the highest MGS layer an improvement of 5 dB can be determined,
which quantizes the enhancements in image quality from Figure 6.4(b) to Figure 6.4(d).
Those results are also similar to the ones presented in the evaluation part of [15]. For
all consideration of the diagram in Figure 6.6 it is important to keep in mind that the
scaling for the bit rate on the x-axis is not constant, but logarithmic.

PSNR
38

37

36 —r—S5VC
35

) o

33

32 //

31 /

30

128 256 512 kBits/sec

Figure 6.6: Y-PSNR comparison

39

6.2 Pulsar Evaluation

The foregoing set of test scenarios concentrated on SVC alone and on the impact that
certain input parameters play on the scalable video stream. For a better understanding
of the advantages that SVC brings to peer-to-peer networks and Pulsar in particular,
further test runs were conducted. This second set of test scenarios focused on scalable
video data sent over the Pulsar network. Therefore, test cases for assessing the impact
of scalable video as a new feature were devised and verified in the Pulsar test bed. For
a better control of the data sent over the network, simulated data packets were used
instead of actual video data. In doing so, it is possible to test different distributions of
data packets to video layers.

6.2.1 Number of decoded bytes

Besides the increase flexibility of scalable video, Section 3.1 also mentioned another
advantage of scalable video: prioritization. In representing the encoded video in a
layered structure, scalable video offers the possibility to play the video stream at least
at a low quality, if the complete video stream is not available.

In order to assess this benefit the same simulated video stream was distributed
two times over the same network: the first time as a non-scalable H.264/AVC stream
and the second time encoded as a three layered SVC stream. For the H.264/AVC
stream a bit rate of 512 kBits/sec (64 kBytes/sec) was assumed, which corresponds to
about 600 kBits/sec (75 kBytes/sec) for the SVC stream due to the overhead. The
simulated H.264/AVC stream was generated by packets with a constant size of 2560
bytes. Whereas, for the SVC stream varying packet sizes were assumed that relate to
packets of a regular SVC stream (i.e. larger packets at low temporal layers due to I and
P-frames). In both cases the packet sizes sum up to 64 kBytes/sec and 75 kBytes/sec
respectively at a frame rate of 25 frames/sec.

kBytes/sec

80
70 /—. SVC Decoded
60 /__ H.264 Decoded
. s

o 7

. P

o

10 —

Downloaded Bytes

0 T T T T T T T T

1
10 20 30 40 50 60 70 80 50 100 Uploadin kBy'tes,fsec

Figure 6.7: Numner of downloaded and decoded bytes

The decisive factor of the results presented in Figure 6.7 is the upload capacity of the
peers. This upload speed (measured in kBytes/sec) was assumed to be constant over
all of the 50 peers simulated in this experiment. In the diagram the increasing upload
capacity is compared with two values: the number of downloaded and the number of
decoded bytes. Both values represent the average over all peers. For the H.264/AVC
stream a frame was only considered decodable, if all proceeding frames up to the next
I-frame could be decoded as well. This prediction structure corresponds to a IPPP
succession of frames. Whereas the underlying prediction structure for the SVC stream

40

were hierarchical B-frames (Section 3.2.1). Therefore, at least the base layer of all frames
from lower temporal layers had to be available to consider a SVC frame decodable.

Up to the maximum bit rate of the H.264/AVC stream in both cases the same amount
of bytes can be downloaded. This value is only restricted by the upload capacity for all
peers. The additional bytes beyond 64 kBytes/sec in case of the SVC stream represent
the overhead for the scalable information.

When taking a look at the number of decoded bytes a significant difference between
the H.264/AVC and the SVC stream becomes apparent. Especially if the upload speed
of the peers is strongly restricted, Figure 6.7 reveals that far more data of the SVC
stream can be decoded for playback as it is the case with H.264/AVC. This is due to the
fact that with scalable video the restricted bandwidth can be used in a more efficient
way. While in a non-scalable video stream all bytes have the same prioritization, SVC
can concentrate the limited amount of bandwidth to those parts of the video that are
necessary to play at least a poor quality or a low frame rate. This is achieved if the
low layers (in respect of quality or temporal resolution) of the scalable video stream are
downloaded first, before any of the enhancement layers is requested.

Figure 6.8 illustrates the percentage of decodable data in respect to the overall
amount of data arriving at the peers. In this case the more efficient use of down-
loaded bytes is even more apparent. Starting at the lowest upload capacity always more
than half of the downloaded scalable video data can subsequently be decoded. For the
H.264/AVC stream those values cannot be achieved until upload capacity of the peers
reaches about 60 kBytes/sec.

100

— . = —&—H.264Decoded%

50 / SVC Decoded %
80

70 /

60 /

50

40 /l

30 /

20

10 /

1
10 20 30 40 50 60 70 8o so 100 UploadinkBytes/sec

Figure 6.8: Percentage of decoded data (downloaded data = 100%)

However, as the upload capacity further rises, the differences between the H.264/AVC
and the SVC stream diminish. The reason behind this development has two aspects .
First, with a growing bandwidth the prioritization of video data within the SVC stream
becomes less important. Concentrating on the basic parts of a video stream is mainly
beneficial if only a small portion of the overall data is available. Second, if bandwidth
becomes less of a problem, the overhead of SVC is getting a more important issue. At
the highest upload capacities more bytes have to be downloaded for a SVC stream in
order to achieve the best quality. This fact can also be seen in Figure 6.7 by the diverging
download rates at an upload capacity of 70 kBytes/sec.

41

42

Chapter 7

Conclusion

This report discussed the up and downsides of Scalable Video Coding with particular
attention to its application in peer-to-peer networks. In addition, the actual integra-
tion of scalable video into an existing peer-to-peer streaming software, namely Pulsar,
was presented. As a conclusion it can be stated that on the one hand scalable video
indeed has the potential to enhance the video streaming functionality of peer-to-peer
networks. In particular flexibility in bit rate and error resilience can benefit from such a
system. However, on the other hand increased coding complexity and considerable bit
rate overhead have to be taken into account as well. Furthermore, due to its very recent
approval the SVC standard has not yet found its way to broad application in publicly
available systems. It remains to be seen if SVC can gain the same acceptance in video
applications as its parent standard H.264/AVC is already enjoying.

7.1 Discussion

Though Pulsar is now able to handle scalable video streams, there is still room for
further improvement. The most serious weak point of the system presented in the
foregoing chapters, is clearly the dependency on the JSVM software. Especially three
issues can be stated that have to be solved before Pulsar can offer scalable video on a
broad scale.

First, JSVM is intended as reference software. Hence, its main focus lies on clearly
representing the SVC standard rather than on performance issues. This fact challenged
our demand to run the rewriter in real time. We managed to rewrite video sequences
with a resolution of 400 x 224 in real time. Clearly there should be a high potential
for significant performance improvements, given that the rewriting process itself is not
a complex one.

Second, for the test runs so far a SVC bit stream was assumed to be given. Nev-
ertheless, for actual application of SVC in Pulsar this issues needs to be reconsidered.
One possible solution would be to keep the encoder out of Pulsar and further rely on
external encoders like the one from JSVM. Due to the mentioned performance issues
of JSVM this way is unlikely to provide a completely satisfying solution. Furthermore,
the user interface of the JSVM encoder turns out to be too complicated for ”main-
stream” application. More promising but also obliged with a higher effort would be an
alternative tailored specifically to Pulsar. As discussed in [71], a similar solution to the
rewriter could be possible at the encoder side as well. This would include a rewriting
process from H.264/AVC to SVC. Although special considerations concerning drift have
to be regarded, rewriting to SVC is probably faster than completely encoding from an
uncompressed video stream. Furthermore, this solution could be combined with already
existing and established H.264/AVC encoders.

When further pursuing the idea of H.264/AVC to SVC rewriting, the system could

43

come to a point where overhead due to additional scalable information can be completely
avoided. This is possible if the regular H.264/AVC format is exclusively used for sending
video data between peers. Only if a certain subset of layers needs to be extracted, the
video stream is transformed to a SVC stream. In the SVC space specific enhancement
layers are discarded and the remaining layers are rewritten back to the H.264/AVC
format. In this way the SVC overhead only becomes locally noticeable at the peers and
never affects the transmission bandwidth. The basic outline of this idea can be seen
in 7.1.

Peer

rewriting

rewriting H.264/AVC

v

Figure 7.1: H.264/AVC to SVC rewriting

Third, license issues concerning the JSVM software have to be considered. Although
the source code is freely available by today and no usage restrictions apply, this policy
is not guaranteed to stay unchanged in the future.

7.2 Outlook

Following the discussion in the previous section, the foremost improvement of the system
so far would be an independency from the JSVM reference software. This could solve
most of the problems discussed in connection with the JSVM software, especially the
performance issue. The process of rewriting itself does not involve any complex or time
consuming tasks. Therefore, it is certainly possible to implement a rewriter, which is
capable of rewriting SVC streams in real time with a far higher resolution than 400 x 224.

Before implementing a new rewriter, a decision concerning the programming lan-
guage has to be made. One way would be to further rely on C++ for all fundamental
video processing tasks, as it is the case today in JSVM or FFmpeg. This would only
require the replacement of the external rewriter, while the basic architecture of the cur-
rent system could be left untouched. Also parts of the JNI interface could be reused for
this purpose. By contrast, a rewriter based on Java could be implemented as an integral
part of Pulsar, which makes JNI interfaces between the rewriter and Pulsar obsolete.

Furthermore, also other scalability dimensions beside quality represent further pos-
sibilities for enhancement. Especially temporal scalability seems to offer interesting
prospects, since its application does not require any modifications on the decoder side.
Moreover, all our test sequences already included hierarchical B-frames. Consequently,
modifications would be limited to Pulsar and its request and notifications policies for
SVC streams in order to consider temporal layers in addition to quality layers.

As far as it concerns spatial scalability, combination with the concept of rewriting
appears complicated. Due to the reasons mentioned in Section 5.2.4, spatial layers
cannot be rewritten in an efficient way. An alternative would be to consider quality
scalability a special case of spatial scalability by simply down scaling low quality layers
for displaying. This could ”hide” visual artifacts due to a poor video quality.

Besides extending the functionality of scalable video in Pulsar, also a deeper analysis
of its application would be interesting. The evaluation part of this report (Section 6)
can be continued to take a closer look at the actual advantages that scalable video offers
in comparison to regular non-scalable video streams. Especially test scenarios with a
diverse distribution of MGS layers among the peer would provide further insights into

44

the performance of Pulsar using SVC. Besides the distribution of layers, as well varying
packet sizes between the layers could influence test results. Furthermore, it would be
interesting to examine the impacts of scalable video on the bandwidth distribution and
bandwidth consumption of all peers. As well, issues in the field of incentive strate-
gies specifically tailored at the purpose of scalable video offer questions for additional
investigation.

On the protocol side of Pulsar new strategies can be tested that are specifically
adapted for the requirements of scalable video. For example various incentive strategies
can be compared in order to find the optimal assignment of payback ratios to scalable
video layers. Furthermore, special request strategies could take into account the different
importance of each scalable layer.

Therefore, it can be concluded that the application of scalable video in Pulsar opens
up wide possibilities paired with further interesting challenges.

45

46

Bibliography

[1] Bittorrent: Offical protocol specification, Feb 2008.

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

http://www.bittorrent.org/beps/bep_0003.html.

Gnutella: Offical protocol specification, June 2008.
http://www.gnutella.com.

eDonkey Network: Offical Protocol Specification, June 2008.
http://www.cs.huji.ac.il/labs/danss/presentations/emule.pdf.

Skype: Peer-To-Peer Telephone Software, June 2008.
http://www.skype.com.

Kazaa media desktop: Peer-to-peer file sharing client, June 2008.
http://www.kazaa.com.

Limewire: Peer-to-peer file sharing client, June 2008.
http://www.limewire.com.

Morpheus: Peer-to-peer file sharing client, June 2008.
http://www.morpheus.com.

eMule: Peer-To-Peer File Sharing Client, June 2008.
http://www.emule-project.net.

Pulsar: Live and On-Demand Streaming Software, June 2008.
http://www.getpulsar.com.

Remo Meier. Peer-to-Peer Live Streaming. Master’s thesis, Swiss Federal Institute
of Technology (ETH) Zurich, July 2006.

Thomas Locher, Remo Meier, Stefan Schmid, and Roger Wattenhofer. Push-to-
Pull Peer-to-Peer Live Streaming. In 21st International Symposium on Distributed
Computing (DISC), Lemesos, Cyprus, September 2007.

H. Schwarz, T. Hinz, H. Kirchhoffer, D. Marpe, and T. Wiegand. Technical
Description of the HHI Proposal for SVC CE1, ISO. Technical report, IEC
JTC1/SC29/WG11, Document M11244, Oct 2004.

H. Schwarz, D. Marpe, and T. Wiegand. Further results for the HHI Proposal on
combined scalability. ISO/IEC JTC 1/5C 29/WG 11, Oct 2004.

T. Wiegand, G. Sullivan, J. Reichel, H. Schwarz, and M. Wien. Joint Draft 11 of
SVC Amendment. Joint Video Team, doc. JVTX201, Geneva, Switzerland, July,
2007.

H. Schwarz, D. Marpe, and T. Wiegand. Overview of the Scalable H.264/MPEG4-
AVC Extension. Proc. of Int. Conf. on Image Proc.(ICIP 2006), Atlanta, GA,
USA, pages 8-11, Oct. 2006.

47

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[27]

[28]

[29]

[30]

[31]

[32]

J. Reichel, H. Schwarz, and M. Wien. Joint Scalable Video Model (JSVM) 11, Doc.
JVT-X202. Joint Video Team, Video Coding Experts Group, July 2007. http:
//ip.hhi.de/imagecom_G1/savce/downloads/SVC-Reference-Software.htm.

M. Wien, R. Cazoulat, A. Graffunder, A. Hutter, and P. Amon. Real-Time System
for Adaptive Video Streaming based on SVC. Clircuits and Systems for Video
Technology, IEEE Transactions on, 17(9):1227-1237, Sept. 2007.

M. Wien, H. Schwarz, and T. Oelbaum. Performance analysis of SVC. Clircuits
and Systems for Video Technology, IEEE Transactions on, 17(9):1194-1203, Sept.
2007.

S. Wenger and T. Schierl. RTP payload for SVC. Circuits and Systems for Video
Technology, IEEE Transactions on, 17(9):1174-1185, Sept. 2007.

T. Schierl, T. Stockhammer, and T. Wiegand. Mobile Video Transmission Using
Scalable Video Coding. Circuits and Systems for Video Technology, IEEE Trans-
actions on, 17(9):1204-1217, Sept. 2007.

VK Goyal. Multiple Description Coding: Compression meets the Network. Signal
Processing Magazine, IEFE, 18(5):74-93, 2001.

Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A Survey of Peer-to-
Peer Content Distribution Technologies. ACM Computing Surveys, 36(4):335-371,
2004.

K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. A survey and comparison
of peer-to-peer overlay network schemes. Communications Surveys & Tutorials,
IEEE, pages 72-93, march 2004.

V.N. Padmanabhan, H.J. Wang, P.A. Chou, and K. Sripanidkulchai. Distributing
streaming media content using cooperative networking. Proceedings of the 12th
international workshop on Network and operating systems support for digital audio
and video, pages 177-186, 2002.

Y. Chu, SG Rao, S. Seshan, and H. Zhang. Narada: A case for end system multicast.
Selected Areas in Communications, IEEE Journal on, 20(8):1456-1471, 2002.

J. Jannotti, D.K. Gifford, K.L. Johnson, M.F. Kaashoek, and J.W. O’Toole Jr.
Overcast: reliable multicasting with on overlay network. Proceedings of the 4th
conference on Symposium on Operating System Design, pages 14-14, 2000.

PeerCast: Peer-To-Peer Broadcasting Software, June 2008.
http://www.peercast.org.

FreeCast: Peer-To-Peer Broadcasting Software, June 2008.
http://www.freecast.org.

V.N. Padmanabhan and K. Sripanidkulchai. CoopNet: The case for cooperative
networking. Proceedings of IPTPS02, 2429:178190, 2002.

M. Castro, P. Druschel, A.M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh.
High-bandwidth content distribution in a cooperative environment. Proceedings of
SOSP, 2003.

X. Zhang, J. Liu, B. Li, and T.S.P. Yum. CoolStreaming/DONet: A Data-Driven
Overlay Network for Efficient Live Media Streaming. Proceedings of IEEE INFO-
COM, 3:13-17, 2005.

N. Magharei and R. Rejaie. Understanding Mesh-based Peer-to-Peer Streaming.
Proceedings of ACM NOSSDAV, 6, 2006.

48

[33]

[34]

[35]

V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A.E. Mohr. Chainsaw:
Eliminating Trees from Overlay Multicast. Proceedings of IPTPS, pages 127-140,
2005.

M. Zhang, L. Zhao, J.L.Y. Tang, and S. Yang. GridMedia: A Peer-to-Peer Network
for Streaming Multicast through the Internet. Proceedings of the ACM Multimedia,
2005.

Napster: Peer-to-peer music sharing client, June 2008.
http://www.napster.com.

CG Plaxton. Accessing Nearby Copies of Replicated Objects in a Distributed
Environment. Theory of Computing Systems, 32(3):241-280, 1999.

H. Balakrishnan, M.F. Kaashoek, D. Karger, R. Morris, and 1. Stoica. Looking up
data in P2P systems. Communications of the ACM, 46(2):43-48, 2003.

Moni Naor and Udi Wieder. Novel architectures for P2P applications: The
continuous-discrete approach. ACM Trans. Algorithms, 3:34, 2007.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable
content-addressable network. Proceedings of the 2001 conference on Applications,

technologies, architectures, and protocols for computer communications, pages 161—
172, 2001.

1. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for internet applications. Proceedings of the
2001 SIGCOMM conference, 31(4):149-160, 2001.

A.L'T. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object Location,
and Routing for Large-Scale Peer-to-Peer Systems. Lecture Notes In Computer
Science, 2218:329-350, 2001.

B.Y. Zhao, J. Kubiatowicz, and A.D. Joseph. Tapestry: An Infrastructure for
Fault-Tolerant Wide-Area Location and Routing. Computer, 74, 2001.

M. Mushtaq and T. Ahmed. Smooth Video Delivery for SVC Based Media Stream-
ing Over P2P Networks. Consumer Communications and Networking Conference,
2008. CCNC 2008. 5th IEEE, pages 447-451, 2008.

P. Baccichet, T. Schierl, T. Wiegand, and B. Girod. Low-delay peer-to-peer stream-
ing using scalable video coding. Packet Video 2007, pages 173-181, 2007.

E. Setton, P. Baccichet, and B. Girod. Peer-to-Peer Live Multicast: A Video
Perspective. Proceedings of the IEEE INFOCOM, 96(1):25-38, 2008.

M. Zink and A. Mauthe. P2P streaming using Multiple Description Coded video.
Euromicro Conference, 2004. Proceedings. 30th, pages 240-247, Sept. 2004.

E. Akyol, AM Tekalp, and MR, Civanlar. A Flexible Multiple Description Coding
Framework for Adaptive Peer-to-Peer Video Streaming. Selected Topics in Signal
Processing, IEEE Journal of, 1(2):231-245, 2007.

Z. Liu, Y. Shen, S.S. Panwar, K.W. Ross, and Y. Wang. P2P Video Live Streaming
with MDC: Providing Incentives for Redistribution. Multimedia and Ezpo, 2007
IEEE International Conference on, pages 48-51, 2007.

Zattoo: Tv meets pc, June 2008.
http://zattoo.com.

49

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[63]

[64]

[65]

[66]

[67]

J. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, and A. Iosup. Tribler:
A social-based peer-to-peer system. Concurrency and Computation: Practice and
FEzxperience, 19:1-11, 2007.
http://www.tribler.org.

N. Zennstrm and J. Friis. Joost: P2PTV, June 2008.
http://www.joost.com.

TVUnetworks: P2PTV Application, June 2008.
http://tvunetworks. com.

PPLive: P2PTV Application, June 2008.
http://www.pplive.com.

M. Rabbani and R. Joshi. An overview of the JPEG 2000 still image compression
standard. Signal Processing: Image Communication, 17(1):3-48, 2002.

T. Wiegand, GJ Sullivan, G. Bjntegaard, and A. Luthra. Overview of the H.
264/AVC video coding standard. Circuits and Systems for Video Technology, IEEE
Transactions on, 13(7):560-576, 2003.

H. Schwarz, D. Marpe, and T. Wiegand. Hierarchical B-pictures. Joint Video Team,
Doc. JVT-P014, Poznan, Poland, July 2005.

H. Schwarz, D. Marpe, and T. Wiegand. Analysis of hierarchical B-pictures and
MCTF. Proc. ICME, pages 1929-1932, 2006.

C.A. Segall and G.J. Sullivan. Spatial Scalability within the H.264/AVC Scalable
Video Coding Extension. Circuits and Systems for Video Technology, IEEE Trans-
actions on, 17(9):1121-1135, Sept. 2007.

H. Schwarz, T. Hinz, D. Marpe, and T. Wiegand. Constrained Inter-Layer Predic-
tion for Single-Loop Decoding in Spatial Scalability. Image Processing, 2005. IEEE
International Conference on, 2:870-873, Sept. 2005.

H. Schwarz, D. Marpe, and T. Wiegand. Further results on constrained inter-layer
prediction. Joint Video Team, doc. JVT-0074, Busan, Korea, April, April 2005.

K. Tamilmani, V. Pai, and A. Mohr. Swift: A system with incentives for trading.
Second Workshop on the Economics of Peer-to-Peer Systems, 2004.

S. Pateux, YK Wang, M. Hannuksela, and A. Eleftheriadis. System and Transport
interface of the emerging SVC standard. Clircuits and Systems for Video Technology,
IEEFE Transactions on, 17(9):11491163, Sept. 2007.

D. Singer, T. Rathgen, and P. Amon. File format for SVC. Circuits and Systems
for Video Technology, IEEE Transactions on, 17(9):11741185, Sept. 2007.

S. Golomb. Run-length encodings. Information Theory, IEEE Transactions on,
12(3):399-401, July 1966.

F. Bellard and M. Niedermayer. The FFmpeg Project, June 2008.
http://ffmpeg.org.

A. Segall. CE 8: SVC-to-AVC bit-stream rewriting for Coarse Grain Scalability.
Joint Video Team, doc. JVT-V035, Jan. 2007.

S. Liang. The Java Native Interface: Programmer’s Guide and Specification, June
1999.
http://java.sun.com/docs/books/jni.

50

[68] University of Hannover. Original YUV test sequences, July 2007.
ftp.tnt.uni-hannover.de/pub/svc/testsequences/.

[69] Bassam Kurdali and Ton Roosendaal. Elephants Dream: Free Animation Movie,
July 2007.
http://orange.blender.org.

[70] HS Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky. Low-complexity trans-
form and quantization in H.264/AVC. Circuits and Systems for Video Technology,
IEEE Transactions on, 13(7):598-603, 2003.

[71] J. De Cock, S. Notebaert, and R. Van de Walle. Transcoding from H.264/AVC to
SVC with CGS Layers. Image Processing, ICIP IEEFE International Conference on,
4:73-76, Oct. 2007.

51

